Skip to content
/ Eviden Public

Eviden is an enterprise-grade data analytics automation platform that converts raw datasets into actionable business intelligence reports with AI-powered narratives and professional PDF outputs.

License

Notifications You must be signed in to change notification settings

rizzshi/Eviden

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

18 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

Eviden
Created by Algorzen

๐Ÿค– Eviden Insight Reporter

Autonomous Business Intelligence System by Algorzen

An enterprise-grade data analytics automation platform that transforms raw datasets into executive-level business intelligence reports with AI-powered narratives, comprehensive EDA, and professional PDF outputs.

Python 3.10+ License: MIT OpenAI GPT-4


๐ŸŒŸ Features

๐Ÿ”น Core Analytics Engine

  • โœ… Automatic Dataset Detection โ€” Identifies sales, finance, customer, or general data types
  • โœ… Comprehensive EDA โ€” Missing values, statistics, correlations, distributions
  • โœ… Smart KPI Extraction โ€” Context-aware metrics based on dataset characteristics
  • โœ… Interactive Visualizations โ€” Heatmaps, distributions, and statistical plots

๐Ÿ”น AI-Powered Insights

  • โœ… GPT-4 Integration โ€” Executive-level narratives with strategic recommendations
  • โœ… Fallback Intelligence โ€” Rule-based narrative generation when API unavailable
  • โœ… Business Tone โ€” Professional, McKinsey-style executive summaries
  • โœ… Actionable Recommendations โ€” Data-driven strategic insights

๐Ÿ”น Professional Reporting

  • โœ… Branded PDF Reports โ€” Eviden formatting
  • โœ… Executive Presentation Quality โ€” Ready for stakeholder meetings
  • โœ… Metadata Tracking โ€” JSON reports with full traceability
  • โœ… Multi-Format Support โ€” CSV, Excel, Parquet inputs

๐Ÿ”น Deployment Options

  • โœ… Streamlit Web UI โ€” User-friendly drag-and-drop interface
  • โœ… CLI Tool โ€” Scriptable command-line automation
  • โœ… Modular API โ€” Integrate into existing pipelines

๐Ÿ“ฆ Installation

Prerequisites

  • Python 3.10 or higher
  • pip package manager

Quick Setup

# 1. Clone the repository
git clone https://github.com/rizzshi/AiInsight.git
cd AiInsight

# 2. Create virtual environment (recommended)
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# 3. Install dependencies
pip install -r requirements.txt

# 4. Set up environment variables (optional for GPT-4)
cp .env.example .env
# Edit .env and add your OpenAI API key

๐Ÿš€ Quick Start

Option 1: Streamlit Web UI (Recommended for Beginners)

streamlit run streamlit_app.py

Then open your browser to http://localhost:8501 and:

  1. Upload your dataset (CSV, Excel, or Parquet)
  2. Configure settings in the sidebar
  3. Click "Generate AI Report"
  4. Download your professional PDF report

Option 2: Command Line Interface

# Generate sample dataset first (optional)
python -c "from src.utils import generate_sample_sales_data; generate_sample_sales_data(1000).to_csv('data/sample_dataset.csv', index=False)"

# Run analysis on sample data
python main.py data/sample_dataset.csv

# Or analyze your own dataset
python main.py path/to/your/data.csv --author "Your Name"

# With GPT-4 (requires API key)
python main.py data/your_data.csv --api-key sk-your-key-here --verbose

Option 3: Python API

import pandas as pd
from src.eda_engine import perform_eda
from src.kpi_extractor import extract_kpis
from src.ai_narrator import generate_narrative
from src.pdf_generator import generate_pdf_report

# Load your data
df = pd.read_csv('your_data.csv')

# Run automated analysis
eda_summary = perform_eda(df)
kpis = extract_kpis(df, eda_summary['dataset_info']['dataset_type'])
narrative = generate_narrative(eda_summary, kpis)

# Generate PDF report
pdf_path = generate_pdf_report(eda_summary, kpis, narrative)
print(f"Report saved to: {pdf_path}")

๐Ÿ“Š Sample Dataset

A synthetic sales dataset with 1,000 records is included for testing:

# Generate sample data
python src/utils.py

# Analyze sample data
python main.py data/sample_dataset.csv --verbose

Sample Dataset Schema:

  • Transaction ID, Date, Product, Category
  • Region, Channel, Quantity, Pricing
  • Revenue, Discounts, Profit Margins
  • Customer IDs

๐Ÿง  How It Works

1. Dataset Type Detection

The system analyzes column names and data patterns to automatically classify datasets:

  • Sales: Revenue, products, quantities, pricing
  • Finance: Transactions, balances, debits/credits
  • Customer: Churn, segments, lifetime value
  • General: Fallback for other dataset types

2. Automated EDA

Comprehensive exploratory data analysis includes:

  • Missing value detection and quantification
  • Statistical summaries (mean, median, std dev, quartiles)
  • Correlation analysis with heatmap visualization
  • Distribution plots for numeric and categorical features

3. KPI Extraction

Context-aware KPI calculation based on dataset type:

Dataset Type Example KPIs
Sales Total Revenue, Average Order Value, Top Products, Margin Analysis
Finance Total Balance, Net Position, Transaction Volume, Account Metrics
Customer Churn Rate, Retention Rate, Avg Customer Value, Segment Distribution
General Data Completeness, Record Count, Feature Diversity

4. AI Narrative Generation

Two-tier intelligent narrative system:

Tier 1: GPT-4 (when API key provided)

  • Executive summary (3-5 sentences)
  • Key findings (4-6 bullet points)
  • Actionable recommendations
  • Risks and limitations

Tier 2: Rule-Based Fallback

  • Pattern-based insights
  • Statistical observations
  • Domain-specific recommendations
  • Data quality assessment

5. PDF Report Assembly

Professional report generation with:

  • Eviden branding (Created by Algorzen)
  • Title page with metadata
  • KPI summary tables
  • Visualizations (heatmaps, distributions)
  • AI-generated narratives
  • Data quality appendix

โš™๏ธ Configuration

Environment Variables (.env)

# OpenAI Configuration (optional)
OPENAI_API_KEY=sk-your-api-key-here
OPENAI_MODEL=gpt-4-turbo-preview

# Report Branding (optional)
COMPANY_NAME=Algorzen
AUTHOR_NAME=Rishi Singh

CLI Arguments

python main.py --help

Arguments:
  input_file              Path to dataset (CSV, Excel, Parquet)
  
Options:
  --output DIR            Output directory (default: reports/)
  --author NAME           Report author (default: Rishi Singh)
  --api-key KEY           OpenAI API key for GPT-4
  --no-pdf                Skip PDF generation
  --verbose               Show detailed progress

๐Ÿ“ Project Structure

AiInsight/
โ”œโ”€โ”€ src/
โ”‚   โ”œโ”€โ”€ eda_engine.py          # Automated EDA engine
โ”‚   โ”œโ”€โ”€ kpi_extractor.py       # KPI calculation module
โ”‚   โ”œโ”€โ”€ ai_narrator.py         # GPT-4 narrative generator
โ”‚   โ”œโ”€โ”€ pdf_generator.py       # PDF report builder
โ”‚   โ””โ”€โ”€ utils.py               # Helper functions
โ”œโ”€โ”€ data/
โ”‚   โ””โ”€โ”€ sample_dataset.csv     # Sample sales data (1000 records)
โ”œโ”€โ”€ reports/
โ”‚   โ”œโ”€โ”€ assets/                # Generated charts and visualizations
โ”‚   โ”œโ”€โ”€ Eviden_Insight_Report_YYYYMMDD.pdf
โ”‚   โ””โ”€โ”€ report_metadata.json   # Report metadata
โ”œโ”€โ”€ main.py                    # CLI entry point
โ”œโ”€โ”€ streamlit_app.py           # Web UI application
โ”œโ”€โ”€ requirements.txt           # Python dependencies
โ”œโ”€โ”€ .env.example               # Environment variable template
โ””โ”€โ”€ README.md                  # This file

๐ŸŽฏ Use Cases

Business Intelligence Teams

  • Automate routine data analysis reports
  • Generate executive summaries for stakeholders
  • Standardize reporting across departments

Data Analysts

  • Quick exploratory data analysis
  • Automated KPI tracking
  • Professional report generation

Consultants

  • Client data analysis and reporting
  • Strategic insights with AI narratives
  • Branded deliverables

Startups & SMBs

  • Cost-effective business intelligence
  • No-code analytics for non-technical users
  • Scalable reporting infrastructure

๐Ÿ”ง Advanced Usage

Custom Dataset Type Detection

from src.eda_engine import EDAEngine

# Force specific dataset type
df = pd.read_csv('your_data.csv')
engine = EDAEngine(df)
engine.dataset_type = 'finance'  # Override auto-detection
summary = engine.run_full_eda()

Integration with Data Pipelines

# Example: Daily automated reporting
import schedule
from src.utils import load_dataset
from main import main

def daily_report():
    # Your ETL pipeline
    df = extract_from_database()
    df.to_csv('temp_data.csv', index=False)
    
    # Generate report
    import sys
    sys.argv = ['main.py', 'temp_data.csv', '--verbose']
    main()

schedule.every().day.at("09:00").do(daily_report)

Custom KPI Definitions

from src.kpi_extractor import KPIExtractor

class CustomKPIExtractor(KPIExtractor):
    def extract_custom_kpis(self):
        kpis = {}
        # Your custom KPI logic here
        kpis['Custom Metric'] = calculate_custom_metric(self.df)
        return kpis

๐Ÿค Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

Development Setup

# Clone and setup
git clone https://github.com/rizzshi/AiInsight.git
cd AiInsight

# Install development dependencies
pip install -r requirements.txt
pip install pytest black flake8

# Run tests (when available)
pytest tests/

# Format code
black src/ *.py

๐Ÿ“ License

This project is licensed under the MIT License - see the LICENSE file for details.


๐Ÿ‘จโ€๐Ÿ’ป Author

Rishi Singh
Eviden (Created by Algorzen)


๐Ÿ™ Acknowledgments

  • OpenAI for GPT-4 API
  • ReportLab for PDF generation
  • Streamlit for web UI framework
  • The open-source data science community

๐Ÿ“ฎ Support

For questions, issues, or feature requests:

  • Open an issue on GitHub
  • Contact: Rishi Singh via GitHub

๐Ÿ”ฎ Roadmap

Planned Features

  • Multi-language narrative support
  • Custom branding templates
  • Real-time data source connectors (SQL, APIs)
  • Automated email report delivery
  • Interactive dashboard mode
  • Advanced statistical tests
  • Time series forecasting
  • Anomaly detection
  • Collaborative annotations
  • Report version control

Built with โค๏ธ by Algorzen

Eviden - Transforming Data into Strategic Intelligence

Python Streamlit OpenAI

About

Eviden is an enterprise-grade data analytics automation platform that converts raw datasets into actionable business intelligence reports with AI-powered narratives and professional PDF outputs.

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages