-
Notifications
You must be signed in to change notification settings - Fork 1
Open
Description
import torch
import perfplot
import numpy as np
import toydiff as tdf
def matmul_torch(t1, t2):
return torch.matmul(t1, t2)
def matmul_avagrad(t1, t2):
return tdf.matmul(t1, t2)
def data(n):
arr = np.random.rand(n, n)
tensor_t = torch.from_numpy(arr)
tensor_a = tdf.Tensor(arr)
return tensor_t, tensor_a
perfplot.show(
setup=lambda n: data(n),
kernels=[
lambda tt, ta: matmul_torch(tt, tt),
lambda tt, ta: matmul_avagrad(ta, ta),
],
labels=["PyTorch", "Avagrad"],
n_range=[2**k for k in range(14)],
xlabel="len(a)",
)Metadata
Metadata
Assignees
Labels
No labels