@@ -79,18 +79,6 @@ Ties should have either equivalent rank or score.
7979[[[24.68943500312503 , 8.179213704945203 ]], [[22.826045021875203 , 8.179213704945203 ]], [[24.68943500312503 , 8.179213704945203 ]], [[27.795084971874736 , 8.263160757613477 ]]]
8080```
8181
82-
83- ## Choosing Models
84-
85- The default model is ` PlackettLuce ` . You can import alternate models from ` openskill.models ` like so:
86-
87- ``` python
88- >> > from openskill.models import BradleyTerryFull
89- >> > a1 = b1 = c1 = d1 = Rating()
90- >> > rate([[a1], [b1], [c1], [d1]], rank = [4 , 1 , 3 , 2 ], model = BradleyTerryFull)
91- [[[17.09430584957905 , 7.5012190693964005 ]], [[32.90569415042095 , 7.5012190693964005 ]], [[22.36476861652635 , 7.5012190693964005 ]], [[27.63523138347365 , 7.5012190693964005 ]]]
92- ```
93-
9482## Predicting Winners
9583
9684You can compare two or more teams to get the probabilities of each team winning.
@@ -106,6 +94,17 @@ You can compare two or more teams to get the probabilities of each team winning.
106941.0
10795```
10896
97+ ## Choosing Models
98+
99+ The default model is ` PlackettLuce ` . You can import alternate models from ` openskill.models ` like so:
100+
101+ ``` python
102+ >> > from openskill.models import BradleyTerryFull
103+ >> > a1 = b1 = c1 = d1 = Rating()
104+ >> > rate([[a1], [b1], [c1], [d1]], rank = [4 , 1 , 3 , 2 ], model = BradleyTerryFull)
105+ [[[17.09430584957905 , 7.5012190693964005 ]], [[32.90569415042095 , 7.5012190693964005 ]], [[22.36476861652635 , 7.5012190693964005 ]], [[27.63523138347365 , 7.5012190693964005 ]]]
106+ ```
107+
109108### Available Models
110109- ` BradleyTerryFull ` : Full Pairing for Bradley-Terry
111110- ` BradleyTerryPart ` : Partial Pairing for Bradley-Terry
0 commit comments