@@ -922,12 +922,12 @@ def singlediode(module, IL, I0, Rs, Rsh, nNsVth, **kwargs):
922922 DFOut ['I0' ] = I0
923923 DFOut ['IL' ] = IL
924924
925- __ , Voc_return = golden_sect_DataFrame (DFOut , 0 , module .V_oc_ref * 1.6 ,
926- Voc_optfcn )
925+ __ , Voc_return = _golden_sect_DataFrame (DFOut , 0 , module .V_oc_ref * 1.6 ,
926+ _Voc_optfcn )
927927 Voc = Voc_return .copy ()
928928
929- Pmp , Vmax = golden_sect_DataFrame (DFOut , 0 , module .V_oc_ref * 1.14 ,
930- pwr_optfcn )
929+ Pmp , Vmax = _golden_sect_DataFrame (DFOut , 0 , module .V_oc_ref * 1.14 ,
930+ _pwr_optfcn )
931931 Imax = I_from_V (Rsh = Rsh , Rs = Rs , nNsVth = nNsVth , V = Vmax , I0 = I0 , IL = IL )
932932 # Invert the Power-Current curve. Find the current where the inverted power
933933 # is minimized. This is Imax. Start the optimization at Voc/2
@@ -963,14 +963,11 @@ def singlediode(module, IL, I0, Rs, Rsh, nNsVth, **kwargs):
963963
964964# Created April,2014
965965# Author: Rob Andrews, Calama Consulting
966- # These may become private methods in 0.2
967966
968- def golden_sect_DataFrame (df , VL , VH , func ):
967+ def _golden_sect_DataFrame (df , VL , VH , func ):
969968 '''
970969 Vectorized golden section search for finding MPPT
971970 from a dataframe timeseries.
972-
973- Do not expect this function to remain in the public API.
974971
975972 Parameters
976973 ----------
@@ -1031,27 +1028,22 @@ def golden_sect_DataFrame(df, VL, VH, func):
10311028 if iterations > 50 :
10321029 raise Exception ("EXCEPTION:iterations exeeded maximum (50)" )
10331030
1034-
10351031 return func (df ,'V1' ) , df ['V1' ]
10361032
10371033
1038- def pwr_optfcn (df , loc ):
1034+ def _pwr_optfcn (df , loc ):
10391035 '''
10401036 Function to find power from I_from_V.
1041-
1042- Do not expect this function to remain in the public API.
10431037 '''
10441038
10451039 I = I_from_V (Rsh = df ['Rsh' ], Rs = df ['Rs' ], nNsVth = df ['nNsVth' ], V = df [loc ],
10461040 I0 = df ['I0' ], IL = df ['IL' ])
10471041 return I * df [loc ]
10481042
10491043
1050- def Voc_optfcn (df , loc ):
1044+ def _Voc_optfcn (df , loc ):
10511045 '''
10521046 Function to find V_oc from I_from_V.
1053-
1054- Do not expect this function to remain in the public API.
10551047 '''
10561048 I = - abs (I_from_V (Rsh = df ['Rsh' ], Rs = df ['Rs' ], nNsVth = df ['nNsVth' ],
10571049 V = df [loc ], I0 = df ['I0' ], IL = df ['IL' ]))
@@ -1064,13 +1056,11 @@ def I_from_V(Rsh, Rs, nNsVth, V, I0, IL):
10641056 uses Lambert W implemented in wapr_vec.m
10651057 Rsh, nVth, V, I0, IL can all be DataFrames
10661058 Rs can be a DataFrame, but should be a scalar.
1067-
1068- Do not expect this function to remain in the public API.
10691059 '''
10701060 try :
10711061 from scipy .special import lambertw
10721062 except ImportError :
1073- raise ImportError ('The I_from_V function requires scipy' )
1063+ raise ImportError ('This function requires scipy' )
10741064
10751065 argW = (Rs * I0 * Rsh * np .exp (Rsh * (Rs * (IL + I0 )+ V ) /
10761066 (nNsVth * (Rs + Rsh ))) / (nNsVth * (Rs + Rsh )) )
0 commit comments