Skip to content

Generate ice models based on Gelfand-Tsetlin patterns and calculate Weyl character formula of SO(2n+1).

Notifications You must be signed in to change notification settings

yli11/ice-models

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Requirements

Python3, SymPy.

Usage

Calculating the Partition Function

In command line, enter:

$ python3 main.py 3 1 0
# of patterns: 42
... (result omitted here because it's too long)

The script outputs a partition function, $\mathcal Z(\lambda)$, that is the product of a deformation of the Weyl denominator and a generalized character of a highest weight representation, by summing over our ice models corresponding to strict GT patterns with the given top row 3 1 0 .

One can use -f to get the factored partition function:

$ python3 main.py 3 1 0 -f
# of patterns: 42
(t*z0 + 1)*(t*z0 + z1)*(t*z1 + 1)*(t*z0*z1 + 1)*(z0**2*z1 + z0*z1**2 + z0*z1 + z0 + z1)/(z0**3*z1**3)

Factoring the result takes some time, especially for large GT patterns.

Alternatively, it is possible to index the deformation parameter t by row with the -i flag:

Note: This formulation is not fully solved. The sum of weights does not give a deformed character formula.

$ python3 main.py 3 1 0 -i -f
# of patterns: 42
(t0*z0**2 + 1)*(t1*z1**2 + 1)*(t1**2*z0**4*z1**2 + t1**2*z0**3*z1**3 + t1**2*z0**3*z1**2 + t1**2*z0**3*z1 + t1**2*z0**2*z1**2 + t1**2*z0*z1**3 + t1**2*z0*z1**2 + t1**2*z0*z1 + t1**2*z1**2 + t1*z0**3*z1**3 + t1*z0**3*z1 + t1*z0**2*z1**4 + t1*z0**2*z1**3 + 2*t1*z0**2*z1**2 + t1*z0**2*z1 + t1*z0**2 + t1*z0*z1**3 + t1*z0*z1 + z0**2*z1**2)/(z0**2*z1**2)

Ice Model for Koike-Terada Tableau

For calculations based on the Koike-Terada tableau instead of the Sundaram tableau, use the --KT flag.

Visualizing An Ice Model

For testing a single GT pattern, use (-a for U-turn boundaries on the right side):

$ python3 testIce.py -a

then enter the entire pattern line by line. Hit return one more time when done.

The script outputs a visualization of the ice model and a tally of vertex types by row.

Visualizing (Shifted) Tableaux

To see the shifted tableaux corresponding to GT patterns of a given top row, use:

$ python3 tableau.py

References

  • Brubaker, B., Bump, D., & Friedberg, S. (2011). Schur Polynomials and The Yang-Baxter Equation. Communications in Mathematical Physics, 308(2), 281–301.
  • Brubaker, B., & Schultz, A. (2015). The six-vertex model and deformations of the Weyl character formula. Journal of Algebraic Combinatorics, 42(4), 917–958.
  • Gray, N. (2017). Metaplectic Ice for Cartan Type C.
  • Hamel, A. M., & King, R. C. (2002). Symplectic Shifted Tableaux and Deformations of Weyl’s Denominator Formula for sp(2n). Journal of Algebraic Combinatorics, 16(3), 269–300
  • Koike, K., & Terada, I. (1990). Young diagrammatic methods for the restriction of representations of complex classical Lie groups to reductive subgroups of maximal rank. Advances in Mathematics, 79(1), 104–135.
  • Sundaram, S. (1990). Orthogonal tableaux and an insertion algorithm for SO(2n + 1). Journal of Combinatorial Theory, Series A, 53(2), 239-256.

About

Generate ice models based on Gelfand-Tsetlin patterns and calculate Weyl character formula of SO(2n+1).

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages