Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion python/pyspark/sql/connect/udf.py
Original file line number Diff line number Diff line change
Expand Up @@ -295,14 +295,16 @@ def register(
PythonEvalType.SQL_SCALAR_ARROW_ITER_UDF,
PythonEvalType.SQL_GROUPED_AGG_PANDAS_UDF,
PythonEvalType.SQL_GROUPED_AGG_ARROW_UDF,
PythonEvalType.SQL_GROUPED_AGG_ARROW_ITER_UDF,
]:
raise PySparkTypeError(
errorClass="INVALID_UDF_EVAL_TYPE",
messageParameters={
"eval_type": "SQL_BATCHED_UDF, SQL_ARROW_BATCHED_UDF, "
"SQL_SCALAR_PANDAS_UDF, SQL_SCALAR_ARROW_UDF, "
"SQL_SCALAR_PANDAS_ITER_UDF, SQL_SCALAR_ARROW_ITER_UDF, "
"SQL_GROUPED_AGG_PANDAS_UDF or SQL_GROUPED_AGG_ARROW_UDF"
"SQL_GROUPED_AGG_PANDAS_UDF, SQL_GROUPED_AGG_ARROW_UDF or "
"SQL_GROUPED_AGG_ARROW_ITER_UDF"
},
)
self.sparkSession._client.register_udf(
Expand Down
72 changes: 72 additions & 0 deletions python/pyspark/sql/tests/arrow/test_arrow_udf_grouped_agg.py
Original file line number Diff line number Diff line change
Expand Up @@ -1199,6 +1199,78 @@ def arrow_sum_partial(it: Iterator[pa.Array]) -> float:
group2_result["mean"], 5.5, places=5, msg="Group 2 should process 1 batch"
)

def test_iterator_grouped_agg_sql_single_column(self):
"""
Test iterator API for grouped aggregation with single column in SQL.
"""
import pyarrow as pa

@arrow_udf("double")
def arrow_mean_iter(it: Iterator[pa.Array]) -> float:
sum_val = 0.0
cnt = 0
for v in it:
assert isinstance(v, pa.Array)
sum_val += pa.compute.sum(v).as_py()
cnt += len(v)
return sum_val / cnt if cnt > 0 else 0.0

df = self.spark.createDataFrame(
[(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)], ("id", "v")
)

with self.tempView("test_table"), self.temp_func("arrow_mean_iter"):
df.createOrReplaceTempView("test_table")
self.spark.udf.register("arrow_mean_iter", arrow_mean_iter)

# Test SQL query with GROUP BY
result_sql = self.spark.sql(
"SELECT id, arrow_mean_iter(v) as mean FROM test_table GROUP BY id ORDER BY id"
)
expected = df.groupby("id").agg(sf.mean(df["v"]).alias("mean")).sort("id").collect()

self.assertEqual(expected, result_sql.collect())

def test_iterator_grouped_agg_sql_multiple_columns(self):
"""
Test iterator API for grouped aggregation with multiple columns in SQL.
"""
import pyarrow as pa

@arrow_udf("double")
def arrow_weighted_mean_iter(it: Iterator[Tuple[pa.Array, pa.Array]]) -> float:
weighted_sum = 0.0
weight = 0.0
for v, w in it:
assert isinstance(v, pa.Array)
assert isinstance(w, pa.Array)
weighted_sum += pa.compute.sum(pa.compute.multiply(v, w)).as_py()
weight += pa.compute.sum(w).as_py()
return weighted_sum / weight if weight > 0 else 0.0

df = self.spark.createDataFrame(
[(1, 1.0, 1.0), (1, 2.0, 2.0), (2, 3.0, 1.0), (2, 5.0, 2.0), (2, 10.0, 3.0)],
("id", "v", "w"),
)

with self.tempView("test_table"), self.temp_func("arrow_weighted_mean_iter"):
df.createOrReplaceTempView("test_table")
self.spark.udf.register("arrow_weighted_mean_iter", arrow_weighted_mean_iter)

# Test SQL query with GROUP BY and multiple columns
result_sql = self.spark.sql(
"SELECT id, arrow_weighted_mean_iter(v, w) as wm "
"FROM test_table GROUP BY id ORDER BY id"
)

# Expected weighted means:
# Group 1: (1.0*1.0 + 2.0*2.0) / (1.0 + 2.0) = 5.0 / 3.0
# Group 2: (3.0*1.0 + 5.0*2.0 + 10.0*3.0) / (1.0 + 2.0 + 3.0) = 43.0 / 6.0
expected = [Row(id=1, wm=5.0 / 3.0), Row(id=2, wm=43.0 / 6.0)]

actual_results = result_sql.collect()
self.assertEqual(actual_results, expected)


class GroupedAggArrowUDFTests(GroupedAggArrowUDFTestsMixin, ReusedSQLTestCase):
pass
Expand Down
3 changes: 2 additions & 1 deletion python/pyspark/sql/tests/pandas/test_pandas_grouped_map.py
Original file line number Diff line number Diff line change
Expand Up @@ -212,7 +212,8 @@ def test_register_grouped_map_udf(self):
"eval_type": "SQL_BATCHED_UDF, SQL_ARROW_BATCHED_UDF, "
"SQL_SCALAR_PANDAS_UDF, SQL_SCALAR_ARROW_UDF, "
"SQL_SCALAR_PANDAS_ITER_UDF, SQL_SCALAR_ARROW_ITER_UDF, "
"SQL_GROUPED_AGG_PANDAS_UDF or SQL_GROUPED_AGG_ARROW_UDF"
"SQL_GROUPED_AGG_PANDAS_UDF, SQL_GROUPED_AGG_ARROW_UDF or "
"SQL_GROUPED_AGG_ARROW_ITER_UDF"
},
)

Expand Down
4 changes: 3 additions & 1 deletion python/pyspark/sql/udf.py
Original file line number Diff line number Diff line change
Expand Up @@ -680,14 +680,16 @@ def register(
PythonEvalType.SQL_SCALAR_ARROW_ITER_UDF,
PythonEvalType.SQL_GROUPED_AGG_PANDAS_UDF,
PythonEvalType.SQL_GROUPED_AGG_ARROW_UDF,
PythonEvalType.SQL_GROUPED_AGG_ARROW_ITER_UDF,
]:
raise PySparkTypeError(
errorClass="INVALID_UDF_EVAL_TYPE",
messageParameters={
"eval_type": "SQL_BATCHED_UDF, SQL_ARROW_BATCHED_UDF, "
"SQL_SCALAR_PANDAS_UDF, SQL_SCALAR_ARROW_UDF, "
"SQL_SCALAR_PANDAS_ITER_UDF, SQL_SCALAR_ARROW_ITER_UDF, "
"SQL_GROUPED_AGG_PANDAS_UDF or SQL_GROUPED_AGG_ARROW_UDF"
"SQL_GROUPED_AGG_PANDAS_UDF, SQL_GROUPED_AGG_ARROW_UDF or "
"SQL_GROUPED_AGG_ARROW_ITER_UDF"
},
)
source_udf = _create_udf(
Expand Down