Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions src/adtk/detector/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
PersistAD,
QuantileAD,
SeasonalAD,
VolatilityRangeAD,
ThresholdAD,
VolatilityShiftAD,
)
Expand Down Expand Up @@ -56,6 +57,7 @@ def print_all_models() -> None:
"ThresholdAD",
"QuantileAD",
"InterQuartileRangeAD",
"VolatilityRangeAD",
"GeneralizedESDTestAD",
"PersistAD",
"LevelShiftAD",
Expand Down
59 changes: 59 additions & 0 deletions src/adtk/detector/_detector_1d.py
Original file line number Diff line number Diff line change
Expand Up @@ -271,6 +271,65 @@ def _predict_core(self, s: pd.Series) -> pd.Series:
return predicted


class VolatilityRangeAD(_TrainableUnivariateDetector):
"""Anomaly detector based on standard deviation range.

This detector flags anomalies for values that are outside the range of [mean - c * std, mean + c * std].

Parameters
----------
c : float, optional (default=1.0)
The multiplier for the standard deviation to set the range for anomaly detection.
"""

def __init__(
self,
c: Union[
Optional[float], Tuple[Optional[float], Optional[float]]
] = 3.0,
) -> None:
super().__init__()
self.c = c

@property
def _param_names(self) -> Tuple[str, ...]:
return ("c",)

def _fit_core(self, s: pd.Series) -> None:
if s.count() == 0:
raise RuntimeError("Valid values are not enough for training.")
mean_val = s.mean()
std_val = s.std()

self.abs_low_ = (
(
mean_val
- std_val
* (self.c if (not isinstance(self.c, tuple)) else self.c[0])
)
if (
(self.c if (not isinstance(self.c, tuple)) else self.c[0])
is not None
)
else -float("inf")
)
self.abs_high_ = (
mean_val
+ std_val
* (self.c if (not isinstance(self.c, tuple)) else self.c[1])
if (
(self.c if (not isinstance(self.c, tuple)) else self.c[1])
is not None
)
else float("inf")
)

def _predict_core(self, s: pd.Series) -> pd.Series:
predicted = (s > self.abs_high_) | (s < self.abs_low_)
predicted[s.isna()] = np.nan
return predicted


class GeneralizedESDTestAD(_TrainableUnivariateDetector):
"""Detector that detects anomaly based on generalized ESD test.

Expand Down