This repository provides the official implementations and experiments for our paper "Deep Signature: Characterization of Large-Scale Molecular Dynamics". The core code for implementing our method can be found in models/deep_signature.py. Please follow the steps to prepare running environment, and run our code.
conda create -n torch python=3.9
conda activate torch
conda install scipy Pillow Pyyaml tqdm pandas scikit-image scikit-learn matplotlib seaborn networkx numba h5py
conda install -c conda-forge mdtraj mdanalysisdata mdanalysis
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install torch_scatter==2.0.9 torch_sparse==0.6.12 torch_cluster==1.5.9 torch_spline_conv==1.2.1 -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
pip install signatory==1.2.6.1.9.0 --no-cache-dir --force-reinstall
pip install moviepy
pip install torchdiffeq
pip install rdkit
pip install wandb
You can download our processed data for GPCR by the link, after download and unzip the file, just specify the file path in the script.
# 1. Model training for the GPCR dataset
chmod +x ./scripts/*
./scripts/gpcr_graph_sig.sh
You can find the running commands for other baselines in the scripts file.
If you find this repo useful for your research, please cite the following papers:
@inproceedings{Qin2025ICLR,
title={Deep Signature: Characterization of Large-Scale Molecular Dynamics},
author={Tiexin Qin, Mengxu Zhu, Chunyang Li, Terry Lyons, Hong Yan and Haoliang Li},
booktitle={The Thirteenth International Conference on Learning Representations},
year={2025},
url={https://openreview.net/forum?id=xayT1nn8Mg}
}
