Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 8 additions & 2 deletions roll/configs/base_config.py
Original file line number Diff line number Diff line change
Expand Up @@ -309,6 +309,11 @@ class PPOConfig(BaseConfig):
default_factory=WorkerConfig, metadata={"help": "Configuration for the reference role."}
)

use_reference: bool = field(
default=True,
metadata={"help": "Whether to use reference model for KL divergence computation. If False, reference model will not be initialized."}
)

async_generation_ratio: float = field(
default=0,
metadata={
Expand Down Expand Up @@ -389,11 +394,12 @@ def __post_init__(self):
if (
self.actor_train.model_args.model_name_or_path is None
or self.actor_infer.model_args.model_name_or_path is None
or self.reference.model_args.model_name_or_path is None
or (self.use_reference and self.reference.model_args.model_name_or_path is None)
):
self.actor_train.model_args.model_name_or_path = self.pretrain
self.actor_infer.model_args.model_name_or_path = self.pretrain
self.reference.model_args.model_name_or_path = self.pretrain
if self.use_reference:
self.reference.model_args.model_name_or_path = self.pretrain

if self.critic.model_args.model_name_or_path is None:
self.critic.model_args.model_name_or_path = self.reward_pretrain
Expand Down
16 changes: 10 additions & 6 deletions roll/pipeline/rlvr/rlvr_math_vlm_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -222,7 +222,7 @@ def __init__(self, pipeline_config: RLVRConfig):
worker_config=self.pipeline_config.actor_infer,
)
# use unwrapped model as reference for lora training
if not self.is_lora:
if not self.is_lora and self.pipeline_config.use_reference:
self.reference: Any = Cluster(
name=self.pipeline_config.reference.name,
worker_cls=self.pipeline_config.reference.worker_cls,
Expand Down Expand Up @@ -361,15 +361,19 @@ def run(self):

with Timer(name="cal_ref_log_probs_reward", logger=None) as cal_timer:
if self.is_lora:
batch.meta_info["disable_adapter"] = True
batch.meta_info["is_offload_states"] = False
ref_log_probs_refs: List[ray.ObjectRef] = self.actor_train.compute_log_probs(
batch, blocking=False
)
else:
ref_log_probs_refs: List[ray.ObjectRef] = self.reference.compute_log_probs(
batch, blocking=False
)
if self.pipeline_config.use_reference:
ref_log_probs_refs: List[ray.ObjectRef] = self.reference.compute_log_probs(
batch, blocking=False
)
else:
# When reference model is disabled, use actor's own log probabilities as reference
ref_log_probs_refs: List[ray.ObjectRef] = self.actor_infer.compute_log_probs(
batch, blocking=False
)
rewards_refs: List[ray.ObjectRef] = self.reward.compute_rewards(batch, blocking=False)

ref_log_probs = DataProto.materialize_concat(data_refs=ref_log_probs_refs)
Expand Down
26 changes: 15 additions & 11 deletions roll/pipeline/rlvr/rlvr_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -216,7 +216,7 @@ def __init__(self, pipeline_config: RLVRConfig):
)
download_clusters = [self.actor_train, self.actor_infer]
# use unwrapped model as reference for lora training
if not self.is_lora:
if not self.is_lora and self.pipeline_config.use_reference:
self.reference: Any = Cluster(
name=self.pipeline_config.reference.name,
worker_cls=self.pipeline_config.reference.worker_cls,
Expand Down Expand Up @@ -544,16 +544,20 @@ def run(self):
batch.meta_info["is_offload_states"] = False
ref_log_probs = self.actor_train.compute_log_probs(batch, blocking=True)
else:
if self.pipeline_config.reference.use_dynamic_batching_in_infer:
batch, dynamic_batching_metrics = dynamic_batching_shard(
batch,
self.reference.dp_size,
self.pipeline_config.reference.max_tokens_per_microbatch_in_infer,
self.pipeline_config.reference.sequence_length_round_in_infer,
"reference/compute_log_probs",
)
metrics_mgr.add_metrics(dynamic_batching_metrics)
ref_log_probs = self.reference.compute_log_probs(batch, blocking=True)
if self.pipeline_config.use_reference:
if self.pipeline_config.reference.use_dynamic_batching_in_infer:
batch, dynamic_batching_metrics = dynamic_batching_shard(
batch,
self.reference.dp_size,
self.pipeline_config.reference.max_tokens_per_microbatch_in_infer,
self.pipeline_config.reference.sequence_length_round_in_infer,
"reference/compute_log_probs",
)
metrics_mgr.add_metrics(dynamic_batching_metrics)
ref_log_probs = self.reference.compute_log_probs(batch, blocking=True)
else:
# When reference model is disabled, use actor's own log probabilities as reference
ref_log_probs = self.actor_infer.compute_log_probs(batch, blocking=True)
metrics_mgr.add_reduced_metrics(ref_log_probs.meta_info.pop("metrics", {}))
ref_log_probs.rename(old_keys="log_probs", new_keys="ref_log_probs")
batch = batch.union(ref_log_probs)
Expand Down
23 changes: 15 additions & 8 deletions roll/pipeline/rlvr/rlvr_vlm_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -313,13 +313,16 @@ def __init__(self, pipeline_config: RLVRConfig):
resource_manager=self.resource_manager,
worker_config=self.pipeline_config.actor_infer,
)
self.reference: Any = Cluster(
name=self.pipeline_config.reference.name,
worker_cls=self.pipeline_config.reference.worker_cls,
resource_manager=self.resource_manager,
worker_config=self.pipeline_config.reference,
)
download_clusters = [self.actor_train, self.actor_infer, self.reference]
if self.pipeline_config.use_reference:
self.reference: Any = Cluster(
name=self.pipeline_config.reference.name,
worker_cls=self.pipeline_config.reference.worker_cls,
resource_manager=self.resource_manager,
worker_config=self.pipeline_config.reference,
)
download_clusters = [self.actor_train, self.actor_infer, self.reference]
else:
download_clusters = [self.actor_train, self.actor_infer]
if self.pipeline_config.adv_estimator == "gae":
self.critic: Any = Cluster(
name=self.pipeline_config.critic.name,
Expand Down Expand Up @@ -542,7 +545,11 @@ def run(self):
batch.meta_info["_broadcast_non_tensor_batch"]= True

with Timer(name="cal_ref_log_probs", logger=None) as cal_ref_log_probs_timer:
ref_log_probs = self.reference.compute_log_probs(batch, blocking=True)
if self.pipeline_config.use_reference:
ref_log_probs = self.reference.compute_log_probs(batch, blocking=True)
else:
# When reference model is disabled, use actor's own log probabilities as reference
ref_log_probs = self.actor_infer.compute_log_probs(batch, blocking=True)
metrics_mgr.add_reduced_metrics(ref_log_probs.meta_info.pop("metrics", {}))
ref_log_probs.rename(old_keys="log_probs", new_keys="ref_log_probs")
batch = batch.union(ref_log_probs)
Expand Down