Skip to content

rohitdalvi18/Machine-Learning-Engineering-Portfolio

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

55 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Machine-Learning-Engineering-Portfolio

This repository contains implementations of machine learning algorithms, techniques, and end-to-end projects across the ML pipeline.

Machine Learning & Deep Learning

  • Supervised Learning: Linear Regression, Logistic Regression, LASSO, Random Forests, Gradient Boosting, K-Nearest Neighbours

  • Unsupervised Learning: Clustering, K-Means, DBSCAN, PCA, Dimensionality Reduction

  • Ensemble Methods: Decision Trees(CART), Random Forest, Bagging, Gradient Boosting, Stacking, XGBoost

  • Deep Learning: Multilayer Perceptrons, Convolutional Neural Networks

  • Natural Language Processing: Sentiment Analysis, Text Classification

Libraries & Frameworks

Implementation Details

Each project directory contains:

  • Documented code with algorithm implementations

  • Data preprocessing pipelines

  • Model evaluation and validation

  • Performance metrics and visualizations

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages