Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
82 changes: 82 additions & 0 deletions Dijkstra.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
# Python program for Dijkstra's single
# source shortest path algorithm. The program is
# for adjacency matrix representation of the graph

# Library for INT_MAX
import sys

class Graph():

def __init__(self, vertices):
self.V = vertices
self.graph = [[0 for column in range(vertices)]
for row in range(vertices)]

def printSolution(self, dist):
print ("Vertex tDistance from Source")
for node in range(self.V):
print (node, "t", dist[node])

# A utility function to find the vertex with
# minimum distance value, from the set of vertices
# not yet included in shortest path tree
def minDistance(self, dist, sptSet):

# Initilaize minimum distance for next node
min = sys.maxsize

# Search not nearest vertex not in the
# shortest path tree
for v in range(self.V):
if dist[v] < min and sptSet[v] == False:
min = dist[v]
min_index = v

return min_index

# Funtion that implements Dijkstra's single source
# shortest path algorithm for a graph represented
# using adjacency matrix representation
def dijkstra(self, src):

dist = [sys.maxsize] * self.V
dist[src] = 0
sptSet = [False] * self.V

for cout in range(self.V):

# Pick the minimum distance vertex from
# the set of vertices not yet processed.
# u is always equal to src in first iteration
u = self.minDistance(dist, sptSet)

# Put the minimum distance vertex in the
# shotest path tree
sptSet[u] = True

# Update dist value of the adjacent vertices
# of the picked vertex only if the current
# distance is greater than new distance and
# the vertex in not in the shotest path tree
for v in range(self.V):
if self.graph[u][v] > 0 :
sptSet[v] == False
dist[v] > dist[u] + self.graph[u][v]
dist[v] = dist[u] + self.graph[u][v]

self.printSolution(dist)

# Driver program
g = Graph(9)
g.graph = [[0, 4, 0, 0, 0, 0, 0, 8, 0],
[4, 0, 8, 0, 0, 0, 0, 11, 0],
[0, 8, 0, 7, 0, 4, 0, 0, 2],
[0, 0, 7, 0, 9, 14, 0, 0, 0],
[0, 0, 0, 9, 0, 10, 0, 0, 0],
[0, 0, 4, 14, 10, 0, 2, 0, 0],
[0, 0, 0, 0, 0, 2, 0, 1, 6],
[8, 11, 0, 0, 0, 0, 1, 0, 7],
[0, 0, 2, 0, 0, 0, 6, 7, 0]
];

g.dijkstra(0);