A Fortran library providing unified molecular structure data handling and geometry file format I/O for computational chemistry applications. The library supports reading and writing of molecular structures in more than twelve different geometry formats and provides element data and coordination number utilities.
- Unified structure representation: A common
structure_typefor handling molecular and periodic systems - Multi-format I/O: Read and write structures in 12+ geometry formats
- Element data: Access to atomic/covalent/vdW radii and Pauling electronegativities
- Coordination numbers: Multiple counting functions (exponential, error function, electronegativity-weighted)
- Helpful error messages: Detailed error reporting with source location information
- Multiple build systems: Support for meson, CMake, and fpm
program example
use mctc_io
use mctc_env
implicit none
type(structure_type) :: mol
type(error_type), allocatable :: error
! Read a structure (format auto-detected from extension)
call read_structure(mol, "molecule.xyz", error)
if (allocated(error)) stop error%message
! Access structure data
print '(a,i0)', "Number of atoms: ", mol%nat
print '(a,f12.6)', "Total charge: ", mol%charge
! Write to different format
call write_structure(mol, "molecule.mol", error)
if (allocated(error)) stop error%message
end programThis library supports reading and writing in more than ten different geometry formats, including general ASCII formats, like xyz, JSON based formats, like QCSchema, and program specific formats, for example compatible with Turbomole or Vasp.
General geometry formats
- xyz file format with
xyzextension - Protein data base file format with
pdbextension - mol and structure data connection table file formats with
molandsdfextension, respectively
JSON based formats
- Pymatgen JSON with
pmgjsonorjsonextension - QCSchema JSON with
qcjsonorjsonextension - Chemical JSON with
cjsonorjsonextension
Program specific formats
- Q-Chem molecule file format with
qchemextension - Turbomole coord file format with
tmolorcoordextension - VASP POSCAR and CONTCAR files with
vasp,poscar, orcontcarextension - DFTB+ gen format with
genextension - Gaussian external format with
einextension - FHI-aims
geometry.ininput files
To build this project from the source code in this repository you need to have a Fortran compiler supporting Fortran 2008 and one of the supported build systems:
- meson version 0.55 or newer (except 1.8.0), with a build-system backend, i.e. ninja version 1.7 or newer
- cmake version 3.14 or newer, with a build-system backend, i.e. ninja version 1.10 or newer
- fpm version 0.3.0 or newer
Currently this project supports GCC, Intel and PGI/NVHPC compilers.
Setup a build with
meson setup _build
You can select the Fortran compiler by the FC environment variable.
To compile the project run
meson compile -C _build
You can run the projects testsuite with
meson test -C _build --print-errorlogs
To include mctc-lib in your project add the following wrap file to your subprojects directory:
[wrap-git]
directory = mctc-lib
url = https://github.com/grimme-lab/mctc-lib
revision = headYou can retrieve the dependency from the wrap fallback with
mctc_dep = dependency('mctc-lib', fallback: ['mctc-lib', 'mctc_dep'])and add it as dependency to your targets.
Alternatively, this project can be build with CMake (in this case ninja 1.10 or newer is required):
cmake -B _build -G Ninja
To compile the project with CMake run
cmake --build _build
You can run the project testsuite with
pushd _build && ctest && popd
To include mctc-lib in your CMake project retrieve it using the FetchContent module:
if(NOT TARGET mctc-lib)
set("mctc-lib-url" "https://github.com/grimme-lab/mctc-lib")
message(STATUS "Retrieving mctc-lib from ${mctc-lib-url}")
include(FetchContent)
FetchContent_Declare(
"mctc-lib"
GIT_REPOSITORY "${mctc-lib-url}"
GIT_TAG "HEAD"
)
FetchContent_MakeAvailable("mctc-lib")
endif()And link against the "mctc-lib" interface library.
target_link_libraries("${PROJECT_NAME}-lib" PUBLIC "mctc-lib")Invoke fpm in the project root with
fpm build
To run the testsuite use
fpm test
You can access the mctc-convert program using the run subcommand
fpm run -- --help
To use mctc-lib for testing include it as dependency in your package manifest
[dependencies]
mctc-lib.git = "https://github.com/grimme-lab/mctc-lib"An example application is provided with the mctc-convert program to convert between different supported input formats.
After building, the mctc-convert tool can convert between any supported formats:
# Convert xyz to Turbomole coord
mctc-convert molecule.xyz molecule.coord
# Convert VASP POSCAR to xyz
mctc-convert POSCAR structure.xyz
# Pipe from stdin to stdout
cat input.xyz | mctc-convert -i xyz -o mol - -
# Preserve bond information from SDF when converting
mctc-convert optimized.xyz final.sdf --template original.sdfTo read an input file using the IO library use the read_structure routine.
The final geometry data is stored in a structure_type:
use mctc_io
use mctc_env
type(structure_type) :: mol
type(error_type), allocatable :: error
call read_structure(mol, "input.xyz", error)
if (allocated(error)) then
print '(a)', error%message
error stop
end ifThe environment library provides a basic error back-propagation mechanism using an allocatable error_type, which is passed to the library routines.
Usually the reader can detect the file type from the suffix of file names.
Alternatively, the filetype enumerator provides the identifiers of all supported file types, which can be passed as optional argument to the read_structure routine.
In a similar way the write_structure routine allows to write a structure_type to a file or unit:
use mctc_io
use mctc_env
type(structure_type) :: mol
type(error_type), allocatable :: error
call write_structure(mol, "output.xyz", error)
if (allocated(error)) then
print '(a)', error%message
error stop
end ifThe mctc-convert program provides a chained reader and writer call to act as a geometry file converter.
Checkout the implementation in app/main.f90.
The structure_type is the central data structure for representing molecular systems:
type(structure_type) :: mol
! Basic properties
mol%nat ! Number of atoms
mol%nid ! Number of unique species
mol%charge ! Total molecular charge
mol%uhf ! Number of unpaired electrons
! Atomic data (arrays)
mol%xyz(:, :) ! Cartesian coordinates (3, nat) in Bohr
mol%id(:) ! Species index for each atom (nat)
mol%num(:) ! Atomic numbers for each species (nid)
mol%sym(:) ! Element symbols for each species (nid)
! Periodic systems
mol%lattice(:, :) ! Lattice vectors (3, 3) in Bohr
mol%periodic(:) ! Periodic directions (3)
! Optional data
mol%bond(:, :) ! Bond connectivity
mol%comment ! Structure title/commentAll inputs use atomic units. Coordinates must be provided in Bohr (1 Bohr ≈ 0.529 Å).
use mctc_io
use mctc_env, only : wp
implicit none
type(structure_type) :: mol
integer :: num(3)
real(wp) :: xyz(3, 3)
! Water molecule (coordinates in Bohr)
num = [8, 1, 1] ! O, H, H
xyz = reshape([ &
& 0.0_wp, 0.0_wp, 0.2372_wp, &
& 0.0_wp, 1.4939_wp, -0.9487_wp, &
& 0.0_wp, -1.4939_wp, -0.9487_wp], [3, 3])
call new(mol, num, xyz, charge=0.0_wp, uhf=0)Access element-specific properties from the mctc_data module:
use mctc_data
use mctc_env, only : wp
implicit none
real(wp) :: radius
! Get covalent radius for carbon (atomic number 6)
radius = get_covalent_rad(6)
! Available functions:
! get_covalent_rad(num) - Covalent radii in Bohr
! get_vdw_rad(num) - van der Waals radii in Bohr
! get_atomic_rad(num) - Atomic radii in Bohr
! get_pauling_en(num) - Pauling electronegativitiesConvert between element symbols and atomic numbers:
use mctc_io, only : to_number, to_symbol
integer :: num
character(len=2) :: sym
num = to_number("C") ! Returns 6
sym = to_symbol(6) ! Returns "C"When the file extension is non-standard, use the filetype enumerator:
use mctc_io
call read_structure(mol, "geometry.in", error, filetype%aims)
call write_structure(mol, "output.dat", error, filetype%xyz)Available format identifiers:
filetype%xyz- xyz formatfiletype%tmol- Turbomole coordfiletype%molfile- mol filefiletype%sdf- SDF formatfiletype%vasp- VASP POSCARfiletype%pdb- PDB formatfiletype%gen- DFTB+ genFormatfiletype%gaussian- Gaussian externalfiletype%qcschema- QCSchema JSONfiletype%cjson- Chemical JSONfiletype%pymatgen- Pymatgen JSONfiletype%aims- FHI-aimsfiletype%qchem- Q-Chem
The geometry input readers try to be provide helpful error messages, no user should be left alone with an error message like invalid input. Unclear error messages are considered a bug in mctc-lib, if you struggle to make sense of a reported error, file us an issue and we will make the report better.
How can helpful error messages look like? Here are some examples.
- negative number of atoms declared in xyz file
Error: Impossible number of atoms provided
--> struc.xyz:1:1-2
|
1 | -3
| ^^ expected positive integer value
|
- total charge is not specified as integer
Error: Cannot read eht entry
--> struc.coord:18:13-15
|
18 | $eht charge=one unpaired=0
| ^^^ expected integer value
|
- a fixed width entry contains an incorrect value
Error: Cannot read charges
--> struc.mol:29:23-25
|
29 | M CHG 3 1 1 3 b 2 -1
| ^^^ expected integer value
|
- Turbomole input with conflicting data groups
Error: Conflicting lattice and cell groups
--> struc.coord:37:1-5
|
35 | $lattice angs
| -------- lattice first defined here
:
37 | $cell angs
| ^^^^^ conflicting cell group
|
We try to retain as much information as possible when displaying the error message to make it easy to fix the offending part in the input.
Full API documentation is available at grimme-lab.github.io/mctc-lib.
Key modules:
mctc_io- Structure I/O (read_structure,write_structure,structure_type)mctc_env- Environment utilities (error_type,wpworking precision)mctc_data- Element data (radii, electronegativities)mctc_ncoord- Coordination number evaluation
Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “as is” basis, without warranties or conditions of any kind, either express or implied. See the License for the specific language governing permissions and limitations under the License.
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in this project by you, as defined in the Apache-2.0 license, shall be licensed as above, without any additional terms or conditions.