Skip to content

Shaier/MALAMUTE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MALAMUTE

Multilingual, Highly-granular, Template-free, Education-based Probing Dataset MALAMUTE is a benchmark designed to evaluate language models on factual knowledge across diverse languages and educational levels. It avoids templates and emphasizes nuanced, real-world understanding.


🚀 Getting Started

Prerequisites

  • Python 3.11
  • Conda (for environment management)

Installation

1. Clone the Repository

git clone https://github.com/Shaier/MALAMUTE.git
cd MALAMUTE

2. Create a Conda Environment

conda create -n malamute python=3.11
conda activate malamute

3. Install Dependencies

pip install -r requirements.txt

📂 Prepare the Data

Unzip the dataset and remove any extraneous files:

rm -rf data && unzip -o data.zip -d data && rm data.zip

🧪 Running Evaluations

Masked Language Models (MLMs)

To evaluate using MLMs (e.g., BERT-style models):

python test_MLM.py

Causal Language Models (CLMs)

To evaluate using CLMs (e.g., GPT-style models):

See notebooks repo

Citation

If you use this code or dataset, please cite us:

@misc{shaier2025malamutemultilingualhighlygranulartemplatefree, title={MALAMUTE: A Multilingual, Highly-granular, Template-free, Education-based Probing Dataset}, author={Sagi Shaier and George Arthur Baker and Chiranthan Sridhar and Lawrence E Hunter and Katharina von der Wense}, year={2025}, eprint={2412.10105}, archivePrefix={arXiv}, primaryClass={cs.CL}, url=https://arxiv.org/abs/2412.10105 }

About

MALAMUTE: A Multilingual, Highly-granular, Template-free, Education-based Probing Dataset

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •