diff --git a/legateboost/models/tree.py b/legateboost/models/tree.py index 38cfda93..23974fd7 100644 --- a/legateboost/models/tree.py +++ b/legateboost/models/tree.py @@ -117,22 +117,35 @@ def fit( X_ = get_store(X).promote(2, g.shape[1]) g_ = get_store(g).promote(1, X.shape[1]) h_ = get_store(h).promote(1, X.shape[1]) + print("X.shape:", X.shape) + print("g.shape:", g.shape) + print("h.shape:", h.shape) task.add_scalar_arg(self.max_depth, types.int32) + print("self.max_depth:", self.max_depth) max_nodes = 2 ** (self.max_depth + 1) - 1 task.add_scalar_arg(max_nodes, types.int32) + print("max_nodes:", max_nodes) task.add_scalar_arg(self.split_samples, types.int32) + print("self.split_samples:", self.split_samples) task.add_scalar_arg(self.random_state.randint(0, 2**31), types.int32) task.add_scalar_arg(X.shape[0], types.int64) + print("X.shape[0]:", X.shape[0]) task.add_scalar_arg(self.l1_regularization, types.float64) + print("self.l1_regularization:", self.l1_regularization) task.add_scalar_arg(self.l2_regularization, types.float64) + print("self.l2_regularization:", self.l2_regularization) task.add_scalar_arg(self.min_split_gain, types.float64) + print("self.min_split_gain:", self.min_split_gain) task.add_input(X_) + print("X_:", X_) task.add_broadcast(X_, 1) task.add_broadcast(X_, 2) task.add_input(g_) + print("g_:", g_) task.add_input(h_) + print("h_:", h_) task.add_alignment(g_, h_) task.add_alignment(g_, X_)