Algorzen Research Division Β© 2025 β Author: Rishi Singh
"The heartbeat of your data."
Algorzen Pulse is the third release in the Algorzen Intelligence Suite, providing continuous real-time monitoring and trend analysis for business data streams. It detects patterns, forecasts shifts, and delivers actionable insights before they appear in traditional dashboards.
Algorzen Pulse extends the Algorzen ecosystem by adding the heartbeat layer β a continuous awareness system that watches for shifts, spikes, and opportunities in your data streams.
- Eviden β Insight Generation
- Vigil β Anomaly Detection
- Pulse β Real-Time Monitoring β¨
- Continuously fetch or simulate real-time data points
- Support for multiple KPIs (sales, engagement, conversions, revenue)
- Realistic time-series generation with trends, seasonality, and noise
- Moving Averages: Short-term and long-term trend detection
- Rate-of-Change: Momentum and acceleration analysis
- Direction Detection: Automatic classification (β increasing, β declining, βοΈ stable)
- Spike/Dip Detection: Statistical anomaly identification
- Forecasting: Next-value prediction using exponential smoothing
- GPT-4 Integration: Executive-style narrative summaries
- Intelligent Fallback: Rule-based summarization when AI is unavailable
- Priority Classification: Automatic insight ranking (high/medium/low)
- PDF Reports: Executive-grade reports with visualizations and branding
- HTML Reports: Interactive web-based reports
- Metadata Tracking: Full reproducibility with JSON metadata
- Custom Branding: Algorzen Research Division styling throughout
- Streamlit Integration: Real-time visualization interface
- Dynamic Charts: Interactive Plotly visualizations
- Trend Gauges: Visual trend strength indicators
- Data Export: Download reports and data
algorzen-pulse/
βββ main.py # CLI orchestration script
βββ data_stream.py # Data fetching & simulation engine
βββ trend_analyzer.py # Pattern detection & forecasting
βββ ai_summary.py # GPT-4 / fallback summary engine
βββ report_generator.py # PDF + HTML report generator
βββ app/
β βββ streamlit_app.py # Interactive dashboard
βββ data/
β βββ sample_live_feed.csv # Sample dataset
βββ reports/
β βββ Pulse_Report_*.pdf # Generated reports
β βββ Pulse_Report_*.html
β βββ report_metadata.json
βββ requirements.txt
βββ .env.example
βββ README.md
- Python 3.10+
- Data Processing: Pandas, NumPy
- Visualization: Matplotlib, Seaborn, Plotly
- Analysis: Statsmodels, Prophet
- Reporting: ReportLab, Pillow
- AI: OpenAI API (GPT-4)
- Dashboard: Streamlit
- Configuration: python-dotenv
git clone <repository-url>
cd algorzen-pulsepython -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activatepip install -r requirements.txtFor OpenAI integration:
cp .env.example .env
# Edit .env and add your OpenAI API keyNote: The system works perfectly without OpenAI, using intelligent rule-based summaries as fallback.
Generate sample data and run analysis:
# Step 1: Generate sample data (30 days of metrics)
python main.py --generate-sample
# Step 2: Run analysis and generate reports
python main.py --input data/sample_live_feed.csv# Basic analysis
python main.py --input data/sample_live_feed.csv
# With OpenAI integration
python main.py --input data/my_data.csv --use-openai
# Custom analysis windows
python main.py --input data/my_data.csv --window-short 12 --window-long 72
# Generate custom sample data
python main.py --generate-sample --num-days 60 --output data/custom_feed.csv
# View all options
python main.py --help| Argument | Description | Default |
|---|---|---|
--input |
Path to input CSV file | data/sample_live_feed.csv |
--use-openai |
Use GPT-4 for summaries | False |
--window-short |
Short-term window (hours) | 24 |
--window-long |
Long-term window (hours) | 168 (1 week) |
--generate-sample |
Generate sample data | - |
--num-days |
Days of sample data | 30 |
--output |
Sample data output path | data/sample_live_feed.csv |
Launch the Streamlit dashboard for real-time visualization:
streamlit run app/streamlit_app.pyDashboard Features:
- Upload custom CSV data or use sample data
- Interactive time-series charts
- Trend strength gauges per metric
- Real-time insight generation
- Executive summary display
- PDF report generation
- Data export functionality
Your CSV file should have this structure:
timestamp,sales,engagement,conversions,revenue
2025-01-01 00:00:00,10234.56,5123.45,512.34,51234.56
2025-01-01 01:00:00,10456.78,5234.56,523.45,52345.67
...
Requirements:
timestampcolumn (datetime format)- One or more metric columns (numeric values)
- Hourly or finer granularity recommended
After running analysis:
- Executive summary
- Key metrics overview
- Trend visualizations
- Priority insights
- Algorzen branding
- Interactive web-based report
- Same content as PDF with responsive design
- Embedded charts
{
"project": "Algorzen Pulse",
"report_id": "PULSE-2025-Q4-001",
"generated_by": "Rishi Singh",
"created_at": "2025-11-15T14:30:00",
"tone": "Executive Business",
"openai_used": false,
"company": "Algorzen Research Division",
"year": "2025"
}# 1. Generate fresh sample data
python main.py --generate-sample --num-days 45
# 2. Run analysis with OpenAI
python main.py --input data/sample_live_feed.csv --use-openai
# 3. Launch dashboard for interactive exploration
streamlit run app/streamlit_app.pyfrom data_stream import DataStream
from trend_analyzer import TrendAnalyzer
from ai_summary import AISummaryEngine
from report_generator import ReportGenerator
# Load or generate data
stream = DataStream()
df = stream.generate_live_feed(
output_path='data/my_feed.csv',
num_days=30,
metrics=['sales', 'engagement', 'conversions']
)
# Analyze trends
analyzer = TrendAnalyzer(df)
trends = analyzer.analyze_all_metrics()
insights = analyzer.get_top_insights()
summary_stats = analyzer.get_summary_stats()
# Generate AI summary
ai_engine = AISummaryEngine(use_openai=True)
executive_summary = ai_engine.generate_executive_summary(
trends, insights, summary_stats
)
# Create report
report_gen = ReportGenerator()
report_files = report_gen.generate_report(
df, trends, insights, summary_stats,
executive_summary, use_openai=True
)
print(f"Report generated: {report_files['pdf']}")Edit your input CSV to include new metrics:
timestamp,sales,engagement,conversions,revenue,churn_rate,nps_score
The system automatically detects and analyzes all numeric columns.
# Short-term: 12 hours, Long-term: 3 days (72 hours)
python main.py --input data/my_data.csv --window-short 12 --window-long 72Modify trend_analyzer.py to adjust spike/dip detection:
spikes = self._detect_spikes(series, threshold=2.5) # Increase sensitivityGenerates realistic time-series data with:
- Baseline trends: Gradual upward/downward movement
- Seasonality: Daily and weekly patterns
- Noise: Random variation (Β±5% of baseline)
- Spikes: Occasional anomalies (3% probability)
For each metric:
- Calculate short-term and long-term moving averages
- Compute rate-of-change (momentum)
- Detect direction via MA crossover
- Identify spikes (> mean + 2Ο) and dips (< mean - 2Ο)
- Forecast next value using exponential smoothing
- Classify trends by priority (high/medium/low)
- Generate human-readable messages
- Sort by business impact
- With OpenAI: GPT-4 creates executive narrative
- Without OpenAI: Rule-based summary with business context
- Create visualizations (time-series, bar charts, pie charts)
- Build PDF with ReportLab
- Generate responsive HTML
- Save metadata for reproducibility
- Local-First: All processing happens locally
- API Key Safety: OpenAI keys stored in
.env(gitignored) - No Data Sharing: Your data never leaves your machine
- Open Source: Full transparency of algorithms
pip install openaipip install reportlabEnsure data/ directory exists:
mkdir -p data
python main.py --generate-sample# Install Streamlit
pip install streamlit
# Run from project root
streamlit run app/streamlit_app.py- Data Processing: ~1000 records/second
- Report Generation: ~5-10 seconds for 30 days of data
- Memory Usage: <500MB for typical datasets
- Recommended Data Size: 7-90 days of hourly data
- Real-time streaming from APIs (Stripe, Google Analytics, etc.)
- Advanced forecasting with Prophet/ARIMA
- Multi-dimensional correlation analysis
- Alert system (email/Slack notifications)
- Database integration (PostgreSQL, MongoDB)
- Custom dashboard themes
- Export to PowerPoint
This is a proprietary research project by Algorzen Research Division.
For collaboration inquiries, contact: Rishi Singh
Proprietary Software
Β© 2025 Algorzen Research Division. All rights reserved.
Author: Rishi Singh
Unauthorized copying, distribution, or modification is prohibited.
Part of the Algorzen Intelligence Suite:
- Algorzen Eviden - Insight Generation Engine
- Algorzen Vigil - Anomaly Detection System
- Algorzen Pulse - Real-Time Monitoring Platform
Author: Rishi Singh
Organization: Algorzen Research Division
Project: Algorzen Pulse (Drop 003)
Year: 2025
Algorzen Research Division Β© 2025
The heartbeat of your data.







