Skip to content

DarshanCode2005/resume-parser

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

3 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Automated Resume Parser πŸ“„βž‘οΈπŸ“Š

A Python-based tool for extracting structured data from resumes in PDF, DOCX, and TXT formats using NLP and pattern matching.

Features ✨

  • Multi-format Support: Process PDF, DOCX, and TXT files
  • Core Information Extraction:
    • Contact details (name, email, phone, social links)
    • Education history and qualifications
    • Work experience timelines
    • Technical skills and certifications
  • Smart Section Detection: Identifies common resume sections
  • Output Formats: JSON and CSV exports
  • Batch Processing: Handle multiple files simultaneously

Installation πŸ› οΈ

git clone https://github.com/DarshanCode2005/resume-parser.git cd resume-parser pip install -r requirements.txt

Requirements πŸ“¦

  • Python 3.8+
  • spaCy (en_core_web_sm model)
  • pdfminer.six
  • python-docx
  • pandas

Usage πŸš€

from resume_parser import ResumeParser

Single file processing parser = ResumeParser() parsed_data = parser.parse_resume("resumes/john_doe.pdf")

Batch processing parser.process_directory("input_resumes/", "output_data/")

Output Structure πŸ“‚

{ "contact_information": { "name": "John Doe", "email": "john@example.com", "phone": "+1-555-123-4567", "linkedin": "linkedin.com/in/johndoe" }, "education": [ "BSc Computer Science - University of Tech (2018-2022)" ], "skills": [ "Python", "Machine Learning", "AWS" ], "certifications": [ "AWS Certified Developer - 2023" ] }

Key Technologies πŸ”

Component Technology Used
NLP Processing spaCy NER Model
Text Extraction pdfminer, python-docx
Data Structuring JSON/CSV serialization
Pattern Matching Regular Expressions

Roadmap πŸ—ΊοΈ

  • Add AI-powered section interpretation
  • Implement resume scoring system
  • Support image-based resumes (OCR)
  • Multi-language support
  • REST API integration

Contributing 🀝

We welcome contributions! Please see our Contribution Guidelines for details.

License πŸ“„

MIT License - See LICENSE for details

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages