Skip to content

CUDA error #83

@JIBSN

Description

@JIBSN

/tmp/libmolgrid/src/grid_maker.cu:279: invalid argument

CLI error
2022-01-27 12:32:12.810627: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2022-01-27 12:32:12.810659: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0 1 2 3 4 5 6 7 8 9
2022-01-27 12:32:12.810665: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N N N N N N N N N N
2022-01-27 12:32:12.810667: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 1: N N N N N N N N N N
2022-01-27 12:32:12.810670: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 2: N N N N N N N N N N
2022-01-27 12:32:12.810672: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 3: N N N N N N N N N N
2022-01-27 12:32:12.810675: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 4: N N N N N N N N N N
2022-01-27 12:32:12.810677: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 5: N N N N N N N N N N
2022-01-27 12:32:12.810680: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 6: N N N N N N N N N N
2022-01-27 12:32:12.810682: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 7: N N N N N N N N N N
2022-01-27 12:32:12.810684: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 8: N N N N N N N N N N
2022-01-27 12:32:12.810687: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 9: N N N N N N N N N N
2022-01-27 12:32:12.822802: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device: GPU:0 with 8811 MB memory) -> physical GPU (device: 0, name: NVIDIA GeForce RTX 3080, pci bus id: 0000:1a:00.0, compute capability: 8.6)
2022-01-27 12:32:12.825625: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device: GPU:1 with 8503 MB memory) -> physical GPU (device: 1, name: NVIDIA GeForce RTX 3080, pci bus id: 0000:1b:00.0, compute capability: 8.6)
2022-01-27 12:32:12.828273: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device: GPU:2 with 9012 MB memory) -> physical GPU (device: 2, name: NVIDIA GeForce RTX 3080, pci bus id: 0000:1c:00.0, compute capability: 8.6)
2022-01-27 12:32:12.830885: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device: GPU:3 with 9012 MB memory) -> physical GPU (device: 3, name: NVIDIA GeForce RTX 3080, pci bus id: 0000:1d:00.0, compute capability: 8.6)
2022-01-27 12:32:12.833468: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device: GPU:4 with 9012 MB memory) -> physical GPU (device: 4, name: NVIDIA GeForce RTX 3080, pci bus id: 0000:1e:00.0, compute capability: 8.6)
2022-01-27 12:32:12.836048: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device: GPU:5 with 9012 MB memory) -> physical GPU (device: 5, name: NVIDIA GeForce RTX 3080, pci bus id: 0000:3d:00.0, compute capability: 8.6)
2022-01-27 12:32:12.838643: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device: GPU:6 with 9012 MB memory) -> physical GPU (device: 6, name: NVIDIA GeForce RTX 3080, pci bus id: 0000:3e:00.0, compute capability: 8.6)
2022-01-27 12:32:12.841233: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device: GPU:7 with 9012 MB memory) -> physical GPU (device: 7, name: NVIDIA GeForce RTX 3080, pci bus id: 0000:3f:00.0, compute capability: 8.6)
2022-01-27 12:32:12.843835: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device: GPU:8 with 9012 MB memory) -> physical GPU (device: 8, name: NVIDIA GeForce RTX 3080, pci bus id: 0000:40:00.0, compute capability: 8.6)
2022-01-27 12:32:12.846432: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device: GPU:9 with 9012 MB memory) -> physical GPU (device: 9, name: NVIDIA GeForce RTX 3080, pci bus id: 0000:41:00.0, compute capability: 8.6)
2022-01-27 12:32:12.850270: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x5623d422fef0 initialized for platform CUDA (this does not g uarantee that XLA will be used). Devices:
2022-01-27 12:32:12.850310: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): NVIDIA GeForce RTX 3080, Compute Capability 8.6
2022-01-27 12:32:12.850323: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (1): NVIDIA GeForce RTX 3080, Compute Capability 8.6
2022-01-27 12:32:12.850332: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (2): NVIDIA GeForce RTX 3080, Compute Capability 8.6
2022-01-27 12:32:12.850340: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (3): NVIDIA GeForce RTX 3080, Compute Capability 8.6
2022-01-27 12:32:12.850347: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (4): NVIDIA GeForce RTX 3080, Compute Capability 8.6
2022-01-27 12:32:12.850355: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (5): NVIDIA GeForce RTX 3080, Compute Capability 8.6
2022-01-27 12:32:12.850364: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (6): NVIDIA GeForce RTX 3080, Compute Capability 8.6
2022-01-27 12:32:12.850372: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (7): NVIDIA GeForce RTX 3080, Compute Capability 8.6
2022-01-27 12:32:12.850379: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (8): NVIDIA GeForce RTX 3080, Compute Capability 8.6
2022-01-27 12:32:12.850387: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (9): NVIDIA GeForce RTX 3080, Compute Capability 8.6
[I 2022-01-27 12:33:10.380 ServerApp] Saving file at /Untitled.ipynb
/tmp/libmolgrid/src/grid_maker.cu:279: invalid argument[I 2022-01-27 13:13:14.314 ServerApp] Saving file at /Untitled3.ipynb
/tmp/libmolgrid/src/grid_maker.cu:288: no kernel image is available for execution on the device

I have installed molgrid 0.2.1 with conda, but when I ran a the train_basic_CNN_with_Tensorflow script, there's an error occured. What does the error about?

Metadata

Metadata

Assignees

Labels

No labels
No labels

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions