Combining BGC-Argo floats and satellite observations for water column estimations of the particulate backscattering coefficient
The study examines how satellite-derived bio-optical properties of the ocean surface , when combined with BGC-Argo profiles, can be used to reconstruct the vertical structure of the particulate backscattering coefficient (bbp) throughout the upper 250 meters of the water column. It builds on the SOCA2016 method developed by Sauzède et al. (2016).
Sauzède et al., 2016 — https://doi.org/10.1002/2015JC011408
Full description, methodology and results in:
Combining BGC-Argo floats and satellite observations for water column estimations of the particulate backscattering coefficient
Jorge García-Jiménez, Ana B. Ruescas, Julia Amorós-López, Raphaëlle Sauzède
EGUsphere (2025)
🔗 Read the article
- North Atlantic
- Subtropical Gyres
- Model type: Multi-output Random Forest Regressor
- Input features:
- Sentinel-3 OLCI: reflectances at 12 wavelengths, C2RCC IOPs (apig, adet, agelb, bpart, bwit, atot, btot)
- GlobColour: reflectances at 5 wavelengths
- GlobalOcean: Sea Level Anomaly (SLA)
- BGC-Argo Float profiles: temperature, salinity, density, spiciness (via PCA)
- Mixed Layer Depth (MLD)
- Spatial-temporal: latitude, longitude, day of year
- Target: Particulate Backscattering Coefficient (Bbp):
- 26 depths for the 0–50 m model
- 126 depths for the 0–250 m model
| Notebook | Purpose |
|---|---|
0_data_analysis.ipynb |
Quick exploration of datasets (Argo profiles, temporal distribution...) |
1_run_single_experiment.ipynb |
Run and validate a model for one region–depth–experiment |
2_experiments_analysis_plots.ipynb |
Load and compare performance metrics across multiple experiments |
- Install the environment with Pixi (see below)
- Launch Jupyter
pixi run jupyter labGarcía-Jiménez, J., Ruescas, A. B., Amorós-López, J., & Sauzède, R. (2025). Combining BGC-Argo floats and satellite observations for water column estimations of the particulate backscattering coefficient. EGUsphere. https://doi.org/10.5194/os-21-1677-2025
@article{garcia-jimenez2025bbp,
author = {García-Jiménez, Jorge and Ruescas, Ana B. and Amorós-López, Julia and Sauzède, Raphaëlle},
title = {Combining BGC-Argo floats and satellite observations for water column estimations of the particulate backscattering coefficient},
journal = {EGUsphere},
year = {2025},
doi = {10.5194/os-21-1677-2025}
}SatArgoBbp/ ├── src/ │ ├── data_loader.py # Load and preprocess dataset │ ├── feature_selector.py # Feature selection by experiment type │ ├── model/ │ │ ├── train.py # Training pipeline │ │ └── model_metrics.py # Evaluation metrics (R², MAE, Bias, etc.) │ ├── plotting/ │ │ └── plot_utils.py # Plotting functions for model performance and comparisons │ ├── evaluation/ │ │ └── metrics_loader.py # Load and aggregate metric CSVs │ └── utils.py # Experiment setup, config classes, I/O helpers │ ├── notebooks/ # Jupyter notebooks for running and analyzing experiments │ ├── 0_data_analysis.ypnb │ ├── 1_run_single_experiment.ipynb │ └── 2_experiments_analysis_plots.ipynb │ ├── datasets/ # Processed input datasets (excluded from Git — contact us if interested) ├── results/ # Saved metrics, plots, models and model outputs │ ├── scripts/ (to do) │ └── run_all_experiments.py # Script to batch-run all experiments │ ├── docs/ │ └── img/ # Figures for README and manuscript │ ├── .gitignore ├── README.md ├── pixie.toml # Project environment and dependencies (managed with Pixi) └── pixi.lock # Pixi lockfile
This project uses Pixi for fully reproducible environment management.
curl -sSf https://pixi.sh/install.sh | bashAfter installation, restart your terminal or reload your shell:
exec $SHELLgit clone git@github.com:IPL-UV/SatArgoBbp.git
cd SatArgoBbppixi installThis command reads pixi.toml and creates the environment with all dependencies.
pixi shellTo launch the Jupyter interface:
pixi run jupyter lab
