Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 29 additions & 11 deletions core/smart_contracts/ai_contract.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,14 +3,15 @@
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from sklearn.model_selection import train_test_split
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.layers import Dense
from tensorflow.keras.models import Sequential
from web3 import Web3
from web3.contract import Contract


class AIClassifier:
def __init__(self, data, target):
"""
Expand All @@ -22,24 +23,36 @@ def __init__(self, data, target):
self.data = data
self.target = target
self.model = Sequential()
self.model.add(Dense(64, activation='relu', input_shape=(data.shape[1],)))
self.model.add(Dense(32, activation='relu'))
self.model.add(Dense(1, activation='sigmoid'))
self.model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
self.model.add(Dense(64, activation="relu", input_shape=(data.shape[1],)))
self.model.add(Dense(32, activation="relu"))
self.model.add(Dense(1, activation="sigmoid"))
self.model.compile(
loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"]
)

def train(self):
"""
Train the AI classifier.

:return: Trained model
"""
X_train, X_test, y_train, y_test = train_test_split(self.data, self.target, test_size=0.2, random_state=42)
early_stopping = EarlyStopping(monitor='val_loss', patience=5, min_delta=0.001)
self.model.fit(X_train, y_train, epochs=100, batch_size=32, validation_data=(X_test, y_test), callbacks=[early_stopping])
X_train, X_test, y_train, y_test = train_test_split(
self.data, self.target, test_size=0.2, random_state=42
)
early_stopping = EarlyStopping(monitor="val_loss", patience=5, min_delta=0.001)
self.model.fit(
X_train,
y_train,
epochs=100,
batch_size=32,
validation_data=(X_test, y_test),
callbacks=[early_stopping],
)
y_pred = self.model.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred))
return self.model


class AIContract:
def __init__(self, ai_classifier, blockchain, contract_address):
"""
Expand All @@ -62,9 +75,12 @@ def execute(self, input_data):
:return: Output of the contract
"""
output = self.ai_classifier.model.predict(input_data)
self.contract.functions.updateState(output).transact({'from': self.blockchain.accounts[0]})
self.contract.functions.updateState(output).transact(
{"from": self.blockchain.accounts[0]}
)
return output


class Blockchain:
def __init__(self, provider_url):
"""
Expand All @@ -87,6 +103,7 @@ def deploy_contract(self, contract_code):
self.contracts[contract_address] = contract_code
return contract_address


def main():
# Load data
data = pd.read_csv("data.csv")
Expand Down Expand Up @@ -126,5 +143,6 @@ def main():
output = ai_contract.execute(input_data)
print("Output:", output)


if __name__ == "__main__":
main()