From 2de4124a59daa0df4f0bcea236c11f1ff58a6e85 Mon Sep 17 00:00:00 2001 From: Vicente Date: Sat, 25 Oct 2025 16:27:24 -0600 Subject: [PATCH 1/3] added arxiv citations --- README.md | 59 ++++++++++++++++++++++++++++++++++++++++++- docs/source/index.rst | 25 ++++++++++++++++++ 2 files changed, 83 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index bf07e9f..44e6887 100644 --- a/README.md +++ b/README.md @@ -17,6 +17,33 @@ ![BioNeuralNet Workflow](assets/BioNeuralNet.png) + +## Citation + +If you use BioNeuralNet in your research, we kindly ask that you cite our paper: + +> Vicente Ramos, et al. (2025). +> [**BioNeuralNet: A Graph Neural Network based Multi-Omics Network Data Analysis Tool**](https://arxiv.org/abs/2507.20440). +> *arXiv preprint arXiv:2507.20440*. + +For your convenience, you can use the following BibTeX entry: + +
+ BibTeX Citation + +```bibtex +@misc{ramos2025bioneuralnetgraphneuralnetwork, + title={BioNeuralNet: A Graph Neural Network based Multi-Omics Network Data Analysis Tool}, + author={Vicente Ramos and Sundous Hussein and Mohamed Abdel-Hafiz and Arunangshu Sarkar and Weixuan Liu and Katerina J. Kechris and Russell P. Bowler and Leslie Lange and Farnoush Banaei-Kashani}, + year={2025}, + eprint={2507.20440}, + archivePrefix={arXiv}, + primaryClass={cs.LG}, + url={https://arxiv.org/abs/2507.20440}, +} +``` +
+ ## Documentation **[BioNeuralNet Documentation & Examples](https://bioneuralnet.readthedocs.io/en/latest/)** @@ -38,12 +65,15 @@ ## 1. Installation -BioNeuralNet supports Python `3.10`, `3.11` and `3.12`. +BioNeuralNet is available as a package on the Python Package Index (PyPI), making it easy to install and integrate into your workflows. ### 1.1. Install BioNeuralNet ```bash pip install bioneuralnet ``` +> **PyPI Project Page:** [https://pypi.org/project/bioneuralnet/](https://pypi.org/project/bioneuralnet/) +> +> **Requirements:** BioNeuralNet supports Python `3.10`, `3.11`, and `3.12`. ## 1.2. Install PyTorch and PyTorch Geometric BioNeuralNet relies on PyTorch for GNN computations. Install PyTorch separately: @@ -238,3 +268,30 @@ See the [LICENSE](LICENSE) file for details. [2] Hussein, S., Ramos, V., et al. "Learning from Multi-Omics Networks to Enhance Disease Prediction: An Optimized Network Embedding and Fusion Approach." In *2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)*, Lisbon, Portugal, 2024, pp. 4371-4378. [DOI: 10.1109/BIBM62325.2024.10822233](https://doi.org/10.1109/BIBM62325.2024.10822233) [3] Liu, W., Vu, T., Konigsberg, I. R., Pratte, K. A., Zhuang, Y., & Kechris, K. J. (2023). "Network-Based Integration of Multi-Omics Data for Biomarker Discovery and Phenotype Prediction." *Bioinformatics*, 39(5), btat204. [DOI: 10.1093/bioinformatics/btat204](https://doi.org/10.1093/bioinformatics/btat204) + + +## 11. Citation + +If you use BioNeuralNet in your research, we kindly ask that you cite our paper: + +> Vicente Ramos, et al. (2025). +> [**BioNeuralNet: A Graph Neural Network based Multi-Omics Network Data Analysis Tool**](https://arxiv.org/abs/2507.20440). +> *arXiv preprint arXiv:2507.20440*. + +For your convenience, you can use the following BibTeX entry: + +
+ BibTeX Citation + +```bibtex +@misc{ramos2025bioneuralnetgraphneuralnetwork, + title={BioNeuralNet: A Graph Neural Network based Multi-Omics Network Data Analysis Tool}, + author={Vicente Ramos and Sundous Hussein and Mohamed Abdel-Hafiz and Arunangshu Sarkar and Weixuan Liu and Katerina J. Kechris and Russell P. Bowler and Leslie Lange and Farnoush Banaei-Kashani}, + year={2025}, + eprint={2507.20440}, + archivePrefix={arXiv}, + primaryClass={cs.LG}, + url={https://arxiv.org/abs/2507.20440}, +} +``` +
\ No newline at end of file diff --git a/docs/source/index.rst b/docs/source/index.rst index 64beca2..c1bebbb 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -46,6 +46,31 @@ Get started quickly with these end-to-end examples demonstrating the BioNeuralNe `View BioNeuralNet Workflow. `_ + +Citation +-------- + +If you use BioNeuralNet in your research, we kindly ask that you cite our paper: + + Vicente Ramos, et al. (2025). + `BioNeuralNet: A Graph Neural Network based Multi-Omics Network Data Analysis Tool `_. + *arXiv preprint arXiv:2507.20440* | `DOI: 10.48550/arXiv.2507.20440 `_. + +For your convenience, you can use the following BibTeX entry: + +.. code-block:: bibtex + + @misc{ramos2025bioneuralnetgraphneuralnetwork, + title={BioNeuralNet: A Graph Neural Network based Multi-Omics Network Data Analysis Tool}, + author={Vicente Ramos and Sundous Hussein and Mohamed Abdel-Hafiz and Arunangshu Sarkar and Weixuan Liu and Katerina J. Kechris and Russell P. Bowler and Leslie Lange and Farnoush Banaei-Kashani}, + year={2025}, + eprint={2507.20440}, + archivePrefix={arXiv}, + primaryClass={cs.LG}, + url={https://arxiv.org/abs/2507.20440}, + doi={10.48550/arXiv.2507.20440} + } + What is BioNeuralNet? --------------------- From eb7f1c9abd8645e3d8b881abc120d59237eedbb2 Mon Sep 17 00:00:00 2001 From: Vicente Date: Sun, 26 Oct 2025 16:17:36 -0600 Subject: [PATCH 2/3] Fixed Warning, remove build output files --- .gitignore | 1 + README.md | 15 +- bioneuralnet/utils/__init__.py | 7 +- bioneuralnet/utils/graph.py | 2 +- ...b557431e863639841f1b8705009ca8cc83d11c.png | Bin 34384 -> 0 bytes ...b5bb70affb77a2ba118edb1a1428e69b3ca423.png | Bin 214720 -> 0 bytes ...94b170a80d34269cb3f55c48b7ffe9b4f8ceba.png | Bin 31003 -> 0 bytes ...b7866fbecb574b4bb76b9ada23bc1435c22ade.png | Bin 101217 -> 0 bytes ...a1ca56ab026808fbe4fd14f084c79c2f2f6c70.png | Bin 115969 -> 0 bytes docs/jupyter_execute/Quick_Start.ipynb | 947 ------------ docs/jupyter_execute/TCGA-BRCA_Dataset.ipynb | 1354 ----------------- docs/requirements.txt | 1 + docs/source/conf.py | 1 + docs/source/datasets.ipynb | 10 +- docs/source/index.rst | 16 +- requirements-dev.txt | 1 + 16 files changed, 27 insertions(+), 2328 deletions(-) delete mode 100644 docs/jupyter_execute/60c659c01b1fe2a20a79cee3ccb557431e863639841f1b8705009ca8cc83d11c.png delete mode 100644 docs/jupyter_execute/67694fbce6bafe4925e82b99afb5bb70affb77a2ba118edb1a1428e69b3ca423.png delete mode 100644 docs/jupyter_execute/6d8e23cc2d35d9847246322d8894b170a80d34269cb3f55c48b7ffe9b4f8ceba.png delete mode 100644 docs/jupyter_execute/6e38072f067e1cd5ce2ba09876b7866fbecb574b4bb76b9ada23bc1435c22ade.png delete mode 100644 docs/jupyter_execute/86ca32df216aa20d6d6cc909faa1ca56ab026808fbe4fd14f084c79c2f2f6c70.png delete mode 100644 docs/jupyter_execute/Quick_Start.ipynb delete mode 100644 docs/jupyter_execute/TCGA-BRCA_Dataset.ipynb diff --git a/.gitignore b/.gitignore index 7a6dc1e..a4aff76 100644 --- a/.gitignore +++ b/.gitignore @@ -28,6 +28,7 @@ TCGA-BRCA_Dataset_testing*.ipynb testsOLD network_construction_run.ipynb datasets_run.ipynb +jupyter_execute # Other example data and tests not needed in the repo. Output** diff --git a/README.md b/README.md index 44e6887..e2a517c 100644 --- a/README.md +++ b/README.md @@ -22,9 +22,10 @@ If you use BioNeuralNet in your research, we kindly ask that you cite our paper: -> Vicente Ramos, et al. (2025). -> [**BioNeuralNet: A Graph Neural Network based Multi-Omics Network Data Analysis Tool**](https://arxiv.org/abs/2507.20440). -> *arXiv preprint arXiv:2507.20440*. +> Ramos, V., Hussein, S., et al. (2025). +> [**BioNeuralNet: A Graph Neural Network based Multi-Omics Network Data Analysis Tool**](https://arxiv.org/abs/2507.20440). +> *arXiv preprint arXiv:2507.20440* | [**DOI: 10.48550/arXiv.2507.20440**](https://doi.org/1048550/arXiv.2507.20440). + For your convenience, you can use the following BibTeX entry: @@ -46,7 +47,8 @@ For your convenience, you can use the following BibTeX entry: ## Documentation -**[BioNeuralNet Documentation & Examples](https://bioneuralnet.readthedocs.io/en/latest/)** +For complete documentation, tutorials, and examples, please visit our Read the Docs site: +**[bioneuralnet.readthedocs.io](https://bioneuralnet.readthedocs.io/en/latest/)** ## Table of Contents @@ -71,9 +73,8 @@ BioNeuralNet is available as a package on the Python Package Index (PyPI), makin ```bash pip install bioneuralnet ``` -> **PyPI Project Page:** [https://pypi.org/project/bioneuralnet/](https://pypi.org/project/bioneuralnet/) -> -> **Requirements:** BioNeuralNet supports Python `3.10`, `3.11`, and `3.12`. +**PyPI Project Page:** [https://pypi.org/project/bioneuralnet/](https://pypi.org/project/bioneuralnet/) +>**Requirements:** BioNeuralNet is tested and supported on Python versions `3.10`, `3.11`, and `3.12`. Functionality on other versions is not guaranteed. ## 1.2. Install PyTorch and PyTorch Geometric BioNeuralNet relies on PyTorch for GNN computations. Install PyTorch separately: diff --git a/bioneuralnet/utils/__init__.py b/bioneuralnet/utils/__init__.py index 4a278a1..f558e82 100644 --- a/bioneuralnet/utils/__init__.py +++ b/bioneuralnet/utils/__init__.py @@ -4,9 +4,4 @@ from .preprocess import preprocess_clinical, clean_inf_nan, select_top_k_variance, select_top_k_correlation, select_top_randomforest, top_anova_f_features, prune_network, prune_network_by_quantile, network_remove_low_variance, network_remove_high_zero_fraction from .graph import gen_similarity_graph, gen_correlation_graph, gen_threshold_graph, gen_gaussian_knn_graph, gen_lasso_graph, gen_mst_graph, gen_snn_graph - -__all__ = ["get_logger", "rdata_to_df", "variance_summary", "zero_fraction_summary", "expression_summary", "correlation_summary", - "explore_data_stats", "preprocess_clinical", "clean_inf_nan", "select_top_k_variance", "select_top_k_correlation", - "select_top_randomforest", "top_anova_f_features", "prune_network", "prune_network_by_quantile", "network_remove_low_variance", - "network_remove_high_zero_fraction", "gen_similarity_graph", "gen_correlation_graph", "gen_threshold_graph", - "gen_gaussian_knn_graph", "gen_lasso_graph", "gen_mst_graph", "gen_snn_graph"] +__all__ = ["get_logger", "rdata_to_df", "variance_summary", "zero_fraction_summary", "expression_summary", "correlation_summary", "explore_data_stats", "preprocess_clinical", "clean_inf_nan", "select_top_k_variance", "select_top_k_correlation", "select_top_randomforest", "top_anova_f_features", "prune_network", "prune_network_by_quantile", "network_remove_low_variance", "network_remove_high_zero_fraction", "gen_similarity_graph", "gen_correlation_graph", "gen_threshold_graph", "gen_gaussian_knn_graph", "gen_lasso_graph", "gen_mst_graph", "gen_snn_graph"] diff --git a/bioneuralnet/utils/graph.py b/bioneuralnet/utils/graph.py index 54a7418..5817740 100644 --- a/bioneuralnet/utils/graph.py +++ b/bioneuralnet/utils/graph.py @@ -88,7 +88,7 @@ def gen_correlation_graph(X: pd.DataFrame, k: int = 15,method: str = 'pearson', """ Build a normalized k-nearest neighbors (kNN) correlation graph from feature vectors. - The function computes pairwise `pearson` or `spearman` correlations, sparsifies the matrix by keeping `top-k`neighbours per node (or by applying a global threshold), optionally prunes edges to mutual neighbours, and can add self-loops. + The function computes pairwise `pearson` or `spearman` correlations, sparsifies the matrix by keeping `top-k` neighbours per node (or by applying a global threshold), optionally prunes edges to mutual neighbours, and can add self-loops. Args: diff --git a/docs/jupyter_execute/60c659c01b1fe2a20a79cee3ccb557431e863639841f1b8705009ca8cc83d11c.png b/docs/jupyter_execute/60c659c01b1fe2a20a79cee3ccb557431e863639841f1b8705009ca8cc83d11c.png deleted file mode 100644 index 7e7a1b99ec79b1d2f5546a664a28a7fadba51fb2..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 34384 zcmd43bySw^*DZ@8 z?RCTZ{l*#Re0%RR&N+V^#!%lE9`5J9uWMav%{Av-PmqF~1U?Q04jLL7zLex+MKm<@ z&uC~DiY{M*?}+}ynS_7tJBX_~DA^c0IP2LPp*_`eu(h;tur$-Z;bdfwGPAMfX5-{w z<7T~K>fm6Dy3fvT^`BR;+1Q(~8#5HYfvaHKN~)pI&2JC^GWm4#mnd-&?S~S2I^D`ZA*&n_(QSUSeJzWgHz{ z=JzF5!%RK;Q2kC|bV`bEo9ik61vwwOi`;dqD6P)xn+bCX<((X%Bb$~a4IFrn&%c)1 zTE;E}o`3mVeNJ@tWp_ndLHz9JKW^TBc>VmF0Vx_dhSZ{J(!8^E=;HugE!c zeX1L7M>T~~1~lro{I#h}x>yG0s;dPt2Je;Z3EvfvzxM>-`@xx zaiM(^D7m8KdxviS=VU_wxsVITbr$6x4GrkDw6t;e%)V>bR5zx}eAu|<|N1osTwP@% zf86w{?$TwE03#c@0qO#}G`sF{7I(>sQ*j?9f^Xj$J_l%qA2^H0kmHK7=#Hw3A)PQ zvR04vMKK+Rluh#n7gq%QB&Iu4p4+_VHd;rLaO!`;pO zxn$%XBV%GrQODdS9cwFQxd>Ajp87m1c z?5<4CAuIxb&-eGN zhOV)*v%ev^D;+>Uy?4Ajo=3@72XSoL`}O+EmoLjIE0qe3pN@I%YQ^)`*ViAxmRb&c zySeT7bpB(9CBXuzj>kh&)7#>2uGPb{)p#D-Z%j+Y^D;lOl}{3q>d)0$-`Qcjal^+X z*^_saqY2`s&}LjDA|k@tMLu?ZyjB#Vm0UYjtJ3LtmhxS#V_!_%&&oLz@KCS){R`}- zp2SZvua1kJ?7bSRc2}x$v0JHFWQ#ZGudtuNkrzF_cj3Z?Yj@S7AaXbRb-axZlep|> z+sJ9W_VlEqZodo&z`A+!rpHDL6R#E5VRbqly&QS2faAh*WM9H)<#&bXCEosMZx8i8 z*~jvs_1b$0M=KdNadKrvPC?-cyn{o<%@gu!Hs;mCyxNnvp<;_E_z^6lYO#5*<0{Yn z`xK<4AMo5ccUQ;5Aa%^P#iHF}VBqvRa{2oFi!a8KN>^Qa@KMSpJf3W`d^Bc{Np zHA6=3!bNm+E1FEaNUd5g;qAr#Oo%MlEv9Wp?Ft8G$Aum#PtoIzR(9UGOb@5Ks^97u z1)e^u^*Zj+{%JK_k`D<2o^sNmh1sXF(%rwIzBz>ak%NOn#c3zEezAJ2i06H{!|x3Z zudXskbGWQc^o+ay6gJt}zd?r?3|YE`v}S*n@{V%0i!D@Y4i>T;I{6I$xpJ~MMF>|yjZOx(w6r)Z4TP^xH4{@%{G_z0s$ZLI2nr2- zx;)Q;_X^p+*?1fK-BD+5tD$>Hh+4}qYXuX+s#IawC7u)Lz60b-~`TQ)^Wh#{KG7gUZKksg~#qqEd zx5HyGYm~6|W~s<~YH=^bN^!zDrE!_KkdT-d%Wp^b>Jq;Gd{;VhsRU7Pkv26ggJV{kXMMwJWa@=$TA%laRm{q)CTVi&_iPx!fw+itM3hLCd`|H{*; zWfktvcp6W}Wq4WGeaCQPx<#|bBX(u9616f?F5Aic>=QNg)`KOtFg!7(AA6=_2!6!Pgc$82N92@emyXVDh|M{sn_Rk23X9coYE zHI+ATk6mA1urSIec{FTaxI{?P2J!KsBB`$KCA!)--3xkpdS7(5MwaGY1x_3I2L`?h z4h`i&OO^S+rY4fr1V*biw;rMuGSpl1vlzb-FLWMOu&(lkPtHNeL9+9Wo)Na zW?O$-IXi~a^w*8}ooCOU`RC>3J@tH&=O`v7R#DdQ{d>rp>nuY(kf~cu$EsW_O5iuE zFOVUB!@Gn-S;e??i2{HDFPm0H)X>VXO)U?aL0b&x7e^?+d}vb;VkPCqaF-#!eksIP zM3peF23RB?x;3`8vJ`vT+ZQ}5u~dWdOT*ir#A_9&m#-Rv#B^VJ!s%wGXl5U^sMpBa z+8W0S9Q>Y&sQx0AJneby_|uv(NE2LW25_Kwm)&+(66X(h)ZsGl?mwfLV@n|OR9qn2 zoa>a&k&%_XN5Nxm=;H29X=i8Wua|aOeY`6GIWkhcAI_#jZ5UKMSS?umj6S0+?KpnB zPsoi-HHT%w|BGPY@$vD+pOQMQj#;5WBH`w$)@k4f*&TE5L<<@BI&9CVF>a50lBJxZ zNE`6_H5v7Nhq9Got^$)znp8-qmvnn_H2TRzJj%{?1uEnGP&B*F7+MI#bY@?UcJ&Zi z2-M?&DgtJ^%p(HD6=x`+YHt?D+*f(frXXHh6c3~Ng&7%}2EOS%s_4wwm}woZ5)nOG zdv$>fmxT3Oc?YDbuHJvss++>H?t#N)?3enDb)(cjqx}w719ZHfS`bs=k;oiuB(sl+ zT6__Vgqk0&cwyop4~QBvH`$?YD0n1T;c1xhB@X zQXcXP3XZQ0>3HokK)DoJ|3N(eHXY9(BrvdUa4?oB*`sTAkGoUol^$8PW_edejqB!Y zPqrF&!`z{bCX}6-qy5dTh2GYT-Cyu>e|*XfIK?`ACl+%ljZIDVJ4D9weH1X$TF=Aprq_-K zTOY&;yKU(Lvf_QzM|xNNb!DX>uxrCStBKAw9?t+Xm5S*@US~wh7>tY)?_A6 zAltsyBMYGsj`Q(Bi;pOH`oo)4aNnjNBDNubPzmmDk?p|#XwOdi16$$>VGA70G@8x@ z)akD3PugMlv9z;|MPGLLBpn;TEqX|4^{uVJ5Try<|0~2yov!voxwn{#m~1cfc8_KS z1V}85OkQgYCM}Jfa-s*k@(}`KUit~@)8Y1FGqfIx0gkKVwaL_iPKNxl1=8>D%rAUZ z&XI;H#L3CYyRGJ0OC{<>#l*xEe+!SxE2m%)ipujZikM7H!=m(D?s-Oyun%F8kxJ$l zP023lc&uaYj-cchOwj6rh?&R$t$TTSec23(=d&R&T&|A#{jD#%iuCCC*le_-xSeAh zDOi90MBM*DJAqVNI0Hx%cHePf4QZhki^m`6NI-Ut1w3QYnKT3Fai+LmyP>hsPlDDn z3NrUf#qQ+dBJKkP1qJ_Y=3VE)ReZM>7DgEu+mm!DJ(b2hV zw(}|FCB_$Y$s|Ua_hm}~Y=va4=6q{BYl-&ZC zb$tl)Mz}QryFVC!f-Blx0fEk})}GG#k!q*7Z7%@uvjg0J36Jbu`mUn!D&~|ZZjezL ztScTB|2sG}&q}SeNZ7TJ8(ZJqmAC4K^n?_CI3KEo#`u7|Z`#!CGZvb3&W20Slux44 zeyC>3Q9~pCDD_FGDL@U#wkZ%`d{tqTqdI`Jpq@;^fo@eqkQ~+o{Aa3JcZS;iIra89 zo>bU;*(4!>1|l@&toL@+cXLB|s_ua>~h?wfb58toOd z7g<9k%VVQUFYc-kR5cktAWhci(C0A7~0Xqwi{1`WG9$_<50Kt}|Jlx(PRS zck5`?`*aEc!NiQRx|84i5XjsqdYT|X<9e%Gw1P!B`*O@9>b&DeTujfuJ`aLb3y+F= zot0(bZ-u~9=W)+w$dHz9&vuuGKe!z!C(*X`KDOBzL!f!CX8Ct0H&$+*Toe@_1}zSC zn0E`jPrcNO&5cl&0B1@a@&wXh_g)7CpboaoNZ2$bAyq4m2lW3mz5VwkI@a3OR$CwK z+)V3-X7l2Vor=tXG`VcQ8bzzwqf9i5$F z@TOe06A$1dNERBmlkr(=Mici~^ycZ%a;U^~U?(Ld6`A+GK?)s|n2bfc2kC^EnS6a*f}zJXo0-~hUo{doVqAt{G@mcy6acYS+tuHUKK z9d9V6-+V*j$7NL4Pf9@Znpx=vYnvsz;(*ZU(Iy1t`akqxSE#8ISN4D+%ByrUmG*U9 z-l0Z-KuO~s+(XxP8bAcn8;&t~@VM_z!dB|)>Uu=Ka~&9L)Hd+gJlS0t6>#6NTu>(I zmkufg=zfcdDboV!RrK>!%jS~Y3yzNfd+zP+tqob^8S(S&y6r}HrJ|M>DJUshp^@$? z-rm@d-mNfB^Ey5N$i@X%i=XUgQOPv~XgsK$&&yO2EA=}|g&lfQNYrysTIZElpXM92 zlEh!vhUbun(0c-fwV-!1e#71CaJkfKAyYottGoZF?BULG(3>{}v0<*;3one@VqOA~ zweW5j;$~`TDZzR;!FkM;sbLZD6SawniOAs+cg@}(T!?AYLM)pns|*bs1;zHZPS;qJ zLjZ8V32lQ#c^e;331_z0Y;(NVr@FfOi)Q%-ekS(OS_2_@&8p(;wYljl%lQV)`ec^~ zMfPrx!nt<#fMWb5IW&}l=MNA)vkioz(~Ehva{atOTS4!?Q_^PK8+2F@)XfqVF2( zR~TaVWMOr5*lynu+PcyfkEK!ieYSmVb;p^`?@7A!d(|@An*a?`AYpAS_J={c4g}Oc z&@Ar%31(N^U2c_xg}kkjOGPMp#L+3dOV!cQ;Q^f^1_p-hpC3UzPRSk{*a(RR5R)Ci z{-5uDxJb2!{ry$r>0U==tOj%l#OY%w9qXH$slWsFhxbe;P zpto<0TchtDK|8QCRxPLj%!-bv$nlmEwB&;|o`R6e7(_&ppw7I7GxrPXIFzQx@EfiG z77*qUh>L8sLVu&y==B~Y`Skcm7j6#^4;Sc=UEzkxr``(w1)Q^BQ3^}|oRbK>4ZK;4 z)!Er6nR1C_z=p!MOur%&xxvA~p+!dvJ$L15O>0(OjWi@rY&<;K{zo{*?Ayq0KnsPS z3TPGR?%%)fSeXFb*?o;&0sCo5l+v#Kn$8XXo3D_C#m+~K_U!g16g2W1EAOLPNo`_tRVAcBf zC(Mr@Kkn`CuS1(tXxMTU0HxFDV$I3HB624Pj|N8!{Tpgd4%x1wqa%BV@GKyZxh?uw z{qe}f0RJF6@Gm2(dwj6Xs#BAoqT|U^d<-jxVBo)fIh2q)KS8ELO5@tZLy^-X6i}>* zliHvADFmHZ?`o9Ds*J;tKw8-!LBxZ_7Nmfn8=%pLyt)BRHNth+jeG81P&3XZOJ$7nhP@s(_4W#tJRlCIIYVhv}* z84+l_4TbinBN2AU81|VQww&waXtOhZ$e6K^3m6(uQ|RyCA0p$oO_^L>wJ9qvCkLRM zKgi1{4ot)EYIo;`?(Xi}+ErzoE^E35ok_y;Pz=`Vv1rMBkY|X$`&tpgz z=k97-ja8LjFeEz!@MHsAE(K7;oJeE>jn?dPvOgCJR8V?J%hKk<$2cUxdWL#0&{{a> zIvzfLJ*crTYuxuV4ue@qHRI_kr{%V!t{TsFE7OR`$;p75Mz{WiiHc1%?F8vOeq3NZ zSYYI^JoG-4lF!)vBq=aZQtuN64-h@Z9ej5ce~joe^7c{9;?DjW8~1vZD$#z|WMs76 z%BUlWXD<6Ai6 z?=YVJUf%Xp*zBjQ{h*V^YeYmXdIu{ij~{QS2M};L=T@hdIU))K@)gnPxu0I%@$`%0 zuYCHWjo@nfpEL}g&wfO=A5+L3#fn{Df8{zRi}HiiC;Qw|cO6g)Im#?hCq9|}{#0IK zDjrTJZa-6@W;fr(P$^t`ruj`*EzXc)5yWiDA0M?fTlA^^9r&HlB4C^Hes@f!W38&H zgA%V{0?H$_2^373ZHH30qf|Yxr$pDTMP+s71Lvk$eX{MaGBRl0dH3vQ1XiEyH-^)f zgawn}PkqPa^V*-G%2Kv!U!!uL!3PGO32I&Ymdi&Og zWo7Yz>mOX03=Iu!-$4bR-Q-lcwil<-8)9KMRcsut&A`!0^m5z!>ps7J4VQtA!Y#y} zx9Jari?6S*;%0u^wThcH&^JIUewC6k-U53e=bL&CU^IUKeTz<>=hwu*Y6v2}a?NmJ zC8_P>qYg5EOm_Bx8fx>tBInl`*|T~-eW+yZ?YV|atmp*{anu_sIw-PQ z6tn%N#(wq=_QG&}Er&}&r#;46(=mE4uxjD#j$(Nq8)B&`I5~6b2ZW z8rCLt$>zh-d+;eRu(2l=a5_3%H4+l)^jn7e&qZGxCTOU38VKjzad z-i}-ZuKF{ZT6liRlT3`>4(azl)hlDUKZ*yB1l4ocGp$!Y%U56Cta5!}eJgAE)}s9< z37yo7U9~jGv$=}H^?9stj9TMx>5O_J&GKWK<9XYw$yiBj?Kp#{6MU0=hEqS6j*BcM z-XbmfH0A}Typ5S5pWDR5W$`YmSUb3Jhj1-QR5wGOZ&>Q&&$JFE=O zT5obYdNnI1wGS%7+kR$`ecTSkALCqN_)L(Z!KYgAL$iH%2s83$G*4u=_2?2wT;QW; zHr^}$tYVkYlWgw{2UJH+`zrSgvqyN}VuDIc!fVa?>ca=W=)3KwVVm^9dLw_6e~<70 z%E*w76?^{t8X!R6b3u=wFdXs%vcC#KI)UHrqPMp!t#Qmm)CFcE{qxkI? zv>)4db)}O#J5+B+8#p=`@emeTi2nE_9(@vZ){!Tx_Za>vELj-71bp`RRe zCx{JHm1~(eUR3L}f!hHxGJ1O25Y$UOC7n-?v3CH#P6~jqKD#tnh=@{T{`J6kxGv>4 zlku28&*JQuf9^-v;O@ZnJl0hHpTGhr+79bn%H=tnYq(G@#m^#n2rv15z4R<3jX8CY|d`<__ zql_e4o(j1cqH<_L?(*p#hpjBNsVD zce&NGKdv&|Q8{yVjlgMg6B85*xn%7dyPs3@-JAUvrF5GyuHO(6N`S`KM_y$AHEhfV zkjKQdw8<4;Z9ty2BzXp`6*2U6Y@ixr}}e z^nJJ+FIpONL9p}T^6ykEphiLF@c;bz_CjAyD~Jnn~7?8D(R1^EA%VD^Y&D^=Mm;Va@5u9Tt_9KS}Nj_uIaWEqx>Nv$V9-)TFAZ zsrk{=bbpCX3U;E%W?UO}?&Y~9LnR#ck2#HT|9_P#I_CdL$vIz_{~NXG|F z48j;X{~dyJFVih~=Kq&oCikGAmrO}M8#DFo_(#Vd9WD6nG0GcDWA{B)(wJ6k_V8rwjc z9^e*0^9}(k0X`+KAuv9%C05YHk_0no&4Z7J=7~qJwp)v=oJFs%L9=cr&EByyzcm<;A&l8j+xO2zaR$dS>Qz+E+wU~sTT#Vt=TrcrEUeG8Z1ONK@J8f*KoiKgzp5z zIRLo^3kW07rB8(33dQ50ld$u86X5ukSk<@Uiiu6Mve%D}mU!;2Oib$Sd=)tr`q4P! z*>)b=u5~Ne3(#FcqjCkYPk|27mLyCmFE1|wegM4T!~K2eAX|D0oR-yvgoQWdeJP01 zPmc^vs?6UHTBuj?A04o4t>DWyH zA3q*DEe+HIWu~+U>Z)mX2EIm#WlI;2$iZKFx1FV+4OC?|Eh$DJ` zQ*Ti@8+&bHI!%jYUjXQ{?vMgzw}O)-5}3H5YkxzWP!))dqxe&MN7k_ ztNwE~<28x!lQm#IjE0PXYy#t!h}JP!%7CY>+D|D=0fSg9?L9o{vT{8s*=hS?^B+l~ zgg!RK=GO)*Nf&Fg_L`#D3FkV}lV-I?*Q6s znOe*r90dhEY&v;=4&gl!Y6{BOJF|EwWLIfuk`DOU*xsh3+<+GcbQWh#&895wq+Gmb z1rodq6~B-B`X4k^0xGn+FX}v+JFCsBbr(=F`H(l<0Y2^i$`nd(V{1HieDnsoHuUq3mSw_1$CFB_=OKX zm&=>a{G2Vh$DH>pOPQa?On)UP?gA52r92DC*_H_ATO^^V)k0fx2Sb3)1jgs_lP4L7 zj!#EVZ`Skqw`1oquoPurBZB*HU*6wBYVOo!SL_llroU~e_-Hr(QVk?r)v4N|G5z+ofPd2nGxr3?)R5i8_SXx8BQu>AT{Yb7M4 zd+NpT(=u6dlnAwn%JU_LIpz@sIouQ!%o;2W=_4|~uOu{K~(PEm56?&N?osD96ab-0_kf{Jt4 zz9VWq^fdX`JCg&XBHPA#{qgIi z#%0dKWa^pk!sVauWn^wgMg$6bQY`eMtMq3l+T_%As5u zHmOxT544kXjA9Pc5i%0C*W4z$?G$A9ulf4kxOt)G0H>;|YY3DmDgpg}U!3+!(N{gD ztUQ+GxFZ3(IV>La!la!mviBN$725kd4-@aNb;+!C%j*^ou^XSQJM+DJSjFE8R43jF zwncpBXmc|$87ORKC1!ju-}S4!P=Kn;O5?Ecy!c_pxhXJ&HeMtmxa!vAELx3 z*tFW3|6PhSj2F3`qtq+q&8+?EwKP|W+ov5z?~{p8iHUVZ^tx@g(WspVB5T3nmGS>e zHSf3bJ~?s)N=_OWWgsat;lx5LPCqM(_-Z20?{Im{1wD=jor!6nno`?~TIm9Onz^80GelgeKm#bCZ-0Z}e?mX@{R^6V)!`7kw`<$J4RY>NqH?Y`3 z$!qyfqVre_7(*@qZGwS`2|g5g4saDaEQ8S74o40H>; z(hfW(AYRzdKCxF&RJ{6cTcB1W5fB+;YHha3K1XubcBqORt)cgNsyJ?lT;eyUrOQUG zLoCwB(uH4a_`Mkj-36%oU>U5orZFzX;Nj#X0!#t2ff(ozN{ffPtDVrUse!Ah0yR`> z6PBDz3xXr7Mo9?xA;75Aj>}%@?WfmZJ_UiEfP@iKR^yerSUVGmP}xmRW81L z!=-YGfRIlGM^5(jdlrb)#+JynW?J1^o|>~9ek)+mF+LXHt;pU4IwD`~tcEo%ADJa>R`oW+mY!%6ZXRBEs7@@^kjrP3~~dDSXsz+vc~kRlNk%br+h) z&UQy~cBz8!tMHG;MzE*2H_U`CGeCp|2404sUws!DPyN#m_nR9JtHvc3YY}!Xz)7EaMN58o%9890W(=IJj5-p-312FBs%TZKv9dVGBnc>N)0}7JRhGk z7n&5ykbYKfuR*vKU|0O3Ql#sF1H7vdH=~Y4Q1?64c(96G+ofJsK`EjaVl`pu{&kJB zeK<+4ZA;h9QpT4{@BsqPN&|Hvc-!_c(rhwOP}Kt@R3`?BA@>`&mwV==L$wztF$ zWV?q4*i&;xf#WZ=UTa~pT}e3pbAANV?)^}~A=T007FZta9?|I?6j&bkpz~ctC$_N# zJC64$C5~qPr(^vy1ju}==hYp*5ApF*wZ40clxxBk&dNO4cn-DCYz zd5q#0Mcc`X;Ah%ew%GYrVvV2dZT)Zk+u#J&m#?*-)VR~X_Qcm}Shwdkppjf{KgUJg z-Ibz}59|#ciMnJv!5{@Zetat#nBxd7IXUCbh1b~MOu_{4_ConmoL7r@$33w=epILt z!lN`6k&`aaId9GgWU;?W%6)m>qPblvmsnIm%v9G+d~!r=+zzeX%^P*H`lNS#_goGe z&yjm~02*XNU=h7k~Y_9Y$_0oKlaykAvL{&~#?VB@^7$_%6IV zASiZLBQ!HHUi^3lv{{FeR?SF4=|Qgwc*I7W;$zb?_`Szu^~b$w<&sNOiq7s=K+fQj zI92!uQio;p=xM_;dxqtKuP?xkX-qCeM!_o!p_J-Bn}d`<$(nSU=R^{7OP1CzBL8@w zzUtTJ-qpoK{Z4qy+mBld`l#Udx?NVZ#zB#wQovF zQORO|LxIt|ce;6|XV9ns*$pq{iXwqFKDzG-r4??)5UmG`vmAQf-l)rv)*52Dop8^# zdfE;4;@UOwV6jT4635bU>zy*~3PZMNf)WwY&G@W6MkXe1Fu+4sB!HU5>pMMqRtdcZ z6}H@Cdmwao(#E_5L&(v+Pt0~QqVLA{G2X#h=<}<4fWn0xO>wlit@y)Q4@nM^laV2V)x)d6V@&jlfNbWKIzgxtoqs=*DNFqA`A-Nr-;C`3}T)KS9SM#U?BZB)i%uckP8w8CrgIA-g<80FAbstpnP>{ z_T6MNZNQ7HiJ#a1#gzNnCH{NXLq$PQg_96M7=~CtQMG!@u2peQ!k3r`YiqlIwkAu* z+ln#$3~CxPKl@Hau@sRLcAloD3$|4Z!E{;%juX^<5~3EuH>3d~o^8;WW^0&qs6i|* zJ*(yw@SG+>Z3FBC?eV|fTdd@24{X}B0~K8aZFyyb@NUdZqVvSjevv@{VS@y1tSBKZ z!Ofe-pN7(d1@c~Gc_aJukM~HIVgk^NmT=c#LLnk1j$B@Z(THI1V8GB3!tf54+H@8z z!+ZivCGj>kG|&%&f+z5!rNxPbLPsa&{`ELsp0MRHeD+$rj~|U~7LN9Jg3nGWl_K2I z-ku9G+=PGxFoBu&Ws`#$bQbC*r$`fMV=l9?Ce{n;V23mSGc{sKgti$mVgdcM59}?s zaI=0s%=fkQD1Lezv^3%$IQ`xSjf|siL}`0O099jN>15VC*ZwL=xIK-RwT+7Hs9)#b zW4T1Hfl`36F_;=t69d^&aS^JpJm{(5rNlzaI)x62{}YyKs|v={6l*+Ovz1w#N9?fj zs&^=0WasC%WeB7)`}RIkyVIRtK&XIcFe;sYQ&C#>Em^$eTU)!Am8-noC%c|2({lkz zy((_@8;l6pYk8051}w}x7@c!dH3>-amYMCb67HE%(5ExMQ4vd zG(1IBBiC>^Axv-)n7b^JBJ0-rrGFD<8=5b+nVq``#%%3#tKopc?LGuvp4xt?OtQvq z@?y5S(N1=*>IHCDQ?n>ycpYB{7r%xJQgH-Yej`z@r?&F2SUrdQgq7~kJ20>wuJXw! zUOifSG^8+*cI&e$XU_6;%dB^$li$}D%U5#|AZdsSPlI{H9^=L6Ye7Ll9tZQ8rBqRY zl5g!D{giVia!M!uKHJ+jktD~CNU-cM@|?s3dy09F4-vg?E6J}9cF4QC-qFBb0J|SD zccZx??r{lOn^M+K=<;UiFbMSAf39gGO#y$l29`-j-O)aWCE0U;zq3J1H*TQ0ZTa}&TJ7o~p&gDl`kc`G z4V*?~NE|WU!a#$htZb3M2{KeEX-h{((An9!Bv4(l+rt6Y_KEM9s#OE5Y;3=($_1{K zp-gV;jGcF${GTniQ{a3hf%hGhQbI^mz%XRO%mBZD0H^gx85O}Z=o0c(C&EN^hk40( zaLjvsvsBu}qmw+YuGEf?5h07op9a+v4ECV2icG|sB-O(Z1Wf#_L(S$gZX+wP9*yhf zd=oe=Dkt|V*h97${6F46gMw;hH%b)#9H=h90vh#z^BlJpO``W)R12FDk`Iw=dUe(xp(fK!l6iKG&XW3r zLG{L6btJ6^@xy~<_T*SFW-!Tr2MYF&w6*oDR~9fXg3cMmp~0_SW1RCv_Bjv)AU`06 z10WeMfe-R6mB7V1nAh6>n;M4fAyG?4SGwMsZeXBKp^4tQKG?4iz`r@>4p-Ews5@(< z&UpX9iNODbQkwvo54!vIE_-^n z)w)JXjDKF^x2^L+nik2AQP8tMG|m7<0!O|GjOk_e!5rc@(E6xwsv{L}c&f;5Dd z(0N3UEqiM!Z0%@sR$)@+!xHsJSi@^{gF{%`pyorh6ws;$I|4KFeDtfUMBzgE`41!m z)tW+Hik{wcSNd=lT}S7(;;kI3c;4BuY^{n1i+v@{NVjMI03bJ%whge{D*%{`KLFo^ zLY{Ut6}Bt@h8qaG!V|2Q)=Mjb7al&_N$YhvDd`G{F=H0B;1B^Na!Oh7-?NQO=@)Q3QDa6k~iM+?BzW&@Z=k*OwAz-s4Lnw`D0JXD{p1`XPI%U?Q9 zpv=? z>YeJ-fU$y4Td1m@>|u@(rd%nuY4pgK5Ff|G7fW3g`mtPyafP;%e zf{(D^ZH9&?fxbQnV9@NO9%I(-2>NP`MTds46P~74`;`BMp%{h3x?z`GPLEqUPV8pHrI!H)yW(fkS*OE>3jy>UVIBnEpzs$L~b!r}Mp8q%aUU z3GV)yFLT!*oTjHS@F`*#8uvF9audpT7jm_X$wkMq7e~n5c3v|+UAp!So_F98bhGL? zeX_0XjG55P(1FnfnCk-Yh(qsi85eg7$p3!fRgfBl4wnky!z1nqmfnEKP_8Ny_`!Dv zXSVGnq^0s~Cb_z{*tJ0uGpoqRn`|A{ACc2CRyL2p!_16LN=gd0vPk+1vhlp34_{s4 zgoz=TM{9wOWPNLE8lh#k5}-IDl}U`a;~3n}bjbik}7CXu^BT3V5)# z!OL&h^Z8j@JRf|nN9~g4MaWT|5eW&h(0N%d$VA<)M<(HgOrSmW0B6$@j8@5Xa{ixP zT@G!o;_hv40yR^uwW>@y(x!KoqlQXC|6mbJ6d7PG4ZPeev&;6L!q;bcQQ#Z}aql$u z*%e0q#iECx7$*v#7{Ryo30(J4>^dT&cWNLM+d7PF{(^&7Xm8@x*^tZOp~-y0e`60o ze7HYcS)j>Mt#rBzhOR~)qjVV}B2M9h+h{7OsrlKeFS|EpRCiW0TYi0<6_fSp-t068 z3aW<%fyt#=uWYy<%!D)PLQ{qgT2WAJ3Q_9!VVW6oCNVX&l@cvA^;4K5=q?uZ*y8}K zkP24fFOJGt*U^x80c|Gz)Z-O6@XvG&i*j&#O|!H4r8YCs>8lvEexIl}mXd4g9URP- zm-ENOy}@`X6B8GPu+>X>OY`PO21mkxph!bQ^$5{ral(QC+_Q9&lWB&}{(yO0V84_i zwLwoYG`t1+xlDfzbZkdE!#2E*?A2RWVQ2yH^%&jl+qWhDKyvoD#UOx*qFIPw_+}Za zMnLNyc)1Xd2G8>VP~SNdl8f})Z{SV7Ij?G?fubi4t*P|^1yB@QtK-SwsOwI7h@K&z z{C|`spt$)168tkciIilk4tC{ivIiAz01RFyB!D5MP&N_A`zSm*+Zx!vs*ExR?55CH za)~L==!YL89N`kI>_RNJ3CsmCE%xWhKfThKEGiGNj(9AvFJJy=qu6chFXE(zWPkI{ z9b{6c0Pd~FFH$an|7E07Nr}aEqVVr+`Y+Xs+qlfHCEPcv?6NVuC7Wa!?Slpea4MXU zlDqtCbZ*Fg#=`LT6v)-!T9bH7H3@Yv9S{o|GOvI3B``qqo$gM9dssC*)&pxHZQl9m(=p?212R6?I%Ot!qcECqd8{!8=zejIu23L2jzr z>=66{KnQG(u{;(eAThReFu;l5P(D83u%Ss1Fxbfu*}oOVZbNXaRYNs00^0IA7L}0c z8MlrT1X)x$i>D!bq_>yH@r4%PaF6=l>*~c^?n+@aep;0wI>9J=EnD)K8Ge~WSj-y^`ooE0FJ#d;C>XDf4p6xK$IW#qO zSG8mAwP-&7;$TL0?;p*Zs>nqi!$n|wu9A{U*xGWyblE5PWU1$$6<)#u!R%f*g0TY! z`Xd-@cUV1k$hVfTMMTa;^_^Vp#XsVeub~PnUNN+|J`UUl0KFDufE1Dk8p3@*UTgV1 z0q;WvQ!}v%J4@I>LErRVm3y`q4<|G>iNSP0%FA*(+Yf9C|B56nCeZh2!N-#zmJ#4z zkRdmai^02t`v9hzfs4{d{J)UpReYhW*SfqUs-dS0pDUeLXTjgxvE>4jR8VS~?_z;@CBo*#XI-{}BJ0F*zxFEEU)6#x z?hVDK{(w-n{$9W(9a?FC)ob$jnXN2PhQ%oT+qvz_ZWPf>oqo^Gc^!zn~Q3dIdbKJRoGNJqNtK*^UVD|?)^ zpDY~aQRSsDtaybSTV4d_DrRjbV5sA229!@>q$PzZ!6#uf?J(ikO{8!i7-ZLmz!b7odgP(wHqQ{vrX>xb zPtI#e2LGVz!bgrFR4r6TZIAUvP3-4L!TYKS;!_hVC+BQZ7Bisl{keJ$5Tb@k`2sGE zqr%E*0j^74uvfx1N4P#9(17LRM?Uz70}l;`PGQapxh8x}(6n?4Y@wgn10OX-&GL(c z!WiQo25c2ugC@pyjyx(j1cU+KIL_Mnh*uCgn8+kCz#YggqA=fgxq;&|d`cL6B0y*8 z9>gI|>Bda^vROo=-Y_r1^c?Os#PR&9bXFh!Yswvzqor{O@`_}QLpNkf__!Jr*o$Wk z&zdZ--I|UJu)=uu;ZAH2d;o=+)olB#xg_q=iutZaR`~Q4!DLA1KVHu3u)=B`eRgv! z)P&K4`cdk)G=B5l?SJM>81n%ngLG;KH;Cn^1nLy*5W4#^55F@(G@IYaF`)alG{-R^ zm$iqe7~3~^%F{6Plh1cHlyU8rwzlnRwQ;!{XgjBPeQp$E2N~9DfxKks^E>MIYGgKJZ||j ziZikYJQkI!m-zV3yd4d)#sT<+&aaWK`OJmN90IgUGtH~_ER&$RRgoQR!N-ZDSPd6B zRXWAOQSr94)`OE45ezaU?EW_v^=r_`vr0*oG=rlinw<|maE9RYDLIa2@mGZ32)`&J zj0^)sH1+nfG6ULMpZcgR%z?MJF5zipklhmCN0FyEeid|!)ZC5ka-B1ULv!QOi?UDQ6y3%QRd7cNv1L+^N=A^LZ%Gu^M3WMf9<{YI*xxk zIzD}+*Xwzn`@XO1yw1T5B1==JiRUw4OwzS;xq+ZjFU3(S|B|JcM>xzFSTjEDDX*+| zJvTQU)0m)^z31C0-2Pk|U=RBpsRl*#_iqUb-~u z1cU19^<7;dRKjoQ6N*o0xzjWkHzX3TTl-KmR&)5~?1Ci#$c;#L2ad z|8PUAFx7T5m=B~;;4W(E?!P8#o7QofeJ?yf;g}oq%Thzl&7}I^CV@;Qdr+Wn##G%) zcQWPpvBD%xVVB&jdW8?U^@f!-8CiJFmKJVxJY!V(;1~`M_@fbB2EYZQCNx}63G)z| z+|Hh!W5laY+(L`VUiu7)1yLw7kS9qk!F^aE^{oytg#5L4i!V|K&S96b-)*sLIgIku z9*%o8TXOzch2x-v2^+{ofK>R5DBP>I{|md+Yd4PF%K{SYf|`3(maW7_@cP>D1II6$ zHu-*v-}o7I5eP5h7fI3gKTv#7bQMmYep_1`j8^&M!~@s!zy8S`YP6{qr@KiwJXzL8 z&;*;}Gz?EdP4JaX+Qm8h7wj6k`uiQqr_lCrPxdixlx^g4iK@#mXOgz0DaYb}8@i(~ zX{+r1%^UPeaiq~^!hI6tqv0=W2B4ROWR?!1+E};{#!mpHJ_uHo4%%Y&NY>4pPhq}6 zS`ds7NUd}5=SNxgj0;q);MR>>?iiHNM%)uBO`&YLR~{s3V#vUGpm6{phIqZ9sjEr1v9l{}Z9Sx!2ZpZfLYMM> zM`!#n^a*B{teqYd-rOq1DQ5O29rOU*d=aA}R&5x}WqnZ&75o?F~67xsEySGa8lD@0wh~-W{ z&JwK@Z|^MSLaj7@9-sw z<33iwBWloQBI8CjbpEKJd_XhK4DxgcFUYz^TK(#n`-UE1x(3L8hJZ@^EV) z-HAV!lBAe5FWnZC1+#SbU`->%TXI|bzTpOr3ttZ+hvMaTqzZP=Y;%t}(HW|()3W~= z=H+&Zrc(>EXHt1@a~M|{q^k|Hr1;3W7~;a>vT)D1mn^jzd|)u7+N|I1yv%9pfk6$A zbvZOH713`J)o*%xAL7O=+YTHYe6>{qxS!QhH#rZzDP4sEp)PHC=V5YNmaH3ACK?}a zYw3$dTjr*50G@~!<61h6u(ny*W9GKewY@LQ*!Ex3{GZ952%Qtl1>$?lhuc zI#n)oCVs=g`F$_6Ed<~2aCgZpp4CsH;|}M+CJ4T-O=Wi>JV$D57VXrs@jMDwuVNOgLRk~*g1QrG;C}{1K3x> za0w4QZ({xP`*|r`vxKv^B%IO*HdK(?bmB}J8W4$Ue7JYs`84Ru+$~N(Sh@i&m04dt&Xk+u^{`;oX^G2k?#H(AHjvwvb zv{IBwBK^n;r=z>L>5oziPwpUbmxV@wm=nd| zmp3=Q&}LAQUN_v_EO~(OD$U}p2+Y+@4wH3}mF?^a?fiBY^BfS^RcI8i&g_NV3)qH- z67ZkdWM8=(V0odpI64$_WCfd4i-1?)MK1O=XcKx`?V_)oeci_?a>=~CjpK*_R+1OB z==YhwBw#F^Nm;k+Vwj)6U4b>Mf^WJ?KE^RDUmmtr_!ijSi!aIH=k48i?pK?WZJZ$+Jlk^QtOqik_EQAo3V($VO zJi0w2aLr-1GvYP;wW|x365GYZSRjW~_m_@Cy@u~bX5&|FY|`!all^r@$tp#{Vq(m| zx^TPO7gdp~3MWw+S2Ewoxpo7nm(%5AWBiM_40P5QMmzPpkDk)WmGaLv2$K-R{R-CFnOaj}EcepGZ-0t%0mU43j<0~iesuTVl zKo#d)X7-+F&Rq2dHsQi_L4Hih)^E7Qt3mC6CAdI(s;RqU0McSm)wb^Icij1@4Ub0;kgW{B`$9JVDieQsqLRe|1t{B+Y| zKcNTewa(*rvM|M6TH^aOeYlBvZmuG-9=gXH4f{dPgM4xlHfdpDYe-C*SR)$&(^tLnR=Y>^`?{lwc~~Al2D=M z-Ip0p{Mj{m;-E@8<`;ViBumGi!h_WEE=vEzk16l(t(`9m$dS10?4rL#P&3|4wX`>8 zv=b(5d*2Sp-wE&riGSt=KY>}6`!O9^+*^;1`G#*!GhLNxSop}bs9HKaFTR1IBw{ZN z-oW>)UsMfHM#3sTCY?WDKUAo9L(nJV+@G z9meFX)5$n*!v;P2Z7gLc7E59Z4y^B6*s({#a7!@vYyq5Y+G;j*gQ=u2mT4PlYY6@ z7Bh1UuzGYa$3A(&BSvWd<&<45-NHl7!VXG(!*?HdW zYiVUEg#sy=1Ra2U$wHzb$Ji^(#bQw;cbK-XTL=p^CuX=U|@_e zf#rU^bWEynKa06s7W8Wi>O;BjB6MGJ*@+(Q#gX5H3rW(Pv97D`(FHB%cf#sIXSrwj2vlTaQ~r-5&gd04OC#kyoUD=vQG}5 zI(0FVl0JMm&yiWnaSeF)5e);6uN@w{=XmC2U_?X(+#|r;>dt7Uq@Hqy4>+<+<#gjC%OXH*O?to-7llq7Yd@%YIlm`0TykXY3mNSR@ z58LFvAKqb56(1KD_i$UFyI{{D!vKdWvaI7z-a8FPcVFh43y}5wgb7NmQnZuZk16rs z`bRD()s^?}I9%!0yW%9J)(K#lNa1RSn}mic z&#J#A>FN-ooM|_%?fAHLdRRPc?}~v2CDZX=gJ;l2C#msa z_^CK>V19>dFK83jT9~K7%CGfj7O0#tAPF{@i|D+e$+jJSkobi|9&mvDKz!WL7C2_( zR;8)}GqIn%^xBr9uN;(RPT}i z=~2V#%`b}Jr>CUb#1z2-F^uTU}$lbu6Sg@dn7RMM|ZIBl{0GL<)P8nj8WUi zDtg{rHOy*p*mC;S%qDS@%QbG>W*qa9JKJyoiQOhS* z(iP7Y@$CY?)cNJ*eGj%irA%92kgbdP8Y9V7b)-x2-pY{%;M70TOJ+}d8{Cl zK+<1^3fF9)ui}0&yz`A}w@ni_U*wAXfa~AKXJ@y8j`cRny3ed?^B%qBu+GxcL~67oAHS>Z2{RdDaSE?fxbFvTD~eqeR!u&o5JT0LgF8}SFRpdUEj zA5++1$ejnM6r_Y@=$b;;tXpS*eGZ%jZ(cS%ZAS@4t z+6$y-#i=C7_4_O+^x_ZqENe>J!>ZGi!^*3$*J(+dQl_29OevO9(eElrq=RG^SHT?Z z&}zDUzX!W7Q#Qh!@+jwW2UF}_e}Rv)yREHFtS8dxd$RF3d{JIOR0eOsb#H*J;_h^S zCzE1~$PnRdyAef{SA>Q>Ix*1$L%S5?aj+h0G3A4yoyVg`+S&FPLK9(PKP(GHP3m+o z@q<5>;p_t3$KS(8bOtz*aZ?&Ubfv_&KbTKx%!b8#7smFr$Zdh?Y?vA=J9`rC7@Nqt7O)!oeJySIGe;l zw|ONPZsX@!1wA+qMWLOW9H|#7*w!^J-O{6pdx6YUj~?4crRX z?hs1kpsV+9Sb07q>`P*8j6{XedKK-b^dl?65Q#%v(S>qf|NiACYdJSh!j66GwuB$FSIK$#=tx|ZxCohjTPfyvdt=HAak8t_)07e^c zORb+Ogs0i^pKH4KLb!SfeB5&Hh;GK2@)yi_6!$+-5gveP~L_AQ!G@yIXBi62MYGdP9Bh1C#;!FjB62 zacQF)G{Pun%!2A}PhK0w9VK+waENlt%5LF?KH;1NtpVrMTDV1Qhh_!g3|6>SW~EeX zyG!RY1#{>2!ng#)M2q}2yVb&6Wpc6(2XY&mx4Ue<_|j|hHEt$0u$R{Kr$2Re7{~oo z4GzxQw81?vg>T?T=b4z}O?vVQ;YU_BD<9Z|^XrAWcxuCZ!In^J!w%9~O)pOxz$RC$}RRiYZ9QKS(2cgAzG#2O&fe^1-|$_JHK=0C5iLnOATH z`9D1R0|xA|Q0EZ$ebBFxjca+~53GR0hab}k(8iWj)Z6Im=@G)5Hv^a9=NFd{E3mh9 zVitrf5b*Cq42vCw3uK)5Qjlqjz@BWxRG9?9{OBlz`k}op52c^a``yohgE-RW|K@xg zQ#pU(+}n3Wsnrh-xi2jAI)C=o!{&7u&*;F9CV1jg z6T;xZ2IkZk*z{IQ&6;Ho0${igV~-!;(>2kJtg!EY8u}UrykNu;r*Vj)gOX-Cnt4gf zwR8}3W!(b)4I6YiWOiKIAgJM1;#cW;bLrBGyY8Vvnc6QL`oHW+<%8C(b^xrudY1rB zQKwL)$bH@pTB-Wp+fvywv-cQCZDeKjMs`?oax!QcUpR7{ff)pFK0V?|YyV`3IRt4V zyNC#3db%UTuicVNEl8#cNK>7?z4uJ3x3OD$Og+F&kjpnpFH({&OfmQYCEBDY4MsZP zXjQxZHW%b&+F&*Am)niu%3T0F>)F`C5*&`&Y6>yr-1~Y=Fl*=5tv6svEdnF}HnlIh z!8QP%BE-jc<;!|4r*#X{%b+~sKWEmb<}$jXF2RVN-DON3i1u%R$Nc`qZ~=mWG5GlJ z5JH4vCIw69bn^nrh-)Kl51}>#_n(*>;zaGJrU^%Qa8riDW$>W;Yv*>P}!z z0xx3h#m$mbKeE7>c)FSz$_ zG5%Zv*MBjh69-4p5R=RPrgrR%BuI^hofGTL2LuX}KLDnxNeE5BD;YbXahMrntY^NuS8z0*hjGWm9FEoa>+>GH4cq z3(>#eTsB2uxyM}9w=A3g$)Dr8x%Vh1x}=E2@szHDEEU85;611RZw7Nsby=@plQcYH z^Zxju_*|Z4r@Q7OZ7UT$J?>CJO+B<4WPe?}kE=TtI=w^Y`uR>$+7+Re+Rr87KCW(2 zsBST8G~PP|8H+|hwC>5S2nA>o8>Q?p49)!6(hy8_pR?W470&wa_HvqD%@uPf>lWGg{EJvc)QLmpQyT< z46u}SO0A5R-7h`+qA{l_`X*+Z5C3(*oM4)f6zJ%h^_Kz9;GHkK|A&LoHx5mjGB_65 z*-c%W0Nu3TMOfp=Z$R&&n%%r-hKaG4m;H4 zm#@e=JbKhD>$O|Bdec`yO-w?gU9Jn$eaU7%?(YHVzM81D(#0~C9Qyy=n&_O$#4ut7 zar*1Rh{{dEVkE%TwGmGw=-;GTf}^hj>^p#ui2+^;O|H6KARV$R)DH4ke8^P+mC$nj zB*3TiVAoP1ZTi8_h1#x%EiH*&Ld@xWbB3tO#(RS)gKRZWY6&B5jbLTqC6IYE2BIf5 z_xHo{nkx022hs?FHz$NaUjg5p2DuK@OXA!AWst?};eK5g{SBKQIK*G9Gz(peecv9% zJ3su}arlsJ7t&D|{0UMk@a&;B<>ld74pR`40#fs2jdgEDGNg}SI+8jRM|Rg@tQ&lq zQ~I|vU}w@xeq}RwF}#m-!SKR8c26JP_xgOeLv397!cZEo1z?Zd>tW&z_lCKZUx#{Vws5pBTmZ>eUe$r>p(oQ z#MuV-9yD%lm?auweWMgx;Re%t$iT=Ei!>YJc~kfNf*rR(W1;Tyy_5{VIeAV?xEB{Y}_(Z3;lPP7x3Ab(w_ zy^VUHV9oxPgiIqYHVF^n@`SmBCA3xfnc0yGO9!qYPSFe&X zp2QuJKnFZ6!pP`!nV(Pzw}tgd_l;GYQMk~#KZ@3prwK;r>seS(B8ifOtjdoA5RWQ@ zraUM$g*ysvuh(!Ajz^)Z(C1O}Q%1qX9DBFf;v>S7cAkGGlSyf{hYHbQByWml_3G6$ z7_d_a@CR>wgPAPAY8cZ!*N|Wnqk}g`g5lM0lSS&lmAuU#b-0TPn9XQlp)2h-FNiSJ49ol`cbAyAm3 zJC!C&_+pYq8FVzHTScNQ4Gr>OoJ?jzN}j=tQ~#VDCM_Z>xgH5r&Qwi5o&g<_ZtO~}f_6!GgDB7tmc@j!C5R7_upd~$Z znJ3M}AOp~&;={eHI`f&K^~_gB+f5zq-z?0}n6NT#e|G6^;m3N7tfYF{va-hf2q42? z&J#OSVg`zY7!O>|Sl(w1lz*7c*e&b4J)rE>299yP;fOhcz$H&4??IymUmWzO*n0K=AEJ9S=zP4GQMj*?q&}?K z$ZJVNqQAfmJ(GRS7_zG)I2O!Le&~{;{HBCNIIk@uvnL;);uO^=m+SUD%+sB#tP7vw z@e7l6U;7stnX>lwq2mRd3=FB7^w1n|AZSW&VQyyb*WgP8@P&{t3Cws3K8yw+J6Y$3Odww-{vx#SKK}l^Vq#*=Q#;7D z40>tSN-I=gHnPLY(`&l-iB(U|>R|N>cJ5^e=gaEfAOBGR8C{p%v#JN$Ns3;(&Ha zBrhK-=a;!-wAdLk;$6D~Prw)QGO)RWh`quFLkt`v9S8W|XfO?sh8Lk$AdT-K^z7FB zEb`vDSJaqi-uK&ahh2X}&MKnheHE?vjOss)U%S5Q=P-RjbtK{Va|hBH-h4fNC_0PB zCXk1VD^6jZFSgA(_00jeg~QTrwzpRkaq1w>LuV=W@LCkQ4C2!09) zd5cEE`16bVUal->u=Ni}fZPh+mfME9(*VVqx8Jg~we7{pfJy(KgzUg0$AUSi+aV;y z|66MIk?8Q7CTuHd(9qfX^XL=d5f9ILR@OKPDkF(IXuE&pi6`CK{4=VCw3_aYokc5X zU}-{B(Y{5WPXtpaVf-<)#hkHlj?FI(uf!=SZep5cPk3_VfN94DS#4Akd)(2FFON zy93u_blw?ua@421s{@=uVnrv9f(?G;Phdg;h_$^<*C2eu`BjWuTuR_VVAhplM_tm~ zK}y6H1ZP?b4hpPKLYKpO+$JT}))sBxmvR5948|mYf_*VkZ<1sp_mi>g1gcGpk1nII zBM4zzXUo37-#^oOwBD6EBhliqh=}UVeCsV#ez)k~Gv;W6ZLF zshI%+K7dt}wMAdXJEi_bpfl0~b)AtoL&~KTSl&rSn2}U-@)4xO?o~+W76_Lq0TX~E zDCWs#V>90J7Kp0EwQpwzz9Pai1*Hn2O^|C8v1Qw$ALR*A{3X!Y_jt)2YH2%=FiHbl zR~dmIk|*rO(<*P@RK++3B_3jE3S3=#s~(0={aN3|2&Q2FTzy}}d&#nu-R8m)GF0{x z?&ALC<|0Jpfsg-FQo)}G;6FziSS=%WpkSe?O}9H9@Vzq1TqkcZFgMFaWD7VK zdpa889gIYY3mZYpAe|Z7q8Ce7{Fj6TJ1gt_IYI29-mvR}^~WY8;^I94vaUr;3kfd7 z$we&jA(UZ{3_i>74G+sJRRL5|beNe2)Z+bs#N!WS6~Y-@Aeb@xBmeOf4f#`8<737^ zo)A2{a-OuzJJ6vLNc~a@PwV)9oAA`G8ySV_1)U@je?YwjQ6zE6!L9m|7A|Qgh!Ys8 zF~K-sLeV)q&H0R5OwcG4&r#rj!&W#F=;zWO0Q%42&<-C*^pXr-Cs{2~{PsCW(y0?@ z&pP6Lhx0ECa2`tce*g9lbLChhL@$XgZggy{3z+H~#JS^$%ZI}arU_LbTVQlWLeObo zX&VUCAK~d{1O&uC=?5H(jE;Q>zL{tuA=0S5$PfVMw~<6F3D`li2gwsNVU?rHgY%#_ zsaeqy97MPnc|lxLDAIPqn%dNQ0f@Z}5$a=ckO>41++G+Nuh0Q(k~`hy2R~e2Qbv)5 zOR5EjaYNvkcY=fS8CV$uUr^VjXAQmw@};pK_f4lOMeIL}KsUS#dK#cZrw{e^^{tZ8 z(a|y4;N0_pSqthA!gwK-gku$mS@x)G%{J5#OA`=n+OC}j8YqB_SsESq;E;X=Yx-=S zqfMLR;BGirP{=5b29L@I1dd%wH@Pq{g9pP1KoPJ=Y0-SrSfGW7MBUegC}ljb@n8t! zLUoYy9EB{&Q5N5lfah0>@EV?+*-N*rA!)ulSc!PdV@KNr1+XlBf~@(;W)XAOZy&dU z234~?5~m)CIEqa|-_q#Y-_$2`;W-nHQB_1VE;9+W!NbxJdmS?l{5a^h#sOgM)h+U< z%Z8E&S@Nd=m%-xiqSzurL3BQ;%>VLko3`dLgRd@va)h7oov}B(`6TSCc#klSAHa0dv3lFc)#iyp8WAQuY zdE_v?cTAT-YU9FBM(N5PtNx!q)4JMR8Ey^q_kY66=Zs2l_*-3RZ*9H68w?lCKw3|C z?!fn<0b6K(*mW8y(7egKdz!are5QNUJ}oy?qxGEk9>K`N)*1laqR(&Y2rBGFmUEPL(py zOgjnRq@|h8Kz`gcTie+Dd@0XjU0kO4f&%STt5%(Ss?0UHC%m$$vGLQyM0yJ)vupJA z<4;$PRU%>*4s<A|B9=PPfXk`A5?F$n`?hvQ`7VKcz$_ho(-S6x*j8LF-u!8 z^qiB^Y=g_1pj@q&HT`K~;^OtKt%=T3FFidyeL)xrsWiM>-B;h-yz6B{!ks(o8i#F3 z$!=zLnlm77?x2_M4klV-1We?5u+z9{@5#H~!_P=VKAbm*JR_gop3BIrAip`kV(Cuu zIcn$nGfT*CF5GaVC7++sE%f7tN+tW%q`o-e!_Bi`|Ek~ Oh4RM~k0u?_asMw1ih3ph diff --git a/docs/jupyter_execute/67694fbce6bafe4925e82b99afb5bb70affb77a2ba118edb1a1428e69b3ca423.png b/docs/jupyter_execute/67694fbce6bafe4925e82b99afb5bb70affb77a2ba118edb1a1428e69b3ca423.png deleted file mode 100644 index 01cdd3c9793d75ac9665d4299a69573be72e325a..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 214720 zcmcG$byStz7c~k7h!P@FQc6mLgft=oN-6?U(jnblB1ngnw4l2i^@7_zCJS zwH^2ukF|)R^=mUdYdcL#T_h<@Yja~WYhweg`?k84Rt9FKY)q^yOl%DI-&tFmTk$Y6 zoBZz?OlFq)%z9Kse()}6=FgR^kdUx65f9`v!BhhzWF({)&xGXcI#0Z$JHACE|$lEICa>=&p$0{%Fpj<2r^@-6XHMG&i*PcIh6f~I> zwD)a(`3&vrnShb5!NJ@4GdKa~yqfBDqbSLttZNtfd7)QZ&g$BIn|yy{TNoXs1{Da3-3)T$gK z+R+;{I-^(z?~G0D!>=?5P~cga%P;5ebDE4caxcXR+uL(_X>K*)s}EQ|CnvWIeGNBb zd6Vl?E6Ivc-G}QOB;Vw|udNw32a!nheBt*E45T6_|Ii)JySv>&_9p$b<$n?3e}5wyu^;*b?;! zUh=8C?Biyuln7Ag#~X`FNYH;->Uun-+COtfdpPALxV^nyXfzZQ&8AOUyb;B!Z9g9( zRyrRlLBMTEsg@f#nE58`%NMoejfF_{?)S)7Z(O@Fzqt6rep^e;d0RxyahYn;X_KF+ zV(rIDITd!u>u%p;d{}}rs`JxB!5OEeApFP<`ThsQp@W7^hDD?W2g-%->Qba)pG!;U zJgnGmCR!dVVU`g*XSbVlpsA~?i|9U{b6WV~w4vD@#~lYhR5h==o~2TPSu*C*sl}(H zqpOR28ynlAvAn6NN&btG)Nr{C{r<|J_Efb?V{BOclCiEtA&=I!Htu&S1$tfIOvZ{!RheQQn|13a zxF{q`tErJ97XHPH7hLhu_c)DP`(*^B?%z(6HJfh@@$~k_!N#tGm}>3l;Qeh=b2NKP zx!BmZW8s@_$7kn@<0aJW!R%%u^A3L6c-n#i&s%rZqF{6 z6ql4l|N8YSVtJBMQ{NaAh-Bh_Cy7dI9CYYjwkvqP zheN_^+qhu)s>aoYS~ALfxEKjSkB({rb;E6Ix-L92vH)&`q8RySstg&a{WNm1*;IGZ zi!e-;q1FAJtp=?Av{w|WO!&RMz1EwP@goKLZw3hA9v?h-U_A2UBjWH(Pix%4!Et~s zV38`2b?Ol~Wq4a*OU1);uVhTh(2y>SMn>Rw5sg&Lvz8zdw3|1{A3X~F!teCR=vS7w zO^Qr{bTBFZ4NOdGcJ^@htEfLHDFNMQK%gmfRaN$05wj@rOzXkN=6*}Njfc(saeis3z-+2oTzzC@M1I8u&SB-n$?CXe2jjTw>H68xT(GL+ zax&t?LjLlo*eLg3&8Y~=t+|M~JX;c!@180&z!CPwOm@4x;5(iVgJbQ5PAE&eOh-%m z^-ZptWDL7+W=^>uA|;tllw0)hA8u{BT~>ViVi1FVkKM-?hsJUt;?2&mc5uGY5R+&C z!K;OGh|Aeof97Tu^e@gkFHo>ZJJVi$KiVHszuaRh-|Lg0Wnh?Zqe+Tg^mf=G#s9yCYW;|QLKp14n2ru5WNbdIdi#e?ha1=LQ&TU>B(OOjnZKv=T_X!5Wb=ZZ zh?=Z&+Fi-awVZM}d{tsPK}W`ObnbexzbdAxO5DS@i=LjI&bRkd81aZ$se=1OBq%Xb z2Tz(W_TOgtIc!!2#P>;Ek2Jlo$bu$JmqNryXJ)*~sA*}_`-m4{MIM8H9s$zvL<3xp>;MxaU{I}NF%#~YL^4y~K8+~yc;A7Db5a<>j zq-xd0!FM$6QD`>x1z*kH9SYF)e3%TW^+Q`_<$DcY7;|U4Jxj2Fl#d@r?)C^KUYA*YO-wjjY zctXS`_VrZw_z=6(l9SU^S$w79S!A3g;uOs!FD(BHi0 zScMDu*tKlgoU8N4j~{+N=I3>ASW+dUWnXNf0Ey{f8wAU-v1qaeXfnBQq3_?V*)_E~npKj&IS)f2Hn3P&0i0E<7w@OHAda!`W!}?t@ zx>xipEiIE*krsuq_~o|G;h#EJ7Jv7Crys1?s=w9s`}c3Z%}53%tt*QrB@+tildT~X znT3R;q^6VB{Zfm)JX?+?6XiwU)@rTddF@O^l=SpcmaTcZ#>{HY({e-N<4t~L$ak#u zes2-Vt+L;q75+j*N~*S8#1{pnJ?bhdCZBOUHic-^dxs9j61ni}SCFlyYu!^CW>^Y- z{Ge->K;*>LZTrs8j4ClMCwu7+#|jO?4DuB_Z!uT?+&evwSV6sl+|Mor3G!!vj}J?3 z)xoHE3*-zVFK_QRw3pwn3Q}md1ZB&)PM=%BCcU9kuXZj&iyBh3l1kn|98zkHZm8z) z0gTQ%m}}(1yW+U}uSu4SnV3#hSA9E!Wc&zu_jI#H(73WDG9p5Lf#30ov~&Ie@VCg1fKgu*F{E zl5hIsE&LyF%mrP}8w@5Zx%nOU(vAc;IX_cN#hfjFokhKN1v#g5_U6vcjyUgpt8~z3@wVLF5R)@D1ShqM`i5k z>dKaz%+qY}d$#nxIgse;=~75bOG|-4Kea-RszYnjmq%=D?&tm-RFsr*XAj(-gi%Y; zxzxCv+9KWKFqBKqh9x7mP}@g#t2}INeXeoI@AdIxKKz;iPa=rd&Tizcl&GUz)3YJFOIm zY5}*_|3g;-a&61jOhaatmubFY24C=0%^S=kh)esm{1%7=hvc%}8n*=Ed5%JgUHO-q^aTWg8Xl z0-pcJufpCtKZUXKVaYtIQLz@EkdxiJ=O{UggUvnor+i|N7>cY5N5r}*-dODcY#HZr zFf#726pza9djFVbGH8JxAZGI3?_Li;vT;fUdaQ7kzPO$kAj~+JW|UL5n3ltBHp$0S zI(^0QV6AO6w?_Ku(<`^7=|UbTwHG=&&o`^IXKGJ%`%|RY0l9tSqoDAp ztgNKV>>9f3-}DsNnNp=aD`_yQcf%`-wOTpf1{0A31c%Xw4UsRthl3p=+)r!<{Kv4u zZZoGa@QsiVG7hz5BK#HHssO|>L_B%1Gg`j8r=z1`X&0GAqZY|ofXu9NTeQidW=dVx z)Djj0p09g$v<)!qO*jy{*dn7L(gG*mPv+GS6A|r~1i@3Axpz_5WDWq8W*Sr2@HwAt zw~RZkW~*8>;qqOc?YgB0a$7BK{r(;t8X8)U`$pAbxZF*ZQIL|-(+h)$bZ^qF#<18R zrt)MZb9mjhn`f0l!_6#Lli=w5!p{*t=p5vyw1MvFI*)us2E<8|S2z{;$>t0MDA`fK0IZTUJ(900K!st_q8a zvTx)>U~ed<7F@*R7A+)$ggKCXMEHSur+!-QPc3jgKcQOyXno$X8-$etL8}U&fyufi%rH9@@bC9!j#|BBshlx1n;YIvJ(v^m6Ddm%&pwH$*5d-B;j<2OcJm>zPd9j zbM+B9U|;Kv@n{Id{BMy5Png{_H6H*FMdYwO%rXV2!}+%CzrvBow{t zCC@2eq5JmzJNIf)F4ovpw5HNlm>2xDT<3 zL}rzBkTDIWs`(?|+7jmH=dTUtd!)Zk?E{SVeNtf6e6-L2k)Q2P*Gt+uI=%yRXHYKm z*`8}*v)|HiJlt^U%&~b0=TQeZDDG)*PdsmlR(>Hc{5N~$>Tc)zl>pAh0WcYlmxds! zQ`{-w^*07~%YDfR4)Emu6R3Co_{@6k;j|!+0C>&pT*Ai=X-KQX9fTZ1z&&oOb!IA& zBW!}RcYZh(`~G-2HG#BnV#OptCeC9 z^EyS6HI~Cjk0)Nb04nApP)@xd0@hg>Gn#`_#w=I2;F_t?%+k`~%H@>UPDnv)l$4Fc zeD--|nhhv8ED4S)v_Iz&NY;I&Z)NMWBmR&wRH~QCYW8sr> zKxA%<=dQvAbt2#}H%^e}Dy1Y2m ztFT>{Ozk%i6%~yEV)+Pi=iBsd&`!({!K`O*U%G5r)`@~~FABI1J8b1p!{ks%G0y4S zX$!#Y)%_Sa)p^mOp<1KswrsStZIw%3oajs%^kckT1KsJy`p%;nt1y2LW)3}2KNU0; z`y3LY35!@C;OF-!UOIII0@@0Y7i!gkJ9BK8o~VdObUcsEqs_9VFXCfge0^FIw4)YT zm5YR*J)6H;Im=Lp8F_Z|Bg)FXwMInd~KP@y2nw<8oB2E1EP zC9~Xp;J5QSDclHM&uy!dttU^X?GA)(V3(fu$=_g4ur%f_N`F`o{v>- zyWYMwQs4kI1DNtRAgEAPydaWuQ-lE*goJ%s{6Csu7x3jjSGp*oD*m}LdS3{(@ZP?W z=X7ZLR9Ki5{d-Eoe@_bOe{T?T7Y{EqD$1wH@|$M9BOjh5mmokN*Gqt}0Tf_y4ScWd@|(>F>b;TE99+?&9NO6TR_& zAk3usGf}8?Vj~7q#?VJICPk@V=!^sw79^>#gajEyMMWuZia)PUO@}j)aJo^Ju%m?) zqQ@ZZ?|-MjhwlJ8fuQBccWxOnvXnP%OKb1^x0Sz}a2yLFRIS^E4Jw+uPK;-9v#Es~ zG5rDV55q$(FI9HWbhebf4EfA^0dj^P{zcLmhKPs=pZ%rqz|PQD-C@FrP}BDsDi8HN z_ZuVicebLujUI}pzxWqn7hbflQ$8hx$;^EcKGYdQC!+06Ib&Hu1#K-z+uD-+sWsKKhLq}BV|b0_u0?#!o7t;8ob2yjEd&Y zKP}u%SWAmM`7`+yz3IIDn=Z#ucwtam=k7+wJuJ*9`?H6wn^7rkfMh$vXzQCQva_8I`l7>MV`i+sKL|0X@_S$V z&SaxX%f%q=clL3OL4v}cADz$^tz_I%LTWr`fCWT|f)tM<-kUdX0>`C+Pmq_Fk-z}* zFpJ)?$b>OjgAl<%z3io<70%1CwZhn&OO2%g^c4r__RS3qx6Do2%(}f;4v21WN^i(%KiJW3Lvb$ z>-~nyr0=3!REhL{XGcrV?GW82%uzN~S|6!$@=lh5M^sdlpH)Zu&8WkE3BJSe*8!yb zCyDEzfc>yumW4O)@%2Su9r02bA+a$3l|ckCzz*qe2aF_SYKn}pa+vn8qisa={xnUo zg1_IR%t7~_rOd+f$PQdlMa8#(bgfzsCQKhsl-tZfO-lh}Ctfb{?-tcu&-dRveL8#N zreD^>-Qx~qoQkfuuk`ZQ)bDhx?kn(2nOeP8Rkc*rig@kuFG{k3_A_`D$wqe&-XsVQ z*Sq{$T(`Nj7?bkCz<|@jq9}t`lKbPs|Bhlvzc^@|O;k!p&I`D@y}kPuWlu*c^p!-S z4NzF5aANmMDEXPq@Troc5#+9gLyx=cZzhG02p~3J`RdyEzDlS`zG8ahct}7e?)`1fxMIP9(Y?o}&o?Klj3{lnx&QZaageIY_WB+ePd@Tqi!;Gpz#!VA z%u&$(m7O4|JPPrBIBQ$6ecV1=Zi2jvUn%w6r|oE)4Bi*Z#r^V)va-0SC<+x-43=wo zzpd7PnQWAnk#WI~K4;#0a|s)FFp8&WY{uH_rCedK&8q%O#c7zL$aqnnp8WdcZx74}f|=q62_hXfpP>%xY-|8YY0U?| zy|uF!DF#1uJMbU@02)RV--sZ6J-tUdt;t!cWnO7%&5bP_4O;nOktP0Bg!JY-n&YL1 z!=)A!hZBdl1Bv!&%1piK_{Vtd7W0N0;c` z)P;C`{p^MLc*l>01X+b*IFaJ-p1)Qu=Gy$Uo~b4JD zLuxM3pvaKQR{&6*&djZT!0U92l@$YYm+**)SF*AndX`W%`cusElqL!d_|fxb4 z`{Ci;Peo?@XlUt**_hBx-9F{F=My<{SvWdZyMl~`hPIA&%^Av}KapwaS4UFMxV-9CUjP^RZekR?UuPb)Iu5kWr# z*QylDnLs0kS~q#5vBgecWwoPC1|c6H5?0?$Ow4AM+Sh8%jpbicx9@YVUAIpKE$gqTe<;Fln zOsv1yMCD*Z*<#o+h48*n58cT=?^0T>X3Xi~HfI`7_=Hwb$ao@~(;*WL4b6HjVZ;g| z#o10gE;OA81>KHxe}7><6~Qgwl2(Q!+Qsp`tz)vYy0cLD*I3#98@>gEim{WHi%miz z_3YU-?$ct@J$nyoeOdZ^wAEiy4;W3Tb#=KRT-w`jJ|E)?KE5>xoVE*wtv- zx;mhTK3)BlU1oTMTY0v^%l>YZsA57sy}C&&*`!4?ONBeIi)b-Vzvs?p#uANuf@{~y zN}+v4z@~?ehK4q1d1*O|uq7Za8jgyI?ox}n(z$NlV`#(cjWu&$^QK0k{&-wr&TTSo zv$Q^LGxQb-bS*aB_PfB0Js~BD_~RjDT%fSjGG97}^%Fo)WIsd3k;IAZdYbu}(VQDy zf#Jl5lf+wIy!xs;QZ(W6+C&v*=Ae-5c~DeJLf@>h->t))ewmt2VPW4JPucaNP^lT> zlKyW5mKTF5_GkSKe}X;Y7@Ca|(Dec_S0P*30^A6&@PSjCOX;a!W&APaw?{Cv2640Xw*BRvky zc`y$~`RfuP{kV;nNaFrhN)>BHwr1+0=bxAQ7>e8mcdsJtdhIrj!K$#;1n@8_s;SaV-EG7JxZ-4 zWYc3=Zn*4Cnh;?(bg&ia!h+N0UuwbY|iqC2k*#=r5}ddHHe422chaS$nV zQ8Vk~n^dRD;H0!j4bk{+gg=HG6Lt{b5IOU-obC<05oH>g2i5rohX~D?W@%ghR&J+bL zmEu&!`^g49bXAih(XnWj6^e!LutB>4zWG7G<>Xy_M!)C3>@yRc(uPp!!esb`HD94U zm?>gqP!PYFim19)y(0KK^|yKeEp&pq>Hsazqn(aiTKYrCj!jKeS*q;OdM2o{6>6vA zCcLT-JiTc0%ns@5wTZM81E5!Etl~w_<(21CZqMIT8sF`wEhJ>RvwMr>D)Q_~QfPE_ z_*y_$BQ<+Y+H2*wjzx|stperJ8LwDY^jp-(^-qNfIM*H_6h^A)RIY!ux*nvXCHphq zR9}gW=l-Vr7G;Mt8LkPD{Jfvpjtg?ZSb>ElaD*hxOeFd${e{+dfkvvLM#G}8Y8U=x z6}$qinbf5>X&NDFD)vQ9(t3dLf{O)Fc^-VcO)_A5q?Ndud#GMRe3r|iN~PW z`bOPFNms2bj^|&EMKgi^1@u|i1`MpJF_ibxtvd}1UZ=XEKCPbxTI7UYy+xiUVj((( zJxsFU=jhwUXz`KihuP50;;hRrd99t1lBZ zr?>CU9Y)Mpa&O!7fe%GHp8)a&G)dap+LE)l@Y$xnvj}=*@e{R8lmvDe)ifB|^p=h7 zKNGzu_AUVm^_{xPSH`$I_tw->PQ}J7Se&vZQE53u{}HI4&B0{Bnl@p5Swjz2pEV9N z%>+>!O<_7>lvm5bu{P%c&xse0No$9s_Ur1tF?}%yld**k0YIH!UhQ1lu_f%?{JK2Uz|J4KNhU(vr_&J+6W__+!yGg-L zcRiJNHnBxmSQzaV1_ft2M%igGtJ!GS8J`t{gsZd1eIv}=s*^{8muEQsc->10kJTkM znWVTX^d%65i{(7YEH-#>v2o^R(*}Co%*{GIyH{!(59qBP6D~^-2sjh04rOZ&wl9o3 zc1V?uYYx0HbQ&%-qA6;a!`K>pqki5*LrKH4|DSr-ik4lPMxd{=g}v%frR&)|P{)3? zwk~Whar%B}Xl%YwcI;PSru$S>AMqHKf0mf38*>uf!e^QXYl+73P6V`pV>nIfK?HsN z^7-ARPu)@^)z)F-BP+os zEI)=sMA(GOh)U!As|22SI7GsFuHD$H(J3!#H~F=CN_*aTO_=I~m;#Xf%1cGX)}o=e zEm_f1v*u!Vu={T}utafcGnH{Kvu~PTSIA7j=tvDMa=NbhigwtTN!-8SA#Ho@qPb=X zfg(c<1|23~qgBQxb}94*E;+6!cO*44TA>=1LMds+d;i<72a&3h-Cv6A`IEh~^`l&G z{@}dg-tcRz!iDP9tB}HXy;qPDdRkgveUCa{SB*)*OtzYG>&u#OU^n6Y6xFy``r(^} z7$x?dK_52eQg7<@6Ky-?8&OT3B2B&3OEqXk?Xn`{sbkIFAkEq|1da(?OT z#JF~4VQ*vNw1@vT_wqmTjx!3qXY-2nER`K9_xG2HHnt|mxNI+jt~2v;b_wdJBsZ1m zY^b)&H{{kXSR%7nElPru5LMZ_G@x{}i+*3)i9eZZVumZO?i62fSGbCLg8Tc>JDzwO zev=A}?+WXB!^BL)-5NW)yY$`bzp{xy=Abs2vpX#z=e<$W)9|^FjEka(A3Aa8w`9bm zQU1?1;p4Zcm{m(#bc=qzI1-4i7}7>LI5fmxT-WTH?Rl=UO?6p1qkLgAmTj!g7MpG4 zR=cz-SEw07T^6mPbTM~2kQrMm^>{+gV(t8}1^ZseGwW;=`5Y6w((Q13O^BUgsFK|8 z0$daD%^c7)H8pX;N&uFWp1IwPxuGVUhYyEUmgCMUtzF-;llmw7fM`R}McAzj_`=^^JXyW0`=&m5pNo>Tg8y1@>ifP>$(2C~up^}Y z1b5@;x3a;u|b*@;lMOsY*?+JFX3wS6dJB{YQ^JAQrBmo99-n z)cIGM@88=*BL1cdgY35za(Fiy$?_b^v=P@BZryNE^LT;|^#^u*b_yCA0OeXy5+nW6$%& z0Yk9IIb_{PK!56h%%b$^LuSTW^zi;neJt<^h)_*fKL0B%hx980=!mbdZZLb+Tin5t z#VM9N=l(un&_DHMXo>HTn$t&!;#V(UJ^{K1#$!^c820q9t;y5|X@8~KS4Yr4Bd~3X z2zN4}q_n%w`4vQ+2Q*f{8G=MutM!%o5^KU3 z*XN4af^kF|6F5tCy}dF@bNa$&>e4zsL)X3ACHEn%?T>E zPcqR-`ASDOUtjQHaQx9rvAIz!t*oNi4eo5#Tq5(@tzWsHE=>Y)+Xj7kA=oNFf7%Eg zX@&2bcprua0bWcIZ*bGGll^vbWCrCV!tV@^M;Q0wg{#7u2=FADSQB!|j1*kDiiReh z0OPK5I?S0Q`fRAlZ5dI6=zk-+=1ECO)3y}`KNFF$`1fu@-&3{F6U}9F zDu6yGwRD^(Jr{^F;ljnb1b8b0n~hk4ox1R+aTm(U%D{r)Kaf5a5soqeK3pWu*sxzF zO!W)W^I$<)q9n_69?d8w-P~Ut!ntwHel@$~-EiImz}AbSM!CtQrBR?B;SEo5xPem{ zQF8%?L9QZ5lIM1;CLQKT)f?2Du3)j4;xUV6+8Xooy#A_BacQ)%q}B0 zUKvUkQB9to?0;9UamAe)0=G2=5hucFDn~g9%IgC-0nkk%^KKCG$74je(_mLC|6=|0 zd1wp+V{6f{@wyW`9^(1)9bfXt&I=3HDarWeR_q2s(7_Zk_hm|=dbRsz0J30^+C7R3tu9 zED(F_tJGK?aAhDzN3WWf@?E=falSEG%S)QW4=dY5E?HMQEt318Jjs*D~zB)6d3JghLo?wK-pLP{2-xzz_KHmkpMA%FnxK{~4iI}92IMt0u@*f49$F;onu z=3>PCzePt4$7`~`vp^nOH~qzY5js5D^^kT~R!uEPQ}K{y*h}c8+#{!Are+0Y(UXG( z%4A~aT+@V}h7A*c0>0nQTH4z5?T}(+Ui7k`31BJ2&Lu8gnO{owSk4R;Y-^iI!+%o& z-Dg(xxjc1vTCTOUqazPQnRe@^2MBAg8~rr!F7LCmGrwFYkQdnp{~e7+PP+|NPO}kF z*aSoJgL^?G)i1-$tqal<4`S)8bu_%eE%-GlOYPj18|Ny}P@ouT-`rT+jK7 zn))j@q_XYh#7nGXYyK(PIf9G7fa|gR83F{K!$sR5? z0mdjh~-MER_Y+B-u46RvkA85rOuLWs{OZ>>BocPjr#nLYKtHr9- z4Sye+bRqmJ$z#itRab$5-6GBP2G_-IZY=5ij}9gZ9-foLZTPvBj-KAm`5}%^fa!Cs zbz3gty1V$B6fQ$|#Qkio#!O0x^RLQDs}3Gmynr}`$pUI1yL>Q#0#h#X#JoRa`HhEJ z5JvZ$>JvjK?@S80YF%I~Z-g`T@~!5dMrrE{g!SvlMR#6*lbo+yI%1CZac9d0`d3?z z4d5ojS@QjHp7WeZW@@cnCF6b*gioK#xiD~FhgT?mAg86L2MH)(%V+ESMd_H-3ky~O z8QSEgk>Sg{mD1G0_Za>Hjmwx{rP~RS8V3#PPN*{NciL#u0I(%g*T8&?z{Qc9Gq^v% zz2ubj_MA4wKr5dBcFW%=m!tz6Hdf&>Qqq)zpY0LWJV-atc29eqx`Wl?&W$xQGlOtt zLi5-c_7+B@?6>Mriz1@_fER-dK)WEn<(W+hjGI12tPP~76gA7Ywpr)C3j9o&meS1! zgU^OcCGJnRu+%Qt%BO3`P(SDm1Z)}fMSn{4xgx{y2ydIXx{#vWBZXL!gw%kuO6ROz z&NW-2kXIpVBSjx8v!pzqQRSNri6iYCnmn*Oycd^qyZblC%?h>~!-6g2>?1X^$FF{j zts@485K|a1Metfq?wPeUJ1Z-z*u>{J`wYfyQf|xngnKu8!B_?2(wn!Me_%rEi$nkk zEu>BXzF`7MiFpLE6Gd*xX1Dg%o$x4f?sZcH^VfZjm?(m=2!clJKBWUcK;ld zB+-b^pP`#8teE$X77e4Kw^9f-PDt~}MeUJo*1WfamD0}Yotz3i_RZ?YL0R$izL`U$ zcJJ7~^gTVRwruw+u&8*8I>CvaSeSG-A@y1VOCI;Zp%2aDb!pRIoScl8o~7j^z7pb1 z8#hvtlA=P-*4Lh&qTTv9ZabD;x!=vj6K8Xa=?#HGY?b&a0P_G6iPG60{xA@fVW}!@ z_LoB@iSmQ3mqD>GT!CKkJX%(p zv)c8QVd zVe5+?(g_$^@;E zq5q0LnJ7@1tTJ$)-c@HcBiCTa=-Rf8iahtmp+l>rx|npc-hr`F?YxZOSC|jNZHZ)7 z@1_#=3RQn8ZT<8XQso!fc8OhD+V*gFenEXw={SQ zgr!Xdiim8vjH|YybmHn*oni8&_M)lv+qZA#Jn>-R4S>lUpDGnst-%j658HdvxN-}* zf&)8J3tZOa)}--^RtmY^ohrn7KrT@6Dj%hY5kNFfo1zY8j;QlX3_W8?ab#jR|&n`CrIk5T}Dv(1;8Z< z0&@N1DanOMM*kZ(1M4@;Un|5(JbOk!;e|CfCzJB2$_^*rR|<1fRLKDO)Rt*U9cGa* zy}$S6hlbuUJsqkUsbq{#Az`LuDkHH?CGyw&6c*Baz+qLY@$=)^W(`>%7(Lf)d7;to zJ?^9`&HOLKn!%o`5#tJrxrTYDxr$Or1p_*7=sEyT1o3XngD<=epT)ei-l7}>N~N#g zjoAaY$+p19lRjhX)Q=wro7G(2*>OYjxjzOL5_RpQhq*5Bv%{`BcKgO`wp7e?vgN-sJQXTbFIG@VKNvhd#) zK~ghRkiK#omDzjy56TQmgn!X9wayMHF|#e!owjy$>4KXAoCD)!yTg$xPb~`sCG>jKnPs+IXb_bli0qwrnq(&f2{#RfBI0Cp3_T4 z;5Z6Kv07e%pThrhw#74!?-r-X@>=xt^c2j@2|vCW|GGRAz<^eVz4hBicG(YTv`I{q zi!^rTWqbkyb-}d4pjvu6xJ4MOiN9gsGGfw(o10jQDdTT5&u{?a@px@GvtHjt7LhrM z{CVso`ZYyXvpZ!@Lz)F6`P{28dd#X)1j8D`chcQ?2~W8z;la4u;So&OqJ+x?txvCM8-xr_%xSzuVXj|9B& znk0_hbGe9Ne}BI^mONh7_wEfO?k%rnE%?~^f*McWDpkI_*=w7*oF+j{-}ZB5ME)HFQJ79)*^kXFJ1AdOD%_&rB3T%UKwX~)aQgQjoJ4vuCHFfc8A zWevWKJ@uh^9aTZ;s8i3bH*4-=R+LJs2UZ{=qd}({Tre!?9y_6D;%y~UWQmoP#F<@a zYi1oP3eP{$r+o|RQE6V}u=4RScvfH=c?Xx|wFLuZ7GBp_yo{Xj%>?Hi+PCG_dN92> zxaFCgvOIV9Ps&TT0Mag*z!|Yw9pAJ+q*_;7t#5wZw6t@ek~?Qv@!W814#5b*qaSkgOJD?p2w=OEai+t@0YR%yh52J6^ zV0g)-t9O_)bsq5t$G=T}PZ(tf|I>F^EL>ec`i$4Fi?DC}s+N5lJ0ViL2?rE-o`+^# zo+2AugU@d-uD6;R#N@juD@oQG`?J1TN(Elf zu)9cKqN2h2pZcGflyt5Cns>pDttx9#EOaM_ORT_!tVs~%-p=0)D2tY{T?gjU5fc%U z%Yt-FbkuD0{vYbEwDW^&!^1(4F;P2}2@G>F5Og7nfvW}1-MmR=7q~S&{#|-kac=%7 zDX^FkyQ`DZo6&zei_=M@;>!-Xs?e)zX98?XU&hB2=BTZpyVmKNtm9yG8@pRycSF*h4Da55Rk(0 zbmthE>o(4^-&CgM`Fxut&r(2Dh`nm2gzc(M$S8}doj-asySfY<9>DJ991wE7mBQTN zVoQ|n>F0j8c4?Vf$tn4Q2Gl5gea%#9T{FAfhhATcD!u%PbLj+b3iO7bu2ZQG|96|2 zFi|#;6JMJn<)1-pG+=t4(>u(jCV;|d$?|N{5+tS+gV3tSfx3c~sFTE#uB%d63iRNv zKx6Wb*z5AAABExO(=gLmoY;wvnu@LC7xW65@lb~cq+cZ4L}ni8)@i}8ixI*~8>)_P zvHA8=>nQmuf$PZiXChwM_wEVX%gII%cr<8@l-OY?WcoH({3hMpGm-Gk#FdEUG{IC7 zlUDmDo8o-#(wi$c%ANV@O-AD+L;vm0y;tCgdGP}6izOEAI+Nb%3SkoC@!i-4DLF}U zH5oKl8EnRw$8$~iQ#2eLxbLH)2)wXrKG;phK6$4@-isFakdd~oHf>me!EV#>!1y9M zJcU1RuCy%8iTW6T_NagpDLe)QLOj-cG zzW|#;?2*Yy$+H1d2}Nfs)w)*%UP6bNIe^-+*jVA8?or2zdllXB0`pLzkLNk%&D3K z0?-A{wuE6Ho&lZXtcYiN%fsq8@X&UBw5jTl|B2*N-h1r4ICd|uAt3h-#rdWiXpAiA-(~wYEz1aYx4w5?+7d!1JzsGx z98Vv6E5aPm418xpF8#8=$MlxJHXVELV;33^-V@VdBiCAyRR|3pG^C-+5oo%ul=XJ+ z`hxDq(x+N^qi+?jo_fdHt@lNPYT*yEHJu4KQBM!_^Kxs&3l8w7F@1UFFD5HWnDzUA z(5kvkZ~&N|v*uZbh7(KyXR-5Dg4_wSX+QLPNa4%?_cpid`W!c|V(wl!-V{u(fE?j?2vB}SY44ZT)il?i)9`{aQYNgNC z&zF9dB?Y=8a(CwHqq((tz?>yN>N4{Y-+nJ&|99UdCg4M%T$q@P5M|bKRo6>fIYt`B{E-CKMX3*z)A8+-7J%bBMR%W&K-r!JQ zk_E*tvvEo1h8*^dNwhcS*N|%xI^&HL3(rtd(D@QTuXCUR9)p5sjn)m=mm(uZ`L?uB(=i*ScB&q0kWkGd;#$hkNMX3-zJ+hS>x!DOVJ>vt; ze6;Lx4F2C|X8q{Xw9F66O;yHcmSi9M)%D$>TK(ubL{6E(gg{Keg4>iz+zWBNhj^+RQ;R6xVuKITg=l^; z9*3%!Rt3Uza6e4!3Z4hdHzt2w{L^T(theHcA9ood(b-gO{>32(_AM^ex^VnWG67Sq z+1&`78}{IEn>lo_e4)vS=Px8F*@>Nt_^u7aj2~in5ZX(1?B=DIRb7!K&X)&T-HFey zxYs^dMdtFLP%1GcA$n|@BC^zh_$CqpyjxwesG3$H+tA`5V^!nk{$HE>bIY9OO#Mga z!wEa+^IIOiz0^Ex-c;f`zux)e{cNQ*s5lKO3X-*Nq~AS%xRKai)xB)s@9XQE0yA4; zHtS%;X2A34t6vlTl|LGXbky#br;L@L=Fs8a*4a+ZP)_<_M*fYWAb202KVNR$TV`wR z?BvUc0w2}?mI3kA8DNiC@Yu#_>+B@gh*4xf!5|t~YIakVfdM^r*L{p@&TEPs5uf=* z!8#f^VVXN2t@g|IQ8Cl(!I)|Df+fkUA*x+7q5h|Ex!65Me}pXiF1}THKTmmmZLG-e zcd1p|WR>sEkEh1A_#qawxGLchk#}E46@C1q@%Za2RI}AX$g)2Mm-Lsq;|DV2SJP%c z;{^Y6L48Fa*Q0uW#WF{J*!|wcEPsnq;fIW!)chu_xz!hV9^GWEi-m#kjXFVf_-c}) z-(FC1tc$2x(u3nmm+E+JwD1#utm{|(!*0aPsThejz=2VtoW(lU;E=Z^9KG8ZnFC;~ z%2FUAjCG?nJ2b5P66&W7xa{G<(vXvf$C_1sMrgmO{l}47W$+aRN5_%sQLI+vAYg?KY+WAy#ykSiujim>YHs(g z7HgJg6FWK6G5Yw|{3E{qhpo2`%W~Voenk)vkPszBq(QnH3_1mr?(Xguq+3KlN|6vj zx>KaPJ0(Pid&WJ$D}BWCxCX2p-0PJOKwS-|?&ys9T26T>-Z>9x17;yZeb! z$I79n$Dh1h_nk`|xX*VKPwu&Q@16_srSV)KG1}C{wEl_yR6mOxymvhlm;5earP!kD z+I*fmxh;aARKNKqV()Ixdmbul=`y(C(H*XSvBfxRzxC=LcmY|_19HfseEs*NCW6&} zJ9tdo+i|01Jb$E`Ga~o$2au|Wh1}V0Kn4NYnm1l3EB`={QH~pqr%Fv2LC`JJSYIe2 zhp;UfTv9Ga*nww-AOj%+ui#Ks)P0Jy{n31uf_-zQ>~*zgUQ#9cvj9ZzC%d2=%kO)P z0nwWfy5()5H+PzRd&BQD{swvlxRqjy8c!b-zsOfOkP%*>5uYkZzt*!94{=zI;(d5{ z5RV`K?<;Kpc%x;Es5V1k=dVi#p1WQ>-whG5^HAGJr&)korlw zeBGNr*yOs>U^V*|oIA74Ly#5kk)@}neGVig zZseot9QK>G(S@e{D%Qk-#q3POykRLgT(+pdy$}U&u*oyJ3Em+kR9xYNW9vhTQgSzeBknP?u|2RJm?P4{d zl9LlF5Mcrzi*@7oAoC4z`{ynnw+w`wr>$a=B_^wG57g17wRF3O`N{R�S4lM2%Vu zle$SU;SITbS*Rx@8@Qw^+(p&)>2pE!u_kqXw$kzluW)0vd{k&*VbZCMgj3pmrmg=N;|xPj@!lHX+YA;Psvq*`wx4&n+WB^BeH zwMzAZR+=iagRjJ`qhW$e+&4{cuoXX`c#0Mp5%Ia4j}&gPYmAU3509O#5Zyd-HX6@c?`RoW#Ir-U$7%J5sSG^WXKk2*0a?j6Zmy zK^ElywHs4_y1N@klT|)zY_A^=6xG1ORggZ~6I1ge9G^usRiBD@w2tH$6~vaA0q`*vEwEsF;KV z0_q^+<$SHA?M)db-=Aaqxj)2)*K2@woH?~Md{q{>5B+-4iqSD}S?3=8ui9YFlM;0s zzn#-@l)mxW_io{!rdT_7PJQol+i}(KgW=oQ5ubc^l=xE5Lp%fnf0$358Ws>>reAQ4 z7wAfxoBw7HqvPXCDg#`e;)EODgOi3;$%3^5kH>#{^28(Z|I_Nd&C0|S*_GkjZKfjf zb5qw0mwxtp{~agvlW>bU8+skId5IV1&e=||+xg~~(bF>-!YS6ll@7=D9-!V3>^L^l zULs&8L4ZTleD2{~9i%fpP*o<^INb;P%_AP3qonr7+=~Btrtg6n61uLYKi=#KowhDl z&pmZs_hY=xuvM&%Ba$=${d6f~9RN#t$r&QPSt!>*$9(zFW0RQH`!Ba$;{in?Hkm{S zb{Ycgl%M(!!VvQatkGAoTLizhD0q#8C$xpnV)H9|x@7--`?FLuHN!0e`W$}OjG?J- z*+R7T>WDi6nit+b#S7GHARuum{bd3>#pb$r_hK{6TH}DMC0GYCq07G)n*7>4%+g#4 zkkS4c{rRi7TT$nKQu~da>HPeO{0KFj5$6V?t(Wp1!G7@*RN&wH_i7QZ0Ps1uxG3qO zeu}#tQUF<#)wc7{7{$w;3D}Pjj}V+aW!9%8(`g>epYRfjh##hj&1|ccST&Ooj#P3(>XFys>fv$Ek9FwUw;B;rI6oD1SW`+j8@%MB#K0a+^QR)5UR1&U#-yH#9 zFaSd_UB@B<(&wyJq^oUHSi~GF5OYFDIRS>?y4MkZxy4L6?}BH@;_n>y3v7ss<&Q%8 zgrtfL4AUYRK1UkaMz&Qc;F^lrS?m4P-GipYJ5J61qvaN|=l-Eu#y=_(8JSMDJU{oB ze=9-(z#VNAHhhqL=<~Lqm9}-3x`?5w}g?g_CU1p8_jdA6>lY zXX)He5PvY`OW5kpv)8NePyHJzj(-dHmWJc` zRVezFAsA>hmCB2bB8P<)5Rj_vxu?I~aI9-NQRwq>i-3S&e|%;qcCuK|L7Ewu~5}BR35^x6rU?%QT1j z_uemSqrs2Y7ndpVD#8C29P3bPga5nNXm}i2HXvOsVPF)|m#N#pQ|lbBa0*kf7MC(6 zW5dE~30T-cdxX1N=CID&+AhWkHIvcZh*XmQ7NwyV(S4>+cD-Uyw3rG>jbw&HK5qJs z*WHv+Y&MWWro4DdT(%zEG|`YdS&#(W!!mjG|FV^#7Ycwt*?o8aMQlSv@o$0qh#vfr znNDA@UK6Fy2+rp8uCQtfxTFJau`+9Mt*z%Sd<3!~H&H`sDAov9-v{ia9YlR9B$NtJ zH)!}+3Ox9ywBzqO^%hZ95sclr{pr=Q0h$h8Lw$K{w$nVa9gEw=nk%qO#R23J<9X-| z1))5PCBFjuKRaP)>OII97_|#Y8H}UyT%6ta&Bz^gXd37_ayi&dG&%Ug$m#^9-eEwe zAUwhU9%TDyfd8Th3JRKaSes*-tO)-i!0d2K{DtaUMTIjl zbELijWGb7%50u7}B}Oo(-i`^?-~D({^XF^+7r@cThtP5VhS1o*d1XpT>Hqd_A;F0I zuhU$)4}KB>T>?ouD~lR(@Y*93T@G3Q?T%)Bu%4-mTFdZD?@|%@oK=oBf|4@!EH|30 zdi8w@RMLL(A@m)u|NB90;2>Cm~?Ym{QX`@*Y-W} zeZ)~mCT;=4qlz4>m=!;{d&&iPA z?V_>RkAuG-ceoZ@Cr6Uyo7=bJzSY8M{e?k?i>_ZL_+_pbIdAPE&@rIK@#GcU8c0HQ zqq+a@p8{5BYCg&unHpmBVxvn|u`ye5<7X;2bI9>`&ym%?sonrNMP5+1bvU_*4MaM? z^*9e&{g=i8iS1o?A>fmQfCTtN#a{8rf0wsdG&|5_^NQ+aJgyqa-rZY$QMI*rdF#4q z>Ak_rLc+UvlJ+lkAd2ZY*y;tmDiAC#3l@rR=g&p;{rXryo#D0J5Hs{y!V$=XMpZL0 zdpccu+5i2@SBN&IK9eqsrapVbh8xkQ2|}GFy1yVbs=xn2L|d_b*(>?JS&E^}zRoYo zSCD36^Zd)r_dMQw%I02N$sx2%ONVc|W-~8ktIa9yaX8Hz*C`OQzB` zXKHR1<)Y+|J=-OJYjs1>gZ);r1z4U`v-iPrAC+3~y%ayQcuem7vm)tDI}}K(X>JQt zxabegQ{q48{8we899sk>{fBAUUVq(AnbjQ5n-1=F!wLhUVz&cUaC|9PZy7Va|9bgJ zOVvA~$6^^AcgP4fB@o)IdasTIZ{{?=tyzY@X0&i3{T)GrLk%PAm-p&T$X07H05s(; zw;cOZJzMnP11u>1Enp?Q1(ZseviG*q{pD|3`|_>-iPYX>gyA&}l@T_h5`yr35ADZffjJqIa8f!9{#A zPT-#f4Su)@KqX6*(@+nDC{h2^=vIey6L6J|=)vPq{Ph!Uz0@}0wHIF`m<%T2j zmo3|5l`oY-Uw!xeeQ-ejcoql}6PntqgBQhSf*VcVDOI{&*@hwsh_@@w8(M0hR~&*5B&qe?(W~ebpe+)} z=Www`fy9ymozRc2%OY7^JFk??)^dUhE)Ov`qj59wwU+IJeioB%PM0RV4ZvF3sQBa( z)59(w2#H&)h&y#Hw>A|UC;Gi&GH1!&yrCJUb|Hd9J{MQk@DCgQWT;m4DUWAe1ff(l zs}N08NrR;jCkhpI&_%f+^3fujV`U-QNGl2!a)6PQ%5mg;E01lNS zb8xfA#kba6o|V};@xaC*U`$q&`|fn4eYo5~xN^Jq({jyq!S9m(*^2ijPIS0hRmd(W zX@PBq&04yVbG9wZdoNNG6{hzGzRZ0TX0FwK2FDT9l3>t*N+O~S7_3)y(KX?T$M^$Q?icMM)ofR z%{fnO|G3rNjA-ktU5}qEamOCIqg7_ODg$4$rGPaQApEyCXKUj1{B)i@Yv9Dz8rZhS zCti4$-J|*<-?lD1YlcgHSk*_?+}Y=C$}wp?k zKt=HVd+P>6yNd3c0hRDJ!xpl8VS=6V#>Oj8m!-ZgypD{N`{$OF5%?e-vFEIsn3^iT z)Rr^1_WAI);eFECR!Lnz$+XTJI~vATr0?_aFbUR%~u=HaX2WzJqeHlVJyLp)H0^vF|)Z z2=W`c9a`8z?dCDv#3+e3d};Xj)K%0FDuv?h+fz-Q$+-o)p)L*c%5dqtaC0d;w*B$< z{5D2Z%LYU98gmQRWl~O<0a5jw?S(HZxE5kNsly$QU#40CdZ&iIQyue)Bj6b&b}ik> zjz@O{JJxfp2r@G`d{^EbFI@Y`Sv!&z@Ce%PnlNLvJj(HXOmlw3@%!SScqX6r_gFI! z=^+T>G}J~IpQ@Z8Al>zM(}flqO`nT*JDa|PmXc+fos~8CMF|%k=(y4Z1+DJ)e8c%dtsTF>KYw(U*8u2mRz^1(_c^c=yafX& zzq289{}@?qaBOL_nX{=y6SW15Y2CIQOy2#~F!_OSvGRIWdct-NnqYGdVF&@}3M?%@ zxYc54d5y@XysBP+;n-LA;i<(s*)q8xDY;K9|&o!nKPbNXNfkjaD`#|gu zi^KwrPY#ZVY!j1v_X&X{6*;kS3sJ$qCdaYzHUftqP5W!ew;W_#ygXamM9hqV=k8)C z9v&Xeyj57Z0JuWxf*`a&k7asMs|&wVMpMMp_MYgNN0@Bd+vZ_cwQ@B{zPrE9T^ zTQ`Q2hN#ueM68;3{0ly^+S=L`9f&xiUms$|#K=IT$zEzz-dr{BP}n!nh?7iARyJqk zUC$i%kC@iZHVO>@|1Foy5meNeEb&=E4HwpIKrh#kt&4=YC10Wq3eE2f0I*@-EhS`JUl{LYCT+#4+9^c6Za#v zA6;G5#S>-2dw_qkyCYgMf@rVtuO5n&5oUPv$D`)0;ga1KS5m@TT{StmzOF{%OI7GD zs~Z03ivj-qv4zZd&7V~~wjI>SP1$XLO0Q#f1g}BFb4jr6d zg1_*a@m3EF*W=f77NW&&8>}cng%J}f za^KFG2%^ZxPz9!=zIfo^lE{7q{+S!iTr>(24= z!RZZvV!b0URx0))yY~1kQlM&8(ed}H+M(L$ZK#wKzcHEQ3;MV_)9k)W)F4GFJitZ+ zO&Y;JMcnsVS^)hQf3yhJyu7F2gjzjdZOZYeG5`y=goP4I9WU!AdeI2Sm=J-A6oV3h zsS?Y_hnneN>o=QQV*N5>dBfo6Psm_5KmAsW0uV4ug41NuP-)8$sFf8pD9&A(JN~ZN zH=iOC3mzpuZ{NE*-#O?TO)g*O4~MSm6!;YQi6LXDOPQ&8H)A%KjMR4t2wZERm{JJ| zUGRy}C;^fsw;n1!PQ#P?k)+oYB8tQnDXu>(ogndoxEl-d##Zh+X;xXc13fufR!%mN znU0blFo2oyDRGq!6p-OWAf_WpMPK(8_<%1H8QqZ|o*gw8Q|fLpTfgv{bz%L!jL%yL zArS|#l7@O9210rfmKB*uB#f=1j1QbS>z6iz;v!&KB zCXL#AMH7-O^T^dO=t5dv{@Y2LyAYS{XlO-U)y)Rb-TaOTyhT{^$L+G#Pbcnb=40RT zax1p|6;gfokMd6M)5(Bmy9o(!-lMzfcJ}L;I-RGvE!*=Uep}4I9azt)!5|g^EH8w! zTG_+GV*TpYaOA>UlN2iS5iBrFfHk{io~-9f!f@R1urkn2PcJhl2qNxVW0$%z8IA6? z(9IS5<-U9Jy_L*+C81lVInH>eN1&E8p$XBWOI3x|h+=3^w}du#DyiKmUH0j@eMrZH za)s|}G*&I}c*v#a`YFm)$!=6$T--V8RR8mrT(yLwu5J5cd3oeu?2A8#A{l)Tad3pV zf+JXJLm`v6?5YR*Zf-o-Nny#-1f4(beq4!E#?Ls$%-G*<>10?kjVQ4H_BFk2+!nl> z@|O~>;uV^{6B7Q=%#FgMzf>7ngmMZl&&DP>_{!L-DfeMc&!CHbcMnGBm(Qnj9Vth9 z1pMNlr$-~m>xdy9YPudl&;)}qO&tjXYevvUo(0n51pv}afvHS4%2^E&ev4S;n8PwU zWnJwTtM1>|OfKE7X761hSxS zD|~KSM2H&booQZ(umXvtSI0_&XHB@&jp>tL(?5~q7@>W1ghki4scHD|(pMCS7Hlvy z;m5{dY>CnRMt^CIODk!j87C$EgV=RgBQR{945C8fr@{wz4C@W3UNTunjh-P%btjJ?CL*H@Q7{ z-kaWgWpeu)OT!)iIYvL)t=u9D??WFVKXv^!Eln}|*p$J+%Y)YOt78`y;e0eiD`>Bg z8%q6=_O~>$d~35;qn3jS!8QYJY*?jbPP=Cp>P$R0k;vCKe#O?f;N|&9s6ax`FL-w2)s27(0m-OyBIGjNf34^80si|&^-klt`&Lv{ z-ppSn?|F{O!W7971uFEgFHyw1U_dvh&*7AK7Yje<3{#O&JkQ!8&`^oRfWd=^*g^O{BCgOC<>ay?;u9+D5>cM z=Bqx}O!vd57z+D-^>C$^nK7Bi3sn#m=T}NmQ{f)Y24Z$o>Q18xkf7_Yo85W*jv3($ zdK%fdqzusxO~iJZ<9E&ZPY(;Ji5#MkZ=I3#KM-B;Jnb!>0*Fn=hAZL~ltqlQIr`l) z>vkRZ?w)bnXclQO)y<{>*{9p8rIpt*zU{OHs&qYmsZX@$RLg&R-%c-mCWCpjJF22M z2m$o*B0WW@WFTNmLdt8C>$`y|C1)D~5f3i;{W7;wlPx!G-_!d5kdFqnbnlne&Wob9 z8fxC{;Dt2`K_gC50>w;)<+9McIgC0gbkJioh-aqiT##;QYt!@N0UU{*A*@H^9vLih_L-Y%qFF2n)9QJ!m2v{N*&# zsBz>L@wtX)uo`<*I&VT8#^k%KSYAzHo$cnC}TXpYw58aq-HU* zO!9*gKVQ2A(k3;FelHqRB3MXzPjGSvv#P-qX{t|n+75*@E01s;W219l^ zTRiF=W%s2$$(rAp5z!k?{0X2wLzHFZUJ1Zn&(fV(?s(}+%gyD46jXV&7`if_e#mZO z$pKeh2m6mdytcD^w&w$B3QWNwjZ&#-GQ^-C;clE~jVlbBt z?{4e_bo9-dd)Gpvu{%g+V@=JlzAERI^Ciw{C4zT11o(HUbNR`fYg)j*Q%|e%o8|{n zE_5JMDFH|lJcjqoIjue98{x#qJ6HbAAm#!hxnm$Qne%p-mHi|{4nIkwIXXIN6zexT zgl`s=!AJzbBjOAGx=FT!=R(=yqqcKVv)mE%v$fdZqGV)j!$LW_4zzpH)rjSKd2(m% zudu8%04zEkxPWn?O)*ry?t9B6#hIqYz$)`IWYsqPVH!3TtniYJhC6G zb@VomuIgl2#jtPE>ev;tF5NgSxyc0=#I>@%R-c!zLst6h9#Q29%!XU6Gfd1 zC!Dux*5639k{=0Ro6)=01uk7gQnkN)S49}n2GQGH8<|6xx#$=U^yCgL%}@(eY=NrN z8(`xS zQfGyZE>CXNTsNI)eoG?Su0AxiZ9M&@vd<051Ap9o!bDs$Efqx4t^X)Jzq;8&UB`)Zx^tDz3o; zhA;Y{xz;tHW(rk8n;j}7kv|8p3qunK;4z|ff`UNu)Q1T%Jurw3=-gwtd9W(-?0yeY z2wiTYcZr)JdUsM;TC+~ zN6Ye~FLHeZqTUMfAzIA7SEpvd+MdKnZqzQ*e+%7F!H==2(G=Q{zvf^X!-85)`d;X@EHtaNdk$ z%tT@qz{yM6XmA}`Gv1j~=-Hn5d7J77nb!#-0IFdyr6LuK zrx{T7g_b&!Kc!#?0y&_=!eU~U<3h-nz+v(2Xw9V*0in(<0bYyKhN#{01dVLT)t zOv8lBwWAG1-yD7y!bBflQ>=CNMwylO0z-xIXB_);MBn!|?zGaVEw~f}}>>dW@<0Xvn?>o#8 zH_H}3$Pt3t#u++>-8IR{$pz{qH^Dfltb7-$_JR|#YcJ?wG8R7Q-<(>ApRML~`Q!F| zds0-nlwLHDdBc~Q)ruKREL@)@q6Cg`e&0h(ia_vNIL-RAATtdXY*g$AQX@Gb^9$$d zfax}Y25(Z1G{i=+&tzBK5i~0RCvbv+jGCI-9^r~Vx>i8gHF`hPg;pZlwQd*GoA;8P?gU2o8uY+{xwK>mb9S1yg}vDQ379{y8@8e&M*I}0ZYZ@Kwc;!8o-8XW z)%ltkE|K7+3}y}g6$0c|llS8q;vR^{XR5fqTPZ(XUnr)_~wbdTR0)}_|3NL z@)vHbE}xp-3*4huaKO0d=9Y*Oh3BTXaDGlj!)1rUnms$fzr%0m1{QUVM^kJ4y$AI^ ztfHA{AMUx!QokkTAi@Gr_y=fDf1KFZJ32Cjy#)~e#ltqzWBk4sd@(pAa=LMNRlDug zsA7-MIrf!V;yw20Not~kFn=UWU%dRW$Uv(bzIe$NP;QC2!sdrn0^mW1ibemJqtWj78rRnGF-nwyFb zEC%+Ku21jKHA%3OLYM5OM$_s8cZ+7;C)r>U^LSHxx$aQY)Bo0$mvuyjvACW0zmlTP z-Ed3@2HUxx{>!^z@GOKLj9PLd=vk1TxHy_&%8X%YH^qU@^!27BAKIC`tcA_3-{SQZzHWm#)}J-*^m{iAG&ixcSUT#-~}tb=80 zcEclf+h|(=22=1kNPK=+q@qZu6I~f|-slb%4^FYuuNk_2CVZW6f<}YDz za4UU7qliyPpJHJcqKapT?OH+SAZ|YNqEfT0@iY)MjZZh4F{SK$Ddv*&M1L;*B$&62 zwVuIc1}n#6AW^z!oO5@NPQBWmB5$2ojAuPW*#Zsy(R6oI&sZ)2i%3OSQ#tuw(J@w= zM|ExW#R&P3-+RQ`z=;FZOV{_1+xe+W-joSC3Egq&F-kI4)uQI;Hg|gdIzIy3z&o~< z>T%$J9sVpkPay1rcHR%>0=xqPrdF7bC{T#FZ?(&R82%y+18!|)jlWF;zT_>$nikH) zXcGQRS1>AI3n=%K7gp*h4AT^xdBYsNYn&)K#Cmxf67dKf1r1FFC|);j-c&EP$J>5= z=fy<@qx?PDvX~y@310dhV@II?k~k8#fR!G}LBcisAwzl+w3y+8xylW?Q0}AtQ7h5# zH~9>p^bPRUhGe?fKQD~^{F1&{v+sWU3h`vp+f3_yr+D_1zbjcCgGCEQ$5$=xQc|z0 z#P)GDN(^s#+!9CO^(*gonsvqQcOSKFE?s4Wky?yibJjd%;Cz96lA^nq{0}P2;e0pp zLhZ)Lc(>ghAtA)K;~Wa(&<;zp)ZEX1MgHEwK7TEVHtyl9KuAuxVp+GtK_+TT23?!{k(*?#}c4 zHq$cw^NhtAg|%S%042T7pb^p+`Ky3=*ktK_adVj1E^Osfsmlz{WwaNCQ!EezxX~OnTi~CYr?cH%eqtg1+HXUlCm%QVxx=fqm=B;RM^D zOz)a-NV?+rFuXn!rZwEze07u_Z-(m|*H`1{jBM9*E&|LEIMKHha#)cN1G^Pch1!~# zn|{73yWbesS5oHo!+JE{cNK+U$ZOYi45DR4RjI~`h&SSH*SGkd)lL%*CIX`=tAHCE z$yh0U?F;!qQ%tmCN?BR-q(!?tH$r(B10Frcee8?lbR6;Mbji23eZxbGOY@FIJYHb4 z|E%fr!WWe2985WexHhfro8JotR=!o~(s6R)qoJXdPlwY;(NsxjB6b2w@gVWeE!&Gg zmAn$xd}0lVqbw_8Ep2AITOKD%rOhwjwjPc9Ev>q+^T({Wto!W**NB;uD-bdG$WH)aH zeo%z$4U)PInupM9|W)9KhR=NzQhz+99&YA5-dw@6c#A4SVje2 z{?73W8pI~zLEmZ20jNCb@v*X1-3fE<$pX{XrfYM5!PHPa(?2GJDf77Kd=6S(hpo&lMoK`hIXrL)cuFjP#H2iB1 zh@+Cg(i2X)Y0b=H#&ZjSKCN;?I6SU@CvBsCQ|*E2fIp@< zbCY@3cpH;1_&I$qgE(^)IABy+O20WP;>`(L*#`7ImpFfzajp)Fmwf&ZB|ZuhtuQ5} zc#ZUmnKmU`DK|+P>8<1vbvaL5nHg1Dx-E>?NUy)Vax6@p^1Qr*sUhvo?cClG8p?ONyC$#N1G& znCXcJ|2=o6w;ppxoK&6IV>`=zH4f}1|~QioD#Teme_1^pcbL@SnAJIS#`YYn`_{E6JMh=TF${Z*EW~_Sm~R z(DKrS6ts>|r|ZP@PvN7Pk(Wo?8q=n?G8XWs&m+;_+sE)BITSahOZ$20rrXig6*jTp z9$_AlJSad0s~uH_G5Mac&d=dJZuQ8vlUv-`y78|~lE;uzb&%1q?b^bSojjJpnjZ*N zlY4oc`~CTRI)K~y=O|d@hHbWajhJ#WjQ-vKDVY%)mmD-ch53}0j+OIvd?QiNv#=CB zlz>N{`FL*&CZw*Vr*(p_UuVnXmmed15oN!ar5Mel$~S=M3LIL5O$S&V4Udu_Pr zy8pc8eTlqlGlaI&ne*z%>M_I8N$CzlSI>7U`nz;ZBd4WP$dU=h(<|KNrvpCrUS z`gRO)d2PCA2Wagd@-FPb9psf)`ssqqrx$E?+Yib!(>e2fX_t+oJ-8Tz0y&j|SB^Wu_P1g=vD1 zQRZ&Qr*P%4U1IQ9wcR!HOH3w;lF9z4kS0(ida8w}WE~IoZ--l|nUKPc8*MqT+EcPQ zS9eTKIwNXxy1&Y0Is0y)Dg9ZFc*t-Q#iSRaKb* zRMUE)GKenYw|p!bO6?5M=(Q3&PX!sryE9cb1{?3AT3b_%7Ut*N1sM73eKCg6RAbZa zga5waY<+MR_}r?gS=z{GYPika{T=EM47*v`Ojfzrox2{&m*v#1K$W98{W5xFPWH^f zvFNGt4{2As^dDi*BZ}4KR@-wc+}fs?p}hLF5EHZZn$CthQRpR@jbD6dr4$iKKc3Hc zBN?UohIb3ee_sE)Iorodw`Rf8J4d!x+Vh+-SrKTr3&uVaqo$RN2yh%!P5s@NhH9PX3r>0O-|t;!c&V1qR=!!KE)yY2JIgr$-NX?~m7pCIJFe}<6B$uqRl zceVsP_Ng`LSh)leEob;WP$*QU9sZ0mK+Q*<6_MH59Ef%b_Jgnp#V6Uy!vz*9!8qhs z-%~%&*L!dd$axcle6JO&*o=DS;*fzhXuGvQ98rnf5q79Y&iRxP7YV6{axe@8 z3?5}x6D-j1+=XdrFn|}>3w6)52opCJWVLm4rYfA!5SNYd0)B0NPYfj#J3G61uXAqr z|3&BKn$>K$2#`VRY;m&0h+0=ZTjC{-_f3+xM7=l4dE#Q!j9W~5guF%qY#BM`RSEPsgIvm8it@y6mlSZp%^qlig3f z$;X0@*%&*;sH-vtNq@y#H+3UPsG!1}-cmf_0Rs-oRFt0>Mu5K@ZHHyWdoN*O;k3BV z5>CH&@m^}Gm9sRee@>_3k(r5bgo`>v_?9y6?{)x6=K7-V&?8_jQ?mhgpkc z?0AbpzRqx%aIY&j1E$I@I{NwjvrWalw1cw^0+0FH@-h<3i(%S%?JrV$-tG8)^r@?q zOFP5V)tz8$nzZHtlS9YmloOx*F0N@=@?fmKuGiLm$bHIznFTJ6=3E~fpPnsj%~ZwQ z!X&^`I%dDPNeZ~1*OX7hXjK;1XKqxq2PG{ZNGk|EePSQqG`A4`EU&&JquVbYE-zOj zFqhZEa8O?%gFhr*5oO+`jsl%yc-V-)(t&gPlRVzFfCHeu*iz&=6IKH;s}@nUr>bJ# z2FPuu3E`n2#e6)2*|(>@a_faKo2b!X>I+QsWrM45>H=4cW=wPeuD6C9YQLSXf0;rH zj77Hdz|vDpkDM|#99qhzPMZtU(kENNxG!E~u|kv9GS(J$8bP3XHhL@p>Z(?ywZTN8 z&hJA{Az@)+7$hxEV~&Z5`I-9K4U+LPug02<9einNpX0&wS(BpGwY8BdJyDjnT;=>Z zbZze+J$E}bdL`cWlP{()i0bpCfb1M&=b?K%oi6N^By?)!x-%tPGVd=}xY$|Bz<2rv zcea|d@QS;;0>^q6olfn65l}x6aUPK<&3`UgXgvUmgo`_hYd;0orVt*Qn%+mQ>b`oC zzI5abU|R5!ju*AGv;=|)0%n~Pj~CAPr}ZPNEohn>W3W)`t^)dlCI6Ti-4O)|+<`>G zmMF^|F|2C+F5?ALUn;gwP`Pf%Y=rh0a}@AkhBpzArD_M*yJFJ)?0$L?NJ52vGn4*p znr}Kw+K0<{@)5t_ciQs%876E*zlSSG*NUi>>Xy-+Sysy&cQkkL`d=UJhFJ&JrI5l8 zB`1eH%ND0?x{{O0$WZ8gpU1Ux%B1k{^$lu0q295P4Jk$0hR^qVVE!~ryeqD%g1r9C zprwUFre3(Y0SVjp?9}XNb1q~I6+0d2gx5MIEfBLtjWy0`ok$=dQoM<^dW-BvCcWdy zt^tJ9`ugX**hsKWPEYq%Vw-^!PNb$bp|$M1P`KUVOrxA!+A*9>DDIbdgMD28Bf zovyBBFj_aA)j|CE&zPORWYiIgWJOWw-0AatyzpgyuV42bCt&!qHeI~!TDW);C`p&; z;#~B%w)J-db;eY0V?*7JW{zvw6wICWl9H8u{!MiRq5)d-!;Qd#rWHDWfPrSG-SXj) z+pd_!+7km$res2#7jM(#zDc4k>6A&=Y$$v?3;T&&%jvPdQpZ8~&u)3u1KSG3FFLa9 zb9GZbp(l7}j1sOo8qRP9-`VbfIiN)BhSVE8))blR%kC!=kG;O=DQnA_dfwg39oHXT z8!EoEUy8p3(>Gx ztM=Z;5jgfFOqfoO96d-CEJ=Fh$CT@H{fCsArU69(KloNe-x{B>`9 zHh3rdc5{J*Fi(CIOhIqzrbG|T{H85v7YHTz2!RutXLTO6;JkZ$Kqs zxJK}-VS8X{@n{0yI6tBHP1)vb-D_wh!E1H)xTnR#)04xn)jnq+HL!n*)UD~m{pl=i z5gF52Jdw+lmeP+i);yeM+upMQf7FPbkxwS9rMpiXdea0G!STKn{mZICGnvPRq)F~F zVddSu0@V^{#w2Zt`1U)ezf$ZVO4WSlyvBWxazOZ+QlLp-)LPL0?Oov@aq-Squ6$^t z?Omd8vp!q#H(Buu;P^TFF|yNjt|s;U68sSIj|hnqF_y0uAD19MvQ72)PAw9b0HOB} zO#tU()Vl5T*B+978FI!=N1AX$BDo`hfq^+B;C^??lWWcO>X~WxElX}6EW!a?8Oj-Z z%QYsrX!MVNOM(3ouGPw~uIh5ebtC3Kc387K{WSUr-SM8^*3Alaxs_kkcbyz*Vq7=m zfHS`{hju_tdu#sfH8>O37Jt9`tZl#RrrUfND%ya#Grh&YFl1CTVqliruFplGM*n&^ zH&nx+!@>DbeECJ~AImb$P8q&7&gJ05jUAZwESG-4O$q~Dj34(6Gbi?#&lfPTHvOf9 zh@|*Eab3Sl7ie=v^b1A~Rt63U)EM#Hi}zjUBlq3EWi?S~)E2&a?1Cl za!EHo1)J1%n5^1-eYtS`YHA`k!~2<~%wxYoE&tDEeDj~8UQF?SWbLL9J|b$X35)cz z#DboL^%OTk7!;-o6d*f)DX5UF9UY;^Txql5A$d@t`Asf~EiSu9ZHZ(ywAfYWX?BYt z&)W>g*MW4{Lj@kP646BMK!Z@(TF8fz!wB!4SowO)qj-wM9wa<5QgjZKr@?y5>G!g9 zDNi?jEh{&0-aX_UT+3bnP0|EjbpDX9RgpE8RPxSgpb%wASHY=6qgdKINy7)-#Q>G-|kfO%3uh#j5 z?`+BN#bfgyk4s(aVI-h7==yEMU!=g)*AnM8nID?M(UQhqFZd}{CO_>K2WhO7~Hb=p) zja4yY4*o)lD5)mr2YW@2kt_(KKfP3xP^YapO6v=u?Sqi-Pfe!Lbz# z{_X8;K0*FZFFK_ZMWO>0o)0|SQZM_312^8?32ddVtytB1nrn?r`u(a5`TJigqDL*y z`OMrdqVuS6UX5&5pS{T(S?}zUqNUrz(on-*CR4`AD3(~s(xqkh#G#pT@V=g_f(hWr zu`pm^7wynRIKhjyr#SDSvhSZ1>y9+j5nXRasSd%lj1ebgRJ90f|%-@ROQF@BcD3MD~LCvM)v7?I1jU3z{ktfJRaFs0Yd z;{x!8KjxXyql^v}V|^^SC{BA_ffoN9Xyp0Uxi9F6IE>K|C=>|Lf$k1Y^lnSTD^~co z!tr`(mdm+cH=(j7hmSSt%i;_xqbZycM;p%CH~$!}k-TZv7cjx_W5-#vwaqfPX^+93DaF;~P^~ z+zRRHeY6FpR6$b=)MN|2ou2~tjtafq{;3_P-)@L0wOVs1C8fX!Jqv#(way{S^2w>Z zo?8=VpdoM|A$6}ly4g*@d8NB8d$MsoV?9AAfb#VFd|L*inhc?=L?lr&tBN1ZSu4pO zu0LwFpPu2$kk`|-Z$D+=E%u$Ot#iG%Yd{AF1KL{I4LXbl4XV5L2Hz)CG zw4)!PkAA^ZFw}f-RiXK6Dn`+rYS>6IF5W#DQ_z%3#Ui$A6}TLR6-jYOrxt`$b$_Yg z(?myOmz&SO`_CxC-NQo@xMi&n+#4!bXmxyg%pLFucRWjwziUleMkdQ+SKmC!(U*ucFVNJ3KtKNF=&29n+e#`#(H=WmHz{7Onyk3L@R1NJt7um$ZbG3ewWu z-3S6ocSuPINJ~p8-6>sC(k)$ge*4^ef9xM;jJ?m`Tk)>MAUX$djAMpimoZXuLP@rX9 zy`A{7%wKUOlEd!R#lK3lk77-wT!3((`fWD^kScLd3cuJGq==TYRmfRG@-m`y8uV0< zW)2n%2K>A5loyd$>K_`7J~H_kEkP438WX}uJD(27GfeqV*PgNUQC&@y8VIW_|Wu( z(s5@vOxL*AWUOa3udDwvTb!?Bh9g z=%cE?8DpwHJ1FlxvqDW;H!IYwjxSD~qQPT^94;IH<`J|s`)B?OpmgFTNLCRy-J5XG6R@sfI}f~@_jDY;FU-4CP-1_ zs$y7}+j{23($~Jze+4$3rTky8EZ(eT&9$b^fVHbhPe5GnK1Y(RCdr76;o=9A!PUpnw$3g&yPCaH`o}CSJuP9kkx^%k zy`Y<;bW&p3IcK%XC{FP7_6xppEDvcavCR|ljH-@zHI!PwsQJ-MFA@#iPsZY4rC{ru8v(HmrI~?!V{aY5AmOD2YJ$OHF8l z8MTE~S|)fhnA%q*N7BqBV$_(1o(HXbD~p0s zI5s>ZmT5{uvw)sHc5kFF;v#MMe#}g*AS7(mTc-OZO@|)}HYlJ~uD;dVgGP6zRdh=@f zFVEa7gH?ltAubM0*~f$< zDe-ixoLRT_Ze;-xtJ8Ew>4;KvTsx15;?ipVNTRS6BMdaC@W&vBk_(|$n(&5AVLi`i z)JfN{oC=Fw^S`X!QS7Bd4j_@qb5eLSOM1)8nNjp*_xN~~MiJug2igzkZTX@#vj4A- zss8l8j@z8|1_y8)b+fOh2U+~BZ66q}G>fI%u*w}3@0Wh z^`4SOb*;3f>jY&mgt!-Vi~Lsn;YnPGDiuzyzHwXRes}qw4c)Y9UHAmwCo%61lq!U5&Caba>VitDDdvd+^2reTRd%x|Dy#`-O(4 zQ1^;e4++n;nQD<^u2E0C=keJpIzP6#Gr3Cq^8!mx4iaxC4L$bw2R^10PjZj{P?8=s zRWrYejT4jk`z8?c425A<$NSIE+puchgOmVi!=9*R!__ZC=B4H3Ok~NEmSPWDXHNkRc4&DV?hNr%AXlk!YdJ<*Tb`Cl5y6WvesOfqh zrxpEfygHr+fl=1Kg@GNnw^lh!C+2Z}X+rK$r&aO_;*A7;NJAX3?cjQ+f*_PKthgZu zJ48Rnx3dM}M(tf?BGZ-8x7TL2$LQk53QLRq^BCq+_e%BxjeHa>RhdZC6mWe`6+tQ1 z4RzJoy4?t3Bx=SF24sWW!`9i{3W@xfWRbo)LGj)pu2u?N(R%s!@)^yR3`j%Gh&+C2 zDz6VxuYM?fhjg#=T3g~N)dl)JLT>w$tyJ!P5QN=b9w zE0snn5M5eYD%%0g#geaIkItVxb_oKMk&+nbn!@=SKoe(~P-e$Fm+hNLomPLx=OZFC zK!IImaKR1OK}X@FL(TWy$G2EnS?dojIU#+VRHUgpMzb%86Rox#rztP~O?cO66RPvE zf?;dw<4m&?bL6P459Mo)$Jx5V;fjWbci-=FsVVMC<&Mrg6?e3>WWGmu9j;rTQxh~^ zwAZMWpD8sinxe@b1|w%5QMyn6HF6NT^@T*-3F=J7wl6*3FNIKRCnz@~j$r?aa1y0M!u^X z=s=^L=Ej987CCPue1dEbmStdvQf7<;jn!V@YO76rRu&EH3%^47nzD|*y%)<7jl3F& za7xA+GG=;N^{DfCMTTlV)3##d6VsU*44_F1-=3k#&{uzP!bZ9+%YpacB`xOK1+mEG zp3vQZf1Bd}fts3jr+YYBUgmKZjcb3l#LN2?U&SUUs7}#Z65@ea=3fmmAUur~i~YJ_ zXqot7#0iQ(!~U5wiCrP2%cImTW7L4>s@XEFK;n9q%(E1c?YSD{!#X{P;2V)OMoO4$u1G z5zdE=R}W7mEB|&c9A#_sy;pS2lAXq1`5Kkr8NRO=W^nB{|7ot#_airQx6t!a_1?!R zbCQ4C{5`L`qbL!kDjBIj zd%~Z{4gV*MkP4jGXYA?eslaahAKli`?8AxtQNc3_8yH3;A>(jorQ$J<42T=B zLtzaA$m6cjN`aG4uF|wxrz%TA!Wdn>I@EO6OwXQP7M0r&->nU03Q~oYW3Ol^yKu&z zA$a+*?()Geg5M=%ZP_w0uFyzDBIHco5&yD%hz++WMu1M7{Y-7(;oFz>H~pFb^Zpf&ECEROQOy>(36UgrVpfO&9GXA*V{DNudvoCes{_#6ex?I&FbOdpy zD00&rwH;DAWeM+OR)3mZ3mRf}UEJL4$q)~Ed$p<|HZAyG`h|9|y^5&s%xAu+ZOsVLO=4)27T8v-IK)Dpm1X3mA zODijqu&CPEf4kl~_ir5;i4hqu{CeYin|!|fmH--dMRDT>c{!kQ-&xgn# zLUxY!#TDtjvBb<@kr1o7zwRTO_E6aB+LvS_^nA6Vl^8YUDJJS8rr} zVvGwW6$(lz_DK@R6qXb@}E7M z8ydpt(}+7kcr3$Tj)hiYiy|szcl@T8maoEkG@7s6M9;=X5oE!9ZkNOe60s{f$IvLH zWwtE<2h8En_2KH_f$%Q?izoQq!5)TdSb4jYJ7UC94*{VV0cVH4b4=4gbBbs^_yywsBttj%BD`-jod zQ=lENdGBzz#!(-uFPRIWhi2BPCk~Smhdsw^zVQmHXGG?|SFW}UhbHjw@?MFOO02)C zn%f(KJdP<;Qk9X%4&CMBs zb$y=yTGr&jS2B?Nv$;j6<$sy7@&=Q_VJ)mw0YW5?{shBnZ;P)mY|}% zJZ97NIa5!3iNuYXI(?2TAPeI8uQ}fRe14ytFWlrUCux;su+*xGJNMbJvT?6YXYs5D zERN=nEXE8^qS_`bRSn-*Y9e*Y{qPf`%aV?uM0|;!m>jE;xtg@6wHq_)tqpD-wbML$ z1XONb#npT9AiLuT=6icqnON1Ii$2cRg-$FnVHD4k1<3l#7yr~}*DF`=k`b1iiu3x& zeUB)jxQ)Jo-8>8#;1rb-@`oZvH)-j=uGw%<-a{@Br~5xsZp(?EFvxdyb+wI- zLT{Jw3WO$H?kx>08)>!DS3KdDR_y(XtAeKxmFkHKx)*WjaND(0v)BA4g~rJ9-ZwN{ z&0=TA$v1WMlk@-6j3xftolo!5y`eHWxl!=$D1N`EMca-IK*6leAjJtk@YQ zKi2|Ddz+yYJ_pzJoCL-~SDT4a1nU8j(tZhQ>u!OtD(%A~k6`9xoxtjL3*a|nI5Q(VLI3-c5`R_ zlh%Y_P}(d%htFI+SwGqrg@*IQ)Mj+6;UdRST3UR3LSW*=ny(3{r)>8>iCOIitEVgK zv`d2IQ0ub!iEM+ssVTaQOxH({A-?~iTuCBw{RE8UkBTbhj1Z;G?A>vi6cR-_;JG(*qzwe||Aw+C{ zfisrarj&m^>&$x*_z)c_K)nk{b7`GsGaaw9J5URJb=TmfjLbt?+B=mRFC`>Uh}d+p z<*Ik`>RUdo@#cvc?>843hWFmwz4@X2(R`@98*@EhE!<({k9{Dfx8K=4A8DJXkJK1J z$GTrUjWmB=q-4H@BS~fl`BpC1PeX`UzgUb9m;Xj2#>L$1YW`+zbRDw{9&5uZ&-f53 zN6#Q1oMCiG$E;pYjD{AJe9q}sXd@DyrkJU7Vs{I&X7!%kROZYmNjPs|*e@v>F!#3W z|6ZaRjsEGrUFzVtG}s)G$i7X4=+TCPJs9~v1P00)ecLI6usy(E22G#!Ci6t-n)Ky5 z@8*`d?0*{^GcLz1cN5llbw5`zwbk_5cPK}O4octQ@;}fv5?j^s- zbJZ=sAtAzuX?9%e0xEYa7)v-w!-&J$zu&MjFx2oM$6hk=@$-K-K4KI;{ev9Os@XqU zuBn{&?5#ZNvi;g{EuOCDH6mJ+p!f=o_A{$vL9x##ZSQv=HLble83`6RM=Ngq68J_E@M#rC?%>S$K+Q;$=O?5oOTwm^C~QDCU0w2vaq7W?JRHjQ3ti7{ zFzeamR~>y^Xqn*KF$;DWftw&Eu{^clkdu0Ucgku%*s?F+WmBeubCz?^ujlLPo)3WX z_+6-e_;r`Q)&ahxu-ZfSW@~1foLz*aju{ZvN&DiO$BWC~Z4kgw-SJjVUaN1arkO{} zmYe6^LWkhZ7RsFK5|&wl-+weL&mS1lphKk>B#AHoOMAWJpFntXXZX;7|SrXB_W1qZ~Ifo%#Z(g_e}D=+V0t|A+v(E8J z8%WUg5r-7jn-iZKdLgca|AfSJAWia!zNLyU363y|uL{ZUO`aQkcJxF_&7uckN#qTHI4q$3J>}D#7y>fv9?%THs2AXBBFF?`OBTF^g3D$$I?*0tD zY1PrH!=lO1*m42&Dogd+Y(hWkLC8dehG^xLN-}QCcf-=@f7I(JeueQTT<96?{tZfX zd5L>m@@MOu@0s@^?S~r-`<1)2sv$Ti8N)xqZhcxkew4SpXLU$yZ)8S^a{G3el)qHg zufH39J-+)AY}aX!oUt4z%{?>f2LERaOdl($t=5r#}G>$ zzq{WOA(CN-{q2FHZq_hA&O|*`n|l88W1YOc#&RDlOJkZl>j@drn?=TW`DOIB;iey` z6S9hz=ReCwW;h%*KYZ%P=U~IiH#Pf!kg&a~NYi!Y%p`I}=b`tB7^`K9)Ik{*?+^Fk zya5zXa~<6`FPl80XKG^PQ}#k%3-1Zr+u4aeK*0>C9j%fRuEQ2kv(cg7s)t&n){}XJpB%Mv$ObDDM-1|}TgppB zAd)J=B;AX!Qp2kxkk;)*mm!BGHxo~coKl5)4@dHRA$;rYL0ahfNb@zRV-JBn=n_)P z=}FaehxPBPnJ)cVkMLKc&S$TSQafM+P&{H(zq!8;EkG;$+h-s8`@#>kYFzi@{~}sI z<{CVp0pwn;Lh6tFfsI{I&bfi1n%Cv{nI@0T+S8Ab&J;eBAfN_#jTI!*9Fq_swO8L{V zoBPzL8~+K;xYySqQ(``SVs)bXuM(5A%*aBNBl;}GjCOrfwU4kR<22CVt3XRjd!k?S zA2|EMni^KOH)eP}j<^dNliTRMR$eGd|K(?J6y%xOod#%H*_H{1k1_bUV0^3^U#SFm0)R4Tm1l*Bh~r%8CvMSrLA z$KqH-H&2P&wkyXc>TE=$d3sx`MWyS_xkdBGsDrufOLQLX zPpCeyVko5hU`}=7TSiS3CmYbva3%80{eSejPwvS21C-lY8Eb)7eP18pcXv~L>p?kV zVQYNxjh>=7RuF&Lo)1V&N`rRcwj6&8bc-qES~2zG#y)e}g@5<$7sL0DK)RW4EN5l3 zF;*1P-XGpuQ;srbqkBedXrDqs@kycKgDK;}<==ocLFCfO!e!dlcby7f#V@LQQ#sMX zq(Ip~_O`*DYjTp0moH$j;bIed@%EPf%|GSY4OJ;9_$PcPA7hOZm*mjts7@MYlz)k3 zt+|HE)dS_G*YRfBR=XcVba~ek6rQ?V?;_goa-qj8UO2|$8R^SPne}TkP-;U28~$C% z_5Sxkmk$xj1IW%yoJqdSSG2nwvup+yFAv(^U)Mj3T;QZ;@ zJqA{2(_-FACp{JyePDA$z1q}UgwK-j0zxo*fL{r?bEo*%(cqfa(|G*o7+caItzH3} zhAvoD?KOW*I1C7NM86?39b9$8-{?j@$#%Gq5pGNy*Yyg(BICg!B8m{p|6&Fi92A_N zfl5;IXcPqbhBQQ3cRYSD=Eb0zbT{jl?@N5Jwie!*e7yTsq5NFA@X7&8Hs^bHV>mgV z*toQZQr3vA7V@{^EHAxrdva!VauN6C_xJMvCPy>}AO2-~%qD{ETRN!J9!AjuPG4JF z+nOfidd1+7kgm?o=NU@W2|emf-a_l^>p*)AHF|kKq<1gC1?%UgE;FRUV(-fPu559j__httPE)QJn^v(Hw3FXI}oOmdAlGGv`juyE! zT-*uiiJI)kbp@*fE_?A(1YD$oORWE>>MK9lix+eRgbQJQW>PJFL{EO6^+`fepN#K4ir43J4@v+-z6RA9Stiez}()qMPNsCg_Rt zzCIQuI((OIchSx~FbFy%UVsKNI3Z!&D=Fc>hZ0)=@-h?I4b;n>kwv)#7OAH2bG|t$ zGte^yOeD@4Y6&TXO{M0k=UUWSyedxndzl|szkl8X`F{c@2B+Bga7AD2!~puYzdWe- zI465y?G>_z8WpoKjhk9l8A%ASkUcL9jH47qActj>n$Ikkk?=C z2b;?(PrbRzN@3D(!`ajS4SK2eFYmFHdbdbL=9fCy=GHKzFV0|Yk!$A<{lHGsJ7R1| zH!UyoIrflGKgSaf#H`)6n`cX4)y_1?W&Oy{X6{6;vB3OF#+z^`*#w7VW8m0IvtX9i zwggK4-aRF@b#`uCj}CRwKiU`-6w-S{7=U`B@zQSZZmV%+q}K|wTUjm!_WeH*1Wf4Y z=nO89%75?F{$O0|rGixPSSAngQzD{Aorb*bs2O&SIlS9<%>zPtbbR8VS@JAnzWYDt zUe_#j@S`AXDq|2!ZB15F#dJw1J-;O$B-{m*In&k*XOcX`7+!#Yma1XMPj(41Z@*?! zQd9RaM7PT`sVz6&W*i*&D#_qu;R=Rg0 z2{LZ6B9)B4V1=QGXo=w)!i`jFmr@Uu4Lr0%vr$1(Po;e-vN0ac{pFV)Y|KG-J zP&s=7hWS5+w2Y&uo;bhsYt=^NDcifh;TYLIn|-Oo1RXBIJ8PoWu>TJ za5|XuW!ua*-gLV58FMnJ7QXx2s}5rtZq#t-UIg~m08G32Y9$9~4_!9kwGo`kqBp;J zVeaTjK6!Jg!iB$Vdp)538-34kJe-1nQUVAO)nY9;?;54N%WgNFQ|y(D-#1WZ?(?u|>ar+la8~^L@IREPrP+{Uf97zY-1AHpUqej`*_=i#kD*)UAt-Nz z=hA>+(hK+|2x$ko?GYwz2XP-el`OPN%N<&cIbUf-`l%NDGA~0y@{|8!l{^+o!uc6c zL>cUUn`ngV{6-mJzyDXWFM;JoQdA%vw|#d6x3=^^EuKxi^*u6L;=$6h4QH~5{D>TyxGx2 zWbF^EdT>Hg;OSlqwt9sth9oU2KBGXPF^xTmqv?Ej!^QEEN;%dqEP*%E1M5eerYcOn zqXpNe((Qtl6SmGfQ~u?eygJ@aN{rhKy^8cK>%5tji9j)l!1vR6d{@YMhIhQ|5NX^cjqKvUI(EyO@rj8*&rKw>11r4GIng<3-n%OzK!e(We83~5sUQklgE2KQ% zUR1Uk#QO7x;-gr>5}eq*snxem2HRKstZ#+2-xqxV^yBI1wwC+-t7c`;J_F*=xh!jV zmv%BC{11*sLSDbPnc&*Xifd(g&mA|Qtz6i0-Cx0VMdaIoyR!L7J=aULM#)3b-679C zG!$;P&{Qo|~05JlWo}!<(OZdXR{@HR+Lv$|5zAw_*!EpT+f8A+Vg7 zj_%WH)o&aQ%aweG@wCo;erwC}TC48_2JQ{ z$pe9X>FUfQ%!k=6=*@Lu9ZhZ`p{O)TY6{A)RhmI-wYx$7ABo|Xm?G@;nN}_VZ>j=Y zCj*PIP-1#LC4a;X{|+r-BOEH<$4|heL{%{MVAA%M_ph*SxHh5>Z1>T>if$@vHAer0 zpPlpNf(jHPxLwGtV5z$JrB0C~uOKFdq&~@a`hll-*^7ifReb&UT`ewJ$_Ku_VyW@$Z6$`$-=-r}VJ5^e!k24}<1Uwwz{2Nzz^ts@fuq%g%=psm z6IZR+Cq)Uo4dHW4QhKUl^2yE{>m3|PoCY059dF87w_4(V?wF|J0nRSdplE?iBpR-b zf6b#pHO&`(@>1L94TEc!r-0AzZZzQG;yz7c;XMnSD=q4$PYg+5Rdc<9rEdA}YD_v| zP$O^pUa=z1;3YeGz4*|N^F>mX^wNHVz2f;hEuv?}6qr9*e$*V{ zgbtuOmEh>NneXL_cjros=7t2$6o zKR(tVCntwTw3ER6UVF zvpA;Ue?Ud$Gtk}uC6|VGJ?ab2BpJ{-ki;}?*9LI_sJ+GOb1eujnlS{3f~x`5|Cepg zNqo-=daUte6V8x%(X;&EU+;dJmnlU?eef9(HceqNW+OtmJup>dcMt((OZ#aey^;Tc zOHCVlQ3ep-Qoqm~BK;1(jW+Q6E*7*ewDi@DVGWpjT#VE5JqZAsu#VeUW+nTl=0Qnp zN{W1kLMjQbDf*@h)!%Pj;XQYrTJ?)*RGRg`9P2k}**M>F*#QcS2Vt@@Ql?`4C$~3M0P2gI>O1#PG|&35q+MMqWkAy$_RyvK+fJs?OTZ&fI=l?=>`qqXN1NAMvnZ z579m9jAPi2o#1m*Nr~$`YhY4dpFy`4K=0EXk6X^hZF0c~*SU?tz5c-_H9kdqpA%NL zCoq0CES+7ki9Yyatm-R?lRVl^pY9#l{43;7e8dtCK4^S$v#CRt6U9B*&&V>f3{JPJ zlX%|1W-l=_r*E1OI$r0)K7W=Zbc5Tfx0g(3JbSF7Kr(nbW+n4{Q@B^R<|7`x z!c0fhya(L*Lfxh`2(3cop#Z`GegK?^BiGmotiw-d4)-V3`c)F+UyS99NR*t1eJGN1 zvmaclKc2DxJ#-o=PkhRUSIgP21xxO|E7z!TeMgYCV+}bG7+&6l##xP1b|k^}?1V%Q z$jLpW55eq`pz9V;J?EA#R*QCZHE6WDmBa+!K8-8!kkE<{;!t<|`*Y9M z_Azxbj=FI(%_wH`hwABZw$lucrjB}3_<$43P%00zV^3TN()yrts$+uZ>19Y zQ%zxr4mi0Z`bEl>mpgd*>EgkX|Ro!R7C%!&ZP6QNfb2(dMuUrYlz;>Vw)yTXu?)yw@<$wU?yO6CW zN;6`Y>7vq;-Wri9E}($Y&!BBm)$fVre}}J ztMr#dg2o*FM*)p*y4P1$t-?BvVpSK(!iIr%*A;Tf27S z`rQT_8a{$9o}GKpLoGchPW<5Vi2~&q{D>ndH1f-HItAB2M9>#J%*NN;A+JpOV;kAf zpIHrmurufwZ1V9j^eK}1+-ICd&L7J%?Y!`+fCb`llr1Q5thm2N_d6W*vZ9D{%Ox;p z!cY8NG=FPcV;jBj=0)66oxQ10{O|GCm;dcit9m+92lud0#XS@ z8L*xf5#p8A5$Ut`w~KruFf(!CSQ^jA1PxwA#j_1A(~mB*#i!%ecVe#v8HP5Mr`G?J zpmCqqJF;4)$rkmCN7bDwN2a~ls&a!k8FDZ2y`pj40aC2UC&g$%bY3|0f4%zs7`x48 zKY^KYDAUM7jK%}^fyxDs*WTrrd}ne1 zWEmCPExMxDlHAXH;SYgtpZ-HOVN!ADyQ%zw%_)=RwzheKJU^GaV$RkMyFNIRL^LY| zY2`D|qS6OX6cU1vjpKH&dRaEPW=9!KP=VJAh(jU~T$ZWYoeI%iDuxexsMwox8y)zf zFMdj0?nwP}s3;7jkr+nfR+HZY7HFj3HwXwHO)n5?k%`h}F>ofua$a;r2z0gPb|7>- zGDj~Es)&Q<-`_Gju1$P8EbIEcEl3#VZ&7<9In@(i z`?sZ`76oP~O}(jM{oBfKuMz=P&>zWjNpw#Xzb&!2QA2I?2wbOLb2W1p%5bfWOa_5~ z7N$m;?2ETsLdd0wm>*T|fwYk!cBMM3eMd7$Tp5=>;-S|sSDPd8FIl3E1D5`TkF!?rCy!V_cf7F|L^3xDX z9phw!1-&2jQ|p;mg;S+r5CQdNm^U&i>OHmEL$$axGh8cG{S(&aw~?YDdb^R}FzeE% z)f<2G+L>|V$m7QW2qwutU$b(4z3%<<%iqQ${7n)%mMaewFHFj-VM{l|Y227x9t~XUA{q%I$YL?|QkHJFLv4B5Bx*9395>5{CxhaLPhSbmHo4F$yl3s*t8n3tC8uzDkS=cnl z^;u`x9%B_$yxjVAw5-kB8P$RYqbVJPq6UT~Q}drGm-h_H_GIOx2)sCWFOnp1QC)X^ zOY%P*s!unVnATw*Dg#Uzb*zQ6hSEMKxViB0Fe^p7N=n;!Op_tNO)JF$o~KV0F-iUA z82;e>##fxz=rpvqFUNfmEbyU>7o3@ApCN!?CO1jw6g<;$_kYUlBtz^?wAx$wCFyj? zv$`E?)fD&SwJ$s#L6b`IGBWJpH|2MvieF!?;zIh5YT$h;g*4?a)=jI*=EWs+0`7Mf z*9cy;ue=~+)evhz#Uh5*b({J#!sIGT$(5~74z?_Y9Cu8j@sjpt?#W-D-@N@{$PO(< zo)Be?_^cs5hOtoavb6Dypo8s)nGyX*rpTe~mq2WV96h@E#QXB;zxIo* z7@z@c1ze`}mv|6wxgF|ltUCQybs4YYuHQ0sy`(+*rwVGr{Aq({9JTe1M82j{t9Vj7 zD_MpelCNT;LO)`K#h~phI7KnV#x5IECt$d`f^+=J`Q_QMW^hO_2*xq&?hCt~kBPFX zMJ30`yC29%B;%NvNdIOP=Gl_lTnq1`n>(m-1w1p&ed7t@pIaQ9oCqlp0&)Q}D8#8h zHSB!g>BVFmdUABM60n-KlDzBvJZp4;at>XY8S6)!EG?k{2y2u~I?z7c%NR8KUoOltvIRg8;A)xxs$=LReH}N=7g3=ko}`YO^rD&IvO<;#tBj z^!2^PZ8O!`o5YzUWJ0;>LN19CdzWvP$}83+&FwP;yQtO_!w<8ZtdDx~>MLMc1)oHk z?f~o5P7_hF)JEi;4ch&iJxfZR;o$1!Mzh~F7`1*(QC4WN4aUr@@8);Y7pK3m6))u6 z&KR|9HRf7aSy!*}BBnOJ63p}@pQx~F5fMK2Famv@AiE($rMrl~zsYFVAgiTjDA}Fg z=-4KQ{X!p{-H{T$blOjw9l5D%%~U+VE=t+fte#OB#)K$?=74)i?1w!1{kja(-E&_= zz1l^%!r>m*TQXg2PeC5(6`HVU)^*7%{qK5J!3?kC=m%x_%WiwA3Wi+>cVq-maoQZq zLk#h~SnD3Dn}3|-ysqdmdC!-Y14auwBGcb%tV;Arr~TxjM!FT#^+G{`Rh;NUrE{ zVACL*ZlioTVG;V~GxG7DpGT`2Dps*)ENjX6JR_aAsU9}Ip#FXsX;;x0RS@H)2DmIsc|eqWUTMF5F27^mbxX<*9BUWtZ}ko z@^o2G&v5Tn#+R~Y4gNU0{f@c!;b!y0#bcZ24_G{pyE;z(?MA}C1iKBqKWG6O;;CP~ z_Cc|2c_Qs?O=!1z9Bu2)W1N-N$&Ji-wKc*@(a|@$5?__1OB4JE(N$Q!%GO$LhxTZ* zlCj6pnw{i@h)eAJUsh_k&gxB9s@4~^TCA%;1Dim?J&^FpRsznM14DSrD{V0Yo~>U* zLEK_jyFd)B1qDT1H{&mEE18iqypX#^EkuJHrkF~0T;jC<(-^O-w>K8a2C^{G~WMNW( z+I5?AYpysG|3j@v+cEX>E7(%Zar&7fMf0~`_a~W6{rl8Z?KmqY2y6lMSG8kb-#6VR zVe4X6u&2CtdF>HOhnM3sw&E{WF!=(~6_7S79|FF~7?;_6?CJ{*5+;q3dg-$IZo-umR*KayM&v$xsb&6{KJFijdXtorTaNL$t zvfIuywioH2C+;g0yN;WFlHHUTP6~4k;%NrStXA@3z5I9mi2cRZTi1snjE81-M? zL8;gcQrkX|c?0O~C27^K{;s%DA6CQdsY=1)2?K)jJP^4ysw?2b3h@PZ->9xmre5f zwAwS}qqQR5m^VZCb>&mdhkSJ(v4ziLq0lqoP60NOM-k!Xe7Aw9SyIl-j25#h+1*OQ zxUt){V(+PAGVbNc=y(ga(Y`^Ww$7;R>guBv7QUv8xE=!rklnuZDO?W!TE|OOhc-0! zb#{*jMaK2bWKpE$5j(R#7FJi)%+jIN^QX>}2jy-$wHyZHhPjXJoo-~wXRh|p!SAUF`0}&ZVtst4K(JD<^EIiduX%{G5RuWsv=|;9jtCtc=8dv7m!9QWAq}|%-jW)Q`elVlu%6nv9$Et zK*WENATWPf{P!^<;dIAOuEwOl*tj!;)SbSKS$Ko4VWOxXVfn~z75BHf0K7~Z0s{5g zDKEI!_bh~O#l;ZGRuX;~HhBR@a#y&J=mb~Tn<14}EQzRhL zV#y$CmfNNe0A6~8d-ldj+tMb8gn2l08V{GutI4?|8kmevy_e#B%yYk1g{B#ouyyGo(NoVKd zm+7fL-th79A&m210wba*eF7o>?Md%T=?BkOw;=S(K@iEDhF4%|kw{YZpR+>o#U0V& z*0+fPri|bfIhIf6KdLgf3C`^N+NWt-G` zCD&k$9E za6phG^3_caB-PEUy55qDWmX?5cR)~#kxBhUNt>!pU032bz(23z{u*br(r-0`Dh-Aw zPkwck>EBX~{Ol{6|II$`)Z5ER7ctC7zqwZ37^^cA_8L3X_MW{_HU)ii6j1SXl&;8vASv3KYDf+U zNr;Xi4;d>VJl^s44bA+=%hA7`!?1nVX$rf2s4s#)Rm#rtsQQ`B)Cc6CYNf=e4_ZaH zld%9mIEmz6yZ61;-Ik({jK>gKY+Ss0|EK18TrGyUWno&ZCdY;Iu78s-3a3kB3p#j~ z{@{gEcQW*T?06k1dT9JINyNrlT|F1T5u{~va!;D4iOg~F=}5LEL!l{59fLnyqg~gZ zPFLIH!eM>0{Leb1u1+9k&L^UJ-izwi%XixNq|zuTfaE@A`jm}a5Q%~G{^bwbl|SyG zcla2d@&9v24iC?f*yG0b3TUH>V26FqAs2$oA zvS_J)rqiQg8-taAN4xgt{Cv90yjMc?ymvA{)S#@R1V>o4wv z(X+Q;#w(5iCnvhI&H@RZO!KWqH^2)yT8WABS8GRUp%Xu|9Ww4 z?V~W;MW7Xyn>s_BED#pEQ&%?%bTNoE{Q)6qH(HEvv!go?qlbwl_dV{I+a4y08!nWe zq~EQJ6G6<1rY&-Rdc?2Mwxj}fX{AYltl#|ljQ#Wrd&Y(w?^ zTDFb`8bwHtJ9)BH4>_5~=4)OaIsnfwBFh0}-W`|m9Re)p>TAhGyi)*8vtRseW~oZH zEl_2++=)XlMgREmyVWhM&T9>d63>vr_Q`umVgY^TsG?FD8dE}P`?KH+RfJD|jPQA4 z>yiK@TRhJg)9;k)h)f7?C?|5F^gyj_z^M?z;f(;D6=inCvmHLqO_Q@3Ax&^32y0+#M@MbD3YAsi9n3jg^K69J-<(jlf zxVZEHmHJ>=Rty4f8Z6po(IL?CLnT@JS>MQ0e8asdCbpR)c1(9q>XB8pN2QVpj23z! znJ-lT;hZ0DxGB1Xb*|X!xUCR0UN_k&d;EUBx%?jD4!bxXnCuSTonF{>WNl4-(au8c zC*_si(mzR5-WFNa_Q2naG@=@xxYK<`3jUbPb@_dM)7%bAl$*vjwE z>ssnZoC+CEWd+mZNm`yM`Jk0lB&K4erMhSq|BH^Phh2aNxrx1x5hh zh7h7Kw8oDr`I)B&cB~~AVIdaYw5!Y9sDe}PUy_ZDl;}2H@P_y#z@Kv1uW1wQ?2bls za{0dT&pEe6Ok?7QrRkb_3wGr5qlVn{WStUvy1#<(i5gmWoM4vfZO64#m0L%qRR+Dw zJMOqYYZQSRRxXPDYvYCLF*c29^4DiHt%XVAI*TjAL2oi&h{_7CjxC$rEN zVg@wWE1%?`-g3fgmh;6oO-vVx+JCziXh^uspGjrydt<-)?|i^Oj7F>gWQKZ}3kI~g zryzr6WDL7)z7hXoZ2g7mmK|TZzztSHccAE({Z@iiM%D_ZYJKAegZlav4 zKmnU)V`JmVmf(*6PMn&~FGzhJXu1rJVG7T*I~I%V8eBE{@}|JmyV(`77<&9rab;<# zmoI*vI|3O- zVg54Ck$THea&y3`D7fFM-DL9y)H`kW*qWqdLC-(ho9nv(<=5M@Jej_oFW${TZ$rP6o&qY~Kdpy#T^F5CX~!Dm5^$u#DjQhA^BT zvO{+F%*<@3qT)}c3SrVP)UZ_4n92Xc(pd&nxpiCE02>AAMi5X?kS-~u8>FO5y1O}m zw3JAflz^0Uw{&-RcX!>n{q7I{9?p(;ues(J;~BD8Kfo*tvoJR8c2i^H-5hzRp5}o< zJxM_7*25eKEP4S9eyB78-R6kfRm~p$bC;(BJqSh$J1|oE!X+Q+Ge?BDF0qOP-aS4Z z($k4-!+bTQ1ozsVrI4L~JPNnK$@*9*$3dk!W3YVu+bh$6HsXzPa|dlLUmzZ)QPcnC z_Olh}SXj)37CmxiwD(3OV5Pr_7v!^&>DgL@b+hJ~NnCZ@JIy5E zg2B6Rj1adY0_MVp;Yz|GkqiebT`oUs&D(Y8U7>3$EgIhd_;a|lV z87xOpYZBgnepF!=Dv+Yt`;+$x9^)!;Z7IovZv0~AeZt&n3A~=tOZ=>t0`{gU;j60T}N6sD_f4JR6Anw!s%6dzLf}dE>G2x0Pi$4 z>;eY}gnX7}uU!t;&mZtVq!i{T^o*kx%#TKS;DK^Khx6*}^ zWiatV{D^w8QK6Ex0bUzEEqBXais0#W<<52+mQGtW69C5viVeF>)P0AHfA7{b8NYPA z_z-7}2jngbg>45I8Gv`fQy7th!?gXnnTx@lCfGJzyz)3(rF=hka>4Y$)2F%@B{={q zc&UPk{FhisVzWN&mH%^xgCT6FUBdMk60)5?GrSP4b-t5UWzBz6`;wgqh=;Fu z3y{J}!5ZDu&G|(CyB_>cur-3oU!>#nl*W=Ah6y}mB2DpEM*%@Wx(CB1toH^hZq^P(}8;PPo5^M78D({JNr)_q@8iw7)uXiZ!^10S+r1#7+;qA1@E~rL7HdA7gj7w6v@Q?Ucfj&^s6} zuxlE*R^qM&N>(6A*ryNz!AZaBZ-h6DfENJnafh9AUM+~Y&}N(uD*@Q7nA_PwjF}5k zfbvf9K-ULRSqB6u3@j|I!ZCAe>o*hU(?!DCPq!}a!fT+)d8)UA3OBtkBO8ycgxIRX zra2uUE#{=KVqNPuBx`-D?m;qX?F0yWEiF=k6f_780dmXKIrN_a^?NKS;`a$LS!Ame zd&AHl=bWYHmml>Fu1S5#D_drJU7eje4TU{PM|t9WEtKtF&P%M!U!?Ne5mepzTw{s0 zHBqb$sp(ReJRe~-H6kED(@L45X* zb~`>k1`%k_``MjqaljEsw|-gtrBYAE`n%m0b`bNONQOs-pG@4q>;}?y*k`L{Akab& z)`z5@dMAR>yPXU-LIO_zzMt0{NPF@`@i&h#F)(Hq7x`RWUCU|pzPm+?885>j&1ly5 zs9cnUX&kD7o~T2FuPun1f4xtRV6-+8qFXb=S70!6qHsA!MoDzW|AM*n^_CWM7uny> z-GH~>S;rl_Nv^7T54paNhiR24b2CX5HA;OUCpghR{({@_VnlH5WsIZt43&bx><*vw;$(8->UcKSW2`r23r-2J zD`+`CZb`MQs};spxg)yKGx0{3o;HzUtyR~hhIDy}9JHvaif_ z)CIWmX`JWDA0B=04s+Ri_p9LzJfy2LrLCY4^jM>N?$zW{-rhXOF zwcaF7b(gaxRfpa^$yI1fpv+5^$!qx(ew~dhRB8Y1uV>b1sUCJQTyCqxmGG|4PgX9M zSP2?8=7^-9mCNu;3($XFd8$p_y1bEBgHX**EZP74RK5>EXku^?A_UcsR{1s5X*c~G z0SDJ!<^)=v(iWKO+)QkWAQ|(zTY^;c=6Qv!e&cUBH^8AyaQC~PesGV8zo#%k!|}qq z%;YhfwZ_cdc%7}pU9jLCTolOh*$@X;7wU~|0P<@w%JXIXgru-3yJhqfJv~at2!&Mk1&qC?!!{=CLnr$ufzwJx9g87`C9JI1hUMeax6Src}Re=slTqb;}C{`A%Mq zSFKBv>zPkBuU^$k#M*wk>W*OwP*8IV3n`JD#dW<(iXSp;(tnfV*uha$5pyl;)Ro3zPiejUT&xPmjF>mfol$dDu z&Qe-DG2pY$nr_uu3LaRbP+y)80!+?O{O3Z~tfFVJT>_E0Q>+eik3z4SlPqY|Ys4{3 z{%)xWx*ooWpjG|g^OSIV%=v$2NmPV=lw2WfvIJ0yL|fDGlC_ujJjWwr2n7eqW~l9v z_(L6aIj|wpf7Rf+|Gg(H%-s8LW0ufpWe8T_2Ay8_CP#&xt;AEqslXoMakerobbcV@ z?5w)p*nq$0je7p`oeW!WpMDa4(J~@Ne%z{Cw9Wg~21i)xBB_kuMr-Q$?&0cC?2K#H zrD*ly3>haU)aV>3SKKZ#RRf6=BB9%>uJA)L-yg2%p?s9hxOxxb*!5Xz9P&A89|Z)O zQ7($WN)>-hE#YnhPR^_$u!=*Lu1M*v1kE;|EkVOjstyFEWw+0Rxv!(b^twNl90sqC=^a{Mq_OZ?bH!)Y|*pb!{*cea7wNt=B_J)|$&3U+$W4NZq8W zv9?E}FtF8rVU8a!U4|e`c0q7Fhn?l-U*QjxPhr@(3mqaMw$)M<7my{CJFy~z;AmLb zr*rdRjj}D*|GnQKhTkb^-4M$rDTNoO81b8SAD|V#5bqzSfCj2G}iPi;7tRq(m57_ztb&!qNabl zB|Mul05=$rgv5*5tN)v;#)1J_p@ZA|fSpojIN>134BX~In0@h&9WGDd3+308ZfgbA z3=sPwWnc({>@H;B5v&`1#$>Al-VLHUV6U|2c7b3I?EKR~FlHJp`K<%#Fe%WlZJm5RbK0bMdFFNI^J>bx=6O5QbooFrR@&v4R}M) zhO6!yvbaGW`{IJhx=nnwKlAQcWDkjdiO5W;;v1Ym3i{+=G%P%i#KalGsl1;*Z+SJ( zc{^ZY7@~lS;PUbk|2R4!A!taq@nyzqC^V;vP|K4t3eDOCbMNBvvJ608$NM}7i;4=2 zN{z=p@JiFwFvZ9_J;UCSl2yW%&r@@;LchZH_4l8L6goNA_M=FeI7+$~K`0v|bmp^l zmdabyR*=jpQgdgyw6Z)zY1S&VfORwIr1i5eKCTW`K0{nVAU6i4-bW)~t?kWIcT=-p zlbbK-{K`ly6j;(|p3@gW?q>YcYQ)rzJo3N)Wn>=xdz-<(kZikKHTc$c|JD6x79dc%IgZ+e*K5pz<(p4X@ROAJ!W72I_dfl_ z{xnetw@rrUBS>t@nnY`QK|h?X#@j7mLU#Q!EiCAozkk@gIsT6p zLQ!DcR&w%8rS$kuX5#~5SKoCo!F1f-STBY>w1vdLl44aCebki0zd#}Nku3C!vBch}> z?Yw!6-jGN&*Knx+oE&!kAKs-`sLyw?M5P9J_gy>Q)a3uGg94M~_WBi!$EW)NJ+0OD zQ2`tgGT&oAA15^FkenT=(HO^oEMNkiS)HoYC!VCt%n=Av!FJ`&K0Gy6aPOqLn*?n; zNg_Ofg&DKWss0s^m_*&$IQ}3TLLJ`;I3Ln?<-FDcQ7%m+%?VYSyaQJJZU_ zJWXPY>4%xzKUb|mw@`k9#Uj=3MuD|6%s?MBAm@ z`HcP+KvZ-(B22zAZ3Kh~HbFI;m;he@S4N!k+402d6CKlk^UCFfkWCeNDSxJ{R^jw% zXGWLd?IdfaWm9}kM@CpfpHRBAMq_^JWpyHL#l+b!lxpV_;9~Qot-ZVx{(FB>;zkbe z!&RsKqQ=t&n9{jGm-#j()j2XFmZUcI>X-AyTgXIG*@Y8}WeDxS%#a(oyJMt2zO=vpIh+`&udnZrc$YPL4A~xuDOsXgiKMl)!&iHZ zIQDb?{xjEDHcui>$H{|y*v7eE-@W%eCOkmYo~$AEA6^E&vER8_3bmG~bj1<{^3SWd1XfdKo&E$d@!MrBch3J_6Sfh`Fd0 ztw!vOl$ajsrLJPU8!1b=>_&jFfIM# zYx#T`LD&$Y3s*vLtqAfm+Dqr~1NPz3_jbzpHMq+7r=d|k-iNsO;@d*!e&X5cLNI6= zL z)n0xj`fjnQz-1zWYJ+431+=Lm!zu52+!M6<^Dn$yBk2_{4`60z~2XJ)EeE5Y}M$@LO=JltZ!nl#BIjkONMo1C5< zcX$hve7_Yswbq!UMw9F>*v-(JPL>sH0HUlV24%uvclE1CY1~A%yo6bzXTW%?-$KiF zTVsQhI0iqQbX~Nc(k%{0EsUAbcyHO+u?RdRZZ7QM3J4HAGekvCbcvXWq@m1MxHU<( z9{D(1ya_o@?Gn9-Et(Pkh(;;$_f4Ek4-x6stdax~ck^j_;tPt;l3OK`vK(rKNl_m= zxb^xP9Bx`0-~PK8ZkH(g@e@~>VSRV=0@vQ|0PQDXHaDD`jCO?(NOBsiJnJpB%X7lA zzMCOS1%0QIH`iA?W1QQOAoF9rRr-60{8(5>j4w^LuYjKcx(q(TOQg=GmyBWb8%?z~ zJaM=exNyYY3Ew_)k~@NlsL3N&&7T$$ms{sPF6BOZ@pG$mAm4J{%nCSf7M%TlR_c2of*FnqBYw z@-TfhB@N48gTW2lZsTad&0)5T`1gOT_Wv5vN&mnK5ThWg;-~#CVVb#Xwh$)CwcI<` z7&lJu8R9)T^nXi5}h#J6~u@h>HZ z+xOpJPPm|&5ku){pS%NUt&#Q+{u7L)6|HwTr^^#&Fu5FVPhBKUB)tS*$afzf#QIJd z#s?e@M-0CfmJrK1Aurm`&GUD<&NLuNgVPmLIvan&P1^LcIZfg| zqh{Br1tVb1x!Xc0ePm#}Gt32}b9k2gg51f?SY^*{#_t^Wg&PLWw$zi5uU~ndJFcqo zINraFy!Og}v{GxSSX)8Xkya+{WSYbM*2AwnLOU+>F5MR|@VdnB3S%5yCak!YF~IT4 z@X}&<%qVZDT&(v>(9-Ms&*QsgxNfm9aYs6FfjvW&!|spUj;UG{vlm5RLu*ylGb6R< z(B|;P!!(SyWvIGCS{qK%>jXD#&w5~89r0ID0a;f@rK&OC$~@Eh8^~@P8B9haCa(@Y zj}$@9ZcZ`%wr%%zcpg7Z3t2YG#_)}$B=QKXSWq$AsXVu5rX`ow`7JH?6J7IQvGGUm zgywi>s_QT^QE&WjpY!RqavZmlcbaJAq_qE;8LX*$zmUIB_^p4?dr*XPiex(N-kL2i z_=xRj;xKI>Wx&FG?*ol5^!HSCZos57T4O?;6U$6;d`cx@7AL%z%N93v$t3NxJeyez zj=ml!TTAJ6UGJlH|M%qg7K#T32Ohx!)CZV)&%Az}dzjFtJ>sPh%o`b~`uxeC-b}MF zf}6wi9bQ{&=Syzx#Ld(VMHA*^(^R^%JxV|QJ_KxKcy;BUeA9L{pJ=D7ZaIUXH@%A% zL-d0F=5(^=7a*IC6fzABDkLF|c5wz-1ps+bpo2XUo?yZ@V6@^PseOHRZsQ|7#A^}SLe0->AX!Wpv zZ)51;>KM1d7piqc8mXfoziEahGYXaFp|Q{})R8lv)(@r-z3Hlz5oeFFESK8lZozLC zF1P6$a21h|kjw@xmpg1=<+{iJCS2M49Jy$8Ur16i9b&#GMaS)vz5$K-Y7>SnY-jgE zZ8e`|W@fsb>j#R+$^6%;TTGg@tWu*-r!et-UE=ciz?zoG^;GkE$1_;y8~X>L3D>go zp_ZXM*J!%rE&-WAO(i})fE@)`S|Q!L2QPz}My;w9w)BXGWPqu{&>|bfyD#~|pLE9c zgj3=gC37Hk{>e)YO1pI%qV8zU05<3-guL}D7pT}{w_cT6&YuD3j~18fQ|UJbFBEZI z)UbS+on2f2e#u$5(n+?pjC_fAd41BV&-gtu)(5~oQkiY#gnkNA+N9^4K{T{s_>|0a z&VL(?rw>KTQ{Me=;u{d=nEuW!o+-Nzyz)Y`9vT6Z4Id>td?QDU7YS4~ac2)#x)YL2 zCe}S43OhhPoe)`oI`CZL4Z8JB^V@gdes(vG)mX8>cJv+zH#c#)jNC75yDy8jL3Tw( z=M$!*!(I5egISLwie5c3BWMxSo=w5su{=I}4Q+bPC)lTy(AnPSR>zaza!qcUhX2r* zEozqenfoV~n)7W+b{p6Kfax>Sr}C&gdEBu37IQ2zZ^qQT#UroeR8&nSz5wLga|tp@ z6U9b8D)-n}^5ogN6{CE(82kV(dbM`)TR1m2x9YP0u?`;WB!xdYQQ&>s9iYvht7jX|B?gsv+QNGe{7~!RK#+P6sCe*leS^ExdYT5arsNR_wOekK6x{fye7e9JQ@b_t26)n6C9sC2HU;u{8HQ=)(0q)V-<)?a9lp|w+FxXhVK(Xp=<;vX(pUZ}HO|o>*_s2=4!m{6dFA*QCp#;HYYboQ@Z=~~ zuLD11{t_Oc!^swLh5UozN-WS8DlT7I_AgKoYQO5H{hS3RFl~nT#Gl)Hv>_ zEvx4)uJG3B(kXBZ>lXi%nfZLX5R`-NMD89y-UmmfcvEki5fLrCfW;A5T6oB{72<6?U_guYLWU zcvxG10LSVuC{O+0hvs%CGd_w>#uI7;8p%?K$!9d`tEKT(JR5jWTP44dZL}KOLh#GP3IV+drRqmUs#^ zCAC*nY98ee8PB(uoFSEEu-WV*LADO~uzh(qJcr4IM-xw**Pd1CHX(oh8$TBGf+GmC zBT~+uViLUkI&IIFJ7ZgpHu4osNTFwSYpD%_cMi+ZdWMU3R$yl%U`6Baa2@zffbDjM z%El68e$@U2rYtH#y?jL+E@vb`$vE<=DKaQvp$$vO?&z7_-@`n0Wc_2dLo_)>P3vr% z2ahxvv1=6P{h;|F-CIgCs2Efz9@#Ii#zGQ>FWu#EEWbOPXJ$Gdbg{_&l9}-XS}?uq z{L2EXgTC_-!L51s@-pA#uQ;;wry9){U|K+DvT!I~E`1XSiyJ9fS?JB71{8TRxYbWC z&o09t?%i9(FY2sx+?eNYZ51Hhb2gN?cf3J+V2R03tF5IK#bkuF!D7s3#(3wa4At)5 zKIvP|yD4MeUim|SZ~gRa|L;QZ9(cJF9FXSIBGt5pepMIY99kETSlMprRUOYWf?q1! zu;qWP$95I5in8GH`;G@FU*U_O_}j~`<`U~3~_vksY^oqeR!5V;qqzGcCdQN@t1@S$$*vlUu>fe_oULdcowNR21Sr*a&uQ7Tl#YBKaOUh)!f;X z;MthA_bTDbm3=X8y!i5Oh_xxLVOG%FSmp?M7a}e#B*7k)7s)$=k3LQC#|CEH?J$qP zwwSvtFWCBcR8W+lh=E`Q!*iW*naRN*F=Id{w7X+RO_UpQLU0P2xx%=nn8Ed{>iI7 z{XwjeI;mTh=-O=+j(A>aQ4rws?(LNVA|8UzP54E_8QSKZ&znk%h|ca=@-HojpObdy zUVPiBJ^OC4&^%Qi{?CE2e-a8ggGIC5E|!_y>z2fR=Z1~&g!~evP8AjUFoUq>J-9r{ zvyYqtN!#Y|O_w*P=jMp2q%;Ow>9%rqGLKN6Fv$bOC+x6Ykj@$+*LJ)^RCw$5ty{u; zywFfh16Le2N;D`nj)0!11VO$jw(S zBd`u%#FU8Oy?qFr&=%XyFXaQgdVB9dvqKPMhEw`vUAt>2AaZ8(MzO?u_SjQ6kWHLd zmlRg-PI}KS8z$xm`w2i-TwEqz9WL2Z#cVw4#$g5hmxjYex4SkJ1kUuc>I*?t2f{-GEk%YREk9#Ik z4o&-~t#=n^Si8eJB7b)(o~hSf5z(qveA^h&4y9g1KAX)eY%dtECk~22+*AGatE`b_sA|+jai> zlqGOkpxHR{r@yuZ%&RyYrte=Htg)Um)pa*L4(Q`?otHz(3XN2=PgomBSBUYx0V451 zlO1=z^QKYwc8qct1!<&P^T8+LmFkn}%B-V6LY5#xr>A|XI~W8i?Zhc7vkBpe@MO^}g^toAdb$;fkpt$A3G%%t{N=+TBGTP{& zyCr|c4?~VSF}5qab4Mz*u2((pLyGZganF9K4;}oy-^Z5XHqDdFkz03X0xJrj73AiL5UqJ&XX7> zG8w9V3oUIJCHmHJP|)bagaS_7L+G-}tk-xaTZsili*I!A!g^-#ID96pa4b8@-*Wfx z@Qurx*RKJEqBtv44%FX&oqVH@4tntEcoLyOsb zX_t!8^06ehs>|*4izWc^L4za_GO`y&+<13aVWoxnL4B?CedosUAC<4QsA%{o9^6Df zft<2E;_Z*mrbB2STD z=Mc>}*;fn|4D*Xek%=o_*lJ~23xx32&KVw}jN8U~duoq)Kpncbx`x%FCAo5G&N5K5 zZ_4GZ5Et5VH*oLq$=rp`SAcpf&gbY~lK$Sdizl@6a;&ch|6zo~B$OQMZYtXDaQZ6f zJ1KGXK7~6sl9IUGWbPCoRN}z2eHwnURuUtQ6F@a1ev?w;axuTEA=!S!fFvlZ zX28iocP~r01^%um@uy5#NdFtlQ$yOf{RHjpvXiMhIbaVH^LOD)kF>yXLD;Zl0y3 zP})qOeCTB*yH#GAQf6yRwq_B^xWSOw`BbMlun;ywYusq|%5SiUT&$mDer8uXcDWbm z$#8~@{NNs$Qt&O64MvKsaWvC}i9pW)7Pb1?5nTADyppqBwXU!{0MY~eBIGN+IXyj{ zRCqgZO;aoPvh>PP`wta!7BVmD_25oXVIc#t>*))#nllPYi62NiaH&Rw)r;<*#uq5% zyixq~;8|kxlE*gp{=QLbj#0uJl`sow9o9O%Q+-wX2^-jS$r#|-LQ z(UmdZpfYnibX&5`sy$oAhYv&O)N{e&AWQwcOeKl*r?lYYC7$`_O0aM6dy&TOyVrK> zGPoAlp<|uz4|_ijXVdZ_Pu4-2)knN{k z-0rCb5&FCK(gt_bA%}+InmsG@l#IPV-W}P86Yr?!vhih$be@PVb1*pGp_(5x~ zh@-$g-=BRMxOC1qFpQ^xS>El8X_^)h&FqRrciDKv6*wW!#!R_QABfM?Fg<-OS)1tT zc^9bF*{&Lx!0Q(h6HAuP`fay{%v;x3N(Za_+VqpKf2b$5e-F{ed(Vi(e2^crR-3#& zI{(&8PLkSr;I$?^Ihya$JcrVr<{l$Pu}rJ@RZwVyp7(^9t;~KNbMjk}sL$>rL*Gib zvxAt5N$c<3+gj!~u1LtpQ+*Y%KvJbq^PgX=@v6O8XI(I=RChi{!a%_=%xjE;0# z!C=?DNuOsl`sYPFd(p~a(?`}31D>Q@oWiju9{-WFqVnVO^RxHUY}V@x9voNh>`i~W zN%<1+fI>2cZ)dtXYx6=G7l5(AxrFob33w2J>+9+HG3VGst<3yIUe)ovW3Hoz8=Sa$ zGv67Ok=IIv{n^{mKP8d^ObfE=%R$RvknE{FeSUxE9#Zk9T!mAHO|MKUHFU?bmW|Zc zF5P-AVM4+}9#l0L3oTilQPR&MGvC~pm1s4IY^tu$ZtgjmIRKSBH{(IjHgND}SYpi7vI*uTLeN6ct=_+4pI;A!Gu~Aq^qUG%$T+L^P{LqJy7+u$cUjoDW zz2&a>F2G3ML>N^QzrP;UNr*ds15Jypj&ja-vtChqHKcC5ziw9m6ApmcJHeFzYkqqN zhrQm9&!*&x51cgVqfya9sejMBj_i<&68lxFA@^_NCoA^bkS28SC#*%AgYaAO(bJ`z zPC=c&g@nuB#`0RCR-A9(*JYLAmvW*ufYEE80_=`?_j6G$S9rG>9X?ytBB72Yo2xj- z+`ylg5Lw(84qy`2q*S^Lz#=4w-wfFA~NnVb-y?P z;TA3C4SeDTk2_+zk3|AGAJB`P-$}N07C)#7+k5apFfy`!Dc;IK=ad8%E`r|#$l@#C z^L#KQ5_jT~uW-7?j~!|s(l&ah+f-n*@-&9Y=$J)yZ>B?^kzRinwOc@yJhkOj+|@@{ zT3HHzjMPa|)14m1XL&t`EHkrRYi4NpcIauI43^=9zZwX1lD%$Uo$tdXXz+Z;7V0{Z zlIBj4Y{*%QtirWvQ@IvY_Z}E}pgTm-=UTCyBbBIsGM!RUiDLeO zNS2SQ&U`H>EL?yYb>W|*yWVqgaq;JnA*d0e<+fkk1`EE3t`DOuUN(vT-Hr+fQ@<-K zv8{N>zt|+G$%MaWFoYiLO(;c$Syo=on{~fUvb?E{lNyJ?_Dw9aY1PWXOtHaSgO{%e z$9nOOx&d9~&tcBCz+f$4x7lIXw=^|r7LS`BpCztueh_|?3lO+_p0@+WJi;VVd1>wd zMK||PNO+T066DG_I4b*Hw{Pwtx)b)bULLEVyk^EhMMdRD1M7rLCLaa*JAD7p*Rs$9 zhAOg-KUrfRGPs(;_%y49GST@1pwP{#_U=U{=K>e`k(VO_h0$%>2)WO7HM3+qC|Ow*{MSFmLYSf1=;tvm3CHEtx_c>Q!-gBe+dZ*ap`qXYmKJ`rLKY= zgbymc!}D(yscjeSsZlpF`j_HPWru86=-|6@6$$V!tPW*i-vXC7M3M&$ZPGG_YUN(B z;M>T_W8eQ19av;K69e}VbCB)#_xH^$EtA1_z$zVU73> zCVy!02Ft8kEjj(?rAma-o5D-YY&zWldaS}$AXx8sZb=v2URuFKN=jY%L-=aZ5|8o0 zYiw)v3Tr>8$@^p4NQ?929>j`7S0vsuJJ4U9A6*FU`0tDr`p_*jlVuRR?(`Q->Lm%I zMn!{y-Kef+b)yHb=TI_C}-GxFU5yJyZH&o?Depu_N{byESPt$A6J$C zLMD6UlZwi>YERCfAc+S*kY<3WRA4cH#dWrbu0o|hbfP}Hyxbho70YJ7O9E3R`FcAh zggHN6Jb<<~9x#>a_x)xP39k5hf~&B6@*!7tZsO0|ZZ2MxvG=h(To>Phxz01>M=pS@ z0T)1lT$NF=g$PfyuLbp`O~$kRYl(XhyakLzaRt^t#r-#U-k%G#qN_rVJw55wGu2@e$7AQG&~FASN(Isz z>Nlzt80hrI64S5ZkgHri@)TJZEvUT5v#Fa-NnMJB(k}o1`ZV~G-kudMY~p{dRv-z$ zqOCEz3zT4A`1#BFw1gSvroFN$T+znI%gY=7`OdAb7^aUeBE#ZQ0~M;<2V&mplAUKG z#W3N^FYm!8wR;{rz`Nk#wvkgUw92>lHhh z0GEgKw(od7GUX2H;%{|^JA6#?0l4wGIJc9Eh${l@-uXq^hW_|*n21u9l=|P4=QFNW z_@}sC4%U?K38BJ;XbV);xLY+~q|00V=sa zZL+YS&Cngn&n!PvLPlm5T!o0Lr^Uf~j7!gnxn;C(uf~NW%SG0=7)A{=Ks6-CW%+kn zUW)&_$02t_(ylZ`s^8|Id>>=mR6p3jpIyNqCGqn<>hpjNt)S8 zwU~(^SQ&)v=@n#?O)}DrJ+7HU^_Ap--47d7A|i?Or(0}J zOE^Tlfz&7(GRcxJu(Kid_UkYoFqeDl8)oz4e>m$2FCvBWj!gO!HkB2|%D!Oc=9=vS zihrtJZd$zre3wd&6glVI{+?l!w>1fc{Kruq*xxJtKoLgvfL`Yjro&jK&fm@Yjv;q2 zL`J-R#d>hi(-)0QdM>fJI8KYozp-OR`T&|Wf4;Ptnw};?wA&Pt)^W2d|12??sUdXg z;n`IAU4y%XKJ6V4`PAZYRT|R2PJ&kHX=!__QTcJfRldzb_wVOb`0Cc8^DLm?0l*>GkdD*2F%rV*5)>hQi1Hx9~9e_Y3(4 zx_|Z>L}?dBe`3CP_Jjr<$Kfku(klk917&P_&H0ziCYNc}_g4U&zPuZnqB71D>}Ya- zPClL2U|h$77pt^;C+XD^)xmP-^~A+fh}AGy^lP^knL@u50H+%A>QlsWk&uw031YkC z#}||^nk@C+A(!9DYC5kSm|=nYX0_v?#z-hb#%4T}k-w6~Q@Q#m`pD^uS6=1iGwZc) z0x6j~B?Z&Y2Pobs#JrvLLqL!V`fzq}W(-Wg08T;6MWTcRb}x3D^&ech&Kqcx z20UJR-BX_Un#LoMUpf?a`vYj7qoPWgc3v67SBbUkY+=_3s^m&MZ-xF9h(>=r%V_Vzq4A zX6X$f-3B?38n(;G>fEGVd2jn01~uNwAc%wbKB$jBbtskdMzqb$)HP==fHMj&LSl1E zw&6m&evBpKkgZRbjA8pZKJ$%7n~ql7_ok&~gvH#Ut*omM_@CxI{Oavi#s?{+veqMl-Y zK$dEBcHn(WNs`;6GI+K%_X~oP40`YF*{!Xv;kU8Tm!k`D9A!_usvlG3aL5^g|k+ZgRZl+#kkCxK+O;1Yu)+N3ziRH?j zNBs*hQGLX8;N=N<{VujM>IpmiVjmo$qjzj&Tw}kapeQgNqc7PS6^40}XnXq`&NV88 zj&qs~nUf0!=Eq3x=*`U1voL+*FHbv=h!B2_DY$TD zZhpkqSIyJH@}$L(F3gp~f9ig)#cAuU;XGw4L1fhbJ?{qayq_sUj@##CI+549lL@K( z5id=P)|=**i2%LCgk~UMQB7i&&wx=7VXeDU5t#iB#8RUvDU2Y~H_9d1jJx-M`mb@4 z8xN%sK@b!R1-E*9JRuk|zW^r5t}0e3dVXFD@f!(6vr^yp-`nqMY;J93IV|nK?Y=`H zw;_jDG|u^s#qr}83zJ*~&K^>uMlfQs`Y@8S91{?Uv%|>;nkHb-ptS1ybDKM1y!T0A z0L@+I*qyZM0kn#l+-Sk(4zw87^=dw|m=j^FF>%twMhzMtyW3|>x+Cy%EmATh_PLLw zzGy!!@t4!y7j|+{PcGf zCCS}V6?g1p8>C4nV_Nf7G4Y|J4OuSNVP%gr~sC5&dbF*H#bb}<3Lwd!E{A}VwNWAH&*?ER4gOZ$VVle5Lb=+0P%SXiSKn9Xn< zZ%;@{%d`LFOS1h*^49N12W7A0Y2Tk7#Z6TadQ6$zxDOQLr>kK-Qfv-$eT%$<$3d%) ztv*+NdB&ahxr4(@9I+IvGb}F9m?MqbV5Y&gz6o`bBKsa!t@uYnv%Jm;eE*k>PDJ%@ z@68jRU(CpY|J_Yr+1Vr3YHjv8TzY%Xtn_x)%@Y23{+W2!7v7$A00yHi)C*Xe{+;5>lUr zcvGKGfg1#uZC#qQxz@csX+5!J<6^k44()h*Om$=9Ie#c@(%kcEt|OpBY?DB=W^(;; zp}C#aoYzX?0w6wfb`P%A0hPn};BmTXskHr|kw*=QPwNr4Mp(z5VINBREJf5KE8huL z{2WP6=ZPah7~gEQ7#uQ7%^#b2it39lQlT)X+%}Sb|2a}}c4w^}D!g`2PV$x{7rNhr zSs`1oG;}xV)1Q;wG>B^fltum1@)B&5g-7!-zOg5`9pfV6-b!WxCGh%wabDap)yxsD zcEqdg_Oy6tptd~IrOO=ZY|KzT(ld}QXjft~A)jUR+WnIgT3AX#V!Gw?6XIxpe;R5{4@N;RR9pFTL%}y!R)Qs zJ2goFVF77MyqZYc;@Oit%j(jet)@70_cHu^wAiDBE#T6RyP@bl}=Zyza?qV`X95Rd_p3EQC(*v!3~5A9|cW?=WMv;=6v=GNE!Ws>R?fAkEATj@`|`aw8RI@O2r-}sM&1PKtV%ZfLJ$=$?25D60>J8^DLNxkeWcRP|0`V zedH}lOocp^+#{Qzmsvw17f%U=+uu;k*SAPzwCg!w=#Zn?nBVS^a7q@Vx;BG6Xgv{U zd8oYDz%;s>+oUcT2c387Dmq3gr3Um8MEg6OrC~>Nxi}iw9NhTBFLex~QP2=W)IClC zS=MIVLd!3WD%Nc*7C8gHx>GHhC5o+WUC6xNDwzTl3h)gqv(@0T48J4Rgk$4{RJ6`t zT@sEhA240}NKcu_Nd88wrTba$&mJ9>%iq_WA{F*g4Mu{(WrXVIqtJw+KT$)Lv<2F) z)KOqq>)imq2S>Uc%i?lD|683(Op3ob@99_yzf5_nUPIu?|1!1lr^u&#mjGZaa0}uHBTRA>c(s zyyD_ce}8f|k*BWs!K%b)rnX@O)w(z{E;nSnXjc!7I5H54!hs63VOvyQw7aK!>1<$! zDH=Z`AS8T^d z%j22?u(T){%w126Wz5v-bl;ZuX%1pr9`ti1Kcz`^iH!(PP{&4cUrBU|NIpcYZGIje zpy|-RUuPyw-q9{1I(`$>o%?>52b&Ah2{$UeD1TrN4^`(6^;K(3M$L5S*_0A_o(Q1Z z#2)d4v`J;kmQ|J~g>?ME3!vM0Tu(7iH0YoF?PbhYub%~l=@3))c3qe`y#4%n7y>qt zCM)wJTxBaJpx}GQm!{OTG);)ao9A9V@fk|3gy11q!W*CA{w#G9eE4JcgHrv=iIXC~I*E)A*b}_U` zvUV+mH5ZspjZ^ikJtbuSQ9A7$KbYa7GD#PCSSI9eInWAH_Yrz*dC`%e$A*1@@mhZ^ zXJZ2#?l337zSu;~ag7{yH(|Al-iSubKL^>K&E@OY!xXA7j%jLM5xNqm%Tn!`+qFzh z5$4DTczSZ$G>&WR%=&_C_0+T`BP-K&d-d~uuV(kJUy;0@5DDpa8t}#D^zZ$eCxs0& zz3FBYeelHC*b5R3x{a)A-9q8u>Uis#e_&fT&djoyMcVMN_&`;uqu1qlly=6GDUE0j4chSqe^%oG4-~+d%q2-$0=8%G#=8U`h-%Ujc{T=Bq9xT!r zZRIxMUsGaXdHk_>db}B4qshe6st=X&xGG?0R4{*BvNP&8W}JJRy-ybWz5&`y%B!@| zj-0;HOq>g1w220hncnnR>yJc0(*Ts+C@J(%tzaPGiU`{E4-D+A;~9Cvk`ycDcAqZw z$epcVKIy-PZ*q@5h(pQz+>(NN3waR=Yno2N7l| zBmVnuu^xL=o#)*KVv5)JZK~FnGF0JTuGLz@MIdryZuePGlI!dxKC>z5@u~oxHLem3 zS-Td!xyj6<_me6(Oop=2D=~})9zH%CnJi=$mU&eIUx&0PXqmkC8i{JNivO8wWzb=J zvma?`ZT&$(MRAKYtOk`ARpderiYqOtubDODn`O_~c|+!idcR)Xe>&9ac=HXg_W71$ zGR=~4e2e{(7EcYlJ$-29!$K!xrE#qKaq0DM&A42c!5K#qe~gziby1NLkwJut71j?S{@w^sCZ^bS4AbAf zUB*?kN^EckL7DRmZuJYUuU1>q6L|c|Oq-@X9gH}|C0GC`uH5P2!5{Svq4D(NDDW#9 z4S-G?s5FH#Ed07WxjNNT$${C*3awSPc!K2FO4Yw7yPg*-b$#8_K3lI$eDGl7 zzv?h2uboI#7o>XKOHum3e|hsWb(!Dgi?mGUJlvLM>do?9G%C$U2aJX|5*ix9a**)2 zm8@vu&;H+s%-6U#EKo6t5B%iCtr7M5p&#PIV^bLF9Kw0FZ%6;wf|-A`Pf-;l8KRCU^c%`WIr1;UCYd5HXS#dqx9WbmsY;;|EN04sI1mDS}P(b zlF}%lNC*NFQZFstCEXyUv~(#5D4o&`0@4D~B`qZlQqt1hb?$e6XN)t>569U1$95}g zt>?L8&THoVWCdtPt4gf}u5uW&Zq4u?EugarTWay%EOZA#l0e8G!x3U7TLhZlAM6-k zdUvjTBW7IJ^zSXo^^fqZ3XX#GK)HbX322@H=s3x!PEy&TuD zE^c?UFQ(aGdji$=P~CCVlziXf_0@LYdCP1_1hvHD%J{B2BF!c4#5SKi?%4UMEc<@V z0yT`Fz|P)o>ZAEbCMdEA9Cy(XFS^u2)p@ozJ8zkjZy>`%0UOBL*Vk8|U6x>7m>B-f zo;r5aQ)<}XrnA;9PU+>@clWVSY4&*7n39UDk1P#-I5nZsmmu&~(Byh>I8{}Wn3aF- zdKeRX7X#zlQQ7|%8DEiBgT`S<>WK#w(%lI3JC-A5KUu4v+7Ud_U)YT`{o;jpxVI<5 z9IFzY7#d_Y!qgJDH@JIvn73Oo%LFhP0A9U@UrTIZ4=~Z766t^j1pXo&z$AqDH8z)> zzhpS=OZGgs(6J2m`&x#rE`+jImw{hkx6XG9?VvILiv|=OfYcg-^^tT3tfU8O&2XG3 z1%o9dqcHmAU|72uRl9Rw%c9>B9ngR0wC?^2 z*uOs7?~V-Iggk_-MOCt6kI0O9BU~|<9+Dvt1ok{PoV3(EL=Yv`mn0+2 z5YBslEb^Z(J8c7WX;X0p<1z#^dYRS+H@Nz(+6JsJ7($4Y2*7GDR6OQOrKl4w zyjHPr$H(vL7W%;RXTd>A0VNLh9ks&UY=QxhQUF6~m}~j}=}Vy`E)*@-VqM+4vs2vS zzTMCgtM4K2;lT%z=AE4#%i`&_Hb1#UFT?q)t|Zz$i2kg=RDF@`GHd~)~SA!)u5=Zcgpz^HnuK5gMh_Te4G;nWkp7BKXZGHvwRDo9Y zcUfF+rw#5S@>-$%1_gC8*|=a{d7FzQ9Mig9_I|$oSe^c9?sxxiRZ@~b>_B^@=cx1t zVK};^k`(_wES7G6xi4>*d=^|ukd$L^k$3==RiLveenwaXNktG-qE|X>RbHH3-6$r_XW#8J3=VC>$#n>+0h zf#5bCAqH3Q&;GFh9>GhEb;JQu0uwZ9ojvi%Oop;74pV2QCj4U9rTnHLXvynf>cqP3@qED(zE|juqb^*1(Q%e{;>|^PL&R`R?)WHvmthRdeL)6Du<$OEI83o5 zo$I?n#63&t0TkbM9RX^~x;H1mZMXbT{xIS1bO|9w2!H$-OQa+JePe4h015uxk7p<4 z-FWnUF9h^dw?njXO&P}vXzlN_MA$7n!A@!5py2+{vmTL^G$WUmigQ=0%Us8EH+L2# zrk?uj;_ZC@MynC03S9<5n5j11iT>2aSxF7!GcmSeG(j)uUfRJNymjUVEg0~~3$!W% zKemdhN)v8QRvN=d9wY`M2OV@sYs58oUKr5&fzyFpZAB@VMMlMj)hDum7+HXYJX_Y} zfI4gkrWzRo(Q=G}_KSBwzuJK)zjv5${EXN`yU;WPyHLoq^Y7HekPE0=Vq#w*ZPKhp zi`1P{7kOiL&z+bXi{X%M>ora+U7{`ZnkM6QDyYHgpFV?p#MAkF8(3aT8D#cxbH^kR zGck8Qo?BCbdFI~Wz5ZRm0gV1TzZ!s)3sOP5$6WK)=}!B?tN;8*(lWU(Ig9$_Jua7s zF&}UijLuy51BnnhPGr*l5gwHo6ja6zYspOS>)LMYlQOTfRl2W@2;WboHW?Q$f4uLt ze8hBy`BaJS_v@S(0ylP2mox_nrH%eNJa8U_^OniK--hO%WXg?0nVlvyh^Y*E zqq2ljtzg)P0{brFE{cR&LrbN8uL%SUR(z-MZEgYvNL-`ABlv?Fa3tKkncYs2E%F(Y z5o>L1VYh?U;o{^js0?LGXFlm<3zut#KYew=Vg1rJ=PKK*jlEcZ@#yMB-Qn^&IGVq| z>DPP9`9LlIw(o$fc|Yrk{}(|tPyyI=R4S7=e;LY=m$aBeF1Myx0^(@d z*zWs@2m|F0YOCSKZ({}WIY@v8{DwxQ8en2Kg01GsnVMb&7?CvV&Sx+m@~zELj@~5R zrh+;|^Yg$HeMIP#Rx1S1{DWPwz6;F=NNGZodGS+?({|r?L|i6FpGm-_$f&)7zhMCx zITDr}Vj2Wu$hcz&v6d4zC4$pWNJu~0HzxqW(s+OZA8_Gexk>)WudB;*Bu93YG~S&2 zA?(2EaQF{!v9Yl$&StJv0Xo1DWd7mJkTq&K{j~#A;N#_a5qQhnBJax`#B{$na~2^G zvz~2`gAg*H7(mYEu%+c?qb{H@nAHsCcbAwoGG}Rz?$(fzw4A^Rj_){QG>~}ulOvQ_^Vvr zNaBb8_Kj1FPj{}+%K!!hsP9*T#m#R^Gn}4H5WXOKy>l=f zX;&19pckKog#}57I5ZMlwU|-oBY}jBaYsG-$UZo~V+?=B69e1Y@mEM$92PVtVqL^f z!c>5iu>b^+%q9s>O5wHr!9-R zypqz&V5$j^j1(DK#zS=?{j4sz&!GRn{T;Qu|GUR5Nwu-vk;q#rOKn;X;zreL!$3V% zM9xw-TpH1gA7 z&VfXeY{K6l+dG8WoEfaRG?dZ~3j$z6)qY8#BGGu-MSG=$HFB1nBk%@!Lv^vKZ+i0==i7@ysZ1Fo#|xzQ!!3PyoVG6 zznJ}Prw}~cLo!!EpvwiZ)VD@vGuj>$D%i#_b@;Mw{K4Pif zec`w^tW~&kWmDpLj$KY6Jbc$e&SO~kKC?AldAG}A;CDa5C40hCo-T+!Tw0~08*}?H z1gDUaCI6kbT6RCesqPHF841`pkqoYpC2$&X7F0Cfc%Im+@r(#WhNq{e<8L36Ssm67 zjbJk`X6x6kum3M6(u?Ny%y9(hBt98;DBS<;_M8Ii&#lLtrHl8%+Pi$;f4Nk$nARvU zze_D1oCf|Y@8ig8P9Lh@1)A)jmr|SCN8YkvOrTAZ!ntVSjZQ%jK)|}x7`L4pb&Eu> z$@-UGZ>h5ey<#BGtGbtgz;2P@aCQb;&fXjB9tAq3Nl0_Q^Nfe}hF&1#o8LtN{o~?i zn})>!2}-dmK?xFQj18WrsWK?hZ(a0X0;E)1~xuO@YK39k6|;na$Vd^y8Ic@ zwWuNM_T4&}?(~;{$V(LDkg~9-%iwv5XNPUckO|&d?N2VU5b;?Aj03E(heu{c( z;^(q52MZ=t2=y^xyJ@T>;G%x16~#l};b}w5 z&JC5;GHf~kru27y9vVx@YJ;Z&0x4}l#AO~!414zbxTwhFu`of-_?x%TR7pQVdWY%d z4n92o=({!W-C70=ikt<#RRy8PsXF*zUDeYQII23KZ{FErDS^i_*1nPQGfW?n1+B} zBiiFpnszzQV30!+G3#{xY?FZ$_gkXF3@=^=U>dCr=e-Uk`frwCFL=I9LD0~Tj8M7w zDKh1&4a$C*v%N1@3TV;g3Gm#jZdd#r-(867U2b%rIL?M2Or|12IY&5Ay2D)8({|tH zS4NvmiN>>vhOa;j%LxB$qSL6jRCVxXMe$eoU^7ijWS0q`I0tJS->i)l>ofnGf!rZ- zgyUT8#Jwi=hu5JkI~F6U4r5WIf~%|)q%X*l<<(a&pp~KJXUD%5f6chQl0EZSaDnqf zVL+PQp6FLa6cH&(GcP$Y>xl>M$2A`No6ax1rmu-0OFf;Q4o}w$?MA3|L;2=00XbT| z(B(4!T}&$pmr3Dai{JiDO*H_Gs2v^48nKjdYg%W#u09Eo(*LNI-}bee`szfUfdL<) z73Q(6L=D+v^IDma14-}TjNu0+(>2O-7a8>Ty-m676XU_kI#{cqFK}@nb6}}Y_Ks3P zqqxKN&3MeA_VGZz0<_lJ$2rC4l|MhI7wJ5rp;=Psr$+XRUCH4n+vo3r@7P`3fPxy0 z-A5Su^wgfo0N;v!^I@r$)hjR8E0#&;zf?t6A$Z@O3a#iC^L+j+HC5x7-?IR&0>EfN zHg4F6Wnsh%IIURU{=-#9YCI4XKUu{l^0JaT7~}y!RXF2|@miNJu6&1oEQYn5AJ%&_ zV$)M~n!NUs0I6TGp+sK_q901nHw*W#cL824NiIlPlsXYSa(3RUBB8GDlkkq_Nd~dJ zwPUALpwVFKZtln$gK0h~lr*5|{~TPk|0)!!rvhza5;l|PsU8Q9cw)ow>m6CE@0P;2 zPAw>2yTjRbqoY!)+7^}A%nS+a1Y4~>Sy~tgtIyoa09!{;Q5Jg@Y#wbO^Gu6QY=zny`*IUu>#$*@#I7&rF;Nt1CD9V^6i z0_+e5RFDVouwE}LEDUG5*12(krCs0Sil?-ctE$S8dCSmh$6}nQ!k1lKS0GPaA(CndWTzh-Eby`OB!ALkzMXV!IYUI+FJJ_2%^?9Nt1Y zk22Re$U=fspGWA{9?#F?i<_Shk+cn%yU)# z>q*J&e)P-|oi11$f5L8M2V-4zu9|0VjC^}Td&S~Um6Am>nUrROfWVW*EOkT?JqvlY zY*Tl45Rb$1^UFeKMN9tOH-B&>xb(rGv|7o$*XK@I@@~Q&( zaj!MH!v*Z0`IpBaOEud68sf3rM*K{>AyOtb?8?naziE0T#w=2{+J zhK-rpFkUNkbrOJ0l3?J*(R3=jd(68)wYA5@(Nd=X%dia}k>76qbp#Z-U& z<{0bXY|byof4@KUCVI_SR1FOeyPFzK9!pP{VlycF9#%;D{; zJ6qo7u5^Fin#|O-`ZGP?c38%Ay?vX2fan7i%y+3?K55dG38UcuH(p8&{p3qvZ0t~n z8EoTy%9J=&d(#N3th$yz-#u5bVSc}RRP@#8!Orr*>c))2`*vO0zkpukP3A}0xoau^ zt9SpI-glq0w6w;os{o{I;R=z}bS_}PnW#kn0=Q_j`=f+xMdTfbItM>v_F{5~oNGQ< zy$)fImXeYJ!Amf-5|60aZ@D87ZU-*mQuuU(a0Ov7?u1et-mz)8q(F{uYXf~XkomNB z32^Y^flN5jrruZmGW28lnzpI@F|Xm`YsdME&Rqf*Ay7=|go_PUM0uQa z$sz$KusHfw_;B;zzfMp$0pEHI8IF8W9uw$?x{}%sDqSH);)wd?){z;!5hN30wuQFHUy7Wqw~i$X4!>p!5_SZj%&9+Qp_m6Kra^ zRl9qdLur38jt7ci(&x6gn}3|M6jB?Iv=-npLd4DeB;SPSdo|uF8XE7D)t?`w+ysf$ z@SjL6T4@A2iq^aA-S8Yq$$rB>$l2d79&l<6N}A*j>KTtRX-gJEvx%w zxuz1m$wO}2zczYyn@Cz#n4BvLBK0|$GpXL6fCp*TLFiJAUZHK>Y8fMzr!chYt{WX0 ziOH5BVzoRV>DxZRYb?QbLE{vsjg3l;5ZbH2CwM*ew{X?wFOc6?+0F814ORVWSHQ*; zG!hu3&rK%b9BHJmu%=SnLlVYoSan+*+2}w7Xr8-#DHA=t!QtA-Gp)Lh54fzU?yx0r zTJ{yYmCbu_* zg20Oqhc^OkJZX5a?%YV4lH#r;1QxSF%a7OAB=HAgqLf#pAqIad#`FpYVAxdw_I}s1 z)mh)aKoK6ye#3=<5oCAp=Dqm3yrt#M98-^0bQpQe7*N%1`x5rOE}Qthj@21s3A(LE zD}TD|jX6S#P|Mf*(_g-UrTbUI7XNaKkw~mb9IC*}{0*iQ&vOPXbaXNfbHzs`*!XB2T_wbXkP8QZ~Ff|viEBFuYWB-#+WC8u@VK2?1f;$VTz*tk6u&pCjT-8 z+#@YI7|R}|j!T{WTTlqMsK2v*WE-FMK-y{10|Xkx15rHt%j)B3UmaHZz!ez3Ja@A- zMW;U^)y&pq$z7CEPr4*F;r9N@9uz!VBsY7dxagb9mU(#EJe7dw|Q9!{Y=W$rAp zP4YHJL`JIcKnu>V>ntmanat}vH^MbTOQSEJ{Pl9jYB*?JiZ{jWj0ZUC)D`uovAALp zz(#?afHhwBm`@-6vaTiW&Vxk{S@_L#BMK(fONmxk!SEp6A=HJ{+_}FJx4ZQYCHZaV zcca|xZK?cEw2OL^3I{1XQ{1&tCqd{{9=3#LoIRpey$dU^7_&1huOEZE!RVq@>Mwy% zK3?%))(STu79|%b!Uo+I*K_$r;K^vbB{Wkc2|*K85-n1Eq(aX)-R6X29h~+ZISRai zM97pe2NawHhKb(L2zFyL?q^$zh=9QISME$;8XwT|JeO1=0NaLgG78fEFiekZQtPhH z*7-P0a7zQ!@H`D@Af7|cEi~I=`?CwGzcFK9x^us^$KGy-_p$ODT~J%nDI|ZDk7DjL zi6Q>H_huYBh~Bs@kZ>vGyl}ifzKmFL5|L?VD;|Eg6V-ewixv2NDD?bMx)ZU&iJQm2 z`ZCN5%f;f`XGk-J`#~|=3jvYM0NDlFO@01)ALI+Pb_R6ya1ELM4dU=L;J8ZPymMz; zXn$+LV&a&zsEuZShdNW*olfS;70g|r63f=E-1<0dBh(@;cc(}_6*Am*Q?zaCF9w4? z)jTVr)Cnl`QFA%9*q!37`Je}_4ww!sSN0DM7OPiM7IxBob?Wc8O|a*1gT>d~d3$m0 zk*6ZTR8zP|Xid@1ssuZ?`|>-BIi@bbRQkX=o=YZzK1cI$PXY$_4z_;A7e^oYpQE6X zPJl0uCrRZ?ujMV_8^S`V$v%Hd=T+T+VexAq2C&sPARwsYy_e@FL_znhc3tbZ)GD1^*h8#b=A2#td3g2 z+s*QKFP(5)6fd4iQ80_b#`EH46s_Eu!qkVxcdPe_@(GWdb{IOIs*-K+uOnp|K=lvr zUMh#nyQ+#CYnULjHHX^rg$;gBYax zS5^Zr-oub5Jo1a!`c0O!A1saTnU06)Qe$>Wvphkd(PDEu_-DBiJ*5vWC=#AM!%%X; z4|0m2u8~2x9~I(y@5^_OHfgW8Lw+2=i=EVjMzG=bBwyky$hrIP=L@#f3p18)d1=U@ zeYergc>W?3Vh>ntwvrfzobw;wL4n$nInRsvR2_k|ZL^NuS?4JoOiTl_Aeb>a8@z}- zgRI9d73u>c8`BL&i6c{OW5Po(89fE_mGs>_fa<>76Wy?o~Z-2P<3dEj@3^5Q1Pv8xE4YzuFlo6dW zz2XjYj?(KU;m}mRTPXC4Y_j6`MP4E1GmdZLS%Rcv$Un@H+wEd5_I$XF1O|Z?KlutI zybDcs9xt^XsndJw`i1~o=-nv~i7Zi1o2!Ow+mg?I)xFwk(hADh-)dEy=AXT7r3lTV z8a@r@MtNLb;$&rg-5UxMR6DgXuh7ygcX?`kvzGz0#v2}Bb62eZ=$#@_w!J}tPs)F$ zgiRsfBU{wo#`4f?`|J)IkDuo5BCWWRV%ADmo&uz!NUZb`I&h#Wdt>6y$VMk7|>flo@by$&yTwiGnTPzYG7nc#Pz9+|xuw!_nVrjdJ zm1nP0KkCU{eYL#KvFY&9qMKy0k!{NImZ}nY2=@4g^HmN!*SYWfQWB22}Vd*B>LOx1Y6LZ~F8n0n zy15~po#f?tw)5vr@r+VXI^aQm*V=fCxXZUz$hR@+V+3J5WuX6i);Cdg&Xr~t#tI zK|`5lHp8KMADt)y+6U@;_DwTGAJD0#ch|`EQ%nOEbCSO?XT&la0P`W@DvV;MMf#0> z4*iWyP#ob!lc_p|#s%KPWfG_OH}x6fV7@dpHIaGicj+$xL3g2hdu7ma@y$pmf9c-K zp0-nNx3RWbL-!<4Upy<$@AJixB(8TL)&{R7XO0M0YpVjH0rMw`=8fs>mk*vUzB)*6 zRL`K_gW3MRH>JlNd&JZ_hw$r_PYv|3NsHaN1Uu7}`q!%k_{fXyq7r1E3;^=8?13W% z&}h9)Gt{5XaQFhtoN+UHrAIgOHv~MAZlR;^!GDGS;DO9yTM!I#Ah9?Y`b&^ae(4*6 zxgXgJ%$1`UGJ?pmsiIt!SPTl<)U|FrPo`f6rYWNi+jj^UrTF-J}RFlmPXHAbNV+dv603_8aJ5X!V?l z>_rxZyPx0B`Ee;Uc{K#V-;%*RAAUC9T?t=?RJ?Mnj_XUwo!r^z14gofNgD`Lo|($6p@@&MNW;=CK-sZGCH5-=#33j z-S&SJ1xmF-aMa9=pYk893%&Fc8P??ayiOUbpZF=l)8UgZmOMQ4== z9#1(OtdE7kg;Mf*-3ddbcy4*QZ-GUyd%Vfh5p&pguZF|VAaBG7E9h3c0{5*X;eenqSVcYx*m5i zw?C;H7|UPm-R+KLGJ@vzM&044w#WXZ0%|#Fps(3;pBoG@WbW<=K)B&J*DZC%5B(*A}*+I=VW)ZqF(OsNesK0dAd!SZ}s2{hsL-{D*6}qpv+;7Va}| zJz-kL)#kLxf?TIpp&>y*3$@z~#=SLI|FF=~7OTXzQ}|tuCd?pX=VeIYHK-D^oKqWg z0_Cz+-_t4Pc5i=8gr34GS+4SkNu$M| z%#zeGHWmv>Lcqt2=wA955U{YeCatPU5Jl;pG+vdMn_M3bx()V!zs=}WI>rK0y)Hfg z4(rNK9VuA2-&G&w1QxUEiL#ZncYEKS|3jl^U~bRRwAmZ7o+F-#cf;fV5XrF>JgM|{ zw!&{9lk)ZDnPcvVr9U>gG$dMW_n*9<`e4V%i{yrG>U;H<8^3hp1{Rdc|XdBaRC@Ay~mOFSVVY@zMtvesgaXw+8uGS|YCSD+a zsI$opE?Z?|Y(OmOFI7Q*!@3utL_lKY!m%oAtC$(7clfk&-1!XE-5=X{)OmKVlR9j8 zm?k**#^(mvEo_p z4BOoQ23wOL*|hJsx3?d!aL4gtI)~w3BE(s^@mm%?DEc5LRqI&FvGb*C>0~&lNq+s; zfag9kst<}v6y!)D`&GVLPckA5x^bgYEjT~^1v;WuZpql@>%GQUxZ!e}YiX~6Fn0sk zXqc@a{g#&_{!VgyV7~aH2?}krwu)S2O(~Utk%`(|sUt?Ex({1jIrKEeylUE1&;S`Ru)c<~kQ(bhduRm$`KUf11HkV+r`0JG;6b@$kfd@D2F8 zOsU2E56$)f<3>}Co%4o{C!bc(9+p|em+#<6YSuq46D`dg~s)pq1 zx8gGMd3??0nQDS5Hl!kaL9caYkrU(reVBOE?d>zB=cMmU=tO~{u9VBcvB4Sn&-YDr z-MaSFEo#6TMvx|oJ1G;KWjq9>9kw(w*9OrZM#++#e2ET81+1lAyDkAvqRhoE&I+PW z1TWE`ZiCbWRo*e6kjjcXG2r)792%HOXvcBqWsRnMM=9_CHUQ;VKcxSc{JCE>u^}{LRZr5y^ad?Ldz_ z%|0(WgAcOW3}!nZGZFog-KnXaz8uw1^l zyu5qo4%KD*ZJoWyq=R>PmD%S;-rn<}+;)_xcNoW2@n%z3{2gnenZUxspM^&P}W zjTE;<38PeLi zoS?&h615;e7x);qlOTtIq2~4(ZL`fZ9XKOCLN7KsnfU0Xzangnw6se9I}Ag%uCI-x zx7xwW-E|4a#BEy`TYYxM@fiU$@HJ9U4be6H2c)H?q*LhS^kCUfj zJjuUnVx~tp36>02=6yx1^zTb19%?Y5P`#)35t5o@v0=HdN_HO~|0d++-10Ghgjgk` z_<+UevU0zsPWHfcwcKVlWoO4$;LHHcrr{9V-$&;{+o^3Je^JNSPLK8}aaaVtLqblD zfG`rcv+~=VgMgUOpuzEWDr6qq3lz$;Ycd*)ayWmyIu@GIDJQY6iC)$vWL`Od`cXVu zGoV6_(g?foHHb0H)mRBN_V_&*A=DJTAgjYChygrgo7&Xx!q&9 zpPKu+(794+J5B73=55$F<5y1SyNfl-&dkU-=)J$3_9wvSKk2kVTeq*lw{|fjEkhf- zfIs!H|GmEsZwWYe=#WTQ3PJ=z65^9B3+sl^$ z&tLzFW+;>Pa)6p0nL<&d6Cz&ZB$W4~MKQYHo&72--4}hojW~7TLeT2T|NPIN2!I$K zufx0o>MED>OC0)Nt~Uy`C#Egqb^PhIx;{7hNX5PsI?2UY8CZIq7T#@F{8eKDIdLd= zy%+1m@}z1S7d%u9(~kIJc=;3W&0j3!j%29i!{G4~p!aAyAWBV^_GS45ZsC_f-L_Ak z?r8lm2RJLbZ9cx1;aU}a;8f^TKxHf)kf~AsLO4<@%(TM~Wk{TJg!Pm*+TXzs>KivSFihH4b(VG9c>6$~&^onM@LGj?*Wvv9>@GJ ztX^(Lrz~)q0mkXj54ksesndSYt4Yh9>KbJhz0c~rJXo7p2%XFrp#}XRJW`%_iv)+- z0>PQuy0}8ws(4emjBS1sIsy$ohB#Pevork2c$|HAt!G5bz1r`!h4zuFpDscMkx8tj zsUJ2I-(Lr*Hm3VSE%)5=z&tdWFCT2Z8lJ-WiiO+<$RU74wSjsE zgf)e3Z?$8pgKIxqh7%L*y6F?Z)X|sx{rB&abhb$T$UOW5c&ona-#XY>T)&eM1G0_S zzVm?q%J%|^jOVe2zhn5LEIElBE>FZUqKbD00N@LdQ~5 z+avw$yb#@s7co`{C*0o!=nM!6QP|%e=4~YJS`1_1+S=|4XRE$C;Q@Dp z$4|s}hhuACnSQ(Id2$?3;|PPtZHk7I4P%sP)IFPrR9sG!Mc;L1+|M25Q@Fh(ChjHk zzN2EfvaGnADx1$x%zyO>wV-jy+_#e{9QHA*D{aXL`2O)#}K z%yM}N)eUIAQ`$W#=oomv0FY>drH=Q%34{vLT|ovK0nNsuCx@rw=}WDXwMN@>VZD~w z&zVAh*2z9hs=xb&t6(bDTZy2Wu$tIGiB^G+bt!bFAHH8lNPAixq(LT(z;H{E;T1VR6IPTwNfn!Q?xxzC0r3LV?BShA=N zd7T(;gGK5EwM6JMt{h0Gg(l%(?Uie>_Ivn^jedMWeX%9)221F;5n@7~od?2p_4 zNt#jj5&2@P#Dbo%IO=-=mY|C&ncO85>qG6wQH&*V!6vPGX;joV2Q0-F7X1}8-fSdI z?_$2`O{t#*uSD+AvO0h+Y~;OzE__5_sBxE$^RfEmBlQWxQR2r5AqO5M2r&ECvh+2R zg@_~J-VEq0N%dsW!|^AF`;b0gV2bbRdJ6W}xw+Y-HkmKGaNVRSzw#Jbmj_a#F}~PF zGT%4yd?#C=M z&b(9Ko&Y7J{mA?Jx;mHDCH3m`@6_BGbbEpuB+#Ji2v+0eGl!6Fd#f{#uY$oU_AyI| z*QFch+Y`T@g11ThN&mQB^MdA+o`Pb;`$LhmsVOad&_L>)QYC|+X}|@yo3O?t`CeCy zM2n=0F8%dsQ}j^SrmOY_&@BKO4{tI4u6U!4cC_9-I-OtY=y@mXOb+kkEPfn@vJHOa zvDweHF=}RJ?2ya{T}mBQu5NThWq1f2LDXuWo=Np;PixAQN4-1PR-Z>q8JUt^k%CHg zv4g_wdd~Rcas0WBg!OH#h3@qUB$@mn_A&lezRq}Y?Jl{GuqEqWsr~}|y z_#C#E!+hV2NMJ)NW)E}z(1$!C;NIJE-9%1=PmgN^8wjPYUH~o)s!Bq&6)WIkrh4o> zl?W?b_`}Kw``cdA=I)`W2x^L&%(84}Bd`+yUTwzH1})xh#WrsUHzt_~Xdb6eS-CAX zHGi0}CL`2!lBDxT*r0v~;+Z1#`sr+SFD*Z3B4NC2Xl5oTj)(vm)@%9_7gd#k(9h2g zQ0gWzS@GAjTuW#e)dk`~!ctq_U=M=m6t+!pftI^6b>%oO{G$wn$QhZ&kVlMu%W{b& zmP;7C&a2YxA(DH_HuGdNL}8}MfRnyaqA9!BAr|4}M(juWxf2gQ<$}F>9CF@P*!5cc zcHjegZgb%1G;!hiws2-%Rd~>Pqv_UEb=`g+qT+~W>MrDAL1z@v6_Y(p$dI9E`J6QH zd17I9ajiO#ui8f1{D!OchixV*2kk)9a+{Rv-=)XWO31c4(1(!}9iS+MM@I)sXJ;7) z9A$qf-@rNKGVM$1GE4RTEVAzJ9%YRrk`fY^TpzePZIJc0f;ADyAK~f)DZBEmI<=v` z>eH48)vDpUfU5>-eTe-BXKOtQ>Dsk^t2ank(yrhvn*#E)9Es|4k@-gW;6Zl)rB^3} zxw^s_OcNFcyvbWdE6CIy@CuvsZzc2nuD*rg2f+7`KGZkf6VecSyeeow70aSuWS_FQ zXoAeAGchp%tvPfCzpBe}z-((VY{!w#+#q+$hA`FRM1YvOAL(hU)$^A7H;{?0A!kA( z8Y@712L;9s?(XgoEC?IAxO+noTAr?`rZ=ZiJ|P(*Abf1C3kJQ%a0!D}vCMqn@ek{1 zt=En&u#N;6&OPF12K`0k!4!iyl<7B|jcM!ua2of1Bixv+Bo-7Dta-O3d9-QHm*Cu7 zyzqVyG$mgZ=g39_YdqVPl2ZMOE4i$#tzR{4gCt0))@6ZA(XRCQ4X_|tKVs7S{*FgH zv-B(TsRA;b^6qD;afG{4T$IMCkgyP~dU&!IJ}^{^x9hhBCMPG^oqEg%ZBnwUsPccZ z!ZvH+C-cJ%4nCMr9bcq)XG7lY?;pD8Gl{!+6XHxWb2#$^<0&ucSlIU>BuK&b(AGwy ziGbD6a#Xzj-{}mxUWo=tAyIWu_bBIB&?R8I`#1IBl$x*F!)xH$zYZeY*K5J5Yhz@0 z8>b&uIj$2S+0$SFc`V3+qhfd1TrM0NMsfbZ}* zD5%A#H2UZ~MZl96av_SF6_#c=tf%6ftR`)*1_h=r)-n}iw&~uKX-NkE2?KA_eZsB9-^AkVZrZhl&Yhh~h;nOMkyo7Wi+ILf=` z8dlOJ?zYB8#mUH-^GAO*imb68KYxnAG+4g=ORLycb6U6Xg5qxP?L>2G>N&oscC2Ej z6+uSEASl#FQ?3wXAud1>UIMl*yVoy_Ajh~zMd26lrM@IM; zp{eIJ6Hri(y_&rvfHi?s+7w80{lQKSl)gMK{hUUt+a(=n*pV{AcR0)e)qnSjzL%ea ztpmt~7`bAp?f`X51Wac*f_=-YIjIdf40FASFP2Uwmc|Q4rTfipnaqZYKZ*qxwTsEH zIiQRJ+SHUS^z>EVw;4U6-la{sYL2<8%h5rENIzXU*A%o}J6Me@ia~*liO3Gh#2$c# z15pj;6Lz2{9v+OEh9$M?|Lgd9P)lpRR~=UaVhv)Qy88QL|F{lQCChiDHNX5+ zXCLzZ=+;ibEM|P&qCiOc^Vp9L=Urileltq%R(u6MrByz78{yJP0+5x8hN`H%6X#P> z9?=8O`*b+o|M?yao|7PH4!u7M@!#w?D%oyr#1FD(2wt5~+ccgFkP!=dkd?P|WnzQG zI9NLtlBuy{ru>!jvLw~N*Jh|Pko+#D1aIbn=hy--FK>d^CAty8!`v~`8-03?GL7#E zO=#`*H#mQrl^UHYoAzBK8Ph2&EKc4C`}-9{KY{kjT{U(@e!ZQOHgYUa0maf(DP>mo zpjFRO8q5Cl?}Uip>=@zV}QEe?_y!F;9TEX z`%!RaE-CDW!aBKZyV3cG?8UdbF=wlwz`%?*mFRajPv{5exE^<^eyn^Dq^$b`_e-zo zQhRj;L6-i~#>5bZwa)J8UtrJ~QZ!uy^3%_@;HR21rf-IdIDe>`L z!+8pJK>I<><|ive=ghyWYmJdYvE^~rC2?KFX{5k^NU&bHk?q)M);&CMl6i0#HXu+`m3s2-uqbz7RF8HE~1+Sxlrgptr0naofG`UtWXWGEy!H+`Q;9kq6 z!FEb>JfhCSaSe=Kwu{F#b9jT85b7)-n8?m(X0);<;fpT5u(hSctjOFWHP=(a0-{qL zl$X1hHX-d@gi%HBgX0|jMcVu>kfH{ygp{nbc=%IXD^3$1Nl{UU8TVsySj(N|6ssUF zH1Ed$A&->PVJeywCU_m_@0+7`CiZk|TrJQ#Y3b)_8K6vJ+`WL{TX%R=OTxsNLR1hMhH@u@@yKxB`%%Y0^wSHt&cxgut zt~)h$%qV$wGCPqmp8o}=k1t9*`#Ig8A67vF<|Z)B>(MU>mx;{)wrpjY*)TPAJcq@7 zl~lLDxXD%U4!|Wy$@lXnfp

^M6})VPxffZS0|{!2V6jMdV{)<{Z?)@mhv|9mT*X| zy>&mzGg^F#t6sZ9?3dwPPk+f#EgbO#-W!ZNTOSu4}k-Saxs z&QzT=u85NiYZRRyd0BSAicgE{GLX{+a?0DB29_A;XV}mV+RGkJNGLV-7)_Nl94FZeK`S;OYKYD@~g zla!)Y|GkH)$oEjyL5jz;EM83J%e*p6#;@tmHCAr+b8b?%_s8_y3ws>k>RcEZn`z?D zBJb5Y63zQgO)U_Z6^9RV?J&7#r@}GaG4wBvUI+f=b`3CCS?fT+dTpgI`E=`CbG#Z2 zM5W+Z;^HE%7MGFiP|}&?!if?N$aj7oYVCCr@Pqnnk%e!6YX9TMk5lT1St!nz7C$dM zH&G1XfsAS_pFXK`&r;blV5 z5lWHA`C47MmXDvWDn8Y3wD~4fdzfzgra`xHl{yK{k#(PmNe9j2sJkO-Ta;W*m>jN|DC>;S}C$W2_j_mRJ;9)*cWy64Q6shuF4V`XiTc80RzEmVaPZE#jwt zIqGu4^~Ank=PTdt6Oe!PpB=7iR)VHUtca;2MubA3{H! zrdroZd(Z-um#6^ZKfld)QAfbPy*YdF4`{$ITI`PREv@ZV@bNg3S^X)`i%390_GZXhXGw( zNR(EEN+qxRRSKaA8%HR`CpMaXfn&aou+%250^MpBVfj%?R=`MX$hu1=x@mzqc zES)5t%D~1ZtSkz@PaX{R+*H?x$1DqL7Fyz>sxI=UVaT0$eOisqZ0*C$qO_@fFm|t_ zk3D85WCh7|tq_x6u>1#C zVAG#e^}$SC_C4d!a5qy%rvy~$=vd=th6*^fuJOY;_7O=hC&b@+^^YO- ze39p=kT>}>2k1gd1WIb(gU%$R5lpxJ@?KM%!^zOu)t%#5`Q1#2P#Wuw!RV5&Y^Y8l zLs!RnAz3e_2BsLd8yYS-`7Iwzy0AU{;J`yS6E-o6zt-Dp5_Y47Y{n35o*E7og6}b~ zvA1O8ypA$4HBBF`c~y(ZvU_*S1paMi-<=E-P3^LdtoZLJA=-3f=}^tz`3HSqU5w+f z802p(UhIFs@5Yhpd3Bo$=SswPCQ~}p@gl6}O~k)Q>*ue}3M{=-0Is8Xxz9jBCg3Bp z-q`#i>o!b4z#+MqGfT_9%)#b>2bkrrFhFpw7)90+3IgX3iLbvx1}TBWaU}J#)A-L% zba;BARB|F>V%k&`_#M^v8DgZrJk#qzr}St7G8PZH14%_aKH$RhtK&+3qj~VzypCbQ za^9NyJY(>)(rYB1oviSlTm6T}QT{(JbD}{i{fX%;!hZi@(3b+CJk?Rj+uI3FP=TKv zQ3}bI`ZX0%@8*u7f~2X}A{4NUA8zs*6#qXE_uhLT^w_Q}o?S6$K zMT~<#W2~CJppp?fpIc#evNQL>o(ZNR@F5Q5tFyef_q)Yj_Fd6jH~%ue(!oiBR%HkH zjBHLD8aJTN{4BlxG1=jC9Y~6Cvb2lRSZvkzW6IFmZci+=KaB=-bYh8HFE0d+j<{E= z{?}UGl7!aMerkF;qRZspKBKkwzJ&k9+q(K+TUSXC`iaiv&GF|uLc-dS4AA*qHJ&$7 z=Z+n|UL(v5iE5HW!I&YT_^ni{aJ*pIe%q=-Lwe;#$;2~4G(zT-58z8vR{l0)by^1C zty-r|qk#;u0*z8109v`H44HF4oJZa_R9_hXbE+INwG`0ay6&IR^p~)6ym_MA+dfS= z{{$5Fnjcb9Z`gVG(+t#pTU zOE*X(-QC^Xeda#Q!#vD4aM)+>wf=N4U(!C0V^*utRK(njsj(Fp@Kj^<87|~24@AYl z=+0bfcH6o$Mctu{sU!~@TJXssu@UOJcQFQ~A+8zqK!4jj`bL-+SGe!XiT7Ip`!gyKGFfV%cVq_7}rN1 zA3?=N_q_e3Y5Su^-OWT~=sFyQf!(0<$d6;+Om0OlzxqslLVth41pOd<`iQ{%qk;`p z&2!1`DQBQ*pZ^00CJH*4zCDHmtMZfgUj+2qq5C7alfi6>p1U z&`^r4oaHi)nZC7r+5%0w*yFRY30A|jH3$p0w_5a%p)Ey49b`Na%9Mo8`5xiO7fZ`v zUxqK-+b9qc!TVcjz0l~Up6(wRTK%v~&iKc(Ncx7m=?b=rj-TStn3xkMm@xj|K@s4^ zQ2I(k3W%0x74v`H_~lbU6ye>e|IIrTl=h9Yu<&pQYIc!>Wp||6xU<~Xm)0Np9@P7M z!L;=Th?qK2E1t6g({>%_&Xx&fx~KtF0nl^5SpD)9CW|G>e)L#D?lAjEc6V}gw0Gs9 z>$diGTb!|5AEVOgT+GB=`urcX%VAXa^uJJ11nk9`7|$5sdrsplQ9XZ#B}Q+4axD+d z3+X{eoM+S4Nx!>&x`EgjPw46)Mjp@{9nH1u<{uxA0R&2*N$RB`X8y5|W-~GBHb_lx zOM?P^ZKaUUopuK#6Te;o^*2JPeZ9T;otExg>KYoqW)ltmf|iexiuE#;q#qgR!ImGj zHm7UgTLRTSI!>(rSK$K5wrrl+^05c(OcW7clx+c8KgP5zOFv`jsntZ_fu|ZtLUE{2 zTU1Qqn-VLJL@X1>J2MV2k>&%8A*9C;G`QSdUNHB|@rN7fzsLB1Y?jcoN!k08e$-%o zYM|wOkRHXb=#|sKOr(k>*H5Owk{L(u@KSoyN)ENZA1Pn8GQMD<&QYLV8AWZssz2zf`ev0nSTNLM6+wp@}B=-o8#WmGE)0QxE^#6 z@Dqxk2tI+_v#BH49R8MSqk_?vyU~ZQ<``}uGC^(V`=-&*i{O34H6brLF|poWItVye zJv{8cQsOIii?R8olH_o)Zg78n9GRB3(5_n#@>2lo z{^=^|;|Ev4Z6;^9qX(!CfdYm4B^s#aFI1He>@+gs&FH}JWY0>m8c4!ax ztoiUh=Yd5eOe3+=@gi=Kh={7g)s4uv^%f^Y7=b#b=i0iH_tLp@P0)7dn;A>QL>R#T zEJ~rYx~t~-z(xH6M*%Ml{*a%|O$Z7;_{upfzCO35`Vr?68Xm0X;L;~Ig>Y#+a1u^0 zs0G5l*qU9eOgFz}V(9UFx?khm)R~h$iDLX$X~PKoGCe}i1kdm9Z%(4)as+6p>!#gM zrsJ_ zf6>(?;wi$ebgl^3OIza(a{2mn{pJ#UHb9Iecskbb-$83=Pe!zTKMi?k#gK^yYoEp` zh~~c)SMm$ZnQ_E;GDbBZwHx+J8+Saqt8_vIqYy{^REmv5S2NabY{ZQ8lo2gqBD?FB zVzPOPqJP+a-@YMUew-F8tMbubH_q-7d2M@oGI=Nu;-luCqvLMpgI77rT06nQ!h(Y# z{3lr;5xo>-`jNf#h+Zvdx-e`&GSqlI!2YHt`U=3{>WwCZ&xGP=b1o!_$Xm;9Rmwq@ z`bK2;a^e+s`i}vj@d*jjysDCt??6x%wLpD5jK3aP%>~V(U+OB>TyhL@mpR9#ibK3u z5Hh~3&2iR&8V!cm%Mn+hjV`Ir*try>ZBpKjJhY+A(f+r>DS$>6f6d9ZUFtuui-b@pG7t)!S#v^n zOeA3IdEgo`8Z@B1iIorm;-_R@XF7l~7uc?}^>0mk+7eTMkbO{o zr=m(z^bdms^a~>p%O8O=6}Q;^xtmz?OJ^14+>rF`V;sudZ)5iI@&xh(JT9AI5J@88 zVF6D&Fx!w4JL*?R1C|O`x#E-+r0wnP$J?%(LK|&TpFZ^XI}OY}=$zP=O=;~#4p?T> zX1XIBO7wTcEiXdK=4uTtX79zGvQF~gJX|CTArL`+O50tW1E&mPCg z;?q1*N1m*=7uo!z+h6GhQKz*FT)ir{v-JlbB*+8W+3nwjVPTW4*=@)wG?FP}Cy&}b zd>4sOB1;mRV(|AMCgi8+g^AbYnl>b#X=@SmA~(704IjTrtEzGB0@eusq_S`nWTMv? zTlpKignnO`J~Je&tzrh`sIib$C9kJD*=Wy=-Hvye0S543w%lN|aJ<{<5!q7Bx0HaN zWw-V#RZlk4XwLwBd<@nb`jH%l!R_^5TW(D}Y(QV+>0%AUN9~Wiu=pn)+_Oc3@!Di@ z@BjM1?aX)$0hGaVBtr*?XeDQr%vg4}ERayxrSbQjvpycC+G@18+2_d*w*lLa{xiR> z&lRWPtXFVg9JXO2Pt$~#Q{J7(6w1ay3Og+W1CRx-ot)??U_ND`1N-=ibfSaJ2~_7o zbeW=d5es#oba3KCv9Y7a)&5n*wnscF^!F2=+t;sIZPqeSrHh-r!(zbn@XmT@I)@%? zt1sl34$p;#=H{Ui6rXaKTFXksbo{691+VO#$w$lUG_=T2A}u5n`Wfuh?u1IB@>=YuI7JMYJKz zU8!@{LTR({7Fbg683wv1kh3?vTW#VDk_)-JT4mwG8g!S!DC=K z%LL4%Kqb#%yZl(!IP@Px$RB`^RKB`93s?V*svk44FburfTNHtN*i|+1^7+_y@MdA2 zc875umUI67T>txvcE$ImY2805HlR?~5X@ zw*!tB=qeF0NgKKzo>@qm49S=T=NM~6~dUp@j(oqW+0pxVH(8UuNz|Eesx06rqJ zy1)KuGvEvo$I@FT>G}zX^FcJ!=KK|gmG+w|$Ft9<5t}Ower!UKs*I_iBlX9NGUgp{ zfQ{E^I6@b_UGrZqoq##1*d2_gIDSk}%km6^7y&zI?{L_^?#f4H$mH5rq|zrM`29&4 z5&BzTiN8ITb@QtBAr8VPUF{WsXbREdN?{v=U|l6C4RgU~=O=)(w5yN*Lk?`22 z)R`IAh|Ddgoo_}0AE<#8hu!nq3XADJBYjaDTKFRaIvNH>|D;j@3n)uzd%D*0(fb|o z=m!*TETwlKt+VXN%~AE00Bf{xhq2l$#in+NcD_Bd7s!)gSS8n4knu z(|BhjtuM{C-G6H4ZBk{TI*+H}U-N!RemR469w@I?5NpktnVDG|rGzh)_XA*FRd#D+ z=;-eO?!sX;_f0Z37JTtG^gL&XIYFo9msuNu7)>6L@Jx{800XF&%DTFIFmQn;-B>_zvY8x0FTPn&;L5hd%#l+0(RcTx5D<7La4bf{p&4r$6*>U! z;ILZJ81+VUEG<3N?Ev97q_70=sF0@NS#}4r50|wTAd7(q^NHuA^^6S!*`U8l(+^K|et} z$QB361hdKfkvBK{D@c$!Ai0Wj*gdI4#R@)L@%v>i@C6XOJvACGT{?p^i>hsf^~eY+ zjd$G4&!GMpg?%tv(bd(paqTal5Ag2Y>1LEbyi=mJ(1U1~OvO4+aL32etqgy>ml3RCx+V*)SO*wN{E%CktJ(7abXn z5}w3V0M4@OqU();13iB$6$1kUB~P|2%vFs)i3xInU36}v5SvcMB2OxEPL~;BW7o_VGGK`lR&)U zG;e080|=rA$w!o=d%SnEW9#S>O)!$*JEy`Wpdrp^_n*9ibTkQ4Vo?M=zl^9WFUrL~ z?ws|Hl*wc7IP49YQ^|P;0SV&i)vTTx4xC|CGO_7MClF5Xw2zQ)OuS||S`tQ;$1*WA z{ue$@{EIe}~ZNBYfdPY@NvVf3jY(VXQ>mVUP{~jKWVB2!f4{85wm%3`m0*_j? z^#PWy+ZkolQ8?9AB~(fvr=|+)E=P^|QW&x6(`gn<6EJTAif5}c5CP8bqrN^#2Cs9m znE;RF3`5)fw$@^*YhR8+vy|x0Won!DLVHv}zTgO*mKLv5VH?u&$~z<^QOsJL$l`{X zkfI-ph?mAvpFV$neY+N{0q21Ki8rFK?lvPK2lo3>kfYVuCtx3N>br+bp#h<=!2=sl zF@WAP9-gz;4rvbPTt-5Gm5cCTwKJHu@~AN%&JIMdOkh8w1_jWB zAa97tu<`A429=@BNt8r4agcr^YvJG!iT%o_dzX{${pk{-@=g>GmXl>NeLoW5l=iL6 za{BN2aEYmeU{lnX;9ZPqmUrFY88D!#mTM0H?Gjq3$W)11GCf#8L#20G_zGIM6%YiwgvwYi|ON%VdN7hG!e8{n@%G z2o@Iun+dQ1f#I*Y6V+?+UxPh)md`a0&?=E6kfVpP><^w^Uv7e$2NTf96)+wBacw1p z7xKs*gp%kyTciCC2O2qxdEP@+c_GP@1^vJY%b)%F zIMQPccm8*;BN*ongNXMgizpQoE^K|#{=ZnX_hMK)hs4FjeZCJEzV^gHE;UHscXo1g_S@P#IVipjc6llbIBCd@NYN( zKx0apC=o|l_I>dMt&C7xS!>9Ie6g_=*}6CHXiDkuS2R`LCAlzm>XO>&ujp!PTP(-? zYxfm;1A{_oIDEi~cUCXKUr8hv`lAaL<#DLw>}yP1To>qWovXJc7JHowFP#phwJKka z=76B(RBU)&o<(^x$m+$f&Fyoz`#!}oB|ZJi9^5ZwR=Ej<#oUaCJ_vOl8%YC7G!@mA;KKlNM)+e z1zd*aJ5lQSA4`VC^+3~5zDzRL4HpQ(v|;xT1to#!gO;}X$7tWwx{&7@9zbRq&By@B z#-c%3c~*haL*1c(Q#{PZ%10Y>oelN7*$v6%w)iE!ddMl_OML-3X6qNY>}S^F#5b!Z z2|f$Z9TMmNTEF%j?GzCELdq?-_GF%5CiGXO)u$@QJ;MWx((KT;93SV#`I>S556bEp zz;pU`gQkrviGluX;g=l+^?xe7`ICiJHTGg;N5czrjf0L#lmGl+9CX!AtDR_d>{-& zMq1hk0RIdcP3d3_qCkHK{!TA~9 zJoRrniHVCFVGP+JnJJf~o2t`~+Hyk%%-yBt?f6LX1Ypf(G3=%p?bGS*&0})W-6|q8 zt)Q^8J6Fb=LLuk%=pn>hX$l0|k^QLxje2|bwyWk1v^m70(w60(5ld5^c3;{Lbw1Ey zPCX+-#AsVVn#++T-Mv=7qQ%XIL&BBWJb?6+gx;w+XkYZJgC6MQUF-B@4mY+xnVXtH{%krch5UQcR* z^`TJud_acRzp6ADWyLpoJZFecM|syx+y{Lvc0Tt5cmm$N_cdf|A!f0tP3>uC2E&{r zW)A+~gU|t|6on!#Oe;*Srb^kYRtb|Z1-gN?&co*pAxb{JGzbruP%@jXTr`M49xB?< z*u-XhP66QZKq;78uzTU~T0wgtP%kb-iy0g!j<2X@BncZH+VDE>4Sx6bv|R|Z0yF)W zRQ|WMGvDHDKYO)k{hBrBCc^K_w12<*uN5C$X;qbltz?H!yJ+4mKlgU$SpcP z{fJIbL%2S*+v&MkHawiG;^vt?-urgW|J5L62^Jq-!PZsYb!Z4#sQZ2*aBg02>7%0>iiz zR-}hucpmzn{81;IC_oUWhYlk`&>(2hVeOvGG zt8NgxDh56x@*-(Q!mzWmi;%I(W|FEec%oKcU<=;wlKX&AJulQw|MV@47i8=DYu3z{ZCL=s4I?&utC6a%&8KX1jzbUcK38TbGH7-c0R zp1^(q{Sa>h0|RP{moE+uwW1@23Qoxa zAe%AKbGWSZc+k_p)^_Y~hrfE85B>2PV{utanG*c~w<~mOaWWYCAN?_fG~oRHJQlv4 z^9a)4IyJ@gbi{{!OuH$jz;C|8-X6))D>^xDB?GO8v&&uxfu^sX-%uHCXuy8^fj_Vq z!ZWNSCr1u+t$UNUdW?6vV2cDsls{%1WLV)R4C|j*3^{g*hgdE^{`xvI^+dzXh5EcQ zXFw?-Kimn+_v!`TuhYdUAcyNLsy9-z@|84fg%n^ORnOg>@Gx}^mSUtvSnw_jr;4SP zhyjXo3TM%EkCb)`;4NEx!i(JB4p(@GZ}3#LejZ|x#ljV==4%VpAV(Hsup^Y<8B06b zd=pl)-uwsfbV%_DUL$7PlDMHB7esKyzbDS#l@ESeoU}j z!d##9&6jze!I>*;i*hDQBDnjwDuXg=vVqh7v{x zSHm8b7DcZNPg6BM<%|71Wo9b>US@C-yx$)srTia>S|W2lP0!3HaM|g#y3uJ>Wsjk2 zh$ZyL-W@JhM_07n!+!(zLsZ`_x~N~)F&gTmiGz*CPH#xi$?I!6D6`*(O3nf|>F3A` z--n}m9OJrxT6~Rx-8KkT_$&ik>9aw_1VSU_W__5seIB{Z_qa~siW*-bf2+-b-A2v? zR+#)jRtSZffH^ZW^Fs6W6r#)O{qp5;`>mN&IGrx@7dbMUNvNn{_bkg`uAFHLTy__N z72g*DFzvYtjKzJjv0-`_8p=IgVA<^c>z~61AgTM(Ajd_F`U)@bK(G$ ziw>u9hLe5{hJ-Tb13v+H3_&vB>Q>s*MH}|FxfQE6;+vvu9PLRK$R@N7^JYZ#OU8|B z@S=XW#3gvsi55N->75dYxje#)#-Wc+J=%Q^YPbQkt8s90C(Ya%0NTBdH2ie6RJYvL zMl2}^H9pTWWkC2t>seFCi$+DnPu2DC8Yo$#L>RI;Zp3Q)7_Bl+ZI{E-!(j)wTQU8c za@Uh}3rIKCS(#4MKR(ozg+xTO?A&L7ROk29a%&4s#PF8Q7RHCIPosY+B)Nw)oKFp3+dW zEA}_0;2q&PhiD>`*X>;rpskWhOFb)wd|#KTB0x#x)?yE$L%)ucmDBYR3|F;YHI&7* z*Pz>G(3MTQCQQD+oCF~|zPVi>%1+oI(6(83+NKv!sa~3{;#S7u%F0thsT($u5)wZF zb?J5c4>4?5=X8$^eWg4{;g<7b3GK#U)zPj~lf@V(9#XCzw?r2V5)ogQR-R&POiW0e z=@lBIZ_hY;!0k}d%bXqN?cGjRsM+6;8=>d)xFlPLz5LY3=4dvnZnJsU!;oeDkNJhE zpK@l+V+LOk)hcLr)abZiV?!n;CVcDrUueM1f`A}hQ~YCL5RZdylMOe;^jg7-yiqeH zZ6{hG9cM_IxlKL~YY4R$OgZjwjq0?-t4|1UxAB&{o=FW`Ps~jW+?GFN+e+< zMMcm4s^7y#mq+HlCntS{H|aLx!hE)v_F`v*eakHk!o84((M~7v*oSuDnL?2L>cw_%5~xs6SEcR8Xdk8`XKQdn4f5FGy?RLzGPv?`sFJOKv~Qv_4nKsLR-FWMCfp7=5bi*-oM?!;9K(L$pEts)-h!Cno!p#C`=8^hd%$%H0T{@y@IPW2OA`5w zOK51|0yk6@;zs)lL_t5Tb+bBI!%n6!(iWUv!s=wTLc|`3`@l8aH_ruK5F-XO5AxWX zKfL!SQV%&Y)2hUa!4cU36t(Dgav zaf))Gzk^5IjGWcm0AD`9bb|6nTwW&{fDPOn^>MPZzi*6G3LKYzzx@FjFsHwN|E~P~ z`%?)6bcgx@4@?=JzgVEGa_h0{>_6FnGg8-1b{xc(>v>BM(+b^K%O3UG+K#Q7?2Fd?glMTgwT?xv$fyoQn+p z9s)rsmYeF_+)4!tEV5Rbf54z_worGZGjgFP4$>g3cJ&j>mjmQPf-Q1b2d9h+ReCT? zwR;QPccfN`t3>=9^`QqB@k=$DvDn#pfLD9_NJv4dIa&(KnI<0gzo0}r? zGR~sd=G}TQFnx~%bDx50y12nUCBw)TL$Xk`%hCK27vTvucwf2sn&p!-BD6AKY6r1Q z^!i4o6TlQLcz5ZT?yt46l5O$U6(5^;|0cCFc14J6W6*wo=0tgqeN(mIH5dBWPX>v; zi4KGu;o!!*tTbG_GOPqC$@4q!LKUfHj|UwP01X5~8!3PY^`^hR;Re*Ct)gR)lCT6 z(0X2SjQ)*e`<1umQ2RRm#Ja!s{q3Vy5jL-87&Sx zBmiAP@+ZwFD1a5iW2{9C(Azl9sSAU+mylc`@NbBqSM|g%7 zBU^OtHYmHYXt@C!;DqK&2r}kqgO)p0?AyNvCA${JW7U>@gB5bX9_IDn6d{flE79Hk zZsYbmO=B0&S)8gu^AGCB0)^Ntm+!7C9ti+P%$eDLXQ}R3Yu?z1Ndzj=1)8G+lC7aX z?CG3kIA6kbPt2sm&oSQC6NIWW6uCtw&|y+i_Rt_y_sc|eu;*fCb};tK3XWmxdH3y4 zTWYlXloj>N5d)q!-CRy?tw7KBvyx_jxCs6*!w_HaE~kZ!F7LnydowP_PobxW8*#E& z7H}HK$jK#viK9pvL^G(HJC^d+q_V{ax^I3pRoh$-f1&wl0>&$}t8Ar2lILJTsV~dc z|LL$=Sa6q7LP2Rv0@(FTp19N4VUvtl@X%gw!@ngDMqCGx++~G7c>m)yc8$8R>bQgI zIu>Wp%8KK?3yl7?IdT|@MXo-aw2RXv{D_V1067rAq}De-4+)K5QQ5ixU+c4n-p5 zjh(KqELJK2*kav|*|3846Pd+j(@wsQSOwEp5OC_+Qtk<<@dDZkr0Dw$I}{7ey<{+> z7LyN-&QW zm>{6({LVAFr_%X>hKxGG2n4gbVw3~+ETTidyLYlel?QA9jU`-?lC#Ixiu`C0h*{4k zb%cE~i_%32%cg^|>gJUB+>Cr5{_l0MY0<$@BJ zScMZmXt;gTFG{vi7cDVHJA6HKE||0OK0jR3V1%V6o>!nje=kvcZ)c_0w$Eyt0k-#_7c9qp805kdG zd#zEr^hh6=q!w)JFT2>{mYk-BoCCBZd^JedHqTpqphwL1l~OIB?Dn&#!;Mi?&er23qZpb=`UMJy6dZ} zzqAGGqE=Pkl(=DqJ4{G$S0ys(@Cr<2e*vF>Sq%*TfeMlehIBWuUdXGfhZrr1Y4g>j zv#0rdqKnHJmg!lZ3Cc1ZGXyPSDx*3LcBJfW_ju7E<+oEO@&nRGDixeu??+K@I{ur7!5B7-1on=Wa9r4at?gaeW9 zM2M>qUXclMijS@D*HPyYU-`=-_}nW3lS&a%0L5 zSKR}4RmhG2D3*Y{n8IXxF6cui6}MlS=ZvHC0z5;;Qk9(@DKlx*??Wdl-;00V?Er=- zlrms`)tVnMw2%~=MG!qafs9~Ey!oNLRJ}c6YrF(FPML+CI3C(OH*LiMG>U-5pg*}? z79XFeZ)-ZXD*OiUUQj>=Sue0MG7^b7l*HyRg(GYIjBMK8%k2S8MiS#o{{3(h$BJ=8 zy~+?G?x9Jbqc~r%4U#Z6>EDFU%zEZ{xFKGh=n%zu>0d<)C(ZT|0HNBU;R}-UcSmN< z9+$j~Y=M-zq>QJw^CgNUvTj`&V zU=2jRm>(m-S7eEkVqRPv663Oc?H9@f(WgN>dS34yR;h5xb;uqrb-kJ*MJUjcf&+&( zcZZZgK9C`8;9`T(7b13aeEc-e21Urd&2mOVhJMUcb=`IfO1)Sex4*Elvx7>y*AV9} z2$*WmaSRU+hsc=<3wNvT)|wo);6bFE;ZYM(;Sk5SSHQ2%yS};`l2$?waD4;N<%o#G z9b)CrL%P&Ag+u3cw2P%EcicVL@iv-D$L^g)fQat$0VmfP6t3y@sy>s!LgENS%cI&3 z+>Y$-gUY2|ooAN+-Y1NPh?RUM@FdwVN zPVYH!m`&l-4hR0do(}%`Mw_qNeZk7b#ZXrRDc4jk3(PGvX@$7hr>3X-6 zV_$H(OtY4JyN>Ls$;tfzX`d9VJX`d+8jG~~86Azv&L*3(;52l1C;gn$ z@uyaFWsLweD6o}1h1!+f>hG)V$NK~C8!MN+`N$z2sr{=A^|RD*{Z)V*&#On+fgqF1BoB;_}GM_7xbP{7hVIi~#D(O&^lAX5g0z*@m@5HF zm6nzk7&AcU?>){4U;abLc4N zeUd$P+$%qYl%sE-jR!sP+zYz`x&hNCSv^@ZT{Xl^WDR{&uB~Y88z0&Lx`uq#nJ9X zFp5ZEaCXH8#!!>fco4x*dI4Q#-x}p z^g?FPrPn=C#Xrk=F+p2?tSP#599QXd_PQfPHm`er5M7#{{*}XzjmAoIWVRv<*erP< zS7ybz#K_a>{K;f^Tls7Fel7T6qU!Z3@NaKK*01ykWV0_L@hXQEvf^E8^VRx4mh`3Y z?Ibmydn6_#*l&orhfAQKMAQ9xhS;CxLdFBGd|>c*if?wcwCC#yup3j~_eC$cTzmz< z5F(*qn2G;N_i*<0O52e5?3#6s@k?8)YeV)6(b?Hqjrr{BiVtt>9ya*yTq9rvcGO-Z zqU%Ng{?KfzrlG7XA}=98fbZNDIM~5NJ zcF*5u`2JedGU&D>yDKPY%Se>cV9n+`)93SFVE`iE`;Zq2qWI|U+O)A656(Qj0*ESD zaWTMN0CIVW+Mn;~fhrxP6#K{@V)v=qpwj1X%$Cf;J}aJ0WXr)QY9zGzUIusY%n;=h zNjuUmX_oYkhT!opzVKIby^ZA539@rVrVWB|qEPp%9*wW?2rXKdn_q@CKzo~~coTT} zk{d2|>>OQ0)PDH)s|O|Iup2y4|K&K3gwMhMlcT`LLVr>s0DhkJ(JZ5-)M+n)4ac^Z zZF(1*mEMl0hm$$ri^|Mf@wz~ot)N8rrH!(be0R9e91J)Xey1FK5*ivf=MJRHdRh^+ z^o%e#quR9+KN3i3CtU)dU%(C)OIr%zO##bMS?LJ8dPAja#Ks)CHGUdCirxn|Dp`ZlMkB#Hj9NElDq_H8aFXW|*W-KJ?+=gq1 z{(;pfYXa0D`~?L{^ZM7>U$rxH&ScDzne%mN<|XV56*^4zw)9YcUnMVm=kg!DWQh`I zw&VEp(fR-usSdOBp{Bur2jx-HpeUwfq~c_;ksYx46hyj_syg1$N2T4>7Ja3}bo)p~F)qeO0^HJt_K*bHT*M1|vJ%5=CNytpe`pP2SE zaoYs?P`Nj8`T0<`loeq%$f+SM+{?znX#Y(x_67XPU0Nm64%@@H0LsujOI2sc2O~QH zC{7}^aPd`da-w}JN*Umc6DdL^uAvz=ZYE-4@?C;Klp=9;;p;1Oc4+_t2gb?KkX1n& zo0~_Xd~cjx|47l<%Un9sc;xMeMqfGy`fCXf(vp(Ig%wzZTgA{=4{<*|MD?(ew4}nS zzH@nvX7#U*kfx$$K1Un{z=plxK$tDJ+zBlUCk=cBhDUuPqYH_n&S(N2^w9o4BlHE9 z3DVJgU%vV3%-7tp4>$k(`3>{|$M(vkt{$Nv=n9oOm9s?te<-4xu4BhCM7*tgz zy`aGSapZPgQn@UH!I9o{OlR4+<$jXa>S+2=gSXy2~;? z3u{8X;#FaV$-vS{LGLgF(*sthh@S*QN8xNjmK6qSX!oKAm*|gkZQC5#Ax6u`3fo$B zhTe$@bf9a;V58lJ7ZsJb@b6q)Ojj8nhxTYjuXn%#V~dg(IWB&M{-v>n)4pOi85+PX zF~xEfi@Isx<{r3mDX0lMZcQJAfp}9(-{?^jnZ#qu!qCX*q;V9`-xL);U!8A))$=67Rh=xh(rMsiPAi0`-u^?;&b3lL!>0d2dO#x8+39)jNLL&nth_*Y3%HNeB5;X_qCOdj$?o@P?tH+z#4x3t$acTdU8WAK zuG*&l#83*4Ey8+2{mDWBb$c=;2|g9Fq7QOR3G%BtLWT z2vWCG0j$>0W+OzOxXP#xm@60nA8dOeeEWe|iIn1h2DfbX#w%%K&lG8IoiH- zZ!8iVFVY>hoc>fIY0`k5U8T5z>M>HS{Y@SPB@tL(Id;$yCB+Jl zl_-9(!PXX#14$LfmY5f*r>(0S84_ zi&rHQB$EFsz=A79`wbqcf_gPD*m{mUybBG1A7;K1Q2*K43xL7qACkW*bU zbR#sDr*cqdwb+36%GA^p(A45H)9<(T;5mW2mScAcr52$(=UazaVT-@Yn|kMEgBs((5we*RL|AFyn^vZ0|i0l`g4CfT5i|F0V#P?XXJIY zm9)9FU1dIWqTV>w(P;DeD?I&F56@TXbg_!z9sifsp%ApKqsjA&3tV0+ZXQaHRAjGO zMcw=~Uvf}*-%&Iod*TDh0HGUwtQ!j&@tnusI-Bk}svZx{%n+(mFmT;x9UqlcOVz(C(Dm`u zC?ptpv}OYMS!`Ow1qkKXjAatyHw z1@>HFN=&it&!~R#?y$P30bz>@;40A!Kf^Gl_@#yg+D@YB`hc?;kZ7h;yW<>Iivhhd zX{_ewU(2-{KP`MH8)$SYo~Z>3F@{d_pZ>Kji*~qZI7kiC-_>6Pp^cz#<~s+$EgRCk zK(x2K7NDX;fT`k`23waY34HCLu!ggw{aJBEAdD2A7a+s`GEk$j-uB_mz?Mj$xJw>PrkP0Q({ zW3(u12X(@qKOccs)tjs@n$r7)S2617W62{suegapWJ&@fF6`{D5m_;+GJD(L zakHQ=nDzZUScDXT&+Z58w&!hSTlNNv4feYUZ#N6Hixk9ABfj>=@G`AoE5G*8>3Sa3!seGiSkgx|_d+7uMr~QZyUtacqCf(`2V2oS zuMgK6cZzMB4NXk0B`{|1sX-Z>-$qr^DUxlpI+-vu&Rg>J_MOD=!SncP0{7+k=@VwPT|Z07PE`h7Jp9ua504a^{b=C zMyK(_31~0K#Ur;58y%DRJPfwBgGu15{<%gtA8?`Lp-0@CuyKtMf(o}1IwJ%z^4aUM z&!lKTUIqa+KuZo6ml`Cw2IvQgixv+75&}fN6-H_W@4lDatDJkO&o{55P56a3V?$yC zWkHm*)`lwJTg?8FfU_V1LJ;W^;K95#{DS380tcmlfVI9#sA~DvPzzR#prvb|70X{s z#FXGEjikO(lx3G@xZ#V-BU-ni*=+ezdowDPMUNTBkK|+t;PC}j-ykh*>1s!v0{slI z(;M5{z08h28`_7Y!$&$m!Snl(f#AsM3^8PNVq69zT__^bmd3CM!&ntBkE z*cSOjU37bmP~9y_+@Nr>!ia`8*K@Xf_{n;dd?PRwWSfQi>PdBWa6$t;{w_2Acl1!` z4l|OYTbREGr=_#Md+n9oaYX_imK>kJr!ojj>^(dp-FIfam?zeF87^+`;*jflvV5Z* zJP+Z|(Q@Gz{nBP=$g!mDP%MW!{7WPxBuH3TVyI+N?e;g{&6H|%P2>$p$h3b;Nx>zD zx$+=koF~Et`UQ&q##@lDPM)DXgPlp%Iq5-kFB)?!||mV zQ(0zYUv(6|$?%yGlv}Q&?j%#vZN-&YdGYDmdkRYHARSMM3+&w>>fF)8y@DFM! zY!8Sjm}7V0zvDu;KZW~97YFhf(1u>T@TYqIVVHEk|J#C1281n-U;dV)oZXoMvt#76 zrecXu!YwVYz6cw(l=eCScXGv(v?3CPByjlG#{{`3n9p3?Zq}!1Eam1?~fSbc8-Su^Yy(Cffln z1U)IWdI0=QZN4X%pPQR9E2K}50^*#rRvBLpAPdinV}5IneOA7LTsHbmxIiob4!hm1 z#UIb!`9+aR#wV(-jLlFJD9`(9y84dO^zq3m4Z8cxM?vJe3i(Z1&_H+*L(a1Bz~e@5?iA zw1Ndgqs9!)K8cAG4t2SmYojmP_bVcue+NXsAOV!wcKr>)Fr$yqijBB=JY4;) z4tRrMch3v9VCd;;PaPT?i~bCYTxq@V0qf)oSy`?7KqeZ}!>bzKa?x0Tu;G14o>UTi3J(JJ>Cnfl@D1g!$ z&GiR(I#YNYsZvr>fORnj=!t-KKb(*E#(saJZ1w<`)q&yxnTY&n4{B-p6KJ^-rc)yM z(N8lXO?kIzF+9v@K4Hu2H~uFuL&1%khTHxThb;vWc!!Lrwl_y1Tr%cv~7ZVMYI2-1QyNJvSy zfCy3of`BxFbaywRbW2Mq-3UlYDP7Xt-Q6i?J@0oM{!qtI;koy{_u6aCdCf*-p>SW1 zW5K~-OU>1T*y<2+jvxqf`x0w&ms$ZS{q}>oofRo{@%xU#p?enNcR9@Xy;0MJ&VRd3 zS#*zA>+$dGlvj5AnuWm!7LGdRXuyv1u-W_ktrkJ)+|6ft5Ug;jzXNKJtBte8Nq1Ju zf9Ux!F!+SQ!T|>}5F-*WqF%hBjCq10lIhQBAdJ7t-J>f%R2w9TjeC;<-X$1DcBNeV z|JZ-fLQ_R=D{aO}b5Fk|HG`AtBX*PD-l3e(lj=7HOSHFzu@Df+wsE1zq%VGdj75dP+mE9Nk=u~Cazq|h+ zgO1w7lE|P%O_kpTXTlPNFitMQ;g~mU#PHes12-|=Tv5v0lQ+kJZ`h3ei^yXK(T2j? zx89&v0$chw08J>7+1?ZWFmpv`?!Gx}Y=3vmb?DE)Fr{YVV?u^2SK#dja~S{sSB|r)yIGIN-Y8zi|X#&$RMLXGhe~ zPmWV_OKEB8+PXTrDw}d~=r#@Na1zO{WPGq(RE-QiJw5Fin8A~#wF1?Gk?UT)f9?5- z#+IP<=Wkk(V=h-}n!TOH&}p9!%EKZFvyC zZIG}kNETq*IM%1trl9)AijRNCs`i8d;2qKYYIuZtm_HkNmH3)Opf)5hGO|Fce1qI~T`E(d{(Qv@?qg#= z4H#Wa;;^MN5SN?j&4sZXs_Jq2qir7VHN398jFl-lkyj$T&boZ!pT3X8s#FGfO&>TW zR`J6`3c)r7S^v_~63iy8?d_WvtnOjln2k+L9JHDhAN-R@rBGCz>(B5Is}T{UeE5~! zl5E=NIb+Pl^;4DeX>4hIr@+vv0V0CH&4NFT~s)yM1Oz#t(N^#~m6;wPHMn3dcqcT?|^nvpPi zdT|~LJRAG9+;dr)n3Dj39h5}ejn(oz0#v5V&h{|*4B=tMcAB5^`X^k+jc}w48Kq>( z9)5I2Qu_Ovd(EMFTkUi8+wSpr4pp^lHMa#YQ(avh_HIqpA=iDMlD4!m@{h~rf4mT7 zJadDmj|%zEf5D5e{HdYL(18=o-Sv7Nkm;&gs{a5DpP7=49-#od|oIGaetaRskUcA0 zpP@>bZ;X7TaNeh^NmdJI%~rk{ilrG1FM~Qli>&fX;{(h^(PmQ^DVq9z)U$1C%>e$fGG} zMU0BNm+|JDf*1wr<*3Q>pUs$j3vUTDYDB8M{SEIrd4yp&8N9)pNwYs3(Q-y$_JBI| z$HMPRa$+xFV;D)zCM%c_o}!&AzLTw~9xycVdTbzpE5Q2LN;$nBeQpjrps_XP9vc2k zNxe#u=64VOu&dql-u5>9(N>Rr6OKn_yRI2+WJ?PbV#YBvG4_~Sz%IJF13Q&n+u@Z4 zSee%*YiQ})c-}f6y2dPm^c9MFV_QX+?O~Oj@!HLiLaG8!q+&?glECGt%JaFl36x3x z_Y9qg8?oF@&5Mvf%4RRZBmAy*i2rkUEWz{c{r>NYkH2!8^?)(?^UjNR-Cmk7l0`&= zlDu&C&efC9Rs15{;Y;=CeP~OK4f0nx=Nk3&8qU-Ed0X#VLkk7b|5r~8^-y60xaJDE z1Qc+brtiwzR<3{l`Ey$uO&SVPnr3z|BJS&!BhVRLlQZzW{vw2QbZ?l+RWh#6h z+gIpc}ySs?e{BocI! zy&1hoprfUsx#yeAp-?t~W=d~P5}`2`@#V{bH>cYXRG-wa9o?A-%TtooG4K!7py+1= z3gFclL)-M!6vKpgYg=2~>NoD(Yb{7k0&m2MO!xNWwQzN|+uDzL{kSz_&LzAIR7Tj) zBHI7jpql$Jr=g9Wvdmv)xp0!6+xqrf8Jc_wRY74)Q(-skCg8T3>GlCUMuR&cRE46~ z)|9le8DRN7{h4Z#xx7Rm2^c+5tEqS-AfI-zla*!tS3hlv5bE<%*z-0BFxNuv=vLo>Cc(r2&e3yHa*wO^yT=qtZ2;-?ZAj&@;a^pZP6kmP zlpP6JuLk&P|gSLF*P)Pw}J$`}r!(B<_kr-(`>{9v|sql~pgu!V_FgvtQh zC;)a~fH5O6s3&(kE65$RdG@^gOJba?@^clPT^UdlB-hx}9OULUYu0_7D#KPdMF~r8 zXa#laI=FZE_=deyZXPHrD;I=>t&FA`VlP;}x#)M$oNb6sWArEF`$k*iw1d$8p6W9L z3mAbUX{3$!PHAE!oW6z1FX4kM^U`V=a-!><Re36G4jY`5F-7nHBPYYO@LyW)iUPX!V8;;P5-0yA=~(EeBf)I-%T z+OOZ3sq!Bku^Dq|j#ncgYnZi$&u|h>d>tC}6U1E&-!Xw&b z37yq|7%Qw^883Vu9v)B|+RcutkivASK)W&)wh}wfOOkFsu3Nk| zlPe38KY4l_HdJa^GS7KlzbHdCKPkF7~?OOmEjR)ECm5gQPr7Ft zk(u*Y^(g#`7O=s8_^ld3qZF5SUEyjXC&Ur@Im4{of+XVWFqJ zO2dy4y%7wImF!e6o!*&af{;6uzyHjnJkEZj15dB2YRWVHFT!diGZY302_#$~r(U@< zeE%!8aJ8}9!Rv)&p!GDfnnyBpysdh8mP&qw-FfcT#nEQCe;kje!!;qlBMCGDzw5Py zA>AKZzWC^nBL&cXPRZpUDRHOQu9UtidV2xJZ{Cj12W)GepVaJ=7N+-MuFxmQyJL=hg=rRaCic~Wu%Tl$m8&XONC&8<}N(D3_U zWYm@wO1w5vk4N7&V(mKou*c#&rfkz|t}$zTEI{haqhADgPfSv&9blZ4G)V zG!POrwOMG_d7oY%`@3l}Y$LeO!WLKWq~Fd59uRAT?pB28R{f zN87_uUixq*H{;D%sZ0c$seYvZ4|gBU@u=x$DCQMeyqJPAusKo=AiP~Ap($pWU7!F8DXaxX_X_AD)A!@GCX_`tLrM&7b$|IoA zxiaxAgv}5C5L{oy_|Bv_Pd0D|ZSpG>1zamj98Zlrhwg}n5ZFj;y1#>L)qvgK-+<{U zxn$ef*}0R*4D>39{tJP~dii&nL81&zANroeyTRkT&agzHG=j5oceCXc_0w%fJP^qa=% zX;LSrQ~yH0|GNIPY=kp%bWrx{0A>MHB50YVk5nE%*7DrH2dykWAd3K96)dIcmG)Wv zzx&&}Zwf#XS4DN+v2Q+(4LQGht0xu^Xc5-EINAQ9j#yL|E2O=fY2RdqaM$oX16kU3 z?OjPWf@)Y&uefT-k+`|J1H>pf^K>66JC=8vD$$I&DRK9G^6_zAO?KKz_w)J!RB(9G zw^2|~oGHm`TSEvxDdaBI-FUo|X(ZfoZ;DVG`$kXyjdz(6wfb|looAhqZy}jcipPl> zB(;f8^|%aKu-&39jtHtXu}JtbgofPy%QpI^?sA0Gs~3Px2|`xPQK?@$bKlG^C{)r{ z^dNfCKpyR=az{$2#(Q%i^GZjl8YNnix^bL^kxz2BHzS0uEQ}l6J zj8UieOCQ>j|VC*-piR61!I3|$Vy5k z!2^GjQ+d|Z2=%vt>{Ay$K8jdS&9SM_u`0$ZO{fmU;-@Rp15tnDxZyFl>!4}h8aP-| zby@lJrw0Pt*SE>3|Fo^t$ zk6Ez$I7+|tU#n!;-b;B?W9`0+%B)qZs@Gl(!an<7mpGaKvoDcZk)>uM;hrK1V}S?$ ze&J-r;^;kT`sf;OH{Om+N<;TUL0sB5Pgz*PVThkDE^b`>AST2Tsn4W5zUE?nq?X5Q zv=Bt50egEFRiC+^R<%jq;YX(~m=#qQI3}xSs!=)6oR%uA)d<%yHD!PmOpi{?^QWyC zL+6+Zk@ris{-XgxXaxkOI%;iyDf7W2TOf{GAFb@YJFq3!lg!`N+%DNjMbzgsM{$8c zB6@uvosh>;zzE{J<}L)x5!R!1MOx?WbCaq7=?ML{MT?^4Yo{3s?v;no$aEcJc!2|l z><`OrqKTizq6_oON$NLTt4=IW9oyVx3(voN86tRbzUHCjvb-~)b-Xj32%Q&{<5Oxr zLo}m`o|UPhS*#dpJxj|lC+A6M!fV?U;f4(jq`+m70w*wDfc{J45HDw@SoF#a#rhe3 zQq#ozpd($ZYzhqaDF`AoCg%GyXqk`s-^NEaM+o12OZO;%+G)U2K1d#Gr)q98{da39 z@%eFObxsg!yL4@U7FOSy{i8>Cur)#|R$;_n0k1p6jMA>BJ09Bh=UZjHyf)8c15Tp$ z!qMca2GPZl*~Ssfxs)Bk@5SPl^Dm3tc~n*bp!0bi8te= zHXv}6d^9rVdOqq}^eXvnMCUl9GG>lK-wq&QA;dgnPI4>)wY9m#SnbgI*C_dJ^1oXo zqMjr`2+mu(t*p(a@QUwmGZMD^Vy6kb9A!0};(d6Zs_2dDJJd?0{Gn(DX+|>E%&-|_ zG24riO*!!F_G|qLk}fX6ODW!aW#@>CUT#JTA*IDrD7r+6gkPOYMQ~2j?n}ka=2KGfi_cC{Q%{OYqQquRi+c?LdV2 zeq>Z%7n6<2I2!*f1&qUea|5?{9Yfx`U2u5qSRJh&&ha3TJ%ydK_Hw7DRzrGO4;KK> z-G0ZL0imHZpdVg}e$>5W`;{lP9h|;4);aa>wco4(TnJ{&fD;!ry2T%k1$qRf2w^aA zGsNJ~rcRa<-81{=7B}})p8f)a}yuxq%CLR0qnz{3tVu$L1U?J4~of;7_V9A%fV&$y|>{*;`#n(bhSL% z+5Dsx0axD1i5sGH0M2~4q;t2MJ|f1|%uHHdzTd-z^^8US?c0~m*Z1Q`Eo7#Zhuv7f z*T}|LFPz{NwX!%{n6sy;t{|0L`X~~VLr*2BV{hFdY~z-XAo%2~86=zE)UZmB^oe+c z*KsN@b!|ex$Dk{AI={&-9 z5-JP<$jhVLIue{0iGk2>x#e{;At($Ja$>lK_R1u-<_&M|V{G~ueK-u-4b;*Q?_5r& zP8#=#k`p94`TDL<-XS(0Q{pp)hA zUGPO)8_dQ8PdZ}UmjL!fM@urCYC@dAhpXT2J9C+bXDTj76NBP@-8Xe^edBX-vLJ-j z!kLO3M%Gr`^)|_e=-tFEZlZ@k!uvSzx$K$tujc41UBu3EBaA?jLcK|mmYyyjYl33l zS1(Qo&gFD3q!vCxf{J`?Jw66A0K2~6IwdW6f12fa8+q}zEG zm1lIN9+!>-R#OzlS6EPOv)f5Gw#rg1wp*6=Ca29!Vc$YZ#}+PL1p4<}S?`M)APB>} zjaoqsVlJX3*xQ-5I{yAGR4Q^i-RZux!03H(b0=HHGceQ$1(lH>jFwPsv@o-jeHb$ZW-i$`Dy1*uNaf| z#g`(0^mR?Vh~t6Sl=^XVg{5kFgZ#f_WZPWUa27-N*KkOYSGPYybTU}?=fKb^hXs~t zRo+XA%AC55d^1U0a2kpTt5Ygt^yIu_5Y_FN4cR$hH8D_T9|>bVt0aGEV=Iu-b3$#Q z7BKYZu3hh~i1xlmD{temf`#7)g~vSx9Y18lY28UF`WY^<81b3Mh_y@;POQg)nN>}%jp`Y;=P}ObV$M<_P=C~A#>%iW#Dw$ zsgR0%{b7HO`T_zS__@<$1YEY@VA5Xg*17rki6C^jrO>^$4pA<=j(VztK%<-=rl+x1 z9_HxU&x%muFK#>*J~>td!JT^g{QIw7Q3FZ(t)U*p1Dj!CVPg~HI!|wdg7w?Vb6gOTU+-DYMlBp|5^xe_7@`&x-y{RZcxn{Om64J0;eArq5?T5a!I@{d#H|(S0tR7es!Hxrg< z;kkM39cv7;R}W(4y37VLE*fNSJ*71UtAROeoAq zwM=NDhc2%@w^V_Sv7PeAD;Jb1kC%7pWR1GpvAdJW#dJ*XfT{)vo-?77I*aoXmJ9b% zyw(k1w&=25K59C=I8|*Iu#9Rxb!{4>I5wuYv(^I$OtRNam-w)W37k&ZVQQd*PapW& z&O@iQg#|Iev?i;ViV6xo$;s2#Dm~45ZLo!&nXd5AZPo3WaAPsL@z|?#sRgpt-t-$4 zXf%A}%2&~`()Q30gtPRY2l5_DeqDKLX68MN6rGH=?dETTPtFsCRkNNg9Q<2GLOxTW zM|z4A2=j!;W|iAb+49-yJO>b_(f8ehAM}49H6nF8-CBUHiUy?IrOZ3XzeigAOrqKl z$y`zvMQ}iYG*cJC5SLa~V4(?vzi4f;lEu)loH!QK2S(=;Oa9f&}P(41%^dQedxKGBhLzDtpaa zg^?J+E%`52QB64>R@Ja-jjP@+E{b<`GOpSKBh?aHycdOT3xj$5AQO0NC~?C&AX~k6 z9;e-3VWFX3VXl@==2}NqqG~Jg-GwqR!(H!Bvqkl?4$s=p%E)JNKo<>vGf#($84Fmh z`lNI86!c$MToY>VeVWEXoKK(Dd zv(&1PD;rx|h(Bpb$l8*ecdYL1Tk9-$u9+T2Qc+PskRlTgGg%8q?VEBtecF^)$%#D~ z?Q)D-XecOi;96S&k}@?F6+|$61|2IPA7Xk!A=hj`Q4ZVdoWWLuHbeP@fQuovSTi&+ zAFT`sw0(B&@87@g$6L`E+Qc5kF-d2lw|e5(Fp28w;?kdQgjuos;&ZSQudSF;I70Gh zZ;7mxLUyz^;h5vHcOjC>ll3cEmY_YszY^su3xC*WpWsH=`OfBKPz{i%1 ziK)&X11^qt>6!4O)14dHagZ_)D3$mKILv)r=YaB<$cxpk+Ai#4?I3Q~|Ke5kb z9NmJ~W^YPEZ{%oq-NzsvPM}=)5fbaftgTsvg@u(uc3_ZwfleT)VE9D%ItzcSiC{vH8uw;e; z81oexCeIoOr$3nN20drQOVeKi$OyT&9m8E9z)_G&M21f+{jr=!njoBxmp! zGBEQZzsC4~L-UFBX|`K)P*3t99-UB-fh43y6VY!HD`8k@RuDT0{u|AtQ-BMk3yN6^(Ke(Sz0Zd`qxG}ozsCMnw7S~!F6Y?iwcZ$_ zFVcKNk~>4>S_mQU>H<-dU`s&bGU?L&c>OUl->H9k7fH3B|n@bsByk`_BM+=SSSF+shH%LJf-OGe3JVbGea=|#@!kf=DG(<*#UyT2&x+~s(l4r3sD_xo~DrP zJX8I(RH3s1W2t0We@*5Fi|A<8XX30QQ%>)nVe47ygvm0)*G6?Y>E?v`u_`8Xvdys(*)k?FY`X(lB1~8fMkr!B zZkPY+5Mtfuq+()Xy!cMf`N>?RvbyS67+ruH|lpqpqdCrdJ z?e)=Oa?;82<+<3|{Y`cx|6kwnc5^9E9#LyQap`4HFE?(Dc=C#@wBjk57&JE62tvkw zosBTi;smo*p3VVcoU2pjD`#M4S8SBCBmeDCHzl?tuvF}CIU>D(5cM>M_yX>}PScDq zAlL_u0*A|iK0=L}DIEtwT9AUnx^f&{6h3ztD|f>rv$zj?0OJZ?@V>?Pr{H`qeTX~2 ztPTF74FQ|x@S?uF8qod`Y#e5Hoz-4g(En&93eU}FA=qebsseqt;pX4n!CaW%0zJ+@ zinc3QANFHF*&!G>YjBSXCB_5tmeZ~l{xj9~ojSMv&12{;vD%)oLeQydx_|ZSMR9W> zd(`g+;p(ABS4+;13~i6{C;=C>?9|&h@}Tl}tA6s>$L;}q4x>{k6HT8F)XVLTL+gRH z*j&Bu`u|I6NU;V2KdxVBC}30z4Ipm0JCR&$phpZkN~+J&l)CU`lJ|w+KyJ!a%x>@Q zZU#>n&{+n{G*ldSroF!#uxP$YeD|(tBsWGsiC;!`OE|^DkU<{p@pr|T8Rc+|m`{ZT zro}&ihGY*9BcbvGcC`us*e4$OhEk~;uz`2uTesvlx!xUjOH(HY6~MB3YS+eRXURaK zou>+~qh5+2IwccK|6iOnZVeF2+Ts(+4Jl=M7+0>A@}(=EQM z+Fqex%-OF$+Acze!9B>BfHSy4Y33!CJ-9!0*jr{hOtf@j$t!Lz4(`J|R)0RUI5r{E zC$nCsZ(M?gX9JRWBheEp-bT3MA*zj(Khmr^`o5DImHd0q4_7u3bg`)_mnbIW@Wt^ekHVTumpHw(vG1>9G&>ro@PiSuQ2@q&0NW$Uiz@td z3JUzd9CEUrXr2b6<^XKWTAER>+aP*PQ+f8EgjcgF;?U;t?VQm%DqLEbZ?MgVC;7L2 zVEqAu=!M0_+b9?qS&-kAb$aupFGrqAU*SP@Zk#omv1WRbmWCfYPr}ns|2xZ1Hb8r= zx0uBQ#!}G$(8!WTQBpyp9YfobD=HZI@rOs9LTt`M*=PhOi zNP;E5uC+W_K>XUDXYVSQWqxVtU1rXEc-hwna__pGic;;oAmT6fmTKeb)Ge~q_W2a! z1EI~{1zRMtBpTt>+ls1V%9fPq1^_mD}{IOj$R)0|H~%`6;JWl;fob3ZftFMVTsLDVr?s?o%M9p_L+-K z+rIUWFgc-4M(Zj3wIqVyNVL98yk04$xpJOrTrFOQZHP<}8q zT4=+*H~HDD4bc!CCu>gw?P;*OT;)K|{c_etwv5BGl6FU*Qels~OlOb_&-2o*KYy>#2`KC4;nv3P*82sKk z9^AvhEY`gkj5-IgA^DNQKQ>rfpM51hkc~Z@#pkL->#8A>J1ENB8ZU1e>N?kE2PjPa z*@YWXs3+QMbdQeP2MP<-^==Q`9JdRqR$jk;jd;qCR0+Li&_htuW@F*HVbp2)rxvr| zwubA$s}G-`a)^?uYCDL_)qXlZsCIGj$}kRu-J$2FQHmiD;KH|7BK}+MRbGggJttqS z;%u8i!$)8FamGBHLv6*@MCsdN5Uy-K$Ewry+-eBqm6dd~b; z>PI=sPmjB`O7%`lEe^Bzd$746Oc_E3aH(h&RW*Z>RRo`HCH0$iwabOR>We<;9#lNr zYr-_?FU50Fmu`F>USv}ceR$bX=k9%2Vnm+*Cf#Y)BQAAS9D8b)9?b6fB%^e})jvHk z-fZ40wb+cUVef+@-DU0Qv=@mzE5Y5d_} z_|fKQ_+u^SkD-Z`6zz}V$7`T9&p=B`ER8nfd58{vbH~Y3@$`N$yxxOkIc8>NBxK~o zhn9#X>+JL2ian2?JKJB($jZd!{ApEa%bns7G5H*%o}KFGRwb(48dh~J9K8ZfK(>Nl zYY8kQA0Hor7w)`}h0B#u&zRHJ_~i1fx(7 z^WaN>3qIklY^hZHJ0rT=n%pkO+XbPeQS;Z{>tiKUY(}yrx-F>6qQy&wD=yEv|0b~7 zV!=0@;dy?1H5uI#hcEWv|XH2F~n0M>j zj8fgZ1F)%f4m-)-APMIv=+r(J^}2#co`>XYUl!R`_e}Y3#eMS&xM}YgjmD1xY@pM> z)7z%y7ZvgxhK7cm786G)1x^2J3aKH^)o4fqDTO%(x8(#v*aa5kKaKdG`U5ij_N?GW zJvEbX6cWP!wFz)Nxr%09ecb!I?HwIDzyUR8BF&w(a?kuBjfVVKvnes^haQb$_8VF# z^ZWYx{ByRasZj2ijTE*$$yv5=YvRApV*qFJ6{p7O*rR}p;<>rG-(Z4Cc;Vq%-d3zx z?ITIq(psIzb5;yRS;>#nIe3gQS`7{j6J<{1QkkeMa+rRYXO4BR(qTi&Dp{ zjnB>2lPmc0rS_hExqbIO78cgqrhxzM5sl44ZP6btkxBudPsC-?X~fY$qsAm=wCE@A zopvQ)Yiny-_{*%%#8M-Wh zRc%jccPV`i>?sc-<@z&BI1m_bujqPdXsMsCrH3PAD>T9Qdrdsr*j%S7%t^rp zJxP2{=Jt0HoZ6)4ZebCgQ8s91S{+rKm3EXlo7U!^5)W1;cfmmGAQXEj$>DlrEP9_w zElzHf4xTO#Gs)8eEjo~1wq#j4mz&(G+_N0O7S2K>PMp3n`0upQX#~8dNr84l%Bq(8 z17B?qqA-u(xuT{AYn({AGGP}h4ltB}>r%7{r&7;wo|L?SX7>BZ3a&6O7{MW27T(`J z5b>DFs*2uKFE?odh6Pz5_wySrc(zv9%Ha(y+O8I>UP75Vs% zQaHQb!^(M@yl$R}$*dm#DH#Sh5bma@q-{m3FWVbPy*uaWT&CxFIeRmwN8+A1SUO8A z`jc49IQS!sgJYfwrqEWl|NbrfN>WP76|1X?>KPLg;-ZGw-Jn9N0!`TPIf!<1e1m_W z8+$`z^Mal09=%FOjc4FM60z53wctIo;ZN*!k#NzP$&L~D1&1P==@QC-oF$deu@vZ> zKP+986y{hxWivdY`x2#SjhgRo z8xIt}5YL0~TuxS4U0GubmdTd<0&ZC^pfx%k&gk_rGlWa)}Edn zPwgPuJHlAtI%~>RDh_Js>gjTw?dh+&CSV*$T&s$o8A2V){|AcfQA&un*5D_AsjnZs4 z3PWy>nLGL5V)*w6X+kz#Bo`MK_k;D-s*6g>AM(8nrOJ*)oNEGs9Q>XuhrJCS{@sl8 zcm1X-Vty!8R^MScbx#-R0lf8@eIoR-(sh~4+VANdtZYsfc6RWoB`F@*oE}e~dqTgC z&Di9lV@fKA(@qk94ZmA&-D<5-Yu)31d2A3xJfY!=iEvG>u5zG@Yk45 zJV>2*(>I#abP-DI0vXp`NAuRaV>M1JASk0{VZj8?!Ng6)2UAvpy}i9}kR!x{S7%>& zaBh?u8JF1h3*FB80PPQB+5^;3+}5dwrOc#lI_-;5;V-_q9Io(+mUOmsY|@qYJX%(+ z#xTF)#}J+0@)+480A?1YdC2E}Q)uBX`l9ya9yl7cR9hafUF>XZKnMGz%JOc3%eaW|AM2&Mwe z=Uy@6vaT4+Zz(xcHLwW<_X$1Yo$U%pYlpq`$K^N2 z{gvBU@fLFTOG?;zn3vx-r$14$imJ_E5IdPK$+dO6jTAh zZr7_l-ya0Rr}}+}m#W>%$@s0$+FL~|FYL1MkiUkP5^Xk1?bs=vCu+>^gT&^yfc-u}CErb67k7ph9G*!8%x8cFUD{S;fyK$bFX%1+{Yd9gkX zhzB1sK?ao<4aD(0R%E?`H+P6;St(t^o0wQhynTKmDWshqwCjaOef`=AodOSkrn+lD zdB%gUNz3ipYe|zo*hy9KCv%Ewh?xF+LEmcDPd0jFD-dvZ_rol-OKL^rbMt3%kI+m+ zr*hFr_-vO_ly(}h>$JkhjYYQ?UrXMU(Ea>1VE2p2)t<{V((Z)yH8S_N)01q+>Aiu& z)!tO2-{1Za;Png<@nVMtBlk0UioP@3GZ}xd`r~O%tkV*Nmyw+fDI)7bxwt@gyH@01MhxlNubZ$O zW`>N%(H=K|yy&-1WfZAXY%^6N%7LT7VOHqyhWQzp{Ii2o0Aar!y z2^?w_S1O>*N6qxn5_AQE6Yp~nL0o9=)L5a=vKS2hXbNDsv>UV7Qaj=1$ht5Y_`*ZhlH)!J)+~aXhDHTX}Z?F)kD;lQIUsPl{Kc~Kkq_-5S(Jt_? z2p5ff;39l$$}lq>(Xmu@HvBSEdA|WVDxgIkp0Hl-#52c0X69TUc8Aq%90ftclCaEp&rX5O9)TwrbX#?BSkN;>JOogqr{02`1X3iM&Ztm@fjaYbyr@P)DRNM`S13jD4;4{m?c5ah4z zoVoplnUs?A=TrEk{_%HTwFNdfq9s0Dgs=uvq`QC2~ z&Q0VGP{@CKH&3RH?A;wq8_B=k=Q~V4*dW8)#*7lrWEjnWHxsIEyEBKuZ9eup09#4o z@l-yzRv?l`HP$PbLM8T!{5I29p2b379)ohqplI@k&RxAWx!>c(+;5P> z#WocvC7%XS-b)D7&g)5(q)hGi3*3w)iW}AeYxV1T-(`0BZ>*Bh&1e8@pG*7XIO3gC)-F+yqhDsSB2nwD@-BFcS zdIcxZ1wqk^j|5S=Y}A^~YP(WHzil`P|8bfoqfNafJ{L!1ye%jU1iF8~Nr^n};`Ni& zsu#s@CvcD?O-a5Ixc_NBtF;u6r9(w8);xUj%vUvP2*t~MA?0)GUBfAZa()c3qka|* zGd|$2cGD|Y@965fyhOi5#ukeNzZW}9#$1oK#2`u(k(35?k7)HSbu`^~9+Rm6X$ciw zhMxQ%z0vu!?XQDYI%vsmMxU+mnUwQB!`FO24Z^~?A39w4@KcxTkq!^Bd?#>SO(GeW zj5%p`y?`GfvZ%?RZbZ*4y1XK_S(B$!`YzHmdogqiCO1& z@&R%l2?lnu#BupzdC?2%?2N0s%FscCAN=sH&dkiHqS<1LwOR2~;^{GWwpp?Pkqv3e z^L@t%x?SIBL9kUFeopdxHoTQD*mfa}W^50)1`{i1TsN~Ua^%zRLt|R6tK=FG6h1QY z`=bmT7j*2w>sgJXH^IQEe3&_dmuxk>TyJ0hF~{B#{v<@J&Q(6!(V{1_1$U~JqewVr z_u&fdd*R~27}Q13YJL%iz}X1#1i8r|IHt^+}0bF^EIWcB$R8O##^Mnu;Fh zWWMUbn%~o43_nqE%8u%L2R!1#@2(qthgGkN^Ch(2y=w-0F=BqwUe3&W8Jm%rq*W4D zefW4F-^j`H{M_is)nlE@hl16p2hlL^-e(e;Bc33+>1(BXM-+6xE*U5&V!7ec8b;az zMf&bgpCv!(MCD@psnGlnHF&PP{QP?C2{yc20cimXJO&3#P5gbENhU{=B3b_a$gvA| zwv^FqGf}G*e5dspyza`2+6QDtN@3KHCXTzyF(lp)MoZB^QfNU1Y`mM2(p}&7zxgv< zTPfw0BaQ4fk8GR4?%2V^NaOT!<@9nkwqhJR=$_7px^L>-h+MJD>KN&n7gAq}B`-k8Bd8RQgq51r>x4)au)GlXj**Q72 z8Perg(;kXH^P}8S?h=elzgB?}Gud=aB(7WDgwYp=b7~9qa)$BktH&S8)d{&=If*NG zs56@GauS|Umh)p~I<9_4{PGDYx&GmaU9UzAWta{RKG*f8Js zRW5Lx2iZ%7A3Reu+MfF@4S53dAOs4TvZOg)^7I}kNsuuN3JOA`2-7?Xi(Ygyp3GA+ z(I5Ez@vi(F#o@y1TT`Z>eeC!houHoO+q%A#KxADv}rW5!Y@`WiCz6F?MFVK6+dd z@K}-rNjVner-8_^JC%djK$&6HGo^7jwCgp0Me5S^WMINER|j$I!Cb^2ckbhz;xhMa z#Cy5oqxsA)jbT#lp;$bct@LK`478d>M^IM>E~?{EZM(`VHM%v&STU0ol#56-fr*et zmu8!O(!rHgv3`pq0R3!lCEN*m(fdQqx3N@nUn?Ca#*#7-IEBje|!dY7^$Tz7S+ z4hqm;Q^#N(K%h;N1abdP3^S@#=sy8c1I(vA!0Wl8y=;H?^XJcdQyg+pHqOL>{!S55 zF|V~e$+&AstEGa=bG(-#-U3X7MHF5vd{Wu&b=e{1bCfyRwAM@O2? zIY&|dyL7qFbSmQ^RHYpcbqk-v#NTnC{{7^Q{p(zqFafNM3$ee)6-_(a4^S6r)dhXa z(b5wxdP}K7XZ0L?HT5?HWgwFiNVP6g#iPea;L;?Ghf4Ll5o7yr6TNcCu+_b}11I7d z&xc#N)naFyCgE~*hIE|jGWV)8#K@oWUr<bSZ-hdZIs`~nTMoxb&( zt_|ekF1ChcLPdJ>>-9k)#NLa5GZilG`O1X~tArFhJaIXGp?zZIPpTX$r7jT-nlw9P zzQ-QF?6Y}ayhyq9$5@mSp=8!M-hY_yPZ1TB>K-!{Ol#er7cb<5u?;%K!BH?mRNefU zA0j+{CYz!ZoS3Zfe5`CCI;2ZLq$H$6kPxK1q(h|}q@@HzN=if; zq#LBWySwW@cm7$+HLjTf#(VGg#y)#Ld-t)oz@KH15po=pK(=w*ny}}}h{(PU|E6GC zG_i%Zxbptbn_IVK7HxNHZr#3hOG->cMGpgF#T28mhig-bFpHQkcrbJ+fF&N;9!1OH zHvRJQtHaZ8o+NndUuH6<^l7#l6u*R987bTdbtSPa=th-Hmg#!QX}``Asgu06k!Uht ze_#9tzM4^hP>JWCFYF^T*aAB=q!{;s7tBWP$&Q>zAxTc)tCd*~JZm<=2OwD}UbTF2 zUA~o*b^I?=S+de;M{cDj*=0T_t0F1FM?M21+kr)EviechzgN#SokZpqL$uVCq`TrH zrRRr-OhSDv-ju~cWNvCr?`Gi*69J9z&2vC6iYxGEoS;k6s4FCW2>tx?$tFgmBW7J- zOU1r|g|Z@9tGcXV&(Ad;=2z$P5nsPbho{uEwejGNInuFA*Js|;sRc)x8y`myl*E-9@-e~ai`9nVCIN_C5cx9-j^Fm-mPdIuit+&tT+TypvbtG%7! zlsimwBcX-9sH*~s-9ZO#4M`|@B`baB@6b?8A7;1#@D2@=E;r)4jn;WAe7L?5q-is% zGqFm`FZZYKXgv2K^Ef}O$YDbShT+(!XrMkjlg;rtm^_{0zTy+%IVPyG_|~_c)A#Le z`^xcbj(V|aZqB@13}^P zt~ZKFANfsXzI1rvYnpvDG@H@Kbz2|N7NL}Se{N`!#{^6G<`Oq0WeBbBDzUw-jUrd% zuFak(o;ax^qggVE=aJ^OeY6z!nMAQPKRDN2LGD0(^YCJsJhlC-b&$AX4@xXC~2p6=k^hvkA} zkILAI`9+S>fa_?mp|rqsTg>}JHrmwX$+6YMVMCx}AlUUVa9>zj67NkByoo)Nfie|p zaXXQM!E z3=q7}3vo;<3CAiwFhVkoF5zmcs?d8|q ziM$lsKdofhTy@cNgs|Un;M^|hm!f{xW>x$uIm029CjmW6c1Vib_NU% z%`+phZ=JQP2kLO4hZ^4!dR;ZYh#S&v@K?1kZggty1N&8T0cYlX*-Q0LM)s=*O`;)V3#-K~!_4RFN0r*u#~q z>2zNr6K;RLlc{<4vUVWW)r_PfF1-J+mX@#VnlQ!LfQj6Fw?3KU8Ux`XB(Ruj6+PCJgnv~48v|{7A6dpp#A7Bm8F1Z9<3`IOXhgB>@ zYTv9B2Yj@3o>#ee*j+t6%dkS~Uw;;d9>E2y$D>TkGk9Z$nF8>~{8H<24uG+nD$~6l zFj)Mun(+LJp6%W`VpV2ucH#bOL0&O$>%|?ax8DYN^_bcymm2igS;^CsFSwx~B3tEW z0XrZS*G9Zm_L)7ds`TYN}HSx{3ETf|mOAE8rZ`B-oUHn(lO? zR0h8l)6=6I8ykZUrMtU3q7kOqh~#yp;F~o43W_M~zB5lb=E@G3Vk2BAigb980SzmD z-wM@4GEhbgZAxNdVk-P1T1D?}_tu@_5GeYY=lf-QP}4K8EVhmvoSBY0OkdBCJU{5- zz}LxB%hUL6LkUc5?2?u4h0WrrHdSJnw4mOG^JUw8@K$Ce&!LlWQz#2479Iq!b2Z!q zICay_hZpEI`k{YWxMCH-LXrr3)Pp$yY{csOG{N|Nl<9-H6@6=tqn3+We4o4wl#`}B z_JS(dU_^h+{RyqNCIMsV<*V|?QHZWOmRaDS{}dy|MKM>$lL>rL@`S)nca{?T+skV zrHdrrqzYRVa=dQj@{+Ys%m>j6zm1bl@xi3+JX?!665d~*rn zoM7JW^e*pX!=}XuG|FDWpzf)s5oHogkx4I$+#2-@k3>%(ERxp&p$R z%*4O>giJHE(Ts{BS8U^Np`*QA>O?1OAgjaqc4_rq9O%TH?^-5d%R*BSi2M1?SX(f- zr4ciKWk+uaqY9K{-+8Cjp+X%rr7$Z!h_ymB<{^36mBetNZZClB6f5s3Rc*YPylMog z3l2l=Z2s}*%_Ca1q@5u|12V|S@Dgv9?>+f$Fi#MbpfmW+(+E44qSYNGyow!}WVJauOE94-?s;^6}A*JfsBro`%S zqyq{HLbPP9I}ds+;G|a)#}p0Sq~}L#jR(E*KSaFmkv?~hSS?w}9?`Qvh;>@ey?675 zVqFdhch~a@V{=Sd;oe2LxAVfT`stHvDgbXTE~)E^{;+K=(@{?nyexVv`&~=$HE6_K z=B45eydBYs=hXa#w|=FEA|_c23(8AZ2oJ@y>x%ZK9ezRD5&bjTbhI4*w+nKMi-fcD zShjX{cchcXh%Mdp=~-sI!-b5%4yNiSwtjRzA*ASJYg@0+(4beQzUD4K>d4eWH90wH zwQ==yn@LYk4>aX)S$7AVI3C(Lvc5ZI#7|MjeRGNpwE08$SiN1R{1!HK_NUZMKLqGY zg`IlEKzC$n*|baCVwBqh^BK%rRbxK;nDoSsdC0ym6(u6%b3RB!wA0gNS4R&Di^$1g zM3H&j$(Mg}#E;H;fHAl_i2^k!>NCVYHLD`z>{nu09wI_|)RN)YV}_iXHTTn3!4@v` z{PX$(w#u(WW@Wm_F&SxGv*aX&+~0#%fo>htd}kYRnI<8P~V{B$IMQDnHm4czihu#_v9PT8KI z<&FQ)Wah;w35F?z?Tp8Xs(Ipn&tQ$OO6%K~^Q=W5Hq>-n&r~NHHTx`fOOQsa!zEuJ zO;a8PuJ2=^#^4f^1XfpHGF%kDWqu(w>ZID0Dx5kp%S7@U? zSP8dh9aHg>(s9bY36`0DN=3yT{Gd-yv~a}s{omis3IVG{GkfAc!Q`NS5*VJx=0NB+tlhg$=E~ z)u{&|W}*xA@|5Ms>;Q*?E2aWpg?b)Yfvuf5jXJPFRP(P8nl8=>*_Q=o%00qUF#q;B z4?jsaoME3UQNUr?#>SFU?0?!tz@e5`+T{|Q7GU1$WV1d(UQy)1W|t5G%CVBA4REvhVOf`0DEF#1%?z zCQMWuOlHEGlqZVfgBUH|bCHxgnlV~xmR06l$_BcH6EJJ;o*66m@tbB(>7j(4hh!WD zsGAI0Q(0Xb4jn4%W8lv2s9X8()wLkJe!;zhGUI*SNjisoj*0m19Z`Mh)r*OOuq@TI zw6*?acS;n0PZkK89y<&3U%RO^!!P*sLBTY)XW%5Qxw=EK;99 z)gj`!R499$DM0k;!^FET=^wm;w=?EW0@dvfJu$k^BFd@X7UvDFzTB9zIe6cY5#IOH z1ucwRSf`*6iUy-nBBg8&Sn9|fc(E4uXLeXWYUQ*TmAyanzRTKXFlzCqPH0!S9yp+Z z{&FIReyME%!7Y0eVq-85!uIkTAn|N@&A7Y8qdS9r@#LE5{A5So<{bs!p0N#D$cqgn zPe}pRB?dlqd3L?YQL_Vwn=KeOKr4LvpYFs*Y}uH(pYf2Yk`Jj96&UfIU0mkBe_*f= zrKI%^;kbBo{r8`MP8hR*!2QsknsG&V|LvKWcpUbD^OD_t|TDA}JN7h-E1CLlo6)D=q^5DnE%J zwSEvNECs<>$Ev$!4Ex8`<`Q$*kEHr*b=xal@Ab`598H45Qp4AL>xbAwFM_(`D-^St zR6k51xthqR_FwHp><*70NNsq|57r!F9_yq@ubHF1au+=g=%j3;7j&G$uCw)@GGl+& z(M|z?j$^@(Z{hDgp(Mitxl-B%WN%vfmQro(x_L;okJ;2uSTn^NH7&-=KNS__+EYB; zwuCCg5~H3MbUja8r{oQE1ic#-f1$i*>7m^oC19~g7A@;}%%D1V!-^;sgtIisd_j}l z>A%~Pi)sayZ(m%O$^?Yrh_EJ(iAf*c)>pfcy=t=oC_dD8=nn@8Di)G- zXVGud0l)N+@_rN|^_j12_zaMbjjrgiDx*TVBdywgCv?c-+cUvfNbyWZd%(I4vvl-_ z>jMdg2NS%-=Nw_z{J!O)ou=5TQHC;v>U6IX0JhR@@N$JnVN1|K=QbWu&;yj+m5%oA z%+wL`;zz-+YKy{aJzQt(Uhl8BwY9wi6`V=8HVIU)m_RJVyAyG`645jS-j*l7W*X4M zi{}IJqBq%jHif=k1q)Nz_M+PLZf8>PppA^b-nHn*#!{q@DX*xYM7bkJHa$r6JjGtd zYc|hRQRG(Ps!rfCD$G z-3NSC!fFNdoSe~MCdI|YZ3HQ%HCLAAxojQr@K!s~tDm$- zGDg4Yme4xlPjQ)71Rp`@&83x-Aw=SRj?71P8-iJFEjC`x$1vcT(K0n7XD{9ny^p>) zK(D-gYQ^*S@#}_8f0D?52geW|%lGhdCLDLNx<{n+AZmif zEPQ-@RW&fRG8x7`l}#|nq2Y*Q+bfcB2V*PiA>dfnb!S2T5<*>TQ}z$6C(&xEZmcaI z8)P-v9WA<6Pr(TE+KtE3?E}bKyM2=6#jf3&AvB%Vng0xY1|KdLONH-)ku>%?{QrvR z)&EyBg#DQgkNsC+^DOyTb-yEMz?zu`i$(rm#5P{3WpXDe6U`ffbYo{W_Fb53yC*ul zn>bbls#@H(lE0syen%(VBqVZ}ZDW_D@kL(qV|h6bSSqu7Y(j;qNKHgq&Qsz}#YoTorN9lNhp~&Z^Da0Y7D9PuBqA8I$BJ;%Ub{vlJ4ed6 z8R1TrlWP*{8r)g^z~9yKaz5QD;;~l(Zmc!|#p;Po&g) zXK{y%4$D_v@14PeG-G!W8 z?SBq3N~FEYkX1oxfa1Uv6(XN;emPRFCYjU=bqwbke6?!bi4tTbVE*p1n&xlix_>^q zi@nK@_d4oYo+3)UIxL3NKHxj<2A|z21sEL-hf*@c&=XY*>l_nf7KE#tS%uxzE8U`^ zqC{1^{mR8kvm}CNMCrx*>NE2@Uj_5|*}tGW5AdT)PU_3SGe{8*qoj}3nX3AdnAkeE zKnp`iZ*?*1MKg52pDMrf!>9;W*gka7#tfguBGw5GFyZ*OvsU}ayu;%nacUmR|89VA zk1!u21!n!}ul-;T*hjS=x!!a^?ojOPzB|`CDn`U|JCY*kyEb2Fw}sfodT63Lx|n}V z`X*9RsoAvG&f}JF@|&{Iry#z=q0JtAYWn*6ydU_#@=r<55su;cH};%a2Deqa-mCFK zN`Yt5#33G){n-!Qh6tkGf0W*5#}n40wH^Y{1C&)>j%bbcdr0&Wa8J3af^`}e+$5Ic zf2i3qBK!nt(to~~WD#WfI(kcP_Fk&Xq*+PyS}SfIr3eu z^?rwsa!~p!2`x@_jGylisotw0^^nH`vE8(+O4c?*7zK1eq&IV~YrpbmhHyZ^ZsEZd zD@VX87fyHtzu~yC4!`*1r`LGKncvj%`ph^vvvpGgaa$nv$KbdvESrD5@bBW@)tnB- z{BZ#->+&-h0+w$e<&^E4z}<_Rot+)>D5eR%#c85D)h44;vLFV)X_tnD1p|6<05}R0 z%vYt6NMQFyJTs`7t z(GiLHBT(l=PZo41j8sU4*pdQqGqpAUZ;7-6?uG$km zupGy%D{5(5dV2PqJ2>#WjK36rNiti8#O{!~uBw0{m_tYwTI9dC8Pp4w3-M!mSrFik zJuoi9Gh(+`#j3s87JvbBVcj)WcF4;Ue_(ubzY6*-5b4x4 zTm+`Koy828kj{6upl{qXMS*(a0ir(~FPM#bQoP5OUu4ysn>PJ|yocT~u+P zEbTkHzfd&RR%b_MZgtPY)d4}y@RGu8&@V3XymEya;GkxGO2}$}XG?6Q#UHubO*Xb~n8dBmHiugm+$^`5H%^t2>>r5Gsml4Wj#R z()zKK>Tu0M!$9j`hhxilnYC_aC;)U;RwG3bG^sN*!br#M=ft63g^~r>5q3mi67%nY zjqH)|HGA@8IhwQ2NZ#+>!GZgGCr1!N_|mTj78pc~)0D$l(coEHe}#h078Rd*4+XA4 zHka9WnPq2FnXWz*h8v~~fE_tP04kp}&#u5-S*Z9H!&+NbRyHKso7uJ%28Xg=4fKza!4yXD4k5yJgYnkQ2{GyyG-7(|xJgyy!s>3$!x&o2 zMz|E^V8&Becg78iK{dor3=3Y%$t~Aj_TyRgCeWD9mq}844m}7oO>Q0{L zsVxFgW~<0>8}%zIs=U%q}kZw+v-yC2o$|FE*1dZ1Ly-gC0T(&hzcG8pj(9?q3~g()G+$ z@;!zoHwa=-v%AEb=d}(xQyWbateWK?EXeB zmygrqK=oH+%~YjPXnOhQ-y9vGf56M=@5kFqW=uDPh{B?`e=M`q3T?~pi%0Wi4Oiey zds0Z#K34wWiRe7)xUBU$ox9JD7M#Pg&KE6b==2*|6xM^|&G$!A{xFFwEvoMDLAg8O@i#d4G)6{|%QRv>*iiGsUb% z1|b4dV**u7${pX3%+KKa^`6s8T9}xO@WX~=oU?1PW*f%Ncj0JrKoVOU&3k=4B zbRVo8Vd-Gk`3J?x(lpwlp{|UlGtjC&-W=2(gj>|ENfDmYPx@~ao8NA)2}$pyn3NR(%(zI2=!DeOL4j_ zBO`I&zIE7Z+;l?@;gE>q-~AyL#DAucA!pD`3LjuTcbN9xdi3z#GOK2YTg~!P(l&{0 zc(!Cv9&L$HZ>{;`ox?*1wS0|W>w#@U_;-=?(SsHPaR87o0;w5)T?4)^)XXEgH-G>E z=ZVAHrICy(_=j&kQ?$Lfyt>KERdP*ZetIP|aYw7Zvl@$UD%a zkC2v-71)zG{Ww~M%%K-TBASkraV)J$89G&V0+=ID(UFjTQU%rhtqYaU` zTlV%|J-i~_Bs}}4<$a?CDa)4)g}hu>qWbEu8(Ve$Mq>)k#-)0(;5%My`;$jhIm6A_ zZ!<{rj<==*aw!KSKvSlet{`cX1UbF9@V>%e?-z{we0i`apY3B<;&EIC-Aof|Gd*a+!LEjCZ`zeYJ_G?B< z>L9qVzyypM!ETyzJN%&-^<$F900orUiu_}ErQxd*PTQz`eEb$R$X|F%gd);^@RH>o zRzk@6hit;j44T(_XeduOnLh8~(g2ZTdg5A03SQI6vq#m`c|C7q+n36Hxeb8loY{)# zvxLjSHn!@`GP1}Ea!vn?Rt8V?X>{;yKF$~mvQExT^`7Q=6q5*^c}oT-tF7@;ht0_Z zvYLzCQ{`Uvwf3w)A-9yDrzHm3!8z6PsqdKlp35R9sCw3l^X0?`+ne@(Z|}z3lz*n* zgu=;yY@6kzGTvfAM{(6p={GHm1hi%8iT|r-Lf;?5Ba1jlebF^YZ~jQDklW!`H)cuD zKQF&PGKP`wMj??=oP<*#o!2N>#O>EW4boo65o=WY3oM%e47iggP2Q#Jd7bxu9Y`Go*81+RPUpWho!ZSE zEj355HJ)BzkTzXU$WgB8{V_fX8k1|^)%ehL!U@w;sq zkC+@M8;IwJ$|>O}dL)4P3y>cY&v`@Od|BC{-S;-_Fu|13(}*X15NNb43>*@XUrr=H zpxE(oza0v8a{2-WTRdsi9I_XN09?_^$N<-7*B(fudmZN1-;OY8t54oc-f6_fu5jGu zO<2Leu5sc1Ab`yCeglvI{+|kMXIIz# z=_>1k{k%eNI-LG&^R*K&knD5dl)JC0UsfN&VUy7-kNH1+yN(*MeWAm7htGaxLA6AR zFN=hN@eD_;1iLVR0EHd-o~TPJ$%~D7cIN38ZPXiA#y2#y)2&C??2QmT9!t zI({`yiFX$8Q={+c>2ZJw$mAZ_s@WiU)n&(g+wy#YSQAbgQns#l#@PJ%%IxmVO>I+u z>)X*wHLGECi96^#!pFw0Z^R6J*VE8U$0g@1!AZApYl4YJzl=rPsBK{>F4yS|uyFpC zM5Riu5xnTeXtY5?0Y}ctIP#yzlf6CHccGwwpuWDI>CNx>+2OmpsOAa<{52A| zHT!Qtq_8*YiMK5Ye?6}ol$Xb7SMl(@CpS`@aB5;=aJQ9Yj$?xr)62}hv=fvUJJ=ts z-%#VEJMGQ2Dg!I#9Rvov+GD}s8(e`#s9bV|siAb6J48KlBm1{1xerlxmXiS6>C zjm?EdF(YuT+TGtjpZYQTPDL6SxqXlKLM5NY>Q#+|_wH_;!NE*mRh0mD9#LNLqs%}1 zyJm`b#U%T-_V$c|j`K|qbUd!mCpStdf4?U0B0#(6efw58@dpLBdyzyn{%CIMv-8S# zjh$xLJvtWce)IF}NA+NPxpU}syHToN))wiP0X)tf&6l1{_G+%`t&T&nWvnL`*6CIytdbE$E&R`ul1jcKc#x^GeRRhmbP!6DuT;B z$sQA`O9&O^348;hGh?FJ26Ns_iY4A*IfG8Tat_X#lzU((xO=696DM5d&`8@W&~2ucAt6$dS0 zg|xS9S_9V;)VQxluLOPtG76}r9Xx1it~2;$$EU;UJ$Uwv<`Tg zpT^4=Q_a}7Iw-x|ouF!&kPHIX!Q=t!EY5gzz_GWq9f?(lraAYj= zS3Soz?8(n{Wl#i(6Y5P-OXdo)2*r0rLR5B~)AK}Y2=n|)4O4@iMSnab0f}=X z(0XgX?m>l;xIx){zN&L$p)&(ic&Qx_;&;Is^AM}hHW0zu%^7->R~)Zlzq~)F zEI*~<&`u8bDuk$WdDzL>&(8iLLa$h$yxRC_MPS?mbBG(OyBK#^l|~Q}c4zbos=9V{ zb_RQToEKU3inx>f$#qz%;^jaWwIh8$?Qs>mRikZSYz!Kew_H|ZZ*SqGF@m|4R7%|6 zL;kc}V@3Lc{#9tJQiL*%k{$r`+ma^1Zxh+|lZh0g)q01!_=$rS7EJvk8=8Wjqzb<> zsH!(Sm#uMlSVb9U`(C0Lmdvo0Ib5OXp&_ zzewS_0kROpFefF5fN^>F>NM}6yp*y8Xble?N8$yp|g z=ymXcz>p}+#db{%=Af7uacIAUEq44Ejev=wZuFHw_#6njgADi>iKU0t6ey>qo4!gr zA{~Jqw?I7EXGzs>n-#$i*T~c#XRRx;J7ae(GY{LFr~DOW)iM-cPr@p<$x!R%l`sK_IKo{L*%; zN^T|dN^%mud=xB+azySN8yh9`tvO?7ZpMm29C<8B^Xx9N=>x+8T=Dzr$N3`6{$T2g z;X4_OlBdF3vi;DBO6urV;r12nprX?1b|m)P;f8wcohDsGJtd$0^1m!=VPZ}*+2GiG z7YI@Y1_qvWTSdY-#P;T2+F*flxSHj-Qk@=krNdSW;{RUL%Zt_3+4rPIE+} z#@rR?LJuxRl(QW3`_1qPf_-(>^CbwCQXA6su@>pLdgw~|!3ZcF%E9i7ie;0d5w{pG zI%-KE)+Zt&K}9=q)pWLX5YdVJXJ=9zh6=00#aunZoFOA&>1BqylTqO|i@N~vj<=EN zT>+cIN;?z*zS??yb&-MOujbXleVy-X zyXx7(r=~$eLe=}@B)p^;FzIc}Rb@Pblh^8CPSm0U!cIAP`}^Y^FCwFo1Tc*G5pftt z#iqb*9_5a+tMfC*F1i%AZN5X-t7Ptym(|tPyGKV)1(tB8>z6t;Tuvn^+6)%8f?Gf& zlNN8*)qSssfy#&XLw9yP$I^#;U9(4usVm?q?e?=;A)O{N&5q_PDvI=oPGDlv7uFr~ zK^x(<%mQ12EV#zv;V0V)(cHsU$Wwtq-#ft5y#oD`vD&IWy}8_vo32~c!OpHBDbByq z=*;rYoAmSz#VS6c)-pXV5-I-byA|C^OBgj2C{R6hCLi8uz+SAs#8AEN`12R1#<_3C zsD)!RKc<27Ya*_9@K8=!LG?9N6h5Q_BHN{t@cc7emp%k~2?JVq-nYG%{V2GQu0xJG zThGlQAT${XZJ``N#@;VwEiH|Ma{zw|@Y zU0zZ$<0vOkE3@ENvg9l6g3TiP<4p}v4Am0vhJVFhIn{ws+T0>Z2RJINI}qnZPz2gK zI`qNo#q@TMaju4}g@Y;gcj&N& zo?baE4bCKTnYUohcy!{*3wKvk1Uhq@1PXn-hmjYv*=bB)?(p^NbuH7|Uq~^zc7{7| zm!Rt~#N8Rslt^RsF177GO6xl|Hjil>FiEz*4;T8}I5(T6`y*oymFn9T#qR<{aJxz8 zc~4ZYtkD*P>=Oj5I5Stl$how-x6t(Sn&{@o)NalIlCQLPqaN+by33bv>sBdFj;lD| z%rIjx<-rM}RMTH8N2GvBKthB@GG|yH7b)5m^XCtJj2<@O_X*T3e+ z?JM{>{IO>sm0z3u$#wvVb=?J-cBKO)0|P2({SN{K5Dn8FLQP21YbV_L_}$>!Xcx_M0zl;dOx$cI~Pnh0GV%5|56~^%g!me?q&CE-cEl@E zpMr4;5pFZp(Na;t154p$=X>y>t<=v^^Exa(Iw$^svd#Ih0!B!V3^K!3dhNfK+#yBv z{BpN(so=GgRDDMK4jQIe={?$f1S)9NCR+9(G7+(pFsUO6ArDj27vk2eRQJOyS{EKs z@F*FTASX+nt$056pOR~6PcE0_Zq?(~Z>v6@nD5=uOS7xMQC$1`?%6kcM;c)+j0#x^ z6O+{$qpGHwW}y4Zy?Aje)no7Jikg?dR%SEQKa|G*tGej_*7?f4kyzE)(x^cr#7}?P z<3<#Z0UhR!jb=1-&pxiu3b%q4HWyvwMsTp)te~toE;axM+kl5sg(gbRDSAe`78^Fo zaDcb<4*ZBp`V!Pgsn1Dt`%}^>+Uk{AY|y_4A9Z#r=|fPN zwj4)Zw*uDhdHqQ)vk&BfZZ`SsGxYCu2nfr%R%$6vN<1diz|CrPM)W$FA3sqx)cWf9 zP5v+{VQ7-~`s|`I?t7hPfy-N5iB7aYChRSH}~ZV_xyu zEDJUVXW9mmIsHm`F1nWuU$JW5(?E?%Z&!j-R>TlI+i=z<>k}{@_y&xs9z#NuJJfH# zxE>+x-H)A}T)WNrwW$9=cris{9xbqM&5MO4Jr_+DiTZbOU4XNsSi&t5Dga9haf;hD zGI-e5`ZHw`HUP}Q-HASTcn82eFj=E#;eJ=DfrUggJpX)Cjbr$F7-Hxa z?e>)lW{KaR0b66$2IdS3=A4;BsH7MIEnQ+}CuYi~b#UvoU1%w`8X%aY`l_%}TThoX z)%Hpzop+6WjW9gYZ3`#VPw11T`hFPREn`~aqz3aSTqS>ES3W>CeS@zAI8Wtxvmedt zue*TJ0Nencl9Ceq?7^QJ2Y+%3XWF9aQagTw{h3pw z{?#Bf=}m=V(HHC+On3mR&FqfuFN)Qxyc0HqP|N$`VI%NH0?UP_Ig zmOiS^V7QSLqY%D+&MxwIVj@vSy+A2%B_4HapwdOLY{t2V=_UxG%8+{JNhPVXUy&0^ z*r$iAViRMoAhNIc3v56mC6{ol&m6LeDK=SfFDT{_!p&L6vJLR;mK{0A5Zp&$S>Hd|ZUih<=xH3%VK_-CjD(V1@5G`f#pl znN}^zNWOYrlY-kCrUXdf36rfYYS<9;FrU9tk|y51ePnZjE{X?+3N0$(EgWpUv^IP@ zmR22+rOiO4l~0ZO-+5`Vmt5j zrs{oGPtyut_K3ZTuO&{H^@8T1kQur&PUcIwh92KXsCFn@+{B@8$F#|VizAW_E}k_d z8?4RyI_ykeS(AG=)c|JbPPgXoCe~aME|Ta%q<3^}^RxTCHt1ngzds01PCf4^mEtc; zUBo5PsB~70nJGgfWcl~UL-O+kW__7sGgmXP11?*}eB81}Ys?96Sx%I$D7j+a-txPQ z4QILhp+T7recQISlp7sH1zQ>|+sPBA|Grg^3;zWT?bLal(C5VUQTW%=+s_iZ!JnJ% z(67hLLSfY?o1`^qdighMsi3a7iG4hz{`oloTB7z{rSa9dFO*6LIk?$CRz}Xg<^w2O$PQ@0ie{?`VB_$=sLt$V~rKGXFQT6xMRju_{$51 z#Jmbc`prQTmgklk@aSyLl*Q4L*Mx_cBz#{*f08;S>r;m-?0&)p?((_aG;aVme(~Sl z5ncJA_i%OiORCptn7wg&C*PC;PRsWE{C+rZHrRbd=QjN$P0pSlZNOEu?%ZayJS%|3fut&$EYz`Hm#nd8x(W$MiNwnyDWvT4_yKrWO{w)T~tg#Ob|g8&SH z^v1A~5)MU=mT!*zwl0mmPquZXMD`7XIB?o3ZQ}D1jUsUEBYK6d#Ox}c=4L`A-1EKB zCtu{OpYC0LvU~aNL0{F2h`E_;Mput!FLx2eErlxNXO^x**uv1xp!e>kR!g8f_Hyvl zZbe-2$y^&jNRGPmo-ZL}jKO7qLr5s;IWPXJhg>YJhUH(TXhHuw_C%>lhuBk(yw#~Z z$xOMjb_0YA;XG`vy6(`pGanT|#gI&LoqrLTN-VGEdNz~ZZSW#1ueRVMc@}2i@yu$~ z*9x!aB{sQ9*fWW>Um%@%VFguT!{KsxAQd(eVass2EYVE04EvL%@t$S_s2`E&>bK&G z`fyDl<>u8q)_9+=2CX$L^>3-flv(nd!Xi4*i=nae9H*-iVO!0PWaWhIH_W5@6lku6pIQIlA1 zv&OEO`gLeIpb}Xe%h(CVgl}oODxueOlE;|>ron#Q7EM`lCH*$)U{+4Fi7eMG|<% z%ZZ@K`k43kBmps<$($Ki94t#C9gnl8VA%0`YY}yNasbvFpg5cvjz3iD*{K)ICPR(! zo1f%VVj*v>ax|~5c2{U)yfHt>8T!06G4drYPW?yh0r}Z>)lQqosh(qDsvpZUoE^C`Y$Mtj{x5TvBP7h)0C(tW?G`PKH2 z2`m}&TXQW=GoEkPJjyI5B#hL!(JSM+&D9uU0EoKD&4?O9>Y>1lC+Dh^j;WBhanT1zV=1C$vN80>OMlk-`uOo>W{VkX;I!R`590YsktA++)Nd3*&NRO3R{E_L zW!UchEin=V_6!BHDKFS)_QsK<6VKl!I(Qh4+B@#c77VWIW^ z&trKH6o2aAwOMh*<^G*Un`Ft_OMOX$VuMRWn*Jtz{;E|fi~{BIv=P&Uv$w=~ja@0s zvXPI1RD`B6BIRQ~T^z>NIGfwBY*JFk${{#ZK=g{|Gbeca$Ep!F{^jKs??yjF7daI* zV^2ag5!h>k37HKVngTaRDI-N#6DQG1 z)#M_fDoF&02Ymbj1h?)$dZ$12kNA8Yln<;dgbN!DW-9^_C^5MTdLwz13MH_7b9$W5 zhO)Wuh;7V&62)t8Z_nx98(wo@dRuu|)`7&qS7l6;jw0>*8O)NqZB2pT~c) zRQ!h5?U*TD)^9lfXMBPz)<2-der&RgFE#E&RD5-j$aU5 znf1GF3!NJ<5D^i{CiAPJN+CSorz8=iJ5@fqURN>kXmQzn)vSTW$MZ!RihOH(p(dYu z8Zl#{QnFLt^PO$1bbaLt2B&;!*AYxEMSpv|l9Ogi`4l6dhO8kKA8fbXkv#8(_L`Vy zes>c&Gp%U3K}*d4aZHI!g3aF~A2d4reRkBU5rB7GLh$wZ!QntxB2PFjt-M~zME1Zh zLO3O+Ln#VEU8Gn3QDoMwiHeE}M<6}$t%8Z9#OUf?G|RN}pryaRnm-$BRH{+8@%Uka z`&qN`&~~)CFHChhV_BA(0&x-F7cGv38W)N9gsdLW54;}doC`FvO*GlNrvI=Ll+a%W z?w2%TtQBXq)j0c{%(!e6Fk8~vIw=?G2m%&LeyqyI&FXL)jm;0~{II zOl=K_46ASUvY6hKBVx~CWCCGRid0NSY$R-nAx-4tvfZ(Q9nstN{kav@F1LN#i+L~n za7K+NP(v{i(>^A3wn_R;8jiYD4C zZG7(gKP)(Q(a2YWtH6WYt11k?X@Q7;MuGtXfAGz1g{BoP6|0;n+YI1Vs3qwBc`!;K zf^m^9dFsK>39_=k{3xi%KQ3k2Ss&9l-e?+(y4=(_(K9hEuIT>2?f)q(Qran@oSm!{ zU@}Yst^}j5uc9-x9&6Cxq3inNzoF$)WYf?#4l$2u$60VO%uhRp&|nIb`HZkC=TZ1K z&B3ip3NuFV^=*{&X!^1Rncyq-V% zlNVtk3lTqg(CvXlsg|$V2O)}^CRAsL#DN>S#jI4R#OU?!m7aofUoMG!`&KiiCnp{BvK6Mzl~uOqhx9On8qq5VC@<%gOL-pH zZA1<63J{SmX=}rAczU6Wud_jSWWb^gO?5ayxXO^b^zNa>)US$;9R;w6311!J+OIHE z(DD%8g1gX+kcTrkS|IT*ZaM)Rt*`iRF%`UKzxThF$cVhWy!%Z)iWk&*TJ4Jnin zJo!waprs`{;kYHmT%=Gq>BB#w0U z&zB}e=EE$T^%*3#<~68_5>h|K`3p#R-yWGgN8;HDuQxc)cgWZ*Gk?5D+Z^F(MqOeg z`+lM2wZ)`MfYDV)u;a9I9WF_2hTFvtSkzAB1(pAEK@be%+583<5)~L!IY~~RAQO$0R~lol^d{32T6v!C>fM`h5=M=qpn8iT zmUp8)G-A+3dpvqCh=b+VyXi^PjS9_tH3UD*s4Gd_Q;*FopRB6;bEDA@kt;f(^IdPR zEx9vaG{V!vft;TcMYl^To{-D45Sk1YQT7U6Ai9t%*J|MzHJSc}f7UE9Y0lLMlUZ;Y zQgQ?)$+Q*`ETtXniyE>ROpOmAf(Wq|$p}EHtS4D7&Ep4FLp2VO%}QE-BXxxu@;n8e zo0a_?YR1o3)~J6Bf%rNr8f+a+$DK)yHKZ<};vJ3X9vrX^w6}GMeHY_=ofAD!^Ok4Y zB;9IbLwIq_qBV~cZO6ENK>8-0H&W#Q{OHyTIH7F+i!L#T1by;>_SnO>t zNIlQz-hz2d$5gktxcFhMH41$~g|jbL^G4Z>jYtbuKkMUqy|%fD!a9a6$U#iM8^1J! z`Hye^j0y-l7}$8ZGXo-^tgXborc8IS#*y23v9v6y(0SYW;yk^Ya)l4<_Fd&APabQ_ zkR2;*<<(T0BYh`fJs@pVji{uyNdKvvrs>@#1-uCxP0YaH_WVZ zut2+>taav~6%Vcp5GTvOOE_3=aAzq<_0A%8+#1!{7G710XE#Iz^Pyi0$Db(llF|y}N zxIXusfv-*{bh^m#71Iqlv*p2F8UK!B;$t5i5k;VXk1?0zkSun9qPkZwmGJdQK+RNg z{_N^|%7nCCf2o&jxiaD)u7e;@QOeTb9+7ZUwa$r!hGC{F#IQa#V(FUeXfZwY8*UZ& zE~M_rIt%m@R425P&9O$G!0?F3gwSaLyqG9PHD&Dok#v?}Rkhs~HV^>?r3EPg0qO3L zE-67eq!9!pq~oPQq(K@~O1h;%>F(~7?(Q@9cYb*J%M00S?dO>>#y$K9)INP4IJ|b8 z>u>P9wHbC|y7SxzCrfX^v#_D_5mT+Ar5?;DF_L*P6O+W>x9M}^m?Op4 zQd%oK{WMOWPNXfVyY;I6=D;q+t;Frs_nabidPwX=@(C6ycZvDTi~VGGe)6y7u*aUb zSU}*LvZd{9bkDfv72TTVm>#?F5*yKYotjNpl7YJdD}dsGf;NSGGl*lwaX0sO38J8dFim%=dAz6opm_)Qi{B(_{MPBEk)EK$M#Ql%=l0(bY^`5>dm7=dKG_b= z+xlSDz@11<9pEc!QG{naXuD-WNi-`m*x^1*z)FCL8PM}3G1o#m#^-svY<=TO2-`%F zmD~r6i=Gllt7-k3DwTXmD!KbyTmLzDe%T&1%x9RURAyWZ;}(Ayq5_LN^$9Wee={%0 z@6^`|ekC|&hUE#jm6ertjY9}Xaf?5m7aAEG{}|g`pUT3Afk3_rK|L=bi%9TlS^1vU z$;%?)DOOA@P?gcSsv5kh|Ffzr^pb%g1j2I>!uW|&(|EH)nC5{Ftu?9Yu%n|#7>S*h z;}o3)fX)IEz__rU%mj@v%hq2^UkA54sYPE3yW~Pw8oz0DpRG{WpP%p*tUMatetUio z>$S`7-_A;kvj%ORl+UYRW z!GsH$-D1|8JSk{{1=+8pc1`=LgE&2PrXy1P(b_NH7dtQ3A8*Zi5e#L`Mb;r|=A$#z;ph86{4#b-WXwwpd(rS;|EwV;8a>DM~Oz{I4Z%N>YPyV)0&^EzTx+eW=0P?uhFqzyev7gWL{6!47 zSU7T4T-AvAgiG90Q=u~N55P{y86?X@#I6BC%=NSE1zb}2G3)N0?`7- zvt^S9FVkU3+WwX6{Nhl705&uX0u6WXKeXABVO2U6&@`^0s~P*=UE5g27IXV#1`R|Q z=@}W2(i`;kYi)MInCCZ$r{3T)^A#+?eUb0-ZoJj1+;(w{lt#V=8p?+;rH?q3SsV;8 zLkQXDr>yH4myQy9OrU50vjh?n()`ATOP7O=!jML_0eBo;7xc2kKRDGjnY`RSkj4tL z`fgg$OCKi`hDe3l`z2>qnltAv&htU6@ER}Xt(Wz7uP^)7TjNXLQrGs{%HU>;{feWB z6ySM5h?CEZ>#07rFzoS*;%q(-u$T-tUF~|_=GsTR``?}LPt{FHT6-I#6lBLq?&kA5 z&tH28-~DMO`LuIY*Hw)D#q|*et3lX4L;;k1S`dNBGr&t=C6EkBE`z@{^S?n8rbZy+ zOac734@0K&csTE}nG@eoQJ0Lo4lPLNgpT5wfD1d&P5uE5C-A3~y85&G4>4*jEZS6C z!Gk5;*PS`hzmLm1a|djDFNDsqgs!jb$}wiAs}4V%Jo-D)MS3SjGbG1bx?VxWVzfX@ zK~;5>A&5*Ivng zOYW+j=Rn9+q>3FjC?-=@5&H1$RW#YRvcf=c_C=|wivbuRhIa-dF{Zm~AU%ag%*H{p zgC#eHYtAJYxCGbvQJ;fc?*oJt)&%j)`uDoNF;MXG64uPf17)`<;7P-)&+Ao(|I!X0 zLA&L19Zc5Dskb znpY5acc2eJ5(JasDX9`|^x4=~GL5t!&dG|v7Y|sdZpt4}iD+ZIIbp2)jP5%$Fi<&a zsb$Fr&b($FZV~X(ahR(V@On@HhZo`8>rP>djeCTce*2>nGJ8y`BhscJRu#gQ5rYEo z$K6+~aj=BOS=CBuv9QRf1M4du-DkpgNul%5?RIoEF_b(ICm0J{6F`goFCp-!Ppw69 zl2BPZf(vXi()pI-bGhbqY>xQr4#)Y+-TJ1H7C+GAMcTSN)ZBfKWb~{Q`>)C3UvT9C zxk(II&32;^mb3-G^>T|*s@{Be9V_@a=lC@No%fyQxfqT(YXOPr{C^%5%l4^ImU`Sr zeoLQYV?B)R{vHV?Jv}O71LcQqhf7Q#=L&r(i#Ml?`wpRMv*L|s_peVqZK;2=ecA7r>(ZM zm_3%U;nE4MGq_0h5pXgHu#ZYg^48q+2Wy3TQrBkTZCD#=YI87Cy;EQG9j!7a76dAS zPpw`QeCG9^HH$4y3xVRO!sFb4^E|i|W^=2Ss&po$1b)F!#9NRZwkKP_+GRbd8_=Z0 zXn(~kPa?S7y4|E-PNuB74K zQBe`@m~i!NZZx*Y@U9gkWMow*kAcOPmA=EG*$f@I?707I9Y!91u^SwC;JY;Por3Ib zxP81KwfsP_ohit4y&4)k%TK?ZodOQL6J|xX!{zXc_q)d4T1M9dD4=6mI$&XAgULA) zWNCR?r3qQ7&fk=4@C+QKLW*SUsZjhE8OGeV{ES>IcvX)9;AG{zg%O}`JU0df`%_O>(itS!q&{|? z7iQE85+!{W6N}B@68puDEAQv6KY0^&vgEkavV*@KR~#cHej=Qk_3x|OFr{Nb+9m?6LqA}j(z(gY0;h?ZVMOnDY`M`hD zj7>CNvHSZAKW&UmrhIZILPZHGIT@L*Ao9-}M<$TB4z~E1-`isqTyt04#FDulFCWFn zgnOJL{dn;LOtz52#QWbFTMg=UQ$fXud5d{z1W_revM}i4TGS8k(uX)z9iBy<8rd7`&Pp8F1~^U~HvB8bF?2#WxTe5jT8k z@97c85ihIWaKwG%f3H`!N<>jzHsLeL*V%j{ZzJ|)o9%-af;Y=-0D3w5muS6%I|G-wqA- z`$sQ_O?6ZC<|T#pn7=UigKZ|@(a>6|`~1t`Vx_$kaTAGCI71@WJM}4Tkwp{Ws;O`P z2G^a3h22u`d#D2^%IzLP8*GReH^0op#2F!JnCleLZDXs%Kpk)`diF?m(@srnG6VbU zESmcm#Pbj%r1G|pl)O@U6>Tc`r&Q;<0DB(k=dPb2cOoLnE92Z^{!kI;e2h)Ce^96E zsr(N0;Naky?X6;DX|S2otx=Md6B820)@yxLR!KFto*xu#D3*ghlS-DdhZ_v7@r2?633-UX!ZmXctAM1LW)bg|Q)d2_NmcUyrH ziu~|lEFHmxq(m4=kK^2}RO5QGFK4d0V+Pq0VO5Z+^LkyyhmjmyP$!~+UKq92`;GVJ z=hrJ+!um>>V4X2)C8p-PL6Y%HiiMbE$jVvI^j!crsHBJi*1|Q_4+k5jQfB&CKvt-r z2y%QXP)gOy?3+JdO^tP^0}=a8sY*i`!+r(p`#*QSPQ1b~&LE5J+CMsK6fczYzn|C= z*kd5}lsKJOCroBjB+5hKEk(|K0ECFiF{&++4t#BOPbKR^0kYb&iiF>VW1CQ9l@=Fu zI*2>3FK0GmJsk~2&i9Aw_KqesmpRvl+;*mDT*G@7i_yHQ;{cn7{buar^qJ;UI@Zd` z%44+}%4k?j-_9Sy3p&BWqi)HGL(3qOk74LSPD_p7I3@U}m@RgFsDc!Zm61sn2usoa z+?$@ltL{P1xN|1PL9soKcYtjWjw%wL#H)lO&0P|+*!&DU%@2%l-v}lrCu1TNB|ILP zG~jsNzuA?E2bn~H34evPC##k4#KvZN_xt01hM z?Y{fzDdQ5YE6OWdcH`UH6E%c(Cj5nU7aOUzifthTa!QLYzdCEg{01P_vNm^bJLZ#F zmEN7{D!ZVXZ*OL1m%6xT#){*=j&Eb!BRnSm?vcf6;6R%n+Mg+aVjyCU)-4=ZYvgM=C+gg5Qe2y!00Eue@6|pmLc-45S*MUA zJJ-rGPu$GKt3f+pJq!m+22JoL{$@yI^Kg@9pF+5d)b!l^M-%=Qm+KW57yX?GQ~I9!Q&oUg>1Z=b;)w%_H!kHdTo8}@Hx-xV!v&@IJWT#%tL ztF!F;ANX7s^k%!v5C=k@F2QVbscKlE`PAs1d~dIlv+EK9r4hztYlzXh#qPc7D4`}j z`{V7lnAwmZ><}|l4+kGL-Jf_<9SD=Eup7SgLxWiYbb#ahfr|RS=^xE%c{%oDtr`Cbj9&< z%i4nSuf^D|niBgf$0%*lF;bjQs?4`XHjfd4h7$ShmxqhlwyPA?b74_6_^4C=qDmYe z5a5SJ5tE7zW($Zhok!-a%|IaWEiFUSNUgJ-w$2d%DwHya@swHoJ`^9V&DM3>&< z2cDpU%C$c~vjL@HtB}a8@F_ejB!6^b@4=*&eOzUp8h1gpP^-m3uaTsQGd5bk*MCQr zC{xG1vzaT(tl>wu#tbFRaVH}mn;$k~D@3Qbp3XQrJDuI9+|rde`eH53TOM%qs4a-E zHb^;GFk^266`_K1IW6FQm(GfSW;jX7F;gjc=)9t;)o+5z{q-n9`ky87Eq#6F~iK6@HE?+Ze0>@Ab=1BTrH?zxv zT-eT8d(wK#ZS(Ws_Fm0QZ%bG4FCBh5Ij@WDRj%l15EF}p`W{>)U2JPu(+R0Niydp!YG+G0=W(fpg#yOZ(?f;BkfB% zeA(pMi4ET=y=*XpJE5AFbB zu#29Z@SwD^$nLI(ZUG`COtYiI0gxl#3*_62nQ)*{<^PkpJixH-3?+UJ z1&60JF&{ns*B3qyOWlrn%dBQAF9M=dqEPPzl54C!iNwd3%P$b6?RJK;OjY!6Ds9DQ zKA=)dlDbC+khlcm(y4yBIrgNQe!*s7pjt7(4# zUg%Ouf;Ni-Zy|4Fuv(l=KDo{}2a6>Rp+1W#ol4bI@>mR_9{+907vR{PF42^7=EwEw z-8my@>UNGWz{AhDBZ%uSJ{u^p`2}PaeSHm^#JfQ5I$Ueszhbwfg1hODOMb*{W+%fJ za_3iSfin%>lbA2wB(P^s-XICTzbO0gHI+GnA#s&_$ocyTx@fjdYh275;l&5T=EQO? za`a2XE@Oe@J8R~MSwj92Lu}VMl-4kmd&p+eYc#j>E)WA#n5zGWj#jJZ6(_i7Uq3~H zl|J*c$ABf9IWju-!`FSk`FlHQf;FTc4?LSW%Dm^@J#Sv_EOW9J5{YN14p`5ViI@++ zU-aDvmxdqalaOUiTf&_eA%Pn+&yfhKUa7T*3WTbnh6!=5XWEiKXE*y}81`nlCe@== zzk_tVi_OU>6pXv2e?((SbCmD;!#fm|vpYgH#Nz^gnCx-5U6*8M&_M}eXsjaajYoVCkf%fB+h>*aKleqs~ z`F3pyxg-UJ33eW2$N~u^0r7Icq77aSL?ZXuyiW{ozc*QbhAe)y{kk{JmyAbp6|%|{ z{QODDe81UTPd>tmyQeuP9iK7L9Pvp>+ARW|ysBQ_T;Vo-nceB^}42EUUFg8~$C zTs&Pxi(_uFh{eUl2JLSk8m^~gql?nn%u0Jw;G}3kqdf76GOLlu^TU6tv`DI$Fqi}X z5+cFKfU)K0;M)I4pdW+u#D)fmuAlQ1pU{yIAKuxmzuaM%NCh?*`1v7X+sP?m=@Rt|Y4{;Y{#dqq~_`w9);1$tqS`N2i-t=V0~}>tF`ZkmDOwR<5;o(vh2=v5n)Jf0Y>8eFXKxTjU@uyr=JmQg!$ouPAmC zAkmpoum16CBO}VYckhA$ni*bxU{uC5Hr^}Kq`o*=MHvfD)AXKv0WA(fBJM3+@?pSPTwOYWjpuMd1p_VA>}wtx31(ks^;^izX)SEiDSZl z?RYV|TH(&HCpG}pr2CzVzdgGbZ|kI1D*>O$dZhVib4!Hhla3~aMq_Y z=(6zKeN59rEB(1%|FA)>Nxt$uG)fr{ddZc%z$A28(O>~M*j{*aEtw2jMUz`7|B1Yy zCa3=z3>vYqHGn<5d2Ojc?|;u@rpPCw%X1~0nq&#Qatx-aBj(0ezCnSuxWWt<3z)O% zWiDT4%&9I1m9P{n+e}!LE0z@VOzz){$=!M6{U=?LWMNpjFPzj9Z$Q7T!bXjK=j9y1 zfK?XR`n^{HT<_U%4jTFdZ?sZl5gW9b(6S|We0|Qui3)2{fagOx^<=q)+D0I>VhM75 z82y!fOTWri?DB{mo@Z5bll{^88_^Wd$rA`c3|B`(3iR4#zCVAGKYd*|#B%Th6G3+5 z!sT_^Ula$S)PL4eeC8Z$O8SXq&1~A-#a}hpG7%uCnG4ZM(XFY9u!jLczH-|lubbqZ z{6;0IVwIzlWjZJBFSn+=?_P^=J6?&cV4tW4?Ck zT$}xIVuPTAhL*42M+dh4u6CjXfQmKZJoWnlI#to((>w6s0Ak$fzRF~&{gt$Zh{tVB zujYMpQqr4%&}5cu?d&N-d!AK3zJ2m6RgW+|71NChQk8{8lg4$O^yHb|i_aEjGu6j) z=GJi5gQJ7;6~q02nb7ZwKl?X|5<|G@skE;|V9pyJ+Zej7l`DsSQ3`K;C~6o#8X?!! zMp+9*5v2^x&KX{0FL85?l@|Hbk)&&rqYMsldXi9cdD^BkWVFWdJKM$!u0kHoP@jOp z>&u5qRp)6cd@#TK$#}O!ox5TX%b#wHseVK?T!a zc}}kO0T>I042-Y;{Jov1**yDIVCl8gz$S?8Na2No$zG}D_4a#))c#`hMSlIa>baBA zmES6#zSPKiE#f#*UfMh1n*Tdr3)UI5 z#cf(oeQQFU7Tp7i)#(vowQo{*Lyo$;Bd@C?eRG2!LD&XDQNIKtTO++w5+cn@>~ca! zrWr@NF4l7b{Hjmy8RA&a^+y|R^|Wu!mYyJ^lgLE01nC)Jnf^H0s{HRzo_ z2U}`s=gNmWzzeRu+?fKqoNJuixo_L=w)u^KiI3z=Oi@S8*Xg?B(%bEtkP=GKbwIpt zTmqq63lx%Gl26fhNJB-APqA^;QptYu9Z?8ydw&@6%rFkdgEr;tOCK==Ow|0g951#e z*7d@~on3DG&iQ;~>rT2Rf|w-X4m2yOx&KJ74VB_AX2BBup5!wqz{2Af*UL zz@}D2Q*#pcnBgG`8k#|GUi@Q1*61d?`agWt9jP(?#y2lKv|8}D z1u@a-v|V=`$HOp9^uTo<4E){KpzpyC+akLjm&c$#3-zx{{WJgWpk}p9g9U$iaVC8z z)$~NMKd~R)b9~)jGqNGC}gx(LPvB&6P3osqy=iEWHzbOyeW-hWXkKVG6jCHwN zxaW^FyekIF1;YH_WtAC}uTZk52mzI=2h0(u8(&>x(R8t5Q_D4Sa1-7pupr_B?8m#V zTp!NkVk)#2=O;~-5?bh@849}BXuFlr1M-v5Bc3~gL8}6|Yen(FHoVDZkFBJ*KWU;x z5OLZQ;wJN!nNAL8ldt0;Eu>Im?V6hut3P9RVs5aW2zC6(w&C#1d$tKbF+1=m>N1Yk z^loCsN8^<*D|wn#-qa~>UuLFE>~uH1M_aIKCIUy|WK~p<=K8eN8J*?j?o`Pp-(-)BPSDxAJ;hj)w-;}k^0%qU=ZVlooKAzgPhLO8k3R;z zl981BS558h75#N>KK#7)%m68BLDwR5Dn&2`x2E|C(TUV{WZU)bnRAhEPV0MIt(zjF z6WYJy!U30(MfK@g$B%L$tjX_>Za6m66lraEw~Vy;J2RS|?|mLa5G-eZy_!*kL>iGa zN6}T?ecO{kJbv2_{Dzz_i5<2bx*c>nCAYCK(m1^IKZXjNsXK`yz)rH_?)>`t-yuWE zy>Y`ZOhQ7JcdIzQUGX65Vl(Oap?Z09HWtd{u9H20ML35k`ss1(@7~q5oNV^zSGFBJ ziZ_~Kss~(<%J4!sM!Jo-es8Npv&`)8zd0^eFg|-E^Ca3)JKmY!+-&OV6KH|bWW4MH z_U+9Xc4)y3W`;xEHe98Tw4e~l@4mDc zw&?PT;?sb-0i@yg$bih5))tCAS|9{P3Pg>yAaf&TE7XFNlV*tZyK*zQ#R?2`wK>6w~4p_^yd;V zq+J_4_V_4u=0EbchcE8GcBf%Nfs!rC?JW<`Tn4M=u7E_hrvAw~Rbs>Y7gm13=9iY_ zq@>#4wJCwrS@3F4bk^-q?ya)&T>vN-9NFRf0%D*0OusSAY1mv5@k@fOE6wrcuMbbK zIOVCS_i+Tv7Zr2L&1U#nGLzaUN=W3jI%chmA8?QyVD}+xpos@%QwyJpKqv(jStxxM zv;fh=kCfi^30*=82x4st8B>X%_NS1>f({{r%j6*}>mmE-47Slc@JhzVS+Dd=J;KNO zRQTO};nwyE3dPbN2@vEL{3@S}fz!7;fek-3uyw@>3Ew#D`|ujenJ?LkABs6FxQU%F zXEpI1AI}OyqD|gWIS77@2!rJw+30G8~Yd* zf8d`wuV>KF$-~8~m&SV5pSQ|JbGzE*1;=jA3{Fi?=W_Ot(?)id)f#@(a|Qv5`*o82 z#%%=rZg7l3N2jE&-VQ|4IPMRuroAZ-$mrRl2ht>1joQO)TYAk$^Ew*+9wF=ypoXFn z5+Z%_xNNC_;Lz|ac8dGZ^l9qBDiP1qdOShooI7Z zPD=c;j0=HJcde|9Ppj1B#9_bEE_>^8P+c#zX423aEOlu_g_KdQY7WV z&OcS#p`Mwr=rqrHWjYM$NR)yh??gnn3 zHUeQb7~VpEl2hDxcpPm`1e=Y{0%zuMS3z*0u|z=W8Y6iQ+36&5T# zbAMaDCJf0O9C-!p0-ys2%Pm?s#H=2~$oOrQ={Y1F_QeQrT}ViPJrJye!#VicJ8|@U z!jU%~y!ncYpVaAQM_)>3jEw(CN6C`OPUq&j?rT`Wvf9}JALD!0cmTCk#Cfu2ygwvdfc1LE=Jck($f0JljTS) zzZqlgZFGt?w2fm{AWNZO)eyqddcg!kfEkaQKc>}b*SrG zwk8+4+>yBJA$5sC41Q@RztuqC^i{2R(t^GH%ahT8{63G@)qW`CvTBSzS{zbnRtjlrpRJZ_df@ zZBTG7T}ny{(DZ(enYSx&cg}m=@6_>xa4RDtW9;c)axr!&=KWYvEiNN-8c4!VcO1y~ z3naia{foVNu+At(i6+`?+FeRkwkGE=)@>pxJXihV55;CSLTM~<5 zTM5WDZG+AtC?tzCx6k}lb$Z@qt1RI??U;4HETrAh%AdN{0U}IEBNOj!w1^ z(ct!+{aj9s<*Oy0Md$qXBfNM-S!0_6G`PcsY5~8G&EE?3{}CnD+MBa(crh&6*P)?j zcT(}dC|U5$Xtrq5wdGyOOwZ6%`M=)IcCu=12rJ;Ko*RLV)BQ!sdWnx=Kg4Fo5}_MZ zyd8*rrBVZcPcjS=e)SLZkZrh-?>N_zYr|(Q#Evxfy&;vp1_=p!#E{G*zj|*!D^*7c z%ae&vz??EO&&W2aSCzL_J6!h0kK!u<$AP~P!cxd?j-#O37-8Gy*0|XJY`TO0{NWw> z0Q8V*x9$I;v1y>lSKtzj;cBN%&gmgGU*a2qotiz_JrXjd%@0{ z0Nqac4SxCTgXCBt(>~Q30yJ;3>0q%%oe&^`0md$C3GG|C27_AN6UD+YY+{|nt>&EF z*+e;$Ncr71NSkqdL|v)xIBj13zQuZK{rD3p3^*TboirF;ZQkDI-kQF{L3_!WxSg|D zKLTZxKib2fOD_0*;-VyW&VAVP^ioS#vG+o(I{z9AMHV?y5c-hn!iKLJInwqczW4-z z_M2LJErIolsqOJ?2N2f83Al19XTH$~Z<^Xw>H2svg))^~bF?iG;yF`T@tHY>jgXRicn&b?hYqMOAOQbd(cf6H(%fy<2;Nwj;hynV%{-=zm`MoXu&qTy5g& zvUTv51hONXm+~uYLd;)_Wd$g$ci!ZWIXhubSx~CxKi{prw8|)clfqAMWaaz2u3<1^ z8H%HyM|&oN%N=UR&eL=-Iv2^p*ygVBz~c$Z>U{YNw%PJ|Nn&E^C}8reeZ}&Xm@T2P z%x*bLkN&V)Bs*O-O@3LI`*my3Huv_4?bH)iCZdyx^EJ*;N`T zKGBbf9=;=%S}u7eKA|vw=o=;|1vB9iOoZ={k&{DayRfdyJrDiQv~~6Ld@Lr^N;Nar zYPhHQcpxvBvab89wObo7V?vcT;BKZPb3)BWj8Vc!w6aLr^+A!^e>qxZc;_bR))060 z2RfwGYQ@)=h5A1Ucl&ssAj@&@m}~9;A{f=CV#C1g2JKKLL7~=BDrqvaV8sxy<;o_>WmEMnhDGR-LhDRSu3{|&GOu~06;_+&IL288*dgXac8FLq)<0JL) z%E_w!R1t}!tli)=KK~K}bp3(FbNa3~$h63=$sXo3P1N*w(zNIC$Zh46)a#F>T~)(f7w+_4SPoP< z8*<=AI6DZnXaqfWN@uce(5Xj%_Q$SIK+?>N2GS5;Qjg02-T6c={rxTNhk;rG>)IP) zIK}h#>L6Y4j}`0NI0w{}SuUAdnZ~zhKJ#yVcOlLK?bYu^A`Nsw%BBg55(V2?+N^;ws>`Z$Uo?LXO)ra=i#FkBfIY>7>!x-vf3i#N)}~n zMG-b`Pj=n*Fxx^&SKCmr857-}KZXD{^!nRF$_#@+ojEG$%9;>Tp%nB6>&3H9y+E_M zC#U~4@I4vtZlTiRKwD%9JYRbO}r7Yn_f^ z?YOQM;#`)DqADvM}^4Iyn}ErhGCF)oL_GSnrVAz7%Ev2n%=65ZK^VK9pg0+ zOGh??eCZjx*;B+q=X7TVzES4GYpwHteS(66p~*BTohXXWM{4~|2PNpCw%34VdzDil zpt--jO0h46b;_rmX&z8#z`_p^t&^@zaeQ$b+!X8~vWqX%b4e-D?)&8H(hh2Dr!9hWPO=uhAlKq1fR>ZUNT1C2f*2N?x=hm{(8X1(+B+$Px z=`^M_1=!iPD45mV8*sibtcYXIOqMKE+TWKX-Ggily|K@*Xnp&@kJdOV>T3DX_*Xxg zVe@IxMkShe>iH|1N@nbY05woGTre&)Wy6DqSWti~)PgT#^$i>-3pr{DGc=wrZy}Xh zAD$(Vfa=?#QsLZ(&sYqQ;J1{Bqy*|MNW}s6q3Ue6>M0#51{n$9hi$=akjz#&IMK3Z zb(qH19K<}f?-`|%Q+Wqo=0t|!%}Z{-^;po2{+h8w>J+-Hl#RR>)B9hK3WC?mRYEec zx^Xbn*T4+_CECmk`HlD8*JuU5*ZLNv} z=&soy?Kv`1nR%^lo!N>RT!IA$(x+gT!DvmWz{_g#63G^G;FX?j@Qe20W5!?p7OG4W z-L9(ahZ;gDZSVR0c~`|2WuDakJZ9c z1{XQRmMx8p>8{Sli#m;jN^b51ji^iQtoyuYTnyPSM9k1;O5za5G!FTGJv#fx@o<3} z$9)i|6oV~*m6grLF}LITR0tXtcdK@x9KsNPXiA5GAUinbaeb_o;_}ZqTJ3GjySMY7 zq8V}!Ox_n=tc9VTA$iNCG&nNhl#o{jXbUhM96}d%0H=g%eD{nrA(we`LI@wtho!e2 z_*xng4&(hBkGY9r3u!?0(;eSb+9wb;Nbw)x_T{1y1yfwX#+PgFPt+ilKxi!(b*iVM51%|^{?Gd6QeeU~Y*DL5kXo&W ze6w4hpZq!2^bTfOiU)VTiLLxD#p)TU+r`8xe4o4$I4r*L^sOnSsn^;Q5Ck}4_ZKZv z$7@hy=yyn&bgwB`b!z+8%z;Sc!(6=pA{T2QGGjTVqot=OB;x)Bv-vO$q&BF{yg(G# z-^3Q(6G2FXxDgXhZ1i$rL6)W>vz+mA9v4Sxojah({}px6WO-Ms!`{5`&Go+L-s6xo zo6?kaZY7!#5DrEd$1h{^ou4#dL-&V3VsN?gR*1nVr%`pm_2!&lP2j4Ffh*RSpeEy4 z){J+PwxYiA`16Img(m*X>BCAfPRbm^)In||jaKNHNCxDjW^2Q}AGPgekL5JlNy*@1 zHMmzu!EV zqO0^Mj=69eKw@>Xza<@wRGrjlJcX|VQJ`y2L(Lr;9JE@)1T35}-{4JCR<~v;&g=T( z?vO%G%SmRdZZnT0ZUR{kMlZR^?>08~|EPYXyq=e5b+ld_@VXBf$5RZcS)Wb=zkFG2 zdLpz8fAV$|5pVP}c%uV2tY?$Pue)>kpSo8DR#9yAEuAk|F9ob@&- zUiICGp`zrE;RTE|R?J<;vKY2LeWre%GS7#Q95`PlpSH{Kf2GaAMa#&s4@(^SAn7o! zB!$&7vD&|`aA;QttTzX@YOmP*-in*GNpic~JUcNkj9HDm3$uAj zr2-B)aZ2e$Fmh)>&f%LBR==2B5U)-}PzLp$&a}l1qz*u^3ZHqf7nw>0DfQLs!T{G& z*D>T;gTy5~Li7@B4Tr^|iEv_0dtTxck`$@!%TG=#M!&7+bTjXjL*sk3-v+a`y&lho z)p4)wwQHF#d;2QR8BR0>ps}SGK^b_5_ZMTUX#F37&A{W8_iSD#hCB zwc0B8MHE@Tynk{0l6-MDYY`0iAIB>r`u{yaOnkB>W=7MA=QJ~!r;@v8W|FB%Jiiv! zpOftV(fq}4F<+E$SCIy{va;HsL*eCdvx!8Q+fk;(r-9E9)97tcSNFzb&;Ue_IAa$@Bj#K6~Do zmANw^JB<<})P~y|K8Z9;PfyQ_lWkdu!xA?jn^p#hrIY1V?&D|dNQJ-r$9q}_i5X}! zuzV6-J3?4c`9;VTYc7l4|Mj-bPlbEDu=W5A;aG(eY8A8??Imx(8iYtb7@GnPB+SXR zL@8&vG<0=Iz<#Jdy2V48l@3`k>*Ek{0RR_ZQ;(!*A8k*?g4Sc!efPd?ROk}v1ddM@ zDW@F^_#58Fd3<9`<~x8#9^*Xcb^l?}MDp24jtf()Om5q}T5uhRVY@#>+W_we;#4}a zhqAx{#%`vViiolzA@LCHy+y=N>`Xg<9h|V`1<*y5E33eXyH7rOk?Wpjvq=k`I2g~%8pvpUr@%y1WzWJ4s`r}BduF4bn$G~cf&9Unjr|oOH=0@dr50y z!ZbAlK3quH3c{sRyRQ0JnZ7nGGoz zq=*R2+LQf&uY?>Mnb+DJgy>lFMH;mHR{fg@*@YEn4F6pURM-%IR8uVRNkh!)@ zu+b>H*HJ00v?PqwQDFMnC>K;gj!>u!#}z+oTr}JJ6E}F%QbMmBZtJD2^=KKjlbyIUWSp@BKe|NEG-o(7%D*+Rkr$;L7Bxt|1O23meE zc7_b7pRp6O?WD^raK4Vej~1GDR9i9>#KRT8w@0^&>%ss+CsBV4$5_l6Yh@Cdj4rWHD89H>3^T6wG0RE{YLHC5(TK?&o8L-7x zt>aE#UtRsu;rp^&8n7RdqqkFusJyy@r>C`T`-mV{!(YKkXHb6Yg&s*q?x6&Im*2G^(%BQ(t-BSB zqL!mQ^Z=+M*dG-KX?M+ID;_m&=YaiUjoqA8ft0dRcvGfLBjf>27IlBYOr_Q{IIAF5 z545>t(pa#7M|$w!oud?dv6Y!K@KIyk(75#D0Ph|c{wY2VbCjv z+xS6L=9`rc>QqYBl7r=PT9BlHr6;*VIm=5X%;FOcTE-W{21~GCuf&%H#f!you#i{5$gt3%zNg$cKm}D;}N$UDgW}F75a4$({&| zM`dhsF5naEtt;;~3q1ei$ifV98CpaO$@)-eAoLSgzx62`T%~0t%QeMMt!A9|Tkx&U z=lBu#&Yf^0jc-gsTPN=n75{^1XGEh>Q={g{eJ6>>&cBlPcrWCmME*Z_x;KpUt=jTd zXAiP^+Ub}C`=Dy}92tZ924C07E4!ihr^L_>(#Qv;>Laah#s|uMc2JuZqh6W1&MG@_$g_diE{m@7er{-*ZB z<%F?DreT(RQdhb1s@KB1P`=uEEfTZ2uOF1NW~0@uVqkrS_)0zuO{Kc3m)t`OX1sPI zmgkGl!icQ=Oz>oOE*_36CD^@3;{@dHq--eg?<2`_ZvXUXpw1;St%#f8S{I~@jBR$;46xln&LX#!-^N2+gxpIRjVK=sq@{h3#veg&?L zKT*4Fu;5V-4wjlOO}SEbJ>LlKgO*Kj75@EtQ~>t>m#%{Ow!tlCufa^Gb}!6a{$K!o>&kG9 zLuVDLo;SCj@i?>u-n{=<%Gw5J6&rUXuRyD)V~PkNbn0^Z+$ah?Ior>T~s0*4l!PA*0VCltOCzG zkiq2DFK^z3Mp2>`wj*ENT>eYM>&iD^eip~&hyi0xgQ$hk`X=;BErLN9X_mF zV+Xu>7WsO?A2?y17dx_SP`^_A-loWy3b`Xi1T699UsVyc z)tJg|T4BvFfCoRFhKc1DUK9j4_V|-^L9~d@&}Ueie;J$?e*LC};X4{zREI22*kn)G zu4mkTBj))BZUC!83~vAr9Tgpo6s)q{oR9yHUy)zrJK0E|31wJp|Xz? zZ&ew!WO9*Nj7TQrPdeP!v>{cEH?X>nv~5|}=gIBigVWDDjS!KZ!)J5{9BakPruxO| zMH7}PCsE9+raoKC;Ab|%$5Fccp>G_y)9}mQ1=bZ`lf21c?Qdh}gYT>L9qu1UnsVA` z9;OmnCt8|bDxWWyB0V0t3 zPSh81D%ZV1yrxE!Dunk-nnG2?!z^N29~kX5wCeUH{{Gm)mWL6ka&jZxn=zz4Uhd!c zRraNH2z``c#o$k4I>=CzgV~0%$yKpo+Zm)nsTUi(#Iuk-wt;DLY;STlF|M?{?p<^e zw_5GKwFW?@_?9z+-Id3r?+Vw^(GiYKrEII&!dUt)gsU0$ukb9sR*g#?L?l-}92UzS zP`#*MOtQas?_N$_$W#cFtgyV_5^_S>4ZLXPXU56URCbxB=EsmN?M+e_47$0GT=Kc= zpUmmr+((EDLEP64GrR}NOcC}6PyPR6#z8|34>u-|zE`g4^Y=a3@fxFBUERcf8zcYE z=RZf)bXPR;x#me`!e0$#9)h!GhC@hiVb-u%-D#`XhF+@*&HeSWh#BM`qXaa)9rJq~ z?)=kPq^X`4K~nX%0W(&nqgz#H;_MPX=u_=)VLSy3=@dQF-hVw@bG3e$(08Jo@hgg#GL-dS@&7S(l~Gl$+Zqcb1ZgEzx;rFAly0O;Iz&oJQVHn}K}zY6PD!Pa zlJ4%1?!0sDbN0P=3?0Ki!dl<=#+>shTVMzyrsy||z)s?m5FZJH=FN?%Fzb*93bgIA zPurGt_%-0DBExp*tA79Lq4cvUlSJ(*l!R`_fuIm72+6cKcyP2i;nzQe8{$Vk{?&%P zhm4Ztlu_}mEB1qt?~~^ws^~vfu-LYIO|325D#v?;uVsowQ|GQJr#$-WKMO&1%I8?OCUsT%TcnI(PJT7Pe_${I;3>4vY8Z~7}JRaFy`CYAjp z#~K1W1y6aSvLH=kZYgN)ho29epTgj%Fy#17Uo;8Ut7#mg7HnE z9&3$XLD$D<2+_mN&s#%yOMhvAVqjPt@hqj`xVf`L29&|E^KN)j_*+-{*<3D@ZeEhL zMJRbgfnv&6)|qf1KbpjVE)^9qRK4((W?jknwu35?GaMsbZ=B`bRa(=x;Q%SkM_&q* zDJXpg;>|OzC!$kYI%ZbpRPt_o>vo9|`WE{)H1dT&1zP|L&(4-B`5%C;8k?FP3K`%< zzPTU5FBrH-F28cvCyN?r(Utkodg0X?A{>q?VDp_g+meYF<=i@9uv+&6O5dCL2{dvV zK$5urvTTFG=}K1LlZ9FY6ywCVchxCKetJ-N&Q1eEEJcX zGVoAoiTkX}CzjKH|H0VZq&yTfUwdUWV^qXBbB%MoK6xA5oM@iZQs>ZkW{E9K^O9oX z(Q`#UM{Vc*%Z=9G6OrKT&(qrA*6lRuhxxE8=$eNth>biy2!*cg>e;tJg*3@t_Rhv6 zM`9pqWhhDJx9W7r3iLEfM)?PYWc)PC9J}TH8`fw99@^yPb2fbF+>Vh;Lbn<duhCezhKIKDNxXZ`8?1epT!*J-gnNN7U4s2Zsb(>QG@f z=k(9&W$mqBL{eho&4haAWg*gMhf$Gh!YOtZO_u8dtdR!;C_A}B_gjP`&HTE(82N43 zqA8n!r=wT%kU{mk!SR-$vme*9{G3|ac)e~Hk_qkq=+Ut;v;FXa(agFNf{x#j?6-bA@)&-0aR^s?j-mmd+BvTO;i^ro1O z`eTy_x{w&!vU$kzFAP?N>nS_~HV#m19vrxUe-rQpa}-_odP!c7L?8b#bI4Xf<8w6Y zWw<^@2RqWLPx5C+ha&?840HrE{7FN5oX$(XV-^YVu=OhO6-pL`F9(I(7Bq4GoCsOA z_~K(qvj6W z*e*g&9OsN*jK(7YcaO&uh=YuM-f>$Nhn&23U4>!wPwr!lwh>#$0j$K+OBCj<#7~*L zA7Kl10ohw2FYn4r1#!=sbYI{n<$n+js&CPb4jS%8F`@ysLQRYRfYq<=?))xg2gDeq zCJC}hC*8dBYCjFnexek4Ho)vt=267ChRk~6dw<*(NytGf%5|4hutr#6$qnHw)+)G* z7jWnP;ZNExVW%H5DW)^U5`-+LU89q+jtusfOY-Ys+WVr{&&8JSY1GeU9mQ-e=QeJj zV}9kX@=|&!;vv*Rjf=#WAN%vqmy;L68RiRO7kqEoYpzE-8tJCnFW8n$^(!@O&_j@)y|rm#peLKDTCVbIeR8eA zs1Qjx*<{e($?{cB=B*q{d@vhF`Q&Lxd`_Y+dwg|qAI1aL*uMtQobB)h+7lYjqDUns$QC{HL@pOs$t1Jl+}^)!a*|B3MijR9GshJKPxA@5oBQ z9j!wD21J|s0)^bW{^nkKMz`d?U&dgkiIsY8lhxMM-8cdKs)Lp`bL)d?yR^Wq4|~0_ zN|EW$U=WCchK>dyg0xavNk8W2%&V3g9h}f$gzv8(w%6k6**u<(OXU5=cLA**hfYrV z^#P6b%=}$x1N+f@PgSPRQYk&s_+{sGYp6Sw4Xuoc!YSZYWNS3+R5j@TQ}8=C(wzWP zR_dfI{krO|B#s(wMK17e0^?i98d4Y@Lb|mx;%_)R|wZ31pgcq1x<;z1oHCoZtm^~#oA~4TSm#k5@{#S z<7MVA9q0R`df!xj>5vlgRWkzX8k`JDfXxhf@C|tI^%I&f$1J3EHn3G8l2c>9q_b8nr*A&m zSjJQ65V;872=~EkZ{2Kh8yUr)wkTW%YD2m%2B%uqOB~aYE2;fVSuho)~jwoE-n4uHzSljH`k)sqyXT|SPknt6G9k5ygqP+wnAgfw0hC!XBu z3=lTc=J?PdeBFLFGmK4gal9S^10#et4iUG7Oj>5Q*?0+lx#0qW<;e?}N`8FRBkc@G z8%wnxmk_SV>SqJC@ZnExq86TXn2J`iR!`_jNukL-^lCDMfst6@K&XTT_ReP>8&Q{f}bqyc{FFqF?wB{c_-POEvFK-q0t;PTCkWdp<$5jGJkGJZm(2 zQYjW!%3vUzz-^r=wjrdVI;*mwV^gT%H};=w%3_G23G60FHIzDXuNk>3zOgRX(^2Ph za(PLq6^RF63jAC`?~kcncrx*l2OG!RZ%!X<^FklNsL2Y;7unA2Xr;=pWsXc6rjC@` z^OC_igl5xasHLXewFUY2MsmThqq(KUM*mt&z^f4s=ADpi@uPsLlV(oQvv*+`;NWqZ zbhd92!N!1ZsCkn@$O9b-oFgd01RCM5($XQ~44eT8m(24gR(<#GzM01Nm6BClr&`X} z?QLw4KACHn=_}N0NZ_{>sgeTP^Un9c z*mvOxk}k@t3$0YPuYG2HW@Xt!xpw$nq^jsJvJd)*Xfzr_p5ScPNF;E-eZXc(t8CiU zXhBcOTR=rGE9q;RH6=Da=1sY!Be`4H?end@7Qz5Cy>1(-;*Eo!K>Xk(~D)kts))8=-FV+&mO%FWRB|H%#c{!wqlbcNR?~PbP$9%-qCF2rfTM zYY{4@y(Le?4#5EFu(ya_yOBo)CBhTIN*ee z$DrD?GXKk=3gyLPI!ZJS9551{+gJ#By2KednA5-UyCiCo1Lfgho|~6ZEZr=aVYcNP#Qy8VND$}`*OLSo_ zsL7<&d5$q4>uA0pGM>$SSa2k52yiBV5 zUPiq?di0WRWhcSfWWEUa$|j6F>10Rt{#Y!E!fLlDF+czN_=Mm!sAa(ojx}Y>7m_wJCZb?D zs3ycDCTa@^3Q7o7+{u@k?-M7_U-tj!bp%lANs^~dsDmDljErn?Wo2P&OLuB+lDogZ zKMsg3;$dVhb2dsfj(DPem{bTCeszu5r#7=lkm0-X^H&pZk{k>t9|&1K(9qBbCfR>5 zr-QsetWntbhKhVrYCO68qQZnr_DeLQZKXP+OdRV+$*3$Fx~F#xi?KCgS)I>tvrVrSUTo!J?ZnL@{xtpm8(V(w0ix?A?YNOq1{HeCE*^L zxA?RFI*hD#zh`2wK<6CU<4a=*h*g{5?olr@LLD1>njI~5z()$y{1$`qkGCKH`V~y} z)C-uu^Giz(Dl6oyHutqclc*j4;6Cfvc7(hQ)r5P#V&2a)L?S8e!nUa02harG_*U#pj=tA^W-_;+K6~Jcbh(hq5RA7%k75>e60pu6#EC{c+^`XTi9+(mmn82r)1SK6@M2;swiRY+ywF1chTttixiQW5U%M#Ca>%rfm!lWyQ> zYs==1jAhaps^cuiMfs?J4m0D^WH25YOETs41-5{9Q_jdcPN^6oIOc$Q$u39wXnRs* zxIp9O#&G@(gy)g-Mjh7OZSLDC{(Q!U??yWW9KwUN)b7tNwVpX_WNVZz=U;yCAx;J6 zS8y-};4d(=ADPtRskg;Nb8Ec2p`i4l03u_bq+w?iq_>^xF^)Z?>^e=Z7EPgiJ3>7v z^PWV=`F@g|ljt(VUC-i)zXH39QH<)fcq5v{Cqr)oho{i^HUetwfvU`qRRcFGB1wIemN zKfX~|YP@1)Kt|;4sv!AfGuoI$>Yhsjk@JhemHtmp6Q@dUhy02GLB(q(X2u+|d?hxs zo%^3K$eO_s;&+t1P{&6QD3#e0JnahsmO7fZ6Ov<4Kvxt>J8x~$YdscKMlJftE&ezV z@B%J2;!c(!6|iZ4lgiySC@3i6)jGQ*&&8Ogf25-$SIxov$s!Ago#Iz-F;Cj0xF0=4 zCt%4~zU93ea8{%KO#Ztk~92v(pdi=ahH$=WP9j>?KLYuD07S^*p~7mF)j>&p?`T&nRSh0;Kr>7yG6AQ9YSOB@6x8aMRMD>=F-qyw11zZ`I zfIwA;ypvQs))-(y&HSTJgxb=e8iWH3rqv5jWr9F2TRE#|X~x-G0MxCF+6@8K6nf1T zrI86yLBD5}3QV1cw`3Q|Cglc9r(a|YytC`+wGSz53SJwq*7)8y)oaG7ROxXGuY6rO z&wc6TO=T=g8rKm%Owv(#1%*FM!8=>w$;om_E{8c|4tIs-9Kz}7ddxYAV1Z^VP)eqr z^h??u7f=Z@m5-yzAxa1*tlegh-FLPvz!E5$k8Wre3;v=4zl_oL|k=LoC5~ekaUc zp>swAZiC2ZWMaBkrz;NujywDNH8JGBNdJP8NG6`$SI@LN^HBp5rP**9onc#WCKUH0 zhg6(ku&t&?+S|X>Sv+pciLACsfV*9P{WxEQqd&1$$)zMME7EyODuzdZZXSl{}BVjxu-nM-4SC%tG`UBz*4Ugvv9G_`S|UK zbytdTis$8qUL|dHjh}8I$TR_qW>-*G_wO@%@$J>OVWO+rUFwCR2{z&&T1NVLAT^|7 zRU^P3=>T|gR^SL?8z$V7n$a2I06MvY)!K_^%;ttB73#(6rMtU(Vi`)`UeQMkYL;zH zKhV~;b+Bb}lB@G$(eJJ<^=NwDllW8=sNj%l1C{!>#tp6f;YhLqgVWb^V3Yt8Kp3^( zfeXtRMk=&r$QK(Gl$7-l^6M+Q63Tj3-1ftISq8EVKP4ngsOZsv**^;TdP~lJ0C*US zJ$ps*iilLs&wI0ZVN zECy6gsY~pwKb64bf6R1srBgzPKTFD-%!$S`oFV;Lp{DAaLt(YVSE)SFjWuxtgL$UF z&8_*ZEx84;5MIZl`&)AkY(ycnLwwQeo&?{c6mq%1^DRWm@bzk1(`cm=);QX@;XjpY z_t&b6`y$!nz!hnSXNTJ0dADBi&}RHC1grsvjWnj`j>f0SS^=Y*wPz zcGo2r%*@5K9n409@^ITTBqDEOkwZ;|8wKW(Ltm~ep?`SF;y0g;eo!0eG3RANHMkx*AECDA%EG@HqsmRlY~8i0 zh)0z~wJ>RmCp83vcd9*>mBTH>`4gD25erQpLt}W0fu1-~w=TOtIT_&fSghlw+ zZ%V(K$@1Sk$D_w04`ob}@YuV9B=Ed3XRIFU%}721-BfeP2l#QBMg4_BlH&sbdflVK z{?)tI(@}r`lmatrBY9@2s;Y_=E6QYpr_{}ta)~fS)6^h*7`}~&6c1+2-E~mz^`MT0Z zE8hmUFYz89PTapg6}J;BXvTS>V$U`2ytigL3U4bUWruWj>Du*9&~QkVU)$@QdyNLg zUlq)sMgDn@qEI@)YVYwlak}d3fn=im3!P|YGMR?o^9Bu+RPTe0u)vE0EMJXDUJ*^R?1Oh#?|~==u|r!rB2)tMvC?$}uGd3Z9Y(%btjo z+2L4K!DWn1j4Qjh6_PP@bPb3b<==6M4-Mp4f(L(?LU*>na^^h@s(xBg8BZw5b)QEz z&#XjL*)nG>dx(tp#M~C=Ox11s1@~>8DN;uV-4H35w|LoLVFy&&=)fYf{Vj(veT5`} zb|-?=RWaKB(;|~}Q9^KrA(ijVcZxSYS1@Pn^qXHiS*MVUxke)}&UoF?o32yim{ADq z`%q}*amG_=gvx)bb*j>;3~ue*l?r=wwZCS{W0UFh37ESjz_15sSuAH5Y+WPhPPM-- zO4l<=o-{lCjEjpq?F9QmkjO!x*LN9 z0SO7j(gZB2dc7#^b1N4KP|3C8nH4qV*1#2FF8Tj>|JTyxdH5u&8rgibA)FQwh3S%}qVprM=Mx>0em z(LjNC5};t^L_1_*YnFN9K^nS4M$Clr#yV#h&gjor58g%11n?!J5J6XKrzgG97s3!C zsYH7>cP2I|VFkfxg2vkFqS;y*LEAGca~`4B6PW~6x6qs;YOXJ6EmF&ZRxg`a319$6 z`fSN{iviB*&?b`>E4FX_s#jF1vBsOrjc@3u9qT}E8F$jjQhP3k1LTb-a8)PCiNmB5 zlwXGCT<#)O5BZ$7y3)bB2*#3g?dkG1_rgRswtR=wpY{3Tno-903Sat&cq6MgWjob^ zhGF6Fl8A^Zdmodl3SW z#>n@{ET%Hz8E5AsFb*($aPcNpL1pUfH$Uf>cbGJw{;356t+YOWsXXyBj`&wOuOy<~ z`l6$Ah4bn^zw%JCIDFKZeXn3tMyv!^?*4t(85NyE>Cen&T=e}tWM6@s857FTRqK=S zC9`!fPgY}^xuw(*shJ=7o^M&K`doKY2=T%?N-PN=(kkBbjJ)Xt~ zG(yx5W7#hyONpZ54&O*%UWXoE1-|bqImUsHMSx<(az1?ZHVs4C! z_yC?B!0}rKNqOOHuG$}VnMkD5OtrrHsgv__LoNc~^(&e?(8fp&5^<>};KwL+>!lC!8&&Ff5|XBraaZ^NfWp5z>va+%^a)SMXmU#0i?E_SAPNCe&d$?(gZ0z*Q6MaTQ^ljFZ(h)l3Y zj!}}7k?FdZu#)r@DoQiFa9abtwKr&zA2;pii{d{G;BJgD0P^LlR_fbaG z$(>@u74oIrcD)`ya<^w@A9%#oE?>0%5X}%K)`;x@$bD`IHzKg~#I_NOHqVTl22RF0 z7&&WH*rPh6y|FV`Fgjwnj$P1NwliwNaAdjgNi3aszfi9BP}sxG!H*vCl?^FRF+C~O z|36(z@9JKoY(#kY&z%U0r*;Pq=$*(pldpgpA2@&mbg-RmEaBIqMfxM|Nx*mStA5M> zT=S5cwPIdsykv86buWMuTfTG1cGi^aysi%IX61TBQUEdk}a$?l0^*{PMp*O^(tgQTgdCYXI%p5(t%uJ`Q zC_ZFV_D*w4>&{f=jK8WR0+f==ih_(#-7FsQ-iE_K*1TahYiO_l3_c>yjG$s5nNekA-LA_!CDfVE3Ft@%gwbGMh4t%UNrGE(Chyp@OTb9{H z`PdoKXo$Ei+d+e{Hc@H)V*yM^>1I66nP7<`JQ*veU4kGp+VCVqgOW=@X zu)O)h=&!oBD09wHfkMu1SOCrU_oih9WX6GmOFDc(fT+;tu1~M409kY{Mosqz_5cFl zMVzxWtxQ@L%#up+G}9%FxFjT9(kyk&KuN@i7RW)rd-wJFV2;|P=1YK9cwoE}%dGP| zy+e7l&J?SJF%8m%W(rxroadWvoy!pE{M&C|zkWbS=#Paj{J&BkE2f!?51#D_Rwl`z zh_ATIj}Yv3C7y2FtEq?RXSg`Pe|L6ySq%Qw;+X}D0{%4W%vHRf*NFidUU+P*>T*sx z@D&mHkno^msHX{n?gX_coi(7Np;@_nZ_GF4BtpP#&|LxV60ojL615zJHXsZfAQiQ> zgU2jeySwj|SFdv$9uoofsq22IQn5YSaa4!06BNMm*%^ebJyz;SFUP=7Da5=|MO(XT zCB?I6(43>aqq}7-8Y*TiCpE;t13J1+ym9bZ_|Ie0D5sh>H#dJK$)D;QD9fknMya z85t+^mi`tpronL|xea>IFPhvNXyu<$gN^LuwqE`%+uaYtHJh$IbgDGK($S?oCS)qN1l7TH#=-BsI1D|Y z9n5e$Ut000VUQdz`_MdNqW`q!Gn?pHsrkYgyDwH@o0fH5%a*%e_JlEpVzB8 zUZpx6K1sDzBNEu*HD#vUEd(cs$0Pqfz6qUj!QHF8ByoUpV4{{$n3a`Vp;BArXoyWeL5IU2eRCvoMmA3l_Xy_d%}&L1V0 zWe8ci8012UFt~>yB$#6G*uVDxWChHtq#W{%v9N~@}10wQ>hR>?^MO0y#3nuQR8lhkv+Qq+WXth5vAvb{2nS&ag&y9GMw({?A6dJ?ChnoZ{@X zISNzt&dVA2R39U$3ZWhpg54R{ZGs3}wYNX$#*nO%&3Q$ih}mY`_LLMeT&fkl$n)AG zwm@B^`^bF(6J1w;}SXvLQz~E7fkdxzh1csx7;W&u!rg zhv%;+@MNqk1nv=Yr<+H$Qj$&kH(BM`1P`puHh!GBTZrEZ=7~nh~DhoY~K|?4`ZeOR9g+jt!K96d>+}X_;|GzB=^$Jw4|@%boBPY^)u03SnLi z(S+>IJNL;}r@bGGeqx8qScY18E$-TFkBwgIhWN1jH(Hwf&2#h;-ilo{%l82galAqs z^Lrx@Qd0kU+grC`7;l9REm`Kftk6U~o`gi7sP+==5(`s1|blNU^b)N)@;aWQ}5}=w1(dKpX(`O4F?QmN0uH*Y;`i1DF0o5RSA-Ncg8$4H`t)1k@ML@2@0SLA=8ojyo1&4KyCHN9) z0BFYz^Rgc68Z5=@h%5#H=1z7E(=Z#44Ya^gC0mDgqB#l*S#l&WVl-(Ff2=mBWC`T2 z19ING`SM^UNA_ZSS;wX8Rd~~wPG|9ww$ZPPA7yW~lqh>mN{d|%Eg&sW%uxRKXY@+^tbq===Hmp6(aw*^f6m$5*Qw#A_=J@PR;Om1U)C{q zD@v@U_>eKkq`I0GY_RBEMW4qS_gHDltba>dt@A?lxA3x7c%b?Yd(HGnIou`iyvE+- ztSm=`x)JKG*nG{XMAIyf%061WB}joK#l$R3l9AP8;;*n~P+OG!_uX>CyY+GPX`1`` z?sEZ&pligauHhfovsg0e@yhsjfPnO`-l(-0Y?+wI>k0`g;l?nt#QWhO2ye#-f-Uf~1!!O8Gb1kDezP5!RK*G9NKZoP&v`&g+7 z4nEP(zS9{ymnJtL@&L*26FR@@f=cNPU9NTLTXe0;KR8L?eG92(d(%Urq@+Y&*9uQd zVQq5fZnlasBN!&qmNQ$<)L)9p{O^|`LVOv1Z3Tt<8^hn{>UeaU1`=C*9XNQ)4@_Yq z{Fsdi#28|QBWfqpKgUCC+oeG5s=RjEZNfnxvQ^UAMkVl+qhWWpDftN(>owKJ#|oXu`~c_agCDNtbZtB?jhwb}*m{kuo0|ZygS@iS}$JwJ>3zt6ylM8yFGFeQ30eFCTIQ1HB@VqhSC_|P}~t4AH5 zz;5#b#I~#^zkM?VP5Qinp@cx~o!+l^DRUOd5{4|Ocz6gOqJjeCtfML00eQWGysPD% z>qGu6RAB71F%;G+ExSQUOx}~s-*#2r@OmfDw_95VOiAFJ2dU=`@csGhd3`=J#H#i0 z)~^e2G-xEHqoDBib3L9L9J}rIhU*Dy37bU-nV|QEk`R^|4K4N`ycR{|D)gwR z=f^)H4}vWTLvrG_cyzjECs!PAKfSdL7anW3H_hQLj^xT&-CyOjN#NMaYn8~82X5Hu zuHW|iBfZ{Irz=!#Z^H-`7bCx<+UB&;E?=KEC+hFIe*MRT-)ABw7nNn=b_{erw+@PE6X8z>ZBIU z70p96Zg=*|-l0g0mijlLVBN>Txf#8gRygwYvEz(QD&JAgfhH>d@N1#U6hm>Wplh=K z{92!yaR76Vmx;9JLb;u`v|sT#xrrL&k*HBra1r80L7u<_U;;<4z2l4HtUbrm_c(ngrYHtuz-~}@-qD0IMM7`knOf0Q$^5W|j(y_z3#8!qO zFKH-!TSk(wgu?4bpdDs*myJwkupV$U-PZm0@+Ovpkqv3q%OC>C<^xaIT$0ZobF3ES zk%+*M)OIUtDBoUGJd_kF&+BJvy^yiP!Q!x6v>CK;Sla-WQH!ef2R4TC-*4j3?Pz-> zv!GezVYK@90}dciCBz22OIR1{LylHe=K`2B{GeDqV;XByDQ)<0DK z_weEGuhUxBs4{%-;k%`P71k$gSj)P8E4x|iH20Iv@Darm!Yj920X)!1-+%Q6}{PcX6wc; z4$P%(y0J;XbCBx^5I$MGJcbO1N*9ZNH`oNu-)0~FNXAY#sFB=G`r1Z~?P z(>b|^Pr6eZe>FBA4+|WI;4#pq-?iZDDcA{@oW|1A|5jlPYGAeqFyvVI8$#8*7~mMQ zf^81WRde~vT&MrTS=cgzif10=iA$A-#H>UikTA+>^UM<@1{BHF)08keF!&u!$EaBn z4Wtq1aq7r6I}r8+P?9+K!Gs7dOPdiyNH(CCH{RdzUA<-TK`Mla=hm3E%;$5y-31?1 zXIED>r?_KAs38DVgiPgE^fAtjO#l2}g^%CAGn(`!cc-?1!BNLA;O?Nf+MB{W2$2|a zIt`~)yqccpt>aPZL9?-k`3VSzGVeqVamn$L#Ite=je5(qw+Sft1O$lqVc?SVt=WTW zDN-ziXo_ow^yU12ehqv|g%GH5TBGEJz56U%m;^BMYY0^hANvx9rbQSDU9E~Dd_U$~ zVMr8UJ$YNyQn`^|NPRAD{=20 zuz2AJhx5*?-F6CacL->j%hr|FxG?H(I5%?|tRFnAJ?NK);!3J*S_8Q0gxV za*Sm4jc6jKIa0Dlu3Vw*+G8Ptpp40(4%31Q~oKU zV5Ig9QtafiN~@dhU(LasVYazL*@tuERp#ZoFnGmCl%7lUwi~qs;xB~~5)i~lk6w3J zRf4&<^v90iF@w1_N#%#8dN! zMk~w3;P0+QqJQ}Rem^xB8X;;vVC$GdT^vlz6ABs8pC!|wLOTJDXSPw#e4P_Chy6+*LVQjO6Lbcshn(4~26?Qj+(O zNs~UaSWe%4o>e-cV4^VQiib1T?D02lAscWfShu?sw1S9VLPqMzSCM`Cwl#rT)JVv(OaYfYxrp@*p0}gn%FD1iP(T*87K_^}xosqX?UV zj#XnP*g`_VUK&;%N)Nf=;%FNvAMQ2u#Mx@$k;WRwL&MGfcAOJZw*A3C_QiHRPx^2_T0di(sX|rQ$rO)lsBZgbtryzXuOZkqEFWjh{x&ijfc?ag;Sx%^gO%D z@qSQy%VrlHOnw?Q9a{2CIJG{@EQ6379NTAVKXTO6!rryy=2!Lo0?NN=G%CJ2%$Qua z@tobACmeb63FuA~h%NumN_fsCEg>=cOBXB3^wa2h+bp(19;Yn_{-TY?Hqoark`N`j zZ}$Sz^{*crA6+B!SjqwhTT$@k*D9M~oUpZSd4(l=yo|u%!2qL9#ZBKJeyhjjAYR!& zmjeQgROfPc9Gg24jERN_7P@gDda_&n!;eRVNi}L23t%oDn}`7>zrRU0CMsFBJ$D|j zcxp*>H8m+_4_q-0g^@^XOBJnmZ%SHM;LIWfFQ|sOY0x*svS* z{U;nB&ReI1tO>GsOUqwXvVX0mx2yYzrL_z+-SXYrPGI6T#3p-uEQhsMv(Fv%@A?;+ zc0U%h3;aIl`I<5LHy_Xq6z-V%STY-Lc^D`%AYA z17e)fA~&sq56DdIzdQ8zLFZ?wt8xl{!fV1dtas=MIhi5XPQX`l+w1pipi*8NP%6=zSn$ML-#??yW=fo!CozqvNglp^r84~aWg(X*QZS4mb{0(N;ndihNPF|YltK| zUqi40>4eZBGZmV^^uztJtP|zpA?znF zd4H%xGhg8JfP?l{qyJx?*so&w9l}4z-#PL{Qhrm&QC!ou;Z4LNAOIp~fR@@^?f|>Z z?9T+UnZM5|r~iB7D}+>7O$D}CP&}fq?`Ly_G{ig_W{+=+)QP$F0ONwXaDHcwg6DBR z1BdZ%JbNLL6Q4E}zSb5Rq)JVPI9~I;w;C~1b2i|jMy?<%ll^ZdLYVSugyBiR1&{-&%;f}cgFf5v{9Yb1qwgKwO>U@fTNgW`p1Pgv zICxUWX#B9F$}wN_Dc=rw{w-ZB=$zI0G@{B9?LBy|lud-=q2XEFd!Hkjs4IlK5Z~l> z*s|jMUZo!I+KS@n|F%9oGqacyt)hAE))>auej=MusX*I~5{!0yf!*kEYqvNx%Zbn= z=hlkqP2Ps_d%O)E++fZMg~+5=dqFT`XE6BSrDVypG@QEM=C%ltQY(=k*DsB5a1(w< z!1S1(ApxWYsj7LMNun7_y8~gu{omYOJy8nhsa)cedx6B;3TM z1k5JOwRdPgn#d;XZ1GzUzy|)+3h$hp^@&IzlLKW#$ z+S%jw*u(LrNs@(u_x!>r>lTzO9}mCas#iX>@MZw|^4g#Ji~1QY_&(oWy^b^d8K9r<_a>2d?Dd-SfAenWxUEmH5*i~86$(^y#wcNoijNOqq}zEjjvcn@%*>q7n6uQN z3GR z*b8&)UFONiKGLxS0e`d@ZxMD?dwa+0<|2JY&DuD&1qdhOM+*3fNpa&rO-J^Pb z^aAJ`{#(}PDgveg)Uzi`&CE}<4zi&D_y(jRe>xugH@0NJojBq78~8jYm6s!+S(rP# z)*4-(srq$y_v_}Jxk_gOPjpn&#~d7|B@2*|{l|jqN*koqoErBV)vj{^ z!!Ywen{110ae2vrCqbd68h5mUM)HlRt?h(Gf9NK4(O+-pmqSf$S&P)6h~h~DrB{eIrT!kq1-F0+ITy ztZu2{H43+jC7v#=q7N-#`3~U*u$Ytl1^@3D0{7iC@sLOR2h4j)y=uHbU|wlFI?X;P z@R<^h-XWvd&7Z*89?cvy8%bFG$dY=rv($BVhtpCa3=q?qd5w#|eUH66gq>~!XQZD^ zF3Wop*VQ@Qnj8bU$w9{&$cANaXOdA|gxdG7kLi0G*ppFQkG~mj3^Qt1?d0}WS~Veq zB3&2K3gxvaFiC}E9FMx!Ue@V1A+wj3qFSmunpdf2wRCo(OU6Rhtl6cPg4sRo$y%Jx zvv=JLiRS;)Wo!Ms=C-{b-u=a$+ZkP^} z`81GpVA|+-6RVxKI{BF%mVoyg9Q7KZ`g)-U7%n!WHtI6G`P8p)oX^j&`?E=jF?P-FOj=6{Rozq8C4jkqf7td?yVo{bvT&EvjGHVFJPJ$a?8eT@pkMA zbTK?{xt|egOKpli+Nlk$`-|eo#B-(vA->T{NUlLaSR5-Zef+UaDdqLZd zkN@`)Ykd1Gt#1doN{EoM5(sEu=ip#_fPp~1t)^UOu^$8iJu8|Xw6mc75Ow^$V_HIY z1Nh19qu2bP>ZK79svlqO&y*z|&e!OMhPJ!kxKr}f5TE_4676dL502i;4GqmoD|eld zI6en@xsYVdzpkoPjM|9O+llIW6B}F#UjPDMxLWIte6Z38{p(+%o6~g(5bN@FK&O8EI_cT}mP9th(3m4^ z4~%u;g)JrH!KVz29M*TNx#u_aameIlY?9g#aSfn9EkT5(4jZaar6PQ~9-qE5p?d*@pGGS43nXyw`m1+IN&y>P{IN{PKk@>cIUvT)@+(T{q_yPb= zz9dXYP?)luZ(PPVN*oQFvTV#AVp}h6vt?Udoq@Kac3;k%t>R6FQjXMdEdO8CL;`RX zcmc%4zP`ST3R~R06!}I51NL}U0zyMZddkzur(4_8xO(K)pM?3MO+ix-x_!!oWBu%x)+axep%(5bKsr`p(s6H^bqvWrez>)JMSaIYEY(v<^gX?i(XpRkb z?!ElhZ@@6w)7v1Es!^ILlgtTabofT#RBvx#y7BluqjF6;dip0tUYEVs(kn~iu|rY- zQ`Ohk^O9gf8?TvP(MXJrkoGmqcr@Y43w8%w2;5AlV923omc+}{rhGfY9mtY6+da}c z0A=JxawnYGtGlzJi<(Kdoi@GYWo|{&b8$ySGz$+$9kd~1_FjFAOBRI=GrelmCtYcd zHKBd9?xPonpZ}K7{Wpp?2rI8YIZZ9EUU=Dz=f}xV+tc6iTao*zt^Pr+X}HRF`@$(A2# zyBrM|cIxlY&6L)GOCTuiCD4L9R(A6TeE!5Hb@17S7gAqz1*+t!*W0hX9ooLMkSt;B z93pK#q@|_(3DHN;?Sg+<9zV&yuVW5qsV%emO#y!|Zv#|}g!eE6(IL>OP`Q^H^VTe) za1t>|q1t2OzBB1f2dgRkWN_&F0Zm3}mEUlhYE;4MlvFH9XGv6I`hfO{;Zv>)LG>CF zuB)r7O3MPZ#x;8!Z3?`w)}*`Unhtl44=8FRXQ~sySnB8ZvC^>;2jUV&(17*)`Q`oK zsU2lRM8wi`rR{>4(AjYt!ez#9^S0#2oAKk|T6ZxY1eX3g)hj?UCFOINH&Q|_4ht5| zXV9AyTxj-?V~qbKmEXujc{6MH!+=#9@2NoKa}lG@)3*n$fm*q=I+?;|l7&0Eegos1 zVs?yF2{e%_^X6d0@@c%~9uE(Xw)Pb>nQ2ew@}O7B`>&$JCRb-0D!sofxd+nCIZBe~ zQ_q8+XD~Hz3M{PZ_An-V?CA_UiD3EGzb+ky4<@t+H%C@!Wq2ijZ=(m0pRs7)l2#Rq z+biL%vw70J(N=7+6u6=3Yn!Gc%S`|O_5#p*s_pAiC`@tv-OVth2%YTg?7)?qmP-?a zbdm{#iqX!2Cs*=@JD9VJx#p{kKQ?D-P~_!%*;g27X}?<4A!lEt`kNn1_;v*Upbcwc z@Oa%k>){6B@|9+pYF48~bKfrwg&q6^w2avu-KN8`gG%T)3DVHBKdSvj&W6at(*AZq z2P7s;kCSaDa8S>hbT!sk2HPW&r*^mfnnYf`8ss`gDQpK@x7D!?{U0}LDxn1i4(!x_(|n+8%^0} zK~_ATYa*nDu>rL_y}0by^vcc|Ak8*KrU_-4G6}ITS3c zumqvrJaBeLB4ED2%GG;m5lTc3u`dM9}+>Ez{Ks{YG79k+?MN zAqV92?QQy`j5Ivee(UjO%ArMasR#hleH8pkv(Z_OU0&* zuC$yklrcma-<~=0*~A6y23b8jxV5B)<2;-j(%&5fv&b3Mfa9V2|2Hwc0kA9>({bTa z%glyUPE#LGLcBW_T6ye;(N-T$Gw)yL+k!XzC-%^^hV| zuVI5Q%{@R!{^V;_Ca@Rg8H42MxZ%3H7nf%4g@}k4y>EQZsFU^cg>|`n$En={oiI2+ zC8sM8QbTn=l-*o>>C3$1IciDzC5VePsNpQ$jIh76UV;y`T=orf@2J zRkaS3Hu@dCk1torbln%2U|b?)Cq=Kh-ML*i?0WXPIIg2Js;|oBD>|llEM6RYWYMD0 z*WNVd|`-s$93XEh3G8gwjZd(%k~mC5?1g9BX#iym{R}q)m%qg2d+HO z#@#@u(=iuX83B)*Mnd{6h97wZmU&E4++UWSQL;IdiIM;y|a{Huc zsSS`?*%jxlV|6i;dt1TO=|+zmfP`QpAA3t*@m9g=eQ!##|ik1K@0B`w)Et~Wl z$4SmLhJb4YFmGcru2qe%aHWyqV9u=PD!m0vM^Z8Y+DxVQ?H~(PEK*?Cx1yp0l@o3` zIXNnJb{tUH%jI|Jx89oqc0yG8Zd#yocCvX{k`Ql)Yy&ZdgXAm*`lmsu5E^25; z5An_)4pA*?ICQd6`~O`6ZxATDEtnnl>$qtg-L=RK6f7^*zp!%G*u%VWF3z(VeN~Sz z-D$(DUyy!*3kRI*7>1YPvE_OH*NngMXKF=*O*JltN&T%U271&^{ zTm~qO*M|UG-C~D)(jQ}d1!gf|dkYlUF~Y$)pY&uJKPbpifuV#1(Amrvs%b-CGm;j_ zjY(*D(_!DM4KjKPMdX>E?yv zMaQcYU9N9&{K>zjGfk5qi!x#|v~SEV=f>y+Hy7u_ec*(vksKwGmA0&AECS}6|$$Hw%?`gxNO)B5s&8r zgT&K%ZR#AX#*I?Y5P&%ktVUH$cyro0rRZI5QF|D>J{2q?fTwJ)4G1p)V;rjMs^t1}c&g4=4@ZrzPE1xH{Uj(nm zNn07-CD7-Bv=Pv`Oy(%?(fZs6fVB`Xu8EEPt^^NKioh?xt~g#Ns=p4*KnpiMtnYI> zX@S_$C|~!nm!9vun#-U>!%I=c8ffBF;bGW|Tvgc9MzomA8j^jPs~D_W)MZ|k_2sgi zHILa`+y(4T{%#g@J2Cl-j{{oULYB0}qymfoIdWWrQc?)_XKcTc6~frO)Xbc~i^BfR zVwj?e^5)IGuN1uhudm?;vp?RUfz4F&nPxb1IF9{g!N#G9gEk{wo}Rr`pY4{qRcIPa zQ_^H38EE0yf^0vAm%^Tfm+G!30-O2J>vx|KI1C#d<9ENwD_OB*a@0SkL`nxtalanH zSI)Y+Y(ndRAJUssMNy{v!6-ohn^HG}W}O1!(i#cI&LFaI*A)Q%@{N_6AQFGmj6;Lw zWyItdlOvL|6X}z^!2_=!I{WcX?R+;#;hJslgV`X%c3R#WlUxVK;}(`687I0j5NfOYdb-E|^++mTW`z7&#)Rf>|U74QyXn3wQ;5t??ga%G9Zd!5W|-kDQG*Hgwm41rWW z!pXgt^UYoeD=#&%CYs4XM&2IbIp*jW$B{_aX>+kuV%R|yKalriWV-WK8ngD^3MiHz zyE30T>6x$tho#O}hK-JvyFF~%+%)frA7lT|$Cb(L@aL0NjY6I58|2~FAU!S)pC9>0 zOdF;&=pn=(OmZG-gDSGcRMn$3a}}8lZ`s^0kGnE)unSUY8Ql;=Y1T>21(j)-9 zNbF`}p!gS~1yca4P67^rs-ZL6wmZhgjGs_PicKrbN5N~FzMcC7tg5!IwKrjkrtPYU zq1p98e}I^MAukwDwG7^4+t!-^z>JJdiw;(bSD>MI{_uduZooCl4T>5F(D?9GF>r9#mCi;#0W} zRiV-p)HAfZDbMA3jgCtCie?J`{pVj?$PVL{Z1wdX%5wp-xr*yYN1}k~AeRr+O|kRi zRRs%2FnS7}FyASe?Yk)Rc_<2zu<`jnH&Qo=&!I4hB1(AZI~{jeH#awR`W~)gWQtr& zBRs&~reu3wqYC`&+I0MCpc_^Pv|rGOqaDmJ?%YT8_@s3Or$?ffwVh)^(+Dk`Zs;bb zL9#8ZKZQQ+P#=B4y*;?I!@_cu4Om}iOzbQCQU=5tpi4+#A{$HIW}_5Kb|iIyFoKEN zlFpQPiH~i}xjW~@c%piPrJyhi1Xh#{{MX?tP3K<6Krt9i6q896_^zhwRr8mX7sS(h zTpf{DFRsyrmb(RtZs6bx#rA)~XEOsMy;q>+{(HQf3``7QL5q%VBN_&FuIA(!v3+>( zF%L#~5yDI--vs)}pH0R#lgW7c_lcb7ZxY%=;r~rfn(CKiW3!j=V zzAOu>Z__Lv$gn&6xV|Cey-$fLPb_+Z^;PHT=?EYda8z#F&rX(fVwRFuB)&a^5oT1( z$^M#=HIYl3k+r+Ozwq$O^7CTj>%*5AIYGV|z9C;T*hv4%z5RAu-r6iX>xZ5o|DUihSM0%W%GMFtA8Q92B0H(I zC!1k#U%Os4?9AEGU_C1v3}$_Lkzr67n8o^Y{NNHyN*vy^5|xON5+abkCU2pV(*wg! zaI~x49W%U+aYZ5Z!w^QakG5+}p=qrAJpv*}qM|VPh|zN+6g_oFXprGskd!14@!a_Z z(#v`e*v-bi0-C!W2*dzAyZ_`K1q(|Iu)FHBscO?4cm{`u=c)|GAI?>@b}BolsGQxY zc}7_2 zTj8u^Q6W^LVMsu+&LGOI|JqD+z~tPJ789c=B`pQ02-{Cu*AD^_rMhBOd9>RemVp5Q z(CA_+xfJ#F1#+9#r1azFP;HdF=;T(cCtJ&Ub`2u^0s0{8St4mO3b-bYi85P~Kf|e- zn|F=4k{k5UXHD8IN+!U7Hd;nNXN8_Sdr-0WPOgoC#~HCiOeyVIniQZ=f)EH({*_oF zKG!JVG23u%0_!_atn{vzhPczjwE(2-l8QeI4YYv5Xr*mUjSLiNw?Ygee;ik4lp09>YSSM#Pf>wT2< z%{m{1vT4AIn%%4)Zz7Yv@DEF$BH)eJ^Hy(8#7p;)`XuFXI8XxU^w~7X5m-rER`>qC z{K;ecmsZJl_HM!j(*(h0OCdZ&rJX;LzP)2iHt9Mc%dxpU!T50L4otn-r*`IrU?|V{qMhfAihNU6?Mn~OlMUC-N7x3LDq{k3wPHo#8PNSxgzPBMb@mq z8@VL#BJ{CSdF}(kysS|Ak2c_68&EMRa)`)Iat_hqkU{}VchRv&;cIZ#*F=D z#k8f2+0G*k4=jEvakyM0?R#X8%^5;%zQCd3BDcf!!1~+$BFpBL9w|)Q{~QOT445Fk zFw-#bs`$p9_)pX#6Py~u)sGe@BGD#}i<1Q1!fGnWf5;_kYoyrk+{xUviEy7{pdh_9I1>kxY2(avgLn1Ie97*e&zi*iVqu`azrc>~?c1-=c*TXq69f5z zNP31}_bFZL&qOB+Pk;{_8 zuNVj*ENo(*S`Dcd0#C)Bmk8P|6zIb`d!NDBq8y^#0&PaM~^9Bb@13z;RA=!)t`#c@wpbyK<&TTO zn%_EJmRdg!$9)gOcF5U$&kAq()@cEfBX^fpABr;1b0Z2qgwLdVE49`H;HqE=ZG9rH zt1B-3s+v94Y_0^z1xOZS&G#s<$-`oLdU`hkdw?wrmfR&Lon=xvQmNBiH=2F)l?f=$ zUjOG9+8_g-ngK}Y>vPb3o$vh}oojM?SqLK3%*^6rI#X?Bp`O!xEf>wjKcnfR(P60g zt6zNlbMB1v!!={-TzG-mQy^PBQowi!y3E>^5oJM(I*+b zX1tM=R&Y~21~`W31%jh;;wpddggmF)_CI_E9RiH4b8b#01s}Q-kzOi&s@4c$MXPYx zq^o3MMXD252@=U3SH3lP%fypLuBoc@>C*=Z3B&|^$!34(z3Nxr4*)1>p68Op?z^N= zO$^+PuU@?Zi$=T6)Jtv27d;8!M>i-n;JH6pBIbm7nOt#G^lQmw)eDMg>kTJRTl5B7 z7Kw-YxUfe!5gsi%&BW*nt70lIg-CIIg~u9+K8lGwjx%v3hMlUbmTL46)rIf0Km^}9 znbQ676T>}PcTJ_l&b98^agLg+60A7#_~go!S~E$ViGrB5{?gFS&C7LJ?pZZHef-yF zL+k4=7JJK`dNrZetR=@uS)2{a`AW(IAMHU<HL<&vz^96hCO}wiFR5FR0vZh%gW$z1Qg>uga6T%yAtE3w=jcmN{^w{Z(lD&UaaEpZ~w4KPk%ig4_iU8T?TcxiR zxp-uUB})FlS7x(IAJ26?d8;7$Owz|^ywr+nQBAhgq>|H+l2tX;A5V&@Hs0m}KmPL( zU?jlA4k)+&nDnP&eTQObH|?S8(M*htjC|(KcO9n6CqR-elRi+5$GZ1r`$zM`3h>pHxh3i8*+w5TT{@n6fS+Fz)lh1=Av+6|_ zXHu}$N_>Aj(Qn96tys^-tXTz^u(0=wt=TF~!eGZ$ivIq}P6jV+r7e)em#et(Qm;m% zVLgDLeBNqnd;8TtcwTu+M;9PYhY|S@0OK{6_Pi0pQ$Try+Pazw5T?M!arXYsS|!}I zL&WKXW|iCxT$oN-K4^zN%)jAYz1j<%*`vtolYKE`so1*HaPjeV-z=l?&b@raobTRz z4a(*IG_2m$;d}}WP0oBf5>CwVDlPKI>V27kbuU8chlbv6UPf!)mjLa-#B>^WvS~mO zT=&l-+$gTnC~=jKQ|387a|f;>QPJ-+Mja=PS>t=Ze3s2TZK&U=dH1nD++IAmga!rw zsvlMZeAbbBLh#8Z9#MzqJkbs~ZWHw>#i_N*Ca&%nLe!K7q*p~gv|tP4*O0NaGKeIsAr;v$%I{-)*eFd5}q69xA4w4a+?2H6G-i&Ol9lBKX zQf9IvtT7Dr#JWWloZ1P1{u4o&h=P%zmtK(X`a3FVdAhpOuePO>(I#X{1&MtQp%} zJBH@C7Ujxp+WvWp!YSX1JT7y#+HIN{O#L_EZr}<+;9KT>#fq}^Mok>WScNKr{n)MK zvOBQ2;&q3}BLy_}e$MK6(7)2pB-C!p>a=f>3(TUqZZU>ylC%2kzk(?t@jdSu;p4W) z`2+-G(S<9T=uWRJHmC#tYX`BI>tY(kk{v;5mhi;uk@yXAFG*v%X36SuTKnldO znU_jt9(|h>myIy|bdUF&1)?{*IR5J*fv4@?(W57t;f6J9^7ONNp{Tf={CqV62T4gJ zaN(0RI=v}gj|QiaYicg2I`4JR1?o`JyM)XRY;cEPgRp`Akr9)Vl@>w}C*z=QR5Ke; z`56ypT><>rFOZ{R$5xt6438bzJh#|hVAHAYwbUN^-_<9a;zTYM)?T2%)#xsH!(6u* zK6~&`GWXNB>1~29(JxSf(We($AtI7hTD!ak-dzy1{>x4_cA&cp{V~*6`xoKoI#iWQ zSmU0?Au23^gxHjqf(qrPu=c6$nd5t>4cbOl8nO}>5$ahRFgT$-&rcV33qzPGe1qh? z1{Uj}RUgi=IV!T4C6j_X8<89{uBM|MVZd+yLI)*i-p!4}K8oix=WW@L@V;y=+EzQ<=D=gt>+*x#z? zB>#QgQ;WM%h9}fnlRZvVv$jk-xi^zd4e0d+j$U6ugk&th${STV`@KLgM5)YF!S-Z8 z5J-TXKIpY#!Nf@q%9X>61UY}<$sF4ua;X5bj3IjCX1o}!q672kF@hc*mZv0uTzaSC zp{kDSdJsaWaRbY1(lVGfx|;3w(CEp$<4~+>IsK;Lg~WfGMnA3t0A6vu9e5)5nWUTW zNr`OAK};A#!hac(m3h6UgXY7Impw0~6{v$FK(JDeW0Rf^oFHnA$6zN6l=ukTtu{!S zd9A-Qr$Yx8S|dOq&c$@%#iHgTt{jT?v1b3phvSu_>l8U({Oa}{XZ;$D!MdV}gUgJ< z0s%%~n#^GT%-zaf)A_*W&VSYTl4h;}CcN$T)yc*XIadVH+Ki?RtzdjYLSNW?6_V}p zkFWi|EoU;{S44t^^KHSW&XH6caX(J$1;4%>a;{&JH4qh*A6bgje-ayC^m0<{?I$Bj zTFBTLh+y(Sa_8yMH!4I~0O{oFWL1~@c*8&$2Q|LEl49O~>izq;prD|0L5}1St0MOB zw51KjEO&GY`%_n|%a{TAMKKT@cmsE%TyanQ6|0GJGQ%6w!DM)=uy&ZqG*6$eHjqJ< zfXQJY|NZ0oU5Mx@gHUC!=6~8sM1^c+#W}C? z-4j<{xfwEA-Z$0I8M96+4nvlt)4PXlO%3xJ4NqcDo>)8)JKW=}dt```3QpT190LNv zo8hdE%k06c990_KNUfi-1CM3-lZ9>$U@EQlI1iRO6*uf+rmFuucO{jiCDhhm2hyk9fS5Aq9ZDkPcE>K65&yLsSa@sC zMQA*kg#%YL;5ThR2?kC;w)bS9_O3(O&N(V>mO}{izI|=mD|FoI@SH?Gt+ULQUsUhA zNg~;P#-xQE@qFY(zkmjtto~JTl5zHK+rY?(m~CxV-HWN~G*Cg^W?)2+2!sm8XIBpoU4>aHQtxk{4`rIlFyo;4kFHtAXE{W*x1FW~xJ2zQm+Z)O>Ov>NL|#lw!@w!0zX_c5@7kl7v*`ol zrh7Y{h#`^POAWNgzx2l&&qE+5omsQ?U6-@W+mq&I&wa~3TVs>ZT_aivMn2wTv@S>Ga_u) zPLwwLz7K&#FI0+zB~Xh>N|FRJ&yD@}j`lgt-qZA_$H>mD_!m7?s@Ew%$Ukt7ZgFOI zw|q+){!_{Gkcn6D2{(OF^h1{kZddkM({dc)!eE*|>-^Iu-+LjBsR^>u!@1~zbWhI# z8!YF>fA6HJpHS?O*RA8#p{$5PyA8_5ScokmE(=WRxYn=&aX+P|3%;a(`TOF*43r z?+)Og5#=$=^`>j7+`Cc`NMtfPEg`RQK0 zGgIkf$tBlI3`@B^uJ_(Q!&@T1Cc2`%*ZE2k)Z$H{F-fAELIdt-vG4p0(QEpf63J)8 z+}zwTj!$9=)B6^q+Jt~!Q88}?s20jU7yc37{J0=m3~yi&UK(uQhEMHre~p5d9n9Cb z<0FnJevBp;^a%t;0&Fu8)5x0DB`nk0WdB#z^dP~T9=v0*K$PNdIdg<@}UV|M#k2eS|3G8_7JE|b8 ze~YGE7fMUw)7>9U{*JHje0vZNki%cXFY9bhxt2|K#7F9^HBhIo0gQI3oekI~(3*VG zAPji6(WEP{r>u3uEq-i|_IOXfGURA7nkW=W%wO2j2MYb0wJtDrPA)q;2{*DBF#o7Po#*SU$zh56G)L@Hc?t%ySAR#j|8fdRjQBi@jK*H}HCnOS}n8QAKI1@;RO&4ml z5HW!@f0!ni)FBdBVRVKL{w2yP+hAbp=hT?jT*BWfU~TIYma?48)oO{AwkbZ2AO4Zu zTv}nl#Qo~<^B$hd(E^+XfI6PBx1yvDgmIJA7C)r3f$0>S?(im1bmw??_`wu#_qp#G zcZj_S2`L?muS=eM8S@@IRLeCV&w?BD(fQV*f}TadA(TIzRY)h0{wA^rTjn+Dw~mj_ zyTjwTx>4!&xFsw7-%d<0iSUQ&?Kdr&5k3HvMpqy@A&Iv= zYETue{n@*j>j3r$%s_Svp_wv4g-`1J;QG?BZh``|Kq;pvwi>)*^~-Su6JO}zK&;BC zm*Vw%_4X)IWAY`S$F+@WW|qw8y{(+b`N+}qylqtcc*UCVGXyJ_l5z>~I&mcd@)wweTzoyH@MBSIp@SfBrkCGqHdKv+HhfY zqAxZtvMA2FF3+9cIJ>ni6^x^vdiWb|i(|U~TUOdHKz{sk7GuZE4nXRDA`o<~8uUn*9EH zt&8trsH*wq))IsqeFgK-Z==%oy_rgK>@G$`x%QjA)3xIkHCkSm)6n13wcI~8`yvg? z;p2|Ty)nbZM1Z^oGGjs3)-%WW56z+t-7b6Iv&^oq@^!CkH zOjosw*I)%{u@2S*pjR(UxHUB^@dW^Yh3)hh7LVrww6SsgCF!M+xmxEwQdS zGkzO-QICwey1M^{Gnk0b@;66n_J!SOj(X5W|NG6*P%Ty$T4;4NDBIPsuCV}5+b;Iq zsYeUpYC}cu!H=|lppa}#aSDY0o(svcJ0JQ3(01dwO5#^u{NeZC&F^)T+@C7p%wUhE z_5`1ouw$gE25#4lI~rz$=Xi@SQ&F%U*DjjR7qSON5@)aJ;U^1teV;}9ve?J3{+%j<7zQY0OiTrx0{bJ)Scgv*JhCwaUmh-J zpK|ZCLW~L<{;O;Ov_K_X__(rR1v7Z#P*M8y(6hNN5S6REYDSN;>>wt`%_nIVWjHuE z{>vuhPis1dNIy{AQ;SbO;mgYZ6fT)PxUsr*6pO^`I=_i!_7gKe4W(lA;#6p{={~v4 zm^=V4ap^UsZx+T}HNUy$Y&N|3q|r6ME4%x7WrRXv?T^1Wq5a?^^6>NuK|AiyjO*Kd z#d!g?*k^E8=c8g`gzw%hR6Nd7&S4Q`O(&GRgt)i3@)3inOW|nW*`+k|d>35{tF$`y zpWTlpLn%F9VPGE>QNgrgC{Z9Bn!EMzJ)wf#Tvks@TRA=9zJ-@oYEi7KF&NNg2sUl~ zXZ-%XdgNkPPsFpQ)4tf60Pz-79j>l|Dn~kpkej)uhc}5%_~2DlIdTGkSaMrpxyRC% zuBj0gi{LwvwRNgv(~`R}WdaP#%?%Doyrvvp3w2`r%_!ljA`%Z&bKj5r`~$!s;+(-I(cVLCP=Rj|EDU#+lAL`f99T7M!IBvqnV^+e?fs*^I7@)^o zX7v}f-#uM#!w~`1z~{3`mg6QbzMp@I2=CnC@j?ZtCzSe8W5}Hy7m?Xts%k0}?-NPO%oZCohI>@;M#r-{!Dhyn#C;$Zz*U4`k0 z2d*#qr}y9Dwzk)P5BB2fWe>Dh%wg@T-MFPM1`qs&h-YD8VnQRhpt%YIgM%XZllpaw z@;A9d+y8dc-R6KG${4-APPllABB{2lZrxN&Z;8Z~?0S@1cYT^2Ie$HD>iQr6s8bp* zmm3}btOp8YfHN$=*;Gr5Fn#pr02rrKIh_yA;n%(`kkeLflUjKs!p=R((Qo+(9O(Y@ zR;B0ox?Yz!@=teoS9!VX=k5ceBOgtXGCnE!OICVhc!?aqj()zmKnBUszvJZd0sF%p8ylEu2J3gy z^ub><_K;B12V;r*3te=B5P2%M{?x;J3znWc7ffeS^m}5?9?_obW&yC!BhZE}I{qo9 zmB7~g)hpSBXU0nN4v-Uyyqym+nbFT^Lg3q0b-hVEmcfYKO;4iFPG4+1XylH5k zbIn?GG&%7d#q~N+_kJ|T10o22w##XgVP8aad_4RIFzfkUN9_TEb={sOM^AaAfFt99 zfrX>^<5?r_1!rOS-Geu{KRN(q1Ih$8sR|xZ(-{ERXiAu}Z&|7}yBlPRV5M)^BpbR} zsLSzBXVE>MSx5(pY1|X9>sP%&JbroAJw_-U+KL}XB9x^f4>to2O1HDo1wWR}rr-LS z_MbqM083RYyThVphO6cVko>jAGs)uvN`5VFx?_uyKIE5i*P7!vl@j?=a=dDr{XV+g zZd12;=Gs3x^44(Ns+e@0jesTdkmud&n2Jla{m5pL@LH?G2_=n>U#F!$e3&F17lDcm)7wbuj(A^y}BJ=Eqxt_qUH8d~GF^oV$*H zoAMZ+nok6PCR*R@a-RfRaU* z4D^V0Tu=jTXZ_vve(z2s&v!-Rvg|Z#%(@IPObU4ao$d;!aEK~ggX~<9I-6zad#2v% z3FF-slJ#K`M5#fpVZja%hBfJvk_n8O0B4HWT993J6U`tUop!*9fkmfJgwd{qW4 zS+UmwCvTY8c~!(ZUwN|OLA)W;XUSt1hZ`p?(HmS5vfr^bZKEiKAsu=&wn`crA+!|F z!^i!KnA(23R=dMq#R0*|;WZGPrp$eqE5K4=Z$#V6^l7<|36>Ro2`cYK1?vO-+ltrk zdS=h}w&c~Bp56sS;&zODKG6>e>cA%c4sO-0HR5Uk^ryxX66ly9-)U5E5ZFS1v0zPI zh*lD|4+}S0{ZWoTLNTILyLVHbKfJJT37nQbd&CJW|L1+%JOfCGuk%)UAX(w>(PF~V zk`@3eBOxMkweUBLW;W;!_o=qwX)KcjZL;!9Um@w8F4y5P3%uJj20BU-XyDFN$)#^Ax~tfuBAQ%`OrcMh=r*I}Om~0ul{C zbmV&mJlsK8AFp`FdS>#+*}Le9S0gH2-e#HeUU~C=*X#>7on{og7!1LA|GCl+kJa?c z>6pHZDpqP)YCC9Q0qL7Bc2=zey0#ph;)x$w-!!4@+%hk00C@yHi>lG5Kp;_I;o;pR zoH)_O0NT_)kvm5Kvb)TR_fo9}ZuPpRG-m^M`U>yeu8958s-ri_Uyo^dn2xO+I zpRf;C75B_vscw3(SA>tC&Q!9Mfrq`=@g9hyjXg8UiM@Jw<0=&jgIK8aX6MYX9{I~D zH_;jd3;TLU!Nq^$yNAMqj_*dHZrc&WO(Cu_%P4;n#4L6EvM5+}k@z7x353eaGCZkY z^2Xq70!B(`i1ie$(zW>>W~*j(6x5<%OSufv?1p}_21c2vDK~i&zOD5_*YXCE%&l(g z?Eg_|YpCSYWXg&>SPeVKp8wR9OtlQantyQTARgM7S+p^o0>houkqdl7IXN^i$j>@q zf7rF#{-NcueCc^UK&@V)y3{j$l36ltfg~r>i%I-_+zbSF#)EG9V*T!9U9d5bKE1iS zv@BmC&K?nb@E%8)zy`9W#|xjG*;!Mq;g3b&L&d}aV`+4$nX`SgECeiXKx)hPWJn+F zGi5c^x1B-`FTFM2(`bPK_8@`O$In0R@}9K8F@TMefH6~V9DW3*WAWGU@9)fSK1Z$_ zP%91pV*$WWxrJtX0d=l|-CEwD?vduFVDAxGaxM8&JMn9;3p~ifMS3&jxM_#77ho^W zMiCxGfAvX!Fko@FWD1N(UE2vHhABh%axSquQMN!|`|OKzaXxS~eiRpnwVRaX1o#x- zfJ+;m1v-ScH_W;$euc-0oRpPwCl93L)J;vF`14?EXS7=o4`*1xmB2_dVaP=7+1#Xj z=6H%bYBku;?aUH3AU{Z{wEkf99&d4W!;Y(5{e8Zb4-~Xih|FU+y;zefW6GwmZ*F51~0ZIS%-nU|+TVAk7CO zYAMD<`!1972{=1}1Lkg6M(%LA_uG$Er83Jly0YjdTZCNk3EZdt9OO}4K>r4yb*Mq^ zrUI-6pZ6O^RvAOYo@2&<(X8E@EyXWf;bVFP!6h1%F4K|f!eodcWoqjJ(0)tMhiBk& zp9M^GC*1|UcYO6#Y;A3(YF%BJ5~IB7@0X~?_n%0Su{vXiRJ`L%o~s=maYuc_n`FW8 z&pTFN1eQ^(7ApMFt z9doO2X#qixX4zAu?riZo*vS9jsZP^m+S(UkZfk#?&_nq7hP=tdt3A!!Hky#2XNj?u z>!|S1q$&yU-=h+0OBOheH-yp39;0Cey~2BpwtydljFt7Gy40r;IEy5^;4cRjn)7;{ zDf?LMOo&W&qex9J9}}L>_x*3YGyraDJf9uy>V};LsmW>;6-wJDITnsmswXg@ws|9# z8Zk~T&IAz33pJK%2WP_|c52+PZ`^FEMP0b4EF%@T9r@GS%9d07LSv&Mm9R%3u$n>$eD4&ufMP`(=Z*!YeMt7 zMivmSfmP$C?*Sddbew_~kn!RMa&PJV>i6=$&WNxJMDJv;aqoMWK3kSWoAU@Gmn<2thYmk@3r!#m-YsCYyJgFh? zO$WSNCYyP(GLMeU%PeKKQKCMkLMb*BOQ2azHBAD0e;>9A}qyyAou?02Z^LSJQ9s z@0x%Pf&cJJJQ61yzGUU=>WS%E`!`U8l=of%Q05Yk4I$u_elSH50>7Mi5(VxYveK>v zS3DosZ?EXzm0lfIjaGt(A}P}Q%5K7}dIkT3OrVV)hk3^e-igB<5!SVP$9>!16cDVL z#A?Fiyu=mn&6}DnL~2&dA$Pba_wj@PQ9`QMjLD#GQAlAdN#>)=VZb443d6@ET=Z$ACU>W~45ie$6AnhlAV zx8i6`WDNvfY!;_|<<>-AbO)pN>#~{#%*o?wXZNJx$C3N8Wa{|+rt3{ zuAs`}=H;B3W3aryw-SQ+d!Xi|auLf9sBc?b%WQ=11hv;W$hv6Y@Gxi6qX?+KUAh~+ zy8(h2Egdao);12i4lCC$=8*Z{puUkm=_t&kK_=pH)SJkW%=qBg6ftL2OBZ{5?vY<@ zFn^wY>dNPHu;K&AC%bbM1;AHw4U$XeA&f80)#(WSu zHUT_8x|*Z;D(aJFb|lkV=UVT3%%o&BLqsI;@%^*7_%#O}rX-mcaB!;ES|60(7pjg< zg1?nV{<&L+HzoebGd><7D1QGkdtUp~?|$aG)3ZL3r|liEx4hF!03TIx?h#TIp*l|` z=!MQr;H|$zUx$H}vBLxEOT7k$Moi`_jm^TTP+{2L zOez4YbQqHYzV~5HRg$9%Uf~jO&hQy%$3C^((y3Kj z^{#M}l>40Vg|MKl(+%aH+VPm9n8rR{vXveR@QF!;A?)gzZ$1=^uIiSNPYX z4yExY2NHXveEoA|&a?gsvy2!V9>-HhUa+z!t}mpeG>Khz^+CFLs8qW3SO(0f;1eHX z+h0r`anei}Rlvl5r+h6iAN-dM%2_&@FBXCplRh^|KqF3qY$x!Y zt--20L`GfR+*v(s8DEV)1R>gzG78+;0(Zq14V7AHDXCA6Jk3c@_v3Nz($U5kF z2j0E9UCPH3hp1ZIp86_F=kK>B0NFE{A0|kKo;VSd5*( z!_EILVo;83o{eRxSRy~~l4!J1|KUHZtU_u1i0Vt^W+f$C!t!}|aF9IL4P{8S>}{#T ziN#5s+f`p2*jKnicv3RncxW;#N>E6-Wkr~Tq@O*``20C@h1$MFMMYmAAWQ-tE$f1q zCBTJ+;qyksouM0`BA3>tE*=>i1eUG68|v9XC|eCAeH+vtuZH0zs)qWl_Pn-mb#$d6 z9dm=W^eXic2O9C!r=s?1tPs|o|4wCJUPXnw@{kuu091Y{Rms$$6^{8*c3O6n9gb;-WIzHJw-&p-+Ts7b_uG1h##a2oGKd$~xB(bt-z zlB1-gHXI}v^w-M9{UN4qmQ@1-9O?VZI*dR#LJ@x zWv%Y2kXoCWVmwBHCqDmQMe}zz%E;))A}T7tQ-1o1$6VJ_>hbmmALPVGdcx~l)c=~X z`flr$X5d(TA^lM~{HQpZc^CG`YN47p z(zCRa6$pFO!{Cb*nDfI14`_rG;;L#NZ%z;q5!d1s$lW$U2(X-mjGmRS{{?YmV9F5c z7u6?;Pcmdq9xp#AU>Cn)-V&YeSgB_h_et#f0~~Dh46oE?6v()V&#q zHrv2v<$1a;et7ejA3K#8ET@ZIPL_LPMtYwL0P^bQ=eDwI%m3B#8<<-cH|mX!z>q7m z9@rB~JD$`(JlJDUtH*+O;~-SMN~=K+wyhQpENV240i?P0ZXMz3ST=iiP9HlQUNpM{ z*GPPNe{7A~bkibh!MW7F?YKEL*?hM22u|t#0MH$cyL!X#@3*P_s&_va4Wi*%gE~eI zt?Vx8@Uksq+Dx)lU-`yi@2`7jSEoH3oc=CnST&yQI3G_KZ<==s7|9U>Q0&a6R<+qH zdBF?RCP?15m9HaKy-JEQA3nV83P9Tgn<}FDvC1dHWG(+ymMFpSEHXM~V>Yp4#X5IeJV# zaaoKc{HehEWeo7lR!fy|ZKLu)HUE@N6(xFqz+j!)4h4{q~vy)0SBNgC|)? z)*4^5$V}r8nHwv3jgola)4mKVeP@vXaK-=Z1z>KRxz^jXKbx^x5!-O;s_3C!cj8fh znyH%8)Ri<_EOkvq16plnW+qLDZ{KDn=m*18r28M7xJ`<1T2!U8w*u}jRy^KOL_;z2 znN=AuzbrhqC{6xrj1k`i(rGEo(jYyfE-{Q9pWB@tC$)ifpKfz*s&@SQE~L> z)W(pBzuJ7~WeBcY(c;hQ^K^YUjJKlrT(!dO3Ds|3!V##gU%1iII_b%peb~iWW)2YZ zEi_=kKQ$pD-P{rF_Mf}<9w#FsC%3#@zE=TLjvS?g(kTK*0^kH@ujT)H;gZNQG1uyZ z;@y_cY-qE70EQLEtY62d=s$TU8)p>K`QJglTqko^OWCw@qP#A5*pag#W)B%U+*IG^ zXvcm1ZFVoi=tPdqhPp(vTJPa1m92H>RW-Zvw^iN;k%g(?jm5Gyf#fow`+=mbES71l z{}>O0r2G3~sSQh&>VyILWVM9^e5Mf~<4juE>-m2ETJ4K9T811u$m>@M(yk1}@+t-G)A{J^s1 zLd>{-L36J+_G!%Qw9%?(aYb z690};!NGKqxP%>3gGb$LqH6->WYg|UiIw{U7_Hy9kCW{$vH7kA$kJ7-V8dxDiu~>B zjp5n0hQ@6HuQ#0d*YGW*r%tmcLuuBwS&=^ry6UxN#QI02#lWe6Xg(jozUnOm{{IRJ z>~E&9b^`w0@*@KmF}oA2(2++p=zI_95A1NZGIt&4Huhu2E_i$oIH|~;a6StT^_*OO zEyTptjl7*jqbxQ*keW;|1WZlKIY3+4@f;Yp@WA5UP|0Sm($*KOsdBv92-&lSl=oUS z5pb)XgBi&-TSs*(w~Ke)=}6h*{kzfRt`9Bf_H{?Tq#66;!(f1VwnbukSW@?#$?e<- z^_9XL0UNM7#`l{QUlLsW(X`zJ+aTlRn&bFkI16Tu?gpiY9qW`RXUXrcA0F}Rq*)h4 zPK)Ro8X96;b>IH~D+4I^;7-miN&tOQFUD(7GUB)O4M*#$*%?hM8t`6a%obY1t(!*$-z$A=NES}ka*Wn=*^63*IDk|_-Vb_TMdvv@4 z52SvH!PA|*;(MP#NI0YX?Y+$#Hv&}$qiIa#wl+_c@{DVDcAZI}W3=eMEbRE`*p~T% zVkW=595J;AIV500o2xmr8G+QV!<1Y6nR<%% z<7dDs?SJR8J|HO9wxV_c=)-Ys4v~xDxd9(|*NaRlzl%{(sedXE@b={I{es zLZL{ujKq;-WoD*wQk;~n>||uGLq9}jkz|*naFD%Mbd2~}**iN*_BiJKK1IL(eLuP% z-gnpKK^Nzo@A-Z|*QPOGz19qqq*7(ZKYk~)-i zKC5uYEIKXyVl9qVo#$lyM}E&gY@M*Ad}d>hJ+7%@#iT6OP#JNOBk!#OOE7ORH!9!R z?&*ix=-h(Q+*OxQU?ISbIg~P>X1g=nqj1<9j0hZObL={%ggq3@{QIm-L9Yks!pf`1 zD#KE7W(Ih{;q*<6aCEvAW^;$mddM4@Ui&h_Z&-WhIElT>IqpY9_;fAXPxCyb8e+j~ zxze>2$YT<*-7hP~R5taxf*@~gr{EY}f&AaHoWyFNFr<8&xF)86yO$+63G2dCyD^B= zOr-9b|2%C6#F?D#8z1!VNbllXy^>y^jwrBDi|oJOZhF^i6kb1% z#NJA(y@$G<;UpzGk|^B|A`pK*Up2qHM0N9a&d;qidr-VYuJe9rVRP=_D|MdvC&^s> zl|~A0pmI>_^wuN6StdsCxf9KcUU3y(beD>30cz;6sx9*PJl|)OjJ6&-SjH@^Ho}_DXyz zHn7`V-lmO~kuk8#N_o|7;mQr@VX6;V^K*0Fjb-*}CwOs|EUyhTY+JCaXbEJ#V1jGl zS+lC2c6uik!*_0&$nV%!K%Qy3@q7+$hau@k31gU}-EQ9W^>}9cHIMa5;9M4}xyHva z$1d!>zUY4ahIr{3&sUkf7v1O8Tp%Z}-QqGG%do+?Jr*q+8ms`WynFmr)p>&8S8yxk zrn0+~j~;84YIiBBcxl;|{`8AH$HVR)DuW(wDGz(hiLkhC7+qigb?%W~S4Ts9i3Ahg z2{AWNFiwa;*m~VuzCIN@_+(BbxVV(3Rc4o0N7Q=4E2}cF-DTEsa%?a>ZR&S9D6dNl z4azpl%dbq$4D*j+x-7_!lXI}KWqUZ>OYcfDr@LgI_x#3nqHld>iM3Xu%Toh35qZ`} zKJ+Srl=|0C%tjzZjy6AUEk3fFVtRfgq~&z*d2EJv)a*K7GcmFu_xwdI>V(`clCfW9 z+8w2!5=;ncF|YZ-Tbta|{$5Y#W62aFI1#Hfoo?>SF*;REc?YYP7*}M&vpePiaUGt8 z21c2%nV%gI+pDso02XR82)0VZPo_ zq|^8Jp&bytlkdq%NlWvFV3D6>m~*cfc>E>s)4EI>*zqnk1?yn@^a5DwndU(R22cyT zwr0qFpBL=X0LM*tUpLaRW~Y1>mRT6TjI(p{T3}>_`V|rw5VD}ot_I)Ey3J0_auz|y zAKXtsB}uSV-QDUgOTOt+Tys}z>vYRIwq@SM&o;+2rQX-xYc?fL-;l(I78#6ft2F%_TLTMfr4YaC! zPa-!954wI}^1$@~EGmO5cBnYqR(W#uQm#+K60v29miN8Oeeiv2-*p-uU;AeJYK;Fp_YS7#`*0ekVAb{| zh!Qkjc)`A%Yb{-!DM{0gl~#7Qy>FMDdA32fAo%NeABl3^iQ!V(?f?d`XecQwRL}L| znHwlHTKhLT%7eJnW<&;DrvPb#zEQ)5DA$jz zyEF{t_ziZVdJ7n*Jn=`GW5s0WejuRV`tqT5^}}46{@lZBZePTo*!M~-d)By9vt{dZ zS~;Bss%}?SxWS9Crb%KYh3aliQEPk& zbj5bXf77syAZ`?QTj2#H9n{Q_Q;ILjij9n{O^|k1N1X!7R`24tYO56T z+5nP-TkJhiS_)z;z&tj7Ef%37UkIg$iG~chV2BM@N$!?h+1xOIg-UvIh z_@nQ6W6i;yLWF?~X#swu3B@~TsGf$yIW8-6y2ZwWkl&KlMhSEE5d}97&vZr|0*B}L zD@PTipr$qh6j*9|;qzsrDm&YIuI^Gwbq>tc^c39O5oe)PJ}v}3I_ww_p8w07WeaNyLoo!V{e+XVM$#WA%-^d0+TrpnP5A| z+bG#u_d;6rDj_QW!~Ph$u==3DKxF#o2SN&}CqMo?4*Y1>ghXUOp29(Ch&uyo2^1|t zGjm0KWj3<>S99vk-clkE*M!x2J zeMEy;ffL9=)N5OhKKZ~7r%|U8laQifSIOE`GXvy}e#>okdPD{epLH+C;)v8tB*6(|akn%s*;+{diBbi%D)3-=LRAd|6w! zURYvtQgfx+==&V|1`}9?hP^GiXCdx#Ir;|u5?tXTuox3kQs~Bh{>L!whl|g29P)hvhfhV2PyA?S`d|JBQBvbwHCV60?^*Pt?0uyt? zK4Q!*m0w$|= zLvzxvokboDYa}k9*@~}n(y6U-rO+u|eV<`jdV*f^{73FT{bupUupZGJ$?CX2qiZ~X zEWQ+WC*S@8ky}~3w;Ls?buS4BO#-R05QHB{rH2?yy?MB1i!u+=tF8&xY#$JB*UxW~9#eB=K#bgrg+jQX{&jt@a znCxwpeKHosMZ&}V?)InX=%=;j-wf7wef&l|>vsiHZhQ6iF1=hB!4D$VJcZ(kGHV_e z4LOCvH0i&c&N)o5=YpIKh@gBC5I|~OJbKh=epv4vV7JC&xaWZH0POz>SW;ga8?nvV z`{Wm|&v4vPd0;GVAuN-;@NJiT%MqwmApbPQy!_#A&>WCnYQKz3?Kcx; z;={OaO#y2z)myru4o>pLtKB-P*RF{dQJ=$|xe}q9f0uS%Rua7}4$D2iL1i4c@ZEt0 z!^K4$A`=bU-d-j8*0ya85(&vA5NRz~Iv|hqzBw zQ&ZE(9@kMndT>pc^n%zsOG$@)wAbL9tvG`iS_*oQCYxd-PkNc;l+}5I?ucD7-)PqD zDiedmp=rsR?3P0kXBQL1?KpsQIUZ$z#_ROBLNB-kvKyMb5TNFr_`{C~pa>qBpI(#v zWmrue^!&`lfETZ(2+WEiRw zvm&8-TOH9-u1l_gcLMA&cWG@iH+MhktEpda zvMi$A(zES2%@i#i0xSd?R#vajB-*h-Y!_~8$a&<*TZr>M6?zMN7Idsjj(CGei84g_ zGfZx~5?wIY_6Miv6w%K#f8Mq863F-44aH3)fmN`n^Gzm8K_w6jZQm2_(anhVv#%M3{O5gT@d^0Wi%zHOA^+ywyv6M%{{^eY&nnv@(I zE)zs|TwIfJwHGaMq%7#A^HQ}+-wzZ2K37jXzE}V4$H&N|FJs{!Qd5NaJrDgoEwEK( z{QlIjTrvBpn=D?ldktS&>oo-#Ym@8kf0EF>0+dor#${a^qRA|!L%~wMztHB^I|=XP z*!s63F??}aJ7_AjFm=ybvqzOJJMe%%uDoc^eQ%*9-BLGKpcp zf~Prq*1hGIfZ}5UDj%4>e-5pwJZnAHdNcr7yyNmw*f8TEKe zOM1@Zb}Tb5I@O?RS0WHe%6?E8&`ZQ4{j1Ft%{n7QCXa0+Zbi-oip^on=a9i}(nozp znN-f>CT|=RiHIkll|J1ZL;H&1`LrCj|E{o4O@ZX?3K^oo=n~^rUFEugWuc>Q%)x-? zbkL-fiU4j>q5Hrbk&HpsiOG3)nT7FI`7_K7(TLS*`AZ@}>JHkPMf3`9qpwtGzsR$a z9Ip>mNV51<;66Nph>IhgM|1=6<+ua*&xnw zeP9Wy)Z>NQw5|5Pogl}csTj;89awO-+bE6IFVj^jFiAaol8wt<*kY*slyHidva#_5 zo(dHZGz=|;122Ps8;Y<&ji7fZ^JL?%_V`Yj-(`Io=|4jkTNC`HV*@?Pp<3!EPHh~r zUyVkc0H-T({RZ>(4#{Eh2H_b;H<%+13 zXB97`?mjSW-u8WZ*akP_kT9NzcFK>;=HsShI;Q-QRC=I zys?d8_~$XXP5C0DOyazh@&(-FfB5pDJhN6dj+>vQ$9>WtN9c}x%07Gee1mKYNSs>q zY~^*Q{?0#|7l}~{Rp}Y`_(k?k?S0ri#2eTM$-b?(jpa%IyA1OJ;NbLY6y_bXXyYXm z%vUw#NnaeS4L9U99hldcZ82EOkU6LKCAUveg5jQo%1bi#|31fd;IZ@4IQg-yuR~ph zc4a&NZs!JU6uS}ZteBK}aFc3(2lt_eb;0axY;h`yl2_O4fFW505{j%lcg7yBm2;rC z`meK6=!T~6(5Ii$LHs?`rR4M3pg+2!h-#g zU?xXN@Ou#-86~&7f4fsdfVkunq{TkS>w_>4HeTNE9{!xaOD~*jWK2w>ed|sv>OvIe zn=T=CMPbxVJLG|?(J@rg_kpD_o?f8>l z7f>idG!8fS(U1>Qs6qOj05FAo2b-JMOdeQFL=DL@(O=mAbA`>>F?ct-7wEt5#uD|& zAl@>0%lVG(e!2C3KCth(H_JnmISJkz5CZ1m&w;%9=WPxyiYYk}!SYq>;G$+qz6b4Z zfbhKObDN&*&rPW2#I^qK227O6*xZv6!k!VBlnn?3`80Ue%7b4rplZ0<+Qp?N!Nf#1 zL3>DtmWJXTMBqsn%o$)9fVwWdO?h*6TN1)L!0{df6()oUgolR{6k)byL#O&x4fGfi zymnn-DfX>>Pz^PCA0ZQEWqyP;s8(K4k%U@igH1nceeftBkqc;1P4o0N4T33*T$$4x z^xe*JaQt)Dy7=i(nX{JpxWkobsNR9E@H^M~n;bxfEgHC}EI5iq!JYUP^!r4_O+cuCC}BI|xgNAU(7 z2!ilczDX&%y8dX#93$`^Ahc`>JZ+4@ZXfjAsoUi%U4BO3f4#AT9`@SvEVLPE0X}3M z_+Zq7ALQL(xRW)bPGx7LTrNU+YZf`}DZ>hE#QHg>JP5V^t@Aps;R0l{R=eZ}V97S< zwMXz3*Rbl%etKF!yDjAwD=_|Aoz0^P!oz8_^UbRv|4DBW4+oZLa08E6A9fD|?&pI7 zZAhn~My4z?sqnoPG-$y+rv(iGWe~k!9q`D?oNcaOzuq{oy_~o=0VEpJmN*H*nGtXe zJ5Ub9*QW~Ja-8iPt)(|O2VWjyH&xWK^V(3QXBm0wSutyV*>w;crb1^M+ce21ySDI|Ivp0rY4$sIxp1sV4@^q6 zF494vX3{D8;2vgxHCxfP8T_vmQb|#<&39)uAkiEZqKtv#-D_4LG&^^JM2vig$8zM9 zmhL-boOsT*Sz>ES9S)ZYz(I{`@b$Rk>eJ1!TDy58^IDjsq)vEl@3-%v(Uq2$8M`2( zD#4$$_6yuWl$>6rM+p{d;)&_`(FI2EuZsFg>{G~7)3vf>42%LtfEAa{>bdfArQ=9y zYU(xM3qCD{#OMN`;mlU752s_X+sOFPCQFPM^tIZkS#cdeqGiPaY0z82Do5aK?jKS|y+8{rk&s zFWyB(!dc7@Ho-PvF7pi-o0{I;px{y8wTDNLSIubzAHnOn?pX-G7SKA;79#g+bj!$S)>_JsMc{>U742r zETT{r>FY3G33CvjrvcZ%?WJX{&FiG>2p(DW{)@AI=xVV3zs=8O^BmlFO z2TB(sSP!Qq`R&5NdBProB$l8ZW^^gK#aW!5YY0#EZQkwM(__VxuXQY~G_v%iUnBGy zL9Z#q7;>tm00IP0aw=a0S~hgr_)x=JJJT?<@)*}AzdLNrIs;1L>*v>=ZKS{`W(_GM zOdvFP2Q%`kR>9AkTeFak3U25=un(d5Vz@m~W$;xjX-=I&r9CNJ=_-Lpb&!r`F0Cv7 zx!cAjCMTJh_0UoymU(W`^5Us?TZY@ zJF^T}y+O&4Z9Q}axPX+;sF?Y79G(KcL+~_*85+g9jQ7a6m-A22uv^f4)t>(5EFEGK zCn+Trx3I9FQRog>hwHDB=|(RZr=JX-n=3}Jisjpkuy{jY(9*_u7)UM~duRmp%il~) z7z63{(exn%XUc#U7_jfi_1(2)^F$4_BxeyG5}2_-pMVnd-pZIX@t4Y*Sf`!%k#yM~ zK;tHmcl-MKz}lP0#Pbxa?Jx{l8l`b*XO183&$svt;72j&s=af)ju9F^z#iJ#KFWhd z6tm>Mi2etR94*>xMEoCX6-!>l>xy*B^pRS4gf^?IuRtUKdA1{rf15=ZSYZXg42 z{1VP(3F|~BSQm87IAF1So{sOtpG*X3SD`%%AQ^QQe49IigM*i3t0F2(ZJDH8)CsTM zocG$(p(G_$7qcErwH_?KEx^Zj2Zcga=x4!Q(I{}9AD)E~-3hk?Nl8tu1(T+InF&8> z1{Z*BH`h$L8J+a2H%FmjXKesgHl+VJPR$6M(bb9rr3d`+NO1HfriVFu`kNGfR;1qcH8Mb#--E*wDxDWDA!H;nf8yVJw!{t_2WQejHBG zvBsB-aMSqmBPy@#fvPZr7_}=AP1vsi=R&P@<(f1#4ls$^%2iCoJkreT%XsGJmqsnM z;61zO(qhmSm7^NLod&fLw%SlVt9Xpu5xi=rC6k+m;f2_3W=3ICXg{0i1n!LN?Ibdu zIg`d1qWt?w{TeE3wP}k=o829_?7B3uBueG4Pys@q&TrogyB_4E0_palpI~Thi4bTp zMA+G{iZC3vba5%}hYevVS?Bi`_d=Gx&$9fGiq%ZtKWM=Dph?MKpPC1iVDXFphid;_ ZR+RPEe*;C&2@%0RRVAe2M|s14{ujHNC+7eF diff --git a/docs/jupyter_execute/6d8e23cc2d35d9847246322d8894b170a80d34269cb3f55c48b7ffe9b4f8ceba.png b/docs/jupyter_execute/6d8e23cc2d35d9847246322d8894b170a80d34269cb3f55c48b7ffe9b4f8ceba.png deleted file mode 100644 index 77fa3e068658385a6df6e114dd3f1a0433d1ddba..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 31003 zcmeFaXH=AF+BI6{F?X9#L}(R|pnw9BF^2*P5)}yol93z)Nv*B4qM${TtmG_7GN`Cz zP=ZJjlq6ZQ63@O%yWg4hz4M;+t@X`0=f|n#%wSnO^*ndDu6^yjuY2yu%br=khH(vr zLRn8eds2ZyS&>blEP4Bnm3T)tV;%V)QJYg2Y!uD)ZS1wJ^e8ggHWsGlHl{{8zuD%=&MIQBfzAI|I9)DxO>B`~_%FHi5$0mnRF-@uC( zr~Qojcn?@}av!iZ%6u*8ouOX4?SNwOmgQTIJvbFGK3iPzUl!#~B#KfY00R~HhpfkNRK zDt)*Y@2Sq&_f+nn*7_Z|H1Q?EE8e=ddd)xn@!+-2JN*0Fj3O47Z^yQIoRV;yD7F2* z*Gqhl$LlAKll|SfPE&(T`2D~`dQ!hn4Va#KcVQK!!-`G9%ivPll{?O}%T}%{wQk*M zp0CZK`oVb#hq%4LK1z5;b*Mzb#v^m`xMqx8*!w_169J2kqXsc6C~g&b3o`?@({1*> zxs@#~muMM=@Ae$f$WUvAavRCQXeO`k%Cvvlo9(IStQR{Qa!wG_7mt~iG|tKs3{nTa|%+p#X{ ztv~+gy09?SVqVeKrt#>}qsDw*%8D~Lck(^n%B{k|#&*h^U8Z)hDSZ+jslx>R#$wzM zZ`)9zb}oSL*y6%;k#dTr#Qe8Tuef1+Sb-k=zQJzd$+&HGt2&Z&Y_kpx%rvN zx_IS;49m{b>zTzr6t?Q8_vMWgdi(pUKAt+jS;Jqvgu<6j3oPMnOgE5op6QEGduIBG z*`e!KcfIS=!wuCTVhu5JEY4$P`{=h z&tqn4DBJ*jZmEL{*R6NFMQSQ&1;^sz~9B7oohf{fL3fb-Koc&#{IF-@Z zHngba*(I43e%D{IVnrF29>$`!g10CUFQ!=;8JUL7a^jEw{PQ2PAF@6=ayK$9p**;2 z#$2S-^6V;E02o=}k~EA_Syh$H-qZI=ZQDY`?2TXkvD&yk_Tkc{OS?KdBi`KKIq;f6 ztN#0VueHWL9v<1nnZ_ceEHjPo-@b7O3tza}obe9dY0Bd5+~oIg@0tGTc30IRmwBbf z$5&k3zipN&NHiH&{HL1r|Y zPkZYXV`P23yu4;62V%}JJDkKM*Uyd=rMyqN)N9z_FV~X2m>e;D_`@{Np3%OWynBRN4!j zZ9ASXX|pWZ#dyRe-^s~oV#Iav(#@6Ytv;kw=_`gwI#1L}^Kx=to&=}q^r zrJ7iZ5TEgjJwfJ&5tMrQrdo5X-^3}#40^*ax5S4n8tE@qc_LcAy^Iy##1#fulGs{#er2UYd(nPFycv+Cjw za^5eYa5!&Zku*JfD7k3CQMWn6NMzyEsZ-s#no3GOyUVs8)H(V4G(xt~^5x67ySTWV zK7IPO#K+k4dn1s-ZfkFUlXx+G9rew-h%-YK2%}fe9(rclq_h3DcCffZ?bqpPp_j$Q z_c4CLgY=PL-LaYdoW-BghwuPje#x61&Rb7?gWWOmi|g!A)_M$>Zs(i(Q{OOUL!;dl z{$h#zrXTp+i_Roxw3}+V&S&l}`-1s>7#wWs)nah8D}%X%8Q2Ds1 zx6tk~n{*=IVZ7%yGF$R}TguTsn?8@{tqTP+{RuhA_DQ_=(t{eBcr`mee_rSDTIXDt zWE&RXhaBse-DTH$L+r5_?kik&d3#Si ztiFTDX77qzU9TsS<-w|p#3}N|YX|@Bl|mGs-POpxS1oqFxs|h@gQIl8G5?Gg^Xb=j zx8A>Z@7~f8?pbp;gHVSz%q=9MSdVn473~Acurs`DFi;!ivAgU8-uKk2IkK3KCz)z8 z829Dw=+7==y}ZYyFQDc!(ic4|n}VJxyZBt}9)Vr|F(qDcaFv@(e!ByCX{ zl3kx&pEe^q9{Z_L{#VNLd%5-_$rzfgO;gxU5r`Jg{K!>(N%?*;P7QPm5q(uTj^g6oU#XN+F zJ1Fdv3spLM_H42Pv#`ZctTf}Mw5a_2d?r6+tjwz|DyudyAsOy8%iet^5y*+gqdvu5 z%w;fyc>sAC-UZ*dAlZZnO))ZdJ4xbDM#j_ z)-UfOCd>AP8BX>$kZ@kOFk>Py_qBNJ>(^3imK{5G1d7=w`|)Ze&(BVCi-=sjt^L8D z<%mn`f~|{IiB>$4=7yA@^r4RhmjEYo3b)l1u4~5QjTNvw_azXSb@o;(P|U8+LhVlJ z2o0HbLuw(C&T1G=sdMLiUhAB{aN)z&tVaO>9Mm-%H}Zx?F76W$5NP~%hQ&GZ_hqXH zC?x?NL%dr{OKVmpj;COy{W0q#)s#>ImN5Qb>f;m%1mDJ^&Oy!X4ZWV6x(7f!pD$R_ zIrl^&LhKa78~=}nV|_7U@1tdcx`u|5umaA~5>*nAfDMX^+a1Lz@4#1uCiU+psD_xkS@QE?Dx>1=V9F<6H zj9k0fOcTgG+MU_)?C-z-erVkZggMn@CXj6!C?lHWR(VZ*ez^e|B2s;l~rKymiZ#$g3^SIQQ;7K^FOap^slIw%G#RPJHhT8$fA;eB#Yovh$q2P{8z1 zOU&u}j9a;C2Cu$){kl7M?$w>mx0=n4SwFq7AN%e~;hR;;c?PvkX= zyNKA^+ph<@MY_N1GC!%BY1TG#*LvLR$U-dHT5WmujlE&6JVHW3vuOm9S@%?0ZfDuP zog?mYio>{L($L6ASZ_Yd&YdPK%Y0U3mPm= z)01}BMTwH2#3plflK5tZ^G1}C)kOfCY750@O-Ev5V~_Wq2W&-!VT2&M!Qd{HroFu} zV@Ud9(tGimezUsh`?4XTz9S;}*mP1<>N^B9tNlo*BgvfP`%FkN+GKk7&Yhh8rj{oE zZ37Jn{wJ(2l{@oPj0}96GyIsJ19)LjG*}ju)-G@UKCww~WR=AVf$Sxl`PQBAVBqyb zby^!GooVsuCDS6t>`7_q*`c;PRX|~He2rvIPEH^8kX?4=nW-tBg6hU)8^yzsS?;qO z(Tt0W+n`%lTRX^d-!D=nNv&`0`?%vs!8Fq|A;&7d9mm}HQ)_E$ZIBBG z@EMUe46LesF9q{aKExr_$pDl_Vk4}X*dT$W$2Ds@IOug$>tl!6yC=6uwIO2N!+~vv zc$uZO^dt=nEDDQwATB1fHl=7GPpl`Gb2Rj>$u$u~TG95N0ml|DKSBr#R2 zwbHkrqFMm^+FiTqJn`i`aG5kE4W6wuy z*}63=(T9R}Plm>a7Qb(zbanZ|CLJcGiG zC;uN+g$5_4*bbpEHg>%!z{+|OV`WvC<=@t^(Cx29!Y*iwciK5YK|yA@eeAO`={yDE zcUYAZFPvv_`uh8D{a&1jWWruC}4$(38%NIk!Fpz0dNmhTP z8-jvGjuc%4YhY!mq7s*qmafCvjYn+jonf~$!)l1e0y4rxl6yAG8#){n8EFXIB#MNi z>Co-VJ;gv#JV?pTN6i96`Pzd)%TirO=gFtePF;fAu?P48`!G|6t#&O}Pg__#{nXcI zq?DxA@TI+|XcWsuEYSq@$E~#tj6xr;MUaZ(+sq6j>e0hwtM3&RZPp&djod?~+>Whu z`qrAQ_q2;|@7O0B%=a(FNGhsOb?awMrf;yF@8ee(KYsjp8pZGZgSv0FTUuJ?n5Bg0 z=mW8Z>@K^IW!AQ}$erR=+Xqx|n>7NcU3FL9wNafD3ZaYfswtY`&Vc!QSy^8_xMBmQ zr|}@aL3M`tVhM|DrEMh;4gIPO393TC`uD@be~ZA^zd?0+W$;64v34SB1lBf4qAzcE zcUFsy2!JJ62iy?hJUjIU>-qlb&FtH0_b}2eC1$PJ?;cz^7j*bQiCtPz7zhT7KTBS{ z+D_{AUpH;ixsdc;ebMDR%CdVO3$E`3b0vVlbg$f(dnYChD~R8!vXhgO^Np^Tg#I7y z?mNjap^CkS%`$!$ETI&OK~-l{OCUm)a>;4bSfWC2UccTEamMQ~(!I{L>(_UJDmskY zGGG$5;b zA(m4W3}u?{5}UCV=MlL{!;v`lkxY@PhPD5`7tvm+4B#OO=+hJu1~A@aw&tI&Cst3Pbm> zsO&HKA-Ft>u@&o)tX6DY|CG^7&rIJP$ZCDUTlnobaJ3SmZ$qBFIf|mZ0R9y}M_V{3 zFMV^i64FRRx zIykPcE~fX-l9Cc`1QHryTT#Tav9WOq3N}c-si~2}%2Yjm{Kla}hXyTOU0uJ=%=Dv# z0$|7}xq0J8S9f>Rw{O?nS)>pRx_Ww|v$KWWnLuwx0yH8AmNTbc*uQ4|dSy^dn>KA4 zv;_2ra=?MBFPyo<3QC#_1TJcLpxxAxIQq@UmIVvGE-6V6&}NQiH-19?@He~?H~ko< zVKnC)Nq>vWM6lccHOE=8{N<>ZlQav|5dEtfzafTcA-j9MPu564Eb9^B$+Az}yJwHj zg9pFi?q>_7i}RSGMniVeuN$4FqKFWAU=*ZtNeEp79Ey!1Z5h?P$`0*h=fKup5M8r@h5}u5nzJCAjtC;04TnLzNM+zJCnfoi! zu$AC$h5@oXJ??866J@|l2tY4?^_c5 zuP7q9l$>1F5m_lI8f%m3Vf>-eUh6!>AMNdj))h-m8IKN5uHBiXmL&2_zJSM zt}(H1Y$#~gI3GQ{Zx(zM$KInozAz}&IkK1jmg2<(&Z2W|9iI2^D?_b1v0p$y2{{8y z1k@xsPuqVN*=Oz22vg|veN5`?S$V?y508xS0zDJL4wAssHF^05pdq)gu#9{?5eLc* z1ojpNhTaD!AgK8G`bI&pYSIOm1L0L(S}Kp!Ab~nJ87y;Dbae9~$3s>*IXNUVl4X!W zr-bSETi0L=U>6J`e4{&q1o)t_@o{?Sy?Jw}CPzOmPGBzhb7!Y=Am3j>(fg6H4)fuW znq+|mNdzR5<)m|h2R8;y z8>lk6vix|fTtNmOTC;9lWh0YmKYum^i$u`*!mmI_>~?isR1a#QAw9D3@}@9ZCNyv* zG>nD@HMPI3=-yi7H2?C|+T5DYo+JY(HpLl1%IdF+@q(5BPEL$k3;l1XCPrIZTg1w0 zGH}gidp!F;rHpQ7uRC|npF4LhIp-`x&!?wPpC0cGRSgb95_u(lPNx2(OubTou;5l# zneTf2EA6jbi7fo~d9C{gLI{BI*{8Rh(&Ib-@_Vh9Ahy#vXh5=+Ybb7M+AnUbP@Q8X zqcH&%(MSC_7CHMTtnaR_E4#$6yJn2QbQvWaGY*@62q%VxFxQ2gbSbi3+?H054@!Xvt4KU_Sp`%HZ5F(tVWCc zb?<3IBo36-=WT2ihJEFapD7fd9jHfs{w4b4&7D7gye#$a z-wt2*9eP&7v#XaH;uOyy-u&R9?p5ihySAYOy1#?}Gsazn8sBS8am z3kqhw8e2vGlI$&TuW+1z`V(_~q(IemZq%LGbAL7bNE<>2O7j*dDfIow+`{3=rg|qqVY*-#+nlG{XpyL$2SD}{o})M$ z_tI4K3>KHB^q7y%(;8F-!Wuj*oclQx{t&?_darQDTeodv2TG$d z1U3RmC}Jv#vw>S%iX>eZ@+F}gs0V$(##YO=cx+ZQKc!RkV+4QW9j=x|>{S~soHc8M zctnc?V-kyyIWsemvg^&2D^~~!PKXtV-M#k&=wFQnYo&^0*JsIX!&UI;kIuG>cpc7zGT&K}9s{_SS?o5(~q&ZTdxr zg-~kcniMppvpPdfA`@ZUn4BawoP7e}k&Pxsp+q&@Sh3coc)d{9cXKTFYS~{^k6{&* z{|OC%q!eNyVeRYmI--KdC$f^erIC@*REk`vcpQV4(|Iq6sQ^|^ett#p019ATJ^~oI z>kH$1)9}64R#s`?4Txy;1&db+b%%iNn|m}V7K)n!+2+jZ7G9mkuJUCvj6FJPL)Dc#QDQBu1e6gi4H{^-%{XdI(`UhGg&TPa|mY$s+ z@n?mxVm@r;dPb$=hy;{u_8&E={L9><6J6eN{e(>Zxpz?rC4hbk zQS;kqpvgWmL7dgU|b^6mpp>56U-zC zTnY*_c<{KWGbp_YRSjZOjwS$)0u<)^E3?-AT>Dt%^`edwv50|P!!D1v8mC?Wmn(Sc z%$eTi4oJ2G%7so2x7^)LP?^yp!8yZr(X&b$ zow;B)Z4oO(#CEB#_}e`hrE>D*AM>UrROpHDvEc^Qk~^0zTc($(CaCl3A4J8bk*}w3 z#DhOKV)cn1*)n+l;lBK-Iq&#_5{02u{8wgg*xE%M?`pAwh_97N@ZK0h%7JRhPMv{= zNIBEEL7i7_50#!HYb0mSp`xX+PJVfJ0->Z9S&NOjIPJO^bL{3y-=kC6jQ%DTH9n<@nb;~)}36+1^zTnUUE>KcaQ(LWv-~t`V?A^2FWLdTKGN+d0)<`@d zYpyu)gj&Xd7Y=1hDDrFeUwC?S?Y8~$;3XzLd+-{Metu1hgqYXwEhlNY{W^?6@u+>( zkXt@p>s(J&0NDqj>^PBC@C3Cm1VwQCa zg)b!6c7O}7GfvPPX^}oYTdtd;vH)VPIQR@A2Y{m7DBGRmmT^Ti@L5sUhjY$EoW4(E ztqMD$MX(kEdgQ*)YkNw*LB}Odv)Tu{Pe3fb-q-QsW+rgKCgg0l+O8&pumfL3w|U%3 zXP|U2Dostx>$z?;h(Th$EXq^YQC(X4mLw;Ld)F(Wbb`dnDa_kL#YG#^^eQrROEy5c zRde64s}_0jF_eSuoUn-ro2ZzW7M6W%Y*ZRpQ~ZI#K{r3QCqOdb1g&>>fTN-+WOSsV4NP zd8SKyc~xX7ZVGkidBk+kqxR9t;%~zvCxP?D~v)X38T=%M5-oVi-Y$*;mZx z1LGj%S2-w_S3+kWiC9OInqe<93yXP?T^3w-&>jd?TVL-Xeo21~~G!Gp_1AM#lt z&Q&xvsv>VZYrn5d1IhHiN0#wu+SkBZyLgrSGK}~P>PxH2H)}`bedliCu4JArl{$ZP=6uL_Y`Buw zFV|bS$M2OJyy9x&SLz%7oxw!HRl%iKj;kyozB*51jzckLV!ML@8`rzM+_XeZ1``<% zznG!mO-{yTPt~0)w*@$!RoSZ;<2)c-zr|^IW7GcO`YW_Rp81e`zfMm0>ezD#Wp*7*ErC?nqs}Xq zW>m+%o>Aazjl^^?i5kcm{h!=f-b3*7?!9;=r$BcXK;<8QEXUkPb4iR?`Mj|=!$7W4 zP^?Y3FV((->d+%AldPhc<326=X03zxKNo}Xkt7g6!yt^Gm4+lNgL-;;MgUc+ZQDqt zjyjGkwqRw&oHJ8fn?}3Vj9Z-7Asi-`7>Y-R{OB&56Uyw1>{QXi>5t1DE}ql!e$@Nv z)vJ>$R<7(Z*bT`TwH_13JO zw3-`l;>yGYw>DV%HI6t@o1bdm)O75N688tqSLF!P+<4}JpR?mF)jKXG_$WMjkGQ0| zHZzY@WijeYy;yeNm%a9=F#U(y$BKHAnoJIjiwA4*@L#&_=-7XIr`cP;{Go&JWWWX| z7W~dR4(_pT;Xm72TUopFPjf)nVKO%#5g&2it&!cAo|R?4TAz-Np07ac@ry(x?n}!0 zSPQoT(d-A{T33~lx{G|rMrD+A$}X1SfUuYZW%ERZKW`)aVUtxt?S|z(oP;YXcn3h4 zTm^tSiGk{a3!oN}(WvOx1_Crzu{g=Y5?FY9!><0pABBkCg9`O0Cuu7;FvWt;mI)D6 zhD>J+Ln|tAgQC$Zqzu~80((jZxQ9@e86#w*b3oooBOePUv6{saaPv|j{+f*s3~cz2@Ub61&peLMP#dig8}HbZH<3XfOPVt8pt<07P;|DdW~cq8~~4z z1)*8Y9x^vKZ*%AkAtv$7{PgMdQNCqtapv@Cg7g9p>S78+mFh*1a~Q^8O8A0lZX~*S zM@I)!#Xw_9O*^jb<3?;FS}xzC3Q@|C08%ZBlG&hAVeBNVkPQ(8#HwCGmu*pqW!C;z9p0n zCEV&p7z4=+c(NQxhRTblA|nas{&`prGGWMu`D%-8GAe-8d-m+X&@PDkqxzjjv8wXp zt3XL<#o~QhB$0xMu>=ry^5t4yT#GoQ;nNQBPG3%W?vUKa?u~d)fG4nUGyn&7_@vL& zNP7zL$-$scuxuuP;}iH2D8et0*GZ`eb1$8fqfNZOWZnlPTMw2dguw8qW@y-CVGxrK zfNwT&G)p?qe1VeN2+6wv(L@Gr(k7#&ln#N$`i?^4B}bD(_t4ORVm>07VW5a<1+2&C znagOwfon!0ia>P`9sOuSz7+V+%-RDzGJ~0N)VDi^TUX@A&f(x8b9RgHEyQh>JS6N}@bqHuk-; zlE^ZO+a@@+<1hk7KyUFE)1yf_0MH?5RC`j|Z~r@}Y+Nvo8N{rn9F2n?#rgHD2H`eg zSYQkI6*1v;0UvjgMxF|cOQCRh@JB^O5i1XYZzv-p*KFkyzPAgeBB)gp&zEi7LVXEj z-UX3~P%OCs10f;k%+iyB14RI>0R+UtDzKpfzRToB&FeC7s8}mN;uF?-%-D(s7DWJU zGCl}U3D`fXOzqgd>vxG}$gc(h>?MyttUs8OuG~4YeTWSoL+fin0)flo_ZrtNJ9flD z`6o|3)!0t#Fvzb;aSCh&FwxUDV=pIYa@bDca#AcT0Xv`uPYX{aR;8QwE)lDf5ZD}e zL=ZNo{E2#OASDW9wap=}^PJR9GWH zR|&#c{IUm8AlMX9ggiL{EWyL*e0a6+t=4rbm(p8ceA|JfEKxC3a8kPvKO{gJi&}KJ zr7JF>JlER_u?hxa;?r~BDVltLDO2b58o=+Qw|5XjdgI`+WISxj(f5)~3RYC$gkion z&`%*`3bk6?eB;G3LYOCxNkY$|7!-zGf}*a1sX`T$iz;he-364tFG*LB(!P2b2Eabt=s%mpCyf*Hj3JU} z*4tE<9GLi66kQkLM;e&8ly^l z>$q7h3o7PNZ;*N6J6x1RPHYw821LS7gb~b#Y?bWW$Ki~Cw*0n!B_({z+SRK`pHF%n zcJDb- z6T?-6Q|1dpd=U{(zLb@WNg*b@`^*w*#6)~JcO<*hlP2{m9&azCf7HjS>MrQy*i?!1 z-l%}|hSHRTr#^UZRYBv!N*oEMm}~$3bFdh^2Na%!1&W@3!k4ex&i7kMP-BzU5kSl1b}O)ZIbrAYlto!pTmWE5c$X@rp&+&5t)AGN@lzGlsuT4c$3*fOZNG7S#Y zyFB<5UgfbsR(<4($QHKnjZtgi^-Y0%)DLdj-im~4Rm1?&1%>@FiCL7UIRaf0>SxW` zwcb_w^wc_Qn_BaF6M*Kndw5ROoA6innwEgh=Y@aMjag;8>9n~AFJ)HKgXTB zce(o2apARC7Imo3u-mQnr#G3-pv40wJiY6KNWrMmdCIon_A^~(hlEH)3hX&0CmnXg zRkQY%&?7j>Qcx+BJ>o=qB_OjVL`)SNT?i>G<{>qm3PBXI*iBk!A-&kv$q12c)ST~- ze%SnDBC!k;5{4|*6xaC*$%P0nNd?5@kbr}LeC{bJDR54*QL)B|J`M+mvjaq8w1f>N zPT;z^$2IonVMh?xZ{;I?;<-iFX^Xk=qbi+LIImOB(vYO9#{qvzjWdk_Dv11m6vc{G z7v)&_V<`nw^fo!Ff}>+D;(r6TW-WfBOAFv(1HVY ztzQrex z@`YjWw+|cpEtX)^c`v3#{)q%ZNviI2L@f%|DSysO^-nFDmEdrec*|UVQx9nud;*n2JU`1}hc0 z(c+quU{fa^ca-G9<}C9Om;%F*aNIb!d3HtqnsM2RC=Za?}i1i6*K|?Kh<#1gIl`0nt=iH%0Nf89{)! zEQ$UNAL6kR701o6MSwe8!Dvp0^vycuc&kwb83w@A`V~P7U8TR$)fCj4nKpg3CbAna z68RP8o62PNVl7`JTW0a@icZd*2ts?J2B2#M0b_o6bb5!6iAm$B`uJq2TT?T`95 z-$V-6$o7Mb_xkngIAl$bm_L%K)Td9M;4uzB#uvC!`U}}3q%Vv(OS4%`EKMh#wV2hx zyM9*}6ZCvF@pHkz5r-;+P|E<@JXC@lkd~4mwFwIy1H^eq0w;W@#%O~e#61j@=)Y1% zIC~GHW=II?A)crUjIAj9{L#$sK`tHs2WcD6?erAevT4&3Yzh%4B~kd=aeHcT%95fr ze4-EDTUcPjQIZf5fxuK0@C1R=>$e;$wv;?z>fOBOQH}bkccN+T9cG@?&T;1Lg^e@@ z?7Ck;d?$+9dIQ0s_{p9bNmMMx0L##sOXd-YQ*crHVrsL*D_$nEZJY-=zZn$J#5alvIV_9rKp(vG_SlGjdR#F6r z7YoaAV{2`29N=GmI?LcbQHqh>MVuUsK6GLM`%Nv^CXTdW z?f1BUpZ*Ofr9^h~W71;~35_7TARa5GXchqT9xM3zaxLjxAf5+OwFv;WehWJu^1>Mn z7{mbyhR8m-0zEH^Uk18(50WC$O zv6vM7x$xY%;>!5O^XA2}L6EI{DeHQ0OT-h|TdCyG6qyRd+ zqoRiibzLGJK*KUvdpoL#^73-7$FNP%0q&Vor}`eAVJ@@&PCz%d6N6z8;3`qG>BgIj zNh)Nok<$v2$I)!aap;f&RA@J{aj}h!L8}vJiPH=G2L8nuW%H?7ALi=XTLX74?ccWJ z_U>Z7LEV&XHJU|F;hG85ZCP=j;jlfpV1E79Q^=!Ms58h>-3p9lvU0S+{DECHw!9I`L3 zmSjygIJ7$Saj(g!0ubZk<|d7R8%6<2huVvdG}>a>N1~(05Z3$|NKRyR68Z?1g_`k* zTCDnd5LMQ%Iy*Z_OFi}H=>#~h!zVD%n5DC~HwJ!sa+(9idMdl9s0h>y=}~bX@Lq`n z7myrBM@Kgt@d0f?;sEyg1`(xrCF;eC7dNzvp|r-GfS}^oz54|-OdYCc&;CjJm0f+# z(qdv_VB+x&4j!~P!AE%bi{7sl4V;WM6U&~)9q(rmHJ?;bh5d6?8-U{U_^_vFE+RYnyA(%1&x9kYj8 z?7wD@=nK9#9E6MZpFY<7X;Bes1XhI7sne&M zJBinWATH9ndjTzwqNI-p33JH6v<3}cWD{-OyxDue#p-&AC?v_%t5;9$yfT)&8)`sb zEN5TC>8O#Ax8ij5Dz3Ho`mWAf;-Q;1ZzesKuU@?}DST*s>>RjeoQ6?1HPnI*Q#c&= zz>bH=_~zqRPjWQM`eeEZtz1?H#Cum_V7WwEN~z~QgQ{XxtA#lSlvw0k3$$f$yv_YV z&BwqjXnbf^Jos znS-tvCZ012MJ~>0O5;LnCG>|b9xbGZ?t9r?^;YnxEG zxN!aIho|J|9H3?*{}+6cxcuBL!OZ`EmH0N&hXES`KC+9@F7A`FYr<_G5!+t5ybRZ^ zni1SYz0w~gXI!=#KMNIiNF!zfa?}RQb)*}bWMuf&4L`rS)Bhn=_xGKxc(h!U2pKpW z=6a=mx)DI<1_K+deh8^)TB`(FSX}2G!*K_HAK=4f_#=s#=nIh;+*w>=(VNr<*?}Z1 z;sZjrcL8W6n3W!+E26=$GJ9?vyh7!KMJdS7pFm+XFqGA<0`yK!)ghhXsLwEsDeFy569duVjzrRAF1};euA#4~9>7<`K^rJ+`6N)l=*icw7No75gn5ts z`^YnrQWbYLCG9ha?r{V?RboMdjc&g8$l`e{`i7_4Ck$fNfQxytqZLG)67VRBFw(mj z3jrvHr#;I&3~W|>czF0y^Xo|S;Kq+9lkR?>z1u*G!o~6U`7D?}2OOy2LzWKd;w4oN zb~iMReG-%Pis&s&0&M9RBqf6_Ddro2YqnZf>)`nJ8A`qi&B<`@jHv9Gl zP$=DlKIFMwa7qBqgsN}CAzvK=w{lNXv9D3}hV+gBy2b0fzWbA{B&1}chJ6U0hnoD`Ek*F~s3aIGbRdMG-(2}Mfs zUa$&;(Sz|V9?RPpBZSr0WCYM0k2W~|cHPaJH+vl1j3q#5b8>_dN!R4eArxQAa5u10 zNj*-EV*m?ai0YkAmvA_M4Yx2fT*RbL-3CXViQ{qjNS45l)>hFdV3A!NDA-Nq7ON z2Wqf;PzmVH0m)%j;kGvU1=7x);W%j=0$Bz^6gZ}{=eyh$bpDNtN>?2Pf2KiAC=+Q7 zB5k$g8=(&=FWs^1XpLWx*tY<-D_gAo$J zF8Ul*K^YpoR4{uZ@EaIN(v3(+BBD#-uoPqT=>kLJybQw0?%yVD*}Zo2f0?&FEn9}< zh1Gum;A1 z14Sq~K!O+;i6xvNkoG*2)V?S+STN~dAWFW2KpszyY=V|hExVp#vEySU$nS6Y-#&W~ z(hE^}4;9PEhcsm2oSV})0>hH9o!Nd)LfKhRtjJ!+f>A)_G-%MdRCV*;rrUCOPi|{- zpfM8O0a&&mCEh-cTiF`yuHQBc~{i7d! z$V5{EZrZBr$g!T>1;hqJoa4eMViifKJ$T58JB)Bt;M!QJK(pkW4|t%F;W8lYfCyG1%!iX{qb}z@%9JC-cY9+-@I(7Rgi`~4SM@hMX5mqa3%)|jz+yIlH5*SW-zD6}k z#rDG%waH#7Af*B~1$N#(s+6p(AMCu|{Kt(frW#IH%P!Ho00ZonGP_DXISIIC14V7) zK@hFUPu|hLOkTLM*uw8g;7zvPDn*q9!IFKE>x)Y#73-QT(E#hO!+bkkxHHq@VJm0t z56@VCb7lgmQxTO34aj>}26+_^6n#aj7J{t0#zTQ@UW`)`(1tM_;-?CbpyZDe@5M-J z6H5?ys#Cha^SCbxrH*5a2nBpaFhHUTPe6Q7-34fSECk-HZzSI$xg8S7_INQQ$764| zCffVaL;b~>WFwZcHt(H2+uk%YtQ3J17j+WRZYzpvatK_!ZhFcO_5rvm3{(QK>9^# zDXCz4RKQ7jh#=VDW%YRz8&;6}e{Fk?rT&8C}am?norQ+I(g(75`Wm2LCC`WnL6xxUgv>@zXQU2BSgFt+B!?n^z%#_2B&cR^6tM%RR7n#?OJW-%quL?*Zhx-) zw&S*9gP}`0S7YJsn(mL?OQm^`Mx-8r^CN25@G!$d7kW*J^a+f+i?Nlo1rVZyu;nNu zHne;LpjJW@AzUM1139*Ff?zYqGHhyV$uo7~NUPxTJoN|p6)QxDGF+YkG)i|GW4YLZ zAa&P6lN51Fk&~E!HRQ*8YY++AqR>EDCQ?S$-*YzN1b0&>x;xpgtOzJLHmdk#h56Bd zBs3VX`7(}?6DAP`z`*;!`}22u13Q(Nc@YdH7w4?W@gMIKFM@_4au&MZo?x&@G*$%W zBgmOr`&7G_IEh1`D}e2(-cS1FDfF*zm3egN6d?@%M0}Ji5vF@Nh#aU8w>#{=55x^F z4zv|(w-Ioale}~D<_Hk7{q2hjSOE_pQv2<2)`KJ+NS6bn`xuQ>4ZSNX{9u95Ro&SHgW9aACMRyGk5|X}y$*63#l(b|-;&|WGh0k~PT8)3D zu{!v#^|8(2tBd?d`L`_x{-*zp z+q%o7026@(8VdsZb<^9*ayd!gb@%;{=LB&T30jH!>n!;BLcdBN?RCXZy$aM?3l|nYH|^bT)m53z-3_O)YI#)b=UZ)Wx{HdNywbb3 zl8#K5l(me!gO=8ropFSTb>_kehcp3+qCBfs zUn|ad;c>oki;F?&QW`R+u8AMq=>K*6w2>1J8rpT3^{dg*4(8EE3$3e?5H^r+w=gpH z|FUuY`UV(htu+jQ70Bs#1a3PG=|Z&(lyr9VyoS>`pmeiRVIu(tM7j+K!KXVnH>ZS# z0T7-Xd-oPIPft(#Ll%?`lT50tJg2-q|7-Dmxo4aQ6xVEgT5eUw{Um@jD9tp@t758V zM^I~`LcrqdZ0)m)tj%3RJj(m+54uQ7-<2@&4vRVUqL4u-)X#`Rvgtul)~O{Q89F(4 z+?EaF-_m9BFs%3WHJ!l6kpd@nckdswE82dDh}BiW6n?5{gXLo6(o-x zJ4Q-$+Lxj` z7Cnh5pFeaqI*RLYE785sIp5+ocxWr$sy|}$u|I)z#CR$@=zzvCBX{57o|G#oeAip| za-Uk#cgD6l;)a66@j=U!N`9`eUlXp>$VcU^(oCG3qka!L633bnFFMj=;N>sv_0V4B z$)L239?f#>LPW;xQ~ii6Tf z(^=@D^v|L0>AjcZZ2s3JeMzR9xk>d($>wp3)nS%uYr@uofD3SclwPhTb4qaIJ~Y+x z@$qR{KgA&cyEbjw1B+gWu;t6$E}vhmR>mP|CEsvDsx~{JuZqQoz zCN+9vp^(8o|F@jptyy1QdYdhDGK9YM;5Mt$3tMqt(c8h8E537oO1nck*RaEfhThfm zC_ul^Blkz{<98Lksm5F{J8wE<{}Co6)oD#w-QAxni}ehv6*v>oVBj@p71z{^gPe)C z?0t%sxffczleCIHe!4eo3S)R3f?x)y&DkQ@`(hzukMa-T$L)kIH*N9A(_ETQK~%;R7frVm7X?mAs-$@R~#c5 zjt**aXaj%) zQIOTR&mD{QhPU0^pF2&+M*Hym{x&1cLP- zxmTo`q6Iq_zDngdg(#hh9h6FXMT6Dg=8a=vNXMxo8ZPS7^rYSOKpLU`BvwN2v}Ke= zI)K3^!~Z;W@+1d4`)Ncu8jnC+L_`GY{7fcYJZ1u#g1^AP-AFg0wZqYZ>{X8wdUR@b zQYy)jvgCF2*8~_j326d7ol5&Brod{ue{gUj=`6-Mv&55W-S!@ilO&9Bc~w=?hw+t^ zbW8ic{*MHr-u){iZ3I$fqk^JW{?XFOLJs1D0xgeP81xJqm58@sjOC~_s5BrZxS;&h z7}=slm5xPmYx3*d3c`;d=(+{R(@~*S8 zTSEzc)lUbe^wH*6_fHL@^!k*%&9?u5$T6cb10P$-HfCvY%adlznl#oCtKY|X7`osi zdM@x6toC`jH?MKPD~UzyRiW15wguY|yLsi5c{iHuTFN>1zi&C=-JHI1vh#`1ih_z2 ze(HxPmv#PHVJLLf8uTRv=7ZG?NZ9s~xr=if1R17fb`Pul?WHzSZek1Mg0e>OWz2!`zRBs2$@mwyDj^#V1y4x%QpG5oe$JQTLrZ6bZw{z_d;`x! z@UO^oQlQtsW?AQlBU!Klc5pf6sTrd20=?UN(1k<{b}Kmwl0@OL|0Vgz)esZcaXN?5G@K zJ*=RZ%ja=w1%eVc~oE55Ip zn)6sGZ=!%bLS#^%v~t%b-jAEBZ{G7uKHE3Ba=2aZxT{8M!wxMkikEeBojSSS_pv7p z>nRb+PA;^QRmJp`Od9sMl(D4BEVMU0dyH3nAA54;h-+$wIXc6}uSzU@dH#7vNQ~1| zwdj<>ixm&~k4Bgmg)XWW$W@081Fb5+ZazBm0}xkZNMI@GBW*j{0*XwGlt2OoZ4Vwg za$Jsy8XFt6AYTG6@KXOApBxfRP2Pb0CZI`XmfdI>@1E^n5dL8Ml1uUCIu-GGH&3qOcFfz=4Drb?Pf3c@n zMzDX)K4E+Ff*(#SxTern7_~KvQ6ld*8h0J^5|?U8^h>KVPT2c``4%7nY~i9DZ)Wx6 zc*mU^!lzjMbE@8J-75-eAnOEVH%2Iv4eF-+*8Er86LzyJyw{GCBh7GdLzuJa9IeTn z7OvJ|b*$(GW96yCX%z%RaFy_%7N&Z z<_~Njbp?RE@%(x?o>rCs%kRa8*&PtLfJO!C;NWvdT=Nd!5JxQ=cu5&!2!*R$DHH2k zeX5u-idh@(Q@HNMqsOfYM>Qwke-yb+^gch*b6vbCyQ9q}s#&!}c=rachkM1+Jng{# zJu|B1y&2QF#CHpY-X8!Jj{PGLAILB`dLVp_J)>ogtO;YM} zF9&>im(9S71d`!l-8+PB+%OS*tK#cS6(Yw1IbbLFq<@A|E*GyM2hOi)ZSr^`wAP*v zW1=A$^2o6VRwJ7N%$$&SN#V)|uD@AJjXnQG5v;CX0{!~*q{PJRAYGXa7KA3~&Bi?LELOnt8;Esm>_2SLm4a@YOR4f zm1%v`ABr6zE}l!ZQItOdbq%hPb&iT2G$8k8%zRT{05{<80~&F` z?*xYrV(ks1MaT2zm&kc)JKG|T8u!N_T<*S;6Lkb7 z39FJ9#U#yZ_@ssZsGxOo;-0wMrne8wvEc68C_0*MWnT38BJO|{^C2M^_1(3t(lnQK zmn-T+jyV^ia&R(Uh$uC8RO3Ac??j^DUTQn5vf&{*E=4=-1|Q2Zs2kD#dR45}=I>jZeH zOE#TiBq-D0#ve?Dr9KY1rSQNSU$bO-#QHF1MD`p8L2$RzIqseAW74}q6`qP{uM~fY z(~O^$MSG;i7xX%j;{~=D3{VGR`qgD{nID9wv?zZmR@0&1JyWQ;1a=e6%#JgB@aRQ{t0y?dNA}hgZ z@BdUh_?}9dpCUL!L(kFy*c)+{%YA*XLoWfrLv_^HDlmrJBic*YYoP`rlA4IyuaMhK z$9Wy$o&Y6b9_*@WOgWy=oJNq101G}fUfs6jdZYu~Hs6A|KEz4*dK3O*r8uU%fBPevg# zWGDi;6v`-EQS}l2B;5y50c5*C^m!Fw@7M;W#(up=q^CBCj{6K?+9RoWo3S*wjhCiTn))9d3Z>mL#P9URw0Z?T+VnC6MKb;1-3oX z3MrCjx*Aw785$ZIBy2;7?z&~qNH`5e5vXUu*jP8uh&hNYO@gwOGRi2ki?DsNUcgQ@ zrq1RAxK`4~+9;imjbIpmB`H^uZ)GuznUabN@d(?s?ErL1!s}c5h0v12Q%AZxh-akd zBuXKt`fe7trnnPBhUInv434BZbAe5P#1GLW281TF{%A(&>V~pX*pFD9! zFZUE?^n=i7^*l87D&+wQNDH?Q zKEu)e>9f*WihO}&9TeeD%t(mw%vW64sdqaZ&j%uPLL>CVRD{tPB|sfnDa0G9XfSJ` zJMMNLx#g2{Y&A`dHg6@j3OzMV{WhQZ(}a%S@OSMZ6*7p=^?cKXSD^JkhnfQ9@&JKk zaFksK8MDgk0DR27aGEQ$&2(4-ir14kY=;&@{z)KU5bTnT+|Wz2X%^+VK|+YJ*UB=A zoO;wLC(iCP?l&xRbvPhz5~mmZ?a8o5p5Ts*MHVE>g@yDWR$EpI)aMG582kyaMz5 z^~dBdqKy^pI-S$>>RH(UMc#DQ%_hkx9t%=*HgL3!oc(oQ;AC#n{E~O-8)b)jBd;2ifpqH=dpZ7e6l2f2Q zX-%{1DS$3uoTz{-)MW$xr=UIJ9_&@pRO>c#2u|HPgcpZT!UY;VYIvaL_ecqXOz{H7 z1iUzPm|Ra`ccj1uzA3w2l4W{xQYojgR~ll zAI{}ZqnsEVv{!>io)6r`9}j{Ys0Q^mF@_v)(Y0tAXg7oiiVJ&{L#+DflPkp|5k0g9 zFJ1WH3}h>pZ6MJoc(o4r+!MgC$N}^q7oobIWfmrAdvPG-KdsHp*^uu)fQ%N>hEu_# zwVBMovMBGs0s+Na*0q8{ze*@RaMq2k?`D}{+2o(cvN{Qe-~%WHL}iSr-5RG_kgB zY;GH6%Y7<6T1JXw^)NpT5PPI&#ljBAxg$;*86HlF5;W-`65+Sc!!7ANh!IOs9jp|c zm~09v$Lj1H9v+@Ay@SR_u@Yhl9O|r+l|`Qd^SQ}MQf^zdoQcC$lTvX<{qX?F^@NQR zkJJP`UF;M9*`7O|l1dswjI8|qU7>)i$ihNRHkMojHq7NDDG3il>r8fSP{z1yQW`+&9wA^D2JS7l;%QC zKy>@G4A6{4#6bvlviBCxT3 zM6qRQJ->^>4E^QZP7eZTK z_q+&HY(zv4sk=}JxqZUwqw^@?p9;! z-?(GkamT&m_lF|5dH4H1&wAFHbFR6zue78v+AaKBNJvO%A}?ROLPEOMgM@S?`Y#mt z$(_0GRrtbbE2wBIYoTxJpk=LxB%x(%X=-6>YNY+ZUeDUb$ike7mVus@iTZ(|t*xaE zCmo&H|Ga|M!rFjNpRCvqu5#1zrIHO25{4Gy4{|zRnh_E*5|YS^=W>p*YZG>gpO^9L zW~NXl{wm2FF7~gse=tmxUTNQ=ygFK3V&agMZ|{Kn_3QoNiHZ9U9`JO;@+mH`b6rKf zrOkb4XGP?+d(8W>khd!Fry(=``#b!9k^cSH_N!ETq<_EVcU=~jxI_q=%$2BeZ?wlahxK7xBvZ}wlFHiXyf$P6B73f`CT6o z60K#dsE03h6Ynf^62NQ!d;ODQs`<`Pi4yZ$+kvfdOau$$mUGQ$an{E%wEsNC<4;0K zGisVhQH;rA>(cM%TPMSA%)GV*@^%KeUxj#pe*q%UsKGcl1- zQi`UDhZz2|3ys1dg+JdPvErRn(ugqsbIb6*_elSLf2&cvHd2@*{Y3f+mg#8G(@Fc+ z-{hVrO6Qr56m;W`D?HekaQilxtpcw&`W2xOV9e)sVvBX_`t{p5*QRG0yq{p*Dlq82 zXw7$(d?Xz7B2k*&dj4hH4*dIz^b<=P8?msmfV+ndi||rJxWGL(Dm?%FWHopK-splU zuiV1R$H&Lv?Fl)o=Ls%izRjP8dGWOn4`=*%xu-s;moRKkPAX9;2_@E<-NwwViIujFSTzs=7|2MZ*j zU}6bHMMX;C-E)~ISVb07#7CEug-4A8Lm9H(d&_-SHTCs{F3yfy!>AP6P)?#0Ra8Rx zJlqTP+QUZ^8>tj>ROh=BNSK%k`_Tmvm!Hji@O$f~-ow4gWV|9%uX3!1>x7P9j+fgM z8TPz`4balkdK(&w2~T6t9nZtLKHF8Xv%QV{#rjv({Q)>;Aaoezq-~m7SemSeWFvJu4o~ERwtK zZB{e)hbKWzth$*waq@Z zl^+SGQCS+!f5dmbhiTNCT;JOp0vrCb#?8fiq9SZ*mw>6;+u*3_u&2aK#q4xx$xuF9 zSL>3MbF+v~ac)=&{= z@89Q41HZ2y{Tb}dOIl0{$zJ4;yTz-G4NtXFJW`-{dvmh-kSFEPPb#JfUc%o9WM$tL5yxbbYW`R1mK3NT4CpERTztZd; z9;Us{lxJsWm;Uk$`4%?i3q!*vxOD2e2Wul)Dy2cN0Ux;>%#lpZ%-|u=YHDi6D;N6B9O-eE*0Onug9! zG!G9C6f}HY%h$3{+}LdvP;X!m_ltei>xzx~@#AIOdu3HM)hP@Xi^*8nU71{Up1~|7 z&%i)5q+E^KRG~opSU!(Rl7?_*fE^1gU4x`E~)0|$ZpUT%fMOE zn5AAF&1tt{I7RnHC`k)4mhI+bTvr^I&9AmFsfte9w$D#d+Hq-=8+U%SizM(?ciC{V zv*)>;+8g($C+^ZFB_-i8XkYU<-^YdIqkp(Dfs_o(1ZfU&a5p9@gCy#eplJ%V3OdBjHkN`opTU{z9l4Z7x;l6YA-KTDBhw>udIBN zXzYyV;S#ZGB>P@fRaK-1XK1nB^M+iuGPZ+*Lyl_syV}~?l1b@%okK&oe0+S63zf<& z6D8kKs8!fPYPj>pZgp^bZ&}teA1X&n`n6Fw;ZM~nm=S@wx70(eRPeZUQEwneEe1~Y z&cV8h{n~J%?BUV24muI%HO;-1{IbK{8NX_Fd3kwfjY6rOEG4G6!`t}=)#nFe7N4KW zet?W=HP;-d8$;IxySX%&O#skoZM4`wmczz)6|z>kLTw6vt_`}+4%+JruizQgZhAzI^lj7Zj>K7B$Z;pMI`v6!ryfzkshR;JWk&C_gF zKB_5#-bV^jKwd$?Eab>hfArZ9T{y7=l|hzq6xe_*pzZFnJ3{K$=0|!saHEU0o1~DbJ%8JVM&pQ zVMT(4eUWCq+?xWw1LrBZu!)}3D)R^`Q1iw4sjrXEQF>W`9h`!Nj;Mys+Dl0Ye8aI4 z8YoEv&EEi#mW%#*B;KqiLsO(7S(4lv68iiCs&nt5MmB*P=9QlyNGj6Lg(f9eC} zNY_&Y>|g?f11Yp=Wgv5TC^w;A7pV@?F~Dd@;5u4bpQa<>Bul#ww$o0xO&%9QNlyL&@=Km({S{_>iK_K?o}Qt4ygobu zwUTk1?>~IlIh^v4O_L<5W=%{?EHWPO%T_5RXP38b(px(m^ETsyI8Jp`pc@?_Z+2qpyn=9d!wu%8{r`fBaZBpwr-ufjGGd%m$NHP8rgPR~Q%=vJ~^L z_^1`{ZOsS}5)y9h?J+x3o0youNoRLEVNMbbZf71NxjBDKvN?BxF2CDVr)@(7d0)D~|M=KDe6blKnndy-@Waqma5B ztj#R-B%zGyc1C0S@EjVqhLE+!BOO_`FTh?no*rbgDq$}(o93dxZD3Ar6Vo*nOc>^Tx~+D=14r&g=@42xq@YJUMcDnxO> zySLlTXQB|7AxBwaHYT(>m>tDtK^z|+j|i$~F7}G92Jf33Bqu+h5g;k%X(B@;_GQ-E zEJ}vx1WD=YKHgs)T3qOiDKZ^-<)W_0Z8|z!5&QGg z({&$71(5F3Yrd&x1@w?Aoyh(*O&^ie1&5%N1Bmpv*}gKC?(kb6UrU7U6o0_)wIT|Mw$ z0e%853->YKn^Fqy6O!XEbz+LJ7W&;D&E)Ia|KO`iO05E1A)?XXWf3{}! ziOXT5KXb^C`RMrAYPt?NZimGE2-!y>uTeNrdU|6c2#W2-csZg-Kd#{B<_5k4Mdk*5 zRal|x@eZO$Zf#js*e-vqPDawE6Y?2DIcle?HB=aM^JCCyrZ?(+tX}Ib0X2Hg&B8ao zq-4xned8(78_(_`1|+3Rq;C9N4Lc_BX=G<-mV%N4*ny|Ca5^k1zlZJ4aE^9K;z zJk}k#DJ1|;E)+^G0m%;VvEbspH$Q($b2@B@0~>$@lmeVZ1YhNMwK1Xi!*8eoAp&_q z`x5GUB0W)I7sX*i4&bdnQz4k!X-66o4P?RR#l{0aAmu{VUig_Pz!1)3;+v$Qy!B}EO%4PNz1@o3gM*SbD1}BA zBWGJW+p|rhypMzeo&kM!J+g$V)R+db-FVQwx78xYFf4165{l7KtKa@zR?60ljH zpV$F%Zvt>S0wgOnwL-W`GJ!WPLpCjh%|cx=mc9PdBjG2Cc@NSg<9f}J&vRd;h*|;R zLToB<3@-b%X@D<#Ya^kd6jIt2776pimsI5BLZ=2$r^D$q%(ohbh7`tfWRirAj*g~h zX6pTM=^*Rg08XS0iwT5^Z8FT%>lU^)KvAfLD6s56ZJYTn&l-+*7cm3-Mn<9ljcpBS zc)+coBdRo zDfaBGImQ$6ggovae!PhpWhBwy`!-gt5JF!L^ztf~ zjHx^%VbC1D#xH=Tab>?+B%v!RZ_Bb-GPWUCVny31szT%^U6@!2b;b@4-EX?_XFn_= zgL6sXA@P{BO4QXv%?)CC4Q`fha({8^b3SAFR;zvm?SX?NZb?>@)LYl`dxV)fhtCz+ ze=W|;r8(Q_kaskHf6B*OXK^PpE16~2f69+{*i5Zb%u%l>pEbh&v{VRwroD$F zE-dWgewj@ql~AkO^$uHTAK7u2^<#}^OK7Rj4SPJbV^RyH=+e_TlOYQN)64ng+sbxl zo&g+UGoOp^zg{VtANFOs*=4oXh=+eM8rD%RrW4T<_KxfullD03_wV2LN68O1YUK<5 zUF18h=Eo~ENT|z~DqqbyJNGe76SV6?iuYF7{KWD4WOD7XW8(<74?P;9b`^$eP9LDH zzD~WsZk^<+=heP!U}Qev5QqyQ=ZW)W-LX}JQd)gKFeKcsVD>)c&eVXJ={sPk@J zqxR+(?R|~1%V`FP`(&deWp3BK02;1?!l8C=wHO@P99t{1Q(QU?nT!)UZkHLU*M~b; zG^!tCN;hRQWlkOGFctH3X{t|yn|tcxM_I;SMhr&n;^s1HtxO#e?#|T({Tj_pWZ2}D zY}xQsEVn1{UkFIE+Z7V3O>%fnO08ZJUyA%TS!C|z$Sc9)49zx;t^Y`}vsCt*^*WxJ z9p9YfzVvqs@_IaLjQ2X&I~H^Q5&Ma|yujn&I3j1NVh6+ zz8J7^El?{y*BUxQDZN3fl>ccz#-T6O>Cu8Di5Gx+BpDf*v)&RmrUlv*rMXcos+~~D zS{;h6>DA(kq>+|T2;XW;&tS?$@8=d*ZoxWtO0Jyt?sIu&Nk!}zZuh?gy7nQcz4K9 z`@Cme>Y~MwXXjH$AIWS!$obcUcEiMUUMxUD{`MY|$F{MlX;u`+v6R^rG;M{hK;i=~ zq*b=f!PTKeyHF`*yn%cPS?gc6Gn*cRTl35Qj$?v?g8A<4<`92)`0!Og|)v6?akt7(th zjpmwDhK9@O-VC1pTv?V$gR|VJ%F+gdDdqSnp4J#)gYA*h@Riq;)^(@%(LC0TxAgnw z|8Sqblei)T*xG0jdvU|jS7sx{7}7@+vRSHX(JVOvDYsIdD12i-I4BVc2GO-^V70V0 zmVrlBpSCwMSUv-(%xv;FXizVldn%7`zvHHUXt*P&8^M<_?}`C#o+L?Z;`ql`Ww*$lnhSen$~4! zAD8aG-F(+$$czXm*!4LxgC))Ly=6W(u|$K0Xz_%~_XDdATP}z8$#(X=CYXdf#BWfy zO|?2ANr{k1NfVK-U2iFoN|5)+8ZPTw3Auv1Ji&X>y}{1 zXbW3&+1>N>o-Z^4!V)_5S@|g10csP!E>E)S8O}7C%rlEm50wZn)X)xAB;M2? z_GTpUNKU?<5;*WT2f3Pg8g8E(l-ZKa7+Bhi3Y?F=R;dLo1@Z%_oZ*8-I(4##4_~EaD`zjvN8NVTIa95ouM>{TkN8Idt|v)>=&D}U2X=w{+dpOL^WhO@N}xcjYK#&p~qx%Zq-{TspqMGP!Ksiy}gO{ zxRa(4;W~6*xZU)Rwk|f*l;I3XmQFU@L_=e`f7#F?g&A-z8%WTD>&0KcmEX6&0%gT$ zFrC$65{1#|gg>t0{6_GM-H!-W4z(vL-|i#f;4C<@rq^ciCUBABiSSQf!5Q$E`W_Dry^xAdr$2&OMYSr%k(5a~233XqL zVl-jU*VkwMrqPg|&-=l25$hiyRHL=9uy8h5PKKFA^QB1T(Mtc`^!cf@{U)EdR{@{R zW&Iph)KFJfI25b7k*{2#sdTzc(b;kts^Qd8O!shb>QktOIA$D>Wo0qR1BgFPE83Yj zePj}5mCu@J3tgmpI;;E!ika1XBnitmdF_OVV98T*8W&9q1F_b7UajFQOg%l6Rl%{- z&DoXA-xP=+2$$HWDd4^nXl@bqttVG!{{a9X?PhlpdRy%u6 z<5Xc}vdw!{&ifx!95!rD#`WZ>WBCtETRplIV!!8HKWZvOH(}dgR^&6+7!r>z+mq znPUAnXv;ncIO~|}Hy6B)Q7SSe0(?SWrom=BWNEP4b@eH0uGk=T?AGLuXf&?jA~O@ag^JX|14Fw!C8FnmBptkYDq{%C3ax0#($ZJ$-ZV2(q}*?Q}9Bo${|~~ z`{I$aND+g_MLqJSPArc{)Wj)K2jdNkkyi&4NjHso7Y&04V zqja;F&khN4b|%hSv`^jxo}YD_za}Hoqbr^eo*HP}Q)oiqPJ3Zg`juQL@pu!T3qfyw zm&eC1Q(iIX_gk*Krt@44K7PeTNcw_NrP!V8z{qBHc{zh7lnEgt{(dd|_457W|0CZf zCIPPks6O;`cYD79U^<|6$)56E9D522twXH1ITeGYRSMoXBjXzn{<$5WWS66(r^kMB zB6)$Ao_*|`!yc(VsInPyS?aZM5XA@*bLEO>UO~|Vsf{%`J36V;K?&GFve(-FF5cPh zW_7TSugE^IH$Sd^c-7qf!^;|R6V|o5!+9lI)rw}o0=|BJ`aQARMdp)FCVA`YH}ROP zSjX(0w|53i81-HXC!Mg|XZ?bJb|OK4TIj!Ttxc)i<8t-II8ygz)9NinCQRV#lEr_^w?j1|zd!AUF`A(s`(rdnoR zk@)Bo#($2KM!qUX0fVb_cR#v-)XN_(D~|T_2XQyfdJ3;T^4@Fy{#`Y#bK*4kKE3Ic z#6+zOtX~mLBOIN$$Hiy&Iuba-$IDe=*}VSX%c5&zQgOwRVhZLza~&v}1D7&sNH~ot z0WxV1p6Q`3^^u7%{D}J3DZxgaSlIE0;kt9$lYCy=l}spnKjuLEv&x9)0)Ie*?k&nk zuC&`KgB@wlYE*9q4dkCbppMkLO`FjQ~J)vk}@STq8LISJHO<>9W*~^j;Ui1ti7cAo5u9B~EjSN1EUYEchd<^A> zkk{F-jU{GoDcu8o^7JrKE~C$npmgI^s;*311WkS6;ziNg(T&#=?F6wpi<1IHhL>ET zDIpas6UU@t9Tln0tB&xUoQNJOPIgl8>L?Y(z;l z0&;ia52Y%8O0Yd4f@7$WyMHD}uMslqe#%NeIVQFHt5u}0xfmH*OJ{?NQb2SjD-~pb z3O`_79x4&@7&IGA8S-fBXc{lGi$FJvX0$jlG;_+-Ab3@%#dWTD<%-di9g0e`)oD=_QK;b%26-(^mO}1*7HB?FN&n@5B)3hE|kSjYKg3MWMO3;gle6} z`W7XhYEcN|G;ZP)y%5xb>c`67gAyUJ&#pQWY;{c!-TPurgJE`W{V2l*feuDlC`~X8 zk)VIj({P$+wW_YIt!;afJ5qMl#)e4} zIpn_^p1GnP4*)LB{=UX%ax@br-FaQVuuQSSX1jE`M66$;*e#QjgG&q`t&}^TL*pdX zpshpDdB2Ae8wspzLz$=LiiyE~To&$G)0LXgLhDvPYN_Nz)ebeg4CAdXd>h_M!G7en z#=RViI%x1RLY~bRC&bc4U>oHc3i8(BEX&R2d-ym)%8Sg*=F*;l3pPNYnBV2s#Qtd4cR<~$j*`XFmw`lRvZ~6L9Nk01UG%VkHH1ndc z8sj1%;Qticqj){;SD}!56?O2m);(!#l6K|*wBUh+xv53I%}P&_+Y2m|InKr0=>V`m zevI9!tSeEwfza^mVr*v%riclN_UO1@g6hy5?`3~D`N(tM>X+4eK-k%kz&|+W&aD5Z zg{c_)1ir(e%u2^&XTQ#|5L6k;b0~Wu7c_=c2QMc=5)%t`R*O2+lTI_8`Bq1c2)*>oOc4! zy46=ckBp7YhS1zTB<7wSFgbre(%Of+*XB+ubN`L30WCQPFBg}}H-(J4Gdvx`a}$9x zjp`nAjB~=B`8LS~@nsID6K<&7oObY6EVo-F%&o8_!)rU^g?KbqK%l_+0UST10IB~K3^2e?z-l$=xoqU zOE%}0wwavQ-CWP1<;1Di)6;Y9qEe7yW9t-%GI$T;d0n(DC;z2_`ymWg+kCEP%=N>v z{N=q(ts6U60aDLEh8VRD6lzG&NnKT=MA|Y5t#~0Q$aKP2>Tz;(0;EtO*DYotFt4y! ztFa7Ewbn{FmzSEFuomNtroPlE5mt2(dzm&F{t`VvDEfZES4ZSI0wq`*5U3v+vp&J8xaMJpolZ zm474wjTk?H5Iklh#YPPAG!;xhRYB<$4QtbD4dHmCrFB=e!a5Gq9T(1@*7qf3Aj_rU zH#lr`b(%)Axt%UT9_Cz!ttJ)@I+jT?COdFCUMjNaEx2)DU-Fq+Cel=i36m)M`{|FH zPzJ@4oCk_aB}PX_rGaq6lclH)A;ynTx064uq?6t4;33tJ`P}^SZkYn5 zSZcts)BXw?!g0G--kzn%?zJ{@k58xbzQq&@;{u;Z4u+la;cYyoWPuDhL>*aSTjlTk zux{9!M-B?p;tv@<^^@9WkPcPL?Zwh8YSoEGD&~;j$j_YwazQqVHRwJcDKeugHj&dm ztZ5j{u0>kz<;>UKmP6>*_pk}1JCnFUsd&st=?BVy)!Gpr$W`B}`)7ln&pB@IVC#wD zwvd_VgDaInGH$WsxcxJwjN&3r&#}KegMF{+2ehTGt>-*}&TL}xrt|MLOuuif?2jQ) ztCjmEwMbo+E|Ieu_4s&ybu9A{*CDYstOY9Ci*ceS;JRI5b%^jNxvei}Q!HzEd`c7IciYNYVeNBy2zM}mhX zD2)c)8v2J94a15mpO{=&^`(eJDm_Z0nw54AUz}jX)d4O1>lXU+q#j_t48Y+L242UF zYsPXJjeJzB1qPRQC%r#>;?2ec(n_zjhcrIXMm~1xOt3{;FNV4@ki*}Mx{QR-Ol!=< z@Hos-Ai`VPdf&BSx991PpmN$0qz{2YfwMW0d7sxApX<=sW@GmCt%dH+HbL3)%dMN0 zheXX?l7|Pq$^+wDTm@cGkSu>JUYit_)YLJP2=Bl%oT$3n88g^dLbT;#P_n)=dzND2 zNVL<`(T^2js&t>NfJANVGI|Nm))$nHAi%ljX=~gRXI&qB#%Rx#Dy=ARr8ZIl_-7Dx;c5+>tPiJk z`lh9&m56u!3xVGsp;tK`i{`E^ZTFcD7kF1WS--qObGIN)_TPNXC0(n8n?+6YWL_DG zz=R6URtu1OaLCfTeb4Jh-}L{}{{909eKw!9YvAXZ_ervvj|luYl?HQpx>^$BRrgJC z&}d}2s_5eX1xtUC)?BTwC{9!;O`Z~cs@?i8yMem*nEyX&=l}k;k*%X;2m{DMKoq@7 zTGbzhE0vNSqA~e>W1eO$epKsmYv}>Y(ICR3zb*J%oIMBt>r8>ir8^jDwsvOl~b)8^OZTb~9!W%R8Z02viMd*FWeqa=pO%cUTm5O;*x5}j}N$}zl zUG#w3dOApf6Ft{jf03WUp3Z)@BfLm;A}*Yz&(u&}Hqfh;AV-bkc?2!da(@OU!aKI! z@~4YB>yJGZWq668sGR%vuRMcZjcv)g+mpxhJV}?)f}a@eEPtp*?u~e)+RvdA^4UpR zbd)jGf=2?6!5rn-|8*1jxfEwUx8vUDoazss#)=uCFKG2t`fbp}4WRZ+o>m*fa}r7z zQiP1S!(+-Q&>?+Y|p^A(y!-~wD=te7fZEj60la6pjL%7C1Cn%U=5 z^>a=HcMS8+w`CX8U!{>5xjzw2RZTJMslkwnukmqkg>nm;npNgDl~Eyf3xn9*wlX$- zpvlf=j~+gZf>tUSWj{rn*i8fxuJW2dT%J~=+Gvl-x3N`}nY7UW+``;o==CQj_X+5d z30Tn+?i9s|jBc*|+R-ZGtMc^rxTq5S*EE{jLtYF9uaR8rEnwILdM)K4;9YQUPWwa0 zX2)KY%41Jn_sX*gW&`O|`iSEE>gLreQ!_G^*h3bRiKZFaav5j0Nl7H36V8X=8w>p z3q6Q93JnH=3XLaNInP-C0-g}fmhGM73APcEMEwT)7lOhdHHObG60?0J!T!dg^W#S= z;dn7+&q0e+TvCvM@Ykf)NFEvw>o%*W?MC`GnqVVpVW4LU_h7pvQ@5oSR%& zLrDDqECSu7P%;~oq*D(ngd6H8D^)VC4d#0ukbl%K?!X&p$8)Jnrtz~YQega2NK;Iu z^3z0|o^6Bg3)qnnwr;Qkr%BKM$%(E}8$6DtmSIXP!M8r2l>79|_2;U2efgqkzpmq5HDgwy zbLlkDD@fIA;RDu7$XE9Eq1P?r)u04U;em?mWiCfTm7xo?XO>$oC#Zz}fq^V7)odYb z4(Lb-f*FlAwmtjH1WG6CiPIbcHwo>3E7WUoN2v7cD`9hHnev&-!*29iS~F|oWj+uQ zMRuOT;`*a&9``w|Z{5}p?kl;>?oI$VMU_MDSJmZVk6fV0qxQ?)6%v(u3yKBWk6?3B zC3b~6;&^WrdSH6~-#WOM&+AD|Cu@SW1>GBmOsfh5gHkBzpc(>jzxNR-1)| z8)|EgaUuAbL<(b`Gh}k3C^3$Z}ygBm-`BNa;L6MuiNnF zZUT6+yJv`mz|j!wAme#TUP1e!x;zV-O&4!&(zP44H#A$~J+FCJrAhb;Asooip-%d+ zf1GSUz*B{hnwpAA!h=?AqMFDRdxHu3zK}GV1yzfus?kVyP1@tj04_#;y7W zivDjKsS;n10o@B>Z0gV>v;41)a2*(|dK%nsXr3=jE_9c>+%7gSb0Gv0yMCue*Yw@cK>S4& zQiOLkp$TlK$KX*UT_8H=Qr=Oy9ixjk)U4cE;2XreO7x?AwHvHp7%;;yc*=L@57wx8 z4T?~qN#871!s6O7Rbyl09c(;3%U@$4Z$dZsv}V#cC&9mbr8rn@XQJk`Zrbr8cM?WO z%5650oBS(`yALTfD&DJ)_447?_wUWg5;|GyrKwR#;n1kHe6t%v&G~+{%<-5L3A=rD zO3ui{L?HhmpViiumHCugoz(SRBOO|U2m1db5L{f2SU`NLR=dY^;Po--Ej+B|{aawT zQ8zgmj{lk}zq{T0m3g3{YAq*rdsy-d28Fn5s<9x~k{wXmVo`tees_Jxkgqg9A8`bs zh4aGq)_zo_CHA?q!$UXD#m9lC#R%EsVN=F{@yXt@z>8smHe7|?N{OAvKW7zHo<_2@ zAs@;kAH{KYg^-ECypK*n*Po?oJfz*&x`6EmfX6#&5BKS;htM!c=;-aMiU}OZ*)5i8 z=bEx#ibZsZ9D(G%X7C8_nalDWJoQIkuz@4L-%ut z4Gv=v;9MEp(`;=EjOBIk4++v+3QesSzdZkLz25s-^%3{5<&rTg`Wqw&ojLigvm#d{HEso2V z3sZ__w%YD`4;F^4CYM~zFE@|C&i$iR;DpTzU)#*A31QeUUfP60kCmX~POV%L#Bp2x z4)NXks^z3We2R?NI3nb~ZVyOByJzawhQjW_fD3BBR*{*m$e_3gm+g*QdNfJfY0{6~ zcZCXH@0pGj)L@Sk8vcdu+yIVZUS7?=qg~d@z_zJzDdDy}u*X|oS8ADXL-le(nr>gc z&!aw06Iz3i7~(i>?he$d5b-sEMIaPfQK1IZ^JTcsBX2Nb#s{>viK3IXql$AwY zY*5nF1L@k57-hW$s93qKIe+aqDlm$T2h*zox`4GS|Ewy*1nz z_h)||iu5L1Ax$qA;yT*_XKg5aE+H9TQ`fI_`K8BjZxrf#>$JV3z{=pxgE5S#C=Lre zpvgU%!9hU_AR=(Cudkab)i~cS-Q@jg#AZE?nzSGu5En<|d16ntrFI8=5Ivc6&|F6F z^UL}qN0OfEXEV7OyG{gKLHdElI_Bo+jp`piPW-xYu*Uawml}+@d@bS>kR&8xjJ@$pj?E}=mVos3&`t8B=smF_CJ64R9r9zIIS&!ZoDT6;Lnz-BQ;!O1!5 zQ;H1TdKN|A(@ktbjs;Dc*6~+X`)yuP*2+B=;TN}R% z@krXr_y(^2W%avL4C2)R@P6QQpZfy{%b3c#9k{AM0ll1~xN@K1O(W}tAI-ye-RwrY zV|b%aIxD0>&5mZy5&;Q=!@55>;vyG;eH3ygdZUv5-?h2D&{UReXOK~2fb+6CH_KuoIF?p%~Hs9wy_9v}TuUo6rdca1H z=Ww_=_eSi`F%0pP#TSNUZ5{TtQ7o{2G&6Iz?lRO6>L|jR77XHo3q_ z5!T65K7o^SgyJgHt?)IH${@(x0AS0o!%uJUE#%X)QP`xS_GiBKN)5EbII`F`5dfQg zB)uIkD0B_=lR=OX@%X-xq)@VmhdXGRn|Cc~)%I1$@_Fw662)B{erp#H!yN4C9gK-} z77ul&CrQi%gpkz3Gh%bSky5j#k6Jo4cMr}Lm6WB+webe2W1f4PpBS`1#kz&l9rrAd zGVI8pNeE8E_tT&By=it20l$LJ;Z3EA(gS;{Ut4c^*sa&Fpd*Axmqu}Y(#g`#!Br@+ zPl?UDtY&L|N%eONyA*j79MZa{q)a@OB{Luo9M#vATTL-~HUB(;rF%&Zmgiri*c#yh zrC)^v#gb0V#t9_5d+NtIKcXkdBKKd?L_f;R%24b@zG@J%vc${ilRc@AdY?UH%H#69 zj~Fo;3Mu3&^ip($(9+cR8Otsr>53cf@;@$oy;`c1z)Ar#7o&_Em_R?jo}HgR$Mh7_ zpHm2}b|Mf;u-d#o)`Ej6Sa$H{Cpi7DT)85R$Idn_KpQ3TENKBoFcPpT|0F2>zwQbH z$M?a)#>RF@N{v!_*xqu1jfK^bKJq--?!EFa&zm=I_Hg7eb8<$%DYYnWZ$o2XlSRT` zAOE}iMB144yG9EtDJmk}!3#U;+Rn?fG@ruIn?YF`BYwv}t(N!U@KXIHCJuU{7Jk1m z+VkhnuU)^MB)=L=z!kyo@+jz^JK4_o&EoyqVmX*{&n;{&tx)+Ed@rrv!UbV&$m#6L z*RP4i7st`e8!3s3&xflY*uPeRSwoo~8Fo%~ZT*8w5`)8p#y8(%!Ng8+y8DlQa>R>} zAU=IXINeijx0Jh5MOP4ipu_PI`+|HHNx<6mGrQIvSE%c)?>QD$Ypx1zk{>AybiiCO z4DHE0ncm4Ztos1NF=Url|C#zfqWzysUc1F~M(c&2g@JMDaRsez5~mF(&>+iI`bomY zh%qGGk00+mOnT_+Q}C0#<7wni*l)o|Mfu-ilxyF=c5bpQF%tohj^BC7y2F|AnTJjDv+gnQU4g_^C( z%+ZZ>(Wm%7>?Ps$V1|b1^k7|o;Gh)BsYHo5rRU8e428JmoM*C{78ZypA{cSl?kcpt z!R>LK!5Guk%`M|~CJu~h!@L7`>oNP^OCtjrT4ZOBFu>`H6JBueOUZ9`{f*7NBR2R^Wql~ z7f0QidW;_#9j&dWC#a}+A10=UP9>VFTksch2JhTUZ5$lL0rL$UO~fRKPIEvajM#{b z;{W#UlQs@LR0uLfCFy6XXFc9sI1}%2RrA9>e%j-3$RoP?`NKraWuoFI5@4k-iMoS8 z>XgWn>UMv0^A@_+>4{f=y7JvOp9Gv`3bkAo=#)F@0#~Igbh&S6dXVXIr2#;L}^gZ(5h8Du5gq4!}}~`Tn)aSD}a-EsbA+Wq&R2Po{`a`MCe)t zT$tbpw)NMO+GzC}Ttxc7V>CK2*fiHRAWFE9KgLwEe>9{+R6=?~}>(Ph1C%venO380Vk(x~1}C(Wpci z6<+qxvil^-XDY$eg{T(*IgVy(_zJP<(yb2SQCtIMqS$-zD_J*_EhA3=fyJ(+uU++5H)mCRl-hnCHE z=mRTOTHyjFYB0FuwASzbMr1HhVP<<|b_ZHN%ofTR0Lh@NB6=}CenHLS9n?*e-AApv z_xFdW8Iz^Nz@9|U#G=P!hp{-IbZD*QLLi;D^3fTEQS! z8hq#leB_3vj!8@9$2;MsGP~1J@0JCK5IgjcTXpQBR)pS*|LqQ+o@mOu_EMT-H`Qy0 z#F;n!=}9G`nL&!bld#yG&V^{Z>!g#bBZ1+=L3WH`drQ@YXTe6i?dC4U01u_6kx^pbW>dRD?EXYf zVZl=<$Kgbm&$8uh&Zbeo*_fWq<-S4)X+Cvx+R9Yzlnn_iUCT_C)QD$2oP0Ss&Vh8F zXU)Nw)wIPwBG;-ldSq$wIy;CRRaAStt{x7XeA?slPP(n1-^vP?eB_N|LTb2ikgPgD zj&gd*tBFdwDWFti$yn=naoJHJGiSiy-o{;ha07$HU?)Hj>}TC4zY6p6^HD${`3Yu9 zgrooyCq|07oJin3d2Exq7t2*bWMV=Umw)BT6xlM5>o-vQkii_~uO0{Vd!$fr2E4iH za^G@KrnEFH=J|bczqf``z+`Vn99IMkQRkZs{T{D-sraO&D@HcO?2g;0vUG|Z>Y%*l z(l8??=0w~gM#8tqLdpOZu1C+8pXG3mSXo+5!?3AuGaTb6PCH7tj2_IdoozK>wC<<> zsS?S45Y#~6RjaLU+&Fzq)^iWqtq;KN)0C}k6n72(*@(nC@D_B85oV9jXP(0YVs<7Kg^-nC>GMlV_5O%di=|yO#gGr+gJFcwRy|#^ zaYWoxVdeu!DT}8aNlop3jD6y(jHP`Q6&OK4C@1x9l|A5-jjKWMRG@)?scR7$n8s#M zhenmM#qE`|rcC5WHk~4bXT|>(_|)2G^;VT?ol04KaSqo$;M_YqRJ&yIcnIxWK&Z0Z z7PEa|B1VGZX^=NL*@aWAECGEX@Fpd{L{0Gg%?%b{oj_nf2^00=PeklurUD&I+;zgy zz~i!~#_dYbAKrULK4O@@j-uz!U$2Va%W>`@7_FQ=zrceXVIf%9!1b=dy~i-`3Z}tm z@hW0)H!m+w6HY@%EC*(>a-5+ld?-XB%+ra-b4OL!p-t&N{yTMj`R3weZ>AhOy9<6* zFZei^uMd+@b0+;%0&Q0h+`w|u-K4rddKy=Ktua1L&yX9s`yjfGmmj{F6;vyCWjTmg z_$3zc(?sQD@gYg^_Y9peeK74(_Slb>w=Z?8<%nBdUAI7%P6hi4C)BZ9l?#hM7$$7m zB@?ROgEZT&V8(jiGc1g(bc6e+`((0=8O~YZhp)d@dW*DZC|^GjTu$)U)YHotVjIH{ zQAwmgMSQfuLqS45_gI)SJZ!i;yzGFF#1Me-@sS!gE|{;@TKbvD?SxlXkZml#c}*4* z4c%VTB%4$S?K!E;i;OGJwNP$}Nprp`FW};F-uogR#W-qpdblYCbAC&c)m$(O{F1pD zaxqNkeg{5%pGhATL?7RSzxy;U*rnDh@28w3kK%$$)f5%W)RjK$8SS^+4j{5vZ;re9 zf6?{c;atD(`?v;CWTmXgCJi%`QIhPHG8(cXl9}wJ6j>38%9atyN=nHNDYMWrGExa4 z8Tp;J>iznB|M(rp`#9bmz2y0L-jDmfuJbyt^E&UB9JAj&um_i^{XgW^50L=nzQkRa zcePpbtHgJ_>dSe2<;d zyAW(i75Q3DyOKU86!Qk>*Ux{yQna{wt!D&gF<-tOEUbxUS_-G`Fg{StGOT_4QQ>r8 z9Bec;?s8AVP%UPcFJRW1xcYnuyvW4L`MCJN3S(2#NJU>&zuC`1WRM$f z-0s#VhO_HU-`Q2u6OwIgT(aQt{Mf<7%T!5PWx))}td7V9v>ZD^F-XfkwZb6FFvW25 z$>yYGaE4mBYLzRdx7odS)W|tdadO@oe&a|17c&bC#nQ4#@PAlo%DI34eh})_)xpg9 zMeSw{r=G(I1ztxx)@;}&Ww$HyPwn(E<>8NF3yaCcn-5j=jUY|%gRG|Uh(O2&DlxAz z<;4%{N4!UJj=j&4+<=k!dM2X)*TnY3xtV%bs_wcEPd!H_DW5z7X8$(bOuvB93&#~7 zoQFPC@z=%59iYN2QPn-|kouUmz`cq>H1rW_6SCZQl}i)PcQ!Kq{(=C7p-TPyudfof zCPed+0;7OT%fjX)dCvtZ;TZMBai*W=I^j=a0V|((PknE~ZR9|i$M{Oe_fqiiYR*0= zN{mNf2o*ZQym4a_sI`+F*({_t=`#N(Nc((iO$%0-T=*=x(629XLhZ86g?MOz&Sw?= zh7Mu4Sk8Aks^Z(NOYOM>dmeC0NVrT8qA6b0#5oIf|v?Ks`?o=4JQT507gBTQVYy>htX zguT5ccD>?BYhw~w3T^077MR1`L3K*bXGZK`wxKyJN*-9y%>;tc-11Z3U&a&%Jedc~}!{rr=oKjTH}@$nJEAHup1 za!jbHJ?fsUiWpPy4Awn{!;r@LLZVfzlpS$rztuWWP|+n`%ysx`()!I*I{C=wMYC)% z`w8lIb~`fE?~Y=`E+mw#HUFnSJ!$41&R9>i-Q>@h`*=O^0ir2_`AH-k*gW25cZ~4o z8c3ptHp6i*jpRZEK*MaqU`5|q28QD^M*`@d_$|aE@3z4J1oj`HrKO%JzJJ)znQpms zXDhso(A%`+N>`nXVx#dMu{VkCdQ+5ZFPxg23{C0Suo59$~r|z>K|3^ZOpK3W+=gw+^i zh0-%h;qdxP^j|BsC!AS!KmUQnyXStK({lCW*M>Z%1}RQ*ZhU@o*DlN7^B2&C`BHPu z5JSyFE!Tz~S?{8^T|AP1L>=vyishcNgT)Dv{U-{3K4Vm_0$vo|B`LJ19y?v`=OS;m zJaF*9;+f4CXYP4=dbZ?S?oUZgU3Nq2BollRs$RU%%6Jch30t@q?AVdz%@G2dNp#Mu z-@JJXw`L*bf=^_}<(3iSV-a}95{0Y?ksj6XD{icH_?W;hW~L;!%b}g>kvxf>7R-zfyT0ZZLt4A4U=#c6iqEaw&M~yf@{_Vu+bp zM}$J-`tXEOfl(0(Pk;Dr!K*O$jeBh%fNX zGq46dx1v^&E(i(V*~wmXZQ(*kym-e;4U~GAe{AnHCecu`zNh4@P-%12sj+}azW{I{ocFkK5Gt- zsgbRa%lFSzXj?VhP%PfNPMt{PREV|TMYuXJvampOJu;#JhYO5g?HmA;Dg&1Uh@lf; zAR>Nt^oW+07D=8kW~0b@w6FE`>+3Ko5x05Ci4isC?-cUBv(YfFk$~$YTHyw=%743w zZ=RzM+;u?Jsm5`;BUfVolSP)%BZ}4UPNqVru-ERgkYWG<(W*bj$CKd`Qf#Le({^VV~}=ZX6k@p6NyQ#hAGcC3dc9jvVSVCA!Jt7&`YG!~4YV|c+$ z0O(Zj`X7avP54IhXrL%It)#B*?gGFe`2X47{|FIE@mqly4FS7ic5n`tXxWre;yAmy z_TzPozl4(D+IJqNNCj_q;@1N#6{hp`w!9}3Jw5&O==+s&@(t2VqBwIrZ#@GU~v;b-c)sMMjB&R@TJsF3it2$2o*cq5OxZK)lCc zD+#}j<-<9nR}P!MhIvYBhKx_r2{30B6%~oI)ZFQ?uJQ2pK2U6TFm;aTZeV%h0_U-H zp;~{JNyUzcf_aaTV?|tLR8)qe>jauLqJb9!iFt=DAH-qF17=P);qotP9UYx5haZH(LCyU1>C=XZD1;6ap3sJ`XH@nE!GAAC z?HE}!R=2)t8obwZe6I%&PQdesc#F_Xa|5|Ua5jK<1bd`7>_v>h+QBz56c&a!t{PI8 z;L?|R%}8V)aL~P@yYNOdVVDLS#KKZ@-@J+#kHPFnyO;X!u~7C|OFnQ|4z4Z%G(~88 z3wAETmXx?30d0K_l{x;50(EQ1Z@c(^$>16)s(=4zJH{(wnp z9)qPxKMI8R+T+WcU=9i&RrcFr%blE^laE&f?EV^O0qe@;#9h=Mrd==wHLZSYmfCV3 zZx6;^SKI4mPQiMt8nJ>^)@c*8GpbYYjp9Ym#~Q|PBAkEQzsf2%w-)H#dlzjtq=a4zgk6>Ic;i!RVkbL(0hf{AK zgu%v&y+cS!DjGIEa3rJ$IrzWu1iRmTI95KukGpKd&Yv(hCqA>nFw=~x)f_G$OeEH> z0ycv8;nUiwnr`4c+{}ZXQTcF;E%)YQWwMBeQnt;{h7}J#IF*cj3|C0Sf#v_Ev?5QT ztgAi?&qUYx*)Mrz=N6A;%%f=l6RI?Lw~;y+yZC|wYTzpP;cpRO41J9xls`SNVcU@;tP~MbaL<7bt>*SBF z4O_>4Oo95%d-(kth+XL@%JO#;L_S*jR>Rm{e>fM;%IM2s*i9G$?(Jinb_5!_vup^qo4Y zxX{u5FJD4%(6PEAtZ{!THRYfP0rEv9W49gci#7A(k(D*hcn1eY?Df9E!D;<|Q&ZDc zL_ajVz#-Yd`NNJa*p- zYeUIw-Q&kMIdm5hA_8GB&FSL5tsg}sy*~S4tE*LbqNz_i>EOL1zf$Ymot%=83SkYl z+CM0W8mSs$Su21Nt(!Z-;A&Lk9b%18O#I5Q%eo~juj!fS#C+jhg_(7yC zNC0KN$YXa8<+l2be)@DVF0M1l86gWDhbgA2Qd`qanJoQOD*T1oSnYv7`5AJm z%S*$vYMv0)rsLg%T>TtRjAt_`q zy-Q$YW2=Y3RZ-%(ro(b{fDdk8J0o$%n~Uv@ki%nb6S2qP@>LB&<_4%lxL*CDjrDM|#e8&L4ynl|4PYh_HHByZ#mu<%>R+R4T4;sObm5FAP;QZA0 z@k{MwvoGn(gMW?Jad(xUQ^L2DdGzY3@7&nfSPyFd|FeHCLV^`TO`+6`&@^>~lg@Z~zydH*~N+S*DS&46(l~zapMy!OTK-CC`_>Vo*EW-IfJT%QEv+mk6k`TnG*h z)`? zuIJ=1V}@?xYmvq47=RmT&$@u1jV&j&6tq#-5@%eJ$DQ2%>?9tIbS6zv(SW@lggzKk zj~|4dd}TR(RYQYD#u2ikFZ40loV?#hbyxXm<51ZDo}J zm%)a{Z@VH4cF|&n+mDA)PYp4ee?Hw3-iqq5s-vc+ZWfUd7w?5}=p7`w`kje5 zvoQa{pQR^9Izr&qMr=0!WYAumi}u{ZG9P|piV%KdBQfXh+N7{q*x6~otB@Ean-o}y zXX~n|QI{`Fb0915NJ&Wr^8GP;xHLc6rd#IoBYciNG0k0AImjvnc9);eE)(VOb{TvD ztV03~4Vxl|0Ea zH{2z1%3Tpy0VMTdY%x)`aWO%XDO2k)7w>MMS3kzN~C$ zxDGo6Y4mf)`|@+#nwpJP!QbtPWh^m~MX?h)dH^2lCtlwAb=2YVQofmCf)l^Xw{B?| zukV3o_<#T!vn1gX0mGk&)@tA-j2C^urTPVB0AsTTB+?(+p4z zu8RQIWy@^4Ic7EdLQ-e(W$Sy`9N<^}4qnkFmh-0YCL+)ZaK*}v8-sZ#Ufei;`SSk% z0`kWVT|fA$jlKdvQ5hwn6g=@NVZnsSc5IQw)~?v}=5A!&w$j|Tt23v+MISU=w1EI8 zQ$N+X)I|Umo2pZubJJUK#4W0W7+tnq{+rVHnK9Nm9`oqjq9QaY@b18o#Bdhu{MdJ# zx?$mpM~_ErAmE8O*#ZR@yRInn{uz$+Wod7JvqyH^;lMoCb{4fzm=J;&HOw(?8CC@9 zNB7W*_=QCwnSZ;FPDGy_*h;V%RZC;cM3nVkrgzH~X-4I=i|e zcQ}}0Ul4yjoIXj984I8I9S&FW^74*(B0k2!^V{XpLK9jEh!OrUb4Mz2Fys~$6-C&n z!tdF<>fPS}k2?`!@LH@P{8Phgp%ZMz(nhAB+JG1SNTug3%ktD=uAOuLDvCrlcH zP&05Sygp~tQWF_tJAPnujN6yjVQ{Y}Hngd;aPV!*GgAV~udJu1w|YN3PnTldM?tcl zES|8ACB-4m+Rgz42z;rwH1%uiZY#;l-zstZIPz}V_& z9m;2uB5)60sRRNc^02+P!Bhqf>O5K&v(9p97qjOXw!{H;2UuXkcZ>%<3#}GJ561EZU z!Ik_6PiNdo%F25N;0Gt&Pq1wEIs@FO-D;Pn+fitvi=y1NC4~~ds_xY*T`)bJ;;0(y zfzDIU(0DdHb;1mA?+ddpbKlIcof?Meh$~LNN z8}TUva7JACDo#w)@ui$`1Yvv)R6q$C60#jBH()7xYnT=2ITe=!P<=sRu7L{r+ODsT z39v})E;>mXSeECC-oAY+Y2C06$?Dqws^;o9+T^@eB*=RzV`F&EPG%i@543R-`FOL+ z)H#5eKI9Yp&E;p$b|b97o<2`sX7^}U;bp)L_MFF_KLoLD>o<;`CHDgWHZ$ zEoS$Hne8n1i;ARXeYTq$qoRS~Cdo>wKLHWwr0v>!a035>7Cui1TH7#;MfLFVLYicL z@(8D*8N16cXk-!oMl@^ISYn@a8>7OEl2V1f!}|HvieZ&oL5ZoUd>FYp(N`UeE;?(+ z5K>Hg_Cb>G*q&_sOD6F=-9RGjnjiDOT;aL;qQ5R;Y6Mp6x^NLbz_ZyG;J*h(?p0k~ zacBZ!TST=hJ&mz-$=W>uKt|l5!JFyB!#{OaW&eIj7~-3joJJCH{6Blmi|n=S&+#n4 zw#cdBU_JbPC-vz+ayto;3$4FF+$6UEO|A-ay(sV>Q2k{D8MgOzKt7;Ee0+Qi{w6jQ zrhk5!%8}*Y@Gju8SQoBsu$*6@#^HygxH$Bpt9w!(m^Ek=y=tti48WGl_xa@l7;9;m z_$JTn$CtcvP&BN7c>ggVGX-%=7v6aMnh?O#4Z;N+zqd9t8Q&~XARNV?)8Gq?T|cVE zf2F3O*^_(7^5jW%Y%gKMOom?*1H|;d*fb2-c>gN_(H4XKAT#9Pas8LN%v6LpWC-^= z5c(3l*nh}>+}gnQ)1)nrK@5ma5?5gB>~#i|WC~6Rk{eW22v;`vh$9c3)=KFo=`U+Z zYN24qjR}%^Hzr1p3SU3;0KT$Uu_dk&q0cKggri^<_wazzTHDFjIbA|Zv1&I=b59^3 zXx)-!jM1<*3GTh*n!qN`YDFWW8QQ!qgf9<_@XRrcs=LVrdYmEOXT4| zL{A0jqrP)P6G#TIi|jdvvCF~T)c^43)py>Y!rHCMnTT*n?93rL{Rd$1o(ssPG3@*P zJt8AR2wvW8cjqvg@foM%O4G(a9VwGXliYfjuU3d$nND~;Z(4VyNM~HAD&WFiYHHe= zFDp-V+Ef-l)(~?}I#Q|u`C;8~?v2>(X5@+msxM_vo`gMBH{g$e77+YgB`E)}(QDH7 zhwz8}AS?gRlej#uS+1NGfHI~94%E=SVS{AYF5ilf560%cTmAANPtC?htHbX(-?6d3 zxsury62qV%r!8C8wYwS>{N%Q&oj)Czu1-#hse`OEJaM9kYC40=V7 zD()YN#sT@#L5IW+OZ&9pdAud-*Ew-XYb|E=c4@GP%RI`{VA+dk%WPCzlU)1;OBQX{qzw4TRPNEHioJ zCgQTJ=nwMgJ52mc6<1)k3K!FK7M)}U{j)p?KZ*!5RQRGCzd-MD+rvlJ0WwatrSAJ{ zM)?>&xr?Xo)?w~z-84A3{>F{!k7ikh%~^5MnN`kNz)%sCgns@lvvy`dZrAWoxIQItoT1?swf7w4?>S&zp;FcOnn= zZS;RMx?W!H`gv{F)}GltFF#eSq3koQvp^un0qWy2YDXI3qRP-SL3(J`apRv#Pqe$+F$* zt&=|ye0G!jKDKJXGK=3&PQnq)!aQ=uAz^TEb;AakRoYTWqRn^dX=zo`4cNYlsuyif z1fF9S)at>dOJLF~G8MtnO4+|AcYeT1MgQ+kf9giQHXH67AS>dxFl9t6zY!te6Q-Q3 zH!RQ^t&zT?ep>FxBR3kU&8r7www<3&9vh>ck@>y&;d$Iu{7PRKmr`tA^VrRQCmhZ0WT|H4M7ErGGcAaX2F)HN(0g>!Zy2) zE~*W`)-eg5K2r~oGose48?$(td)V7*s1)kTw+^r|eajtvi2u&WM{_*04T3)#IwBv0N9-H|~W2 z^%)#~DEZLcVi{NToI77h=hx?Bnweq!`tansE20NBPo1l-F1Zb>aJB<&X}Q;#&B$zQ z|G>aLeBZE9nE9VTO@CtStNh&%g(N68I5WM1;?FLMN69>i(fE3sT% z^Mrs9x?H;}-ku#<`8LZ?92G8mV%C z(^G{YHBstnB`QJ7V*`xunfQhoZD&)l>_S;+}O{+*`#cJHS6 z{(+K_nfdX;kA|%*!Y_pNlKhX&%^XUp_q6>;6{x%iJgBTw4+VO@s#6ePgmNn-nECw@ zsF3{eHz@M{c^DLm(V|A-`1k|&kMDu7?E=~npfWOW5y98DB@sM(FJTkVK125`Owmap zecfh5>UDRHJY~x*Y1ksDih-)#zzc38m3-zA5djK{s}p|hRTKWYlW7j*=$J+^cvq}U zBMirmJYu0+Er~u+&KsRWuxtaJQ;!%h++BRP#TVO>TtU^?DEePn96^NrQAxN{1y>`+ zVc_mQ?%*QwJs`oZ$7i?W#ATpT1+qI2#7kTQaKh>Uk_@B=QPo-6f7#vaEl~Gr;oMtm z&=Ux_0-GlmMTgLjK;`LwcJsLwQM!L7fqA>H8BkQ(ML=l`d8ZRRxC{ zK+)s;WJdwhw>i=PLa?bve@-oS+iiVc>`+vebm+hd;EJ1n{FO3wKj}5`)x0l&p2Z3G ztdML3Fe-p91i3s7e{3mrwE=5dhg8KXZMP1jd1Y;_;KBYKl9E+zZOqZHw|r#3WSZOi z{_&;{Pu8@`U1&hdX4R@ycy1F(5f5jrte@lanE@^}OuzHVdgsaSk$kF}tK+E<(G$HCuiUUMu_?d1`#Tvwf&(8zuGz_ovWoyvA4I8Vt!-C%8P zeP5B+pep_-dnF$WE<|#koji%Vfpl;q6(L%9czDJW7=_--m6LnPIs{{z&?gun7YE{p zUSdfMzPTU%dt`&i24I4Y6g5l70ImY85rk>NuDB%opO{LMN3Jx-G8D-z{e))q3 z4*(;~?PeE4=%Wg{aSdCv)X7^;PEOCD<8pl?mD72ThhHoB$rA;Q^wEe|NGL(mFnX_j zyGrIpEhw0e5#&w@a>rVkr)%mQu)qe?d|0Ts{}tIP^9aBy@@Q=Yf)*#2K3yMp5qAyD zfVrdND|EF8#RH6(4lOY{$9*9hE0Mau9;*T#m!AF31wIo2k8!A6LoS1MuUJJC4{iqPD zP%u9Z(>!7bTzwmjvJ9gXpNwt|xvZnw>YyUV)9XI}$ut0qQgHVBu?q`(_wGerdot|` zp*$83gu|>wN#&L3pSb1>nv<6(G(e3aPLR3>q}~6idz1*}#jU8QNc!Z6U(HE-R*=U6 z03oRoO?jIaH^jTG077^rB$z-`rqXNbs-yV9SC#adw7tDz9y{?lIIv9I%!$88xXX9y z^$DU$nTZgy%v2~nq6O<_K7Rh+{PD=fNcWVRWL27;cYQZ0*~JvSHhSBENc8H-TSgs1 z-ZFr3^Ji`*CS_ye8y_Cxnzb#*%5LCIk2tJg`M4@ZqXu4S+ z0i#9w;h@&KC9q=!b#C40*?b!qM;uBJ2tugio!VQzJG&bm*tB8Yi}X!lD}?=;{8##F>rC|p!tYWpr)gP1>`$8 z-Ao17`fC2^^^MR@H3R;Fr#m2NwP{BexykhQP32_}NmQc*slOqfs^5R)v3nSHT_GC& zFkq`~SGkZyQ~fQc-F7$23gH({ZdxIrvC(|3Xll})JI3S+FoL@46^h5Hkv~_WwuuxL z6r>;rp?N(JQZ{9nmh-S93JiwiL$4MFObS2^s0BL2`tbd~jnporN}r$P>e|gQMd;w5 zh=q~6XdJ*Kw1EusD6ta! z6ruF{IPMezi5fhz z0ND9oLy4gGzN99o`@9EPx))uhhkgr>T71b$;am*V8vV&kDg{wy9U+)nvVQ|R(MkwT zz+*T8$&wrfN;__cL;SR0Jr<`8R50?@rIM1f*@De5fgxuQ6=Iuu5{rnzO0d89B|ls0 z1u>!k#}6pt!Qb}x^!S5%T)TEHD2=PQ|0_Z#X`hM;a9C(yAZoEYHOOcjHp+J|5r!7m z^w@S6WqsI3+4nY9NSDj~`v-00r?Aof{{Fq>0!^gN|J7qNAHWLvyg?(r6yHoo!VZ-L z2m)6~eE`AEcYZR!7ng&mEIXm?40?K`FNS-0Qn!K|Oa_9&jaf&BzCMVE?0itF+jZ#k z_wRW>NEhiYhO$jm)U`kQFVLF%pIt$%(-5zMI=LfN5vM}i9r3-x`02KVA>A^`A< z6|OV?z-Sf{)Khy1T#|u15$`S`JX7H9otqzDg>}HV%mxC8TS4_0zU8`Okaa`RcPE&! z0UYn{39#w~mUU}qr@w`e{`xEEyyA{8Wbn73#g%S!$8a-I9UwTuBx_5Hc)Oi69v~GT zgcGA-*ZWaei z`Qx)8X-e1LlKy%RxovB(JP7m9Y=mG)G zc~N!*hhr$Y8jZ;;G-mP2=7w)nzY)TJK=QeSoy~Du_Nn_fc8F+fATob0p7bXKFR3lY z-_PMPY2gERXvzG~SPzPml@#}ZQ`+s$WDC54)&UrVya>o%jvY?m*-Q2M-qA+f28H`5 zHD1ddaM_iS9AnGiEt!Ff^3aAx3MOZZNa-}L0#Sva%x%FPSqLOEE&0KDA@DZ@lp*5| z`1TwfLLl$JAhbeBfX#GZ$L>ETqgqCtEYy!)jddV&v0GPA(I)vV%%WXz8O*KTV|NGS z$SRa-*Q{?^8T^`?Yb&tUL}bV*+=+Wty*L$pZUCmFKQBxCp;aWi_?{O9RU;z*I8=z> z9aY1gIDS+l=MlMNpRMii{yO2O+mMF_AvXk@)jq69U;r*MB$xmF>k0)q!i=Q)Y%i+M zZq4O=QQ#M;(hah-)6R^v2cy`*1#&J_w5-n%fI$BK`kGH#CFof}@{Y zo7r-653^>9Z$m=~O0Aj_UrBT)aQEg#2p6txH+!m52a^jzMdH@V1l-Gs`c-M?q46n5 zl&q0o&=RIcb&2}WdpeXzGNE^qGt&K&SIu$%da&a$G$J7YVn!l;0D=$!rY;HEl{C%R(ZX6bPEIW_eZ#HkqeP+=TR25fp1$E!6SVrMZlfP z6m-+r#DoO|Hn65+mDYv#YNlDaA~=bZ(FcS{?FMLrBh?i!#@Gp(y~BUE z|HtLz;kt<;?#CbL2~6DreMf5U5u=(xK_0}!P6bR62p)-$Stvah1QMh9pbPF zkdv*kgRL5(KNnVy3!EB~s)n=zEehxP8RzZ?4)*PGXGp6Ge>4Ak?mNvfyG>6wLMmX1 zb2>Tto+D7%+%OTXG~60jfs)ZccIV&S_6CjRzMJdW*)?#a#AIaZDk{!HvY?MU@$hrC zKqQFI%X?6ZlOEo)XU|@-o1qlMMR7z-MMRQ^k7erd;Hcs{*9Ds=otvb$trr{I@lqDb zLe$LU>QRW=>V)X)?t)i{V=UeTuC2C0db4_Qqa_n&^A&ER@8W(h%zb&+ zEc!2MfaaaKgTBvwh~pe4$Xp1N5k$9!IPKDYQ+>)%4Jmx(!Pw1``S zf0AT|C4n$$uCRtlC_Ty+q+glu-0S1F#YJ0w-vz=t_3mLL`i|h-U#k#{c?qYl`#;e%8rluN<%rq}`Db)lSc zQ9##t*;Eej3wZmA=^9#wkgp)B-Nfm#ZFK$gyaE+0G{9!r@2Im4vX~UC7A&vX!u=$; zWSa;C7HN9InJ74ceQ7ymn=>`(Ns}2w(MfpypbGt+=~?rJ4=f}(JP;#d9DhyfEV|;c zsILn=#x2wz{N?T4NWN+#S^~6pWY3OrqCME!m3=t7#@k7A7g(SV z91yN6RJ51p);Pt&?&HI>HCeJ=@q|G4Wz2kie*ahomtkW&JkP|_Db7bcnG3g*`0|?K z_e$!6dg~sq4R^@tz!O(_o5_j)23j?oH?WZ?@E650TXp~bulrqXCOHA!PUuoj8Q-jQGry@J2G+w zh^0d2mvs!PZe$)<&xhdmi`Jo}3oYc2r+M4TUyL*sq6s!6uW3-G= zahh9O$MpKdX=1SZXbCo6mld|jHb`F$!dT3R8_+w z$-^<~pRT~usl%^mc6OG+AJ5Ydl*78yO&EtG1eubE;bgt1x8VOWrpaW_1ssHa=q6Qs ze9BzjRa7i9H#fJ1RHxgLL75}Q)*_!3QK_Ll;bayf5kC1oNbo%|ml73yD}e+t(;0!@ zytVz7=t5R@b_@JM=z1>q{JsnbvJde~3K(qx@~4mo@fbN8 z-}66xvI|C_pzwTlyIG*b&5tjGxRSXd4;lTTp^x;FVq0*V98`WMl+=pQ?j%ij)9f(0l)lax)X;oEpk5p9TSVUWdb-|Bhh4q2Vmbd&b& z-*1V;$_inL#`31xS}H7-lZ#7(K8@7wCo#6*DU~>1-Alc7Qe0X(@a|nv)b_yuoYbZ` zhm0s|Xpt>8D@+PIis+}T#BGWGcsYCVfX(qZ^_4GQt_869l)hr=VSX`OvyJ{zZzX|V zDmS;1pW(^ZjusXHD2$YKb?HS!L>l^UkE~~8T!t+SVY+A?EiEmfxS_hBz%A{qYMe@% z911N3URnNns2A!GX7Ag);xa@Ot@;H49r{6XIKxzCW@ds~6T(N29tE1CLX%|%aAjp~ za7aiMc6aaBuc5g1M|!{7pB19PL*1<(Z~=N^gHuLeYN}R{4QfG|d$$)-4ZZo=sAFgU|m#X@OQM+2me0qk5gYfq3 zHz~JXf|Q9D+SIXc_b7V4d|88PE+#}7?=2`u*s-zn`*5(tn8NwNfdNVikNFvK&W#(# zd#hH3eJt_-JyqoJc0KqngYeJ8!^h`m#$~-Gg%M$MT0A8BKgM#U2|T`L8=tK*CzEd+ ziUR_J&gIayF}meU1MJws{e!qs03_OP(rA@})Cm}m3POqitXYyYlI;Z`exf9Ldlb$N zK|vGC1Y3lSq8bN?E)(xGN#ZxO3&6ofmMms?O~%mrqbLr-x`@;@#)z)MC7N2dcd}UI z8}sE`#XQ>FVkKb`A1tJerMZa|jOveZ-MWiF9VcYXlJ$;5i-)Q~1oxpozsde16I2jX zyR10M>!r*DuMyegFjg}D$s&0eEYESKFqe&`N5WAIFhjSdIhBJ1YFy@#uNprM3EN7h z;FVCh8LDT(GJ_i=AL-L}TRzue6KJWnaK00D4SP+iP-8z1|Kh<^RXW^a11;wsz4AwR zPnGZAAN7=qo=Etv?gVzOqFfW=@fP%yAbHJ_+qrbcTi25XiNu0{V<1BwBXOW(AWNp< zD;)8xQ1Y1awUCjZLM9{o{bV3Db~}8_NK9`DY_vKm5Efl2)4K% zSoQ{nr?AN-ju81Z={=%>Pz70!6obIYDB~@)DExW{1_Wk?CJ{M^9`BBB;E&rL%C*VwJ76tER^wnH1E}iN$8m$!l@C-fSp1!^S2*mDq zy#~X972iMR;H8YYfj&U*lhcb#!73zVqE><_k{BLUn@^#$UAryD7Cd5eM@Lh8LVW8( zXG?4bbI`p3QE6b#>Yy4!3|NH#t-pdX>JEZE#A(zd#TsTsB}pTb-oQP{5I0|hbSnFA zqA-xbLhT2}aXNFR1_T!vI7%|sz3BjYkMnI+DMF!JvMUk8Ua zHvvE^y;8 zH5w0lDgr1eb1{NI=QTNe95&LIZV>fAS_g2^Xg;Pk9Mf8 zu8uS_kX!2@GwR|NrT^TVyn;XryvaR3SXNU)s!SKG5&*$;_TMAkaGGowhIR zTb-QiVS(;)Y<}qYdLgYtWyk22HUq>=I2cg3;n=Pu8ec>?MdZPVwAnpe=LpM&gVxjE zpE@|a^tOa|i3h97p=0b1k^qS}dc*|6;rk$|PN^p$`!Ab${aqtj?-?>J>LC?WVmz^p z&Jc#6duRayRMvHn7F~pxfxNi3EWTj0P$!Py(LR6qV%eUlkB``m_)nROdz>#q%>pvE z_QVg*i}&trgN%$m%kTu+aQM5 z0)3(PaXme6eCmr4=`KLq>H(mv!pn$7q@Vy`AV=E+LJ$W#BnP)1~w{p8T z_vnxSv3E`NqQo$i1)B6ebowCYr5Jd!ZW3xO&nyCfrK+>jxH%r>O%ed6F(yksxs=B9 z@slu`^1^~CtVjoIiQ}TAm1JUKVy(HHjsl0g85TI?-utblMbEJPVibb$U=53J+S*o7 zkc0<_mWeNPz1&YHBb?vV6k)yWAj102ojcLr6ov9r-2JODVx`T)LC8)BcTOS`9wSpp z%|H~%C_%v+6%2ExN#UI&Y2^1CGLBrhI6UU`MBLIIEV`^N)w&rJ0K|u6#xN_PBgcdp zX8=mz<9B{8{uD38HaU*b8fYV{F*T!~V=Rs~b3e`p1x1_|6~)Z_FG-X~m&k4hM?g(a zzaNyCRC}S_1?kqxXUkhA8Jkk~H{kB4EXB@2?b1Ja^-zlU6+h49a8iu-`*F zh(M`-1;PojU{zC`-215Aa=>PF6hg^tC3haDMGA!_JAvPV4KTx?2~=K&Mh96mC>1Nn zGzhlnK$92h0cBiqP6Y5+=`9DIJaggG7Hok)lk%YL0Oj@T*E=yg0MULB*dHrdB{?}Z zaJHn+?S#QEuJ4TllT%Z@gM*hKI!wls2fX%~pJ4?3}u-@LznP(aHP;Aahr6&B2+-N!xc@;);R&q`7cQ8YtWi|^fs zC6zrhvJRLj5c}6ue)WHu;v(6T7I;y{kVR*YgV3`U zIlrEnc?EiWm`mnDsX%rU3X=eEquGY0zImf;GN(BKO=$t85MNe+)l$V*lAJ1b-KBjf zWnc=GL`z#+6-XimHnw2UKYR8I^_x{J&i|lCuizrld>S3vW`yYhXzDreYY$DEy?Bmf z-2z&Z{MG6}dD-~~7hUb&T$Qs_7r+tG-@O2lc=#)`FI{~rLsi=<}KXr;s=~;ls5|fl6$wY9j9EQo z8-#F*9*|vdittB5!|O(~I1pQEIfa(CcHwm8L{MnB%W|bem5`8-y;@o?=o9mqwo2ps zgl^om9%?co4@r_nR@#T+3qZ2c(y!DQ#26zJQvlB4ns}0dK;I(C^&&Fcg@-SN%cqu1 zVeO|8ClMX@WRGKgtDuDjo>VIS_;Yn3RIHodV8^n9!y`Q~aSRyyEX=Zad3jO5FXvcA zYbz6ub=`1FYVYXiS|Oo~El;z{_H9%zD#~uAIFyo3+R|h_!a3yvFk5OZONu7&TV#Wx zCaE7uJCY3xq_Oew3Pg3vqq55=pz{bodIu5H!MSlM6fM(AiHrvsvlfMguJkcXT+GbO zSYB;{2ORN$-DDCJxe|N`C@D|^HX}^Sdfw^_QV{V9zKt_R8)Euz za&d7zbo$0KYA^v>b*j6F2KgVNi~9LB4OQ6BlDDqiR+r)$TBo{y|0)Q@RM4~s zCrO!ae5*GeU@R3Wlwh-n*#QI8FgTsUC~<{7!eV1LfF%wAxW4oudlD2 zlgGLQ9VrWFfH45FZvOiR`~V4epk?)c?fO$57SID;e?to!#X<`vCn3nt z`S*&q19Cs;MrOs()NQ+YaQQVr2b4n1UGw zMBEiaeg`egfg+_AJcp;-4b2I7bgR<@DEuLs($#@8p~`=r99h-Nv7mySE6J25*J&aD&<;MoVz4AxcS!IOLQyVaPQo0){%pOKhbR+O)R&BWuv1Q=#*bbfqgGO1CO%fn;0dbrL8dy$!C}X2Yx_fsG zuo(V_et7g26D9!4=d&U8mqAZ}SK6(s`+e!*PLP5Njett1Hk#42qa6}mw;HY^+-NG* zAnZlnx|MTYSmZJ24yxqjWLpTfd!!K{Ni!JtRP6mrJx2dT;bQW@cg`KtK9U^|)6)g8 z{q!*!n%J$2GYICN*wc^Aj9XIpYYFZJZ9=#{QthMP<^e#^m`F# zV}5PeO(CI^!p6!v-|hz(xgm>B1P}s5xG6~h)UuoTlvxQU_yUogzhTI9>Vm%3=$4_^XM{rWsgHRNr_0N z6tjCy-?|z{)(N#87~d6m$&?iQf`Ta+O9N4{4=76?gMlx~DGaXsDUWeeo>=f58ba^L zI`jTV?|`U8R;+se{x;3^BWd9MWTA0Dan9orhDjETXI%iTpZz!3l>z%VL?d7x$A8GG zMN@2zqoZT=wxgzF$1uEJ4Q}NslC=aOtdT)B!RHxriQ(6|90VXOTR}DNX1y+5_qp@S z#K_nBI{tNX(pdmySmPCG1|k3`k$*^@cMloK{sQ{sxmFMQ%laS?9BEzU9DTeV!~{dp zAYSQJHGW`Gw(?g?1j2IcFeL|+yr`b-vd2+_JVT;IBcHKI*T8@Y>Wx)!dxKXTtwh|G zgZoTDdEUoeSs>L`A$nJ%5Q&j-GnlR)%IBa65CRB}11RdUA`IvEBgo){hUJSAhA1CaoG&J6W{VcX5IGOHy8R(sIIh|9ccSDK^PKo(*pH(VfY}9N<3RiKYP}W4CKO1jLnZ{R zdwr|u!?VoRO4zss|KWI_b9#kz@*@^8&O+y~q|#PJYVD%ZUpDsH|RCS}2v# zUUaz*%!!K_XhChUl%2rt00Dlx;WFpa5=_z|DJBChTAB{z)o?z?gv#1d&MAR%`!?xab>)m9C1IPK(=knG&iaZvBTEFfJUnx?x! zncc9hr$hyk@9=g9x*TR>fm^`4@5gV+2XGS9T!OT}1J$K8VzKmsS~sqagc*WZ?CtNr zX1@Fzwj}9n;qU#SS{!(I`}TWXBekouw%JT!>P5HIx2(7P^gNQ3&%n_uHr#ofDMlcka)}b7Kwe;Kwb|mXFg(qFl9# z40_>T7>1+eaU2C7nPdmAmmPjzgxTZPHGjvCiAbr$#2py@l@rLAkdN1GAF%FU($*Bhbi!HZf<+Je`55l5ALYBh@9B_mehmb)s*mh@9pf@z0v zy2voTdxOOREZZFCyaS`-V`6eH;tM%Z#G~` z@cfZ&Mr_*;<*<^}1ktS28_Y^ElHZ3w6k~~2ArjEVh=_=!HPmW93JRIN;bF4;+@GQV z8|7gN-V~|kH2u|tbn8J6vE3`h$hOzd(J;il9)O7v`Y4H9>_h4`YxV-GQRbO|_(Gz1 z@qH_a7XycZaaTjA2$o`J(@G+i@O!uoCBNr`%3KotsE(y0Moe*p<%wJ9^iS}2x|LrJpv34@5u|7p#w`Mux+#Xq4X zfji6G;7x*l&ql!(wfc`AxiONS#bgVXrv`8p6B{+$_a3_rt;H0TKajoXn=2~3BwG=p z``D95-If_S^)EGwie{6S<)}0^A&_h!NCO=|6>!j!w-RsN3dP2%01pAO=;R@xDEH4J zBNoVBV^dQ#+so&9ZM9FG+CnCn0F?RxvF*bDB*7uHd?+ZOwmlCCwUtC%!$Y)@z)oBw z`W#a}lwHpKs)Y3i+BOW2Mb`k41iX469*sO!<4X`>F}6V4!Uk#2b!+y?MF5>buX+D? z#qvE0#UGyfhM?X^!V!Mx^Q&NXMVeNYQ687hE!kxtZ9T#aHwU6zD$gS^Bia#LSJwS2 zEAm6k=JSWr)EF^?Lk)PRQ%rIa>aS7w&>U?U7Vg2X=z-i$+_E<9aIRXnC88_z6hude!Ud!QLamdVTQwlG!Gg@i zC3KM2yQ|x08_prZzLw;93@4Xog#w?ECxVzeC^XbC9O4>Q#PAvvVequcj_eefvrQqm zcp?F0g*kQw_1d+U!otFmq)F(*#w3CzY>O}b1aCjvX@Y8pl~P!nj!NQhrEjLj7UER!XZ^zqNQ>F zmx!+{$rjW$rgiJ$5eBZ`F34H%Firw`0_v?Y?#C2V5k%T!L1n*m}04v0!3 z>%Mwefh6e#7zeAO9Mv|;H4VguBI7P>FJtSiI^nuZgtg$e4AuQw?~z0Z-UHd$-+0UV zA_$RoL9?Xb{MaUI}+XONJO{24ZgzwKOp| zii(Pgb|oDt^gkhDG;A}!Ms+fqDVNaLmMLYqm`fpO0A5282)@>Ts(qt-@cE|0Y=5Vj z=&H}1`Ftekp)mf_T+213{C}EjDPOS`T<#dgL7P-fK%9yKJvA~RhM80+)Nw_p-mib=BjK}f`>F2#xlMJ$0nvDt%K6DY*Q)RbVhXK0=;bpc!< zIzfj#8Cx@cZCnvQ^jTGMCb=s8`Z^jRXvJf$7>E5lYRWYll}B)?6Cg(2MH=Q-1!b-H z)Vp^>P%bNPj!6OL4|ok9(`T3t1bhXr82Y!z)36iKDv8vH5I(DEX&JI@*Gr-x3yWGV z8D#)u9hnndKY#ClI?AGwFR?z8NqfusHTSluizZhjiZrN2^6tCu)T?|;)_FPfYm7y; z*imSWqn&m%o1Ru}7iK~I;m8FspvhP~wrT~8Iy(Z%ZjA0155B&_7hMT#X_Cwcc?h&6 z?>V8O$DM?x3Zm8GWtt*?@5ZjP+hFe&j9H;+&BkRI+rAHvBRD^5jeU>64t$0N1hJ?1 zK&!pO zBla#}A6r-~htLR2CnYYa(GUOfhgT%b;N;{?>QyuAXccC!XlAut!LZ!SPrMR5L6jGW zamlDONwI?t@9o}KpAnVBfQ|`o4z?*^+m=mJjKM0Tvq9FAkx!LedBAoLjll|hJ^{5k zFw3kzyA*?+jf3y(1Mx#LDM*v%Cy$xaE}!imD75$gO6RwAijvO0I?1_-)o?pEo$u|R zLBA)dZFIS7E{?xM({3An@ntjxDF`S4wGulLb_b(0z_*ui-tY1^|BIDqylN#4xOT;< z^gHV`=v=yV>4up3a%79%;bCFhCa64)Ly`xEkZ0#k(7@^~{_mmlLQHA~6_}4DUm~r!}OXlb~E5&do zm)WDLLHOPm{|e^Kp#WOe4`ED0i*GbvW%HLVl3?R$kpWyGZL-tv9`e}wA!dn#)+54O zfHyGe60jFj59N?q3*E(rvJ>brqL&VocmD4;VY;L)wN>`qZ+R3RLE96}_U15O2)>{t z_VA{DcD0GAl>}t~A5(9EJk|CO!+lj5R;(O1pJBzj+O`M?P~sytE4)Nl3xvnev)WqK zt$86X8K6s#qjo*1SW-|>iJ@-EcSC@uCx4&%_3IaLV2=xr9Nq;Q4b2xaNye?{!%%bw z35yi3IPqZEtv>-mu`2n=LoFxbp^bD*&Hz^nsXusg@e1hxEjUpq1a41ENI5jHa^-j7 zQ0EoeD}|aVb{iR8bZ??#ENWV(12N{($g} zmzU`CYHi%C%p)n+*KaxYd%+tzNoDl$DfFPkBh)+ih)Z#CChku;8~A>E)6SG%6l`f7 zxlDCmh}~KVISL-@y>N#>=d$?!BkVokdhXx9@2^c+g=~?P2qhz{B1&dtXH=rB$c$8? zg>;s(M;b`>&S+AnNXuRol3n7|uKRhE|8+mE`???ZeLc?qe<>t6iY&R8R=Si=B=W-iOq=ZcF>b)nb6_9 zD@yD8p8fEAXiW3QO^n<2E8iLxw#d2k_qY-t=a@$tyFS-x*(Vr9$EQ!uW!J7j)*uWm z>ZfJ4?`H3G;?r|izsD!2jGyBOkAOv6v&)`;{&8b6C6IeTQPC3HJ!&%WW~e5kuaLX~Wwjqpcz5y9oz9If_1aorv-7?OI{!AhaIQ|9 z_Pv_7Z@-f{kqtx0Gm4PLwlk?W%=9|tcANMYd}f4Pf7-On#(6QD{!@Y|?zU&op6s1U znq|_KgCc>NZOdLN)Mpu2P}CZmneF(ST}st^r0ZqVLuIWr2sBC9vb}MG`z+7I~Q6tZK=6%JLuKv-^N|d##iG_U5(1Zru!rs_qE?auA{0))wP?= zdGpfpW2r<#X=1A>D)M30{dnD$!6-cb=-?8^s17iJz4q*B!SvbY0T-K*%r0ulvmao(>{8u(bZ>~Szok!Jn~Dt)yxNSfNLYYD9dx@Swn|v zK&C365!Z6t%>#xr1HFM4Pgkrne;fSc{oymlT_^UQb461CALMsN*Ww3$C-2~sJ(*;WLF?YAbXYs1?HdmdU8gFE=U4C0 z+lFtF^k@5weaSMidazH=FjvES@!={LW?NuW;ltaR9XtuM3rv7n;M}yL#>IcOw8sYk zMW6SL8$whrjbGS2Lf?rsUSNF#K8NTA4KflG^@5t-1d8r@vgg`Q)CPM((R;J(3OA zcT0x}@e>-1`beAZ?Q-kVmI?j?YEg%YozXHHnREbrky|Z@ahbkm`|kw+BI50X>8N$w z{c`ZZeQ)FKUeYRYCwto@J0bLPG$H@6>~To42vJyRWKkzb>loDrVZj_ zz)k5*TMTH|L)9mZ*;NMv7t6FF<>Egh)@;~d0@z-FKIVU39W>≤832b{YL5z+gky zCG}qUX)ft)a?8r_XMF6OXAbY_S&#^G+FLNgb1n9Kbm>ap;D5poJ?~uFmumA(-t37X z7ooa}>`3^Az|+3uOyN`sBcEpz(XW4X zRWftG@wCffVcisN(L*Yf>s9t%INs{;OPl(sy<#ht#JYWUvuv81oim zJYLu3a`}#|VYOa;tmR*&NJ>31>29xW{=0kEnD`djyjUR%0q*kQ%7UoaOWOn5$j6p*DrQaS#nj$ZC105zcnh1505%- z2;zJ$t76CYyDjC}aZ$hJjJ8)T{AkcSNuRmN(J$|mLk@otmI6Tg1sZld4EiRNFw>fa zvQJt!h!{by_KdrOJJ^)_va-?aNJfIiN3(ip|etgelFO$doNfZL2>gyo%I zYfO6ow{~3@wVkyTu35DMrnxOJt8JL*`ZK1Yx#_rCAt52+tSbySnTD@^Uq5TeKRblq zFnide`=N&eUlCYE-^r+RKLcRQ;9wmiPL??&4MJxFq54T3a3)$Wxy~iH!1KGeGhZ2Y z{(LjoLzp>I0(5eJ%6~|J-G~@H7QQC4?=3S?@<|WG!EJpz5qJo|HmAFaJhIxq-kch<6-*C~cH!iD9Crye8 zSpHJIUV)#hx$%NtTlYtHUp3&ukQ08*6CQtIJI@SScG2xUT_gBoX+miiy9fB!WfCx8HVsm4-N z6{g)(L2i`IHr8eiyAAoBpaGx*f7$QJ-}f75x=GvQJ*LrZmy#%4c%(G{*c!b!WN!%@&y%a4$R!-;-@;3miOD0m8^Vg zVq+@8Y=}0dlPa@v>k^!+8Q&Fq8%&%uBlu0W-;I(qg{@0OV+QINllQr2$rqCl%*>5~ zqm^@=cDbG4B{S-rdvguEAz4h%DuuoV)=0A zXNMAQ2N#Trl>)cC*xdFZoVLY_LGoJezxk>6pH4x?FN~>2WuinIoyh-n4lPZZT3 z|8wrFS;9PJh)VByE_-rOuO(>TM$_GA9^u~~v1qk;6m;y$GgFRkpi&SO8DkLlj|}HJ z$Q*W@~AA$V3dZxpuw|W?!3|){2O#*;)X{Q9`!oT?V6klv-kpBU<@T@t#Y_eGiJr} zb}!pt{*f=ln7;+E%h;(?A?GuvLH{NM#9}LjgtJ=I5buS4jGX9Q#j7Mu^KP}qpFDJY zx=kIUWz(iEV%l0K+V#QwX!BT`J5BpqKHFw`zCZei-Oy%F+%jQ+A!7rm($eFWe7pf{ z9(VtKBk)cmCTW+iw6;HroMEhArz0QNaHMg$IqcBcr*0`AIZQVxME}ioG+HKrGbGrb z8cmysLW>yeLEcxIZ$r*v_I4cb=YJk=ogV2|vS~@-j;MDsxLN1l(DcwdBNKlQFsk=p z*XG?@Ad{Ip*sLzDdm+cIwt9^B!lg56e|>u1gyO+PYd4aFcO1Td%)*PsP_xW25V~w# z06V$jt8(IJzx8_zrnvQM z93hOwr=~WW8qtyw(8G*nnVFd)?eF4mihwV*{!9Jm%oO141$_L)_=2{)eY;)Wn)zH5 z_~UM}MBw(uE_M@{`wHP7bp1kYixi>l0OKkBXse~_)1RF(V#_f6-6Vo_;A9=26Sh3T zcs86s0Br0rywj9!wRSA>{_lh4q8{$M8+!Xp>pW;U}FTL@bnd8ZR8*Zc>T->aUANm80B~VmkI?so9hc(=1uhhyd z_KJSZJDbg=^cb}Kxs2kJe~fzpA(+Q~IX~rjKSAEqz zcKUZ|;!qM15&DWpt@rNA+S!{8I;z~Yt|M9xc>A7k5TqLcYw!JRAG3L`Mt?oMhu8Ka z6{#%AQ|Cjoy+Nk2vtOQPwu(y-LrNo%5~tqtnqFWZ5taseDPneS0(t3RD#n(_Po8XG zV`HPp((3cy@8A3TbT8dX^J>EgisR@0@hj6n7-+(JQc~-4ibK>7i6|c?9{GmufeC5t zP#%D>bbdARc6CU6y>;A`4yMPaWb;dkOaJQ)#S^7K!GnG=r@Hlk52yp|5wwn|kVM9K ztUAriObInt7lI%}K|t9>_A&Imgc3ud2?6Vjbw&Wv6f34c_9M@OX3826-z3mmJ^*=5 z`0VhUnyah(!Ok-3u_q2x7o^tKqg{G4_gY9qfSyZvY}udRG@@Z+z)qmqb3-kcvmE+Br(4L@ERF-+s}Afow6 z8BOsAH&BHo4O5mB8%OPB2EklH2fA?F^k{~)+fbLl2@K&CoJV!Rl8PoMmEE7QO;VN& zO1>zqEjW5ehpl;^9jQgO1CB)OVnw3>6HBXJf=Pa25Fli5KnNR1&s5>FPxvi)3z!6_ zhFv8yegN>kTE6?BOE;eFn>_oD&HfY>B@v3HA`x=;%yX7ou{;pv8g)7&$;Bn^N+Gu= zK%HWUKT0^8yF2vy)bKZRKq+@+?&sc5EBKhqPB}M7L|P@=d})hqbT9hdi#VjmB^e1| zq`ARbRl7Bct6I=HPw8GG><-^pU}&QQzveh41}+8h94c8|MTOimv#bKcS`kW9Jq49P z8eL*@_qW4eWy+9F>gvrXGINi?xtS!Q5Nvx_7e@+&7)tW>u;I`N_=uF#;cJ=Ux&1zUux&;LVITD%gF5f-W^?{}jvuc0! z-9?`>8xQ~!K!J5=BU$*;(zW8h*3cb90Hx8ryNAgdAD2mnTQph-#1`XFyiy3 zWVA+ME%hzaM=vRrFxr@y=A+vM!UP1~Bsw=y92qUcBp-%MGj@ecOG(e2EF&NCo$Ki* zVg;N1<;%gd*B6WM-G4nZkp|#|jTokw>;JK1Fy`jwHle83v<4J?gi1rLpm$6mY1!B8 z{Ugv5+>OR$N*c!kwSOlFS)D79;mp`zH`sSY!2zb_n9#s|Hdh!zg5fioBO}B6;#Bwf zA>|(kp3((!3woZ)m;g)$!I%B^-}mF9_)#Q>mBl5vPLG&ck86|!h3CZI2Q1Ux zt|*E4YR!T!GDwWQe}CL~mGFLif0ClRh1M8c@AsCKa%cZWIH;#DTH3zNgJb|mce141 z#9;L5)vLv=T{Ifmb9JG6=bqZGZ9dawJf?hmJEUz6ee7`13X5> z4fZi!iriNGj)cYs3rh8hV7IFPWJsM)I?StF^Xub8SSp1l`xe?GeTHd&+Oe0iRC>96 z`*ghDRYc_slY=f&LRj;6=Ik&XLYkoq!h=hh2oxuL2Tu8f{0;ml!J{Z|1>po7_T^aG z+T3+A8QWU9{F7%2?`U)lFb{V|gq^sI1Nj~>>^il@|Ch|StSE`@RC(U~S`_wozOl}_`Mjx@+kV7F4-+X~!ymI;jCymoAMwOftOO=ezBqMcXOQq@<^`Eh(Ki0m^*= zAf(>01yPRm2;$S)er5hfspW-pnL+`&abe|~p)?6i;DW~Ta-?sLHt(6?M&lwZyn+Tz z=--6oKp}m9r00uIMDsQyHt9V&X3%frM9z_@yUGh6^!r;yU!wbVN|UK>n>MG)FCRVH zNvsW&T4~wooc?xvil*e`(ONAL6s1+0XSh)*d}B9i1I5w&Jt3M=$Xr76iRshrQCk_SGqDCI5npzz6b2SHT9FRQNX!=X`M zyLK&np4uZuj8Mc9ltG);lzXTdJEd@0q{I`xd39mtV_X~MD>QPrues_n!-J_cKiZjb zmo(^jWWZc7tdZ!M&mhp6MBTU%W_GZoxHyCr~_Q{(5T_snISdjo}VimjsqhG$ecJ&7Y z5R>Ek`O5*8T8kqA`AX%sSZm6-muK*IUZdHYSQpo23pe>F2<-|E<8hk)~B!XpPs>h{$lMyRMV z-Z2;rOdEzhA*dutxq$4x4GCQalWc<9O`;0Lun0r*GwniqgdBsxwjHO)g%kqbzP_!l zB;wNomdNI&(+5KzsCOE^(T!jG4nW@hnS^@gy2hYke-#rIeaHeA$O3$rQ@?Gwwv9o3 zluT{?3Ao$(4)}Kv&&hezd ztyURQIc*1q$3N#Mw#7owhsH0Ac3SGQKMH(4^%Rb$P$u{7+ZS9SvR6W$uGOU3d-y^! zZ-e1RM~bRJR4QlBo~;S3A;;oirSuFk!w}?*?nmS{I9%HI()iA}>;_9jAWQKNk>}Et zW9(dq1gT&!!0*pH_Puk5)=aF8FO5 z)eOElwCX}q6f?t=pVR&L z_3ML}?N!@B6k}`98yE=58T09Lgs#a)Wa4PGeEH#t=1T9`9zq}tD=CL_#X~H~xr~hK zHELaE&SbGMB;;U*s^_Non2r|wj|>6+*9K{~%9Rrcr1uY4(iE{qBt7k*zYaAF7F+2p zpqr#wie*SrT(*w_)^s%Kzyz~FH_`#iN5|^Vz{CxN-y*mESk;e!Ht>}_EVP9Acj?ML ze}5J32eHc?3XI(cwc8>mfQDe7h>J^t#d~oGfm|(pKfOFJ96zMih%H9pFqMXj<3N*% z#s>>NXZFN^tS-+KLSXAFCzy3mz1*bU{*(l=SYNzouAi)JNEs!S3;e48am0%4HYXZf zt)1u#Y?p(-h~L3pjpPaeYAVYd1gJrLUk%ixzJA>S4@&`<(t@|X+&zwFUYU4UmNNiY z^)OtmCmXqj=FoTLbTN}PH8YFn{t2xeTgQa}fdD;I#@{BHVV>s6_C3yC-4u56#qj|9 zV>E8mT5ZZwu?0ez!?3Mav1%^3{~*~v6@@eeoB9;&Q+Ed;pQAmg5&KxjVp`TYUDQ9K1g z8m?vH142@~%bmX5{VA7S?-+l+&y(lU5<(kCDOBjSY$?OZj{`K4?}%s&W<6m;v{n6e zb(2@62p5frCHyA>Sf*j1(`4%F<`97C8I=!;T^1ohX{1ZFg^Gb+kX^|?mVHHEB6Ip& zs`R$B$0wh>()e|Wz{^98O-gFOS9ACK6ee5ur14s{%8<@_z||xW1!h@0)JL{wC0PDOHJ)J?PqiIAEI|3pl=>jn@#Yt$l#u_D7;r;nQDz?oi7$SK2YxCdEvqj5iMHBaI zs&PpYthDU>d~qM)X)dzwM};F!V+>xHuz5v9L}XuO*=-yYbC=@fP#D_iSR0>Kx{1P7 zSju9LKxv8GaVN|QK%Qz$6bNF#k;h#_Ugwf=q)`J!t(QWAN&@Z?VQP;}x;fl*p%3Eo zf8@&n8a@E5P>)m6;}+tzRCp1pL}!dAN|xZW#Y+z5T)kA*I_897S9P`UxtT*kd0Qq7 z-9=~$FBw}zR1>E!!j6I;N9MtaS$F);7UnI!x4q8k@^Jt(z~jl=U-I1lpS4a^|F(m`j8JV=tg2w3 zokmC3=bj-iNsa>}P7!<{g>-)^;e!H$xz`!_kdj|$8=aX&P=p(y*aQpS_pw}tEEGrL zmnm=?B|AO~leei<*Sbxpb=Mf29$Q#cWP%gc)fUb9usPCDnuUw!8KreVcm=9kPY(HL zDqhGa$#Y+U2_9HnbxGa`U)%mi#1zfIEpLd1Xy#U9$1cMNO0C&D_IW#==Pug7iPxI` z=(7$AS#fFm_N_4>^+1z-*M(UuGd<48!B%z(A$`bt7Ak5Ju3-TYLwqmfzfzRwwb9`i zoBv3H=*`>QOljD)I(dNj5P*B{(GD8{X;jW5bIw%&Dr+4cw+!LXa0&TGI&dT@E<^IU z+n)z1s*W0i4kESf9mzCyn@&w_>iR_h?3>k8@CWJ6h zQB6ZlhB@|}>NCx|9L=C)r@#3e$;)6RaH|EJYWwKCMT9CcMP>3A4YD|I&@5257%^Mo zGhrP;9ov%Giw)y9`ycCwi?E#QGIm9*W5U2^;mVaqkM#5NF8qfwX(5qNs=)2#L1J4W zq;lbNDhpUq6aW5*+U4)4l;a0g|e zM^@l~*C(1{ASsU2Vl>5Gufuox?eZ=RiR3K+f)Qnoy4M)V+uhcHTm1`_Q@~fv_mp)OSfoDr%84G4~$7LZ#hVU1<>bF-3Imr zI7C+>v+s@g2?Y=2%6l<;^XpU@CeEwkc1K|T$^0f8h*qAwuysT+aj=S&Twq%=nki3p_FWu# z!Yky7NJeGyS()=o4j;Q-=BlnY4lKHtlq6IyX*#o&r?LI8$%YLZFqAX`)#wOh6Gz=8 z4j2@2!NP$YvfBD!(jcP6MG7$5nhw`yE_dQEC7kZq+=s166Ox$`0avhoXxGAT{_e_Fops_l`912w6)#>8Qs1GaeI+)zBz9{TArLy> z?5yK2nay6rT337Qn3qySQTT|ale%g&037$CDZXv;D`=F)2y2<zd zn0vfB(lrQvJHtF${q?E#?{6GjS=u_$EJ@xywvJ z_-C-1#Y#z06*&b2Nm_Fi$RG@$Z5yD@yaYTmf2ZuvBMk+h06mbXe5Wisp(Hxl9rvu$^EHd#uVcK z7%iO5ja*=5)x(ce^i4u-zHmWWBZc$V1Ai(;ixNt>R3a8kXJ3CEj>;e55Ar~`we0|-eL$&ukFbC3y zqAPk7_kfigex7F|&fPsuQ;m%uBhZCN3xpib0jaI_@}x`-Wc(#>K{8l+II~j}wpPbyDuND@;6c0O`vgIQCtPjttU&dmIgn z(O2-!1;>Mk#Mh7)2Yc=Qs$;-B3Gwk72~NBcpj^+;(D%)b?PI$Vsu~%@@W@>Mx@)BX2d7~=AT$U~%NrN!YdpL|VJ9;KP{7Dt_!8G?VNc{LB+3PMMUTgSbiIl-Eg6g}s%NGqX<;$EM-j}|BvdhNR%<@hY+u|wrV#XcN zcN_{9;W=WE5GB|ar8u~kJEQx>51#c5xt&MELY#kpk&Im<+DY9jo?qKbyF_CA)*VR#4$uBHu&NdGUh?L#Mg+{z0);E z^FMh2cbXMq*x#3q?v7fh#tPQ350o{bG|(aFb2Rx5LP}-&&?}FDJ1t>r@ebhszx>#3 z4rmn-14C%BkJ{zyd-=U>bMsCr2pJeaE+l`qoxiK_2!R0$AMH=^?&V()n0`X&3dOkq zxHjl*5Em104u)|HVVjGe37(|JOrU~Nt2-+V#OME@V6q0S)3V{EjUgdlZK-1WgoBD? zLiysX##BQhgsj%sZ>DKt?f7Zkr?)mZP<{UP`UT+Gq=r@lkf||VhxZo>J|(CJp6`CP zD*m#(L+oXUoDBtM(*d^-RS_9;%9^!NGkLm_13#ss*@MjoB?f%>DaD>h{ zch*2s>vR(d4gVH$9=ImlSn-}H-rTJTHBKU%)=y8hy+&~^-5E@|F>uu>g}jIg_&~lV z4B<+o1fnjn2cBLie`bzLE4cu(lVY?3Iuj1Iu`wn2IkXl5F15!PAE0jPD*+n}%>zy{ zxlBHp)T1D_0GwtUwovGv7C^zac-ty6EsTnd0 z)U)mKXXt?3SAOdna{B>!NtDzyed3FV6b5h~qL~-Fn~=g39ugXY;sP&9crFCf1o~(( zs}qlGUJ(t4_{n^Km6Ez~Z4`fDX_Phup+?O#O!io(5r%KM21H!<^gdKPx$mJ{!M{QN{L z&v+A=_UYT%oiDqTeIHCxU}AUa{y_7QMHm7Sj;w)#$y7ATa9Y89TCTM+a?#_(!^>5o zq%(oek8&l_(IyY+Q5t^D;-3hIT}mJ%y>%QM@-5U8x!fwbgT!X$CyW(}LyJV@*gFZl z%X(>)&K7rMMgY^b^ypc3$%JQNoVzsJod1POmmXYt779Bb7q#3e-J|m=ehLfZe@(j< zMV+RM+$7hXNhf69OC8izawowi+Dcpk1t!{p1pUSR03A;0-+bK@;ig#63j2pry^+9R@3M%>=nHoE>H_#9ypK#?%Xm2!!W#H0R%P?R69Jqn-ES7I<;SEo=)&GovN*uL}h1Tg$t}yC2AP(YT4-qT*r`TOWnn#g3^+4)U zJ!wpp&Sj>du?> z&oSrXf?CXp+;C`-at?@CJg32`yck{4&`0Wuk0EzTl((Bt0}Ys;6BD*%G+=_R((LE% zCuGntp1gPJ(~|PCe^X+@XLk9AatB;cG$#5pSj34iGD7>&6%w(~!T%yhM61hJgu5>b zF#lF;(^ZX2?vh$%zXd=eqYciNOpTeNdeGNx+V;R!OsqJ`!MtBgToPa}2v*3%$4nn$ z(?Zd>vJ;td#EbA)sM$<#YjNDmvgWmnoqKA;jIJq~1wF6h>J$n9AuA zBOC20?bF)dkZL9gh|eMs8i*gMm)_;p7nVK_!K?B#lyA^p+G;n}9 zvp$?R<8lhRPR6?V3zWHWg9Z(-=bRs&r^VwopTw3HTOVFN1C`Ude{l8Vu5jqhHvwo- zII7TN0xobXnNe6V+t>(2lXfoXhyOkG?&*$my3d(IFxp9Ng1uN{utzaQ0YTgoaYrNp zaLC|x)TZjZ%eTQ-Bk_Zdd8bTB(9Br`U?L(tSmna5c&UV$gbS+D&b$8xP73Oee}bbV z;-b)|?5|sNQh>XRmYnYg7~lDyzPW@(b9S`0|D^@|2iZL)Tq{L%$MYID3pypb5>% z|9C!T#Z)zO7+85;TpuaDM9bg8NFg55@855uJZv<74Z~;LdNuU)ENVD36&>dHF?{ik zA6iToJv|X(u@0nJ&a?eEGqX{Sj)lz*4HmamvZ0|Y`Li_GSgYIg-s!d5=Dme%Qel_FAq;o z8Fm6^Y|9=PY_hAGRNu zO~&D_7UeK7+cx9;%>Z5F7x z-@3IqdUAa@xx%-GL)x<3Nbam4Q|LLIk9mvV`*-}UEgaQ?P)A~m=T!Vqn2Phz@CqtNO>~{J?x9CD|OkxR?$z%y$t3=5kV+< zkTD;qSD+J~rA(`ll}n1y`%Yyf79G^9^-}PVPXHFtS^dtKA?^oT358%&Ke@ee%Y-bz zX1?~}*DX6=@+Bq9kCIZhI+F+Bn=Z~$53&3L z<}a;2a8KQo4cO&EIV`MjRR@C2dH1e1I=8rGX8Zd3l72(DIW^=y(^d|7VaumeM$#@% zwFRwPgXPuJsm8w@Xfj7Lo=hirO8_KnyK^RF4oh8zshn!tLD7{({^4{n5yL)ohy-a7 zc>>Q^_RMj$mz18!Aj@>ncdX01@D#@N0tg`~<}Lh(4n&`VH3e?pjdrx`74X9njyPV@ zgC3aN{Z(6}3;@QQ&(@YfWiU5oHv%IHfk$gLDr8;YRLnzAg!ht=_H$=Jagb1V=>C=E zfNYX^5D~bmciM&rfI5D!wI)wa)hjwR?POC)(+V*#=5Cxlw`xsCgcMLCjhLE%tb^*Ec7+-uh zNIPTr#D8f%z0*ybz%lF(gD~i#G|MDMFrDaSFgfIb(hn=L+6}8Js~R?RDAT4cZ$`}W z**l0{9*UT_45FN92Mx47nS>X=XlV?Do`n>+G*)*Uv-pXN*E}{3Ybq=$<{B~qqxOp& zUiSTZ)_%kB2^h%LrW&D*pH$GGf#5BGY9LIMIsglrF{sQV1R7zXM&O;xieP9rq`!wn z69d=Wk}eWNSRrDXP`=ij-I{q)h%t{7$sDY{KI)lQE?r_?E#w_K5+Aufk9(oXV6G5P zNXmxUMVrX#s(i0Cxk8<+EYe>>TggM*##IjiemST#`>SyEYb4T*=KliYwUK0nbyKxZ zRJAGQ(iYf6!Dv6diz2W-&<|7ax(X!^jg-knwz{)#2C0CdU~6h#S;B24CEx$k=GP@4 zz4u&J;rKwz-1~=BHlWs?d|(Q5r)eF{o9+XQ1quc;{Na^aRWYo1v&MJe8R7p4Ns$*J z0|&~oiPPWgoe2TC5kpRKJgIj+0wpFn&yOTpV|$(KhY#fA6XZRD%7NtPm~4to5BVqd z`rQYvYx1&shk^-uNqA0??ncY?Bc88ItgN;IEs2MlXbxCkv^&eCOncg9&@xIL>B?nb z_@gZU)oLHjyyiRa;nq3t;J!vADlwga$nS+BnTfnF(*%|%D&T*KV>JLx14`W{Cg(=r z`X;~(x-!jTyK*iiwaS^CF~h)i57-U~li}lH{q*IqFR1AgfSt*(?>#yhM|p$p@)tem z599f8g1*RdAV!&rSkh8jjH|0WV=C@ByJuXMp$H_yYP91S>D`*z7`VO0GAwWbo$=Da zHPiNpUG?hKJI)|?&JIo2olF*JMSnv0Beou=+!u8z|4-L>G;rcDTla|of&A`|zWy&J z^xY>HmSZ8nA_xF|4^9IA)AvNqoE)C2s*>BGs`8(|t6PMHz;0-FD4Uvj6+pc*rUm8# zhAn&(BUC}^rdYmsz4J1Kkgp4~wY4Y6Z10w&A zDkXUmgY~p$&jd7K?WDN2!rWFA&v^443l#{}H*Vbc@b%S*$%luCue=ykxIYum}euxihP#MNG!w-e_2sy)NZlDkj zD1518ihuFd=06I?NYHhCp8u8SEbf@lX!KfLnjw~VdV0T4_PstEMvh3u$jvo&98Q>p zgsI?+X!gYKF1`o+7&$C(Cz1%0vPDsBdHU{4;9LT54?&33*YbuN*z?J#%B&_|VG5kv z>iu~bRk_S^rTXVfunGd*`_~CG*Sw8d(}3ZcA-^GwrdgQZLWKW#%184usAU~;n{7B3 zDN=}%LE|@5=Yw}BI^%LL%aHhM7w`p>l8h=iZBF??fpz5j@?YI(uY(72)3*UD!%*G$ zS){lXtP(TrN~;x|ky)>J{pP2{M0p{Lz-VZ6xfT z_>lM|)I}*I4j(c90?bC zA!^n_CXavK!dI^cBQQ)kK_R0ZA5y>Z75fhy_{4fqNfJL@mOH@Ee$2`Q8Lpum;*DHD zu_l?8#&&9_o~7qG1|gJ#is*sYJHY|yk#MrHFq$B1fF9j1H1Es2N{~;fn9%qCTH@~g z_$${Rq18YeS_t2HRyMr3+9dVh)+yg^*8Y$_i z1=mg)`-G=TED~O1Ed@y7Xizh~wiqg-<-x+QxU^K%yi8Z_XSk5>WeqWftI!_KA3D$? zw=Si{XqXzc6yh4px;qfv?O-G_TvfPnNyW7N`JK&!88>@?ax>|C2WJo%ZtA(zoy0Qn z_q2VoZY-BfhtU#-y9Z;kq)M1K{L#2}w#$|sI^C#%Y%UZZ?JO@y=t-D-&1Us|#@d;W~TKQG^2B zLvKss5j~&mZK`~3{+%6&9dbxZAlCG#V5;?zj|5K$u9dZE;SA(opr5c>;y?q%_Zu<% zacWXlifmO|;IRq(xrul%&AW9ixCAg1pl=jhh~gp@x(l<`L;dD^+pw`df}~i-s8JZsXQv?vW$YkMRO)QwS)&Fw9@+Z-%(f0aqj+Q`Z-H| z8AiW&F}uL^E05QU(ABkn|0&gm>gFqDUy>!%1aU_Vx=5>>!}+4d)Wx;Z9X$0NPbXOi zC)JURhU82K2eUAOd7)nS=C?AryghJ=nU#d}hp0=WQ)dm^iQY=(A z`)-)k$l5r8jIfBTrQnE;0t-pIwqmXVWo0YL-u!I);p-==;-?C{L*%OKTJQ_8iAZS3 zEz_bVc=2Q#E}X2F5dfFyIEsF8dfffu`SaKZ55Ar}9r`Ix5+msgarO4CTWitfWv*z~ zZ_oWzKVIw8EX+92IsM6#dt|HuN1Trz7BYfRkmT7>E%f=`UDXHGq-?K~hJ|k6Ma%9g z;kH0C0+`6mMab33$x3p|Nc=+51DX)$psDjaiG!?wUW{Li8MD=L9`@tdzN)e^Ru9Q+ zha*K74V!>2WoA^`R=!IiYYR=6iD;kNFJjksRJz18$ut66@B}OpiTucnnVx&2{S>*d z!VPYS*iVx%XB-g5xb2fVx!Tg#{-r~4pZO|kJ7sbM9E%$Xb56}eA>Bf%;M$A*G%ZT_ zgz8^Mfyx+DTc(GC4t48RmkQz@uPB{214*h^k*TR^EdP@zcVrOqHT;w>CIUPk(e@J# zjF$0~b(THtL(A8Ha?iFa;}%Nk-bv!Mh!80#=JB*Y?XczoBFuDt%de2k zr|3@rp^qH!qyyDOQ0S4sB0>axWdkNOlCMDvE?+q&=8e}Kn(=Zd-F{}R))-hifBH36 zk>dn2BX@K&Sk1g*HF#4Nvt{wSOa^5YG5`U;E**rBg0?MV5wT!f1$8lQ8QseT{$x<7 zj2!~23i_zoPsCnE2IN7QNBqd)LCD+S8JHGDftwY&#xPOyTC*|2@NG|3pD9gfzWcUTE3!r z5(>bT>Ty5l%=ARr3Cqt7_b!Y+HZJ52kbCtft^}yxMjW=LN5A2itAymT2@g%InU}^0 zT@M}|boT)=!IoW;w>5sbXJ4hc1-|LNXEE2}~#GAuVMhBZ#Son5pO4)7Pk!`t48^L54r1s>$P_UU%;s7+o6y=Ec$qKkC{{NK9qToN!8~Fq z1t&n>YgF>&Vq=uN)inToXSg`xTO*~p$kdp|h*nJ40R+L`&-mRPX?jI>17O|=`TX3S z=X;c`!=i>$pmkn<1XCN3sjbXR5TAv-&6a$ZWJPEiN-+)#iikZ*e+C|%B$taSQSHP~ zotkX?uM$pQHia~Q49k^@g3LdXYw`d3(s+;K0V>G%H3lN=9kH(~Afm(y!oTx5s^2{YXk&CrghY zyJ`nHkzGiyPIiuCSpW#~!{08%$h#m(Q*e@!m8x&wz8(H?VqgkmGfz&u(1@9{!~;TE zw3GEWwza>L#Cd*(u;S7P;KPFq>nO;aqU@wmfg{oC3JJSDHXK6Y5l7(~V>taxszly6%!5lxmli7&JL1L}8(FLZR?S`Ty4U7L6GOt+1-2k_m?OC&QsZl#fH#33Wmp^hQ6FSu#2Z4~&v*z^hc0@cx;AI1j|Y&U0X zAYh`DwlJs71}2ec8#L`;h^Ga+Oy_GGM|9)|i48Vi7*;}0J6{wRBF>;+HZt)#HVs-! z?ig5u=TH^ww|n4Dm);p(NlIQ;*%8Ky4T(WzIfr=+i*Nc5_otd>90XFj4MqQ2*G?XC z1gZBKSjxtxN|(;b+nIhz_Sh_IRIR9SWs=7rt_iHl{f7=k{x+=>J^d1P^?6b6k7SM5 z^t+*~TA{G1cU~s1R4^|}S)ZWU>|N5Lz(^YNpKWHU!6!XgR$hiDtCj~4V0>MMBFuV- zmLll2ytAnlNZS}Lx$c_=KPmo%1_(UsMY<3ykc!HDkjccr>-g=}D*lt7N5qo-pOV12 z%GG?sl`GFVS7L*gL`0_~R+fvuYINo6FgPVrDInYEvT-6&TG~=xbWOMTGPYa0TqThv zF-DYt$$1v%In+|=>t{vnp3r0buS;(Ex?g+}UF-sna2wN@f{2+bgWn|TI2KUuoS^Q( zxI{%Rr%Qil-RzbN@PRESBVptW36D#k|{^C^s( zD0%>tK^B}sbOG7ZtTID)O|2z01(W8WB@Aahu_a~#6&n8OaUM}ta5Ju7-SZJF85MAh zOIZVsWz=Polmv~mBg)<#v~l8JLqBTnBx{jmIGT|$b-c>Qkr-zgQ_f}_c@JX2J2%qs zm+ms+Xc6RAN{E>=y^SM=vnsKs!HeU!LSvZK$CLVpq$@~f&_3hezl06Puc<6JKn2Mt z2(4*j`uHX$C+5>=am4OXnhZGeqf#6hVUh|4Up9!LZmu=`j{Z}o-ZF$H!1QWi$Hn6x z9uN8FvE%lr$>1QKYa|r3gJUl&DbDLCxEu_@gFe5q!jx9_ON;jk6vY#cS;$5)bUb5GMvm#hRz{%KchT} zTf&0_!FIcpQ5|i_q_+`af9U>N8m}mWv z%)?+(LS=_nc`JJ$O`xQ6;z^B_RfMvHbZECCDJEamDLA`tCa66G#%+AucZ3K+cF5k) zhgRQL%H`DWKc zEf)9y_vKtW8c$)rI6}#}EIik8~wiI_QO2=J8!? zm`o{-3wlsCup6^B6%&2T7z&(Az05*h_am5z%%5!Fzkk1`9U*FkkhTN+EtsE@ZvTkV zfm^JRW}r^-3=m|ret6`Tb|^^@PgPepWLcRX&UzJ_|0aAx z-Bz2=U$jwv-hRiaJ~~UIb<+2@X=UTrL+!${Z}TQBzj$v}ykfmd?~ugjbNl#ctF;V! zrv0lj=WC_$OU13nWozbH`X6vQs=v&5L+asQ!@Gb+|1*3s?_KD$uxqVi|CP$NAEVw; zsjyJU&a%wjK7LDWwMdyoKLpAEdqx0g z($Wa_OlcB3ILmn(w6eUV!s;ecT46r~ZAL{*(vaNUUtwu{Z#uoqPnZJlW&0P6z~wvh z!>7s=R#r&Cdz|0L#gi^b{)i0$H$dHR1PgRgG04h>i^U_Tz_nIBe>85)D0n}R&}%6` zaf=b1UtE(niDelLDdD!W`(1N~IN1t^g&5pw)m@KFz7QYw?u692?6Cli6Wt;@7{9f7 z953;6AMI&s(OIuu6Aq)Cc*Y_csI({l(%09IBRiRet2Sw;xA2gDkX<|9`r`iKQu?_k z;?8mHGATHy!WvMX3|_Ui9TR`6?i@b7s70w( z-f60Agg0J)@M2T(}hMf_y9RedUL%O!SEf}6PzaP zY)$2U5#z2re5ntF5?Qq0Td6&sJED$Y&$9Bl1u?rxpP_WDH)j+cE|r-q{?tM*M{mq0 zN!2r-XmR)j(;X6mEV1K}b@x@NTT9La9Z>hPUuW+>fWs31GbV+HK6G?}jUs+FBC0{% zTEBV;)}@4Q?OOE`$u*i@w7Ioz&r_esY)95i(_yS_WgiIerIJhBZ^Fa#qF#ANK_YZ7 z3W7BwvWPi?dZL`2FxX-BY||sAr+Fdo#hIA$sN0GH(FsUj$2XD2a!09IH-1Q>jIB@( z-nWqwhyM2+kV^esySQRCABpIj$o~li7ph$j->4Y;>?hR#kbgT#Q0CIIHocr?Mt@Rx zn~#q=p9Wx0j?;_~^KmmMi3Bd=u}GM4Db8sC`JwmBH9jHU^l_pVBtnfti+3h%Ih z`-?LGfEsWsm5&9=c+;(>Jcje=UuVCVuPaE)W8 zP%gAi-?*q~rSIN(A;*dD5=%QK-QUBbBii#~Y89;a>PH2o$hLl~E>#KilEBYSi15Y3 zm&lM@P|mY>-go@(PUbCF1C2oY>56uW$|W_^84Q6G+91%ZyYRWoZtXgCL%CVAq{#*q z+acGDyE&g1hcHJ>Q<*|KWPfV>m3JYxiZ;BP(*&T#3qZ8Y#oP212X8aBZfXU zGxBwg5u`5=)q3VF4-9{B7uAHH%uzFc$)RdyP%Z{?wi_!!bEG6Y9^X|fQRpEuDg4goT*M3872sNg2g@sk>-?YOdU*S9|3}f41Ix_^|QQr%yc_?mYEe zhqc2rx)%`oiIz;hJvnDhMVBJ{)}>d(NYIjV` z6r*@%z1UQF6HKje0Ib*1`goV_K7WX@jZ-mG*!z8vaTI19ut6q^{D_a4K!uqGnqir` zfwL;L0+{3DlrnY;j2Jt?VhHc&9abZW$bT$_$wSURG>6ldPcS%k#plWs)v|Y|W|0jk#L2Nd-?gfD_POlc3%tz&>0#v-xpx+iK&OKb5W9%Re`*A}y+dI~n)>Vz zTNTlu65oT?ZlPEdCnM*=`#t}8u=C@Z_YCE%A<7Fk?1K*8N%~Cu8sTbOXDn=U3*A;J z8(JFY`=AB|uaM!605%4d#a)q*9qYSQ4Ss;3idrY9v&LODDtbYtVpgQW`b6e#qMp6! zJJr$b>_52dPM+Bn2^d{FA^2+fHNdV7Vqn(*{j#5%|q)G@cBpNeJ3@2lsq+e2w*ES zXZjGccGCoUud&L}c5IYO87bL@#%Awu_5R1RU}PJD4wD)3x^7=w>pAzZ@muoam~l* zyfV9ThE95x+o=LN?8ecRrOSl400U${TtG2!iHst>vh+?oE&w&B40c%W>d?H^Ai8-8 zhtSAmb^7x2&+PQ1tVL5IK7e+52c5mA8o=6@H!N)w!{2~J%UkQ4kVWqS$wdhf!n`T| z_d9~9B@s1rB(!)?LkR^67*0+)c-W`xt}DUc3xfLM;4cH!-1B zwu(u`%mqiSC}YM}rmBBjTsf1V5r zugB!0eWF;MA!9u-f7bE6aPuc`wQ43Gm%V_*)jE_lT@p@4(saoT--XMC8OiU@lDFaGPj5WMe__@ljnvod5Tt1J-Ve9N(Qc8e$A@c9}^u&9XiY>6b`TSxNa8KZ~K^y3$cCrWjb7v z5hkOJ>)nS41N%n=)nabO5HFZM@5Sz4zkgFA>|N_e-y#lnpHTk_--)^-Z{Tu`JD+9C z@_0GnhwHeyTURQ9OUtQvFM*_;?XPWc-idDe|pUF4NfW-R2ipCUFJdF^)y>z00H&I->wScY0oe@mV&=tJOY zh;h?^<+&CS7Gib^|1S+OJ_4JDr~qY8+mC~M;t)#a1LtlvyghHT7SvtJhWbt;j9=JO zUoddLxbn?V@U@YzzP^9=u0Q;MdCTmq#4VX(xmr`AqvNk9{%_*+%x+T4MNhZUtLt`? zFYt?^39hHqAs>U;#+`S{>uxx@#`mr1dQ*o=Q!%ZVvYkJ^~$wtiOjZ% z9WsxE4M`P#;zg5U^tz(A6#S?28?T?h_cB0}%%8lkpI=o)zH7jSR^2jsLg|*uQbvMM zFR0Egcl<^AqjrprZN0#GE5!lL@WT=Oxh|tUvpI4B>fHz#))-C5ane0It0$c>#`B@p z4s22sc>}^o4=~}qr@mY+0uswydiB7$1_@?*8p*pfcW@H$0>T>Ioz4y(vv?KHyYvlk zSo|@VxYfE{(YfkeA;Bb4d`*OiPr8!CL(op-uq%BVsDi-L2BoSj79+TJ_a*KLMHxQE znLd$ymA8>+a;Os93|STYK}Yo8l!UUWtfqv&L7eF>1PQvredl(Bbi3MP(LUn`XLKi{ zA?2Pl@1kO^g9FV%Jd?}HEW)RD898$Ph9B^I#MprfG_%`>+`{V)Mo6%NxjeL7+#D%Q zfXPJ}v@%*!4OLg-z6CBm@NV*c^$rU-1Mwe_t|O;pz?)U?w~)vLtOk@7OrcNYZRLaP zs}))dCpH!{qm2EsMD^>lX0XxvsV<8n)qHNh$Ie0{;>psm6DRhbYGwoJXZF$5GfF9N z;UByy#zMWSY}g`R1Sq5@)J3rdfYh$awz5OV7^^fk`GE1iLsqon6*hWL#bOrX7brk%u5y%<}Vo03L7@g$~1)9iXo9a0K~Z zt|+lL;2bv?4A-63bi?cJ8X>BJKA689q4Jg~9ZygPYzo$4uv=)d`itoywtJ1=Z?ZEE zY$3%CH7t}3AsGp9Lk;$*Z0MV1 z((+-T&3VfxcdBK0<~7}Et4?HjpAc>uz_b`>(m|xz>4A<-GV%)Q7xwMZ0hM!JV~zEn zK-HGIWeEE?qAUK)Ww2gr>_I z37L`*rARWAQi%wm%u^9@RmfDPibNqKQ}5>}>$=zdyw6|oZm(@^+ZwK=e!uVcJda`D z_hUbDokK^o6QK+_OP)22eNZZbQgIR@-A+DT*|wz$8VhWAhBmE5?P8M^`u+QI@ABMb ztp<6WO4z!GdY~V=8A}zWWdZWKW+b9KrKLXNqm@2*Y@Zf4>+Wzejp~8io}DqLOIA>8 zocH>wH>z1BV3>IN2mwb@6B7wgvj=-;aHJWtYp~UP9W9DL;v&ow>s7{2XL6&@dX_m} zyx3iDwz+w7fdjD1=^U8|gl`s=9mByhoO0&O$6Ns%x})bXB?a-&lCqyRL0urM zNE06p(L$b2oz|`Q7^XpXj(^{!<%yAzaSz@#+}3N8x#^EA#9z#t+m)|`s1l=AnaDwY zA@V!%`W3-8${B^K9lYSI=DcqirC^({EQ0sNc0w%KY1rhG%W8l><(DcWxD7nr-6d@S zwwWlo4t`no`|H?GoiLGQX9UER$iTD5Pjf7Q;Je0?+6+)14-TnKvv9@}GVTh#S;;+vmdH2fHF=Fy@;DL*5Y?5untVsJO zgVmq0Pn~-*wkz6_oEfXPB522pT9Gu-Eq2$)8=*8@f?D7{@YJ+}I57z?LWwvW20rz& za$z`P2p`3o3(ywe(KaNjRg&FS(6reIZ>ZLRdT5d=1kMX&o#0xYUbIo4)qj4OoEyE# zm{9vV%*oWYDJ%xwo101eGoi#&M%4zKlmSE_VA*yg2EhDGYs5r?S&8cypsz?5NQ?^0 z&m|9;IyKxa=AKAMDSl+0N5*7mP3_4ELf;(E8F^#MZi6|ZlMsa>{rKbQ$H2%a_)+uA z8@7(Kt!O&uuJ|HI{wLgNZ>vXEAzx6dx>gkzpW8{y6?mPG=^OxM+z>T)*8_eHd&Fzo zO_<*jvpJigm~EQOo~dHUjZcH@;A?%Mz;3_yEb!g63BZwqaHv;_71c>ZO zsC1BJO@FN)-#%=n*V_MZ3f_}e)W66RzNQiCBa^|9cx(fs71l4N9C-f8-hVK-BEV7DZ zZnCf9`T3*H;c`v$8(O5k-Smg{j$1ND0Rk_k{(RQQ0m;is+XB}5aDl`##J7pTM!`H0 zN#@=QQ6UvF>^Okxs2aieT!$w=8;>H?8HbEo;4H$+ZeeZe8!}BtoiJrPDTy=9LsC?j zR_rN@mk7-=+Ktnf3=AL`lmHCc{hD_|WA2}j)O`7rxQD#w#jBr_MrBqU!0^r5w^7Sz z*1rSZ3UYk*+_{nJi#Xll%}8=K^Y%W!1_lex$R7Jvk&9Pz0*l@>7HuHWSM|v>3jpFM z#xN~U0b(CoG3*>wwdjDAR03Z*gqUVK8LD;6P&rxi9Ss+$tEtW6O;bdf0DOuE4WiG@?Y>zY z6P85ET>y6W>$siHiMQ3mud%j3`aIPJ`m3_9@%BIz~onf_95y0+8!k zZQQLKG$kPQWn`t5np)At)n`uHF5I!l(omAyhTYWUQo2(?v=r`2i1-&DevBe85=yhD z0ZzLOgpg!cS>}9Gh4V*USA5Q|M_X1~L3V^ZOqjNr{}M^wl5`c}8ha|E_1NmK?^LCufLIVN$hS$)I&xdY_KyG)lqPpskU6456>|_cix~o)>FDSdw>zI_ z6w=^oFp(0`zvP4N)q&)v%gdDUw9qPK-FfgBK~Ga3RNYhU#pjYLvfA+bx(Utqo@yQ7I&2Ptphw(3@ewSwdAH zy^>;&T&=y;lW%VP`^z}W6Tf*X&6I5dwVFSUAF`fQA`K%cBE_Cle1(_NepkzFQx{P> zeS~;vcuyv9uV2^B-T2QK}R42%pd()Mse&GdBoBr!9BLaKfUB5q~thJq4ME;E?^QyUp+B z3sW1b?34tO4m<%W%ia^q$T-ruS?h&}4{C&^qje?#k`M&c2rmTxNfp^ImGZ_td!`&} zU8|rk8HL_atR8}L7M?^MN98G+u$sex3WEFIIC$N6L=%D0NObxciRhEDhl}>n$~yMU zwd>`jqqX!#8~<7{no$8{4oq#NKk$YK1#QukvkqK5>)F|bQldT0)}2T^mTOFlGz$c+ zsIBXqd}bD9ucQPkCNB$z1wZbElvh|X&WJd!2Boq>eKsP-R(;(xK+YO!v%_qAMd`;2BvT*6s@d z{1c)Z3(lT19R#vWqj@ZMO0r`wi1-+!*n{!_*$)F*tKa?jz$_=j-3h%TC&VkOsnz2a zE9<57Ivtn+uR0R^22@OZ;z3B0p1VRr{Xi8Qmv`^oTa`YX5DG|2+xWHWbNyq1P@igCvu+It-FjQicf?c} z|9IO0AW{t55HJGsTGjylllcLnCSy!VQTp^lvgm`=O)f9qMkUi%h}eKaab(+UrZ=P< zB-Qk(dURR5(%?1H{?byWl(H5?QiLs+QQ=_v1@5rySy9_Ja`b3(+(m$PW+68y1img8 z3Zq^7X3DBASSCnSTx;lM2&LU`DiBgOiXK}Jt47F?;`Szb_23(iqk_QyqAf&FRw%eB zCfIdI*nJi(emoK>A-T%qlr27c9k37yEGkKnA`1)N$cDdwetDL|!fr(5g4xrv)!3p} zE+8!_8R00&T1(Qpb?r*1Sofe%qFj(ig}fOq++jH@s@u}JV;(-@?Pj})(t1Y1MzRj4y zAVNXmi^6Mh+LR<0rJ+qfcQMt9)EcE?CW(5jrYQR8%00vGVKKlT0-Qj9EholU#o6i! zOoa$UTtB1qk-nty2Bm(jIeb@d4kUf@OE6H&aliMg(i(7=MeM5UQJO}N_Ld$^w}A+B z(IaGw{;~}v+%%rwT@L0y^h8z3p?&Y(y{9!h%HtCG&#Db0Ol@6bDQgfML4fj-VO|jv z&{<}G_{hBH%8re7hjADM8)JP!Vh?V&y_S_kzLuLBXiXF7Vj>ZgyL%fVMr^fV;UFsQ&G%*ZYuU&fE#?y(c_9FKMDL+ zp{k{9lNbyv$cdph)flkU>htW6yW_^k?{wREk8<)|rxAJ+=(v?c3OIQ6^sKKkM?r9f zh}=_Se*1uJ+tNTvWhuigdtq3>;13`ls8W)=tvue>N4Eh045*Pun7s%(pbqQnMn1D( z)!~=$3Gqrki$fZL4fb}jGBwp%0|7$TKECj^If9^Cd3cKe0&i~xftE+BDe3)Ena;1_vdqPJg9dp@qz%zW7no^wA|{`uL2 zYs3%UV1BT=6bJiF-#HNzn53JR!dzNv|eT6}{3!JhKH6r{%q+a>fCkw}xwX~UZ3VRD`CY3XP zQ;(rov2AIjF|AN6+y%0rnhHvjodTSnox%MOv7~oH@iT{oW7l$W`er23V&EuoerApI z4R`YTU5YokT^G35uVD;lna`#Rr|Ku@JOSt4*MN0!p!EFW-X`Zd_dKA#S3sD*x|meJ ziZe8VapSfqeHxt{ovbJ~+XL<(_-i!l3K)@pID_8r01p7R*=Nnc4qA~xTSA;nn>A`X zuoa-)gO%>&339UPrryr9IBO8z9U71T&4T2Bkq=CVI%XuJ#5%~KsXAVpI>Aa|6pBEl zX;UAXu0m&HjHamOuTc*1LY@0;iwG*Bk{}OV;YR9AD+QV*_bSWHJ3e?Y<=zc~+eU!5 zTlU74zZPKv-2fJ{>Wo?9E9s~0C641u--kM8G$MS<`Y)wcA%=8>>yZJbyyg+eO!w68 zW6t!-0aEa{I;W>>v+yA05FFfVSO1#u4T`V20_!l+SnCnMU(6b>akw4E>qop z`AJ6&glf)hyq~H%Yh1AHeJOU3N(l9M--QgyC%?jNtnZMkZ=)i-4|4l)9`PsOm}Gl4 z>$ES%wAa$QKtH5g2fA4#lOR#K`Us$qKB~U!JC_#i3LIWmn{BxDu!)wvt1n)>I51#( zgo)DB^UL)I595H=qqLIUd^|ZKexc{^tJ{o!jM!z}g=4xeGAc5kR#JLk_C~fZ@}gl9 zhzA}=DXV)0#h3kcKV?ME3HkbTBv;__v(D%6vCw}|j_65gCc4o2WxM}{pf-0JV2Wq;lF zkvNXY)H|$&4GJ&UV`IQ3`HG@`<4d={v_FkA(UO=UYp^-ZlSIrRek71ai6gu2~CIOIiwK$DcxcJi7z_doJD8{ z2cgYt+JtHa44Ha8=L|4NHt1Db$x(BKOV-^e4$z*T^9|FO1Y65pqF8%;+x2(&vJj_srz1}^ z+v*qVB%UAAUC`fau#ga>(VT?g(R-KOQFEGex(2a&lQ#x_u+B0%Yten%N8+Pd(ddB7%&=kQcVYFb_ zdUrfhwy5{6&m3Uv)Z`OU`jlUSK3x1+GJwdS*3X19*j>(G9TEFrIbX7Z6DE5$0UW!X zJzyZBQeNf241Ky~#*!6$D9vbc7rzn27n8L7d0WU=gTe9u&>9knn>7o1(Hh&g(bQ|<^qn0gq8II|{ckf@EFAR~J! z=}G`#ZU8_@Ef|48W)@1Lj!qC=h}Z{|T$#F*RnKdw0N*^lW*%a>0S;bNu|a8!Vb3C7 zvcQV0DhuRj>~7C(?FWI#T|EuzR^PP#O# z6>YRoT9|M-iMU9nD84D*#*{Gze}JbXj3TpD?H;K#hfSG8_Fx!P%X8Ts!A&^)8E5>D z5k~D%kjUPMe0_1+;%*SdsxTx~9bR0~Pzrugm?25XO@z>X0SHr(a$|*KI7_zynGMre zK8wh?mI9ckFL0@X^nQR>P8ZWa&Nl2ZKX`?LnPybllz7LxNBQ&zsLrJ^fEkI1%RBT; z^qZte9HG=Ka;8k0G?UNNs*mfWi?+H5TV@L^L3xp{Pk(TO3nH%eRfpe9iNo)8g7TNf zt4~Iv;8%2gO3nXSAssJ5`)H#U%&S8xDLC(N5`>IX^m&juce?-BapM+#&bN?vicA2? z4E+mNdIPdZ@&aYzR}~%ATIi4gJw;%K_0LYjLyYQ5Zl(2d`{;03*I#7#&@MWjbL}_< zA}%LP%s#QpFLpis%7`%x2MCTrw^9^X{My6AN;-}IsTdVBb89x%<;l8l20%&SHd z_OJY=wzKQxpi+H6u}l@@!GL^2n${xVSb7YY;fQ^O0&OxPRNN#-kFgoMN*ZB^utet9 z@vgO0hjwXAjn-wx;fo??f?5-^+@Q3x$;mSPcpMJ2>fD9Oxf?D8Dd={XJxwj6>+XtX zU%qXcClePhw|SYGt}j^^fV;Wdg>51VX8mQm(&tc0klCOQn5KPds-EPl=qr1%_ytyr$Pz9THmpT_8rQAd9*uJX~5N01y9J=EHbk`mxG_&M8d zZ1l^p`^5mmr0M#_15DopQ-EQWrhtu|OgNvZrKsA5>SirxJz;9HR*@HVGDZ(AZ<%3u>GHk=*DM$oSKY2fYPz0VRnvHCYk)u#qOnLLu;uQ5=B$|K< z^$xIr1NB1cb3BP`vTuSv`wHW&BWfT3;+)CG?~=$#wFWXW3=1Pd8SQDZxlN|sA+Nx; z`2a|X)^px@Y#lxCfGqg)P_L$^r_WpnFnNUwdUJ@V>uH&zjZP!3qc3_hPeY&<;y53S z;fj+b;)?EeA&~m&WN%-x=6FIPQW9kvDyq0!4=i@a;Sl4tam?u_s;g-JB#1&SbSnBG zCz}^XBsQ3I!VqUAx*8K}>+Sja5@={naaeHO9tybef-~=+$*?B3z-;;Qvn7+rTMOYa zy+@4&xNHP)Jz`N;_(?1wQ%af6CB4psASJF8OmPMFYUhuQ4fni#-5P9!-Q%{bDBNS| zQePq&&)%A85E9gnLu2ElPy%!x@wrAN4pbz6HGm=2bgN|)JX+m6#-p&I7ZiEhNwFQ zh+&s!H4rmkX;)E%=LWp~5lmbnlD|aV5;*V>$i2WGRGE?G%XzyqkEe#-^kEPSYrcJj zlW;5&uTFRU^ZUE5cyq1OxzdNtUuKWx>l|U>X#mu-CU~}JOQ_U5ewR+bUs0^WX=BwX zXjAdyfrzfZ)%@U_*v@CfY5-*Q6~B5YarG&+;Si;Q4`UfG+b3mEyj$ZRz@N~reQmk zyp?s;j6AeK*fJ8f+NiEIt-+k28pDRc=qz-cA0e*K<21j z$jfV2wk*a&gPUtgSNNsvJ#@ITrw-k~*w3M)GdAPi)0B_(XO?^{v2j0n_K0QlRenoZ zK^_X33zdp%z(!1MgOM7+@64tgIg7jnbae}If;TCH%3zl#;pm2Hdr6t`@{dFA*^C># z8_hKZ1z&9gdrhPCY4J_rwxxR?*lFTmTdsA~`V+~vifTUQvdxjyedx_9eLJ52(U1Q9C&CY4mH6jb4 zkK~Slf))reGMUYgicIdGOV%KL-aO$s34959Vx zayA$0zg;=l_01jEaf&`4!g-^=SnKdA{@6ugWmB=!gBg)Wo*YKIffizxEDXW+f`q@G zgGtr%&d4P_05_t!`&arxuCp3WgTfIa5=a8~Bw3*P3+TgZ^Np;mW{7RBp`yW)sGIX0 z9=$9e6q%GulAZg%pRpaQdc~ocdM3r5XLt=XSm#(=;JCrCmSMR=n9mn$ou7G#e(+>b z@WECC`{1jZ3$epg?Z`HVp;c)8%|#|R;1`)lVctgexHbId-hWOBoW~U;0JMVC9~6!v zM}kK1O-@eEdnF7cK!D`rTlV5l53HMi+jpFxo&uN-$L$4;{Mayi%zCaW284|orr&A z1yzbYAOY4j8g#;6R$Y=@LautSvK`IWp%1J>ti?Z%oqnM|)YaEjt3^I+f~=6Z2TBid zgZ%zxwzsODtq+1ZUZFKL|GI=VmX*V!$Iha}os_b;vkatdb;bx+eBn3@Z@UGEOC4mK z(Ua|>ypcK0cCN4|W96~Ur8&j9z&SvyNO+~SllR}R=I~8*_DYS2>;iJ>712j{YHqGa z?!Jomk9&z;fZoBJTyPu>9*Yi5@7ZK;6g4p$u;7qit*-pJKPta~Mh8b9UqNLb`*iLh z-XK&6BAsX}rnCon0%CqJeKsS>zi~{pQLK1>@}6*Kx#e_}5^jm$U%mE|g<_nWFjQ_L zf^Sir(KSYZ;4|Q!U3@{t?$)s(O;)qf^)dZ*@91jMx#%BA_YCL6#^`qL1=V>ObZh|= zHx@Zhu>%%MaU`l=PF&ne=W=o70Le!sFC87_t1wJJZ*S`{MVHXkmN2K3Pl+q+bXeb4 z?2KaMB58VQFN*kDb?Ovf+_q(l)yW3Ia0W7aja%?+5{%b{z8t`XWps;G^>;1A(}Tt= z0%H;XM4`~mE!%beWQT%qU4QZZ;mK;BnFyZITrvT{@oTed(q}-r*ICUnl9x;9hwrJ{La7Hi|4u+(^p}Ub;99p4c8}WTN}#Cgnxh!*ebo zWycrMCg7um1?( z^*Cm%hH0yQf1SvVoKZc>&Lt-owTOA(WJnqxu_%xDNE~^D%Oi#B!CfoJV4BA~_kFjwM&CIq*ih?5nc)>0e{#Xj^maL0Uu+P!+6ocg>kM4!+qR9QOPs!XgCrtNv- z-%m>`$QL@)g!J58E>E^bYYY=WF2iFyi|@xB92t&t6T4B`XL!=o-%pscwbp!3r<%M5Vgm$M@c{gY8gCJdaBC6Lk5c2Fn zes{JY2Llk=fZ)F1$3+?X6Z;P^>s$7c4`lEL2}bfowzkjNDo-n)w;|K_d6kLW>K@V= z#8>co`CL&yjd9<~jZDSz6M%p_J*;FcM?mXBmP?Wtbk`b6g11f?wZ;RT+gR~L7>@;kdWftDM;zacG$EVW9}F7Cupi@vpcW(B_5xRjLEF*o zf~l!j)eDrgA_@i8)GWJ$N{oFpw?6$)2a9qJa<67DMlIS3?1JK^Csugpl}6Lu)egae zfkPue9|tp~K;1)TK6#$9LXXL{BQd(02Opi#fLsD8IMHKvycikL8503_#ILvra!%8W z#rE-heX@v<%Jf|ON$jmhm*4W4AUq8h5FXG_jQ%lXq6j_>oH)QFdc?H z!}9`Gzggi1rPBq9U)VJWQd*|Z!?l}WkOjurhtc3;D#Q;t^7fS3&6JJIl7=zeqf& z6`1eCaltooh{IKi7-R2A)mh2dyB{lJ8jT!zTjO~tnSt8&Zl)Uu!_pfR6fa-A*#7#b zvT|mnGl}pzX@OHgxJPN-6t{ura<--tvGc@jG={l z1hhux+_*?pDkCTidz(hNMp((9)Q!GXMo9{J-OV)^3@A~@-4nyJ;HSA5{Hc!n?{q%Ix3rE&Bw7Z! z3EPntkNr=wf<&4kO4g96&bX8erlT-QYg2>OH?q&2jTs$1t+*Ft(Ot#q^Fkpn;Usj%_L49P_7{NpKN^G)IqDxp zuP=ls)xV(e78bX%y?Iyb2>(P6Bz}zu|K1dZ;;;=7dL*j2Teog91t~@A=h`(cKQ%2v z6?Yt!s*|Dmt@1DsVK~Mv6~;(g+E8U|cn1H(i1!)8b9$u6CcsknmcFOLkm9w5gnwv^ z;F2&|YedNQ+Ds+s=kJU3P{Y`}6`za17PO_O2n zvdC=L1;MSUQN?JSC-y&Se6dWHqH#)mSxOFNvr zu$Hn-$Fo8GY?Q5m6zK5>W+c+=3(|OdAp(Jv8FNp?9<}Ot`_ro=uAlAs@q8~zfK*}& zjrLj~VgZ*y5y(=!VTmXl_x13FuYuHx+P)9bMizDrWCgr(JppCTiVHLh)KowzYdJZV zF6Tn9$|3%WyGU-$<>yYmHZ*GrnABgT{1?arRQJu+6DKO*~wsZCOeC=5dX7t{Fq#F;Z`Af=r7zPIfC{4Cc7 zRUA{bQI>EE;Axyu6yIufxsNHk4IK>@ajK5J2V;a;II6Zq(Jfg_B&r&G8V1u$do+b zUT!E%!I`M_j?~Az@r?rQ>pwu6vTD^TcK-zA>!YMlC61U`q0@7JDn85BOKZUqu=q;q>v{F{ZZRkO#KcDUBI_ z604FFdzre#J1)iH5d(?LQjP}HZx1A%E5tP(izd#x+2Ws zSuvtN=-RuVuhfxXE zMr{es%)O}-7pp#y%p|GWNI2j!RYzOe#&#>e1eR2ZtBK(4aXa8g6cr+lzbfUv&UATs zkKsl*aNJ2oQa%wKs(N!-D$jFbaj1Iz4JKm(TZ~5cjNq*afF()^M0V1F4D)Sx>vZu< zMuNU``gJCr{~tne=J1-zA-Ywc3S3o&UbhDYMGklfeJca%XC~Z$_mI7qn!K}XdqZU2 zNObp8?ntCiIFRWiX7*Cma(RMw^xfT=^)A(wHWH$1v(LHh0_1_Dm2QNIo{{R~$f8u# z&852goI)M*67A29@Ti&!V!;K-1^Tsfps!!7uC%{(_mDvatS@{-hqA;yNGwRiPW~EX6JKQxEMtL3CvgM#Uc-|fE3yfe{D_BfS4lH+Bp!mt!C8C)Ak$lOD#Q!ls_LA9~2 zmZjfh^5p}WWaGt~!_h?*BWtgc>Qc~8zF7GaQH?%^lN#NAiYFSMIp(_SuOX&7BI`DL zCJ_;sT4DK5?Y>BP3LOvi?6sr4QRfyOyIa&(`j`+mR7EkVwsoAMa!1`_+j>M(iHN`* zHVb;J=i|K{L<5rwZ_6>G0tt>uW@1*>8yG{2;InqZ9Rs^z!D%^Sb_GXD7Z4!aRm$)Av`+Uo~mB&v|WtUu^7b4x?WK7DUVVea_2mv*zo( zT0Llu;-ERP6SLJVEH?e)bZYl$6Gn_)+`UvdDY>^|r^@>^JX#wra@)WwZgG33s4exL zaE)c`hc>V7T20S|zwhujL{22sJ0om~%eS|JC4>-}O~7L+KPVM+OC}B|3T}UtomW-3 zWXh6}9vU#2*D#9tzAwnnUzJ|j|2Q3{cUeY`b+qXL$7q#1zeby0PQorQGoJsl*nk`)DJhJ@x@8xs9*}Ki1Tc^S1%6YSv|FYVu zXn*k2_YFpeb6owTTK?@|c z4=7j~p;vpWphYNsGPz_8n{T3nO=EH}%hfexub2bT@~k5OORC+VEZ52!j~Ownm^;S( zTE_V6Kax-PGze;spDz7DN-+=0!C>+s3q!WQhVF@3nf3jBbnTVqrY}9$tDZNm5b5{) ze{xKSmQiE)vG6p$m|%%4HaS|q7m^d10D#vRWVZVfJ)>+QlI4L=>_MsE3^O6QnRlL^ zvWO&omCva?FO0DJ$fUgkpBF4sPXUuhU z^hJC28e(Ebp!+VJ$RHVu(JG{}S+J+0lzifP||o8I8SlEB-JbBCJ0h%OaJ&j0{WO@l&IqUsXB3!;i&d zuene7(YLMLQO;XkbTzenonE$UIQ3GU>(><@=+&69Lh*O5V)9hkZ3r7OcR@={9W&EK z$LgAA2Y5FfS$J`z^DiXx7 zEJi~&H7itd3$z51oM~aNk%Zz_8J1tauYxY_buzJuYNSxtO)GLOx(FNPX2cEJB2Ar7 zYHJ@pKHzz6%kwCTP^~_F8V}m&Y;&vLf_V-4JyM+er^dsQTB(g{boAC)cktk_l$cGW zdoFcv8-IFU=Apd<;8W)xm}tgvwe3l)0x3kyAteWo?EhMFsE?+M5&(}lk3)r}`fJE1 z^qL2O!JPx@)UGXpEx*m1cNlI1{UhiDinUrgsHsgLKJ_-rT6Jrfdo?l3J-o2)V>`X< zByCe=KfmQ$KjydupBTBqElW%DZLI}w6s!-qI=7np$+w`WK_k1bTWhJz`AG46Ej87A z+cD%Yez70%e30t=ufd#=a`0|Sy>}SQfyYG5sQDhDkHBf-K36RvZQZ9K(O`7;-5>e4 znxl0d>k+Su8(*@Fudsi~C}5AD?%-Pu`YUJ!mGCBfVy~u++IrHvL&qJ8P@hH3oD@FV zbkppvIKry7!_6NVQ=>iV+j<1mv=)~L&j$PCLp8;BSRC<1-UB+zao7s0a&yTFN9+Ut zdQi0?72W`X_c-M?X;nP4d$Pa*hDxR&jPOuRPz_+o1NxueE(w`FDL@H{HPi zOQa)@BX0Q5H?Tc2wIvT=4Z=mPFS39->{-KG_3f(PCAaU~v2s7QTi(NQS&~-GH+bAn z2vy!~RT~(R$OhEhGJUTeyQ0L|7XV7<_O$2E%NdsvQvq33sKDw8G0eWqq9X0*XXwXa zKZhZ&^ib`q92g;icReg#UFDanJ2-6a_U^%*{+kX>mEP4twVZmZ z*E$k-CDqa^=-sYdt(~rSCpYWXBi|#rdt%4vcOQQD;B}U~mp-7vQpHSAG5r5- zC^Ov8+C4NcsN`5sxW}X{&zvj_h9x>VL7}$FgsZHIkr0Tw1Nccs7%9bh%)~>{F5xn? z_vt^I{JsdIqZP$hKf9<`!#%4{_)M8H&cZ$@$ZT;NjZJCy4C~r;iJV##KHf9K?%<8n znraU9;|&M&P$d^k0F{5NllRCM5Zd$yPOJ+dqW@Mk!-v25x2mBQX5H!Jh}ef?kg_63 z*g_v-IsF`M!qQO8J;coe1+UBd=%`O$_MNtUTMSW43Q&MG@ z_~x!iHkq~o9Y_8w0u@xgW&i~;wGWhft6YO}U#PI+Hsdz=eHN@#%YiyGwEvtM{SC)l zb-(@oQZlH$0^sMouBk=J*v3%wfly}QDerQ@Jn$!7SXH?YGi%vb7KK_1Li|FIC$PzTI!l*N>*ownsykymHK0qrGL% zt}W>g)L(OElMkP2W~M9+ce8n=&D=^mJvXqtE~{X^?=uSo>PgT;!}@-vi{8;Bfnw`V zr$j>e)PxcVqU8TlBE6v?q-I+uLOc-Opj1KkrJX~R^q1@%F}k}Q`f^GvLGcDC`svQ7 z0#67?Q~R~tQg6mB{g?BuCD=TCUEKHV(tFLay&dsBeR`lg-HLuTfTvo?_W3T`L(BFs zC$sZ`+vE>h()+O2Cvt7suZl(0qK9W-LDixMyfUcS@ugKdv2#APtY{bcWW%DzTByH9 zDGguF%Msf+QI~sP0-CUg2dFqv0r@CNIQTok$2rr);A(x=&JZul!>cg zmh8a-`K3{>23qJEWSRk)%|D6u!&|i;`SiiG8G>NpMSu@4oDP>mLIgC4m}}fBKB72; z8z^EmL#XjHFPkY_R0Xwzm_gxxHKp&}YZvy`E`Iam-Gw0C{u4Gg-aq`+_*31^4-dFO z`}(E-Y8&Jbl$}|&m*-5Z__j)`J5~h;W|&-Dp5q%f`L^?fdDjygh0qNRLYvHSBy3Q2 z-ue)@J25F~1N(qM6l7vNd1^w;h?C3E@k=ab#oVsN7qE4P00bWqXFqLi?GfrR*1DqX zkcE^@zWd!gAW(uhS#4-LC}r5*W&vh9x_zpmT2REG zg!#8GMWbWJi0=y163VSxcX77j+RNrCL8oB)1HF$4|IS3C2^oJ;>+Z@nJLLmL%3)Dz zP-xQKd{%*Bm*vR?g8~mt*!=xZ%%u0mQEL(>tJO6Tcfms&ojP~oLx>t`;)Ruu4%uZr zv5vOAQ1$%$Q;3|{VlhDg)Y*aA=rLsvu=e3p@-GOM>~X=nH?wz@3D88$=0{Z2)!T9F zBUzYjI?b@ah>z00{51U>U9q&vo{e_<>57!ZU)M%OY|MY1w(sIFTP3wopR~}SJA3xI zo7?=x$GVL=-r08JQ<+wNYU4>~O6Fp)@Ycx1;M6kWQZsk84?%WgpI9?h(CeAg(Db{p zoGqm`#^_8IVEZB7zTksSPP$kU?kk*^6;+Q{EsUttl%3PJAYyC)fgH4~W73HeqIME! zpDxYf;yu9!II)+XO!g{Yuje4KlnSH0vTqebPy!}{q<6NKn@AdKwo~VV)$LluA zUE0CFNX-mZ-TVisDJT%X*L5GfI{Rx;@oYq%FHRd6d0;#RgKzZY#wo}bDPoAc9<9-t zsLN-p$+m3~%jB8-qe?6smYB`C|+#lfK#SDhG8I`QV@DN|0$B|3r7y2D>& zm2ECJv!@CvgG&Za7L9TZMnnghRjfv~B(4DT9Ua(T@wC{?#*_o{iCKzU50*&)z#|$v z>l<|@n+DI74-T2AEQLLN)d9<`HLq(AvAuH3#&?^G+O>3(+DBW!puQ?xsrss!gU_8> z+b16g9yVDp3NX8Mfq^zdFRAFQF?Jo6akxhJgU5m%`i4#W-0h%to2S+cTs7v}gK^be zOGEsTi$nhdYk^Z33qBhl74lkr={w3iv3lm|RhjF77E8Gm-U`?ME`lP~sk8C?dP`Fs z4Kmb?J5bm==BR$G*+(C! zw>|iv9-T1k=!B8e%a2g#icO733v#SC#jY1{tJP-a_$k9b0f1vAz{YS{EebTPOe3dc zZ(lSoMp<=Y>6r-2IIo`{yBynW)KaOGJ3isUg~}TQp~$Nwl$SVliteIGJ97dS$SZ?_ ze@7*7roC`IHq)uf51G^nc{d8HIV{YPt|0CS%6m#_FaEjYd+#1rrbfhan&$2hn<&H= zk9Xg#^UChGN*stGa#p}uWh}r~a#A}pkhy8>1;~sL_RRS&oy9n4!&#+=>BcTES zdjboVMCxjR$b?N9ER{|^cVi%*=wzga(JNf-JAHMI!T8uST5T|`IE zNhnk{Q%3V7pN5ngT98CKpmammcGI5CSRZ~-|B4Yjn!rV>?UX|_xLO3mo_0t3WVppn z9)EGp{X=%mo>N*$UxYPUOnKQ$Az9+*cs+ckKFLWu>gF^_6%0S#aSlI@heIuba z`nQs2o5YOw*)t9F*547EE`C#*du}57B3hcs=$zE^0k2_0 zaasd6N)KfALh6!^h2;GD{k_+9o|vE^F!zTg7}#J+swpO{R7N$IPf@}Q%%5K5Q1Z8F zS@Surk8nLi;wXYw`K~Z^ra+g93V1d57O}qw3HXvdd-b};l&g&6(p*n7=!U2e?oK>X zIh;0#L(v7uHx#81A|c^bVFNAlJ_Pvr4<_EA(W>rF#3Yk3$|p}`5LVD(!eBu2KLXH$ zg(c!g;P7qX1Qj#xDswN5BXzIxd^s4C^JKLGM|mwXN6d@b_*QrJ-en1m#=AUt`twrv z_w!?+Id6Gnv<V+sy&#a`B%lQ23+{0+-9IWu8D;9inQ+&Uyow=FKeVt>>=GExX;h^EseeeWB zXr*XVH=^5rMS^1USqpTL>~rR5JO)>gw8O(% zWG)LG(jl^3t|x7!jM_;AfaK+s)AAM^&aLDO$^J0pT~KW@VM$Yfr%|`3iLeMFX&}$Z zvM{KAgKNu2a(vJl68l*BB&()n{&mwP3*Rzd)Hlr6N*9gfA?$Sy#4*dlc^bCb#5^#P z%jkfZnY;7pyOczS^E|SBUFOc+_3{%#1Y+nWV5M}ubniILbj;XzhS$wsoi@98B}>59 z6TfinUYwSfWOs37!_(|J<2`1LkKGF62tKlwWmZ$WQ|Z@|vq0k(LDmuBxmy4~htDCS zI&{x9p_uR~-Q)bZtFG>dGxOg4oIy6QI!o}8jsPi%*SGhZI6NAx{sdqUN;yGqW4nRN zeZ*6ec^f8p|CVQa=a_}E0B!zM!OZB~`%E(^&F#O7$RL~QF*l%j!%TVB{P}xdnj6Ta z$7D_>6G$))-^+V3?pGD}Y&OkwbljOx!wSo%4S?`nv)0Ju zj!Y>CHmcEYdx<(afA;9X_txgzQp^lxs}ACR^u@bhuJfTnkhWRsN3aKvuXcX1-(TPx z%AX2d@*5}WIsoXWTb=d~Q89yAtSR6bim@!69pX|0J;~Rv$zI4B3Nxz>kyGL1qDG!~ zHdF^cmMDf}-5R`j*qpJJYxbJPM#ezI*uo=!#3R;ifefZB$L^$LT@mA-;t4222n>%{ zHXq4cB!p%}`STsi#%rnRJdS$5C2Y^MKYqHaWlEF8B8m)N7cyEPF{wOB*<=BS$!%I7 z#|62TUs!aPvICa*dRkg>pN?2#OKMp>nr9>2wal)>yKS=UNfW}K&$rHfy(Ntj3V@o3 zGfil+BY_mD^q3(sffb3WONRh%Vk8_v>ruzy{M@- zBdwT;sDX_PSCITz!lE+1=*&Xn_5eL#m*ix0wA4Hc3&Y8!aqvM)GIuO zQD50-K(VZ-fU%jF>~IRmeGQ~MMXxes(xgzgjHG3pB6!W0iw7KB^}YDlqee+RZys*c z`{3a-P2vlHG{2lyf6tO%(K-ZZSnRr!9>;Zn2Sej83Onb!zah2hn9Q73ZDCp zA%~=hf_)hR?u^D|?Tl3wN>r>PcAUi%ovNH!uMvGWGAv06oPG3?>c>tQO9-yKjZtTO)jyv0zn`A2H?6l56(w^u;SHY--W0nWhb9Rwb)BDD4?f~` z`$+GvzmG|C&0BMhp0aen!4r)_KEESx0J-~U)?E(#w6D;hZ(poB#S%o^$ng>9!I>?a z9{&Iuum$~OQ7S&9q@ycr1IqYBXNOtUm>h#1GEOcQ*oe0oWTiSdKxK-JYVwMOrVdT3 zk|HkmYb>MFZFt5HJn${lIn=24IhQkc9{Sn0*1I4wir@Um(1qJuY@Jhz-$%2y(t#(YZ>&D!;XyApu1xVXCA-=}PlC~a{cP|fa zGd7`G{B)`EcN1#i+u8H9nRu#xNU=T_XwB?s&61`{lNPpo#j>MGNxh$1Z`Mb`hb`=1 ziIS9m+1?bk8(702#oLPyqr)-9qZiukwv?<-F&S?dV$VxUqi3`xL>VT!p*$4f+oj69 zI;SjrVrv{&yEm!f!<`0BW|{_;oAYheG<(%{=;(7tA){tk+`KIsWEL zwpu^5`IL9T>{prTx_PVPkC!g5Z*n)6sFg=gyy>vE)Vl5!e9H8`R<*h2v&Oe>ky>v@PYQ!EUQF2{S-F50zbr z5Az;e@eb>l&8z=xx*x1NX^Qr&EbEb9mi1j15`C&gLE63hlTHp&e!6a~LUJR$iE$fX zL8aG7_8MgxJmBwnvq^Ax;2V}%*s$G%n{ytjPYjppGqPKJ{j*!1*y8Rq)4{>^pB@pD z@HS7Yg2GI~GHQBAm(2}rYNiap#L7>#lDvulQau-9JJVY0zxR9e*zfHtm$lJ5=G!D# zmGo&?_jec7=7njmoX>WC-$qYt%0+RJP^c9d{`Y+Oea=1C$2Lxy$Ctdv`ag8?H{SvL zcn|J=e+zsmVjhtUBAXl&kje}%*-4W#HBHsgTy-PROUIg)kNsLj)wDVDs1Ah;>`+ol6ih9_ zdivoRHpSPmR-e>g4_2d45#* ztpj*Oz-l(%@$7@f&lid6(`sKBdibH@$Xy9koi#mrH&M3udrR0a^%q_`ZkG^sD#C8^ zNxIsK$VnHG9WLwdt@! z(ctmZ!-m}F%1a05-nE~0u7l#DhleibCDvv+_|zAdmYLoVNq*Iz3hmy#$9uf`aP1fm zXl>)cGtSQ&mSOSg!?dfTpU;maJz&3Amx_V8&6CeY3?ZIY_gkE@2`w(q)ahCA^v;`I zw;Ud=tlMh9;NNMV+g(h$KBoEn6I;fRFBV=JF>uBF%^~r>WX${4v8{d{0e_!!q}Gey zeV9pdZ}%rf`&5LUN_`9Pl~d;7P}(Z~ca~*f26G*dNsK;lxp45Bh7UtzWZvb>wvWyY zT&enG4U0ER*qKkvThq6k3Y9E)NjSEsM`tAiD#>5kAkP?)=!Z|n(Wztt9^l5?ZNz33JNrr zBP{&a#Gmx*R(A5zn{(Pvwhp}KGS2r z-wB&j6INgt$e&0J4Aelsq;(Xn+3QdL0T7EL@B6A_Gej?o`qAohD|}c0J)bf|SdK0rg~pZ<+&=UrD& zy)`_!#KxU95r81gqpDFGW9>o(RY|J=)MxVdk~7w_7HL}`avcB`>n%+Aw}?eL5G z_vgH=nLK~k2bLuz%ow!ctV6Hh?(&A<>p*E{84qK4hiY#6;s&hZG%B z@lml#NNpZy_@5`ITx0vLhsJI5qliS5x%JJ%iIq+d@naQ4S{EgWY4*SA5U znVD$cNn>yezoRD2yoXPo>-oEWyD3L*7F;-Gr#xl7=@7?tK*Dc4T4)976&JczT?zpv zVe1t=8n`M4efqw;|4+r_Q;TL8wEfd*UC5Ho>_t?2Z*2Od#eX7|sn>mGzR#XLWj6M( zQtG|U>n3!0_q*-A=`KANEg7hJ<_21OTJ^Z{6-{mI{^zp=qP?P3n>lN|`kMroMAt=Y zr@t9v*+PG|SHo93?qo(5qu_<6kAtI+gVC`^eb0_73e`Bd>?T=EUHShFCLHE6WPLF!_j%k`5NAD@FaLb(- zQT|akJXw3=hVh;<&_O4aV}IQ=Sar9q{}1=OGFB>o6np@{7-ec?(|q%Z=&?N)ZR!2& z>7J`MM|5=dUVNlQ@iLv+4^C^xnvHz4>#z?EGD9hkF9$Zy{8`<;@DmJU&dn4VE3u|eYCQA{3rDKeYPRMiqP_JrAs~R6I=UZ<=}m{ z^A)yO!#{|Jr0hjv8Y*;P2fhC}WvWeWRA@~bu%$^tvLF+Qi9c^ qs)!Q0U}=Q={Qtk?|8tM)*I>WK&C$M*P*-fa1L?aI^O&L z_rCYW8}Ge4hIxMfcdJAg<2K`qR{@^MPEI%sSprBxDA%EP;;mF=2P!K?!e?sPpLH zw)nw)Pt1ElpJa3n?y=b8x)d`K>1b;|mP{)#(bhI)jGA&eXn;br4=}m!d)iLvZQKY< z?bPObrYS)NPY&mHW0{!`Fe)!s@FLTwAHKi;{5#HHKlw`NM2+A3=g;?#8cVviZ~ymy zLj_b-Nm5f&Us6))+r578JK5LTdfULjU~Yb1CRZ-&vVJM_Z8K1hzZS;oIb1Gby3Y>ZMj_8d+6wGF_N!LY9IXPCKxuxaz7WSR{ADPlRlu` z6;VG>Rr;c=rB9j9`QWHg7Vln=u(*=r-KX?wD{~#h7x=Vd0r+&7p6n0i|NGU^hl?$D zD5b9g(r#*U73<*4*)b2ELo6oE=d`!-3V#+7NEE76obEktK>zQTF7?GSD}A9JE0mYK z&HkKEvk`WDD3d~NAeFq@U1Ik5U$?h(Rl|Joq>JLSs5j2ti_6EPPg)YW9Zt=Tsl5JP z#rt6b{%JT*VE2o6_m$QBahB;8Bj-tf;=Q1tIQ#dd2!Do$drC!nsuT`v%YMhPxK*JN zBzCX6yBp5-?}vG5QuE;X2+#G#x9{fv+ACeAe?A0utV{P_H~Id4Socd?+^Xh#|@Q&)d1_EFkqcax`)@PkN*1T=biWSdCL;b7NRdCgR`hlZKw}tIJ=W z?}5E7H=SluyY37m^b*TV`;__~Wv<={H&RRpQtzZu6UA;clp+AGgNjL{JJe`0Ne?bK zo+sZMUOPgu2Oa2-XD_S8L$0+iH2lv)K!~s5XM*|TjbSeG`3jhkVjV?lb&#%Wh<&o# zIU!2ELg5Q0rep7GgMkDi%cL$d=c>HNtPQlO-y>%dZT06%v2Pjj|K8% zGatfEHmF{|_5;80R~-zei*VYkV;EP&+3(HV3S~BsqF1eMKHr;N_)t@<7R#hpZMk&Y zX1%X_TQUO6(16@H1%lh3zC+_?P?B#c-(2_ff~if1$HilD+)P*A9@t(DDJpkp(g(i~zi zD=eC?bGY-V!P)M**3f7amX?Kx8z29S=q;xm6b|gzC?tE zYFh4sWjNiNjc)Zu*D)~(@bbFzN<3;cg#YI4_N8tj*dq!)zNA}sP;qc@z7`gm)lNu? zi;AYYK=;9J-oA6E#_jSPeQ;~4gkpVtJ%Pi@b2M8zem5c}rVCu~R$Ff7;Fr<8p2#;~ zMPglH$69)N-VF`B5C~)}UvZFn(Pe_j#3-q1V#fc;o6V6-bRmDd7I42NCML&gy&@X} zi8Z!cBk0Neyig}=%vJ+8yWJ_71&#FKw-ykdnQ|kqrY8R2;NYpLsZYN&1)R@!yBl1f z7)8nFWCnvtnD4Ts5;2OdS6!SSapp%yM}Y*4o{wLNEiNvCC!zC3f4Uy6;m*kEcF}#1 zoJK7X%j6A~NZY{RM??fJxyKbF8a7$q5H}ujw;d;yb?t6}-+j=BT|*aMD;AM>Tpgil zxE|dzH#gtnvY4y3a)r)2Y}#`9KV^`bF4c27T)b6hzo!k-27`21Clqn32oAIh;I@~$(8FJ8D}fa+B!NqHm4us z;^rz85^W47XNyJB;Jr}@^!4@KXbhQ}Qi@}@82BAToU2?$3GT3Mc=*WsV7Rw8pw@1u z)P7GTOFDU=+G-^bUZ7OsnUh0pz1k(PH&dbE*k5KaC|jZ}l$M_UTItubvz^J#xw!;x zhy7m$gJk=V263?F>W+!0hLCzr5TJN8a=s}k&&pNkz=r6p_r=mGmwu=FQV9x#w_>fx zXqMyyY;1NXQ;_W6fBeufH!re4$HdH3tF!0e7(j7Yg`H5VG)RO{@6K>Tcn+`?l}zw&0~b3XN5T-20G;_*vQrw|Yj$Qd`b zKY;WfF10ED(!9lOzw4;)IGg*K3ZGW#-C9p%u0|6dNJU++*1OYXKR^8s zAUVYRU6Ay8qcW{lej`_8sqF`|^XcZ(q%x-yedn`n@A!D)-e?BoD#LX^NlG=Juf-tY z2nDGtTVX7Jb$uPnYJ!hUCKi^T$?ov()tp>VNi9z|Wh%{P_3>)gy289NGG2P2(C;bD z)JPl8*Rno;{+z{hD)b&YzNUczT65bE>|C`vHY%xv#r)z%rkbc3a1*ap%BdBL)miVO zC9mzz*TGXVK4(i^oec65#<^ci8zh&2ty~{W9_$LEC@C*z;Yea*qBE153kW3RjoaKb z^uZ(+ZgRiI2!8eQCAgPi+sX46CmVy=?$>ZQ6g`FdVFaaQnn(zl?cPizv%x_9h+H?E9CC*Z2{+*FSwpyf1+P>5U|*w820{r{Tbu-a|Z{9EQ#3L&1pgb)ixW!-6}UXmj|}@%(JDF zvs7!W6L_4$p9}iD)%hKWQ4EzYR_Ep6<@NLR)$EUBMePKE&;gztWrUZDZtt3h^TpdB z@ZT_WSH9eExOMUR{kDpohCA#PXjB_>H8!BfJRjYU)^GE{v^{{3a&vP}6n^;;5)yI~ z11d8nF&oQ6hH+!orW^PhPU}@okU#D1?Yd%gRp#^BTO*mECWBkmeycJDfh2)V(l#^e z|8@tB!*cO!w+Tofb@J+4G4b)tt{0XlAR~f=)4PAFcq35>#Qv|2Q;bKe6bfod#Lu4} z5I5J!v+O)P2^1p1nmRgyUZ|K7=c2?N=LKJvlxY+Se1n28L5&=<*bT+c8!u4)OkR*# zAtWSZb#-BtkeK*dKJVuZ7pQ@^Q$T~&9ZZ_v|UY~#AyWC~wvfusK8BBV%q#-e?Z5w+w)Ozu#oi*0O7RPJDtSvd+_mJ9eQ;iqAY?s zOYQ&u{rlUXAPzRHgWzJ8^NNgo5=kSkjjTEIb4Wu_Xx~W4qt%&s1Hh}>1<`tOod6hLjG%o0s{Fwxl~Zy z1~GD(XkNYYE^dVTgFHtQl1Z9o;Ns%?ypNU}k3Ckbkz8HPK`EUi0jhNnyuG7ixJZp# zp-2@rXQHQ|wsn1WuDd|x zM_ipSUuN#n##LTioiwUb`Z`x!G;~LjfU8|OgNhtZ+Bx7 zCQ+H$s(`qx0fqR@{OI6d2*4H*;o+?Sn1M1O!)^g-2lXgRGCu241)v<$`PxVjy>E59 za6G-dYFuGV=^`N@MVP?$QwUb@HpH98flDzu9qWQG9Pqq{UhQ;3`QX6=YJbl(>T=`p zhl@4eRE0kX3(ICpk&^K^z5|Q5HBlJf?GEmr`Hf;x`@%vpK&V#GeKimdr*@GH8hoF3 zoaLoaeXG)Z8>`N`is6HIuL;Gww)~p!|iDc4|-#`>}bx<&jX3sgTbShfuI51 zMFZ}Pgv9`rA$#l<=m7BCEYM~p9B?i&Ml!{BL@JCbR1^wTgaD3><*<4o8PApp`W6bj zVlb)V_jK6=>`STc0~D|&*vKNoPsHmvxaW|D}y<-??RNIr>F6wFlPZ`)a zwV9cBJlUZ;fFyv26MV)W3~MDbA#I!sn)#TpR2*dPx*l;eqCiWO6eu} zbmZ#tpb3=O$IQ%SiZgQWGG!UYfq7Y17s10)A6dfMzM04J_i>UC@4=r(d-0> z;A@~Hof|$nI(i(NS)Rt1-EOW?&lCeQ$I!~&jZrdQ=eu94s;Y)dY&HfOM(P~H!G>Eb zB!LV89YMEzUrl&>rrwEpX=#aaP<*gh`g5LKu4im4A%F_2AoGMf4;Gq=5e?z^whxib z=>F&*LUjb$9!^ICH?#!c1__VjkZ!V8o6oJ>IwL?}CN`_ns7d%-W5C`JlyCGzqJPBH zO%lqKeT0Yi9YD~Sx3|Q_#l19XIXDOaWQKg2Nh(#)^60I2PKzS zAVX5zbhLR<2VE@~v`tL%lf$QLYzzQyypMs=cSvN4OC`lp zc@!q|ATKf9G*Zbo!*`hw-d4sMJ0QyjTz4W_xC@8p;5^rNXodNTh zsj^63I^0%vhVJ(RgbXgH3&Mk8j+CviDBEGM!FKC00Ky&2f34E-YPVpSem}S#=zWBy z&Nxq>icA)%iAqRhy!U=6m-Fel;3PgWH7I zlUn9I`JA2)q``&RXyhdszqe^SFENGh9xgCk~pJbyGp6!#$>bu%{qRkJkzweB$=;7c7NBjKPq z%L2-xQf?@a$YpnUcJ>PJQsE$?hIZn&wwLE-;J5cO_SdJ&45Y8=Go;-?!b*A!AW==O z-08tWG5{kZdGc>SQG0-a(cam)5!*7Eo$T%p;?v{$>?z>q8Q^9BdGZFot^YOf0GIMp zff6GYIbUFLF+&g$YZ}NF&`Cn0I*d4+L_eF*c_yAGDXMlaOq!Pu#UI31On^~x}XmDaRG-jX}8}86#Pd(fOsuL z#M$kr<7rF;b;cANG+Fx1K8Mzw5Xd30HK^9CqU_Y zNlzaPR?HG0)y5mR2^JZTZ+g0pkBNthn3(@f6Tn$LfFnq{1C%JePz)k<7t#<9$j1Ic z(;&c-_tDXHfYM<)SA7&qu?7G{4+yo_8jUMPYD)0wuM6*NdVD^8#|la>HD@;Sk@p8&A6e|zULFGLyY!pOL=3rnJ{^iDotZmAdwU0gQEv^__ruiyyhP8iN76K3w#NZ}v{O4==K%X|?7n8g?cjWf5(}g^KTy*yYdNER(LsGYpy}?!!t! zSIb=}M~^O^TdXVQ*ZH(y@vF3yWz*)&`M#Swp@3?_mSiy>3)#MTJJrj#yU-@1@q$|u z6UxMKjb{G%M^vZ3ANBS3W6l6oHdn6f9`ic=+783aXX=!%!!;TX7Sa%&8i-u(*FXH` zuWyH#)Imvq_lzf}Qv4<+bx9n3(+QrkSJ8Z^)=AKvcy5;3@=n*mO27ZTi2Kx=mvbhW zl8@@0c7lgXz(3Gg+aBC^`++&5STrpW1UKtmQ@kZooVH3Q7dsQgRbt(*kFrjyB+#;) z8?Vx@R^6l7vlKBYi|4I;67{*z{!QuHYd@QT<)7Hbtp!fK$zOUC?!BS@Qph;K8IbKF zmQz+nvEV-K#|r*kQeM{P1!CarMT%!wc;3%V>>zDh}`{n+=BeU60EFw;4Ma zmUMDy^*X%(xR+^{#Z8-o5@@pwQ3c$S1lGH>Ncb^Twt|4emGApskN+H|B zITR9-T^L98V-!V;Ip<6lUCKY;>aRfYm0)+dd58i(zd81HqoWJDQ=@n^80dX^rS(=l zX`iJ)@eaG9!F$0rPUmHe{7H*+nKl(Xbd1G(^F7#QGAAD0vUFQ5VnGzbEiLto)pBR( z3=N+_L)u-#LWQL;Br`K^j~jca(14#_wH6dg50+ZQ<`MH$!@*n3?YlDR&O&|tqx|c+ zlZuJ4Og4`wI;ApgF7>NxIrys(ZHFRqx#QtG?B+5RvV?K$MZNu@bp=Xgu|Z!P%FL%( zXrkWa9(W)G2;@yFR`;(z8KcTCr)zsxJHoi^h#lP5*B>DIl)Bg(ek|^;er%W-w;Wvm z?H6G{$Y{(|2PM<*jhluaXgNdN;^=wZwf9@)C9W?OXR6E-_8m^k+uL8-@9_o#O*YiS zJ;II66e475N)i* zfVSGRBzkM1-s0+pd4s-VM7BR{KL60tftdsUi2CtY?QgeS=jXpQAz}qf-g!iPwl(Ne z?pa>j*&3>4#QlvST&Qp-G$BEvH+bQ#eXE2DORk9DvJl3=tji+xWhH&q$JD?BQxgjd zkp+mxu~~BJ6(5{DA{7z=$Am|KWgE^`RP;GVNG&v4?U?hK4F?T2ZTC)75Hm81W8T2A zN&Dw7Q!)0Tbo_1z??yzqa=_Nn{JZoWjcUip19u`R%_UD$6;@n!#i!RLVLI7|y`jSr zF-#%q8g{57(0vX0skZw!v5hE+QqO65Jo~>uEid=o+_y$oVomOx!>wXk3>c&xvH}s2 zAzp6`#3Zx2PG$co2lm&$>3pskTQ+wNOFk>LW&`tqLn@{2QPI9McnsRvEAYr;Hp^B0vOR9-iUv+NX2#a5cE zb`#n_YtwN@bZpMMEtH|}Ppc}IwjPpZK<7LO}I%P)S)!<}T@ zST++z?ABJ8nWcq0?C4E;V`NXXeoJ79DsMwXCsfL6e@Y+qW-cP9laa;f!{Yv3TfebGki%8VZAJcF+gHQfVbf)%nI0x5E_9YR><^*1k zSdt{ND^BygVXGho^ybVrlR?3e^fISw0aUEzL~~H$8GBf8OH+`}%=br>muj`vULc6` z6lekp3xkG_j3awX-6n5ICDy#lJkG3kWv%e2=vfP7GkVL+oc=!cv1$Xp_K^E()1m!N zu-opO+t7zXeAQZOK?Eno0i<{I4uf>a)27gDJo;6Uk@SF!j11&%N6~5wHZSRL+Md2d z*AHxIT}D_bc2-Ja4D=tYNP?IQZ+pW%?|iOv(dAd5^!9ZdYsQa%a^`!N9Dr$e79rQa zXloD-8V54+y(x0sr0Kyi z;oD?n=9JF*5~IR)1k75fCr^u)X2}w}*4K^4sJJNczwYj59c;wTlYWhf;Xol1$v%g6 z>AMz=)s_)f@cKJrH2ca#jLJLc*I%A8v9nWIB&nWmjbqx_po4AbKIIhOny48^A2gfX z{@l35{M`!?bla6w*E#pEjs{p8nfRAp@%V6UTUvM%4rQ6s#(=0)@$OusOY)mZ^Ty+| zJ~;%h*Te-OS-c}EnCO6o;rQi7=uk|e**(_;D|eTiFrSi2kJ1R$URLAjA8x_=`nUr< z;&gMFxv8>%5uzuTDXVw-NK#$rqM0118K=ZNa6;CsU@~+!0i9%YhGuamxQ1 zVnKB12ZB-N>Yf_g?yhc~6z??}jlzWkosY&ER##Uy$Q-0xd@g?vT5k89B)9aBdrNPR zYu*Gh%H_)jqemB6pE+;iiP zi`vb_P>G`{)23&!ck@i%;OgP34kT^-l$Fxo^TgwT;*PixAyTcTfvB z5VR~xZ{n-=d8*D8SzQ;QKud&U6YJRa0k(o4wDXAUQ8&3x76Hj@y&1z7huyZx&iIFV z;wYMWdZMG!Cb;KsJxg%)iB6Ll4Zw5+!cyD$H1Ug;mX<(qvX9ly0B`z=Oh`Ir>+ETx z%hyZnR%CMvN!L+7#FtIvb9odbtTT2)&E$Uz(U3gDn!hx+IbyyNB`hNSG2x_ z-0??4wLCgz1?^K}FHU~C+^$Lhp>NjII^2@Pl<6Nv<$%RPL^ta|y4aeT&tk5GelVAt z9>2S{M|~#q%mteyee|gtfMY>`krjSnY3Fv3;yak~1i*mFVTlHdj8ov#_(Ml0XB>R| z0Z;-tt*=;YvaUoSJh4?$)1x4ihDwdx@afe|jxP=c_`gw^UG9|jxzR%V6 z9*@VDR8(kfFEnju6WqZdKIG+gAlF_zEZOC^O;{GXgIwYG%Ka?iGk??BnuSHUH#+QS zvg?-Xb(`kx-mz5sAesw+swGTG*v%pO2j9}mO~!p6q@&&0@_?dT{|MIq2T5GDIvh=A zD4R~z2OR5(hjK?hWt*6ot91(j00zX3bcD3==&~Qq-bm!mnAsKKS}z_|leBuNp3Tz0 zJeuirW3;b`3^L6QT@qK z{$&Fd2qxhcik0n{YBZ-OW;ZfGGT?kDsK zBzxV7y#Yz{+(VUm6mAQF^_PLh^H;dGT;3F&(j_hjT8|$`SlZZS$--pIO<=G4i6&V$ z4{HQ$t5mJ25KZyj5&eqGnC6V%Of*+E6GeISzZ?XSI{|9>nA-{LT5wAQvQhALeavm zg#F8p@?ymtQY+Z9%$hWdBv=WFBnzK}vViot&Y<285{A5HpE?N#C-%fN8CYr~RE{ql4U7sc zki4bV!6;%}uf8IIg!BR)a4x(DaS9ZiZ4;4}&9*{nd`6$x36kq;IPKP7;AZvd^#(WW zLdtOf})xd2|CP>qD1VsWn0Rx`D#3C*)RxOJq zI-3peExsMBF4X-chpB?tPJ1n`AEi(E*L!|m2T;JkKip|bs*g&e?u)BRFs}F#Mkg(r zV1u9S`UzLR|I5vs3X=6s8wXhpC?|k`Yq;=k_zsHS=XCcks@87bqb-zYZ1+3&0&xCgO`4CMAauf5}rHVYQJ6x*v-B*n^=}`+kaYPzk<5e(!wqmH6E(&qwZkkp8J_k4FNQx9rQqunSA0pQ9IU#&n zWx?oRy30ei;6I{yi$4h6lL@C=v;(4GMxEZo`G*VmQ! z28~KOc>^%CyYh4vmOR^57^C`hl*=+eF&dDgzI-I~@QH*&kaRfG^Ym9Cbo`-KXVtq( zT?t6v=Stfnb`6|dlbZP&=vP%vp4W@<(4Ym6^|?$Xl|0T;mnT5wLG2t7Hhco~gq?k? zKdXHY9*^On|NldS2P~CvA3cKg&1<3KAEr7*IHQ0;WaBO?N})pU`PoU1Qqjv$qQ~~T z6Y)a56NHI~jcOz00uFMq7%ay;ho9RQ63JxCP_3wt35~!4_;hXTv^KKtp~kDxDmNzC zCwmMoF5GDE9$epw;kDrOPy40UZwg|9y;eaV;LuROsZE9y@;*GX$qH^|*C2C?2ZQ3T z-C<#1@H*=t%dT5(y_Y4kX%8efXIJ*2l)aV39*Ja**3HS0fImY1UjVkgt!SaT129X1 z3T{qLedWz4wh?NB;9X^F4-{ZuQ!yiPiBaJ}C{s$tha@J_tq5Zcp_zwrFqH$V0DA?Z-Pw&{}!BC3%FFxB@k4+8$RkGCgw&Bf~$SF{U2SZfR+()3y zw!qM%idujw(VXl;RE{Q3Ck-NYy3(de;IdvQ-!IrtZALcHwvS=V~h&4JM6L{P3$BcAu2hnf}!y^$vDgzQ%MfRkknWRr3> zT3~`WL%CQR6lnzI)_xfS8L<1EHji;59)$S51O?C3oSwx(HAH@=Qg&@6s@zZ|B!y-TEYHtwO}hAaai81l zUp3sXdKPU;no;y6;G|z+0gB9S1G0^KVO-kMnX*X4$zp!}N>ar`w5_%UAkMa}vZr8Y z_=O(AtiWUR^XRTwf=@NG3GU5hB!X>ljBU2x2^ivQzF^p%L@bus>B zbKtHNHHWAx=0>U`KV#7exwR;DZj!!vd*8F;E9&W5;*S`dbu28-77`Xpr+(;g@Pp6h zlrY1`M*8HiYl@{k&_6g>vLU1{zk6kRzKqbvoN@5LA`c=G7IG_w$E?N1#4jL(Dn1@v zlCQ8|w)epms}<#E1A6`A@_T?3Rdr0X{LfTB{YU5jP-BV(MTG;P%c1@o|TMg>N-FUkD`T_y)C<6=)XgSaSA%D+h zGlSNL`B>+1Zpb0JYzK3k-CL1~vknI~Ycu_d>XZEvXA8`RLCH%ceg>a_&CqoAd$3tN z&JlGuz=>tLFz2YknXYk@=OhbNaPQH(q@=qj)H3yN(Hsa4QikZ zlp#O(FxYnw4zF&sv>yG2UL3%rcfSZOy?5Wr%Li?OXabXxk}~Sf4}{)$EgiCZqW1G` zoGxK0fm6kcm(~Dl8TBS>NsPb0Np3%Z_8yK^gsp3g)djp z3&#BWQ=u3qQga>Od5#hjpNVSm`ZZVj3DAL$peJiULi@m5ajvK!KAWS7NYxSUd~d$6 z23QBGS#a>V<3@LP1@ZImyewE#SY)utoWfI&I!`h#XQs9@K=4233+qt^k&0a^1l`9( zpOjYYHx&s+90-JDFlJbYFvAd%u@YZ)7doaNfe~D3#h96!MASsNT- zwcSSbPZ>0_7Zznu%1u=k7L`m*6NZbwbq+Jy-YkpA%E}UOEpmJ57z}E>Pah_jUs+tj zy@E}$0PQn~KR2<+dGz06DX+efQFpZ3?D6HM2eo1$x*ct3ZpYHE46&@r=@ zmly9&lw`V5JlPea{zDu5f(+rahpT-{qOPtlvIi12nwLCEe!Vql59J$dQ1C+Fwxvj0XM1xl5VU>Ia2bA1M#WF#Q7T%(%sje^9Y=*H{PWWBXvU%Nn$HL6{mGp zGqbZY+v)Gl$vA|w8Q`G{oy5${%qmrez7G2dfK=WS2~N}n2$F=y+A}5Z$>H(oGg{gN zam6B=)eEC_30OqElX|_ds`G~rADB*aKkbSpI~e;J*gF8c5yPQ>Ke>EUI8iw9KOkww zCI&4P`vI+LC{WJ{6D|b@=?hfLymOhKTHUlhp^0MXo_9&5{ZbL;T#;V}x}aCky}7a) zCW9Gj3P+DsRKf$CldCt$*n+XCH+~NLB%nTF zk#MyP<7U79k{8oLpC6GmpaW#ai%e;3IO6mSeW7>c$quri0dV$0dOu-mdd6~XMv~2J z-b*+=Rl2xHuISUuVgf61C9~!xL7x2Ufaq+bu|Ru1iHq` zbMU>QfVmr2P-PMuM!18Zksm^J=i>D{{MCY=$1}GH0)V9PRCM!)BdP{J#mBCQYzLM=?wZH8`#%uF* zp?s2snGzv&;7&31%jqeg#K5QUa7}Cxd^b&`KVW~K>V)O929>(yWIM$0rYcaM zDvOgv5YN+<>#VptrIRwj6lPtDwBszkO1a613Jc4pu5RMGn&^i^p=RF&;qH{%*S$I{ zO#>700g`E>g<8hKc=j>q-ieu_Lg8$W-{*~~S{-s@boBa@Ro#me@{2T^{HH~!P#&PN zBWqy-k4@4wS_p1(=tnm8r^b^7@2dt1a|q?SHxpiXU)`sb4K?G2;*ve`j?gi_f7u^R znyXNgAcH`)^8_mApT^v{gVNni#KT)UTyLe;c$0P~Q(WIwL?!b0REhgPQ;+vNz%Zw` zxp>1;AfMFSy7lF$m~WMQr+I^NwJjYLb`e!diUo484FA_)xiss)3g`27v?UO+>6N^f zA-{AxP=TZw(M%W7{m)nh485DF=xVjVat=46?3$VZPD1ph@}L7)jTtH2ySI-a-2dX& z?_E)5DzAP5P+V%;fvT;&Vrg%k0#M>9tnv*AjNbqKV zbME0kf8i@Z`A>5`BAW%%K82zi3{pl&N`t0_|vftl7=363=*74OGuc4`eEzwx3OI1 zAk%48-#~x;-b!BE>soSg1yjwvk=&SAHv*mJf9rf&;K0lfBD*+wwsS%H_N&jX$7@UQ zpf8|h`E=Ou%{?+3JYL%{gYEAO2F?s7Hc5CB^=&Y6*v zCWZV=^OXT0Y9>q0o_~U_7+a)W(L%L81pH?g+tId_O=@`y#Y2)WuJRjETyNwxyo~as z{r&v(x-2|o>RsIutnu0?ER42UVS#||6RR6$nWTh-cHaUswLA=Wu0eb$e1`%^VZ*hf zRSA49jPrxK{uLFG-RG^|SBKD(SG!twhZ#%Y_Moc)Nu{~9)f0FfP%QW0g^GDwYA-1M zdm8G#fLAT6FUbEH%vm5K#b^r!KE3e3BNVc1uuo`m^ad*br*vm=;CDb4F>?0ZX3tn1 z*lLsInkeu~toBU@xRR(6QcjdS&(g%Mp{<*c%;x`PqCW;j z?Di%rRT@)#^F|+Ow9_dlpslfi@_`Y`(v%-Fp4;-}rXsCx=q$9_)|%MqWVPq8PRwTS zHyyo3gTQ`*ItM3L{jVmeY@Ob7HxxW9>cbJJ+vFc+{6Y;+=sB>ogR>Kl2?_lGO#ugB z?xLbDFCH#88UFEKx9?biD@CMF@nIE7OpkPox+Q}7)Z)>KA#%6|m{YmM{8Wx~G5HUx zo8>1+)Vgurf4V0~?k?h;l6AVt`c5hX zQ>&MU-b^8vaXN)}0l||HiB5F~hm=$tTvE%xp!a4^{0I!5zJkfLH~=oyh{flS8k>wu zr%|L$<~OEEiFUs}5Y9y#RK}C16|+Z&Gdl+XDE(!>B?s=gfdBlYIV_NjKhfRmW;OY! z?d-bge^xHw7CXW7&Si$vTycE87#8_I?} z?g%*K;PL@IRVK|*3#knOE8h**>({T_+kfj_xW!nXUKjz;5+t0zHnHbYFk5}+>rpyd z>~3;GLf=6;LO=%Z#f$W*noAtOjI#xIegokr`88_;`d=PRRWO)B+RDH|u#?3Ww@)lz z>CaMnZbynqW{O2_g2PM|#^Z2Je4)S1%c@OQ0a_jsZ;c(St@}Q0p1)Xn6h^C76J{*m zLkNx+0QKh-Udz02&62QJhfQ!#@!A7E^UU%N5@7(a#&o!mg!+y69l+~GpQwBRw8AAN z4MKU*wp_N4r-(zji4BH3p7ND47^1pA55@x${HX z5^!_l@f>ZO>RYEf*RMd4&>23q3nXX70jAM&a;|}(_$qLkv6j#B4j_jZTMGf1Z`gq; zS=%yEbaY(@Y;twjozri`Ux9T_&>a>9^xjfOn6nrjgXhC1{%M+KdU|qYH8q?AQa%)0 zY(;V2!s)NF70)pmlGCZAh_8rx_rrp=a78{b=Y)6PfK2qd0gwr}DD&CvIj+qD`3N4QoV{NQFZ{fDwJq?4fcogV$t_mwmmMISjRx( zX&pPKYApestVp#^pgZLD*-nH!jbcxZMa@V@$uCEkZ~9jYb*>7Np0U_~m@31_ZW(tJ zpar6(h-ESfcOs{CGWGWXY~45>C&qg%_esM>2$$6bOuzxC{XPdr%-H=eo&`>#Lj13Q z2HaWPG?e~pF37Hz&zjXuRgoiGf{`h9m*}p&5fc6m=fB+t+xFraB^tGzvg`#DGH@lUwKHA4q5rb+=s4=E&#c1K(#RFn%h_HT;1! zj-(@OZ#XP3?xJBOJL)%GT-;5s+$Eb1EPfj6+yLgre9%TKgc|Vq+qJkmI4Gv`frEV2 zHC+5qE{0>^A*59*^?BYDlg9Sak9#-&S68_6axDJa2ccKloATyVn{?QcnNKtm{^aU?4~9rHUSPs zT`*wd!3fC!By;Rxkpxg6C@3IPc%nlUmq6FE=vmSM*Bfbics|=3y;xwBzpGyY)*w ze;3>3MNPEkDqb!^+SOz-n#iN3SEEH$+DjQ5Md?wLX0~I%4;UDnnUMjc75@ZvGQzwa z(WL2lSeA>3`?U>n!b0I7HE1wF0)N}O%1ZX#2cejsDA2D(X)M(sRo!CHi73(lbqj0% zEhKjg@5>irROn??%XK3XQrI8x_KhhATmaA6%a@c)R(+wiYEZR)g>};on-|Q2 z>|QqlPi{?>9dw!GZkWA9KLDxm_LmFPJWJ{t&Fq-s;Rd_TOt@n~08h%t`5%M42MZ@E z6MGUb=;_0zHZMNE5Smsq6Wz|7{RXgNZ%!S%_4+dLuEv?!2-+dF5IAbrKiWH9z&@bdC9r`0hnn6biH z!GsWEk+u$y5NMCz1mXc{zj1F=t#?h#=^Q33;!k#<=c+Vot*o#qsjAYu&PpU~6m|xU z3H2*i;;8e%JfgS>-bRRc^(VL+e*VOBzd8~b>iAR<7j(-qVIcyw(tKzE%<-pB6fI%fm|pH)J|U8myc+E- zElJ6Z2+yvZ&On%p&+rkzK8q0y*zr|+T9-w4P&<(`creT^H&n$2HTRjFpl>~-2GsfJ zmNIJp)~~5Lfow7;o5O{qplaA6viPm6j)XfczRxWI7J!1}&ow8}LGTa4yp*p+!4aTL zfy)ZwDln;cuJzz>zgl3XoRv9cuKF%3cChsO$r#pq2#EQiPi33 z^Icdj3xRUUQ0{hV4{Y|q0fJ1-BGpF6hpw}wztR83Q~Mqm);|*I8;88A9xFuCf6?z&IgF$@JAb{}G@i`O?Fds7- z^V1L7UR>L1DdPPB{Klcpt@k)>_QP9v|KA)JHPsIMKbho-Wy*c|0rU%R>-7SAjKmbc zHB(&7MXXu}r2hvsZXx1SRblMXMNb<86iAy|=2|@;cRY*$b_mc6K`&|n)CtH5GEHZ! z)dQvS#7LRtNl#=uFqDGYR|CGJfA$<%QN-57hs#_#G2BHUYJYg_5b%8yZay}YUr-^h zZs@AOp-b0qx6&*j*3r+RCz#EM!fd1Jc>LHJ=^g)+_w&eH@(cQ`ThHcMMP?RegJbFJDu+G7z_w0-$4CM9o^~z%{xu#YU{EsTGz%#6nZTdd4F{? zX&edJBxmiB`gH*I(;gs9o-xOo%xrW-;RKycIfp>l6-aAi};+OhToIe7%Jl)iyor0`8L zU!TeFLJ3gGz@UmJBC*~c^c!1DZ{(vG!EuCg`gH{hjMf>lLm9YNEt42s5 z!N`vk<0mMG0}&B7{O%n^4L_zzE>RwZqyc~2`=d1Pi@Yx`02N({9i&MYo10FR1^|x@ z@JvX7GiIP>8%>w<&DWKuO5|#zUhhog{cb?hBH^+Q2cz@H#7{#a(s_|+zd%L}l&oX1 zy1qseIse?F6tKR0AN6{EE=hI0jtX)}dGCk77Lq33vbXm-lE&WgxbdA+UzZ?S)*UL= zNv5tODc3&?U4VguR|~5;f2eo8{r_sy2QP5=rXeDkd6P|d=7pu(7y{Ze%JRxejm-vD zN~Yzv)9X{Cz4H%PSMhyA7Nmi}Pman^gxbJ6G9(gS|1C%yRAC!PBm>vQhM1Vx2%@T? z@F;2@<-r5LmoM9Ow6wmlbtG8$bTUH$dzkNDj5d+_tSZwhB-zW!44vV6+vDWd{%<-v#4q$!|TpZD|rM-i!i z^#?)U`dU%J>U6Tcwq7BU&`^*nM))S3Po+=+v7ji3XFhieTAC_+tt#dtTbpw)hvX0n z^(eIa`&}CCvmgJMxKb6vJ`Y=sk+#_rn7f?(+ z#q^v%qyCY{j`Vkdln)L(_yiMJ45^n1a2Kd9Bxk+@M14t-mRfw@Y;9W_9M>pag)Hy= z)d6_{L%+E?k?x~Sm@4J>&TUKlROFbddi3Hv0~ZR7v+^h=e8MNIrJvQ>*LPSPW_3+^ zG@vD=nntJBqmTlQ9x9){{IkUeO~AdUxweg%D@OL=+Vy{|3B|eFRe~xwuzH3E!x*fl zkSE{Nx`%lYjH_7YzuJU)c~*O&kI|8 z`!+!TER1J;>(n>X<3IAs-+FrpwX~)NU@?gMEB~iiV0J1&b}|rg(vN?FAJ6CV0BJ6q znRzHABXN%OO~c&kb7dM{?C%!=>Q`d0AOpW*@&vP$5|`2U;58Z$%Qa>3KXVyj@csu; zYilNO5LziJD_{Wx{U3Dkq`v3qJ zSHAl5mIoYi)CE_kO~mNr;2v;)0tn?)^^;nC)%##y&;j^Q+;BQw%WhImG!Kn~A@F%qG-g~nN$?V^uhZepN!~rQofIO|WKOYZLd?mIm`AcdrMqS%9gTCHlLR&V5!;`Cn%t718ebNvnYeNa(srMW72*Uz0FAstO0 zBzJlI3C64`RsmqEYJ-Wa@`V)`VqWjLQ22${{BN2A~@DdT4L=vEAHh(0l4X&cR^Mc(=6YMLMw zw-#_Xg?Y^h_)=ykuMbac4HgG^lV>O87Ey;TB4$uj>)hXbHg=Bw>lpDM9tlYwIH?C- z?Ly=RKNTR(e?>z?zaVF6Ti*8GEGRMk4&d);;8h49Y?<=K|H8oxxdQV2LUi^-yckLYd(D=<5?9$`pJAu}UFKQ@ z;@+6WjCb|L-R+4yVRv#1Fk9DK8nH8lR7TIoKV6Doue#wn!7p4cWAH#aMko4-mjQeN zQ-z$-9NcaqFbFv_ap6ar1c58#MV$y6SCxg&Osl8f8+L2pI*quN2IjC&^K9)MREI{_ zamX3SMUz3UdKIQn03M6e0E3_~BRJ?}?X0&k3TL&lEjK`N#u7xNiVtc_Ta=Ou+41jzf zT#6D`?cPqYeD^Jy3!(N$2KU`41qXfJzQqA&*FbYsDa03&iD7Yi*x~=At+P{P!u-$s zgu32?*C;V@`Xl`zKk3wX<|knp>X>Bw!TQLBFCdlx{)!;@Dcp)+gF#(uWGdCxd_iJ? z?{vvQ?!K{Di29wJC;x-2w~op(jk&H_ zL8L)IT0)TS7WkdpnR(xLecvCm*32xF=eh6eI$pwej<3yBznv39TMl0bk}L4FcF+1+H9p$0UK$uEL;gxwvRIq>gwyor_|ml$RYa2{x6F^w@zVrLv11VC9y{~^#b-! zAkwh7eUsGWJiADA^YJOW zkIcv2vuMkra(iy*&;57+e?U3T6Tv`odo;UYXtkfAHC_Q^BckE+z4}yvW#_s1yPZ*8 zs|2g7z{bLB!t>;FHMWf_Un=0jZDwbtUEKR|A<#)fCdYZ zJCl06OnpU8A8QHG@=FLQlv9UZQ$; zsoBOi=mOmy@D|v7P~6E9l24O66Sm8FkrQ$fORqzW791i$43(mO%kO69wY(=n?WU@r5=F4pwO3toBcPzs19;qCS`tS|hu{$Y zmeLm#c3YLW_c2|{C64w{LqdQk|G4>iU_Q^`=m%|eQ9{ZriNvN3|FzFP{r+p?ZULS? z;z|W3Xb7Jj&?$ntk$U;RiH|v&bC5Cg-=Py(YGs55Ks`S{&))4@!zWAA{~ilGpY46} zr=>M^%i~MaTpLZRKmxk*b7RBeJE->%bEz#Y=`KCv3ww3YSW!s1&^xU8sZOu|-83IE1 zgfECZFHXX5MVgt$|6*nWsP;aF8JMl1Cy)P(3NlRAs(OF$#}c;=yZsX8<7bj(_#hR7 zEN#vs|4g4L0tet5Ou_&k5ZeV>8XMi3yBPmku!;dHNkKHu9f@E3(PME1lNXi7^dX#ecqj+LF>ci!Ot zJkuBVplR>h-sz|HeQFEps-7a|bH73_BlE(=7+BAQ z?6%5%>0ZEtw{vvVZ_AhJ)~ZCMk+`ukdV6lPSx~XsA`4w`Gcan2+kPjx(-2<3Nk2xq zUK%NE=xmK+ko71o1^JVUBV5KL&P$(rNBm}eJoT40 zeAWbAl0R%Q)^b0djT2-Rz2Ppg+rA&N@+#$99AmR7Nn*vtPkZ^ak4VWtytWP#-r25_ zb!a!7{G5e7$ntTX&I<#$9dL2&#tnzrmg{Fr5RF*uetu>sl0^Dk@>N)a@VmXC(5m_C z76XG|G|qBdWTc2tU?QN<_NRmAMNAS#ng8MwAl-y>|F7hx%Wcq>19>luaii>i863>H z!xp!~AL%ApFZ?I~o}7eFU9*N_j7!wtox%XqI#AFd3~f)B`;RTB%fQK$>h4>3N4xmS zb@$!O0Sg}2KkOay$<19uDNuLC3{wS-{sZdw8CfhT3ko(dJ4l_*;oQT3#;50h;?lUz*^5ALW03kF2ZfU0;xh zGB7rd5gY#Zx3$%a{qyVi`3H;jo8M@t1pZ4(X>j}d?Vb+~Wh50X{l`^V{%7rm0%Q$A z@a$e?=U;s#D@X0*!G<3Z0%#DF^ACK2LpOTUi?EggZyS)Vc zAP|S^UKwn2+gO&v0q!0soM@p}$9R{Nv=<~DHR>E`L2>SSW%_Sr%=g_&g~hZQ z<&@B}=74A%_UFLSIS{-+N%QdVP%0e$|NSKy!xjmAuUJ7`il$R)Af3`X^Fd7>0jZ72 zZ%4a%c~m79yWc|G{YP70VR^Gyw*UWVws zvsj+4M&ovyp|gFdr(0>6Jf6o8wb6B7ByY%g;Az02l%pg2;pPmNS(F^kzo;3xA-qCz zv}H%$I_J&aVfwtz2*%XVA#F3=QCO(mZ*j0LdWL@9{@TlrTR$VnV60qBHj#Z9LxpkL zS)p_Z<$pyvSf$}>m-mAL$yk#Y7v~B$Ubqvrp3OYLOodw8u2QSNI{qhxYF5nr-7yMm zY}~W$6XB6R2aWvMe2d|No?Ha+HzTkV6d0?@%gGVx(f@tNNyrBb1~s*v4l*wxY4#>} zbN|vB`=6Zd2IzX2fw^M*M4WwgztSGa!!$u&I>?~E)JfFxO;=KuRM6bvjF;Eb@cYwG z$9Nu{sT zaKA78Ho zW!kNLr&VNEVKg)^@5_iHymIy(J?V~*#F!$()s3em=J(vf+an?~MU_JO3Y5oDapYF2 zd|hr~VPWyPANBuFa5IEk?i~~z9bLpEc5@pKT2z=t`{cYrVxh);P8M zHnAn_g4)q%&g~)9`c^p1EHabeF^#WlnuLS?b97RhMRj%cbX6_==Naw5)gkx9OK&4! ze9QdAm7o6`#((SDwD9ZHCw|-^xtlbc16nXwfZ~(R+STVF{JBTX0;3s zx>(S9%ik!oN4-EF+_v{Mdh@M$4T}!vx(S0Cd`wCj8d%-z1Em?zDio3me3B)#2a#%_4eD3Ig4{c?AEe|{(CT@jNgeBoO6UnqDML_3Q; zg|<~-QE>+^N$O_DYwUbC;~d#S?T*LE3%VV`d=XK6RRB7!xy ziaO#4Pw-&JdakW=_h{j;b^PRFwH!7Dp5Sfm?6kDBM82i0Jr$B*Vs71%$$PlaS3JMs zCCL61$A$G!QkvCc%ChDGm6$P3uCJdTHX-3RklEX_26aAA=zUsi_uS(SKB(P-?oTdX zmJ1g@N!{`Bv9S`>-;8401R`UC9*_}Tt+8(+5$Laov~Yas*z2e;Eo^gu2efaRIR-vJ;-v9oYWh{e6cO9eukIMB+JPnf{%E}|hu81@&0n3V1{0SCG zQb<+>5eaW~M^{%@dbqTb?E346Z(XK96|}wWmKU}Pb>OQk?Y(uFVS>nH`Vj5+Q;`RB zgnk}N-aaYUo8-cNNe9GMtWIrzHStr;5-XHDbKT=kNI&SDe5LP~6(y5<{VvIC?f*&00o zgon&!dZ!JSNjn}cLYKn+v=W?4L>Ljp`r`bQ8AKlXGK2mN>2p&Ec(0MKRbx}6QxQ-8 z=~hv~nyljDz77p3X#htd-Bq!HSmj74MK zS82fEt`mVCv#ZK-6#Wedm-TLgOkKAN`&FPH{W;!U6|JpQ>>VEF7}})Lorb{P2RVN~ z4J3lQ5VgS%JwCG-b)>Io`UpZ3Fgm1PMfcB%xMD~g>yZK z=o?7g_IugPeB!4N5Bb{ie;#~&9BRZD5mC`HMJ;UHl+SfKs5HzE_m(Z>DtPIvisaH9 z1Q~n@y5^2emB=-}+%8T21fs(WF;}@Rfs*Tc)naMTF59;TG#XJRyC3q{?SNrmV4&2o zw7*{w{?@TFL;p`bh=H}*Z7;J3Yr44Fi^G^t?Z(Nbto*Z`gb`*CJV&K|I9~|6 z*Ycm{3BcF;JT-L|I#Tiw6?Dwl5>s7w7v*$2$ml^ukmcqaDlXj<&_pzDER%)%PVz09 z*03M+iCO7X^52Q!{ws^$R*#h1<&x^^_W=7QXJ=QL8L76`0(H80emBks4@QNhP{h!( ztxNQ8({bc8fF#)!kktJJqI#Z%Z}LFb6Tn8ZJ8e3kaej1kB-<1RaXK@Gt5*ODOIA*D-sW^<9(V*rxySkd>tMHBmK(}}A?)co_fMYn>=*Bg) zX>4NR2f3g*zZMSR{Os(us&ABS5-8a{0{z-EQ+S*5DZDYh|DQ)71d7J-JPx_%4vp3G`$YFYQ0yw3mR53k5JjnWC9@gW_KfJH; z7tfjnbye}_lZe*qnJ(O|E7wtf=jG=5+A}dRC3u$Bh=F)F#GnOGtV`y1i#H)`G`gFIhS>faUqJhSDC0K>gB)lEC`wXNQ7un+p00E8I{tp=`>c@& zvR=rW+CsHbNEngJhdXl;Q2d!ej1gE z6b@tKUX|)hm%HqMre$TNldn^M8%luozCPwcvj2GG)3ngoZ2R$nv^Hqf5)>JZWQw7Q zhm$f|hBktT4keRLol&Kag`=Zm?o3yEI|^JL%;oHM2bA8^m1YAUm%<( zI9RO3#lXN&eiHFt5KcjaQ*6C~5Do!m4Uyzi1(8G0IrWW+d4{KYaE=htoHq%t+k-Hy zJLBOlE*!cJ-Dk{;!N&fyf z;%u`YxhpeFVCH%!P{h!wnSu_rtw;aEe?NrnRmkx!SN~?sz`OftIyyRIAR7w0yWK7C z1sKZ8%0N9;iL5Qh15~z+P8x|xNN(M{`3Q79LI1I+xERhy-wq;o$z{|1ONPeYDPTTa z;P&@olaq5$GihsYUl9awe10PpLlT1}&PH}2j-{-Pnpd%0MGTKo^KDAX6w#~O|Al2W z2+M7j)h0cJpN{6x&P)MjgCBYV6Pk(-bRa_N><7)_HG2@&pGW3rp3IQ;+&w(@g|){o zTwPp@PV#Gkj|I}2EfKBt+m4~e%X&;lu7YlwW-8weK~8=@t+=QNXjh!S9ZoX+@MfND zb5Fk>cM>oLp-0;?f?)p>yp=+jq?evpZ!*|9c^ukC7K52Qe4~)2o{`4bt3qZUJ#78cSsJ z{y%6&=u1TmOw7JLw}N2{5E$PR*4DhYG&i@?;sACRQa~1z3~K88Do|Z{+_w1f4EK6V zi^!`T+bc9QG*(u!3SwuLFNrB~DQ6cF!{MStf|x5hU&6obvO71V1bhr%rjQS-i>I2XsRroJl0@d4Dk^DbOCr_TK4f=}a0*R_&OIg|Rs z!Vz{^Z)|sd$s#k8bhR|@UG|;t10ipp_*yZUh-VOe{>B)%caJ#Sv{wYQfv=$jFDdB# zgZ9J9PXv4}qjGqd{bhy{XQt2&0!RX$2d*QyROQJ?Y3&vV1q;D7dj)wx&u1XgOxY%w zYbNYl6~*|Wys{0tru=(s4SWm`v}vqO97gpr)f)sNChFJGM~I1eu7;&l-PdDs2um4` zN1uv}!jE2yQR3ZvPNCK=@Mc>(;dgtOHOY9i6O}VvNJtrg)tM3+EB^ zYD|!^#QvJYAQ!vVuK9jIJ=lc6hava`VZT`!V_3RS5#-IovhnC#jviH^z!iiy=s8XM zq=W9QK**PARbT0xxkVk{PBh%x4E9Fd-LoT#&JT_PJB`62z}0@L@T8tyFUi*vgj6g9VF0QlgwQ3Wz^)vBnM zKhX&d*oJK_crR8~E#6MPq~QFaLW;jcS@^;pwRokF7H?}Vk{u zkOe08RV2112r1!!r0|y*dbK@kDB4UxGauM_#?OuCbc}3l5QXl4rc=V|$?C9;apU3o= z*N!y3BfrAe)7>`z?=zes!=VKImbbTx^qO=p#-N=5J$NwifQ%P-C=5u8T8Z{7D8qsd zzt{!j07jTgTT~IoNc*Z5QayNZIYzp9WN~b?9v@}uhNy4&&kE`S>p-bTc6{zLw~|S4 zGRY*O;`7so3i>Ucf=nz|U09>_idkJ;0t)@V(VgrH5=_J(iI}tnV4+w;iAMnigN90k z%P5GttE@jdmpo#y(^`7;*m=Z`U^L^Q~N3UGH$`tm<>1H-YOL8@O zw@QD0ZcqnH0S%=kPNk-=B^T-3f>~fi6bUqmC!zN$X$#K2uiz{Evw8q{?%!+C@CNz} zkiykVcQatp1BH5!50=MMrJ7cS3L2Uwe`N4^-3lpV-8~?rJJ#WB2)>=vy+r3B85@sI z;;9-C=EHHfdEoqFNvH8T*M>+0O8ZmkvsJo~BY}k5X%^rU)7svSM?^%l;kP1W9F~+c zK|jj)?=#q>K%RjVoN>g(1=^R@2|!=OH>VpRscdsf%F8c;n*zummui1(ffoob-qrfB z>ca=2q|9F}91oxFU91y^hLxPnO5ZFZ#?;-o5X@C>RIlN;~m4IUi zDURad!vH9|x*qBvX{Z4UsaUW<%E@_i8ltW4%;NfbPg~$!7A`K`3+aY5xK1G>nlf6p zjMj1eTvElVSp$?Wb}~h7sQeXw|HDUEO(HwR{eb#*Senebtx0aCi}!W0vte+X(Kk1j zf;b7_E5r1=wljalS&Ene51i{^sRMWJW*I|+0myF}2y4&({(a<^rhfB*vh|M-udyh^ z?ez!InzIu<)^jV1-;B?PO&=VX(}AT2ox?j?AK#OvPyAD`8ivA7>R)R53WE% z`AQUse}cZgzKLMs9g%n(5)!#I0T1;G6WrgKWfk(dN^+KTv6b0&m(hsVpHWiMY1gH; zL=1H@Ohtcfl~~kY6e<|}MIh+OhY+jI?je!PMFD9SQNXVy0GtR2LW~l*?a5)K!5l)n zZi0N?JYrrVwBG47nwl)~hqI!hVje`G)wQU%URc+@6W~n| zF)+9S6l=38%}btV5*=&L=-6pTxF0_zN_h&bLJ%xh00)h->T1v74iHX`0w*NIkjAu+ zxHb76Y)`bRSzFtG@H$AdCk$=L+`omMa!11I4I^plu{z+}(0jZ1#2|FVIZ;HMfxr$# z&@G1Fi@CVeekz8fjZVn^5OO6!=71TP&kAMPGd0m5JX961y{ONu#*j7TkS5!-N zO)jB_D*8KyAngCcW(u=w{~`3myzi* zO`Ts`lLd<_v(XX~AX$1WyP-X38-j=qD&W7q&Q8_xw6mUKno8ryU+`KxlV$gRQozA4 z(VB}H3NO~GnOj*oA*4r0Pi_8^(54L1!fq8%@*JS%_Rs=|O})|#3$OH!Nx&!t=-({3 zT7uQg36_>E8>A{|7%cCU0Nw>{S#U}U$tCEMWs^8VVFZFjM1+;0W#d0@J@>Ku z5I9$Q9#%9N`86Y|Gr2MI%S^|c3ZhAj6E(}b%^MV*;-j=mKi-^T9k}n9%TUWD?&W^N zN50Gr5#-Ahz-{hM6V$sH1GgfmS)!m|U?`G?HT-yO+jS^vHFPxV5OXU*FHax4VxiYp z{`zIquR`|@aRbrH2N7>pUK>M0QCV4by!ZEbIm-0anQy3+#@FR!Kis>A)03EjS~BMT zqskJ$x3?FukN~apGWfl)r~$ogrR8WCw1)E=8|QO(;f&Bi!p#G3D@vM4Q&~N&qGA#b*1+Fu2@V*nFt<_^HKywP%XS0QmJS$^EbCS;G>N=1D+< zT>*mXei|bqqehhlF7&B=b(sS90jl1d=8u{khk6Y;WuSD;%Tq39SIj1%!op&T@dw3?$SXQUBY~j9LdVqQY>T3>UsegbHM^fr zSZB@%dx~#Zd{?yrYBr9=XvtakIpi^990Bjt9x6M>sVo?`A+g1Mgl$^1B_3o}eS~?Z^)HJlh;#GVtzi zcdRx1$-_-N4zlSu9B;)5^U?c=hod}$en>TMt9(ur6417B$j6} zW_Oe%UcivaY32K?`93O0v;l`vP`UFV`VkPUz}-T9Mz!2X3Oe!a?yBmy8GyU^D6Rvz z3PlG;{p(j^9(z}nE&h_K~D^2MF&)O zLQ_%=#V#n9fM z*#ysz4DtSH0jDL9V~&1ydT0u#>!gpAl+i`lU zS5gxTCNd0T=DV*}s}quvhT!0Qx;S^!)(Op%;_rhH0Hc@NGI2~)OiYA07!Ngt4)rkE z6g9l1L!+YTp%KXhLkZ~J4r9`83FQry+0F<+hW!%Ds0AG;GhatfPbk14h*1wv_~sOaqzcHiZ<8Rnh)F1*W&mC_Fb&}k0d~D3 ze8UD7A>gbfXxlP^dmUWtIDprQWUtGe+G1jc*BCsw*ejagblK7eT=htK^ziU-2@bOH zXYb44D;EZ}4?<@!Ff;@%H6XEy0AYi#g0zs3P;NMAKC@+k=^FTi`ocabi`Th35=7P2 zf3WqzSnDT*1rulp_`N zJv|Z?Rn+ixs%L-e>x+edBQVf}7^)VqgiwTe3w$#guMyil;sRXD?KonT0ro>*>N~yGYR`6;E7^bIid+}CO|*wUfGd#9d??SHU=J2C=nN{ zX)iHYLA)z*K&(?Bb|W#-PvR6DN#y_(h1$i$7UPl{* zY(;lQR0)QUl-b}XYZ$iwyv4g%tdzl8GpdkNQ(oQz=0q@mLB(g11xpu5{Vii-$4&z8 zk@9jHk*M5$`}M0NgvA~JD)y}*otlDA#-`2>ED{oHoFbi1?g?P_kwk2~Uk&4Yl&s-Y zZQGu2-{_F&ET*L14($rm=Dm|@I%S>VwjCYz>v-uxCVZuQGv$o7I+nJT)vx?nf>^(VdFCwF!A zuh+2QHHq87m$AP$mz&mJoJ1RDu@GliDlr@5 z>ATLAhx5KFn2NVI=+7}4a3WjLM`4j$49sr!vt|cB!5B#Q3`WIpWK&>dQSxWFz^A{ z8T>LeHML-Z0^h}}RQyq+*;F;;8CJ9Y^f=v`bq_EMh8(XCW+z2pE~zt=L_$oAOa-9$ zPlsyEHeGsKASgWC6nT)T{2+qXmutf-GG6zbPEiB;Dp9b*K{oJV_v%&Yd9v#eq|YB8 z9cYlJ2J;7I;$=c2BAFo0*z|JLr+)dhWH!Q`?YS53KY03Lv{M(|Ik*#_;&VKCvizY! zNokfs2F24_AptTNDOsyvaE7a$DB_0*Q}2&}+Tb&3|Ag-O3O zWC*U6U}r~bNjgUWFCBtBFcCQ5-zw@F@RbWx7J5@AjA|Db7NUoLHL4;NHh7PMjn1l% zRt+N?l(I;fgA`+s{|BAq;oh3T7z{G*@%`MTpl&d%l1Fj`>15M&X}*V@K*{ja(?w$# zrX$aCf^94+Iuyk*?*v8&T619JdX&yJ(U~6~e-9js+MxsnZyx{V+gZ#|ri(xY9QKls z`gVDqJ>x`N$$ZN*j4Hukk*rz>O70fl^S8U*APf8!t%dWB3@u>}6*cRosi`@)v}F20 zUK{Xzfv*ugNO^t=WaRB>$U2Cy!i?u>=(#BJd7d5I3BXU+f#h zff9p3=AjY^FP|_Zb9tso5QeaQ<)(pwfh;^!d+;o&@qIiez_$|ySa3Z}3=N~;Q7J8J z)U5lHd8R|u!A8$P;7_n9GJq-={OlNYRxts>M(+7|wRLb@+$d4LaziixLeL5t?kohR z2UDxPWK83z%FrMo(oVs^UxV9M5m(i%oA7xsG|AkrACeBBr;1Nj7ZRZW;Eq>Y_LidGnr4S&| zFkPx{9=rpoPeI`LZPW$n{dyTTTf0- z%F5r`-`R;Qct`!U&e~QLhE_=YftUu9Om>|m#5fB=;tlu$E0M zla4f8Le{+yW(r>3L?{#qWR)5rwgEOp@F~{c-@lpH9s&qCfR?Ou@^IW-x}aB?Hiu>d zF_)%~laK6Rdwo4CWr+U^B_}6%DXW91cxSNw4*B&MULwFd^I(iiP$HH!U-BmQxsu z88Sp}$uLb<=FHMC#`C?}A@YnYa)Nehq*SjDIs_gtZ}jV}Dl2;c_#c4PU@#Wq<0D$v z7YdA$B->ALjC#_8+sAZef?Y>cj=n|$w~G5mfu!u4;L$2#{;2Lur@%?i^eb!Zp#WK0zZ2_(O*dGCy5D{_i?da zlV^7_3xUF@*~t04w7kNuV@e#<)J8_p!V}#wBOz&dUq&8qf%WixAl^~;fd}j_Xl%r1 zHGvo9m)m263*|DxKfx&iGjNlYn@yO3nGX@H4@SM6b=CywL(94oIDHVsp|o!Yx64|` zW#zhF#Jv+Kui&T1CdYlq%Hb`r{7SRO*_FA!Qx@j_vHQ3(mt&*E#A+(7jqK_Cy{#Dj zt4%NO(@M?G?E0;~qZL~34Zlfe+xau~_V-i1AeJtH*P>DoiB`BV%^3Q`m@xhIKFT;z;)Wo?$GAuZ*1TgRAzhnt9W0}XAm+DjjDJI zeuV&9klL=Nb^bF59ng1O0q1SmbDy$<-9Q& zpOm*bY^2$n z##(Ol2@oPrxpeE!6;#wr$2($05AVxaZ3RXuUU_?)dNAj3I{Oe$a&yAulOQ=7%Vlgy z$@L^7#Ki- z0cwtP?t!zteFktufQ2~#=DCi%INzLTt7t2@ zx>;~<0W8F_wY7z=*nwAD_|CNqZ!9UU2YrO#Cru=()?et;QlvnlQNxk&T(7vO~>vr54Q)#TM1c6xAEXS1Js0wFVQuuOO4syOj_vnCA|QRzFYcR;l@ z@ChwugWBME3F+*^n{Vzf2$C;TFGv9$DGT1>*Y+E0>T4o7<%C8WW!jI9!-E&U5@b;= z=RUOCElJ(6CO3u8-%|RbsmT#Pwlvybl&Feb zqt$qS1?Qe#pvh(Z3WNc(9q|HSQK&9+*uWauzTrEDfMG)>^Y}s1od-AD{HyW?53CY zTz!MA$qZV2K>tUv!DTy{zY`xWCb!F0dJchz$zuy(>Jh{9Z)j)$=3hze<>;$8Vy{;6 zYr8%7M$Om}b5pr_Kj;d7{h0X(E%h#-u-Le-Zb$_#g^KgKx@kNut&45hpdFIxG4U;| z>0aY8&>yIy?A3cF^y^7zqSNtu&CElMa-*;|CU^-r41Zq&Sc?MY`e0vIM*oa&ls)`{ zYdLq6NS%OCc*g#N1D48Bjdl`Dl)KW5@rwL{iKrYk1J7u1P&{()+%0|e>x(}CxyYax zJW-LJVM*}Fp@C%qszrVO}P6F~k)IF~>g&BX(lx+6S0G~Y2dC%WEzJcxICe6*m1M>x+ zOmAtb?ZXEojS|#l%b04@7Bttwj+NvY_}7Yo@niggosnXNR}Ej^`KG3 zA|Oa8ID<;vQmS$|UrDrq^F;w%2PW-WeFEIWd|haPwR6LNt*j(kJekZ=vWH1)-^?-9 zAMlKCIGom(^|RBZXJ$KnDxq7tx7Jh-%J?P@tZBU=G}O(pW)9`Ng(^xh3XWL26{o4p zWnD{4OQfqX`K}4E^+^jgJ}=BK)4a|}H)%1HlR_yJpu?*-H-4Di0Lr5OS0=iUTH!A`i=)w1OIqJJaoL2hK z?5Gr}N5GvPg3PPULC0AWX`BE6h)Q57&0WI_xoCbyje`YFf`WlVg!ia!jt;)QQAvltP_~H>Q%KL1+(t z@y%Pep2L#|hJuO31?Xq|{PoK>FOLQs#jygb`91@@0N+#*ytBJ_#gu?=D*xUO11#2m zLB8rE#>FQffPTpBM}=v)af)VfF5Db*LN24>{J+f9^V7}egM!(XS{xOEPU3|g=k`=m znOcvD2uDW-EM3^+Y;|(MYZ}m19+}ku)HnBUws-|*C%vOd5%eN`wC$R++rTN7r7EK}5&cbq0z zHz9?&pC3~`l3=m$<}jS@`Eygw?J=&P`(l8P2Qiwe7>h~wJwVRnmIrex9?aoDx(4B` zDEKxnV6WiH)vGXHzyMmZ!qgI^N!euXh|VaQAz-ipl^M!?&FU{l?+HTN@ukD~t&^hP zKHDJDF7^He!eT7;s2=TfwcIU#Y$?0s2(t!0XEl-B3Peph6iEwv7k^LT#S8M62QPn& z{}A}p8P!AKsrv+q34rNn;5I#SQ0!Tw zDnsuu%{=0->3Wo{ea(}<Jj(!*s8iD#TFf(WS0U;4P zN_^ozJ~=9damvBQR2NJ-8CPLf3yMIQs1SPPY{|OKeJH7ZttH&8<)$23XM8M>LLkwa z$ZK?c&~4@Dny)awb%C;OD5X@uu7R}X=_}N2V)yCpcg|A&k4hQK))#bDSBSf>U^bSWv!4@`amgf z;&o-y>o$phHsz2s&TFMJs!tc98U1(9Zpwxe(hCR!mlj5M?15E44h<+UK5omZv)1!E z;{Z59ez!I%>Mn@4H23u>$X=C~fF9AbFS%_@Ac59Ud#KTj*RAu(*RTas-G}^{%2M6& zKR*+lW&WtKC_NDL|jhU@dne-7H*Ma@Ih!;}ymJ{y7{q<8{H`HSb9Z1;{;gN=ix~+B^ey zbd4Gt68J)~x8uU6^#)I0I5~Z3ZM{lQPcQQZuC(edy_VL5<6XUFs;={TIoDGovAM@| zbU~1v3?=JCzg{FCJDFc;VpK3_zjh<>`$*1s^?{|PBQLmR&9$$)SiIz9D`F1u;@WrX zU--!S+LEd}2t!_8KAKrC6-?@P4km0(PxJRr4>#`;5=sN(8~VR)6>?Qj&H&^Hib$8$ z;uc&7~g^B#vuGoMi5gLV)aHER%6DSpsdH z)pTX-Q~bf{u|Leksy?t2^}hElRdDVfOZGx_Ji7UrDO7y?$KNe5YBp#oDJ5nXbptj( zoyv!peR~dfnwpzC9ysTGELYf#>EdCf05*y9Ag1m89`FIqlIh7&U*W_^os*@&#UBTy znspxNpSqfTZYauh?kz7sQKLdfE7yFow7qK3_2!upr1}KdPFQ-m6JwkJJ4s6~OS)xi zx-P=7U8BupV9>px0v-5sxDl(aIs#d(P&Md2~-Fd|0X2p))8ydl%A4EOA)#osWm%WLnf0!%MVW zw`HIc#Ty1ATTq-lt+IFqm$^gBwlO9L|B%aO5?T0zEs`)&{=@>0;^JcSsX7iAOEnxX zCK-IMewPDx8`2IAy=n;8jQdcz01$IvNS!O)mI7RY1d{B1SAM$AC&hHAbl3qw(i)}8 z1^q-uMg-VVk^L6PUP+gwtP)PQNq~aNj}QC_@ZuO!H_(NGPk7la*kBj-CmbLM9DMbk zaN!7uT&9k+;duzJ0QeTfd@!5CkD2(^MhSr-H%p0qo$6OQYLg9rO z*OC2mzOVzuh7WDUZjWp~5)fH(qj(9qgCw9|+jiXSM1O-Ej{C-ua-0518VtW3CY*hK0|`?qf^9|KE6C_6|QwKOzv z3sRN-XLY4~bYc9JzT-!T4bD><*pGP>?&FqE0 z%0uypB-3Xfam18vqM^yK@$bX+i0?6xrM^qZp~9GU!a>o+TFyhYj7PLv+w23xEO4Q+ znlMc-_LBaH7mDJUxF8vRoA#DHJ$>Lec*c-R&9Ypa)vQ&o1UB_v=baq|jF7xNHwjekACsv+ms6 ztDF^nORyQ9`PBN*?0EA_Nu||K?>DIgXd#ns@q;nF6;vT!YQlvqSLuv2p3ja`z9R-0 z;?=Jus%)J33uuDl*_Lj|`rT8+Hdj>(R->o4P%X=O!GkfPs?XjMlSD0_sz7kP?v(=H z>7h-F+l4N4lnLDS26YsftjaakYd^~NR!0>mb=YQM@yI)n@R_n#AI^1jl&dg0Q;;oC zk(7MLat~LQnholeK7P+%tgQH@H01y(X~$9ao3TSm(YLjQy7@&N#e8b^LsZvBQov2% zA%aeIHq0%6IM~$BE(586xPTy54`CAkxU+LsX-mLHm542-^1U>}?K~_yWU{iR26(c5 z3MNm=mf~Nx8R3?cgel17rvQd0-~nE~o*wPtWC~COrvjLoiEJ3kWUfQ~pTH{t%LBkm z42R|j2upWzu-|G+L{b8^RV0F3OnGW;aCIN{L?Ym-+W+}2ALQ~dUxm-v^*v<9_I9Ph z_hGGtQvrcbf7HtK`RjFL4oEi4r|dYlwLZJ97GoM#eivy@;~og)EO`Tf4-r4mDk#(R z2F6hPGulP9%JSR>X0FI2qS z#Gx*$$!P2?gQ2x zHb`NqDIB`gh8+in-^j)e%*)2M52;p5?! zSxGDRmEiA?(u&5TyOZQdXHpI4V*yfgGCZI%n<-u+4Nse?YUWQzZxAf< z7ws<|lZu4jzs+RG8Daa%ACpWo_Tn_=-8=m;E>2E7Tvyo4n48}xcs~)FARv&C;2Rh5 z=1hTzCpPB#DUdIvfY$|h12SRPh7!JD0x+OEckTci=n_oS+Gb|RfHfHL@Rb;_WdUS< z?1O?~a9S-Fl8W7x$k^%L-x0gG?-aX8rVtbwrBTL`K!#7fb^jY`%t#8sj6z38hd)9i z0zwXSf;*EX8OT8bx;YD>5d2?GitT-sz+Zx%+FfR(z|fO#05;y z?l?A$y}se}b%Ar2skkoUeFff-E(V>HFVf969?cOuHQ%(B5JX z#G0W?Zn#vBR~SM0EO9`eZaC|r@SXrq!u|w@XB1oMp_PzCyZ z>VwMz?2ExtJwYYQ-?%JEJ>5xM;Q;(T@0ajNmc(-Qz~tMcuep65R<(JifU{C`w^cRUyD{(etONy=yt zQQ6t6NR(u6vJwrmjD#qn%w%OG6v|ALkddN{va*#ZWRvU>S-@(Z})#<}LVmnFBI=cf@sF*2B^SO^`cdzmKrFe4CI1~ytWmAet`gs@a9BN3|6D&s}ug!sQyR2`q zVpkT<53?%o3Nbf*b+*W*VQq9`W$Inep31Tb=8-mbTW#y!&qr4cw#OCCUcm6Zo#y(> z`O&QR(*PoGOWc!Yc6MKVdVKzRgGTho+)Z%SC9Z1skbKJL0=FcLdo4;dUiAb%t zKBhl2nGyj^M0~tkz~pl{yULawJ3PndvHbyMYy^QCbIes7PW{}4k&h(cB};%U6(3Kh zh&pI}PIlrsb0_&9C6$4iGXz%wx3?iP;`%_%E`q}pIgj#gmqjK=v>%@P>!fhY2-TXs zeS#hB8?>{SJ@pI>oQ9s_bfQ|-A8@q*yHn>({c~*hTg}9~9nDgsL+k;V^IRPCiA*+J z`6aCXvT~}<*f-<_dreg96YcLaL*3P%cc}NiZK4kHY=~duQ|S*(pwi81e@wXa{UclP z+!mu1i;6Eoj=;UmV=e5@O>TS*<&FiR!NHd*`dy>eHl=;_Dvo1>3*MUz{7SSG8nGiH z@}UoGg``3I6lDxHf26SX%c;nzO=fW-Da+FK;aQn)X>4638zn+$eS?E;wS}nL8(cD< zn{^d15fS1P^!xdqs)AEF+MEx)J2)<2EXX5Unf5Ty8_Oq!5vu;5c?rK+y_xn`k!>Fb z_Hm>(X#D)Jb%P~;%rkBEOK$?VbL+gd;8$dIN{bI{Q#BZ2V{C1l9=Lk8hF-1WykHKm zT+gF7luZtoF=1`GoCjA65ikhBRB#*)YC#{WDDsQ9ILwM9G%;C`48yZ$p{~C3_N`ly zshyo2VKHNNk&D(5a2?-LtSSdcZCt(lxz2Zda!>uuDy}f|9b3{_Whqqe{lpx-s8r*t zjYdG~M>EG>yH1goR|*@SZF9f{H=fINW592OmIz3U1U7>B&2#IdQh~CX0y=$RQIWJK zMNbNBXRbk;0Ep=$7>GiQ!RWrU&|8sVDBvxTWfvg~hd+EcK`2oJwGTy>CG)eh33Uxq zJKPTfIPc=ob&YAE^^vlM&eVqL+?|QQ%&4^zziip^Av29S^{@q;7t_ne_#Nb)b3svY|3WWBU} z^UR;|FP$y8X~l1=B+68+!JL*OnoPno!ZGoZ zjAQQ)HGyf;68ATD7f?%ZY0fl%?(95%<|2eR8l#kq%*=#9PO1b zbIAVM>>>&B*c=2cBPx7&AE>`9KA_$B@zW8ndV2 z@oD)V+s>FFPJU}Q&y)%vu%=lQdFrrI?fLs4DRb$|oxfu7GQM`z9ZR#!89OJLU*A%8 z)K&_&YS-xLVBW>gZ^!U*Lj+58j;gjcEt(C*=%&l`qKuju+8%YgHmO={jbI4k*p;7u zy|AzlyOeBW{QeC0p21Y?$;l05jx8Fqkm)&7E-He#_Wby2AdLslr|tO#nVvb5Q=X%F z>)6<86vKUj#ei4AtMP=pm+CEh-W) zjq8H_qv@Flwyglaz#9WmFXr;SNx?GJZQY6&!;KgELVaQGuz(gSpQzJOVM9wY@HKffGQOQM}Q31*^O$e$x0c@}w#eFvUH@$m#k(4pXy=fbFseLtaAYl5Mg1%GA=w&!wQ2?F z{*clu^U(M^bQgtG>^>)~Q2-dt;<`!L0Ial11^U0Wnr+7fs70SG{!V_>&f79mF1RYa zu~OfAp5e{wsFj}`wy(0)xOw7P!i5C-w2GOMn(kJc$wryepFSDRrqZmO)?&zSWoD?} z(nPOqRQ0x~Xs}}<&FDpa-k}{L*O+qKRZ$fP?iQ#Q zjcGzYQ>$ z{YtAN4Yn2 z;_)*R30qse(|1sov(|@&RD>6wJ z`X)%{Vlwy0(r!smDn7@)qUi;nD#Oa`STF69(=x6*OW!lE=@J~~%9XR{`89K8mDQfV zp34C@6B+R0Up;X$G_H`-&W`+?f4j2t@Ey)o-wURXByN~o(6~>{)_D1KwCX3_&gyj+ zd+9H`=c^`XK#r&UV9dD zUR{_m*rvNA?#UBYVCwU-%&II96W{|c*e6+b9CiEad}E5OMQ3}feI z%t)Z!gAWx*fn8XjK?9r$aVMN)#R)tzFX7yxrII;q!I}gY^&S;v`*$(38afOvXCeB#JuLh<%$*=*29#aP3LcyMtsg(q+$H3y7Dc8I?l_5LsmD_?2W7E z?4>VwsrW+7&Dq1{8O{stZC3jPv=jm;))Ie1ULheGZ|NxNx?LXev$IXi<(##s<&W)t zzHXqq+kT{bO{UB4hm%3>uImC(TzbP(4VR~lV{VJlhIi}-xnOPo>Kov%C?%q3EE{5* zM+OJ|g6neWe!cmKnHEu4Lfr(?%+HjNGX-|%;6Fk5PVbkex8+)DP&m@l`FBj0gxdN^ zipg9Q=2l%hen(@n&jnGId@JB#ibVDk_b^gcXe3A{?l#z6 z2y-D&@DZXgjZIe_!~DG#RKNgK3RnkqIGko)T_`uY-`Dhf?)8m*yJNjB#5GplYBnxBvRc^~f7%xHPP^ULUVCl47fk%vDg zDMwcn z_V@k2bJL^RzJ_;LF9jxDQchE)pzx;(mYbQJ{7_xZ-KH*7pV{AUMy@g?0cT$D zhu;+!1Ic>|jZM_ty~Igyq$a=HJC-u3CB@R}e3H~o|2?D76)$OT_T%+Y^>gc5>%mKi zht*Sw?&HNK;2}h7im7B><1@89BQ=1KNC|1^=Xy8GZiXTgmI8P=WH%zA7+&@SxeaiX z|HFrS(9eG8_`A40a(|e43|jk1=-?cYl&HoaysQVtD~I;~RgUuaNV%QUk3gOegyYK9 z>3#>z*(ZBX-e}EKI4D$oyY$(4LFHj5y=4$kVf!VhaA`Nb9?IQePHrD(ZxTxV0iI>y z8P4xL?K~?xeugy(pMK;cRH0DoQ#!4qAX@S1@M|~y9`$HS1p5@TyLsWj)zu9dJKK?;>uMj82g92Hk{4S zgFl=tdxdquGjlR5p@MV58i6Ri#AA!-bos&IZ|x5S-Y?T0IZ~i{Zh4RbJPCGCTFGed zk#2nuim0EXqbeXjCH#%YT6>&WKe|T_q16LiTSYT6Qof)4+WP!?imbI5W3W%tv#V1@ z0ewS3nG1(w%G2te4;u0uWnL$j_?8kKb=;4v^5r03+- zPNqV~p%MR@t>Y#5@98U@KYkDq0;U-Roli;2LemdGz9keVg4UmoS1uKCSQUQj=e@wr1G)e_bg61{!gUgf0KmO=j za0@$3J>RhZm%IBbd+A>Mm8bM-JBghaJh8ZA5?}; zmu_>s=k%}NzkPcJ;K{^uWp0o3d~UdZ`vbYpAw$*o`Y+(+{O#Y{Ws^DiK1=wa6P8z% z)z?Rrr|s(49+X<}Q0%?u(Btvdr1yd5*3bNC4#`|VmKI=kF#$KJ78eswqh?mOaE%AQ zD;ilm)j)Kq=C1D_9kHLr+js@*TQkQ*b2cxwYAZ2X`3SGXXD6Gz%zWjqXaIR56i|>~ zJ<_AM#X|Z(yLT_Ku_Ox3@p+5@P+)EH^zYDU1VI5jE8kCMi!yEp&E+E~=b+IP>mDTHB;IpHk&s+E z!hM96wwEtdLQ)b)`gUkuy-=6l@w6?@1TK#M|7l!z0M<2)(nv)F4F(QnxyYq?T8lVJ zz}sR7Ck1qmC88R>_F{MwX&8dGW|=0?vMZa7%t(heS@nOovjJk|R~VD3wu$k=D;clC z_2x}&gg1ThP3N-OazO<}rF6>G)fEpz|0NS>4NuYTELuE&$7-ev8Sc>=)5+#HASl2c zI!tkhmP935GN+-SW_n_&VXykv-^n(^;%{ZhHv>zX$k;?KUXzDamEDzeG>4wHw3lc) zEX;~tZry_W0s}DC)a3ik2WnedB3`|Er8|1%Yi2dr7B!$rxv+{N&n(?lj@o;K@@ z>f%apKt%fZu8^%eFpgiY5%_KT0Jam*_ny?$+zB1Pjr2F>z8i-7kaOQAX0^1&Io?pfQm+P~f_pzQNN7pvmxyu$HGPUYY+6VU&IlqpK2nDVwgsdoFJGpC?WD zW+>@e?};0i_7u3j>4|f9l@p77`-w_S_17)uONBLfifZN=T|#n+&EglWvk(DCo()L> zK*{^oNK@1`@anh=Yo_gtqE-6coc{nLL&tt`s`uj$$p23*y|!tm#U<%@Z5=U^9splX9YR*uM_CC|mopTFOjgh2-5qT!HjKYs1=RgF4T*PN8PR;mK3>FDSop(iF#Zv#knsAIN z@rZ!V7R-hRPj3O}AaLH)+*}IExrQHKtwe<{lx_6#+U?Dx(%#F_HEOF;P>`8j;P!X> zy?rjKP!?2povCJHu*uGLB%*OZ8)7;`e-w?4nJ|urYn%@{56hde&cL=OXJ;$m3RoNN z+0F;Z19A5Ov1NLe%0k3dd*Ql*_fR)DyzzkL960LugJ+}2^#o7XQScz?+n(%HDlldh z7morG_X?d&c*Mp11yVy=EgK)0|J@$Gy)IU42vgu>7@mym7XTRs5|3=KOznOYhM7C) zJ<}w`4=(>XR)P8<0CJJsI?d<0ksX-sa(Ui2kAZm4aimP^X1;#3Y&*QLt}P*qHCo!H)F&Dp}z)RU-J(iR2E?Iy4fsWInHy@^?d=jnt7ESJbeN`aJE5z z#X~@b);uP1>#r&r4UyOO7$6~A6Y4OycL-1-%kRS3kWx>9k26d(O80ivPL{k;L)$E~ zGD`=F;9e>}sW);eUii&M^#kUUw%fOoC-z%0Wkj|Vcf+S0rKmi@A9o!7!3(m|&A z2-+B;JR96WDs9C3`ui(Ttf`N6ZX(JZCKbg0-*fiCXnhwsebt8~4S5)+d|MT0Km6-c09@BG!SoSvL~f&v_LBTaZk z^4`;|%7R`{>HK+Cl3g`p)}K9#5zmA=0P2{dQ*>++UbneJUfa%J+*+W3JomfxsMl&F zxAALXXui;3ZM}`az4L!8FeJwM*6r*tAiyM(P(cVz0AYSg@8@k8ntlZI3zpDnzld;X zrq4r=ufeP(u;oV6U7ADMVw!t}%@m(+CSyXc`^<99FKz=cC4#~aA3i)RiS`VC`}SB# zNeKuOp}ijiE!!O&lQ8|p-7duX=;w2|KW3PBZMybrtX9%v`6#Y)FH&OFHDNn-%B0N( zLO;4U1#|RO3xkM4tu~n3K2^baOf$`n4)&%Yapwjvmkxk;bJU@CBV-Ag;DLVWT=)!0 zGbW^)Sy)(*W)4ZxY>U|qYm2K_1@GLsV~jK%^SvfV6)>0jyzs=_*Qq+LhpL=4EfJae zR--JX55CVkP5xF!Yy+3P+Np&VCS>?)yphV$s#mwPd^Y`r;W-otoAKo8G!wPM*(6=Y zaV(eQ%1o;EAaJO`)PuJcS8}i_>=3+MnSzuFh(CeTS$7O#e7s?zMQ=HsnjoK|-2`9U z%~X3&pm3hHwQK+Zs~HRf(YRite4A?6-w1b(WU-Pz20#X!2I$$*Y(G0gIiD}=Y~t-##`OOD zQgaVEUzaXvBY$&0r0=0?X*smIc{zx8Asw* z&@KJ5)_ge+Wq5O%1`7)RaC^E=*?LqJ`&FWNFQ6U*;lgYXG@3ILuu_BkvpaXELjVdi7Q4A%V8=HK%5fR=|96dE z41z6AAdpPsH{pffwrEn_rlA*^9JW>25Wbm>S@JLi`M(0bI)UWp*c%x?iWJXlTJo6a zhGOC$8$!-eihc{7WnXV^_-Pu-vKb&A@b9RCexM!h3|d+=^v)04ceD1Ke;Do*cvtVL zqlXm4>v|$~l9^pL2Y*>zSjTkPS7?y=m^AanV3P#ZYdP^dN`$Ws(=!>Y9=-9-p`dIy zozfw|2qR0KkJ>PK!EGgy;b2Cwn!JGdAHRXFs>1FWL`gF%H^feK5)9%t1|?Ud5A=Hy zLt7Xzzvlhk-tGYNBLsU#K^~GvWauCwJO@4L1yDv{1nvX5JMS@s+5cntSJeC(ptK#@ z4ZNZsr=^&uo}!(N{>`YsF7A}pfE^l~rzpe7)`y&Wc#aXedfjP9*t#Lx5K?&rr^YoX zqX8#Dr;aXB6OAWvi-SV)n)x)^-W=QS;?QZ=0DCs!iLte`R6qwhiSiIt!j0z=KKEtn zKn@g;NjMQp z#EZL(7P);C(m~sM0?OKdvvS1Iis5?R9I)S!gricm8e4$t3X<6?HFNCYZnsT6(3V?A zJbzpctVtF>$u)jfa!{r?sGb<~Rrs|~l9(-cyUJriixIFlqyb>ceMZ9Fh_)F24LMCQ z58*K$jgk%|laIIZJ}koQAE3C}8J!gT+wz3xTCILdDOr(&E)jrldU&8fBF-Ie!XLt+ z!GP4AvZX@MB(6rw_@C?&?xV0)QdX|85>0tK)|h2R{rL8!40f;ym#Mzp+BoQOKr366 z={SYAjLzOB)83V?bh?^&?_DpuvIqPnWH24%q^)n4)1trr`&%hGc$i)5`pskg{7~_q zu1lzx62tD_=Ukqy6>tarGHT#Rm#a6#=tJk_2!iebqO7bRIJi;hBM3;Kt*sr!q!Z58 zaeGn#3;}XvV0gC4QkTgs6JCHABAvc#K|##P#3N(foX5I2!marf26h zIn2PKA>|=p2ujveSlbEQQUzWPvwu*(oe97Qo= z>OSSGSh)2~Y_-{X`u$?N9>s${$O+saf)_vbU;@>wi` z9vZA9RaE?8_b}c1K1(^hb8vjzueg}mD0p+-`%2H4)I+kLl)~jug^-^gaFwWCqxp1^J#LO*k*yhEag|ock~Y^W$%JVSHEeV z7JgPlAci6evg^MXgn&v0uajX^I`Ij1eDu7qI58jl<*Uk+XknGms*_-D*kflPWxLWB zc3Vv5PWk&skKa?;Za(qBrEzNe;mpiTm|a@byxUl^DiQBb0bTLhLdp5c(lDl#%J{XF z-5E6grkMuqYq@02+*}YIPhmFQ*2o*2l#@?MzZ-EU?M~wDX}+< zl$oXhVRmKPBG>}(kBP??V4w&xi_-&y?}(-hdJ83}rM&LungXpO9}+tU zLwf#Kd?PGUt|vgA)Mo#|C~iZ%MdMWpajLlcBq8F)U4&1Uz~igH*Ad9F@x;i7{9EIx zRXOtLWo`-g^L#1wvM-ejRt!}yj_nwkKPi9Mxg!`rVet@b@SYLQ#En89&h^i95qgGXAE)o^<*C&3&L46%t|_RSJdzXXhY z8Z!+=Q0%TwJX1Vb#f&VZBQ`6EKJKA_Y5o7Yyk%wVcg%?d5Qxe6K~~n=8z`vF+8yGs z`7?Nr@c=6xc*A&rHBBc{SV3ad)kU>udZo|-dvzVF5 zo>TvasAZYl0-`2hx*v!d!MA@^Zn@Eg?=NT^Td)%9q)o(;>@G3*zT}la!$j+U79m~A>#C_JSC;i=iXT) zp6TYY`K?0KMXjNOIg}Fe051P$JQUF*FNC(=97VR%uU4gHDqrIs%wH_=tws&t#)x<< zFE9lSe~eb;02Qqa;hdnS=yVmd=n176N!zMDhuyw-E^4m>4{p#Yxn{L0aS-OvV%`T> z2)4t0_R2`M0Caqi5oy2+!Eubj#W0FN*lY`AtjI1kHTUqeG%-qjy!H34dtjb?|9fkixJ9v>H@`WFzMWhssD9GF?%~nB zi}^p`rznv-#p_XHySlky35H>95m9WR^ZNpFTD{14yGWUOZe`{eK_V~x51HVoS&np*j%l+EiaNg z?AocnpO{4y8ul9INyPYvUDiC-oN0J?us-h5VVNW7jr;YXeRwAfDL1r>;GQiak>zBT z1Y+eUxgc2cgoI!`*K?egmr6sULA3f2@RndaNv!Mr6M1~*C8h;vem+98%QuRhF*T55 zfGkm6S`}Y^UJ%H?Jh^q)QX(*uKl~qJg@O)u({OJJYyW;YfnCDj8P-uy8k|s7rQgpl ztYWFC%a?_D6E%bemL)8l92^)cT`|1w=yEEfDY?VqtCwrZTBl-9;+dn^=@GsELG5V; z1re8VW8!HDg00_t`q=`0!aYaoXlIIJO%@~N(?Z{l+G_wDA-^@EmY;RU7w?uQF=nRNtvNb2%Fn*f3XU2V75+_elf!1W^Q{ zFrwSNJIcKBg-Nj_8Vlk{{U%j$4U@YO%lCtF{P8 za5l_CP{cb5=FF09GJy8g}h2?v%~EKK#KL((9wz_}%qS;m7{H`L~U(hFQ(^^4ho zBU<#EFnq|jU5SvbpW=-hQ2j#5edN&UkND5YEWJmeH$8A<*9Nz5!srJt&-ML{E>@6p zkZF$J&G#LheY3H1k`W5$_q6CR6i7d0+aU*h2%IQ@|B~pr-@4cnoD$Vz?(af@%kWyD z+AGLfx8*q)IFs#`2?LtChKE75K%7UmGc!c1AwevoVd!*CFsBvHcf?{5H9~s0w?HD{ z2K;WPV_``!o^s>Z(hf(^5J2rh=xs!g?1Z!oei*+Omh3NHvTI7utAMsAu}Ny};`sZd zPQnAVYW=ZYq~(Spz03ZNrjk?o9&0Obc!{RK0x3dx2eUV*$?9{XG=hT#rk<@xgO8Hv zd?MNO@N?^kDaFcoN@M;gvG+^MCJG9XixvJ>DO$1f@sG9R^jVm-0Ny(>S}bkEs( z6JcQoJ*HDj--K5BDhK%Zjm4T);}mBt^x=mVoRwv-9(NB#_Z@JiWnYr)L&WkBW8)qf zUjKn!SNQygb)-c}N~*z&uGKfa^}u2UZNtp6e>~7a#6N9z_1Z}8a#S*yIxAAkN5L4L zEMP*XflT6-{%JqB$@n@N0R^Cs<4b+JbuqTd$_zCgXyJ#?bS5cu0JQblN(UEaN+5F; z4OuLo`u$&D;Sh35Jfu$DuzxB_xMS>qg`@I@%>bnAeA@+o_U#>)diB)U_ZNJbs4=9s zk&x;6Qg~}g97qxf_1}bZrfvWLXn?_9IwApX9laBo&Vu|?!0Q6m0C_SLhm;d|YelV_ zeIB)G2w!*=vSVfcLoRC>!EpaDi;$PMe(bvSX<|w>nx^u_IbW{ds|zy|Kb~wX`TOz2 zRCtyn$gS>TeX_W9N64*fQ&Lns4|X(|da1wM7jy3I5ePwhhS9Wy@E0vD`cEOuDw>*_ z&*uQiqL*(5N~gbHN3U^o4wKvjv}uN4ACSF98TvYKJ7Ef<0_ofU&eNnUmGN9fSz6>| zP0CU{{g;Ytl(N_1B|(N`7}eXMy%?MVfm_(2w?cGNLzYcN#er}1GS%-Mb zamPp_S=ob#oNS}J;7+pXif%MLMa_dOd6Z}+c9J@cfCqzN*YXOLCDoUD6a*-hh_eFR zGS(;ok|hFLZY*@TRGXuhG0`2EO7_Se6Ot3-$=(#U7ct z@2R2_Z#H|ErR;->r0nbj*K(o30oZ^R9J`qdNG|MZtz`}NwxQvw08Xa!rRgRkJX@iM zhWU;emRaDD_wAD7rWeJ{P(Pyrp&U$E{g{HdZlNsRED;0JdYW?KKltV{S6dW&nxILGe%@bnEJFkQc?Q^BVfMdgHlTIqF|9BTR zlyAZrMK3EVY8Sef2Q?*^S!vVkvy?jtBV{_El}Vsav|o*qwYxU>nSt1AqOuKtIwr=r z9nUFfuaFm@VGBnm*^@aKh7sm}El{61=*!Ph%SY;=x52LGNJF~J;eiK5h6cs_I~-gd z7)*JKg|l6-x35gh3s`^w(N%%7gSYx3FE5?h7qKw8@A%xl{5t0$ZdAzKcVS(U_P>G} z9M2Oq%4~n^sGruRVb|u!L`HCRv~I&k8~97IbJ+DLI_pvC63A7aR6*Z_6x$4t3_&Xc(@96 zmn(!}CeIEzVUOrxz0C7qT)}K^bCM84q=Hy6+kH{Af(Om1m7oAP17u?PM zw-Y6~Qow|kKF&6;C#-F9aA)@Xw#2aE0=%!?Crc?V>gG%~Z>DCdLaoeKi}Y>|$4H62 zO_z`=!NQ7Ma;eYxd3Kj`M$Cz6p)R^gGaBK|d*n`|nYdm;mtcc7fRMFg5MAc^k2xo}P5y0GGj8g6zm6 zUuvjU@KGJv%8dTa=&QuBWAMa%ZZjcBd=80SprHSGVZ`EmUj(UZky>0!ODy{m1tq-^b-@kn&zRK z3^}|aNM@*MEDVS6zR;V&I`L-y@d?;U6HpM(OF%49>t7Ts04xqf``S4j*G&g9P)`!E z6$HT$6>>VvSM zKt74Y5c*zNt!yd;W#s++%9V$$3Ziq({7^`6a2{Jb8KEFjwnTmg>t8{rvZYq1=TT3n zTTi+!5BS-Vap;fzjb5A#Ki~ZO=1E`Lxg^NN84uo#R!UXn8=Rp zQ$?W`5y|@CVwe@R?}Ywc$MW4YvL@6r^AkU-QQQ0^BHWAXkl~Z zqD~f=l$56>cqn7a?Z{fx3akxXfHdyKI;#Cr(U77ZwDhLE7Rg(?jDZvx&_DyuergHw z10kDlf@FsP+7odFu6|DP<}kF58o)V{O^;@aGZ+b8gC!$5H@sf5=Ff4onUQMq#Y>4? zdWsfpwEKRXd$FpPlP=+2^P&FKX878LC+i!$=ZiUgC1PRJMZe4H@y*Dy(0au2_f(8_ zZlN|gjVdu`nH-=`CAo2J2uUCn90Ifi8zMkUV`F0wFQ)=TFx0LD-S-YyYiTk2&jK_A zVb{?q**}qskeNu`5aoRR`gPv3`9UbnEJkLSq+IW#2NSpX1{VjI72?#(=LaNgJ47L?+t%zCBADBY~{p&3mz`*Oi%B#kPim>ZxjXQ=uyD(Dxo2vAt8f!z)@i~gxZ?) z@H~uZ6EOk=k?k%C4XB8x?qtPk_)EWRx!(IY><{P1tMk{CZ`J#W<+;Po=~G_IYL~{6 zsZ{QsST6mi>LF?g;16*r;>@@N@mZhnQy}G8M~R!jkZvn@RszS(rx1ZL6`aNggBkbb z`A1welV^@UYqjZpiQh6>D8sMq-@fgnr$nBTdFXj3Hi3HKV7ugi>2$)?29zl+; zI9;UqBo0QI00tmjeJL7B)&)Zv+=Ad^W4n6>1#}{u(EkCec^!Fw@UIxWsw-=E0c6b* zcL~xC0CE9Y6LF7_HTNIC*$G`#>~wSem!3Edr!IJ^0Ap;@461@(8LQgu}=~Nr4_zYtW!gnM{9MYyk zr5;x!_(NneWBB&EZEPhZ5DP!OcewuPbji-kyERv8UWVd+5zp~XWcob0XkhvJC(&M` z14|kB849Og15FD=&XdL1UVS)6u8KQ;s`9^UGpPD*{-X= zmvs}IF&!ZAEH!m#nxnj&91e#Wa~d6`e0-LXe72a~k7yv$mcMc@0!~C9V!l?w{Oqpz zRgEjszwG^UFa3RAE94+7!>@XNJjcw8DZTp%1EKWK9Wnhsm~x}`xF$bB4t`t2_y<6a zbkk{(fYUG#Ntez%-T*Ta0#C)xk$oX(iyCqk;s@d6ejXrMlsWcMvv@9_ge98rEne@^ z54hnl!Q6@`<&jdAtDPru| zcLNqWsGKRtfdN2+ucj8g^z!5>KtXYri}f$5QPq7{5Tj5nO971;Z)!?lwjwS>xvVhw05dK_|62wrm2YU{{q2SQwc5eKHl zAdZ0RNi}vBrLBtB3m|;$H(M^@rlXz>1{uUVoa)|IddC{?a7MQ6ieK>^j^d7rw>sJ>3?7a}a@NSZ$8c3lg<3M>_6es>opd3f(Z^S|lL@zxf-n zND_pl0$77fC-t)mvkIVg!>C1UorSkQWm}f1#*8aA#SqVO)1vW7foanUH)eI8eb zcWXXQQ3rmE`n$yMUrU-t%p~#%n6?J}wS*jM_8tki zmly&HL?B`U#j`f#ESzRh0iHtC<_5>V=sT=ZK#O}|QF8_3c%X*GDN%-CTw(71yZe0t zLh;nklY1wJQ}}v%wC<7*0j5F*(UX&kGsd7GxldPfMww&hD&PV+Kos#e_J>OU-h`GO z51J~JR}s5;!6y(W(|e?jKz>KBNgr@A!0a&tFD_;<8zUG(b47dr0iriy-ZzN?4YJ;srKZxl4V5!VA5Ym*aoa9ehRejd$&7089pg=K#9ZVg-%FBbmkMTSkJV*22a08 z{2Upn#;Zuze7b%eG8+Q=r)xG!;RLM4b<_wxhE#)Y5uW#v=^Y#+MAwdR4up2b_t<+% zSr2DSUeL)9lhkIZL3HN$%g_eh7_4f4_nXwXSRb(t(-0D&@cWSnmGy>ziIxo(7^z0r z4T5xv--En7Kzz9pk_X;moZKCL9vwXkfE2fJX)*?^sCe@4j`hgH`XTs&j?c-bqjh0T zRv;H=6LwGhCtr*nr_b7Rro{aQ4hF@f`j@a7^mWAXrz(dkIfx(rX|mxTJ}Ljh9%gjr zi<9jYwXrr)-Hc}+2fLHc=9u*SW~bv^70S7;BCOC5dot&=W8oQVn&e~Yw;QK^c~ zcN%SZW771J<%->VDoSt^&}o;N3ID^bqmGIomRz7O03Qhx5L4y)tDRr}0}E?|c@F$} z3zf|CFq@dgOw1c3NOc4%45?&c;F&Ll@u_&24`G`NpC$*xj)nnM1R3cAF*f|_S_*M2 z;Wtf8*mL`o05_6enbk2f?f-AU<~B0^61OA;Km};syDTk-9!f^B_QNL`&Xp{fbpAx$ zgWYs8d#N@9!pBqrMqu9Hpb(KfWZJ^+KQI*oHH-o%c?(;9o)I6)T7n#+TQQ&G9xx*2 zrpWUrl+UH08MOH2#80Pfyus&4-Pny9duL7+kT~ApJz$q%pn^mS-lEjwdE6%ae(N$}!e`K(-3Qa}{1e3qNmc|FwQ>uVKLu!(LFnQ}^q94S!#-(moJXVBOY<>E zB#?K{E#z6N^vbXBYeQc!+iL4F)^Qqtgzx_ds3YRKII*2Rvq1D%&4f_Tpfkl9sGkS` zhS!ac965r5tk89p-uFk)vanL3{6J*?17-FekZ5{7!3gE%#fym&E`~kD4ZH08m2|VT z5>U|+J4>{`%D~NI>(9lUdGB%Sf4bRAB?;>}>8a3fxTE{aG|F4wZ(#F+%E_%Zc5u!~ zH!HKWUCX!Y$QF5N;qG!g|@~e@ki;{o`XSSlrwUZ=#{U$IzuE}(Hj%9 zy7pn@7XWy~yG>W@q=_5~(yde3^w%CNuAB{seeloz(7ietUvTxM3&dkhvN$CrKMC)e z|IF@tCqbEw?YquPcXnj{8EuE6H*cE$m*nME_8l+{2n;L-@R_7A|MXzgpPPmvW!=;i zOKI;1%?x`Q-p{#9iiF(Vdxa@3kPclS;s!QfKsFSCpq_lT^(}@I?te$pdV9xB2^$d1 zh$yWBq-_fnDda%9Nsh&VI86R5rLwiRwXK6fi~*ZQU%q_V&UCKy2^ZxN`!3Zp5qu&E zYVf}e=cxuuX;piQ_^hJTYRmb7pB2^rigqPEt_~$N$!q$oSVDm9si4>jw+fBEM=&~g zkV)Z~$f3U~RMSzsd*Y!dO}+BV$q0|_M#pcp;;s|e*Z#c25z`(SJ%$)b(*xor!5JB6 zQ`6KG!{vx5eQs`mKvMi%9MyHs%nHa!7yh!a?g(Yd~<=QIQhXvO~{ zkTo<)1C1c43nUr>XAZITETW4<*hw!6>;n0@d`TY?qBCmwnd%<#*!G8q-jZWuX;}%- zPwt!&;UyC4$WD`|3Y{__yne$b3cu0hkCl~|#6RgwIQz19t5}KBKDj!OTJ~e$>Tf3F z!p*ysOG|fMhc`m1^1IWOHSUs!{LVZI4+!x-IR3M3li#em(zlp8$`u*CZ=Tw+FS0AU zx};Az?1JAe8gsPq_NXu77wzw|_S2x;!a}s&ANQV|D&w*H@gN}hA-9Qv8r<`UQIk4# zsKPtjZ&9Bs+8vAwFDL2>iP3fCrlqBc9rru!@H1I9=VWkhuH*CMSbu*CgtM}?Hhs32 z3B9O4iI08MJ_;nhBqWA^-xSDDsH+c3Hz=1N3R z!PYU3>-O{(;u~Kje!D4W{r3$YzJA@z$!W>9m6p~# zc9x3bGu6oUasI1wyDK=$G`lO6ylg4x{WSFM2DJUeO>U(Thc*T63~^S*xcIctg#+Dz z_wFSkJhN4FRb-?v?%~|E{mNwrM=giJ!~g-0prraMM&cC7PIR4)6(=%EXx>2;B_MDm zf8vPXVw>ywk`}F$OqvNA%0K02zO^5NDIP#~WZMUy!zp=⁢{jp@K?MOExYMS?Hx6Mt9~NbkHwB z9_?_u``UeE(`J^Zy2VF%y0dHRzI$5AN=dNK(L^XcEkEz8azyuAheXO7#b*ZD2Z^p@ zxM>4M&%7)9VW;vx^Duq78!wEd9_=Yi)K2jjBcj1lx=V$*X*)ksW>_C#^;(egEw1f^ zihf~X<8meE)xq$xmmhfs`E{a;ch1TmhQO~Jf#0-fQ1j$;ce)9>yhNxJK>gFyM43ir z1gL#c>d8aOiU}Rdtyvn-K&vNphf#VE!2`h-o9?fRJ|Q$+cr52v_jr|&@wsh1xC)qW zaBC%2Y>U&^!>%A0pPWs-w;x-<;Dc;tWr}TTsQd|1heGcuP9L)+bH|DX7u?lfZCUmV z=5WUbJ=GvJR+t>|rU-Jx{L{!=f&yjLaBDgpeu<}OZW2o(HCgkln!IZF>=3#2 zSga(j`Rk-%F?YatdE%S-0*ceeTaUJuG_+<@Bk1A-Pekn!AJdvlcyg7?pzIT4$By+$ zz4harZqLBMrha^;OB@pnP!BdHw|@8ziJ;%xBiqVqVL$>SbrGby|80mtjH!nyE-Hdb z9R-U|6%~SLT*3dNzIKpHNtZt(QC*BLOTYDJZ?de`&+!c+5I-JusySicL#dl@V0cW( zW4RJ_^6-Pu6WCz~Fvbw|9Af#^KaMz53>El-cYtRZedS8;4L7%3aKUTIa^SjS6YnDa zr*pk==ijrWhvJq%ov2Q52Mn&vxeHOv5~reW^iywo4a=F1*Uy z+z>VS#h>sJ=b7=-intt0z?+=GQNT+`BZf z^{mC`<*n!^m?Yo61D>w~Z=$Z8W%NzWD6T=y<+=;-0m=>(e;!qniZ5a62T7t`bo)}PE*{lZVBbgj$ zxgy?L7_c@8pK-#i#SX^*T~JiTykhORjR{vGY}WEHkcLLa+7LDUZrDKn$B*4ZD!u-T z_Y#R7wyd0g=h4$ouYXD7?DW%!l2}Yg{@#?^XwCJl{kG+{Njm|DIdS)68a=^&lcRe= z73wi(;qPkfJ^n*3toMuXk8HJ_)46D@8(ZG)O9_sd(M3&tK1=`50w^nFnt0{v{ch@ zSZ25_iv=@<4NpMlh64ChYc%~eQeL5PCdv?a1e#kVU_K>`_Xg6d#LZbQw6koVx|58z z9>V^OWRtldmw_|%zA5{{7kevRdn3l48KiTdsHn-Y9?jv!l3rh3rTnU@DylI&Tf(`- z*(CxGBG6Ss*XO{%KqNuN;klc&MQBHKu&DY!oz_@|G1bYck8Db?PkYkzjN9-Bjhovc za4Q+cZ}O}?(iYIC9aL3SdL@=c!6+6KlR7zd-uIq4F>fx#SardSE}Wh)_OHiNBUS?prP7M12PyaojDM${inA$_lt`+y7yk3?cWr(c=>QP_hao?QWX_no>b^G#YX--{w2_ACKqK6;Z?$OjeVN}^g#XS%CSS!50xZ8MG`RwxOR-BapUo+s_k3d+>QY- zXdI2eo?$GTNNzWQx7AbAAy1hh@fQ&{A4P4~y&dC56C#><>58GfaGF%;UcQ4{8uXHs zYkY0`IwXJTw`phS91U!f)67<_>2ugh8xlf|U+bXK)lm=SgY{nwTTg%H0U0s{bM4<9 zdD|4NpG~3=Owu;zzi?oS;YSER2;7Z82jxR0nC0@avSm622t{D9K55x&WvtTcX_^)k zeM@UV<%)q&rEdX+g2Qyh1$ZKqBjzQ%1qF&Uy;0+d@H+r%DS4_Py~*kshJfZpR?s9) zJMS4pH=d?c1a^@8y9pBhHQ0d_-miUAR787SzphgdZl!nF?qDtj0mNQ4j&Rxt?O;{6 zA6zG&+9+*0+?h1@q{Z;Ul`E&Pz(lITN;z&_;nD}HX8G#>flcFv>i z`I*DU=g#r9T(O5p6dpU6GnG2d|JyL|IGmN=dF>6xRo=-xt(z{zR=#H3j&BtP6i>cb z^L3ua5-6h=yW{ju2i|=3C)(%jTMB;udRVn(JDb*Qc_W#Xva0F%>)lp1K43OC=M$n? z`~Sgzl2l|QWp9X@r_rBMI{6?Du5(nGPPA&5%R6k-O|xoGMLaVyITb_8tyF+&#^j3F z<<_cs$EpU*@=w47o3|Flgly#VUDvju>jj!1f<4zC&>QKf&FRwnf`Rbc*4%GNDU$2) z^q=qN1$QzqfGA2&93z>lU(W`ANIJP!FRL@jc$5M{?x^U(w1+Xnt)K1{#9kI;xJZ`4 z;K+b&f&ytwh?b<9XnV;F8ObJ0B|R+4)Uas*%5EZSgc=p}b4v`i2vm!EyXTqDzGQb9 zNJ$@G?!>Ei@dp`P1%g{SGuLAPMl7xg4d6cwckJ5gNG@B+aDRB6C>_4TUab;Ed zJge0y;abnDn}444iSgzPX0=B9Y*HU*EG=}cUl9d2#RpLH(6S!}$EB|4*~Xr1v=@*# zbqfN&A@d}_vM5^Q%7Pw=INcH%lfGH}PqB3PS(h)Z883Sd$(;RRto!(lRc|0m-%-b= zs=?c7!I2O4_QET!GaLSU`+!ifVjgfR`*NNUKkC`MqQ9`k*odydC zI}Yp{M})hU!A?BMbyV(;_Q|S&mnOx^SVk1q@6Tk=BVU~uI{M<=d)q{tQU8(g0`?C9 zZMBvEyjr?j*4q6AKSkL`rPB%O;;Q>cZa?_aHHL^yT1?2nEt|d& zOtH;Wtv~PD)NAX^Lq|np4j-wjqKxEznF{}-1sA1HUnR}^126(u<96eyzlW8^bSd}J zVZQZ+^pP)UPP!~eXmxygP8UBME zsfM{QaIwt4j5EjOLx@ONBUy?4KOx-4t*%T5WKaH3Usm0;|2S`0AkMi4PaQn79KKg_l$hIOLq4{ROv!k<%0%zUb!q<6kt83VS>D~fYFfJ8 z%e}n3+#B=xJ8iyIMO=0x?jxH`LV0e4dZ*l2RhE0S@Z(nsn0?GU`x=2hx_ZOSACY~NEqddne)x9Rn~Yxz8AMrxJwl-ji9hG-Ua(h8 z9*__yZZ)h?c9{YD>>?SqS|vA5$p7ci+4{Y%j{U2{vr3DI+YHY{94-WeD)JB~YF~Oz zg8`m?H=wQMwY9aG815_K;J*gH5xH(`BFp;3ZH{?%hp!$o(Y5{O6e{~lII%UwQ8;38 zRXfz8lVW9VdrR_ZV@CP4^5^WwGyS>}Of@gil4BcHC22ZA6vke<>cZ0wPYW|R{_^U ztY;4*jBVS3sf|cYBO{bxhJ8(`mEoy%7sWr!}?#&H!oS1eJVVGnmGZi zgH{)oI}gpVVtPhLKiBPBRNMA>@k0i4S2vCCe&Ukc4iM(DY1lP(zR%R2D;Yx#5%$t$ z=lgzMj0X7zL+((GlweyPKPhx+i1rkuKy6IOU#KAVCf@kZsOw&W@`)kg?FtC^co^b- zZ0ETUTa?w~)cZM0y{}A`a&T)ghJU5V7Uitk7&6c;i_pkPwx@KgDaECw`@YUdC}cfZ zEP0kK@4kF}t*@&d zHPfLA!b?+oT9Quvk0ZiPpjekm03=mz6I;*n%lv3p|Ll~&`pqgX#`%G-FDDOA(#&&} zl+vcA4HOCLJu@Qq>t6`nY4e7Kwl_Lz(?xi_8iYT5_z_^?`CNgW{U@w5emiGtst+A! z(E5BkVciMQJo|-vU+S{X-Z>MRYp;VzxmMcuACPY(1JV-lU|IN1MiVFO;!Ryp1`DFT zf=8CuTbu4e<+~ea>lA2nGrz72;2P_;myvfV0=k=}6c)Z8wudL&n7dplZ!RkIj(t~M z-C{TYw&a#7qY=Yfc+eJUenAapNq>Eq^C!-%8B>N(kUU}Zq;^!ct|&eH)xDGP+9@3^ z?$hV0J4;!=YA9@xP!I`P>3f!Ir!O09w4Ka|k+|HFeqsYTm3{uTef-4F72=o5WVy8P z(1_*d`eVRcXGnG_V4k&wt z3xm53>x-%yN$uyY@*3>kc7W%2r{MoF;_!QZu~jMDl;{=!O|K*N72uKA;Lc}14&z#I z1mykmi~o2Z*5rwM_e$5uhEthcaVk}(Q zzJ=>bbWBXvgjeik_?AL=!mXJ~C*#NHGEym`qth&=QQeC-LGa4`<=uvAs)sJQo7l=9 zJS!uUk`{5r)^_zvvev_MHu3G0>K6+vm9qxN&SS(_sH92q7Qm&Qckh$O7|RnBcr~pkd7H#+=1@;=|m*&+xKI0XLAe=ZQ@K zVQ9v?%U*2K{ypuwv=YzF6R-mWl5}z@mq728*9jGi3}szgZ%E_ z|3O5A%YU=?9=IJMJyoKXo_22}?CpDz^oRTJ`v;3$6AjiFQtqHx7pnUpI|G>#&iqL0 zOZo1yZGF!IIA{MbN{o;H5MMK+MkyKyHGn6RK9vF$+gISem@rGqUBy|nbkvRd&=rqs7N zA8Ec;kwRA$03Xn@iGf&0>E-RMTgZ0k^xwIvjY=X=b>ln7>Ro?n*HhA3?|TD>=xUl`|Ate~ultCj!Ml&}_*e1?5b z@sOr@Nb4&${=Y^;Rw1E%lKgj!*0NKF?0lzrkd4Ch2kOdMUYCaSAmZ(zT40tf~w zmA40JcM16uz6(we3W8?B=i;(1&DO2NenEuk;ohYR*mWR;Z=2un8n^Jgb9r8VKT|FI z&l;zV4Q{w{K3{9FTKQP!TJU>@|AfO`>P=}~&v3&rrkC>leax=aTB)B=!wDP@1L2!Y z&>R@9k%t0qC=5sTY9%Ch!2V}A*EbhqR>FSmG5))-@aD!0OV{WI!p$BR;^%*}{)K`` znG>~S11EK^p7ES*LmEW6j}AuO3=jqmY#3xWE^}h0p>{@EUmvT+U4g8cI1qM;@-tfW zh9COIZF}|vJww{p3AK0Dy0|6p?Uzs0d)#{_f)Y6O1+14=3%k5I->0!IMmp#kBwEm=l9?c8|GddcvBAsy!@G0IUq78cTY2gb|J;w_b@U7j zS%)G}U z4auS@xF(M3wX4c`zO-ezvfz$D zo6m)j3!ge=kdHLU?LDf)vCv&`9gZV2KbvcVYQ+~1 zYG@>GkgRkua(%v+kq*P=#+Ul-nFUb0g2hLS9;LdPla+VDnQ717q*zG4hNKz1FOn%Z zzwsvu9*rI{7lkV7#Pz`~RaNqd{z}2Gv$OlKScr8oVJ8r^T!3C>H|{22TA)Ff3Q#Kr zhw}7qye@tnn)`^jb5?@9N{feL;~xKnb#( zmUaU$|0!7IF0>wwM2m$lxv7H=CphlD(>E0V=L(O;UEv9D@6mWqrg=w`5m(pe40iM$ zpPsZhNu3Ez&LH|l6g6Pc8`;_h#l+~Rz54yVwXMys=%mXxY-(olrG5T?Eq=XV7#^@Z zljHckz(C#D@*zDd-}Rq~!R4c&EqS$6yp#%IFU!CI<|amtaM%(GVynjcA*7%Q8fV%RC}?(7&N6$|seO$eeHeDwYG>!WPq?)O`* zRkCdz90au^O}K)*Y_4h?$YzuowA4`xiqv+W&HA#c{jn~L-n%m{mT{MuyxC{*O;>iM zFs1cCw1LyAR=MWXg*g+c3Cq#97c%7fO%uRFBsq^ypK!P&1eg5|V&&>uKFdyB3l_( zOo)Pnt&SP>(C_C|3(|-XM$qPAsN|HhSD-^2AoT-w^U~6c>Wg-^Ge2vnL<hriI-5|Xc5S?9-*l{yLhbkO+K&Vmnn55U-uLRkwBM{4zgyov z#2VPgi^O`cK z`?pMuAE4SGhh{1Q-d7Yz8XfG&UCnYDvKMIfq^P*mo$F{mv2N7wMzzci$lvre9tloH18ZVKCtSlY*MlZXZV%RuJ&FROxGeF4Q z<5Y}C_66@uPKQT_o+f8xEa)`*&_cY2Ssr zl$iUQLdw}+8`mv!%>6C&9r&@bn68kCF$FR4nJ%Y#DI;R%)Qlv7A070O3STd0>sj43 z@N|1{nOYR6uu5M?pzF{(O)ah5C8icug_mi3mRYSwBa~>f9b*v-l>F|q*}Jb6g5n`X zk5AA4SoiFi&AGi4$$^vX+;QPo-86m*iw5#FkNGqAZ~gdCo-5polixB`ctF8w!Bv_5 z2yMW?V(v=8DfU?0N5nJEz-3@NQ>`48{pk<~1`b*t7%1bgbu9eZUEq?nztd};m@+>e zdt&J)56h{??B+POp1p z*IhW&=*e}m1E12V ziObi*`uj~l?cI}F(-p%g;}U=9EptYF!{{t6=ev9;i?+1qtV+bkRjYnp$D@02Hp4kV z)JD2o^vRSK2fMAS{n)*`M|2`07H-qtbxpo0*H{p{tEsJ{_j8z8*XU4H%PJ?a>xUcM zoUFhCx3mEV1mn|B$il*&CL`)H$UQIa4yFrA_I%~QrPUq<1!C9Yto zif>FzO)G4FR_j8t;6I~+xcn|3?ewE>bC|kfS;V8a!~QjtFuG7+o6vlf5<5(OE~G>e zW_+&T+7lW-8uBi3{+IYuVrInYi08^xIu)sXoZc88APrr zaEj8bb)SfB`S~~SZr<_jypPsrsC@q8A-dzH`QVsAEc5q~bB`Jm>w*@q#`CKsDQw5p zz7*G|r4ukxe(Q8(_R;cB6B?TiDnA zRO@5Q%?u|zSGIsfNdk>&$K3XMInVDO=8|S>K(@1aJqb4is;pk%Y|kXiS(Y%=EiWu0 z|78}h+XWKakA}Si-)#!&Ywl(}wpP-6SXoQS8hv6Y-hqF9Dr&#j2eG=&DKm>6C$nVt zh>rtBzhHxGT(4&Px3IssxKF#}T?IezeUMti$N1RG`Xsfq3YVr8;ZGZvyzx9yZ~=_Z z)TB5Cx1FI_x5Fn(7+2|;m@1(ECw|qA`K%c#s?SnOWeDZ_%^ml7pYvwvK?55de zs`xP_!F^}r%($<*me#^ww`1G}(5Nij?$u`8fOZ#F5><~U*f#WMezeH}ov&ekuYf{L zr>$03OiqUO=o#Nb`R6mVA-O|@y@$mdj-wd)_uw=?YwLZ!`Zlno<-K4^%lO~pz9kzN z9WHE6_G+96jbb13$YtJJzE(Ivi=|Nr8)`Ggf)5j;=yIcR9#k5G>OoxOkgr1l?YK93 zt9;O<*-kleb%KMrKV9Y8ZP>YAn<`t*A zrqnr|{EUu=(nad_{wzOa5=1v@UsXyjjpF}hz*d>)RM5KY#+afSvsX;)qF>{K#mrV~ zBIZ4K;Vrka8zx6^6TdyoyvRydKYDc5 z3-r64xQ{b4u@1#siJaQy*b2##bB&4|Rj?^JUtw4;2ov!71vB!s;JINE++;O?JEEpN zGh5J!tcO%Htg9Zeu{X;5gxij9TKgl+$!2QtO{4IkoGba3*({&jcc?ZqbwnH$oc(HA zYTj|;T6Oij$R_IxbP}&<&YB$*AhuERdA@E6N=ihyu>_fwWm`TxB@e{8bMSFqe~Rjd z2w{m*U_25Iwb=d_b8U?OHuD;HpR3oOoBpGaWhHd1x0khG&UcfbIC_29!WU6SlBKea$Z6KwxAY+34T#$>^ANmCm(m#-=6K=RLin@~X6=o$@aGsJv#nmg(er zhTuAzM+fz9LwSC>QgB)jdG{;Y<<02 zc}3~H6YDl}@z$)q67(zSRdsh69y=fF!87~Aw^!z^`+PE!vAANq+M2BgYT76^-0ivK zrshqT8%Q?aT_8qxiE2J{lTT?e?dc^6^pEbr#R zhAK`R;glK3n6kHSPd7TcQ2-n(oKdT#2c;cJ_Tl`zSmV_nJ06f}GqD;>n(?$d)fPiv z?%=T7nxoj-e2Ctbdb^sM7A1|3pLRO?QMC%&?xDWkIH51{yaNg&x({tGW?0wlFlq_*D5~UDIdz3#{9eOgA+HP&t$hT!`F?vEt-_X`UPQ()RElpJDu(>_M5 zx{0?61c?W?&(6V1V^AYo{rJL8{;wtN488XsICXgbU|l(3lcYOgA+$o}I=A#Cu87Pp z&2F&tZZkQ$llX7oCv&q1|6zOG(AO!gqW?N;AYDS?@nl)Uu~})&J$r0H^ohZkZY1^m z*`RXj%{o!Tiy&n9RL8E{A>mo8@epg^E?EN!&=~bBEfRZFkkdCOZ0oI?o(NSO2sLX4 zt!G`6+%$n!E%ga88w(Mq*jS@Bzxn6#ENzxRe3lV5wJib}_$|?bLlr--5RQzh) z5>b-6#^4FP=AUIl`ktF-3_ z=x1g%(IS>@#8@1XOsXwg9MnyERWMsLg()JGr-wfq6Y4eQhV}c8pY`7<32p^pB@NZY zntXb;UtFJ2CO70lT6lxT^rl0ihxT(lk3MmwPt7ZAG>1{mKYl9tjE{;^^oebro~u45 z6sJ;&K)JX$sb%$wRj*S^#W1bp``5=#7t7p8Jg@obW_V>>^Vs^oSAMp9iP?0fpw4nT z{vQR4DyFTx2U0dqQIU(;K8^s4lr!>SN?{VEItx>y;~k21KIH?zlkT zA>%Y^?FZ#9dg_e3X(*HYlDfp*HYvb-D!r*XICRGr*U7oS10t>Dm&X5uOrmo9`TdKB z;okyRlSIXSlq_eh90usY^gu;?6ig3Ly)p&AgUwH}?4X}Ena}?KhCWDbccGyrBPbyjNSWt&RZzdRd|UY) z`L4Gw;-)4Z7~s!=qdAo#&R6|cgw{oNq|k3+zr!Do1aIf!vqE5;Qm z5Ef}>TtE+-miWAmbNU^acvBs9%@0U8wi>tre- z6dhk)%$kvY+Bo)faDUj1(sqdwp4wddERIP}H-;wELBTCLVx` z+P7~LJNb_X&YnECv!fw&$ZDj4vm2+sVS7l#)C~^L&c=kgp}q!H^EwDwm}HK4Rr1Q` zZ3^~5CP)y(@Fav|yIiLcFZ!$Tv2Gvk%BrN?Gq=}nNY$Beaa?^LoOC7Bc{QN%sz|eK zoAW}<+Z)&adOV4AXrB%{u>G^8OK!ln>zUR4E}N9}EK)9RV&yZ>o3h?|5?9uQQ2Ks7 z#w{C#;qpsP0|M5$A3s0Ks*9Cbwgc@vZU zkX7@80D3jNVk79spmt(x!#m3&69|_E@}p2#3%E>I{94!-eu`3Q{f0C+6sA~6Zq??C z&Nb=#$+K&a@f3F#;}P|6m~^SZ_eV!nk}7zEUs_js|7*HldmPqcm=97W-n_5~D#GVK zJK4t#K_P&(PN$0-2HawhkRA4y>)64@rV=OqVUqvT>noNNk_&H9!~zzMe)+1-qO7@j zsBq4u$ItuIDdYE!8V`I@gb^Od{HMVxThO}YA(gzkb-!+{wUDfX_t_@bKfmOWBGCV1Jv*D^zp@$S>$ynPFEBZm!}rkN8BCYkj>cBr z!XkC%50R^@sXg4hk3Oe$%#qAw_fR@E%rozr`IK)c5K%wdF!FZ&#`VwYI^0Yjls=uV z|8f4NxXF(Q^IgY)>JWD+#MLM|IQ-VH06}}EWb=_pK!pg9y1KBpZyV61IFCQfAi&5s z7$ErrVf0ePcQ)uV>UJfk@j|d}v@}0OJWCXfx6AYZmoR zIYmWTpl1W3_gp)J1+t~ERaq}*FZp_9DoN}K7|T#xhBtP>>dNBbK)L%J>G&&z21P+j zON$$6Uwg>4VDM}ZeZp{1zInK{=F`L2#DzI^#>qL_kC)%iJ>^eJ6L2*XyY%Xf;cwm& z6m6SmXf~cx74FQw!bG4&!U(xm@jP`^J5g>MIO5Wn&A|NW_nC-<%A4BhVGsoc5p|@c zEkpp|8{{&6atg))M@LUzf>j(c@CI$28NTebJE?S1_jhw*i>)Wlx?nL;Ky7&s@1d@I z+os@?I2+OS0(_)6r&9nIil%aPUr#-#;+Gd^iyJJSUcc^~6LiPN&8inWWb=_%ZU>Zl z8FsrL-4}aY&zd`rV(`mCG(Nw1OS6f<8|cNMy&roKUiIthg9rdmG+q`T2zt{!^e1@2AqR$ zf89_}s^0+H#(}Ftf=0bEV+DBa7Mrt1$}HM8cOKtMU7C+V8Co<%%^9U^+E-)3^5?$U zSM6^8i!w-WQ)hU|C1J*I&gx?GMRD{gX}q3G zQzaO(^8iqke1r-aQ!Y zJ;U$85jH^}KP+uSG+4N+h(|60hhVbE?=z(eX#rJk=9+cmSirNJSdlK>_ zHrH{zV6tR0(Gx5B=ZqG4;B68)U#tg)qVnd;IhYAs`^qL>K$aRlT~E#9GF0(IbIi!6 z{lzx~p;gF^QR7&N}dlRbr`Dww_0Ki4=wqDii9DlVwB$su+-lW3(C#1NEi#am#(!L zE#PWyA^s}xvE^%C_TS9zMMs`(87ndps&OY$kO~c2Dyc+&LO7HIrapv;YFT8i4g#VE2`zku%C5F-wQ8gnSJ z0}Wm|shhZb2H=bfbqjoGzf8AayB>pdMK^$(JgZPVs}f6y(hL5Mq*FjHfjlDKbZ4*m zs7@Oa@mLdi5l@lh;K481lAB&=^WisE9bNM`m6h5!`$8*hc%Y3p!#_W_dMFBWfxFP+ zC%e@^1?LYfp{z>omo?-X#GhDd)0k^RziCXgiHIpc;a(i#vlUo?vOgNI|}NrQ>?-8>}T+$K&T=SdHaI^1~z2 zR{!8utA~jJXb9K1OJp1Hj)|EIikTblU`d82qJl$Ff2VF29il-I(u1Ucl~bYB%*X&V zf!Q6=%x7pv;r7NWqHRuCP|&0bK7{_>@>~4vnLik9>ofV&<$i(nM?*(=lg!H;kOc%O z^*RPY(=*2q4)QDK6QzSx#oSE?bP*6~)*|^_@0<`V~PHN0u!GM(fVW$rvEp0#wkZWIVm-LN`q%4hXja42Bv>FWly$)zxN3}feUIM z{hh6Swoov=wQBN%ou@rY-Gc#GBRo+3_d}%p=o%CGr1IoNC)UA7YAB@=XdE=~75^^M z=#x%|Ng1CTn3hI8A9|KFE zyQaho7+p=A9$~WOv%Lah~ zlWdqUa5R7Pg~Ix7IB!Yf17-_{?^oaG?d>Jjr`Q{VP(muvuWk-RRnV(+;#J9+>l zW8L2a6Y)B1QS$#Z3_B1?G%0$~`&Jyjy&E_%Rz?G>6h9O9%il%ys!#bERNr~f9+NK zY&UUWg&)rsY!(u?K7L^p7prN_Ut3(?%5%}4nuG{P?lsHaxyi}Pc(mBX8!wpAddK*5+j@YFgz2VPTzx$53^ASy~ss+msVUN zy$P{kKw+NYxOqu)M70%11~k|5&EpdjwQzia`^hy)&7fG=$m3wC#fq#TCYrT{P{_pN z6N+fBDr;%MM}z3>P|aYLf=ESW(466IBq$m)9@~dec?BN)oAU>2-hnPa24lQBFQYqq zhEQAa5I0RQUAAPkMkl?2f{1)8lw?LncV_ZP;jH9v`nNpKK5=~8?f#bUS4cD3K{^WBKXfjH?Os}&0! zJhKNts`~RX>dr9oAWj@O-D{Jn zywL%4$N+u0zXgBwdhIFVTM19Jr_NKo7&(D<1-zH>;Q5ERz|TQ+f?!lRbm13SGwEo{ zdhA}4>t88CO6m7jwNQ!d_@);AyypPCLNq>FQQnQBWyzof`fu1<<~zMqdp0eNxVMwo z)$t1`RX{Vy-2BY7phI`{5K2?n_MkL{!6{TXC`}`<-~Zm$mcXQO3J#1jO*)(HTfY8~ zlS(+xqbDW%M(V=b3-|qQ*e&@7liZEg!+zFW^KMNha`=G<(0&nht>h1my`1^ z4l(L!Q$FE%)^N0TqvMK|j8?(q%#knna?tR6y?831q8``SPLXRSd4Dh*N7%KQ|JejQ z7I)o)JKouL*ICQ+|*LTA8 z^SZ+RJb zN5V^S+w7*14ga*`f45znC^x10|GV7mL90iB_^Io|>E727lMaecWlp6UNItF6Skph# zY?M{(eR^!Sh$-h%1tZPwoV&fZ^JVvv2MJxcWJ2)u3uOuH_(c%w*#B)b?6@)Ie)Qvm zt{8ud?9~Fv0{gz?nXkzzDf=!JN^sO%U>2wM8zvMT zc``|bwrt?Sso(#sa{3-Q7_hG=`fof|y6F0?w^iDI{CN>qfk(mA?@2k~ z@fJ(IzSYMcW7pAq`&<8}Pm#EvWL8V`yP^t$yWr%a?P>L+dxOK`{%X9FZX3!d4R(D} za&>&%W`1E|&E@PgGI^^G5OT0t0AQ1VZzm$+T@hYx^b~6`8jx#eHkpGJd3rKQhdG(P zTR}0UsQR=OuI z`OmSxPo+VmS!?uq7*FrrySH!q7A(cyiO`)hx*S4HK}?rMK4Jayrf-#gDFp19OJ(P} zKnvdRdi&{ufSsWV5xo~S&izhwGT*129srN)?>0KRIT{0MUTAAIL69+XzI0?aP1u?} zk>`sPpK3;oShv4Z)^-$Ik3Mw(DZ5I|21PeLz{%iBx73%`BAD+-tO;V0nLJYTVZQf) z*leQ)1xXj%<8<|zRRrVrrCM6mpcl(0lM@pWNamB4=3XdeT5~PTIqNo7Z!D96bI6-=alY6l}IwWz1QXSl}necx5eY;b2>#F@CZaTXp7j9FK ze}fWr-K}R5D@z-`S&YZZwP&96F5L6vHQ$;q(F@GPS0q@3Dp(7YMN$Sb&RlY49&3E@ zBE>_)X`0fa<(;s%>fnLt9zBDCW*t@Z0?SgnFBVW|#|gfkJo(_*@J2eOiFnC5ZVqF2 zW>$e%G{Sk#jzRD6G3#*pI*dV%ZrxoNgA0#Insa5$aXAMpw?Nnlb)$vGB@Tw-L1;V6 zQiDtvdnssQUuQa8rKb$kZQ#tGSo+BIz5hq4YTts*b$Wh#-VHOw>8y-@KTvs`Eq&S$ zD`;C6Oe*cNw|f--Umfej=^r%2;SF}IxVjYtE@H3DGXdgdCspjc!{CASf6LxnvE0kg zMcJ@pf9AwPZ)0S#AKsWBo>=(s&+IIxfP$>=J>g>oM}*fYd3O8A$EExj(}~8HQirT2 zIy#UpA|$W+kQZ+f!+FuKK})yW1e+Iw0!^DfnH*mIDIe16U;6Y}9XFzcerOMCM<(w2 zSiM!gV8&jcTtU+qrJqH1o9F4oN-uQ61cJ8dQd&J}hKB+7)y56#zKf{e?Z11TM8;p< zXj&RQtoD8Ky$wIWjXY8~z>SmsqI8sDrrVeJMh#hpuQaiv^xkLfCtaDsme$xoUbMfY z{X@t5?L#u9Z2YN_OXvh1AYcH}7)l@CARiZopRWvS*KFS9#Ho=VxyFZDd-QaiYf9pN4ep{NMee(v z4Bpg?FTYYJm}dNA_9dHjTUg1S6q`vnzaAr@Qn6ulbHE?EZ(9vE1+op(+fX#|{fsE$ z-K0^#`eDZqwQ9`aK9dXiT;u*xthEE5nOcfGPv016tolB`M;2ft3hONlHmKUdz4Q(b zB3KIN2{P3lXRWkjTje?o(?5*tus>n#%=}d27#U%BGd#6>NaN(R6@ar~THjgC7k8O2 zanesGGqD7eRLs!de~^>4d}Z=z^2!!*JytZHh)w3)OTp62KUrG1AHZx0$lChz`p$3B zi$nopvx8On!Jw<~!9_!pjM}o5E&@gF)cnKaKcxEYQL1uqw!(Rw`iP*?sZ%e(xOn-C z#%OkR>AAXkoY_fB1-}h<*Tg=zk(&uKQs?JPb+}?Iouc8K6L;Xm7XnZ_5K#b zg4=z3mZv(6^Ob2G0tTRP}CuUHDJ9U`vKt@Lw!HUNTg z{v6VG15}EzU3*FC-XfAk(em05w9#4^D28L62Dd63*RYM*#oY&HS07Paf`1-6;=-}( zj07T5&uQP~k>spqWyo#+s^s$&ON10C#o*U-DvQuJaTJ zUPdxnHC>hWND=h~f-?!gTA@UlTuAH59Hqho4&3ovb?JSlk2|dBXDO=-)?7(T3kflj zcRKyK`9M!!(zj%Ft2J06LUb3U%Nd! zLYco;Y|bBZtXG!N((v3ko^0j9nyL*HB~m%~bRj4xRb-Hwy=%)xbn<*Y8e(@~Nj01j zXNH>ptwr5hRn>K>THno`KL(cee6&_E8Y+~g9-wRruG~{$W5190xJdJr#Jjx#yEWY< zO@CGh(SM~GYKaV+y%hl3T&0iL96>TjAQvphL8q>&Z-FZ=aHnci0;bzvVJ!r2AOi+k z3@q3=IM!-z-g?EnplwJ9Qwp<=m>1e%$Mr&nzcsQt<#^IN&0b-a$OcUjWmN$kEn?eu zXi`cp)Z1=fo{5Y(e8$LP-v74bDgXDm%-=@dp4iPx<8v2zRQX-Dw{j~6jhH-G6>8%TnBvzraBW4RlGUbS}jyfcr5AT=A? zSurvH7HdaP@X09^t|;r0fg|h)(TjXU7nvyrpgWUr zn1Dc;pD`iGLl?&@CA?;QOBx?mEiI%JDJf^RzHn-My*BD=&kN%uZfcf*japi0ZedUw zYSi@RrjK{w5tsO;mHZtYr*Hi5s#HdH%>&fAk6>Ns7h~j|T_AYk-u>%Bjz?${<%&JE z(~@3(dSm+j&L?Xj;GS?GJd@sJ$6Z407mW6Au-}1A7ef{kxY#orEW+QWD(Mv2ARwHcMmniRE-B*vY47Wce`=*q{5DdA7*xm>Bn64GC5~g!=DPPIckwmFI`FKRiQD)b}b#!PXwo6*t>sYZP5FrN-RvJp7lO6Z(>GAU}ENy3$kxXfL)-a4|_0Eov zx?yWZ?#Ws|1}){z3+6%x=>OjJ{=qS6;t~e#1sFvj!olyvuK&^2Z-B3pb}!LT1&a{q z*KO{X(Qw=OXMN{FD@(-#RhuVDYL?bBkyTgyzIB!H_M*)(_Z;0M3rUM5|GO@HM)E3k z8Ywncu>_-xXPh-XVABZ7&oO;BoSr*RxxU@ZLEkz|u8c0GjU}G`rX82Je=soo(Q-oQ zmy%&G-6?*1ZJH$yp*wdhzLn@5wr|9<`fl3SNk|PIFzrA zf%Fh@c)vdEpf$B*vSqI?73^Y-a*J;mkyFraeapvu>-4L15TCStQo78SFKnEqwBl#! z^c5a$_4u*TcCK;F^C~JWE&iyl`?_nOl z23kJ`9VZ$dl_wD8RR8Bo_bV%%OFR{xUNv@lH!iRLM(A&YXS0%K?rV+W&kR=D-?Jy-e2U6npDwKOpEfbBCR*xEyz{#w zn<$P$2kj+D>|gm=j?G=CI_i2>?2^Ysyvgtgaq_CcRNVak3n4@r1+b0FM|X~&mO$}E zM=Om!uwMWSW=r}j2UMbeK+F|!_&#Q9hRECfxs(QGKBvN?_oKcx7$YWVXQaH*EPeR_O9tF) zIqgodPw-fP{n9p_SJClT6i-eRn#s>hj17!=KTa`Ep0KT**kRy$lIHDg&?ZOToW81| zrA2fIK%9;pWVS!z_iPdf8X^m+MB@LAxd_9fLD|NndEel126gS8 zpKrXJ)c}%U)aEl$sJG_N36@g{?ET8N)nNs08}8vku`LOiH@V3nzk~Km6*XbGaOEK9 zpaun_>F52g;ZhB-H0unTIHtavzo1pQXZG;(P3+)kKyhAW zT{HWUpRcpams7mT$EMTm7-l`cwsw@OM4ym^6(-C;6~ik)Hi<%Hfg0+5>-$RN<BUA`BG;=v7553@2<2jzr)9An`F`~yI3Ab? ziepAzJ-L#u`Md=14jdTH*Qgw1^7Z#mgr7JHh?M+ypdD7+3=5IFL5RhOYOuBzyxB!_ zLHO32yZ(%PBafeZfzCIre4ZY-mRv}akNHR=39f#hZ+=s8Bw_#m6H%;KrtEks7tBGZ z|8H$NFRXZC+{1p6>=rR;jQ7D25M{8=3AF}pU)ktPOB>|C*9^m+xP2R1LAWqCxS7lM zy+7)0YRcp=_a66xEbU!G6_+%A?lIyJuZqf>jRbHxEy(AIDfUO)oWO5Q^GeweGOK{G z9hQ7RqX)xbj8&P5dptnG*X>{8FK86aFBU1tQ2Mbk3M)L~{z{lg*p)Fi5{aZ8u`G&^ zmF6u1j4%ar2LmK-O7ll2QDEj_ae=q{1Ot+lW#*HP)-{xz*E-PETfn}Q*l(Y*JHXCn zd&Jwwo3U%8r%Lfq=fvODz|NPMqdJ?fhjV34yr#Zz35H%J_^gwYla)OYCa1w4!Q7=B z7!!Ylk}k`Y|3dtLEPpbN@@K@;V%v@#)~fPv#6iT+utvn`K+VYgW8^j4{j{`>0+(Z* z#T!u?eEmI=jd`qKdNVnc;Vf|R!g^PXuK^V^T~T1%u(j%6PixNxj8Tm- zGaqh4ms1JUF)`kajc)sP84xetJ5N2!%0N0R&N2I`5=*tOJGbtz(rJL+Ikwk3+d`0z zb@azi%Uz2>=NCrrt!3GFHb{b;ae!<8wy;LWr|}Y}Y+PU%V~T(7J9%TI3``qt)a^pj z2XN)ze-V-xRk;I1axm<&OseQ_{vAF5EAllRT|1t#bEodb&>#^Lb$pkvVNbhs6cnf- zZI{nFE(i%yYHF%dz#Q!Ub6hjP7;{pV%WVTpScAz@u5%CLiC!M9EqU2O=h7o@E0{XG z&*w=^tIpm<6BwPDxsbwGa#OC@==!<Z7dQ|ZF5woM{s%%h*)t^djfL``*Wz#u${Tbob zCfUhlUX6dXQ-v7I@6{<6n^8X4E>{w(CC>*L9l^3Tr*XzxD}K^cxm+EjUz+Fi@-QJ?IcYMM<$^JgGOpTvMxqe z8DK3whcO;@gzE?U6hN>9LdQSdldt88Jzdr(5n|K(v<;(9v<~dWjJ}eOmr|!kdQ{7 zhr4_IZYyk^4IoU~ikgN__gqA(`fHQqJ?BoTI_}D&+ zJn+O~hXxWSa8i~s<}*g+)Uh6abeYbEpKP%fB589di2$x*7zr2uTWi)4D~-wDzrXw& zMp8}1lLZxtg}; zNE~6w<82t-LqX`Ctg;5qA&+>qcsr|}qQ9uVZo5NEixW2zsznG3a7%suzV<5+>zX`U zaJyBnAL8b&)SdfUTYIG4h_2TV_h3J080O@BH<&=10^X?03+*Ye@*|LH4!94}IUF&y z40=~)@?dN#aD7l|=&FqRJTN~H#xpi2RI@rxbRodQ7}89W@QQaB?jzIebhw^18M;;k z?C&f)16pe;Ag$nLm4;usVMh-9H9E?TqP(m=TYmQmGtN(m=aS!t7oR#c+}Zk5=|V)P zrUC1=&#`we+)>mvg;0BSI3T6fdJz3eO@G_i>0@pqkBf?mt}Ff=Yq~<1si8#|zgT4> zfp#O-b_Lum>o3Af8?<$AjJ3}pT!=}ATY3=C$-lZEgOM$-bW+uBZ`iy;Y{&5}uPzm- zz+G10;wj?t0I2uzjHK`GS>l6eRCZtRDu~`GkX9e|<95Pv%>nW&i73KM6*MP8vIAq~ zKio#jgc3qFA0u#&4(cv(a#A0dEbW!RbZk?$=#egt_xHp9D0f!vi8pNTVib>vtMsvT z;WvAjbG?A4OY*MHv-fOcrFwVoO%+q_>6m?kU5s@-{O+DXfphQ|u^5D+;^HMoG0Hm^ zo7uJmjC=qh)q;!(u8QKl8{Ndl5+A0&TfN^3{)CrtilQ}3&L12b`wE%}fC%r+9B#PR zDamAqgu}kv3L+a=r~m3iOp<s6)5SOuKY4;^XJ7gh>iHU)EOZtZzhBLOWE-L~Q)3kE>pVZ_jq9$mcEETXAzDKaIPd4=EN}e|t|3V)5!3zIZId$t9TjNp{aZ#wyO2_w zq8cX-e#CmXN&kmH(6!3rB)jc_BiH}$Y&OZ-sjkS6Sv)@e%)Ko zhMFhB+y53lx+&8!*vUJgq|Kl5ULExVcHWTEi_Vo}M~@yonX-?~5VtNgp8U9Vg>1W` zUw-Ny%d-WA<^_2@)mU$E$i9>p>beG0DwI0-u19oE+k#kKg9ErBI|poD95($UE#-Gn z^g8@%Aw=~P?Xk|in?UhdmCI;!R|7NvPMHA8FTwUJ$4KG`m_J0LROxe{+@Qv2B6@E( zVQ_lIlg)TWYEN2t(c3R?;Xx{|G$mDrA5(F zsYFXevSpJ?*D$Dh+~g69%+!oMJOO4k~Ma4#Zmw>Zy?o!`+Ye$XvF>{ z*G}#%yoa(5ZDqcSkq0P!Vk)01QBZ=^-2LKy3qV&BOuERZ^7%G%1O|vpE&Qbh?I<8} z8@5UpFO&phA5q1v@$%hfd~=t9s^WRmHmQ*J4(oJ3RH=G)-37SY+5hWqQIu*%7uS@e z%`+JEc|`B@6JudvA(70umB{@GVMWM<4wN>)d*eZLAl@A~$Z~kj?LVhgKz@ahv+;$- zag0?7y%3*2cVF%#ka2`f95{CDSX(BR-Z=QPIr}*L)sdtW{Ab^0pHrX7meS6MAG}vi zI-36>tyvKYoe#mgP^FOv1V`9wD`da>rF5hi`T0~;lE&*U%ZzTVenyjq!EUCLUqtqV z?p&+(?#Xn-%v7Dl4z)?stp{bqH#!wWpfgVgC*>1T02`75GrnqATl2wE|0S&RkYn}~ zgu>Y5b!@U{NT4A0WraN+hvdj9RNP< zwUFUDk)G)+(NL~o4r5>|IC)Q@*0&Zv?9We_I(sbg{o`+9QVJ$@h1`~FQlOkb7lXp0 z7k>}bc`l!YE29;fz|G}K1hm*uDBqBE7hu@rqi!|(h~lON)^zVTe>T0 z4e#>JSwzKFLYV|nPq9|mX3TY3x z0`J*n{2NoS2yhXyc(X2gbpb7sTwb^ZpXSi3V<;PHF_prR5j@fiDo7s+ec$2()<4iA z^y3?aXg-JBqZbRt@rIUpxUkhd6cMPPgO2*8AW07gG7Nyr|C?U#w-zH`1W4Jv9b6$- zRX$YxJi!cb)<15nZs%d1#bgHY{K!kF@))=c#6u5k?-~KN22nKW5lP}_r68Om46q(B zB4QI<_dtnsBIpaRy)TCqFb^(zGNL^7bTRNC82BN-2J!&k5%&`Dtg@i|WB6-vaBX8@ z8NG2GOA&c~E=M;>dEv;z$QJZfCQzc|(jh;E({fenrg&#y$G?&kDBJW=6)~ zc#BiI8>o=7TS3m>sj14^tKRY?VBQoo0sOhDEYw|uJc*QG@V7r3XX=m^B^V}cho2r% zy6SW4AWn-e(9J(0e;Fb#avI0TkZ$a(W*}Ns;(K%H_}RpF?%B?cwfPacx!s|~(QmD^ zXd{m)c2`{EGI3!PF-x2sm9v zwd7UE{&z9|+X9X(FgJej`@cvC-xWCU5%F_r>0ngz9kFjzL_P;?7jc6mneS*T0m=1m z-GbOR2sQ9CCN>+fTZe+~hUHfR%466~9MOij>irtBod5r5TQcHaD?K~>y(Hl~bmeNQ z`@trNBy}6t1fm>cc_~pP``KfeBER)j znF#~3I0oSX;C*7#ksZQr#b0MR?WEW3KFB_DXD$3YMlAhtRqvssxxH&;>lU z;`W8c$ZGI>cj0+8Jm)P88o?+f{x)AvgYjSQCzA)I;xHn?;rb8gHe!t~gdsPdUv*NqT9Vmp_hNDRLT z1~SP}_p2Xf6ev(Qz;!ZLsz)5nVG_5P zm=41w>UY6ygVl4!$IfCair5Ny^` z{MvpSQoaLx&*6Ei0ah{EikEf$f2XIb#z(dPuiuN=!(_S9;!8Xv`=Z@xkP9_WhQN6O zs5^SYC}DFKRa@#jz-U^GBWv}NF+m~t1W?3HnIoZ~XyP;^K|A0;-a~hfN^^FiHvz*} z68ebSRpMRAwj3f&aKuFl-p!dh^XwK>oBte4+0T9a^t$Fly|d^%>2ZYL_`yeuTKr4TNdWxpa z{`*I)lkfrLf{y8r1ea|;h_S(ahtsg(1rT}( z{L21;4?VCR)1DdbNH}36he`+)#AT9l{oaaBM>u{CkGmcwa2#~ zh2rEcK@Da7>(iQjwwZ*Oyf!>=oK^F=%1pE}jm6uy?Ci&?5Kwb2Bx^!Tqn&X>wlWT@ zK}VvUeWx>gGR)I54u}dbLV^WuqK7gSR9PnvEBAtr5>>@FM= zE4z!Zy>W4!1?NGzBOxh?6k*`925ffQz+|+_WmsHOTQ$&Hbd`&su*Q2E!KtVKsWU&{ zG`C5QMV;$mBW*ZTL@qzox92?hzZfYlHowY{(}`>v&y~-z>q!??R?M_tUGIE0y05xne z4*YbT6m75lu#X~03>=gdj*=Ghz&9Mnn6LKXigZD#a07`3xIlmt)_}~5b!%UJJOi`G zjj%5G`*#XgQi}M-p+6_Qd)vMb@-y4>msfewmARyUQoeCdOw^r4J>KOLSg;Ffy=>MA zEmQB~RpwW_v8>CG=d5>|i|mCE7KZXO5uE#m?ZgmqF3i+_@h~c%OFVtrIr}~BC55i? z?CADj$x6`GKE%w0`zabNr|Eei0$`D%zho0FIeXCt92Qa%crc+m+qc&uMBMnj#oK=i z*Y?C1f6cgFNGB?V{mfI)!DIvkYr2EG%Fw0>o?4<&kKVNMcOTJ4VZg3eBo+iGX{)?#XPUC=l7!oAR7d%_BrEr?L zy*;mI$IU&av)vLFF8TbCldvn2yS|lC@SuO6@b`X+x6g!0H3bBL;P%U`F8G=<>)8nJ zRhAxE>GnTd^D;II6DJP`5Fntt4ayj4!D!;&T(YABW7j{U5N_Kf<3%12d0zZ2T>asK z>4};(Q5492So=54)dOvjrtKCxV^{wF~5Zi5>b%jbGJt%Mz^%7f~y zZm8exow|Qt_IZkraoZWd#~(98|NfGGP$WTzR~@TRyH~_CPA>AoUSIL@D9YqAT)F?XJMy+<8Vz@fexyCBBLkVT@|b?9P$9{l_xbho?HK| zc)C_};ZPmQ-5xG5C1 z@C$C48Rc5ao}HWHgHW89o2)3oH+Q`Z2*iQ->k3@iF2O(nEZd^l_`lPMPYsyuob2n> zlS9P5{b04~3=aH%Iq@+W%&mXR4u5h}{xvQrMyr+@>w7uPu{JYv3q?KO{h>tk`yD+P zUHY7{7k%mAB4Ap3e_P2kpGBCzkk7Jq+taWx8H^J{^$jb~(?{Nmd~Svc6W|P0 zUYqadm!k6wNxhvh_K)+WK5~C9(S7%|VjX{qct;c+HfhE5tf$9kv&?Z6(r<6|o>>`* zAgweGQ!o)`RS-v^Ym!NBH=NK~nq1uH+j&5z`M52c+nt9nv?LRHmJdC}!6(|KL4>=K zxsC6RfI_BXTv3}!k(qkGkaEvQnl<6=-*NNpE?*u)s*Ek&jRvib7a*5{+esa*E*3QW7AzTs1)e;{^OiipR-TAjV{_!c>R!Et6 zekaSyv`>Bliw)#E8?8ix6V$P8?ftg2uA-kkk8s3)IfT*(H60nQqIk=>kxF(}>7JGQ zBj?LDRq-M+4}d-Psil*ehipU%%><1! zNS@)tNlBvF!)-5w^IXm1ip`2|2>n*R!5+1+IMek&(?&ZuR##U<{W|r0fZY|!U26v zl2h*Y#kQGeYo)xoPF!9v|gJ_)f9q3$Jx9r!^ha;lb*(u6%4Qe_RChXwKCAH|edTOkK1?dm(rcLUl|h)V#;`|Kleeq?muE2~7VNC7yEIi) z9u3X5$rLR-31jdHE!tUN;Fl!&rfFZ%>$jJU`E+Mu-~8LgaziMTzvf)x<9nYk6T1Z@ zjQsoH8SBjI!KWy+7$jTkemHSyZ!!$^hNYr6z%i`TQuw=RL*5SGLVQbxk%Dujzy29d z>7Httfu8qV+Mld*>GU4IKXiEHAHppIeW1Wi1jL~ZeTIQS?xDje=fOOt9gAll(73gE z+pURFYOy894@YQ+#9qI(jtRGN7x;P84&BHLv+p?~&s*wOC%-qr7)TTl-7ZJvKuvYq{dO^iyo zX!#9w?ni0hJmYT}oAU zB(_P?-gxW5$__yeuV~~$jf95fy6T^OW}`cC?r7A#8%^Je(T4$`Pzi;jBfc%BYk_U% zC1#n?>>RVJ%q?u!j+{mo{mD4DN9DH~er5V5(p&?w`L}UI`AxDwA~l^;QAIIFN2T@W zmXnYiD5FS|5!dGvvICIR>@q~|Cy#&bW~mcchGHZMA2yJqzHY^a?9>W zt`5&0wR4-v9eq8WbCF5gXA1Bd_%e5rkDG5{3}y)*X;!O>J*gnp;QJtKsRJnwsHm z*)7An+COBt8O<3^@h&Mb&4eT;qosg1YTZIBNw%EJZ3 z^ksv3GaHYu)gQmIEQ>7suDWQOrn_9*0wADyb~ z{p4BRK@(W7x!)_gvp4y7KS!bk#~z6d97120s?YdMueE6|+|boB%2KAiEwynOKLVkWzj>I%;48jG`Z2jaUMbfNGy8P>C zsbvxOoE^=291uJ+Kp4Q&%efw*yysh6H&)4NpL?sA=D(wB+vN!t>bpyc)hD)Z&#QbG z&2GBYGclP*-Gc3Kh=Q^}Or2?tgPi-o_paXFpqS;6mAj?ozXMbm5ET{I@o3HHD@+cK zKY3nso#tuj=angbM%nX0?eAD_IOS{@XJdXrzSS*$;nBgIgbJ5*KKi@?rQ6H(pLZ-h z#!qiCY0d|CwW4g6#_L8Lf+;~XC>$y%=XSfmubhk7w$QMmM9yUGMLT60`tu%aTa2yM z@{$zqN()J8rDmXm(9kiOuD;$p(hDjf^TI^VkuYyU8810GNU5-L=GxHIHX zNFsZ;bjh>VI#pDq!H};8*74|3EpOeTCgETh7X-i&gUPSgJXJ4829rf$x1Pfh5w{sP z(h7y*QSpZ5Y|IPljk)r|E#g}eWLex`hv1~$C-}?g%(`}EUpA(~Npj>!*%!7$+veQe8NAnS zQnlZgY4;N-JpS2(oK)io$AD!i&GQdSau9F+Fku0V)op8`-%tTSap9+1Lr`K+n1vHHRqcJ$NqTUvz#@f zjdXqbsnR4^YALcezc|UdbM=LrwBYz%0x&?pK=KIyUex8)ll^l*(Us_$x2h(7XzvfPI<+UZKRi7C1ea&Jyc#Y-LWtthb(@e_aAP zf}dQ~1hSTPfs-Ji5?wa5KMq{(!;%?2S476&21BWPds;hd8y>43_<*s5kXXK8)t6sS z&qrU`>#%!!M2dOm;_=p3dd;VBktHR)9g`27iBAgNYTFH?oVHtM66$I&q9yhpI1df4 zzau~j^X`>y@)(TgOJfzDg3?A+Q*)MKz2zIbRGE?!9Bu~H4i#lwxBtyDGV;}Y;r4i~ zS7=(&sC#lYK(yVl@~NFlYq)FgQ5D15o##2u-+m6FkHV+lywmN@qv?~Ovl>TD54)V8 zI4v$Nr(}fKC<%y}wDO01^KZ|W=$63mk$}!f!NEZolL+MMEkyiQdd7YNybseR1dJqW z1&O+D@=Qv4yjScwU^uZB+!E*}6NT8Ve@pW4=fEFhN;ZI+JrUGo*C*) z367P}d>@b)8z0Z@WrY1RzA~5^)SxEFrn$XgB#pFx_J5bNC!zZgJcdLu0c!q!UEM@Y zsmD9Lyzq>#vg@tB;o6AkGN|rC5AYwz zuNF&d6Ki@R`ez3mynRl+1dC*5Sjz07XIi1wk#Si$Ae(oyv+Y9$3BC^)9Q?ZsluynP z!Fw1Oy7j2EVBn`Hv574H1;GbeVzD1)>&*lqH;WhH`E@%WKob+n&v&<(BS>)m4u{h-u%23yc7o%IjU% ztXWe7vox~eG5RzNd_z_|A2Fy{|4Rl5_uXKjAeQ3RE`#HtmBHJ7k4;$dM5oC_?j-ip zhEBG7V$G>sh8KnHSk(SbyWYb$Ah9wYf@}QY^jVIm_RmRyN;TJ!b6XU;qdKo6)6M9q zIY>CXH>_9D7e``j4A-c>qs7~yH-r@nnMT6ogM@FSxEi(; zRvhy~0h&t8K*pg8l{%*o4GTSgW(k9$=hjbmObJx{`?yXjvcm0jr{yb`g2SG?k*r-G z{j{8CeiJU@n^B;qpa>A>8I<@&1557i?)_N!z`+P1=7p~kSqhHuLB7BF(;6J=gi#2G zGGQj)ylHfpz&2h#KeXVw-M}QO_xI)Y?oAb~LJ1d_-u$hSKYUET?)NXvM?kS)E0f|O zNH?|~YB}Q5<+JCLTK$E&4}DdojRicp396r3^KGH=98ow9Bq2QmDTBOg-Yp?aBN?Bf z=k8WfnArdh--acDO9KE|?)8f(!NIJ8H4`iHz7mj3wmfUaava=ug3p_74Tc<^fE#|@ zS*7ri1&`47^^uy@YhrmuZdw?abUr-qJlfk_c1uV`(#Lr8#5xmK$Jric<#5rd51bfe z^?;vr|KY=}J9c~}8$MAOfeNx%CzcO{9(tpIlb-6}H>@PM2 zw}@!1iu9q#i_6{9Ffi*sQ(5lB5m*C>Zjl)w@K^aiJ^y3$v{A=pF?MD~i3u|Jfi-D( zPwy*?6)~u0!^%P1wr%g;@I)(Yn`k_HknBU?F}KWjZRJKa`tLD)G0P-g-hkO2w3!!L zxZ!_<`UkJg4IhEH6aQnjGfZndcGVw(6gBBt!e1!a)x@fzF$#eBwQ-6JHcu3$RTu(oL-t66G4rWup>sk2Qf3=Y3 zdfgQ8_{iB!UTj6I<>N%{HSYy;J-BAVNIwiV(+F>}s$N3DWPP|Z!ezWn-b}2=9a=x) z3S*k}3KNwO7*M z0TAKW-F5-H9{zAN8#Wxo-}B|mmw8_p+tjCBj3m_u42$L?f{D$^qmm%9%?_+X0mOsp zAE-1DiAz}9#+YOFpLt><%!KfEZ;Zv$QS}Ykee1B0wpiw9ychksn)}Yqi!S~+1 z-#iglJymnVePnu?v2U`>&)o^j1HIkPGZ&QvKpRb+FQW9=ep#L`*|*aoT3V;&t1O9jA!& zno+xo#KAzN%fqM_P|Ej0`9||QPuxq>BW=#r&0*OX$&u0xBfC;e;pb2PXeM)E*&i#N z-`g@WKE}$2O{RSO+;Mn3l5g6=LAQUT*etUa<`BjyML+|@w zw=u?gB#oZ!^Um1AcL^66pnHg>#|(Ou+t`>&V1OjzwL~=0b76sY3xZZE^T?wDwv6Bd zf~x+w_)3n28#gyMv2@1Z=cq;geI>x7k1>RxvP3UvBO2~~usj4rW$kZ ze3w71#*6#>kWT4VBpJ=1erwv1@y`PD()GA_VLnBs5$acoS_Y5XwBv(>s`!|!(0`wN zXayZ}SdTUxrK}N{e3)amWf#_%5Hc{vubhqbWm}0Q6m%Br?|>TtLcpKqJIq@(HAOI> zpV&u6zwH@rc+=sWoe(9>eLo+C)-wRX4^LLBAKJau)Sz10Z~By(7XKw1)pwX3T>mq#|(=8dhu`|)E#{3ueQ+m9Ob_NVM3#LS5MbD*C59vO*9EI~=IR3gu!LU9)OJkRKu7sRG> z^N&__(+xXR)FRg9RV`07jxEM@_J>D8w*-exK3Ay&_8_+zVO=1Q6^B`tasx$>aU&V6 zz_#f-l*GzX>&WN+wR>f2E|c6(GR4BZXq4mzqlAA@kiwzaMo9kf7q>=Oe*#b5^br)J ziB_-OPs_fL{10?gI9T5Ip0@%>k8O!VF=udQ05jot*Bf_uOdY=3&Nn{yEkfI?%-nu6 z+-TY&oJv2%6>1pFQ=+#m^fe`8@T*)_yXe_k2GdB`h=G9!)6MLOj(Gz-9+K%x3QCws z__Y=h>Zz;&v1h$s3O7m8yNZt=R4)Q zMG+W-3kuv_nHx8T^ydd`L?fI>M34ibfcA)nmUh)SRrQwi?pe@hH;o;pnHQ7jlI>sY_me3DziQ zXykjJz*Zo(2cu+^#k(%Dy*1UMO*nRex9_FX8i&F{nK(WjtdsBk?;eL-?iw70AxrW% zbeODVGIX zm86*6$SlrSU=X=jL^Jk;-1}A3C*ZiEc;(wv;7v>>*LPg5441qi0~6p1}c405q~QX;%2a; z)Y$rkdXmNw^u8*P)qMn4ZMHAQk3=H?NN_jkX&UGpei5Rd(K5`~7VyZ|_Yc0@m*N+v z6%>Az(K;#9aCjPRf6y&JbNr6X8rLKGdLr{d@emy?@d^tvaPkECW%JIRK_}0y2o|2MP^K=zo0SNwAY9o5L29nW zGMG^5=53GsiwBqGgx`dbPg1XE9p5_LyvuE<7%0|p34lQe`7V$DuRRk?Jctd zLA5BZlePSCQCUJf{9$f@6L*GtXlRRm33N8Ne?CJaMv6bQ&ZMoH5l_(~CFe3^QDA)0 zV7Q=@L+df!4b86Qi#()?JUr7_0B~< z;q@)4<8w+JC`V1tGs3E0T%y2XblWzsRTlX}{zf;Jq`B_ircE*jp>Hm*ey zPZ7A`#Ni(uI038R4wmN&z79!7gWsP!{7?8yzVCw}W5k~?dZeXVu+N>h--3oA5}YFt zz+UU+@To7Nbtf^vfS9YW&`V(`>Fj{goN7B9+N0SSTQ_0|3jG=2{tGEPQuS{A{mST& zC7S=^h;0~hrkUu885aDJYj*QbXtAc7cyY^Zh*OOKR2bc*3Eq~q-Ms@^6XWA#qD0)- zG4>{sPQWKHq#e{R0YCYzQRQwB)!YjUrBJ6~f6)_r+WvrIa@LeGk&1piA8kCpO`jV6 zOq%l4Xj|TK>~S(~SqgvPaQ}4e@Gq>={YQ?_xmgaUj1(o`nOGjQT?YFw0-!GTuyKDJF`UOqt6A4d)Yz|z7;DC_R0O4A}+J@jf zh+4s!TsR0DdPd^&g<_6f?>!H>m~e_{U^{&tu3h<{!C?j*_e(QiKuY3dPXw-yo`-ypjECN)L1AT4v~LQoeaSX0X-eb z4$;$V)h}sVY9hY2FsdVqoWQ4m1atmxacyX^G9t-Bd>xgh8Qx!F3x8qw(Y{!0P zTsR6)ERfLe)RXPUAv*jYQueKVqWi7=^54|L`S{qy4?}tdcJtMMLX|t@EiElWR_mhe zIC=&#~C#mX_rvi#)~m_3jtO6pJ@`pE^xoq;lsn$;Eq9BwdG^7 zq=cV>h+ZuVGO4Wcwz6pgL6O~GOV5Qlb2B4;LKN4 zcOM3|ccztZ#)5QY_(EWn@)gVp^6>=#{kZCtQ~HX^Jb%{9`0($CFliIW?84M4Ou?J8 zaY(?0b$3QXq{7qq?{EWAu9knaZab{vA%r7>ENs#j91Wd=gGw+)AaHB7_=IxE>ScG3 z+Iqp;>_PLcmuE)@`4%m0G*nF>;OS=N!V1SygdC#GN}yT;2j&Hy)@yoarVENM2yszI zsL;!@$&LWXD#A)3{TV(qZ7+HVgLa1K}wQQ#6cPI)IcC>8p*-T)8t1@lGtS_;r) z;i{3eTy+~D3Jwv*g002ns*A7G+nyvM27^mw2&?4I9ZH1)eQy5VZ$;~mM>uBjLVkbS zgl6OZx8OfsCyh9`{l1V%CGvuHLww)?a;byk#=!d9U1o&nXGu;GFoGwBLR9C~mX`_* zYF0UIG><^9;frhcENo+rNLTvFaT z?`twP#eE7*6RdtVNf_;4^2QOpZTD`3d6~ptPk7FL_8w`@K!#RkCGrzkdtAoIF?gHB z-OtLFTV82vt9nN3FswPY+|voG7h`TQ>9LQUBPGtGKAn(+JXxIy$byLt4bqpZ5Oy(tW@;C~$w3f@ zuJur_Bu--7p6T-mEZ;9(xpe&C=Xr-KJgxI%aP-2x^68h_?Chq%v0EDEUmQAzwVshM z1>EFJo);gzM#M1Mj4go3aOnb8s;+;J_f9q_nNvfk!k^y(5*ZTcBi$u@n;SYo?-!ql zm29hio0PO*_37*61Dc_Q1}dG4&=_6Am%n>H*_C~Q)cAZS$vs!{3Af?OrbZgy}eR={E}Z>&xGh<`l)!eyYIQ5ux+?;Rh*w9Ztj>o;8MiR^6rk0t#6eg&I5M`}wKnuGaNGAg32`K@~ML zls(s`1}uuU$Xi|(b2XUkEZ#Bl&%ro<4rW?SS!@w$T5NBBYn?u=vA*KseYAbV=lwJP z<^zL(aS$;4znJ-+J)wzK*!mku4Fb@limM$`L&!DL|BJ_NcW9#a`O_}di0SMN{jH;_ zN?&|gsMpdX8K|4em=%SfVFW2z{RD6)A`Yeu8v`@+nc>l%o?>7FP>3ae>$tzczfN+t zdz)mq2pt`-vTL<>YD!z(0uyR!c#rP8SxfiPOmo+Swz&6)?C8E#K;mcs060bw2R2+o z7ecn*fHP9*qyu2S-s$fxy0WN;d0NZcQVmUC$0o|)%4v3tcn9EV7F$MKTQ5+F|i_*0b2K}4#64t!VyCP zGM|9t{a}%e&jQuvy~$S;E#bGQG#@{LJn{!=*=zIkug!gug{{!9FCv`u>ohpi614TH zGYS<>)%5hvkDg3~lAgZe0!mJTJauicgCybM#$79o&HqLHKq?SG!+u}}I-7j}R*Ehc zl$9=xAZO9IWB-Pds-Nr^&y}RB%+?)hYxP-Dei2!b5BX^8cEj&}ncc zPEBe^Q^{@eqUYw8B3LKzfyZYOsH5QU52~4f7TeAT?{^||1}M!(3|q)pa8!5efy0N_ zx*vPs6&H2Jmb&_fKtT1y&v0A+TIHK?N=`y|=bC^geVv}Y7Jtp;H-(5_mrj1btreo3 zeel7wO6%gL;$Z}1`;rqvg3U+ z;_RB5rtSG6CB6&FCGi|8k+*)QSXtGl8g)*}?V(@SA7FmaxR0jI=vU0;c8#Mczk{S+ zy9jeefE_$O!Lp-jv0rYqaV<`+SR20}WEB9luVu2f9H>76zxVhq+grC{fTNh6PY*n% zKbM|d9Gk>JqP5Hue7w9sN&Wrn*9mm-iD=o-#TS_f)WTK(EkpQKxDP1f($i-w*t|&| zaePMfeOeocnIVfN6u3y}hy3E1$-bUGH-f5L_n!3dw@& z@@!$dxmIH9z~SNz*F_wQeE-8A6jWrQp?hM_ow%4ysV zsG`j4z+8}Sq*-@?Ib@R*OR@Hb{)U+=vx~ukDz%lr)Q;52^t632c)WLLI6u;0wD@hW z{f3LG({Y2}9mHL|CLjj22GA_P`E$ic)##hX4P3Pdfr-cJft}7I7!m7w_k#uS2gtX* zdCVp#hVcO~E)k>Ad?bGYDjif3=nd+%V+0Xw70Mc6RGsJ|DYUrG_?J}C^%$nG<^k0g zm+bj;KK|$#W`tYj*@WD?qi)~%|5pBb%q$@qY7EMY%$=$RDwMEB@KHg|JtO2aK+bTU z{Q2`0XeUuoT(b==oq$+^o}PcNPVTl&`yOxLB9K+7o{$3uN$;oO;d%=5ENgyDlqV$KNf82v^-#uI=`=8x^`=Iq@Z2I%) zb4R!i>3YlhpBv{i^uGU^_ww{qbJeI{zgXL?gX;SHjYrdZfBzbLU)}4H`g_q)e8j`3 zy|Fh;9ZHP@JEep|Re<<#YrGKz!J_NcdZ?h{JeZwM1F(K_Xs@_~8iXltQROmp8s1rk zQ;sHXdiBEFi#E`&b6xzPN4x{xy6iG*@AGr>%QsLr_j@-JB`|EOemv`0*nZRUQp<1s zkJ)Wh{7UMxrQSCr<>)sGSef+i4nk*c@QIU}qM`B3oT69&aq3`=JWB&6a%W>_F;|2? zK!yhC2j+;blabfMt_#iUC-P-&`|ucX~Wz4e1DCEc-0PbThk)G?1z)Q z&mtmT3TcHjr#Hr6-DW&D+TksSRl?~|M8f`T`{RN*goWQTp1;5=KKcEm&U?$3m>3>Y z2obpzk0Hxf-Qcswii?X)k(mf)T42^qk(6%(+Sf9jx~H5Px;o;0BP${s|0wnsvyCqg zi?$TXReuPGyQ*M7S8!a^?PJA~688-%N@rx04Yiuti}*wk1qMCYBGjCm<{W!lhVAHB zB=xA*Ze(}p6jrObW@KarQEh;@S!)z~_KlG7S!IdYCrTnB@u_+IF`X5k?UksV{w!O! zyzw>6eo9f8a%TvY>p*Z6eEr)=B1|D7`jCl_ANIhOkOo*t3VJ1tb zq4e08gE-&DlQsVPy?p2bT84kjR~sK;t&EeHcMX}1Pi&7-=87;qtEQ&*vO2ZtNy1q5 zwLVXePYtjA^~Gj#SzpL~Slmmwmb?E|bVbrndyMm>&;Op}@eAIt7^ZP~t^b=Qt?;hv|L zPt$u~{dfnMDh{XG_LqOls2`}(OPT!|->$#>ul2dUx$WL((P9>KHQP4zF3&%+DQ7D? z*PVTgn(|k5Eb1U7&dW4J2SGPF2(XI%RB4papI*XTC(q(4`)h631FNhAugH_KvhOkQ zi7xQiSgFk}A=avv)^fw_mgb{VbdSE5-rnytt*KsA6xjWEeNgcgO$aC+=+fXB!&HG| z@^v{z^5uh5Yk9V-xg5(I;#07@xm>1i(#jJXwa+8n2!ucM3|StVS%>=29dDz=N7!Xd19oD%mHbCU*u4|GhzYKe)7z2O~iE}w*b**QR* zzg0Xwioo;l8_#R&oVce6)fX!mAHF=uCUZ!k@#6NF^1!Rxw{K5GQ;~Uk{rLzbQKwJI z2TKY9E}w-HfE72@^6y$DZcQ8jw7&L3KVQPGWi8JZHJ8-icNfMhfNCd-gWU zGg<`ZdEyDDpkwUIzs0o!JVxf%zy$7FB;TC?8Z*BbcR=Xoa-vB!Z<3Z+q0Rhd`(FX( z6KAqFp3Hsqby@#gDx7Sk*iM~=AWz2M-)*Q9!86wW5w0}P1X1*91t#t6%Qj3-9k$X@ ztuCvVzkX|K_PArnl1}{6l$zJp-9PK&^xs%ptF*bey*(56Z}Q8@U(Gpe_rc10rdeLYW6On9Q9JY~N z3W(!NSLf{h7+Xg(XO$;!Zz-oN9MB4|>C;N9<#%;je#)d!JEbLDFW#Q|XUuMjB`7{t zT~goLUo$i-M{qVyxvh~)w&+By$MsvRpUX17tU4qrssk*h9_aQl1;kMOfNzlC-l@?Te@Mv{AJ$=$1={yBgGAGk}l4uN!YmsGtr-1=jZh9rs`7A zhVXT<47tA8eqS`sMM}E9XJw|SUD;SCP~Dn9M`0y8_B!mQ@4yGfQ{|Z?ZhBi!FAPE9W&9WJ6qX67v{`@SYRB2U2l{!Xd?Df7@zlX7f4gHZ=h!uf7N21r^5D>zVBYS zV~C`vOr!pm$%M$++a5|MBNQ9&#@LC(n3;h}U04`QMY$7jqJM3atScm+V0i~4aJcb6 zW#LS_v!GE0=Y5CxqCu)~3XV7R7BFd+1Z?`lkCZSwc|0aR|UEj9IB>nHw z@M3rncE*@Dw)i5+GIRY~v~EoayakiY;p9j;yvnNthEQN;a_?Q}VJiztP3F$-_dQc& z#%$3jCkPwF7&e#Yxfoq<$*P)M74xz#jRv!w{pf+!kXUs`3)|3yY{N&dUmsNo6Fv*S zHzWT)7ae{*2$6Kn#n4Z?qU?^>RXFv9h)(U=^?^Y`P(az$eAAI}U-qDH^}+qSoaRqv zADzBXF!iIw3`qaj+Ee~aVs^?YI+^Fp&6jS?VY-)yn&B3wWO>}s&CX2+f0 zvhr*3wef9?+^8T~_he(9;p%U1?!R)LVVumVx2Vl4M3?Es z&f2%x1`z`xW}A)wUYLgLhP5I%oWlf?eK8 zeDFrwM*Resh3Z12f0vGy^6ERD7ei=R7?VnbxHfJj&e{c(L8cghn4wPQWuxXeRwp0` zL_y`n_~TZ`M80P!c8$XIznb^43cN|wc`YZYF6vO9eA8K6C+o0Q%d`Wl()%mm7$6?5 z9)N~4H}&$tIiNsGPyYi96q}+oJ68+uQd?*>&&H_0FeDx$?H)_vReNbD z6a}n&uQDKXf*>_5LVPV3vOMaxtP3Vj_pF*U4bWV_rHRPpzHi)(N=Ckhxf9E!GxHk< zN3%^t4DDrKVe+(F%YZ|F(fgpn*bkgD(OQU&EaV=RJiYU3{v4?Z>q7@$qND z!LRUd%X=rn?Qa8a3dFAg$2^l3r7T}ZjiQt9kPfkTG+;yyK|xI%B6vV%t?$#xm9aSA zv3wpEOH@pkxN@C_AG5?ev|{(tVR6w1-68!Y4hrRtmv=4QoesG9>btMoMBG=r1(vf~ z%csS4*QM_o6>sqKf;5QDZD%x3a-0#Q^NJSNOGtP$<{OG75#l!K@TT zO<|wMQ^T;K0axyU?dAX(aitZ+g37D*o+|F~Wkv?`YZp+f+Ez==~q1tm0d|U z0i((ct`2vel26WrPp)QYkfsG$##xLqyfxlG@bI{f&Fq9s;v=n;sMXpj=Yd2dcK+<0 zFa^-xm3JObKj0)zuG4_~b}kNHT&@L6v&TB8N~{nR7~It1u=XrF*+jLELT)*5eF{1q zutVqme%?eKyq-ddy7FuK9K{W*qaRLNjq0iraj2~)sy5NlH2^UowOY9lW&Inh%~v3Q zl~+|gKcsJ2v?~+%(*)Eq#*xfXQ>}UaygRWh>hJ}jkab~v#t2R*Y-d^Y% zr-~A=%F)A-m5Gy`UBOzIX%71aUoqw5T51Y~z4zZRqx62v-I7Q0C(igViM&1iKo{?D z5+S+BDY?yHPEn)9{8VDL`{|mJV?j!A|5<QJN8`ogR}5ySY^D;sULWH^rU?Afze@W{v;l?wqi z8>UM}Bzh9{1*MZ45SJGIVE35AAq8?s0gAqs-9nB3Mu~EXwxKS+3(?GVoJY;LVMxzX zCx99+j&uU}f$I1V)lP#6|JAoJ7E5{e?%l+a1ll_=ylV)Q%WX~0xBs61v;eR6Ea^o#it+8|GazA^`RW!P{3ua;pU(|&_>Rp zzyN-FNCAF=KOlpj1RS-qfAsp#H!n#?0274m)%Pfr;$sI7o&@o_9;6vog)<52AaG=Y z_rGf8`z*Y~_lW|>$_#*^PUgVXvLM!E|K#M*pMh!}@y$D%4bx96B)Fi7OQ8$ZFE7nf zIu$%{{81ycqP9andGYGb5j(@tj%%4Z=v#^R@8hdo2L6JNh>|V_V)QKRVA%n4l9G_XW~~M;VgNA zd?C1_I4-B6Da3uJoeP)U#e7;@nI0d&6%dL4(rLjI@38D_r!O~-UklGFfcIK{6Ix!^6?H8 zDzYyky%b7$DxTUaET=UkU@tTR&M;&=MN!A*f5vSrsl8V^v3p`x001s)xNy{*)iEw- z-rUm72HnF)j{drTtZ*vUKsPL9 zx$V8^Ot?+MO?w&5w6b$8&MrFhDU*>Nbo%GzY2P{r`um?XSwePp0&oFklv?a%aa5F5 zmq5Ft-L#2&W!1fX`*zjJsp3Lb0VT3J0sH*K_%#!U4xWO{1M)A69>)9F4SWuYww;(d zF>qW+Wt)-ll4M8yb?>KBoo;XIXV>-*%bu*#jtY(y<%T{E3N1Z7y-V)o8B^o*E++&VC8Jc)Oq%l- zUiCcwq!JJ!@QzcWuD<4?x=rUJ`FX$7*;z*xq=#CXcQ?P$F2D6+pte2w5l;$wik$yW=mj7SPTRoV|$x(J?%oJ#tbzWO>F#3fMa;)Lca|;_}82Mldzw^JX{)-sZ#-^N7H1725{H=71IFg3s3_Z;4*H2l<1C7ci#x)_CD)Q= z{zPm>OMmmzq|nsLhJxksSJgL}^*fHr*IX`BR27M8Gzd=-x~X#=zG31?IKDdF-qg{t zQOPwc8k^Z<>#9CHcTRY%IOfb8;ezT(M z(zV8h%IK=#!HE}h17bl2j@-J}3oCz2npT^j8_;=kiG((5jQ_%lR@{$!`IeJrFw3kY&~r^!y&y{f?B1 zvn|)}bz3sd4LAoG3fF_Uz3c0X?37g$4qs435;40juUt~0nTlPbzH!m`iCpIO?r__6 zp~YAF<~ZFaf4nm(5ZJGG_OfYnZqJ@6WK!eIqq>04CEbsD=b5#LhzRMd`@5B03z}l6 zjg)C(aYL{#Zme6#V2Pou_WIUSi%Kh{H^TW0;4`xR zD+7{4bzjW=S=Zm^nc+4PWE;5M{_;}z@3do8Klr(?4g5_rXej&{pWq?)s*bM6$<`|C zYh{I|&5gaJ`^MauHJgVbok(&DRU)S!4?SmSK$Tv-u0XMR5>1MYI%j{4GhM^$Epbnt zTw?tYkZ3PiQNt}?VC_84qV>Jd_!V=mn1-&MqfN_4joHVH1!G@VWm6w4Pn@ zc+@k%iB7mQ1YPHB_M%C<)H-a(DJUoxctE9+Y1>ONbGk*{#^u>4dBnZE*0W$$i3odz z_KRIFz4-TV0S4YrdATJNIq6evSV_p_?k2UDxBg1{J)Gn;G`(Nw(tW zXV_wNHYQhS&AMH4E>|Ps^TXm4P9B{6_t8=%Ec~U&23IeOR+7!rHMRz|kxYyYwIU5} z5mHa1))s|H)yrEzec}04*kdC)RsM~;++3kSY1=`YI@=<*{?UIukL25!&(w_7{W5Dx zDnK3>yZ3{<3aY4RC$#i}f5u8QvW?KIuGAJ(;lj+5s_ueQMM#YqEI9pd-i=N5|NM= zs-Z?n9Va47!r>4~*|!>_LfQ8%O=Kyu7P5Tq_tEG2{14yj+b=WMh4*=%*YYg)eLv5W zC*ITlU6t|e0UPnpH4hUQ{}Z-ui@;ml#A;iB4L4yY5RTG zn9iqm*D?P2F=C8ZFQlg5x#hf*#Y?9fuN}x}Nk?s?H9|F3juNbLQ|`iZgOMIV!~73B zp0H+^u`D*i5H^i$x)4(?t)}$#pr9r#=3wzj(D)`u{{DXQ2T4yJkT)!>2HnEMYUzyt zE0YhH{-hZ0{7&|~gC@iIyb3)!@UR;&fBZn<5)Ecxs^{@M};pPDG93xzosN zu9|Y-7BgOrrW_?*!X(T9%mjD=@>{AFc@hQfMfDK3FHLiU8f*ZYO7ra=1H(FNV=a}7A8CdA~?_HiVXanGeZgE8H zcrs^_mNWRnB9QHtV=e=3XQa2Zc&y;l=E~Qv=g-NJf+WTE?=M$B*B(ZgO5@s$+I6jdB2lP?xIKefD7fgoCX9V%eY>npyRu-0%aDzl?%fP^ZD|+Bj zC=_blpn;=fGJchu+BBT)gaGv(gfJS^nlse{lB}Wmf35S?Xl&8uaog(IHV~&f{M_?; z%SUdLr9qyMk=AP9&9{Lel3fZ^!xba4uKI%IXoD;0lJ3DT3v11F~>;h~xdlE8n zH>9!VIgWoX{m>aB!fv2BMFWu*3zN#%@sU=@UYBR(5o7Jzv*!fjOp2yrro#FoYn{3R zHBZ?_^oaAySJk^99Z-?81NN-&Dnd=j^lA_#-F z1L_z{5MA|XelalN&k~nmlo82yd0M~c%Fodp^UU8U8%SwGY!!NNa5Dp(H*#Gc{(O?s zMd$DKE>0=RZ$0iU5Wp;BEQn( z)-U?)3iO}C3d;*q0Lx_iy$kViXq${quj!~jtM*Wu;@pY%>I9INw!baA!9rAWrfS|& zCfrXbu}pi{tB|}=FHs~YzwqrGZ=R6_+sL9kS$4m~{t5LD9-6H+-{zWO$J1Y%-;W(> zdSlbCapEr&=Kel303)!5-E;rig+KT0(*}0X0P!p>F3xJm5*x&KW!7$Htmoli7e4>~ z^t6u*W{7og-Dnx(e(1Z<-?~&`J*Op{6=Ia{x1rVH$Bim3J0id-bD+-5I7i({pebKV zF5qrlt)SeT?UMY&SS7;xZT+op^XwlAQXq|)iApeH!5YLPIa)sI>`Vu!l?t#)L_wjn zUM{tX0mGQ?`Js%3m6cUbnM7K$w6}lktd;PXvenf*{}EN>P3+Hx^>pDBI-R3r&ak>% zTLuT9>-+34NA*5oc@Llk($QeG;dKj}aN>yto<;?UsGMA3eIX=>GoxK57zJSH=;#=< zZ52sR8p*wEk59z+h1s}mBZaxAjA^?CY8S8Zhqq-krRs179IJ02KOEcnsfqDoLr?FF z4oZcK$&cX(X>K%+mo|OA#WRq~xM9vXhSMKUJh%CV%8%}I;o!rP+uPeof@?^9*-%6$ zK$i8m-(bB_DqXWKEX**Xrgm|m;mH$sCr3whs&U{Mw?-ZV;poJok}4VE&6u8NBh>VDDGG2#{+G>8?UN@*ZJT%ql z5iiZVV_!HP*NnuQm0c*MD_UQqc#2I8)qG32EvDkD_5k8PI)d;+q+ud_=^~-M zjN!NxEiD49WQmhvQ-Kzw1ql;7Cnx8FAQEX-pF#;Gs1blW>SgX#?;6$`u?aTkGXl2X z(lVGIxM|WAI4LBjUHx`aM7B=v)Tsw3Wobs&bPUrFsIS3w6WWe1^jt#Q08O$BiRmJv z-Gx)Prx5%%gP9ZhlKLIfi78n}MrQ7F-NFT0&9Y9ME@F&`n+qc>9sRk(8 z(F4;X#&HWppN~ei8y!d9^X04s@74%hSr5RKTOybgCFT!13;_m_rPx2vkdAuOi>+{VbC zPe=3L>r%Bc?(KRYjtt=?g>hjIg<}k#71U@HUETdV;18oQ7;M+A%55(R(Cuo4?y#R8%368f$$!C6*Uc1PgGPiqrMPodbBxI$63e*_pyrhJ1J-qGtC%a zIsy`(0dKcLDS$)JHp2X^OW9c+2fCsZ%~AqB26NIPBaMeFF?18dMzYb&R2a2|M>qZk zEDU%!q@#yNKa`i-K0z;B^YSaDNWPih<&mR)QDXPonwlmo5`iTQBbErRUAun$m!+TI z+R#Qf4QMuD03O-57kDM1ZpQr7SK>#&Tvro|`lugI`1isQzRRe9n*aK|4*eSs;v#6# zUDKiGLCZ;$pl3E0o^v56rQraNdntwdjf zbTqEZ?`xM}yFA^X=GK_3v4R@$VC8l+N$2`c*eguElY+fU>#w=rAF1{2o0J&UF6#E5 zasm!A;Gq=^|5)(kyp?c4`n+?L6|8aD}|m9Yw%bvMSyWRPu&>~|{=aFY4IT}G*q+8nohrvEar z@GZ>kZ?fb);;hb*%3Uej030SAGHMRX8o-bM)d*n;%3o8J1HX8Nvg;o#mW<$RkjU?_3r#>vq1Kvmlq`dHad4=5e8Y{d>8G6lb41YoD{8qOAtM3H4LUeA9?uO@1rp`mF=Z`{_D z*PH4}Qpi#@sq19po1c*r$}G5(K2L0pJ2Y(c;}xURk8H}>nw||BWf&qMrBBZZcId<% z9tLhs$r@w0nx#-!{S4$2)m2r(JBr7OzD&dCR7=z@t>q!YCfkiZB${W!m3an~MIyH( zr=9Kl%~)kMVrG@;M|%HpK-4qS`r@qWUyi4K=6%b>5mz3}F8GgSpH-0|F@yy~1t|rJ zo?Pimv*XGRXsD2aVNcwT2*gwn2DS3Fw6=Dfyb+MOqjk23Lt@YO#xL@fj{D}t^YB

ZXKd>_S!uXgrD#XXc`1f(4>EAptb90~h4&;UL_|u;f=V0o-X7!N*WNrz|6NYt8tvY_V;!*RTm&A0 z$RWSJ9qk4PN^9kWS>uEqgcrH1l^+xPNzS7~jvk_|(-z3LIZ{;COx(meamqNu2zk`A z1J8;kCx5S+?zi~^heQM0X@a5*mas7B8i>H0vIe&E5{#oe6l}s(sWB~?E(%J+m25^~ zxg$$~H#Fuy2^MiwJl^2)7uuz5=jPsx@X{!sG6@rBAV}qfXSOjleSng3%Tr%bV+IkE zvn|1Ju?yfpK3p!|)QsjdWAz8Z>7_9#d)MC(6@ByA((h@`xv9afYq65=Z5Mx7C0i$u zy)1-DBq!MOQP`b9WrzJ`vyWk`|6rblO5!Z+S^mB?V>8e9c(1XjBgYWCm4_Wy1*|n%r93q78cua6h3of`XT77q7fwu2NvPvwZp#wf znmrmm@8|NpoL_PNbz#lU&fKv~O7PM<|0Bycz7_rv8!%DzR(YztYmCbF5NC=)K8$@< zBtif%PAp+(AX*@pZKiFX%KXeE4$|Ti4*R`}9>D8CWLsmjBp$eJ_$RK1;R(i0S6qJ*R z>Obxy{$~@PK{^ThV8lEpeE{f%jKTCYy}Y`G5-GGP=5Atm>(YgZ?;ozrHe|-DoE(^x zZ=q`+?(urVTls(;9`7IAtS9oQ0p-4k_zuwgR_1;#9mC=iJ+ICe&DePVd_4WKfNfJW zjcyZBdnsvnS)*=zxFbrc<-*Z)om4d;#l&DlxdIgu6bTvZz(z#609k@xW3p-@4%eQe zf5TiXR7hwyvH5JE1p=o9t<#EzKaK%Xj{0{xEeG_bPWTc+7})*(0$qzhpD#_>le90s z>X94HkN7;K>%@tqHgOFJV$toV+a1D(F*jED&_Om8{wuSIU@N$pM8-dw?moH)6Uiuz8?jh3f>o9peWN2wJVXRsAGRjPbZJ&!Mo>@{iYrHE2(TanEdloKJn`i)BTm@? zT698yzzp*GvI%k*e@_7l4821bDwfS9I5;^|fn-1{c_@e=-D|_+n9sP6$X*&l#grY; z+o>5K7V{a8hM=Ip_i@WT(`5{efVlKQKvuxp4>ONPXh@eP%z<7yN~ArD;K(4-w3cW^ zkrD>CC>v+Utb9b+%15*iaXH5C;zput(KLwpb<8E71AUGUNr?v}0pbFD1^wDH)CpwT zlv@*h%*epkhf#iySe|9$#s)&bb@%SwqpH}a?L5q#sQwG-hZ#cqh^|rb9mSxhThOcx zb6$+m`GVSi-;n}Tza80#0$4_ULY9KCh9hkVLE9=Yu-J*{18Bkum#htxfs2a^q7p-4 z5z~ViCRDW+`%S@Xc2er3&&#*apndu4ts84g>5tx27yx0^A2Rcx?WC0#VT-CsLD1n^ z7vIC;JYR;xbyHGA)A2+dk=bq20>>f34J{5fej|#lTA^bQ@*DFU@hLU=#5Y~-A;nT_l5VK6`Nm>wg0A)t zMw%pvmOAeOh@OYj|}qqc=T9-Fu%kB^nG_nf_-$QgfI|89l( zsoIPDsUy`{sq9{J8;#2MX!NX49eQb}`)Ur>*;DscVDm|Uv3JoqgQ1voBz@=JeHV9`OT9UidnVk1cTC$@XN+Ig z_mF^CjNEJCig)!FzwK*==zsN7ZXCL;fE}=bhEm!F*`?oO9Gy?=W$PJ*z5nnL4SAjr zSXSd?owk*!QH*?dMyp9@bCSc&&pJ1ofqGmnudo^lc>jsFC^J)Ka^MvDVhNTa_R>4{ z>zRko_65P(?sb{;rwPe`K^b zD&kZCnx0H7@JLM;f4%18$O3XEkGrV5Ah;gV)%(zpBnL3z@8~^XDGa@4+ z_f(~}4?SNVa@*0EwYV$5pUNoqxF7jGZ@5LncvlE@5rq3f9S#$*MXS{Xt>?8HTcvu`NHfYLH!-gy4Fww#Po{azgr0zE*R)j8d#-lQE5YLZr|a7}IQHBUT=s3OZt$o)&ea(> z`*lC%ZF#&ASY$h|fB)~cQ*x2qYaBeY*l@X3_8z5CmD4nLKrP?>U`A}Mx<=!@Kj=EC zF-1>Dq7&fqT$i_oJGNgbS6p%Z%oBsT0E}zbD$Wm?xK8Q(FdJkm5YVb=>mR=Nw=0NQ z^W0a7y#m^mCp1U1t0LMg{G+<5y62ok)Zq_I+}+(Z#9%NCB~~tJORP>Ru%O*syJDtv zzT;72f27Ol%Fk3TpJUWq7v@&zNs-SLGoOr2Oxs|o6;C zR$_-k?cz^|;}uDI6hghkEB_*@ZRVl%WqC_k8~#hZb^fJ_af+ACk&RQ?xw%DBrIZZ@ zo!sUx<%?9dHel|NKx&g&_rz~dy#Bl5GXjX*4M{86EH=Q$JLLOUrJprhmoTG6-_X$U zm6xw?o}&4~L^IERBx&(i=3T);ko4SF&h4Hf^Fv8)onJ*#oP#sIJYqjH+k3vZ4khs* z{E)-#vvNpZF3>70`8d+>Nrz}sv*siWMri1YFK|w#(?^gfG;gtx)hP4n>5)^v9uUlE zUE6x@it|st{5_?2AD@3%LaBR^c2a9QLEWO{Qjin3&+yR7ni?SCm~J-EbzNF$Bilr> z4Wv0q6(h%N>9c=$?K+#2V>DF1nVxw?uo5Qpt&eHVN6@TL6mofVc4;7(=n9Ed%ps zYI4;Q=2+;>%Bs)_tsbGNLVZIPFvqt8-mw0LApK30m9GI>N`=Bqlgc4x`Un6Lh5FUE z7+#JJkZ+wNc2?+@QLuYJXQ=UAI1VhUj68geRlFX#F`6{;_BrBBOQ4*9%?+l;#bpAs z8bQlyDw!bgG2QTPrTxaUlGvvB@d)r^BoP__P)JF1(Fue~bQy954)vQ3epJ1aX=@G9 zCZxFmT1A#Sh@H}j`E5Z6>X^7ZZUYMgdZD7_rJsTWN?%4X(zSWw)0@??2%~76N0=UY zdnA+yDCWr`+HFwro^(j4(N_%DRm_h$&)n~{aY9p$ENnZ^mYoN+Foc1r&C+X~&?3Cp zQ7TXiz)zWkyn?A2g#26`I%1|Wr+PPtYWx=UiE)N=U3?}oNKGoH{bs^B|NSlPHw1Lx zNAL>^;=q;(1r#z$vMahZ2cULolY0OlN!Htz!9=4iLZO zf>tJ37*?fqb0r4vL3{xx$yri44VhjmQe4O99ZY!^&6pW>l4=En zgw(T3CPQJo$gbc(f;|r7*v#567vktvfIgZK?_GK|0T4PDKp9g@mcqr{P`%^GoZAqr zu-rkU_ymzTQ*|Sh=}#wu;&D#@BYZPoJ235GDvT_wsA$c9Y5XdRXjk4~&&nGtt$O&L zPE-UT@4H9FTC3nKSkH>!baygcFey+Ufv~jSm?dP78jTj7r70-6S$_zOmykB|LI#z8 zOwY(_L~S_h9keQAKmoR%kpBp2|9TNwaF)cL5kLx=0nsT@_X8}D`66q$31)!=sksCj zaxYCzE1!GhVN{JaID{+gDQm-#`SqrW*mFV!=v`<@O-5VUG%y-#2YWp7uPn{EtiXFB zI9h1`!XTi^?YJ83Qp~Mp zWgy}m=_$^a_Zt(tQL**qG?9leza&Ws&^ng51=eV9cAF@o%f3G!vJFt2v;I-hhVWz0 zLnERF48AS99T*UPOc$1g9zaE25QTjk10ZDFQ@trjkrWF0mlYnhD zo!OsPWq*L>GvDElEk857XXdHyi;>&N6(h|}y1K^D1g^@*I`zpik48`eq4Uk}4akr@ z8J>1Qz#xL}fRAhG21r%orlefC6vN`~B?=}4kWaq=teFBe8qL-Xd&=|cE#AI=Zv-r2 z`cu|7CmBnWML9WZw%DhLk6xFtQ%~M4AVy7=**Q6lcR17exfOteg1-rbe0f8aewHko zGZKl!1w%!jvckSB-y{S~*uu#^;MVn57ca7J9Wjpb-Q~9R8(I*@f9JVNFOARO|1tOC zbJz}z#`NsT7iYrN+H5}Rd7EdksRUfIEy!D@rEjv(afOO40A%#)lHEAKx)9~yxwAJc z#iIzD*Hk{*(!J4cr2C*LU05)cTr=wZC3B0`CSB?C(-|V^`tL;&>csrZEG)l#Xl7{N zbq)`2PITb2>Jl(h)O3Q!NkNyCoqhLlMayfpA?1KcGXotfAE$U;xyAl+(ZD=dS37n6 zd-^%1Vxf25B}B!>2x|mer;UFQPq#C;5xE(>4EEn-cLyB&1oU8d#8M(*lf4-|GRJZ{ zCRt^&+h|=5Loc66yno<1@;dV5K$_*i=g&*SxgPG@$Yjz71r zV1^fc{Dc(PQKWhf^=YDmMvb!HDu?c;?#}&j*Qf533f)ymQgS3V_#s&}#DW}M&P2(K z{`Wrh_1S8KNJ=jItC=ZZU$F8tk@ZSbEwPI7Q%uRuJDz?~?M;HUs6fr$D%7v(9oU1L zSh4&q$OHm0E(-$F3U z)Q|N=o>r4{@1$xy=U?s1wpNZkYV}+gPFlgP+%IcGVc?whw8J3 zi^gi3usOEi!-UE0^?3>&g0(d#l~+G3dchh==9T~4;MXs8r=C z0cF?TT-d4od4E-FX;NctK-`E?Max3y!Fgce6e5Bc|6i-p*wh3(XeX~yo?2X&`tvu3 zou0@2+?TR^y0*(KX4d}B*HGF^>a|AHL;Rav@p1USJ{RVj b)n=ZLj?g4KmJ9 diff --git a/docs/jupyter_execute/Quick_Start.ipynb b/docs/jupyter_execute/Quick_Start.ipynb deleted file mode 100644 index f1e5fac..0000000 --- a/docs/jupyter_execute/Quick_Start.ipynb +++ /dev/null @@ -1,947 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Quick Start Guide\n", - "This notebook demonstrates the core functionality of the BioNeuralNet package. It covers data loading, network generation, network embedding via GNNs, subject representation, downstream disease prediction, evaluation metrics, clustering, and use of external tools.\"" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from bioneuralnet.downstream_task import SubjectRepresentation\n", - "from bioneuralnet.downstream_task import DPMON\n", - "from bioneuralnet.clustering import CorrelatedPageRank\n", - "from bioneuralnet.clustering import CorrelatedLouvain\n", - "from bioneuralnet.clustering import HybridLouvain\n", - "\n", - "from bioneuralnet.utils import get_logger\n", - "from bioneuralnet.utils import rdata_to_df\n", - "from bioneuralnet.utils import variance_summary\n", - "from bioneuralnet.utils import zero_fraction_summary\n", - "from bioneuralnet.utils import expression_summary\n", - "from bioneuralnet.utils import correlation_summary\n", - "from bioneuralnet.utils import explore_data_stats\n", - "from bioneuralnet.utils import preprocess_clinical\n", - "from bioneuralnet.utils import clean_inf_nan\n", - "from bioneuralnet.utils import select_top_k_variance\n", - "from bioneuralnet.utils import select_top_k_correlation\n", - "from bioneuralnet.utils import select_top_randomforest\n", - "from bioneuralnet.utils import top_anova_f_features\n", - "from bioneuralnet.utils import prune_network\n", - "from bioneuralnet.utils import prune_network_by_quantile\n", - "from bioneuralnet.utils import network_remove_low_variance\n", - "from bioneuralnet.utils import network_remove_high_zero_fraction\n", - "from bioneuralnet.utils import gen_similarity_graph\n", - "from bioneuralnet.utils import gen_correlation_graph\n", - "from bioneuralnet.utils import gen_threshold_graph\n", - "from bioneuralnet.utils import gen_gaussian_knn_graph\n", - "from bioneuralnet.utils import gen_lasso_graph\n", - "from bioneuralnet.utils import gen_mst_graph\n", - "from bioneuralnet.utils import gen_snn_graph\n", - "\n", - "from bioneuralnet.metrics import omics_correlation\n", - "from bioneuralnet.metrics import cluster_correlation\n", - "from bioneuralnet.metrics import louvain_to_adjacency\n", - "from bioneuralnet.metrics import evaluate_rf\n", - "from bioneuralnet.metrics import plot_performance_three\n", - "from bioneuralnet.metrics import plot_variance_distribution\n", - "from bioneuralnet.metrics import plot_variance_by_feature\n", - "from bioneuralnet.metrics import plot_performance\n", - "from bioneuralnet.metrics import plot_embeddings\n", - "from bioneuralnet.metrics import plot_network\n", - "from bioneuralnet.metrics import compare_clusters\n", - "\n", - "from bioneuralnet.datasets import DatasetLoader\n", - "from bioneuralnet.external_tools import SmCCNet\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Load Demo Dataset\n", - "\n", - "- BioNeuralNet includes built-in demo datasets via `DatasetLoader`, allowing you to explore and test the framework without preparing your own data.\n", - "- Each omics dataset includes 358 samples, pre-aligned across phenotype and clinical data.\n", - "- This setup is useful for quickly testing the full BioNeuralNet pipeline, from preprocessing and graph construction to model training and evaluation.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "from bioneuralnet.datasets import DatasetLoader\n", - "\n", - "Example = DatasetLoader(\"example1\")\n", - "omics1 = Example.data[\"X1\"]\n", - "omics2= Example.data[\"X2\"]\n", - "phenotype = Example.data[\"Y\"]\n", - "clinical = Example.data[\"clinical_data\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Gene_1 Gene_2 ... Gene_499 Gene_500\n", - "Samp_1 22.485701 40.353720 ... 13.400950 12.769172\n", - "Samp_2 37.058850 34.052233 ... 12.066379 12.583460\n", - "Samp_3 20.530767 31.669623 ... 12.891962 12.760553\n", - "Samp_4 33.186888 38.480880 ... 12.810732 12.972879\n", - "Samp_5 28.961981 41.060494 ... 12.479124 12.156407\n", - "... ... ... ... ... ...\n", - "Samp_354 24.520652 28.595409 ... 13.644383 13.018032\n", - "Samp_355 31.252789 28.988087 ... 12.947672 13.161434\n", - "Samp_356 24.894826 25.944887 ... 12.129990 13.844271\n", - "Samp_357 17.034337 38.574705 ... 12.943670 13.996352\n", - "Samp_358 20.839167 27.099788 ... 13.257230 13.178058\n", - "\n", - "[358 rows x 500 columns]\n", - " Mir_1 Mir_2 ... Mir_99 Mir_100\n", - "Samp_1 15.223913 17.545826 ... 11.422531 10.862970\n", - "Samp_2 16.306965 16.672830 ... 12.413667 10.719110\n", - "Samp_3 16.545119 16.735005 ... 11.072915 11.418794\n", - "Samp_4 13.986899 16.207432 ... 10.121957 11.039089\n", - "Samp_5 16.338332 17.393869 ... 12.206151 10.724849\n", - "... ... ... ... ... ...\n", - "Samp_354 15.065065 16.079830 ... 11.102427 11.993050\n", - "Samp_355 15.997576 15.448951 ... 11.708466 10.654141\n", - "Samp_356 15.206862 14.395378 ... 10.830833 10.983455\n", - "Samp_357 14.474129 15.482863 ... 11.491449 11.684467\n", - "Samp_358 15.094188 16.047304 ... 11.551237 11.221372\n", - "\n", - "[358 rows x 100 columns]\n", - " phenotype\n", - "Samp_1 235.067423\n", - "Samp_2 253.544991\n", - "Samp_3 234.204994\n", - "Samp_4 281.035429\n", - "Samp_5 245.447781\n", - "... ...\n", - "Samp_354 236.120451\n", - "Samp_355 222.572359\n", - "Samp_356 268.472285\n", - "Samp_357 235.808167\n", - "Samp_358 213.886123\n", - "\n", - "[358 rows x 1 columns]\n", - " Age Gender ... Emphysema Asthma\n", - "PatientID ... \n", - "Samp_1 78 0 ... 1 0\n", - "Samp_2 68 1 ... 0 0\n", - "Samp_3 54 1 ... 1 1\n", - "Samp_4 47 1 ... 0 1\n", - "Samp_5 60 1 ... 1 1\n", - "... ... ... ... ... ...\n", - "Samp_354 71 0 ... 0 1\n", - "Samp_355 62 1 ... 1 1\n", - "Samp_356 61 0 ... 0 0\n", - "Samp_357 64 0 ... 0 1\n", - "Samp_358 61 1 ... 0 0\n", - "\n", - "[358 rows x 6 columns]\n" - ] - } - ], - "source": [ - "print(omics1)\n", - "print(omics2)\n", - "print(phenotype)\n", - "print(clinical)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Generating an Omics Network\n", - "\n", - "BioNeuralNet supports a variety of graph construction techniques to model relationships between biological features. These graphs serve as the foundation for applying Graph Neural Networks in downstream tasks.\n", - "\n", - "Supported graph types include:\n", - "\n", - "- **Cosine similarity / RBF kernel**\n", - "- **Pearson or Spearman correlation**\n", - "- **Soft-thresholding (WGCNA-style)**\n", - "- **Gaussian k-NN**\n", - "- **Mutual information**\n", - "- **Graphical Lasso (sparse inverse covariance)**\n", - "- **Minimum Spanning Tree (MST)**\n", - "- **Shared Nearest Neighbor (SNN)**\n", - "\n", - "Each method is available through the `utils.graph` module.\n", - "More details can be found in the [utils documentation](https://bioneuralnet.readthedocs.io/en/latest/utils.html)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example: SmCCNet 2.0\n", - "\n", - "In this section, we'll construct a multi-omics networks using **SmCCNet 2.0**, an R-based method.\n", - "\n", - "A Python wrapper is available under `bioneuralnet.external_tools.smccnet` to streamline usage. This requires R and the SmCCNet package.\n", - "\n", - "For setup instructions and usage examples, see the [external tools guide](https://bioneuralnet.readthedocs.io/en/latest/external_tools/index.html).\n", - "\n", - "**Resources**\n", - "\n", - "* CRAN: [SmCCNet on CRAN](https://cran.r-project.org/web/packages/SmCCNet/)\n", - "* GitHub: [KechrisLab/SmCCNet](https://github.com/KechrisLab/SmCCNet)\n", - "* Paper: [BMC Bioinformatics (2024)](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-024-05900-9)\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from bioneuralnet.external_tools import SmCCNet\n", - "\n", - "smccnet = SmCCNet(\n", - " phenotype_df=phenotype,\n", - " omics_dfs=[omics1, omics2],\n", - " data_types=[\"genes\", \"mirna\"],\n", - " subSampNum=1000,\n", - ")\n", - "global_network, clusters = smccnet.run()" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Global network shape: (600, 600)\n", - "Number of SmCCnet clusters: 3\n", - " Gene_1 Gene_2 ... Mir_99 Mir_100\n", - "Gene_1 0.000000 0.158521 ... 0 0\n", - "Gene_2 0.158521 0.000000 ... 0 0\n", - "Gene_3 0.000000 0.000000 ... 0 0\n", - "Gene_4 0.000000 0.000000 ... 0 0\n", - "Gene_5 0.039205 0.035508 ... 0 0\n", - "\n", - "[5 rows x 600 columns]\n" - ] - } - ], - "source": [ - "print(\"Global network shape:\", global_network.shape)\n", - "print(\"Number of SmCCnet clusters:\", len(clusters))\n", - "print(global_network.head())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## GNN-Based Network Embedding\n", - "\n", - "Once a graph has been constructed, BioNeuralNet enables low-dimensional embedding of omics data using the `GNNEmbedding` module. This component applies Graph Neural Networks (e.g., GCN or GAT) to integrate omics, clinical, and phenotype data into a unified graph framework.\n", - "\n", - "The output is a compact embedding for each subject that captures both feature and network structure, ideal for downstream tasks like classification, clustering, or visualization.\n", - "\n", - "To use:\n", - "\n", - "1. Concatenate omics datasets into a single feature matrix\n", - "2. Provide the graph and metadata to `GNNEmbedding`\n", - "3. Call `.fit()` to train the model and `.embed()` to extract embeddings as a DataFrame\n", - "\n", - "These embeddings form the foundation for advanced machine learning on complex biological systems.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from bioneuralnet.network_embedding import GNNEmbedding\n", - "\n", - "merged_omics = pd.concat([omics1, omics2], axis=1)\n", - "\n", - "gnn = GNNEmbedding(\n", - " adjacency_matrix=global_network,\n", - " omics_data=merged_omics,\n", - " phenotype_data=phenotype,\n", - " clinical_data=clinical,\n", - " phenotype_col=\"phenotype\",\n", - " tune=True,\n", - " gpu=True,\n", - ")\n", - "gnn.fit()\n", - "embeddings = gnn.embed(as_df=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Embed_1 Embed_2 ... Embed_15 Embed_16\n", - "Gene_1 2.291541 -0.006752 ... 0.865972 1.384877\n", - "Gene_2 1.301154 -0.011410 ... 1.459566 1.621363\n", - "Gene_3 0.004610 0.534755 ... 0.156256 0.479289\n", - "Gene_4 0.158565 -0.005850 ... 0.611468 0.844665\n", - "Gene_5 0.323387 -0.003033 ... 0.789242 1.205275\n", - "\n", - "[5 rows x 16 columns]\n" - ] - } - ], - "source": [ - "print(embeddings.head())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Embeddings visualization\n", - "\n", - "We projected the 16‑dimensional node embeddings into 2‑D and observed three clear regions plus one broad cloud.\n", - "The class buckets (after binning the continuous phenotype into four equal‑frequency groups) contain:\n", - "\n", - "| Group | Samples |\n", - "| ------ | ------- |\n", - "| 0 | 38 |\n", - "| 1 | 158 |\n", - "| 2 | 141 |\n", - "| 3 | 21 |\n", - "\n", - "**Visual observations**\n", - "\n", - "- **Middle‑left cloud**\n", - "\n", - " - Largest and most diffuse region\n", - " - Contains the majority of points\n", - " - Most likely accounting for group 1 and 2\n", - "\n", - "- **Top‑right hand oval**\n", - "\n", - " - Compact cluster on the far right\n", - " - Roughly forty points\n", - " - Could be group 0 or 3\n", - "\n", - "- **Lower-right hand cluster**\n", - "\n", - " - Compact group far below the main cloud\n", - " - Also around forty points\n", - " - Could be group 0 or 3\n" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2025-05-27 12:27:04,683 - bioneuralnet.network_embedding.gnn_embedding - INFO - Preparing node labels.\n", - "2025-05-27 12:27:04,736 - bioneuralnet.network_embedding.gnn_embedding - INFO - Node labels prepared successfully and saved to /tmp/tmpd6libqyo/labels_600_0527_12_27_04.txt.\n" - ] - } - ], - "source": [ - "from bioneuralnet.metrics import plot_embeddings\n", - "\n", - "# Using our embeddings instance we get the necessary labels for the graph.\n", - "node_labels = gnn._prepare_node_labels()\n", - "embeddings_array = embeddings.values " - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA94AAAMWCAYAAAAH1l7yAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd0FdXax/HvnH7SKykQQui9RXoTRKWoYEEURYr12q73eu0Ne8HeO1L0XhXsdEUFlSa9Q+gESEJ6P23eP3iJxlBECaH8Pmtlafbs2fPMnBOS5+xmmKZpIiIiIiIiIiLVwlLTAYiIiIiIiIicypR4i4iIiIiIiFQjJd4iIiIiIiIi1UiJt4iIiIiIiEg1UuItIiIiIiIiUo2UeIuIiIiIiIhUIyXeIiIiIiIiItVIibeIiIiIiIhINVLiLSIiIiIiIlKNlHiLiMhRqVevHuedd161X2fbtm0YhsEHH3xwxLojR46kXr16lcoMw2DMmDHVEtvf9cEHH2AYBtu2bavpUOQgNm3axDnnnEN4eDiGYfDFF1/UdEgiInKSU+ItInIKOJDIHeprwYIFNR2iVKPs7GzGjh1Lz549iY2NJSIigs6dO/Pxxx9XqfvH94rL5SIxMZFzzz2Xl19+mcLCwhq4gxPLiBEjWLVqFY8//jgTJ07kjDPOqOmQDuvxxx/nggsuIC4u7k994PTxxx/TpUsXgoODiYiIoGvXrsyZM6fi+IEPvQ582e12YmJi6Nq1K/feey87duyo5jsSETn12Go6ABEROXYeeeQRUlJSqpQ3bNiwBqKpWaWlpdhsJ+avueHDh3PZZZfhdDqPSXvz58/nvvvuY8CAAdx///3YbDamTJnCZZddxtq1a3n44YernHPgveL1etm7dy8//PADt912G88//zxfffUVrVu3PiaxnWxKS0srnufNN99c0+H8Kffffz/x8fG0a9eOmTNnHrbumDFjeOSRR7jkkksYOXIkXq+X1atXk56eXqXu5ZdfzoABAwgEAuTm5rJ48WJefPFFXnrpJd577z0uu+yy6rolEZFTzon5F4mIiPwl/fv3P+F7544Xl8tV0yEcktVqxWq1HrP2WrRowaZNm0hOTq4ou/HGG+nbty9PP/00d955J8HBwZXO+eN75Z577mHOnDmcd955XHDBBaxbtw63233MYjxZZGVlARAREXHEusXFxVWea03YunUr9erVY9++fcTGxh6y3oIFC3jkkUd47rnn+Ne//nXEdtu3b8+VV15ZqWz79u2cc845jBgxgmbNmtGmTZu/Hb+IyOlAQ81FRE4jB4aQPvvss7z22mvUr1+foKAgzjnnHHbu3Ilpmjz66KPUqVMHt9vNoEGDyMnJOWhbs2bNom3btrhcLpo3b85nn31WpU5eXh633XYbSUlJOJ1OGjZsyNNPP00gEKhSb+TIkYSHhxMREcGIESPIy8s76HW/+OILWrZsicvlomXLlnz++ecHrffHIbdjxozBMAzS0tIYOXIkERERhIeHM2rUKEpKSiqdW1payq233kpMTAyhoaFccMEFpKenV2mzsLCQ2267jXr16uF0OqlVqxZnn302S5cuPWhMBxxsjveBufM//fQTHTt2xOVyUb9+fSZMmHDYtgBSUlIqJd0H7n/w4MGUl5ezZcuWI7YB0KdPHx544AG2b9/OpEmTDlvX6/Xy8MMP06hRI1wuF9HR0XTv3p3Zs2dX1Bk5ciQhISFs2bKFc889l+DgYBITE3nkkUcwTbNSe88++yxdu3YlOjoat9tNamoqkydPPui1J02aRMeOHQkKCiIyMpKePXsya9asSnWmT59Ojx49CA4OJjQ0lIEDB7JmzZrD3tOYMWMqnuMdd9yBYRgVawcceP+sXbuWYcOGERkZSffu3QHw+Xw8+uijNGjQAKfTSb169bj33nspLy+v1P6B1/iHH37gjDPOwO1206pVK3744QcAPvvsM1q1aoXL5SI1NZVly5YdNt7ft/tnvPjii8THx/PPf/4T0zQpKir6U+f9XnJyMh988AEej4dnnnnmqM8XETldKfEWETmF5Ofns2/fvkpf2dnZVep9+OGHvP7669xyyy3cfvvt/Pjjj1x66aXcf//9zJgxg7vuuovrrruOr7/+mv/85z9Vzt+0aRNDhw6lf//+PPnkk9hsNoYMGVIp6SopKaFXr15MmjSJq666ipdffplu3bpxzz338O9//7uinmmaDBo0iIkTJ3LllVfy2GOPsWvXLkaMGFHlurNmzeLiiy/GMAyefPJJBg8ezKhRo/j111//9DO69NJLKSws5Mknn+TSSy/lgw8+qDIUe+TIkbzyyisMGDCAp59+GrfbzcCBA6u0dcMNN/DGG29w8cUX8/rrr/Of//wHt9vNunXr/nQ8v5eWlsYll1zC2WefzXPPPUdkZCQjR448YsJ4KHv37gUgJibmT58zfPhwgCqJ7B+NGTOGhx9+mN69e/Pqq69y3333Ubdu3SofOvj9fvr160dcXBzPPPMMqampPPTQQzz00EOV6r300ku0a9eORx55hCeeeKLiPTV16tRK9R5++GGGDx+O3W7nkUce4eGHHyYpKanSHOWJEycycOBAQkJCePrpp3nggQdYu3Yt3bt3P+yCdhdddBEvvPACsH+Y9cSJE3nxxRcr1RkyZAglJSU88cQTXHvttQBcc801PPjgg7Rv354XXniBXr168eSTTx50KHZaWhrDhg3j/PPP58knnyQ3N5fzzz+fDz/8kH/9619ceeWVPPzww2zevJlLL720yodUf8d3331Hhw4dePnll4mNjSU0NJSEhAReffXVo2qnS5cuNGjQoNLPu4iIHIEpIiInvXHjxpnAQb+cTmdFva1bt5qAGRsba+bl5VWU33PPPSZgtmnTxvR6vRXll19+uelwOMyysrKKsuTkZBMwp0yZUlGWn59vJiQkmO3atasoe/TRR83g4GBz48aNlWK9++67TavVau7YscM0TdP84osvTMB85plnKur4fD6zR48eJmCOGzeuorxt27ZmQkJCpdhnzZplAmZycnKl6wDmQw89VPH9Qw89ZALm6NGjK9W78MILzejo6IrvlyxZYgLmbbfdVqneyJEjq7QZHh5u3nTTTebROvB6bd26taLswHOdO3duRVlmZqbpdDrN22+//aivkZ2dbdaqVcvs0aPHQa+9ePHiQ54bHh5e6bU8mDZt2pgDBw48bJ0RI0aYgHnLLbdUlAUCAXPgwIGmw+Ews7KyKspLSkoqnevxeMyWLVuaffr0qSjbtGmTabFYzAsvvND0+/2V6gcCAdM0TbOwsNCMiIgwr7322krH9+7da4aHh1cp/6MDPyNjx46tVH7g/XP55ZdXKl++fLkJmNdcc02l8v/85z8mYM6ZM6ei7MBr/Msvv1SUzZw50wRMt9ttbt++vaL8rbfeMgHz+++/P2y8v5eVlVXlPXpATk6OCZjR0dFmSEiIOXbsWPPjjz82+/XrZwLmm2++ecRn8HuDBg0yATM/P/9PxycicjpTj7eIyCnktddeY/bs2ZW+pk+fXqXekCFDCA8Pr/i+U6dOAFx55ZWVFiTr1KkTHo+nysJLiYmJXHjhhRXfh4WFcdVVV7Fs2bKKXtZPP/2UHj16EBkZWakHvm/fvvj9fubOnQvAtGnTsNls/OMf/6hoz2q1csstt1S65p49e1i+fDkjRoyoFPvZZ59N8+bN//QzuuGGGyp936NHD7KzsykoKABgxowZwP450r/3x3hg/zzghQsXsnv37j99/cNp3rw5PXr0qPg+NjaWJk2a/Omh4gcEAgGuuOIK8vLyeOWVV446jpCQkCOubh4REcGaNWvYtGnTEdv7/SJlhmFw88034/F4+PbbbyvKfz+fPDc3l/z8fHr06FGpB/2LL74gEAjw4IMPYrFU/hPGMAwAZs+eTV5eHpdffnml953VaqVTp058//33R4z3cP74/pk2bRpApVEcALfffjtAlR775s2b06VLl4rvD/zs9enTh7p161YpP9rX/lAODCvPzs7m3Xff5T//+Q+XXnopU6dOpXnz5jz22GNH1V5ISAiAVsEXEfmTtLiaiMgppGPHjn9qcbXf/4EPVCSySUlJBy3Pzc2tVN6wYcOKROeAxo0bA/vnkcfHx7Np0yZWrlx5yMWeMjMzgf2LNSUkJFT8IX9AkyZNKn2/fft2ABo1alSlrSZNmhxxXvUBf7z3yMhIYP89hoWFsX37diwWS5XV4Q+2MvwzzzzDiBEjSEpKIjU1lQEDBnDVVVdRv379PxXLkWI7EN8fn/+R3HLLLcyYMYMJEyb8pcWvioqKqFWr1mHrPPLIIwwaNIjGjRvTsmVL+vXrx/Dhw6ushm6xWKo8j9+/Vw745ptveOyxx1i+fHmludG/f59t3rwZi8Vy2A9aDnwQ0KdPn4MeDwsLO+x9Hckf3xcH3i9/fH/Ex8cTERFR8b494O/+7P1VBz7YsNvtXHLJJRXlFouFoUOH8tBDD7Fjx46DvgcP5kAiHxoaekziExE51SnxFhE5DR1qRe1DlZt/WAjrzwgEApx99tnceeedBz1+IPk63o7lPV566aX06NGDzz//nFmzZjF27FiefvppPvvsM/r3718jsT388MO8/vrrPPXUUxXztY/Grl27yM/PP+IWdD179mTz5s18+eWXzJo1i3fffZcXXniBN998k2uuueaorjlv3jwuuOACevbsyeuvv05CQgJ2u51x48bx0UcfHVVbB+ZET5w4kfj4+CrH/+4Wc4da6f2PH0QdyvH42TuYqKgoXC4XERERVa514EOW3NzcP514r169mlq1av3tDzJERE4XSrxFROSopaWlYZpmpWRj48aNwG8rLDdo0ICioiL69u172LaSk5P57rvvKCoqqtTrvWHDhir1gIMObf5j3b8jOTmZQCDA1q1bK/Wup6WlHbR+QkICN954IzfeeCOZmZm0b9+exx9//C8l3n/Xa6+9xpgxY7jtttu46667/lIbEydOBODcc889Yt2oqChGjRrFqFGjKCoqomfPnowZM6ZS4h0IBNiyZUulD1r++F6ZMmUKLpeLmTNnVtrbfNy4cZWu16BBAwKBAGvXrqVt27YHjalBgwbA/mTySO+9Y+HA+2XTpk00a9asojwjI4O8vLwqq83XFIvFQtu2bVm8eDEejweHw1Fx7MBUicNtRfZ78+fPZ/PmzVW2GhMRkUPTHG8RETlqu3fvrrSNV0FBARMmTKBt27YVvYyXXnop8+fPZ+bMmVXOz8vLw+fzATBgwAB8Ph9vvPFGxXG/319lbnJCQgJt27Zl/Pjx5OfnV5TPnj2btWvXHrN7O5Bwvv7665XK/xiP3++vFAfsT/YSExOrbCN1PHz88cfceuutXHHFFTz//PN/qY05c+bw6KOPkpKSwhVXXHHYun9cLT8kJISGDRse9N5/v2q2aZq8+uqr2O12zjrrLGB/b69hGPj9/op627Zt44svvqjUzuDBg7FYLDzyyCNVVvs+0DN87rnnEhYWxhNPPIHX660Sy4F9uo+VAQMGAFRZ/fzAa3Cw1fBrytChQ/H7/YwfP76irKysjA8//JDmzZuTmJh4xDa2b9/OyJEjcTgc3HHHHdUZrojIKUU93iIip5Dp06ezfv36KuVdu3b9y/OOD6Zx48ZcffXVLF68mLi4ON5//30yMjIq9VDecccdfPXVV5x33nmMHDmS1NRUiouLWbVqFZMnT2bbtm3ExMRw/vnn061bN+6++262bdtWsSf4H5NagCeffJKBAwfSvXt3Ro8eTU5ODq+88gotWrT4S3sSH0xqaioXX3wxL774ItnZ2XTu3Jkff/yxopf2QC9/YWEhderU4ZJLLqFNmzaEhITw7bffsnjxYp577rljEsuftWjRIq666iqio6M566yz+PDDDysdP9jrf+C94vP5yMjIYM6cOcyePZvk5GS++uorXC7XYa/ZvHlzzjzzTFJTU4mKiuLXX39l8uTJlRZSA3C5XMyYMYMRI0bQqVMnpk+fztSpU7n33nsrelgHDhzI888/T79+/Rg2bBiZmZm89tprNGzYkJUrV1a01bBhQ+677z4effRRevTowUUXXYTT6WTx4sUkJiby5JNPEhYWxhtvvMHw4cNp3749l112GbGxsezYsYOpU6fSrVu3o94+63DatGnDiBEjePvtt8nLy6NXr14sWrSI8ePHM3jwYHr37n3MrnUoEydOZPv27RX70c+dO7disbThw4dX9Lpff/31vPvuu9x0001s3LiRunXrVpz79ddfV2l36dKlTJo0iUAgQF5eHosXL2bKlCkYhsHEiROrzOcXEZHDqMEV1UVE5Bg53HZi/G5LrkNtE/T999+bgPnpp58etN3fbz2VnJxsDhw40Jw5c6bZunVr0+l0mk2bNq1yrmnu39rpnnvuMRs2bGg6HA4zJibG7Nq1q/nss8+aHo+nol52drY5fPhwMywszAwPDzeHDx9uLlu2rMp2YqZpmlOmTDGbNWtmOp1Os3nz5uZnn31mjhgx4k9vJ/b7Lax+f4+/39qruLjYvOmmm8yoqCgzJCTEHDx4sLlhwwYTMJ966inTNE2zvLzcvOOOO8w2bdqYoaGhZnBwsNmmTRvz9ddfP+hrdKRrHniuf9SrVy+zV69ef6q9I73+B6vrcDjM+Ph48+yzzzZfeukls6Cg4Ijxm6ZpPvbYY2bHjh3NiIgI0+12m02bNjUff/zxSq/riBEjzODgYHPz5s3mOeecYwYFBZlxcXHmQw89VGU7sPfee89s1KhRxftp3LhxFa/ZH73//vtmu3btTKfTaUZGRpq9evUyZ8+eXanO999/b5577rlmeHi46XK5zAYNGpgjR440f/3118Pe15G2E/vj+8c0TdPr9ZoPP/ywmZKSYtrtdjMpKcm85557Km3DZ5qHfo2BKtvS/ZktvQ7o1avXIV/7P25HlpGRYY4YMcKMiooynU6n2alTJ3PGjBkHvfaBL5vNZkZFRZmdOnUy77nnnkrbnomIyJ9jmOYxWrVDRETkFLZ8+XLatWvHpEmTjjgMW/YbOXIkkydPPmajEURERE5WmuMtIiLyB6WlpVXKXnzxRSwWCz179qyBiERERORkpjneIiIif/DMM8+wZMkSevfujc1mY/r06UyfPp3rrruuyn7LIiIiIkeixFtEROQPunbtyuzZs3n00UcpKiqibt26jBkzhvvuu6+mQxMREZGTkOZ4i4iIiIiIiFQjzfEWERERERERqUZKvEVERERERESq0Uk/xzsQCLB7925CQ0MxDKOmwxEREREREZHTgGmaFBYWkpiYiMVy+D7tkz7x3r17t1aYFRERERERkRqxc+dO6tSpc9g6J33iHRoaCuy/2bCwsBqORkRERERERE4HBQUFJCUlVeSkh3PSJ94HhpeHhYUp8RYREREREZHj6s9MedbiaiIiIiIiIiLVSIm3iIiIiIiISDVS4i0iIiIiIiJSjZR4i4iIiIiIiFQjJd4iIiIiIiIi1UiJt4iIiIiIiEg1UuItIiIiIiIiUo2UeIuIiIiIiIhUIyXeIiIiIiIiItVIibeIiIiIiIhINVLiLSIiIiIiIlKNlHiLiIiIiIiIVCMl3iIiIiIiIiLVSIm3iIiIiIiISDVS4i0iIiIiIiJSjZR4i4iIiIiIiFQjJd4iIiIiIiIi1UiJt4iIiIiIiEg1UuItIiIiIiIiUo2UeIuIiIiIiIhUIyXeIiIiIiIiItVIibeIiIiIiIhINVLiLSIiIiIiIlKNlHiLiIiIiIiIVCNbTQcgIiIiIiJyqsjIyOCjjz5i1szZFBcVERtXiyFDLmHQoEG43e6aDk9qiGGaplnTQfwdBQUFhIeHk5+fT1hYWE2HIyIiIiIip6n333+f++65n/JiD5FmLE6LixKziDz2EZ8Yx/iJ4+nUqVNNhynHyNHkourxFhERERER+ZsmTJjAf/51BwmBZJqEtsZucVQcK/YVsmr3YoZcNISpM6bSqlWrGoxUaoLmeIuIiIiIiPwNRUVFPHj/Q9Ty16Fl2BmVkm6AYFsoZ4T1xJdn8vCYh2soSqlJSrxFRERERET+hilTppCfk0/jkEP3ZNsMGynOpvww5wfS0tKOY3RyIlDiLSIiIiIi8jfMnz+fUCJwW4MOWy/BVRevx8+CBQuOU2RyolDiLSIiIiIi8jd4PB4spvWI9ayGFQsGHo/nOEQlJxIl3iIiIiIiIn9DYmIipZYiAmbgsPUKffmYFpPExMTjFJmcKLSquYiIiIiIyO+YpsnPP//MlClT2Lt3L0FBQfTo0YOLL76Y0NDQKvWHDh3KG6++QUZ5OgmupEO2u61kIwmJ8fTp06c6w5cTkBJvERERERE5bW3ZsoXx48czdep0CgsLCQ4OJj8/n+zsHNyuaNzuaHz+cj777CvGjHmEp556gssuu6xSG61ataJX7178NPsXQm3hhNiq7um8p2wne8ztPPSPB3E4HFWOy6lNibeIiIiIiJx2TNPklVde4ZFHHsPASUxMc+zWGNau/Qm7PYQG9c8nKak5brcbgNLSfDZs/I6bbroV0zS5/PLLK7X31ttvMeiCQSxcPYcEoy51XCk4LE6K/IXsLEsjiz0MGXYJt9xyS03crtQwwzRNs6aD+DsKCgoIDw8nPz+fsLCqnyyJiIiIiIj80Xvvvccdd9xNUu1uNGzYE6vVztJln5KZlUbbNqOwWGwEAj4iIyNxOp3A/mR95covKS3bzOrVK6vkH/n5+bz44otM+GAiOdk5mAETi9VCw0YNuP4f1zNq1CgsFi2zdao4mlxUibeIiIiIiJxWSkpKaNGiFS5nfVq1vACA8vJiZn/3DHWTelKnTmcAvN4SrFaDmJiYinPLygqY99NLPPfcU4wePfqg7ZeWlrJ06VJKSkqIiYmhTZs2SrhPQUeTi+rVFxERERGR08oXX3xBbm4BDer3qCjLydlGIOAntlaLijKr1YHP56u0/ZfLFUZYWF3mzJlzyPbdbjfdunXj7LPPpl27dkq6RYm3iIiIiIicXn799VdCQuIICoqsKPP5ywETu81dUWax7F8Sy+v1VjrfbnNTXFxyXGKVU4MSbxEREREROa34/X4shrVSmcsZChiUlGb/obbB7+fmmqZJaWk2cXG1qjtMOYUo8RYRERERkdNKcnIyxSVZ+HzlFWXR0fVxuULZu2dZRZlpBjBNE5v1tyQ9L28XJaWZXHLJJcc1Zjm5KfEWEREREZHTytChQ7FaA+zc9VuSbbFYqZfckYzMFeTkbAbA7/dgtVoqVjX3eEpYs/ZrGjduSO/evWskdjk5KfEWEREREZHTSu3atbn00iFs3jKH7JxtFeUNG/QkrlZj1q2fTFradAoL9+J2u/H5yti6bQHzF7xNSIjJ+PEfYLVaD32B/1daWkpGRgYlJZoPfrrTdmIiIiIiInLaKS0t5YorruSH7+cRFdWYOrXb4XSGUFS0j3XrZ1BYlInN5sBud2AY4HI5GDhwAA88cD/R0dH4fD7CwsKw2WyV2jVNkx9++IH33nufWbNm4/cHsFgM+vTpzTXXXE3fvn0xDKOG7lqOJe3jLSIiIiIicgQej4cJEybw7rvvsWlTGqYJhmFwxhmpjBo1gqioKLKysnC5XLRt25a5c+fy3nvvs379BgDCwsK44orLGT16NCkpKZimyf33388bb7yN2x1L7YT2uN3hlJUVsHvPCopL9jBq1FWMHTtWW4ydApR4i4iIiIiI/EmmabJlyxYKCwuJioqibt26lY5nZmYyZMilrFy5hqioxsTHNcNisZOXt4u9GStwOmHcuPfYuHEj9933EI0b9Se5bocqPds7dy1l3fqvue++u7jjjjuO5y1KNVDiLSIiIiIicgz4/X769x/A8mUbaN/+SsLC4v5w3Muy5Z9SVrYTq9VKaEhTWrY475DtrVs/k4LCNaxevZLQ0NDqDl+q0dHkohrfICIiIiIicghz5sxh8eIltG59SZWkG8BqtdO+3aV4PDYyMzJIqdflsO3VS+5MQX4RX3zxRTVFLCciJd4iIiIiIiKHMH78eIKDE4iKSj5kHYvFRnxcWwIm2O2uw7bndocTHBzDxo0bj3WocgKzHbmKiIiIiIjI6WnNmnVERtQ7Yr3IyBRME3bsXEJ+/m7KyouwWe3ExjYiqU477HZ3RV0TUyubn2aUeIuIiIiIyCnD7/czb948Nm/ejMVioVWrVqSmpv7lRHf/eUdeFqvck4dp+lmzdjqhIYm43NF4PKWsWTuDdetn06rFQOrWPYPi4hyKi/fRokWLvxSPnJyUeIuIiIiIyEnPNE3++9//8uyzz7N16zbM/59VazFMWrVqwf3338fZZ5991O22atWSb79dhGkeupe6uDibVas+JyQkgYYN+hMZmVJxzOMpYvuOuSxf+QUYBvn5e4iKiuCCCy74S/cpJycl3iIiIiIictIbO3YsTz41lqjYZrTreg3hkXUAk+zMzWzd9BOXD7uS1159maFDhx5VuyNHjuCrr74hO3sLMTENCAQClJWVUVJSgs/nB2DTpm+wWd20aT0MsOL3l2O1OgFwOEJo2KA/mCbLV3yGy2XnyScfw+12H+aqcqrR4moiIiIiInJSmzt3Lk89PZbkhn1o03EoEVFJGIaBYViIiWtEarcRRNVqxT9v+zfbtm07qrZ79epF9+5dWblqCvv2bWNfdjb5BQX4A2C1OSj3FJC1bz0JCalYrQ6Cg4Px+z14PEX4feX4/V4CAQ8JCe0JBHz06dOLG264oXoehJywlHiLiIiIiMhJ7Z133sUVVIuUxj0OetwwLDRrcx5en8GECROOqm2LxcKECeNp27YpP/38BmvWTCY7eyM5OZvYuvV7li8fh2EYxMW3xu8PUF5eTlRUFG63i4Dpxe8vIxDwEhYeS63YxkRERGhhtdOQEm8RERERETlpFRQUMGPmLBLrHn4BNavVTq2E1nz88eSjvkZkZCRnn90Xh9OJYTPZsnUWm9Kmkpu/idj4xlisdhyOEOwON16vD7/fT3h4OHFxcRVfEeHh2B1uSktL/87tyklKc7xFREREROSklZubS8AfICgk5oh1g0Ki2bV52VFfw+/3M3HihyTWPYOW7QZjBgKYZgCL1UbmnnXsy0ijpCSb4OBYLBYbJSUlFXO4D3wYYJomZaXZxMd3Purry8lPPd4iIiIiInLSCg4OxjDAU158xLqe8mKCg4OP+hr79u1jz969xMY3AcCwWLBY9/dhxtRqhMMVzN69SwGwWK14vb4qbWRnb6Xck8sll1xy1NeXk58SbxEREREROWlFR0fTtm1b9u5acdh6phkga88q+vU756ivYZr79/E2qDqU3WK1kdygM3v3LicnJ+3AGZXqlJUVsHbdN7Ru3ZKuXbse9fXl5KfEW0RERERETlqGYXDNNaPJy97Mvsy0Q9bbufVXPOV5jBw58qivER0dTUREBDn7th70eIMmZ1IrsQnr1k0hLW0mZWU5+P1eysoKSNs8j/kL3iYmxs0HH4zTwmqnKc3xFhERERGRk9rFF1/Ml19+yYxZ/6V+k7Opndwem80BgKe8hO2b57Nzy1xuuP4aOnbseMT2TNNkwYIFbN68GYvFQuvWrblq+BW8/Oo7NGjaG7vdVam+xWKlbcdhrFs5jc0b5rBnzxKWLbdgsRgEBbm49NJLGDNmDAkJCdVy/3LiU+ItIiIiIiInNbvdzrhx47jjzjv5338/ZtvGOQSHJgAmhfm7cDlt3HXn7dx1110A5OfnM2XKFDZt2oTFYqFFixYMGjSI4OBgJk+ezNhnn2PjxjT8ARNME5vNQquWLXA5DFYs+og2HYdVSr4DgQCZGens3b0Oq9VBUv2OmKaf0uJsigv38tNPv5CTk6PE+zRmmAcmLJykCgoKCA8PJz8/n7CwsJoOR0REREREatDOnTv573//S1paGhaLhVatWnHZZZcRHR2N3+/nqaee4o0336K4uLxiJfTiwkwiI8No364t3/8wl7CYxiQ16UZkbDKmabJv9wZ2bPiJ4rwduJwuvH6DuMR2RMemYAYC7Ni2gozdK3E43XTqcz2h4XEV8ZSVFrBi/iTCgk2+n/Otku9TyNHkokq8RURERETklGeaJrfeeisTJ/2POg26U7dBZ5zuUABKi3NZu+xrdm9fRv2W59IstX/V8wMB1iyaQmHWWi65+CI+//xLioqK8AcCeMrLSW7cjSat++F0hVY511NezIJvX+K2W6/ngQceqPZ7lePjaHJRLa4mIiIiIiKnvBkzZjDpw//RpN1FNGp5dkXSDeAOjgQgOKI2EYnt8Hq9Vc43LBZSmp9JQUERkz78LyWlZRiGFb8/gNXmICQ0Frsj6KDXdjiDqVWnLeMnTMTj8VTPDcoJTXO8RURERETklPfue+8RHFabxLptqhzzekrJ3L2e5ObnYrFYKCkpITw8vFKdksJsFn/3DlZbCLUSU2ncojt2h5sdW9eTtXc1G1bNJi9nF227XI7FYq1yjdiEJqxeuJD09HRSUlKq7T7lxKQebxEREREROaUVFRXx44/ziK/b7qDHPZ4SwMQVEovFaqesrLzScdM0WTZvIgZ2WnYYRVydVFzuMKxWO0GhcaQ07Ufj1peQkb6OrevnHvQahrE/9QoEAsf03uTkoB5vERERERE5aRQUFDBlyhSWLFmCz+ejXr16XHbZZdSrV69K3aysLJYtW0ZGRgZerxenK+Sgbdqs+7ce83lKMDDgD8tg5WRspih3L81Sh+NwBmP6fxuKbrPZ8Pn9RMU2plZiW7anLSClac8qvd7ZmZsJcrtYtGgR8+bNIyIigj59+midqtOEEm8RERERETnhmabJG2+8wZNPPUNhUQkh4bUxLFZKCqfy7LPPc9FFF/LCC88THBzM5s2beeaZZ/jyy68pK/dgmibFxSWsXDSZZm0HUrte+0ptO1whhIYnsG/3KsJjG2JYjErH92xbhis4hrCIung9xbidzopjQUFu8vMLMAMB4uqkkpm+lOyMzcQmNK6oU1qcy+Y132KzWrjhhpsxDAsmAcJCQxg27DLuu+8+JeCnOCXeIiIiIiJywnvuued4/ImniUvuSItuPXG59yeqfp+XPTuWM/mzr9mzZw8PPvgAQy8bRlGpSWKjPsQltcRqtZO+fT3pWxazYuGnFBVk0qR1v4q2DcMguWFnVi/5gvzsLdRKbFTp2mUlBQQFxxLw+8A0cQf9toiay+WmqKgYn7cEd3A0JlBeWlBxvKQohx+njsVi2Elp2Jvkeh1wOkMoKytg5/YlvPveJBYsWMhXX31ZZV65nDqUeIuIiIiIyAlt48aNPPXUM9RpdCYNWvSpdMxqs1OnfgdCwuKY99N7DL7wIrBFcUbfEdgd7op6icktcYUlsm/XCras/56wyNokJLWqOF47JZVNa74lbcmnOCwXEhzcHqvVvv+gYeDxFOP3leFyOfF4PJSXl2OxGLicLqKiIsnJyaWsOBcz4KMwP4OsPRvJ3beNzWu/w2p10bnb9URG/raHt8sVRqMmvYlPbM6vC9/nrrvu4s0336zeByk1Rom3iIiIiIic0MaPH49hdZPSrNch60TE1MXhjiZr3w56Dbq+UtIN4HA6CA4OhjptyMtMY/PaORWJd0HeHrZumIeFMs5o34r1a6exc8McgsITMQMB8jI24vX68HmLKQOgHMMwME2TwsIinE4nkZERbNmwGswAGTsXkpW+GLfbjdUCzVsOrJR0/15oaBwp9c/k88+/ZMyYMcTHxx+jpyYnEq1qLiIiIiIiJ7Rp02cQldDioNt0/V7A7yM0KgWnO+Kgx0NDQwkLDSM2qQ25+7Yxb9qT/DxzLEt+fIMgaw6vvfoyP//8E4sWzuefN19L7y5NOLtnS264/how/aRvm4/V5sThCsXuDMHhCsFmd1Fe7iErczcZ6UsYPnwY69etYdXK5dx6y0243GHUSWp72LhrJ7XD4w3w1Vdf/cUnJCc69XiLiIiIiMgJrbioGGdk8BHreb1lhMbUwTQDwMGT9KDgIJKSm7FrrZuhQy4gJSWFFi1a0LdvX2w2GwsXLuSDDz5g+fKVBAIBmjZtwg8//EhQSBT7MtZgtTmpU78nDmcIYGCx2ikvzCBt9RdgFvLAAw8QFxcHQG5uLm53xG9D1g/BbnfhcoWRlZV1lE9GThZKvEVERERE5IQWExtDZn7OEeuZpknA7z1iz7jPV4bdbmf06NGkpqYCUFhYyLXXXcesmd/icEcSEdMQwzCYNmMuuTnpNO9wBVarnw3Lp5K1ewVhUSnYbC5Ki7MoKcrA5nBhtxhYLL8NKg4ODsbrLcU0TQzDOFQ4mIEAXm8pQb9btE1OLRpqLiIiIiIiJ7Qhl1xMzp61eD2lh61nmH4KsjYCgcPW27t9JVFRkbRo0QIAn8/HyFGjmP3tXJqmDqVz33/SrN15NG07kJjE5riConFHJBES1YgzL7iHJu36Y3daCJjFhEXF0b7nCM48/26w2Jk+fXrFdc4880y8nkJysrceNp7MzA0EAuX07t37zz0QOeko8RYRERERkRPasGHDcLvtrFvyJYGA/6B1dm35FTNQjgUvOzbNP2RbpcW5ZO5cylXDr8DlcgEwc+ZMvvvuB1p0uIy42s0r9U57PaU43eE4nMH7F1jzQ70m3Tmj12g6nXU9bbsNo1btZtgcLhzOYPLz8yvO7datG02bNiZt43f7tyI7CL/Pw5a0HzgjtT1t27b9C09HTgZKvEVERERE5IQWFxfHW2++TnHORpb++D6Zu9djBvb3ahfm7WHN4s9IW/El/7jhWv51261sXzObrWt/wOfzVLRhmia5mVtZ/uP71KubwE033VRx7P33xxEakUR0rQZVrm13uPGUF2FgYLHYKCkpOWiMfp8Xb3kJYWFhFWWGYfDCC8/j8+7j18UTKCjYW+mc/Lx0fl00HouliLFjn/lbz0hObJrjLSIiIiIiJ7zzzjuPyZM/YcyYR1i2+CPWmhYsFgsBv5fatRN56snHuP766zFNE7vdzksvv0L6pp8IjWmA1WqnpGAPZUVZtGndkkmTJhITEwPsT8h/mb+A+HoH36osrnYLtq6fR372VkIj6+LzlhEIBCrN5QbYu2MFFsNPv379KpV36tSJyZM/5vrr/8GiX94gOCQeuz0Ej6eA0pJM6tVL5t13p9CmTZvqeXByQjBM0zRrOoi/o6CggPDwcPLz8yt9uiQiIiIiIqce0zRZvnw5y5Ytw+v1Uq9ePfr06YPdXnnl8J07dzJp0iR+mb8Ar8dDcnJdhg0bRo8ePSolzYFAgPj4ROo27UdS/Y4Hvd7Ps17B5w/QpMOVYAaoVSu2UhvlpYUs+fEt+p7ZiY8++uigcXu9XmbOnMn06dPJzy8gMjKC8847j7POOgubTf2hJ6OjyUWVeIuIiIiIyGmtXbtUirxRtDzjwoMeL8zby4Lv38JqDyaxfncaN++EYbEQCPjJ2LWGbWtnExsdxMwZ06ldu/Zxjl5qytHkovpoRURERERETmtXXjmMx594Fq+nH3aHu8rx0Ih4Op55DT/PfJHtaz5n3/YfcbhCKC8twAyU06tnD1566UUl3XJI6vEWEREREZHTWkZGBp27dMNvRNG2yzCsNkel44GAn9WLp1CSt4nXXnuFTZs2UVBQQFRUFOeddx5NmjSpocilJmmouYiIiIiIyFH46aefGHbFlZR7bSQkdyA2oQmGYSEncwvp2xZhevN4++03ueCCC2o6VDlBKPEWERERERE5SuvXr+fll1/m88+/pKysHAC73Ua/fufyz3/eSmpqag1HKCcSJd4iIiIiIiJ/UXZ2Nmlpafj9fho0aEBcXNxRne/3+9m9ezcej4fY2FjlKacoLa4mIiIiIiLyF0VHRxMdHX3U5xUWFjJ+/Hjee28cO3bsxMTE4XAw6ILzuO6669RjfhpTj7eIiIiIiMjflJmZycUXD2H1mvVEx7ckPqkFVpuTgtzd7Nn+K35vPi++8BxXXHHFIdtYuXIl48aNY8aMWRQXFxMbG8uQIRczfPhwrZh+AtJQcxERERERkWPINE2Ki4sBCA4OxjCMimOBQIB+/QewbPl62nYbSUhYrT+cG2Ddsm/I3rOMzz+bTI8ePaq0/eijj/LSS69is4UQG9cShyOYkpJssjLX4HAYvPH6qwwePLja71P+PA01FxEREREROQZyc3OZNGkS77//ATt37QIgqU4dRo8eyRVXXEFUVBTz5s1j8eIltOo8okrSDWAYFpq1O4/F+Xt48aWXqiTezz//PM8//zINGp1DvZQuGBZLxTGfrx9rVn3NtdfdQHh4OL17967eG5ZqYTlylb9m27ZtXH311aSkpOB2u2nQoAEPPfQQHo+nUr2VK1fSo0cPXC4XSUlJPPPMM9UVkoiIiIiInCJM06SkpIRAIFBt19iwYQM9e53Jg2Meo8AXQUrbwaS0HUyBL4IHxzxGrzN7s2HDBiZOnIQrOJao2JRDtmUYFurU78QPP8xl27ZtFeW5ubk8//yL1KnblZQG3Sol3QA2m5PWbS7C5U7k0Ucf5yQfsHzaqrYe7/Xr1xMIBHjrrbdo2LAhq1ev5tprr6W4uJhnn30W2N81f84559C3b1/efPNNVq1axejRo4mIiOC6666rrtBEREREROQktWLFCt5//32mfPYFZWVl2KxWzjnnbEaPHkWvXr0qDQE/GuvWrePTTz9l9+7duFwuWrVqxfMvvEh2gZ+O/f6NM+i3ocQJ9dpSXnIOK+aN55IhlxISEkpYZN0jXjsyth5+f4CtW7dSr149AD755BNKSspp37HbIc8zLBZS6ndn+fL/smzZMtq3b/+X7lFqTrUl3v369aNfv34V39evX58NGzbwxhtvVCTeH374IR6Ph/fffx+Hw0GLFi1Yvnw5zz//vBJvERERERGp5PXXX+eBB8dgdYYSm9yRhNBoPKWFzP5xMd9MncbIEcMZO3YsVqv1T7eZnZ3NP/5xI9999z0WmxtXcCwBv4e33xmHx1NG804XV0q6D3AGhdG6x1Usmv4CtWLKMR3uI17LDPgBKsW3fPlyQsPq4HSGHPbc2FqNCJgGK1asUOJ9Ejquc7zz8/OJioqq+H7+/Pn07NkTh8NRUXbuuefy9NNPk5ubS2RkZJU2ysvLKS8vr/i+oKCgeoMWEREREZEa9+mnn3L/Aw8R36g7DVqfXWlIdt1m3dm9eQnvfzCR6Oho7rvvvj/VZkFBAYMGDWb9xu00anMRcXVaYLFYwYSdOzaRvnU+G5dOxWZ3UadhBwA8Hg8lJSV4vV4wITiqAZmZ63C4PAQC/v3nH0Lm7vW4nA6aNWtWUeb3+8E48gxgw7BgGJb99eWkc9wS77S0NF555ZWK3m6AvXv3kpJSeR7Egc3p9+7de9DE+8knn+Thhx+u3mBFREREROSE4ff7eerpZwiLa0aDNudUGdJtGAa1G55BWXEer772BnXr1mXr1q0EAgEaNGjA4MGDCQ0NrdLuCy+8wLoNW2nf45pKi6KZmNidYTRocQHb7W7WL/6S2NrNKCnzUl5ejmFY9yfYhkFQVDJ7ti7GVlpG+vblJKUcfK9un8/D7m2LGDzofGJjYyvK69evT0nRNPw+D1ab46DnAuTnpYPpq5I/ycnhqBdXu/vuuzEM47Bf69evr3ROeno6/fr1Y8iQIVx77bV/K+B77rmH/Pz8iq+dO3f+rfZEREREROTENnfuXDZv2UbdZt0PO4/aYrWRlbWPG/5xM6+/PYm33vsft9z6b1q0aMVTTz1Vqbe4tLSUCRM/JK5Ou4OuRA77E/qkRr0xTZPNq+dRXu7Bbg/C4QzCZndhszux2ZzYHS6sNgerF09m787VVRZA85QXs+KXSbjsPv71r39VOnbZZZeB4SV91/LDPoNtW+dTt24SvXr1OsLTkhPRUfd433777YwcOfKwderXr1/x/7t376Z379507dqVt99+u1K9+Ph4MjIyKpUd+D4+Pv6gbTudTpxO59GGLSIiIiIiJ6l169ZhtTkJj0k6ZJ0tq+awadlMYuu2p27jbsQn7s9Jykry2blpAU89/Rzp6em8/PLLGIbB/PnzycraR2qzIZgBE8PyW0JvYGC1WgkEfNgdQYTHNCR770bi6nfDYq2cQuVnbSYoJIZ23Yfz8/RnWbnwQ8I21iYmoTk2m5PCvN1k711LVGQYk/73EU2bNq10fr169bjk4ov45NMvCA6JJTqmao/2ti3z2Ze5iuefH4vNph2hT0ZH/arFxsZWGhpxOOnp6fTu3ZvU1FTGjRuH5Q9L43fp0oX77rsPr9eL3W4HYPbs2TRp0uSgw8xFREREROT0daje7sLcPaQtm0liw57EJXfA7fqto84VFE6jNucSEhHPpA//R4cOHdi2bRtvvPkWpaWlFBZ7KPdm4nK5CAoOxm63gQFBQUEUFhZimgHsjmBKS7KrJN2e0gJyd6+hcetzCIuIJ6lBFwKl2+nevQM///wLHq+H2rVr86+bHuSyyy4jOjr6oPE///xzZGZm8v33E4iMbkhi7XY4HMEUF+8jfdcSSop2c9tttxyxA1ROXNX2cUl6ejpnnnkmycnJPPvss2RlZVUcO9CbPWzYMB5++GGuvvpq7rrrLlavXs1LL73ECy+8UF1hiYiIiIjISaZx48b4fWXkZ+8iPLpOleM7N8zH7gyhdoPueD2l2KxV05yE5Dakb17Izbfcit0ZQkhUfSw5Bfh9ZViCIikrK6esrIzwiPD9SbjbTUlxMT5PKaXF2dj/sOq4p7SADYs+xOkOoU7KGQDE1WnB+iWrePLJJ6hdu/afvr+goCA+/vh/fPTRR7z77nusXf0ppmlisRj07t2La68dyznnnHOUT01OJNWWeM+ePZu0tDTS0tKoU6fyD8eBOQ/h4eHMmjWLm266idTUVGJiYnjwwQe1lZiIiIiIyGmqoKCAGTNmsG/fPtxuN2eeeSa9e/emXnJddqz9iVY9LqtyTsb21UTXbksg4McwwOV2ValjmiYh0Y3J2LWOnmffRkhYLPnZO8lKX0FYVDJWmx2fp4z8vHys0TbsdhuRUZHs2bWFvKxNhEQlsW/XSgDy920hd/canK4Qzug1CrszCNg/x9w02b/i+VGy2+2MGDGCq666it27d1NUVER0dDQxMTFH3ZaceKot8R45cuSfGgrRunVr5s2bV11hiIiIiIjISaCkpITHHnuMiZM+pKCwGJvdtX+lbwv07XsWI64aziOPPcGWld+R0qpPpWHnPm8Zdkcwfp+H4OCgKlNcAcrKyrDag7DaHFitNgyLhbqNOrNxxUyi4psTGdsQm8OFt6yYkuJiwiPCMQyTjB3zsFqgtCCDrSu+AMAdHEXj1udQJ+WMiqQbIC97J263i1q1Dr5Y259hGMZR9ZbLyUEz80VEREREpEaVlpZyySVDWLBoKQkNu9G8QQecQWH4fV4ydqzkh3lzWfLrEq67ZjTvvjeOrJ0riavXHndoNJ7SQvy+csqKs3G7XQfdNgygtKQUn6cEwzCwOfb3iCc37U5u1jY2Lf+EuLodiUtKxe4IpqSkmJL87exI+wkLhdx226289c44Opx1Cy5XGFabvUr7gYCfjB1LuOKyiwkKCqpyXE5vSrxFRERERKRGPfXUUyxYtJRWPUcRHv3byuVWm53E+qnE1mnO8h/eY+7ceUz95ivGjRvHV199g8frxWIY1E+pS+a+TYSGXnTIa/j8PvbtXkVUXH0czmAALBYrbXtcyeZV37Jj43z2bJuP1erA5y0lKMhJzx7deeSRh6lXrx5ffvk1axdPpm23q7BSOfEOBPysXvQpVso1bVYOyjD/uMncSaagoIDw8HDy8/MJCwur6XBEREREROQoFBcX07JVa9wxrWnY5tALiOVlbWPV3Pf54vPJ9OrVC6/XS2FhIcHBwWzZsoUePXpRK6UbjVofvI31K35k66qvaddrBPF1W1U57vd5yExfR07GZvZsWcDkTz+hf//+FceXL1/OJUOGkl9QTnRCCwC8nlLKS/MpKcrCYfXx7rtvc9555/3NJyIni6PJRatOfhARERERETlO5syZQ05uPrUbdjhsvfCYZJzBMXzxxRfA/sXIoqKicDqdNGvWjIcffoi9W35i1YJPKMrPqDivtDiPjcuns33tVOxOF7XqtDho+1abg4TkNlhtDhITa3PWWWdVOt62bVu+/uoL6tWNZfPa79i8/kf2pK9hX+YWSotzSK6XTEJCwt97GHLK0lBzERERERGpMdnZ2YAFd3DkYesZhoHdHcG+fdkHPT548GCWLFnCN99M5ZctiwgKjcLucFNWnEtERBgjhg/j40+mkL13E7GJTQ7aRllpAft2Ludf//wHDoej0rGSkhJu+9e/2bwtnaYdLyQuuR12pxuLYZCTkcb2NXO4YNCF/O+/H9KwYUPsdjvR0dGH3HtcTi9KvEVEREREpMaEhIRgmn68nlLsDvdh6wa8JYSEBFcqy8nJ4Y477uTrr7/BFzBwuMJxug3KSvKJigji9n/eyY033ojb7SY3N49vv/8UOgwhJqFxpaS4uHAfa375iIT4aK699toq13722WdZ/OtyWp95NWF/2Es8tnZTwmKSWTZnHGf1PYeQkBAshkGDhg245urRDBs2jODg4CptyulDc7xFRERERKTGZGZm0rp1W+Ia9SG5abdD1isuyOLXWS8z5sH7yM3NZe/evZimydy589iXW0Jysz4k1GuLze7EDATI2r2ebWvn4LCU8tWXn9OmTRuKiooYffU1zJ79HXZXBFjsFBfsw+ctJeD3Uis2hk8++Zhu3SrHUVpaSouWrXFENaNx+wFVYisrKyMvL5+yomzW//w+DZqfSXh0XTJ3rSEnYx1tWrVg8uRPiI2NZd26dSxcuBCPx0OdOnXo27dvld51OTkcTS6qxFtERERERGrUDTfcwJQvZtL+rBtwBlX9m94MBFgxbxK5e9dhs9mxOUNwhsSSl7kVny9Asy7DqRWfjMvlqnSez1vO8h/fp3YtNwsWzMdisRAIBLjnnnt45ZXXMC0OIhOa43SHE/AVU5C5AZfDyosvPMfQoUMr2pk9ezZDLr2c1H7/JDgsttI1PF4vOdk5GBYbdoeLdT+9T0hwBO26XwlAYX4GK3/+gIYpiURHRzN//kL8AROLxUYg4CWuViz/+Mf13HLLLVit1mp4ulJdjiYX1VBzERERERGpUQ899BC/zF/Ash/eoUGbgfuHgVv2rwNdmLuHzStnsXf7ClzB4TTpPISY2k3xecr4ccrj1G7UC1dwDHl5+USEm7jcvw1Xt9mdNGw7kJVz32Xu3LmceeaZfPrpp7zz7jiSmp1JwzbnYLX91tvs85axcek0brzpFkJCQhg4cCAAubm5BEwTd0hUldiLi4rBMLA7XICBwx2Bx1NScTw0PI7E+l1ZvGgK0XH1adz2YuISm2OxWCkqyGTH5oWMefhx1q1bzxtvvI7FovWvT0VKvEVEREREpEYlJCQw9Zuvufa661m08CM2O0JxBkfh85ZSWpCBw27D5Q6hY79bCAqNBiArfR2BgJ/Y5PbY7G58lJJfUIDT6cKw/DZ3Ozw6CWdwNF9//TVdu3bloTGPEBHfgsbtB1ZZ+Mxmd9Gs44WsmFvIgw+NoX///lgsFsLCwjAMg/KS/ErJt98foLy8HKvNCexvy1tWSJArqKKOz1vG5jVziIhpRLN2lxIVHVNxLCSsFs3bnU9UbAqffPIpXbp0ZuTIkdXwhKWm6eMUERERERGpcUlJSUyfNpXvvp3F9ddcwcC+Z3D5xefy9luv43K7SGrasyLpBvB5SrFY7dgdQWDs7902TSgtK63UrmEY2J1h5OXlMW3aNPbuzaBey96HXG3cMAzqNT+TLVu28cMPPwDQrVs3IsJD2b15SaW6fr8PExOLZf8Q8bLiHApzthP3uy3Ldm9fjs9bRkrzAQQCB7/3+DotiazVlLfefoeTfCawHIJ6vEVERERE5IRgGAbt2rWjXbt2FWXffvstBQVFNO7WvlJdm91FwO/D5y3FZneDYcGwWCkvLycoKKhSXZ+niLCwMJYsWYIrJIaQ8FoHvb4ZCFBaWga2cHymlWeeeYbk5GQaNGjAFcMu5813JxCf0rbKPO/95/rZuWYmDkcQ8XXbVJTv2baCiOiGOF1hYBwi8wbqpHRg9eKJrFmzhpYtW/6p5yUnD/V4i4iIiIjICaukpATTBIez8nZcMbWbYrFY2LdzRUWZYRiYgco9xvnZOyktymTAgAH4/f6K3uk/Ki4qJjMri4LCAso9XgIBg3k/LaBjpy6MHj2aG2+8keaN67N8zjukb/4Vv8+LzWYDEwqyt7Nx4UcUZKbRqtMQrDZ7Rbue8iJcQVEE/D7svyv/o+DQGAIBk3379v2VxyQnOPV4i4iIiIjICSs6OhqLxaCkcF+l/bOd7lDikluxZ/PPRMY3xRkUgWkGsFh/S279fi9pK6ZTP6Ueffr0YfPmzZQWZeMtL8Hu/K1XvKiwiKLiIqxWB1abA29ZEX5fGS1SB2Ox2vji6+lkZGTyySf/4+6772bqtK/YtnIGzuBIigvzKS7IIiQ8jtReI4mJb1wpfqvNgddTBJi4/9AT/3ue8mIMw9B+36co9XiLiIiIiMgJq1OnTtSuncCuTYuqHGvUbiA2h5N1v4wja+dy/N5yXC4XpmmSvTeNZT+8B94c3n7rTaxWK5dccgkuh5X0zYsr2vD5fPuTbpsTm92FYVjI3P4rVqudhOQ21E5JpXWXq/hlwWK+/vprJkyYwJJfF3HvXf9i+KUDGH7ZBURFhhEaGkN4VFKVGIPDYtm3dw1Wq4nDcege7/RtS4mrFUubNm0OWUdOXurxFhERERGRE5bNZuO6a6/hoYcfJ3tPK6ISGlFeXk5JSQmecg8p7S5m++oZpC35FJvDTVRMIl5PCX5PES2aN+PFF98nNTUVgJiYGIYPv4J33ptAaGQi0QmNKC0pwcCo2FYsd+969mz+mZSmPbDZ9+8LHhFTl6i4Zrz73vtce+211KtXj9tvv70ixssvv5wrh49g/oyxRCe0JCyqNgG/j6zdayjI3o7F8LEvfQmxsQMPeo+F+Rlk7V7BHf+5FYfDcdA6cnIzzJN82byj2bRcREREREROPl6vlxEjRzJt+rdE1G5LWHxzXMFRGIZB3t6N7E37ieL83VgtBu3btWXAgAGcffbZdOrUqcrq5eXl5YwcOZIZM78jIq4J7uiG2J3h+H2lZG1fSn7mJuKTWtK6y2WV5oNn7dnA+kUfsXjxAurXr18lxoyMDD788EMmTJhEeno6NrudLl06MXrUKHbt2sW99z1ATEI7GjQ7E3dQBACBgJ+M9DVsWj2NFs3q8803XxMaGlqtz1KOnaPJRdXjLSIiIiIiJzS73c74Dz5g0KBBzJr9HZZNv2C1uzADPkwzQHR8A9r2uJxdmxawdNkvGIaB1+vF7XZXGbrtdDqZMGECkyZN4t1332PRov9iGDYsViuhEQm07HARteunYhiVZ+U6nMEETJPi4uKDxhgXF8e///1v/v3vfxMIBDAMo1LS73K5GPPwo8z/dhkh4bWxWOyUFmcR8JVw9tln8cYbryvpPoWpx1tERERERE54RUVFtGzVGkdkMyJi6lJWko/Vaicqrj7FBVmsXfQF5WWFuEJisNpdWAP7h5t37dKZt99+i8TExCptmqZJ+/ZnsK/ASrP2F+AOiTrk/t67ty9n07IpXH/dNRQXF+N0OunWrRsDBw6sNDy8uLiYmTNnsmfPHlwuF926daNp06YVx6ZMmcLChQvxer3Url2boUOHVhyXk8vR5KJKvEVERERE5IT34YcfctPNt9Gx/79xBUdUlGfsWMWKeR8RHteYOs3OwhUSjae8iPDQUIpyt7Nl2VQS48KZOWM6cXFxVdp94YUXePSxZ+jS/w7sDvdBrx0IBJg/+3UK9m0hNCIWV0gMAZ+H4oK9JMTV4qmnnmDAgAE89dRTvD9uPLl5+dgcLvxeL1aLSbeuXXj88cdo1apVdT0eqQEaai4iIiIiIqeUTZs24Q6JrpR0+30e1iz8jIiEZjRIvbhieLhhWPAHTGrVaU5YVG2Wzn6Dxx9/nJdffrlKu8OGDeO5519k7ZIvaNXp0ir7fJumyfoVc8jN3ExKizNp0n4gFuv+NKo4P5Mtq75j9NXX0qRxI9Zv3Ex8w6407t4JV3AEAb+fzJ1rWLT8BwYMPJ/PP5vMGWecUan98vJytmzZgs/nIzExkejo6GP85OREoO3ERERERETkhGexWDAJVCrbu30lXk8ZSc36VpmTfYArKJzEhl2YPOUzcnJyqhyPi4vjnbffpDQ3jSU/vEtm+loCAT+maZKfs4tlP3/EljXTqNOwE03PuKAi6QYIDq9Fy26XYTgiWLJsJc26DadRu3MrPhywWK3E12tN6jk3YDqiGDlqNB6PB4DMzEwee+wxWrRsTbfuPenZqw/Nm7dk1KjR/Prrr8foqcmJQj3eIiIiIiJywmvRogWlRTmUFO4jKDQGgKz0dYRG1cUZHFlRL2D6Mc0AdvtvqU5C/XZsXz2bn376iQsuuKBK2/3792fKlE959LHHWbToY/wBc38ib/opKy0hNrEJrboNPej8b9MM4CkvIbpuW9zhVeeRA1htDhp3GMySGS8zbdo0WrduzaDBF7J7bzaxddrSslkLLFYb+dk7mfHtfL6ZOo1XXn6Ryy677O8+NjlBKPEWEREREZET3nnnnUdsTDTb1s2jeccLAfB5y7E5gyvV83s9WC0WnE5XRZnDFYJpmhQVFR2y/W7dujFj+jRWrVrFsmXL8Pl8FBQU8NDDj9Ks4+BDLrqWm7kVT1kRMXXbUV5eTnBw0EHrhYTXIiSqLp988imPP/EkWTnlnNH3Flzu3+YGh0fVIalBJ9Yt+ZJbbr2N+vXr07Fjxz/9jOTEpaHmIiIiIiJywnM6ndx91x1k71zG1jU/YAYCOFzBlBfvHz5uYuLzlRMIeAkJCeH3eXJJYTYWi0FMTMwRr9OqVSuuuuoqRo8eTePGjcE0cLgOvc2Xt3z/9mLOoEgCgcAh6wE4gyNZt24dGzdupkXnyyol3QcYFgvNUgdhc0Xx2muvHzFeOTko8RYRERERkROWx+Nh4cKFfPfdd6SmpnL3Xf9h98bvWTj9BcxAgOK8dPL3bcNbVkzAV05oSCjuoMq9zulpi4mJiaZnz55Hde2oqCgsFoPSwuxD1rHanAD4yoqwWg+fXnnLi8nMyiIsuh4h4VVXWD/AsFhISOnI9OkzyMzMPKqY5cSkoeYiIiIiInLCKSws5NVXX+WD8RPJzMwiYJpYLAYNG9Tnxn9cT15eHl9+9Q0EfOxYNZWWPUYSFh6N3W6v1E5e1nYyti7i9ttuxuVyHeJqB3fGGWeQlFSb9C2LCY9JOmidyFr1sFrt7Nu1iui4c8nevYnyskJsdheRcSkVW5SVlxRQmLWFkGA3oVEHb+v3ImLqstXnZ+fOndSqVeuo4pYTjxJvERERERE5oeTl5TH4wotYuXo9MXXb0easi3G4QygtzCY9bTGvvv4Wg84fyOa0jaxbt47BF15M2qJJJDXtRVxyK6xWO2Ul+ezatJA9m36hZ/fO3HHHHUcdh81m49prrubBMY+RXbc10fENq9QxLFasVhsZm38mb/dqvJ6SimNWm4PElLY0aHsOm5bNICw0mIiICLwB/xGvHfD7AKp8kCAnJyXeIiIiIiJyQrn5lltYtWYTbfpcR2hkfEW5KyicyLj6ZO1axxdf/ZemTZ/j7rvvZsb0qdx3333M+f4L0pZ8gdVmx+cpJyIilJtvvJb77rsPp9P5l2K54YYb+PmXX5gxcyIJDbuS1PD/9+gO+MlKX8/2td/j8xRiMayExTQiLvkM3KGx+Dwl7EtfyZ5tC9mVthi308a777zFrFmz+OKb7zHNfodcsA0gc9daIiLCaNiwarIvJx/DNE2zpoP4OwoKCggPDyc/P5+wsKqLE4iIiIiIyMkjLS2NTp27ktJ+MIn12x+y3sYl0/DkrGPN6pW43fuHc2/dupUff/yRkpIS4uLiOPfccwkKCmL37t2UlZURGxtLeHj4Ucfk9Xp56qmneO/9D8jNzcew2PF4yvD7PDidNvwBK227j8TqjqG83AOG8f/bkZmUleSwacn/aN4kmcWLFrJgwQIGDDyfxqlDiEtqddDrecqKWPztK9xw7VU89thjRx2vHB9Hk4uqx1tERERERE4Yn3zyCYbVRXxy68PWq9O4M4un/cLMmTMZPHgwACkpKaSkpABQUlLCxIkTefe999myZSumaWKzWenfrx/XX38dXbt2/dMx2e12HnjgAdq0acN1111PXkEB7qBo3CEx7Nuzgbh6qZi2CEKCgwkNDaWstAx/wI9hGISHJ+PuPIQNv37MihUr6NSpE+efN5CvvvkcsFCrTvNKPd8lRdmsnv9fakWHceONNx7185MTkxJvERERERE5YaSnp+MKjcViPXSq4vN68HvLwGJl06ZNVY7n5eVxyZBLWbJ0BZHxzWjc4TLsdheF+RnM+n4R30ydxmOPPsw//vGPPx3Xd999x7XXXo87oj69eg7AHRzJnh0ryM7YTHxKZwIY5OTmEhUVRUhoSKVznYlN2ewIYfLkybRp04Y333wD8/ob+Pqbj9m2Npqo+KZYrDYKc9PJy9pEct06fPy//5KYmPjnH5yc0JR4i4iIiIjICcPhcBDwew56rLQoh21r57F78xJ83nL83nIef+JJtmzZwo033kirVq0wTZOrr76GZSvW0fbM6wiL/C15jayVQlLDTqStnMV99z9EcnIyAwYMOGJMfr+f//znTpyhSbTpfDmGZf+2YeWlBVhtDtzB0ZiYeMtLKCgoIDo6utL5hsWCMyiajIwMANxuN+PHf8D8+fMZ98EHzJ+/EK/XS/OGKQwf8zKDBw8m6A9bosnJTYm3iIiIiIicMDp37sz7H0ykpDCboNDfEtiC7F0s+fY9TNOgVt0OhMXU37/yty+Xz776li++/Ir33n2H+Ph4vv/hR5p0uKxS0n2AYRg0bH0ORXm7ef6FF+nfv/9hFzkDmDNnDlu3b6dd92srkm4Ai9VOIOAj4Pdhsdqw2hx4vaV4vd4qq5EH/OWVtjMzDIOuXbse1ZB3OXkdfod3ERERERGR42jQoEHEREexZeV3HFgH2lteytI5H2B3RdCq143UadIbd0gsEdF1qN+8Fx3P/Seu8AZcfc11vPzyy9hd4cQmNj3kNQzDoE7DLixduow1a9YcMaZ58+bhckcRHl15/+3ouIZgBsjZuxbg/4fHG3g8lXvsiwv3UZS3m+7dux/l05BThRJvERERERE5YbhcLp54/FHy9qxm/aIv8ZaXsnvzr3jKSmh0xlCsdideTykQIDQsFACLxUrLLpfiN53MnTeP4Ig6lXqmDyYyth5+f4AtW7YcMaaysjJsdleV8uDQGKLjGrJ780/4feUYGBiGwe83jjJNky2rviWuVgyDBg0CICMjgx9++IE5c+awbdu2P/9w5KSloeYiIiIiInJCGTp0KOXl5dx1970s+Go5ZeUewmMbYhhWvGVFWCwWIiIjKw3ntlisxCW3Z/OqGcTUiTviNQJmADCwHCFBB4iLi6O0OBu/z4vVVnkIedO2A1n43ZusXzSJei0GYHOGYLVYASgrySdt5Szys9bx3rtvk5aWxnPPPc/UqdMo93gBsFot9Ondi3/+85/qET+FaR9vERERERE5IWVlZfHf//6Xu+6+l9pN+pKY0hGX24XL5TrovOzsvWks++Ed7M4gup9/b5Uk+ffSt/zKtpVfs2TJYpKTkw8bx7Zt20g9oyP1W55P7ZTUKsfzc3ax7OdJlBTmEBQeT1RMHbyeEgqztxIeHsrzz40lNjaWYVcMx2u6SKzfidjEJhiGhZysrexOW4CnJJNXX3mJoUOHHv2DkhpxNLmohpqLiIiIiMgJKTY2lltvvZVatWIJcruIjIrE7XYfcjG0QMCPw+HACHhJ37L4kO0G/D52bZrP2WefdcSkG6BevXoM6H8uW9fOpqggs8rx8Kg6tOl8GU6ngzq13LRoEEaPjo144flnWL1qBd27d+eqEaOwuOLp0Pcm6jbugjskCldwBIn12pF61vVExLfm1ltvY+XKlX/+AclJQ0PNRURERETkhNaxwxnM/3U9Kc17HbKOp7ycnZuXEQj4qZ2YwIalX2IYVuo07FgpUfd6Slmz4FMsgQLuvPPOPx3DSy+9xLZBF7Js7jvEJ3egdr1UnO4wSkty2bVlMZk7l9KjexcmT/60ylZg77zzDvkFJXQZOPSgvfCGYaHZGYNYOGML77zzDq+88sqfjktODhpqLiIiIiIiJ7Rp06Yx7IqraNV9JFFxDSod8/l85OXlUVKYw9pf3ic4LJrg0Gj27dmI11NGcGgUdRp1xW53UZSfQfbu1YSGuPlg3Hv06dPnqOIoKCjg6aef5sOP/kdeXj6maWIYBjEx0YwcMZzbb78dt9td5bzU1A7keyNo0fGiw7a/de2PZG37iS2bNx20HTmxHE0uqsRbREREREROaD6fj0suGcK8nxfRtOOlRMc3wjAM/H4/2dnZlBTuY+vKr7BaLXTqdzMOZxDlJQVsXDGLvVsWEhYWisPhID4uniuuuJxhw4ZRq1atvxxPcXExv/zyC/n5+URGRtKtW7dKe3T/UVx8IolNzqZuo86HbTd7zybWLZzEiuVLqVOnzl+OT46Po8lFNdRcREREREROaDabjQkTxjNy1Ci+/34SrtBaRMY1przMQ27WVorz0gkOi6F971E4nPuHeTuDwmjZ+WKsFgue/DTWrF5JaGjoMYknODiYs88++0/Xdzgc+L3lR6zn83kq6supRYuriYiIiIjICS8sLIzJn37KZ1M+4exeZxAo3MDODXMI+Ipp3W0oXQfeRlBodKVzDMOgfquzKCgsYvLkycc0nl27dvHSSy9xzz33MGbMGGbPno3f7z9o3R7du7Jv95ojtpm5cxUNGzYgNjb2mMYqNU+Jt4iIiIiInBQsFgu9e/dmwoTxPPnE47jdQXTpfysJKe2wWA8+mNcVFE5IZF3mzp17TGIoKCjg2muvo127VB557BkmfPQ1b77zIZcOHUaHDp349ttvq5wzatQoSgv2kpW+/pDtFubtITdjPddcPfqQq7bLyUtDzUVERERE5KRTWlqKaYLNcei51QdY7W5KSkr+9jWLiooYfOFFrFi5nuTm/Umo1w6bbf+w8PzsnWxZ8x3Dhl3J+PHj6N+/f8V5Z511FgMH9GPq9E/wtbuA+LqtMSz7+0BN0yQnYzPrF0+mbZuWXHHFFX87TjnxKPEWEREREZGTTlxcHBaLQVFeBqGRCYesZ5om5cX7iI9P/cvXMk2TXbt28fTTT7Ns+RranXktoRGVrxkenUTb7lexasH/uPGmW1i1cjkhISHA/p76d955m5tuupkvvvycbWu+JSy2PoZhoTBnB+XF++japRMTJoyvshWZnBo01FxERERERE46PXv2JCEhnl1piw5bLy9rG+XF2QwZMuSorxEIBPj444/pe/Y5tGnbnjffeofg6KZ4/A5KS0ur1DcsFhq3HUBubj6fffZZpWNut5v333+P7+fM5srLB1E31iQxwsMFA3ry9Vef8803XxMdHV2lTTk1qMdbREREREROOna7neuuvZpHHn2SrMQmxNZuWqVOeWkhG5d8SauWzenWrdtRte/z+bjxxpv4dPJnhMU2IK5Bd4pXfUet5Pb4/Sb5+fmUl5cTERFR6TxXUARh0SlMnTqNq666qkq7bdq04fnnnz+qWOTkp8RbREREREROSrfccgvLl6/gq2/+S1adtiQ16kRwWC28nlL2bF3Gns0LiIsJZcKE8Ue9YNnTTz/NJ5M/o0mnocQltWTv9hVgGDiDorDZXQT8PsrKSiksLKyyTZndFUZuXt4xvFM52SnxFhERERGRk5LNZuO9997ltdde45133mPZnDcIBEwMDIKCnFx68WDuvfdeateufVTtFhYW8tbb75DYsDtxSS0BsDv2z732lOZjs7uwWG1YbQ5KSkoICQ7BsPyW2HtK84iOanzsblROekq8RURERETkpGWz2fjnP//JjTfeyM8//0xmZiZut5uuXbv+5TnTX331FQWFxTTt0bmiLLJWCg5nCFk7l5LcYv+K5VabA7/PQ2lZacWiaCVF2RTmbGPQoP/8/ZuTU4YSbxEREREROenZ7XbOPPPMY9LW1q1bcQVH4goKryizWG0kNerI1rVziU5sRUhkHTAMDMOC3+8HIBDws3HpN8TGRDNo0KBjEoucGpR4i4iIiIiI/I7NZiPg91UpT2nZh5yMLaxfNJHaDXsSm9QOMDHNANl7N7F17RwCZVlM+N9HuN3u4x+4nLCUeIuIiIiIiPxOu3bt8JQVUJC9i7DoOhXlVpud9mddzYZfvyJ90w/s2vA9VpsTu92CBS8tWzTn6affoEuXLjUYvZyIDNM0zZoO4u8oKCggPDyc/Px8wsLCajocERERERE5yfl8PlJTO5DvCaFV92EHXRG9vLSQpXPeA28ud/zndnr16kXHjh2PevV0OXkdTS5qOU4xiYiIiIiInBRsNhtjxjxIYdYGNvz6FX6fp9Jxv8/L9nXz8Jdl8+orL3PnnXfSqVMnJd1ySBpqLiIiIiIi8gcXXnghhYWF3HHn3SzYtYqoOi1xBUVQVpJPTvpqLHh5+qknGDp0aE2HKicBDTUXERERERE5hB07djBhwgS++OIrcnNzCY+IYPCg87nqqquoV69eTYcnNehoclEl3iIiIiIiIiJHSXO8RURERERERE4QmuMtIiIiIiJSzXJzc1m1ahVer5ekpCQaN25c0yHJcaTEW0REREREpJps27aN559/nslTPqOktAzTBJvVQqeOHbjllpvp379/TYcox4ESbxERERERkWqwevVqBl94MfnFXhIa9KBW3ZZYrDby9+1k5aYFXHHlVTxw/720bNmSPXv24HQ66dKlC3Xr1q3p0OUY0+JqIiIiIiIix1hpaSkdOnYip9CkTe/R2J3uSscDfj+/zn6b7N0bcLncGBYrYOKw2zj3nL48+OCDNGnSpGaClz/laHJR9XiLiIiIiIgcY19++SU7d+2mw4B/VUm6zUCAVT/9j7ysHcSmdCQ+JZXayY3x+7xkbF/Bt3N/4pf+A/ni8ym0adOmhu5AjiWtai4iIiIiInKMffjRfwmv1ZCg0Ogqx3as/5mMHatocMYQklsPxOYKJxAIYLM7qN2wA6nn/INygrly+FV4vd4aiF6ONfV4i4iIiIiIHGM7duwkOCK5SrkZCLBj/S9E1W5FZEJTAqYfE/D7A1itVgBsdhdNO17E0pmvMG3aNAYNGnTQa5imyc8//8yiRYvweDzUqVOHCy64QFNwT0BKvEVERERERI4xp9NJqa+8Snn+vh2UFOVQt+3g/QX/v+KWYVSuFxIRR3BUXSZPnnLQxHvOnDncd9/9rN+wCavdjc3moKwkn3vuvY/Ro0Zy//33Y7fbj/FdyV+lxFtEREREROQY69mjG+M/nEIgMBCLxVpRXl5aCIA7JAaAgN+LxbBgs1VNzdwh0ezNyKhS/s033zB69DU4Q5No2W0UkbH1MAyDstICdqUt4qVX3iAtLY0PPvhAyfcJQnO8RUREREREjrFRo0YR8BaTnvZrpXKrzQGAz1OCaQYI+L0EBbkx/tjlDXg9pYQEB1cqy83N5cYbbyYkugnteo4kqlZKxbkudxgNW/WlRecrmDbjW8aNG1dNdydHS4m3iIiIiIjIMdaiRQtGjbyKrcunsmP9LwT8PgAiYpOx2Z3s27kCr6cEq9VC8B+SawBPeTEFmWn07XtWpfLXXnuNnLx84pPb4PcffOG1mITGRMY15Z133yMQCBz7m5OjpqHmIiIiIiIi1eCpp57CZrPxzrvvs2vdD4THNcZitWEYsHfzL0TXbk5s7WQslqr9oVtWfIvLaeOyyy4DYMaMGbz66mvM/vY7AqbBkrnjsdmd1K7XnpQWvXG5Ky+olli/A2vnj2fNmjW0atXquNyvHJoSbxE57axcuZLx48ezavUaTNOkRfNmDB8+nPbt2x90mJeIiIjIn1VeXs6sWbPYvn07VquVCy+8kNGjRzNx4kTmL1iIp7yM9uf2Ydny5Wxf9ikl+9pgWC0YWAiJiCM0ujbbVv9Izs6lPPfsM0RHR/P888/z2ONPEhSZTEq7i3CHJWAYBjm715K+fQkZu9bQ4azrCA6NqRRLWVkZEyZMoHv37px99tkEBQXV0FMRwzRNs6aD+DsKCgoIDw8nPz9fy+aLyGEVFxdz000389U3U7EEhRKckAIYlOzdhq84j3P69uWdt9/SvyUiIiJy1AKBAK+99hqvvPo6mZlZ2OxuAgE/mF5atmjOmDEP0adPH2D/NmAvvvgiDz70MKVl5TicIWBY8JYVYpoBwkKDeeqpJ7n66quZMWMGw68aSWKT3qS07E1OTg4+P9gdbgA8ZYVs+GU8VotBtwH/oqQwmw3LviErfT2BQICg4GAwA0RHRzBq5AjuuusuHA5HTT6qU8bR5KJKvEXktODz+Rg27Apm/ziPuj0HE9uwNcb/D+syzQDZW9ay7YfP6NahHZ9NmaJfSCIiIvKnmabJv//9b8Z9MIladVNJatyFkLBamGaAnIwtbFv3A+VF6bz7zlsMGjSIsWPH8sSTzxCV2JraDTtjdYQR8AfI2bOe7evnUFKYicvlJMgdhNVqwWsE03ngbVgsVoqKiiksKsLhDKkYqVecv4e1c9+mSdsBbFkzB6s9mLi6HYiOa0RcfCKlxbns3LyQPVsXctZZPfnoww/1t84xoMRbROQPvvrqK4aPGk3jgaNxhUdRlJmOGQjgiogmJLY2hmFQsGc76798m7dee6ViPpWIiIjIkXz22Wdcfc31NGw7mMSU9lWOm4EAaxZNpjQvjffefZsrh4+gduM+pDTvVVFn56aFrP31C+yOEKITW+NwheGwG+zaspiSggzi67WhdY/LMU2DrKwsDIsNu8MF7E++1857j6LcHYSEJdIkdRimGSA0NKTSwm05mVtYtWAi99x1O3feeWe1P5dTnRJvEZE/GHzhhfy0YgP24DBytq4H08QEDAOCY2tT94zexDZuw9qvx9G0VgjffTu7pkMWERGRk8S5/fqzbnM27XqOOmQdr6eU+dPG0rRxPbbuzKHjuf+s6LHO3LWWZXMnEFu3A3WbnYPFYsFbXozdbsPj8VCcl07a8s+o3aA9LbpcQmlpKfn5+RgWG1abE4vFyraV37An7RdadbsOlzsSh8NOVFRUlTjWLfsGyraxauVy9Xr/TUeTi2o7MRE55fn9fn744UcKMnZRsi+bpPbn0/L8O2gz+G7qd7sCi8XNuumT2LF4DtENW7Ni5UqKiopqOmwRERE5CezcuZNff11CQr0zDlvP7nATGd+UpctWUKtuu4qk2zRN0lZ9S2h0fZKb98NisQIGFqsdj8cDQERcE5KanU162q+UFuXgdrsJj4jAwMTrKcZTXoTPU4rFYsMdFIk7yE1kZORB40iq34GMjEzmzp17TJ+DHJ4SbxE55WVmZlJUXExobH2a9L2WmPrtsbuCsdpdhCc0okH3K4hvdibbfplOad4+TNOkvLy8psMWERGRk0BOTg6BgElQaPQR67rc4QQCAdzBvyXF+dk7KcjdTXxK50q7qxiG5f//axDwe4mt0xaLzcmutMUAuF0uYmNjiYyIwOWwk5+5CXdQOLGxsYSHhR1yp5ag0BgCAZPs7Oy/c9tylJR4i8gp77PPPsNic5CUej4Wq73KccMwiG/eC3dEIhnrfiU4OFhTV0RERORPCQnZv8iZp6zwiHW93lIMw6D8d3Wz927C9PsJCo3D6ynB5y3DNP2YpolhGLjdbvx+L1arnZDIJIpy91ScaxjgcrkoyFgL/jKCQiIOuif473nKizEMQ1uLHWdKvEXklPff/31MbHIbrDY7cPBlLQzDIKZ+KiX79jLo/POw26sm6NXB6/Xy9ddfc9HFF5OcUp86Scn07HUm48aNo7DwyL/ARUREpGalpKTQqFED9mxddth6Ab+P3D3raNa0MRnbl+HzeVj5y//YsHQaphnYn0UDAb8XT1kxfl8ZTqeT4OBgLIaBt7wE/rA8VyDgZ8eGX9i2aiZ9z+pNWVEmpSV5h41j97ZlBAe76N69+9+6bzk6SrxF5JS3e88ewmNrYwC+8jIOlXw7giLAMDj33HOPS1y5ublcMGgwV44YxYLVWwlq0Jnw5r3Ymhfgtv/cSddu3Vm3bt1xiUVERET+GovFwjVXjyY3Yx3Ze7dQVFREfl4e+Xn5FBcXEwgEANiy9gcwy7jzzjspK8pgwYxX2btjNQlNemFYbZQU7MVmd2NzBmO1OzHN/evUWK1WoqIiMU0vBfu2UJC9k41Lp7Fu4ecs+HosO1fP4B/XX83EiROJjAwnbeVMAoEApWVlFBUXU1xcjNfrBaCsJJ89Wxcy5JKLDzkHXKqHraYDEBGpbm6XC5/PQ3hEBHl5eXjLirHYHFis+/8JNP1+/D4PvvIS3G43zZs3r/aYfD4fVw4fzsJlq2g24DrCE+r9drB1d8oKc1k/awKXDLmUOd99S1xcXLXHJCIiIn/N5ZdfztPPjGXxnLep3bg30YmtsNocmGVl5OzbTXb6cvL2LOf6665h4MCBTJkyha++mUajTlcQGd+Ugsw09m5dQGh0fQwDLBYbhsOC11tKWVkZLpcLT+F2HHbo2rE1+7IzcIa6GDJgGFdddRVNmzYFYOwzTzFi5GiKiotJSOmKOzgKExMzEKAkfye7t/xAUmIU9957bw0/sdOPEm8ROeX1PrMXn3w5kwap5xAdFUVRURHl5WX4//+4ATicTsqzt9KgfgrJycnVHtOsWbP4+ZcFNBlwbeWk+/+5QiNp3n80Kya/wDvvvMP9999f7TGJiIjI0fP7/dxyy61k7cslNCqB3Wk/sHfrLwSF1iLg91OUtwu/rxzDMHnr7feYOOkj3G4XkXENCIuui9dTTK36ndm27Et2rptFUtOzsFhsWKxWAn4PpSWlFGZvY9vqmYwaOYKXXnrxoHH4fD6+/PJLDAzy920iL2sjIeG1sdpdlBZlUVacjdUCdzz/uD7QrwFKvEXklDdq1Cg++t8n7Nm0hMTGHYiMjMTv9+Pz+QCw2WyUFmRRsHsd/3noPqxWa7XH9P64cbhjkohISDlkHUdQKJEN2jF+4iTuvPNOHA4H5eXlLFq0iPz8fMLDw+nUqZP24BQREalBU6dO5fMvv6Z5t2HE1mlGaVEuuzcvoSg/i3KPhzq1m2GxOtmxair1Wp5LIOBn3eIvqNtqAGHh4ZiBAMFBrbAEyti6ahb5mRuISWqHOyQGT1kh+3Ytx/TkcMH5Axk79plDxvH+++/zzdSZtOk5isha9dm7fSU5GWn4/V4ioloSn9yGHRt+4t577+e8884jPDz8OD4lUeItIqe89u3bM2L4FYwb/yE+Txm1m3bCanNgtVoxzQDZOzeQtvBzWrdsxqhRo45LTEuXLSciOfWI9aKTm5G2cSFpaWl8+eWXjBs/gcysfQRMEwMIcjmIjIwkNCyc8LAwzj3nbK688kp9ki0iInKcvP/+OEKi6hJbpxkA7pBIUlr1IStrHyYGdsf+1cOzdywlJ2MLrboOZePyGdgcQeTn5xMTHUNQUBBhbc8ivm5Tdqz/hb1bfibg9xII+DHwM2H8B1xyySWH7BwIBAK88+57RMY3JyahCQC166dSu37lvzWCQqJZOOM5Pv30U6655ppqfCryR0q8ReSUZxgGY8eOxe128/a775G+5gdCatXHYrFRkrMLX0ku3bt3Y9z77xESEnJcYgoEAhiWI/esG1Yrpmly/Q3/YPX6jUQ2TqV5j8soLchh/ayPKMkvpCQ0FlfAjS23jEXPPMfY557nicceZfTo0cfhTkRERE5fpaWl/PTzL9RtPbBSeUlJKQHTxOEMqthPOzqpDelrZ2Ox2bDZnHhKC8CEkpISwsJCAQiLqk3LrkNo3vki/D4P29fOo2jvMoYMGXLYbcJWr17N5s1baNFlxGHjdbpDCY9txJTPPlfifZwp8RaR04LNZuOJJ57g+uuvZ+LEiSxZuhSv10fD3gO48sorSU1NrfjFeDw0btSItbu3Ar0OWy9/9xZ8Pi+r1m+k6fnXElqrDgV7d7Bu5oe4EupS78xB2IJC8JWV4Ha7CHZeyM5fZnP7nXfjcDi48sorj88NiYiInIZKSkowTROHM7hSeWlp6f4F0ozfkmWbIwjTDGAGAiTUa8PeHcuoldKR0tJSQkND+f2fIRaLFWwOsnYsY9TwwyfdsH+nlEDAxB185JXKXcGRZO/LOroblb9NibeInFaSk5NPiIXKRlw1nBtv+Sel+ftwh8cctE7A5yVrwyL8Ph9J3c4htFYdALb8/A32yFjq9B9WsTK7xe6gtLSM0JBQ6vU+n80eDw88NIaLLrqIoKCg43ZfIiIip5OwsDAcDgclhfsqyiq2AbM5K9UtK87GanNisdpJatyF9M2/kr7uOxKb9CIQCGC1Wn7XRoANv36NESj9U9PgioqK8Hg8ZGWmE1IOVpsVt9t90HVgyssKiKij+d3Hm/bxFjlFrVu3jhdeeIFHHnmEV155hS1bttR0SMeVz+dj2rRp3Hvvvfz73/9m7NixJ9QzuPDCC2mQUo/1sydSXlxQ5XjA52X9d/8lUFqI1eEirml7AIr37SF/91ai23WvSLoBrDYHYFJWVoZhGNTpchbZeXl8/vnnx+uWRERETjt2u50LB19AxtYlmOb+/br5/55r83f1AgE/+7YvIyGlLYZhEBqZQPNOF5K1fQlpiz9hX/pa/D4vfp+XzF1rWTbnPbJ3LKF/v3OZNGkSjzzyCN9++y1+v7/S9f1+Pw8//DAjRozC6/WQsWMVvoBJWZmHnJwcsrOzCfgDFfW9nlLyMjYwcOCAan4y8keGaZrmkauduAoKCggPDyc/P5+wsLCaDkekxqWlpXHbv/7NL/MXYFgd2FzBeEuLMEwvfc/qw4svvEBCQkJNh1mtZsyYwR133sXOXek4w2Ox2p2U5e/DCHjo3+9cXnn5ZSIjjzwUq7qlpaVx0cWXsGtvFhEpbYhOboZhtVKwZxv7Ni7GZQnQ+8yezP5lCa0uvQ2A3St/Ju2nr2l89X0Yf1hgxVtaRHCQm9DQ/fPE1v73dS49qwevvPLK8b41ERGR08aSJUs459z+1GrQlYZtz8UwDLKzc/D6/FgsNgIBH+nr5pC5dRGpfUZTq07zinMXz36T0rydWKw2fP+fVFutFkKDgygoKMBic+MKjsTvLcdTlk/9+vV45umnOOusswC47777eO2Nt6nb9Cx83jK2rptH004jCImojRnw4fOWYbVaiI6KAsNg3a9fUrRvDStXLCM2NrZGntep5GhyUQ01FzmFbNq0if4Dz6OgDOp3HUJMcgssVuv+T0+3rmTOvO/o138AM6ZPO2WT76+//ppRV1+Dq1ZDWp5/EyHRicD+HuTMLSuZNnsGOwYP5puvv67xD+saNmzInO++Zdy4cbz/wXg2f/crAMFBQYy+4lKuvfZaPv30U6Z//zOmaWIYBgG/H8NirZJ0A2CaGPw2Qcyw2fF4PMfrdkRERE5LqampPPbow9x3/4OUFGSR1KQbhiMCv89LQe5Wsrb/Sn7GJqxWJ8t/nEBc3Va06HwJnrJCSgv28NRTT9CjRw/Wr19PWVkZr772Ghs3bad+6wtITG6Hze7ENE3ys3eyZe13XH75FYwfP4569erx5lvvUK/FuSQ37obf5yE7YzMbFk+iTuOziKndCrsjCE95MVkZ29m7dQEFWet55eUXlXTXAPV4i5wiTNPknHP7sXLjDlr3vx67012lTnlxPiumvUn/Pt2YOHFiDURZvQoLC2nZug2EJ9G092WVFjQ5oDg3gzXT3uKWG67h4YcfroEoD87r9bJ37178fj9xcXG43ftfvx9//JFBF11C4/OvJTyhHllpK1k7fSL1L78FR8Rvc8NNvw9feQlRkVE4nA4Cfj+r332a266/mgceeKCmbktEROS08fnnn/P0M2NZuXI1Pn8ADAuYJu7QWtRuciYRcY3JTl/NzrUzCQ6NgoCHRikJzJgxvSKPefzxx3nuhVdp2+MawiITq1zDDARYueB/UL6biy4azPgPp9Cl/3/2L8YG+LxlrFn0GXt3rsJiceAOicbrKaW0MJMGDVJ44vFHueiii47rczmVHU0uqsRb5BSxdOlS+p5zLg17XklM3aaHrLd7w2J2Lfmapb8upm7duscxwuo3btw4bvvPnbS/5A6cwYdeNGTzwmn4965l9aoVJ/zCY4FAgE6du7CrKEDz80dDIMCCcY8T0qgVcd37/38tE19ZCVbDICYmBgzYt2456bMnM/+neTRp0qRG70FEROR0sWTJEnr36UtEfDOi4hpgWkNwBMdisdiwWGz7f0enr2bL0k9xOpzEJyQQExPDxRcNZsiQIZzbbwDW4IY0bTfwkNcoK8lnwczniI4OxxrckGZnDKpSp7Q4l91bl1JWkoenvISc3auZM+dbOnbsWJ23f9o5mlxUi6uJnCKmTZuG1RFCdJ3Gh60X16AN/oDBtGnTjlNkx8+MmTMJiWtw2KQbIKFJB3Jyc1mwYMFxiuyvs1gsPDv2Gfw5u9gw80M8pUXUbt2N3DWLKNy6DtMM4CsrxQwE9v+Db0DJvgx2/fgN5/Q9S0m3iIjIcTR+/HhcIdG06X4FdZt0Jblha6KjonA67ICPjC3z2bFqKg5XGFF1UgmObUdOSQhPj32JDh07kb47ndopqYe9hisonLCY+mRn52CzOw9axx0cSYOWZ9Gi48U0anMudoeTQCBw0LpyfGiOt8gpIi8vD3tQGMYR9nm02hzYXcHk5+cfp8iOn/y8fOyu4CPWcwSFEjD3b71xMujVqxeTJoznhhtvYuV/nyUoPgWnO4SdUz8kpH4zIpq2JaZOMp68LNJXLyF//VJaN23CG6+/XtOhi4iInFZmzppNTO1Wlf4eczidOJxOdm5aSPqmuSTU70pC/a4EAn5qxcZisVrweQey9tevyN/4MwW56YRGxB/2Og5nKHa7g+L8jCPGVJS3F4vFID7+8G1K9VLiLXKKCA8Px1taiGkGDjq3+QC/z4u3vOSUnJoRExODZ9u6I9YrK8zBYjFOiJXN/6xzzjmHVSuW89lnn/HNN1PJzomgID+PnNw89v34Bbn/v/harZgY7rj1Zm6++eZT8jUWERE5kRUXlxAdW3Uam9/vJW3FTGJqtyGpaV/MgI+Ap4QDs35tdidN2l9AYUE2G1fOJLFeu8P+PecpK6BB/RTWbdhEaVEO7pCoQ9bdvWURXbt0pl69en/7/uSv01BzkVNE//798ZcVkpO+6bD1MreswIKf/v37H7beyeiCC86nOGMbJfn7Dltvz/pFJMTF0blz5+MU2bERHBzM8OHD+fjj//Ht7FksWrSIjRvWM3fOd3z+6SfMmjaV1StXcO+99yrpFhERqQG1YmMpKaz6d0jGjlV4yktIbNAdgIAZAAwsv+sZdzqdJKR0pqQoh+y9aYe8RmlRDvnZW7j++uuonRDPmkWf4POWHbTu1nU/Upy3gxtv/MffuzH529TjLXKKSE1NpW3bNqz5dQZhsXUPvqp5SQG7Vn7P2X3POiU/9bzgggt48KExbP75C1qcOxKLteo/cfl7t5G9eSn3330Hdru9BqI8tiwWC61btz7q80zT5Oeff+bzzz8nOzub4OBg+vbty8CBA3E4HNUQqYiIyKlv6NAhPP3sS/ja9sNmd1WU5+/biTs4FldwNLB/m1On04FhMSqdH5vQgDS7iz07VhKTUHXdnkDAz/rl3xATFcnQoUNp27YtF19yKYu/fY3E+p2JS2qJxWonP3sn6ZsXUpidxl13/ueQHS5ZWVlMmTKFHTt2YLPZSE1NZcCAAafE30gnGq1qLnIKWbduHQPPu4Biv53kdmcTndQUw2Ih4PeTtX01O5bNJi7CzYzp06hTp05Nh1stfv75Z4ZcehkBdyR12vSueAblJQXsWb+IvavncWaPLnz8v//hdB58QZJT3caNG7n6mmtZvWYtjuAo7MGR+D0llOTuJjE+jldefom+ffvWdJgiIiInnfT0dDp07IwrogEtOg+pmOu9dtHnZO/dTsvu1+H3leP3lRMVFVX1w27TZM5nj+L3FtGozXnUTjkDhzMI0zTJydzM1nXf4y/N4MMPJ9KnTx8A0tLSGDt2LF9++TVl5R5ME6xWgzZtWnPrLTdz4YUXVomzvLyc++67nw8//Iiych9BITEEAj5Ki7OJj4/jkYcf4tJLL63253Wy03ZiIqex9evXc+s/b+PXJUux2N3Y3SF4SgrAV07PHt15+eWXSEpKqukwq9WSJUu4+557WbJ0GVjtWO0OvKXFhAS5uWr4FTz44IO4XK4jN3QK2rp1K+f2609+uYX6Hc8nIj4Fw9j/aXtxXgZbFs+gPHsLH304Scm3iIjIX/DVV19xzbXXYw+OJ6lJd2ISm7B93U9sWjGLVj1uxGK1EhISQkhISJVzS4tzWTjjebp368TSpcspLffiCorA7y3D5y2lRfOmPP30U3Tr1q3KuZmZmaxYsQKv10tSUhItW7as+B3/e16vlyuuHM7s2d+T3Lg3dep3wO7YP1KyKD+DLet+JC9rLc8++zSjRo069g/oFKLEW0RYvnw5M2fOpKCggKioKAYOHEjTpofe3/tYKS0tZceOHZimSZ06dQ76S+V4Wb58OT///DNlZWUkJCRw3nnnnfb/TlxxxRXMmruItgNvxO6suviLGQiw+ruJhFkKWb5sqYaaiYiI/AXz5s3jscefYPHiJfj8AUzTpLSkiORm59CgZW/c7qpTAgE2Lp9OWe5aZs+awcqVK/nll18wTZPi4mK2b9/B7j17MYAWLZoxYsQIzjrrLKxW61HF9sQTT/D4409Ru35nYuIaEZvQpNL0PNM0Wb98KrkZy1ny66JTdpTksaDEW0SOux07dvDWW2/x4Uf/o6CwABMIdgcx9NJLuOGGG2jUqFFNh3ja2759O6kdOlIn9XwSG3c4ZL2inD2snPoqE8eP4/zzzz+OEYqIiJxaVq1axYoVK/D7/cyYMYMZs+bQovOVRMc3rFJ3746VrFv8CQ3rJ7NzVzperx/TNCkrK8U0A4RGJhKb1AoDKNi3jeL8dDqckcqHkyZSq1YtfD4fpmke8kPzlStXMmbMw3wzdRoYVqw2JwG/D6crmORGXWnQ9MyKofE+bzm/zHyW/9x+M/fc83/s3XV0VEf7wPHvXc1uNu6uhEBwd4oXLdYCxaW0UHcvdaG/ljoUKE5xChR3d5cEjRF3X9/7+yMlNG8EL6XczznvOW93586dWSDZ587M87x9Lz+iB5oUeEskkhsyGAysXr2aPXv2oNfr8fb2ZsCAATRs2LDSbUnVOX78OI8PGkxekRG38Ma4BkQgCDLyUi6TefEoGrmNhQvm0a5du3s0G8nNmDdvHs+/9CothnyAXFF9ArXja35kSN8uTJky5R8anUQikUgk/21Go5FRo0axYdNWnD1r4hPcCDuNI/riPFLjjpCTfhGr1YyDawB+ES1x844gLz+f3PQrZF09haEwg7qtBuET0gCAvMx4zu37HXcXLS6urly5fAWA0LBQxowexZAhQ8rio0OHDjHw8UEYbXY4+dTH3a8eCqUd+qIs0uOPkJlwFJ+AOtRvPrgs+D57dCXujgYO7N97Xz6vB8GtxKJSVnOJ5CG0atUqXnvjTTKzstG6+yMo1ZgLdjH11+k0b9aMmTOm4+fnd1N9ZWVlMeTJoZQIWhoOmIjib9nUnbyD8K/blphtCxk2fCR7du8kKCjoXk1LcgPFxcXIFaobBt0AcpWG4uLif2BUEolEIpE8HNRqNfPmzWPhwoX89tssoo8uxmYTkckEateKpDBHjqtvbeq2fRKZTI5erwe5Gs/gpngFNyPu1BrOHliKzsUbB2dvVHYOmK02YuOv4oUrgfV7AZCRdoU33/6AqdN+ZdnSJfj7+zNy5GhElRsNWgwhL78Qmbx0VVyjcye4Tncc3YK5cnw5Lu4HCarRqnS8Gkfy89Pv2+f1XyPV8ZZIHjIrV65k7FPjMdn7UO+JV6jbbyJ1eo2lweDXCOk0jCNnL9CzV2/S02/uB+3vv/9OelYutToPLxd0XyNXqqjVaShFRguzZ8+uti+r1Up8fDznz58nJyfntuYnqZqHhwcWsxFjSUG17UTRhqk4Fw8Pj39oZBKJRCKRPByUSiWjRo1i9+5dHDt6mF07t3HyxDG6desKMjVRrQchk5We2S4p0SOTKZDJ5AgyGcH1eyNXarl6YT9mk55j22YiyFREdZhAYN2e+IY3xS+8KXXbDKZpz5dJy9Yz8PEnWLhwIanpGUQ26YdSaQcIINrKjcvVpxYuPrWJv7Qf8a/3DMV5uLq4/NMf0X+WFHhLJA+RwsJCXn71NXRBdanZZQgaJ/ey9wSZDLfgWtTuNZ6r6Tl88cUXN9XnnHnzcQ6KQqWpOomaXKnCLawR8xYsxGKxVDquH3/8kcZNmtKoSTNatW5LZK3ajBgxkv3799/6RCWV6tq1K04OOlLOH662XU7SJaz6fPr37/8PjUwikUgkkoeLIAgEBwdTr149AgICWLBwEe6BDVD8tStNFEuzj8tk1zcoy2RyPIIakRp3guTLR9AX5xPRYigaB4/S89226yeINfbO1Gs/ioSrKfz08884uoeidXBDrpCjVCiwWs0VxuQZ2JiSomzyc5Mxm/TkpMfQr99j9/7DeEhIgbdE8hBZsWIFeQVFBDd/tMpz3HYOznjUbsGy5SvJy8sre91sNrN69Wr69etPeERNwiNq0qt3H65cvoyTd/AN7+3kHUx+fj65ubnlXs/MzKRnr9588NFnFOBCRLth1O7yFD71urN591F69+nLr7/+eifTlvzF0dGR4cOeJO3CPgoyr1baxlhSSNyRtTRu3IhGjRr9wyOUSCQSieThYzabycrKwtHFt+Kb//N1TevkjdVi4urFg7j4RKK2v7YiLf71v+vs7J1w9a3DlStx2Nm7Xu9Dq8Vms2D7n+DbTueGKIJRX8iF0xtQq+UMGzbsLsxQAtIZb4nkobJ12zbsvYJR65yqbedVszGpx7eyf/9+evToQXp6OoMGD+HEqdPYewXjGNgQgGOXLlFUXExBfj5eNhsyWdXP8my20pVuhaJ8uYoRI0cRfSmB+j0mYu/sVfaek2cQfpHNuXJ0A2+/+z7BwcF069btTqYvAd577z1OnDzFwS2/4VWzFb6RzbGzd8Js1JN+5QQp0XvwdtUxY/qvt5xkTyKRSCQSya2Ty+XIZTIsFmPZa4IAMpkMm83G36uF2SwmRFGkpCgbr/A2AIg2K4IgQxAqfg9z94sg+eJ+zMbreVs0Wg1GkxGDwYDcZkOuUCIIMiymYhBtxMbswKzP5K23XiczMxMHBwe02oolSCW3RlrxlkgeIkWFRcjtbvyDU6mxL6sZWVJSwuNPDOLspXhq95lInd7jCWzUkcBGHanb52kcvYPJS7pATk4O1RVJyEmIJiQ4GGdn57LXDhw4wMFDh6nRckC5oPsaQRAIa9IdjVsg333/w23N+W6Ijo7mjTfeoHZUHQICg6hXvyEff/wx8fHx921Mt0ur1bJi+TKee2YchuQTHFsxmf0LPuDQ4k9IO7OZvj06sWnjBoKDg+/3UCUSiUQieSjIZDJatWpJ1tWz5V7XaDXYrGbEv61kZyefw8HFp3QhXBAQEbFZzWi0Gqp6Xq5QysnPuITZpC97zdnJGZ29PaLNjMlYhMlYRHr8MaxWExZDJlarhc+/mEy7dh2IiqrLe++9R0pKyj2Y/cNDCrwlkoeIp6cH5oIbJy0ryctEJpPh7u7O8uXLOXXmHDUfHYWDp3+FtgEN21OcmUBhZlJp9s1K6POzyEuIZuyY0eVWURcsWIBK54aLb8ValtcIgoBfZCsOHT7C+fPnb2KWd48oinz99de0bfcIs+YvxWYfiktIG/QKb777aTrNW7Ri4cKF/+iY7gatVssnn3zC2TOnmTfnN76Z/Dkzfv2FM6dOMnPGjJvOaC+RSCQSieTuGDNmNEU5iWSnXS57TavRIhMELCY9IiJFuUnkZ1wiMLI1Gp0bBZmxWEx6EErbViYn7QqBAYGoVXKunNl6/Q0BdA46PDw9cHJyQibqyU09jVIhQ6FyIaxWDxq3Gk+DFmPROtdh2vR5dOrUhZiYmHv9UfxnSVvNJRJK6yr++eefHDt2DIvFQlBQEG3btmXr1q1cunQJmUxGnTp1GDRoEG5ubvd7uLetf//+LF2+ksLMZBw8qg6u0s4dwtvLkzZt2tC5Sxcc/Gti7+pdaVvP8AYkn95P4v6VyGQDCKpZv9z7RdmpXNi2gIjwEIYOHVruvUuXr2DvGnDDLc1OnkFYrTbi4+OJjIy8ydneuenTp/P5F5Pxq92BoNrtkf1tr5e1UQ8uHVvPCy++jJOTE7169frHxnW36HQ6HntMSpoikUgkEsn91r17d7p07si2Hb8T3vgxvALrIpfLcHZxJjcnh6zE0ySeXY/O2RMHZx+0jm5kJp7EK6w5nt4BKBTyCn0a9UVkJ53h/Xdex8nJidffeItoi5nQOh2xs3cGSiuZFGRd4dLxNViMxfgFNaVek4FlmdUBnF0DCA5vxYkDc3niicEcPLgfe3v7f+qj+c8QxOr2hj4AbqVouURSmYULF/LhR5+QkZmF1tkLQSYnLzMJk74YhUKJm18EgiCjODcJO5Wc556dyNtvv13teeZ/K4vFQrPmLUgpMFG75zgUarsKbXKTLnNp01zee+t1XnjhBXz9A/Bt0QfvyKZV9msqKeL4su8pycvAIygSJ78aCIKMgtQrFKXHUTuyZlkdyb/r3qMn51P01G43qNpxG4vzObJyMsuXLqJLly63N/lbVFxcTJ269VE41yCyeeXBqSiKnNo5D29HG4cOHngg/07crNTUVBYsWMCyFSvJycnB0cGBXj17MHLkSMLCwu738CQSiUQieeAVFxfzzDPPsG79RhRqRxw9QgGB/MxYivLSARtqtR2CIEOlVGCxWpFr3GjYYTRqbfk4yGQo4tTOuThrRXbv2oGHhwdz585l0ocfk5tXgM7FH5lcRXF+CoaiXGRyAYsZgmu0ITC0OTqHiiVFS4pzOLjzB376cYqUdO0vtxKL/ne/JUokN2H69Ok8/8JLWLR+NOrzMo16vUBwq6FEdHyagIa9QKFGRKB+x9E0e+x1XIJb8vU33/HWW29Ve57530qhUDBv7hy0op4zq34mLeYIVktpRkt9fjax+9dxadNcunbqwIsvvlha+ksEQVbxKerfqbQ6Qlp2R2unplmtIKwppzEnnaBhuA+zZvzKrp07KgTdAE2bNKYw/Qo2a8USY3+XmRiNSqWgTp06tz/5W7Rq1Spy8/IJimpXZRtBEAiOas/ly7Hs3bv3HxvbP2358uU0atyUz7+eQqZFh9K/IflKL36aPofmLVrx448/3u8hSiQSiUTywLO3t2f+/Pls37aFJ5/oTZAHBLrbGNT/UXbv2k5KchLbt21h65aNxMScY9/e3Xg6Kzm8fgrRB1aQnnCG9IQzxBz6g0Nrv8FJY2PZ0sV4eJQG0SNHjuTsmVP88N3/0atLM1y1Bkwl+ajU9mgdQnFyr0FSwkl2b57CiUOLsFhM5cantXfF2S2cefPm34+P54EnbTWXPFRsNhtQmsQiPj6e996fhEeNVoQ37QGA3mDAaDCgtnfBO7IN9m7+XN4zj6SLBwms1ZqwBp2x0zoy87fZ9OvXj5YtW97P6dyWOnXqsHH9OiZNmsTmrauJ3/MHMoUC0WrBzdWF119+gTfeeAOlUolCocDL24uCtAS8IqovLVWYcRUfX1/++GPlTa/8Dh8+nJ9/mUbKxaP412pRaRurxUTqhQP06tEDHx+fW57v7Tp58iRaJy80Opdq2zl5BCFT2nHq1CnatSsfpIuiyMGDB/n999+Ji09ApVLSrGlThg8f/sCco968eTPPTHwWh8C6RLXsjUJ1fZeErUUPEo5v54MPP0an0zF69Oj7OFKJRCKRSB5MFouFzZs3s2vXLkpKSvDy8mL8+PHUrl27QlsXl+vfS1xdXdm1cwfz5s1j1qw5XDl6ClEEb29v3nv7NYYPH46np2e563U6HSNGjODYsWMkXk2lRlQPfAIakZdfhFKpRUQkK+0s8Rc3Yzown6atR5Xbdu7k4k9s7Kl792H8h0mBt+Q/T6/Xs3LlSmbNnsPZs2cRRZHQ0FC8PD2wiDJCGnYua1tSUoIgkyOTKwFw8AjGybcWV88fICCyFYIg4FujKckX9jF7zpwHMvAGiIiIYNGiRcTHx7N3714MBgOenp506dIFjUZT1k4QBEaNGM7nX0/B3PxRlGpNpf1ZjHpyr5zkjZeeu6Xt1jVq1GD48KHMmfc7cqUK77AG5UphmPRFxOxejBojr7/+2u1P+DZYrVYE2Y1/RAqCgEwmx2q1lns9PT2dkaNGc+jwEVRaV7QuvlitFnbu+ZFvp3zH8889y7vvvvuv3p5+4cIFnn/hBUS1E3512pQLugFkcgUhTbti0hfxyaefM3jw4HJ/fyQSiUQikVRv69atvPzyq1xNSkbj4IlcqcZQnMuU736gfbu2TJ36C15e1yu/2Gw29u3bx+zZczhw8BBms5nQkGBee+0VOnfuTFFREcXFxWg0mnJB+t/t27ePBQsWEVH3MfwCG2KxWIEiQEQmU+Dp2wC1xoWY4/NJTjxBQHCTv93fikKpvMefyn+TFHhL/tNSU1N5YtBgTp85h5NPBN51uyEIMtLSYzm2cTPuoU0R/zpxYbPZMJtMyJXlgwu34AZc2beQkoJM7J08EQQBj6D6bNy4+X5M6a4KDg6+YdmoESNGMPXX6ZzfNI9aj46sEHxZTAbOb16As07DyJEjb3kMX0+ejNlkYtHipSSd3YlbYB3kChVFuWnkJZ3D1cWJ+YsWVvrU90YsFgtbtmxh165d6PV6PD09GTBgwE0laAsLC6Mk/3fMJj1KVdXBZHF+JiZDEaGhoWWv5efn07dfPy7Fp1Kr3QhcfMLLEshZzEaSzh/gmyk/YDab+fjjj295Xvfanj17mDz5a3bv2Uux3oBMruDIsik4+YQQ3Lgzrv41yrUPbPAIJ1ccY9WqVQwZMuQ+jVoikUgkkgfL5s2bGTZ8BHbOITTsPBEHV1+gNLjNvBrNngPr6dmrNxvWr8PDw4OSkhKefvoZ1q7bgJ3OA1ffWmhkCi4kXuW5518uq/ctCHIEAby8vBg9agTjx48vV8511qzZqLXu+AY0AErriMtkMqw2C4q/Fh2cXIJwdgsn4cpB/IMaIwgCoiiSnX6eLp2a/ZMf03+GlFxN8p9lMBjo0rUb568kUbvjCHQu5bNy71rwEc6B9fCJbIO7mxuiKJKZmYlCpUUmv/5MSp+fTsyWqTTv+SxOHoEAJF88zNXT60hPS72jFcu4uDiysrKwt7cnIiICheLf9SzMbDazYcMGfvr5Z/bs3YfVBg6eAfg3bI+dgwu5Vy+Rc+kYOpWMRb8vuO0dAKIocvjwYWbPns3O3XswGgz4+fnx5JDBDB48GFdX11vuc8uWLbzy6mtcTUrGzsEDudIOY3EOollPhw7t+eXnnytsv/q7jIwM6tVvgEeN9gRHta+y3flDqxGK4zl75hQqlQqAL7/8ksnf/ECDRyeidXSv9LrE6L0kn9nMvr2771qmdrPZzJ49e0hLS0OtVtOiRYtb3tK+fPlyJjz7HAoHb1zDmiB38ERp50BheiyZFw9Qkp1MrUcG4l2zSbnrTq36ieEDujN58uS7MheJRCKRSP7LDAYDdevWx6Rwp16boQiVfJ/UF+VyYts0hg3ux5QpUxgxYiTrNmwhounjePjXKnuoX1JcTGZ6EvGn1mDS59Gw/XDkSjVpCafJTjpFeGggq1f9UXZkLzAwGBevpoRFPlJ2r6LCIoqKi1Gp7OGv3YdZaee4fO4POvd6F5XanozU85w7sZhVfyynffuqvxs9TG4lFv13fcuXSO6iVatWcfrsORr0eL5C0A2lCcGsRj02q42SkpK/yiIIiKKtXDtjcS4IoFRfL5tQUpiFi4trpUF3SkoKZ86cwWq1EhoaWiGoEkWRFStW8Ov0GRw7fgKbKCIAAQH+jB09iqeeegqttvJajP+kS5cuMeTJoVy6EovWMxDveu0w6ovJiTvH2XWzUSnluHt48tSIIYwfP56QkJDbvpcgCDRv3pzmzZvflbFv2rSJYSNGYucWQr3uz+Lg9tcTZKuVzISz7Ny7gV69erNhw/oqy8N5enoyYsRwps+cg87ZG3e/mhXapFw+SmbcET795MOyoNtsNjNn7nzcgupXGXQD+NdsScr5vcydO5cvvvjijuZrtVqZNm0av0z9leSUFKxWsXQrmFxGk8YN+eabb2jQoMEN+7l48SLPPf8iOr861Gw7gJISPYVFRchVdjgH1MbJP5Kko2s5v2s5Og9/dH8rMSfI5ZjN5juah0QikUgkD4vVq1eTkZVN0+4jKg26ATQ6F3zCWrBs+Qq6d+/OuvUbqNF0EJ4B13cBGg1GCgoL0Tp4Etl6NOd2/kJmygVqNX0MF88QSiLbcGrnLIYOHc7WrZsRBAGDwYBSVf67ptZei96gx2wuQaHUIAhyFH/tArVYTOTmJBJzciWPdutM27Zt790H8x8mBd6S/6xZs+fg6FWjXHDwd17B9Yg/vQvv2u0pKdFjr9NhZ6fGYDQhVyiB0qeIWXHHcXT1ReNQuupqs1rISjjFM+OGl+vv7NmzTJ78NRs2bcJkKs3SLZfLaN6sKS+/9CJdu3ZFFEVef/11Zs6ai847jNC2g9E6uWM2FJN+6TgffvIFa9euY8WK5fd1B0dycjJ9+vYjW28jqv/z6NyvJzWzWswkn95HypHNDB/6JJ9//vl9G2dl9Ho9zz73PFqPcKIeKf8EWSaX4xVaH0d3f05tnMYXX3zB//3f/1XZ16effEJqSip/rluAo2c43qGNUNk5oC/KIT32GMW5iYx/agzPPvts2TXnz58nPSODOh37VDtOmVyOi18ttm3feUfztVqtTJgwkaXLV+Ia3Iiwdl1BpcNiNpKfcoGDJw7RrHlLRo4YxjfffFPt36vZs2djEZREtOmPIJMhl8sBEUQbCDIEQYZf454UpF4i+ex+arbrD5QeN9Dnpd/RwxeJRCKRSB4mW7ZsQecagNah8gWAa3xDG5MYvY1vv52CUuOKZ0BUufeLi4sRZHLkSjVywD2wESmxh6nR4FEUSjVaBzcimw3gxJ7Z7Nmzh/bt2+Pu4UFxYWa5fmQyGa4uruTk5mI2lSAIcooL07DZLJw8OA+TMZfu3bsyffr0f3V+mn8z6VOT/CeJosiZM2dx8Yuoso1fZHMQraSe24HVaka02UpXmkUbFnNp+YTcpGgK0i6VJVYTRZGLR9chE02MGjWqrK+9e/fyaPeebNp5CL/6PWja/02aDXyH8FaDOX05ncFPDmPGjBlMnz6dmbPmENyiL3W7jcYjOAp7Fy+cfUKp2W4gUd3Hc+x0DBP/FsjdD1OmTCEjr4javcaVC7oB5AolgY0ewb/5o/w6YyaxsbE37C81NZXTp09z+fLlcknIEhMT+eyzz2jZsjW1o+rSrv0jfPfdd2RkZNz22FevXk1mdg5hTXpU/QTZ0Q2viBYsWbqMgoKCKvtSqVTMnj2LqT//QLifPVcOLyN6128knFhF07pBLJg3h6+++qpsqxeUbh0TRZCrKtZI/18KlQa9Xn/rk/ybWbNmsXTFSsJaPY5HZHtQOSJT2KFxcMc7sg21uk5E4xrAnHkL6PZod7777js6dOxErdp1aNykKW+99RYxMTHYbDYWLV6KW2gjZH8dElPbqZEJMqzm6+VEZDI5riGNSL90HPGvKgFpF46hlMETTzxxR3ORSCQSieRhkV9QgEKlu2E7lUaHaBO5cPESLt41y33nsFgsmMwm5HJV2Wsu3pFYzEZKCq4H1s6eIdjpPFiwcCEAQwY/QUbKaazW8jvV5Ao57u7uODs5oVDISE8+joNOQ88e7Viz5g8WLFjw1w5Rye2QVrwl/1miKPK3n00VqLWO1Gr7OGd3/I6pJA9V0+64+oSi0+nIyUgmJ/EMWVcO4x1SD5+wRuSkXiYxeg8l2XF8/923hIeHA5Cdnc3wEaMQ7L1p2GH4X6vlpTyConAPrM2Voxt46+13cXJyxCWkIT7/cz72Ggd3P4Kb9WTDhpVcvHiRiIiqHxzcKwUFBSxeugz3yOaotFX/QvCt05K0U7uZO3cuH330UYX3RVFkw4YN/PrrdPbu2//XlnqBkJAgxo4ZjSiKfPTxp1hEOS6+tVE7enM1N5ePPv2SyV9/wy8//0jfvn1vefybNm3C3i0IjWP1T5B9ajQh+cx29uzZQ8+ePatsp1AoGDJkCIMHDyYtLY3CwkJcXFzKamL+Ly8vL+QygeLcNHTOXpW2uaY4L42o4NsvK2a1Wpn263RcAupi5xqEwWBEYadFEK6X/VCotQQ368+5jT9w+MhRTp46i3dgfewdIykylTBzzmJmzJzFhGfGU1hYiKvr9TELgoC9vT2FRYUI1uvZ/jVOnljNJqxmI4XZKSQd38zIoYPx9q58d4lEIpFIJJLrRFHEbDJRmJtGRkZpgCxXyNFqtNjZqcsF1/qiXGQyAQHK5SACyhYz/l7uS/jr/9ts1xc6BEHA3sWfK1dKF0tGjBjBL1N/JfrEGuo06lduoUIQSh+8J8buQSk3sH7durt2FPBhJwXekgeSKIqcOHGC1atXk5WVhU6no3PnznTs2BG5XI4gCNSoEU5iWhz+tVpV2Y9PeCPSY0+Rk3iGCztmI1NpkMnllBTmYrWYkQH5aRfZu/QjrGYjjo4OtGjelPT0dFJSUvD19WXRokXkFhTRrN/EckH3NYIgENakOznJ50lKSqR566HVzs0jpB6JxzayaNEiJk2adMufiyiKN9wClJ6ezoIFC1iydBkZGZlotBq6du7EqFGjKC4upqi4hODw+tX2IVMocfCPYO++/ZWO4+OPP+a7H37C3jmQ0Ib9sXd0x2zSkxZ/gjfeeg+TsYTAqEeIaNQDufL6k1qzSc/FI3/y1Phnyv5cb0V+QQEKuxs/jVVpdIiiSFFR0U31KwgCPj4+N6wlHhgYSKtWLTkecxivkKo/Q0NxHvlplxj8ZtVb3W/k2LFjxMbFE9lxDAaDEblSXS7ovsZms4Ao4uwZQXDtR/H1D0Ymv5bNvweJF/fz08+/YjbrsZgM5a61t7fHYrWg1+uxyczIFEosphJEm40Lu5ZTmHKRLp0e4auvvrzteUgkEolE8rAoLi5m3LhxbN22A6PRTElBJlonHywWK3l5eSgUClxcXFAoSn+fJ106hKurC3WianMi+mq5vipbXyrKuYogyNDoypcSs9ksqJRqAIKCgvjl5x95+ukJHNmbQ1B4azy8ayIgkJ0VR+KV/RTkXuGTjz+Ugu67SNpqLnngxMfH82j3HnTu0o1fZsxn9eaDzF20mscHPUmTps3Yt28fAGNGjyI/5Tz6wpwq+zKb9Bhyk3nrzTf4c80fvP/WK7z58rPM+W0GmelprF+3lq6d2iMTLSCTI2rcOXk5nc+++pb6DRvx4osvMX/BQlz8o1BWE+wJgoBbSCOsNhtqe+dq5yeTy1E7eZGYmHhTn4fNZmPbtm0MGzYcv4BAPL19qBVVh08//bTSPjZu3Ejjps349KtvyLA6oA1rgcW1Br+vXEenLt2YOnUqNputXDBcFblShdFoqvD6/Pnz+e77nwiq051GnZ7CJ6QBjm7+uPnUIKrF44Q2HoxMaY+hKK/CfZQqDbVbDUTtHMgHH0ziVgsveLi7Yy7Jv2E7Q2EOMplwWxnTb2TihGfQ5ySScHZ3pe9bzEZi9i3Dy8ONAQMG3PZ9MjIysNlE5Hal57ZllTz4AUg5sw17Rx9C6/dDobbHYLgeXMtkcoIj2+IX0Q6bDTIuHSt/sQBOjk44OzmjkMuwmvTkxJ4Am4VAJ4Ep//cVvy9ciJ3djbfWSyQSiUTyMLPZbIwZO45NW3dRp9Vw7J08SYrZiiCAUqVFaWeP1WYjJzcHq81GftZV0uOOMGrkcEaNGklBdhyFeWll/SmUSgQErNbS3EKiaCMj4Qie/rVQa67ndLFZLeRnXKZZs6Zlr/Xr14/ly5dSL8qP8yeXsX3tR2xb+yFnj8zH31vJ7Fkzy+Wwkdw5acVb8kBJSkqiZ8/eZOYbiWj9JO6+Ncu2x+RnXSX2xCYGPv4Ey5YuYeDAgXz/w4+c2z6Pup1Ho7Z3KteX2aTn3Pb5OOnsGDt2LP7+/rRp06Zcm127drFp63a8arcnoG4bVJrSrdcWk4G0S8eYu3AxFqOe4Ca9bjh2exdvBAQMRXko7arPWi5aLSiVlQdRf2cymZj47LMsX7kKtasXLnXbobDTUJKVxjc/T+PnqdOYPm0qvXv3BuDAgQOMHD0GtWc4jdoNQKG+Xp9abNqNlOiD/LnuT8wmA4UZSah1TlXdGgB9dipBTcrX17ZarXz/w4+4+EQRWLPibgODwYidgyfB9XoTd/IPinLTKmSdFwQZQVHtid49h/3799O6desbfhbX9OnThyXLVlCUk4rOterV6eQLh3Fzdb0nmTm7d+/O66+9wuT/+5b8zHj8a7bE0T0Am9VCRsJZUi8ewE5uZuGyJeh0Nz7fVRWtVosggElfDHINlT37NhRmU5gRS3Dt7sgVChBFrH/bfnZNUM3WXL2wm/zUK+QkXcTV/2/HHASw09hhp7Ej6+oFrEXp/PD9FJ5++uly2+EkEolEIpFUbffu3WzevJVaLZ7EwzcSO60TR7bPIGbvLHxqtMXFpxZKlZaSggwuJhwlK+EwLZs14vXXX0cul1OzRhjR+xdR/5Ex2GmdkMlk2NnZYTAakcnlxJ9eh6Eoi3qtyj/UT7p8GKwGRo4cWe71du3a0a5dO86dO8fZs2ex2WyEh4fTpEkT6ff7PSAF3pIHyrvvvkdGXgmNuk4oC4KvcXIPoH7H0ZzaPptnn3ueY0ePsHzZUvoPGMixNVNwCaiLe0AkCAJ5qbFkxZ/AWadh8aKF+Pv7V7jXsWPH+OGnXwhs3AP/OuUDP4XKDv+o1midPDm2+icMJTferiyIVkCkID0eB3ffKtsZSwooyb5KkyYTbtjn62+8wfJVawjuMhi3sDrlfkhaWz3K5W3LGTf+aVatdKdly5Z89vnnCDoPanYcUpZAq2x8Mhl+dVphMZYQf2gdKaf24B4a9b+3LFOUlUJJ5lWGDPkEKN1efuDAAb744gvOnDlHZMuR5GTnoNFqsLOzKxub2WxCEOS4+kWRFLOF5MtHqNm0d4X+XbxCkSnsOHbs2C0F3l27diUoMIBLB1dTr8uYSlfu8zMTybxyhFdffPaerdS+/fbb1KhRo/Thz+55WG2lK/dqlYKePXrwxhuvU6tWrTu6R5MmTXDQ6chOPItzSOV5A4pzkkAUcXALQSZXYLWYK/1lqlRpcPYIQ2ZO4+LO3wlq2guv8IZlf09sVisZV04Sf/hPunfryrhx46RfyhKJRCKR3IJZs2Zjp/PE3ae0RKmTmz/NuzxDzNE1xB1fQbxMgUyhwmwoAtHCiy88x0cffYRGU7pQsmTJYvr268+xzT/i5l8Pz4A6gEBm4gUyE45jNhRQp+XjOHsEAyDabKTEHiP+zEaeGjuSsLCwSscVFRVFVFTV3/kkd4cUeEseGMnJyazfuBH/Ot0rBN3XyORywhp159SWqWzbto1u3bqxY/s25s2bx6zZc7iy7yQALi4uvPL8M4wePRo/v8qTW82ZMwe5xhG/qJZVjsnVvwZ29k5kxJ0komn3agOR7ISz6HT2pF8+jk9k8wqB7zVXT+9Gp9XcMEN0bGwsCxb+jl+rXriH163wvlypokbXQZxbMY3JX3/NF59/zv4Dhwhu+0SV9wbwq9Oa5JM7yE+6yNXjOwlo9EiFNqaSQi5vX0pEeBjdunVDr9fz9NPP8Oe69VhRgEyO1iUAs9WGKT+foqKiv84rKbi2cVwmk6N18qWkMLvScQiCgFyuuOXa0EqlktmzfqNvvwGc3DAN/7qP4BEYhUwux6gvJPXiEVKid9OyWWNeffXVW+r7Vg0cOJABAwZw8uRJEhMTUSqVNGzY8IbnxG+Wo6MjQwY/wYw5v6P1qoFCpUGQ/c+PdZsN0WYrTbYiyEC0oVapK+1PkClo3LgJbm5urFj5B0knt6B1DwIBSjITEE0lDOj7GD/88D0KhfTrQyKRSCSSW3H48BFcfWqV+77o4OxDs85PU5SXTlbaJWwWE2aTnvS4A4wfP7604s5fQkJC2LplMzNnzmTO3PlE7z0C/PWdyWYGhUBWSgz64lysFhM5KeewGAsZNeLfV/71YSR9c5I8MLZv347JbMU7tEG17Rzd/LBz8GTz5s1069YNNzc3Xn75ZV544QVyc3Ox2Wy4urreMHDYsHETbiH1EYTqUyH4RbXmyuH1pF05gU94o0rbFOWmkZd8jvFPjWP+gt+J3r6AiDYDyj1AsFnMJJzeRebFg3z+yUc3rOM9f/58RKUdXrUaV9lGJpPjXa81u3cuZ+PGjVisVtyCq3+iqVBrcPAJxVdr5crxLRQkX8YrqiU6D1+sZhOZl0+Tff4I3m6OLPp9IQqFgqeeGs+fGzYT1nYQJkMJF3avQKZQIpPJsNlsWIx6sjKzUKlUyOQyRNEGoohosyCTVX6WXF+Ug1FfSGBgYLXjrUyjRo1Yt3YNb7/9DgcOLOPKgZXIlSosRj32WjueGj2cDz/8sOwJ8r0kCAINGzakYcOG96T/1157jS1bt3Fp/2L8GnTH2a9W2d9Zs76QvOQYRJsFoz4HhVKFUqFEqap4jEG02dAXpBIe3pqvvvqKV155mQULFnAuOhqA2r3aMHz4cCIjI+/JPCQSiUQi+a+zWCwoZZUvfuicvcqqoeRlJZKRcAiLxVKhnYeHB2+//TavvvoqCQkJmM1mfHx8UCgUrFixgt9/X8TVpPPYqdU8+URvRo0aRYMGDe7ltCQ3SQq8JQ+MwsJCFEo1CmXlq3V/p1DbV8hWLZeX1ia8WcXFJbjb3fj8rbNvGAq5jCuHVmK1mPCt0aSs3IMoiuQkX+TywRXUrxvFpEmTePTRRxk9dhzHlk3G0S8SrZM7JkMx+VfPIVhNvP/OW0yYMAGDwcCePXvIzc3FwcGB1q1blwvGT585i9Y7pMqEWte4BNckzmr7K9GagCC78fZgQSanVq0IJk2axE8//8KR7Yuw2mwIgoCjzp5xwwfx4osv4uvry6FDh1j951pC2zyBR0hdinJSQYDc1PM4+5QGaXK1BouhGJPZDObSzOuG4jwKcxLwCupa6RiSLhzEzdWl2lJf1albty5r1/5JdHQ0u3fvRq/X4+XlRc+ePXFyqv7s+oPE09OTP9espv+AARzfswA7Bw+0rr7YLCaKMuNBJkOp0ZERf4SQuj1xdHKutJ/MlBgspgKefPJJACIjI/n000//uYlIJBKJRPIfFxISzMXEqzdsl5+ViFqlwte36qOJKpWKGjVqlHtt1KhRjBo16k6HKblH7lng/dlnn7Fu3TpOnjyJSqUiLy+vQpvExEQmTJjAjh070Ol0jBw5ki+++ELawiiplJubGxaTAZO+qMqt5lCa0dFckoebW/V1nG/E1dUVfUHl26D/zlCYg729jieeGMjSpctJOrMNB69wBEFGcfZVzCU5tG7VkjmzZ2Fvb0/Hjh05efwY8+bNY8mSpWRlnMPdxYURz4xl5MiReHt789lnnzF7zjyyc3Kw2UQEQcDJUceTQwbz5ptv4uLiUlqf8SaO2F5b/fT09EQuEyhIT8TJO7jK9jarFWNOCiEhnenduze9e/fm4sWLpKSkoFKpqFOnTrkHAHPmzEFp74pHSB0AdK4+OHgEkHZlP05eEWUPIWQKFaLVjFJtj9lkIPXyLkSrBb/wimeT0xPOknb5IG+/+Wq5LVa3o3bt2tSuXfvGDR9g/v7+HDp4kBkzZvD2O++Qm3gKpVqL1skDpVpNYUY8uann8PQJx8urXYXrC/PSuHRiDc2bNWXHjh0sXrwYjUZD27Ztad++/Q3L00kkEolEIrmxESOG8/wLr1BSlINWV3lVFZvNSmr8Efo91vs/tVAguYeBt8lk4vHHH6dly5b89ttvFd63Wq307NkTb29v9u/fT2pqKiNGjECpVEpnECSV6tq1Kzp7DcmXjxBSt0OV7XJSr2DS59GnT59q+8vMzCQvLw8HBwe8vb0rvP/E4wP4fupMrE0frbQ+9zUZl47QpUsnpv7yC6+8/DLz5s3j2PET2KxWwtt0Yfjw4TRr1qzsPE9MTAy//vory5avRP9XWSelSoVOp0OpVDJgwEAOHDmOZ1gzGrZsikbnUno2+dJRZsxeyK7de/hzzWoia9Zk95HF2GxWZFVsWwLIS7qCQiajR48erFj5Byln9lYbeGfGnsZmKmHo0Ov1xiMiIoiIiKi0/YFDh3H2jywL8G2iDbearYjfu4zY4ysJrt8bhUqDTK7AYjFhs1nJST5F2pV9iDYLF4+uxSe0MWqNA/qiXFKvHCE//RJPPN7/np/B/i8RBIHx48czevRoNmzYwLp168jJycXV1YUePT7lxIkT/PDjz+RlXMQntCk6R0/MphJSE06RnXwGO5WcQ0eOcOj4aVQ6Z6xmA99+/yM1wkL59pv/uyfZ3yUSiUQieZj079+fyV//H2f3/06DdqNQ/c/OSpvNSvThlWAp4plnnrlPo5TcK4J4q0Vyb9GcOXN46aWXKqx4b9iwgV69epGSkoKXV+l5hmnTpvHmm2+SmZmJSnXjGsIABQUFODk5kZ+ff8MzsZIH3yuvvMKcBUup32lchRJUAGZjCSe3ziAyxJsdO7ZXSHYmiiJr165lxoyZ7DtwAFEsXU1u1LAh48aOYeDAgcj/SjwWHx9P8xatsPevS0SbvpWe9U46u4/kExtYtmQxnTp1uuH4161bx7innsYst8O9ZhMcvYOwWS1kx50jL/Y0KsGG0SpQt9NYnDwCKlxfUpDF6c3T6dqpDe++8w5t2j2Cd4vuuIfXQWnvUCEAF0WR6FUzqevvxuZNG1m8eDETnn0en4ZdCWjQvkL/BemJXNg8h57dOjJ/3rwbzgegTr36mJ3CCG3SrXSMJSUUFBZQkp1Cwv4VINpw8YlCbe+KWZ9PXsZFLKZiXPzCKUq9TGhoCElJyYgiCDKBulG1GT/+KYYMGSKttN5l69ev59dfp7N33/6/dlKAj48PBn0xOUVGApo+imd4A+RKFaIoUpCeQOLRLdjyUvh94Xw6dux4v6cgkUgkEskDLSYmhgEDHicjuwCPgIZ4+tdGJpOTl5VAatwRRHMBU3/5if79+9/voUpuwq3Eovct8P7ggw9Ys2YNJ0+eLHstLi6O0NBQjh8/ftOJiKTA++FSUFBAn8f6cvrcBfwi2+Eb3gSVnT1Wi5n0+FNcjd6Fs72cdWv/rHDuxWaz8frrrzNrzjy0boF41WiCnc4FY0kB6ZePU5R+hb59ejFjxvSyGtqLFy/muedfRO0eTEDddjj7hiEIAoVZySSd3UdewmleffkF3n///QpjTUlJISUlBbVaTUREBBcvXqRLt+6ovMOJ6DioQmbxwqxkjsz/Cv+6XYhq0bPKDOmpV45z5eByhgx+gvkLf0dvMCJXKlHrnPGu2wLf+q1QauwRRRtxu9eSd/4wixcuoGvX0rPUX375JZP/71vULr541myK1sUTs6GEjEsnKEyKoWXzJixZvBgHB4eb+jN5rG8/jp5Pol73cQDk5eVhNP+1pdxQRHbsCXLjT2MszMZi1OMf1ZLAeu2wc3Tj0MKPmDHtFxo0aEBhYSEuLi6EhoZKZarusaSkJDIyMtBoNMybN49fZ82ndu+nsXfxqtDWZrMSs3k+WlMOp0+dxGg0smLFCmJiYoDSs+ADBw6UtsNJJBKJRHKTUlJSmDZtGgsW/k5eXj6iCGqVkt59ejHhmWdo1KjyZL23w2QysWnTJmJjY5HJZNSvX582bdqUW9y4thAluXW3Eovet8PUaWlpZSvd11z777S0tCqvMxqNGI3Gsv8uKCi4NwOU/Cs5OjqyZvUqPvjgA5YuW87Vs1tRqDRYTAbkcujSuRNffP45ISEhFa798ccf+W32PEKa98Unovy5Yq/Q+mQlxrDqz0X4TppUdtxh8ODBuLi48PEnnxK9bQ6iIEcmk2OzGAkM8GfSN5MrJLHYtm0bv0ydys5du7HaRATA3d0NFydHzDI1dSoJugEK068iV9rh5Fcbg9GIpor60nKlHUXFxSxYsQavJp2QO3pgNBooTo0j8ch2kk/swTuqGYWJ5xFL8vlm8ldlQTfAW2+9RZMmTZg+Yybbt6/BKtoQEKgRHsb7X3zK8OHDb6m29Yjhw9g57mmKc9Oxd/FCROTa4XOlnQ7v2m3ximzNhU2/onN2o3aHwUDpWXwQsFgs1KxZ86bvJ7lz/v7++Pv7U1RUxKLFS3GPbF5p0A2lmfFDW/bi5LJvGDt2LLv27KWoxICdW2l7w+x5fPDhxzz/7ATeeOMNaZeCRCKRSCQ34Ovry8cff8zbb79NXFwcFosFf39/XF0rP/d9O0RRZOrUqXz/w0+kp2egVNljs1mxWY2Eh4cyauQIEhISWLlyFQUFBTg4ONCnTy9Gjx5NvXr17to4JNfdUuD91ltv8dVXX1XbJiYm5p6Wm/niiy/46KOP7ln/kn8/R0dHvvvuOz744AM2btxIVlYWOp2Ojh07EhwcXOk1BoOBH378GfcazSoE3de4B9aiuG4HZs+Zx6uvvlqWnK1bt2507dqVQ4cOcebMGaxWK2FhYXTo0KFCIsAff/yRSR99gtrFl8Dm/dC5+WI1G0mPPcWps/uRKxSYivOxc6z4g9VUXIBS44DKzhF9SUmlgXdxXjpnd/2OLiiSsC6DcHF1Q0TEoDdQHByJvnZzrm5bTNLhLYwaMZwJEyZUunukc+fOdO7cmaysLLKystBqtfj7+99W0NSrVy9qhIdyfsfv1Ok2FrlcjmgyIyIiICDabCQdW4exIJPa7a9vmyrKTkUmCNVm7JTcW/v27SM3P5/6kU2rbWfn6IZNULBi1Rr8m3chtH4rVPalT3VNxYWknt7Pl19/Q2ZmJv/3f/8nPTWXSCQSieQmaDSae5IAVhRF3nnnHaZOm4FnQGOadHwCnaMnoiiSl53IpbPbePGlV9BoHAgMa02glzMGfQELF61m3vyFvP3WG7z66qvS7/O77JYC71dfffWGKepDQ0Nvqi9vb28OHz5c7rX09PSy96ry9ttv88orr5T9d0FBAQEBFc/CSv77XF1dy0of3cj69evJys6hYdtW1bbzrdmMlLM7WbZsWbmkFoIg0KJFC1q0aFHltRs2bGDSR5/gWbsdwY06l/thZe/mh513TRL2r+Ds+jk0fuIlhP8JcuUKJVaLEQSh0rqNAInn9iKo7fBt8xhyZWkeBAEBjUaDRqPB5uqCy4DxRC/+nkceeeSGRzbc3d1vqcRaZdRqNUsWL6Jvv/6cXP09zkH1ULr4o1Dbo89LI+vyUUwFWUS2G4Cz9/WdCMnRBwgM8JOSdt1H+fn5iKKI2r76beK5SZcwlBQS0PYxgpuXT2yosncgqGU37JxcmTV3Hj179pTOgkskEolEch9t3LiRab/OJKxuLwLCmpW9LggCdvaeBNTsgUyuIyvlJP7BjbDXlX4XrFGrI7EXd/PZ51/h4uLC2LFj79cU/pNuaXnLw8ODyMjIav93s0nRWrZsyZkzZ8jIyCh7bcuWLTg6Olb75EetVuPo6FjufxLJjcTGxqLWOqJ1rD7IVNrZo3HyJDY29pbv8cOPP6FxD6oQdF+j0joR2LwfxVmp5CReqPC+s38NbGYjBemXoZLrrWYTqbEncI5ohCCXo67k35pMkKFz9cIhMII5c28uOdrdEBYWxratW3jl+WeQ5V4hfvdCLmycRvKxDTi6etKozwR8al5fVU2/fJLcuJNMnPCMVD7wPnJxcUEQBAyFudW2Sz67DztXb1wjGlTZxrNWE1QuXsyePefuDlIikUgkEsktmfnbb9g7+ZcLuq8pKipCLlcSUvtR5Ao1ibHXF0IFmYywyEfw8GnAF19OxvBX9R3J3XHPDuMlJiZy8uRJEhMTsVqtnDx5kpMnT1JUVASUloaqXbs2w4cP59SpU2zatIn33nuPZ599FrVafa+GJXlIyWQybDYrN5NLULRZyzKb36yLFy9y6PARfCJbVBp0yxVyBEGGnbMnGldf0mIOV2jj4OmPg1cgqTG7kVfyL9NQko/VYsLOzQeFXI6qmn8nDj4hXLh48ZbmUFJSwt69e9myZQunTp26qc/q7zw9PXnvvfc4d/Y0WzdvJLJmDTRaDVpHd+RKFYbifHKSL3Fu6wJi9y1j5PAnGT9+/C3dQ3J3tWnTBjcXF9LOV/z7eI3NZiUrPhrH0DrYaTRVthMEAbeajdi0ZQtms/leDFcikUgkEskNZGdns2vXbnyCKiZoMxqNWK1W5AoVMrkCd996pFw9XaFdSERbMjOz+fPPP/+JIT807lng/cEHH9CwYUMmTZpEUVERDRs2pGHDhhw9ehQAuVzO2rVrkcvltGzZkmHDhjFixAg+/vjjezUkyUOsQYMGWIwlFGRerbadviCbkvx0GjRocEv9JyYmYrXZcPQMrPR9AQGtRoNotaBx9UWfn11pO8+IhpTkXCXu0HKKcssnGTQU5WG1mLHZLDg6OlLdqRvRZrvp89rZ2dm89957RNWpR6/H+jFw0BAe6diZVq3bMHfuXGw22031c41araZt27bs2b2Ll597BmtGDGf+/JnjyydzadtcApzgx++nMGXKFCkR132m0WgYOWIYWRcOU5iZXGkbi1GPzWxCZe+AnV31D0WVWgesVislJSX3YrgSiUQikUhuIC8vD5tNRGPvUuE9s9mMIMjKys+qNS6YjRV/Z9vr3NDq3Dh79uw9H+/D5J7t8ZwzZw5z5syptk1QUBDr16+/V0OQSMq0b9+esNBgEk/vok6nYVUmi0g8sxs3Fxf69OlzS/0rlUoEwGateqVPa69Fb9BjNeorfT8v6TKpJ7bTtk0rMrOyObnhR7Qu/ii1TlgMRRRmxiOXgTUnBbW64tahv8tPvECrBvVvOO7U1FT6PNaXKwnJuEc0pe4jDVGoNJTkZZAcc4gXX36V48eP31aQ7OLiwqRJk3jjjTc4deoUJSUleHp6EhUVJSXr+Bd57bXX2LtvP0c3zMS3QUe8ajZBqdYgijZyr14i8dhWEG0orCaEah/3gLEgF5VKhb29/T80eolEIpFIJH+n0+kQBAGjoeiGbc2mIhTKyh+qywT5LS++SKonHa6UPBTkcjkfvP8eY8Y+xaWDawhr2gO5Qln2vs1qJeH0DnLijvH1V1+gqWZLbWXq1q2Lxs6OzLizBNZvX/kYZHKcHR2JTr2EaCrh/OaF6DwDsNms5CXEYMhOpkP7tsydMweNRsOGDRtYvXo12dk5ODmF0L3768TExPDj9N8wN++MUqur9D4FqQnoMxIZ83X1u0dEUWT0mLHEp2RRt8+zaP6WaV1t74iLXzjpl04wd/7v1K5dm6effvqWPpNrNBpNtUnp/mkWi4X8/HwUCkXpzoGH/CGAvb09K1cs591332Xp8hUkH9uM2t4Ji8mAaNZTr25d3Bv2YdeRU4jNOyEIlT+AEUUb2eePMqB3L+ncvkQikUgk94mXlxeNGjXkYtwJfALLlwVTKBSIoq20pKsokpVyGm/fWhX6MOgLKC7KIiws7J8a9kNBEG/1IOe/zK0ULZdI5s6dy+tvvIUFBa7B9dDoXDCWFJKTcBrRXMw7b73JK6+8clvB2HPPPceSVRto0Od5FOrKA/ekc/tJPr6e1199hQ0bNxEXF49CqaBpkyaMHTOazp07V3u+PC0tjUc6diLHJBDWfShWmQqjwYBNFJHJBKwF2STvWE6z+lGs/XMNSqWyyr6OHDlC10d7UKPTcFwDqq6jfWHXchwsWRw/euSBDqgSExOZPXs28+YvJC8/D4Cw0FDGjR3DkCFDcHBwuL8DvE+Ki4vJyMhAoVAgl8tZv3496enp2NnZ0b59exo3bszx48fp+mh33Bo+QmCzzpX2c/XIdjKPb2fjurU0a1b9jgyJRCKRSCT3zpIlS3h6wnNENXsSD5/r3/FEUSQzMxMEBZlXj3P14jZad3oWJxe/ctdfPLeF/MwTnDt3RoqvbuBWYlEp8JY8dOLi4pg3bx4rVq4iJycHJycnevfqwciRI6lVq+JTv5sVGxtL567d0KOl5iOD0ThcX0G22aykXTxKwuG1jB87ismTJ9/2faKjo+nctRuZ2bk4BNdC6x0Eoo3CxIsUJ19BLoMp33zDxIkTK1wbFxfHsmXLSE1NZd++fVyIS6LZk++UW/3/X4WZyZxbN5XVK5fTvn3lq/n/drt372bY8JEUGS24hTbEySsY0WohKzGa/Ksx1KoZxorlyx+qmuLnzp3j119/ZfnKPzAYjCCAr48PY0ePYvTo0Tg7O5dr/+233/LJ51+gC6mLX6N26Dx8EYG8lASSju8m7+JxaoaHM2rUSIYOHYqXl9d9mZdEIpFIJA87i8XCmDFjWbN2A0E1O+If2hSlqnRRKCcrhdiY3WRcPU6N2p2oWadruWtTrp7m/KmVvPH6y7zzzjv3Y/gPFCnwlkjuk1OnTvHk0GEkpaTh6FMDe1cfLGYjeVejsRmLGD1yOF999dUdrRwvWLCA5154EZVnICZ9MYa8bBAEHLz88YpqSlHaVQouHWfObzPLzqrn5eXx/AsvsH7DRpCpsHNwp7gon+LcDOwcXanRug+eYfUqvZ9os7F/9ntMn/oTQ4YMue1x3y+XLl2iY6cuiDovanUcWuEsU0l+FtGbZxEZ6s/2bVur3SVwrxQUFGAwGHB2dr7pkox3YvXq1Tw9YSIWhQb3Wk1x8ArEZrWQfeUsebGnCQ8O4I8VKwgICCh33YIFC/hy8tdcTU5GrtaiNxgwFxciyGQ4egahcXSlOO0KaoWMN15/lZdffvmh38ovkUgkEsndIIoihw8fZvbs2ezZtx+TyURQQABDhz7JwIEDK+zcM5lMvP/++8ydOx+90YJK44rFYqakIB2wIQBunuH4BjZGo3XGoM8n9eoJigqSGDZ0MN99990tV/l5GEmBt0RyH5WUlPDHH3+w8PdFXE1KQq1S0a5tG0aPHk3dunXvqG+j0Ujd+g0wOPkR0fWJStuIosj5dfPxkhk4cvgQJSUl9Ordh7Mxlwlq9CieofWRy5Xk5eWRn5VKxuWD5CfHULvTELxqNCzrx2q1UqIvoaSwgLMrvyEo0I+nxo5l2LBh+Pn5VXrv+ykvL4+NGzeSlZWFvb09HTp0IDg4mFdeeYV5S1bRqP/LyBWVB7WF2SmcWfszc2fNpG/fvv/IeM1mMytWrGDmzFmcPHkSkdKM8I8P7M/YsWOpV6/yByF36sSJEzzaoydq/0hqdHwc2f/8UjUU5HD+z1nUCPBk144dFR5EmM1mVq5cySuvvkZ+sQG/+h3wr9cOY1EuNosJmUJFxuWTZJzbzXtvv8lrr712T+YhkUgkEsnDwmQy8dzzz7N8+UoUWldcA2ojV6goykkhP+U8Pt6eLPp9YYWqPEajkafGj2fF8pWIyFBrXbCzc8RmM1NckIJWq8FqsQICgkygbZvWjBkzml69ekkPzm+SFHhLJP9RK1euZPS48UQNeRmtq0eV7QrTErmw8leWL1nEgQMHmPLjNOp2G4/OxbusTXFxCYWFBSjs7Ek4uoaC5BhaDn8XpVpDSUkJBYWFAOQlnCP5yFq8IxpTlHYFtRy+/+5bBg0adM/nezOKior48MMPWbR4CUUlBhQqO6xmI3IZdGjfjr379uNSsw3BDTtV28/p9TNoUiuA1av++EfGPGzYcHbu2oOzWzhefnVQKu0ozE8nLek4orWYb7/9P4YNG3bX7z123DjWbNtLvSderBB0l40vM4XoFT8xf86sSjP8v/vuu0z9bR61e44nK+4sKecOYizKK31TABe/cBRqe4xpFzl+7EiFlXOJRCKRSCQ3b8LEiSxasoLwFv3xDKlfLig2FOURs3sRGqGErVs2ERISApQuxIwdO44/Vq+lRt3e+ATWLysjJooieVkJRB9bTnCgB7Nnz8LPz6/CMTPJjd1KLCoV0ZVIHiAnTpxA7eJRbdAN4OAdiEKr48iRI8ydtwD30Mblgm4AjcYOQRCwWcz41e1ceg79wlH0ej0FBQXI5EpkCiXZl47gEVqXqM5DaTzoTbT+UUx87nnWrVt3L6d6U4qKiujXfwCz5i3CKbw1TQe+RfNB79F88AcENnmMnQdPkpWdjZ2uYi3L/+XoE0rM+fP/wKhh4sSJ7Nl7mAYtRtOo5XD8Ahvi6VOLsMhHaNXxJVy86vPSS6+ybdu2u3rf7Oxs/ly7Ds+o5lUG3QA6D1+0XkHMnTevwnvFxcUs/H0xLiH1idnyO/FHt6L1DCGkwwjCu43Hv3k/jAYjmVdOUVRSwvz58+/qHCQSiUQieZicPn2aJUuXE9q0D16hDSqsRNvpnKnTeRQFJRa+//77stf37dvHH6vWENlwAH7BjcqCbgBBEHDxCKZB61FcvpLA1q1bpaD7HyAF3hLJA8RqtZb7wVkdmUxOQkICWdk5+IQ3ruR9GTqdQ+n2YLkSB68wsuKjKSwsRJArsRiKiduxEJuxmLBm3QFQKNXUaNMfjWcYkz786L7Xd/z88885dvIsUV3HEVy/AypNaYk1uUKJT0QT6j76DBonH64c2cj/bu4RRRG9Xk9efh65ebkY9HoMBkOFdnfb2bNnWbduIzXq9MLVPbjC+4JMRu36vdDo/Pjmm2/v6r0TEhIwmS04+YbesK3OJ5iLly5XeP3UqVPk5ueTnxaHvjif8K5PEdD8MRy8Q9G6+uIaUp+wzmPwrt8Fs8XK4iVL7uocJBKJRCJ5mMydOxe5WodXWMMq2yhVGjxrNGPZ8hXk5eUBMGvWbOzs3fHyi6ryOnsHd9x86vDbrNlYLJa7PXTJ/5ACb8m/ltVqZevWrYweM4Z2j3SgU+cuvPvuu1y4cOF+D+2+CQ4OxpCXiVlfXG07Q0EuxqJ8nJ2dEUURlbbyUln29locHBywWczIFWry0xJIPrGFhD1LOL/2Ryz6fOr3HIe96/XVckEQCGjQgcuxcezateuuzu9WFBQUsGDh73jVbIWDW+XZyO20Onzrd0Gfn0VeypWy1/UGPRmZmeQX5GM0mTGZreQkXSAtLY32HToQHx9/z8a9YMECZAp7vKv5RSgIMgJCW3Do0BFiYmIAOH/+PLNnz2batGmsWbMGg8Fwy/eWy+UIlGbZvxHRaq00qYrBYMBqsVCQkYR/0z5onCtmLxcEAc/arXHyjyQhIfGeP8yQSCQSieS/6vCRYzj51LzhwotHYBTFJYay7w179+7DzbvWDc9qe/vXJTkphaSkpLs2ZknlpMBb8q+UnJxMx06dGThoCOt3H+aqyY7LBTBtzkJatWnLK6+8gtlsvt/D/McNHDgQjUpJ2tnD1bZLPbUfV2cnunXrhkwmYCjMqbKtvb09Hh4e2EzFKDGTF3cStUpF7Y6DaTn4TRw9Aytc4+gZiEKt5fjx43c8p2ssFgs7duxgwYIF/P7772zdupXjx4+TnJxcaftt27aRX1CEb2TFmtE2q42ioiIyM7PQuPii1DpzcsNvpMQcoqgon/z8fJDJUWh0KOzsMRZlo89LJ6h1T2LiU+nZq3eV971TMTHncXAOuOEvUDfPMCxWK5s2baJPn8do3aYdL732Ju988AnDR44hqk49vvrqq1v6dxAWFoZOZ09OXEy17URRpODqBRo3qvh03dvbG4vZhFLriKNvjWr7cQ1rhMFk5tixYzc9RolEIpFIJNeZzSaEm9jtWPq9QixbuTaZTCgU6uovAuQKFSIiJpPpTocquYHbr2kkkdxlWVlZnD9/noKCAt559z2Ssguo2fspHLyDyp7W2axW0qIPM2veQqxWa7mzLA8DV1dXRo8cwc/Tf8Pe3QfXkMgKbTIvniLrzH7eeeM12rZti5+vDykXD+PoUXWCK1NJHsa8q3To8AhHzsVSv+e4aschCAIyueKubEuy2WxMnz6dn3+ZSmJSMiaTGYvFgs1qQSGXodFoeOSR9kx45hm6detWdl12djaCXIFaWz6RhclkIjcvD9EmIsiVKO2U2Dl5UpyVyPm9K1Hp3AhuOwjNX9eV5KQSv3cJjl4BBDbphG+dlpxd8TOffvopU6dOveP5/S9BEOBmVoBFEZvVxieffobCwYvglo/jERSFTC6npCCL5JhDfDH5G6KjY/jtt5k3VaJOp9Px5OBBzFy4FL/6bVDYaSptlxN/HnN+FqNHjarwXq1atXBw0CE6+yDIqn52K4pWNM5eKOQK4uPjadKkyY3nDKSmprJ06VISEhJQKBQ0btyYPn36oNFUPtZroqOjOXbsGBaLhaCgINq1a3dHZfskEolEIvk3qBEeTuL+0zdsl5eRgFwmIygoCAD/AH9Ss1JueF1BbjJKpRIvr4o72CR3l7TiLbnvYmJiePrpp4mqW49effrSf+DjRF+Kxbft42jcfMttkZHJ5fjWbUlA6z7MX7iIEydO3MeR33tZWVmsX7+elStXsn//fqxWKx999BGP9XiU2A3ziflzDtlXzlKYlkjWpdNEr/qNhK1LeXLQ47z22msoFAqeGjeWnIRT5KRUPK8LYLNauHhgFZ7ubnTq1Al9fhZmo77acRmKcjEWFxAcHHxH8xNFkZdfeYW33nmfQrkHAS2HENnzZeo89johrR5H7eyLwWxj77EYhgwdxldffVV2rU6nw2YxYzFd33JttVjJzc0DBJQaHQq1HTKFCptJj6NfBMEdhmMxFnNl+1wyLxwmducCLm2ejp2DM1G9RyOTyVFpHfCs04o/Vq8hKyvrjuZXmXr16lKYl4DNWv1Di4y0ixiMehQO3jTo8QxeofXKEqJpHd2p0bwnEe2eZPXa9cycOfOm7z9x4kRctCpi1s3GWFxQ4f3cxIvE71hGl86daN26dYX3BUGgRng4NosZm6Wqp+MiVqMBGSBXyG+qNrper+fFF1+ifsNGfPjZVyxeu515K9YzfsKz1KlXn7lz51Z63cGDB+nRsxdt2j3Csy++zEuvvUn/xwfRuElTZs2aJW1zl0gkEskDbdiwoZTkJpGfmVhlG1EUSbt0iEceaUdgYOlOxWFDnyQ7PQajobCa62ykJhyld++eODk53fWxS8qTyolJ7qu9e/cy5MlhGEQlXpEtcPGrwfE1U9EF1carYQcQRZycnLDT2JW7TrTZOLno/3iybw9++OGH+zT6eycxMZEvvviCP1avQW8wIooiMpmMkKBAJk54hlGjRrF06VJm/jaLU2fOlL4vCDRt0oRxY8fQv39/ZH+tRprNZp4cOpQt23bhU6stfpHNUWsdEW02spLOc/XMLgRDNkuXLKJmzZrUrd8A11rtCKz/SJXju3JoPZbUs5w9cxp7e/vbnueCBQt47oWXCG01EKVLEGazGYWdFkEoDTCtFhOxuxdiLs7GP6oVaWd3MuPXqQwcOJC0tDTqNWiId92u+NduBZT+PCjR61Ha6eCvBzb6vHQubJ5Krc5Dkbv4UZCeSOy2echkMhx9Q/Ct1xLPGg2QKa4HhyZ9ESfmfc6CKspp3YlLly7RomVrQiN7EhBS+SqwzWblwI5p5GTH0vrJ99E6ulfZX8zupbjKCzh86GClZ7Irc/LkSQYPeZK0zGwcgmrh4BWAzWIhLz4aQ3YKnTo8wpzZs3BwqDw3wOTJk/no88mEdhmPwk6HXKks3QYnitisFqxmEzIBzFmxpBxbx7Ejh6t9SGM2mxk85Em279qLX+OueNVsjEJV+m9en59F4omd5Med4PNPPmbChAll123ZsoXhI0eBvTs+9dvhFlwbQSajKDOZlDP7yY87ycSnx/PZZ59J9UglEolE8kCyWCx06NiJ87HJ1O08Fo2Da7n3RdHGpcPryIk9zMoVy2jfvj0AeXl5NG3aHIPFngathqFQ2lW4LubEOnJSj7Nhw7qb3pkmKU+q4y15IKSnp9OiZWvMaldqdx6OXKGiKDuFwyu+I6T7WOw9A7CYDIhWC25ubiiU5beNxu5bh0NREieP/7fOj168eJHej/Ulu9CAZ+1WeNRogEJlR3FOGqnnDpAfd5qhQwbx4w8/IAgCiYmJ7Nixg3Xr13P2XDQWi4Ww0FBGDB9G37590Wq1mEwmPv30U+bMnUd+YTEqOx1WiwlsZho3asjnn31K06ZNAXj9jTeYMWsuER2H4+pf8QxvZuwZruxZyttvvMqbb7552/MURZE2bduRlA812j5BTk4OCpUWQV7+z9lYlEPM+h+p1X4g2YnRBLsq2b1rJ4IgMG7cU6zasI36PSag0jiQkZGBIFchV5WeaRJtVmL3LsJYkEGLYe+QX1CAyWIlYdciVHYq6vV7uvKx2Wwcmv4uM6b+zODBg297jlWZ+OyzLFq0nKhGj+PpU6vce1armbPH/yAl8Rg69wCa9nup2r7y0uOJ2TKTrZs30rhxxez1VcnPz2fp0qXMnT+f+PjSbd0tmjdj7JgxdOzYsdogPiUlhfoNG+EU0RrnkEbljhwIgoDaTo29nZqz66fToUV9Fi9aVO1YZs6cyWtvvUvNbqNw9g2rtE3swfXkXTjIkcMHCQ4OJjs7m4aNmyA6+VGzy9BKy6OlnDtI8oE/mTv7t7v+AEUikUgkkn/K1atX6dd/ALEJybgG1sMzuB5ypYrCrCTSLh3GUpzF15O/ZPTo0eWuO3z4ME8MGoLeKOAT1BRP31rIZHJysxJIijuEsTiNb7/5mhEjRtynmT34biUWlQ7ASe6bhQsXkldYTONHn0OuUAGUbb+VKVSAgEJlh9lQTElJMY7/swVGrlT95xJBWK1Whg4fTp5RoG6/51Fqrq8mO3oF4ugVSMblSBYuWkLDBg0YPHgwb7z5Fpu2bEXl7IlzcC1kMgVnkhOZ8NwLTP76/1i6ZDERERF8/PHHvPbaa6xfv56UlBTs7Oxo2bIlDRuWT6D12aefkpyUxPpNc3H0i8SzRiPU9k4YCnNJv3iUotRLDHpiIK+99todzTU6OpqY8+eJ6DASvV4PggyhkuBJrXPFwTuUtEsnCGrYgbPb5nLixAkaNWrExx9/xMFDhzizcQYBDbtiU7uhVJX+WCvJTSX19FaKMuOp22M0Mrm8dBeAaEbnE0bu5aNkx0VTlJGMiA2Nkwfu4XWRK5SU5GYglwl4eFRfL/12Tfn2W4qLilmzZglxDj54+tZBLleRm5NMevJJRJsRZ2dH1C4+N+xL6+iOzSbe8rZ4JycnnnrqKZ566ikAMjMzWbx4MStWrGD58uVEREQwZMgQfH0rZoz39fXlheee5ZvvfkCj1eEe3ghRLA26lUolFmMJF3YsQmEu4u233qp2HDabjekzZuIYUKvKoBsgqEkXsi8eZf78+bz//vssWrSIgmI9DR8bUGVNct+oFuTEnuHX6TOkwFsikUgkD6yAgAA2b9rIzJkzmT1nHud3HEUElAo53R99lGeeeZqWLVtWuK5Zs2Zs2byRKVOm8Mcfq4k/vwUAuVzGI4+048UXfqRdu3b/8GweXtKKt+S+adS4CbmCK5FtB5S9ZiwuYN/vn+Lbqi+u4aUBodVsxGY14eXpWbZ9GCBm/TyifBzYtHHDPz72e2Xz5s08MWQotXo/g4Nn1cnQLmxbjBsF1AgPZ/POPYR2egKXoMhy22n1eVlc3LQQD62c7Vu33FLSDLPZzMKFC5kx8zdizl8o28reoEF9xj81jscff7xsK/vt2r59O/0HPkGj/q9TYrJhtoooVJUn0Eo6sQF9VjyN+z7HoYUfM2/2TPr27QuUbssf//QzHDh4CJOoQOPkhdWsx5CfgVrnRM1HnsA1IAIAk8lITk4uWRcPk35qOzKl8q9t6TIs+kIUajv8G7bHWFyAXX4iZ06dvKnzybfDZrOxZcsWZsyYycaNmzAYDAiCDK2TG3Y6VwqyrmIxmwhp1JmwJt2rTGRWlJvG6bU/sXbNH7Rp0+aWx2G1Wvnkk0+YNn0GBosVjYc/CAKGrBQUopXhw4by5RdfoFKpKlz3/vvvM236TGRqHc5BdVCq7CjJyyD/agwuzg7MnT3rhr/QL1++TLMWrQjrNBzXwJrVtr205w/cbLkcOXyQdu0fIb5IILLzkGqvybh0iqt7lnHqxHH8/f1v7kORSCQSieRfymw2ExcXh8lkwsfHBzc3t5u6Ljs7m5iYGKxWK8HBwWVJ2CR3RlrxlvzriaJIUnIy3vXrlntdbe+Iq18EOReO4BLWAEEQEGRyRIuIzWYrW9kyFuZRePUCQ17+mkuXLpGWlkZCQgJarRYPDw9atGhxzwKme2np0qXYufhUGXSbzaUZv13CGnJ+/XQuXYmlRveRuAbXqtBW4+xOrd5jOLPkO3799Vc++OCDmx6HUqlk1KhRjBw5kvj4eAoKCnB2diYwMPCunZUtPRsuYDaWIAgaEG1VtrWa9MgVKmxWCwKUy1YdGBjIxg3r2b9/P49274HNUoyLbxhuLbvjGlSrXNkulUqNTCajMPkSCrWWsC6j0Lr5AWAszCHrwiHi9m9AEC189snH9/TvkEwmo1OnTsyZMweFWkOdpn3xrdGkbPdHfm4Wcef2knB6N2ajnsg2Ayr97NMuHcfN1eWWtplfI4oir732GrPnL8SzcQci67Uqy3RuMRlIP3eU3+YuIDs7m1m//VZu+7lcLufzzz9nyJAhzJ49m207dqLP0RPk5cWTz3zEoEGDcHFxueEYCgsLq601/9dIAVBpHChISwAgPSMDjU+dG/avdfHAZhPJzMyUAm+JRCKRPPCUSiURERG3fJ2bm9ttPaCX3D1S4C25LwRBQKlQlp4z/h+B9dpxcsNM0k9sw6thJ6596YbSoMNi1HNh0wI0agXfTvmeCc8+j9lsQRRtyAQBlVpFUFAQTz81jokTJz5QAXhySipqZ88KrxuNRoqKispqNlvldhj0BrSe7mh9gqvsT6V1wKVGI+bOX8Abb7yBnZ1dlW0rIwgCISEht3TNzapfvz5uri6kXz6Bd1R7jCYTpX/W5YNLq9lIfvIFAuu1ISvuLCqVosL2eIBWrVrx1LixzF28kvDWfZArVRXaWK0WirNTKMlOIqB5X+wcPfhrjzQqeye863ZAqXUi/fgGatSovkb13bBixQo2bNpK7XYjcPufmtgOTq5412iJSutE0pmNeIc3wsUntFyb4rxMsmKP8eLEp25Ybqsye/fuZc78BQS074dX7fJJVRQqO/watsHOyZXVfy5k7dq1PPbYYxX6qFu3Lt9+++0t3/saFxcXBKG01rzO/fq2dlEUMej1lJSUYP7rDHluejI6s5mcnBx09jpyDSU37N+sL0YQhDtKAiiRSCQSiURyp6RyYpL7pnXrVuQknKvwuqt/BOHNepB1dg9xm+aQF3cG0ajHWJRL0vFdnF7yHUWpcRTrzaQZ1Pi3fJyIbk8T1n4ojv61MFshObuIDz76lNGjR5cFqw8Ce60W69/KY0FpmaXc3FwsVhsKtRaV1gG5QoEgk6ELqElefj7FJVUHIG6htcnJzSU+Pv4ej/7W2NnZMXLEMLJij4O5dPxWc8UHMekxexCtZrzCG5Eas4/u3brh5+dXaZ8TJkzAXikQs3leuTJj12SnJHJ1/0oc3P3wCI3CajZiLinEXFyARV8MooWAOi1wDYhgThXlq+6mmb/NwtEzrELQDaUr4o6Ojrj4RKLSOJFwakfZezarlfTY05zdPINaNUJ46aWXbuv+v82ahdLZE89aVa+Wu4XWRuMdxG+zZt3WPW4kKCiIhg3qk37+aNlrNquV7Oxs8gsKsIgg/ysTa27iOVJS02jTth2NGtYnP/4sNqu12v4zLh4nODiIsLCqz49LJBKJRCKR3GvSirfkvhkzehSbtwwn++oF3ALKn+0MrP8IWmdPYo9sInHnEtRqO5RKJVo7O7xdnEg26fBrPgCVkxdKtRaE0mdIzkF1yY49QdLh1fhENmHtxi1MmTKFN954435M8Za1b9+OrTs/w2woQWmnxWKxUJCfj0yhKiuvBJAXdw4EAflfdaoLCwtQqZQoFRVX92V/ZQn/e+bpf4sXXniBdes3Er3lN7zrdUXp6IMgCMgUSsyGYtJj9pJ16SBBDTpw5cBq7DDx1ltVZ1IPDw9n4YJ5DBs+khNLJuMS2gBH7yBEq5XshGjSLx5HodbQoNc41PZO2Gw2TCZTWbk2tbo0qZ9nRBP27FlFdnb2TZ+dulU5OTmcOHGCoIaPkR5/hqSLBynMTUcQQOfsjX9EczwCaiM4O+PiF0VK9HZOrvsFQa7EWJiFaCqhQ4f2TJs69bZqb4qiyKbNW3Ct1+6GxwfcazZk/941FBUVodPpbnfKlRIEgfFPjePpCc+ScfkUHmH1yPnrQZPSzh5BkCOKNpKPbEMuyGjy2AtcPvAH23fsxGYsIvnUbgIadai078KMJPITzvHGh+/fdKk1iUQikUgkkntBCrwl902XLl3o2qUTW3YsxtqyHx4hdRD+CqBFUSzdKmw10LhhAz54/30cHBxwcHCgS7dH8W/UE6WjR2lNQqH8xg230IaUZCeRnXgRz7DGzJg5ixdffBG1Wn0/pnlLhgwZwudffkXisW2Ete5NSUkJoiCgUF0fu1lfRPaFg6i0DugzklDUV2O2WigpKcHJsWIAVpCagEqpqnKV+H5ydnZmzeo/GDvuKfbv/wOrXINC54bNYqY4KxFEEZ2rF+kx+/Bwc2HBkkXUrl272j7btGnD3j27mDt3LnPnLyDx8mEEBGpGRlBop8K3UWfU9qWfk0wmq3T7vZ3OBZtYWgPzXgXexcXFWK02rpzcjL44D3u3QFzDSleeC9OucGrXAhxd/WjYaRSu7l7k22sZ0L0dJpMJX19fnnjiCWrVqni2/2ZZLBbMZnO5zPlVUWjsEUWR4uLiux54Azz++OPs2r2bhYuXkpMci9avFvbufoCMovQ4Ms7tpSjtCnXaD8bRzY86nUZxbPW3NG/ahAOHt1CYkYRcrQGbDYWdFveQOugLsrl6cB3NGzdkzJgxd33MEolEIpFIJLdCCrwl941cLmf2rN945pkJrNuwlKvHN+PgE44gyCjMiMdUkEHzZk2ZP29uWVmnL774AuRqHHwjMJgslZafAnCv0YycK8fQuniSeOkw27dvp3v37v/k9G6Lu7s7k95/j7fffR8ATWBdFBpHBAREUaQkK4mkA6uQCQKBTbpw5eB6jAU5KDQ69HoDjo6lba+x2axkxhyif59eN5Xo6n7w8vLizzWrOXHiBEuXLuXs2bMkJCRQIHPFTqMlIMCfJwcPZuDAgTdducDf3593332Xt99+m6KiIuRyOVqtllq1o7AY9Te83lRSgCCAg0N1Cb/ujFqtpqSkGLlGRUSncdi7XU/85RP1CMXZScTtW8LxrbNw8QrB19ePH3/88a7dX6lU4ujoiD4v+4ZtDXlZKJVKnJ2d79r9/04mk/HjDz8QFhrKB5M+wnR6Nyp7Z2w2CzaTAXtnT+p3HolHYOlDF5VGh1twA86fj8HVxZmrMUdQ2Tuj1DpiKs4n4fBmZDKBHt0fZd7cubd1/l0ikUgkEonkbpICb8k9YTab2bBhA5s3b6aoqAhXV1f69u1LmzZtypWhsre3Z968uRw/fpy5c+dy4tRpbFYb7Tu2ZOTIERXaJyQkYOfsDcj+Wh2vfIusxtkLmUKFzWoGQUZaWto9nvHd8/TTTyMIApM++pjE4ztx8I9AodZiyEvHkJeOvbMXdR57BrW9Eyln93N1+2ICOj+JTC5HFMWybcM2m5VL25cjMxQyYcKE+zyr6gmCQKNGjWjUqNFd7ffaOelrevfqyezflxPctGu5bOf/K+PScZo2aYKnZ8VEd3fLhg0bEORKQlo9jr1rxd0I9m7+hLUbxvnN0zAUZPDaKy/c9TEMenwg0+cvIrBFlyprYYuiSFb0Efr26nlPd43I5XJeeeUVvv6/b1F71EDr5IFMJsfJMxBn79AK2+HtdC7EnUjGLSCCRn2fw87ZF7PFjGi1UZQZR/rZXcTEnCc7O/uhKDUpiiImkwmlUnnHpf4kEolEIpHcfVLgLbnrduzYwTMTJpKYmIgNOTabDQGRn3+ZSs2ICJYsWVxui6wgCDRu3PimyiHJ5XJEm6X0S3g1JehFmw2bzYooiog26y1n876fBEHg6aefpl+/foSFh2MtykGBFSd3H2q27o1LQI2yLfl1e43l1JrpXFn1M06hdbGr2xyZXEFhWiKZ0YeQGQuZ9svPNGjQ4P5O6l9i9OjRzJozl6sndxLUqFOlbbLioylKu8K4j1+/p2OZ+dss3IOiUDu4YrGYUCgrBrUaJ090XqEUpcQwcuTIuz6GUaNGMXPWbOL2rCW0fZ9Kz3pfPbQVW1Eu48aOvev3r4wgCDh5BhFQu1WVbURRJOHMbrRu/tR5dCwqdfkVbRdXV7yDIjm1bhqvvf46K5Yvv9fDvm+uXLnC7NmzWbRkKfl5+cjkMtq2ac3YMWPo1q2bdLZdIpFIJJJ/CemxuOSu2rVrFwMGDCQ2PhFRrsY1uAH+DR/FK+oRlDoPos9fpGWr1ly4cOG2+m/cuDEl2clgMSLarFXWfi5IvQQ2KxajHpVSQevWre9kWveFp6cnvXr2RKNzpGHfidTuMhTXwJplQTeAvYsXjQe+iFKpovjycS6v+42La34l5+Q2BjzagU0b1tOvX7/7OIt/l9q1a/POW2+SdnoHF/f8gb7g+jZrk76YhOPbuLxrMQP69b2nn5terycm5jweIXXR6XTYLEbMxhJsVkvpAyVRxGa1YDaV4Ogdhlptd0/O6NesWZNvvp5M/vkjxKyZQ17i5dKHVaJIQUo859cvIPPETj54712aN29+1+//vwRBoGZEDfLTrlTbLi89Dn1hNj51O1QIuq9R2tnjX78jO3ft5vLly/diuPfdypUrad2mHVN/m4fMsxb+LfriVb8r+09d5snhIxk1ajRGo/F+D1MikUgkEgnSirfkLrJYLIx7ajyFxXqcA6IIatYPxd++FPvW6UhW7HESj6yiX//+RJ+rWErsRgYOHMikDz8m4+IhnMKaYzEbUajKf/EWbVYyz+9D5+5LXmI03bp0JjAw8I7ndz+MGTOGjZufJPPKaTzC6lXapigrGbnVzG+zZ1GnTh2sViu+vr737Dzug+6VV17BycmJz7/8ipMrjqJx9kKQydDnZaBVq3h+wng++OCDe7pSeC3DvEyuQKfTIZfLKSoqxmIqXxZOqVDi4OhEoUqF2WxGpapYm/xOjRgxAjc3Nz7/8kui183GhgCCDMFmpUZYKK//8jNPPPHEXb9vVUaPHsULL79GSUEWWkf3Stukx55CYafDPahmpe9f4xlSl/iDq9m8eTPh4eH3Yrj3zd69e3l6wkR0/nWo16ZfWfUCAL+oVmQnxLB242JefvkVfvnl5/s4UolEIpFIJCAF3pK7aOvWrSQkJKB1CySk1RPlvggCCDIZHuFNsBiLuXhiAwcOHKBly5a3dA9HR0fefusN3nl/EsiV2PvXASjdpivIsJj0JB1ZS3FmIvbO7ug0Mj788MO7NcV/XKdOnXh8YH+WrliGsTgf78hmZRnOrWYTaeePkHR0I3169aBv377SttKbIAgC48aNY+jQoaxZs4bTp09jtVoJDQ1l4MCBuLq63vMx6HQ63NzdyE9PwCu0PhqNBo2dBpPZVBaUK5VKlEolFy/uxcPDA61We8/G07NnT3r06MGhQ4eIjo5GFEUiIiJo3br1P35eeODAgfz408+c2z6POp1Ho9GVTwpoNpaQfuU4So0D9vbVZ2SXyRUo1VoKCwvv5ZDvi68mf43cwZuItgMQKvkzcguqhalpL5YsW8bLL79EjRoVa8VLJBKJRCL550iBt+SuWblyJTYRPGu2qhB0/51HRHNSz+3km2++YfltnL2cMGECer2ez7/8isyLh9F4hSNXaTCVFJB/9Rw2swmVWkmQlzPz5819oL9wymQyfv7pJ5ydnJg9dx4pJ7aj9QgAQJ+VhEw0M3LYEL6ePFkKum+RRqNh0KBBDBo06B+/tyAIjBw+jP/7/hcsjbuW1mgXQKVSlVvVNhv15MSf4s1XX7hhre1bcfnyZU6fPo3FYiE0NJTGjRsjCAItWrSgRYsWd+0+t8Pe3p7ly5YyYODjHF89BZeAOrj5lx6xyE27Qk7CadQyGzabqYrUitdZzEZMhuJ/5GHKP+nixYvs23+A4NaPVxp0X+NVoyFJJzazYMECPvroo39whBKJRCKRSP6XdMZbctdcvXoVQSbHybf67Z8KpR0OXqHExsXd1n0EQeDVV1/l4P599Or6CEUJJ0k7s4OcK0exmQ0Igg0HrT39+/UlMjLytu7xb6JUKpk8eTInjx/jnddfomuzWnRpGskbLz/H8aNH+P677+7JFmTJvTVy5EgctWrObV+I1Wyq8L7FbCR6+0KcdBpGjBhxV+555MgR+g8YQLOWrRg17inGPjOBLo92p0279qxcufKu3ONuCA4OZvu2rXz+ySRcFQXEH1pO7MGlKIoSefPVF1i+fBmC1Uh24vlq+0m/fAKlvHRF/78kOjoai9WGa0BEte1kcgVaj2DO3saxHolEIpFIJHeXtOItuWscHBxKy1ndYOVVFG0IMhlKxZ399YuOjmbz1m04BkZSu2EHnHxCEAQBQ2EuqecO8s33P5KQmMiv06b9J1aD/fz8eP31e5tp+5qMjAw2bNhATk4OOp2Ozp07ExIS8o/c+2Hh5+fHwgXzeHLoMI6tmoJHeBNc/Up3Z+QkXSTz8lF0ahkLF87Hx8fnju+3ZcsWho8ajc3eBb9OA3ENq40gk1OQHEfcib2MHf80CQkJvPzyy3d8r78TRZFjx46xdetWioqKcHd3p0+fPoSGhlZ7nZOTExMnTmTChAkUFhZis9lwdHQs2/retEljDu37A0NhLiqtDmfvENT2TmXX6wtzSDm9k949euDr63tX53S/idVUdPhfgiDcdHuLxUJiYiJGoxFvb29cXFxufJFEIpFIJJKbIgXekrumX79+rFy1hqL0OJx8q16JsZiMlGQn0aLn7W/xzczMZMKzz6H1r01ExyfKZfq2c3AhpEV3HLwCWb5yEe3btWP48OG3fa+HSV5eHu+++y4r/liF3mhGpdZiNhmQv/MunTp25Ksvv5AC8LuodevWbNu6halTp7Jk6XLSzu4AQGdvz+ihj/PMM88QFhZ2x/dJT09nzLinkHsHE9ljaLma3c6B4TgHhnP14FY++fwLGjduTLt27e74ngCnT5/mxZde5uTp08jV9ijs7DEV5/PJZ5/TtUtnvpsyBS8vr2r7EAShXB1um83G9OnTSUxMpLggm/N7VyIIMuRyBe7BtQlq0JHCzKskn9lJqL8Xkyd/VaHPnJwcNmzYQFZWFvb29nTs2PGGDwL+TSIjI1HIZeSmXMEjOKrKdjarleLMBGr1alNtfwUFBcycOZNZc+aSkpKKiIhCoaBn90eZ8Mwz/0hGe4lEIpFI/usE8VYenf8LFRQU4OTkRH5+frkvZ5J/ltls5sqVKzRv0Qq5SyA12g8vFwxfY7NZyY4/RerRVRzYv5f69evf1v2+//57Jn36BQ2ffBtlFeWEAGI2zSPEWc6unTvv6hnZ/6K8vDx69e5D9KU4fOu0xzuiCUq1BqvFTGbsaa6e2o6jGmZM/5UmTZrg5OR0404lN62wsJCkpCQAAgIC0Ol0d63vb7/9lo+//Jp6Y98qV2ng70RR5Nyin+jarD4LFiy443ueOHGCx/r2x6RywL9JF1wCS+vP2yxmMi+fJunIZoJ93Nm4YT0eHh431afNZuO5559n4aKluIQ2wCuyGValPfqiQgqSzpN98TCmwiwcHBzo37cvX375Rbm+CwoK+OCDD1i6bDkleiMKtRaLyYBcEOnQoT1fffnlXXnQ8U/o3qMnJ6+kUq/HU5X+rAVIu3iMxIOr2LdnF7Vq1aq8TVoa/fr35/zlOBzD6+EeUQ+5UkVRRjJZ5w5jK8jm66++ZPTo0fdyOhKJRCKRPJBuJRaVAm/JHcnPzy9bKUlNTcWg12M0mfGp2xGvWu1QKNV/bXW0YbWYKc5OImH/Erp2aMOqVX/c9n3bP9KB+EKBmp0GV9suOyGGuG0LOXRg3wOdZO2f8Pzzz/P7slVEdR+PvbNn2esWk4HkmIMkndtPSW46cpkMZ2cnevbowdNPj5dWwx4ATZu3IF3mQHi3x6ttl3b6EBn71nExJvqOEpLZbDaat2jJ1TwjUb3HIVdWzEFgKMjl3OqpDOz9KL9Om3ZT/c6aNYtXXn+TkLZP4Bl+/aGd1WrFaCythX5p6zx8nNScOHYUpVJZ1qawsJDH+vbj5Jnz+NZqi2+Npqjs7LFazWTEnebquV042sG6tWuoWbP6PBX/Btu2bWPQ4CdxDGlEeKveyGTlj9PkJl/m4o6F9OvVnVmzfqu0D5vNRpeu3Th54QqR/cahcS5fvk0UbcTtXkd+9CGWL11Chw4d7tl8JBKJRCJ5EN1KLColV5PctvT0dB7t3p1Pv/wGg9qXmh1H07jfK3gERZF6ZjsXt84g/cJ+8pLPk5NwhsTDq0jYu5AWjesxZ87sO7p3dk4Oat2Nzx/aObhiE0Vyc3Pv6H7/dVlZWSxfsRLvqHblgm5TSSHH10wl9shmtO5BhHUYSVD7obhFdWLd9gP06NWb336r/Eu95N8jPT0djVv1W7oBtG5eWK1WsrKy7uh+u3bt4tKVWIJb9aw06Aawc3TBq147Vq1eQ0ZGxg37tNlsTJ32K06BdcqCbqvVisViQRAEtFotTi7uRHYcwtWkZDZt2lTu+o8//piTZ85Tt/M4gus+gsqutBSZXK7EJ7wxDbtPoMgsZ9y48bd0hvp+6dSpE99/9y2FCSc4vvz/iD++lcy4s6ReOMqZDTM5v2U2ndq35qeffqyyj507d3LsxElCuw6qEHQDCIKMkHa9ULr78cOPVfdzI6IokpOTU/pw1mC47X4kEolEInmQSYG35LbYbDaGjxjJpYQ06vd6lppt+uHiG4aDux+Nej1N494TwWrk6pE1JOz7nbTjq/HTWfi/rz5j7do/cXZ2vqP7Ozk6YiwpuGE7U0khMkHAwcHhju73X7dx40ZKDCZ8IpqUvSaKIme2zMNQUkhEt/EEteiHk39N7N0CcQ1pQMO+z+Ma3oI33nybrVu33sfRS27Ezk6Dxai/YTuLoQRBENBoqj6+cTPWr1+PytENB6/Aatt5RzbGYDSzZcuWG/Z5/PhxLl+Jxad2c0pKSsjKyiIzM5OsrCwyMjLIzc3FaDSic/NB6x7A0qXLyq7Nz89n0eKl+NRshYNr5YnqlCoNoY17cTY6mv3799/ahO+ToUOHsnP7NkY80ZeiK4eJ37uE5MNrqBfiyW/Tp7Ho99+rrf++YOFC1K5eOPoGV9lGEAS86rVk9569xN1iJQqj0ci8efN45JEO1KgZSZ269QkJDef555/n1KlTt9SXRCKRSCQPOinwltyWffv2ceToMWq0HoDWqeJKiXtgJG2Gvo9HcG0aN2rImVMnOHb0MBMnTqz2i+DN6t2rJ4WJ0VhNxmrbpZ8/QlhoyAOxdfR+ys3NRaHWoLS7/meTlxpLfnoCgc37onEqXQUXEBBkAjabDUGQEda8B2o3f7777vv7NXTJTejSqQP5l88girZK37dYLBiNJjKijxEWGoKfn98d3a+goACFxuGGeRUUag1ypYr8/Pwb9pmeno7VZsMkqCkoKMAqll6vUGuRq+wwmS3k5uZSWFiI2tGD1LS0smu3bNlCQVExvjWaVnsPF+9QVFoXVq9efXMT/ReIiori22+/JT7uCpcunCcxIY4N69cxcODAclvtK3Pp8hW0XoE3/HNy9A3GYrNx9uxZZsyYweAhQ+jVuw/jxo1jw4YNWCyWCtcUFBTQr19/XnjpVeKyzIQ0H0iNtsNwrdGWJX9soHPXbncll4BEIpFIJA8KKfCW3JaFCxeidvDA2afqRESCIBBQtx3RMefR6/VlZYDuhuHDh6MUROIPb6pyW2h+ShyFidGMHTP6rt77v0in02E1GcrVk045fwi1gzsO3tf/jEVKV8IFWekXdUEQ8KnViv0HD3Hp0qV/eth3lcFg4Pz580RHR1NQcOPdFPeS0Wjk0qVLxMTE3JWxjB49GlthHulnjpR7/drKcVZWFimXo8mIPsHVxKtMnjyZwsLC276fk5MTFn3hDbdsm416rGbTTe2A0Wg0mEwm9MWFKNRalGotMrkSmVyBXKFCaWePXGlHcXExxpJC7P/2gC8nJwe5Qolae4OkJ4KAUutCdnb2Tc3z30ShUODq6npLDzYVcjk2W8Wg+X/ZrBbMRiNjnxrPa2+9y+6zcZxKLWTt7sMMGTac5i1acu5vtcJFUeSp8eM5eOwUdbqOp27HEXiF1MfNvybB9R6hyWOv4hTQkJdefpUdO3bc1nwlEolEInnQSNGI5LZcvhKL1s3vhislTp5BWK02EhIS7ur9/fz8+PKLz8i9eJiLO5ZSkptZ9p7FZCD59F4ubJpDh/ZtGDNmzF2994MiNjaWKVOm8O677/L5559z6NChKgOhTp06oZALpF+5vv2zJD8Le4/yq2GizQKiDbVaXfaas3cIVpuN2NjYezeZeyglJYVJkyZRO6ourVq3pU3b9tSMrM1zzz1XLpj4J6Snp/PJJ58QVacezVu2plXbdmVjOXv27G3327hxY0aPHE7K7j9JPrITi8lAXn4+BQUFWKxWipPjSN22Ap2HD+rgunw15Qd693nstnMj9OzZE1NBNgVp1f+7T485gsZORZcuXW7Yp4eHBxazicKUS8jklVfClCtViFYrOQnRtGvXtux1nU6H1WLGYrrx+WKrqfihOZrStEljiq5ewmazVtsubs96TCYzmsA6NBj2BlG9xxDZdQh1Bz5Hrf7PkpRvoPdjfbl8+TIAJ0+eZMuWbYQ164uTR8XjBoJMRkSLPqicfPn22yn3ZG4SiUQikfzbSHW8JbdFqVRis974zKjNagGhdDXmbhs9ejRarZb3J33ImRVT0Dh7IsgVGPKzUMpERj45iC+//AKVqvLkTv9VGRkZvPjSS2zeshVRrkJt74zZUMzX30yhXt0opnz7LY0aNSp3TWBgII927cqmnTtxD6qFSqNDEGSIf/tCLiJiNRuRyxWoVdcD72tf2uXy8lmVHwTR0dH0H/A4mdkFeAQ1ok69WiDIyMuIY9kfm1mx8g9+mzmDHj163POxXLhwgf4DBpKalYtLeCPCm9dGJpOTnxrPkj83s2LlKmZMn0avXr1uuW9BEJg8eTL29vZM/XU6yQe3onD3Q6ZUYchMwVJSgGtQJJHdn0Sh1lBcvzWn18xkwsSJLF606Jbv17ZtW2pGhJOwfy1RfcZXmmBNX5BD+uk9DOr72E2VE1u3bh0KpYqcy8dwq9EElbbycnZZFw9iMRkICgoqe61jx47YqZWkXjlOQK1WVd6jMDsFfX4aXbt2vYlZ/rtduXKFtLQ07OzsqFOnTrmHZdeMHDmSmbPnkBlzHK+oyrfhG4vyyYg+hnutptToNLDCw1adhx+1+4zjzPKf+ejjj5k/bx7z589HrnHCI7DqGuOCIMM3shX7Dyzj4sWLRERE3NmEJRKJRCL5l5PKiUluy6RJk/jp19k0ffzNKlefAK6e20fG2a2cPnkCL68bZ1W+HSaTibVr13Ls2DFMJhOBgYE8/vjjeHt735P7/ZtlZmbSo2cvYpMz8G/SFY+wesgUSkTRRl7SZa4e24pCn8vqVStp3LhxuWsTExPp1r0H2YVmgpo8Ss7VC6TFnqFWn5cREEvP04s2XF1dy50dTY4+QNqpTZw+eeKB+swLCwtp2ao12QU26rcfXZbl+hqbzcq5/Usw5MWyfduWKusg3w3FxcW0at2G1AITtXuMQaUtv+Jqs1q5uH0J5vTLbN2yiaioqgOaG4mPj6dps+boUWDv7ovGxR3vOs3RefiWa5d54SRXdy5n/57dREZG3vJ9Tp8+Te/H+mKQafFv0hnXoEgEmQyr2UTGpZOkHNtKqJ8XG9avw929Yp6I/zV+/HjWbD9MSWEuoiDDv3kf7D2DywJBs6GIjLN7yL5wEJkg8uN33zJu3Liy68eOHceaDdtp8OiESrec26xWTm+fg4vayInjx+7Jw8J7TRRFVq9ezS9Tp3H02HFsNhFBAHd3N0YOH8azzz6Li0v5ahATn32W35cuJ6jjANwj6pcLrE3FBZxe/BPFOZk0G/UuWpeq/5xSzx4i7eBaTh4/xvinnyEmWU/ttk9UO16zoZhDyz9n0cJ5/8jDLYlEIpFI7rZbiUUfvG8Wkn+FESNG8NMvU0k5fxj/qMpXkCxmI2nnD9C3d697FnQDqFQq+vfvT//+/e/ZPe6X3NxcFi1axPwFC0lITESlVNGyRTPGjBlDx44dK6wyT5o0idikdGr3eQaN4/U6zIIgwyUgAkefEKLX/cZT45/myOFD5a4PDAxkw7q1PP3MBI7sXoQoV2EszCHzwkFcg+uikCtwciofdFstJtJiDtCze/cHKugGWL58OUnJqTTt/mqFoBtAJpMT1WoQh9d/y6+//sp33313z8byxx9/EJ+YRL3HX6kQdAPI5HIiOg7i1LJvmTZtGj/eQWmn6OhoTBYr9QY/j9bVs8p2buF1Sdq/niVLljBp0qRbvk+9evVY9+caXn7lVY5t+514lR0KtRZTSQFy0UrPRx/lm2/+76aCbijdUSGXy2nU6xnObJlH7NY5qJ08sHPyxGoxUZQWi0wmI7xFL5JObqnwb+OTTz7m0OHDnNoyg5CG3XH3L30QAJCfeZW4E5uwFqXyy8xFD2zQ/eGHH/LDT79g7x1KSPvB2Lt6YzHqybh8km9/nMaaP9eyZvWqcv9Wv5syBYvFwrIVy0g5sh3n0CjkKjVFGckUxZ9HNBtxCahRbdAN4BnRgMQ9q9i3bx8ymQzRVnkiv2tj1RsMFOXnYjAY+Obbb9Hr9fTu3fuh26EkkUgkkoeHdMZbclvCwsIYO3oUicc3kHLhSIUvWcbiAs5tmYu9wsZrr756n0b5YDt27BjNmrfgnfc/IsWgxqVOBzRhzdhxNJrHBz/JkCeHUlxcXNY+MzOTlatW41X3/9m7z/Coqq2B4/8zPcmk95CEhEASeuhdQHoHAQXpKIrYu2LltWNXVHovUqX33juBAAmEQEjvfTJ9zvshGs1NA0kU9fye5364M3v27DMkcdbZa6/VuUzQ/UdyhZKg9gO4GX+b/fv3l3s+KCiIXTt3sH/vbl6YNoUmjcLIvLwPa14S7u7uZYJuk0HH1b3LUWPklVf+nn9jg8FAYWH1RbwqsmTJUly8w7FzcKl0jEwmxzuoNWvXbSjzWde0JUuX4VinAXbO7pWvRS7HI6wN69b/ck8F15KSkhAUyiqD7t/eT+XqRXJy8p9+ryZNmrBn9y72793N9JefZ9rE0Xz47lucP3uGpUuX3FGK+W8iIiLQZSUhV6po89DztBj4BG7egcisRtQKOfXb9KXTo9NxcPFCLog0b968zOv9/PzYvm0rrZs2IPb4Kk5vnEnkrjmc3fw1UXvm4Km1sXbNz3Tp0qWSFdzfVq1axbezfqROmwE07vcYHsFNsHP2wNErgJCOg2gy5GluJmcwfsLEMr8vKpWKObNns33LZob16oo8JQbjtdPU0wp8/smH9O/fD4Wm+oJtMqUKQSZHr9fTvFlTijJvYbOWPztuMBrJyMwkPz+f7KTrWG02om6kMfnxJ4lo0ZKTJ0/W6OcikUgkEsn94p93W19y3/joo48wmUwsXb6SlMuHcAlohFyppjgnjfyUGDzdXVmxepXUyutPuHnzJiMfHoVe4UiLUU+isteWPhfYojs5CdfYe/BnnnjiCZYvX44gCOzfv59ivYGGYa2rmBkcvQNQO3uyffv2SotaRUREEBERwZtvvskzzz7L2nUbSL96BNfAJiX/xrlp5CZcxtXZkWUrl99T6vPdMhgMrF27lvkLFnLlylUA3NxcGT9uLBMmTCAgIOCO5rl56xaugZ2qHefsWZfkawdIT0+nXr1697T2ytyIi8OxXttqxzn5BpF2YQ+pqal/+miNSlVSgMxmtSKr5ly+aDFX25LqTvz283QvHn74Yf7vg49IjDpCSNt+uPrVx9Wvfpkxos1GUtRhWkRE0KJFi3JzBAYGsn37Ni5evMjGjRvJysrCwcGBHj16VJhB8k8hiiLffvc9Tv4NqdOk4gwkOyd36nUezpk9izl58iQdOnQofU4QBDp06FDmsd/ExsZiPn4OUSxpIVgZfV4WiDZ8fX1p3749s+fMI+3mBfwa/P73yGg0kpebhyCXo1CpybkdiVdQYyL6PY4uL5MbJzYxfMTDbN70S7mjMBKJRCKR/NNJO96SP02pVPL111+zb88uRg3rh1p3G2t6FCGeKr6c+Qnnzp6hbdvqgwlJed999x0FRiuN+k4sE3T/xi0wjKDOw9m+czenT58GID8/H7lSVaYXd2Xkdo53tGv6227Y1s0bGdSrC5a0KApvHMdHY+CjGe9y9vQpOnfufPcX+CdlZWXRf8BAnn3+JW6lGwlsOZjgNg+BU32++u4nOnV+gMOHD9/RXAq5otpqzgA2mwVBqN3icQqFoqQQYTVEiwUB4Z5Sodu1a4dcBjk3r1Y5zliYhz4ziXbt2v3p96pJrq6uvPzSC2REHyXh0uFy/3YWk4GYw2sx5yfzzttvVdlxoXnz5rz33nt8//33fPrpp/Tq1esfG3QDnD17luuxN/BtXD5w/iOXOvVRat1YdRcF80aMGIFFl0te4o0qx6VGncDby5Pu3bsTHh7Oww+PIP7sFjITSn7ORErOwQkyOYJMzu0zv2AszCS4ZcnNPwcXT5r0moBV7cIbb06/4/VJJBKJRPJPIe14S+6JIAi0aNGiwt2l/7qioiLi4+Ox2WzUrVsXZ+eKqzD/r/z8fNas24BnWCcUKk2l4zyCG5F01o1FixbRrl07nJ2dsZpNmPU6lHblzyz/RhRFrMUF5dZjtVrZv38/mzZtIjs7G0dHR3r27MmQIUPo1KkTnTpVvztcm6xWK2PGjuPS1Rs07zMNRzff0ue8g5tTr0UvrhxexZix49ize1e1BcFat27FsTMxBDfuVuW4zKSreHt74+fnV+W4e9G2dSv2nY6C1j1LHzMajVjMZkRKAnONWk1W/FU8PNwJDCzfoulONWzYkI7t23H6wiHc6jWstDhi4pn9uDo73Ve1E1588UV0Oh3ffPs96TEncAtqilKjRZ+fRV7CZdRKgflz59CtW7e/e6l/qcTERKw2G46eVWd7CIKAxtWX27cT7njuNm3a0LplSyKPbMJ+yBOoteX/juXcvkZOzGnefuO10jPa33z9NcW6YjZvWUmiiy/OfuEYzVZMunxyk6IQbVaa9ByLs/fv1eflCiWBzbpz7sgqIiMj7zlLQiKRSCSS+4m04y2R1LD4+HheffVVwhs3oUu37nR9sAfhjRrzzDPPEB0dXe3rr1+/TrFej1vdygNHm8VMRmwken0xq9esZey4ceTn52Ov0ZAWc7bK+QvTEzAWZJVpS3X58mXad+jIyEceZd3WAxy9lMjW/WeY8uQ0mjZrzp49e6pdtyiKXL58mQMHDnDmzBlMJlO1r7kb+/fv59TpM4R3GlUm6P6NQqmmSdcxGKxKfvzxx2rnmzx5Err8JHLS4yodYyjOJzvpEpMmjq+RlOvKTJw4EUNOKrlJsRj0ejIzM8nNzaVIp0On05GXl0dywi0yY84wfuyYe17LjPffR1GcS8y2pRgL88s8ZzEZuHVkG/nXz/H+u++g1ZbPuPi7CILAO++8w8ED+5gwahiK/JsUxR3HVcjljVee59yZ0wwZMuTvXuZfruTnQcBmMVc71ma1oFLfWQGzvLw8zp8/z4svPI+Xo4Yr638g4cx+jIV5WM0mijKTiT2wnrhdyxjUrw/PP/986WvVajWLFi1kzeqVdG/fhJSo3SSe30ph+jUCGnek/chX8Kxb/oiKe0A4yJQcPXr0jq9fIpFIJJJ/AqmdmERSg86cOcMjox8l32DBvVEbXIPCQBDIT4wj68pp1DYjSxcvokePHpXOcerUKfr0H0jTYc9j71q+AFZechxX96zAWFyIvYc/KgcnFKIFXfotsFlA5UCzYU9j51y+CrHVbOLKtvkEuKg5dfIEMpmMa9eu0a//QPSiHfXbDsbpD7tmxQVZxJ3ZjiE7jhXLl1V4Jtxms7FkyRLmzJvH9euxWG0igiDg7eXJhHFjeeaZZ2rkd3PMmDEcOBFFy37TqhwXf/kQOTeOcPXKZVxcXCodZ7FYGD58BEdPnCW83SO4+dQvk56sy8/g8vEV+Ho4sG/vHtzdKy98dq+sVisjH36YPQeO4tVmAFrfEBQqDYKsJP3ZkJ9J/IFVGHKSefqpqXzzzTdVplLfiaNHjzJ+4iSyc/PR+tdH7eKBubiIooQYVDL4YMb7PPHEEzVxebXmtyyNHTt2UFRUhKurK4MGDaJTp073/Pn8k6SkpNC8RUt8WvbDr4p0c4tRz/nVn/H26y/zchVFL2NiYpg1axbrN2xEbzQCoFIq8PHyIi09A6PZjCiKyGQy6vj58sTjj/H0009XeQTipZdeYtWmvbQY9HS113N27We89uI0XnnllWrHSiQSiUTyd7qbWFQKvCWSGpKZmUn7jp3QKR0JHzQBhbpsmrjNYuba9hUIOckcOXSQ4ODgCudJT0+nSbPm+LTuj1+j9mWey0+L5+KmOdh5BlCn7UDkKjvUSgUurq7oC3KIO/ILmTcvYe/sTkDr3niFtkSuVCHabOQkxJB0bi9qq44tmzaWVn0ePmIER89cIaLv1ApT20WbjagDy3CWF3Hh/Lmy7cSsVp56ahpr1m/AKaARPg3bYefsjtmgI/3aeXLiztOsURi/bFiPm1vFldbvVLOIFpjsgqjfsk+V4wpzUri0+ycO7NtTbapqQUEB48dP4NDho2gcvXHzLWkxVZB1m/zMOEIbhLBm9c+V/lvVpNOnT9Plga7YkGPv6Y9TQDiCTI4uI4GilFg0Whd8GrQi4+ph1vy8stLCeHejqKiI9evXs3bdejIyMtBqtfTr24exY8fi61s+q+B+cvLkSZ6a9jS34hPQOHkiVztgLs7HXJxLo4bhzJ83t1Z7r99vJk6cxLYDx2k25OlKj6jEn91DXswxLl28UGmLx8OHDzNm7HgMKPFo1BbXwFAAchNjybp6GoWlmOeffYbQ0FA8PT1p3779HWVgfP7553z6xbe0HvkGckXl4036Is6u+4zvv/mScePG3cGVSyQSiUTy95ECb4nkb/DNN9/w/sef0nzC65WesbZazFxcMpNpk8bx4YcfVjrX+PET2HX0LM2GPYPs111PURQ5t+5brKJASK9JIAhYDDpcXV1Rq9UlY3oCHrMAAQAASURBVGw2Lm2ZizknEZlcjkWUobJ3xGLUI5oNtGrZgq++/IKmTZsCJRWL23foRFDbh/AJqfycfmFOCpd2/MCKZUsYMGBA6eNff/0173/4MSFdR+EZ0rTc63Q5aURvn0/PBzqyevXP1X+IVaiNwBtKbh4cPHiQRYsWce58JFaLhdDQBowfP47Bgwej0VR+zr4mvfbaayxYtobg9oNJjTlNQWYiNpsNe2cP/MLb4R3SHLlSReTmH+jWtvFdFcj6tzl9+jRDhw0HBy/qte6Pk6c/UPI7kpd2i5unt+KgMLFz+zZCQ0P/5tX+Na5du0afvv0xqpwJ7fowmj+0FLRZzCRFHSX1wh6mv/Ear732WoVzJCcn07FzFyxaL8L6jSsXINssZmJ2rkCWn8LRw4eoW7duhfNU5ObNm7Rp157AtkPxbVB5xfL4yAPk3zjOlcuXqsxY+V+//R4vXbqM69djkSvktG7VkgkTJkg1SCQSiURSa6TAWyL5G0S0bEWu2o0GvUZWOS7+2E6s8Ze4HhNd6U7R2bNn6T9wEHb+jQjtOgKZTE5B2m3O/zKLoG5jcfQLwWwoRqmQl0uBLkhPIHrbHH6a9R25ubllWib9byC6YMECXn5tOh0eebfSIlu/Ob/1O8aO6M/nn38OgMlkokmz5lhd61G/c+XnajNuXOT2kbUcP3q42oJnVbnbVPPoq1fuuKDd/SCkfigKn8bUa9O3ynEp0adIOb+dm3GxODo6/kWruz/o9XouX77MhAkTySoWaDnwqQp/bs1GPRd3zKZTq0b8smHD37DSv8e5c+cYO248KWnpOPo1wM7FC4vRQH7iVQSrkZdeeJ7p06dXmob/8ccf88V3P9J87GuV7ppbzSYil3/G81Mf57333rur9Y0dN44dew7RpO8UHFzKH6PJT7/N1b2LmDJpHDNnzrzjedPS0hgzZhznL0Rip/XGyTUQUbSRmxmLxVTA0CGD+eGHWdjZ2d3VeiUSiUQiqc7dxKJSVXOJpAZYrVaSkpLw6VT9zoqjbyAJl46Sk5NTabpn48aNeWzSRH6cPYezyTfxatgOfV4GgkKNnbsfZn0RCoUC1wp2hBy9AlBpXYmJiWHGjBlVrqW4uBi5QlVt0A0gU2ooLi4u/f979+4lPSOTZl3GVvk6j+AmJJ7exurVq+/6i/ofTZw4kW07HiU3/Rau3hWnflstJtJvnGH08If+UUG3KIrk5eXiVUeBUVeAyt6x0uBIrXXBarORn5//nwm8MzIymDVrFstXrCIrK5tifTEyuZILO+YR2PSBckW6lGo7App25/Dh9Vy/fv0/s+vdqlUrzp09w8aNG1n182pSUlOxs7Nj/JOTmTBhQpV96EVRZOnyFbiENK+ym4JcqcK1QUuWLl/BO++8g0x25zVav/v2W4YMHUbUjjl41m+Db1hr1HZO6ItySIk5TfbN83Ru36bav1t/VFBQwPDhI4iNSyGiw2Rc3ANLf3dEm43UpCg2btqM2fwkS5Ysvqv1SiQSiURSk6TAWyKpAYIgIJPJsFmrryosWkr6NVe02202m5k5cyYLFi4mOycXm01An5NK3JFfABGl1g2ZAPaOjtjb21cYnAmCgFypwWAwVLsWLy8vLGYDxuIC1PaV36Wz2ayYinLw9PQsfSwpKQmZQoW9i2elrwOQyeWonL1ITk6udj1VefDBB+nQrg1njv5M4+4TcHQr297LYjZw5fAqNHILTz9dfQGn+8Xx48eZO3ceBQWFFJzazs2zu3Fw88G/UQd8w9qUuyliKi5EJgj/mQyf+Ph4hgwdRlJqFp5BLQltVB+T2YbJkE/mzbNc2rOEeq16E9yiZ5nXeQY15eapjezdu/c/E3gD2Nvb8+ijj/Loo4/e1esMBgNZWVnUadil2rGO3v4kRp+gsLDwrm5wubm5sXXLZj7//HOWr1hFZPQRbKKITBDw8vLk9Zef54UXXrir4x1LlizhavQN2nabhoNj2YKSgkyGX2Bz5HIlW7et5vDhw/+5VnMSiUQiuX9IgbdEUgNkMhmtWrXk4q1o/CKq7nedHXeFesHBuLq6lnncbDYzZuxYdu89iFdoe1o+0A47J3esFhMp189y8/Q2zEYdWjsVdg6V9+m2mk0YiyrfTf+jvn374uhgT8r1MwRHVF5pPTsxBqtJx/Dhw0sfU6lU2KwWbFYrMrm8yvcRLeZ7boEll8tZtmwpj4wazdmdP+LsE4pHQCNkcgUFWYlk3b6Io72K5SuWERYWdk/vVRlRFDlx4gTR0dGIokhYWBidOnX607tos2bN4r33/w+loyd12w1C0DgjALm3o7h2bCPpcZE06zOpzA5kxo2zdOnS6T8ReFssFh59dAypWTpa9n0GjYMz+QUFCAYjWo8AXOs0Ju3aEW6e242Dizdewb/XGZDJ5ShVduh0unLzms1mkpOTsVgs+Pj43Fct0/4uv1Ukt/16Y7AqNqsFQRD+1O+0s7MzH374IW+++SYnTpQE766urnTs2LG0B/idslqtLFiwCA+fxuWC7j/y8mvIrWueLFy4SAq8JRKJRPK3kQJviaSGPD55MpOnPElBagJOvoEVjtHnZlJw6ypvf/R/5Xarv/nmG3bvPUj4g+Nx86tf+rhcoSKgUUfc/Bpw7OePiI88SsPOA/536lIZcReR2cw89NBD1a7Z2dmZsWNGM2fBEtzqNMDZs/y6DUV53Dq3jY4d2pcWZQNo164dcgGy46/gGdIMKAlojEYDNpuITCagVmuwGooozkqiffv25ea+Wx4eHmzbuoX169czf8FCoi5sAcDdzY2Xn3+KCRMm4O/vf8/vU5HNmzfzyaefEXPtOjZkCAIIoo36IfV4/bVXGTFixF3Nt2nTJt59fwZejR4gqGUvLBYL2dnZyBRqXAMaU5SVyM3Dy4k+uJqmvScAJf+2xdlJTJ70f7Vxifedffv2cTXmGs16PonGoWRnVSaTgWgDsaRtnU9YFwoz40m4dKhM4G026jEZdHh4/B6QZWdns2DBAhYtXkp6RgaIoNGoGTF8GFOnTqVRo0Z/+TXeL5RKJRHNmxN96wo+jdtWOTYn7jKNGzXC3t7+T7+fg4MDPXv2rH5gFVJSUkhMTKJRq6p36QVBwMO3MceOHb+n95NIJBKJ5F5IgbdEUkMGDx5MhwULOL1tKfX6jMYlIKTM84XpSdzYsYLG4Q3KpYGaTCbmL1iER0jrMkH3Hzm4eOIV3Iy0S4fwCmqIu3/585q63HSSzu5icP9+BAUF3dG63333XS5eiuLkvoV41W9HndC2aBzdMBt0pN44S9q1EwT4ujN3zuwyr2vYsCGdOrTn9MVDONdpQKGuGLPZDIKAIMgQRRtFRTrSLuzBZNTz9rvv8d6M/6NliwgmT5pE7969q+z7WxmNRsOYMWMYM2YMRqMRs9mMg4NDrfZtXrhwIa+89gb2PvUJ6z0ZZ9+SM+YF6bdJijrKE1OfIi0tjWeeeeaO5hNFkc+/+BIH7wYEtexVunuoddBSpCvCIoo4uNfBv+UAEk5tIDcljrzUm6RdOcyYUQ+XqSz/b7ZixUrsXerg7PF7b3mNRoOuqAib1YJMoUQQBDxD2nLz1Gp0uek4uJZkeqTFnkOjkpd+Vrdu3WLYQ8NJSE7HLbAZYQ/0RSaTk5+ZwM8btrN23QbmzZ3NwIED/5ZrvR88/thknpz2LIUZSTh6VXwDqygrhcKk6zz+ylfYbDYOHz7M4cOH0ev1eHl58dBDD91VtfN7YTKZEBGRK6rfKZfLVZhMpr9gVRKJRCKRVEyqai6R1KDc3FzGjhvHsROnUHv44hTQAAQZRck3KU6/TUTTpvy8amW5Hsn79u1j+MhHaDbwWbSuPpXObzEbObzkHWRyOX5NO+HTsCRINunySYs5S9a10zQJD2HTxo3lUtmrotfrmTlzJkuWLiM7Jw9RBARwsNMwYvgw3n777QpT18+fP0+//gMxadzxa9MPtbMXMoUcKGl1lnphH1lXj6Fx88a/aUcEAfITrqHPSqRj+3asWL78rtb5d7h69Spduz2Ic0hrQjoMLBfgi6JI/Nk9ZEUfYdeO7bRu3braOc+ePUuvPv0I6zER1zp/uNEigq5Yh65Ih+3XXd2YHT8imnR4eLjz5BNTmD59OvJqUvv/Lbp06UpSgZrApj0RRRGZTIbGzo7CggJMZgtKjT0IMkz6AqJ2fE3zvpPxCAhHl5fB5Z1zeWT4IH788UeMRiOduzxAQmoeTXs+Vrp7/hub1crVY2swZsWya+cOmjVr9jdd8d/LaDQyaPAQzkZdJaTHKJz9Q34vVCaKFKTcIm7vzzQPr8/0N9/gzelvERt3E6WDM3KVHabCHGSihQH9+vLNN9/U+u92YWEhoaHh+AR1JTi0c5VjL51eg5erhePHj9bqmiQSiUTy3yJVNZdI/iaurq5s3rSJ/fv3s3jxYiIvRSGKIh0bhTHxs/fp27dvhecis7KysNlE7J2qLlSmUKrxCGqCE3mYMq5zOfoEtl9Tbt1cXJg2ZSKvvfbaXd+EsrOz47333uPVV1/l4MGD5OTkoNVq6dKlS7l2ZX/UsmVL6tYN5PzFS8TumIuTXwNUTu5Y9EXkxUdhNRvxadUTj4YdUCoVuLm5QasHyU+5xck9KxgzdiybNm685/PftWnhwoWISjvqte9faTG7oNY9yY2PYsGCBXcUeMfFxWG12nD2+Z/q7EJJCq69vT0GgwGL2YKTTxBBLgK7d++usJCVxWKhqKgIOzu70n7u/wb79u0j8mIk9l4NKTYYEBAQRRGdTodSqUQmEzAbipEpVNgsJhBK6hvcvniQ1OijNA6rxyeffEJRURFvvPEGl6KuENZ9CoV6MyZrAXb29ih/zbiQyeU06vQwZ7d+w08//cRPP/30N1/930OtVvPzqpWMGz+eY9sXoXb1xrFOfRCgMDkOY04a7dq05qmpTzJm3ATkLn6EDZiCk3ddBEHAajaRcSOSLbt3c3PIULZt3VKrN8QdHR0ZMmQQv2zeR1D9jgiV1FowGorISr/KS8++X2trkUgkEomkOlLgLZHUMLlcTq9evejVqxcAOp2O7Oxs1Gp1panVv1UoNxt1VVYXB7CZjbRu35q5c+dw7Ngx8vLycHJyomPHjjhUUXTtTtjb29O/f/87Hh8ZGcmNuJs0HDwRU7GO7OuRFKffwKzXYbNZCR32HPYeftgsZkxGPRaLBYVCgbNfMA16j+XYlrns2rXrvk3vFUWRtes34F6/JTJZ5bvMgiDDo0ErNm7ewnfffVftjQRBEEAAUbQB5ecVBKGk57AdKORyGjQIKRd0X7p0iQULFrBuwy8YDAYEQaBL5048Nnky/fr1+0fviu/Zs4cx48YjqBwpzIpHodAgkysQEbFZLZjNxl9rCCgxGo1kxUdiNRuJPbwKrdaB8aOHM2PGDG7cuMGYseOIu3kLR6/6aJy8sSFSrNdTXFyMvYM9jo5OCJQE3z7127Jx0xY++eQTXCpo1fdf4ObmxpbNmzl48CBLliwl6soVRFGkQ/sIJkyYQIcOHWjRqjVKj7qE9xlX5vdCrlTh27Atzj5BXNk8m88++4yPPvqoVtf75JNPsmHDRq5c2EzjloMRhLLBt8Vs4NLpn/Fwc2HUqFG1uhaJRCKRSKoiBd4SSS25cOEC8+bN45dNmzGaTAhAgwb1eXzyZMaMGVMSWP2qU6dOONhrSLtxnrrNulU6p6EoD13WbXr2fA6NRkOPHpVXIv8rLF26FBMybE7eKJwFvH1DQLRxa+NcPBp1wN6jpOWXTK7AioDRYEShLfmz4+wbhL1XIIsWL75vA2+j0YiuSIerU+UVk39j5+xJuslEQUFBlVkCAM2aNUMhl5OdEI1XvcrTmi1mI/qsBJo1G1bm8QULFvD6m9NB44h7WAe8XL0wG3ScjL7IgQmTGDp4IHPnzLnrKtH3A6PRyDPPPofGJYjGEX04vvlrMuPP4R3SDgEBuVyJTCbHbNQhE2S4ODkQmxrFA5078uSTT9K7d29cXV25fv06I0Y+glHuiNrBBSfvEOSqXzMCRDVWixmdrhgBobQfuot3MImXdpGUlPSfDbyhpIDdgw8+yIMPPljuubVr15KekUmzEeMqvRll7+qFR8N2LFuxkjfffPOuqsZbrVYOHDjAsmXLuR4bi1yuoHWrFkyYMIGIiIhyWSctWrTg22+/5rnnX+TUwRT8g9vh5hGMKNpIT7lK6u0z2Glg5cpVJRk3EolEIpH8TaTAWyKpBcuXL+fFl18BOyc8mnbFwdMPq9lIcuxFXnljOj+vXsPaNatLz0C6ubkx/KFhrFq/FZ+QFqgdyqcUi6LIzXM7cXV2uqOK5bVt7969zJs3H1HrhlylKe03bcjPwqwvQlunPogiJeW/BQRB+HWH93cugeGcPXfy71j+HVGpVCiUCsyG8i2p/pfZUIQgCHeUdRAeHk6nDu05e+UYHkGNKw1gUqJPIResjBkzpvSxbdu28errb+LasD3BHfuXSa/1bdKe7FtX2bhlFa6ub/D1V1/dwVXeX7Zs2UJaeiat+j+Kg5MnAWEdSIraDQh4BrdCJpMjCDJkChV52alkxOzBy9WBhQsXlikoOPPzz9GZBSL6TuTk2i8QRevvbyIIyJUqoCR13d7eHrlcjmizIsA/Olugtm3fvh17z0DsXKq+GeUT3oaLlw5x9OhR+vbte0dzp6Wl8eiYsZyPvIjG1QcHr7qIZhvL129l6fKVDBsymFmzvi9z0xJg9OjRBAYG8t33s9i3dwvXrTZsVhtyhYwO7dvy5ptv0rZt1ZXaJRKJRCKpbVLgLZHUsEOHDvHCSy/j2KAVIQ8MLhMYeYQ0oSgzhfNbFzJh4iQ2bfyldAfn7bff5vCRo1zaNY96bQfhVqdBadpkcUEWt87voSjlKvPmzP7b+w7Hx8czcdJjyLRuWEwGZDIFwq/Bo0yuBAQEmRybzVba41oUxXJnMAW5AqvF+r/T3zdkMhm9evRg15EzqOydsJr0KFQaXP1DSwp7/UFWXCQPdOmMRqOpZLay3nzzDYYNH0HMwdWEdhmOQvn7+WxRFEmLPUdy5B6enjqFOnXqlD7+6cyZaHzrEdxpQIVnzt2DG2Fs15dly1fw0osvEhAQUG7M/Wzv3r04uPnj8Gu9g7C2gwCRxEs7SLt+FBffcOQKFbq8FPJSr+Ffx5eNv2wtE3Snp6ezectWfJr2RqHS4OjpT37qdXwbdS/zmcl/PR9erC/GUetIZsJVXFxc7rgjwH9RfkEBimqOwwCoHJwRRZH8/HygZCdbr9djb29fYd/7goIChg0fTuztVML7TcHZN6j0OdFmIzPuEhs2/4LJZGLJksXl5ujUqRMdO3bk22+/ZfacuSQnp2CxiBw7fpqHho+gb58+TJ/+Jg0bNry3D0AikUgkkj9JCrwlfxtRFDl58iQXLlzAYrEQHBxMnz59/pHpsX/01ddfo3DzI6Rr+fOGAFpPP4K7j+DIrmWcPn2adu3aAeDt7c3WLZuZ/NjjnDu4DIW9CyqtO1azgeLsJDzc3Vgwby5Dhw79i6+ovIULF1JsEWnYexwX1n9Pwe1onOs1AUBpr0WmUFKckYjWJxhRFBGtFkBEo9Zgs5jJTbqBWV9ERsw5QgPv38CwsLAQUbSRk3KT3IykX28uiMjlSrzrR1CvXX9Udg5kxV+hOCvxrvprd+zYkQXz5vLE1Kc4t+YzXIOaYe/ihcVYTHZ8FJaibCaOG8OMGTNKX3Pu3DkuX7lKSN+JAOQl3iAl6ji5ibFYLSZU9o54h7XEK7wVqeeUrFy5ktdff72GP5XaVVhYiEL1e9aATCanYfth+Ie1J+naSXLTb2GzWtA4OKNUKnj7renl+m9fvHgRo9GMZ1BjAPwbdiBy5wIK0uNw9vlDFXlBQJApMJvMmAw6MuPP8/QTE8vtqP4XJCYmsmzZMrbt2ElhYSEe7u6MGP4Qo0aNKpOi7eLsTGH6BWL2rcZqNqKy0+LZIAJn3+AyNzWMRbml806YMJGdu3djtVhRqVUMGzKYyZMn06pVq9LxixcvJub6TZoMfRb7/9lNF2QyvBpEIFMo2bp9JUeOHKFr165lxoiiyFtvvcWPs+fh4teIiF6DcXL3x2oxk347it0Hj3H4yADWr1tzRwUQJRKJRCKpaVLgLflb7Nmzh/fen0F0zDUEuQpBLsdiLMbH24tnn57GtGnTKtwVud/FxcVx9NhxArqNrDDo/o1r3VAUjm4sW7asNPAGCAgIYPeunZw7d45169aRnp6OnZ0dXbt2ZciQIXe8m1qZ4uJitmzZQnR0NFCS8jx48GDs7e2reeXvLBYLy1euwq1BS5x8AnH2CyHj3D4cfIJQ2GuRKVQ4hzQlN/YcHk06IRNkWM0mlAo5ief2khJ1ApNBByLYLCau5jvw3HPP8dZbb1XYsuzvUlBQwNBhD3HhSjS+bXthFxCO2tkD0Wwi70Yk6ZdPkJsSh09oS9IvH2X40CF3VZgOYODAgZw51YJly5axavUaMi5HYWenYWjfHkz8tZDVH4OZmJgYLFYRJ78gru1dTXrMOdQunrg16YhcbYcxL5PkSydIijyCvYsHMTExNf2x1Dp3d3dMxRdKMiT+cO2Orr40bP/7WXd9YQ5ntn1VrjUfUNJPHpApSorcufk3wM2vPvGn1hHc4WGcvOqVGW/U5XPzxFY8XR2ZOnVqbVzWfW3OnDm88977mJHjFNQIpZsH1/NyePPd9/nks5nMmzObvn37sm/fPvbu209RVjqgRKF2oCAtiZTLJ9B6+NGwz1jsXUoyFVKunEIm2vjok89QOXnh0eRB1PaO6AtzWbtlDz+vWcs7b03nhRdewGq1smDhIpzrNi4XdP+Re1Ajkpy9WLBgYbnAe8OGDfw0ex7BLQbiH/r731SZXIF/aFt8gptz6eASxo4bz/lzZ+/qb55EIpFIJDVB6uMt+cutX7+eJ5+ahtq9Lv7Nu+LiV9IrVpebQcqV42TFnuHxSRP44osvKkylFUWR8+fPs3z5cm7E3USpVNCyRQvGjRtH3bp1/4Yr+t3u3bsZOepRIsa/gcqh6p/H6/vW0cAR9u7ZXevrEkWRH374ga++/pbsnFzsHEu+3OoLs3B3c+GF55/j2WefrfDz/l85OTk0CAunbrdReNRrgr4gh8j1P2CTy/Fq0Q2n4CaYCnOI2zgbrU89fNv1RyGXk3ZiM3mpt3ALb4NLaEvkKg02owFrVjxZl0/g7+nKtq1b8Pf3r+VP484888wzrFi3kfChU7D38KWwsJDi4uJfU+blmIpySdixFIw6nn/2GT788MNab4u2fPlypj37Am5hrUm9ehq/zoNxCWle5t/NZjaRfGwzudfP06dHd7Zt21ara6ppe/fuZcTDo2n24BScPQMrHXfj/E4MmZe5cvlSuSAqKiqKrt0fpEHXcbgHhAFgNuqJ2ruM3JQb2Lv64ewbjkymoDDjJkUZNwipV5c1q38ut3v+b7dkyRJeePkV3Jp0JLBdr1/PvpcwFxcRd2gj5pQbvPn6a3zy6WeoXIJwCW6LWuuJUmOHKEJh5i0SI3dgsxlp8dDTWM1GLqz5ChAI7ToSn7DWZX5GRdHG7fP7SY86yKzvvqFLly5EtGxNvR5jcQ8Mr3K9t8/txZxwgbgbsX+YT6Rnr97EJhXSvPvESl+rL8rhzNav+OmH73j00Uf/7EcmkUgkEkmpu4lFpcBb8pdKTk6mdZt2aPzCCX1geIW7wmnXzhJ/YiNLFs5nyJAhZZ7Lycnh8cencPDQYRR2zji4BmCzWSnMjEMmWpjy+GQ++OCDStt21bY9e/Yw4pHRNB/3Ompt+QJpf3RtzxoauivZtWNHra/r/fff55vvZuFVrx2BDTth51iSOqovyiHh6jEybp7imWlT+eCDD6oNvgsKCqgX0gD/zg/hFdoCAENBDtcPric3MRZBoUSuscdcmIvFZECldUXr6klhZjKBvcZg5+mPzWJGLpPh6uqKUqHAWJTP1U1zaN0olB3bt93RDYDalJ6eTrOIFri17EmdFp1LH7fabBj0eswWCwD5ty6TdXI7506fol69epVNV2POnTvHgz17oTea8WnfD48mHSscZ7NaiNs8lwAnFVevXK71ddUkq9VK+w4dScosJuLBx1Coymd5FGQlEXVwAc9Oe6JMKv5vRFHkwR49uZFWTNPeE39/3GYjOzGGpOgTFKQnYLGYsJmKefmlF5k+fXppdfP/iuLiYpo0a47VM5gGPUZUOMZms3Jlw1x0yTdxrdOIZt3HYbZYyMnNBUGGXKlGJldgNuq4dmA+cpUCTMUYdYUEtOpFvbaVF1aL3r8KZ1sea1b/TMfOD9Cgz2Rc/Kr+PUq6eJjCa0dJuB1f+tiNGzdo274joe1H4RlQ9Y2TyAOLiQj1ZsvmTVWOk0gkEonkTtxNLPrPy+WV/KMtX74cg0UkpMOgSlOxfcJa4+AVxNx588s8rtPpGDHyYQ4dP0Nox0dpO+glmnR5hGZdH6X90Nfxa9yL2XMX8Morr/B33U9q3LgxSoWcnPiqU3xtViu6lDhaNG9e62s6duwY333/I0ER/QlrO6g06Aaw07oR1nYQQRED+PGnORw9erTa+RwdHQkNa0DOrSulj2mc3Gg2eAptx7xGcNte+IW1JKTTIFz96uHlpCE/OQ6X0JaoXb3AZkHrYI+7uzvKX2+QqLXO1O00mFNnznD+/Pma/xDu0tatWzFarHg3alXmcblMhoODAy7Ozrg4OxPQpC2CUs2GDRv+knV5eXkhlwkgV+JcvwU2mw1RtJX7eRdtNtwatiE1LY1r1679JWurKXK5nMWLFmInM3B+92xSb17AZi250WHUF3Lz0j6iDi6kfZuWlZ5fFwSB5597lqL0G9y+eKD08xFkMjzqNiKi72O0HvYsjs6uPPBAFz7++OP/XNANsGnTJrJzcgloXb5t2G9kMjlan0AMRhN1m/VAkMlQqVS4u7mhkMuwGosx6wvBJuIe1IqijCSahIWgsrOnTiU3hn7j3/QBEhKTiI6ORqVUUpSVXO2ai7KSy2XFpKWlYbPZcHCu/qiKg5MXqamp1Y6TSCQSiaSmSYG35C+1dv0GXOo2rnAX64+8Q1tz8tSpMl+QlixZwoXIKJp2n4RnQMMygbtcoaJuo87UazWYpctWcPbs2Vq7hqr4+fnRr28fMqJOYLOYKx2Xee0ColHHhAkTan1NCxctQuXgjn9Yh0rH+Ie1R6X1ZOHCRdXOJwgCUx57jPzEGHTZaWWes3PxIKBFN4Lb98PZLxhLYRajR43Czt6eem0fxNPDAy9PTxy1jsj/5wy/a91QFA7OrF+//k9dZ03KyMhAae+IQl11kS2ZQonK0Y3MzMxaX9OiRYto3bYdBYVF2PuUHKkQRRGbTfw1AC8JLm0WM1aTAc+QJlhtIlFRUbW+tprWuHFjdmzfSud2Tbh17heOrf+AE798zKnNM8lPOM3jk8aybt3aKs/pDh06lLfefJ3UqH1c3DGX9LhIinLTyE+/zfUTm7m09UeC63iybOnSvz3Dwmq1sm/fPt5++21eeuklPvnkk7/khsmZM2ew86yDxrnq/tYmXSH2Lr4oHX4fp1Qq8XB3x93dHa1Wi4ODPXXD2mDv4IizszMObr6oq6l+7uhZB4XGgYSEBIYMHkhmzGlEm63S8abiIvITrjJu7Jgyj9vZ2SEgYDHrq71ms0mPvZ10vlsikUgkfz2puJrkL5WTnY1dUPUpuRond2w2kZycHHx9fUuL77j6N8bRtXwxpd/4hrQk8eohFi1aRJs2bWpy6Xfs1VdeYd+BgcTsWE5o71FlgjdRFMm5dZWEo5t5ZPhDtd7axmq1sm3bDrxCu1YZXAiCgFdwC7bv2InZbK72rPIjjzzC4iVLubxjEfV7jC7b+kcUyUuOI27/z3Ro15agoCBkCiVaV88q5xQEGUpHd9LT0+/qGmuDvb09FqMB0WYr1wLtj0RRxGosrvVCTWvWrOHlV1/HJbQNOKVhkcmxWc2INguCXIkgCFisIlgtiDYbdnYaHLVaREp+Bv6JwsLCWL9uHXFxcRw8eJDi4mK8vLzo27cvzs5VH+P4zSuvvELTpk356afZHDm2HqtNRAC8PD155YWneeqpp3B1da3dC6nG0aNHef6FF4m7GY/awRWF2h5jUQ5ffPk13bo+wI8//lBrRQctFguCvPqvATazCYXaASrIJFIqlWX+XsiVSkwmE3B3WUdPPvkkGzZuIvboRhp0GVouI8piMnBt3wo83FwYNWpUmeeaNGmCh4c7qTcjcXKvvEaE1WImLzWG8cMev6u1SSQSiURSE6TAW/KXcnR0QldcWO04k74QQRBK+1UnJiZyK/42YZ3GVPk6QZDhHtCE/QcO1ch6/4xmzZqxctlSxk+cROTST3EOaYaDhy9Wk5Hcm1EYc9IZMmgA3337ba2vpbi4GIvFgtq++kBFY++M1WqhuLi42sDG3t6etWtWM2bsOM5sm4fG3Q9H33ogihQk38CYl06Xjh1YunQJ27Ztw2a1YDWbyhRuqojNbLwvWjl169YN4YOPyImPwb1e5WdGC1NvYy7Kp1u3brW2FrPZzLvvz0Ab2IiQLoOJO7KJtNiLKFUabDYrNosJG8CvVcBdXV1Rq9XkJVxHIZdRv3796t7ivhYSEkJISMiffn2fPn3o06cPiYmJpKWlodFoCAsLuy/aFh4+fJhHRo1GpvWlaa8ncPIIQBAEbFYrmQmXOXRiB/0HDGTnju14elZ94+rPCAgIwJCTXu3vpiCXYyzKrrbThLG4AJvFTIMGDThz/hImfREqO22l44uyUrAYdISFhdGyZUu+++ZrnnvhRS5mJ+PTsAPOvsGIoo2sW1fIvHYaRyWsWr2q3M0StVrNhPFj+eq7nwgI64C9k3uF75cQfQTBZvxLMo0kEolEIvlfUqq55C81cEA/cm9fxlbNLlzG9fM0ahhOYGBJVWODwQCiWG2KOoBCqSkZ/zfq1q0bZ06d5O3XX8HVlE3W2d0UXztJr3Yt2LB2NYsWLkStVtf6Ouzt7VEqFBh0edWONejyUSgUd7x76+Xlxc4d21mzagXdWzfGvuA2DkWJ9Oncil/WrWHTpo24urrSuXNnVAo5mbEXq5xPn5eFPjOJBx544I7evzY1b96c1q1aknxmL1azqcIxNquVxFO7aRBSjy5dutTaWnbs2EFqWjoBrXsgCAI+jdph1RdRcDsGhdoOlYMTKntHlHYlva8FQQBRJPXiMZo2aUzLli1rbW3/JAEBAbRp04amTZveF0G32WzmqWlPo3Dyp3mPyTh7BpZmpcjkcryDm9O895PcTs7k//7vzvvD342RI0cit5nJvBZZ5TibxYKpOJfi3KRyz1msVgqLisjNyyP24iFkAkyaNAkHOzXJV45XOe/tyANoHew4deoUH3/8Mc7Ozqxbs5purZuQdHIjl9Z9SdSGb8i7ephRQ/qye9eOSjOZnnnmGULr1eXSgflkJV9HFH9PWTcb9dy4sJukq/t59ZWXCQoKqvazkUgkEomkpkk73pK/1Pjx45k9dx4JkQcIatWzwjG5KXEUJF/j8Zdmln4R9fLyQi6XU5Sbjotn1S3DivLS8fX1qfG13y1vb29efvllXn755TKPGwwG1q1bx7Zt28jNy8fVxZmBAwcyePDgGg/G5XI5AwcNYPPOw9Rt/ECl6eaiKJJx6zwDBvS/q5ZYcrmc3r1707t370rHBAUF0btnD3YfP4xHSJMKz02Losjtk7vw9HAvV8n+7/L5zM8YOHgI0ZsXENRlMFqvOqXPFWenE390K2JuGt/MXV2rPefPnDmDxsUTB7eSdGOthy/uwY1JPbENlaML9t4lAZsgVyAIAiaTkdRzB9CnxPHKh/P/9vPLkort2LGDpORUGvd8kqLiYhBFZDIZGjs7FHI5AHZaV3xCO7Bu/S/MmDEDN7eqz2LfraCgIIYNHcK6zdtw8PDF0Seg3Jis2EsUJV6jbmAAN89txdFtCiqNFlEUKSgoQK/XgyBQXJBB6rXjCIKF/gMH0TAsjItRh7Bzcse7QcsyP4dWq5nIzXPJTbqG2s6eHxetRLRaMenyCPCvw3vvvsOXX3xOfHw8MpmM8PDwaq/dxcWFTZt+YeKkyZw6tgyFnQt2zr7YLGaKsm+hUcl55603eemll2r0M5RIJBKJ5E5J7cQkf7kvv/ySDz/+FLf6rQlo3hWNY0naoMVkIO36OZLO7aZn9y6sWrmyTBA4duw49h27QKu+T1caTJiMOk5v/JwPZrzNM88885dcz904dOgQU56cSnpGJvZedVHaO2HW5VOcmYCPlyfz5s6p8R3fkydP0n/gYPyb9KJuo4p3ZhOij5EYtYstm36hU6dONfr+ALGxsfTp1x+doCH4gaE4ev/+Bd9QmMvtEzvR3b7CogXzGTx4cI2//5917tw5Hnt8CvEJCajdfJE7OGPVF2HITMLP14c5P/1Y6zv0b775JovWbqXZiGdLH7OYDFzeupD81Hi0AWG4hDRDrrajOCORoltRyA0FfDDjfaZNm1ara5P8eYMHD+bwmWhCOo1FEGQIglCySyuKqDUanJ2ckMlkmAxFnFz/CYsXzOWhhx6q8XUUFRUx8uFHOHHmHE71muDdsBUKjT2Z1y+SdT0SY24GvXr24POZMxk67CGy8o3UadgFjVsQZivYrCZyEi+RceMkDp6+NB44gczrkaSc3k2gnw8JScloXH3xqN8Clb0j+vxs4s/sxGI2UyeiO0Etu6F2KPlvd1FWCokXDlCUFM2Xn3/GpEmT7vp6RFHkzJkzrFq1ioTERFRKFe3bt2P06NF4eXnV9McnkUgkkv84qY+35L4miiLz5s3jk09nkpOXj72bL4JMjj4vHaVMZPQjj/DZZ5+i0ZRNKz9y5AhDhw3HO7QL9Zr3LBd8W61mog6tQGbI4NzZ03h4ePyVl1WtY8eOMWLkI8jc/KnXcTB2Lr+vT5+Xxc1jm7HlJrF+3Ro6dqy6Dc/d+vDDD/niq2/xCGpJYKPOODiVnBctLsgi4epRMuPP8tILz/Huu+/W6Pv+0dWrVxk/cSI34m6hdvNB6eiG1aCjOP02rs5OfP3lFwwbNqzW3v/Pslgs7Nmzhy1btpCTm4uLszP9+vWjf/+7yw74s3766SemvzuDiLFvovxDtoDNaiEt+gwpUSfQZaeVFHozGXigc0c++eQT2rdvX+trk/w5O3fuZOjQYWh9GlK/06PIZCU73KIoYrOasVqMKORy3NzdkQkCR1a+w7dfzWTixIm1sh6DwcC8efOYv2AhN+JuYDSaAQGlxh6lQokMKw3q1+PxxyZz/PgJNm7aTLHeiFylQbRZkClV+DRuQ3Cn/qVnxTOvX+T2/jW89ebrREZGsmvPXmw2G1arBYPRTGjPMfiGlj8GIYoicce3Uhh3ltOnTkhp4RKJRCK5r0mB979AUVERs2fPJjIyEoVCQadOnRg1atS/qtesTqdjw4YNREZGYrFYCAoKYtSoUfj6Vl61fNasWbz73gwcPOrhH9YBF+8gbDYrWYnRJF87jtxaxMoVy+jatetfeCXVE0WRjp06E59joPGAx5H9mkr6RzarlStb5xPsacexI0dqNEVYFEXmzp3LF19+TUZmFnZaV0BAX5SDp4c7L7/0AlOnTq31tGSr1cr+/fvZsGED6RmZaB0c6NWrJw899BAODg61+t7/VBkZGTSLaIFr024EtCj/cy2KIubiQuLP7MWSEk30lcs1+ndCFEVu375NdnY2Wq2WBg0a1Gpq/b9dcXExTZs2JzNPh0ylpVHPp8qNEW1WzMZi7B3sUclsnNk4k2VLFtZ6Nsinn37Kx59+jktgU+o06oird92SlPLMBBKjDlOUdp3PPvmIlat+JvJ6PD5NO6Cy1+IW3AiFuuyNUlEUiVr7Pb3bt2TZsqWYzWZ0Oh0jH36Eq8n5NOk/udJ1WC1mzq/6lBemTanVm4ESiUQikdwrKfD+B7PZbEyZMoVVP6/BbLGidizZFTUWZeNgp+aF50t2Jf/LX3y3bNnCV19/w8WLl7BaRRBAqZDTu1cPXn/9dZo3b146NjExkeXLl3P23DnMZgv1goMYO3YsrVq1+kvPvh49epRBQ4bRoO9kXOpUXqE5L+kGsbsWsXXzxlpJ+TYajWzbto3o6GgAwsPDGTBgQLnsAsn95eVXXmHBkuWE9hmPi3/5KuXZt64St28lr7zwHG+//XaNvKcoiqxdu5a58+Zz4UIktl+rptcLDuKxyZMYP348aWlpGI1GvLy87rsMk/vVihUrmPbM89RrNZirx9cT3n0KDm51yo2zmA2INgtFyRcpTj7H5ahLtXrj9fjx4wwcPBTfpj2o26xbuedFUSTuzA5ybpzAYrUS2HU43o1aVzln0vnD5F06SEpSIoIgkJKSQtPmEQR2GYlXSPMqXxt7dCNOhnQiL5y7l8uSSCQSiaRW3U0sKhVXu4/YbDa6d+/OsROn8QrriGdoBzRaV0REjIU5ZMae4uNPPyc9PZ0ff/zxP1s0adCgQQwcOJCoqChu3bqFXC6nWbNmpRXQoWRn9f3332f2nLlYUaD1rIdMJufk+e0sXbaCTp06smjhgr8sWDhy5AhyjRZnv6p7mDvXCUGu0XLkyJFaCbzVanWtnBOV1K6PP/qIhIRE9uxcglNgQ7zCW6N2cMJQmEtGzBkKE68zbMhAXn/99Rp5P5vNxosvvcSSpStw9K1PcJdR2Dm5YdIXkRpzmpdfeY033nyrNHNDIS+58TV16tRarfD+b7B9+w60HkHUCWlNfNRBEi5uJ7TLeOSKsoUV5XIV+TnJpMQc5eknJ9d6ttO8efNRaj0IbFpxtpAgCNRr1Yfs+EiMukwUdtV3P1Bo7DCbzVgsFpRKJfn5+dhsIhpt9b3T1Q4u5KVfu+vrkEgkEonkfiUF3veRjz76iGPHTxLQejAeDdoDIjax5AuPxsmDgJb9UWndWLBoCSNGjKBHjx5/95L/NoIg0KxZM5o1a1bh82+++SZzFywmoEkP/MM6lJ47FEUb2UnXOHF6I8NHjGTrls1/Sfq+Xq9HodZUe7NEEATkKvXf3g5Ncn9Rq9WsXLGcJUuWMHfefG7sXopNFJEJAo0bNeSJb77k0UcfRf4/RxhEUcRgMKBUKlEo7vzP/axZs1i8dAUhnYbjXb9F6eOm4kKKctOxyZRovMPxCmqOi5s7hTmp7D9xmp27hvPB/0lF3apSUFCASuOIIJPR7IFHObt7LtcOLsQ3/AGc/cKRyeRYTHqybp0n+co+QkMCmT59eq2uyWAwsH3HTrwa96jyb5RMLsejXituntmOPicTgqueV5+bibOzc2ktBCcnJ2QyAWNRPnhX/VqTLh9nZ+fS/2+xWEhKSsJiseDt7f2vOnYlkUgkkv8GKfC+T4iiyFdffY3GxRf3+m1/fVQofU4URQRBhmf9tmTHneHTTz/7TwfeVYmMjGT+wsUEtRiAf1i7Ms8JggyPgIZotK5c3D2bBQsW8MILL9T6mnx8fDAW5mExGarsRW4xGTDp8qXqu5JylEoljz/+OJMnT+bGjRsUFBTg4uJCSEhIuWApPj6exYsXs3zlKvJy8xAEaN++PY8/NpkBAwZUGYQbjUZm/fATHg3alAm6RVEkavdSTMU6wntORWXvjNVswMHNEyfPAPxC23Dz/G7efvd9goKC6N+/f619Fv9kbm6umK4mAuDk4U+bvk8RfWojN0+vRSZXIVeqsRiLQbSB1cjHH32IVqut1TXl5+djsViwc6q+XZm9kztKpYLM6NPUadkFQaj42JPNaiE39gJPTRpX+pifnx8tIiKIuX4Wz5Cmlb6HzWIm99Ylxk19jNzcXBYuXMjCxUtITU0DRNQqNUOHDGLq1KlljhZJJBKJRHI/++8eFL7PzJ49m/zCQtyDWyCTyUv68pb+TwaUtJqRyeS4BbXg2PHjmM3mv3vZ96XFixejUDtSp0GbSsdoXX1w82/KosVLsFgstb6moUOHopCJZFy/UOW49GvnUMqQ0sEllZLJZISGhtK6dWvq169fLujevn07HTt14bvZC8AzHP+Ow/Bp1Z9z15MZP+kxHhk1Gp1OV+n8u3fvJj0zE/9GZSvr56XeIj/jNoGth6Bx8kSmUAJCSR9nfk1Fbtkbe/e6fPPtdzV+3f8WQ4YMoSgnEV1+BgCObr607fcUHQa9QP3mPQkMbUd420HUadCGwMC69O7du9bXpNVqS3rA6yv/ufiNSV+EVqvFpssj/vhOKioTI4o24g5tRGEzl6nELggCUx5/jKLUG2TdulLh/KIoEn9mN3KbmZ49e9K7T18+/PRL9GpfGnQfT1ivx3Br2JX1W/fRq09f1q1b96ev+7fCgVeuXCElJeVPzyORSCQSyZ2QAu/7gM1m48uvvgIElA7OFY4p+XItYBNtKO0csVptVX55/i/bd+Agrv6NEaopQOddrzmJiUncunWrzOO5ubnExMQQHx+P1WqtkTX5+fkxbOgQUs7voSg7tcIxRdmppJzfx7ChQ/Dx8amR95X8t5w9e5ZJjz2OwrMeLUe9QUiHAXg3aIlf4w40HfgE4X0eY//h40ydOrXSORISEpArNdi7eJZ5PPXaadRadxy9fysOKCDIZGV+RwRBwK9hR86eO8/Vq1dr4xL/8QYOHEgdPx+un9mM1fr7zVNHV1+CmnQlJKIXTm51yEmKYtLE8ajV6ipmqxkODg506dKJjLjzVY4TRZGsWxcYMmQwn3z0ITmXjxO9dTG5CbGINhtWi5lbx3dw7Me3SblwBBdnZ77//nvOnz9fGqCPGDGC4UOHEHdgFfFn9mAqLiydX5eTxrX9P5Mdc4L/m/Eer73+BvGpOTQf/CxhXR7Czb8BLj7BBDZ7gBYPvYCDX2OmPfMsZ86cuavrNZvNLFmyhAce6EbLVm3o/EA3mjaLoH//Afzyyy8V3kyQSCQSieReSanm94GjR4+SmpYOgLk4v/KBAiCCqTgfQSZI7ZcqYTAYUDlVX6VbodQg/joeSqr6zp49h527dmGxWEEQqBsYwGOTJzFx4kS0Wi2JiYkcP34cvV6Pj48P3bt3v+Mvxl98/jmxsTe4uHUu7mFt8GnYFrWDM0ZdPqlXT5Nz/QwtmjTk85kz7+XyJf9hX331Fdi5EdZ9VIUt61zqhBDUcSjbdqwlMjKSiIiIcmPkcjmizYoo2sqkERfnZ+HgHlDBGeCy/9/Fqy5Wq41bt27RqFGjmrisfxWVSsWC+fMYMfIRLuyZR93G3fGoE4Ygk2EyFJF84yzJ0Yfo2K41L7300l+2rsmTJnFgwmQy4qPwCqo4DTzl2mnMumwmTphAp06d8PX15fMvvuTyjsWYzBaMej0g4ODlj2tYG8yCwMoN21i2YhVDBw/ihx9mYbFYGDCgP9nZWRw5doi0qEPYObsjWq0YCnPw8/Xhs1nfodVquRodQ5MB0ypMgZfJ5IR1Gc6FzanMmvUDS5YsvqPrNBqNjJ8wkV279+LiE0Zo+9GoNFr0RTlE3TjHpMee4NChQ3z11Vf/6e4hEolEIql5UuB9Hzh79ixqByeMRhPZcefwCutU4bk54dcd7+xb52nauFFpwRpJWb4+PiTkpFc7rigvHblMwMvLizlz5jD9rXdQaj3xa9oPRzdfLGYD6bcu8s57H7B02XICAwI4ePgwJpMFQSZHEG14eXnyxJTHeP7556v993BycmLzpo188cUXLFu+kkuXj/56dl/A3dWVZ6c+zquvvlrr5zkl/06JiYns3ruPOm0HVxh0/8azXlMSz+5k6dKlFQberVu3BpuF3OQbuPmHlj4uk5UE5KVEGzabtdzPve3XMdLfp8p16NCBzZt+4Y03p3PuxEpi5WrkShUmfRH2dmoenzSWGTNm/KVt/gYMGMDDIx9izbo16POz8Atvj1JtB5SklyddPUba1SM8OWUyHTuWHEMYPHgwgwYN4tChQ0x54kkyCwzU7/4I7n9oeSfabGTevMSGLRs4c+YMeQUFFBQWgSDDZrUgQyTAXUuPHj3o2LEj/fr1Q6lU8vAjj2DvEYijR/lWa78RZDK8w9qyfecO0tPT8faupmIb8Ob06ezec4DGXSbg7vv7Op09AvAJak7KzfMsXrKCoKCgv6T+h0QikUj+O6TA+z5gNptRKDV4BDUm89YVMq4dxzu8c4VjM68dx5CfwfTp/40zlElJSSxbtoxVP68hIzMDezs7evR4kEkTJ9KhQ4cKK/COHvUIb779HiZ9ESq7ioNYURRJu3Ga7t27ERkZyZtvvYNX/Y6EtOpbZk73OmHkZXXi/I7ZXIy6QqOOI/ENjkCmUFJckEXStZN8+MlMLl68yKJFi6qtHO3o6MiMGTN4/fXXOXbsGPn5JZV7O3XqhL199e15JJLKxMTEYLZYcQ0Iq3KcIJOh9alH1OWKz9i2atWK5s2acv3SQVz96pce2XDyCiA55mxJsCRXYDGbkAky7OzKBoeZt6+iUilo2rTy4lmSks95z+5dXLhwgaNHj2IwGPD29mbQoEG4ulbfbqumyWQyfpg1C08PDxYsWkzK5YPYu/oiiiLFuak42Kl58/VXePXVV8v8jRQEgcjISLJyC2g27FnsnMu2aBRkMjxDmlNUrCf6wCp8GrcnYuAA1FpnzHodaTFnuXnlGNY9e8vcwLweewOtZ91q1+3iE0yCxUpCQkK1gXd6ejorVqwisEnPMkH3H/nVa0lBdjKzfviJqVOn/qU3PyQSiUTy7yblUd0H6tati1GXT3Cr3siVKpIv7CDhzCYMBZmlY/T5mdw+s4mkCztoEBLMsGHD/sYV/zW2bNlC23Yd+PybH9BpfPBs2hNVQEs27TrMwMFDePHFFyssjDZq1CjcXJy5emwNVkvFBejiLx3AkJ/K1Cef5OtvvsXerW65oBtABMyiioAWgwAZDk4eyJUqBEHAwdmTsLaDaNh5DFu37+LHH3+842uzt7enV69ejBgxgl69elUadNtsNum8oaQWCJX+XAmCwIz338OSn0L0odWYjSXF0/watsNqKib71jmsZgOi1YSjo7bM74zVYiL12gkG9OuHr6/vX3Il/3QtWrTg2Wef5dVXX2X8+PF/S9D9G6VSyUcffUTUxUg+nPEOI/o/wMMDu/H5px9y/NgRXF1dGTBwEO3ad6RPn758//33pKens3DxEpyDmpQLun9TWFiAnVcw9p4B2Cwm1NqSWiZKOwcCWnSl8ZCnSEjPYdq0p0tf89uRh+rYbFYEuKO08DVr1mC2iPiFtKpyXGB4RzKzstm5c2e1c0okEolEcqekHe/7wMCBA3F5401yEq/RdsSLnNs4i8zYk2TFnUFlX/IFxaTLQ7RZUShkHDhw4G9ece07duwYj015AjufMBp3GV7ahxugbosHSb9+jsXLVqLVavnwww/LvNbV1ZWlSxYxavQYzu/4Eb+wDngGNkYml5OfkUDytRMUZdzgrelv4Ofnx+kzZ6nfYVSFu+dGoxGL1YqLXzgaR3eSYk/j6lOvzBiPOmG4BUYwd958nnrqqXtOsS0oKGD16tUsWryEGzduIAgymjZtzORJkxg2bBh2dnb3NL/k3yk0NBSFXEZuciw+oZUHFqLNhi7jFk06D6h0TNeuXVk4fx5PPjWNc2s+xTmgERond+yc3Ek4txWbzUZgw7ZlbhiZ9EVEH/4ZjWDgtdderdFrk/y1PD09efrp34PgnTt30qVrNwoKi3H0a4BG605qagGnZnzEBx9+hN5gILzvgxXOZbPZ0OsNyJVqnOs2IefayXJjNI6uBLTrz6FDa4iOjqZhw4a0adWSDdsPIIr9q+wtnn37KloHBxo0aFDtdd26dQs7Z2+Uqqr/hto7uqPSaLl582a1c0okEolEcqekHe/7gFarZcrjj5EefRRjUR4PTPw/mvWeUHK2zWZGwIazTxD2WiemTZv2n9hJ+ujjT5BpvQjr9nCZoBtKduR8wlrjF9GTOfPmV9gGpnPnzmzbupnm4QHEnlzPkZ9ncHjle0QfXkqwl5oF8+fy8ssvc+vWLaxWGy7eQRWuw6DXI8jkyOUKHNwCKS7IrnCcf2g7kpJTOXXq1D1dd0xMDJ06d+HVN94mJV9Onab98G3Ui+tJOp56+jl69e4jtb35lxBFkby8PNLT0zGZTPc8X926dXmwe3fSrhwvPWddkazbV7EW5zFu3LhKx0DJDcHI8+eY8e50Ap1syLJiqO/vSauIJuRe20/0njncOLuT+IsHuHxwFWc2zERtzePnVSulomr/IocOHWL8xEngFECrEa/SpOc46rcfSOMej9J65OuoPULQ6w1YbBVnUBiNBkRRRK5QIVMoK93Fdg9ujKCyY8OGDQBMnDgRsy6HrPiKj0QAWIx6MmPPMuqRkTg5OVV7LQqFAtFafftIURSxWS1SnQKJRCKR1Cgp8L5PvP766zw0ZBCxh1YRfWAlSo0DTXqOpWnviXgEhmMrzqF3z2588vHHf/dSa110dDQnT52mTpMuyGSVF4nya9gOiyhjxYoV5Z77rdjPmbMXUNs7o3FwRpAJyARo3KQxvXr1Aig9k13Zl0Gb7ffKzqJorbRFmcbeGaNBz9dff80bb7zB/Pnzyc3NvavrzszMZMTIh8nMN9Nm4Is0fWA0/qHtCAjvQPPu42nZ9xmuxSXz8COjSnsnS/55jEYjS5cupVu37oTUb0DDRk0IrlefF1988Z5bcL380ouIuiyuH1yHrYJWePlp8dw6uoFePXvSsmXLaufz9PTkueee4/Chg1y9EsXZM6c4ceIEe3fv5OEhfVAU3MCQfI66rvDpRzM4e+Z0aeEtyT+fKIq8Of0tFM51aNh9FCp7xzLPKzX2hD0wAgQZ2ck3KTmcU5bNagNBAEFAn52C2rHiVHqZXI7K0ZWsrCwA2rVrx4B+fYg7vp6shOhyRyOMugIu716Ms4OyzO58VVq0aIEuPw19UU6V4/Iy4rFZjLRo0eKO5pVIJBKJ5E5Iqeb3CaVSybx5c+nWbQXz5y/g8qEV2EQRmSBQP6Qeb338AZMmTfpP3IG/dOkSFqsV98DwKscpVBrsPeuyb98+AgICkMvltGrViri4OMaOG49SW4cm3R7DxbMugiBgNulJvXmBn9dsJC7uJr9sWE+TJk1QqRRkJl7FP6x9ufcQBKGkerPVQkH6DeqElA1WRFHk9pXDxF3ch9lm49C5Kxy7dB19bgbvvj+DJ6c8zltvvVVt0TWAJUuWkJKWResBL6C2L797o3X1oUnXcZzfOYuNGzcyevToaueU3F/y8vIYOfJhjh0/gU1QYLOYSwISk415C5ayfMVKfpj1PQ8//PCfmr99+/bMnf0TT017hvOrP8O9QSu07n5YTQayb12iMDWOrp07MW/unCrTd6siCAKtW7cuqX4u+Vc7ceIE0THXCOs5sdKboEqNPR5Bjci+fhZ9i27Y/U+9ipK/oWDWF5KfcJWQjv0rfT+rUV96fEEQBObMmcOUKVPYvmsFic7euAY0QqZQUpiZREFyND7envy8cg1BQUF3dD1DhgzhrbffJf7KYRq2G1rhGFG0EX/1EGFhDejUqdMdzSuRSCQSyZ2QAu/7iFwuZ/z48YwbN464uDhyc3NxcnKiQYMG/6h+oqIocvXqVeLi4lAqlTRt2hR/f/+7er0oAtVcs16vx2g0sf/AQY6fPAMCKOQyTEYTrn6NaN51bJkvi0qVHYHhHXHxDOTMgQV88803TJ8+nf59+7LjwHF8Q1ohVyh/XYONgqwkdPk5GEwWzMV5WEzF5YLzuAu7uRm1H5fQVrg2aIl/cEkVaJO+iNSok3z9/Q+kpKby048/VvlvaLVaWbR4KW4BzSoMun+jdfXBybs+CxctkgLvfxhRFBk9+lEOHj6CTK7GxS8cZ+/6CDI5hVnx5CZGUVCk58mpT+Hn50fnzhV3NqjO0KFDadSoEYsXL2bFqp/JvnoEAYGWLVvw2Ls/8NBDD9X4DbxLly6xc+dOCgoKSgpwDRhAeHjVN84k979Tp04hU2pw8Q2pcly91n04vfZL4o5tonHPR8q0w1Sp1Vhzskg6uQmFSo13eMU3bArTEzEV5tCtW7fSxxwcHFi+fDmHDh1i4cJFnDh1CrPZTFBgIBOe/4SRI+8sxfw39vb2vDX9DV557Q3iNA4EN+mOTP771yCL2cj1s9vQ59zi/W+X/OmbUxKJRCKRVEQQ/+ElkwsKCnB2diY/P/+u/gMsqR3btm3j62++5fyFSKxWGwBKpZx+ffrw2muv3lGLoTNnztC7b39Ce07EtU7FLV8KiwopKijg+s7ZuPs3oHGPMYhWK9eO/ULK1VM07jYVb7+6qNWqCl9/7cwWxKKbXI66SGxsLH37DUC08yK800jSb0aSGHMCfWHJeW6b1YrNYsLZM4B2A59FoSxpL5OflcipbbPwbtkTl/oR2NlpcHJ2LvM+WTeiuLX/Z5YuWsDgwYPLrUMURU6ePMny5ctZuGgJ9duPwjuoCRqNhsq+8iXGHCcteh+pKUnSF8N/kMOHD9OjZ2/Ujl6Edh6HxtG9zPNmo44bJ1ahy7pNzx7d2L5t2z2/p9VqpaCgAI1GUytF+a5fv85zz7/A6TNnEZQaVHaOmIoLEC1GHujcie+++5bAwMAaf1/JX+Ozzz7jy+/n0mrka9WOPbHyQ8zF+Th618W7YXucfYMRbTay4q+SGHkIQ2EuEcOn4RYQWu61NpuVq9sW4mMncub0KeRV9KG/V6Io8v333/N/H3wIcjvc6zRBZeeIviiXnOTLqBTw3bdf/+msE4lEIpH8t9xNLCrteEtqzA8//MA7783A3iOI+g88irN3EKLNStbtq+w+fJwDBwfy3bdfExsbS+TFi4g2GyEhIYwdO5aGDRuWztO6dWsaNQzn9pVjuPiFlAsujUYjuiIdhWk3sZmNBLfqXbKzLZNjKi7ExScUlYMreXl5uLu7UVyQjtVsRKl2wMHZC0EQ8Kvfhgt7TnHq1Cm6dOnCqpXLGTt+AodXvosoKHALbIpP874oNVrM+kLykq6Qe/sSp7b9QNv+01Cq7EiMOYHCwQnnkObI5DK0Wsf//UjwqN+U9CsnmDe/fOAdFxfHY49P4eKlKOQaR8wWKyazhby8PORyOc5OTqjV6nJzCoJMajH2D/TRRx+BIKN+p9Hlgm4ApdqBBh0eJWrXNxw8cJD4+Pg7TqHNy8sjJiYGq9VKcHAwfn5+QEkWTW21p7p27Rr9Bw6iyCynXtfRuAWGIZPJsVmtZMVf4dj5PfTrP4Ad27dJwfc/lL+/P6biAoy6AtQOlX+ZsJgMyEQrTzz+GKlpaezZu4nbv57tttOoGdrvQQ4eOkzSmT0olBocvQNK/67rstOIP7EdW24K38xeVatBN5SksD/33HP069ePJUuWsGXrdgpTr+Hm5s7jLz/L2LFj7ypDSyKRSCSSOyXteEtqxNGjRxky9CE8wzsT3Kp3uWDZajZzYecCchKvonVyw9EzCEEmpzgnGdGso1+/Pvz04484OpYErxs3bmTy41PwatyVui17lpkvJyeH/PQEEk6sx71OA5r2Hl/63NlfZqHSuOPfpC+p1w6Rm3IZk76g5EkBHF18CQzviFdgY0788gnLly1i0KBBALz11lt88/1PBLQZioNnMIIAKpUae3s7rFYr6YlxxB1ZgVwmw92vAWm3IvFo9gB+Lbrh4uKCrJIvjOkx50g5upEbsddwcXEB4Pbt2/Tp158cnZV67Qbh5B3E8RUf4hYQQZ3GD2I1GxFtVlxdXMoF31GHVxLgCkeOHL6XfzLJX8zdwxMc6hDWZXyV4xIu7iQt5hBbNm+kX79+VY6Ni4vju+++Y826DegNBqDkuEXvnj149tln6dChQ42t/49EUaR3n75cik2k6YAnUKjL76ab9EVEbZ1Nt/YtWLtmTa2sQ1K7CgoKaNykKQ5BbQhu1avScUlXjpN+aTcXL5zH19eXpKQk4uPjkcvlhIeH4+rqSlRUFJMfe5zYuJuonb2QOzhjM+jQZydTx9eHn378ga5du/6FVyeRSCQSyb2Tdrwlf7nZs+egdPKqMOgGKCouxqdZb/LTbuEX3pl6ET2BkjTujNtRbN+1hdGjH2X9+nWo1WqGDh1KYmIi78/4gNyEaLxCW2Pv4oVRX0TC5ZMUpcXh6hdCw25l0wEVag0GXQ6xJ5ahy0vFNbApdYMjUGq0GItyyLp5nisnN5B+OwoEsTQQ1ul0rFz1M/5NulKvSbsKr7Fug8YIxkHcPLWe1g192J2kwNnDGzf38ruXf6RycMImihQUFJS+37vvvkdWgZHmg6ah0jgA4BvWhuTo0/iEd0GhtsdiLCa/oABPT8/StHN9UQ55KTG8+9Knd/gvI7lfFBcX4x0cXO04J+8QUmMOkZ+fX+W4c+fOMfKRURQYbXg06UxwUKOSXvUpt9h3+gR7hg5j1nff8sgjj9TUJZSKjIzk3PnzhHQbU2HQDaCy01KneXf2H9jIzZs3qVevXo2vQ1K7nJycmDhhPN//OAdn7yDc/Mv3ys7PSCApci+jRzxU2urS39+/3K5x06ZNOXniOAcPHmTz5s1kZ+fg5ORI37596dev33+icKhEIpFI/tukwFtyz3Jycti1ew9+LftXGHSbTCb0ej1qrRuugU1Ju3WxNPCWyeX41IvATuvK0X3zWblyJZMmTQLg2WefpVWrVsydO4/tO3ZisVqxWa3oinUEt+5LcKteZQrjAHgFN+XyvhWo7JwJ7TYJe1ff0p1ojaMHzr6h5CZe4eaJ1Tg72tOuXUmQvWPHDnLy8mnVveKgG0pSFP0btiHt6n7at2/PlasxWIoLqv18jAW5yGRCadCdnJzM9p078WvRrzToBvBv3JGUmNPEnfiZkA6jkCvVmA06jAYDGo0Ggy6PqIPLqBtYhxEjRlT7vpL7i0KhAJsNERGh0hP8Ja3tBCAkpPKCVnl5eYx6dAzFSkeaDpmIQq0pfc7OxQPv8FbcOPQLzz7/AqGhoTXeFmn79u3I1A64BYRVOc6rXjNun9rKjh077rjl07+ZXq9n9+7dpKSkoNFo6NixI2FhVX+Gf7d33nmHuLg4duxehnNAI3zD2qLRumIsLiD1+lly4y/SqV0bPv98ZrVzyeVyevToQY8ePf6ClUskEolEcn+RAm/JPUtPT8dqtaJ19anw+eJiPQgy5AoVdi7eFKbFlhvj7FUXF98w5i9YyMSJE0sD+I4dO9KxY0cKCgrIyckhOTmZgYOH4OYfWi7oBnD0CgDAp3F37Fx9K1yPc51w3INbYc78vTdscnIySrUDGm3V52HlCiUaJ09SUlIY/tBQ5i77mbrt+lSaZg6QGXOWB7t3L00/OXToEEaTBe/6LTAZdGQnRGMx6lGoNDTsNpLog2u5vOtb3AMj0Dh5kRmbRnZSFPqiHGQyGQ5Kf7777jvGjx8vnZ39B2ncuDGxyfF4h3ZELq94d09EJD/9Bvb29kRERFQ6188//0xGdi4RYx4vE3T/RpDJqN91GBdT45kzZw6zZ88GSvrSHzt2jKioKGy/1ljo2bPnXe82FhQUoLRzrLSv/W9kCiUqO4dqd+//7cxmM59//jnzFywiOycXhVKN1WJGLoPOnTrywQf/R7Nmzf7uZVZIpVKxZMkSFixYwPwFC4nZsxBRFEtuRNbx47m33uCpp55Coyn/cyiRSCQSieR3UuAtuWd2dnYgCFjMhgqfNxqNyH4NNKxmQ6VBh1dwBDEnVpOeno6PT9kg3snJCScnJ/z9/QkICCD9xgVc/crvCGbejEJl74yzbwOsZj1yhRpEGQgCoihis5ixWox4N2jDrdTL7Nq1i8GDB6NSqbBaTIg2W7XBhNVsRKVSMWHCBOYtWMTtU7sI6tCvwt3+1CunMOYkM+Xxz0sf0+l0CIKM2GObSI+LxGa1IJOrsFnNCDIZ7v6hqLUupN+IRF+QjUwuR+sVREizbtg5aNHlpPHV97P5afZcFi6YR58+fapcr+T+8OwzT/PYlKnocpLRuvmXu3EkImLU5ZJzO5LJ40dXGQwvX7kSp6BGqKooeCXIZHg0bMPGzVuZObOAQ4cO8cGHH3H9RhwyhQpBJsNi1ONfx48Xn3+Oxx577I6r5Ds7O2MuLqz298VqMWPSF5Vme9wPrFYr+/fvZ/HixZw5ex6rxUL9+vUZP34sw4YNK+0jXVPMZjOTJk1i2449eNdvR5uO7bFzdCs5ZpNwmVORhxgwcDAb1q+lTZs2NfreNUWpVDJ16lSeeOIJoqKiSltdNmvWrCST4z4niiK5ubkYjUZcXV3v+ibBb90nDh06hF6vx9vbmyFDhlCnTp1aWrFEIpFI/o3u//9iSu57AQEB1A0MICPuIu7+FaRNiiWptaJoIzfhCm6+FZ/1VKg0iJSkY1ZGoVAweeIEZnz4KUU5ndC6ld3VNhTlYOfig0JtXxJIm/VYLQIggCiCQEnbL28vElQaEhMTAejQoQOCaCE76RoegQ0reOcSurxM9HnptG/fnvDwcD76YAZvvvUOhoJc/Ft2xdGr5FxjcV4mKRePkRNzmqenPkHPnj1L59BoNBQXFWC+dQWfht1xC4pAqXHAYtKTc/si6deOoshNR+tZB7PJQGi30QSERpRZh7VNH2IOrWXipMls3bKZVq1aVbpmyf1h2LBhfP3Nt1w/v5HA1g+h0bojkysRKOkbb9IXEH/mF9ycHXjrrbeqnOv27QS0jarv8+3oFUC6ycTs2bP5dOYX2PvWJ7zf4zj5BCEIAkXZqSRfOsorr79JSkoK77777h1dy4ABA/jiq2/ITozBo26jSsdlxl1EJlrp37//Hc1b2woKCpgwcSIHDx7BzskHN58myGRyYuJvM+2Z5/niy69Ys/pnGjQof5b5z5ozZw7bduwmvPNYPOr83kpLJpfjE9wcz4CGXDqwhAkTJ3Hh/LkKOxncL2QyGc2bN/+7l3HHjEYjq1evZsHChVy+chVRBLVaxUNDhzBlypQqs0p+c+rUKV5+5VWuXI1GrnZAqbbDUJTPezP+j6GDB/PFF5/j/D9tJCUSiUQiqYgUeEvumVwu57HJk3j7/Q8oynkArVvZ3WqZXIYoWsmJv4JJl0NA+KgK59HlZaCQy3GvpljZlClT2LR5C5d2LyS43RA86jYq3XUTRRGr2YBoNeOo1aJWqzGZTIiiiEwmx85Og0wmQ7TZEK2W0l3FiIgIWrZowZVLB3CrE1ph6rgoityO3Ie3lycDBw4E4Mknn8TV1ZWPPv6EmI0/odA4IMhkmHQFeHl68PEHM5g2bVqZncT9+w+g0GgJ6TIOBze/0scVKju8GrTHpU5Dru+fT9atKOp2GI53cPnARq5Q0bDbKCK3zOLrr79h+fJlVX5mkr+fvb0969etZcTIh4k5sQwHz/o4eAQjCAK63GQKU67i6e7MurUbq91JUyqV2Mymat/TajFhs9n4bOYXuDZoQ0inwWV+FrXuvoR1H0myhx/ffPc9nTt35sEHH6x23ubNm9O2TWvOn92Fs3cQSk35XWKjroCkyP306tnjjtui1Sar1cqECRM5dOQU9Vs+jKNbXRBApVQR3KgrxYXZXD6+gmEPDWff3j14e3vf83taLBbmzVuAW0DzMkH3H8kVKkLbDeXctm/ZsmWLVL+hhhQUFDBq9GiOnTyNo18ogZ1HolBpKMpOZc2W3axeu56vvpjJ+PGVdxk4evQoIx8eheDgSdiDE3H9tb2lxWQgPS6SDVt2cD02li2bN0ldVSQSiURSrapzaiWSOzRx4kQimjbm6p6FZCXEIIq20ufUSgWZsadJPLsFv/qtcPaqW+71oiiSHneWfn37VPsFxsHBgQ3r19G9cztuHl3NuXWfc3nPMqJ2LSbrZiTF2UkosODo6IhKpUKr1eLo6IiDgz2yXwP07OTrCKKV1q1bl8770YcfgD6bK/uXYdCVPZNqNhZz/fhGCpOv8NGH/1dmV+rhhx/m3NkzrP15JdNffo7Xn5/GkoXzuXzpIk8//XSZQCc1NZVtO3YQ0KwHKjtHRJu13PWp7J3xadQNEHBw8UGlVFX4OcjkcnzCO7Jz926SkpKq/Mwk94e6deuyb+8evvjsYwLdBPJvHCA3dh+uslzee/t1Tp44fkfZC506dCAv/mq1/dyz4qJQq1WICjX1OgyoNJW8TtNOqFx8mT9//h1fy/fffYvKpufM+m+JPX+Y9LRUsnNy0BUVknb9HJe3zcHXTcuXX3xxx3PWpu3bt7Nz1x58w/og03hSrDdQXKwnNy+XzMxMZEoHmj8widS0bBYsWFAj73n27FkSEpOo06DqFHIHJ08cPYL45ZeNNfK+/3WiKDLliSc5ee4ijQY8SeO+E/Cq3xy3wDACW3SjxciXcQppyYsvv8L+/fsrnMNkMvHEk1ORO/nRrO8U3OrUL/39Uag01GnYnsZ9HicqOpbPPvvsL7w6iUQikfxTSTvekhqh1WpZv64k9fnYoeXE27ti7+GPzWqlMC2OwrxMHJy9CWs3rNyXf1EUuRW5F3NRJk88MeWO3s/V1ZV1a9dy6dIlVq1axa1bt1AqVTSdOIxZP/5EVtwpPHz8K3ytzWYlMeoQLVpElKn23K5dO1atXM7kx6dwfsMXOPrUR611xaQvpCD1OnYqBd99+zUjR44sN6dCoaBXr1706lV5r1uArVu3YraIBDXuQIFOj9lYjEyhRK5QgSADSs6ha72CS1qg5cRDSHil87kHhBF/aiPR0dHl2vdI7k9OTk48+eSTPPHEExQXF2O1WnF0dLzj89UAkydPYsv2HeTER+NeQUYEgD4vi/y4S6jlAm71WyKTK7CYjGTEXqAgIwHRakXj5IZPWGvsnN3xDGvNnr3bKSgoqPbmV2FhIW9Of4v8gkLMFisJJzYiV9shV9lh1hcimo30fLA78+fPuy/OwRqNRp56ahoqBy+cvRqU1Jn49fMWbVasZhN5efm4ODvh4d+cxUuW8corr6BSVXzT605lZ2djE0XsnTyqHat2cCU9I+Oe3u+fxGw2U1RUhIODwz1/zv8rMjKSPXv3EfTAIzh5ly9AKchk1O80mKicNL786usKszy2b99OcmoaEYOeq7R4ptbVB68GbVm+YiVvvvkmWq22Rq9DIpFIJP8uUuAtqTHu7u5s3rSRs2fPsnz5cm7E3UShUNB6ZE/8/f15c/pbXNw3H//wTngENEQQ5OSl3yQp+jhFGbHMeP9dOnXqdFfv2axZs3LVgL28vHjp5Ve5obIjOKIn8j/sGJv0RVw/uRGrLo0Z739XLtjp1q0blyIvsH79ejZs+IXMrGycPZzoN2U6jz76KB4e1X+BrkpmZiYqO0eUajvcVBqKioooLi7GZDGVnIP/tdWUQqFE5eCCxVB8T+8nuX8JgoCDg0P1AyvQtWtXBvbry9bdq7F1fQiP+k0RhN8TmApSbxO392fC6tcjLi4OjaMbyVHHuHl6JxazETsPPwS5gszbV7l9bh+eIc3wDm2J1WYrLZxVGZvNxuTHHmf/4WOE95mEa0Aoupw0sm9dwWLSI4oieYnXSExKum8Kb82dO5f0jEwCGvYqucn1B4JMjkJth8WkJ7+gAA+/cKJPniEpKemee487ODggCGAyFKFUV120zWzU4eRUcSeGf5OTJ0+yYOFCtmzdhtlsRiaT0avHg0yePJkePXrc1Q2oyixfvhyZnRMewY0rHSMIMnwbd+LE4dVcu3atXFu3rVu3Yu/mj4Nr1UcOfMPacv7KYY4cOUK/fv3uee0SiUQi+fe6P74VSf41BEGgTZs2FVbnbdiwIZ988ilHj63j2jEros2GzWbBy9OTkSMeuqOzpXdi4sSJGAwG3n1vBplx53Cp0xCVnRZ9YQ75KTE4ae1ZtmQxnTtXXJxKq9UyYcIEJkyYUCPr+d+5zSY9NpsVmUyOo6MjWq0Wo9GIzWZDEARUKhWFhYVYDDpklaSZ/yY35QYKuaxGi0FJ7n8ymYx58+Yy7emn2bR5Lcmnd+PoH4ogl6NLv40hK4XmTZuwauUKOnfpSsaNSPJSb+Ia3haPZp1QaV0AsFlM5MdFkXZ6F4UZicgRcXR0rPK9Dx06xJ59+2nQczxugSXBitbdF63770GjqbiQi+u/Zu7cubzzzju19jncCYvFwvwFC5HJlaXdFSqiUGowGYowm62lr7tXbdu2xdXFhdS489Rv2bfScSZ9EQUZN+j9fOXnje9XWVlZrFy5kmXLV5CUlIxKpaRjh/algbTsD/U3Zs6cyWeff4lC64Z7k25oHN0wFRew//R5duwazcTxY/niiy+QV9Ge8U7EXLuOg1fdajtUuNQJwWqzcePGjXKBd25eHkq76s9taxycEUXxP98yTyKRSCTVk854S6oVGxvLhx9+yNSpU3n22WdZvnw5Op3urudp3749mzZtZM/unTzQuQMKhRy5Uo3OBGt/2UqXrt3pP2Agly9frnKe5ORkTp8+TWRkZKUV0KdOncq5s6d55YVp1HE0oS6+TQNvFZ98+D4XI8/Tu3fvu15/TejRowdYTWQlRJc+JggCGo0Ge3t77OzskMvlmAvTMRXnoVBWXuFYtNlIjT5B925dCQoKIjU1ldWrV7No0SK2bt1aZXV4yT+fnZ0dCxcsYM+uHYwe0g8foQB3Yya92jZjzaoV7N+3Fz8/P7p07kj27Wg8mnfBr+OA0qAbQKZQ4RrWirp9xlGcn4Wvtzdubm5Vvu+iRYtRu3jjGlBxsTAAlb0jbiEtWbJ0OUajsaYu+U+5fPkyCYlJ2Dt7UZiTWPlAQUAmV5CdfhONRoOv773vPtvb2zN2zGjSb56luCCrwjGiKHLjwi4c7DQ88sgj9/yef6UTJ07Qtl0H3pvxEdlGLd7hD+IU2J5DJy8z8pFHGTt2LMXFJVk7ixcv5pOZX+DdoifNR75IQERXPEOaUqdpJ5oOe4bAzg+xaOlyZs6cec/rkslkZeqMVOrXGgm/3Ry4desWS5Ys4aeffiI/Lw9TcfXBtEGXjyAIODs7k5mZSWxsLOnp6fe0folEIpH8O0k73pJK5efn8/Qzz7Bj5y5Q2qF28UK0mlm64mfeee993nvnbSZOnHhXc+p0Ot54czpnL0RRp1kv/Bq0QalxwGazkpUYzflL++k/YBAbf1lPy5Yty7x2//79/PDjjxw8dBirVUQQwNXFhfHjxjBt2jQcHR2Ji4vDYrGU9vuePn0606dPr8FP5d40btyYdm3bcP7SPtz86qNQle8na7NaSIzaj4uzM+kxJ3ALCMPZK/B/xli5fnQ91qIMHh39PpMnP8bW7dsxGE0Ighyw4e7qyuRJE3j11VdrtUVRcXExaWlpyGQy6tSpU2X/aUnNEgSBVq1aVVmQzc7ODoXGHrfGHSodo3H3wSm4EQZjDjabrTQQqciZc+dwCWhYbUqwe3BjYq+d4Pbt24SGVh6k17bCwkJEUaROvZbERe7BoMtB41DxzQWbaCMj4TyTxg2vduc/KyuLnTt3kpOTg1arpUePHtStW75w5Msvv8zeffu4uG8+9VoMwDOgUemZ4eKCbG5e2ktByhVmff8trq6u937Bf5Fr164xavQYrEo32g6dikr9+7GJoCZdyUqKYcee1Tz11DTmzZvL519+hXNwcwJadCs3lyAIeIe1Qp+XxQ8/zubpp5++pyrhzZs15fjZ5dis1krPZwNk345GIZeh0Wh4ZNRo9u7bh8VWUmleX1SAxWIhI/Emnv7Blf68p1w7jUop5/tZP3Dq9OmSrpUCtGrZkscfm8zw4cMRRZFDhw5x69Yt5HI5ERERRERE1EhavUQikUj+OQSxurK497mCggKcnZ3Jz8+X2nnUIJ1Ox6DBQ4i8co2A9gPwrN8MmbzkPo2hMJeEc/vJjzvPZx9/xBNPPFHpPOnp6Sxfvpxdu3ZTWFRETnY2KRk5RPR9EicPf0RRxGAwYDAYEEURm83CrRNr8HVRcO7smdIzoj/++CNvv/s+Ghc/fBq0w8mjDlaLmYxbl8i8eQ6V3IZSqaRIV7K7olQqGNCvH8888/R91+M6Ojqafv0HYhQcqNdmAM5edUu/gBVkJnHz7DbQZ7Fi+VJmzvycYydP4+TbAI/gpsiVaopyUsm6cRaFzcjbb00vKSZXYMC3SWe8G7REodKgL8gm5eopMq+d4sGunVi1cmWNB9+xsbHMmTOH1WvWotMVgyDg4e7OhPFjefzxx2ukHZPk3rXr0JFEswbXiG7IFCrkStUfzoOLWM0mrGYjlpxUMg6v48TRI4SHV17Qr0FYOHL/COq2rPpoSEF6AjHb5nDsyCEaNaq813dti4qKomu3Bwnt+CjRJzciyFSEtxuLUl22EJbNZuXGubUUpF/l7NnTNG5c8fng/Px83nnnHdauW4/eYEKhssNiMqCQC/Tu1YNPPvmkXACemZnJ1KlPcfDQYQSlPRqtBzarCV1uCp4e7nz6yUf/uDZiTz31FOu37KV1v2fL1NH4o/T4S9w4tZb33n2bd2d8QONhz5Y5kvC/TLoCLvw8k68//5TJkyf/6bVdu3aNjp27UKfdYHwbtq1wjM1q5dLGH2gRFsj12FgKzTL8IrrhEdIMuUKJPj+bMytnYufqR4MHRuPu7lEuUC7MSeHMui8RZDJcAkPxDG+NxskVk66AjJhz6JJv0KxJI/Ly8klMSkaQKRBtNmSCSEREc9579x26du36p69TIpFIJH+/u4lFpcBbUqHPP/+cjz//ioaDp1b6RSnu2FaKbpzlwvmz+Pn5lXt+wYIFvPX2uxgtNpx9w5ArNSReOYpHg/bUadQVewcHdDrdrzts8pKq3qINXW4KNw4t5tOPP+Dll19mz549PDJ6DF5hnanXoneZLz8Wi4X05ARij61ANBto2esxFEo1eRm3SYs7jc2Qx6zvv+Xhhx+utc/qz4iKiuKxx6cQeyMOldYdpZ0zFmMRhvwMgoMCmTP7J9q2bYvRaGT9+vXMX7CQS5eiEBGxt7Nn1CMjmTRpElOfeoqY2+k06T8FlV35irp5qbeI2b2YV154hrfffrvG1r9//37GT5iE0SLDq15rXL2DEUUbmYnRZCVcxNfTlfXr11YZwEn+Go2aNMXsE457047oioqwiSKCrGQXULTZEASwt7NDZtIRs3YWe3ftKNNm73/16z+AqIRcGvebWOX7Jl08TPblg1yLvoKzs3NNXtJdsdlstG3XnmyjA0GNu3JuzwIsJhMe/s1x9Q5DkMkpyk0g4/Y5igvSmPrkFGbNmlXhXPn5+QwaNJgr125SJ7wLfvVbo1TbY7WYSI+/ROLVQ7g7qdi+bSvBwcHlXh8dHc2aNWtITU1FrVbTsWNHhgwZgkZTPvPlfpadnU2Tps3wDO1G3UZdKh0nijZOb/mKsGBfom8m0nJM9dlHUb/MYtywvveccj7t6adZuXo9Id0ewT2oUdn/bpiMxB5cizHjBh7u7mQZoPGAx1Go7crMkZt0g0ub56Jx8qZui57Uqd+0TB/v2OO/YLFaCOvzKD4Ny/7OiEDSlXPE7V6B1smTZt3G4uReB9FmIzvlOglXD2MqTGHBvLkMHjz4nq5VIpFIJH+fu4lFpVRzSTlms5lFS5biUi+iyt2Jum16cuF6SQXz1157rcxzy5Yt49XX3sA9pB3NWvZEqbIjIz6KpJgTeDdoj00s+UGVy5UoNfZliuA4eYdg5+rHO+++R+fOnfnu+1nYuQaUC7pFUSQ3Nxe5RktIx1Fc2zcPk0GHq3cwjm5++Ie2I/rkLzzz3POEhITcVzvfTZs25eSJ4xw5coQtW7aUVpLu378/Dz74YGlxIbVazaOPPsqjjz5KQUEBRqMRFxcXlEolR48eJeryVUJ7T6ow6AZw8Q3GM6wdixYv5eWXX8bOzq7CcXfjxo0bjJ8wCZnWjzZdHkWu+D213M23PkFNu3Fp/2IefmQUx44eqTZlV1K7PD08uJmfhdbBAXt7ewx6PWaLBRBRyBVo7OyQy2RkxyUikwnVVu4fN3YMTz3zHMV5Wdi7VDzWZrWSce00I4YM+lNBt8ViYf/+/Vy7dg1BEGjUqBFdu3b9U0W3ZDIZUx5/jDemv4sxuCXtBzxLQvRRkmPPkB5/6tcxCpRqDR7ubnzwwQeVzvXOO+9w5dpNmvWYgtbFq/RxuUKFX/3WePg3JHLPXKY88SS/bFjP+vXrWbnqZ5KSktGo1TzwQGcmTpxIRETEXV/H3yEmJoYdO3aUfqno378/oaGhxMTEoDcY8fCv+saaIMhw9m5AcsqNu3rfmkjB/vqrryjWFbNxy0qSXX1wC26GQqWhKDuV3FsXsVfJeeG5Z/nsi68IH/hkuaAbwNW/PhFDn+LS1vlE711IygVvFCo7jLp85IIVhVzAu3m3ckE3lLSwU7jXwavFg+RcPobGwaXk2mQyPPzDcfcL5erxtTw5dRpt2rSpkZoCEolEIrm/ScXVJOVERUWRmpqGd1jLKscpVBqcAhuWnAH/A51Ox7vvzcClbgtC2w9CqSr5QmM2FoMIKgdXQEQmUyBTqctVnhVkMjSOHogyJc8+9zzHj5/AN6xduS9jBoMBi9WKUmWPg2sdHNwDSIk9U2aehu2HIaic+Wn27Hv4RGqHTCaja9eufPHFFyxYsICvv/6aXr16VRpcODk54enpWXqGesOGDSi1brj4Vt3yyK9RO7Jycti/f3+NrHvevHkYLDKa/E/Q/Ru1nSNNuo4jITGZdevW1ch7Sv68EcMfojA+GrOhGJkgYG9vj7OTE85Ozjg4OCD/9fcv4+ppWkZEVHhO+Y+GDh1KvaC6XN+7HKOuoNzzNquV6wfXIjMVMXXq1LtaqyiKLF26lBYtW/HwqEd5/8OZvPfBpzw04hFat2nL2rVr72q+30yePJm+fXpw9cgykmJPE9iwMw+MfIuOQ16mcceRuHrXRa2wMn/+vErPWWdlZbF23XrqhHcpE3T/kUrjQL0W/Th9+gzNmkfwwkuvci2hEMEpjGKZLyvXbOHBHr158cUXa6Rqem2Jj49n6NBhdOz8AB989iU/Ll7F/336BR06deah4cNJS0sDQLiDrxCCIEOtVmPRF1GUlVLlWKOuAH1OWo1kyqjVahYuXMDan1fSo10z8mOOkHpmK3a6JF59/mlOnThOcnIyamcvHL0CKp3H2S+YVg+/gEqtYnDfB3lywsN8NONtPv7wAwSZgjrNK26BWVysQ5DJcW/YFhFIvXm+zPOCTEZYuyEYzTaWL19+z9crkUgkkvuftOMtKae4uBhRFFFWsov6R0o7LQWFqWUe++WXX8jJy6d1t7JnQBVKDQhg1uWDTI5crSrJx/utGs0fWAxFOHoGEB0dA4IMJ4/yX4yK9XpkMkVp4G7v6kdx1q0yYwSZDJ+QtmzZspWcnJxqKzb/k2RmZqHUulW7O6RxdANkZGZm3vN7GgwGVv28Gq/g1hUG3b+x07rg4hvOosVLmDRp0j2/r+TPGz16NJ99/gU3D/5Cg96jSo51/I/Ma5Hokm4wZfqsan+e7O3tWf3zKh4aPoJL67/BNaQFHsGNkcnk5KffJjPmNDJzEfPmzKZ58+Z3tdbPP/+cTz77HBf/pjTvMxRH95IjLPmZiSRcOcyTU6eRlZXFU089dVfzKpVKlixezAcffMDiJUs5HXMYtb0TVosZq7mYsNAGfDxvZZUtDXfu3IneYMK3ftWZMxqtC3q9gSKThrb9p5TudAKILfqRcvMci5asQKlU1kgF75p269Yt+vYfQE6xhcCuI/Go1wSZXI7NaiXrZhRHzu7l8uW3kAkCeRm3sHdyr3QuURQpzLpN766tOHv+AkkXDxPeY1Sl41OijuKotWf48OE1ci0ymYxevXrRq1cvgHKFAzOzslBoXav9mbdzdkcmU/Dggw8yduxYAGbOnIlK64Sdc/nrt9psmEwm5EoNMrkSlbMHxQXZ5cYplBpc/Zuwes06Xn311Xu5VIlEIpH8A0g73pJy3N3dkclk6PMrbn/zR4b8bLy9yu7+nDx5Egc3fzTasjtHbnUaIJMrybp9AQTh93Om/ztnYRa6nET8GrZHUKqxWq3YrOZy7221WErnALDZLBUGFS6egZjMFlJSqt5t+bNMJhO7du1i0aJFrFixgri4uHue02g0otfrqaoEg4ODPTZT9S3DrCYD/8/eWYZHcXUB+F3Nxt0V4iQEd3d3dwKFFuquX11oqVIqFAhSLLi7u4YAgQBJIApx392szvcjJW0aAVq07MvDj+ycuffc2d3ZOfeYIBiwsLD413plZmZSqlRh7+p3W1lbFz+Skq796zkfVYqKinjzzTdp2bIlDRs1ol+/fqxcufKht8/6O05OTvz26y9o0q9yad1c8pMvV7RaUhXkkLRvPcl7VzF+zKg7roUQFBTEnt27eOX5ZxDnJZCwI4rL236jIG4/w/p2ZdeO7Xedt3r06FFmfPU1nuFdCWs3osLoBrB19ia8w2hcgtry3vsfcOHChbsaG0Aul/PJJ59wMe4Cs2d9y8vPPcXbr7/Apg3rOHb0SK1GN0B+fj5SuXml6t3Vce3cXuSWDgS2GFHJ6IbyjUDPgGb4RfRkftRCEhPvLgT7QfD8Cy+SrzIQPmgaLoENKqqCiyUSXAIbEjbgGQrKjFhZWnAj4TiCsea2XYXZyZQVZzFx4kTeeetNSpIvkHJ6d5VWX4IgcPPSCbLjjvDi88/dt3otf6/Wb21lhVGjuu15OrUKkUiEldWfm9ESiaTGtRuNxj/2k8W3XqjRuLewdiQnJ4eCggJ0uqq/cyZMmDBh4r+DyeNtogohISGEhgaTGn8KB5/gGuU0ymJKMq4w9KUvK72u1WoRS6p6Q2VmFrjVbUhmwnFs3IOQKawQEMot7z+eSQSjgYxzO5EpLHGtG0HGuT2IjDqyU+KoY/e3KtkiEbfMdqPRQPGNK7j51a8yr8GgRwQVFdLvFQaDgdmzZ/PLnN+4mZkFIjFGgwG5TEKnjh358IP3CQ8Pv+PxiouLWb58OfOjFnDtWrnn3sfHm8iJExgzZkwVb32nTp1YHr0adVEu5rY15+VmJZxFYSanffv2/2yhf0EikSCi/HrfDsFoQCL57+3t6fV6XnjhBeZHLcRgFLB08kZmaUvy2QR27I7E1dmJRQsX3NaQe5D07t2bNatW8v4HHxK7/XeuiaWIxRIM2jJcXZz5+P33eP755+8qt9bV1ZX33nuPN954g5SUFPR6PR4eHv+4kNr8qCjklo74hldf5VkkEuHfqDt5KedYsGAB33777T+ax8bGpsJreTdYWVmh15Zh0GuRSKuv4q1Vl5KdEodrQFvk1bQKvIVXQHPS4vezePFiPv7447vW5X5x6dIljh47jm+nEcgU1W8wyC2s8GzShet7VyCVqok/vo6QlgOrbHqWFmZz+Wg0TZs2pkOHDojFYrKzs/n08y/ITzyLY2ATFDYOaJXF5CXGoCvOYdrUybzyyisPYqkAdOvWjVVrN6AuyqvWc32LrCtnsDRX0K7dn4XkIiIi0KtLKclKw9q1ckSWWCRCJCrfUNAW51NWmI1NWMcq42o0GooLc7lx8yYBQcHIZDL69+vL5EmTaNGixT1bpwkTJkyYeDT47z0Vm/jXiEQinp4yhZK0eHISz1crYzQYSDqwFgc72yptcDw9PSkrzsZoqGqcBTTrhUgESQd/Jz/1AkajoeIBRZmXTtLhpZRkJVKv0wgMeh26slJaNGtKdsIpdGXKSmPJZTKMhvIiUXnJZ9FpSvEKrvqwkpMah4ODQ7VVhv8pBoOBadOm8/7Hn6K18aX+wBdpGfkpLSd+jHfrwRw8HUfvPv04derU7QejPLyzY6fOvPnO+2RpFHi1GIBXy4HkY8v/PvqM9h06Eh8fX+mcAQMG4OzsyPVTO6p4kG6hVZdy8+Jh+vbujZub279et7u7O66uruSmxd9WNv/GFZo0rr1OwOOGwWBg8OAh/DZ3PuYudQjt+wLBPadRt90oArtMJrD7MyjFdgwdNpyDBw8+bHUr0a5dO/bu2c3uHdv56tOP+PT9d1i6eCFx58/x4osv1tq7uzbkcjmBgYGEhob+Y6Nbo9GwefNWXOo2qdX4F4nFONdpzOo162qNBrkfdO7cGalERFZy9fdEgOK8dAwGPbYu/rW27xNLpNi6BHDy5J3dHx4UW7duRSRT4OhXe/s3J/8IJApL+vfrQ2lmHKc2f09y3AHybyaSk3aJi4dXcnbHT9QL9GXJ74srPlsvv/wyu3ZsZ+SAnhRfOUL64TXkXdhL744t2bBuLV988cU//hz+E/r374+Toz0pJ7bVeA/VlBaRfekoQwYPxNHxT+O8c+fO+Pl4kx6zv8pnUSyRIJVIMRp05F48gtzMAle/iIrjAlBUXExeXh45qRewda+LX5vhOIZ2ZP32A/Tq04+ZM2c+8M+4CRMmTJi4v5gMbxPVMnbsWEYOH8q1/dEkHtqAqrA8P9hoNJB7LY64Db9iyEtlwfx5VcIChw8fjqBTkZMSV2VcubkVjXtNRasuIvnESi5u/Y4r++YTv+NHru6bh05VQINek3D0DuHm1dOYy6V89dVXONgqOL87ClXxn+HvFhYWCAYd2UmnSI/dhmdAM6ztK1eG1aiKyUmJZeKEcfe0j/WiRYtYuWYd/h1HEdh2IJYO5d54sVSGa2BjIvpPR69wYPyEiZSVldU6VklJCUOHDSc9t5QGg18itPMo3IKa4BbYmJAOw2k05FVylEaGDhtObu6f61coFHz/7Teobl4hfs/ySqkBgiBQcCOJuK1zcbJR8OGHH9yTdUulUiInjicv/QIaVdXCWrcozEmhNDeFyMiJ92TeR4VFixaxbccOLF3rENBpIuZ2tzYzRIgkUiwdPfFtNQTB0pUXX3oZYy1huA8DkUhEkyZNmDp1KtOnT6dv377I5dV7bx8kxcXF6PV6zK1vX4PB3NoBlUqFVqt9AJr9iZ+fH927dSHt0gG0f9sEvIXBoEcw6pHJzJDLa7/fiCUytI9YaHFhYSEyC+uK8PKaEEskyMyt8PPzY/eunYwY1JPcxEPEH1pMwrEV2MtL+PyTD9iyZTOurpUjlRo3bsyPP/5IemoKKcnXuJmRzoKoKNq1a3dPqpnfDebm5vz4w/eoblwhfscSlPlZFccEo5G85Etc3DQHL2e7Ku0YJRIJH7z/P1RpV7h2aBNG/Z/vpQhQKMzIPneQgsun8W/QrVJNjNLSUlQqFfnpcRh0akLaDcGlTn18ItrTeNBLuEV04fMZX7F48eL7fg1MmDBhwsSDwxRqbqJaxGIxP82eTXBQEL/M+Y0Lq04gkZlh0OuQiKBF82Z89OFcmjdvXuXc0NBQunbpzO4Dm7G0d8PKvvKDl62LDw4eARTlpuPoHYJMLkMsleHgFYSjVzAisZjinHRuXNjP+NHDaNiwIevXrmHkqNHEbPwOa1d/rBw8MOi1ZCbFoi7OxckrlJAWAyvNoyzK5uKh5Xi6OTJlypR7dm2MRiO//DoHG+96ONepPpRcIpMT0H4I59Z8y8aNG2vNnV25ciVJ11NoMOjlag0PM0sb6nWfQOyab1m8eHGlUMy+ffuyYP48Xn71NWLXfIeFkxdiuTm60nx0pflE1A/j65kzKSwsRKVS4e/vX1EV/Z8SGRnJ70uWcm7vAsLbj61SXKkwJ4VLh5bSqmVzevXq9a/mepQQBIHvfvgBATFu4Z0QS6q7fYqQKSxxCW3L1aMr2L9//yMVcv6oYmlpiUgkQqMuva2sRl2CTCZ7KBsGX3zxBTE9exO76zfqNuqFo2cQIpEYQRAozk0jJW4fgtGIoC36e73ISgiCgLIgg7rNWj045e8AW1tbdOoSjEZDtfUybmE0GNCpS7G1taV+/fr8+OOPzJgxg9zcXORyOa6urrf1XIvFYiwta8+XfxD07t2bJYsX8dIrrxK39gfMHdwRyxXoSvIxqEto0bwZc3+bU23E0KBBgygsLOTNt97hbNI57PwboLCxR6MspjDpPKV52UgkkvK0Dr0OiVSGURAozM8mL+Uc2deO49OgA9ZOnhVjikQifBt0RFWQzcyvv2H06NHV3rN1Oh2FhYXI5XJsbGwe+KaFCRMmTJi4e0TCYx7LdDdNyx83BEHg1KlTnD59GoPBgK+vLz169Linnts7QaPRsGvXLtLT05HL5TRv3vy2ucv5+fkMGjyEC5eu4OjXCLeAJsgVlqiKc7lx5SSF6RextFBQphdwCmiKe3BzzCxsKCst4OaVU+QmnqZF00asWb2q4uGsrKyMDRs2sHTZclJSUjEzM6Nli2Zcu3adI8eOI7dwwN4jBLFERkluKsU51wjwr8PK6BX4+/vfs+tx9uxZOnftTlCPSdh51D5u3NZ5tArzY/WqlTXKtG7TlvRSCfW6jK51rCsH12ClzeJc7NkqD7W3rs2+fftQqdQ4Ozvh7+/PkSNH2bFrNwaDAUTg6uJC5ITxTJ06tca2SXdCYmIiw0eM5Nr1FGxcA7Fz8UMQjOTfuIIyP41WLZqzdOmS/1QV+UuXLtG0WXMEqQXhg96s0gbvr+jKlCTu/JVXn3uKDz/88MEp+RgzZOhQjp1NpHGvmiuWC4LAmc0/0KdrG+bPn/cAtfuTa9euMfXpp4mJiUWqsEFuYYdeU0pZaT7+df2Qy2Sk5Whp1HlyjcZQQXYycQfms3bNSjp16vSAV1AzFy9epF2HTvh1GomTf833+OyEWNIOrubo4UMEB9dcB+RxQqfTsXXrVvbv349KpcLFxYUhQ4bcUc/1a9eusXjxYtasW09BQQE21jYM6N+XYcOG8euvc1izbh2I5JjbuqPTacjPvIZUJse3cRf8GnWp9nNSmneDC5t/YsWyJfTs2bPi9YSEBKKioli2PJpSZSkiyuuyTJ4UyciRIzE3r9qP3IQJEyZM3D/uxhY1Gd6PKPv27ePDjz7i/IWLiKRyRGIJeo0KF2cnnp32DC+88MIDzYX7JxQXFzN79mwWLvqdnNxcBEFALBIRFBTI01OnMHjwYL799lt+X7KM/IICjH8cd3J0ZOKEcbz66qt39BAhCALHjh1jwcKFnDx5Cp1Oj79/XSaMH0e/fv3u+UbFrl27GDpiFI1GvoWZRe2fuYTD6/E0U3HowP5qj+v1etw8PPFs2g/3kGa1jpVz7QLJR1aSlHAVOzu7WmXnzZvHm2+/g9TWBZewllg5e2LQachJPE9h4jkCfL1Yv24tnp6etY5TG0qlknXr1rFw4SISEhORSCQ0bNiASZGR9OjR41971h81Dh8+TNduPZBaOVKv38u1yhp0ZSTsmsu0CcP48ssva5X9r2M0GklMTKS0tBRHR8ca+4Rv3bqVMWMnENBqGK51qm9DlnHlBCkxm9i4YR1t27a9n2rXiiAIxMTEsGHDBvLy8rC2tqZbt2507NiRnTt3MmbsBNwD21E3omsVo0pVksf5/VGEhfixZ/euR+4+3rtPX05fTCRs4DPIFFU7IejUSuLW/0LbJuGsW7v2IWj44Ll06RKLFi1iy9ZtKFUqnJycGDFsKGPGjMHd3f225ycnJ7N8+XKSk5M5ceIE1zNyaDb0tWqv7185Ff05773xMi+99BIAmzdvZsrUZ9Ahxcm/CdbOXhj0WnKT4yjOuELjhhGsWhldKRfdhAkTJkzcX0yG92POxo0bmTxlKjJ7b7wadsTO0x+RSIyqKJcbcUfJvXKCCWNH8cMPPzwW4WVarZbY2FhKS0txcnKifv36lfRWqVQcPXqU4uJi7OzsaNOmzQP36t8NR44coU//gYT3fx5Lx9oLll3avZRwDyu2bd1S7fG7MryvXyD58O0N77179zJ0xEjs67WiTuveVT4jZUX5xG+aR1hdb/bu2Y3kNvmcJso5d+4crdq0xYCUsAGvIzWreVNIqy7mypZZfPrBO7z66qsPUMtHB41GQ1RUVHmV/uvJFRtvTZo0rth4++tn02g08uxzz7F8xWo8wzriFdyyorK2Rl1CevxRbl4+xNNTJjFjxoxH+t43e/ZsPvjwY8ys3fEIaI61vQd6nYaslHPkpp0noI4X69evw8PD4/aDPWCSkpLo1bsPhRrwbNYNxzr1EIvL+3jnXY8j/dQuHC1lbN+6BT8/v4et7n1FEAS++OILvvnuezCzxC4gApm5JerCXIqvxWEuk/Drzz/dVeu8119/naXrdtKg3/Tbyp6K/pz/vfkKL774IjExMfTu2w8z5wBCOgyvkupSmneDS7sW0rxROFs2b3rkNnRMmDBh4r/K3diiphzvh4jBYGDv3r0sW7ac68nJmMnlRETU5/cly7DwCCW404hK4awWtk4EtOmPjYsPi5cup23btnfcd/dhcis8vSYsLCzo2rXrA9To39G4cWMc7OzISoihrmPvGuX0GjUlGVfoMfGtGmWkUimBAQHcuJFwW8O7ID0RNze3236pZ836ETNHz2qNbgCFrQP+XUZwbuNv7N27l27dutU6nolywsLC8PP1JSHpOvnXz+IS0roGSYHC1ItIBD1Dhgx5oDo+KiiVSkaOHMWhYyew865HQOfxyM2tUBfncunKaSZPfYYjR47w9ddfVxgIYrGYH2fNwtXFhTm/zSPj0gEs7d1BEFAWZmJloeCdt17ntddee6SNboDnnnuOsLAwfvnlF/bu24DBICASgYuLC2+8+jxPP/30v0r1uJ/4+/uzbesWXnjxJY7tiyb1sAKZhTVaVTHoNLRp3YofZ/3wnzC6jUYjR48e5cKFCwiCQGBgIJ06dapoPTlr1iy++uZb3Jp3x6NRu0pF5/Savlzbv46npj7NKltbOnSovg3e3wkNDUUVtRiNqrjWiKmS3Az0ZUpCQ0MB+OGHWQhyG0I6jKi2+J2VoweB7YZzbM9CDh06dMf6mDBhwoSJB4fJ4/2QSE1NZczYcVyIu4TC3g0LB0+Mei05iTHoDEYajngDe0eXGs+/uC2KUE9bdu3c8QC1NnGLDz/8kFm/zCO8//Qae2gnHtmIMjmGH77/jrKyMhQKBa1bt8bbu3LP17lz5/L6W+/RcPDLKKyrfxjXqks5u/pr3nvrtVo9qNevX6dp8xZ4dRiKS1DDWtdwYdVserRpzKKFC2uVM/En3333HW++/S5iuQX+nSZibu+OSMQfhmC5MajKyyBx30L6du/E6tWrHq7CD4mpU59m1frNhHSbgK1r1dDyzKtnSD66js8++ZBnn322yvG8vDxWrlzJ1atXEYlE1KtXj2HDhv3jdmUPk5s3b3Lz5k0UCgUBAQF3XBQuPT2d5cuXc/nyZUQiEaGhoYwePRpHR0e2bt36Rz2H8lzkwYMH07hx43u+IXHx4kW2bdtGYWEh9vb29O7du8IQfNzZuHEjn372OQmJSSCVIxKJMOrK8Pb05NVXXmbgwIGE1Y9A4d+IOu36VDuGYDRycd1c6rnbs2f3rju6/sXFxdQLq4+lb2PqNutZo9ylfcuxpYiY06fIy8sjPKIB7o164RnassZzBEHg7IYf6dOpJVFR829/EUyYMGHCxL/GFGr+iJOTk0P3Hj3JyCkhoP0wbF18Ko6dWPUNUhtn3Bv3wNLSAmvr6teUez2O6wdWEHP65CPledDpdGzbto0dO3ZQWlqKvb09ffv2pVOnTv84pFmn0yGVSh8pL1dhYSG9evfmavJN/Fr3x9EntCI6QVNaRErMbrLjj2NtaUmZVouAGMFoQC6X0qtHD95//38EBgYC5Z/hDh07kZGvol73CSisKhvfWlUJl3Ytwl4hcGDfXlxcat6Q2b9/PwMGDyVizOs1GvG3SDywHk+JksMHD/zLq/FkkJOTw5ix49i3bx9GAaQKS5wCW+BQtxFyC1t0qmLyrp8l98oxfDxcOH7s6BOZa5mcnEzT5i3waNoXj5CaI12uHl6PvDSVC+diH9t6ABqNhk2bNrFw4SIuXopHJIKwevWIjJz4j1u16XQ63nzrLX5fshSDIMHSvrwOgzI/HaNOjVQmQ6c3YmnnjlimQKvMR19WTNOmTZg39zd8fHxuM4OJhQsX8sprb2DuEYBXww7YuPshEokozckg49xhiq6fp1P7tuw9dJQG499Abmld41j51+NJ3r6U3Tu307hx4zua/6uvvuLzGTPxbdEf9+BmlX7bBMFI8tm9ZMXt56cff2D06NHl6U39BtJg4EtY1LDRe4uEY5twEuVz/NjRO7sYJkyYMGHiX2EKNX/E+emnn0jJyKJB/+dRWNlVOqbTqLG0cUYiU6BUqjA3t6gIe/srChtHBEEgLy/vvhrehYWFHD16FKVSiZOTE23btq3xIfnw4cM8M206qekZyGxcEJtZolMWMDdqIcFBASyMiiIiIuKO5k1LS2PRokUsWbqc3NxcJBIJbdu2ZlJkJD179nzoecl2dnZsWL+eKVOf5tD+5aQorDGzdcao16HKTcWo0yIIAlY+jQgObYmFrTMGvZbsa+fZsf8gR472ZuOGdYSHh2NjY8PqVSsZMnQYsWu/w84nDHuvYEQiKMhIpCD5Au6uTqxeGV2r0Q38sUEBgsFw2zUIBgNSuSm/+05QKpUMGz6CuCvXaNjnGW5cPUVmQgyZF/aRdfEAIEIQjIgEI7179WDx4sW3LYD3T7lVTDA+Ph6A4OBgWrdu/cjkdEZHR2MUy3ANaFSrnGdYK85vOMWuXbvo3bvmlI1HlRs3bjBixCjOx13ExqUudl7lqSJnryRwcPJUGtQPIzp6xR0V37qF0Whk6tSnWbdxM771u+MR2AyprLzexc1rZzm/fyk2tn4ERnTFzcsfEeWGWt6Nq8TGbKFP337s3LH9ruZ80rh69Sqvv/EWdsHN8W/br5LRa+XsSXDXEaTHurN95wbMndxqNboB7H2DSaK8BkRthndcXBwHDhxArVbj4uLCuDEjWbpsBVmXj+NYtyFmFjaoS/LJTTqDsayYD99/j9GjyztdVOh4R34S4ZHapDZhwoQJE39iMrwfMGq1msW/L8XJv0kVoxvK+z/rNUokUhkGvQa1WlWt11urLkEkEmFtXftDwT8lOzubzz//nJWr16JUqcoLI4lFuLm6MmXyJF544YVKBviRI0cYOmwEegsn3NuPRmHrUtHfVp2XQWLsbjp16cqBfXtv24psx44dTJo8BbXWgJNvQ3y8W6HXaTgeG8eecRPo2b0bUVHzsbCovSLs/cbFxYUN69dx7tw5Vq5cyY0bNzAzM6O0NJRNW3cQ2nEsTt4hFfJSmRkewc1w9gsnbmcU48ZP4OSJ48hkMvz9/dm/by/Lli0jasFCko+VVwv28HDnxffeYuzYsTg51e7pgPI8ZHOFgtykOLybdKxRzmgwUJJ+lZZjR/zr6/AksGzZMmIvXKR+n+lYObjh5FePwJb9uHH5BEVZyQhGI1K5OaWZiUyfPv2+Gd0bN27k8xkzuHI1ASNiEIHIaCTQvy5vvfnGI5FTnpKSgrmdKxJp7V5sS3tXJDIzkpOTH4xi95DS0lKGDB1KYkoWjXo+i7X9n4auX3gHSvJvcPHQUoYNG8GOHdvuuF/1tm3bWLdhEyFtRuHsXa/idYNex+UTG7H3DMOvyUAMOg1ajQYzMzNEIjFOniFY23sQs/MXPvroI3799dd7vub/CosWLcIoVVC3dZ8aDVTPBu24EXccdVHBbccTicXlXUf0+mqPnz9/njfffpsTJ04hSGVI5GboVKVYmMnp1q0LMqmM3Xv2oNcbkJvJGTloIJGRkZWM+KCgIMzMZOSlX8HCzrlGXQRBoPhGIl16Pzot6kyYMGHCxJ+YDO8HTHx8PAWFhYS1qt7z6+xbj4zLp/Bo1B2xRIpGo6U62zr7yhn869YhICDgnuuYkZFB3379Sc3MxTmsNYHBTZCZW6IqyCHz0gk++eIrTpw8xdIlvyOTyTAajbz40stoFQ54tRyEVGGBWCrjVs6rzDMQhb0713ZFMXTYMC7/4amrjjNnzjAxchJy+7q0aDMMiezPUE2fem3Iy7jKjj3Lee655x+ZHLYGDRrQoEF5+yO9Xk+jxk1w9GtYyej+KzIzcwJaD+LC1p8qefvs7OyYPn0606ZNQ6lUlnvMrazuynthb2/P0MGDWL5+K+7hLaqtvK1TK8k4dwS9qpgxY8b8gxU/WQiCwPyoBdh6hmDl8GcVe3MbB/yb96okG7v5F+bNn1+p7+69IioqitfefAuFZwD+AyZj41kHgJIbydyIOcxTT08jKyuL6dNvXy35XmM0GikoKMBoNCIWi+8s4kIwYjToH8sw8+joaOIvJ9K49/NY2lQ1hKwdPAjvMIGz239k1apVTJw48Y7GjVqwAEsHr0pGN0BW8nl0GhVeYd2QSs0wGvSo1KpK3R/MLGzwCGrD+g2b+Pjjj28bHfOksnL1GuwDGlZboOwWIpEIp+CmXD+0Do2qFDMLqxplS3NugEFXbeTZmTNnGDh4CBq5Fb7dR2JfNxSxWIJOVUrmxVPs3HeQFk0akJhQXsvA3Ny82sgVJycnBvbvx9qte/EIaVHjplZeajw6ZT6Rd/h5M2HChAkTD5ZHIzbxCUKj0SAIIJFX3y7LI7QlBl0ZWXEHKQ9frRpaVpSZTHHaJZ6aPOmeh5cKgsBTU6aSlltE2KBn8WnSGTMrW8QSKVZO7gS0H0hgzwns3LOPr776CoADBw4Qf+UqjqFtkFlYIZbKuWV0AyASI7e0wSWiE4lJ19iwYUON83/77bcYZbaEtRtZyei+haNnEP5NB7B+4yYuXLhwT9d+Lzh+/Dhp6TfwCKm5AA6AtaMH5g6erFmzpsoxkUiElZUV1tbW/yhk8OWXX8bGTEz85gVoSosqXi9MTyJu0wKOzHmfa4c3o9VqGTN2HN9//z3FxcV3Pc+TQm5uLgmJiTjVqX9bWQefMA4ePMQrr7xCr9596N2nL++8805FWPg/5eLFi7zx1tvYhbUkpP8EbL3qIhKJEIlE2HjWIbjvWBwbtuV/H3zImTNn/tVcd0N+fj7ff/89DRs1JigklJB6Yaxes4bCzGTUJfm1n5t2FTHGO86LfVQQBIF586Ow8wip1ui+hZWdC3buwcyfv6DS6zk5OcyaNYshQ4fSu09fpk6dyq5du1CpVBw8cAgX34ZVxsrNuIylgxcKKwcAxBIZGo2Wv/86ePg3RqUu49ChQ/92mf9JBEGgsKAAc9vb116wcSqPYsi+eKpWuRtnD+Pt6UmnTpW9zDqdjshJk9FZOhA29BkcA8IRi8uNfZmFFd7NOhE0YBInzsTy7bffYmlpWevv+UsvvYQZWi7tWYJeW1bleOHNayQdWUPXLp1o0aLFbddnwoQJEyYePCbD+wHj7u6ORCyiNPdGtcctbJ3wb96LnIsHyTi9FYO6pOKYXqch4+IxLu9YQPu2rYiMjLzn+p09e5YTJ0/h27ofCmu7amXsvQJwqteS+VELUavV7N27F5GZFRbO3ojENQdR2PuFIZab8+OPP1Z7PC0tjR27duMZ3KpWb4SLX30kcksWL158V2u73wiCQFZWFkZBqDUc8BZm1k7czMy653rUrVuXNatWYifRcW7pTOK3LubCut84u2o2xXmZuLToRtCQpwkd8jRFli58+PmX9OrTl6yse6/LfwGtVgsCSKS1F8oSBAGNTk9efj6LVm3gYk4ZcVkq5ixeTpv2HZj69NOo1ep/pMP8+fNBYYVvu17VbsaIRCJ8WndHbGVHVFTUP5rjbklISKBjp858+NkMisxd8OkyEt+uo1H4NUCrKePKse3odLpqzzUaDaRfOEjDBg0eO8NbpVKRkJCIk2f1ES1/xdEzhPjLl//YcBX4+eefiWjQiPc//pyTl29y6aaajbuPMmzEaNp37IjeYECmqJpCo9dpkMr/DFevKedXKjcHkYjS0tJ/t8j/KCKRCAsLS7SqktvKGjQq5DIZmWf2UXwjuVqZm+ePUZwYy0svvlClFsuOHTtISU+nTocB1W4iA1i7eeNQrxkLF/9+23tDaGgoy5b+jkSVzZlVX3H1yHpuXjlN+sWjnN86l/id82nXqinz580z5XibMGHCxCOKKdT8AePn50frVi2JuXIC57oR1f5A+jboiEGnIenEFpSp58l28UEkkVJWmIUEA6OGDuabb77+RxVzb8eaNWsQm1vj4BNcq5x7eCvOxx1h165dZGdnI5Ka1fhwcQuRWIpEbs6FuLhqj1++fBmdzoCjZ+1zi8USrF38OX/+4Xu8BUHgyJEjREUtYMeuXZSWlqJSKrlyZB1+DTphae9a47l6jQorq9vnbf8TGjVqxKkTx1mzZg0//Pgjcdcu4tiwLV4tu2NhaYn8j/Bee78gVE06EL9uHuMnTGT7tq2mh7a/4ejoiEKhoCQ3A0fv6j+bAgIFBQUU56SjsHGg0ZjXK6rcGw0Gcq7GsnLdRlRKFYsWLbyr4oCCILBqzVrsQ5pVeMyqQyQS4xDahLXrN/D999/f1xDukpIShg0fQWaJlojRr2Jm9WebL8e69TCztiXpwCYum5kT2qoXUrmi4rhOoybhyDoMRTf4aN73j93nzWAwAAKiWt6LW9zaiDQYDPzyyy+8+78PcA5uTVjDTsj+kgZSnJ1KwuE1KJVKSguz+XsHNrnCitLsVAShvHCWYDRWRDz8FWVJHoLRSFlZGTqd7rEM47/f9O7Vg9Vb9+DTtDMiUc2+h5yrMXRs3x4zhRn7N8zH2jcEp5BGyC2sUBfkkn3pJJrsNJ6b9gyTJk2qcv6mTZtQOHli6Vx7oTu3+i2IO3+EgwcP0qNHj1pl27dvz/FjR/j9999Z9PsS0k/HIBaLadG8OVNmvk+vXr1M77kJEyZMPMKYDO+HwLPPTmf02HGkxO7Dr1HnKsd1GjVFNxIJCgzkjddf4/z58+j1enx9fRk6dCj29vb37cc1MzMTuY1ThdFQE+Y2DogkUrKysrCyskKrLATBWOs5Bq0ag0aFTlS97nfX2U6E8SF3wjMYDLz22mssWrwEubUzjgFtcDKzIPdGCtkpcWQlxRLcZhCeIVXD/jSqEkqzrtH1pdqjFnQ6HaWlpVhaWt71Rou1tTUTJ05k1Zo13CyDej2GVWvkWDg4U6fbME5sWsCRI0do27btXc3zX0ehUDBs6GCWrt6ET0SHaqMxytRlqFXFFGdcxqd550rfH7FEgnNgBMrcG6xZuxYzMzlDhw6la9euFd9jlUpFYmIiOp0OLy8vXF3/3LBRq9WUlpYi1ajJvxaPhaMrCluH6nW1cyJXq6WkpAQHh+pl7gUrV67kelo6EaNeqWR038K7aWcMOi3XD2+l+HosLoGNkJlbUVacR2HqJSzN5SyYP4927drdNx3vF9bW1jg7u1CYnYxbnQa1yhZmX8fN1ZXS0lI++fRznINb49+iagV3Gxcf6veawpHfPyLjynHq1u9U6TPkVqcBNxLPoCxIx9LBC6NBh7n5n5sZGq0WlUpJ8vl9qFVK3nr7XX6YNZvIieOZMmXKfSv29zgSGRlJ9Ko13Iw7jkf91tXK5F2/hCrrOlM/e4c+ffqwZMkS5s6fz5Wdy8oLjYpEtG/Xlilff0qvXtVHoeTm5SOzssNgNGIwGBABEqkU8d9kzWzsMRrLN+7uBHd3d9544w3eeOMNdDodEonkkeloYMKECRMmasdkeD8Eevbsybtvv8Vnn8+gJOs67qGtsHb2wqjXkXP9AtlXT2JrLmVl9JqKCuAxMTFERUXRqk1bNBoNYrGYrp07MWnSJLp27XrPvEbm5uYYdZrbyhn0OowGA+bm5gwdOpTvf5xNUWo89nUb1nhOftJZBKMeT6861R4PDAxEKhFTkHkNt1rGEQQjpbnJ1OvwcFsQffrppyxYtIQ6LQfiFtik4j2wdg/BJaQNWZePcPnwGuQKS5z9/qzkLggCyTE7sbQwY/jw4dWOffz4ceZHRbFp0xZ0eh0SsZhuXbsQGRlJly5d7vj9TkhI4NjxE3h3HV7rObbe/sjtnFn8++8mw7sapk6dyvLolVw9vIagdkOqeJ5Li4tIO7UFsVSKW9ifGy2CIJAec4C0M/vRlSkRm1uzYuNWVq/fgJeHB89Nn8aNGzdYsmw5hUVFCAJIJRJ69ejO9OnTkMlkfPPNNxSXlFB6aj8ZMYcAEfa+Qfi07FJRYO0WOrXyj3Da+1vxf8GiRdj4hqKwqd64F4lE1GndC01pEcpr57Ez5qHKScPb0ZFX3n+HUaNG4ex8+3SMRxGRSMTECeP48ptZ6Bp1RyavWsAQQKdRkZ92gXffepXly5ej1uoJa1hztWm5uRUeYa1JPbuPhJhtBDbpXfGddfQIxNLWmZTYLfi3HIlYLKl4j5UqFSUlxSgLs8hNjsEzpBWewS3ITj7PF199x+rVa1m/fq2pxdgfNG/enGlPT+GnX39DU1qER0QbzCzLO4foNWpuXjrJzTO7GTSgP/3790cikTBp0iQiIyNJTU1FqVTi6OhYaXOsOrSaMpSFeeRkZ1fk4ov/KKBmaWlZEfWiU5Yg/ocdSkzebRMmTJh4vDAZ3g+JV199laCgIGb9OJszB5djMBoRAeYKBSOHDOLVV1+tqJI6e/ZsPvjoY8QWtjiGtsHc1hGtqpR9p2PZvnM0Y0aN4Pvvv0cqlZKRkcHWrVvJz8/H2tqa7t2731Xl83bt2vH7shWoi3Ixt60cBm0wGFCr1Rj0evKSzmPU64iIiCAiIgI3FxdunNmOpYsf8mrapKkLssi+cACxSMTokdW3sKpTpw4dO7bnaMxRXP0iavS656ZdRq8uZPz48Xe8rntNdnY2v8z5DY/6nXAPalrpmJWVFRqtBtd67dGU5JF0ZidOvmGIRCLKSgu5HrOLorTz/PjDd1U8UYIg8NVXX/HlzG+QWTrgHNoRhZU9WnUJe4/FsHX7KCInjGPmzJl3FK6cnJyMwWDExtOvVjmRSIS5qzdJSdfu9lI8EdSrV49ffprNM9OfJXZTFm7BLbH38C/voZwaz/Wz+9BrlEQMmlrxEC8IAkkH1pNx/igO9ZrjENYSqYU1Rp0GK7GB5CPbeP7FlzC3dcA1vCVB/uGIpVJKMtPYcfw4Gzb2QiyRIHNyw6vHEGSuPkgVFqjSkig4f5zzq+YQ3GsUzsF/el3zL5+lQ/v2KBSKmpbyrxEEgatXE3BuXnPl9uLMVG5eOE7xjWTUSiUtmzdj2rRpt20l+LgwYcIE5vw2jwv7lxDRcVylUHoAnVbNhQNLcLCzZuzYsUx/9lms3fwrhZdXh2+DTty8eJibVw6jLs7FO7QN9m7+5cfqtePikVVcOTgfv/qdETvao9FoyMvJoCD9EjnXT2Hn6kto26FIpDLs3euiCmtL3O4oxowdx+5dO02eUcor8Hfs2JFt27dz4fg2rh3dgkRmhsLKBpFRh0Im5ZmnIvnkk08q3WNFIhG+vr61jPwn0dHRHDh4CJVGi75MhcLeGQT+qEavRl1WhoODPTKpjKyLp7G2tnosoz9MmDBhwsTdYTK8HyJt2rTBxcWFa9euIZFIcHFxISIiolKI6MqVK/nfhx/hXL89vs27VcpJ84xoQ/bVWJYsX4lCoSAvP5/NW7aiM4LM3BK9Rs3/PviQjh3a8/XMmdSpU72n+a8MGDCAd//3PikndhLcbVR5PqEgUFxUhLqsDBBhNOi4ef4gOq2G3n378fqrr/DVlzOYOGkyCdt+xSWsHfb+jZCaWaBTlZCfeJrcy8dBMGBna8O4ceNqnP/ll17i4OChXD62juBWA6t4Foty0kg4sZYuXTo91KJM0dHRaLQGPOtVDVUUS8Q4ODhQWFiIY91GXDu0nDObfkIqk6PMTcXe1oafZ89i5MiRVc5duHAhM776Go+IrvjU71DJS+1VrzU3E84QtfB3nJ2defvtt2+rp0QiAVF5nvHtEAwGpCYPSo0MHjwYLy8vfvjhB3bs2kTKifJrKpfJMKgK8e80DDvvPze5ClIuk3H+KO5t+uIQ2gwAg04LgoDC3glVXhYKZy88Ow7F1dsX2R/FmSyd3LHx9OPUghlYegfgP3AcIrGYgoICJGbm2IY2wiY4gpt71nN12wosnd2xcHAhLyGOsux0Jn/z2X2/FiKRqEphLwC9pozL25eRnxyPzNIOC2cf5DaurFi/leXRqxjQry8//TT7vnvkb0dcXBwLFixg0+atlJSWYG9nz+BBA5gwYQKBgYG3Pd/NzY0Vy5cyctQYTm3+Dme/xjh6BCIgkH8jgezkGGwtzVixYjmurq4olSok8ttvhkhlZsjkCp6f/jT79x/g0sFFGP/I4BGLIaJ+PaysLImL20na+e1odXr0Oi0yhSVeIS3wb9qrUqspCxsnAlsP5eyeKA4ePEjHjh3/6SX7T6DRaJj69NNs3LQFub0r/u0HYURMae4NCq+fRyEV8/PsHxkyZMg/niMmJobnX3wJ++AmGK5dIvv0Xny6jUQkEZeHhcvk6MtUFBQUYimF3LhjTB4zEhsbm3u4UhMmTJgw8SgiEu4usfa+8NNPPzFz5kwyMzNp0KABP/74I82bN7+jc4uLi7G1taWoqOix+eG6cuUKs2bNYu26DajLNIAACDg7OuLg6Iibqytt27Zh1KhRDBg4iGyDOSHdx9QYKnzt6BZST+7EysEFjyZdcAlqhERe3us1N/ECGWf24GAuYduWzfj7+99Wv/Xr1zN5ylSsfMLxa9kTlc6IRqtDIjdDU5RLxvHN6ErzqTdgIgXX48k7f5TXX3mJnJwcfvl1DkbEiCQSRGIpgtGASCxGZqbADD1zfv2FoUOH1jr/qlWreO75FzCKzXGu2wRre3f0Og05KRcozkqgdcvmrFix/KG+38888wyb9p2hQa+napXTarQcXfI/GtavR3h4OG3btmXIkCFYWlpWkdXpdDRo1Bi1zIXQ9tWHoANcO7OD0pQzXLp44bbXICsri4iGjXBo1g2PRm1qlDMaDJxf+CXPTBjDZ5/df8PtcScjI4Pr16+Xh1TXqUOzFi2xCmmFT7MuFTJxG+ejLC3Gf+DTFa/pNWWIjHqE3FSu7IjGf8hzSOQKzM3Nsf3Le3ntwEZuXj6D9/CnsbCwwM7OjqKiItRqNWJ5eSFDo8HAtUXf4RwQhoW9M5kndzNs0ADm/Prrffdsdunajcs5Sur1nVjxmtFg4MK63yjJvoFXy/7YeIdi1GkQCUYcHR3ISTpPytH1dGnflsGDB7F8RTTXk5ORy+W0adWSiRMn0rhx4/tabE0QBL7++mtmfDUTkdwKhzoNMLO0oaykgPzrsYgNWmZ88RmTJ0++o/FSUlKYO3cuS5ctp6ioBERgZ2vDmNGjmDJlCj4+PgA89dRTbN53gkb9n6t1vMLM61zeOZ8d27bQrFkzTpw4wZUrVxCJRISGhtK0aVNEIhEpKSmsXLmSDz/6GPeQtvg36VnF6/7XNcds/pG+3Vozb+7cu7tg/zGemTaN6NXrqNNpBI516lX6rOk1aq7uicaYl8bWLZto2LDhP5pjytSprN91gAYjXiY/5TIXtyzC0qMuLk07Y+7sCZRvwBVcOUvR+UOE1vVh25bN97UmQ3UIgkBKSgqlpaU4OTnh5ub2QOc3YcKEif8Kd2OLPnTDOzo6mvHjx/Prr7/SokULvv/+e1atWsWVK1dwcXG57fmPm+F99OhRRo4aQ5lBgmtAC+zdAykuKaEw+zp5189SVpKNnasfelUBgqEMrc5AxJDnsXHzqXHMuM0LyE9PJHzQNOzdvKoc15WpuLRhDg0CfNi5Y/sdPdiuXbuWl199jdz8AmT2nsgsbdCWFqDOu4HC1oF6fcdj5Vr+EJF+ej85p3ZzcP8+jh49ytfffkdaWhoiiRQEkEnF1K8fzvvvvUe3bt3u6DrFx8czb948oleuRq1WIxKJCA8PY8pTkxk6dChmZtX3QX9QTJ06lS0Hzt7W8BYEgWNLPuDbmV9UW/n2r2zdupXRY8cT0ec5rBxqzsfUqIo5s3Ym386ccdsxofxBcN3O/YSPfqHGyvOZ549z8/Bmjh0+RHBw7VXlTVTlpZdeYsmaTTQY8xpisQS9toyjc97HrXWfCm+3IAjo1KVYWVpwbevv6BHj13N8eU9egx7XP+53giBw7NcPsA5rjFOzjhh0Zbg4uyAWiykpKUGpUgEgEovJO3WAvNMHcbCzY3LkRD755JMHkve5dOlSpj//ImHDX8TSsTzXNfPSKa7uWkXd7pOwdPEBwYhOpcTayhJLKysAcpLjubBpDjKpFAefUCwdPTEY9BSlXcKgLmL4sKHM+uGH+9KxAeC3337jjbffxT2iM94NOlSKqDEa9Fw7tYP8q8eZO+eXu/J6lpWVceNGeYtIDw+PKqH+u3btYtiI0YT1fgYb56r36Ftc2rccF7maE8eP3XbzZNeuXQwdPopmg9/EzKL2377LR9fhbaNl/769d7ii/x7x8fG0adcBrzYDcPvjO/l3jAY951f/SI+2zfj997tvV1lUVERQSD0cG3XBs2F5rYz8lCsk7F1DWUkBcltHJHIF2uICdMpCHO3siLtw/oHWO9BqtSxevJh5UVFcTUisKBbXpnUrpjz1FH379n3sOg2YMGHCxMPkbmzRh57w9e233zJlyhQiIyOpV68ev/76KxYWFg+sF+2DJCcnh7HjJmA0c6JJnxfxqteWMqMUqbkdboGtCOv+LI5+jSnNv0lolwkoHPzQG0FkaV/jmJrSIvJSLuMc0R6JefXFWWQKC7xb9ORMzFnOnj17R7oOHjyYuPPncHN2RFeSg8hYhpWjM2H9J9A08o0KoxvAo1E7MCvvqz1lyhTizp9j3ZrVfD3jc77/5it2bt/Gwf3779johvKepd988w3XryUSfymOa0kJ7Nu7hzFjxjx0oxsgKCgIdcEN9LcpRFecnYoIY7Xhq4IgoFQqUSqVCILA5cuXkSmsajW6AcwsbLCwc+Xy5ct3pOurr7yChUjPlY0L0aoq9/cVBIGcy2fJOLyFcWNGm4zuf8iUKVMQ61QkHViPIBgxaMoQBAHZrXoHgoBBo0YEWJhbUFacj4WLN1BuQAuCsaIAk1GnRa8tQ+HkhkgiAeFWC6vyitouzs5YW1mhkMuxcvVEYWbGkUMHmTFjxgMrtjR48GDC6oVwdesiVPnl/d9vnD+GlXtAudFtNKIvUyGRiDH/I6zcaDAgWDhi4eyDhbMP4T0nUadZDwJa9qHx0FfxaTWYFavW8uJLL90XnVUqFTO+nImDf1N8G3WuksYilkjxb9EbK49gPvn0s4prficoFArq1q1L3bp1q82v79y5M8FBASQeXo1WXX2P7azEsxSlxjHtmacrjG5BENDr9dXKS6VSRKJyY/F2GA2m1mKLFy9GZGaJS1DNKUpiiRTX8NZs27GDjIyMu57j5s2baHVarF29K15z8A2m+YS3CO8bibNfCHbOHnhFtMKnaRcsraweqNGtVCoZNnw4r739LulaGb49xxA45Bk8Ow/lVFIG4yMn8e67795lhxETJkyYMHGnPFTDW6vVcubMGbp27VrxmlgspmvXrhw7duwhanZ/WLp0KQVFJYR1GI1EJkdZWorRaERmZoFILEUkluDbZAASM0tuXjmFk08oIrEEZWlpjQ+BudfiQCTCxi+s1rntfYIRK6zYvHnzHeubl5dHQVExQb1GETHsGUL7jsUxILyaB1YJdgERbNm2HSivtNqjRw+mTZvGlClTaN68+T/eQZfJZLi4uGBjY/NI7cKPHDkSicjAzSuna5VLjztMgH9d2rT5M8y7oKCAH3/8kcZNmuLrVxdfv7o0adqMw4cPYzTe+cP+nV6PkJAQVi5fhoWmmPMLvuTK1uWkn9pPypEdXFjyLWl7VjNy6GC+njnzjuc2UZmwsDBmff8dpUmxxK2dQ0FaAgA6VTEGnRZdmRLBaMDOzhaJRIJILMGo15WfbBQQicTcejdFkvJcb6NOyy1r/K9vtVgsxtLSEltbWxQyKeYKRUVI84PC3NycVdHRBHq7ErdyFnEb51N8Ixkbr2D0ZWp06lLEIhH29vYVRqRSqcQoCNj7N6QkJx3B+Gf7QZFIjFtgY/xaDiB65WpiY2Pvuc4bN24kr6AA74j2NcqIRCK8GnQkOSWNvXvvnXdYIpGwdMnv2FuIObdxNqnn9lOmLEKvLaMoM5n4fStIOrKaCePGMH78eHbt2sXo0aPx8PLGzcOTkHphfPzxxyQnJ1eMGR4ejkJhRk7qxVrnNhr0FGcl0qJ59V7eJ4Wzseew8vCvth3gX3HwC0WnN3Dp0qW7nkMmkyFC9Od3+w9EYjGOdesR0GEgQV2H49eqJ1Iz8/sW2VETL7/yCgeOnSRwwGSC+4zBoW4o1m7eOIc0pN6QqXi068dPc35j3rx5D1QvEyZMmHhSeKiGd25uLgaDoUpbDldXVzIzM6s9R6PRUFxcXOn/48LiJUtx8K6PzMwCoyCU52tK5PCXgmlisQQnvyZkJcVibuOIYDSgzs9ErVJXO6auTIXEzAKxRIpUWnOtPJFYjMzS5o57hUK5h0gQBGTmVreVlVlYolQq73jsR4W0tDQOHz7MsWPHKCwsvOPzvLy8GDN6FGlnd5CXVtXzLAgC12N2U3wjntdefaXC+Lh8+TLtO3Tkfx99RpFgh2/zQfg2H0Sh0ZZdew9SlJ9N9vULtc6tURWjKswiJCTkjvVt2bIlZ06d5KvPPqaOhRHtlZNIb1xmcLeObNu8iV9+/vmJ94j9W0aOHMmaVStpEepLxpENCDoN+RdPYNSWIZfJcHCwR2FW7g21cfelJCUeQTBgNOhQ/CWKQyyRlB9PiMNo0CEWi5FIqv9uF1w9T+PGje5rFfOa8PT0ZM+uXfz0w3fUtTND0OtAJEYiErCxscHJybHiniQIAiq1GrFEhkSmAIRqN5lcAxohUVizcOHCe67v+fPnsbBzxbyGFmi3sHH2Qqqw5MKF2r+Hd0tAQAC7dmxn5OA+5F8+RMzqrzix7BPid87DSabku6+/4ssvv2Tq1KcZNnI0e0/GYV+vI57N+6Ozq8v3P8+lVeu2bNy4EQBnZ2cG9u9H1tUT5ekKNXAj4TTo1A+1C8SjgMFoqLyDVQO3Cpga/7IxdKf4+Pjg6upSviFeC4IgUJR8iZYt7qyWzb0gOTmZNWvX4dmmd7VdLgRBwDawAWY+9XjhpZdp3KQpL7300n3ZBDNhwoSJJ5XHrqr5F198wUcfffSw1bhrBEEgPS0dj4jydjp6nQ6jIFRUMv4rFvYeGAw6rBzcsbB2IP/qaWxcvbGyrmoAS+Vm6NWlCHo9CvOaW9UIgoBeXXpXvUIdHR0Ri0SUFeZi4167R01dkIuLk1OtMo8Shw4d4odZs9i3/wAGgxEQYWGuYNjQwbz44ovUrVv3tmN89eWX5OXmsWnL71i51MG5bkNkCivUxTlkJ5xGr8zng/+9y4gR5e3T8vPzGTpsODklepoOfLVSXqabfyPqNOrBqc0/c2HP77Qf9yEgIiclDo2yuLw9kEcA1o4epF88go2VxV1X3rWzs+Ppp5/m6aefvr2wiX9Ehw4d6NChAwkJCSxbtoyZ334PBRk4hDapJOfRoDXZl89SmHAeK0//inDsiuMRrbi8fTnK9Gs41Q2uNrqhJCMZVWoST7398/1cUq1YWFgwduxYRo4cSV3/AOTGMpyquQ/o9XoEQUAilVFWmI3MzLJS9e1biMRibLxCOH7i5D3X1Wg0VtrkrA2RWHxXoeZ3ire3N7Nnz+bjjz/m9OnTqNVq3N3dadq0KWKxmOdfeIG1Gzfj33EUTnUqt14zNO9JwsHVPDX1adY7OdG6dWteffVVduzczYW9C6nXbhRmlrYV8oJg5GZiDKkxW4mcMJagoKB7vp7HiZCgIGI37kAQjJW6g/ydwowkpBLxHRUi/TsymYyJ48cx49tZlDXugMK6+jSx/OvxaAuzmRQZeddz/FNWrFiBUSrHObRRlWN6vZ6CggL0BgM2wY0puBzDjTIpS9ZuZvGSZYweOZzvvvvOtDlrwoQJE/+Sh+rxdnJyQiKRkJWVVen1rKysGitsvv322xQVFVX8T0tLexCq/mtEIhFSqbS8nRBU5FCJqPpAfStnTyyRUadxN4pTLpF5/hCCUHkHXhCEitxRTfb1WovxFGUkoVcW0aNHjyrH9Ho927dvZ9To0TRs3ITGTZsxafJkrly5Qts2rcm5dKrWtek1ZRRdu8DI4cNqvwiPCIsXL2bQ4KEcibmKT/OBNBz4Mg36PY99UFuWrt5E12497igXXi6Xs3DhAhbMn0uDADfSTm0k6eBSsuP20q97O7Zs3shLf8lXXbp0Kek3s6nfNbLaYkgKK1vqd4vEaDRwLPpLjiz/jPhDq0mNO0zSmZ2cXPc9h5d/xo24A7zw/HOPRTHBJ5XAwEDef/99IsePJX3/OlKO7UCr/DM6R2ZhjZmVLRkH16HNTkYmrRz+auHkgUgEmTtWU5Z+rVJYtmA0knc1jmvrFtOhbRsGDRr0wNZVE1KplJEjhpOXcLr61nV/3O8EvY78pBjcgppUlfkDsUSKVqer8fg/pW7duqgLs9GW1R6Zoy7KRass/keG153i4OBA9+7dGTBgAM2bN0csFpOUlMSy5Svwbt6nitENIJHKCOo4HLG1CzO//hoo/5ytXhWNtaSM0+tnErdvCddj95B4aiun139DyqkNjBszgi+//PK+reVxYdy4ceiVBeSnXKlRRhCMZMUdpW3r1gQEBNQoVxtPPfUUdbzcid80n9LcG1XGz028wPW9K+nTqydt27b9R3P8E5KTk1E4ulfZ8DIYDOTn52P4I7rNyt0PiZk59t4BNBz1Gp5tB7BkxSpee+21B6arCRMmTPxXeageb7lcTpMmTdizZw8DBw4Eyr0Se/bs4bnnqm+7YmZm9kgU1/ontGrVguOxl/ANb49YIkEEGAUj4r/tvhdmXMTCxhG5uRXugU24dnobeXEHic1MxDGoCQpbR3TqUvISYtDkZxJQtw558cfwCGmE3KKqV9yg05J2YgehocG0bl2573RWVhYjR43m7LlzmDt6YeXmhyAIbNl3jHXrNxIaEoz6ZjI3zx3DvUGrKmMLRiPX9q1DIREjk8mYMmUKKpUaNzdXhg4dSsuWLR+p3OyTJ0/yymuvY1enCYGt+lXyfFjau+IR0oKLuxcxavQYTp44flvjViKRMGjQIAYNGkRxcTEqlQpbW1vM/xZ9IAgCUQsW4uAdVmsFYlsHVxy8w8m9FoNbRGcc/Zsgt7BFMOgozLhMdvwRxGJo167dv7sQJmrFaDSSmJhISUkJDg4O+Pn53fXnWCQS8f333+Pm5sYvc37jXOwhzO1dEASBsvwsHO1s8QyI4NLRTRScP4yNbyhiqRRlVhqlN64R4l8XHx9vDu9YRebhHVh4l0dhqNOvYygppHvXrsz9bc4j44WaNGkSi39fSsLBNQR1GIroLxuBEokEwWgg7fgG0OvwrNeyxnFUeRlEhPvdc/2GDh3KBx99zM1Lx/Ft3KVGufSLR3F2cqR37973XIfa+P333xGkCtyCm9YoIxZLcA9ry8GDq0hISCAwMJAmTZpw6uQJ1qxZw9Kly0hNv4CZmRkjBvV6IC3aHheaNWtGx3btOHBgDWaWkVg5e1Y6LhiNJB3eiK7gBq+88v0/nsfR0ZG1a1YzcvRoLq2ejYWrL5auPghGA8Wpl9GXFtC3Vy/mzLn/bf/+yq3v4N+5VXtBqrBCJBIhGI1/tAGVIBKLyyvACwK/L13O1KlTCQurvZ6MCRMmTJiomYceav7KK68wYcIEmjZtSvPmzfn+++9RKpVEPsAQrAfF5EmT2DN2PPk3EnHwCEAqk2HQaxHL/3wb1MXZFGbEE9C8FyKRiNL8TNCrmfH5Z1y7do3Va9eRq9EiFovo1rULkZHfERgYSM/efbi0/le8WvbEwS8UsVhSnkeWnkTaie3IdSX88tPiSg9gpaWlDB02nPhraYT0fRobN9+KY4IgUJB2lcv7onFxdiL90EZKstLwaNgWKxcPBKORgpQr3DhzENWNJMzNLfjfR59g7uqDWGaG7shJohYtplGDBiyImo+vry+PAr/88isSC8cqRvctZGbmhHYcxZm1X7NmzZq7+hza2NjUaKgrlUrS0tLxvU1/eqVSiaWTLwVpF/Gu3w6tzoBBp0aECBe/cLyDGnF1/1ImTX6KszFnHnhxnv86Op2OhQsXMnfefBKTrmH8o9VOg4j6TJ3yFCNGjLirh2WJRMK7777L888/z5o1a0hMTEQkEhEWFsaAAQMwNzfn9OnTLFiwgGMnTqLT6Qj1r8O4D16nf//+yOVyYmNjWbRoEXGXLiEIEN6/N+PHj39kDCqDwcCRI0dIS0tj9KgRLFz8O+eLcnEPa42dZwAgkJ92ldSYvZTmpBPRaxLmttWnpZTmZ1KadR33ri1p36Ej169fRyqV0qxpUyZNiqRr16611rKoDQcHB6ZMnsSsn37F0sENpz8KUmp1WgwGAyJE5F0/T+7VE3zy4fsPPG/+/IULWLrUQVxDPv8tHLyDSDIYuXTpUkW3BBsbGyIjI/+Tv5v3CpFIRFTUfIaPGMmpDb9g4x2KY0AEUrkZpTk3yL1yGsqK+f7bb+jQocO/msvPz49DBw6wbds2Fv/+O4lJ15BIJHTv1YXIyEiaNWv2wL+7jRo1Ykn0KrTKYuSW5b9TFbVmpPIKfUrTExGMBqxd/2x75xLShBtn9rBgwQK+/iPawoQJEyZM3D0PvY83wOzZs5k5cyaZmZk0bNiQWbNm0aJFizs693Hq463X6xkxciT7Dh4joMUQrJz9KCouQSpTIJLIKM1LJfnkaszMLWnSbzqC0cCFnVF4OCg4cfwYMpkMg8GAUqnEwsKi0gNocnIy0599juMnTiIys0BuZYtOVYpBXUx4WD1mz5pFgwYNKukzZ84c3nz3fcIHP4+FffU904tuXOfylrmMHzOK/QcOkpZxAyRSBKMBCeDu5kpaRgZ2QY3wbdkDM2s7gAqjP/nAetxtzNm5Yzvu7rW3ybrfFBQUEBJaD9eI7njVa12r7MU9S6nrLGPf3j33ZO7S0lL86vjj23wwbv4Nq5URBIGcnBzyMy6THrOZDpM+QyKVIQhCpYc0ZUEW5zbOYlHUvIpIERP/nrKyMsaMHcue/Yew8QnFJbgpcktrNCUFZMWfpDQjgRHDhvDzTz8huU1l5CcBQRCIiorix9k/kZyShsFoRASIRALWVpaUlCorcqqlEjEN6tfnTEwMzqFt8W/Zp4rhoVEWc2HbXFR5N5HJFdh7hmLj5I3RaCA/4zKqgnQ6tm/H4sWL/vG9XqfTMW3adFavXYeZgzdWXvUQyxRoVcUUJJ9DlZNKoH8dVqxYUeV+eb8ZNHgwp6/lUa/rmFrl9DoNpxZ/xOIFpu//P0GtVrN8+XLmzp/P1asJCAKYyeUMHjSAKVOm0LBhw4et4n2hqKiIsPoRyP0bUqd9H6B80ykvLx+ZwhKRWIJgNJKydRFivY7GI16s9B1NPLAOT4mSw4cOPqwlmDBhwsQjyd3Yog/d4w3w3HPP1Rha/l9CKpWyaOFCnpoyhZ07lyOzcMDMwQe9Xk9pbhplxVlYO3kS2m4IGZdPkHX1OI7WZixd8ntFOKlEIqn2TfXz82Prls1cuHCBjRs3UlBQgLW1NT169KBFixZVHnIFQWDe/ChsfOvVaHQD2HrUwdLVj9TUNM7GnGHfvn0kJycjlUrx9/dn7PgJ2AU3JrDLsEpziEQi7LwDCB04lUurf+KLL75g1qxZ9+hK/jMyMzPR6vRYO3ndVtbKyZPUtDP3bG5LS0u8vb0ouHG1RsNbq9NhNBpR5qRgbuNYkYv39/fO0t4VSydv1q1bZ3rwvoe8+eZb7D1whKBekdh5/Flcz8rRHUe/euQkXSB6VTT+devyxhtvPERNHz6CIPDmm2/y27wo7H0bUL9Hb6ydPDHq9WQnXyAj/jAWFgJvvPYq9erVIzg4GD8/P6Kionj9zbc4l52Ma0gLrJ28MBp05FyPIzfhNOqSQqwdPWnQdTKKvxQK86vfkfybSRw8vIyJkZGsXrXqH4XpSqVSvvnma/Lz89i0ZSt5aZcRS6SIxGJs3evi2Kgjudkp9O03gOgVy6qk5txPQkNCOHhiOUaDodaWV7eKf93ydpu4O8zNzZk0aRKRkZHk5OSg0WhwdHTE4m8FDv9r2Nra8sZrr/L+R58gU1jg0aR9RbtCRCIMmjJuHt2COiuV+v0mV/ndEUtkaLXaB6+4CRMmTPyHeCQ83v+Gx8njfQtBEDhx4gSLFi0i9tx5cnJzKSosRF1WhlgsRSQWYaFQMGTwQF5//fX7Eqadm5tLcGg9fDqMwNm/fq2yGecPk39+LzfS0yr9GEdFRfHyG28RMfYNzKxqvvbpp/dTdOEQFy+cw8Gh9lY+95OkpCSatWhFcOcJ2HvUXjjn2pmdiPKvEH+x9rYwd8NXX33Fx599Rf3ezyE3t0Yul1cKFS8rKyP7ZhoJ+6Pwb9YDnwYdaxwrfn809Tws2Lrlzvuym6iZzMxMIho2wrlRNzwjai54dO3oFow3LhF34dx//kG9NlauXMnUZ56lTvOBeARVzUk26HXE7VmEuVDM2ZgzWFn9WXvi8OHD/Pzzz+zcvQe9odxLbm9nh5enOxfik2je/xVkCstq583LuMrlg7+zZnU0nTt3vmN9CwoKWLJkCQsWLiIxKQmlUomZpS0eEW1xqhOGuZ1jxZwGvY74bQsx1xVx9szpB/a7cvHiRdp16IRvm6G4BDasVkYQBOK2zKW+nzM7tm+7Z3MXFxezcuVKtm3fQVFREU5OjgwaOJD+/ftXqVfxuGA0Grl48SKFhYXY2toSFhb2xEeqCILAl19+ycxvvgWFJdZ1wtAYBfTKEkqux4NgJKTbSJwDq0Z7xK37lfYNg4lesfwhaG7ChAkTjy53Y4s+1KrmTyoikYiWLVvyyy+/cOzoERKvXiE7K5NDB/azfOliVkcvJ+7COWbPnn3fcqP1+j8qp99BvqRYIqtoB/RX9u7di4V7nRqNbqMgYDQacQ5phFKt5tixY/9e8X+Bj48Pbq6ut+2TLQgC+akXadO6ajG5f4JGo+Gdd97h+x9mUaYuJW7PIgpyM8nPzyc3NxeNptyLoFUXc/34KmRm5rgH154LritTYvuYbDQ9DqxatQqdUYRrLYWtADzCW5FXUMDWrVsfkGaPHoIg8Ouc37B2C6jW6IbyCtzBbYaSnZvP2rVrKx1r27Yty5YtI+78Ofbs3M6BfXs4feoEaek3cPVvVqPRDeDgEYjCxpUFCxbesb5XrlyhfYeO/O+jz8jHFtfGffFpMxRr73qkxx7k4rZFaJUllXQP7DyC3PwC1qxZc8fz/FvCwsLo27snKcc3UHjzepXjgtFI0tFNaHJTee3VV+7ZvOvWrSOsfgSvvvUORxMzuKqC/XGJTJ3+LA0aNuLw4cP3bK4HgU6n45dffqFZ8xa079iZfgMG0aFTF5o2a85PP/2E7j5UzH9cEIlEvPXWWxw+eICpY0diU5JByYUjFF2NxbtxB5pPeLtao7s09waq7FTGja09DcKECRMmTNTOIxFqbqL8B7FRo0Y0alS1x+b9wMHBAUsLS0qy0nH0Da1VtiQrFW8vryqhnaVKJRL536p3I1CmLkOlUqHT60AAQTCg1WpJSEi45+u4G2QyGZETx/PFzO9Q1++AuU313vfs6xfQlebdkx6rOp2OcePHs3P3ftzDO+DT1o9L+1Zwdd987LzCsHT0IscooC+5SfGNy+iUJXiGt0OmqNmbWqYsojTrGj17Tv/X+pkoJyUlBYWdM1Kz2gtqKWwckFvYkJKS8oA0e/RITEwk9tx5AtqOqlVOYWWHjVsg0StXMX78+CrH3dzcKtpGxsfHl+egNqn9XiQSibDzCOZMzO3b/UG5p3vosOFkl+hoNOQVpAorcnJzkMjNcQpshi6iC9f3L+H8pnk0HflyhdFvZmmDjVcIK6JXMmbMGDZv3syChYuIv3wZkUhERP1wIidOpEePHve0qvzPP/9Myfjx7N02D2uPAJz8GyCVm6PMzyQ34TRCWTHffjOTbt263ZP5Nm3axFNTn8bCvz712/VC/pdN1LLCPK7vWc/wkaPYuH4dTZvWvin1KKDRaBg7bhy79uzHziec4K6TUFjZoVEWcfPKKd774GP27tvH0iVLHnjxvEeJ0NBQvvjiC7744gv27t3L0BEjMep1yC2sq8hqSotI2r2C4KCAatuRmjBhwoSJO8fk8X5CkcvljBo5nLyrpyv6hleHrkxFYfIFxo8bW+WYq4sLuuK8ir+NgkBBfgGFRUXojAJiuQKJmTna0hL0Oh0fffzpA/UgVcdTTz2Fv583cTvnU5SdWumYYDSSmRBD0tE1DB44gFat/r3He+7cuezas5+QLuPxa9wFew9/mg95ibrNeqAuSCf97FZST28gK/EU/3vnDZ57dhqFaRdRFeVUO54gGLl2Ygv2djYMGTLkX+tnohyZTIZQy/fgFoIgYDDoHpkWXg+DrKwsjEYjlnY114a4hYWtM5mZWbeVMxqN5emmd5C3LRaLMVTXK7wali1bRtqNTOp1n4iZpS1GoxEEKlqdySysqdNxLDq1kpuXTlY6V2HvTEpKCp27dCXyqanEXL2B3LMRUvcIjp2/xtjxE+ndpy85OdV/V/8JVlZWrIyO5tefZhHibk360XVc37+UoiuHGTmgJ7t37mDChAn3ZC6dTsebb7+DwieYgJ7DKxndAAo7R4IHTEBv5cA77753T+a833z44Yfs2nuQkK4TCO04AnuPupjbOGDnXofQjsMJ6RrJ3gNHeOfdd2scw2g0sm/fPt544w2eeeaZcg/x4cNVIr7+K3Tu3JkZn31KQfwx4tb8TFb8aZR5mRRnpnLtyBbiVv2Au6050cuXP9H3PRMmTJi4F5g83k8wkydP5vcly7i6J5qgLiOrFPQxaDVc2bkEB1trxoypGmI2dOhQolevpSQzDWs3bwoLC9HodEgVFpVa4hQnnUdh54iVbxDPTH8WNzc32rRpc9/XVx329vasX7eWUaNGc377HMwdPLFy8sZoMFB88yqGshKGDx7Ejz/O+tftXgwGA3PnzcfOJxx7zz9zymUKS3wbdMQnogNGgw6NqoTYdd9ha2vL5MmTOXrsOHHb5uLbtDfOdepXvC+l+TdJPrMLdXYiC+bPq5Q3a+Lf0bhxY36eMxd1YS7mdtW3ugIounENQVtG48aNH6B2jxYWFhaIRCJ0GtVtZXUaFZbWt8+F9/LyQmEmpzArGVsn71plC7Ou4WKloHuPHlxPTkEmk9GqZQsiJ06kTZs2Fd9bQRCIWrAQO99wzP4o1Fbxlf6LESWzsMbWN5wbccfwbtSx4nydsoTMjAzySrRE9H0WK0ePP5Vo1IWirBRi9i9jxMhRbNu6BTMzs9uu806QyWSMGjWKUaNGUVxcjFqtxt7e/p63Dty2bRsZN28SMmpYjfc6sVSKR/NOnN66jNjY2Ee64ndBQQGLFi/Bo37HGmt42LnXwaN+J5YvX8E7b7+Nk1Pl73pMTAxPPzONhKRryG0ckJrboFMWMWfufEJDg5k7Z85/so/11KlTCQ4O5qeff2HP3vUYjAIiwMHenhenTWHatGm4uNx+o82ECRMmTNSOyeP9BBMUFMT8eb+hzUri/OrvyTh/BGVeJqW5N0iN2ce51d8jUeYyeOAA+vTrj4eXN351/Rk7dhx79uyhY8eOBAbU5fqBdahKi9FoNEjlikpGd0l6IoVXY/CIaE1Q1+GI7Vz59rvvHuKqwdPTk7179xC9fCldWzXAUZSPu0LFmKH92Lt7J7/9NueePESfP3+e5JRU3IKbVXtcJBIhkcqxsHHExiOYdes3YGdnx6aNG+javhUpx9ZwetUMzm35lbPrf+DCptnYiEr4fdFC+vXr96/1M/En/fv3x9nJkdQze2uUEQQj6Wf3Exwc+NA2jh4FwsPDcXF2JisptlY5g15LYUY83bt1ve2Ytra2DBo4gKykkxhr8WZnpVwgKzmOhKTrxKeXIHNvgNEukM27j9BvwCAmTJiIWq0GyttGpaSkYu/xZ/VvqVSGWCLBoNVSlH6FrLgDZF44gFgqo6y4AKO+PP/XaNCTc/UMBkFMve6RlY3uWzq7+hLaZTxnYmJZv379bdf4T7CxscHV1fWeG90AR48exczeBUtnt1rl7OuEIEikHD169J7r8HeKi4tZs2YNc+bMYcmSJWRkZNzxuevXr0dVpsW9hvvtLdyDm1GmNVSpPRAbG8uAQYNJK9IQ3H8qESNeIWzAFBqMepXAPpNJyiyib/8BxMfH/6O1Pep06NCBldEriDt/jt07trF/724uxp3ngw8+MBndJkyYMHGPMHm8n3B69erFjm1bmP3TT2zctJmMk1sRUd5ypUubVhw7foJ5i5Zg6xuGfURnDDotu46fZfO27fTt1ZPffv2VYSNGEhf9IzbBTXEIbYogSNEW5ZJ/+TQF8adw8AvGq2knRGIxrvVbsf/AWpKTk/Hz83to65ZKpfTo0eO+5qwVFhZiFAQUVva3lTWzsiMvrzxs38nJiejoFVy9epXVq1eTlZWFQqGgbdu29OzZ0xTudx8wMzPjow/e57kXX+LaUUt8m3VDIvvT2NFr1CQd3oQ2J5lPvl/yr6MhHmfkcjkTJ4xj5nezUYa2wtLWuVq5lAsHkQh6xo6tmqZSHdOnT2fd+g1cOhxNvbYjqkTgFGanELtrAZZOXjTqNRkLG8eKY0KT7uSmXGTTttWInpnGwoULapxHdfMKqWf3oleXIlFYACL06hKMei034o7h1bA96ecOoS1T4R7SAgvbmiMgrJ08sXb3Z37UAkaMGHFH63xU0Gg0iO/AoBeJxUjkcsrKyu6bLkqlks8++4wlS5ZRVFyKRCrDYNAhl0np1bMHn376CT4+PrWOkZaWhpmVHXLz2iOBZAoLzKwdSE9Pr3hNEASef/FFdGa21Os/paKVI5RvkNp61qXegClcXDeHV197/T/dTcLd3R13d/eHrYYJEyZM/CcxGd5PKFeuXGHx4sVs27ELpbIUVxcXXn7xBZo1a4a9vT0Gg4EhQ4ejt3Sm0cDRyMz/rDTs3bgj+cnxbNkRjUwuY+f2bbRt147M49vIPr0bRGIQjMjMLfFp3hnvZl0qHqLtvANIMRi5evXqQzW8HwQ2NjaIRSI0qmIUVna1ympVJdh7VTbQg4KCeOedd+6jhn+SlZXF1atXAQgICHgiH7zGjBmDUqnkvf99QEzCGex8w5BZ2KApKaA45SIKuYS5c369Z4WtHmeeffZZtmzdRtzOedRtMQAnr5CKvGltmZLUCwfIunKU/7371h1/z8PDw5k/by6Tn5rKqU3f4lK3KbbOPghGAzmpF8m4fASZuRVN+kxDYVW5CJRIJMLZLxzBaGTT5pWcOnWKZs2a4evrQ15GAq6B5UUrU88d4PrxLdj4hOEY3ApLJ09AhDI3lbyrJ0k6spmchFi0BTeRy+U4+94+rNjBux6xsdswGo3/qLf4w8LBwQFlTiZ5OTkgliAWizFXKDBTmFXaWNKWFqNTKfHwqOr1vxcolUqGDh3GidOxuPu3JrR9c8wsbNDrNGQmx7J99yFOnerFli2bqFu3bo3jyOVyjHodgiDcdmPMqNdWiiI4efIkcRcvEdAzspLR/VekcgWeTbtwfO8KLl68WGPIuSAI6HS6+xKlYMKECRMmHm8en6cEE/cEQRCYMWMGrdu249cFSymUu4B7OMmlImZ88z0TJ00mLy+P+fPno0ZGaK8JlYxuBNBptZi7+uHWvDdr162nqKiI8PD6uIQ2JrjHSAI7DSSs30RaPPUevi27V/Jc3UqtvFuPYWpqKp9++ikNGzfBx68OYfUjeOuttx7psL+IiAg8PNzJvHK6VjltmZLiG5fp17fPA9LsT86dO8fEyEjCIxrQd+Ag+g4cRP0GDRk3bjxnzpx54Po8bKZOncrpUyd47flpuIhLkGTH422u5f133iA25gyDBg162Co+EtjY2LBu7RratGhE4uHlnFr/Ned3LyZ2x3xOrfmSktQYPvnofV555e7aXvXu3ZvoFcsI9fckOWYLZ7bO5tyu3xCVJGNubo53eNsqRvdfca4TjtTSngULFiASiZg8KZLC1Dg0pUWU5t4g6fgWnMPa4dN2KJZOngiCgCAYkFva4dGkJy71O1CYkcSQQQNQKBSIJHfSblGKURDuuODbo8DGjRv59be5qIoKyEu8iF4Q0Oh0FBQVkpOTg1arrZDNPH8CGytLevfufV90+eyzzzhxOpaI9pPwj+iKmUV5kTepzAyvwBY07jqNglIDkyc/VWuBs+bNm6MrK6H4b0Uz/05xTjpaZRHNm//ZsnHXrl1IFNbYevnXeq5DnVCQytm1a1el1wVBYO/evYwbNx53Ty88vLypGxDIu+++W7GhacKECRMmTJg83k8Ys2bNYsbMb3Br3BWvBu0rGcW6MiWJ+9cwZtw4DAYjrk16VAq3VavUlCpLKx4wpY7eaEVy+vbrT+tWLdFeuopLr7EVnq/qKEy9gkwqISQk5I51Xr58OS+98ipaQYydfwSWISGUqUuZuySaufOjeOetN3nllVceufBfmUzG5MiJfPL5VxQHN8XGpWqopCAIXDuxFQuF/IGHqu7atYvxkZPQyy1xadkLO98gRCIRhamJ7Dh2jF17+jN/7m/06fPgNwQeJj4+Prz77ru8W0vlYxPg7OzMhvXriI2NJTo6muSUFMzkcpo3n8jIkSNxcKi+XV9N6HQ63n//feZHLURnADuPEARBQFWQQV5+PiqVEief27UbE2PrGcLJ0+WbRqNHj+bXOb9xaddC5NZOSC1scIvohEgkBhEYjQb0mjJEIhFmcjm+DTuizUrEYDBgZ2tHUVYyzn61e72LspLx9vJ6bFJAtm3bxqQpUzCrE4q9nQt5Z/Zh6emHmYMLgtGAQVNGQUEBDg4OqDJTyY05xPPPTMHGxub2g98lxcXFLFmyDHf/1tg4elUrI1dY4t+wD7FHF3Py5ElatGhRrVzHjh3xr+NHauxewrtPKH+P/4YgGEk5uwc/X2+6dOlS8XpJSQkiqYyyojzkljaVfvf+ilgsQaawpLS0tOI1nU7HCy++yIqVq5DZu+LQqBMyhQXqghx+XbSUuVEL+OHbbxg1qvb2eyZMmDBh4r+PSHjMe2QUFxdja2tLUVHRfXkw+C9RUFBAeP0GmNdtTN1W1XsvjAYDMSu+QZl/k+bj362o8FxaUkqpshSRRIZEJkcklgACGcc2UZAYg4Vcik6rw7/nGJyDG9Y4dtyqn+jaPIJly5bdkc5bt25l3ISJ2AQ0ok7bfpUeiIwGA+kx+8mK2ctXX3zG1KlT7+p6PAjKysoYPGQox06dxathV9wCGyOVl/ePLcm7QcrZPagyrzLnl58ZOnToA9MrNTWV1m3bgaM3Qb1HVyqIB+XXNmFHNPqbiRw+eAB//9o9QSZM/BuMRiPPTJvGqtXr8Q7rgmdg84rviV5bRsrloySc2YKTTz0a9ppUrVF1i6RT2zFTJnM+trzX99WrVxk6bDiX4uNxrd8Z1wadABAMBowGHRKJBHt7e6TS8u9ARtwRsmN3MmXyJH6Zv5gmQ19HKqu+2KJWXcqZ1TP56H9v8+KLL97LS3Jf0Ol0NGzchHwzGwIHjUWvUXNp6RzKCvKxrdcUu+CGSM2tUOfcpDTxPNrUy3Tt2J5lS5fel9DptWvXEjlpKi37vlHh6a4OQTBycut3RI4bwowZM2qU27lzJ6PHjsPKM4yAln0r+rJDeWvMpBNbKE47z+KFC+jTpw8FBQUsWLCAmV9/Q3ZuHhK5GRKJDOegBng1bI+lU+WUG61axemFn+Dp6oSdnT3u7u4IRgMHjh7Hr8tQnIIaVNoANhoMXNu/gdKEsyxfusSUpmLChAkT/0HuxhY1ebyfIKKjo1GWaQhs0L5GGbFEgqN/BMU5GRiM5XsyWo2GUmUpEpkZ4koPoCJEEikWDi7YuPuSE3ec5H2rkZpbYO8ThABotRr0Oj1GvZbUg5sQqwp49dVX70hfo9HIhx99jMLdH/+Og6t4tMUSCT7NuqBVlfDFl18xduxYLCxu37roQaJQKFi1MprXX3+D1WvXkn52Fwprh/I2YiV5eHt58nPU/AdepXzx4sUodQYa9hxZxeiG8msb2GM4sQu/JCoqis8+++yB6mfi8SQzM5Ps7GzMzc2pW7cukr8VSKuJXbt2sWrVWgJbDsfVt36lY1K5Ar/wjuiMUlLObiQ39TLOvvVqHKs0N43w+n9uFAUFBbF3z27q1PVHbmWLQVteJEwqlWBlbY25hXklQ15h7YDBYGDQoEEsWbqc+L1LqddlLBJpZcNTr1Fzac8SnB3tqm23+Ciyfft20m/cIGj8EERiMTJzS8LGTiPjyG6yz52i4NwRAASjEUGv45UXX+Czzz67b978nJwcJFJZrUY3lEcyyC3syc3NrVWue/fuzPttDs8+/wKnV36JjWcICis7ykoLKb5xBQuFjDm//EyfPn1ITU1l8JChJKWkYe0Xjk+EJxIzCzQFmeRdOUP2lVhCeozCOSACAGWpkrRzhylTlaKShSCIHUm7mEJ28kXcWvXEtm5Ytb9R/p0Hcqkwjy9mfEnXrl0fucgsEyZMmDDx4DAZ3k8QMTExWDj7ILeoveqra0gTrh3dQkFaIlYOzqhUKkRiyd+M7vIwaWVWMtaOLvi3H0BxcjyezvYkbVmI1MEDc88AkMjQFOZQmBCLQV2Kj5cX8fHxNGnS5Lb6HjlyhKuJSQT1e6rWhxWvRh04v+wk69ateyQfgC0tLfn555/43//eY82aNWRkZCCTyWjZsiXdu3ev8LQ9KARBYPGSpdgHNaoxpBLKc1cdQpqwdPkKPv744zs2okw8eezatYtf58xh/4GDGI3lxa18vL2YPCmSSZMmYWlpWev586OiMLfzqGJ030IiFuPqF0H29VOkXzxao+Fdmn+T0pxkxo19r9Lrjo6O2NrZYSYBV1dXoOY6E1pVCSKRiJCQEJb8vogxY8cTs/ZbnAOaYu8ZiCAYyU+7Qm5SDHaWZqxYtrxKP+hHlSNHjmDm6IKFy5+eXKnCHN8u/fBu35Pi9OsYNBqkZgqur/+dOnXq3NcQeisrKwwGHXqdpsaoglsYdKrbfo4ABg4cSLt27YiOjmb9hg3k59/Ex82OgVPfY+TIkTg5OaHVahkxahQp2YWED38RhY0DBfkFaHU6bLwCcA5rQ9qhtVzesQyFjQMSS3vybqaSG3cEN/9G1O82HoDrZ3ZSkJOGTWADCvLzcXB0RPa3+7lIJMa9cVvObltCbGwsjRo1+ucXzIQJEyZMPNaYDO8nCL1eD3dgPJnbOiERi8mOP45nWLM/2s4oqsipslIoK8gisEN5CLh9QAMoTmfMyBHMnR9FYWoCYqkUmYU13o3bYePhR27iBZ5/6WUyMzN57bXXatXj3LlziOUKbNz9apVT2Nhj7ujOuXPnHknD+xbu7u4899xzD1sNNBoN+fn5eNT3vK2slYsnaecPU1JSgp2d3f1XzsRjx4wZM/hq5jco7L3waTYQK3s3dFo1WYkxvP/RZ6xbv4E1q1dhb199Wz2dTsf+fQfwCKu9tZ+lpQUOnmGkx+3EoNMh+ZtBWKYs4vL+5QQH+FcpBCYSiejbuxdrt+3Dp1GnWjfychLP0KF9O6ysrGjXrh179+zi119/JXrlarIu7gfA1saGaZPHMXXq1EptroxGI4cOHWL9+vXk5uZhaWlBt27d6Nu3L2ZmtRuWD4KysjJE8ur1EMtk2NUJqvhbqlDc1xZiUN47Wi6Tkpkci1dg9bnbACWFmaiKMivlZdeGo6Mj06dPZ/r06dUe37JlC5firxA29HkUNuW1CGxtbcjLz0enViKRmeHVdhAJG2+SenI3Yhtnci8dQ2FuTUiHYX/qlXsTCzdfFFb26MqUlJaUVPs5t/cNJsEocOnSJZPhbcKECRNPMCbD+wnC19cXzfY9GA2GKj1y/0pp7g3kZmYYirNJOLgOm5A2SP6WU1lWmEPaodVYu3pj7xMIgLmdE1kJZ1ixchU+rXvi06o7CEKlUGZH/zDSTrnw+Zdf0bZtW1q2bFmjHnq9HrFYckeheSKJpHxjwcRtueVhN+i0t5EslxGJRI9N4SgTD5bo6Gi+nPkNng2641O/cgqLg0cApfk3id0VxZSpU1m9alW1Y6jVaoyCEZmi9jQRuUyOja0jgtFAzKZZuAe3wsbFG4NeR05yHPnJ5/DxcGHlyuhq85EjIyNZuXotNy4exTO8TbVzZCeeQ52bzqTITyteCwgI4Ouvv+bDDz8kIyMDkUiEt7c35ubmlc6Nj49n0lNPEX/5KnJbJ6RW9hg1KpavXI2bqwuzZ/3w0HN8XV1d0RXmYdTrEdcSaaMtKW8hdr/bCnp5edGrZw+27z6Ei3c4ckVVj7ZgNJJ0bgdenh706tXrnsy7ePHvWLrXqZTDLZZIcHRwpKSkmLIyDQICtnUjyDyxFQHwCG5GcNvBf+sTLoBIBCIREpkcjaYMg8FQNTpIBCKotSq7CRMmTJj472NqJ/YEMWrUKNCpyUk6V6vcjfNH8K9bh19+mo0y+QJJW+eSc+kopTevUZx2hbTDa0nc/CtyC0vC+k6syI/UqZXo9XpE5tb4tuqBWCypNn/Yq2knJNYOzI+KqlWPunXrolOXoirIqVVOr1FTlp9Va49XE38ilUpp3rwZBYkXbiubn3iBiPr17yjE08SThSAIfPf9D1h7hFQxum9h5eCOf4sB7N13gHPnqr/vWFpaYmamQFWcd9s59WXFODg40K9rO7Iu7OTi9jlc2R2FuPAar704nd27dtbYN7xFixY8N/0Z0k5u4drxLWiUxRXHdGolKWd2c/3QKkaPGFatgWdlZUVwcDBBQUFVjO6kpCT6DRhIUmYhQf2mEDHiJcL6TqT+kOmEj3gZpdye0WPHVWlD9aAZOnQoaMrIv1L7dz/73AlsLC3uWwuxv/Lpp5/gaGtG7L655N1MQBCMFcdKCjM5d+h3NEXJ/PDDd/dsA/BKQgJWbn5VXhdLxNja2eHs7IytjS3OfkFIpFLs3etSv9v4vxndYGnvijorFaNei1giK69rotNVGbco7RoSsYigoKAqx0yYMGHCxJODyeP9BBEUFETvXj3ZvGMzFnYuWLtUbd9y8+Jxiq7H8sHMrxg1ahQhISH07defm6e2I5GWP/QobByo07oH7uEtkZqVh6ALgpGCxHPodVqcghvX2lJMJBLhFNqUTZu3oNVqa6yW26NHD1ycnbhx/ggBHQbWOF7mpVPIJSKGDRtWo4yJyjw1aRKRU6ZSlHEdW8861cqUZKZRmpbAU2/88IC1M/E4cOrUKa5cTSCky6Ra5Zx86pF82pply5bRoEGDKsclEglDhwxi+eot1AnvWOO9QzAayU6OYcyoEXz//ffk5+dz8+ZNZDIZfn5+d1R1+6OPPsLe3p7vvv+Bs/FHsbB3RyQSocrPxEIh56Xnp/Pee+8hruX+VR3vvvceRVoIHzIVqVllo9zC3pmQXuOI37qYl15+hdizMQ8tgiQwMJDuXbuwc/9WLN29MHdwriJTnHad3FOHePapSQ+kU4iPjw9btmxi8uSniD26GLnCDrmFPXqtCnVxJp4e7ixYuuS2YeZGoxGdTodcLr9tlJRYLEYw1tx3XSwRY25hjk4uRyQSI/vbe3oL9+BmpJzbT+HVWBxCm5W/+DevtiAI3Iw9TFi9UJo1a1arXiZMmDBh4r+NyfB+wvhp9myyh4/gxKY52PqF4xLUGJm5JaqCHLIvn0Sdlcz0p6cSGRkJQKNGjZj51Zc889wL+HUcgp2XP3IrmyrtfG5eOI5BWYhEIkVhe/v+vQpbR3Q6HUVFRTg7V334AzAzM+PF55/j3fc/JNPZE7d6VR9aClKvcvPULp6KHF9RNMnE7enXrx8d27Xl4Jbf8esyBIe6oRXvqSAIFCRfIXnPKlq1aMaQIUMesrYmHkWSk5MxGIzYuvjWKicSizG39+Dates1ykyaNImly5aTeHY7AY17VTGcBEEg8ex2BF0JkyaVG/oODg533StcJBLx8ssvM3nyZNasWcOlS5cQBIHAwECGDRt21+NB+XXYtXsPHm0GVDG6K+YVi/Ft2YOLq39k+/btD7yLwV/5afZs+g0YQPzSX7CLaI5z/abIrazRFOaTFXuC4otn6Ny2De+///4D06lu3brs3buHkyfLi2Tm5uZiaWlJly5d6NWrV40bFYIgsHfvXhYsWMjuvXvR6/XY2NgwcvgwJk6cWKOHuUnjRmw/dAqhZY9ajfT85HgUZnL0qiIEwVjld8/C1gm3wMZkndiBzNIWM2f3SmlcgmAk5ch21OmJvBE1z1TR3IQJEyaecEyG9xOGjY0N69etZcGCBcybH0XSzkUIgoBYLKJVyxZMnfE/+vTpw6lTp8jMzMTc3Jzu3bvTs1tXdu7dgKFlL1xDm1RUw9aplWScO0xO7EGefWYqUQsXoVOV3laPW5WDraxqr7A+ffp0kpOTmbdgEblXz+IS2hSFjSNaZTHZl8+gzEigT8/ufG5qd3VXyGQyfl+8mKemTGXXjmWkWdlj5eWPCBGlN66hL86jY/t2LIiKeiSKQpl49JBKpSACo0FXa80IAKNBj0xe2XjSarUUFxdjaWlJgwYN+PyzT3nr7fdQleTiE9IWO9fySIzCrOukXj5MaXYiX874jIiIiH+tu42NTcXm4r9l//796I3gHNSwVjlLJ3cUjm7s3bv3oRrejo6ObNuyhZkzZ7Jk+QqunDqIIIBILMLdxYXnX3+NF1988b707a4NkUhEixYtaNGi5iJrf0Wn0/Hc88+zctUa5PZuOEZ0RmZmgaowhzkLlzE/aiHff/dNeYrV34icOJENm7ZQkHoVB9/gasfXl6nJv3KGIYMGsn7jJvLTruLoE1JFLqTtYPRlKpK3L8bKow6ihq2QKSxRF2STd+k0RmUhn3/6Mf3797+7C2LChAkTJv5zmAzvJxBzc3OmT5/O008/TVJSEkqlEmdnZzw8PIiKiqJ5i5YkJSf/0RYIrCwsGDJoIIP792Hjps3cPLULM0d3EATUOWmYy+W88+brvPbaa9y4eZMtB4/j2bh9rbv7eZdj6NihQ5Vcyb8jFouZOXMmHTp0YN68+Rw+uBajICAWiagfHs6UN79nxIgRD7wl138BGxsbolcs5/Tp0yxcuJDzcRcBqNe9IxMnTKBly5aPnIfGYDCwb98+4uPjAQgODqZz586m9/8h0KhRI2RSCbmpl3ALaFyjnF5bhjI3mSaNhwLlIerz5s1j46YtaHVaRIjo0KEdkyIjmT9vDl9+NZOLBxdgFMo/e2KRQEhQIG/NmMuAAQMeyNruBpVKhUQmr0jFqQ2x3By1Wv0AtKodW1tbPv30U95++22OHTtGaWkpDg4OtGrV6rEppPjee+8RvXodfh2G4xwQUele5dusG0mHN/D8iy/h5ORUpahd+/bt6dKpA3v3RCPuPho7r4BKxzXKYq5uX4KDlYIPPviArOwcThxbj7ntU1jYVm4dJ5bKcPINozDtIj7WUm4c2oggCMjlcoYN6M/kyZPvqH2mCRMmTJj47yMSHvMym8XFxdja2lJUVPRA8tH+qxiNRp597jmWRa/Cxr8+bhEtsXByRV+mJudyLHlxx/FwsOXXX37myJEjJCUlIRaLqV+/PiNHjqwI0Tx8+DD9Bg7Cs90A3MKbVztXztVzpOxeyfIli++6Sm1WVhYFBQVYW1vj4eHxyBmGJu4f0dHRfDHjS5JT0xDLFYgQYdCq8Pb05M03Xmfs2LEPW8UnjqHDhnHo1CUa9Z1ebSFFgOTYPeReOcSFc7GsWLGCjz/5DImFPS4BTTG3cUSrLiXn2llUeekMHzaY2T/+yKlTp7h69SpQvrnSqlWrR/a7vmrVKp56ehoNxr2FmWXNv0GC0UjssplMmzCaTz755AFq+N8jIyODho2b4NywK14Nqy/sJwhG4jbNJ9TDlj27d1X5/BQXFzMxMpK9+w+icPLEzq8eYomU0sxUilPjcXNxInp5eV2CrKwsBg4axJWkFBzqNMItsDFSuTmqwmxuXjlByY0Enpo0gZkzZ6JSqVCpVNja2j7wqAETJkyYMPHguRtb1GR4mwDg119/5c13/4dft+E4BVctgKQtLSZ+zW/U8/Ng/969NRYfEgSBN998kznzF+DSqD3uDdogtygPJ9eplWReOEHWmb2MGjaEn3766a6LGJmoncLCQhISEjAajfj5+f1n8t5nz57N/z78CCvveng1ao+1izcApTkZpJ87RMn1C7z3zlu8+uqrD1nTJ4uYmBj69huAxNaL4HbDKrWDMhoNZMQfJy1mG6+98iKBgYE8M/053Op1xK9RlyqGUHbyBRIPr2L605P5/PPPH/RS/jHFxcWEhUdgHtgM3xY1twvLux5P8q6l7Nm1w9TL+V8yc+ZMvvj6exqNfgtJDX3JAfJS4rm+ewl7du2suOZJSUmsWLGClJQURCIRFhYWJCenEBN7Dr1eh5+vLxPGj2PEiBHY2tpWjFVYWMjs2bNZtHgJuXl5f6RoiYmoH860Z55m+PDhj+zmkAkTJkyYuH+YDG8Td4Ver6dx02YUmjsS2H14jXJF6ddI3DCfTevW0q5duxrljEYjX331FbN++hmlWoOFswcCAmW5mShkUqY+NYn333/fFB58D0lISGDWrFmsXrsOdZkGAJlUQp/evXj+uece61DH2NhYunTrjmN4O/xa9KhWJvXMXrJj97Jt86Y7zhE1cW/Yv38/EyMnU1hcip1XPSzsnNFry8hPjUPQlPLM01P48MMPadGyFXlaS8I6j65xrJTz+8m9fIDzsWcfq02jd999l5/nRhHc7ymsXb2rHNcoi7m0fg5N6wWybeuWuzLQkpOTWbVqFenp6chkMlq0aEH//v2f6NoLEydOZOfpy4T3qb2ivtFo4MS895jz04/069ePF154gY2btyDIFJjZu4LRgConHRtLC95+8w2mTZt22/dGo9Fw4cIFVCoVLi4uBAcHmwxuEyZMmHiCuRtb1GT5mOD48eOkpqUTNLRvrXI2nnWQ2zqzcuXKWg1vsVjMW2+9xTPPPMPKlSuJj49HEASCgoIYPnw4Tk5ONZ5r4u45fvw4I0aNptQowqlBe3zrhCASiylKS2LrwRNs276DuXN+fWyL+0RFRSE2t8W3Wc3eRO/GnchPOMv8qCiT4f2A6dixIzFnTrFixQpWRK/kZuZ5LMzNmTByEBMnTqR+/frs27ePa9dTCOsxtdaxPIJbcCNuP9HR0bzwwgsPaAX/nnfffZeYs7Ec3zwfx9AWuIe3RGFjj75MTdbl02SdP4yHgw1zf5tzx0ZacXExL7/8Cus3bkSQyjGzc0HQ6/gtaiEu777HZ598zIgRI+7zyh5NBEGoUmG8OkR//NNoNAwfMZLjMefwajsAl6CGiP/IydeUFpMec4B3/vcBarX6tlEzZmZmNG3a9J6sw4QJEyZMPFmYDO8nlJs3b7J06VI2btpMSkoKKrUawcIWg9GIpIbwb5FIhNzemfSMjDuaw87OjqlTa3/QNvHvyMnJYfTYcWgtHanfb3ylsEsLBxdcw5uTsGMlU6dNJzAwkNDQ0Ieo7d0jCAJr1q3HIajlbXvDOwY3ZeOmzfw0W/fYFIj6r+Dg4MD06dOZPn16tcevXLmCSCLFxrmqN/ivyMzMsbD34MqVK5Vev3W/2rN3H0qlCi9PD4YPH0afPn0eiffawsKCtWtWM2PGDBYvWcr584dAJEYwGjFXyBnavx8ffvgh7u7udzSeSqVi6LDhnDoXh1eb/jgHN6oo3qYuzCX11B6mPfs8ZWVlTJgw4X4u7ZEkODiYTTv2YNDrai1qV5iRhEQs4vLlyxw7eZqQgVOrRCSYWdng374fUoU5n8/4kgEDBhAQEFDDiCZMmDBhwsQ/x5Rg+wSybNkyGjVpymczvyVZLUVn44ZRgKL8PHJycmqtumvQaW5biRygpKSE5ORkbt68yWOezfBIs2zZMvKLSwjsPbraXEexREJgj+HoxHLmzZv3EDT8d6jVajQaDQqbO+gNb+OATqejpKTkAWhm4m64u1BcoUJeEAR+/PFHGjZqwudffkt8Sik3i804eDKeCZFP0aRpMy5cuHB/lL5LzM3N+eijj4g7f44lixbwwzdfETX3Vy6ci2XOnDl3bHQD/PLLL5w6e46QfpNxC2teybg0t3MiqOtwbIOb8ubb75CVlXU/lvNIM3r0aEQGLVmXT9coIwgCNy4cJqxeKLv27MWmbni1aQC38G7SEUGmYPHixfdDZRMmTJgwYcJkeD9prF+/nudefAmFX30ajn2L4K7DCeg0BKlMjvrmdUQSKUVFRZRpNFXO1apKUWVcp13btjWOf/LkSZ6aMoWAoGAaN2tOWEQDWrVpw7x58x6JNjr/NRYvWYqNfzgyc8saZcQSCY71mhK9ajWaat7XRxmFQoFUIkGnvn1veN0fveEtLWu+FiYeDvXq1QOjnqLslFrldGVKVPk3yuUpN0Df/+BjHHyb07LfG0S0G0Voi4E07jqVJj2eJ7fIwMBBQ0hKSnoQy7gjLC0t6devHxMnTmTo0KG4uLjc1fk6nY6ohYuwDWiAlYsn+jI1BSlXybt+idKcG3+EWYvwa9WDMr2RpUuX3qeVPLr4+fkxauQI0k9uIz/1SpXjgmDk+rGtqG8mMWb0KJKTU3ANqb3OhVgixbZOOFu377hfapswYcKEiSccU6j5fwiNRsPmzZvZvXs3SqUSR0dHBg0aRNu2bRGLxeh0Ot793/tYeIcQ0GFQhVfJzNIGR/9w8i8cw84/AiRSSoqLUTg7Vxo//cQeLBVyRo4cWe388+bN48133kFk44BD665YOLtj0JSRFh/Lq2+/Q/SqVayKjsbOzu5+X4onAkEQSEtLw6lVr4q/y8rKUKnU6PQ6EAQkUikW5uZYuHiSG6MmNzcXT0/Ph6z5nSMWi+nRozvbD53Cs0G7Wj2nuQln6dK582NRdEoQBE6dOsXFixcr6h+0bt36P1vlv02bNgT41yXtwkFsXXxrfB/T44+hkEsZMWIEeXl5fPLp57j6tyKwUc8qslZ2rjToPIkzO37m88+/YP7/2TvLwCiuLgw/s77JbtwFYgQJ7u7updBCKU5LvaUuX10pdW9x9+Lu7hYkSCAJcff13fl+pKSkMWhpgXaenzN37pw7uzt7z73nvGfGvRfRURFnzpwhJTWVkHqdubh1KZmXTmG3WUvP67wDCGraCZ/aTdDXqMP6jRt5/vnny/ThcDjYu3cv69evJy8vDxcXF9r/tmBqMBjw8PCgU6dONxW9dLfy+WefkZebx7oNc3DyC8ErogkKjRPG3AyyLh3HYcjjk48+oHnz5jhEscrFyesotc4U5Va9OHQv4nA4OHHiBCkpKWg0Gpo1a4anp+edNktCQkLiP4fkeP9L2LJlC0898yzpGZlofIOQqbXYCo8wa9586tWpzawZM4iNjSUpJYV69w8pN/ENbdObk0u/I379bPw7DkTh7ILZbEatVmM1GUg8tJ2880f49OOPcHd3r/D+L7/2Oi6N21Cjc58y+bgekVEUpyVzbPlMJkycyPJlyyQV2NuAIAgoFAocVgsOh4Pc3FwsViuCXIFMWeJ8Oux2CgoLMeRk47Db70g+rMPhYP/+/aULQl5eXgwaNOim880njB/PmnXrSY85hl+9FhW2ybh0CnN2ChPGT72dpv8tbNy4kY8+/oSz587joOR3IEMkIjyMV15+iaFDh95hC28/MpmMN15/jfETH+XK0Q2ENe+NTCYvPS+KImmXj5N6dhcvPv8snp6efP/995jMNhrV71Rpv0qVloBabVi7bj1paWn4+fn9E8P5WykqKsJqs3Fp+zJEmRyPJh1xCauPTKnElJVGbswRLmxeRFFmCkqtjoL8jDLXnzlzhkcmTeLCxcuoXD0RVFoKUxP48ptvkSkUqFQqFHI5nu7ujB09ipdeeumedMDVajWzZ89i3bp1zJgxk4OH1iCKIiqVigfvG8z48eNp2rQp165dQy4TMOZl4exVdbi/MT+L0D8sON/LiKLIvHnz+O77H7gcewW7Q0QAnLRqhtw3mJdffpmaNWveaTMlJCQk/jNIjve/gK1btzJy1GhUgeHUe/hhnDxKJg6iKFKYEk/szjX0GzCQ/n37oHbxQOcVUK4PrZsXjYZM4tz6OcSvmobKw4cc7wBkDjuGpFi0KgVTPvqQRx55pEIbvvjqK5T+NajRpW+FTrWzXyBBve5nx9oFnDhx4p4ub/VPcF1MauXqNeTm5uLu5sbgQQN5+OGHy+SKtmndiv3nzqEJicJqs6HUOCPIf3doUILoUFMQfxGz2YzNZvtHx3HkyBGefvZZLl2KReHsikLjjKUwl08/+4LOHTvw3XffEhBQ/vt4Ix06dGDiuLH8MmM2psIcAhq0ReWkB0pqw6ecOUD66d2MHjmCHj0qVz6/G5g3bx7PPf8CGt8wInqPwy0wHICCtARSovfyyGOPk5qaytNPP32HLb39DB48mMzMTF57/X/kXDuLd1hTtC6eWIxFZF09hbkwg3FjHua1114DYN/+/ei8QlGpq96p9AtpRNypDRw5cuSeVe6/Eb1ej9loRO3jSUj/sSi0utJzuhp6dDVqkXP2MEkHNqD39qd23fDS8+fPn2fAoMEYFc7UGjgRjYsH0St+RFRr8GnZCeewOsi1GpxlArnnTvDF9z9y8PBhVixbhpOT050Y7l9CoVAwePBgBg8eTHFxMUajEVdX1zILjDVq1KBF8+ZEnz+CV0SDSvuyGospjI/hgbf/90+Y/rcjiiKvvPIKv0yfiWtgFHW7jkfn6Y/daiH96mmWrtrItu07WbN6JbVr177T5kpISEj8J5DqeN/jWK1WGjZuQr7KhToDRleo/GwzGTm35Hv8nFVkmUQaPPBspf05HHZy4mK4sGEuwQF+NGjQgM6dOjJixIhKy4DFxMTQrmMnAvuPwCMyqtK+RYeDc9M/Z9Sgfnz11Ve3PNb/CosWLWLyCy9itovow+qh1rtjLsyl4Op5NHKBLz6bykMPldRCXr9+PQ88NBLvzkNxCamL7Ean+zfMeZlcXf4jckHktRef580336z03mfOnGHFihWkp6ej1Wrp1KkTffv2/VM75YcOHWLI/cMQdd7UaNkLF78QBEHAYbeTHXeWxCObCPJ2ZfOmjdXWbL5eG/7b736g2GRG6+mPABiyU9GqVTw+6RHeeOMN5BWM/27h4sWLtO/YCX1YU8I7DCq3QCWKIglHt5F9djebNqynRYuKd/fvdc6dO8fMmTNZtvxXDAYDCqWCXj16MH78ODp27Fj6XO67bwgnL2XTsMOIKvtz2G3sWfY2M6b9xLBhw/6JIfytrFmzhvsfHEHNwY/g7B9Sabtrm+ZTdOUcP37/LRMnTgSgd5++nLiUQNT9jyFXqYle8TNFeRkED52A0sUNRBGbyYBCLsPT05OilGtcWTqTSWNGMWXKlH9mgHeAlStXMm7iowR3HFxh1IzDbufSlkWQfY2Tx4+V+68zGo2sXr2abdu2UVRUhLe3N4MHD6Zz58537TtnwYIFPPn0c4S2HExAZPnyZxZTMWe2TCfIW8fBA/vviuoAEhISEvciUh3v/xAbN24kJS2NuiMeqLTckkKjxa9ZJ+I3L0Gu1mA1GVBqKt7dkMnkuPjVQKVW8b83Xmf06NHV2nDlyhVsDgcuNcKqbCfIZGj8a3D5LhJCuttYs2YNTz7zLC6RTajdqR8Klab0nM1iImHPBp569jmcnZ0ZNGgQvXr1wlXnTOquX5F3fxBdjcgyDp0h7RpJ25fh5O6Na1A4c+bN55VXXkGlUpW5b1paGo9Oeox9Bw4gaJxRunkiWszMmDMXf19fvvhsKn379r3pcdjtdh57/Alw8SWq73hk8t9fNTK5HO+IRrj4hXB29Q+8+dZb/PLzz1X2d2Nt+OXLl3P+/HlEUaROnTo88MADFaY/3G3Mnj0bh0JDWLsBFUaFCIJAzRbdyYuLZvr06f9axzsqKorPP/+czz77DIvFgkqlqvB5BAcHcfDY+VIxscooyElBLpNVGzlxr7Bs2XJcgkJRuXrgsFuRyStyiERcajWi8MpZGjZsCEB0dDRHjh6jZo8RyFVqijJTyEuKxb/PAyVON4AgIFOVpA9ZLRZ0ATXwatGB+YsW8/rrr+Pq6vqPjfOfZPDgwRw4cIBfZsyiMDWBgEbtcPbyx+Gwkxt/gZSTexDz05k7e1Y5p3vdunU8O/l5srJzcPaqgVzlhKU4mnkLFhNZK5w5s2fddWUaRVHku+9/wDWwboVON4BK40xku2FEb/yerVu33tL7XUJCQkLizyE53vc4O3fuROPpj7NX1bmNXrUbEb/9VwSHnbRzRwhu1rnStqnnDqPXahk8ePBN2XBdEEp02KttKzrsd+0OwZ3GZrPxv7feRlujNmHdy+fhK1Qawrrdx0VjMW++/Q79+vVDoVCgUKpQOylJ3LwQlZsXuuBaCDIZxSnxmDKT0fkEETVwHMbcDK5ePEZKSgohISGl/WZmZtJvwADi07MJ6j0c9/Dfd84NWekk7tvM6LHjmDVjOgMGDLipsWzfvp34a4nUHfB4Gaf7RtQ6V/wadGD1mrW8/9571e56Q0lt+Ou7e/caS5YtxyOiaYVRCdcRBAHPyOasXruOb74x3xNCcX8WQRCqHN8DDzzAvPmLyE2/iodfeKXtki4dIjS0Jq1bt/47zPzHib92DZ1fMBqNBpPJiENhR65UIQgyQMRht2G3WlC7eaHRaMnPzwdg27ZtoFThHloHgMyLJ5E76dCF1SnTv0wuxy4ImC1mlCoV3o1acu7gDjZs2MCIEVVHF9yrCILAp59+Snh4ON9+/wPnln+LIFeW/B8BLZo34603v6Ndu3ZlrtuwYQNjx0/A2a82TQePRetSIkgmiiIFmYlcObia/gMHsXnjhruq9vfp06e5cPESdbqMrbKd3jMAJ48gFi9eIjneEhISEv8A/04J3f8QxcXFyNSaatvJlSqUag0tmjUl7cQO8pJiK2yXk3CR9FN7GDd29E2H7tevXx+VXE5ubEyV7Rw2G8bEqzRp1Oim+v2vsX37dq4lJhHUsmulO3yCIBDUsisJiYls37699Lh/o7Y0GvoYrj6BGJNiMSRcxFnvStTAcTQZ/jRqnQvcUBv5Rj766CPiUtKJfGASnpH1yziGTl6+RA58GHVIHZ6d/DwGg+GmxrJx40bUrj7ofYKqbOdbuxlGs4UdO3bcVL/3KlarlYKCArSu1SsJO7l7Y7VaycvL+/sN+wcRRZGTJ08yefJkevTsRfcePXnuuec4ceJEue8klCihN2nciEtHV2Iqzquwz5SrJ8hJiubJJx7/1yzoOWm1OCwWXF3d0Ol04LBhNRZhNRZiNRRhNxtRymW4OGmRK+RoNCXvf4PBgELjXCpaZykuROXmUVbzAQABQRAQHSXPXKXTo9Q6kZGRwb8ZQRB47LHHOHXiOMsWLWTqh+/x1dQp7Nqxjc2bNpZzui0WC5NfeBEn30jqdRlR6nRf78vVpwYNek+k0EyV6Tt3grS0NBwOEZ1H9bXjta4+JKek/ANWSUhISEhIO973ON7e3lgLchFFx287IhVjLsrHbjEzYcIE3H5dydYNc9DXrItvvRaonV0xFeaSEXOMwmsxDOzTm7feeuumbahRowY9u3djy7H9eNVrgkxR8dcqM/ooMovppsLX/4scO3YMpd4VnW/V5b50voGodG4cO3aMXr16Uad2bc6lxRPcvDOuQZXvDOYnXUGv05VRfs7Pz2fJ8hV4Nm6LxrXicG1BJqNGx76cmzWVlStXMnLkyGrHUlhYiFxTffkehVqLXKGioKCg2rb3MgqFAqVSidVU/cKF1Vj8r6tHXlRUxKTHHmPjpi3ItS44+5akpZxesY658xfSq2d3fvn5Z/R6fek1giAwZ84sBg4azPEtP+Ab2hz/0MYoVBqK8jJIiT1Cbup5xo4dxfjx4+/U0G47Hdq348j3P+GwWdDpdDg7O2MymXE47IiiiOI3ZfLkwzvQ65xp9NtCpoeHB5biAuxWC3KlCrlShd1kKn8DUUR0iKWRSg67HZvZfE8qm/8ZlEolPXv2rLbdunXrSEvLoPGghyr9b1WqtQTW78TW7WuIj48vE0l0J1Gr1QgC2CxGVNW8h20WM1rtvzPFQEJCQuJuQ9rxvscZMmQI9uJ8cuMvVdkuPfoIri46+vXrx8IF85n68Qf4yY1c3TiHc8u+Jm7zPIK0Nr6cOoVZs2bestDKSy+9hNJQSOzq+dhMxjLnRFEkO+Y0qbs28PDIhwgPr9w5/C9js9kqDcv+I4JCgdVaUtt37JjRFF27hCE3s9L2dquFnAvHeGjEg2Um2Pv27aPIYMA7qmqVeY2rO04BoWzevOWm7HN3d8dmKKhwJ/NGLIYi7FbLPZGj/VcQBIEe3buRE3uq2meSdfkkbVq1Ktnt/BdgtVoZNXo0G7fuJKTDAzQZ9iK1Ow+lduehNBn2IiEdH2Tz9j2MGj269Dt9neDgYDZv2sij40dSnHaS45u/4dCaT4nZNwd/Vzvffv0lX37xxb+qPOHDDz+M3G4l9eR+gNKxmUxmioqKyMvLIyUhjpTje2jbqlVpZNLAgQNR4CDz4kkA3GpEYsnJwJSZWqZ/h90GiKU75bkXzyIXHXTqVHnZtv8iu3fvxskjAGe3qsuL+YQ1wmorqZt+t9CsWTN0zs6kXz1dZTubxURB2mU6d+r4D1kmISEh8d9GcrzvcZo2bUqLZs1I3L0OS3HFu4aFqdfIPL2f0SNHotfrUSqVPPLIIxw+dJD9e3ezecM6Du7fy4F9+xg3bhyKSnasq6JJkybMnzMbZVYq536ewtWNy0k7tp/k/duJmfU1yRuW8uCQwXw29e6vs3ynqFGjBuaCXCyGoirbWQxFmAtyS+uv3nfffUTWCufS+rmYCnLLtbdbzFzYMA+dUlauHFxRURGiKKJ0qt7Jk2udKCwqvKmxDBgwAGthNgVp8eXtsdkoLi6msLCQa9H70KpVd30ZsNvBhPHjseRnkHHpRKVtsuNjMGTEM3HihH/Qsr+XtWvXsmPXHmp1G4V3eMMyIpCCTIZ3WAMiu49i5+69rF69utz1Pj4+fPzxx5w9E83a1StZtmQhO7ZvZf/+fYwaNepf5XQDhISE8NwzT5NxeBuJh3eQk5VJXn4eNrsduUqLtaiA5G3LsBQXsXnbNt555x1EUSQoKIgB/fuRcnQ7xrwsPMLqonZ2JevgdkSHAyipLGG3mFCr1cgVCuwWM2mHdtK+Xdv/dEmpmJgYXnvtNXr07EWXrt14dNIkrl69iqCoXmNBrlAiVyhvOg3nn8DFxYUHHxhKxuUjmA2VRxMlnNmNSs5NRTFJSEhISPx1pHJi/wISEhLoN2AAqblF+DRpj0+9Zig0WkwFuaRFHyY7+iBtWzZjxbJlf3s4YXp6OvPnz2fh4iWkpKSg0Wro0qkT48aOpX379v+6SfKtkpKSQkxMDKIoUqtWrVLnGSA3N5eoho3QRbUhuHW3SvtIPLSdonMHORd9unSnOD4+nvuHDuNKQiIuYfXxDKuHIJOTn3yV3IsncNGqmD93Du3bty/T17Zt27j/weHUGfUsTp5Vi5udW/Adgzu25pdffql2nA6Hg3bt23M1o5Co/o+gUGmw2+0U5OdjtlgAAUvkcfC9AAEAAElEQVRhDnHb5iDYTPTp3Zsvv/zirgnV/DsQRZHJkycze95C/Jp0JaB+GxTqkt+j3WIm7cJRko9uZlD/PsycMeNfk7Pct19/Tl1Np0G/R/5wRsRkMmOxWBBFkSs7F1I30IU9u3ffETvvJhwOBx9//DEffjIFmyBHHxaFXKXBnJ2KMT0JrZsXUf3GknrmAKmn9tClU0e6d+9O586deeKpp7mckIRPow6odC5c3LwYp9BIPFp3QeHkjFxWUkrMmJFK4tbVaI2FbFi3lnr16t3pYf/jWCwWJj//PIsXL0VQOqP3DUcmV1CcdY2CrCTsDpF2D7+JxrnyUGxTUR7HV0xlzqzpNy1I+k+QmppKj569yMg3E9l2KC7ewaX/v1aLkWtn9pAWs5e333ydyZMn32FrJSQkJO5dbsUXlRzvfwkpKSm88+67rF6zFqPZjCCTg8OBh7sbox8eyauvvvqfyeG7Gzl16hSff/EFmzZvwWK1AaCQy+japQuTn3uWtm3bAvDGG2/w3c/TCe//MO4h5XegcuMvcmXdfJ6aNJEPP/ywzLm8vDzmzZvHjJmzSExKAsDV1ZXRD49k3LhxZZz865jNZuo3bIQ1oBahXStXLC9KT+bSou9ZPH8effr0uakxnz9/nv4DB1FkV+DfqDOCix+iIAdRJD/hLBln9qDR6qnRoAPJ5/bgqVexacP6f7XzbbPZeP/99/npl2lYbCJaryAQBIzZySiw8/DIh5jyySflyr3dq1itVvwDgwho0R//uq1Kj5tNJvILC3DYHb/tgAvkXD1F8uHV3DdoED///BOentUL0f2bycjIIKpBA3DxQxRFHHYrap0bfvVaoNBoid25kuKcdORqJ+QqDUrRisxuoXOnjri6uLBh0xYMJhOiCIbiQgSZHF2NUDSuHtgL87BkpREeUpNZM2aU5on/lxBFkUcnTWLZitWENh+AX/jvFQdEUSQz8SJndy1AqVLTetiLZUo73siVY5sxJ5/m3Nnom9ZlSExMZNeuXRQXF+Pl5UXPnj3/lvlLXFwcIx8exfmYi2hcfdG6+WK3mCnMuIJaIePVV17i2Wef/c8viEtISEj8FSTH+z9Meno6e/bsoaioCC8vL7p27fqvEmm6F9m6dSujx47HrtbjG9UG9xq1EQSBvOQrpJ89gL0ggx+//46hQ4ditVoZP34CazduQhdSB5+oFqj0rlgK88k4d4yi+Bj69+5VZR6+w+EgJycHu92Oh4dHtfn6H3/8MVO+/Jrw+8bhEhRa7rzdYubi8hn4a2UcO3LkllIRLly4wMsvv8LmbdsQZUqUWj12kwEQ8QmpT+1296FUO2ExFRO94SdaNanL2jXlw43/bWRkZLBo0aLSeuSRkZGMGDGCwMCqhfXuNYqKiggJDSe43f34RDQGwGQykZeXhyBXoFCqSxYJgdyEMyTsWYLe1Z064TXZuGH9v7au9M3w/fff88Y779Nk9GulkREA+clXiV41DY1nAD5Nu+LkE4zNZMBVr6Mw8SLJR7YQFuDD/HlzOXnyJLm5uWi1WiwWC0eOHCG/oAAvT08GDx5Mt27d/lRq0T+NwWDg5MmTGI1GfH19qVOnDvv37yctLQ21Wk3r1q3x969ewftG9u3bx4BB9xHeZhi+oRUvPCTHX+L8tmmENulKeMvyC455afHEbJvFM09O4t133632nvHx8bz55lts3LwZq9VRIoBnMePi4szDIx/if//7323/v7bb7ezatYslS5aQmJSMRqOmQ/v2jBw58qZKOEpISEhIVI3keEtI3CUkJSXRpl17RLcg6vR8qJx4muhwcHnncoxJ59m1Yzt169bFZrMxb948ps2YwYULl3CIIjJBoE6dSB6ZMIFRo0ZVOFlOSEhg3rx5rFi5ity8XPQ6PQP792PMmDFERkZWaqPZbGb4iBHs3HcAzybt8G3UGrXeFYfNRvalM6Qf3YWzw8KqX1fQuHHjW34Gly5domXL1rgERaF19Ual1eET2gC1U9nfa/rVaOIPLmPf3t3UrVv3lu8jcfchiiLhtSKR+0UR1rovoiiSkZkBggKlWgP8vtOWemobuZeP0vS+Jzm3/heeeGQsH3zwwZ0z/g4zefJkFm/cRf0hj5ceczjsHJn9MQqdBzV7Plz6PrEaCtHpdOicnTHl53B+5Y+MHDqIb7755k6ZXw5RFDl06BBHjx7FarUSFBREv379qhQRzM7O5quvvmL+gkXk5uXjEB3YLObfFNllpTvUGrWSvn368Oab/7tp8c4JEyaybtt+mg2ofMfXbrdzavt8suNPUavtQAIiW6DUOGEsyCHlwmEyLx+hU/s2LF68qFSsrjJiY2Pp138AuYU2gup2wC+kMXKlCrOhgOTLR0m9vJ8WzRrx64rl0mK5hISExD3Erfiid/9St4TEPURhYSHZ2dlotVp8fHyYO3cuxWYbTbo9WKFiuSCTEdH5fk4tusr06dP5/PPPUSgUjBs3jrFjxxIbG0t+fj6urq5ERERUOkFcsGABz7/4EhZRhmuthqh9IykqLuTH2fP5adp03v7fGzzzzDMVXqtWq1m0cCEfffQRs+fN4+yx3chVGhxWCwoBOnfqyAfvv/+nneENGzYgUztRr/OIMjXC/4h3zSjij65hw4YNkuP9L0EQBEaOGM4P0+cS0rwHJosV0SGi1Kq50el22G3kXDmBf2RTnN198YpswYKFi3nttdf+s06IIAggOsocy7l6HnNRPkFdR5R5n4jA9VeDxtUD7wbtWLb8V9555x08PDz+QasrZteuXbzxvzc5H3MBmUKNTKHEaizCzfV1Hpk4npdffrlcZE5qaioDBg4iLjEVr/DmNGjXkKvHtpKZcBbPgIZ4BDfEwycYZ62G9PjTbNi2j737+rBm9UqioqKqtWnPvn14BNevMsxaLpcTXKcl+UlnyDq3i6RT2xBFEZlMwMvDgxeee4qXXnoJtVpNQkICV65cQSaTUadOnTJlG0VRZMKEieQboEmvx1Cpf/9Oq51cCGvUDa+g2hzdOZOPPvqoXBqRhISEhMS/A8nxlpC4DRw7doyff/mFtWvXY7FaEYBatSJITErCLawhclXl6rgyuRzP2s1Zsmw5n3zySekEVBAEatWqVeE1V65cYc6cOaxZu57U1BRy8vLwbtiW+l0GotL8Hpbq6NCXpMPbefu999Hr9YwbN67C/jQaDe+99x4vvfQSmzdvJiMjA61WS/v27Su14WbJz89HpdFV6XRDyXNQafXk5pZXZpe4dxk3bhzTZ8zi0u5leDfuiSBXlKmLLDrsJB5ajcNqIiCqROvAr3ZzTp/by6FDh+jWrXKhwX8zDRo0YMbc+ZiLC1A7l6ygZ109i8bDD63n72HVDrsNRBGF4nfH1a9eC1KObmHHjh0MHTr0H7f9RtavX8+4CRNRugZSu+tY3P3DEQQBU1EeyTGHmPrF11y+HMuMGdNLBQVFUWTsuPEkpGTTsN8TaPUeJJ7dR9a184S1HIZHUBQOmxWjyYhKpSaodmt8QxtxevtMHh41miOHD1WbYmMxm9Eoq1ctV6k1aDUa1q5dTWpqamkaV+fOndFoNBw4cIAvv/qKHTt3YbOXLJSoVUr69enD889PpkGDBhw8eJDos+eo12FsGaf7Rlw8g/Cr1ZZ58xfw6quvlqlpLyEhISHx70ByvCUk/iIzZ87k5VdfQ6Zxx7deV5w9/LBbTKRcPU1aWho1a7VFdDjKlFH6IzqvALKijeTm5uLj41Pl/X788Ufeeudd7HIVrqH1KTAnoguph1vjTuTkF+DiEHFycgJKnNkabXtiKS7gg48+ZsSIEVWGROr1+ts+UXdxccFiKsJht1fpfDscdizGItzc3G7r/SXuLGFhYfzy849MfHQSlzcn4R7RArcaJQrahamxZF06jDkvg3rdhuPsXvLdV2l1iGJJjvh/lfvvv5+33nmX5JN7CWvfDwC72YTyDykadqsFhUJRRpBPqXVGkMkpKKi8lNQ/QU5ODpMefwKtTyT1Og0v8w7U6NwIb9EbV98arFq7kE5z55YuDB45coQjR48R2WU0Wr0Hougg8ew+PILq4xFUspstUyiR2UtKE2qdnFCqtNRuPYRTm79n8+bN9O/fv0rbAgMDSclJqXYMhdmpKJVK6tSpQ6tWrcqcW7ZsGU889TRynTfBrQfjHhCBKDrIvnaB9TsOsGXrNhbMn8uGDRtQad1x9wur2qZaLTgSs4tt27Zx3333VWubhISEhMS9hVTHW0LiL7B161ZeevlV3MNa0WzwswTXb49HQATeIfWJ6vIQCpUTFrOJvLz8KvuxWy1ASdh3VcyfP5/X33wL17qtaTL6VTxC6mK3mvFu1hmVsx5BrqSgoACTyVTmusAWncnMzqmwTvLfTZ8+fRDsFjITzlbZLivhPKLNdNOq6RL3DgMGDGDdmtW4qx0kHVrF+ZWfcX7lZyQdXoWTs57GAx7FJ/x3gStTQQ4ymfCfVjZ3cXHhxecnk3VuP8mn9iI6HCg0TliLS94lIiI2iwnRYUOv13FjwLTFUIjosN/xRazFixdTVGyiVptBlS48etWoh2tgPX6ZNp3rkjOLFy9G6eyOR2AEAPnp1zAW5uAd1rzMtXKlCpvdjtVS8v7Uu/vj7B7E0qXLqrXt4ZEPkZd0Houx8sUdUXSQHnuE/v37lhP6O3fuHE89/Qy64AY0GvgEfpHNUOtc0ejdCYxqQ+PBTyG4BTJ67DiSkpJQOblXqx6ucXJFJleSlZVVrf0SEhISEvcekuMtIfEX+PyLL9F41iSiZd8y4bNQEiruERBOUdIlzBYzVqu1zHmLoYhrx3dw6tcfubB9MXKZjK1bt2I2myu8l8Vi4b0PPkQf1ojQdn2RyRUUZiQi1zij9SkpS6VQaRDkCgoLC7lRNVHr5oXW04/o6Ojb/QiqpU6dOnRo347EU9uwmIorbGM1G7h2aittWre6qfxMiXuPFi1a8PlnU9E6aajdYQiN+oyj9YhXaNRvIm7+ZdX0U2IOE+DvV26H8b/GM888w4vPPUva0c2cXvQ5dpsVY3YKhSlXsRmKEG1WXF1c0KjLRrGknTuK3tn5jofp/7pqFa6BdVBpqs7T949swcVLl7hw4QIAiYlJaFz9St+pFkMBiKDRe5e57vp5u91eekyj9yI1La1a24YPH46Huwvn9ywuXfi8EVEUuXxkPXZDDpMefbTc+WnTpuFQOFGrw30VLirIFErqdBlOocHMtWvXsFkN1dpks5qw261VCs5JSEhISNy7SI63hMSfJCYmhiNHjxFQt02lOxmBddtgzEqmOD0Bo+H3iVdy9H4OzfmQuCNbsavU6ELr4XDzY8Kjj9GseQuOHz9erq/169eTnpFJcPMuvx90OBDk8t/vL4BcqcZmt2P5gwMvyGTYbLa/PvA/wVdffYmHTkH0hp/IiIvG8dtE2eGwkxF/htMbfsZNK/DtN1/fEfsk/hn69+9PcGAgOfFncAuMQOtSfkc7L+UqOVdPMmHc2GrzdP/tCILAm2++ybbNmxgxqA+qghQEu530I5tQKxV4eXnipHUqc40hJ4OMM/sY/sDQO16OLTs7B43Ovdp2Gp07DkdJaDqAVqvBYfvdGZYpVCCAzWKs8Pob379WiwlnJ6cK292Ih4cH8+fOQW7O4sT6b0k8vx9jUS5mQwHpcac5telncq4eYeqnn9CyZcsy15pMJpYt/xWvyBbIZJWnzyhUGtxDGpKUlIIxL5WivKoXBFKvnkSjUtK5c+dq7ZeQkJCQuPeQHG8JiT9JbGwsdrsDtyry9rxrRuERGEnSvl/JunoG0eEg9dwhLu9ZhWvtpkQMfxa/9v0Iat+fhg8+Tr2Rk8myyRkydBgxMTFl+jpx4gQaN2+c3H/f9dG4eWEzFGIpyCk9dt0Rv3GH3WoyYMrJICQk5PY9gFsgJCSEjRvW06pJXa4eWMbR5Z9wcs03HF32MVf3L6VFw1ps2riBsLCqcyAl7m3UajWzZs5AKM4ket1PZF49g8NRsghjLs4n7tgWLmydQ7fOHSpV4f8v0rRpU7755hvirsRy+NAB3ORWrm1bQP61S4iOEkEvm9lESvQBYlb/TP3IcN566607bDW46PWYjYXVtjMbChAESsuwtGnThqKMuNIIGVffmsgVKnISz5S5zm63IggCSlXJAo3VbKAwPZZu3brelH1t27Zl86YNDOrTmfTz2zix+jOO/jqFuEPLaRFVk2VLF1coSJmTk4PJZELnGVDtPXReARQZigkI8OfKyc2ln9cfsRiLSL6wj759et9yTfLqyMjIYN26dSxfvpx9+/aViRCQkJCQkPjnkMTVJCT+JLLfwgtFseKJFJTsMjfsPpr9iz8icc8Kcs/upSA3C9faTfBs0hEQUSmVuLm5IQgCTh7e1Bk8nnNLf+Cdd99jyeJFpX3Z7XaEP4iTeYXXR6HSkHPuCH5tet945zLt0s8cQaNUMGzYMERRJDMzE5PJhKen5z9Wrik0NJS1a1YTExPD+vXrycvLw9XVlb59+0rh5f8hWrVqxbq1q3nt9Tc4vHcpV/fJkSuUWM1GXPU6nnniUd54443//G53ZTRp0oT1a9fwwosvcWzrQuKVKhRqJyzFBajkAkMHDeTTKVPu+G43wID+/fhwyhfYLCYUqspFHdMuH6NmjWDq1SsR3Rs+fDgffPgx107vIqJVP5RqLX61mpB+5SheIU1QaV1AFHFYLajVauS/7Tpfjd6BRq1gxIgRN21j3bp1mfbLL3yQns758+ex2WyEhYVVWQ9cpSrZgbfbKk4LEkURc1EeNosRU2EuSqWSb7/5iodGPszp3XMJb9wLvbv/b20dZKfEcvXkerzdtbz//ns3bXt1JCQk8NFHH7F6zVqMJstvpdBkhNQM5rFJj/Loo4+W/o9JSEhISPz9SI63hMSfpH79+igUMrKvxeAf2bzSdoJMhlqlZOSwh4mPj2fnvix8G7dDq9Wg1WrLqBEDyFVqfJt0YNv2VcTHx5fuUoeGhmLKy8RqLEapLXGW5UoVQU06EH94K1rvAFwjGiI6HIiio7Q0T27cRdKObOeRsaNZu3Yt02fO5MKFi4iASqlk0ID+PProozRr1uxveU5/pG7dulKd7v84jRs3ZuOG9Zw7d479+/djNBrx9/enT58+Uhmlm6BBgwZs2byJ06dPs2PHDoqLi/H29mbgwIG3fbf0rzBy5Eg++/xLrh7bVCKwVkFKTn5GArnXzvL8O/8rfWd5eHjwvzde440330aQK6jZsBOhTXqQnXiRS3tmE9y4H1oXX2QC6HU6zMZC4qJ3kB1/jCmffISXl9ct2+rr64uvr+9NtfX09KR2ZCRJV8/gE9aw9LjocJB2+QTJZw9QmJkElAhnenq4kZWVxby5c3j+hRc5teV7tC5+yJVaLIZcbKZ8mjRpzIzp0wgODr5l2yvi4sWLDBw0mJxCC/51u+ET1giFSkNxThrJFw/x6utvcjo6mu+/+05yviUkJCT+IQTxuozoPUpBQQGurq7k5+eXhqlJSNwsV69eZeHChVy+fBmZTEb9+vV56KGHbnry+uDwEew6FE2T/k8gk1e8jpUcc4ikE+s5cvggU6dOZdWeo0QNm1Rlv3ableM/vMUvP3xXunuTk5NDVIOGuES1p0aL30MpRdHBpa3LSIs5hnNAKPqIhiidnNGpFGSeP44hKZZe3buSm5vH4eMn0Nesg1dEI+RqDYasVLJijiIW5zF1yieV1vmWkJCQ+DPMmTOHyS+8hEtgFDUbd8XZraRknM1iIi32BImnttK+dXOWL19WpqqDKIp8++23fPDhx9hEGS4BkSCKpF05jc1sROvqjZtXDUSHlaLsBJy1at5/7x3Gjx//t40lNzeXxYsXc+TIEWJiYjh1Opo63UfhF9kUh8PO+W2LyLx6Br1/BJ4hTVBodJgKMjCmX8KQGc/QIYP59ttv2L59O9u3b6e4uBgvLy+GDBlCs2bNqlU9v1lsNhtt2rYjMaOQhj0moqxA3C49LprYA0uZOuUjHnnkkdtyXwkJCYn/Irfii0qOt8R/AofDgcFgQKvVIpfLMRqNPPfcZJav+BXkapzcgxARMWRfQyEXeXTiBN555x0UiqqDQk6cOEG//gNRutekTscHyoRTiqJIRlw0Vw6sYMyoEXz91VeMHTuWzScvUm9w1Q6uKIoc/+FNvpo6pYwz/Prrr/P9LzOI6DUSj5A6ZdpnXjpF3IFNFGeloFar0Wo0NKhfn4kTxrNy1Sp27j9Mrf7j0PsG/eFeDuL2ricv5jBLFi6gR48et/JoJST+NjIyMli6dGmZhbGhQ++8aNjdTGpqKosXLyYuLg65XE7jxo0ZMmRItZEERUVFrFixgnnz53M1Ph6lQkmrli0YP24cHTt2/Eu7okuXLuXNt94hLSMDrYsPMoUSU0EmcsHBsPvv57PPpuJUiSBaSkoK8+fPZ/v2HRQbjPj5+dCkcWPS09NJTUvDSaulbdu2DB8+vMz34vLly6xevZqsrCycf1N4b9OmciHMqhBFkR9++IGPPp5CsdGMk3cNZHIleWnxmApz0PsE4+YfRmrMEWq2fQC3wNo47DbsFhNqtQp3N3cyE85xee9iXnjuad58880//Sxvhs2bN/PgiJE06PU4Ll5BlbY7v3cpHooCjhw+VBptICEhISFxa0iOt4TEb5w6dYqZM2ey4tdVmM1m5DIZ3bp3JSkpiehzFwlt2g+/sMbI5SX5pDaLiaRLh0k6s50xo0bw1VdfVTtR27ZtG+PGT6TIZME9uD46D39sFhPZCWewFGYybOgQvv/uO5RKJa+//jq/zF9CwzEvVVrXFsCQnc75RV+zdOECevXqVXo8MzOTQYMGcTL6LLrgSHzqNkPn7oW5MI+MmGMYUq4yaEA/XnrxRdzc3AgMDOTUqVN069GLmj2G4xlev8L7iaLI+ZXTaBziy8YN6//Ek5aQuH1YrVbeeustZs6eg9nmQOvuj4CIITsFnZOWyc89w+TJk6UQ2RswmUy88sqrLFy8GJsoQ+vuhyg6MGSn4KbX8crLL/L4449X+D47f/48DwwfzrXkVHQhtdH5B+Ow2ci/ch5rbgZ9enRn+vTpf0kPwmKxsH79eo4ePYrFYiE4OJhhw4YREFC9QNmtkJaWxtPPPMOOnbsQFWpUOjdspmLsxkLq1a3DN199dctpNV9++SXvfvAR3rXbUKNhJ1TaknJfdpuNaxeOE394NVZDIf4Nu+FbtwOiww6iA41Gg6ura+kzv3p8C8UJxzl3Nvpvna9MnDiR9TuO0LTfk1W2y89I4Ny2aWxcv5bWrVv/bfZISEhI/Ju5FV9UyvGWuKux2Wzk5OQgk8nw8PAoM9E2mUzs3LmTjIwMnJ2d6dChQ5kcvR9++IE3334HucoF79DWaF08sRgL2brnGLlp8XjXjCIgvFkZB1ih0hBSvxNqjY558xcybNgw2rdvX6WN3bt35+iRQyxYsID5CxeRdu48Go2aPp07Mn78ODp06FA68Ro2bBg//jKd3LgLeITXq7TP1NMH8ff1pUuXktJhVquVDz74gGkzZ1FkMKHSuVBw7SI5V84gE2SoNWrat23LxLdfYsiQIWWe07x585A7u+IRWvn9BEHAr1FbDm9dTExMjJSDLXHHsNvtTJr0GL+uWYd/424E1G2FQq0FStSvk8/s570PPyYvL4/333//Dlt7d2C1Whk9ZixbduwisHkvfGs3K42+MRflk3RqN6+/+TZFRUW8/PLLZa5NTk7mvvuHkuuQEzXuRTSuv5f/CmrbndyrF9i4aQmTJk1i3rx5fzocWqVScd9993Hffff9+YFWQ3p6On369uNaZi5BnYbiFV4fmVyBKIrkJ1/hyuEtDBx8H6t+XUGLFi1uqs+EhAQ++ngKflEdCW3Ws8w5uUJBaFQrbMXZJJzYhkfNhihkJf8jTk7acgKBgXVac/z8XlauXMmYMWNu27j/SHJKKhoX72rbObv5YneIpKen/222SEhISEj8juR4S9yVJCcnM2vWLObMnV9a2zUwMIDx48YyfPhwZs6cyYyZs8nKyaEkZkNEq1YxYEB/3n7rLQ4dOsT/3nwb38j2hDXuUca5dvKpQ9a1cyRFb+Ly8Y1EtuhX7v5+4U1JvrCPWbNnV+t4A/j5+fHCCy/wwgsvVNmuSZMmtGvTmoO71+Dk5YfG1aNcm+zYc+TFHOPtN15DpVLhcDh44sknWfbrKnyadiaiYWtUTrrfJpNXSTmxj+JrMfTu1ZOhQ4eW6+/ipctofIKr3GEHcA0Kx+ZwEBsbKzneEneMtWvX8uuqNYR3HYlXSNnFIrWTC2Gt+qB2duH7H39mwIAB5Wos/xdZtGgRW7Ztp1avcbgHRZQ5p9a5Et5+IEonHVOmfsaAAQPK/L5/+OEHMguLqTfqOZROZXe0BUHAI7wu9BzG+g0LOXjwIG3btv1HxvRneOutt7iWkUPUfY+j1ruVHhcEAbegCFz8anJu7QwmPfY4R48cvqnw6nnz5mEXFNRo1LniBgIIogO13hOVVoeHh0elixNqZxc0eg/i4+NvfXC3gLOTEzZLbrXtbBYjAqDVav9WeyQkJCQkSpAcb4m7jqNHj/Lg8IfIKzTgVbMJtWqHITocZCVf5J33P+add99DFBT4RramaftWaPWe2Kwm0mJPsnrDDvbvP4BcrkDvV5ewJj3LTIIcDgc2mw3PkMbYrUYSY/YQ0qATKo2ujA2CIOBZoyFbt26/7eObMX0a/QcOJGbp93jUa4F33aYotc4YczJJO3OYwivR3D94EE8//TQAK1euZNmKXwnp9RBeEb+HipdMJsNxCwrn2qGtvP/hR/Tq1auc0yyTyaoseXad6/Vlb3eunyiKHDhwgFmzZ7N7z17MZjOBAQE8PPIhhg8fjqen5229n8S9zbTpM3D2DSnndN9IQFQb0s8f5PPPP+fll1/G19eXoKDKc1n/zYiiyPQZM9AH1S7ndN9IUKNOZMUcZs6cOXzyyScAGAwG5i9ajHu95uWc7htxj6hHiqsns2bPvmsd7/T0dFatWYtv0+5lnO4bkSmU1GzTl4urf2bHjh0V6lmIosjx48e5ePEigiCwctUq9AG1kStUFfRYgiDIQPz9/6WqUnii3f6351N37tyJ7bs+wGoqrlBY7TppV0+jc9be9O6/hISEhMRfQ0qQk7irSEpK4sHhD2GWudBy4IvUbtEf7+B6+NSsT7229+NVozEGk5XAZoOJaNEXJxcvBEFAqdISXK8tjfs+QVp2IZcux1KjXrtyOw/XJQ0EBLxDmyOKkBJ7vEJblGonjEYDt1sGwdfXl80bN/L4uNHYrp7m/MKvODX9Q2JXTcPHXsCUDz/gl59/LhV2++6HH5C7eCIIAobsikMCg1p0BbUzs2fPLneuSeNGGFPjcNhtVdqVExeDUi4rraV7M1y+fJmNGzeyefNmrl27Vu68xWJh0mOP0X/gYNZs24sQ0ABdZDtSzGreePs9WrRqzf79+2/6fhL/bvLz8zl8+AheEU0rbSOKDoqLDah8I1ixchXde/SmUZOm3DdkCFu2bLmt9oiiyP79+5n4yCOEhIbj6x9Ag0aN+eijj0hKSqr0upSUFKZMmUKjJk3xCwgkNCyC8RMmsHfv3tv+PklKSuLc+Ri8I6vOW5bJ5biFNmTd+g2lx65cuUJBQQHuEVX/5gVBQB9ah6PHKn5X3g1s374do9mKb52qn4PeNxiVmzebNm0qd27t2rV07NyZHr378PhTzzLpyaeJPnuerPizZF2LqbxPn2AshjxMBZlVfr5FOamYi3Np0qTJzQ/sTzBixAg0KgVxp3dU2sZsKCD90iGG3j8Ed3f3SttJSEhISNw+pB1vibuKmTNnkl9kosWAJ1Cqyoa/2W0W0uJP4xvZDq17IEajsZwSrkqrwz2wNobCI2hc/cr1L5PJQBBwiA4Uaiec3AMozk2r0BZDfiZeXt63rcTLjXh4ePDhhx/y+uuvc+zYsdI6vE2bNi3dDYmOjub9Dz5gz959yBQqzq2eDYBrYCjBLbviEfq7qrlMLsetViNWr13PlClTytxr9OjRfP/jT6SfP4Z/g4oFdBx2O+nRB+jerVtp3fCq2LVrF1988SX7DhzE/ttOuVIhp2f3brz44os0bVriOL344ossXbGKkI7D8I5oVOZZWo3FXNq+iOEjRrJ504Zbcvgl/p0UFRXhEEVUTroKzzscDnJycrDZ7Si0emQKFQ36PkFxbgaHzxxi94iRvP7aK7z44ot/2Rabzcbzzz/PvIWLUOo98Qhrjk7jRHFOOp998wPffv8Dv/z0IwMGDChz3aZNm5jwyKMYLHbcwhri1bghNouJ9TsPsnLVGkY8OIyvv/66yl3RW6H0mWkrfmY3otTqKEwuKjNGkZL3R3UIcjk2W9WLd3eSgoICFEpVqR5AZQiCgFyjo6CgoMzxadOm8cprb6D1Dye891jcAsMREbl27jiZ5w4RvXk2dTsOxb92+d1hrxr1UKg0ZF46TOAN7+UbEUWRhFM7CQwMoGfPnhW2uV14enry3rtv8/Krr4MoEtKoa+n3QxRF8jMSuHzoV/y89Lzyyit/qy0SEhISEr8jOd4Sdw1Wq5U5c+fjVbNJOacbICv5ElazEa+IFggyBQZDeccbQOviBYKA0WQqUxcWSiZdGrUak9mCqFBRmUttt1nJvnaaZ56YeDuGVinOzs506tSp3PFdu3YxctRozHItAW364xpaH5lcSXF6Atkxhzm3cgbh3e4joNHvYZ9qvSt5l/PL9RUREcHDD41gzsLFKDVOeEY0KOMA2ywmYrcuRWbI4+WXqndYFixYwLOTn0fpFkDNDsNwCwgHUSTn2gW2HdzPzv4DmTtnFsHBwSxYtJjg1gPwCmtQrh+l1pk6vUYTvfJbPvv8c2bOmHGzj03iX4qrqytyuQxjfjYElz+fm5uLzW5HqXbCbixCpdGh9whA7xGAb1gjEqJ38eHHU4iIiGDw4MF/yZa33nqLuQsXU7P9EHwim5b5zdjb9OXyruVMeORRVq5YTrt27QA4cuQIY8dPQOUTTpMuQ8uUFwxu2oXM2NMsXLoCJycnPvvss79kn8ViYefOncTExGA1m8lPjcPFr2aV15gKc/Dy8vrdpuBgVEoFBcnxOPtUrS5uSL1Gg/Dwv2Tz34m7uzs2qxmrsRiltvLwalEUsRvycXNzKz124sQJXn39DdzrtSG0TR/MFgsGgwEAjxp1UHsGkRm9hwt7V+DiUwNnd98yfcrkcrQ6N/KTzhF/fDNhzXshV/y+sGK3Wbl6fAuFKTFM/eG7W150sVqtbN68mTNnzuBwOIiIiGDAgAFl/v+MRiNr164lNja2tPTexx++z3vvf8jRq8fQeYchV6owF2ZhLsigflQ95s6dfdtV5SUkJCQkKkdyvCXuGrKyssjLyyOyXliF5y3GQgSZDLWzOw67FZvNXGE7vYc/DpuFwuxk3Cqo9+vk7ITJZMJcnEdxXir+oWVLbIkOBxcPr0Ipc/ytyrOVkZ6ezphx48E9kIY9HyIzJxe5SoNMocI1JAqXmvVIO7KJKztWofMJxMW/ZLJtKsitNGRw6tSpFBsMrFi5hJTjO3EPb4hCraE4K5W8K9Ho1ErmzZlVbZmd06dP89zzL+AS2pSI9oNKcht/w69OC3xqNeXC9gWMGz+Rli2aYXbIEdyCyMjMBEqUjZ2cnNBoShwSuVKFb702rFu/gbS0NPz8ykcpSPx30Ol09O7Zky0HjhEQVbbmssViwWq1olA7IYqQG3cK/7DGpecFQSCkURcKMhL4+ptvGTRo0J+OVklKSmLajJkENOuJb+3yvwm5UkVktwc5u/pnPvlkCmvXrgFgyqefIjp5ENl9RLldZEEQ8KnVGKuxmFlz5vLUU0/dVHTJH7HZbHz77bf89Ms00jIyQJBhsTu4vGcluYmXCWvbD51XeWfKbrWQFxfNo889VXrMy8uLfn36sG7PQXwbtqp057s4Mw1Dchxj3n39lu29XWRnZ5OTk4NOp8PPz6/cZ9ujRw+ctRrSzh8luFnnSvspSI3HUpBTJlJhxowZyJzc8G3UkcysLBwOx2/vNrEkdFwQ8G7YkcLEiySfP0hku8Fl+ky9dAy7IZdxY0axctUajsadwqNmA9TOrpiL88lJOIMCG1OnfMwDDzxwS+NeuHAhH3z0Mckpqah0bgiCDHNhDp6vv8FTTz7BM888w/fff8/X33xHdm4uGr0HDocdS3E+gQH+vPP2m9hsNvbu3YfRaCQgIIoHH3yQDh06SOX4JCQkJP5hpLfuvxSr1cq+fftYu3Ytu3fvxmQy3WmTquX6RKqyHDm5QoXocGC3VuxwX8cjoBaCTE5G7JEKz6uUKvR6PVlXj2K3GNHqPRFFBw6HnczEGE5tnUFhyjm+/+6bPzUx/iOiKJKVlUVycjJGo7Ha9gsWLCC/2Ehkj+HIVWrUKhUOm7X0vCAI+LXshVLvQcqJfQA47DbyLp9iyOBBFY9ZpWLaL7+wcvkyerdrjvHiIbKObsbVmMEbL07m6OFDFQoN/ZFp06aBWk9Eu7JO93Vkcjm1Oj9Adm4ua9atR+sbilzjjELthFylwWqzk5eXR35+Xuk1HiH1MFusnD17ttr7S/z7mThxAtb8DJLP7C1z3Gg0IggyBEFG6smt2EzFBNYtnzoRWLcNp09H/6Xv04IFC7Ahx79eq0rbyGRy/Bu0Z//BQ1y4cIErV66wa/ce/Bu0rzJ0269uC0S5ivnz59+yXXa7nccef5x3P/wYi0cI9R94lpaTPqDFo+/h324gRQXZnFr5AwVpCWWuE0UHV/atQS2HUaNGlTn31JNPIhTlcXXLChx2e7l7mgvzubpuAZER4fTrV74CxF+hqKiIOXPm0KdvPxo0akyLlq159dVXiYmJ+c1ukU2bNnH/0KHUrlOPVm3aUr9hI7p07caCBQuwWn9/L3p4eDDs/iFkRO/FkJtZ4f1sFhMJ+9dTp3at0moVFouFX1etRhdSn8KiYhDkKDXOKLU6lFo9So0zMoUKEHCpWZfkmEPYbRZE0UFBRiIn1/3E+e3zkMsFtu/cRd26dejWsTXO1jSM146it2Xw3JOPcOTwQSZMmHBLz+f777/nyWeepUjtTf37nqHJ8Jdp/OCLNHrgRQT/erz7wce0adOGt955H8G3Do2GvUjjB16k6fBXqD/4aYrVPrzy2hs4HA4WLVrIqlUr+eGHH+jUqZPkdEtISEjcAaQd738ZZrOZb775hhkzZ5OWnoEoiggCeHp4MHbMKJ577jn0ev2dNrNCvLy88PX1JTvlEt7B5ctZefhHIMhk5FyLxj24PkpFxV9fY1EOCjkUpl/g6qlthDbqWs5JLMyIJSfuML4+XsQeWsrF/SIgopDLad68Ka+/9jmdO3f+S+MxmUwsXryYGTNncT4mBhFQq1Tcf99gJk6cSOPGjSu8bsGixbiGNijNVXRycsKcl4fDZvltAliioutRuzkZx7dhNRtJOrwDuc1S5Q69IAh07tz5T4/LZDKxYuUqvOp2rLI0WfqFo9hsdpQ6D2RKTRk1YLlChd1uxWg0IpMVotfrkclKnBSHo3rldYl/P506deKFyc8y9YuvKMpOI6hhe3SeAdhsNow5qWTHHqMw6QK12wxG514+QsLFuwY2u4PNmzdz4MABHA4H4eHhdOnS5aZDfE9HR6P1qYlcpa6ynUdIXa7ssHP27FmUSiVWmwOPmhXn+F5HrlTh5BvKqVOnb8oWm83GoUOHyMrKYteuXSxb8SvhvR7GMyyqtI3WWUdA/Rbog2uRtHsFZ9bPpM2Y/yHIFeQlXyH59G4smfH8+P135dTfmzVrxg/ffcsTTz/NubmJeDZoiT6gBg6rlezLZym4dJqa/r4sW7IElapyZe9b5dixY4x8eBRpGVnoAyNx8gjHYDExfd4Sps2YyWOPPoLD4eCnX6aj8QoioO0gtK6eWIxFxF48zpPPTGbtunXMmT27NKXo3Xff5ejx48Ss/hn/pt3wqdMEhUqDw2En5+p5ko9vx0k0M/2XhaWOZ35+PgaDAbVah1ypQa4sO0ZBJkep1mITBJR6D6ymYg7OexsQMBsNiIKA3jcEz7AGyORyrqQncCp6J+GhIWzZvImIiMqV5qsiJiaGt955F6+oDoS26l3mnMbFg/C2/VHrPTm5fRHBTToT0a6s1oDO0586XR8k7ogbb7/7Hl26dCEqKgoJCQkJiTuH5Hj/izAajQwfPoI9+w/hWbMJjXrdj0bnjtlQQGrscb789id27NzFqpW/4lpBCPadRqFQMG7saD7+9EvMDbui1pZdINA4u+ITXI/0i/tx9q6Bi7d/uT5EUeTq8S34+/nz5BOP8eFHn5B1LRqf0KZo9Z5YjIVkxp/CmJ/KmFEj+Oqrrzhx4kRpXlxUVBQNGzb8y2PJz8/nweEjOHTkGPoadQjuNAy5SkNxdipL1m5hybLlfPn5Zzz88MPlrk1JScGjye8LD2q1BietFoPRiOhwlEwMBRkadz8cdhsXNyzEkhrHp5989KcneTdDTk4OZrMFnUf5534dh91OwsmduEc2x2E2Ysi89tviz+9hoXK5ElHpwGAwoHN2Jj81DrlMRmho6N9mu8S9xeuvv05AQACfffEl51Z/h1ylxWAwYLWY0Lv70qDLSHzDGlV4bWbCWYyGYt59/0MUKg2CTIbDaiYoMIDnJz/HuHHjqg1B/z3UuGqut7GXlogSEWQ3IVQmk2F3lN9dvhGr1cqPP/7Iz9Omk5ySisMhYjQZAYGc+Avo/WqWitAJgF7vglwux9G6D7Erf+TwrLdKcsxtFurWrc07X86rVNRr6NChhIeH8/PPP7NyzVoyLBZAwMfbi8effZqJEyeWyQ3/q1y8eJGhwx7Eonaj8YMvodG5lZ5z2PuTev4QX337PXabhYiuwwmoXzaywTu8AblJsWzaPJeXX36Fr7/+CijJ816/di0vv/IKq9esJfnwRlTOLthMBrBZaNWyBV98/lmZkotOTk6YzWYcFnOVJcMUSjWi1YxareaXH7/nyy+/4mLcNWp1H4l7cK0y3yljXhYXt8znviH3s33bVnx8fG75GU2dOhWbTI1v/fZYrdYKF42cg+rg5FMTY17FO/wANZt3Jyf2BLNnz2bq1Km3bIeEhISExO1Dcrz/Rbz99tvs2X+YqC7jcPP5XWRHqdJSq3lf/MKaEL1jJpMnP8/MmXenkNXYsWOZM2ce0Ttn06DTaDTOZRcIAiNbknr1BPEHluDc6QE0mrDSCY+xIJurJzZTlBbDrBnTGThwIJ06dWLmzJn8umo1VosFmSCja7cuTBj/Od27d0cQBFq1akWrVpWHlN4qoigyYeJEjpw8Q51Bk9D7/q4S5VGzNkGNO3Jl7xqee/4FAgMD6dKlS5nr1Wo1NssN4fQCuLi4IpfLKS42YLVZEAQZ1uI87FYz7vYi3v/pB4YOHXrbxlARarUaQSgJ16yM7ITzWAyFBEe2wFqcx7W9yyhKu4rev6wok1yhwmo1YzAYSDt3kHZtWlOrVq2/1X6JewdBEBg3bhwPP/wwO3bsIDY2ls2bN7Nzz0FaDn4WhVJT4XUpl45ydtdi9AG1iGjRC4/ACARBoDA7haSz+3j+xVdISkrirbfeqvL+tSIi2LrnIA67vcqw8fyUq8jlMiIiIlAqlSjkcvJSruAaWAuz2YzocCCTyVBrNKXVChwOO8bMRGr3alNpv1arlXHjxrFu0xbcIppQ577BKJzdyEhLojjpMukXj5F77RKNhj6BWlfyjhQAZydnnMJrkxNShxp6ORMmTKBx48a0bt262sWGJk2a8NNPPzFlyhRSUlJQKpXUrFnztqmv38iUKZ9SbJfTsNdYFH+IKpDJ5QQ2aEt+Xi6pp7bhUSOywj7cgyIIbNGLhYsX8+qrr+DvX7Ig6OHhwfRp03j/vVTWrl1LVlYWOp2Obt26VbjjKwhCSdj4tRi8oyr/TEQgP/48MkHA29ubS1euUqvnmArt07p5UbffeM4s/4rp06fz+us3nxu/c+dOPpnyKdt37MQrqj0FhUVAEUqlEp2zM+rf9DFEUcRsNuNRqxmpRzdgNRlQasqLjcpkcjzCm/DrytWS4y0hISFxhxHE211U9B+moKAAV1dX8vPzcXFxudPm3FYsFgsOh6NUiKoqcnNziarfEI/wdoQ06Fxpu+RLR0g8vZ4Tx45So0aN22jt7SMmJoZhDzxIUkoa7gH1cPcNQxQdZKdcIj/tEhFhocgVci7HXkHl7IlS54HDYqQ4JxFPD3e++uJzBg4cWKZPm82GwWBAq9X+LRPJGzl+/Djde/UmtNtDZcJBb0QUHZxd9QstIoNZu2Z1mXNjxo5l096jNHjgmQrrkJtNJmw2O3G7luNmz+PM6dN/+5iu37tjp87E5zmo13NUhW0Sjm/jWvQ+ag14EqVCTsLOhRgKcgjtNhqNW9ldH4uxkJzz+zDEnWTp4oV07979bx+DxL1LQkICzVq0xC+qGzUblK8EYCjI4uDyz3ANjiK0dT/c3TzKtUk6t5/kExtZunhRld+3Cxcu0LZ9R4LbD8G3dsU1xUVR5PzG2YR7qNi9axcAbdu151J6EQHthvyWjy78plkhotFocHFxIevKGa7tWcbundtp0KC82j/AlClT+HjqF4T3ehiPmrUBMJnN5ObmonTSYS0uIG7DTJxc3Gn8wJPlrr+8YwWhWhs7d2yvdIx3irS0NBo2boJPk14E1m9bYRuz2Ux2ZjqxG38hqFE7Qtv0qbCdzWLi5PxPePPVF3n++ef/lD3p6elE1IrEZHMQ2nMM+sCKo4by4s9ybccStGoF/fv1ZcfhaBoMearKBY3YvWtQ5FzhbPTpmwrTX7p0KU889TQq9yCyEi8R2GoAnpEtcDjs2K0WRIcNFxcXnJyccNjtZGRmYspNI2HnAlo99CpaV88K+005f4i0o+vJSE/7W8pjSkhISPyXuRVfVFLXuMsoKipi5syZtGvfgYCgYIKCa9KkaTO++eYbsrOzK71uzZo1GEwWAmo1r7J/v7DGOFCwYsWK2236baNu3brs37eXKR+9j4+zmaToDSSf3UyEvxM/fPc1+/bt4fChg6xdvZKH7u9D56ZhDOjWkp9/+I5zZ6LLOd1QEsbu4uLyjzio8+bNQ+Hshkdo+Tz16wiCDL/6bdh/8CCXL18uc278uHFY8jLIvlJeHEoQBDRaLZgLMKVe4YXJk/+RMV2/94Tx4yhMvkhhRmIljWSIDjuiw46zszNRfcagdtJxecPPJO5fSUHyZYozEsi6cJirm2aQE3OQzz79RHK6JaqlZs2aPPHYJJJObyXx/IFyQmAJ0btAkOHfqCt6fcV/fEFR7VC7BTBtetURP3Xq1GFg/75cO7iW/NT4cudFUSThyBaMqVd48YUXEASBixcvEhcXR37iRbLOH0ShvS7QpUOu0mAym0m6dJb4favo3atHpU63yWRi2oyZeNZrVep0w+/ik4giKp0b/q37kZ8aT2F6+d+izWRAp6u+rved4NSpU5gtVrz+UE3iRuw2GzKlGl1ABPl/EIq7EYVKg9bTn7i4uD9tj06nQ6VWo3P35drOxWRfPFpGzNJuNZN1/iBJe3/F2cMHF70Lx46fwLVG3WqdWK+wKLKysklMrOR9eQNXrlzhmWcno6/RkAb9JqLU6rAaC0EQkMkVKDVaZAoVBQUFWK3WUp0NS3E+IFRZv9xSXIBe71Jqb2FhIXPmzOG1117jtddeY9asWeXqmktISEhI3H6kUPO7iGvXrjF02ANcir2Ka1BdgpoPRJAJ5KXG8fZ7H/Hjz7+wbMli6tcvP2FJS0tDrdWj0lQ92ZIrVGh0HqSmpv5dw7gtuLq6MmnSJCZNmoTdbkcQhHIqrO3bty9Vpr2buHDpMlqfmtXmiLoFRRBndxAbG1smzLpjx47cN3ggv65Zhs1sxKdOs9JwV1F0kJtwkbhdK2jWuCEjR46s8h6iKOJwOErDXP8qI0aMYMnSZRzeMpvQ9kPwrFm3dJwOux2LoQBrcQGO4hzUfn6Amsb3PUHq2YOknDtEXtyp33oSEG1mXn35JcaPH39bbJP49/P2229jtVr5ZdoMUs7vwT2oHgqVhuLcNFIuH8e7dmu8vHxQyCv/a/Op1YLt29eSl5dXppbzH/nuu+/Iffhhdq+fhi4wEu9ajVGonTDkZpB18Si2wizef/dtBg4ciCiKTHrsMRxad8Lbtyf+yBaKUmLxjGyOxs0Hu8VI7tVo8uLP4u3hxnffflvpfbdt20ZmVjYNupfNa1YqlchkMuw2KwqVHH1QLRROelKiD1Cr6/3Ifhuz1WSgKOkyPce/cWsP9x/CarUiipSpc10OARBBJlfisBRV2Z/osP+l95uzszNdOndm38kL6H1qkHpoPekntuPkEwwiGDKu4bBZ8K/TkuK0qwwc0I9Nm7egvol7CjI5ImIZ9fXKmDVrFlbkNGw/GEGQ4R0SRebV0/g27PybboCAQqXGai+J3nJ1dUWtUpEbewJX/1CM+VmkX7qG6LCjcfHAs2Y9ZHI5osNBduxJHh46AIfDwZdffsnX33xHQWERWteSeuTGggzeevtdnn7qCV588UVJ8VxCQkLib0JyvO8SDAYDwx4cTnxqDo0GPYuT6+9CNn61mmEx9OLctrncP+wB9uzaia+vb5nr1Wo1NqsJUaxeFMhuM5eqwN4L3C6n8Z9CJghwExkcolii4v3HSY4gCPz4ww9oNM+zeOkyUo5twzkgHEEmw5CegK0olw7t2jF71kycnMrn9ImiyL59+5g5axZbtm7DbDbj5ubGg8OGMmbMGCIjK86ZvBnUajWLFy1kwsSJ7Ni5kGtObjh51wRRpDj9KnZTEW5uLuTFHscrOAKT0YjFakUbXJ9aNRsis5tRymWknDuIPe0CL7300p+2ReK/h1wu5+OPP2bUqFHMnj2bnbt2Y8w3Uq9GEIWpznj51ag2AkTr4oFDFMnJyanS8dbpdCxbuvS3ygQzObtnGaIISoWCfv368MjEibRpU5ITfOTIEaLPnCOi11jcg2rhFhhOcvQ+0o5v/k2tX0Sl90QfVJv0+LO0a9eeRx6ZyKOPPopOpyMmJoYjR45gsVg4e/YsokyG1q2smJlMENBqtRQVFVGUeImcC0cx52WRcjqbjIun8AqvT0CjdmReOoVWpWDEiBF/9XEDv5d3vF0hyjVq1EAhFyjISMQjuOJ3kUKhRBQdGLIScfOvPCXKXFyAISuZRo0qFtq7WSZOGM/2kaPwi2pHSPPupMYcoTg3HQDPBu3xr9uSrLizFMSdZNy4ccReucr51Mp34q9TkJaARqUmIKB8XfU/smjJUjzCm5QuoARGtSX14lEyzu7Dt+H11AoBmUKJyWTC1cUFQ9oVilKuYNW5cWLFtwhyBYJMjsNqRuWkJ6hhB0TRgWguZOzYsbzxxhv8+PN0fCPbEtm1XamGitlQQGLMAT76ZCoZGRlMnTpVCkmXkJCQ+BuQHO+7hF9//ZWYC5eo0bwviWf24rBZUTnp8Y1ogs7DD5WTnqieYzn56+fMmjWLV199tcz17dq1Q7R9SE5KLJ6BlTtWBVlJmIty7sqd4n8LTRo34vDsBaWhsObCXESHHZWzS5lwwJyECygV8jIKu9dRq9X88P33PPP008ybN48TJ09hs9uo07IXo0aNokWLFly4cIEpU6awas1aCgoKcHFxYdCA/qSnp7Nm/QaULt541G2Hh1aHMS+Tn2bNZ9r0mXz5xWfV7pRXhaurK8uWLuXEiRPMmzePC5cuIxMEGvcewahRozh9+jTjJkzEJqjwadARmVINQonys8MO6bGnyL14hPffeeuuLW0ncXdTr149Pv300zLHakXWwWKqencUwGosQhBKdjqrQ6VS8cADD9CsWTMyMjJwc3MjIiKi3Pd23bp1KJxccQssERF09Q/F1T+UvJwsCnKykCnVqHXuiHYrMWlxZBllvP/xpyxYuAgvLy+OHjuO3VEiLGYxGzGbjMQf2kzNlj3KlO5z0qq5vHkBhcmxOPuGEthmIAqNDpuhgJzLx0k7fxSVQs73337zl1TILRYLq1evZuas2Zw6ffq3kmxhjB09muHDh/8lPZWGDRvSoH4UV84dqNTxVqlUmHOSMeakUafr/ZX2lXxqL646Z+6/v/I2N0OvXr0Y/fBDzJ63EN/6HQls2B61U8kYTYW5JEXvJfviIV6Y/CwtWrRg1MMjeerZ5zHmZ1eaV+2w28m6cIQHhwyu9nlZrVby8/MJqv27DobeO5DQZj2IO7YVa3E+3lFtUbt4IchkWAyFXD18gtSTO5Ar5Cid3Qms2x63wDoICgWm/EwyLx0mdv9aZNh5/713KSws5OdfphPSrD9BtctGU6idXIho1hsnFy9mzJpD37596dq16196phISEhIS5ZHE1e4SGjdpyvmLsQiCgMrVC7lKg6UwF7upGI+gWtTt/CBqJxcuHViNoiCec2eiUdxQx1oURbp07cqla7k07vFIhUq8oujgzM55uKtNnDh+rNKd5IKCAtavX09ycjIqlYpWrVrRsmXL/8QKeFpaGqdPn8ZqtVKzZk3q169/y+OOiYmhTfsOaPzCKcpMwWooQARkMgVeEQ0IatIRZ09/zqz4ju6tGrFw4cJbtvPbb7/lnffeB40zbrUaoda7YS7MI/X4bixmC+FdhhLcqG0Z2x12O1f3raHg8nEWzJtL7969q7hDCRaLhR07dpCamopGo6FNmzaEhIRU2v56yO38hYuw2kVUzq64hTVGrXPHaiwk98opTLlpeLq7cfr0Kfz8ytdhroi4uDhOnjyJzWYjJCSEFi1a/Ce+jxI3z7PPPsvCX9fTbMgLVdaZP7tlNrUD9GzdsrnK71B6ejo//fQTc+ctICc3FwClQk7fPn148sknaNGiRWnbp59+mhVbD1B/4KTSY0ajkfz8/JLa0DeUqYpZ/ik16rdHpdVxbsdCdN7BhLXsiVfNKGRyOYXZqcQe20Hu1VP41GlCnV4jSqOYLm5bSvqFkwR3HIYuIAK7qRhBJkcQBBx2K9nnDlBw+Qjz585m8ODBf+o5ZmZm8uDwERw/eQrnwHDcatZGkMkpSImjID6GYH9fli1dUuGC4c3y66+/MuGRSfg16UGNJp3LnTfmZ3Fm7c8U52bg37A9ER0Glamv7XDYST69j9Rjm3nv7bd45pln/pQdp0+fZtasWWzeuo3i4mIcdjuFhYWIggxnD39EUcSYl4GHmysvPP8cTz75JIIgUFxcTNt27UktsFCv33hUTmUXYhx2O5d2LMWSdoltWzZXmB52I6Io4h8YhGdUF4IbdihzPOXcQeKObcViKkbt4lkisJmfgZeHO0aDAdfg+gQ374/BZPqtdKPst2sd5CfFkH5qI7NmTGPjxk1s3HmIZv3Ki3beeL8TG76je/umzJs39089UwkJCYn/Grfii0qO913Ali1b6Nt/AC416uHfpAdaz5KwNNFuJz8xhtTjm1AqVTQb+CQFGde4umcR58+dKRdufvjwYQbfdz8KlyAiWw5Eq/9d1ddkyCf22AaKMy6yYN7cCuu5Wq1WPvroI2bMnEV+YTFqrR67zYLDZqZB/Sg++vCDf+1O+YULF/j006ms27ABs7kkH08uF2jUsCHPPfsMgwYNuum+EhISaN6yFfnFRtxrNcM1JAqZXIEhM4mcS8ewFuWh8/JDZS5k3drVNGvW7JZsnTdvHs9Mfh7PJh0JbtW9dJHFUlzAkV8+wqt+Ozxqt8DVxRWtU1nBHVEUOb9uJhFeWnbv3FnpBMxms/H111/z8y/TycjMRKRENE2plNO9WzfeefutCifex44do2fvPtToOBQnDz9Szx4k4/IpbGYTcqUKz9B6eEc0In7PCp574tFqyzqdPHmSjz7+hB07d2K1OxBFEYVcRp3akUx+9lkeeOCBW3p2Ev9eTp48SbcevQho0ovg+hW/p3KSLnNx+xx++uFbhg8fXmlfsbGxDL5vCCmZuXiFNcXrt99wQcY10i8dwWHI4duvvyrt44033mDa/GU0euCF0t9UVlYWDhEUqt/TQexWM+eXTSGieW8STu9A5eZHUMsBePv6orwh5zk3N5fMuLMkHV1Lrc73EdCwLaaCHI7M+QT/5n3wrNMKm9mIaLeiUasRZDJUSiVqjYYLm+cRpBM5uH//LS9OWa1Wevfpy6kLsdTqOxqdT2CZ8+bCfC6un4OnGnbt2F7uP+hWmDJlClOmfobGMxjfeq1x9vDDbjGTHnuSvKunqRVWk/Fjx/D2O+9hEQXcwhqicfHEaiwi98ppRHMRzz/3LK+//votj9PhcPDee+/xzXc/INPqcQ9riFLjjDEvk7y4M2Cz0L1bFyIjI6lXrx6DBw8uFyFx4cIF7h86jNSsPNwjmuAVGlWyQJEWT+aFI8itxfzy048Vin1WxMiRD7P90GkaDXqy3HgcNisZV89QlJVM+uUThAZ4M3r0KD745DOaD3sFpcYJ8bc673abHYQSQVGNRsPZLbOpG+TKmTNn8a7dmZr1O1ZpR+L5/aSe20py0rV/TLhTQkJC4l5GcrzvIUwmE/UbNiLH4USNjg+iUJUvHWYuzOHKxmn4htbHO6Q+V3Yv4NzZ6Ap3C/fs2cOEiY+QkZmN3jsUlZMrVlMRhRlXcHXR8/1339C/f/9y11mtVsaOHcv6Tdvwr9OewMhWaJxdS8S8Uq8Qf2Yn9qJU5s2ZXaHTfi9z9OhRhg57EINdgV/dNniH1EemUFKQkUDK+YMUp1/hf6+/ygsvvFBtX1arlQ6dOhGbnEVgx2E4FGoEmbwkb08QcNgspBxcR17sKb7+8nOefLJ8KaCqsFgsNGzcBIOLP7V6lXU6Ew/v4NrBbdR+8EVEh4hMtOPt7Q1/mMTlXrvElc1z2LJxQ5ldu+vYbDYeeeRRVq5eh3dECwLrtMbZzQe7zUpG3GmSz+1FK7ey8tflNGnSpMy1Tz75JEvXbaXx8OfLaA38UXvg6v71iGkxnDsTXWm5vN27dzNi5MPYNK74NWyHZ1gUMoWCgtQEUqMPUJx4gVdfepFXXnnllp6hxL+Xd999ly+//hafuu0Irt+hdCfSZjGRduk4iSe30LdnV+bOnVsmYuhGzGYzbdq2Izm7mKhe40tDjq8jOhxc2r+KwsTTrF+7hpYtW7Jv3z4GDLqPWn0m4BYQhsViIScnB4XaCZns9/tkXz5G6pH1hDbtwdUTW6g78FmQKXBy0uBygxK7zWYjJyeHhENrsBZl0nLsayQc3kLSyX3UGTIZERGHzYqbq2tJlYMbyEu+wuWNM9mwbk1pDvrNsmrVKsaMn0id+x9H7xtcYRuLoYgzC7/gpWeeuKX61BWxadMmfvzxJ/YdOIDdISIAvr4+jBn1MI8//jhubm5cu3aNefPmsWz5r2RlZaHX6+nbpxdjx46tVBm+Oj799FM+/ORTAlv2JbBB2zIREjaLiSt7VmJMvsDnUz8lLS2NnJwcnJ2d6dmzZ5lom7S0NKZNm8acufPJyc1BBDQqNfcNHshjjz1Gw4YNb9qmbdu2MezBEYR2fACfsIqvy02O5cKWWcz45Se++fY7ruUL1O1S+QISQGbcWa7uXQyIhLUahl9Y4yrbp8ef4erhpVy5fKlKDYTKuHjxInv37sVoNOLr60vv3r3vybmZhISExM0iOd73EEuWLOGRx5+kRvfxyHVuKFXlxbIA0qN3k3VuL/61mqEovMa5s9GVrkYbjUZWr17N6tVryMrOxs3Vlb59+zB06NBKc2p/+uknXnvjbep0fLjCHHGHw8653YugOJkz0afuyWddEYWFhTRr3oIinInqMQaFsrzoXPzJHaSf3cmSRQvo0aNHlf1dn7hG3f80zp7+WCxmDAYDZosFRBGZXI5GreLK+ukM7N6BGdOn35K9q1evZvT4CdQb8SxOnmV3my6sm48hv4DQ3mMRHXZsxmLc3dxQ/8GxFUUHR6e9xVefTWHcuHHl7vHjjz/y2v/eJrLDCLxr1Ct33mYxcWbbbDy0dk4cP1amPm3jps0o0gUR1rZfleMoSEvg4rpf2LtrZ4VhmDk5OTRt3gKrzoc6fUeVCg7dSOLxXWQc23ZTn4vEfwNRFPnyyy/54suvKTKYcPIMQBBkGHJTUQgORo4YwZQpn1QpLrls2TImPvo4jQY/i/Mfas+X3sfh4OSa7+jdsQVz5sxGFEXatmtPXGYRUf0fwWKzk5+fj0qrp0SiG6yGQmI3TcPNOxCbxYRdpiCs00NYzQZUCjnu7u5l7mG1WUm6cIrYnfNxD6iJqbgQpd6L4A5DEQQBFxcXtNryJaREUeTIjDf5+vNPGTt27C09vwEDB3HsSjJR9z1aZbsru9egzLzCuTOV/w/dComJiaSlpaHVaomMjLypmtd/luzsbOo3aIQ+shUhrXpV2MZutXLi1x8oTruCzsMHlbMLNlMxdmMRjRo04Ntvvi7j9JvNZhISErDb7QQEBODq6nrLdl1P01m6YhVBTXvhX6dFaXi9w2Yl7fJJEo9uoGe3ziyYP4+GjZvg8KhNaLOq331FOWlEr/0WlVKBb+3OhDTsUmX7hLN7yLy4i8Rr8bf02Z4/f57XX3+D3Xv3YRNBrlThsJhxddExZtTD/O9//6t0kVVCQkLiXuZWfFFJXO0Os3nzZpx9auDuG0B+QQGiaEcQyudee0Q0If30DjJij/H044+ycOFCsrOz0ev1dO/endDQ0NK2Wq2W4cOHVxlKeSMOh4Np02fgFhRVqTCbTCYnstVAjq6ayrJlyxg9ejSbN2/m9OnTiKJIWFgYAwcOvGtrx1bG8uXLSc/MptnQ8RU63QA1G3chP/kSP/38c7UO3ty583D2C8HZyx8AlVqNqoJJvk9Ua9auW09WVtYtiSBFR0ejdvEs53QDZfL7SvI+ZVit1nKO93VHoCLsdjs//zINjxoNKnS6oaR2bmTb+zi57hs2bNhQJpfUYrEgU1Q/aZYplCCWtK+IxYsXk1dYROPBT5U63Q6blczL0aSeOURxdlrJMauVN996i06dOv2tk3WJewNBEHj++eeZMGECy5YtIzo6GrvdTnh4OMOHD78pdem58+aj8wur1OkGEGQyfGu3ZMOmjWRmZuLt7c1PP/7AgEGDObf2F3wadkJ0LhHdEh128q/FkHZqK3IBarcdzMkN03DyCy9j9x9RKpT414wgWaOheZ1Qzp07h+G6w63RVJHHLv72Lrh1DYTT0dG41m1bbTuPkDrEXThCamoqNWpUrjp+I8XFxfz666/MnjOXmAsXEASBhg0aMH7cWAYOHEhwcDD5+fnMmzeP8+fPA1C7dm2GDRtWblHir7BkyRKMFit1GlWcjuCw28nJy8MtsgVFGdeI6D0Kl4CaiKKDvGuxnD+0mf4DB7Fm1cpSNXW1Wv2XqkVAyXfg++++w9XFhVlz5pJyegda72AEZBizE8Fm4sH77+err75EoVCgc9aRbSqutl+rsQi5TKB7165s33eMmg06VVr5RBRFMq4eZ+CAfrfkdJ88eZJ+AwZSLKpxb9QTfWAEgkyOzVRE0bXzfPPjL5w9e44lSxbfUxVVJCQkJG43kuN9hykoKESu0aPRaikuLsZmNqJQO5X7Y5RrnLDbrDiwMX3mLKw2EaXaCavZiFz2Bt26dGHKlE/KOOA3S3R0NFfj4qnXpep6ymonF1z8avH999/zxZdfk5ycglrrhkwmw1icy+uv/4/HH5/Eiy++eM+UAFu0eDGugXVQO1e+QyEIAr51WrFr96+kpKRUOXm/FBuLs19EpedtVitmsxmFiw9FxQZ27drF0KFDb9peh8NRLnT8Ok4ePuTG7cNhtSBTVu6EFqQlICCWqR1+nWPHjpFwLZGoHlULrzm7+eLsWYPly1eUcbxDQ0I4lZBY7TgKM5KQy+UEBgZWeH7R4iW4hNRDqS3JqzQV5nJ21QyKc9LRBYTj1aAjIFKQdJljJ07RsXNnVq5Ygb+/f7X3lvj34+rqysSJE//UtVfj4tB7l/9tlLuHTw0SbXYSExPx9vamUaNGrFuzmqefeZZTuxZidshQOblhMxVhNxtw9w+nXucH0OjcUKjU2MwGRFFEtNtROpXfuQawmopRKpW8//777N27l/c/mYpKLqtSPC43MRa5DKKiom557A6HWGXf1xFkMhB/ex/dBHFxcQx74EEuX4lDHxiJe1QXEEWi4y8xcdLjNPruezp17MCs2XNLIhXcS9KoDLnzeefd93n8sUd5/fXXb8v/yunTp3HyroFSU7GqfUFhIXaHA/eQ+qQcXE1xVgouATURBBnuNSNxCQjh/KppPPbEExzYt++2ijwqlUqmTp3KM888w4IFC0pKy4kider0ZuTIkYSFhZW27de3N9/8OB1Hq34lC5mVkH75BKEhITz33LNs2TqA+DO7Cf3DrrfVasVqs5Ecsx9TQQbjbiFSwmq1MnTYAxShpUbn4SiddAi/fU4ylRq32q1Rewaxfc8KvvjiC1577bVbeygSEhIS/yIkx/sO4+Xlie30RQRBwN3Dg9ycHKymImRy5e87fXYbxZmJiHYrCmdP/KK641+rOUqVFrvdSkZcNLsO7KR3n76sX7eWiIjKHb+KyM3NRRRFtLrqdxVMhgLOXrlCUFhLmnUejN6tZIJkNORx7fIhPv7kM5KSkvjmm2/uCdXppOQUnDxqV9tO5+GHwyGSmppapeOtUCgw/VZG7EbsNhv5+QVYrBYEBIxGAxazmQkTH2XmrNl89+03ZSZVlREWFoa5IAdzUT5qXdnFAt8GLUk8vJ3c2JN41m6BKDqQVxCinXJ6H7XCw2jbtvzOVmZmJg6HiJOrd7W2aPSepKWnlzk26uGR7HviKYz5WWhdK97JF0UHGecP0btnj0rFmVLT0tCGlOSP28wmzqycjs1qIWLAE2g9fr/Gs14bitLiuHR4HcMeeJAtmzdVWNtcQuJmUSgUWO22ats5fmtz485gw4YN2bVzB8eOHWPcuHHEJaYRFNUev9/KQl7HM7gOCdF7sBgLS+tzV0TapRP4+JQ49cHBwXzy6VRSzx8iuEnnCtuLokjK6T00rB91y6KNAJGRtbiYfJXAJh2qbJefdAW9Xn9TVQny8vIYcv9QkrOLaHj/ZJxueC8ENexAYVYyR1d8zaEjxwht0oPaUW1L8+otxiKSYw7y+VffkpmZyddff/2X/1dsNhtUsrhgt9sxmUzIVRqQy0EQEMWyiwtypYoabXpzYd1M9u/f/7cIjgYHB5crGfpHRo8ezXff/0jC6Z2ENqtYd6Ug4xq5iWd56b23adWqFa+/9goffPQJxoJMgut1QOXsQWFREUU5qWTGHSc7/gRKhZyXXn6FV15+6aaE4ebNm0dCYhLh/SahdnEvszAsl8mRK1QIPjVwrlGfX6bP4Pnnn5d2vSUkJP6zVL+0LfG3MmDAAIzZKRRlpSCXy/H09MJFr0eGA5vFiM1iRBAdpB1dj0rrQpN+T1IjqgNKVclETS5X4h/RjMZ9nyDPCI8++hi3mrav1+sRBAGzsbDKdkV56eSmxBIQ1o4GrYaVOt0AWic3ajfqTe2mQ5i/YDFr1qy59YdxB9BoNNgspmrbXW9TnVPXvFlTChIvlvkM7DYb2Tk5WG02FCotSq0OY3oiKicXwts+wLEzl+nTtx9xcXHV2jF48GBcdc6knjpYfiwu7vhENSPt2BbyE2KQCUKZnDpRFEk4spXixBheevEFZBVMPp2dnREEsJoM1dpiNRvQ68umFgwaNIiawUFc2roQi7F8TWVRdHB13zrsBZk8/vhjlfat1WqxmY0ApMccw5iXTUj3UWWc7t86ROPmQ2TfsZw5f4Fly5ZVa7eERFW0btmCvMQL1b5HM+PP4f5bXW+A/Px8Nm/ezKpVqzCbzcyePRs3vROG3NRyu6v+tZpjsxhJP7MLZ2fnCn+Lxbnp5F49ybgxo1GpVPj5+fHIhPGknthGxuVT5exz2O1c2bsac2Y8r7366p9yUMeNGU1R4iWMeVmVtrFbLeRcOM7IEQ/eVM7u3LlzibuWTN3e48s43dexmYzY7Q4CGvUioH6nMmJ2Kq2O0KY9CGs9hHkLFrF169ZbHtMfCQ0NxZSTisNmLXfObDYDJakwxuwURIcdrVt5m10Cw1Do3Nm4ceNftufPEhoayv/eeI30c3u4tH8VpuL80nN2m5XUi0eJ2Tqbti2bM358STTb888/z1dffIbWmsGxtV+xb8n7nN7wNZf2zMaQc426HYfRsO/jXMuxMXb8RH755Zdq7fjuu+/QegWh861ZcTSWIKBQa3ENbUR6egZ79+69bc9AQkJC4l5DcrzvML169SKkRjBx+1Zjt1oQZAJOzs54eXvj6+uLr48vcmMOxuw0gut3RldJ3qFS7URo0z6cOn2a48eP35INjRo1IsDfn9TYqq+7dnYvCpUz4VHdKp3U+ddohM69BtOnz7glG+4UXTp1JC/xPA5H+V3qG8m4chp/P79qownGjhmDNT+LnPiY0mMlufugVDsjkyuxmU3kXD5OQEQz/MOb0LjXJHINDp559rlq7dXr9Tzx2CSyTu0l8+Kpcucjut+Pk7sXCdvmk7J3BRkXj5MdH0PSqT1EL/mSrOjdvPPm/yotw9W8eXNcXfSkXTlRpR0WUzGFabH06N69zHGtVsuSxYtwUzo4vfgLLu9eSUHaNQy5GaTFHOPMrz+Qf/kon306hXbt2lXaf/euXci/egaH3U5K9AFcatRBXcGk3WGzIpfL0XsFoA+OZPrMmVXaLSFRHePGjcNanENm/NlK21gMhWRfOcHDI0dQUFDA888/T1T9hjwwYiRjxj9C/0H3MXb8BIYNHYLSnMXxFVM5u30+V45u4tKB1ZzZ+DMqhUDB1eMkn9iCqTC3tG+H3U7GldOc3zidBvVq88QTT5See/fdd3l4+AMk7F5G9IpvSTq1h/QLx4k7vIlTiz6l8OoJvvric3r3rjpVpDKGDBlCeEhNLm2Yi7kwv9x5u9XCxQ3z0KlkPPLII9X253A4mDlrNm4h9dHoK46oSj67H62rLx4hTTAYKl7w84togsbNnxkzZ93agCrgoYceQrCZyLh8qtw5URRLnEdBIDvmEBoXd9yCy6cdCIKAQqujoKDgL9vzV3jmmWeY8vGH2DIucnLFZ5xa+yPRG6dxfNkUEo+uYcjAvixduqR0gUQQBMaMGcPixQtRyAWc3Typ2bADDXqMpt2I1wmu3x7PoFrU7zEGr8g2vPbG/zhxovL/ArvdzsXLsahdPCtNgfrtxmjcvLHa7OTk5NzuxyAhISFxzyCFmt9hFAoFs2bOYPCQ+zmz+icCm3TBM6QeMrkcq7GYtAtHSTy8EblSRUj9yh0VAI/AWsg1LqxevZrmzZvftA1KpZLx48bwwcdTKajVAhevoHJtRFEk5fJRvAMa4+xctYCaf81mHDy46paFw+4E48aNY9aceaReOEJgvYpL7xjys8iNP82rLz5XreBMu3bt6NWzO5t3LEOQDUfvX1JaSKHSgiBgLc4nYdcSZA6RGr/VU1VqnKnRsDsHDiwjJiamwvrYN/LSSy+RnJzMvIWLyTx7BK+6zVDpXLEU5ZN1/hiOgmx6de+KiMCR/asREVEoFAwa0J+JEybQqlWrSvvW6/WMfGgEP8+ch3+t5mVqwV9HFEWuHNuMUi7QuHFj7HZ7ae5ldnY2GzZsAFHEXJxP4vGdJB7fgUIuR6PV0qtnT55+6odqwzPHjx/PnPkLSDm1F2NuFh5R5WvPOhx2HHZriVK/AO4hdYk5sAaLxSIJrUn8aVq1asXA/v1Ys2EFAN4h9cssNBrys7iwcwF+Xq4MHjyYXr37kJiejXfd1oTVbopS7YQhL5PUc4eYNXcBkeEhACRfPo4oOlCr1XRs347333+fM2fO8M6773Ny+QmcvIKQyZWY8zNwWAz06NaVn376sYxCqkKh4Ntvv+X+++9n5qxZbN22HZvNhl6v55HRwxkzZgx16tT502N3dnZm2dIlDLl/KGcWfYFreEM8QuuW1KdOvkrOxePo1QoWzJt7U3oiubm5JCYlUbNDxf9douggOyEG//rdkCuUWK3mSvvyDm/Kjh0bMZlMf0kdOywsjCGDB7N89Tq0bt64+oeUnpMJAogiWecPkhcXTa2uQyrMeRdFB1ZDwZ8qt3U7EQSBRx99lIceeogVK1Zw/PhxrFYrNWvWZPjw4YSEhFR43YIFC1A6udF80DPIKsibFwSB8Ba9yUuMYebMmTRt2rTCfgoLC7FZLdjN1UdI2c1GRNEhvZslJCT+00iO911A06ZNWb92Da+8+hqHdi0hXiZHrtJgNRbhrNXSukUzTp29hKoSMZjrCIIMlbPbn1pRfuKJJ9i2bTuHd8ykRsOe+IU3KVX5LspNI+70DmwWIy7uPhWGRd6IRuuKQxTJz8+/6x3v+vXr8+jE8fw0bSZ2m5XAeq2R/6bKLYoieSlXiN2/gtoRIUyaNKna/gRBYPq0aYyfMJEtm+ci03mg9g1DqXHGmJVMQeIF1GodTXpNLOPUeteIIu7oajZs2FCt4y2Xy/nmm2/o0aMHM2bOZN/uVYgOEUEm0KFdW8Z//DYDBgxAEAQKCgowGAy4ubnd9GT1hRdeYOu27ZzZMo3QFgPwCqpTOvnMzUwl7uQ2Mq8cRaVW0W/gIEJq1GDihPF06dKFEQ+N5FpyGu4hjYjq3RsEGbkpV8iOPY5WCY8/NummciIbNGjAY49M5LuffsZhtyLIb6gJjohot2Ezm1AqlaXh/zJZyQTSXkGOvYTEzSIIAj/99CM89jhr1i0h8eQ23ILqIlMoKMpMpDAtltCaNVi8aCHPPPscydmFRA1+Eo3erbQPvU8QcmVHMq9Ec/JcDJ6RjYhs2hWA/ITL7D96nImPPsrypUs5dzaaFStWcPjwYaxWK4GBgTz44IOVOtCCINClSxe6dOmCKIqlC023S1MjPDycnTu2M3v2bGbMms21rScRAVcXF56cMIYJEyZU6tD9kevia5UJtjlsNkSHA4X2+mKuCCIVFl5Qa/U4RJHi4uK/XJbqq6++JDMrk13rp6MProNPZFMUGicMORkknNyNMSeVGq264degNaIoYrPbARG5XI5MkJGXeAV7cT79+/f/S3bcLpycnBgzZgxjxoyptq0oiixZuhy9fwRXjm7AkJcJgoDeK5CAOq3Q/CY0KggyvCOasWLlKr788ssKF50VCgUqlZqitHgsRXmodG6V3jc37jSIDjp2LL+IKiEhIfFfQarjfZdx/vx5du/ejdFoxNfXl379+rFy5Uomv/gKrYe9WVrXsyJEUeT4mi8Z99B9fPLJJ7d878LCQl544UVWrl6NQ5Sj0XvhsFswFmTi7+dHUVEROq8G1G7Up8p+UhJOcTV6FTEx5/D2rl6k605jt9t55513+PHnX3AISpx8QgEZhpxkrEXZtG7Vkvnz5lYqBFYRDoeDnTt3MnnyZGIuxaLS6NHo3QmMbIlfRNPSHP0bObH2Kx4d8wDvvvvuLdmfk5NDQUEBLi4ueHiU36H+M6SlpTFh4iMcPHgIhdYVld4LY3EhBelxIJMR3KgjgfXbYTEUkH7pOLlx0QgOGyoXH6J6jy+nEm+3WYjZvhChMJWdO7bdlACgw+Hggw8+4P0PP8K9Tiv8mvcqmZA7HCU7hyo1bm6upZP6yztXoCtO5Uz06XtC2E/i7kYURQ4dOsSs2bM5eOgwNpuN0JAQxowexcCBAzl79iw9+/QlvMdoPGqUFWi0mgwcX/IlolJJQNdhqJyc8fb2Lv1emgpyubR6FkFuzuzaueNP1X3+J7Db7WRlZWG32/Hy8rrl3UqbzUadelHgXZvwNuWdVFEU2Tv9DXxqt8croiUyRLy9K16svXZmD1kxt15fujIsFgsLFixg+syZXLhwEYcoIhdkuLjoyMorImr4M9gVaoxG0+8LCIKAUgaJWxYQVdOfXTt3/CPvmuTkZC5fvgxAZGQkAQEBxMTEMHv2bJYt/5XCwgK0Wif69unF+PHjadmyZaV9ZWdnExgUjB0ZKicXtF5BIIoUp8cjOmwE1WtLRKt+yGRyMuPPcXX/Yi5diMHT07NcX6Io0q5DB46eOIVbaEOCOw6tsFSZpSiXy2t+wM9dT3zc1dv3YCQkJCTuAqQ63vcw9erVo169svWTu3XrhkIukB53moDIFpVeW5B5DXNRDj17VqxwCmAwGEhKSgIgKCiojFiYXq/nl19+5q233mT58uUkJSWhVqtp1aoVffr04e2332bajIXUatCzdHexItISTtCqVct7wumGkh3k999/n9atW/Piiy9y5dKxkk0XAVQqFckpKaxYsYLHHnus2t3+68hkMrp168aYMWP46NMvaXn/6xWG9F3HYbdjNhT+qQm4h4fHbXO4r+Pn58e6tWs4deoUy5YtY/PmzZyNu0pgg/aEtxtYGg3h5OaNW0A4V9TOxB/fRoMegysszSZXqKjbbSQnl3/OtGnTmDJlSrU2yGQy3nrrLcxmM1//OA1Fs67IFBoUahVarRbFDZNvq6mY/KtnePqVFySnW+K2IAgCbdq0oU2bkhQUu93O0aNHSU9PZ8+ePaxbtw6FkxvuFeQAp8UcwWwsImLAMyicdFhNxVgsllI1Z42LO7UHjePMvC9YuHAhjz/++D86tptFLpff0oLjH1EoFIwZ9TBffvczNZt1R6Equ1MtCAI+4Y3IjjuBR81G6Cp5/4miSOaVW68vXRUqlYpx48YxduxYkpOTKS4uxtPTE1EU6dylK6cWfYNno464hjdAoXEGu538hPNkntiJJTed4S8/+7e/a44fP86XX37Fpi1bsNrsCIBCISciLIyLly4j1+jxCGtMQG1PLIYCft2wg6XLf+WpJx7j3XffLWef1Wpl/ISJiHIVQS364RHepLR6it1qJvvSURJPbcdmMVO341CsZgMClavuC4LApEce4dRTz5AffxbRYce3cVc07iXfGdFupyDpAimHN2AzFPK/zz7+W5+XhISExN2OtON9F2E2m9m3bx/Z2dnodDratWtX6oiNGjWaTTsO0LjP46i05XOsHXYbp7fMIMBdwZHDh8o5iPHx8fz0008sXLSEoqIiEECv0zHyoRE8+uijNxU6ePHiRdq164BvSDtqNehRYZu0xDNcOLGMWTOmcd999936Q7hD7Nu3jweHP4RN7UJAw054hdZHJpdTlJ1KytkD5MaeYMzokXz15Ze3NNm6cOEC7dp3JLT1MHxDG1baLj3uNHGHlnNg/15q166+vNk/icFgoH6Dhsj9owhr3a/CNsdXfIMoVxPcahDe3l7IK1mYiT++FUP8MS7EnL/psl+pqam069ARo9KFOn3GoFCXnbzbzEZiNsxB5yjmwL69+PhULEAoIfFncDgczJo1ix9+/ImrcfHYHWKJ8r/FjKDW0ezB58oIh4miyJH5n6DyDSaw8xAALIYCXF1cyn3nL21cjB/FHDl86F+7YJScnEyHjp0xqVyp22N0Oec7O/Eip1Z+j19UZ+q3H1Th4mbC6V2knd3O+nVraN269d9qb0FBAc1atCQpLQOH3Y6gUKLQ6rCbjTgsJlz8QlCo1JCXwo7tW6tNDfqzrFu3jgmPPAoaN/zqtMUjsCRKKO74FpLOHcS7blsi2/RHe8N3ShQdpJw/xLWj63nnzTeYPHlymT7nzZvH0889T0D7B1G5+aNUO5UTRcu5cpKkg6to2v8xrp3aRrPaQaxZs7pSO5OTkxk67AHOxFzCIZNhM5vQuPkiV2kwF2ZjLS5AwMH/2bvr+KiubYHjvzM+E3cjgQgRNLhbgVKgpUjx4pT6rb6Wut/21uW2VHCKu0uB4hR3txDibpPxOe+PtGlzIzhB9vfzeZ/Pu3P2nLP2JA2zztl7rbatW7Fm1Sqxx1sQhLuOeOJ9h7FYLHz11VdMnjqN9MzMkv26koSriwsD+/fjtdde46OPPmRf9x4cWvsTtRp3L913K8sy+RkXuXBgLZgy+WHWwnJfXP744w8GDR5KkcWJX2QTagSX/AOek3yGn6fOYs7c+cyZPbPK5WkAMTExvPvu27z99nuYTfmEx7bH4OqH2WwiLy+T9MT9pF7YSe3IWgQHByPL8h3xZbKwsJDhI0eBRxAN7h+OQvX3ExVXnyCiO/QjPTiCadN/pWWLFgwePPiKzx0bG0u7tm3YsW8dXoERFd40sZqKSDy0ng7t2912STfAqlWryM7NI75zxcXnAIpzM/D7swCa2WTGxaXiegSeQZFkHNtCWlraFfUtBwgKCmLOrJkMGjKUw3O+wDu6yZ+VhmVyE0+Te+YAni5a5s6ZLZJu4YZyOp0899xzzJg1B49aDYjpOQ4X70DsVjMXj+wg/dhODiz4joa9n8DgVfK757RZMRfk4t2k059nKbm3XdHfQs9a0VzYtBiz2VzpU8U7XUhICLNn/cqgIUM5MP9zfCIb41kjCmSZnMRT5J4/iI+3F4UJezjhMBFav31pgc/C7BQuHdtGfuJhXh//yk1PugHmzp1LRlYOzYe9hux0kHn2MDazEZVGh3etOFx9g3E6HByc8zk//fQTX3/99Q2P4dy5czw27gl0/rWJ7TCwdLWU7HSSl3oBr/CGBNTvREFhIRqttrS4pSQpCKnbGnNRHl99/Q1jxowp/RIoyzITJ03CNTga/5ox5Obm4nTYy/x7B+AVEU/Gsa2c27Maa14KYz59u1x8siyzZs0afpk4kS1bt+FwOLCZi3E6nWgMbkg4cFoKkRw2dBoVnTq0Z9rUqSLpFgThnicS72pmsVgYNHgwv2/ZjndsM+p2GILewxebqYj0k/uYOmcBm7dsZeWK5axauYInnnyK3dtmc17rgtbFE7vZiNWYS1RUBN/PXFgueU5NTWXI0GHYNN407j6sdIkwgGdgOGH123N0w3QGDRnKzu3bLrus8JlnnsHDw4MPP/qYXb99g6zQI6HAYs5HkiQ8/MPIyLfQvceDPDp0MF988cUNWxp4syxYsIDs3DwaDRxX7kvIXwJqNyLr3GF+/OlnBg0adFU3FL755mu69+jJobU/EtqgC/4166NQKnE67GRcPMqlwxvwddfw1Vdf3qgp3VCXLl1Co3dD517xcvbSFjxyyRe/qoqbyXLJXskrXbL/l+bNm/P7hvX88ssvzJw1h3NHtwHg6enB02NH8NhjjxEaGnpV5xSEy5kyZQozZs2hVvv++NeOL31dqdESGt8RQ3AMl7bO5+iqqTQb/HLJzVD+WkRW8jfCYbchQZVJxx2+8OyyWrRowebfNzJx4kR+nTmbcyd3AODr68PLzz3FmDFj2LRpE//++BOOrv4RpUaPJIHdUkyNkGDe/+oLhg0bdktinT7jVzxqxqF1LVltFtq4Y7kxCqUS39hmzF+wiI8++qjSG43XavLkyVhlJQ3a9y+zRSkn+QymwhxCWvZFrTNgMxVRbCrGzdWtzPtr1GvLgZM7WbhwIaNGjQIgMzOTo8eOE9auP1qtFr1ej8lkQik7Uaj+Ls4nAR5hdUk78BuDBw4oV0DO6XQyfvx4fpk8Ba1/KEHteqF198JqLCT96G7yLp5Cr5IICwujYcNOjBwxgnbt2l3133xBEIS7kUi8q9m///1vft+6g+ieo/EI/rs9i9bVg7Cm9+Ef3YgTS39i3ONPsGzpEtasXsXBgwdZtmxZ6ZL0+++/v9J/2KZOnUpeYTFN+j5dJun+i0qjo+59w9i76FNmzJjByy+/fNmYhw0bRr169ejS9X5sSPiG1cHNO5iAyHjUGj2y7CTt7H5mzJyLVqvls88+u74P6Sabv2AhbsHRFe5N/qfAOi04suFXTp06VabisM1mw+l0lu7f/F81a9Zk9aqVvPjiS2zavJCEvctRa12wWYzgsNKxQ3u++upLwsLCbui8bhS1Wo3Dbiu3gqEw4xLJR3eQcf4wVmMBeYlH8KxVv8qe6NkXT+Dj401ISMhVx1GzZk0+/PBD3nzzTVJTUwEIDg6u9HMXhOvhcDj4YcKPeNRqUCbp/otOp0OjdyWoaQ8SNk4nJ/EUPrXiUKq1aN08MaacxyOyHk5byd5uZQU1HvITz1KjRo2b8rTb4XCwadMmjh8/jizLxMTElNQLUVXPP/thYWG8//77vPnmm6SnpyNJEgEBAaU3ZgcOHEi/fv34/fffOXHiRJmYb+XN2wsXEnCvoH3h/3IPCCPjwEYyMjKuqLXalXI6ncyaMxefiMblbgQXZaeg1Ogx+IQgIaFQqjEVm8ol3loXdwzeQRw7dqz0teLiYmQZ1NqSmwQeHu4oJAmjqRiHzYr05/YgWXYgKVXotFomTZpY7vf2+++/56dJUwjt0JvAemVrzvjHNiL73DHOr53Ngz178P7779+wz0UQBOFuIBLvalRUVMSUadPxq9emTNL9Tzp3L0JbP8i2jXM4evQo9erVIz4+nvj4+MueX5Zlps34Fe9aDVFrK/9ip9bq8Q5rwJRp03nppSsrTvXVV1+jMvjQrOczKP/ny4EkKQiq3RS7zcrkqdN46qmnbugXkxstPSMDvUfQZccZPHxxOp1kZWVRWFjIvHnzmDhpMmfOngUgLDSU0aNGMmTIkHLFzmrWrMnChQs4ffo0q1evJj8/Hw8PD3r06EHt2uWLM91OmjZtimy3kJd8Dq8aJdsULu7fyIXda1C5euDdoA12YwHZx3dTnJuK5BVEYWEBbm5l97lYTUXkXDjIS/968rq+SOt0utv690m4O+zZs4fzFxKI6TmuwuOSJOHu5lZy083dj5Sjf+BTKw5Jkgiu04ILe9fjVb8lar1LSa/5/2EtKqDg3FH+7+03yvzNzczMZNasWaxZt46iIiP+fn7069uH3r17X3FdhPnz5/PvTz7hwsVEJI0OSQKH2URoSAivvPwSw4YNq7ZtQBqNptLVKSqViq5du9K1a8U1RG4FlUqF7LRfdpzzz5U9N/pGRmFhIQUFBdSqF1zumCw7QZL+fjqtUOJwWCve1iVJpdXYoaQIp0qppDg3/c+/4xJu7u64uLhgMpmw2e1/zkdHgcNEeER4uVUaZrOZb777L951mpdLuv/iE1kXY5NO/DJ5Ci+88AJeXl4VjhMEQbgXibU/1Wjt2rXkFRQSVK/qfWve4XEodC4sWLDgqs5fWFhIVmYmHgG1LjvWI7AW6WnpmEymyy57TElJYfXatQTFti6XdP9TcEwzZIWW6dOnX1Xct5qriws2s/Gy42zmYiRJIj8/n/s6d+GlV14juVhFSPNehLToTY7kyZvvfkj7Dh05fvx4heeIjo7mueee4+233+a555677ZNuKFkmWq9uHZIO/o7sdJJ6Yjfnd6/Gt1EHavd/Dv9GHQlq1RO9Xw2Sdi3DXJiN0ViM0fj3Z2ouyuPY2skE+nkxduzY6puMIFyh9PR0HE4ZF+/ASsfo9Ho8PDzQefqRdfYgx1ZO4eSGueQkHMNhKiJl/TxctepyyZnVWMCpZVMJCfRn6NChpa9Pnz6dBvGNeOejjzmSXkSSw8DOU4k8+ey/iG/UmJ07d1427h9++IFxTz5FutKVqIFP0PCpt2jw5FtED3mGPFdf/vXiS3z++efX/sHc5Zo3b0bexROXHZd1/ihBQYEEBV3+pu3V0Gq1SEg4bNZyx1w8A3BYijHlpf/5SsX1A2xmI8U5aWXaNrq7u9P9gW5knt5b5t94hVKJi6srnp6eeHp6otdqyE84yuCBA8pdf9WqVWRkZRPcqE2Vcwhq0BKTxXrV31kEQRDudiLxrkbp6emoNLrSvWSVUSiUaNx9SEtLu6rzl3zZk5CrWPr7F4fNhslkoknTZgQEBhFWM5wxY8eybdu2con4kSNHsFrt+IZWXc1VqVTjFhDJ3n37ryruW63b/V0puHSywi86/5R+ej/+/r688+57JKTlEtt9LAavAJIOb+XC7jUUpF/Cp3ZT0gosPDJgIJmZmbdoBjeXJEl88P572POSOLFhFhd2r8EjsgH+jTuV9NCWZRwOGyEdeqPz8OT879NI2D6PhIObSDq6neMbZ3Fw4Rf4uShZOH/edbUnEoRbRacreVJst5qrHKfX69EoFdSvV4e29WpSP9DAQx1b8N9vvyHUQ8/JWV9z9rcFZJ0+TNapQ5z9bQFHpn+On07BgnlzS1fHzJ49m+dffBldeAPiR75GbI+hRN7Xmzp9xlD/0ZcpVLvRf+AgDh48WGksR44c4a1338WrcTtqPzQE16C/nyy7BAQT1WMgfq268PGnn11REn8vGj1qJKasZHKTzlY6xlyQS/6FI4wZNfKGP/HW6XQ0ahRPVsKRcsd8wuLQGNzJPPkHAE6HDY26fO2AlBO70WtUDBw4sMzr48Y9hq0gk4v71ld4g93pdHBmy0K0KircU3/+/Hk0ru7oPSvutf4Xtd4FnZc/Z89W/hkKgiDci0TiXY30ej0OuxWn4wqWtVktV70PUK/XEx1dm+zEqu/em01mkk7vx2a3Y3cLJ7hhd9xqtWDFb9vp9XAfXnjhBez2v2P86///q/9nVRQKJTab7arivtWGDRuGCgeJ+zdWOsaYk0bu+YM0rF+fs+cT8I1uysFlP5KwdyMagx9eIfXRugaScmwXRdkZXEy8dFs96bfb7djtdhISEpg9ezZTpkxh3bp1V/yz6dixI1MmTcSUchJTQTaeMU1wWM3YrSaspiJkhw1v/0AaDX6WuB5DUaolUvavJWnvSsLcZL749GN2bN9201rvCMKN1rRpUww6HRlnDlY5zmYuxph6jlEjRzJ3zhxWrljOpEmTeOKJJ9iyeRPvvPYK7kXpJK2fR9KG+bgbM3jntVfZ/PvG0v8eiouLeeOtt3GNakBEp4dR6cr+rdd5eBPbayRWrRvvvPtupbFMnjwZ9G6Etr2/0qXkwc07ovTwZtLkyVf1edwrunTpQqcO7Ti7fhY5iafKJajG7DROrJxERFgII0eOvCkxjB0zmsK0c+SnXyzzukKppFajTuReOEDGie047fZy2w8yLxwl9fBGxo4ZhY+PT5ljbdq04Z233iDjyCaOr51ObvJZZKcTp8NB5vmjHFn+M6aUk/w04YcKtwNIkgT/WL5eJVmusK6BIAjCvUzs8a5G7dq1QyVB1tkj+Mc0qnRccU46ppxUOnTocFXnlySJsWNG8+L/jceYl4GLZ/lWSxaLlbRL5yhIO0Nsm36E1W1beqxmg46knd3P1BmzcHNz44MPPgAgIiICpVJBXnoCfmF1Kr2+LDsxZidRu939VxX3rRYaGsrbb73BW++8h91mJqzRfWhdSvYnOx0Osi4c5eIfy2lQJ4bklFTU7v6c/2MV3qENqdGgW5m+tI6GD5B8bAMZp3fw9Tff8vzzz1fbl4+CggLmzp3L5ClTOXHyJKbiYmRAqdagVmuQkAkKDOCJcY/x7LPPXjbOnj178ty/nuWz7ybg4huA0+lAqVDg4uqCXq8vfb9fTDx+MfEcnfsdI/r04D//+c8tmK0g3Fg+Pj7069ubOUtWERDTBI2hfCtAgMT9G9FrVBW2GfT19eWFF17gueeeo6ioCAA3N7dySfGSJUvIzs2lfs8xlSbMSpWaoCYd2LphPidPnixT4BFKanosXLwEzzpNS1aiVEKSJLzqNmX5ipVYrVbR4ul/qFQqpk2dyqjRo9mwdjpaT3/cQ2OQFEqK0hIwpl0gNiaaubNnlavlcaP06dOH6dNnsHPDdCLb9MMnLBZJKvmZBse1JCfpDEl7VpB74QDO+m3RuXljNRWReXY/xVmJDHikL2+/Xb4NGMBzzz1HaGgon3/5JSfWTsHucCJJoFIqadG8GW+8/h1t27at8L0NGjTAbjJSmHYJt8DKu0iY83Mw5aTRoEGD6/8wBEEQ7iIi8a5GUVFRdOzQnq37NuETXgelpnx1Zll2krhrHUGBAfTo0eOqrzFw4EAmT5nK8fVTie00FDefstWkMy6dIWHnPNy9QwiJLtuKTJIkgmo3wWoq5KdfJvL0008TGBhIXFwcTRo34viJHfiGxlX6RTEn+Qy24hweffTRq477Vnv66afRaDR88OG/OXh6L3q/UCSFCmt+Bk6LkS73dWLChB+IiatDsQ3c/aOo2eSh0i9Df1GqtYQ27I7NXETaxYNkZGTc8D2AV+L8+fM80n8A5y4movMLxWRzoPYOwqdOS1xCIlFrtOiwkXF8D+988BHHjh/nxwkTLpt8GwwGNBoNvv/zJKVi0l3fJkm4u40fP54Nv2/i+MpfiGjfD/eAvzsP2MzFJO7bQM7JP/j4ow/w9a18+a1CoSjtp1yRnTt3overgc6j6kTOJ7IeCevns3PnznKJt9Vqpbi4mIDLnANA5+lDtt1Ofn4+fn5+lx1/r3F3d2f+vHls3bqVyVOmsG//AZxOJ82ioxj50ev07Nnzpt6w0Gg0zJ49i9FjxrBh4ywuunjhGhABQFH6eezGXNq1bU1AQAAbNq7F6XAiSRJtWrdizJh3ePDBB6ts39W3b1/69OnD7t27OXfuHEqlkvr161OnTuU30gHuu+8+aoWFkrxvMzE9hlb6b3/Svs34eHnx8MMPX/uHIAiCcBcSiXc1+/CDD+je80GOL59EePveuPr9XcnUXJjLxR2rMaWc5scpk6/pH3oXFxfmz5vLoMFDOLjqB1z9auERFAWyTG7yaTITT2Lw8KNR97EoK9grBhAS25LkY5uZOXMmL730EgAvPP8cjw4fyfn964hoXH5ZY1FuGmf/WETrVi3L9Ra/HUmSxLhx4xg0aBALFixg9+7dWK1WatToxuDBg4mLi8PpdGKz2bCZrQTGtiuXdP/zXIHRbci5eIiNGzeWKZ50syQkJHDu3DkUCgUhISEMHDSYpFwj9fr/i8OLfkLvF0rN+x9FqdYiy07s5mIsCg0R7XvhWSOK+Qvn0KJ588sWPouJicFmKsKYnYaLT+VFp6zGQsw56URHR9/oqQrCLVOjRg2WL13Co8OHc3LFT2i9AtF5+mO3mDCmnUevUfHxRx/w+OOPX9d1rFYrUgWFKmWnk/zkC9iMhSjUatxDwlEoVVit5etRaDQa1Go1VmPhZa9nMxYiSRKurhU/xRdKbpZ06NDhqlea3Sh/Jf979uxh+vTpHD1WUrCzQasHGDFiBI0bN0aSJIxGI/n5+bi6ulZ5c+d/SZJEixYtaNGixRW/R6lU8vZbbzJ23BNc2LqSWm0eKLPlzOl0kLx3M3kn9vLpxx/dlDZ5giAIdzKReFezuLg4li5exIiRozix+L/ofEJQu3phNxdRnH4Rb08PJk/8hZ49e17zNYKCgvht3VpWrVpV8vT7xAEAanh5kJ+qotUj/4eqkqQbSnp9u/iEcvTo0dLXevTowYfvv8tbb79LbsopvGvGo9R7YreYyEs5SUHKCerE1mba1CnV1rbmWri7uzN69GhGjx5d7phCocDL0wNrTjEu3jWqPI/W1QedqzenTp26WaECsG3bNr76+ms2bd6C3VGy9052OjCbLdTr+ziF6ZewGAuo3W0Eyj/7uEuSApXOgM1UhMlkwjeyHtnn6vLTz78wevToKp+UdOvWjeDAQFIObKN2l0cqHZd6eCcueh39+/e/sRMWhFssKiqK7Vu38vvvvzNv3jySklMw6L3pMG4wgwcPrvJJ95UKDg7GmrcWp8OBQqlEdjpJ3r+FlIM7MBfklo5TKJTIVlOFCY0kSXR/oBvLt+wkuHmHKv/u5hzfT6eOHUVidJuTJInmzZtXefPaxcUFFxeXWxZT3759ycvL49XXXufgmUN41Y5H6+6J1VhI7umDYC7ijfGv8Nhjj92ymARBEO4UIvG+DTRs2JA9u3fx22+/sWTJEjIyM3F3q8n99z9Pnz59bsg/qhqNht69e9O7d+/S13799VeeeuZ5lFdSlVVS4HCULary1FNPIcsyr45/jazksygUSpAklGotSoWC8+fP8+233/Luu+9WmczdSRo3asSajTsoaeNSyRdbWUZ22NDqDDgcl68of63mzJnDs889j9IjgBrt++JRIxKn00ni0T1kn9jDiVUz0Hv54RIYjtajbHIgSQoUSjXFxSYMBhcC67bkzMqJHDhwgCZNmlR6TbVazcsvvsBLr4wnycufkMbtyn3Bzzi5n4wDm/m/F57Dw6Pqiv2CcCdQKpV06dKFLl263JTzDxgwgG/++z3ZZ4/iW7s+J1fNIuvMYTwiGxLc7hG0nn44rWZyTu8j5/gffPrZ53To0IGaNWuWOc/oUaNYvHQZGYd3E9Cw4ieZWScOYclIZszoT27KXIS73+jRo2nfvj1Tp05l0ZKl5J7Jxc3NjZED+jBq1Cjq1atX3SEKgiDclkTifZtQq9X06NHjmvZxX6vatWujVErkpSXgFRRR6TiHw4YpJ4natcvGdvDgQf798X/wDI2jcbOeyDhRKNXo3byRZZnkEzv59r8T0Gq1vPHGGzd7OrdE9+7dWbn6N0z5Geg9/MstN5dlGbulGKfdgsNcUGFl2Bvh8OHDPPvc87hENiSqY5/SOGRZxiOyAR7RTUjevJCCC8fwqdeqwnNIShUOqwlkGb2XH06nTFZW1mWvPXr0aNLT0/n8y6/JOb0fn9im6Ny9sBoLyD65H0t2CiMfHcJrr712Q+csCHeruLg4OnfqxIZtKyhIvUjWmSOEdhyIe82/uwAoFAq8Y5oSFNeEi+tnMnzESDb9vrHMja82bdowbsxofpw4GUt+LoFN2qBxcQPAVmwk/eBOMndv4tGBA+jWrdstn6dw94iKiuLDDz/kww8/rO5QBEEQ7hgi8b6HNW/enNiYaJKOb8MzMLzSpYnp5w6Cw1Jur/K/P/4Eu9qV+M7DUPzP/kQJCK3XFofVwrff/ZcxY8YQGFj5nuA7xcCBA3n7nffITTyMKqoVCqWqdI+b02lHdthRSBLF2efQ6VT069fvpsTxyy+/IOvciOrQp0zy/1cpM4VSRWjHRzh6/hj2YmOV55IBu9mIJFGuNU1FJEni9ddfp3379kyeMoWVq1Zjt9uRJInO993HmNGf0bVr1ztqi4EgVLcfJ/xAr4d7s3vXBrxim+MWGg2yE1l24rDZkB02dDodnh6eSO37cHjlZLZv316mArUkSXz88cf4+PjwzX+/59iB7ej9Soo7mjJT0WvUvPDMU7z55pviv09BEARBuMVE4n0PkySJ/3v5JcY+9jgXDqwnvFGXcl/GclPPkbBvJQP69SUi4u+n4gkJCWzYuJHQ5g+XS7r/qUbd1qQd31qmMNudzN3dnScef4yvvvke78BaqDxr4LCaAVAoFbi4umLJTyX1xGZGj3z0plQMNplMLFy8BN+6bcu1DZIkCaVCidNhR6XVYwgIpSDxBA6LCaW27H5O2WFHqVQiSRLpJ/fj5elZ5TLz/9W2bVvatm2L1WqloKAAV1dXdDrd5d/4P3NZsmQJv//+O0ajEX9/f/r27Uvbtm1FYiDcU3x8fHht/KsMGDQEr6iG2M3G0h0tKqUSg5t7yY0xCTxCIlC7+7BgwYJyrZ8UCgWvvPIKjz/+OPPnz+f48ePIskx0dDQDBgwo19tZEARBEIRbQyTeN1leXh5z5sxh1uw5JKekoNVq6di+HaNGjaJp06bVnlz07duX5ORk3n3vA3KTjuMf2RSDpx82czEZ5w9SmH6WLp078vXXX5V534EDB7DZnfjVqnovl0qrx+BXi717993MaZRx5MgRZs6cyanTp1EqlDRoUJ9hw4YRHh5+Q87/+uuvc+7ceZavXIRHUAwBkU3RuXpiM+Vzcf8G8pKP0/m+Dvz7o49uyPX+V3Z2NmaLhWC/kHLHJEBvMFBYVIgsa/GIqI8xLYH0A78T3PLvrQKy7MTpsOHi6oY5P5uck3t4+rFRV/TE+39pNJprKjC1bNkynn/xJbJzctEHhKHQ6LAX7GPK9F+pX7cOUyZPIioq6qrPKwh3qqKiIpRqNaFRcdgdDpyyjEKhQK1SlykpIUkSGk9/kpNTKj2Xh4fHZbsUCIIgCIJw64jE+ybauXMnQ4Y+SnpmFkqdK0qtDoXVxuzFK5kzbwGPDhnEF198gVpd+RPjW+HZZ5+ladOmTJw4iRUrV/25bLik6Ntj73xHv379ysVot9sBuUwrkcoolGpsNttNiv5vBQUFPPnUU6xesw6FzhW9XyiyLLNx2x98891/GT7sUT79z3+u+/NWq9VMnjyJGTNm8MvESZzcNrPkC7IEkZERvPbxh4waNeqm/Vw1Gg0S4LBZKjxu0OspLi7GbjaVPAFXa8k5sQvZ6cC/YXtUBjfsZhMKJMzpCSRuW0ZkWAgvvPDCTYm3IsuWLWPUmLEYwuJo8MCY0v7FsixTkHKBU1uW0vOhXqxbs7pcASlBuFvpdDokScJus6DWVX0TzGE1YzCIquSCIAiCcKcQifdNcuLECR7q9TD5hUYkpQqtzhOlSou5MBObqQCduzdTf52FRqPh888/v+7rnT17lunTp7N7z16sVitRUZEMHTKEdu3aXVFF8VatWtGqVSuMRiO5ubkYDAa8vLwqfSJfs2ZNlAoF+ekX8QqOrPS8stOJOTeZ8PAr7xV6LSwWC0OGDmX7ngPU6tAfn4h6JVXWAYfdRvqJPUyZPhOj0chPP/543SsNVCoVo0aNYuTIkZw+fZq8vDzc3d2JiYm56RXc/fz8qF07iuSzh/GNql/uuEKhwMvLi9zcXHLPHEDr4oZPeF3STuwl58Ru9H41UGl1UJwHZiOtW7Vk0sRf8Pb2vqlx/8VkMvHCSy9jCIsjptuQMj8LSZLwCImgTu9xHF3wPe+9/z6TJ00q836z2UxqaipQ0irvape3C8LtqmXLlug0ajJPHyS4QetKx1mNBRSnJ9Cu3bhbGN2dJykpiTNnziBJEjExMQQFBVV3SIIgCMI9TCTeN8lTTz1FXn4BvuFNCKp3HzrXP5/oOZ3kp53h0oGVOGUFk6ZM5cknnyQysvLktSo2m43XX3+dyVOngUqPa3AUCqWKY79tY96CRTRpFM/MX2dccWGzqnqCOp1Otm3bxo4dOzCbzXh5epB8fEeViXdW4gkc5gKGDBlyTfO7UnPmzGHrjj+Ie3Ac7oFln5AqVWqC67dGpXNh/oJ5DB0yhA4dOtyQ6/71he5WkiSJsaNH8/L41zFmpeLiW/7LpFqlQlGYgbMgCz9fb4ouHMJFq0KvcyUs2JOwsDAiIyMZMGAA8fHxtzT+ZcuWkZWdQ/37R1Z6A0StdyGgYVtWrFxFamoqQUFBJCYm8ssvv/DrrNnk5xcA4OHhzqNDBvPYY48RFhZ2K6chCDdcYGAgDz3Yk6XrNuEXHV/pU+/EPRtwdzEwYMCAWxzhnWH37t189dVX/LZhI3Z7SUtHtVpF927dePHFF2753zxBEARBAJBkWZYvP+z2VVBQgIeHB/n5+bi7u1d3OACcOXOGuDr18I1sRq3mfStMLizGXE5u+AWnzcgrLz7P+++/f9XXkWWZF154gam/zqJG0+4E1WlRuvRblmXyU89zbvN8IkMDWbt6FZ6entc8p02bNvHK+PGcPnMOlcEVpVpLYVYaVrOZms16ULvZ/eXmWZSTxvF1k2nfsgmLFi28afvZZVmmY6dOnMu1U+eB4VWOO7zgWx5o34xpU6felFhuleLiYh7q9TAHjp8m/L5H8AqLLv18HU47macOkrh1GQ/e35lp06ZRVFQElBSHq+6e6k888QRLNu2ifr8nqxxnt5jZN+k9Jv40gYiICAYMGkyeyYJXXBM8atYGIP/iGXJP7MdTr2HenNk0bdr0VkxBEG6aCxcucP8D3SlwqIjo2A9X/79rOViLi0jcs578U3v56ovPGDFiRDVGentaunQpjz3+BAq9D0ExrfAOjkQGcpJOk3pqJwpbIdOnTaFr167VHaogCIJwF7iaXFQ88b4JJkyYgKRUEVK/fJXwv2hdvPCPak7y0Q3s/GPXNV3nwIEDTP91FjVbPUxgbLMyxyRJwjM4kjo9xnJkyX+ZOHEiL7/88jVdZ926dTw6fARK3xrU7jUW9+BaSJKEzVTM8RVTubhnFbmJJ6gZ3x4Xr0DslmIyzh0k9+JRGtSNZeLEX25qEbns7GyOHjtOWPv+VY6TJAmvyAb8/vvmmxbLrWIwGJg3dw4jR45i25rpqN180AXUxGY1k3fxFNbCXFRKJfsPHuKbb75h5MiRt001Y6OxGIXm8svDlRotkkJJamoqr73xJsVad+r1H45K9/e+Vs+wKEKadeT0sukMHDyEHdu2EhAQcDPDF4SbKjw8nOVLlzBs+AhOLP4BrXcgGg8/HBYTxtTzuOg0fPn5pyLprsDp06d54smncQmMI7btI6XbjQBCYlsQVLsJxzfPZtTosezcsY3Q0NBqjFYQBEG411Tvo6+71L59+3D3j0Str/quh3fNhiDLZGdnXdN1pk6ditLgQUBMxS2gCjOTyUs5j9rNj+9/mIDVaq3yfBkZGWzdupXNmzeTlJQElFTZffzJp9AER1Gn1xg8Qv7u963WG2jY/yki7+tDUeZFTm+aw7GVP3B6w1RcbZm888arrFyx/KYnfGazGVkuqaB+OSqNDrPFzB2+0AMoaT+0bNlSVi5bSqsGMWQe2U72yX3oXNyJ7TqIur0fx+Regw//8wX3de7CuXPnqjtkAPz8fLHkZ2GxWLDZbVT2kzDnZ4Ps5NChQ2QXFFH7oWFlku6/qHR6aj80jJyCImbMmHFzgxeEW6B27dq8/tp46sTUJj/pHOlHd5J7/jBNGtRl/tw5jBw5srpDvC1NnjwZG2pi25RNuv+iUKqIazeQYouDadOmVUOEgiAIwr1MPPG+CWQkVBoDssOOVEWPa5XGBWTwv8Zez5u2bMUzrA6SVPb+Sc6l01zYtYbCjEslSY0sk2O30qJlK95+60369OlTZvyxY8f48quvWLFiJRZrSfVxpVJBl86dqR0VSU5eAQ0efLxcz+i/hDbthLUwH2XmOWbP/BV3d3ciIyNRqW7er5csy+zdu5f58+eTlJSMudhI8pGduAfURKnRVvq+4px0AgICqr2N240iSRIBAQHsP3gI74j6xDwwFKVaU3rcJzwOS7POnFg+if4DBrJ1y+ZK9/DfbHa7nenTp7N23TryUy+RdPIQhoAwFAoJkJBlGUkCtVqDwWAg9egufL292fHHLjyiG6LWV17lWa034B7dkCnTpvPSSy/dNT9f4d5jsVh47LFxLFu5Cn1AGJHdBqHWGSjOyeDwyX083Kcfn3/6iUi+/4fdbmfW7Ln4RTRGoSyfdP9FqdbgUyueX2fO5s0337yFEQqCIAj3OpF43wSREeEcPbsTh82KQlm2/+o/mQoykGUHvXr1uqbrWCwWlN5lk8z00/s5sWEuLr6h1Go3GPegKGTZSUHKaTKSjjLmsXEkJSXx7LPPArB582aGPjocK1oC692Pb40YUCjITTnH5l07Wbp0KR4RddG6eVQZS0DdZpxcuAebzXbTi40lJyczavQY9uzbh9LVE42HH9qgcDLOHiQv+SxRbXsRGNes3PscVgu55w8x7oVnb2p8t9rPP/9MsUOi4f8k3X/RunoQ0304R+Z+xeLFi3n00UdveYw2m42xYx9j6cpVuNWIxeAdQMa+DdS4bwBKnQGFUoWkVCFJElabndxTh0nZv4l/Pfk4k6dOI6jh5YvhuYeEk3pqP8XFxdV2c0EQrtf/vfIKy1avJaL7o3iHx5U5FtrsPs5vWcGL//cKgYGBPPDAA9UU5e0nPz8fY7GRQJ+/98TLskxhVjKW4nwUShXu/mGoNXrcfIJJvLAHq9WKRlP+b6YgCIIg3Awi8b4J+vTpw/yFSzDnpaHwCUGp1pVLvmWng8yzu9HrdYwdO/aarlMjJITTmWml/9uUn8XJ3+fhVasBoc16lT6hlu2OkkQ8tjGJBzfw7nsf0LRpU8LDwxk+YhSSaxCNOz2K8h9P5/XRTQmKasymGW/jVOmw2e0oJYnsc0cx5WaCJOHqF4xXzRgkhQKtmydOWSY/P/+a5nKlMjIy6PngQyTlFBDRfTieNWsjSQqsNhvpiRfIPvoHJzfOQ5Zlguo0L32f0+HgzKYFGDRKhg0bdlNjvJVMJhOz58zDJ6ZphUn3X/SevrjWqM3UadOqJfH+z3/+w9KVq4nsPBSfmnHkJp1l/4JvubhmOr4N2+MZ1RAUKmxFeeSd3k/WsZ1gt3Py1CkAZIfjsteQnSVjlFU87RKE21lCQgIzZ80mpHXPckk3gKRQENHhIY7nZfCfTz+jW7duYnXHnzQaDRIlPdBlWSbl9B4Sj27FmJdeOkap0hAY2QidqwcKhXRTV2UJgiAIwv8S/+rcBN27dycivCapJ3+nRuPeOB0OFCo1kkIJyDjtNgrSzpGbeIg3xr98zXfchw4ZzIv/Nx6LMR+tiwcpx/5AodRQo0nPMsvCnXYbWq0WpVJJrcZdyU08zsRJk4iLjaXAaKbZA4PKJN1/kRQK3P1CMRXlc3H3BrKO7sJaXIhK7wpOJ3ZLMTp3b2q17obBJxCFJOHhUfWTcfh7mXhCQgIqlYr4+HjCw8OrfI/T6WTLli08//zznL6UStTDY9F6+SEjIQEatRqfoBqoDF1Bkji9aQHeYTEo1RpyLp4k9ch2MGYxdfIkQkJCqrzWnSQtLY0io5GAkKo/PwD34AhOHd92C6Iqq7CwkJ8nTsKvbht8apYkE1nnj6B28cTgF0r6nnWk7VqDJEnIshO1zkBY4w64BdVi87pfCa0RTN6Fk/jXrbiWwV9yz58gJiZa9PUW7lgzZ87EqdLgX6fy6vySJBEU346Dq6dz4MABGjdufAsjvH25ublRv349zlw4TH56Akkn/8AzOI6o+t3Qe/jjsFnIvXSU9HN7sJkK6NC2VbV3eBAEQRDuLSLxvgnUajXTp02ld59+JO2dj3dEc1x8IlAolViMeeQmHSH34n569ezGa6+9ds3XeeSRR/jkP59yasNs6jwwkvTTB/Cq1RDFP5Joh82CLDtwMZQkxJIk4V+7GStWrGL37j14hzVAram8KJlfzXoc2zKX4tQEvGObEVanBTpPfwCKM5PJOrqNk2tm4x4YRmCAP82alV/i/U/z58/nq2++4cSJUzicTkBCrVJwX6dOvP7aeBo1alTuPefPn2fYiBEcPXocY3Exfk0749S4kF9QQGFhIW7u7hj0egwGAwqlEqlRe/LPHGDXlPfQaHWoVQo6dmjPK//3Cy1atLiGT/r29dfTrispFic7ndXyNHjlypXkFxQRX7cVULLkP/3UPnzjWhLQ+D5sxYUUpZzDYbMiKZUE1q6Pm4dnyVMrrwDc3dy4dOoEppxM9N4V10Mw5WRSlHCSsZ/951ZOTRBuqJMnT6LzD63wRug/eYZFYXc4OX36tEi8/2HsmNGMHfcEDlmiZtOH8Q3/+7NR61wJqtMB77AGnNo0meSUFBwOh1ghIwiCINwy4nbvTRIfH8/qVSvo0KohWcfXcXbTD5z5/Qcu7pyGpjiBN8a/zKxZs1Crq/6CVRV3d3dmzfwVna2AQ4u+xVyUi9bNB2QnTocNu8WI027Bzc2tzFN1g6cfNrudlJQU3HyDq7yG1uCGJEFA0y6EtH6wNOkGMPiFENpxAD51W5N78TQ9uz9Q5Xw+/fRTxj3xFIkFEPXAKJqP+YCmI96mRps+bN57lJ4P9mLz5rKtvi5dukTPh3pxOjmTwOZdUag1eMc2Ra0zoDa4glJFQX4+xSYTADqtlsDQmvhE1qVp40b8Om0yu//YycIFC+66pBsgJCQEHx9vchJOXnZs/qXTxDdscAuiKuvSpUtoXNzRupbc/DHlZ2G3WXALjQZAbXDDKyoe37jmuIfGIv9ZLFCSJNzDYsjLL6BOTG1OL5mMMTO13PmNmamcXjKZurHRDBgw4NZNTBBuuCtcNn7nN2W4Kfr27YtWq8E9KBrvsPplPiYZGYfDhqRUEdG8DympaWzatKm6QhUEQRDuQeKJ900UFxfHgvnzOX/+PNu2bcNsNhMYGEjXrl3R6y/f+upKNG3alLVrVvHFF18waco0rMY8bKYikECj1uDi7o5WW7YAm81cXFI9WqXBYau6xVjq6b0Y/MPwjGiI3Vz8Z2/lv35tZGS7DZ+4FuSfPVDlsr3169fzyaefE9i4C6GNO5W+rlCqCIhpgl9kA06s/ZURo0azf+8evL29Afj444/JKCim7oBnyEs8A4Dyz5ZSkqRApdVjBwoLCtDpdChKW5254uFpuObCdXcKtVrNiGGP8sV/f8TapBMag2uF4wrSEilOS2D0J2/f4ghLYnTYrX9WLZdKn85LFbT7KekJ8Le/xiycP5/+AwdxZNZ3uNSIwD2sNgAFiWcwJp2nYb26zJ0zu1xRNbvdTnJyMna7HX9/f9zc3G7GFAXhhoiLi2XFbxtx2KxV1mzISzyNWqkkNjb2FkZ3+zt27BggERjVDLvVBJKl9G+I7HSA7ESr1eLvX4fMk4HMnTuXzp07V2/QgiAIwj1DPPG+BSIiIhg+fDjjxo2jV69eNyzp/kt0dDQ//fQTA/v3w5xxFk9PT3x9ffH29i6XdANknj9Io/h42rRpRXbi0UrPa7eayUo+hVdkPCqVEqUkYTcXYzcVYjcVYSsuwmmz4OLiQnC9VixeuqzSc0348Se03sHUaNSxwuMKlZro+waQV1DEnDlzAMjKymLRkqX4N2iNxuCKxlCSNFnzssu8V6nR4pRlTH8+9QawFWQTGODPveCxxx4j0MeTEysmYynMK3e8MP0SZ9f+SvOmTejevfstj69Zs2bIVjP5KecB0Ll7oVAoMaZfLDNOdjqQnU7U/1idUZR6gdjoaIKDg9m4/jcm//wjjcL8sZz4A8uJP2hcM4DJP//I+t/WERz89+qNvLw8vvjiCxo2akyjps1o2rIVtWPjeOqppzh06NCtmbggXKWhQ4eidNpIP7an0jGy7CT1wDYaxTekYcOGtzC6219KSgpOGYLDY/D29kav06JUgEoBep0WHx8fvLy8UCgU6D0DuJSUXN0hC4IgCPcQ8cT7LvLkk0+yas068hKPERhdcSGq3JRzFKaeZexb3+Hh4cGGocPJTj6NT0h0ubE2q6lkX7DBFVdXV/R6A1arBavVhizLKJUKdDo9CqUCo4c36SfySp9q/lN6ejqbNm+mRus+VVbgVetdcK9Zh9lz5vLUU0+xc+dOis0WomNK9n271whH6+pOzsm9hPj9/SRbkhRIShVWqwUXg4GizBRMmUn06/fva/kY7zgBAQEsWjCf/gMGcmj257iHxeEeXAvZ6STv4kmMqRdo3rQJs2fNvK6tDdeqdevWxMXFcGH/RjyCwlHrXPCNqEf2id34xDRD+nOPpcNmLfmd+vNmkTErFWNaAiM+fgsArVbLI488wiOPPFLl9S5dukTfRx7hTEIibtENCGveFYVKTVHqJeatXs/CxUv44b/f0a9fv5s7cUG4SjVr1uTRoUOYMmMWWjdPfCLrljnudDg4v3kZ1sxExn/9b1HR/H/odDok/vxbojGg0WjRaLSo1apyFcwdVgs63eWLgQqCIAjCjSIS77tImzZtGDFsKFNnzMJqKiQ4riUqTUmFZ6fdRtrZgyTuXUnn+zrQr18/FAoF93ftzG8bZxPZojf+ter/3YLsz/6nDpsFrGZ0en3J8nWtFk0FT9GtxQW4uLpW+EUwIyMDp1PG4H35J9AGrwBSEw8AJa2yZFlGpTMAoFAoCY5vQ8KOdbjXjMUt7O+bBdKfMdstJi5sXEREzZrcf//9V/0Z3qni4uLYsX0b8+fPZ8q0aZw7sAGFQkGjhg0Z++HrPPjgg9WSdEPJXu2PPviAAYMGc2rDHCLbPkxofEeyFv2XS1sXUaNtH5wOO06HDU8PD5AkzAU5nFk7kzqx0fTo0eOKr2Wz2Rg0ZCjnM3KIHfYcOk/v0mOuIbXwqNOYxA1LGTlmDIWFhYwYMUIkL8Jt5dP//IeCggIWLZlFql8I3rUbota7UJyTTs7J/ShsJr796ku6du1a3aHedho3boxSKXH+yA68azUq3eMtUdJuzNXVFY1Gg81qojDjHG1H96nOcAVBEIR7jEi87yKSJPH555/j5ubGT79MJOXoZgw+oUiSAlNOEjgsDOjbl6+//qo0CZsyeRJPPvkUK1bO5+LBdbgHRCEpJAozErAWZeHr44055TSS1KnS68qyk9wzBxnUq3yCZLfbOXfuHHa7jfzUBFx8g1FUuLf3z/EWU+lS/ICAAJQKBcXZabj6l7QAC2nSgYLUi1xaPwevuKZ4xzVD4+GLw2bGeOEsiaf24q6SmTF91j3Xo9Xd3Z0xY8YwZsyY6g6lnE6dOjFl0kSeeOppDsz+BLcasXiHRZN59iBFKefwim6Cb2gkxeY8Lp07St75w0SFhzF3zpyrumGwZs0ajh4/Tu3BT5cm3bIsU1BYgNlkRkbGs0VnCpMTefyJJ5k8dSqffvIJLVu2vFlTF4RSsixz5swZcnNzcXNzIyYmplxVbY1Gw8RffmFA//5MmjyFTZvXIssyBoOBsUMHMHLkSOLiyvf4FmD58uUUG4swn9mFV61GpduTnA47VpuVnJxcPD09SD62Ba1K4tFHH63miAVBEIR7iSRfSR+i21hBQQEeHh7k5+fj7u5e3eHcNtLS0pg5cyZHjx7F4XBSu3YUQ4cOJSIiotxYWZY5cOAA06dP58DBwzidTuLiYhg+bBhZWVmMHPMY4V0G4xtZr8JrJR/cStqetfy2ZjVNmpQscbdYLEyYMIFJk6dwKTkFY7ERWZYwePoSXK8VNeLbo1CWTYxlp5MDsz/l0Ud68fXXX2Oz2Yhv3IQityBqd/57WbDT4eDSno2kHNyOzWQEScJps+Jq0PNgjx68887b1K5d+wZ+msKNkpOTw5w5c1i0ZAnZ2TmolEr0Oh1nzp7FYrWBBCHBwYweOYKRI0fi5eV1VecfMHAQW46dJnbQE0DJ73Zubi5Wmw2FRoNCpUGSJHKP7iZ90wo8a4ShKsxj7uxZtG/f/mZMWRBwOBzMnDmTnydO4viJEzidMpIEEbVqMWb0KMaOHVum88Q/2e12LBYLBoNBrM6owsGDB+lyfzf0NeuRc+EEKo0rtZr3Re8ZUDrGYswj8/QfFCbu5b133uL555+vvoAFQRCEu8LV5KIi8Raq5HQ6eeLJJ5m3cDEBjToRVK8lan1J5WhLUT7JB7aQfXwnLz73L95+u6RidnFxMYMGD2bLjl14RjUkIK4pDqWG3IwUCi+eJP/8ETyDw6nXczRKlRqn3UZu8lkyTh0g79xB1q5ZRevWrQH47rvveOu9DwjvNgSfiDplY3PYyTx1kItbVxDg5cb6deuoWbPmrf2AhBuiuLiYjIwMVCoVQUFB19xbN75xEwp8wgjrUFJErqioiCKjEaWupMf7XyzZGSTM+Z66Q58kbdcm3Ex5HD54EJ1Od0PmIwh/sdvtPPHkkyxYvBTXWrH41W2K1t0Lq7GQzOP7KDx3lI5tWzNr5kwMBkN1h3vHeuaZZ5i7fC0Nh75EcXYGx5ZPwZyfg4tPKDoPfxw2CwWpp7EWF9C5UwfWrl0rbmQIgiAI1+1qctF7ay2ucNUUCgXf//e/BAYE8MvEyaQf2ITeJxBkmeLsNDzdXPng3Xd45plnSt/z2uuvs2XnbmIeGoN7UEki7JRlHEoNer8aeETU59KGOZzdsgSNwZWUo39gLS4sqWitUjFo8BCGDB7Eq6++ypNPPsmBgwdZtHQWOdGNCGrQCoN3AHaLicyTB8g4vJ1gXy9WLFsqku47mMFgoFatWtd9HqVKiex0AiV9e4uLi5FU6jJJN/zZWoiSdnY1u/Ti+OQvWbZsmegDLtxwn332GQsWL6XmA4Pxifq7WJrBJwDPsCgKkluwadkUXh0/nu++/bYaI71zWa1WFi5egk+9dkiSAhffQJoOf4Xs88dIPbYHU0EKkkpNcON22E1GLly8KJJuQRAE4ZYTT7yFK5adnc2CBQs4c+YMSqWSunXr0rdvX1xd/+4dnZSURIP4Rng36kxgg9ZoNBqUfxZsc8pO8vLysVgs5JzYTfqe31CotfhENcGrVn08/YPRKGTST+0j49QuoiNCWb50Kd7e3vzwww/8+PMvJKek4nA6kSQJg05L714P8frrrxMWFlZdH8sdR5ZljEYjWq32hhdcS01NZfny5WRnZ+Pi4kKXLl2oU6fO5d94gzz++OMsXL+JuiNfxGqzkpuTi8rgUq5neNbuTeQe3E7TZ95EpdNzcs7PdI2vw4zp029ZrMLdz2g0Urd+AxS16lOrfeVFAlMPbCd71zoOHdhPUFDQLYzw7pCenk6devWp2XUIPuF1kCkpzmk0GrHb7aXjJEmi+NJJcveuJT0ttdoKTgqCIAh3D/HEW7gpfHx8ePzxxys8Zrfb+eGHH/j4P/+h0GQhIDCCvLw8JElCp9Pi6uqGSqnE28sLm90GtePJOLAJ/+hmhLfsgUFvQPFngl6raVcCajfi6KpfeOaZZ5k7dw7PPvssTzzxBDt27CAtLQ29Xk+rVq3w8/O7lR/BHe3ChQtMmTKFX2fNpiC/ACRo1rQpY8eMplevXtf1JTQnJ4dXXx3P0uXLsdplNAZX7BYT777/Ia1atuCLzz8jNjb2Bs6mYiNHjmTewkXknj2GITSq5EVJUWaMw2Im7/he/Oo1RqUrKeSncvMgKyv7f08nCNdl5cqV5OYXUC++VZXj/Oo0IW3Xb8yfP59//etftyi6u4der0eSJOxmEzJQWFiI0WhEoVSh1hr+vPEm47DbMRuLKCwq4vjx46IPuiAIgnBLicRbuG4Oh4Nxjz/OoqXLkXVu6Lz06Lz8QC5pY2a2WLFYs/Hx8kalUqFUKpHUWrTu3hhcXHF1cS13Tr2HL2HNurN+w0LOnDlD7dq1UavVdOjQocLrW63Wkh6uYvlgKbvdzoYNG1ixYgVHjx5l9+49KLQG/Ou2JCS+Bg6rhUPnjjD6sce5b+ZMpk+bhpub21VfJzc3lwcf6sWp84mENOxGQFQjVBodToeD7MTj7D24kR49H2L5siXUrVv38ie8Di1btqRHt/tZtXYhQV37Irv7guwEqeSJt91YSPLqOUgOOyEt/v5dshcV4B0unjQKN9alS5dQu7ihda+6SKBKq0Pr6UdiYuItiuzu4u7uTuNGjTh29hDu4XUxGo0o1TqU6n8WrJNQqjUUXTqNSmNg6KPD2Ld3D9oK2mMKgiAIws2guPwQQajajz/+yKKlywm/fwi+UfVw2m1ISEhSyRcdlc4FWYbcvDxkwGy24HQ6kZ2Ocntv/8kvvD6odSxYsKDcMYfDwerVq3mk/wCCgkMIrVmLyNrRvPHGG5w9e/YmzvbOsG/fPpo1b8HAIY8ye+V6Dqbko/AOwmK1kHH6ABqDG0H1WlD34bHEPPQYm3fsZtzjj3MtO0/eeecdTp67SL3u4wip06q0d7xCqcQvvD4Nej5Osaxl7GPjrun8V0OSJH7++We6dWpP8qrZJC2bRubuTeQc3EHy2nmcm/4VjsI84gaOReflC4A5L4fipAv0vIp+4YJwJdTqkuKRV/J7LzvslVY2Fy5vzOhRFCWdJePccRRK1f8k3SXyL57AnJVCdMuHuZSUwrJly6ohUkEQBOFeJRJv4brY7XZ+/PkXPGrH4xNRB/fgcGxFeRRnJpeOkSQJpVaP3W7HarHgdDowZ6dgNxXhERhe6bkVSiVaNx/S09PLvG6xWBg1ajSDHx3O9kOn8WvcjZDWfVAG1+XHKb/Stl2HCpP1e8WhQ4fo3bcfqSYnMf2epGaPkYR07EtU36eI7PsUKg8fjiydSH7yBQA8QsKp2b4Pa9et58CBA1d1rezsbOYvWERQnXYYPCpe9q/S6Ahv3pOTp06zffv2657f5bi4uDBr5kwWzZtLpLcb2X+sJ3vXBpwFOYTf15NGj7+CW3BJTQDZ4SBx4wp8vbzo3bv3TY9NuLc0bdoU2WqmIOl8leNMOZmYs9NL2zEKV69v3760bNaUhPWzKbh4AtnhKD3mtNvIPrGbpE3z8a9Vn5DY5rj5hzNn7txqjFgQBEG414jEW7guf/zxB5eSkgms1xIA71qx6Ny8yDy4CVl2lo5TKJRICiUmswlkmeyjOzC4++JVI6rK8zts5nItnl56+WWWrV5LZOeh1O/9FCH12xAQ3Zjwlj1oNPhVdDXiePLpZ9iyZcuNn/Ad4OX/ewWL1o24h8dg8A3CYrGgUGlAktB5B1Cz2zB0fiGc3rig9EmcT0RdlC4eTL/K4mK//fYbxSYzQTFNqxznERiO2sWL5cuXX/O8roZCoaBz585s37aNdq1bo9cbCGrSGv+GLVDp9MiyTGHyRU4tnIo9+Rw/TfhBtHISbrhWrVoRGxNN8u6NpdX2/5csyyTt2kiAvx8PPfTQLY7w7qFWq3nxxRfAbiVl21JOzfuSxN/nkbhxLqfmfkHazpUERzSiXsfBSJICvWcAyckp1R22IAiCcA8RibdwXdLT03HKTgze/gBICgWRHXtRlHSG5C1LsJuMpWMlhQJzUQGXti6l8NJp/CLqI0mV/woWZaVgyc+kXbt2pa+dO3eO2XPmEtqiJz61ylfLVihV1O7wCEqPIP7z6Wc3cKZ3hoMHD7Jv/wFCmnVGqdZgt9uRKflcoORLvixJ+MR3wJiTTsKRvRQVFiHLMi5B4Rw9dvyqrpebm4tSo0Wtc6lynCRJqA2e5ObmXuvUrombmxtLFi+iX88HyNq8iqM/fcyJad9ybOLnnJv7MzU0MvNmz6Zr1663NC7h3iBJEh++/z6OjEucXTsXm7m4zHGH1ULCpuUYzx3h/XffEUvNr5OnpycGgysNOw8nJCIetcWKxmYjLKYFrfu/Qp32A0r/FtqtZvR6fTVHLAiCINxLRHE14boYDAYkJOwWU+meOp/IesQ+MITTv80j/8JR3MJiUBvcseRnU5xyBj9vL+Ib1Ccp9SwOm7XCvXiy7CRh32/UCAmmW7dupa//+uuvyCodAdGNK41JUigIqt+WnZvncuLECeLi4m78xG9Tv//+O2i0eNcqX0Hc6XSWPuF2CaqF2sWDorSL6P3DMBYbcdgdQOV77ivi7u6Ow2bFbjGh0lb+JVaWZezmwmsq3na9PDw8mPjLL7z7ThKLFi0iLS0NnU5H27Zt6dixY2k1fUG4GTp37sykX37myaef4cikT3ANj0Pr7oXVWEDRhRNoJJnPP/2EQYMGVXeod7z69evj7eVBQVYy0S17VTrOYbeRn3KSTn3G3cLoBEEQhHudSLyF69KyZUsMej2ZJw9Qo2nH0tf9YuLxDKtN+vG9ZJ07SnFeBsWZKQzs34/vv/+eixcv0vPBXhxbO4XI1g/j4h1Y+l5zYS7nd63CknmeL2dMR6X6+9f06NFjGPxrolBV3frKOzSacw4nJ0+evKcSb6PRiEqrR/ozmVSpVEiUfNGUlKo/q76XVH5XavUgy6gNrthMRrITThAQe99VXa9Lly5oNSrSzh6gRt3WlY4rzLyEpSCL7t27X+vUrluNGjVEqyahWvTq1YvWrVszZ84cFixaRHbmeYI8PHjohX/x6KOPEhISUt0h3hUMBgNDhwzmh5+nUiO2BTrXiqvJXzq2FYXTxvDhw29xhIIgCMK9TCTewnXx8vKif78+zFy0HP+4xmhc/m4cr9a7UKNJB0Iat+fcpiW4Sjb++9//4uHhQYMGDVi8aAEjR43m8NLvMPjWQG3wxG4uwpiRgI+3F9OmTOb++++v4KpX0DJMkgD5plfRvt34+/tjNRZit5hRaXUolUrUGjVWmxWVUs1fn53TYcdWlI+qpgsgUZyRiLUwl6Kioqu6XkBAAA/3eohFK9bhW6suOhePcmOcdhsX9qwmMqIWnTp1ugGzFIQ7j6+vL8888wzPPPNMdYdyV3vuuedYuWo1R9ZNJKpVPzwDw0vbTNqtZhKPbiX1+CZe/b+XqFWrVvUGKwiCINxTxBpL4bq99tprBHm5cWLJL+QlnSuT7FqKCjj7+yIKTu3j448+xNPTs/RY06ZNObB/HzOmTqZHuyY0DPOgS/M6/PDdNxw9fIgeFbR3io2NwZSZiPMfFWsrkpt0BpVSSUxMzA2b552gV69eaBSQcWJf6WsKSYHsdOKwmYGSn03B+aM4rGY8IupjTL9IyvaluPgFsWPnH+WqyF/Ohx98QGiAN0dX/UTGuUOlPxtZlslNOcfh1RORirP4ccIPKKtoHycIgnC9fH19WbZ0CXWja3Ji42T2L/+W41vmcmTDDHYv/IScs9t547VXGT9+fHWHKgiCINxjJPkOfyRYUFCAh4cH+fn5uLu7X/4Nwk2RkJDA8JEjOXL0GCp3HzSe/jitZorTEnB3MfDvDz9g2LBh132dU6dO0bptO0Ja9SYwtuJK2rLs5OjyiTQM92fN6lXXfc07zeNPPMG8pSuJ6zMOg08AWdnZ2B0lfdNBwlZcxKU101FqDWhcPShKOYdnSAQRHXtzYsF3LF+8iPbt21/VNVNTU3nm2WfZtGkLqLRoXb2wmY3YTQXExcbw3bffiFZJgiDcMk6nk+3btzN79mwuJl5Cp9PSulUrhg4dSmBg4OVPIAiCIAhX4Gpy0ZuaeG/ZsoXPPvuMffv2kZqayuLFi8v0ypVlmXfeeYdffvmFvLw82rRpw4QJE6hdu/YVX0Mk3rcPWZbZvn07CxYsIDklBYNeT/v27enfv/8N/dk8Nm4cC5asIKrLo+XakTmdDs5vX07+2X3MnT2TLl263LDr3iny8/Pp9XBvDp88g1/9VqhDaqPQuyPbreSc3Ev24e3Yi4tQarS4B9ciqEEr/KLjsRoLODLzM5YtWkiHDh2u6dqnTp1i6dKlZGVl4erqSufOnWndunXpUk9BEARBEARBuFtcTS56U/d4G41GGjZsyOjRo+nbt2+5459++inffvst06ZNIzw8nLfeeotu3bpx/Pjxcr2bhdufJEm0bduWtm3b3tTrfPP11+TnF7B2zWRcAsPxjYxHqdVRnJNO9um9SLZivvnqi3sy6YaSKt7Lly3lo48+YubsuWTtWINDLqn2rlCp8Y+JJ6x5Z7SuHmWK1OVdOotaqSQqqure6lWJiYnhlVdeuRHTEARBEARBEIS7xi1bai5JUpkn3rIsExwczEsvvcTLL78MlDypCwgIYOrUqVfcWkU88b432e12li5dyqTJU9i9Zw+yLKPX6+nfry9jxoyhXr161R3ibaGgoIAffviB9z/8iKAm91GjaUfU+vI9t51OB0fnfU/XFvHMnPnrDbu+yWRi27Zt5OTk4ObmRtu2bcV/p4IgCIIgCMJd4bZ54l2VCxcukJaWVuappIeHBy1atGDnzp2VJt4WiwWLxVL6vwsKCm56rMKtZzQaOX/+PA6Hg7CwMLy9vcscV6lU9OvXj379+lFcXIzZbMbNzQ21uuo2Y/cad3d3Xn31Vbbv2Mn2vQfwi4kvl3g7HQ7OblgARdk899yNabdVXFzM559/ztRpM8jJzcXplJEkCQ93V4YMHsT48ePLFNoTBEEQBEEQhLtZtSXeaWlpQEk7on8KCAgoPVaRjz/+mPfee++mxiZUn0uXLjFhwgRmzppDQVEhABq1ml4PPcgzTz9Nw4YNy73HYDBgMBhudah3DEmSmD5tKgMGDmL3wh9wC4vBJ6oBCrWGooxkck7uRe208fOPE2jevPl1X89oNNLvkf7s3nsQv6hmNGrbHJ2rFxZTAamn9/LLlJls3rKVFcuX4ePjcwNmKAiCIAiCIAi3tzuundhrr71Gfn5+6f9dunSpukMSbpAjR45wX5eu/DRtFprIRkT3fpyYvk/h06QLS37bTLfuPVi2bFl1h3lH8vLyYvmypXz75eeEuytJ2rSAxN9mYTm7lzFD+rNp4/oyhQ+vx1tvvcXufYeo22UMUc16YPDwRaFUonf1IqJxVxo88DhnLiTxr+eeuyHXEwRBEARBEITbXbU98f6rnUd6ejpBQUGlr6enpxMfH1/p+7RaLVqt9maHJ9xiBQUFDBg0mAK01Bv8BGrd30+wXf1DCKzfijO/zWPcE08RGRlJ3bp1qzHaO5NOp2PEiBEMHz6cgoICLBYLXl5eN3R5fnZ2NrPnzCO4Tnvc/WpUOMbg4UdYo26sWbOE8+fPExERccOuLwiCIAiCIAi3o2p74h0eHk5gYCAbNmwofa2goIBdu3bRqlWr6gpLqCbz588nJT2D6O6Plkm6/6JQKqnddQB2tY6ff/65GiK8vTmdTjZu3MiwYcMJj4wiNKwWbdq2Y8KECeTm5pYZK0kSHh4e+Pv73/A98cuXL8dksREc3azKcf7hDUClZeHChTf0+oIgCIIgCIJwO7qpiXdRUREHDx7k4MGDQElBtYMHD5KYmIgkSTz//PN8+OGHLFu2jCNHjjB8+HCCg4Nv2JJX4c4xbfoM3GrGoXX1qHSMQqnEJ64Z8xcuwmg03sLobm8mk4lhw4bTt/9A1u3cjyaiCW712pFoVjH+rXdp1qIle/fuvSWxZGRkoNG5oNaVr5z+T0qlGq2LN+np6bckLkEQBEEQBEGoTjd1qfnevXvp1KlT6f9+8cUXARgxYgRTp07llVdewWg0Mm7cOPLy8mjbti1r1qwRPbzvQRcSEnCre/n+3+6BYWTutZCeni6WKFPSlu/JJ59i1fqNRHQbinetOCRJKj1uNRZyau1M+g8cxPp1a4mMjLyp8ej1euw2C7LTiaSo+r6ew2ZCr9ff1HgEQRAEQRAE4XZwU594d+zYEVmWy/3f1KlTgZIlr++//z5paWmYzWbWr19PdHT0zQxJuE2pVCqcDsdlxzkdDpBKxguwf/9+lq5YQc32ffAJr1Mm6QbQuLgR13MkhTaZb7/99qbH0759e3DayEo6WeW4gsxLWIpyS8YLgiAIgiAIwl3ujqtqLtydmjdrRn7C8cuOyz53hKDAQIKDg29BVLe/qVOnonLxxLd2/UrHqLQ6fOOaM3/BIvLy8m5qPA0bNqRpk8YkHt6Iw26rcIzT6eDCgd8IrxXGfffdd1PjEQRBEARBEITbgUi8hdvCmNGjMGelkJt4ptIx5oJc8s8dYfTIEeKJ95/27NuPW2g0klT1f8re4XUoNps5derUdV2vuLiYmTNnMnjwEB7o3oMhQ4Yye/ZsTCZT6Zj/fPIxKlsBR9ZPoSgnrez7C7I4tvFXbHmJfPnF5yiVyuuKRxAEQRAEQRDuBCLxFm4LnTt3pnOnjpxfN5uchJPIslzmuDErlZNLJxERGsKoUaOqJ8jbkNPhuOxeaigpTOd0Ojl37hyXLl0q9/leid9++436DRry1LPPseXAWU6lWdi87zRPPP0s9Rs0ZOPGjQA0atSIxYsW4KW1cWjVd+xfOYGjv8/iwOqf2b/0K7T2bH6dMb1M/QdBEARBEARBuJtJ8rV8A7+NFBQU4OHhQX5+Pu7u7tUdjnAdCgsLGTV6DOs3/o7Gyx/3sBgkhRJjWgLGlAvExkQzb85satasWd2h3jaGDRvOb7sPUf+Rpys8LssyWWePcH7rCoqzUnF1c0OpUFCnThxjx4xmyJAhV9RSbMuWLfQfOAitTziRLR5E7+ZdesxUkMPZXcux5Vxkwfy5tG1bUiTPZrOxevVqli1bRnZODp4eHnTv3p1evXqJAoqCIAiCIAjCHe9qclGReAu3FafTybZt25g8ZQr79h/A4XAQXbs2I4YPo2fPnmg0muoO8baybt06BgweSszD43APKntDQpZlzm5aTOqhnei9ggmIaoJvUBhWcxHpZ/ZTkHqK+7t0Zvq0qVUmwk6nk5atWpOcZ6d+t9EoFOWXhzsdDg6vnUxNXy07tm8rV+RNEARBEARBEO42IvEWhHuEw+Ggc5euHD17kdheY9B7+pYeS9q3mXNbVxDS6AG8atTF29urzI2LnOSznPp9BsOHDuKbb76u9Bpbtmzh4T79iOs6Bs/A8ErH5aac5eSGqaxYtoQ2bdrckPkJgiAIgiAIwu3qanJRscdbEO5gSqWS2bNmEhUawNH533J6w3xyEk6Rm3iGCztW41WzAV416uLh4V5utYB3SBShjboxa84cUlJSKr3Gtm3bUOnc8AioVWUsnkGRKLUubN++/UZMTRAEQRAEQRDuGiLxFoQ7XFBQEOvWrOG9N17D05zFhXUzOLX0Z+wWEyExLfHx8Uav11f43sDajXHISubMmVPp+c1mMyqN7rLLxyVJQqXWlalwLgiCIAiCIAiCSLwF4a7g7u7Oc889x/59ezm4by8vvvA87p4+BNaMqrJ4mkqjQ+8ZQEJCQqVjAgMDMRflYreaq4zBZjFhMeYRFBR0rdMQBEEQBEEQhLuSSLwF4S6iVCoJCwsjMDAQWXZW2TbM4XBgNpuxWS1kZ2dXOrZPnz6olZB2Zn+V1047sw+NWsHDDz98XXMQBEEQBEEQhLuNSLyFO57FYmHPnj1s3ryZEydOXFOP6rtNfHw8OGzkpZ4rd8xus5OXm0dmZhaZqZfITU1gydJltO/QkYULF5YbHxQURN/evUk6tIHC7L/3gjvsVizGAhw2KwWZSSQf3siAR/oREBBwM6cmCIIgCIIgCHccVXUHIAjXKj8/n++++45p038lKysbGRmFpKB+vTo88cTjDBo06J5ta9WyZUviYmNIPLwFz6AIJKnkHpvVaiU3NxcZCaVaS/rJw6h1Buq2H8zFc3sZO+4Jzp07xyuvvFLmfJ9++h/OnjvH/rW/YPCrhc1cTF56ArLTidNpRwHUr1eXf//739UwW0EQBEEQBEG4vYl2YsIdKSMjg4d79+HU2QR8azUiMLIxao0eY34mKad3UZB2ipEjhvHlF1+gUNybCzt+++03Bg99FPca9Ylq1QulUkNmViYyEgqVlszTO0k9soHazXpQs35HAC4e2UTKkfXMmT2T+++/v8z5ioqK6NWrF1u370TrHYhHVDxqF3ccZiPGxOM48zMYNXwYn3/+OUpl+V7fgiAIgiAIgnA3uZpcVDzxFu5IYx8bx5kLKcR3exKDh1/p63o3b3xrxJB6dh9Tp82gTlwc48aNq8ZIq0/Xrl358YfvefZfz7N3/glcg2ORVXpkh528xKPYzIWEx3cmrF6H0vfUrN+R3ORTTJjwY7nEe8aMGew/dJjaXQfgE9sEZJAUEhqNBqnN/aSf2Mfk6b8SEBDA+PHjb/V0BUEQBEEQBOG2JZ54C3ecAwcO0LnL/dRuOwS/0DqVjju+bR5u5LBv7x5Uqnv3HlNSUhIzZszgk/98hslsRefmjV9YHWrEtsTVu3wF8rRzB0jYs4jDBw8QEhIClOyjr9egIXbfcKI69qn0Wgk71mA+t59jRw+L/x4FQRAEQRCEu9rV5KL35hpc4Y42d+5cVDp3fENiqxxXI7Y1FxOT2LZt2y2K7PZUo0YNXnvtNUJCQohs+gDtBr1BbOs+FSbdAK5egTidMmlpaaWvrVq1iozMLIIbtq3yWkENWlNQXMyiRYtu6BwEQRAEQRAE4U4mEm/hjpN46RJa90Cky+zddvMJxumUSUpKukWR3d4MBv1le3ED2K1mJECv15e+dvr0aTSuHhi8/Cp/I6B1dUfv5c+ZM2euN1xBEARBEARBuGuIxFu442g1GpwO62XHOR12QEaj0dz8oO4A93XqSO6lYzgdjirHpZ0/SFBgILVr1y59TZKkK2/TdmfvXhEEQRAEQRCEG04k3sIdp0WLFhizE7Gaiqocl37hMGq1kubNm9+iyG5vI0eORLYZST61q9IxxvxMchIPM3LkcNRqdenrdevWxVZcgDErtcprmAtyKM5Jp27dujcsbkEQBEEQBEG404nEW7jjDBo0CBe9loQjmyod47BZST65jS6dO1OrVq1bFdptrU6dOjw+biyJB1aRcHgTdpul9JgsO8lOPs3R3yZRJzqSxx9/vMx777//fkKCgkg6sKXKayQf2IaPlye9e/e+GVMQBEEQBEEQhDvSvVvqWbhjeXp68sbr43njrXdQqtTUqt8Jpfrv5eSmolxObV+ARjbx1ptvVGOkt58PPvgAnU7Hd9//QOqJLbj6RaBQqijOS8FmzKFli+ZMmzqlXFVGtVrN6+Nf5dnnX+DiLm/CmnUus8delp2kHNxOzok/+Oj99zAYDLd6aoIgCIIgCIJw2xLtxIQ7kizLfPfdd3z40cfYZQWewbGoNAZMhVkUpJ0hwN+XGdOn0aJFi+oO9baUlJTEr7/+yu49e7BabUSE12Lo0KE0b94cSZIqfd8333zD+x9+hKR3xzu6ETo3LyzGAnJO78dhzOOFfz3Lm2++WeU5BEEQBEEQhCtXVFTEwoUL2bVrF1arlRo1ajBw4EDi4uKqO7R73tXkoiLxFu5oly5d4tdff+W39RswGo0EBAQwcEB/+vTpI5663iSHDh1iypQpLFqylOLiYrRaLb0e7Mno0aNp1qxZdYcnCIIgCIJw15gyZQrvvv8BeQWF6ANqgEqNLTcD2VxMl/s68eOECXh7e1d3mPcskXgLgnBL2Gw2VCqVeMItCIIgCIJQgaysLGbPns2ixUvIzsnB3d2dB3t0Z9iwYYSEhFT53p9//plXX38D99gm1GjZGa2bBwBOh4OcM0dJ2rKc+rUjWb5s6W2bBxUWFrJq1SqSk5PR6XS0bNmSRo0a3TXfHUXiLQiCIAiCIAiCUI2WLVvGk08/g9FsxS08Dq27F1ZjIYUXjqORZD7+6ENGjx5d4XtTU1OJb9wEQ2xTwjs+WOGY4qx0Ts2fwCvPPctrr712M6dy1axWK//+97+ZNHUqBYVG1AZXHDYr2K00jo/n3x99eFdsCb2aXFQUVxMEQRAEQRAEQbiBNm7cyJjHxqELi6VBp4dR611KjzmsFi7uWMvLr4xHr9czePDgcu+fOXMmFifEtOpS6TUMvgF4xDRi6vQZvPTSS2g0mkrH3ko2m41hw0ewZsNG/Bq3o16DFmjdPJCdTnITTnF01+883Lcfc2b+SseOHas73FtGtBMTBEEQBEEQBEG4QWRZ5s2330bpF0rtBwaVSboBlBot4R0ewjWqPu+89z4Wi6XcOdasW4drrVhUWl2V1/KJiScpOYU33niDefPmUVBQcEPnci1++ukn1m7YSGSvEYS1ub90ibykUOAdEUfcgMdR+IUyeuxjGI3Gao721hGJtyAIgiAIgiDcoWw2G06ns7rDEP7hjz/+4MTJU4Q061Sm/eo/SZJESLP7SM/IZMWKFeWOFxYWlUvY/8lut5OTk0uByYzZYuHHSVMZ++RT1KnfgDfeeAOTyXTD5nM17HY7P0+chHvtBnjWjKpwjEKppFbn3mTn5rF48eJbHGH1EYm3IAiCIAiCINwmnE4nW7Zs4fnnn2fIkCGMGzeO2bNnl0mkUlJS+OSTT6hbvwFBITUICAqm50MPsXjxYmw2WzVGLwDs2bMHSa3DIzSyynEGbz90PgHs3bu33LEAf38s+dkVvs9ms5GdnYPVZsNhLkap0RA36CkajBqPLrYZ3/8ymQEDBmI2m2/IfK7GgQMHSExKIqBB8yrH6Ty8MNSIZPGSJbcmsNuA2OMtCIIgCIIgCLeBM2fOMHLUaI6fOInGzRe1izcOm4m5Cxbxxltv8/WXX+Dp6cmwESMpMFnwjGpIUHRLHDYrB84fY+TYx+jQtg2/zphxWxQdlmWZgwcPMm3aNPYdOIgsy8RE12b4sGG0a9cORSVPg+90NpsNhVp9RZW7JZUaq9Va7vVH+vVl8wsvYSnIQ+vu+fcBGfLy8pAlCZXOQP6pgxi8A3DxC0aSJMJadcWrZjRbl0zm888/580337yBM7u8rKwsbDY7VoWa/Px8lAolOr0Olap82qnx8CIzq+KbC3cjkXgLgiAIgiAIQjVLSEjgwV4Pk2eG2PvH4BFQqzRxMxXkcH7vGoaPHI1SKaENiqRh/yFl9v8GN2xNfvIFtq6awegxY5g/b161tmwymUw89fTTLF22AoWLO24htUGSOPP7ThYuXkrL5s2YMX0afn5+1RbjzRIWFobNWIC5IBedu1el4+xWM5acDMLCwsod69u3L+9/8CHnf1tIzMPDUajUAFisFhwOB0qdC4Xnj1N44QSRnfuU+Vm7BdfEu15zpkybzksvvYRer7/xk6zAli1beO75FzCbTRTl5qBVqMHppMhYhEajxdPDA4Xy75stNmMRHiH3Tg/yu/M2kyAIgiAIgiDcQd599z1yiqzUf2AsnoHhZRIpvbs3dToNQucfRX5BEVHdBlVYdMsjJJzwzv3Z8Psmdu7ceSvDL8PpdDJ27FiWrFxDWKf+xA95mahOfYjq2Jv6A/9F7Z6j2HPkBI/0H0BRUVG1xXmz9OjRA29PT9IOVf0zyDi+D7UkM2DAgHLHXF1dmTplMorcVI7PnUDWyUM4HQ7MZjPWglwydq4hef18/GIbEtiwfFuugAYtyMrJYfPmzTdsXlX5/fff6T9wMAUqFzQu7hRdPIVa74LK4IpSq8dqs5Kdk11aj8BqLMKYeJqePbrfkvhuByLxFgRBEARBEIRqlJKSwsrVqwmq0w61ruKCWrIM3tGtkBQqcs8fr/RcXuGxqNx9mDpt2s0K97I2bNjAyjXrCO88EL/ohmUKjEmShGdoFDEPjubQ0ePMnDmz2uK8EhkZGXzzzTeMHTuW0aNH89FHH5GQkFDle1xcXBg3dgxZh3eQffZYhWMKUhJI/WMd/R/pR1BQUIVj2rZty/KlS2hVJ4qk9fPZ99+3OPLj+1yY/wP5J/cT2uI+orsPRpLKp3Q6D2+cTpmcnJyrnvPVslqtPPn0MygDwojtN5agRq3JP7kfc3Y6kiShUKlR6VxwOJwUFhYiyzKJW1fhqtMycODAmx7f7UIk3oIgCIIgCIJQjbZu3YrFaiMgKr7SMXaHHa2rJy5+oeQmnKp0nCRJuNWI4vDhIzch0iszZcoUdD5B+ITHVTrGxScAt1p1mDhp8m1Zld3hcPDBBx9QPz6edz76mBW7D7Nq/3G++P5HmjRrzhNPPlll5fD/+7//o3+fh0lYO5tTy6eTc+EkxTkZ5CWe5fSauZxZMokOrVrw2aefVhlH48aNWbhgAU89Pg5PVxeQnUgKJU67nZT92zi/YTHW4vKrBiyFBTjsNrZt28bkyZM5fPjwdX8mlVm5ciWpaemEte+JQqGkRov7MHj5kbhsCnkn9+O025AUChRqDXmpSZxePhPjmcN89cXneHlVvhT/biP2eAuCIAiCIAhCNSouLkZSKFFpqu7ZDKDSGnDYSopxybIMyBU88ZSQb3yYV2zbjp14xra67Di/2g04v342mZmZBAQE3ILIrowsy4wfP56fp0zFv/l9BDZqjUpXsk/aYbORdXw/cxYtITsrm1mzZqJWq8udQ6VS8dOPP9KhfXt++mUix1f9ilOWkSSIqFWL1957hzFjxqDVaquMxWazMXr0aJavWYdHdENiuwzELKlRSBIFZ4+QcWw3uRfPUH/Qk2hdPZBlJ8l7NnNx+1ocNhuzFi5m5rwFKIFmTZvw7jtv06rV5X82V2Pt2rXoAmpg8PYvmbtGR73+j3Nm7TxSNy0jfcc6tF4+OKwWTOnJBAf6M2XSRNq2bcuxY8dQq9WEh4dX+DneTUTiLQiCIAiCIAjVyM/PD2QnpoJs9O4+FY5RKVXIMpjyMpAU3hyeP4GC1ERkpwOtuxeB9ZoTWLc5aoMrRSnn6dC+/L7fW8Vms6FUay47TqnWIstgsVhuQVRXbvfu3UycOo2QTg+Xa4ulVKsJaNgCnacP6xZPYf78+QwZMqTC8yiVSoYNG8ajjz7KmTNnyM3Nxc3NjdjY2Cuu6P7ll1+yfM06wns+ild4DLIsk5mZiSwp8GvaEY/oeC4um8Kp5b9Sf9BTnF07n/Sje3GPbkhgg5YE1IpCdjrJvXCSg3s30affI8yYNpWuXbte9+f0l/yCApQ61zKvqXR64h4egSkvi8zj+7EU5KFQqcjIyWDEsGEsWryYMePGYbc7AInAAH9GjRjO2LFj8fa+OwuuicRbEARBEARBEKpR586d8fHyIuXELiJb9KhwjEKhwJyViCk3FWtxHi5B4fg37YpCqaI4M4nEPzaQvG8LYS26YM3NYMTw4bd4Fn8LCQkhMzP5suMKM5LQajX4+vpe9zVlWWb37t0cP34cWZaJjo6mdevW19SybPLkyajcvfCv36zSMR41o3CpWZuJkyYzePDgKivIS5JEdHT0VcdhNpv5ZdJkvOo1xys8pvRcHu4e5OblYjebULu6E9i2J0lrZ3Fx22rSjuwmsO2DeEXVw8en5CaOpFDgHVkHz1oxnFk1kzGPjePQgf03bJm3j7c39qKKl7LrPX0Ja31/yXwKcsk4sJ1vv/8BnU8gfi274xpYA6fNStbpI3z85TfMW7CAxQsXEhoaekNiu52IPd6CIAiCIAiCUI30ej2jR40g8/Qu8lLPVzjGYsznwvb5qPSuhN0/lPAeI/Gt2xLv2KbUaNeb6IEvovbw5cz6BTRsUI/27dvf4ln87dEhg8k/dwSbubjSMU6ng+wTe3ikbx8MBsN1XW/lypW0bd+eB3o+yPP/9yrPvzKeB3v3oWXr1ixcuPCqz7duwwY8ohteth2bT1wjDh0+THb2zelFvWHDBjKzswlsWHZpuFanxcvLC0mWsZmMaP2CUGgNXNy8EpfgCHxjGuLt7V3upoNCqSSic1/yi4qZM2fODYuzV69eWHPSKUq7VOW4i1tWYrPb8K7XknpD/0VQfCvcAkPxCI0ksnNv6gx+loSMXAYPfRS73X7D4rtdiMRbEARBEARBEKrZK6+8wn0d23Ji/VTO/rGS4vwsZFnGZjGRdHQ7+xZ9hdNpJ/qBoRh8grEXF2G3mnE6bDjsNmQJgtr0QuvmSd24uGt60nujDB06FC93V06vnVW6H/2fZKeTc5sWI1mKeOyxx67rWlOnTmXYyFFcKLQT3msUjZ/+gCZPf0BUn7Ek29SMffwJvv/++6s6Z7GxGLW+4ury/6TSuyADRqPxGqOvWlpaGpJShd6r/IoArVaLn58v7m5uqJRKtF5+yLKMf4PmeHp6olQqKzyn2uCKW3gc86/hhkRlOnfuTEStmlzctByHteJtA8aMFDKP7cMtOJyI+3pVWok94oFBHDl2jPXr19+w+G4XIvEWBEEQBEEQhGqm0WiYPWsWr7z4HHLWKQ4u+Yod095k9+wPyDi6nkBfDzyDaxJYuz6+vj4YDHpw2HBYTDitJlQSePv6EdKoHUuXr6SgoKDa5uLn58ev06ehLMzg8NxvST64DVNeFuaCXNKP7+XIgu8xnj/Md998TYMGDa75OidOnODlV8fjXqc5MQ+PxDMsCkmSkCQJ95Bwoh98FO9G7Xn73ffYu3fvFZ/X19cXU07mZceZcjJQKZU3bU+yVqvF6XDgtNvKHXM6neTm5lFYWIjD6cT5Z8LrUOvJyMykqKjymwE6Tx8yMi4/vyulVCqZPGkiOksBx+f/SNbpIzgdDgBsJiPJezZzcv6PSMiENG1XYdL9F7fAUPT+NZgxY8YNi+92IfZ4C4IgCIIgCMJtQKPR8Prrr/Piiy+yadMmMjMzMRgMtG3blm7de+ARGIokSaiUKtzd3HFzc0N2yvBnsikBPuF1yNj/O+fPnyc+Pr7a5tKmTRvWrVnNV19/zdJly0n5YxUyoFIo6NK5M8/961lat259XdeYOnUqTo2eWu17VrgsXJIkwlp3Jf/sESZNmkTTpk2v6LyDBvTnyx9+wtG+O8pKKm3Lskz2kT30eKAbbm5u1zWPf0pISGDDhg0YjUYcDgcqCbJOHca/bpO/r+2UycnJxe6wo9TqsRcXYslOQ6HWICEhqdQUFhUCMq6uZYue2c0m8i+dQ7YXs3DhQjp16nRDbhzEx8ezasVyXh0/nm1rZnHOKaNQqZDtNlwMBu7v2I51G37HPaTWZc+l8wth/8FD7N69mwYNGqDTXb7a/51AJN6CIAiCIAiCcBvR6XQ88MADZV5zOp3lnhRKSEiKktZhdrsNh92B1WZFlp1X1Ru7uLiYxYsXs3XrVsxmM4GBgTzyyCM0adLksvucqxIXF8fPP/3ERx9+yKlTp3A4HERERNyQwlmyLDN3/gK8YhujqGRZNYAkKfCp05Qly5bz7bffXlHLquHDh/PDjz+RsGExEfc/glTBsv3kXb/jyMvksbFjr2sef7lw4QLjX3ud9Rs2YJdBqdHhsJqwmopJ3PEbXpF1UP/Z0sxYbMRut6PSG0BSkLl3EyqdHoXGg/wzh3ANCceBRFFRETqdDpVKhd1s4sLmFWSc2I/dbMKo1THqscdxMejo37cv77zzTmkxtmulUqlK95Y77VacFgcKhUSAvx/R0dH8tnET8p9PwitiMpkwFhdjLCok+dw57u/eE18fb4Y/OpRnn332ju/5LRJvQRAEQRAEQbjNxcXGsuXgyXKvm81mioxGbLaS5ci5Z45hLCrik0/+w9tvv0W9evWqPO+8efMY/9obZOfmYvANRaHSYivczs+/TKJZs6ZMnjSRkJCQ64rdz8+vpGXaDWS1WikqKiKwgv3P/0vn5UeW1Up+fj6+vr44HA5sNhtarbbCGws1a9bkv99+wxNPPc2J/DwCm7YrqSouSRSmXCRt3zaKL5zgzdfG07Zt2+uey5kzZ+jx4EPkWp0Ed+yDT0wDlCo1NpORxD/Wk/THBg7P/oGYnkNw8QukuNiEpFLhMJvI2L2BgjOHiO4+EGtRARe3/4Z33ebo/IJw2q2YTCZ0KgWH507AXFiAV8PWuIXXISisFk6LmYyje/h14RJ27trFqhUrrvnndODAAfo+0p9Cp5LADg/hG9MQhVqDMT2ZtIM7+O6HCchOJ9lnj2HwKd+zvaCgAGNxMUgKjMnn8a3ThNCWnck6cZCvJvzMilWrWL506W3V7/1qSbIsy9UdxPUoKCjAw8OD/Px83N3dqzscQRAEQRAEQbjhVq1axeBhw4nt/QTugWEAFBmNFBYWIilVJX2zZTi75Ac0Gi1KCXQOE3Nmz6RNmzYVnnPu3Lk8+fSzuIfWo1aTrujdSpYcy7KTnKTTXPhjOTX8PVi7ZjX+/v63bK5Xwul0ElwjFI/GnQhpWnUF9/Qju0nfupyfJvzArNmz2bJ1G7Is4+7uztDBgxg5ciSRkZHl3rdx40Y++vfH7D94CIfsBEmBApnakRG8/OKLDBw48LrnIcsyHTp14mRSBrGPjEOtK1/hPePEfk4smYZKrcItJAKn1oDTbqM4+TySQkFkl94E1G+Ow2bl6NyfMWanE9jqAQyhUaiVSrJ2riHn4mlq9BiG2sUNNzc3XFz+Lh5nzsvm1IKfeaBDG2b++utVz8FsNtOkaTOynSqi+4xCpS2/NDzj6F7OLJuBzsuP+JEvodLqS48VFxeX9ALX6ChMOEnK7wuJH/ovXANLVkaY8rI4vXAizevHsWrliutahXGjXU0uKhJvQRAEQRAEQbjN2e12unS9nyNnE4h9aAxKF3dycnJRqrUoNVqcDjtJmxdRlHiK+P5PY/AO4OSqaegsuezfuwdPT88y5ysoKKBuvQao/KKIafdIhcmMuSiPwyt+YMTgfnz55Ze3aKZXbtiw4az9Yz91hzxbZTJ2fN6PqIuyKTQWowuogVftBqi0eoqz0sg9dQAtDn7473f06dOn3HtlWebQoUMcOXIEh8NBVFTUNfcHr8iOHTvo2ethInqNwjMsqtJxiTvXk73vd5o2bsymLVtwC4vCL7Yh/vWaodL9ncTazSbOrJ5H9tljSCo1WndvitMS8W/THa/YRri5uVXYvi3j6F5SNy1h357d1KpVq9xxm83G4cOHKSwsxMvLi/r165d+BvPmzWPsE09Rd8SLFVZg/8uxeT9TmHAK99BIonoMQevmiQxkZWbiQKI4+TwpmxbjE1WX2AcfLfPe3AunSFg5nXWrV9GsWeX91W+1q8lFxVJzQRAEQRAEQbjNqVQq5syeRd9HHuHovG/RBkViCIlCrXelODOZ3FP7cFpNxD0wFDf/GgDU7jKIgzP/w9y5c3n88cfLnG/evHkUGotp3L1bpUmrztUT/5gWzJu/kHfeeQcPD4+bPs+rMXDgABYtWczxhRNx8Q/GNTAU78i6ZfZ855w7Tt7FMyhVSqIfHoV3RFyZc4S1uZ9zvy3i8Sefws/Pr9zScUmSiI+Pv2mF6pYtW4bKzQuP0PJP3P8psEEL0vdspFevh9h74AA1WnTCp3b5bQQqnZ64PiMw5WRybP4vKAsyUev0hDRsgau7J5Ki4p+1T0xDkretYvHixbzwwgulr5tMJn744QcmT51GcmoqsiyjkCQiI8J5bMwYxowZw9x583CpEV5l0g0Q3Lwj55LOozHlsWfCeyg0eiSVGlmhQHY6cJiL8YtuQPQD5VcSeNaqjdLNi9mzZ99WiffVEIm3IAiCIAiCINwBAgMDWbt6NRMmTOCNt94m99xhFAolCrWWgNjGhDRog8H77z2wGoMr7mFxzJo9p1zivWHDRlz8w9Eaqn5KF1i7MSmHN/LHH3/QrVu3mzKvq2W32/n3v//NzxMn4URBQUYqhZmp2HdvQuPqTq123fGuXY+Mo3tJ3rYap91GWIcH8aoVU+5cCqWKqPsf4dj8LD7/4osbsmf7auTk5KBy9bzs8mmNixsqjQ6lUkmzJk04fHhXhYn3X5QaLZKlmI4dO7D90HHcPKsuTKZUq9G4eZKZ+XebscLCQvoPHMiuvQdwr92Q6Fa9ULu4YcnPIf3oHl594y22bt1KckoqWu/L773We/pgsZjJy5PRuHqgCw5HlhSYMpKw5GSg9/KlZvueKFTlC+BJkgKtTxCJiZcue53blUi8BUEQBEEQBOEO4ebmRvfu3fn3J58S2r4vhemXKEhLIC/pLMU5GQTENsavdnzJnm/A4BNISuLBcucpLCpCpXMp9/r/UmtdkGUZo7HyvtC3ktPp5Iknn2T+4qX4N25Pk/otsSBRbCzGnJtJ7rFdnFw+A7Vag4SM3WbF7pRJ2LqKtIM7CWzYkqD4VmX2GEsKBQHxbdiyfj5nzpyhdu3aVcYgyzImkwmHw4Grq+tV7zlOTk4mNTUVrVaLTqfDYb78Z2u3mrHbLLi5ufHE4+MY9dg40g79QWDDluU/I7uNc2vn4+PpQbNmzdi8ay+y01mmOrssy1gsFkwm858V88FcmI/yH6sFXnr5ZXbtP0TtPmNxC/y7Er3OveQJfW7CKZav+hUfd1ccfpdv+XVh80ocSPi37k6Nxm1QqNSYzWZycnNxFOWT8vtijs3/mQZDn0VjcC33fqfNilaruex1blci8RYEQRAEQRCEO4hWq8VqMXPqtzkodHpcI2JRa/VYcjM5tXEBF3aspm7PEbgH1cJuMWGooA9yYIA/+05cvOy1ivMzUSgUN7wq+bWaP38+8xctJrz7EHyiSp74agEXFxdMbq54BIaQ4uJG5v4tuHj74hXTBLVPEAqlksILx7m48zfSj+6hfv9xaN3/fgrsHhqJ1WZn06ZNREVFVZhMFxQUMGfOHCZNmcK5c+eRgcCAAEaNGM6wYcMuW3F7/fr1TPjxRzZt3oLDKSNJ4GLQU5CVRV7i2Sr3eGeeOIBWpeS+++4jKCiIPXv28P1PP1OYnEBgo9a4BtTA6bCTfeYo6fu2orEUMX3WTFxcXPjsy6/JvXAK78iSZfY2m43cvDwcDgeSQomkUGBMukBRTiY/T5xI48aNadq0KYsWLyGoTc8ySfc/edWKwa9hW7IPbEYuPI7DakGp0VY41piRQubxAwS0eoDQZh1KP1+1Wo1CklD5BFLzwRGcXziBlD2bqdWhZ5n320xGTCkXaPXY0Co/49vZjakKIAiCIAiCIAjCLbF69WpsTieeTdoSOfIlgjr3wb/tA4Q+NIzwYc+h9Pbh8LKJFGUmk59wjM6dOpY7R9++fTHlJFOYnVLltVJO7CIkOIiWLcs/Wa0Ov0ychEuNqNKk+y9KhQJXFxdcXV3xatAalYs73rFN8Itvg0twOG41Ywju2IeIR57GbrdzbNFknA4HJpOJ7OxssrKyMZvNvPDSy7Rp144pU6aUtmgDSExMpHPXrvzfG2+R7NAS1KkPwff1o8gjhA8/+4K27Tuwf//+SuP+5ptvGDB4CNuOnSWoU19iBj9LVN9xqMIbIKt0HJn3I6bc7ArfazUWkr5vCz17dCc4OBhJkvjoo4/4+vPP8LMVcGb+T+z95g32f/8OqRsW0SG+LiuXLaVt27bEx8fTpFE8KX/8hsNmxWazkZOTg1MGtd4Ftd4FhUpN7uEduPiHoA6NZey4x3nvvfdwKFT4xzWu8ucR2KAlDhmcVhPJuzdVOi7pj99R6V0IatiizE0NpVKJVqvDabOicvXAM6YxaUd347Dbyrw/ee9m9BoVgwYNqjKe25moai4IgiAIgiAId4icnBzq1m+AIqoBbg1bodIZkBTKMmOcVgsXF/yCSgaFqYCN69eVKw5mt9tp1rwFaQU26t0/uszS679kXzrF6d9/5b233+C55567mdO6IsnJyTSIb0SNrgPxja5f4Zi8vDzMFitZBzZjunSW6IFPU2wyoTa4AiUJnykzhYTFPxF2X180QeFIShXGpLMkr19AZJc+FCVfoCjhJPd3vo8Z06fhcDjoeF9nzqdlU7v3SPSeZYuI2UxGTi+bjpujmC2bfic4OLjM8ZUrV/LoiFH4NOlAaMsu5Z6mF2alc3TuBJzmYhoMeQb3oJJ2cbLTSW7CKS5tXUmAq461q1dRo0aN0vdZrVZ27tzJrl27MBqNxMTE0LJlSyIiIsqc/9ChQzzY62FsLl54xLdD6eWPSueCJEmYs1JJ37EGc0YS9QY8jltwTU6vmInpwjE0fqHUHfjUZX8uhyZ/QpvG9dm8fQfeDVsT0rwjar1L6RzyEs9ydM6PeNVpRp0eA8tVhLfb7WRn5yBLErb8bC4um0TDof/CLTAUh81K8t7NZO3dxHtvv3lb/B7+k6hqLgiCIAiCIAh3oTlz5lBstVG3TRcKzRZs5mKUGj0KlZK/EkuFWoNH/Wak/baIsaNGVliRW6VSMWP6NHr17sOhFRMIrtcO/8iGKFUaivOzSD6+k6yze3iw+/089dTlk69bIT8/H6cso3WruLq60+nEbLag0GhRu3hQaDFhMBgoLi7GabeXFu3S+wWjDwgl89hewmrVQaFUknt8Lx41wglu3AYatyHv4lnWrZjO+Ndeo2mTJpw8c4a6Q18ol3RDyZPjmIdHcmTaZ0yePJk333yzzPFvv/svuqCaFSbdAG6+AUQ/+CjH5/yXE7O/w+AXjFJnwFaYi6O4iOZNm/DzTz+WJt0mk4lvvvmGKdOmk56RiVOWUSgkAv39GTViOM899xy6f2wvaNiwIUsXL2LYiBGcWvgLOv8QNO5e2IwFWLLT0Lp5Urf/ONxDagEQ2rorB47tBXMxMn/9VlVMlp047FY6d+5M165d+ejjTzh8+A8MIREo1BosWak4CnPRazS4uHtU2IZNpVLh7e1Fbm4uTqcDp81G8u7fUWp0FF08idJp563Xx/Ovf/2rikhufyLxFgRBEARBEIQ7xB9/7EIfUguNiyteegN5eXlYLcU4rAokpRJkGdnpwCU0ArVWS5cuXSo9V7169Vi7ehXvvPMO69Yv5/yOxX+ew4mfjw+vv/ISL7zwAmp1+SrT1cHDwwOFJGEpzMctqPxxh8OBjIykVGIzFqDS6lGpVOh0OsxmM0gSCmVJ+qMLrEnBmcMoFArStq3CnJZIRL8xpefyrBlFYMuuzJo9h7179+IaFo3eu/J97iqdHs+YRkydPoNXX3219DM7deoUe/btI7Tb4CqLsHmHReIVGkGTyFAaNGhAUVERvr6+9O7dm0aNGpWOKyoq4pEBA9i17wAecY2J7joQjasH1sI80g/v5uMvv2bTli0smDcPF5e/i+c1btyY5559lhf+71U8g8NwWEwYAkLwadsNr4i4v1uwyaBw8UTh4kF+6iUSTx5F7xOAXv//7d13eBVV+sDx79xektyb3kiBAAFCL1Kko4CgotKlKaCi6Orq2v2pa1nbuhbsDRCkiIKggoqAoDQh9E4g9BRCenL7nd8f0UhMAZRQ388+PM9m5tyZd+YY5b3nnPeYsJgtFYqvAeQfTAOPiw4dOnDFFVcwfPhwZs2axerVq3E6XcR1bs2wYcN49rnn2HAoEwCvy4kz/wSgYrKHojOa0ev1hIeHcywzHa1GIRwHIRYjvSZOYPTo0cTHx1f77i4WkngLIYQQQghxkXC6nCi6ssrOGo2GkJAQPB4PpY5SfF4fKAoGvQlTSAgZej0+n6/G6zVo0IAZM2Zw8OBBVq1ahdPpJDIykl69emE0Vl0o63yJjY2lVcuW7NixvsJUc1VV8ftVfl9B6/d6KNy7hajmVwBlCbvfn4/LWYqi1aLR6lF9XnyuUvbOfANfaRH1+wwiuG7F7cYiUtqSueZHtmzZSnTX604Znz2xIQe3ryU7O5vY2FigbG24z+cnMLrqAmW/UxQFc0QdnC43L730UrXtHn7kEdZu2Ez9QeMJOKnomd5sod5VN1CU0po1cyfz2OOP88brr1f4rNvtxmgNoGG/qtdJq6pKfn4+LpcLbaAdpbiAvB3rMHa5npKSUkpLSrHb7eX/XPj9Po6uX0azpinle2uHhoYyceJEJk6cWOHaI26+mZ/uvItdC6aRm74T/29ruDVaHWHJLYht1x1LaCQFuzbSr28f5s2dW+P7uhhJ4i2EEEIIIcRFIj4uDs+vGypsD6XX67HpK06/Ljp2CK1GU54AnkpCQgIJCQlnPd6THTx4kLVr1+J2u4mJiaFr167odGeWjtw2fhx3TLybE2nbCIhrQGlpKS6Xq/y86veTvfZH/G4n9rgk8tJ3o9HpCAyPwWw2UVrqwOV0UJy+E5+jlMjGrYlpfSXWiJhK99KZzJhCIyg+sv/0gquicpZOpwMF/F7vKT/u93owBFS/XVZWVhZzvvySyI69KyTdJwuMjieifQ9mz5nD4489RkRERPm5qKgovC4HrqKCKqfrFxQU4HK50eiM+EoKCW2QQt6BHWiNZiLaXwUq5OXnExoSgupykP7TfMjN4D/vv3HKLdViYmLwuFzkHtpLSKsuBMTVB0Wh5Mh+8nasI2fPFkLrN8WdfYS73qj+i4eLmSTeQgghhBBCXCSGDRvGx1Omkp++h+CkRtW2y9q0msT4eDp16nQOo6vazp07efbZZ/nhxyW4vF5AQaMoxMXGcNeEO5gwYUKVa3+rMnjwYH5YvJgZn39KUEp77MmtMQQFoygKjhOZ5Gz8hYI9m9Dq9Wyb+3F5QqjVG4lo3Io6Ha7ClZmBKy+bZsPvIqRu9e8QQPV6CQsLo/BwGjGtO/9xXPXjc7lAo6DVG1EUhfyDewgNCamQ7DZv3hyzycSJvduIbdu12vv4vR5KDu2lQ59bq20zd+5c3D6V8CY1VxqPaNqOrNU/8tVXX3H77beXH+/bty/2oCAyN68hoXOfCp/xeDw4nU60RjNFB3bjcxST2O06whoeYt+P8yhI20JAQjIavZEsRxGerIPYAwP4ZOoUOnfu/OcQKsjKyuLWceOx1WtMaOf+KDoDGp0ejU6PKSwKe+PWHF08h8zNq3ns4Ye4+uqra7zexUoSbyGEEEIIIS4Sbdq0oWOH9qz5cR7mkNswBVcu9pW9dR1Fuzbz75dfqrQm91xLTU1l4OAhFCt6InpcT2hyczQ6PaXHM8ncuIpH/+8pduzcyZtvvHFaybdGoyG5YUNUr4e8bWvI374OfVAwqt+HpygPnTkAe3IrCtO2ENSwOZGd+uD3uChM20729nUc37UJDX60ioJGV/XossfjQVVVXAW5OE5kMWTEcD6dMZPSE1loDUYyNq0ia+s6PI4SAMzBYUSktCVvRyr/+sddFdbEh4aGctOA6/n82x+IbNauyurxAFlbf0XxOBk9enS1z56RkYHRFoLOVPU1fqczmTEE2snIyKhwPCAggLFjRvPa2+9iT6iPLS6p/JzD4QBFwVNSSPbq77DHN8AaFoU1LIrgeo3J3raOE2nbKcnPwVeUz3PPPsMdd9xRqZL3kSNH2LRpE16vl4SEBFq2bMm0adPIKy6h2ZC7UXQGikuKcTic+DxlMxUUIK7nDRzMyzrjGRAXk0v3yYQQQgghhLjEKIrC5I8/5vobbmT3jHewNW5FeEprtEYzjhPZHN+8htKDe7nt1lsYO3bseY3V5XIxaswtOMxBNB44Fq3hjzXj1sgYkvoOIiehPtNnzqJd27aMGTPmlNcsLi7m7ffeJ6b9VcS178nxXZtw5ueAosEYGoUSHIXGZEEXEETB7o2onfqgC7QT0rITAUlNOPrtZxg8DpKbpnBs3U/YYhNRNBpUVaW0tJTS0tLfirRB9urvcTsdxMfH06hhA3Z+8QFupxNVoyEouQWW6ARUn4+iA7tIX/EtelT69+9fKeZ//etffPfDYnZ/NZmkvsMw2ULKz/n9PrK3ruPYykXcOX4sSUlJlT7/O6PRiM/tRFXVGqd2q6qKz+Oqco3+Y489xtZt21gyfwq2Rq2Jat4ekz2UkhPZ5O7dSuHujRgsATTsN7z8MwZrIHXa96RO+564iwvZOvlFWrZsWSHp3rZtGy+99DKLvv8et7esroBWo9C8aVPS09MJatC8/AsDm81GYGBg+T7pWq0WnU5HSdN2TJ02nSeeeOK8f2FUGyTxFkIIIYQQ4iISGRnJ94sW8uabb/Lp9M/Yu3kNqqqi1WholpLCnW9NYujQoadcd1vb5s+fz5GMDBrfcn+FpPtkYY1bkrd3O+++/z6jR48+ZcwLFiwgv6CQZq2uRGc0E92iY/m5nBMn8PpVtHojoU07kL99LaXpOwlISgEFrEF2Glw3ggNffshNN97Ia2+8yb7Fc0no3p/iUiculwtFp0fRacnb9AuFe7cSGJPA8y//lxZNGuEqyMUQnUD01YPQm8v2Bff7vVhi6xLavAM5y+Zxz733sfTHxRgMf4ym16tXj7lfzGH4iJFs//RVrPENsIRF43O7KNy/A9VZzG23jOa5556r8dmvvPJKXnntdYqOHSzf+qsqhUfS8ZUWc+WVV1Y6ZzAYmDljBpMmTeKjTyaze9Z6/KqK0+lAVTTEtu5CWOOWZGxcibu4EI1Ojy0+iZCklLLK54oCKuWF7ABWrVrF0OE349SZiex6HSH1U1C0WoozDrF34yqyMjMJt0dViEOj0VT6YiAwOp4jW1ZTUFBASEgIlxpJvIUQQgghhLjI2O12nnzySR566CG2bt1KaWkpERERNGrU6Lwn3L+b88WXWGLrYq5iOvzv3B43AQ2bsfmrqdx3331MmDCBxo0bV9t+z549mOxhGAPtFY57vV68Hg/a30ZVDUEhGIJC0LodREZG/tEwOJiM8FhWrlrFHbeN5733PyB1ZyrmhEYY7eF4nSUUpW3D53aQ2LM/se17UHg4nbXTJ6ELCKLhDWNweX143U4AtBotloAAzOHhBNvGsHXGW3zzzTfcdNNNFeJr2bIl639dy1dffcX0z2Zw+EgaJpORGwffwK233kqzZs04lcaNGxMUEMC+pd8QffUgNFotRqMBi8WC/rc9yv0+H8dWL6FRwwbVrr02GAw88MAD/OMf/2DNmjWcOHGCKVOmsHz9Zhz5OWyZ+Q5aoxmDLRSf20nG5lUYrEEkXXUjfq8XnVZD/fr1gbKCbCNHj8FrC6fJgDFo9X984WBPbIgtoSH+ADsnUleQu28nIUnV963fV1aV/1Kdbn5pPpUQQgghhBCXAZPJVL6V04UmMysLY3DVe197vB4KCgrxejz4jFY8Ph+fTJ/JtBkz6XLllbz91iTq1KlT6XOKolQYbf3d79PDFc0fU5T/PCXb7/ORkfozBccO8ePBNH5ZvRZUP66SEjx7NqGzBKI3mYls3pbIlh3K9+22RsXi12ix1G+ONchG4G9T0wEUlLJFyoA1IgZLbF0+mTylUuINYLVaueGGG7DZbOTl5REYGEjXrl1Pa3R38eLFjB1/G3kFhThd2WQu/4awjlfhV1UcDgcWiwWj6ufgsgX4c47w0luzTvkFjF6vp0uXLkDZFznf9umL1ukkpsdNBNZrUr7nufNEFsfXL2Xn/E+x2ILp2bUL9erVA2D27NmcKCik2cAJFZLu3ykKRLTqTMnhfRxL/bnGxDsvbTsNG9QnMDDwlO/jYiSJtxBCCCGEEOKss1qteE+UVDru8XrIzc1FRYPWZMHvdKLR6al/3Wh8bicrV37HNf368/13i4iJqbjNV0pKCs78HBz5OZjtJ42k/ynJdOUdx1OUV75NmN/nY/dXU8lL30NAvRRCGrUiMr4uRbnHObZlLUVpWzEG2UkZdgd6i7XCtdyF+QBYYhJwOpxYrJZqk9rA+Prs2LW+0vHS0lJefPFFpk7/jPz8AvyU5etWi4nBN93EE088UaEa+snWrVvHqFtuRRuVSOubB1NwZD97F87i4Ox3scYloTUH4C7MxZN5kKjwcD6ePJmGDRty5MgRIiIiKkx7r87ixYvRWQKIvXoY5sg6ZdPKf2MKjSS29xCOfj+bwr2bmXDH++XnZs6eTWBiIwzW6pNlq9VKUHJLsn9ZVO1WZqUnsihK38ltL794wczYONtOr26/EEIIIYQQQpyBq3v1pOTAbrwuZ4XjBfkFqIoGvdmCRqujYM9mdEYzQbGJhDVsTqPBEziWX8wjjz5a6ZrXXnstEWGhHF2/osJxvU6Hoij4vWUFu05sWYXeEkhIg6YAHP7le/LS9xDbdziRHftgr5OIwRqAwR5GeNueJNxwG66iQtIWzq7+gRQFn89X4zOr/DYKfpLi4mJuvGkgkz74CF29FqSM+Rdt73me5uMfI6hFV6bPXcA1/fqTmZlZ5TWf/89/8AeE0KD/CHQmM6H1U2h7x+Mk9boBPSr+/OOoRfnoFYXhQ4fwwIMPkdK8Bc1btaZho8Y8/vjjpKenVxtzSUkJ02fOIrp1F6zhkXidJXidpfi9HvxeDz63C5/DQWjrbhjNFjIyMsjOzmbv3r0cOnwEc1hktdeGslkZAeFR+L0ecvftrHS+KOMQe+dNpnmTxgwdOrTGa13MJPEWQgghhBBCnHUjRozAqFE4unpJ+TG3243X6/2t2JqCuyCXgh2pRKS0LZ+qbAgIIrJtdxZ99z1HjhypcE2TycTDD/6Lgl2pHFm3DFX1A2XFuswmEz6Xk5wNP1GwZwNxnXqh0enwuV1kbFpNSPOOWKLiARWLxQLw2+iqijEkgohOfcnbt5PSE1kV7mkMCkZrMFF6NB1OMRhbdHAvzZqmVDj29NNP8+umLTS4cTwJnftisoWgKAoGSwCx7brTeMidHMg+wZ133VXpenv27GHFLyuJat2lwii0zmgiumVHmg65g5aj7qXZqHtx+lVem/QWxbYY4q8ZQcK1o9EmteDdKdPp1qMnK1asqHR9gNWrV5NfUEBks3aEBAdjC7KhVRR8Lgc+lwPV68ZsMhIVn4ilThKPPvY4jZs25YpOnTh06BBF+Xll25FVXgFQ/o4tBgM6rYYjS+ex/bO3OPjL9xxa+QM7Zr3Lns/fo3n9unwx53OsVmvVF7kESOIthBBCCCGEOOuioqJ4+sn/I3/TKtJ/nI+7pAiXywkaDYqiofjgXg5/NRmj2Upch14VPhveuBVun5/FixdXuu748eN57OEHOb5uCVumvsqh1YvJ2r6OvG1rODDvfTJXf0dUiw5EteoEQO7e7ficToIatMDndmG1Wsu3q9Lr9aCqqD4vgfWaoDVZOb41tcL9NHo99roNKNi5AY2/+hHv4swjOI4d4NZbbik/lpeXx4zZswlv3ZWAyMpr1qEssY/t3I/lP//Czp0VR4Q3bdqEx+cjOKlJtfdVVZWiUifmmLoExjck6eqbCElqTHBiQxI696XZLQ/isUUycvQY9u/fXznu4mJUFQyWwLIk2WImLCyUiIiI8j82m61sqzWNntziUqJ6DyRx8Hhs9ZLJT9tGXl4e+QX5VLH8HoATuzfToH4Sc2bN5Kq2zTBnpmE8tocuTRswc9qnLP7h+4pF8C5BssZbCCGEEEIIUSsmTJiAXq/n6WeeZfv29WhCo1C1Ojx5J/AU5REYnUDj60ejN1cc6dTqDehMZgoKCipdU1EUHnroIa666iqmTJnCVwu+Jq+0FKvVyuB+V7N23ToydqayK/84prBoCg6mgVaL1mjCbDZjMpnw+/3lW1pptVp8Hjc6kxlDcBjuovwK91NVFb/bBS4HBxfNosH1o8v2pFYoX49cmpPJ/q+n06p5c/r161f+2YULF1LicJLUtOYCeCFJKRxdYeHLL7/kiSeeKD/u8/lApcJo9585HA68Ph9avRFFUznz1RoMNLxuJNumvsqHH37ICy+8UOF8cHAwGkXBWZCLNTy6/LhG88cYbXFxMaUOB15HEbakZMJSWgGQcNX1bJ38BkX7tkP9FLRabaXiaKUnsijcu5X7HnmQvn370rdv3xrfxaVKEm8hhBBCCCFErVAUhfHjxzN48GBmz57NO++8w860PUQ270hk03YERMdXWUzL63LgdTkJDg6u9tqtW7emdevWvPnmm3i93vJtqDweD4sWLWLGzJkcOXoUrdZHqd+HqvpxOBxl06IVBbPJhNViJSgoiLy8PHwuJ363C+Wk7ay8TgeHfvoWb8ZB7r5zAh9PnsKvbz1FYINmmCLqoNNqcB7Zj/PIPlo0TWH2rJllo+i/yc7ORm+2orcE1PieNFot+qAQjh8/XuF4YmIiWq2GwmMHsdWpW+VnHQ4HCgrO40cJSm5eZRut3kBw4zZ8Nms2Tz31FCaTqfxcx44diYqMIGvrWur1vKHSZ1VVpaS0FG9JIc6sw8S1H172nkuLKUjfg6LVkvHTfLJ+WYgpPIb4K7oR0aQVikZL/oE9HPxxLs0bJ3PbbbfV+A4udZJ4CyGEEEIIIWqVzWbj9ttvp0WLFvTtfy1hyS0IjEmotv3xHRsw6bSnPTp68t7Per2e66+/nuuvv57U1FQG3HAjXreL0oxDBNVLAQVUnxeH04XD6STYbsdut3P8cDqOzEPo9VoO/vQt7uICivfvwqLXccP11zHl02loAoKwWW0UH9xD4a6N+H0+NEC3Lp2ZO3cuQUFBFeKyWCx4Xc6ydjWMWgP4XY7ytee/a9++PckN6nNk48oqE2+vy0ne3m2UZBzAXZhLaIPq9wMPqlOPAxtXkJmZSWJiYvlxg8HA2FvG8J///o/C5JYExSZW+JzT6cTrdpG9djF6ayAhjZpTfOwwOz//GJ/bRUDDZhjDo/G73ZQc2suehTPZ/+M8LEE21NIiruzYkcmffHzJbhN2uiTxFkIIIYQQQtSa7du3M336dPbsTUNRwG4L4tCKbwgYMgGd0VypvbMgl6zU5Qy6/rpq1/26XC40Gk2F0eU/O3HiBEOH34w3MAybMZC8rWsIqvvb/tQaLRq9AZ/TQX5+PiEhIZTu3kiI3U7ThBgKCjOw22wMeOIxAgICeOChhwlp1YX4K3uj/DYF2+fxoGg0nNi7lXU/fMF///tfnnnmmQoxdOvWDY3qJzdtG2HJLaqNtTjrCO78HLp3717huEaj4f777uOOiXdzdN1yYtt1A8oS7oM/LyJ7eypelwPVX1ZPffuXHxGW3ILEbtdisFYcZT+5EN2f3XvvvaxavZqf5n9CeKuuRDa/AoM1CL/fR27ado7+uhRvST6Nh47HU1LEztkfobOFEH/tcHS/jearfj9BTVrizT1O5ndfEKDxM/vrBXTo0OGS3SLsTEjiLYQQQgghhDjrioqKuPOuu1j43fcoZivGyHhQ/RQXFlNakM+maW+Q0LkvoQ2aodFq8bldHN+1kcxfl5IUG8l/nn++wvVycnKYPn06n0yZyrFjxwBo3LgR4269lcGDB1eqiD1jxgxy8gpoNvYOnPkn2Dr7fQ5/N4PortdhCApGQUFrMuPKzWbvd0twH9zBB+++w6BBg8qv4ff7uaJDByyJjYnv3KdCAqn9LekPb9QSV34uH3z8Mffccw/h4eHlbRo1akSXKzuxat0y7HWT0Rn+mOL9xz18HF71AwlxdejVq1el80OHDiU9PZ2X/vs/8vdtJyS5JUfXr8BVUkRwk3YE1WuCzhKEotFQsGcTJ7asovDoAZoPvwtDwB8j8Hn7dxEWGkp0dHSlexiNRmbNnMkzzzzDp599xtbUn9CbrfjcLtylxXj8fpqNvY+AmHgOLF6AH4i9fiRa0x9fnCgaDYpGgz0ukeBh40ib8R45OTmSdP9GUdXqas9dHAoLC7HZbBQUFFSa2iGEEEIIIYQ491wuFwMHDWLl+o3U6TmAkAZNy6da+zwejqz+kSM/f4dWq8UUaENnsuApLUKvwLX9+/HySy9VSGA3bdrEkGHDyc7NI6h+c4Lq1EVV/eSn76L4wG5SGjXki88/JyYmpvwzba9oT7Y2kPp9hwCQfyiN3Qum43GWYomth8EWgs9RQmH6DlS3iykff8TIkSMrPMfy5csZMHAQDQbdXuPUeK/TwZaPXuC5J5/g7rvvrnBu586dXNP/WhyGAOK7X09gVFz5OUfucQ7+/C3ezHRmz5hBjx49qr3H4sWL+eDDj/j6m6/x64zEXzMSS1g0er0eh9OBzmRFo9XiLsrjwPxPCAiPoungsnXV7pJitk/7Hw/ecxePPfZYjX1XWFjIt99+S0ZGBiaTCUVReOSJ/6PByImYQyNYP+lZglLaEH7l1RU+p/p9eEtLsNvtmEwmds94n04NE5n75Zc13u9idia5qIx4CyGEEEIIIc7Y/v37mTp1Kl/MnUdubi6BQUFce01fbr31VjZs2MDPq9fQYHDlhFWr15PQ9Ros4dEcWjSTMcMGExERQWhoKNdeey2xsbEV2h89epRBQ4ZSpDXT7NaHKhQqi2zajtIT2eyeP5nBQ4exZPEPmEwmVFXl0KFDhHW6prytPb4+bW9/jJzdmzi+axOe40fRGo1ENWlLUdpmevbsWekZd+3aBVodAdHxNb4LncmMOSK2rP2fNG7cmAVfzePWcePYO+c9DCER6AKC8TmKcWYfISoygnemT68x6Qa4+uqradGiBct/XoG9VQ+iGzZBp9Wiqio+nxePqxRMFgyBwUR26M3RpV+Qn3EYrd7Ige9mEh0azLhx42q8B0BQUBDDhw8v/9nr9fLOe+9xbM1PxF7ZC5/TgTWxQaXP+dxuNBoNJqMRgIDEBmzeuuGU97tcSOIthBBCCCGEOCNTp07lwYcfwavVY2vQAnu9VrhLipj6xVdMnTadwAAr1viGNY4ShzVqQdavP1FQWMjrr79ebbuPP/6Y3OJSUkbfid5sqXTeEhpB/etGs3XGJBYsWMCQIWUj3FqtFr/PW6Gt1mAgstkVRDa7Ar/PR+7ebRxZ9xOlJSXcc889XHvttQwaNOisFwJr3rw5v65Zw9KlS1mwYAE5OTnYbDZ69+7Ntddei8FgOK3rfPvtt7g8fqKbt0f32wwCRVEIDg4mLy8Pt6MERaPFHFsXRWdg57zJeArz0Kh++g4ehMvlOuPYdTodTz7xBLffNZFj2t/Sx5Omj6uUbbemej1lo76/nVMUBf/FPbn6rJLEWwghhBBCCHHaFixYwD//9SBBjduS2K0/Gt0fBc7iOl3N0fXLSV/yFRHhNY8SK4qCPbk5S5b9VG0bj8fD1GnTsSW3qjLpe2/grQAARghJREFU/p01PBprnSQmT5nKkCFDUBSFtm3asH7fDmJad67UvujYIXZ9/SmuogIMYVEENmrJyrQj/Pjgwzz9zLO8+fprDBgwgEaNGoHPS3HGoVNONXdkHaVx48bVttFqtVx99dVcffXV1bY5lePHj2OwBpTtI34SjUZDSEgI+fn5OJxOAHSWQLxFucR36YOiaPj2p1/4tU9f5s+bW/ZcZ2Dw4MEUFhby0KOP4XO7KE7fgzEsClVVUb0eUFUCAwMxn1SVvejQflonJ//lZ73UVC5pJ4QQQgghhBBV8Pv9PPPcc5jqNKBuzwEVkm4o2486pm037E3bc2L3VnzumkdYdUYzrt8SxapkZGSQl59PcGLDU8YWlNCAbTu2l/88ftxYSjMOUHj0QIV2JdnH2PbFByjWIBKGTKDOtSOo128IjQaPo8m4B/FFJjD2ttv4+uuv6dChA9ER4exfuoDCowfw+3xV3jtz02pMBi1Dhw49ZZx/R/n2ZP7KcbhcLlwuFzqjCb01CFQ/0W06k9ClL/Gde9Nk5D/I9SoMHzECj8dzxvceN24cv65eRfs2rSncth5faTEavw+rxUxYWFiF4nalxzMpPbyPW8eM+VvPeymRxFsIIYQQQghxWlasWEHavnRir+hebbVqjUZDcJMr8Hu9HN+5scbrlZ7IIiIi4tQ3Po3K2IqicPLM5n79+tGlU0f2fT2N/INp/F5Tev+yBWgD7dTpPwKtNRCdVoflt9F0Y6CNpH5DMSYkM+6222nZqjWHjx6j4GAamz59g9QPX+TImqUVEvDjuzaR9etSbh83jrCwsFM/y9/Qo0cPFJ+HvH07K50rKSkBrQ6N3ogj6zCeojzsdf8YcdZbrNTrN5T9Bw6ycOHCv3T/pKQkpk2bRkSAhcJVPxBiCyIwMKjCPurOvBPs/2o6TZIbcv311/+l+1yKZKq5EEIIIYQQ4rRs2bIFjdFUY7ExRVEIDAvHYA+jOPMIVLN9tc/tonD3Zu68755qrxUVFYXdZiP/4F7sCZULep2s8FAaTU+aQq3X6/ls+nRGjxnD8vmTMYRGYgyLJi99N1G9bsTv9aDT6wgODq74JYKiENi0PWlb16MGR9Nk+D14NXryso5RmLaV9BWLyNy2Hnt8fYoO7sFblMfoETfz5JNP1hjf2ZCSkkL7K9qx/tcl2BMbotWXrQ33er14PB60RjOqz8fx9Usx2cMqvTNLWBTm6ERmzJzFgAED/lIMSUlJzJg+jRGjRrP9g5exNWlNYFxdVJ+X/L07KUrbRsO6icyZPRvjb4XWhIx4CyGEEEIIIU6T3+9Ho9Wecm9mi8WCotFQeHg/Ve1e7Pf52P/9F5h1GkaNGlXtdQwGAyNvHk7+rg14nY5q25WeyKLk8F5uvaXi1Gabzca8uXOZO2c2fdq3Rj28C41WQ0j9JtiD7YSFhqLVaCt8prCwECXAhjkqDpMthICoOOwRUdRp1Iy4zn0JiG9IccYhjv76E6W52QD8um49kydPxnfSSHhpaSk7d+5kx44dFBYW1vi+zsQrL72Exetg19yPKMo8DIDP50MFXAU5HP7uMxxZh0nqMxBFUzndM4VFcejw4b8VQ+fOnVnx0zLuu308mvQdHPt6BhmLPifSU8gLTz/FksWLiYuLO/WFLiMy4i2EEEIIIYQ4LfXq1cNTWowj9zjmkPBq22n8PtTiPDweN7u+/ISoVp0Iik9C9fvJ27+L7NRfUApzmPzxR5W2D/uz2267jekzZrJnwac0vH50pcJijrwc0r6eRqOGDbnhhhsqx6LR0LNnT7p168Z9993H5JmzMfy25ZiqVpzF7vf7cDgdaPQmtCYLfu9Ja6G9bg4u/AxH/gnCWnUhsG5jIuvE4SrIJWPrrzz46OOsWr2a/3viCT766COmz5xFUVERACaTiSEDb+LOO+8848Jmf9a0aVPmz5vLuPG3sWfOexiCI1AsgZTk5eDKy8YYYKPJwLHYE+pX+Xmf24nJ9PdHohMSEnjqqad4/PHHycvLQ6fTYbfbT/mlzOVKEm8hhBBCCCHEaenbty+R4eEc2/ALSVfdWG27rC1rCTSbeO2dt/jwo4/Z+M1neP0+FBR0Wg3dunTm4Yc+oEOHDqe8Z1xcHJ/PmsnQ4TezdfLL2Bq2IKhOXVS/St7+HRSl76RhvUTmzJ6F2Wyu8hpfffUVT//7GfampeHyesnPzkRnCaBQU4TVaiHAWrY3uMPhBBQUrQZPXg6GqD9Gbfd+NxtncQEJN4zHGBKOp7QYv86ILS4JW1wSuft28MVX01mwYAGqOYDgpm2oV68RoFB4eB/T53/Ll/O+4tMpk6vcM/xMtGzZkl/Xlm1P9vXXX5Odnc03C3cQ2qApyQNGodFqq/yc3+uh5MBuut1+6v28T5dOpyM8vPovYUQZSbyFEEIIIYQQp8VgMHDfP+7h0f97kqyIWCKbX1GpTe6+nWT+uoS7xo9l+PDhDBs2jK1bt5KWloZWqyUlJYX69aseja1O27ZtWfnzCqZOncqUT6dxdNd6FBTq1avLuOeeYfjw4WV7SFdh6tSp/PNfD2KKTyZ5yJ3s/Goyxft3EnZFD/weN8VFxfi8Pmw2Gz6/D0XRUJK+G29pERFN2gBlU9lz9+8kpudATKGRACiKBr/fX34fe91GmOu3IG/rGtre9jDGQFv5ucDYeKLbdGbvgs8YfetYfv5pGXXr1j2jd/C7Y8eOkZaWBkCzZs3Ktyd79NFHef/Tz/A6SjAEVP0uMjasRPG6GPM3qo37/X5WrFjB7NmzOXL0GGazic5XXsnw4cMlAa+Bola16OIiUlhYiM1mo6CgoNpfNiGEEEIIIcTZoaoqjz32GO99+BHGiDqEprTFZAvBXVJEzo5USo/s44brruWjDz9Er9ef+oJnyO/3U1xcjEajwWq11ji1+cCBA1zRoSOWhq2p2+N6FEUh/aevObZpFXWuHYUlNhG/14PP5cBut+PxeMjPziBj0WysIeE0GzKh7DorFpKx9Vfqj7wfjbZs7NJTWkSA1UpAQNloeUlJCTlHD3F4/ic0vGEEYU1aVorH53Gz/cNXuOuWUTz33HNn9Nypqam8/vobLPr+ezy/rSU36HT0u6Yv/7zvPqKiori6dx8yip3UvWYIASeN1vs8bjI3riJr1WIeuPeev1wI7sCBA4waM4at23egD47AGBqBz+Wi9Oh+LHodTzz2KHfddddlM938THJRGfEWQgghhBBCnDZFUfjPf/5Dt27d+PCjj1i+fAF+v4qiQNs2bRj3+AMMHDgQbTXTnf8ujUZz2gNun376KR6NjoSu/cqTwYTOfSk5fowj30zD1rg1tpS2aIxG8rOO4Tywm2PrlmMwWUnud3P5dVxF+RhDIsqTbr/PC6qKwWAob1NaWoopJAKN0YSrML/KeLR6A/aUNnw2cxZPPfXUaX8xsXDhQsaOvw2f1U5El2uxx5dVK88/uIeFv6zh+8XX8unkT1gw/yuGjxjBzlnvYYqIwRQeg8/touTgHrQ+D/+67x88/vjjp3XPP8vKyuL6G27gWEEpSQPHExibWP5OPY5Sjq5dxuNPPY2qqtx9991/6R6XMkm8hRBCCCGEEKfF4/FQUFCA2Wymb9++9O3bl9zcXPLz8wkICDi9PbnPoblfzcdWvxla3R8Jrkanp8lN4ziydikZm9eQv+1XVL8f1eclIjwcm16HNiIG/W/rvgE0Wh1+jxsAFRWf24VOp6uQePt8PhS9BtXrRaOrPs0KjE3g8IZfOHHiBFFRUad8hv379zP+9jvQxdan0TXDKqzfjrJ3IKJpO/Z+O4Nbx41n1S8/88uKFSxZsoQZM2dy8NBhTFYTna+dwMiRI0lMTDyT11fBK6+8wpGcfBqPuLvSVHa92UJi9/4oisKzz/+HwYMHExkZ+ZfvdSmS7cSEEEIIIYQQNdq8eTP/+Mc/SKhbj+TGTUioW49+117L3LlzCQoKol69ehdc0g2Ql5eHMSi40nGNVkd8p960u/1xUgaOJ6FTb0wGA/PnfsmUKZPxZKST9v0XeEqLAQiqUxfn8WO4CnLwOR3g9xMU+OdRd4Xig3tR/V6C4qpfv+33eVGUsqJkp+OTTz7BqWqo33dIlUXTNFot9a8ZSqlPZerUqeh0Ovr06cPUKVP4aekSvlu0kCeeeOJvJd2FhYXMmjOHkGZXVLt+HCC2fQ9cfpg+ffpfvtelShJvIYQQQgghRLUmT55Mr6t7M2PBIgKaX0mda4YT2f16Nh7M4tbbbmfUqFE4nc7zGmNOTg6TJk2i7zX96HDllVx73fV88sknWK1W3MXV76Gt0WoJTkzGEh6D0WgkNjaW/v378+H77+E/uoctn7zErq+nUZRxCNXnJXvtElSfj+BgOwajocK1tFqFExt/JjA2AWtk9Vuk5e3dQUJCAiEhIad8Lp/Px2czZ2Fv1AqNrvpp6Vq9AXtyKz6d/lmV+6b/XampqRQVlxDWuGWN7XQmM5b4Biz7aflZj+FiJ1PNhRBCCCGEEFX67rvveOChh7E1bU9it/4omj/G7SKbtiP/wB4WffMZ9/3zn7z37rvnJcZZs2bxzwf+RanHS0BiMnprMIeOneDnhx4Brwdy8kjo0q/aLbYAcnasp1XLlkRHRwNw00030aNHD2bPns3X335Lfn4B4U0asXvvTkpsdsI6963weVdhHlnLvsKReYg6N4yo9j7OvByK0rbx2NNPodGcegy0uLiYwqJCYiPrnLJtQGQsGdvX4nA4sFgsp2x/JpxOJ6oKOmPV27WdTGc0UepwnNX7Xwok8RZCCCGEEEJUoqoqL738CsbouiR2v7bKStX2xIbEduvPnC++5MF//YukpKRzGuO8efO4655/EJDckmZd+6E3/5FwuosL2fvNTE7s3caBld9Tr2u/Kq+Ru28HpUfSGP/IpArPGBwczIQJE5gwYUL5salTp/LIY4+zZfdGAhKS0VkCcBfkUnI4jdBgG4mtWrJ31Y9YQiIIiq9X4T4l2cfYP386yfXqMnLkyNN6PoPBgIJSvr68Jr7f2tRGJfnIyEi0GoXSnExs8TX3sSs3m9i2zc56DBc7mWouhBBCCCGEqGTTpk1s2rKFqDada9weKrRhM3w6A1OnTj2H0ZUVenv08Scw121Mvd4DKyTdAIaAIBoPHo8lNIJjq38g7fs5OPKO//F5RwlH1i4l/buZ3HDdtQwePPiU9xwzZgybN27g348/StMwKzG+Qq6oG8Vbr/+PX9es4V8PPEB8WCi7Z77HjmlvcfiXxRxZ+SO7Zn3AnmlvkRwbxdwvvjjtquxms5mWLVqQl7at2jbu4kIOr/6RAz99jcVk5K233iIzM/O0rn+6WrZsScMG9cnavKbGdiXHM3BmHWbokCFn9f6XAtnHWwghhBBCCFHJ7NmzGX/nXbS557lK07RVVSVv/04yNq4m/8BuvG4XRp2O0SNHMG7cONq1a1fr8c2fP5/RY8fRaNS9WEKrr6Cdn76HPZ+/T2hYKPmFxZhDwlE0Wpx5xzEbDYwdM5qnn376L48UOxwOXnnlFaZ8Oo0TeXn4/H78Pi+qz4fZYiUkOJiUlCbcOmYM/fr1q1AJ/XTMmjWLOybeQ8NBdxAYE19+3O/zkf7T12RuXoOqKBjDIzEYjfhyMjEoMO6WW3jmmWfO2gj41KlT+cf9DxB39SDCU1pXOu9xlLLni4+oE2Ri7erVtTLyfqGRfbyFEEIIIYQQZ8efxulUv5+9380he/t6jBExhHe5BkWrx19ayBc/LOXzL+fyxKOPcP/999dqWGvWrMEYElFj0g1gS6iPIdDGP++9l/j4eDZt2oTP56NevXrcdNNNVRY5U1WVlStXMm/ePHJycrBarfTs2ZPrrrsOo9FY3q60tJRBQ4awal0qwS3b06hFe4z2ELylJRzfmsqJDSsJDAzgvXfeKV8/fqZuuukmPp02jdVfTyXh6kEE120EwN5Fszm+ZzMhHbpjbdAEc2AgIcHBeF0ujm9cyzsff8KJ3Fzee/fd01pPfiqjR49m46ZNTP50GgUH9hDRsgPW8Bh8bic5u7eQs2kVIUYdn02bdlkk3WdKEm8hhBBCCCFEJSkpKei1WvIP7CGkfpPy4wdWLCJ7xwairroJW6MWoKp4SosJsFqwduvL0TVLefY/LxAZGcmIEdUXGvu7XC4XGv2pR48VjQat3oDf72fgwIEMHDiwxvZpaWncOm4cW7fvQGcLQWcLQXU6mD77c6Ke+D/efP01+vYtK6727LPPsmpdKklDxhFw0mi03hpATIduhDZpwd4Z73P7HRP4esH8v/ScBoOBmTNmMHbcOJZ+O52jQSForDZO7NtORO8bCEhKxmgwYrfbQVHQmUxEd+yG0R7C51/O4qYbbyyP9+9QFIXX/vc/mjdrxtvvvsu+Lz7E7y/7UsZsMjDouut49NFH/9a2ZZcySbyFEEIIIYQQlTRt2pR2bdqwacPPBNdrhKLR4CktIWPDL4S261aWdAM+rwdQMZstKBoNdTpdhePEcV565b8MHToUnU7Htm3b2L59OwANGjSgVatWNa4bPx2xsbG48nLwud1oa5i+7SoqwFNSRJ06p64MfuDAAfpfdz25Xqg7cCxBcfXK43TkHufw8kWMHHML06dOoVOnTkybMYPQtl0qJN0nMwbZienZn5XfzGLr1q00a/bXio7ZbDa+mDOHtWvXMnXqVL6YOw9zZCzhTVtiMZvRV/H8IY2bkf3rz3z8yeSzknhDWfI9duxYbrnlFtauXUtGRgZGo5F27dpdkPu4X0ikuJoQQgghhBCiSg8/9CC+7CPsXzwXv89H9vZUVMDerGwNt9/rwe9yYjFb0J60Djy6XVcOHj7Ma6+9Rp9rrqFrj56Mv/Muxt95F7369KF7j54sXLjwb8U2ePBgtD4POTs31tgua/MabEEB9OtXdVXzkz319NPkON00HHobtvikCl8OmEPCaTBgJIa4+tz7z/v5+uuvKSopJaLlFTVeMzipMYrZyty5c0/vwaqhKAodOnRg0qRJoEB0u47YbLYqk+7ye6e0Ytnyn/B4PH/r3n+m0Wjo2LEjN910E/3795ek+zRI4i2EEEIIIcRlJD09naeffpqWrdtQt359WrVpyzPPPMOBAwcqte3ZsyfvvDUJZ/p2tn78EpmbV2MICUfR6vGUluBzOjCZTAQFBVb4XEBULKpWz9PPPMOmI1nEXjuclv98lpb3P0f8DaPZXVDKyDG38PHHH//l54iPj+fGGwaQsfJ7irOOVtkmP30PORt+YdwttxAYGFhlm98dPXqUhYu+I6JtV/Rma5VtFI2GuK59yczOZtmyZWiNJgwBNRfVUrRa9PZQsrOzT+/BTsHpdOL3q+gtVcd4Mp3FiqqqlJaWnpV7i79OEm8hhBBCCCEuEx9++CHtOnTkjQ8/Js8ehS7lCk4ERfDa+2XHJ0+eXOkzQ4YM4ZflPzFhzAgoPIHf68XvcWHU6wgODi5bW0zFaeNenxeny4khIpbkYbcT0jAFjU6HRqvFXi+ZhoPHEtSyIw8/9hgbN9Y8Yl2T/736Kle0bMbeOR+wf/E8ijIO4SrMp/BwOmkLZ5P+9TSu63M1jz322CmvtWLFClweL2FNWtXYzhwagTEilvT0dHxuN36v95TX9rscmM3m036umlgsFswmE84TOads68zLwWgwEhAQcFbuLf46SbyFEEIIIYS4DMyePZuHHnucgObtaTrhERKvHkBMh+7U7X0DTe94BEtKWx546GG++OKLSp9t0KABzz//PC+/9BI6RyGhAVaCg4MrVPg+2Yn0NHwuJ3W69EapoqK2oijEd78GrEF88sknf/mZAgMDmffllzzx4ANYc4+Q9vn7bP/kZfbP/YgIbyEvPvtvpkyZclpVtktKSlB0OrSGqp/pZBqTGavVCl4PGet+xl/DVO7S7AxcOVl07979TB6t+ntrNAy66Ubyt6ai+v3VtlP9fvK3pDLophsrLAMQ54fs4y2EEEIIIcQlzuPx0KJVawoCw0i6bliVhc1UVSVt/gyCHXlsSk2tMlnNy8sjpXkLzE2vIK5z72rvt3n2x5Qe2kv7B/9TZeL9u2Orl1Gc+jMH0/ef8f7Wf+bxeNi0aRNFRUUEBwfTokWLM9pGa/78+YwaO46U8Q9iDAqutp3b7WLrh6/gK8zF5wev34chIIjIllcQfUVXDIG28raq38/euZ8S4imu9p3+FVu3bqXHVVcR0KoDcT37VepPVVU5suw7ClNX8uP339OqVc2j+OKvOZNcVEa8hRBCCCGEuMQtWrSIoxkZxHToUW01cUVRiOnYgyNHj/Hjjz9W2SY4OJh77rqTnHXLyd66jj/G8NSy//n9HP7lBwp3byasSasak24AU1gkbrebgoKCv/N4AOj1etq1a0fPnj1p1arVGe9d3atXL4JtNrI2ra22jdPp4Mi2TZTmHie8TVdSRt9L/PW3EFC/GZkbf2Xr5Dcpzckqa5uXQ9pX0/Ee3c/rr756Vve2btasGS8+/zyFqavZ+/lUCg/uQ1VVVFWl8FA6aV98Sv76lTz3739L0n2BkO3EhBBCCCGEuMRt3rwZgy0ES0RUje2skTHoA+1s3LiRa665pso2Dz30EDk5OXw89VMyfl2BOakJitGMtyifol2bURzFWIwGrFExp4zL6yhBUZSztv757wgICOCWUSN5470PCE5qTGBsQoXzHo+HnMwMclb/SFBMInV7DUBRFKwRMeRF1cHeuDVHf5jD5g/+iy0uEVfWUSLDwnj700+5+uqrz3q8Y8eO5fjx43zw4Ufs+fQ9FJ0erVaLRvXTsH4Sj37wPjfeeONZv6/4ayTxFkIIIYQQ4hLk8/lYunQpU6ZM4YfFiynRmcjNy8VitmAyGflzQbTfKVotPp+v2utqtVruv/9+vvvhB/buTaPo2GEUjQZFo8EYZEfV6tDgJ2fjaqLadq5xv+68nZtp167tBVP869FHH2XDxo38/OUnhLToQGTLDhhtwXhdTg6v+5ns9b+g1WhJvmFU+XPp9HrCw8JxBQVh6DeMtBlv0Tw6jDuefpzrr78ek8l01uNctGgRTz/zDLv3poHegM5sxlNSTEBAIMOGDuPVV19Fp5NU70IivSGEEEIIIcQlJi8vj5GjRrFyzVoM4TEoUQl40vfgKCzA7XKj05VVJP9z0S1HQR6lucfJzs5m3bp1tG3btlLi7HK5GDJsOJlFpbSa+Dim4DD8HjcavQFFo8FTWsyuOZMpOLCHrI1riGrdEfit2Ne+XeTv311WDdzjpjh9D+OeeOicvZdTMZlMzPn8c1588UWmTJvO9tSfQaNB9fpwlBQTEBNP40HjMNlCKn5QAaPRSER8XfIapGAwmhgyZEiFJlu3bmXKlCls3LIFv89Po4YNGDVqFJ06darxy4k/mz17Nnfdcw/6+CQSbx5PQHwiiqLgPJFD1rqVTPlsBlqtlldfffWMritqlxRXE0IIIYQQ4hLi8Xi4bsAA1m7eRuJ1w7HFJ+F1Olj/1rPYW19JaNuueJ0OdFoNoaGhKIqCx+OhuLiYjFVLyP11OWarFb1WS6Pkhvzz3nsrJJGff/454++8i+RR92CNiK4yBq+jlA3v/Ae/s5SEvgMx2kNI/34eroI89PZQNAYj7rwccDno3asX77/3LjExp56afi6VlJSwdOlScnJyyMnJ4bkXXqTh8LsIiIqr8XOHV/2I9sA2du/cAZTtu33PP/7Bl/O+QrEGYk5IQtFqcBw+gDfvBJ07dmTqlMmEhoaW33fevHnMmv05xzIzsJgt9OrRndGjR2M0Gml7RXt0ySkk9rupyjX0OZtTyVg4l6kff8SAAQPO+nsRfziTXFQSbyGEEEIIIS4hc+fO5dbbbqf+sAkExsaXHz+w5GuOrV9JTL8hWBMb4i0tJjAwEL1eT15eHsUH9pK1ZD7RbTuT0LMfRUcPkZ26itL0XTzyrwd45JFHALimX382ZeSQPHhcjXEcWPoNBRtX4fN5KSl1YE1oQOgV3TGGRoKqYjIa8GYdIePnRcSF2Ph+0SIiIyNr9d38VTt37qRTl67UG3QbQbGJNbY99PN3mDLS2L51C36/nzFjbuHrxYuJ7jOA0CYtUH6bZaCqKoX793L4mzm0Sm7ANwsWsHPnTm4eNYrM7ONY6jbAGBaB1+mgZO9ONG4nrVu0YP32nTS+5xG0NVSB3zv9Q9rUieLbr78+m69B/MmZ5KIy1VwIIYQQQohLyMeTJ2OuU7dC0g0Q370froI8jn07C0tCfQLqp+C2BOApLqRw9xacRw8Q1rgFib2uRdFqsSUkYUtI4tian3jp1f/RunVrevfuzdbt2wls1fmUcdjrNqRw8xpC7aHoY23E9hmEotWi0+mwmM1otToIDiEwNoHdn73D008/zbvvvgtAZmYm06dP57OZs8jMzMRgNNK9axfG3norXbt2PedTqOvVq0dIcDC5e7fXmHiXJdO76NatbHr90qVL+XrRIurcNILghk0qtFUUBVtSQ/TDxpI65W1effVVPp48BUeAjeQJ/8Jo/2NLM7/XQ+baX1i2aB5h7a6sMekGCGnZjjXffkFmZiZRUTUX1BPnhiTeQgghhBBCXCJUVSU1dQNB7XuRn76H7C3rcBXkoeh02OLqktDzOoLrNyYjdRVZP8zF7/WAqhIYX4/61w4lrGnrStOXYzp0pzBtJ++9/z7BwcHk5+aSu2op2VvWYQmLJLJVB4Likyonw79NYc85kUvjW8ZgCQ2rMmZjoI2wNlcyb8ECnnnmGTZv3syt48ZT5HIT1LAZto5N8bmcLFy1jgXffMugm27k7bfe+tv7fp8Jo9HI6JEjeP29D3G37YIhoOrRzbx9O/HkH2fsrbcCMHnyZAwRUdgbNK722pbIaKz1G/PmW2/jCwii0bBb0RqMFdpodHpiruzB4SUL8Zss+P3+GrdLM9pD8Ksqubm5knhfICTxFkIIIYQQ4hKhqiput5ujq5fgKS3GEBaJISIav8fNkV9XcGTVUmI79qDZ6Ls5vi2VtK+mY2/YlCYj7qjxuvaUVnz79UyW/rQcNcCGOS4JjV5P4ZF0cma8T1B8PZJvGo3ebC3/TEH6XjSKgiEyBkt4zclfRLN2ZKxYxMcff8zrk95CE51A0/5D0Rn/qAge06EHJ3Zt4fOvvsBiNvPGG2/8vZd1hiZMmMDnX3zJni8/Ien6kZiD//giQVVV8vbt5OD3n9O/T2+uvPJKAJb/spKgNqcunmZv3IzdqWtI7NSjUtJ9Mn1gEL7SEhyOUqzW6ivBe0qKUFAIDAw8w6cUtUUSbyGEEEIIIS4Rubm5uNwufHojsYPHYoqNL0/6/G4XeRtWc2TVElS/v3wLsKD4ejVe0+/zkb1hDarBRHS/oQQk1qewsAidxQqKhtJD+zj2/Rds/uR1gmIT8HncaA1GivbtpG5cHbK11hqvD6AzmdFodcybNw+f1UbDASPR/KniuqIohDVugc/lYPqMmdx99900aNDgr7+sMxQZGclXc79kyLBh7Jz6Gta4JCzR8ag+L4X7d+HJP06/3lfzwQcflL9zj9uNpYZE+nf+30avbfVqfp6QRs3I3rweV9eraky8T2xeT9OUJtSpU+cMnlDUpurnJwghhBBCCCEuKm+++SaKyUL09cMwxcZVGGnVGIyEduhOyJW9OLp6GSc2rSXYFoTP7arxmrm7t1KceYSoPoMIaZiC2WxBp9PhdTpAVUGjAVXFcSKbwpwsXH4f+ccO4SguIiMrC1dOJqeq5+wuLsTv9bBj1y7CW3eqlHSfLLxpW1SjiWnTpp3ZyzkLGjRowKpffuGDd96iZWwY2gPbMGWkcV23jnzz1Tw+++wzrNY/vmiIiYmhNPPoKa/ryMoAVAxBwTW2i2jTAW9JMSfWr6y2TcH+vZTu38tt48bJdmIXEBnxFkIIIYQQ4hJQWlrKtBkzCG3dHoPNjs/pQGeywJ+SL3vrDuSuXYHqKOHaQQP56sdlqN2vKa+2/WeZqaswxcQTUCcRna4sfQgODiYvL4+itB1kfP8l5rhEoq8fjj44BAWlbIq5o5ijS76hcP9ejm9bT0SzdtXGnrVpLSajAafbTXD96tdDA2h0Osx16rFx0+YzfENnh9lsZujQoQwdOvSUbUfePJxnX/kv3qv6ozOZq2yj+v0Ubt2ATqvFkZOF3lr9DARzeCQmawD5q1dwwO8nulM3jPayPcW9Tgc5m9aRveJH+l3Vi2HDhv21BxS1Qka8hRBCCCGEuARs27aNvPwCwpq1JtgejKKqeBzF+NxOVJ8P1e/D53Hhc7ux1kumXlI9/vnPf6KWFpO1aU2V11T9fooO7cea2BCLxVJ+XKvVllX5XrMEc2w80dcPxxgRDX6VAKuFsLAw7In1aDTyDkxRsez79nO8LmeV9yjJziB30yq6d+mComhQlFOnKIpGi8/n+2sv6hwaOXIkNrOZ9Hkz8Xs8lc6rfj8Hv/sKnbOEhg0acHz9qhqvV5i+F73q5/5/3IPuYBq73v0vuz+exJ4p77Bz0ksUrlzKuJEjmDJlCnq9vrYeS/wFkngLIYQQQghxCXA6naiqitZoQm/QExoaitVsRvV68DpL8DpKUN1uLCYjVpsdg9FE06ZNufP228j8aSFHVy2tkByrfj8n9mzH53ahN5oqJN4AhQfScBfkEtb5KnR6AxqNBkWjYLFa0WjL0gyt0Uh897743C62TXmdnB2b8P+WMHtKSzi69ifSPv+Q1ilNePjhh9FpNBQe3l/jc6p+P46MQzRsUP8sv8GzLzIykk+nTEZ7PINdH79J1rpVuPLzcBcWkLN1A3umvotj+0befO01Hnn4YUr37iRrXdXTyJ25ORz5di7t27Xj+eefZ/uWzbz35pvccu01jLi6J88+/ihbNm7kf6++itF46nXl4tySqeZCCCGEEEJcAqKiotBqNJRmZ2C0B6PVaQkMCiIgILB8dFir1aJoFDJzs4lLSgDg2WefxWw28+bbb5OzbgWm2EQ0Oj3u7KP4iguxWiwoxfmV1gvn79+NzhaMKaqsgJfq96EoCpo/jViHNmnGMXswCSFBHP7hCw4vnovOaMLrKMWk19GlXVuuueYa9u3bR8sWzdmxYRXBDVKqXZ+ct28n/uJ8Ro8efbZfYa3o1q0b3y/8lv+99hrfLFxI1o/fAKDTaujetSv/vO9tOnfujKqq7N69mzffeZfCvbsIbd0eS0QUXoeDE9s2UrR9Iw0TEpg6ZTKKomCxWLj55pu5+eabz/MTitOhqKeqdHCBKywsxGazUVBQQFBQ1fvpCSGEEEIIcalTVZWre/dhW24hDYaPrbad88Rxdn/wGh+/9y6DBw8uP56RkcFnn33G+tRUvB4vdesmcvPNN7Nw4UL++9a7pEx4uMJWV/sWzqEg8yjxw28HVDylxVjNZgKr+Dv5jrdf4uGJExgwYADLli0jPz+fNWvWsH7jRgqKikGjQfX50CoKjtISwltfSdI1gyrtKV6ceYR9X06mZ8f2fDFnzkVXPCwrK4udO3fi8/lISkoiMTGxwnlVVVmwYAHvvPce69an4lNVFCAiLIzRI0dw9913Y7fbz0foogpnkotK4i2EEEIIIcQlYu7cuYy9/Q4ievUnsl2nSue9Tgf7Zn5ChFYldd2605qSfOTIETpe2RlveCz1B4xA81uBtUPLvyNjw2rq3fYAPq8HvF7CwkLR/nbe4/bgcJTiLCkm/aPX6N6pIy+//DINGzZk8JAh/LJuPcGtOxLRqj1Ge3BZcbCtG8hctYzS49kERsYQ3roT1ogYvC4Hubu2ULJ/J+3btmH2zJmXfAK6b98+srKyMJlMpKSkyPTxC5Ak3kIIIYQQQlyGVFXlqaee4s133sWc1Ijwth2xRsfi93jI3bGF3NRV2LUa5n35Bc2bNz/t6y5ZsoSRY27BY7IS2rID9nrJOHJz2DnzfcJ7DyCwXiNsdhsmkwnVr5JfkI/L5QJFQ8HWVE78/AMBYeEojlLqREVyKPs49YaNI7BOQqV7uYuL2P3pu1i8LrxeHx6vFwVITm7I+LFjufnmmzGZTGfxrQnx10jiLYQQQgghxGVKVVVmz57Nm2+9xc7du/H5y/66bzYaGHDddTz80EMkJSWd8XW3bNnC62+8wTcLF+Jyl1XodpaWorPZSR59FwHhEaCq5Obl4XZ70JpMuPNOcHTOZEKSU6g3YAjHt6SS9vk0wq/sScO+N0A1M8UL9u/h0BdTmTdnDnXr1sVkMhEREXHRTS0XlzZJvIUQQgghhLjMqarKhg0bOHr0KAaDgVatWhEZGfm3r5uVlcWePXtQVRWbzcbY8eNJzzxOSNtOBCY3pcTjRfV5KdqxmfyNazAFh9B4zAR0JjM5WzeS9sVnxI24g7A6cdWOXKt+Pzs/+B/jB9/Eiy+++LdjFqI2nEkuKlXNhRBCCCGEuAQpikKbNm1o06bNWb1uZGRkhQT+u4ULeeaZZ5gzdx6HfliAqmhAo6A1GAlOaUFkl564/X78bhfekiI0RiN6m53S0tJqE29Fo0FrCyYnJ+esxi7E+SKJtxBCCCGEEOIvCw8PZ9KkSTz88MM0TkkhIKUl1roNUCKjQaunxO0FdzGoKiUuF36PB1VVcbvdoPLHdPOT/z+gOkor7R0uxMVKEm8hhBBCCCHEX+b3+1m/fj179uxB0Wiw1G2AEhuPotWjMRjQaLVl7Xw+jHF1UVU/xXu2E1C/MQ6HA4ejFI/Hi4qKTqvDYjFDSRGu7Ax69ux5np9OiLNDEm8hhBBCCCHEGVNVlWnTpjHp7bfZu28/Xr8fR0kJ+iOHCE2sj9ZgrFAMTaPVYo6MwVq3Prm//owpNoECQNHqUIxGFMDn81FQUED24vmEBNvp16/feXs+Ic4mzambCCGEEEIIIcQfVFXl0Ucf5Z77H+CYxkzi8PG0eODfmELCKdq+CRQNfr+fquo4h3XtjfvEcTLmz8STm4PWZEarN6DVG/CXlnB82UKK03bhdrlljbe4ZMiItxBCCCGEEOKMfP7557z30cdE9x5ARKsrgLKp5J7SEvw+L8cXf0N472vLlm3/NtUcQPX5yF2zAjRaXMczOfrlVPTBYejtIfgcpTgzj6C3WGk4eDSZSxfy0Ucf8eSTT56npxTi7JHEWwghhBBCCHHaVFXlrXfewVwvuTzpBvC7XQDY23SkYPN63CeysbW6AmtifRRFofRAGvmpq3HlHMfe+gqKtm4keegt5O3ejqe0BI0ljLgOXQhp3ByNTocjO5Op06bzyCOPYDAYztfjCnFWSOIthBBCCCGEOG07duxg246dxA0cVeG4Rm8ABQwh4cQOHkPumuVkf/cVCgooZdub2ZOSCb2yF86cbBSNBnv9xgQ3TKnyPrb6yRzesJpjx46RmJh4Dp5MiNojibcQQgghhBDitGVmZuL3+7FERFU4rtHpsNdrSNGOTcSNuB1LXCKOzAx8eccJCgrCEhGF0R5CVlYWOSt+ILhBIxRN9SWnFEVBpaxquhAXOymuJoQQQgghhDhtJpMJFAWv01npXGTbTrgyj1K0cysAerudgHoNCG7YBKM9BABH2i5cWRlEtulU430KD+wnMMBKdHT02X8IIc4xSbyFEEIIIYQQp61ly5bYg4I4sX1TpXP2Bo0Ja9aGrEVzObH6J7zFRRgNRgA8JcUcWb6Y3GUL0agqBpu92nv43G7yt6xnxLBhmM3mWnoSIc4dmWouhBBCCCGEOG1Wq5WRw4fxztRpRLRqj/GkBFpRFJKuG4zeYuXYzz9y4pclBCcmoVHAmZmBxWjgX/f+g4Xffcf+L6dRf9jY8pHw3/ncLvZ9MZ0ArcJtt912jp9OiNpRqyPeL7zwAu3atSMwMJCIiAhuuOEGdu/eXaGN0+lk4sSJhIaGEhAQwMCBA8nKyqrNsIQQQgghhBB/w3333UdiZDhpMz6k8OD+Cvt1+zxuNHo9ZqOR63tfzYirunPzVT14+bln2LF1C//+97+ZM3s2iSE2dn34OvsXfE7uzq3k7dnBoSXfsuOdlzHmH2fGtE+pV6/eeXxKIc4eRa1qV/uzpG/fvgwbNox27drh9Xp57LHH2LZtGzt27MBqtQJw55138u233zJlyhRsNht33303Go2GlStXntY9CgsLsdlsFBQUEBQUVFuPIoQQQgghhDjJ4cOHGTV6DJu2bkUfEo4+PBK/243z0H6MWg2PPPgv7rvvPhRFqfLz+fn5TJ8+nY8mT+bw4cOogD3IxuiRI7j11ltJSEg4tw8kxBk6k1y0VhPvPzt+/DgREREsX76crl27UlBQQHh4ODNmzGDQoEEA7Nq1i8aNG7N69Wo6dOhwymtK4i2EEEIIIcT54ff7WblyJTNnzuTwkaOYTEY6dezIiBEjiIiIOO1r5Obm4vP5CAkJQa/X13LUQpwdZ5KLntM13gUFBQCEhJSt40hNTcXj8XDVVVeVt2nUqBHx8fHVJt4ulwuXy1X+c2FhYS1HLYQQQgghhKiKRqOhS5cudOnSpdo2qqqyceNGpk6dyroNG/H5vCQ3aMCokSPp2bMnWq2WsLCwcxi1EOfeOatq7vf7ue+++7jyyitp2rQpULYHoMFgwG63V2gbGRlJZmZmldd54YUXsNls5X/i4uJqO3QhhBBCCCHEX+BwOBg3fjy9+vRl+jffctgcQEZQKItSNzJo+M1c1bs3GRkZ5ztMIWrdORvxnjhxItu2beOXX375W9d59NFHuf/++8t/LiwslORbCCGEEEKIC4zf7+f2O+5gwQ+LiRkwiJCU5iiaP8b9ig4dYPPc2dw4cCA/fPedLBsVl7RzMuJ99913880337Bs2TLq1KlTfjwqKgq3201+fn6F9llZWURFRVV5LaPRSFBQUIU/QgghhBBCiAvLihUr+HrRIurcOJTQZi0rJN0AgfGJ1Bs1jl3705k8efJ5ilKIc6NWE29VVbn77ruZN28eS5cupW7duhXOt2nTBr1ez5IlS8qP7d69m0OHDtGxY8faDE0IIYQQQghRiz6ZPBldWAT25MbVtjGFhmFtlMLHU6bg8/nOYXRCnFu1OtV84sSJzJgxg/nz5xMYGFi+bttms2E2m7HZbIwbN47777+fkJAQgoKCuOeee+jYseNpVTQXQgghhBBCXJhWrl5NUErLarcT+11w0xYcmT2No0ePEh8ff46iE+LcqtXE+9133wWge/fuFY5PnjyZW265BYDXXnsNjUbDwIEDcblc9OnTh3feeac2wxJCCCGEEELUMrfbjdFgOGU7rd6A+lt7IS5VtZp4n84W4SaTibfffpu33367NkMRQgghhBBCnEPxcXGkHzt6ynYlxw5jNBhOe99vIS5G53QfbyGEEEIIIUTtKy0tZd68eaxevRqXy0V0dDRDhw4lJSXlnMUwasQIHn7yKTzFRegDAqtso/r95G1Yx+DrrpWiyeKSpqinMyx9ASssLMRms1FQUCC/rEIIIYQQ4rI3c+ZMHn/q/8jJz8dULxrFpMdz7AQUlNK9azc+ePc9wsLCaj2O/Px82rZvT6E5gKSbx6A1miqcV/1+Dn4zD9f2zXy/cCGtW7eu9ZiEOJvOJBeVxFsIIYQQQohLxNSpU/nnQ//C0qkJMQO6oAspG2nWAPkb93Bs+mKSI+NY9M232O32Wo9n/fr1DB46jAJVJbhNe+zJTVA0GooOppO7fg3qieO89frrDBs2rNZjEeJsk8RbCCGEEEKIy0xOTg7NWrVA2zGZ0Bs743Q5y2suKYqC2WRGU+Qk/bnp3Df2dp566qlzEldaWhpvvvkmc+bOpdTpAlR0Gg1X9+rFP+65h06dOp2TOIQ42yTxFkIIIYQQ4jIzadIkHnv+30Q+ORKN1YDWqEej1wLg9/jwubwoKpQu3oB+XTrbN2/FbDafs/jy8vLYtWsXPp+PunXrEhsbe87uLURtOJNcVIqrCSGEEEIIcQmY//UCtI3qoA00oQ8wwUn7Z2u1WrQmA55iB7qmCeT8kEpqaiqdO3c+Z/EFBwfTsWPHc3Y/IS4kmvMdgBBCCCGEEOLv25+ejsZaOek+md5qQhNgwuPxUlJSco4jFOLyJSPeQgghhBBCXORUVSUnJwdC9dUm3QAoCt78YjweNyEhIecuQCEuczLiLYQQQgghxEXO6XSiqn4cuw/jzs6rsW3Rqh0ofqhfv/45ik4IIYm3EEIIIYQQFzmdTofBaERn1JM15Qf8Lk+V7Yo37aNo7U6Mej0Gg+EcRynE5UsSbyGEEEIIIS5yer2eFs2aE5QYiedAJof+M4PCtTtRvT4A3Jm5ZM9cRsbb8zEGmGjZsiUWi+U8Ry3E5UPWeAshhBBCCHEJGD92HHf+8x4aT7yGo0s2k/XBQjI1i1B0WlS3F0OgmTq9WpCzbDvjx45DqWktuBDirJJ9vIUQQgghhLgEOJ1O+l13LVsO7qbR/dehs5rI334Iv8eLMSwIQ5CF3W8uJCWmHou+XSgj3kL8TWeSi0riLYQQQgghxCXi+PHjjBw9irUb1mGpH4WteTyKolCw5SAlezNp3bwVM6d/RmRk5PkOVYiL3pnkorLGWwghhBBCiEtEeHg43379DbM/nUHXhOZoVh+BlYfpFJvCjMnT+H7hIkm6hTgPZI23EEIIIYQQlxCdTkf37t0pLCwkvk4cHo+HOnXq0KxZM/R6/fkOT4jLkiTeQgghhBBCXEJmzZrFU089RmbmMSwWFY0GHA548cVnGThwKP/976sEBASc7zCFuKzIVHMhhBBCCCEuEZ988gl33DGWnOOHCLT6aN/KQLcORupEK6j+YmbN/ISBA2/E6XSe71CFuKxI4i2EEEIIIcQlICMjg/vvvxetxsXto22s+S6eOR/HMPWtaNYsiueDVyOJidKwcuUy3nzzzfMdrhCXFUm8hRBCCCGEuAS89dZbeNyl3D8hmGceDiMy/I9VpXq9wnV9Avj8oxiCbQpvvPEaPp/vPEYrxOVFEm8hhBBCCCEuAbNnzyAiTMM944OrbZNc38CwGwMpyD/Opk2bzl1wQlzmJPEWQgghhBDiEpCfl0O/q6xYLDX/Ff+m/gEoisrmzZvPUWRCCEm8hRBCCCGEuARotRpsQdpTtrMHadAoYDAYzkFUQgiQxFsIIYQQQohLQlR0HfYdcKOqao3tdqW5URUNbdq0OUeRCSEk8RZCCCGEEOIScNttd/LjCgf70t3VtnG7/cz8soj4uHo0atToHEYnxOVNEm8hhBBCCCEuAWPGjCEgIJxHnztB9nEPHo+//Jzfr1JS4mP2vCJ+/NnNI4/+H4qinMdohbi8SOIthBBCCCHEJSAwMJDpn33Or5uNDL8jm8+/KiIz08OJE17WrHfwxH9O8PBzBYwcdTsjRow43+EKcVlR1FMtArnAFRYWYrPZKCgoICgo6HyHI4QQQgghxHmVmprKc8/9m1Url6PgRqMFr1dDVHQcEyb8gwkTJqDRyPibEH/XmeSikngLIYQQQghxCdq9ezfr1q3D4/FQp04dunfvjl6vP99hCXHJOJNcVHeOYhJCCCGEEEKcQ8nJySQnJ5/vMIQQyBpvIYQQQgghhBCiVkniLYQQQgghhBBC1CJJvIUQQgghhBBCiFokibcQQgghhBBCCFGLJPEWQgghhBBCCCFqkSTeQgghhBBCCCFELZLEWwghhBBCCCGEqEWSeAshhBBCCCGEELVIEm8hhBBCCCGEEKIWSeIthBBCCCGEEELUIkm8hRBCCCGEEEKIWiSJtxBCCCGEEEIIUYsk8RZCCCGEEEIIIWqRJN5CCCGEEEIIIUQtksRbCCGEEEIIIYSoRZJ4CyGEEEIIIYQQtUgSbyGEEEIIIYQQohZJ4i2EEEIIIYQQQtQiSbyFEEIIIYQQQohaJIm3EEIIIYQQQghRiyTxFkIIIYQQQgghapEk3kIIIYQQQgghRC2SxFsIIYQQQgghhKhFkngLIYQQQgghhBC1SHe+A/i7VFUFoLCw8DxHIoQQQgghhBDicvF7Dvp7TlqTiz7xLioqAiAuLu48RyKEEEIIIYQQ4nJTVFSEzWarsY2ink56fgHz+/0cO3aMwMBAFEU5rc8UFhYSFxfH4cOHCQoKquUIxd8hfXXxkL66eEhfXTykry4O0k8XD+mri4f01cXjcu4rVVUpKioiJiYGjabmVdwX/Yi3RqOhTp06f+mzQUFBl90/HBcr6auLh/TVxUP66uIhfXVxkH66eEhfXTykry4el2tfnWqk+3dSXE0IIYQQQgghhKhFkngLIYQQQgghhBC16LJMvI1GI0899RRGo/F8hyJOQfrq4iF9dfGQvrp4SF9dHKSfLh7SVxcP6auLh/TV6bnoi6sJIYQQQgghhBAXsstyxFsIIYQQQgghhDhXJPEWQgghhBBCCCFqkSTeQgghhBBCCCFELZLEWwghhBBCCCGEqEWXZeLtcrlo2bIliqKwadOmCue2bNlCly5dMJlMxMXF8fLLL5+fIC9z119/PfHx8ZhMJqKjoxk1ahTHjh2r0Eb66vw7cOAA48aNo27dupjNZpKSknjqqadwu90V2klfXRief/55OnXqhMViwW63V9nm0KFD9O/fH4vFQkREBA8++CBer/fcBioAePvtt0lMTMRkMtG+fXt+/fXX8x3SZW/FihVcd911xMTEoCgKX331VYXzqqry5JNPEh0djdls5qqrrmLv3r3nJ9jL3AsvvEC7du0IDAwkIiKCG264gd27d1do43Q6mThxIqGhoQQEBDBw4ECysrLOU8SXr3fffZfmzZsTFBREUFAQHTt2ZNGiReXnpZ8uTC+++CKKonDfffeVH5O+qtllmXg/9NBDxMTEVDpeWFhI7969SUhIIDU1lVdeeYWnn36aDz744DxEeXnr0aMHn3/+Obt37+bLL79k3759DBo0qPy89NWFYdeuXfj9ft5//322b9/Oa6+9xnvvvcdjjz1W3kb66sLhdrsZPHgwd955Z5XnfT4f/fv3x+12s2rVKqZOncqUKVN48sknz3GkYvbs2dx///089dRTbNiwgRYtWtCnTx+ys7PPd2iXtZKSElq0aMHbb79d5fmXX36ZN998k/fee4+1a9ditVrp06cPTqfzHEcqli9fzsSJE1mzZg2LFy/G4/HQu3dvSkpKytv885//5Ouvv2bOnDksX76cY8eOcdNNN53HqC9PderU4cUXXyQ1NZX169fTs2dPBgwYwPbt2wHppwvRunXreP/992nevHmF49JXp6BeZhYuXKg2atRI3b59uwqoGzduLD/3zjvvqMHBwarL5So/9vDDD6vJycnnIVJxsvnz56uKoqhut1tVVemrC9nLL7+s1q1bt/xn6asLz+TJk1WbzVbp+MKFC1WNRqNmZmaWH3v33XfVoKCgCv0nat8VV1yhTpw4sfxnn8+nxsTEqC+88MJ5jEqcDFDnzZtX/rPf71ejoqLUV155pfxYfn6+ajQa1ZkzZ56HCMXJsrOzVUBdvny5qqplfaPX69U5c+aUt9m5c6cKqKtXrz5fYYrfBAcHqx999JH00wWoqKhIbdCggbp48WK1W7du6r333quqqvxOnY7LasQ7KyuL2267jWnTpmGxWCqdX716NV27dsVgMJQf69OnD7t37yYvL+9chipOkpuby2effUanTp3Q6/WA9NWFrKCggJCQkPKfpa8uHqtXr6ZZs2ZERkaWH+vTpw+FhYXlIw+i9rndblJTU7nqqqvKj2k0Gq666ipWr159HiMTNUlPTyczM7NCv9lsNtq3by/9dgEoKCgAKP/vU2pqKh6Pp0J/NWrUiPj4eOmv88jn8zFr1ixKSkro2LGj9NMFaOLEifTv379Cn4D8Tp2OyybxVlWVW265hQkTJtC2bdsq22RmZlb4CydQ/nNmZmatxygqevjhh7FarYSGhnLo0CHmz59ffk766sKUlpbGpEmTuOOOO8qPSV9dPKSvLgw5OTn4fL4q+0L64cL1e99Iv114/H4/9913H1deeSVNmzYFyvrLYDBUqnch/XV+bN26lYCAAIxGIxMmTGDevHk0adJE+ukCM2vWLDZs2MALL7xQ6Zz01ald9In3I488gqIoNf7ZtWsXkyZNoqioiEcfffR8h3zZOt2++t2DDz7Ixo0b+eGHH9BqtYwePRpVVc/jE1w+zrSvAI4ePUrfvn0ZPHgwt91223mK/PLzV/pKCCEuJxMnTmTbtm3MmjXrfIciqpGcnMymTZtYu3Ytd955J2PGjGHHjh3nOyxxksOHD3Pvvffy2WefYTKZznc4FyXd+Q7g73rggQe45ZZbamxTr149li5dyurVqzEajRXOtW3blhEjRjB16lSioqIqVd77/eeoqKizGvfl6HT76ndhYWGEhYXRsGFDGjduTFxcHGvWrKFjx47SV7XsTPvq2LFj9OjRg06dOlUqmiZ9VbvOtK9qEhUVValytvTVuRcWFoZWq63y90b64cL1e99kZWURHR1dfjwrK4uWLVuep6jE3XffzTfffMOKFSuoU6dO+fGoqCjcbjf5+fkVRujk9+z8MBgM1K9fH4A2bdqwbt063njjDYYOHSr9dIFITU0lOzub1q1blx/z+XysWLGCt956i++//1766hQu+sQ7PDyc8PDwU7Z78803ee6558p/PnbsGH369GH27Nm0b98egI4dO/L444/j8XjK1xIvXryY5ORkgoODa+cBLiOn21dV8fv9QNlWcCB9VdvOpK+OHj1Kjx49aNOmDZMnT0ajqTiRRvqqdv2d36s/69ixI88//zzZ2dlEREQAZX0VFBREkyZNzso9xKkZDAbatGnDkiVLuOGGG4CyfwcuWbKEu++++/wGJ6pVt25doqKiWLJkSXmiXVhYWD6CJ84tVVW55557mDdvHj/99BN169atcL5Nmzbo9XqWLFnCwIEDAdi9ezeHDh2iY8eO5yNkcRK/34/L5ZJ+uoD06tWLrVu3Vjh266230qhRIx5++GHi4uKkr07lPBd3O2/S09MrVTXPz89XIyMj1VGjRqnbtm1TZ82apVosFvX9998/f4FehtasWaNOmjRJ3bhxo3rgwAF1yZIlaqdOndSkpCTV6XSqqip9daE4cuSIWr9+fbVXr17qkSNH1IyMjPI/v5O+unAcPHhQ3bhxo/rvf/9bDQgIUDdu3Khu3LhRLSoqUlVVVb1er9q0aVO1d+/e6qZNm9TvvvtODQ8PVx999NHzHPnlZ9asWarRaFSnTJmi7tixQ7399ttVu91eoeK8OPeKiorKf28A9X//+5+6ceNG9eDBg6qqquqLL76o2u12df78+eqWLVvUAQMGqHXr1lUdDsd5jvzyc+edd6o2m0396aefKvy3qbS0tLzNhAkT1Pj4eHXp0qXq+vXr1Y4dO6odO3Y8j1Ffnh555BF1+fLlanp6urplyxb1kUceURVFUX/44QdVVaWfLmQnVzVXVemrU5HE+6TEW1VVdfPmzWrnzp1Vo9GoxsbGqi+++OL5CfAytmXLFrVHjx5qSEiIajQa1cTERHXChAnqkSNHKrSTvjr/Jk+erAJV/jmZ9NWFYcyYMVX21bJly8rbHDhwQL3mmmtUs9mshoWFqQ888IDq8XjOX9CXsUmTJqnx8fGqwWBQr7jiCnXNmjXnO6TL3rJly6r8HRozZoyqqmVbiv3f//2fGhkZqRqNRrVXr17q7t27z2/Ql6nq/ts0efLk8jYOh0O966671ODgYNVisag33nhjhS+OxbkxduxYNSEhQTUYDGp4eLjaq1ev8qRbVaWfLmR/Trylr2qmqKpUqxJCCCGEEEIIIWrLRV/VXAghhBBCCCGEuJBJ4i2EEEIIIYQQQtQiSbyFEEIIIYQQQohaJIm3EEIIIYQQQghRiyTxFkIIIYQQQgghapEk3kIIIYQQQgghRC2SxFsIIYQQQgghhKhFkngLIYQQQgghhBC1SBJvIYQQQgghhBCiFkniLYQQQgghhBBC1CJJvIUQQgghhBBCiFokibcQQgghhBBCCFGL/h9VbtLMijYkMQAAAABJRU5ErkJggg==", - "text/plain": [ - "

" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "embeddings_plot = plot_embeddings(embeddings_array, node_labels)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Subject Representation\n", - "\n", - "We enrich the original omics data by combining it with our 16D graph-based embeddings.\n", - "\n", - "- `SubjectRepresentation` merges embeddings, omics, and phenotype data.\n", - "- This produces a compact, information-rich input for modeling.\n", - "- For details, see [GNN Embeddings for Multi-Omics](https://bioneuralnet.readthedocs.io/en/latest/gnns.html)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from bioneuralnet.downstream_task import SubjectRepresentation\n", - "\n", - "graph_embed = SubjectRepresentation(\n", - " omics_data=merged_omics,\n", - " embeddings=embeddings,\n", - " phenotype_data=phenotype,\n", - " phenotype_col=\"phenotype\",\n", - " tune=True,\n", - ")\n", - "enhanced_omics = graph_embed.run()" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Before graph embedding:\n", - " Gene_1 Gene_2 ... Mir_99 Mir_100\n", - "Samp_1 22.485701 40.353720 ... 11.422531 10.862970\n", - "Samp_2 37.058850 34.052233 ... 12.413667 10.719110\n", - "Samp_3 20.530767 31.669623 ... 11.072915 11.418794\n", - "Samp_4 33.186888 38.480880 ... 10.121957 11.039089\n", - "Samp_5 28.961981 41.060494 ... 12.206151 10.724849\n", - "\n", - "[5 rows x 600 columns]\n" - ] - } - ], - "source": [ - "print(\"Before graph embedding:\")\n", - "print(merged_omics.head())" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "After graph embedding:\n", - " Gene_1 Gene_2 ... Mir_99 Mir_100\n", - "Samp_1 30.124834 51.637941 ... 14.502229 -4.488456\n", - "Samp_2 49.648960 43.574352 ... 15.760591 -4.429015\n", - "Samp_3 27.505743 40.525486 ... 14.058350 -4.718116\n", - "Samp_4 44.461565 49.241394 ... 12.850998 -4.561226\n", - "Samp_5 38.801318 52.542352 ... 15.497125 -4.431386\n", - "\n", - "[5 rows x 600 columns]\n" - ] - } - ], - "source": [ - "print(\"After graph embedding:\")\n", - "print(enhanced_omics.head())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Disease Classification with DPMON\n", - "\n", - "DPMON extends the GNN pipeline for multi-class disease prediction by:\n", - "\n", - "- Fusing omics features with graph-derived node embeddings\n", - "- Applying a classification head (e.g., softmax + cross-entropy) for phenotype prediction\n", - "- Supporting full end-to-end training.\n", - "\n", - "In this example, we discretize the continuous phenotype into 4 equally populated classes using `pd.cut`, enabling multi-class classification." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "from bioneuralnet.datasets import DatasetLoader\n", - "import numpy as np\n", - "\n", - "Example = DatasetLoader(\"example1\")\n", - "omics1 = Example.data[\"X1\"]\n", - "omics2 = Example.data[\"X2\"]\n", - "phenotype = Example.data[\"Y\"]\n", - "clinical = Example.data[\"clinical_data\"]\n", - "\n", - "min_val = phenotype[\"phenotype\"].min()\n", - "max_val = phenotype[\"phenotype\"].max()\n", - "\n", - "# linspace creates an array of evenly spaced values\n", - "bins = np.linspace(min_val, max_val, 5)\n", - "\n", - "phenotype[\"phenotype\"] = pd.cut(phenotype[\"phenotype\"], bins=bins, labels=[0, 1, 2, 3], include_lowest=True)\n", - "count_values = phenotype[\"phenotype\"].value_counts(sort=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " phenotype\n", - "Samp_1 1\n", - "Samp_2 2\n", - "Samp_3 1\n", - "Samp_4 3\n", - "Samp_5 2\n", - "... ...\n", - "Samp_354 1\n", - "Samp_355 1\n", - "Samp_356 2\n", - "Samp_357 1\n", - "Samp_358 1\n", - "\n", - "[358 rows x 1 columns]\n", - "phenotype\n", - "0 38\n", - "1 158\n", - "2 141\n", - "3 21\n", - "Name: count, dtype: int64\n" - ] - } - ], - "source": [ - "# After binning\n", - "print(phenotype)\n", - "print(count_values)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## DPMON Evaluation Example\n", - "\n", - "In this example, we evaluate **DPMON** over 3 independent runs to assess classification performance.\n", - "\n", - "For each run:\n", - "\n", - "- A new `DPMON` instance is initialized with the same omics, phenotype, clinical data, and global network.\n", - "- `repeat_num = 3` runs internal training three times with different seeds.\n", - "- We call `.run()` to generate predictions and extract:\n", - "\n", - " - **Accuracy**\n", - " - **F1 (Weighted)**\n", - " - **F1 (Macro)**\n", - "\n", - "Afterward, we compute the mean and standard deviation of each metric to enable fair comparison with other models like Random Forest, using consistent evaluation across runs." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from bioneuralnet.downstream_task import DPMON\n", - "from sklearn.metrics import accuracy_score, f1_score\n", - "import numpy as np\n", - "\n", - "acc_scores = []\n", - "f1w_scores = []\n", - "f1m_scores = []\n", - "\n", - "for i in range(3):\n", - " print(f\"DPMON run {i+1}\")\n", - " \n", - " dpmon = DPMON(\n", - " adjacency_matrix=global_network,\n", - " omics_list=[omics1, omics2],\n", - " phenotype_data=phenotype,\n", - " clinical_data=clinical,\n", - " repeat_num=5,\n", - " tune=True,\n", - " gpu=True,\n", - " cuda=0,\n", - " output_dir=\"dpmon_output\"\n", - " )\n", - " \n", - " predictions_df = dpmon.run()\n", - " y_true = predictions_df[0][\"Actual\"]\n", - " y_pred = predictions_df[0][\"Predicted\"]\n", - "\n", - " acc = accuracy_score(y_true, y_pred)\n", - " f1w = f1_score(y_true, y_pred, average=\"weighted\")\n", - " f1m = f1_score(y_true, y_pred, average=\"macro\")\n", - "\n", - " acc_scores.append(acc)\n", - " f1w_scores.append(f1w)\n", - " f1m_scores.append(f1m)\n", - "\n", - "# get the mean and std in tuple form\n", - "dpmon_acc_tuple = (np.mean(acc_scores), np.std(acc_scores))\n", - "dpmon_f1w_tuple = (np.mean(f1w_scores), np.std(f1w_scores))\n", - "dpmon_f1m_tuple = (np.mean(f1m_scores), np.std(f1m_scores))\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Performance Comparison\n", - "\n", - "We compare **DPMON** to a baseline Random Forest using raw omics data across 5 runs.\n", - "\n", - "- Metrics: **Accuracy**, **F1-Weighted**, **F1-Macro**\n", - "- Bars show mean performance, error bars indicate standard deviation\n", - "\n", - "DPMON consistently outperforms the baseline across all metrics." - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2025-05-27 12:41:52,230 - bioneuralnet.metrics.plot - INFO - Plotting multiple metrics: ['Accuracy', 'F1-Weighted', 'F1-Macro']\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABbgAAAHQCAYAAABjtAwGAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAeIdJREFUeJzt3XlcVPX+x/H3DDsomygiombuu+YS5p65ZJqm5Za7ZZkteruVlZpZWfeWaekvLXMpKy1zabXFNZO0XNIWLVPDFAQVQZBFmPP7w8voCCggMHPg9Xw8fMh8zvec8/kAZ77MZ86cYzEMwxAAAAAAAAAAACZjdXYCAAAAAAAAAAAUBg1uAAAAAAAAAIAp0eAGAAAAAAAAAJgSDW4AAAAAAAAAgCnR4AYAAAAAAAAAmBINbgAAAAAAAACAKdHgBgAAAAAAAACYEg1uAAAAAAAAAIAp0eAGAAAAAAAAAJgSDW4AAACglLFYLOrUqdM1bWPTpk2yWCx65plniiSnouTKuQEAAKBk0eAGTGr06NGyWCyqUKGC0tPTnZ0OAAAu7ciRI7JYLFf8d+bMGUnSli1b9Oijj6pz584KCAiQxWLRyJEjC7S/H374QRaLRT169Mh1+SOPPCKLxaJ69erlunz27NmyWCyaMmVKgfbrbEXRWAcA4HIlPY9nW7JkiX37AwYMyHPcG2+8YR9X2H0BKDx3ZycAoODOnj2rDz/8UBaLRadPn9aaNWs0cOBAZ6cFAIDLu/7663X33Xfnuszb21uStGjRIi1dulS+vr6qVq2akpKSCryfli1bqly5cvr++++VmZkpd3fHP7s3btwoi8WiAwcOKDY2VpUrV86xXJK6dOlS4H1L0u+//y5fX99CrQsAgKsqqXn8cu7u7vr000918uRJhYSE5Fj+9ttvy93dXZmZmde8LwAFR4MbMKEVK1YoJSVFkyZN0uzZs/X222/T4AYAIB9q1ap11ctaTJgwQf/+979Vr149/fjjj4qMjCzwftzd3dW+fXt9+eWXObZx6tQp7du3T/369dOqVau0ceNGDR482L7cZrPpu+++k5eXV6H2LSnPM8MBADCzkprHL9ezZ099+umnWrZsmR555BGHZXv37tXOnTvVp08fffLJJ9e8LwAFxyVKABPKfnf4scceU+fOnbV+/Xr9/fffuY7dsmWL+vbtq9DQUHl5eSkiIkJ33HGHtm7d6jDOMAwtXrxY7du3V2BgoHx9fVW7dm2NGzdO0dHR9nE1atRQjRo1ct1Xp06dZLFYHGLPPPOMLBaLNm3apCVLlqhFixby9fW1f3w5MTFRL730kjp27KgqVarI09NTVapU0fDhw/XXX3/lup/85NquXTu5u7srJiYm120MHz5cFotFUVFRuS4HAJRdLVu2VMOGDeXm5nZN2+ncubOkC9eLvtTmzZtlGIYeeughBQcH28/Wzvbzzz8rISFBkZGR9rPRpAsvoAcNGqSwsDB5enqqevXqevDBB3Xq1Kkc+87rUiFHjhzRwIEDFRwcrHLlyqljx47asmWLw3ydm59++km33HKLypcvr4CAAPXr109HjhyxL8++JnZ2fZd+ZHzJkiUO21q7dq1uvvlmBQUFydvbW40aNdLLL7+srKysHPtNTU3VE088oYiICPvYt956K9ccAQCQim4ev1Tbtm1Vr149LV68OMeyRYsWyc3NTSNGjMh13Z07d2rChAlq1KiRAgIC5OPjo8aNG+vFF1/U+fPnc10nLi5O//rXv1S3bl35+PgoODhYbdq00csvv2wfk33ZlpEjR+r3339Xv379VKFCBVksFvscnZmZqVmzZqlp06by8fFRQECAOnfurE8//fTavymAC6HBDZjMb7/9ph9++EHdunVTaGiohg8fLpvNlutEO2fOHHXq1EnffPONbrnlFv3rX/9Sly5d9PPPP2vlypX2cTabTXfddZdGjx6tw4cPa/DgwXrwwQfVokULffjhh9q1a9c15/3f//5X48ePV926dfXQQw/ppptuknThI9RTp06Vj4+P+vXrp0ceeUQtW7bU+++/r9atW+do3Oc313HjxikrKyvX78uZM2e0cuVKNWzYsEjezQcAIDfZDe7LG9gbN26Uj4+PbrzxRrVv3z7X5ZeuL0mffPKJWrdurU8++USdOnXSI488osaNG2vu3LmKjIxUQkLCVfM5duyY2rZtqw8//FBt2rTRQw89pJCQEN1yyy3avn17nuv9+OOP6tChgzw9PTVu3Di1bNlSa9asUdeuXZWWlibpwhvg06ZNkyRVr15d06ZNs/9r1qyZfVuTJ09W3759deDAAd1xxx0aP368fHx89O9//1uDBg1y2K/NZlOfPn300ksvKSgoSA8//LBuvPFGTZw4Ua+88spV6wUAoCiNGjXKfrZ2toyMDL333nvq3r27qlSpkut6b731llavXq3GjRtr3LhxGjNmjAzD0OTJk3PMfZJ04MABNWvWTLNmzVKlSpX00EMPaciQIfL19dULL7yQY/zBgwd14403Kj4+XiNHjtSIESPk6ekpwzA0YMAA/etf/1JaWpoeeOABDRkyRD///LP69OmjV199tei+OYCzGQBMZdKkSYYk44MPPjAMwzDOnj1r+Pn5GdWqVTOysrLs4/bs2WNYrVajSpUqxuHDhx22YbPZjGPHjtkfv/7664Yk4+abbzbOnTvnMPbcuXPGqVOn7I+rV69uVK9ePdfcOnbsaFz+tDJt2jRDkuHn52fs3bs3xzpnzpxx2H62DRs2GFar1Rg7dqxDPL+5pqamGsHBwUbNmjUNm83mMG7u3LmGJGP27Nm51gEAKH0OHz5sSDKuv/56Y9q0aTn+RUVF5bpeVFSUIckYMWJEgfeZmZlpBAQEGH5+fkZGRoY93qhRI6Nz586GYRjGrFmzDEnG0aNH7ct79+5tSDK2bNliGIZhnDx50vD39zfCw8ONI0eOOOzjgw8+MCQZEyZMcIhLMjp27OgQu/vuuw1JxvPPP+8Qf/vttw1JhiRj48aN9vjGjRvt8eXLlzusM2zYMIe/R66032xff/21Icno3r27kZycbI/bbDbjvvvuMyQZK1eutMcXL15sSDJ69OhhZGZm2uN79+41PD09DUnGtGnTct0XAKB0ccY8bhgX56KZM2caMTExhru7uzF+/Hj78g8//NCQZHz88cd57uvvv/92mMcM48LcN3r0aEOSsXXrVodlLVu2NCQZb775Zo58Lv17Ift7IsmYOnVqjrFLly61z8vp6ekO+YSEhBju7u7GX3/9VaDvB+CqaHADJpKRkWFUrFjR8Pf3N1JTU+3x7BesX331lT12//33G5KMRYsWXXW79evXN9zc3Iw//vjjqmML2+CeOHHiVbd9ucaNGxs1atQodK4TJ040JBnffvutQ7x58+aGl5dXro11AEDpdOmLwNz+vfrqq7mud60vjLOb1dkvXuPi4gyLxWJMnz7dMAzD2LlzpyHJeOeddwzDMIysrCwjMDDQ8PHxsb8YzW6CZ4+5XIsWLYyQkBCH2OWN5rS0NMPLy8uoVKmSkZaW5jDWZrMZdevWzbPB3aFDhxz7zF42adKkK+73Un369DEkGX///XeOZWfOnDEsFovRv39/e6xz586GJGPnzp05xo8ZM4YGNwCUIc6axy9tcBvGhbksKCjI/nq8R48eRsWKFY2MjIwC7yv7b4BnnnnGHtu+fXuec+/lsr8nlStXdmhgZ+vSpYshydi+fXuOZc8//7whyXj22WfzlSvg6rjJJGAia9euVXx8vMaMGeNwTc7hw4dr2bJlevvtt9WtWzdJ0o4dOyTJ/jgvycnJ+v3331WrVi3Vrl272HJv3bp1nss2bdqk2bNna/v27Tp58qTDnac9PT0Lneu9996rV199VW+99ZZuvvlmSReuf7Z7924NGTJEwcHB11ARAMCMunfvrnXr1hXZ9vbs2aM1a9Y4xGrUqKGRI0dKunB/ik8//VQbN27UTTfdpE2bNskwDPv1sZs1a6aAgABt3LhRw4YN0549e3TmzBl17drVPgf+8MMPkqTt27fnen+KtLQ0nTx5UidPnlRISEiueR44cEDp6elq2bKlvLy8HJZZLBa1bdtWBw4cyHXdG264IUesatWqki5c9iu/fvjhB/n5+WnRokW5Lvfx8dH+/fvtj3/++Wf5+fmpRYsWOca2b99eb7/9dr73DQAoHUp6Hr/c6NGj9cknn2j16tXq0KGDvv76az388MPy8PDIcx8ZGRmaO3euli9frv379ys5OVmGYdiXHz9+3P51fl/HX6pp06YOr5uz7d69W76+vrm+Fs++DNqePXvyvR/AldHgBkwk+4Xc8OHDHeI333yzwsPDtXbtWp0+fVrBwcFKTEyUxWJRWFjYFbeZmJgoSQoPDy+epP8nNDQ01/hHH32kgQMHqly5curevbtq1KghX19f+02pLr0Gd0FzrVevnjp27Kg1a9bo1KlTqlChghYuXChJuueee66xIgAALrwwnD59ukOsY8eO9hfGl95o8umnn9amTZvk7e2tNm3aSJKsVqvatWtnv+529v9dunSxb+/06dOSpHnz5l0xl5SUlDwb3ElJSZKkSpUq5bo8r3lakvz9/XPE3N0vvIzI7caQeTl9+rQyMzNzfL8ulZKSYv86MTFRERERuY67Ur4AAOTX1ebxy/Xq1UuhoaFatGiRDh06JJvNptGjR19xHwMGDNCnn36qOnXqaODAgapUqZI8PDx05swZzZkzR+np6faxhXl9ntecmJSUlOc8mt0nyP77ADA7GtyASRw9elRff/21pAsTbl6WLVumhx56SIGBgTIMQzExMVecHAMCAiRduPFUflitVmVkZOS6LHsyzo3FYsk1/swzz8jb21s7d+7McVb28uXLrylXSbrvvvu0efNmvfPOOxo3bpw++OAD1a5d237mHAAA12LkyJF5vgiWLpxVFRQUpG3btikjI0MbN27UjTfe6HAWdadOnfT555/ryJEj2rRpkyTHG0xmN5j37dunRo0aFSrP7G3ExcXluvzEiROF2m5Bc7BYLDp58mS+xgcEBCg+Pj7XZSWRLwCg9LvaPH45d3d3DR8+XK+88op+/fVXtW7d+opz848//qhPP/1U3bt31+effy43Nzf7sh9++EFz5sxxGB8YGCipYK9583qt7e/vn+e8Hxsbax8DlAZWZycAIH+WLFkim82mdu3aacyYMTn+jRgxQtLFs7yzP4aU3RTPS7ly5dSgQQMdPnxYf/7551XzCAoKUlxcnMNlRKQLZ1zlZ/3L/fXXX6pfv36O5nZMTIwOHTp0TblK0h133KGKFStq4cKF+uijj5SYmKixY8cWOE8AAArDarWqY8eOSk1N1SeffKLff/89x5us2W9cf/vtt/ruu+9Urlw5tWzZ0r48+2zvqKioQudRt25deXl5aefOnQ5nikmSYRjXtO1LWa3WPM/qbtOmjU6dOpXvObxp06ZKSUnRrl27ciz77rvvrilPAAAKa/To0bLZbIqJibnq2dvZlxbr1auXQ3Nbyn0uy+/r+Pxo3ry5zp07Z7/syaWy31Bv1qzZNe8HcAU0uAETMAxDixcvlsVi0dKlS7Vw4cIc/5YsWaLIyEjt3btXP/30k+677z65ubnp6aefdrjMR/b2Lr3O1wMPPKCsrCyNHz9eqampDmPT0tLsH42WpFatWun8+fN67733HLY3efJkh48V51f16tV18OBBhzOx0tLSdP/99+v8+fM5xhckV+nCNbxHjhyp3377TU8++aQ8PDwK9A49AADXKvts7OyPQF/e4G7RooXKly+vOXPmKDExUe3bt7dfAkSSRo0apfLly+upp57Sr7/+mmP7586ds1+nOy9eXl4aMGCATpw4odmzZzsse+eddxyufX0tgoOD9c8//+S67KGHHpJ0oTFw6tSpHMtjY2P1+++/2x8PGzZMkvTUU085NM337dund999t0jyBQCgoOrVq6cvv/xSq1ev1tChQ684tnr16pKkrVu3OsR//fVXzZw5M8f4Vq1aqVWrVtqyZYveeuutHMsLcmZ39klwkydPdnhtffToUc2aNUvu7u5XzR8wCy5RApjAhg0bdPjwYXXs2FE1a9bMc9yoUaMUFRWlt99+W2+88YZmz56thx56SA0bNlTfvn1VvXp1xcbGasuWLerVq5f9Be7999+vzZs368MPP1Tt2rXVp08f+fv7Kzo6Wl999ZXefvtt9e3bV5I0YcIELV68WGPHjtU333yjihUr6rvvvtOZM2fUtGlT/fzzzwWq7cEHH9SDDz6o5s2ba8CAAcrMzNQ333wjwzBy3V5Bcs02btw4vfzyyzp+/Lj69++f5/VHAQCQLrwIzb5nQ/YlMrZu3Wp/gzQkJEQvv/xyvreX3eD+5Zdf5O3trRtvvNFhuZubm2666Sb7TbMuvTyJJFWsWFEffPCB7rzzTjVt2lQ9evRQvXr1lJ6eriNHjmjz5s1q27btVW+6NXPmTH377bd64okntHnzZjVv3lwHDhzQZ599ph49emjdunWyWq/t/JcuXbroww8/VN++fdW8eXO5ubmpT58+atKkiXr06KEpU6ZoxowZqlWrlnr06KHq1avr1KlTOnjwoL777js999xzql+/vqQLL8zff/99rVu3Ts2bN1fPnj11+vRpffDBB+rWrZs+++yza8oVAFA6FfU8npsePXrka1zr1q3VunVrffjhh4qJidGNN96o6OhoffLJJ+rVq5dWrlyZY5333ntPnTp10r333qt3331XkZGRSktL06+//qrdu3fn+iZxboYNG6ZVq1Zp7dq1atKkiW677TalpKRoxYoVOn36tF555ZUr9hcAUzEAuLzBgwcbkozFixdfcVxiYqLh4+NjBAQEGOfOnTMMwzA2btxo3HbbbUZwcLDh6elpVK1a1ejfv7/x/fffO6xrs9mMhQsXGjfeeKPh5+dn+Pr6GrVr1zbuu+8+Izo62mHshg0bjDZt2hheXl5GhQoVjGHDhhknTpwwOnbsaFz+tDJt2jRDkrFx48Zcc7bZbMb8+fONhg0bGt7e3kblypWNMWPGGHFxcblur6C5ZmvXrp0hyVi3bt0Vv4cAgNLp8OHDhiSje/fuVx27ePFiQ1Ke/6pXr16gfdtsNiMkJMSQZHTq1CnXMTNnzrRv/8cff8x1zP79+40xY8YY1atXNzw9PY2goCCjcePGxkMPPWTs2LHDYawko2PHjjm2cejQIePOO+80AgICDF9fX6N9+/bG5s2bjQkTJhiSjN27d9vHbty40ZBkTJs2Lcd2sr+fI0aMcIjHxMQYd911lxESEmJYrdZc/3755ptvjN69exsVK1Y0PDw8jMqVKxuRkZHGjBkzcszjKSkpxmOPPWaEh4cbXl5eRoMGDYw333zzirkBAEofZ83j2duaOXPmVcdGRUXlOjfGxcUZo0ePNqpUqWJ4e3sbjRs3NubNm2ccOnQo1/GGYRixsbHGww8/bNSsWdPw9PQ0goODjTZt2hizZs2yj8lrLr7U+fPnjZdfftlo3Lix4eXlZZQvX97o2LGjsXbt2vx+CwBTsBiGYRR3Ex0AnCktLU1Vq1ZVuXLldOjQoWs+Ow0AgNKmXbt2ioqKUmJiosqVK+fsdAAAAIB8o8sDoNRbvHixTp06pXHjxtHcBgCUaTExMTliy5Yt0/fff6+uXbvS3AYAAIDpcAY3gFLrxRdfVHx8vBYsWCA/Pz/98ccfCggIcHZaAAA4TYUKFdS8eXM1aNBAbm5u2rNnjzZt2qTy5cvr+++/V+PGjZ2dIgAAAFAgNLgBlFoWi0UeHh5q2rSpXn/99Rw39QIAoKx56qmn9Omnnyo6OlopKSmqWLGiOnfurClTpqhevXrOTg8AAAAoMBrcAAAAAAAAAABT4mK0AAAAAAAAAABTosENAAAAAAAAADAlGtwAAAAAAAAAAFOiwQ0AAAAAAAAAMCUa3AAAAAAAAAAAU6LBDQAAAAAAAAAwJRrcAAAAAAAAAABTosENAAAAAAAAADAlGtwAAAAAAAAAAFOiwQ0AAAAAAAAAMCV3ZyfgbDabTcePH1f58uVlsVicnQ4AAA4Mw9DZs2dVpUoVWa2l731p5mEAgCtjHgYAwDkKMgeX+Qb38ePHFRER4ew0AAC4oqNHj6pq1arOTqPIMQ8DAMyAeRgAAOfIzxxc5hvc5cuXl3Thm+Xv7+/kbAAAcJSUlKSIiAj7fFXaMA8DAFwZ8zAAAM5RkDm4zDe4sz+G5e/vz4QOAHBZpfVjw8zDAAAzYB4GAMA58jMHl76LiAEAAAAAAAAAygQa3AAAAAAAAAAAU6LBDQAAAAAAAAAwJRrcAAAAAAAAAABTosENAAAAAAAAADAlGtwAAAAAAAAAAFOiwQ0AAAAAAAAAMCUa3AAAAAAAAAAAU6LBDQAAAAAAAAAwJRrcAAAAAAAAAABTosENAAAAAAAAADAlGtwAAAAAAAAAAFOiwQ0AAAAAAAAAMCUa3AAAAAAAAAAAU6LBDQAAAAAAAAAwJRrcAAAAAAAAAABTosENAAAAAAAAADAlGtwAAAAAAAAAAFOiwQ0AAAAAAAAAMCUa3AAAAAAAAAAAU6LBDQAAAAAAAAAwJRrcAAAAAAAAAABTosENAAAAAAAAADAll2pwb9myRb1791aVKlVksVi0Zs2aK45ftWqVbrnlFlWsWFH+/v6KjIzUV199VTLJAgAAAAAAAACcyqUa3CkpKWratKnmzZuXr/FbtmzRLbfcoi+++EI7d+5U586d1bt3b+3evbuYMwUAAAAAAAAAOJu7sxO4VM+ePdWzZ898j589e7bD4xdeeEFr167Vp59+qubNmxdxdgAAAAAAAAAAV+JSDe5rZbPZdPbsWQUHB+c5Jj09Xenp6fbHSUlJ9nVtNpskyWKxyGKxyDAMGYZhH3u1ePb6hY1brdYc2y5ovLC5UxM1URM1UZNr1nT59s2OeZiaqImaqImazFQT87B5f3al8feRmqiJmqiprNWUX6Wqwf3yyy8rOTlZd911V55jZs6cqenTp+eIx8fHKy0tTZLk4+OjgIAAJSUlKTU11T7Gz89P5cuXV0JCgjIyMuxxf39/+fr66vTp08rMzLTHg4KC5OXlpfj4eIcfSoUKFeTm5qa4uDiHHCpVqqSsrCydOnXKHrNYLAoNDVVGRoYSEhLscXd3d4WEhCg1NdX+R4kkeXp6Kjg4WMnJyUpJSbHHqYmaqImaqMmcNcXHx6s0YR6mJmqiJmqiJjPVxDxs3p9dafx9pCZqoiZqKms15ZfFKEg7vARZLBatXr1affv2zdf4999/X/fcc4/Wrl2rrl275jkut3esIyIilJCQIH9/f/u+S8O7HKXxnRtqoiZqoqayVlNiYqKCgoKUmJhon6fMjHmYmqiJmqiJmsxUE/OweX92pfH3kZqoiZqoqSzVlJiYqMDAwHzNwaXiDO7ly5dr7Nix+uijj67Y3JYkLy8veXl55YhbrVZZrY733Mz+hl4ur/jl6xcmXtB9FnecmqiJmqjpSnFqKv6a8tqvWTEPUxM1URM1UdOV4q5WE/OweX92pfH3kZqoiZqoqazVlF+mn60/+OADjRo1Sh988IF69erl7HQAAAAAAAAAACXEpc7gTk5O1sGDB+2PDx8+rD179ig4OFjVqlXT5MmTdezYMb3zzjuSLlyWZMSIEZozZ47atGmj2NhYSRevMwMAAAAAAAAAKL1c6gzun376Sc2bN1fz5s0lSZMmTVLz5s01depUSVJMTIyio6Pt4998801lZmbqgQceUFhYmP3fww8/7JT8AQAAAAAAAAAlx6XO4O7UqVOOi41fasmSJQ6PN23aVLwJAQAAAAAAAABclkudwQ0AAAAAAAAAQH7R4AYAAAAAAAAAmBINbgAAAAAAAACAKdHgBgAAAAAAAACYEg1uAAAAAAAAAIAp0eAGAAAAAAAAAJgSDW4AAAAAAAAAgCnR4AYAAAAAAAAAmBINbgAAAAAAAACAKdHgBgAAAAAAAACYEg1uAAAAAAAAAIAp0eAGAAAAAAAAAJgSDW4AAAAAAAAAgCnR4AYAAAAAAAAAmBINbgAAAAAAAACAKdHgBgAAAAAAAACYEg1uAAAAAAAAAIAp0eAGAAAAAAAAAJgSDW4AAAAAAAAAgCnR4AYAAAAAAAAAmBINbgAAAAAAAACAKdHgBgAAAAAAAACYEg1uAAAAAAAAAIAp0eAGAAAAAAAAAJgSDW4AAAAAAAAAgCnR4AYAAAAAAAAAmBINbgAAAAAAAACAKdHgBgAAAAAAAACYEg1uAAAAAAAAAIAp0eAGAAAAAAAAAJgSDW4AAAAAAAAAgCnR4AYAAAAAAAAAmBINbgAAAAAAAACAKdHgBgAAAAAAAACYEg1uAAAAAAAAAIAp0eAGAAAAAAAAAJgSDW4AAAAAAAAAgCnR4AYAAAAAAAAAmBINbgAAAAAAAACAKdHgBgAAAAAAAACYEg1uAAAAAAAAAIAp0eAGAAAAAAAAAJgSDW4AAAAAAAAAgCnR4AYAAAAAAAAAmBINbgAAAAAAAACAKdHgBgAAAAAAAACYEg1uAAAAAAAAAIAp0eAGAAAAAAAAAJgSDW4AAAAAAAAAgCm5VIN7y5Yt6t27t6pUqSKLxaI1a9ZcdZ1NmzapRYsW8vLyUq1atbRkyZJizxMAAAAAAAAA4Hwu1eBOSUlR06ZNNW/evHyNP3z4sHr16qXOnTtrz549euSRRzR27Fh99dVXxZwpAAAAAAAAAMDZ3J2dwKV69uypnj175nv8/Pnzdd111+mVV16RJNWvX19bt27Vq6++qu7duxdXmgAAAAAAAAAAF+BSDe6CioqKUteuXR1i3bt31yOPPJLnOunp6UpPT7c/TkpKkiTZbDbZbDZJksVikcVikWEYMgzDPvZq8ez1Cxu3Wq05tl3QeGFzpyZqoiZqoibXrOny7Zsd8zA1URM1URM1makm5mHz/uxK4+8jNVETNVFTWaspv0zd4I6NjVVoaKhDLDQ0VElJSUpNTZWPj0+OdWbOnKnp06fniMfHxystLU2S5OPjo4CAAPt2svn5+al8+fJKSEhQRkaGPe7v7y9fX1+dPn1amZmZ9nhQUJC8vLwUHx/v8EOpUKGC3NzcFBcX55BDpUqVlJWVpVOnTtljFotFoaGhysjIUEJCgj3u7u6ukJAQpaam2v8okSRPT08FBwcrOTlZKSkp9jg1URM1UdPVajp37pz++OMPhxc9Pj4+8vPzU2JiooKDg+3PuWapqTT8nOLj41WaMA9TEzVREzVRk5lqYh4278+uNP4+UhM1URM1lbWa8stiFKQdXoIsFotWr16tvn375jmmTp06GjVqlCZPnmyPffHFF+rVq5fOnTuXa4M7t3esIyIilJCQIH9/f/u+S8O7HKXxnRtqoiZqKr6apk+fnusLnmxTp07VtGnTTFVTafg5JSYmKigoSImJifZ5ysyYh6mJmqiJmqjJTDUxD5v3Z1cafx+piZqoiZrKUk2JiYkKDAzM1xxs6jO4K1eurBMnTjjETpw4IX9//1yb25Lk5eUlLy+vHHGr1Sqr1fGem9nf0MvlFb98/cLEC7rP4o5TEzVRU9mpady4cerTp49SU1PVrl07SdLWrVvtz6dhYWE5cnL1mgoTd7Wa8tqvWTEPUxM1URM15R6PiYlRTExMrrlIF+bhsLCwQueeV5yfE/OwxDxMTdRETdRUmDg1FX9N+WXqBndkZKS++OILh9g333yjyMhIJ2UEAOaV/cL50o81NWvWTH5+fk7MCgCAsmHBggVX/CTVtGnT9Mwzz5RcQgAAACbhUg3u5ORkHTx40P748OHD2rNnj4KDg1WtWjVNnjxZx44d0zvvvCNJuu+++zR37lw99thjGj16tDZs2KAPP/xQn3/+ubNKAAAAAIACy88nqQAAAJCTSzW4f/rpJ3Xu3Nn+eNKkSZKkESNGaMmSJYqJiVF0dLR9+XXXXafPP/9cEydO1Jw5c1S1alUtXLhQ3bt3L/HcAQAAAKCw+CQVAABA4bhUg7tTp045LjZ+qSVLluS6zu7du4sxKwAAAAAAAACAKypdd8wAAAAAAAAAAJQZNLgBAAAAAAAAAKZEgxsAAAAAAAAAYEo0uAEAAAAAAAAApkSDGwAAAAAAAABgSjS4AaAM+fPPP9W2bVvVqVNHrVq10q+//ppjjM1ms3/dvHlzjRkzRhkZGZKkffv2qUOHDqpXr54aNWqk0aNHKzU1tcTyBwAAAAAAuBQNbgAoQ8aNG6d7771Xf/zxhx5//HGNHDkyx5ilS5fav961a5esVqvmzJkjSfL29tbcuXO1f/9+/fzzz0pJSdFLL71UUukDAAAAAAA4oMENAGVEXFycfvrpJ919992SpP79++vo0aM6ePCgw7h9+/bZv7ZYLOrZs6feffddSVLt2rXVpEkTSZKbm5tatWqlI0eOlEwBAAAAAAAAl6HBDQBlxNGjRxUWFiZ3d3dJF5rX1apVU3R0tMO45s2b278+f/68Pvzww1yb2CkpKVq4cKFuv/32Ys0bAAAAAAAgL+7OTgAA4Fruvvtu3X///ZKkHj16qFu3bvr6668dxmRkZGjgwIHq1q2b+vXr54w0AQAAAAC4ZjExMYqJiclzeVhYmMLCwkowIxQUZ3ADQBkRERGhmJgYZWZmSpIMw1B0dLSqVavmMM5isdi/Xr9+vRo0aKCGDRvaY+fPn9fAgQMVFhZmvzY3AAC4umu92bMkffbZZ6pXr55q166tO+64Q0lJSSWSOwAApdWCBQt0ww035PlvwYIFzk4RV0GDGwDKiEqVKqlFixZatmyZJOnjjz9W1apVVatWLYdxaWlp9q9PnjypF198UY899pgkKTMzU4MGDVJwcLDefPNNh2Y4AAC4smu92XNycrLGjBmjNWvW6M8//1SVKlU0Y8aMkkofAIBSady4cdq5c6e2bt1qj23dulU7d+7Uzp07NW7cOCdmh/ygwQ0AZciCBQu0YMEC1alTRy+++KIWL14sSRo7dqw++eQTSVJiYqJ9fLdu3XTfffepd+/ekqQVK1Zo1apV+umnn9S8eXM1a9ZMDzzwQMkXAgCAyRTFzZ6//PJLNW/eXPXq1ZMkjR8/Xh988EEJVQAAQOkUFhamFi1aqFmzZvZYs2bN1KJFC7Vo0YLLk5gA1+AGgDKkbt26ioqKyhFfuHCh/evQ0FD717t27ZKfn5/98dChQzV06NDiTRIAgFLoSjd7vvTTVFe62XN0dLSqV69uX16jRg375ceytwsAAFDWcAY3AAAAALiI7DO8pQs3e65Tpw7NawAAgCugwQ0AAAAAxawobvZcrVo1/f333/blR44ccTgrHAAAoCyiwQ0AAAAAxawobvbco0cP7dq1S/v375ck/d///Z8GDRpUQhUAAAC4JhrcAAAAAFACrvVmz+XLl9fChQvVt29f1apVS//884+mTJlS8oUAAAC4ED7LBqDUOvtqI2enYEop6Tb712dfbyWbF++FFkb5ib84OwUAgIu51ps9S1KfPn3Up0+f4ksSAADAZOhaAAAAAAAAAABMiQY3AAAAAAAAAMCUaHADAAAAAAAAAEyJa3ADAAAAKHLcC6NwuBfGteM+GAAAlC38tQQAAAAAAAAAMCUa3AAAAAAAAAAAU6LBDQAAAAAAAAAwJRrcAAAAAAAAAABTosENAAAAAAAAADAlGtwAAAAAAAAAAFOiwQ0AAAAAAAAAMCUa3AAAAAAAAAAAU6LBDQAAAAAAAAAwJRrcAAAAAAAAAABTosENAAAAAAAAADAlGtwAAAAAAAAAAFOiwQ0AAAAAAAAAMCUa3AAAAAAAAAAAU6LBDQAAAAAAAAAwJRrcAAAAAAAAAABTosENAAAAAAAAADAld2cnAABwDbFJ5xWblKnUDJs9tvdYqnw8L7wXWtnfXZX9PZyVHgAAAAAAQA6cwQ0AkCQt2pagDrMOqfvcI/ZY97lH1GHWIXWYdUiLtiU4LzkAAAAAAK7Bn3/+qbZt26pOnTpq1aqVfv311zzH3nDDDWrSpIk6d+6sgwcP2uOfffaZ6tWrp9q1a+uOO+5QUlJSSaSOq+AMbgCAJGl02yDd2qh8nssr+zNlAAAAAADMady4cbr33ns1cuRIrVy5UiNHjtSPP/6Y69gffvhBgYGBeu655/Tkk0/qww8/VHJyssaMGaPNmzerXr16mjBhgmbMmKH//ve/JVwJLke3AgAgSars78ElSAAAAAAApU5cXJx++uknff3115Kk/v37a8KECTp48KBq1aqVY3xaWpoMw1BSUpKqVq0qSfryyy/VvHlz1atXT5I0fvx4devWjQa3C6DBDQAAAAAAAKDUOnr0qMLCwuTufqEVarFYVK1aNUVHR+fa4L7++utVvnx5hYeHa/PmzZKk6OhoVa9e3T6mRo0aiomJUWZmpn27cA6uwQ0AAAAAAAAA//PHH3/o+PHjuvnmm3Xfffc5Ox1cBQ1uAAAAAAAAAKVWRESE/WxrSTIMQ9HR0apWrVqu4wMDA2W1WjVixAht3LhRklStWjX9/fff9jFHjhxxOCsczkODGwAAAACcLDbpvPb8k6q9x1Ltsb3HUrXnnwv/YpPOOzE7AADMrVKlSmrRooWWLVsmSfr4449VtWrVXC9PIkkZGRmSpM8++0yNGjWSJPXo0UO7du3S/v37JUn/93//p0GDBpVA9rgal2twz5s3TzVq1JC3t7fatGmjHTt2XHH87NmzVbduXfn4+CgiIkITJ05UWlpaCWULAAAAANdu0bYEdZh1SN3nHrHHus89og6zDqnDrENatC3BeckBAFAKLFiwQAsWLFCdOnX04osvavHixZKksWPH6pNPPnEYe+ONN6pJkyZav3693njjDUlS+fLltXDhQvXt21e1atXSP//8oylTppR4HcjJpc6hX7FihSZNmqT58+erTZs2mj17trp3764DBw6oUqVKOca///77euKJJ7Ro0SK1bdtWf/zxh0aOHCmLxaJZs2Y5oQIAAAAAKLjRbYN0a6PyeS6v7O9SL90AADCdunXrKioqKkd84cKFkqSUlBR7bNeuXfLz88sxtk+fPurTp0/xJYlCcam/kmbNmqV77rlHo0aNkiTNnz9fn3/+uRYtWqQnnngix/ht27bppptu0pAhQyRduHvp4MGDtX379hLNGwCA0uTZZ58t8DoWi4WzFwDgGlT291Blfw9npwEAAGA6LtPgzsjI0M6dOzV58mR7zGq1qmvXrrm+uyJJbdu21bJly7Rjxw61bt1ahw4d0hdffKFhw4bluZ/09HSlp6fbHyclJUmSbDabbDabpAsv0i0WiwzDkGEY9rFXi2evX9i41WrNse2CxgubOzVRU6msSZJx2ZWYrLJdIW6RIcvFbf8vUlRx22X7tMgmi5Tv+JVzpyZXq+lajrNLj4/Lt1MSnnnmmRwxi+XC9+ry/LPzzG+Dm3mYmqipDNWk0vn8Tk0mqKkIjydnzMPFiXmYmqiJmqjpyrlns9kuzCeloSYz/5zyy2Ua3CdPnlRWVpZCQ0Md4qGhofaLt19uyJAhOnnypNq1ayfDMJSZman77rtPTz75ZJ77mTlzpqZPn54jHh8fb792t4+PjwICApSUlKTU1Is3efHz81P58uWVkJBgv9i8JPn7+8vX11enT5+2341VkoKCguTl5aX4+HiHH0qFChXk5uamuLg4hxwqVaqkrKwsnTp1yh6zWCwKDQ1VRkaGEhIuXnfP3d1dISEhSk1Ntf9RIkmenp4KDg5WcnKyw0crqImaymRNFk+d8al5sSbDpgqpf+i81VdJ3hfvlOxmS1dQ2mGlu/kr2SvMHvfISlFA+lGd86igVI8Qe9wr84zKZ8Qq2TNU6e6BF2s9f1J+508qyauqzrtd/ChTufQYeWclKtG7urKsXhdrTYuWp+2cEnxqybBcfHEWmHpIViNTp33rONQUfO4P2Szu1GSSmi79nbyW4yk+Pl4l7fI/Uo4dO6ZevXqpUaNGeuSRR1S3bl1J0v79+zV79mz99ttv+vzzz/O1beZhaqKmMlQT8zA1OammzMzMIjuenDEPFyfmYWqiJmqipivXlC37+b801GTmn1N+WYyCtMOL0fHjxxUeHq5t27YpMjLSHn/ssce0efPmXC87smnTJg0aNEjPPfec2rRpo4MHD+rhhx/WPffck+dZZLm9Yx0REaGEhAT5+/tLKj3vcpTGd26oiZoKUlPSq41K3xlJeeZOTa5WU7mH9zrGC3k8JSYmKigoSImJifZ5qqT17dtXHh4e+uijj3JdPmDAAGVlZWn16tVX3RbzMDVRU9mpiXmYmpxVU7lH9hXZ8eQK83BRYh6mJmoqOzUxDxe8puR0Q1Um/yZJOjazocp5WUxfk5nn4cTERAUGBuZrDnaZM7hDQkLk5uamEydOOMRPnDihypUr57rOlClTNGzYMI0dO1aS1LhxY6WkpOjee+/VU089JavVmmMdLy8veXl55YhbrdYc47O/oZfLK57b/goaL+g+iztOTdRk6pp04Uk3//ELT+jFFbfmss+CxqnJPDUV1XGW1+98SdqwYYNeeumlPJfffPPNevzxx/O1LeZhaqKmMlSTSufzOzWZoKYiPD5cYR4uSszD1ERNZagmlcLndxV/TZfu3/K/5q3ZazLzPJxfLjNbe3p66oYbbtD69evtMZvNpvXr1zuc0X2pc+fO5TiI3dzcJOW8RigAACgcb2/vPO+HIV246bO3t3cJZgQAAAAAwAUu0+CWpEmTJumtt97S0qVL9fvvv+v+++9XSkqKRo0aJUkaPny4w00oe/furTfeeEPLly/X4cOH9c0332jKlCnq3bu3vdENAACuzdChQ/Xee+/poYce0p9//mm/EdWff/6pBx98UO+//76GDh3q7DQBAAAAAGWQy1yiRJIGDhyo+Ph4TZ06VbGxsWrWrJnWrVtnv/FkdHS0wxnbTz/9tCwWi55++mkdO3ZMFStWVO/evfX88887qwQAAEqdl156SSdPntTcuXM1b948+1ycfWfxwYMHX/ESJgAAAAAAFBeXanBL0oQJEzRhwoRcl23atMnhsbu7u6ZNm6Zp06aVQGYAAJRNnp6eevfdd/Xvf/9bn3/+uaKjoyVJ1atXV8+ePdW0aVMnZwgAAAAAKKtcrsENAABcU5MmTdSkSRNnpwEAAAAAgB0NbgAAkC8//PCDNm7cqLi4OI0fP161a9fWuXPntH//ftWpU0flypVzdooAAAAAgDLGpW4yCQAAXE9GRobuuOMO3XTTTXrqqaf02muv6ejRo5Ikq9Wqbt26ac6cOU7OEgAAAABQFhWqwb19+/aizgMAALioKVOm6LPPPtMbb7yhAwcOyDAM+zJvb2/deeedWrt2rRMzBAAAAACUVYVqcEdGRqpOnTqaMWOGDh06VNQ5AQAAF/LBBx/o/vvv17333qvg4OAcy+vXr8/fAwAAlIDffvtNX375pb788kv99ttvzk4HAACXUKgG97Jly1S7dm3NmDFDtWvX1k033aT58+fr9OnTRZ0fAABwsri4ODVu3DjP5W5ubjp37lwJZgQAQNmydu1aXX/99WrcuLFuu+023XbbbWrcuLFq1aqlTz75xNnpAQDgVIVqcA8ZMkSff/65jh8/rjlz5sgwDI0fP15VqlRR3759tXLlSmVkZBR1rgAAwAkiIiK0f//+PJd///33qlWrVglmBABA2fHFF1+of//+kqQXXnhBq1ev1urVq/XCCy/IMAzdcccdWrdunZOzBADAea7pJpMhISGaMGGCtm3bpj///FNPPfWU9u/fr4EDB6py5cq69957tXXr1qLKFQAAOMGQIUO0YMECRUVF2WMWi0WS9NZbb+nDDz/U8OHDnZUeAACl2owZM9SkSRPt3btXjz/+uPr06aM+ffro8ccf1969e9W4cWNNnz7d2WkCAOA019TgvpSPj498fX3l7e0twzBksVi0du1adezYUa1ateL6YAAAmNRTTz2ltm3bqkOHDurcubMsFosmTpyoatWqady4cerRo4cmTpzo7DQBACiV9u7dqxEjRsjPzy/HMj8/P40cOVJ79+51QmYAALiGa2pwnz17VosXL1bXrl1VvXp1Pfnkk6pRo4ZWrlyp2NhYHT9+XCtWrFBcXJxGjRpVVDkDAIAS5OnpqXXr1mnx4sWqWbOm6tWrp/T0dDVp0kRLlizRp59+Kjc3N2enCQBAqeTt7X3F+12dPn1a3t7eJZgRAACuxb0wK61du1bvvfeePvvsM6WlpalVq1aaPXu2Bg0apAoVKjiMHTBggBISEvTAAw8UScIAAKDkWSwW3X333br77rudnQoAAGVKly5dNGfOHPXo0UORkZEOy7Zv367XXntN3bp1c1J2AAA4X6Ea3P369VNERIQmTpyo4cOHq27dulcc37RpUw0dOrRQCQIAAOeqWbOmZs+erT59+uS6/LPPPtNDDz2kQ4cOlXBmAACUfv/5z38UGRmpdu3aqXXr1vbX3wcOHNCOHTtUqVIlvfTSS07OEgAA5ylUg3vDhg3q1KlTvse3bt1arVu3LsyuAACAkx05ckTJycl5Lk9OTtbff/9dghkBAFB2XHfdddq7d69mzpypL7/8UitWrJAkVa9eXQ8//LCeeOIJVapUyclZAgDgPIVqcBekuQ0AAMzPYrHkuezHH39UYGBgySUDAEAZkZaWpjfffFPNmjXTq6++qldffdXZKQEA4HIKdZPJp59+Ws2aNctzefPmzTV9+vTC5gQAAJxszpw5qlmzpmrWrCmLxaJHHnnE/vjSfxUqVNDs2bN16623OjtlAABKHW9vbz3++OM6cOCAs1MBAMBlFeoM7pUrV6pfv355Lr/11lu1YsUKTZs2rdCJAQAA56lUqZIaNmwo6cIlSsLDwxUeHu4wxmKxyM/PTzfccIPGjx/vjDQBACj1GjVqpCNHjjg7DQAAXFahGtzR0dG6/vrr81x+3XXXcS1OAABMbPDgwRo8eLAkqXPnznr66ad18803OzkrAADKnueff15DhgxR586d1bVrV2enAwCAyylUg7tcuXJXbGAfPnxY3t7ehU4KAAC4jo0bNzo7BQAAyqy5c+cqODhY3bt313XXXafrrrtOPj4+DmMsFovWrl3rpAwBAHCuQt9kcsGCBbrvvvtyfFz56NGjevPNN9W5c+ciSRAAALiG3377TYcOHVJCQoIMw8ixfPjw4U7ICgCA0m3v3r2yWCyqVq2asrKydPDgwRxjrnQzaAAASrtCNbhnzJih1q1bq2HDhhozZoz9Gp2//PKLFi1aJMMwNGPGjCJNFAAAOMdff/2lu+++Wzt27Mi1sS1deGFNgxsAgKLH9bcBALiyQjW469atq++++04PPvigXn31VYdlHTp00Guvvab69esXSYIAAMC5xo0bp3379mn27Nlq3769goKCnJ0SAAAAAACSCtnglqQmTZpo8+bNOnnypA4dOiRJqlmzpkJCQoosOQAA4Hzff/+9nnzyST344IPOTgUAgDLnm2++0caNG/XCCy/kuvypp57SzTffrC5dupRwZgAAuIZCN7izhYSE0NQGAKAUCwkJUUBAgLPTAACgTHruuedUrVq1PJcfO3ZMzz33HA1uAECZdU0N7n/++Ue7d+9WYmKibDZbjuVcixMAAPO77777tGzZMj3wwANyc3NzdjoAAJQp+/bt05133pnn8latWumzzz4rwYwAAHAthWpwp6WlacSIEfr4449ls9lksVjsN5269O7NNLgBADCfVatWOTyuW7eusrKy1LRpU40ePVoRERG5NrrvuOOOkkoRAIAyIz09XRkZGVdcfu7cuRLMCAAA11KoBveTTz6pVatW6fnnn1dkZKQ6deqkpUuXKiwsTLNnz9bx48f1zjvvFHWuAACgBAwYMCDHm9fZXz/66KO5rmOxWJSVlVViOQIAUFY0atRIq1ev1qRJk3IsMwxDq1atUoMGDZyQGQAArqFQDe6VK1dq1KhRevzxx3Xq1ClJUnh4uLp06aKuXbuqS5cumjdvnt54440iTRYAABS/jRs3OjsFAADwPw8++KCGDx+uO++8U1OnTlX9+vUlSb/99pueffZZRUVFadGiRU7OEgAA5ylUgzsuLk6tW7eWJPn4+EiSUlJS7Mv79++vZ599lgY3AAAm1LFjR2enAAAA/ufuu+/WX3/9pRkzZmjVqlWyWq2SZL9c6NNPP60RI0Y4OUsAAJynUA3u0NBQ+5nbvr6+CgoK0oEDB9S7d29JUlJSktLS0oouSwAAAAAAyqhp06bp7rvv1urVq3Xo0CFJ0vXXX6++ffvq+uuvd3J2AAA4V6Ea3G3atNHWrVv1+OOPS5J69+6t//73vwoLC5PNZtOrr76qG2+8sUgTBQAAztGlS5crLrdYLPL29lbVqlXVuXNnDRgwQO7uhfoTAwAA5OH666/P814YAACUZdbCrPTQQw+pZs2aSk9PlyTNmDFDgYGBGjZsmEaMGKGAgAC99tprRZooAABwDpvNpqNHj2rTpk36+eeflZiYqMTERP3888/atGmTjh49qri4OH388ccaMmSIWrZsqZMnTzo7bQAAAABAGVCoBne7du00Z84ceXl5SZIiIiL0+++/a/fu3dq7d69+//131a1bt0gTBQAAzvHcc88pISFBS5cuVVxcnHbu3KmdO3cqLi5OixcvVkJCgl5//XXFx8dr0aJF+vXXXzV58mRnpw0AQKnx5Zdf6pZbblGFChXk7u4uNze3HP8AACirCtzgPnfunO644w699957jhuyWtW0aVM1atSIjyUDAFCKPProoxo1apSGDRvm8ALazc1NI0aM0MiRIzVx4kRZLBaNHDlSo0eP1ueff+7EjAEAKD0+/vhj3XbbbTpx4oQGDRokm82mwYMHa9CgQfLx8VGTJk00depUZ6cJAIDTFLjB7evrq2+//Vbnzp0rjnwAAICL2bt3r2rUqJHn8ho1aujnn3+2P77hhht0+vTpEsgMAIDSb+bMmWrdurV2796t6dOnS5JGjx6t9957T7/88otiYmJ03XXXOTlLAACcp9CXKImKiirqXAAAgAsKCwvTypUrZbPZciyz2Wz68MMPVblyZXvs1KlTCg4OLskUAQAotX777TcNGjRIbm5u9k9Lnz9/XtKFN5nHjx+vl156yZkpAgDgVIVqcM+dO1ffffednn76af3zzz9FnRMAAHAhkyZN0ubNm3XTTTdp0aJF2rx5szZv3qy3335bbdu21datW/Wvf/3LPv6jjz5S69atnZgxAAClh6+vrzw9PSVJgYGB8vLyUkxMjH15aGioDh8+7Kz0AABwukJdLLtp06bKzMzUzJkzNXPmTLm7u9tvOJnNYrEoMTGxSJIEAADO88ADD8hqtWrq1KkaO3asLBaLJMkwDFWoUEGvvfaaHnjgAUlSenq6Xn311Ste0gQAAORf3bp19dtvv9kfN2vWTO+++67uvvtuZWZm6v3331e1atWcmCEAAM5VqAZ3//797S9uAQBA6Xf//fdr7Nix+umnn/T3339LkqpXr66WLVvKw8PDPs7Ly0sdO3Z0VpoAAJQ6/fr102uvvaaXX35ZXl5eeuqpp3T77bcrMDBQFotFKSkpWrRokbPTBADTik06r9ikTKVmXLwk495jqfLxvHDhi8r+7qrs75HX6nABhWpwL1mypIjTAAAArs7Dw0ORkZGKjIx0dioAAJQZjz76qB599FH749tuu02bNm3SqlWr5Obmpl69eqlz585OzBAAzG3RtgS9+HW8Q6z73CP2r5/oVlFP9qhUwlmhIArV4AYAAKXXli1bJEkdOnRweHw12eMBAEDxat++vdq3b+/sNACgVBjdNki3Niqf5/LK/rRPXV2hfkLvvPNOvsYNHz68MJsHAABO1KlTJ1ksFqWmpsrT09P+OC+GYchisSgrK6sEswQAAACAa1fZ34NLkJhcoRrcI0eOzHPZpS+AaXADAGA+GzdulCR5eno6PAYAACWjT58+BRpvsVi0du3aYsoGAADXVqgG9+HDh3PEsrKydOTIEf3f//2foqOjtXTp0mtODgAAlLzLbxLJTSMBAChZn332mby9vVW5cmUZhnHV8Vf6pBUAAKVdoRrc1atXzzVes2ZNdenSRb169dLcuXM1b968a0oOAAC4lpiYGMXFxalWrVry8/NzdjoAAJRK4eHhOnbsmEJCQjRkyBANGjRIlStXdnZaAAC4JGtxbPS2227TihUrimPTAADACdauXat69eqpatWqatGihbZv3y5JOnnypJo3b641a9Y4N0EAAEqRo0ePauPGjWrevLlmzJihiIgIde3aVYsXL9bZs2ednR4AAC6lWBrcf/31l9LT04tj0wAAoIR9+umnuuOOOxQSEqJp06Y5fFQ6JCRE4eHhWrx4sRMzBACg9OnYsaMWLFig2NhYrVy5UhUqVNCECRNUqVIl3XHHHVq5ciWvuwEAUCEvUbJly5Zc42fOnNGWLVv02muvqW/fvteSFwAAcBHPPvusOnTooI0bN+rUqVN65plnHJZHRkZqwYIFzkkOAIBSzsPDQ7fffrtuv/12JScna9WqVZo/f74GDhyoZ555RlOmTHF2igAAOFWhGtydOnXK9SYWhmHIzc1Nd955p15//fVrTg4AADjfL7/8olmzZuW5PDQ0VHFxcSWYEQAAZU96erq++uorrV27Vrt375a3t7dq1Kjh7LQAAHC6QjW4N27cmCNmsVgUFBSk6tWry9/f/5oTAwAArsHX11cpKSl5Lj906JAqVKhQghkBAFA22Gw2ffPNN/rggw+0Zs0anTt3Tl27dtVbb72lfv36ccNnAABUyGtwd+zYMce/Dh06qHHjxtfc3J43b55q1Kghb29vtWnTRjt27Lji+DNnzuiBBx5QWFiYvLy8VKdOHX3xxRfXlAMAALioc+fOWrp0qTIzM3Msi42N1VtvvaVu3bo5ITMAAEqnbdu2acKECQoLC1OvXr108OBBvfDCCzp+/Li++OIL3X333TS3AQD4n0KdwX348GH98ssv6t27d67LP/30UzVu3LjAH5dasWKFJk2apPnz56tNmzaaPXu2unfvrgMHDqhSpUo5xmdkZOiWW25RpUqVtHLlSoWHh+vvv/9WYGBgIaoCAAC5ef7553XjjTeqVatWuvPOO2WxWPTVV19pw4YNWrBggQzD0LRp05ydJgAApUa7du3k4+OjW2+9VYMHD7a/to6OjlZ0dHSu67Ro0aIEMwQAwHUUqsH96KOPKikpKc8G97x58xQYGKjly5cXaLuzZs3SPffco1GjRkmS5s+fr88//1yLFi3SE088kWP8okWLdPr0aW3btk0eHh6SxDXIAAAoYnXr1tXWrVv18MMPa8qUKTIMQ//9738lXbgvR/anrwAAQNFJTU3Vxx9/rFWrVl1xnGEYslgsysrKKqHMAABwLYVqcEdFRemRRx7Jc/nNN9+s2bNnF2ibGRkZ2rlzpyZPnmyPWa1Wde3aVVFRUbmu88knnygyMlIPPPCA1q5dq4oVK2rIkCF6/PHH5ebmlus66enpSk9Ptz9OSkqSdOHaZjabTdKF64lbLBYZhiHDMOxjrxbPXr+wcavVmmPbBY0XNndqoqZSWZMk47IrMVllu0LcIkMXb6Br+V+kqOK2y/ZpkU0WKd/xK+dOTa5W07UcZ5ceH5dvp6QcPHhQtWrVsj9u2LChvv32WyUkJOjgwYOy2WyqWbOmKlasWKDtMg9TEzWVoZpUOp/fqckENRXh8eSseXjx4sXFsl3mYWqipjJUk0rh8zs1maOmIjye8qtQDe6EhASVL18+z+XlypXTqVOnCrTNkydPKisrS6GhoQ7x0NBQ7d+/P9d1Dh06pA0bNmjo0KH64osvdPDgQY0fP17nz5/P86PSM2fO1PTp03PE4+PjlZaWJkny8fFRQECAkpKSlJqaah/j5+en8uXLKyEhQRkZGfa4v7+/fH19dfr0aYfrkwYFBcnLy0vx8fEOP5QKFSrIzc1NcXFxDjlUqlRJWVlZDt87i8Wi0NBQZWRkKCEhwR53d3dXSEiIUlNT7X+USJKnp6eCg4OVnJzscEMwaqKmMlmTxVNnfGperMmwqULqHzpv9VWSdzV73M2WrqC0w0p381eyV5g97pGVooD0ozrnUUGpHiH2uFfmGZXPiFWyZ6jS3QMv1nr+pPzOn1SSV1Wdd7t4TcRy6THyzkpUond1ZVm9LtaaFi1P2zkl+NSSYbk4KQSmHpLVyNRp3zoONQWf+0M2izs1maSmS38nr+V4io+PlzPUqVNHoaGhuummm9SuXTu1a9dOLVq0UFBQkFq1alXo7TIPUxM1laGamIepyUk1ZWZmFtnx5Kx5eMSIEcWyXeZhaqKmMlQT8zA1lYJ5OL8sRkHa4f9Tt25dtWrVSsuWLct1+ZAhQ7Rjxw4dPHgw39s8fvy4wsPDtW3bNkVGRtrjjz32mDZv3qzt27fnWKdOnTpKS0vT4cOH7Wdsz5o1S//9738VExOT635ye8c6IiJCCQkJ9htk8q4hNVFT6agp6dVGpe+d0DxzpyZXq6ncw3sd44U8nhITExUUFKTExMRrvpFzQUydOlXbtm3T9u3blZKSIovFIl9fX7Vp08be8I6MjCzwDa6Yh6mJmspOTczD1OSsmso9sq/IjidnzcNXcv78eUVFRalp06YKCAgo0LrMw9RETWWnJuZhajL7PJyYmKjAwMB8zcGFOoN78ODBmjFjhlq3bq0JEybIar1QTFZWlubOnasVK1boqaeeKtA2Q0JC5ObmphMnTjjET5w4ocqVK+e6TlhYmDw8PBwuR1K/fn3FxsYqIyNDnp6eOdbx8vKSl5dXjrjVarXXkS37G3q5vOKXr1+YeEH3WdxxaqImU9ekC0+6+Y9feEIvrrg1l30WNE5N5qmpqI6zvH7ni9uzzz4r6cLcvmfPHn3//ffaunWrvv/+e23YsEEWi0Vubm5q0qSJveE9YMCAq26XeZiaqKkM1aTS+fxOTSaoqQiPD2fNw1dy+vRpde7cWd988426dOlSoHWZh6mJmspQTSqFz++iJlPUVITHR34VaraePHmyOnfurEceeURhYWHq0KGDOnTooCpVqmjixInq2LFjgRvcnp6euuGGG7R+/Xp7zGazaf369Q5ndF/qpptusl8HNNsff/yhsLCwXJvbAACgYNzc3HTDDTfooYce0ocffqhjx47p0KFDWrp0qcaMGaO0tDS9/vrrGjRokLNTBQCgzLj8DDgAAMqyQjW4vby89PXXX+vtt99W69atdfLkSZ08eVKtW7fWokWL9O233+b6rvDVTJo0SW+99ZaWLl2q33//Xffff79SUlI0atQoSdLw4cMdbkJ5//336/Tp03r44Yf1xx9/6PPPP9cLL7ygBx54oDBlAQCAq0hLS1N0dLSio6P1999/69ixYzIMw2U+tg0AQFlQkLPaAAAo7Qp1iRLpwscfRo0aZW8+F4WBAwcqPj5eU6dOVWxsrJo1a6Z169bZbzwZHR3t8LGLiIgIffXVV5o4caKaNGmi8PBwPfzww3r88ceLLCcAAMqyuLg4ff/99/ZLlOzevVvnz59X7dq11bZtW/3nP/9R27Zt1bBhQ2enCgBAmcEZ3AAAXFSoBvfp06f1zz//qEmTJrku37dvn6pWraqgoKACb3vChAmaMGFCrss2bdqUIxYZGakffvihwPsBAAB5GzVqlL7//nv99ddf8vLyUsuWLdWpUyc99dRTatu2rSpUqODsFAEAKJMqVqyow4cP53mvKgAAyppCNbgnTpyoAwcO5NlYHjdunOrXr6+33377mpIDAADOsXTpUnl4eGjIkCGaMGGCWrVq5ZI32gIAoKyxWq2qXr26s9MAAMBlFOqV6oYNG9SnT588l/fu3VvffvttoZMCAADO9corr6hPnz5av3692rZtq8DAQHXt2lVTp07VV199paSkJGenCAAAJH322WcaPXq0s9MAAMBpCtXgjo+PV0hISJ7LK1SooLi4uEInBQAAnGvixIn66KOPdPz4cR08eFDz5s1T7dq1tWbNGt16660KDg5WkyZNdN999+ndd9/VX3/95eyUAQAok37++WctXbrU2WkAAOA0hbpESVhYmHbv3p3n8p07d6pixYqFTgoAALiO6667Ttddd52GDRsmSUpMTFRUVJS+//57ff3113rrrbdksViUmZnp5EwBAAAAAGVNoRrcffv21bx589SzZ88clypZu3atFi9erPvvv79IEgQAAK4jLi5O33//vbZu3aqtW7dq9+7dMgzD2WkBAFCq1KxZM99jExMTizETAABcX6Ea3M8884y+/fZb9evXT02bNlWjRo0kSb/88ov27NmjBg0aaPr06UWaKAAAKHkHDhxwaGj/9ddf9oZ27dq1NWzYMLVr107t2rVzcqYAAJQe0dHRCg8PV5MmTa469uDBgzpz5kzxJwUAgIsqVIM7ICBAP/zwg/7zn/9o1apVWrlypSTp+uuv19SpU/XYY48pPT29SBMFAAAlp1+/ftq2bZtOnjwpwzDk7u6u5s2b65FHHrE3tLkcGQAAxaN+/foKDAzUp59+etWxzz//vKZOnVoCWQEA4JoKdZNJSfLz89P06dO1b98+nTt3TufOndOPP/6ohg0basiQIQoLCyvKPGFyf/75p9q2bas6deqoVatW+vXXX3OM2bRpk3x8fNSsWTP7v9TUVEnSkSNH1KlTJwUEBKhZs2YlnD0AlD0bNmxQs2bN9Mwzz2j9+vVKTEzU9u3b9corr6hfv340twEAKEatW7fWrl27lJWV5exUAABweYU6g/tShmFo/fr1eu+997R69WqdPXtWISEhGjJkSFHkh1Ji3LhxuvfeezVy5EitXLlSI0eO1I8//phjXN26dbVnz54ccX9/fz333HNKTEzUU089VQIZA0DZlpCQIKs19/fBz58/r6ioKDVt2lQBAQElnBkAAKXfoEGDZLPZFB8fr8qVK19xbJ8+fVS1atUSygwAANdT6DO4d+7cqUmTJik8PFzdunXTO++8o169emnr1q2KjY3VokWLijJPmFhcXJx++ukn3X333ZKk/v376+jRozp48GC+txEcHKx27drJz8+vuNIEAFwir+a2JJ0+fVqdO3fWzp07SzAjAADKjltuuUWLFy++anNbkho3bqwRI0aUQFYAALimAjW4Dx06pBkzZqhevXpq3bq1Vq5cqaFDh2rFihUyDEP9+/dXZGSkLBZLceULEzp69KjCwsLk7n7hAwMWi0XVqlVTdHR0jrF//fWXWrRooVatWun//u//SjpVAEA+Zd9oEgAAFL0nn3xSe/fudXYaAACYQr4vURIZGakdO3YoJCREAwYM0MKFC9WuXTtJF5qSwLVq0aKF/vnnHwUEBOiff/7RrbfeqpCQEN11113OTg0AcBnezAYAoPi8+OKLatSokZo0aSJJOnXqlCpVqqRvvvlGXbp0cXJ2AAC4lnw3uLdv367rrrtOs2bNUq9evexn4wJXExERoZiYGGVmZsrd3V2GYSg6OlrVqlVzGOfv72//umrVqho8eLC+++47GtwA4II4gxsAgJLF3AsAQO7y3aWeO3eu3n//ffXr10/BwcHq37+/Bg0apE6dOhVjeigNKlWqpBYtWmjZsmUaOXKkPv74Y1WtWlW1atVSTEyMYmJiJEnx8fGqUKGCrFarUlJStGLFCg0fPtzJ2QMALlexYkUdPnw4X9cFBQAAAACgOOW7wT1+/HiNHz9ehw8f1nvvvaf3339fb731lipXrqzOnTvLYrHwcWXkacGCBRo5cqReeOEF+fv7a/HixZKkXr16affu3Xmul5iYKEk6d+6c6tSpo/T0dCUmJqpq1aoaNmyYZs6cWSL5AwAuslqtql69urPTAAAAAAAg/w3ubNddd52efvppPf3009q5c6fee+89+00mx48fry+//FJ9+vRR165d5e3tXRw5w4Tq1q2rqKioHPHPP/9cMTExSk1NtV/TfevWrfLx8ZEkhYWFSZJ8fX31zz//lFzCAIB8++yzz7Rq1SotWrTI2akAAFBqHDlyRLt27ZJ08cSfP//8U4GBgbmOb9GiRUmlBgCAS7EYRXAhL5vNpg0bNmjZsmVavXq1zp49K19fXyUnJxdFjsUqKSlJAQEBSkxMdLgGNEpWSkqKypUrJ0lKTk6Wn5+fkzNCaXD21UbOTgFlWPmJvxTJdswwTz3//POaOnWqsrKyCryuGeoDUDjMw3CWopqDJefNU1arNccnpA3DyPVT09lx5mEAl2IehrM447Vwkdwp0mq1qmvXruratavmz5+vtWvX6v333y+KTQMAAAAAUKZkX9IRAABcXZE0uC/l7e2tgQMHauDAgUW9aQAAUEJq1qyZ77HZH5sGAABFY8SIEc5OAQAA0yjyBjcAADC/6OhohYeHq0mTJlcde/DgQZ05c6b4kwIAAAAA4DI0uIvB7U8ud3YKppOZkWb/+q5pH8ndkxuUFsbaFwY5OwUApUT9+vUVGBioTz/99Kpjs6/BDQAAAABASbM6OwEAAOB6WrdurV27dhXqhlUAAAAAAJQUzuAGAAA5DBo0SDabTfHx8apcufIVx/bp00dVq1YtocwAAAAAALiIBjcAAMjhlltu0S233JKvsY0bN1bjxo2LOSMAAAAAAHLiEiUAACCHJ598Unv37nV2GigCf/75p9q2bas6deqoVatW+vXXX/McaxiGunTposDAQId4dHS0evfurbp166pBgwZ6/fXXizlrAAAAAMgfGtxwqrTkBJ2JPazEE0fsscQTR3Qm9rDOxB5WWnKC85IDgDLsxRdf1C+//GJ/fOrUKbm5uWnDhg1OzAqFMW7cON177736448/9Pjjj2vkyJF5jn311Vd1/fXXO8QMw1C/fv00fPhwHThwQL/99pvuuuuuYs4aAAAAAPKHS5TAqY7sXq8/tn7sEPt+2XT713Xa9Ve99gNKOi0AQC4Mw3B2CiiguLg4/fTTT/r6668lSf3799eECRN08OBB1apVy2Hsr7/+qjVr1mjx4sX66KOP7PH169fLy8tLd955pz0WGhpaMgUAAAAAwFXQ4IZT1Wh+syrXviHP5d7lAksuGQAASpmjR48qLCxM7u4X/uSzWCyqVq2aoqOjHRrc58+f1z333KO3335bbm5uDtv47bffVLFiRQ0aNEgHDhxQjRo19Morr6hmzZolWgsAAAAA5IYGN5zKu1yQvMsFOTsNAADKtOnTp+uOO+5Q/fr1deTIEYdlmZmZ2rBhg3744Qc1bNhQ8+fP11133aWffvrJOckCAAAAwCVocAMAgFwdOXJEu3btkiQlJiZKunDDwstvQJitRYsWJZUa8ikiIkIxMTHKzMyUu7u7DMNQdHS0qlWrJkmKiYlRTEyMPv/8c8XGxmrWrFnKyspSUlKSqlSpoq+//lrVqlVT8+bN1bBhQ0nSsGHDNH78eJ0/f14eHh7OLA8AAAAAaHADAIDcTZkyRVOmTHGIjR8/Psc4wzBksViUlZVVUqkhnypVqqQWLVpo2bJlGjlypD7++GNVrVrVfnmSBQsWaPr06bmuGxMTo5UrV+rf//63HnvsMR07dkzh4eH64osvVL9+fZrbAAAAAFwCDW4AAJDD4sWLnZ0CisiCBQs0cuRIvfDCC/L397f/bMeOHat27dpp586dSk1NVbt27SRJH330kUaNGqXNmzcrLCxMfn5+mj9/vnr16iXDMBQQEKDly5c7syQAAAAAsKPBDQAAchgxYoSzU0ARqVu3rqKionLEFy5caP86JSXF/nXPnj119uxZh7HdunVTt27dii9JAAAAACgkq7MTAAAAAAAAAACgMGhwAwAAAAAAAABMiQY3AAAAAAAAAMCUuAY3AAAoNW5/kpsfFkZmRpr967umfSR3T28nZmNea18Y5OwUAAAAgDKHM7gBAAAAAAAAAKZEgxsAAAAAAAAAYEo0uAEAAAAAAAAApkSDGwAAAAAAAABgSjS4AQAAAAAAAACm5O7sBAAAAOAcackJSks+o6zz6fZY4okjcvPwkiR5lwuUd7kgZ6UHAAAAAFdFgxsAAKCMOrJ7vf7Y+rFD7Ptl0+1f12nXX/XaDyjptAAAAAAg32hwAwAAlFE1mt+syrVvyHO5d7nAkksGAAAAAAqBBjcAAEAZ5V0uiEuQAAAAADA1bjIJAAAAAAAAADAlGtwAAAAAAAAAAFOiwQ0AAAAAAAAAMCWXbHDPmzdPNWrUkLe3t9q0aaMdO3bka73ly5fLYrGob9++xZsgAAAAAAAAAMDpXK7BvWLFCk2aNEnTpk3Trl271LRpU3Xv3l1xcXFXXO/IkSN69NFH1b59+xLKFAAAAAAAAADgTC7X4J41a5buuecejRo1Sg0aNND8+fPl6+urRYsW5blOVlaWhg4dqunTp6tmzZolmC0AAAAAAAAAwFncnZ3ApTIyMrRz505NnjzZHrNareratauioqLyXO/ZZ59VpUqVNGbMGH333XdX3Ed6errS09Ptj5OSkiRJNptNNptNkmSxWGSxWGQYhgzDsI+9Wty+/v/i2SMscuTMuCvlUlRxV8qlqOKF3cblv8PZj7PlFbdarTl+rwsaL+xxc7XjqbBxq9UqQ5Jx2ft4VtmuELfIuOS7bPlfpKjitsv2aZFNFinf8SvnTk2uVtO1HGeXHh+Xb8fsinsevvR5sjQ9v7ty3JVyKao48zDzcFmbs0pdTUV4PDEPl/DzRml8LqQmamIeZs4qazUV4fGUXy7V4D558qSysrIUGhrqEA8NDdX+/ftzXWfr1q16++23tWfPnnztY+bMmZo+fXqOeHx8vNLS0iRJPj4+CggIUFJSklJTU+1j/Pz8VL58eSUkJCgjI8Me9/f3l6+vr06fPq3MzExVDbzww41PtiktUwoPsMpyySuimCSbsmyyj8v2zxmb3KxSmP/FuGFI/yTa5O0uVSx3MX4+S4o9a5Ofp0XBvhc3npZpKD7ZkL+3RQHeF+MpGYZOnzMU5GuRn+fFeGKaoaQ0QyHlLPJ2vxg/fc5QSoah0PJWebhd8n2iJpeuKftSPkFBQfLy8lJ8fLzDE0KFChXk5uaW45I/lSpVUlZWlk6dOmWPWSwWhYaGKiMjQwkJCfa4u7u7QkJClJqaav+DWJI8PT0VHBys5ORkpaSk2OPXejxlK1RNFk+d8bn4qQ6LYVOF1D903uqrJO9q9ribLV1BaYeV7uavZK8we9wjK0UB6Ud1zqOCUj1C7HGvzDMqnxGrZM9QpbsHXqz1/En5nT+pJK+qOu/mZ4+XS4+Rd1aiEr2rK8vqdbHWtGh52s4pwaeWDMvF35vA1EOyGpk67VvHoabgc3/IZnGnJpPUdOnv5LUcT/Hx8SpNinsevvQ5uzQ9v1OTOWpiHr6sJuZhanJSTZmZmUV2PDEPl/DzRml8LqQmamIeZs4qYzUV5TycXxajIO3wYnb8+HGFh4dr27ZtioyMtMcfe+wxbd68Wdu3b3cYf/bsWTVp0kT/93//p549e0qSRo4cqTNnzmjNmjW57iO3d6wjIiKUkJAgf39/Sdf+DtsdT38oqXSdkeTKcVfKpajihd3GqufuuvCYd6xltVqV9Gqj0vdOaJ65U5Or1VTu4b2O8UIeT4mJiQoKClJiYqJ9njKz4p6Hs+dgqXQ9v7ty3JVyKao48zDzcFmbs0pbTeUe2VdkxxPzcAmfcVoKnwupiZqYh5mzylpNRTUPJyYmKjAwMF9zsEudwR0SEiI3NzedOHHCIX7ixAlVrlw5x/i//vpLR44cUe/eve2x7IPa3d1dBw4c0PXXX++wjpeXl7y8vHQ5q9Uqq/WyH9b/vqGXyyuevf7l7xjk9Q6CM+KulEtRxV0pl6KKF3Ybl/8OX/74SvGC/r4Xd7wguecVt+jCk27+4xee0Isrbs1lnwWNU5N5aiqq4yyv33mzKu552NXnCVfKpajirpRLUcWZh5mH84pTk0lqKsLjg3m4hJ83SuNzITVRUyHizMNlaM5SKaypCI+P/HKp2drT01M33HCD1q9fb4/ZbDatX7/e4YzubPXq1dO+ffu0Z88e+78+ffqoc+fO2rNnjyIiIkoyfQAAAAAAAABACXKpM7gladKkSRoxYoRatmyp1q1ba/bs2UpJSdGoUaMkScOHD1d4eLhmzpwpb29vNWrUyGH9wMBAScoRBwAAAAAAAACULi7X4B44cKDi4+M1depUxcbGqlmzZlq3bp39xpPR0dGl7mNiAAAAAAAAAICCc7kGtyRNmDBBEyZMyHXZpk2brrjukiVLij4hAAAAAAAAAIDL4VRoAAAAAAAAAIAp0eAGAAAAAAAAAJgSDW4AAAAAAAAAgCnR4AYAAAAAAAAAmBINbgAAAAAAAACAKdHgBgAAAAAAAACYEg1uAAAAAAAAAIAp0eAGAAAAAAAAAJgSDW4AAAAAAAAAgCnR4AYAAAAAAAAAmBINbgAAAAAAAACAKdHgBgAAAAAAAACYEg1uAAAAAAAAAIAp0eAGAAAAAAAAAJgSDW4AAAAAAAAAgCnR4AYAAAAAAAAAmBINbgAAAAAAAACAKdHgBgAAAAAAAACYEg1uAAAAAAAAAIAp0eAGAAAAAAAAAJgSDW4AAAAAAIBi8Oeff6pt27aqU6eOWrVqpV9//TXHmA0bNqh169Zq0KCBGjZsqMcee0w2m02S9NVXX6lZs2b2f1WqVFGLFi1KugwAcGk0uAEAAAAAAIrBuHHjdO+99+qPP/7Q448/rpEjR+YYExQUpOXLl+u3337Tzp07tW3bNr3zzjuSpO7du2vPnj32fy1atNDQoUNLuAoAcG00uAEAAAAAAIpYXFycfvrpJ919992SpP79++vo0aM6ePCgw7jmzZurZs2akiRvb281a9ZMR44cybG948ePa/369Ro2bFix5w4AZkKDGwAAAAAAoIgdPXpUYWFhcnd3lyRZLBZVq1ZN0dHRea4TGxurlStX6rbbbsuxbMmSJbr11ltVqVKlYssZAMyIBjcAAAAAAICTJSUlqXfv3nrsscfUsmVLh2WGYWjRokUaM2aMk7IDANdFgxsAAAAAAKCIRUREKCYmRpmZmZIuNKmjo6NVrVq1HGPPnj2rHj166Pbbb9ekSZNyLN+8ebPS0tLUvXv3Ys8bAMyGBjcAAAAAAEARq1Spklq0aKFly5ZJkj7++GNVrVpVtWrVchiXnJysHj16qEePHnr66adz3dbbb7+tkSNHys3NrdjzBgCzcXd2AgAAAAAAAKXRggULNHLkSL3wwgvy9/fX4sWLJUljx45Vnz591KdPH82ZM0c7duxQSkqKVq1aJUm688479dRTT0mSEhMTtWrVKu3bt89pdQCAK6PBDQAAAAAAUAzq1q2rqKioHPGFCxcqJiZGu3btUs+ePdWzZ88cY2JiYhQWFqaAgAClpKSURLoAYEo0uAEAAAAAAErYggULNH369DyXT5s2Tc8880zJJQQAJkWDGwAAAAAAoISNGzdOffr0UWpqqtq1aydJ2rp1q3x8fCRJYWFhzkwPAEyDBjcAAAAAAEAJCwsLU1hYmMPlR5o1ayY/Pz8nZgUA5kODGwAAAAAAXLPbn1zu7BRMKTMjzf71XdM+kruntxOzMa+1LwxydgoAnMTq7AQAAAAAAAAAACgMGtwAAAAAAAAAAFPiEiUAAAAAAAAlLC05QWnJZ5R1Pt0eSzxxRG4eXpIk73KB8i4X5Kz0AMA0aHADAAAAAACUsCO71+uPrR87xL5fNt3+dZ12/VWv/YCSTgsATIcGNwAAAAAAQAmr0fxmVa59Q57LvcsFllwyAGBiNLgBAAAAAABKmHe5IC5BAgBFgJtMAgAAAAAAAABMiQY3AAAAAAAAAMCUaHADAAAAAAAAAEyJBjcAAAAAAAAAwJRocAMAAAAAAAAATIkGNwAAAAAAAADAlGhwAwAAAAAAAABMiQY3AAAAAAAAAMCUaHADAAAAAAAAAEyJBjcAAAAAAAAAwJRcssE9b9481ahRQ97e3mrTpo127NiR59i33npL7du3V1BQkIKCgtS1a9crjgcAAAAAAAAAlA4u1+BesWKFJk2apGnTpmnXrl1q2rSpunfvrri4uFzHb9q0SYMHD9bGjRsVFRWliIgIdevWTceOHSvhzAEAAAAAAAAAJcnlGtyzZs3SPffco1GjRqlBgwaaP3++fH19tWjRolzHv/feexo/fryaNWumevXqaeHChbLZbFq/fn0JZw4AAAAAAAAAKEnuzk7gUhkZGdq5c6cmT55sj1mtVnXt2lVRUVH52sa5c+d0/vx5BQcH57o8PT1d6enp9sdJSUmSJJvNJpvNJkmyWCyyWCwyDEOGYdjHXi1uX/9/8ewRFjlyZtyVcimquCvlUlTxwm7j8t/h7MfZ8opbrdYcv9cFjRf2uLna8VTYuNVqlSHJuOx9PKtsV4hbZFzyXbb8L1JUcdtl+7TIJouU7/iVc6cmV6vpWo6zS4+Py7djdsU9D1/6PFmant9dOe5KuRRVnHmYebiszVmlrqYiPJ6Yh5mHXT3uSrkUVZx5mHm4TM1ZpbGmIjye8sulGtwnT55UVlaWQkNDHeKhoaHav39/vrbx+OOPq0qVKuratWuuy2fOnKnp06fniMfHxystLU2S5OPjo4CAACUlJSk1NdU+xs/PT+XLl1dCQoIyMjLscX9/f/n6+ur06dPKzMxU1cALP9z4ZJvSMqXwAKsslzwTxyTZlGWTfVy2f87Y5GaVwvwvxg1D+ifRJm93qWK5i/HzWVLsWZv8PC0K9r248bRMQ/HJhvy9LQrwvhhPyTB0+pyhIF+L/DwvxhPTDCWlGQopZ5G3+8X46XOGUjIMhZa3ysPtku8TNbl0TdmX8gkKCpKXl5fi4+MdnhAqVKggNze3HJf8qVSpkrKysnTq1Cl7zGKxKDQ0VBkZGUpISLDH3d3dFRISotTUVPsfxJLk6emp4OBgJScnKyUlxR6/1uMpW6FqsnjqjE/NizUZNlVI/UPnrb5K8q5mj7vZ0hWUdljpbv5K9gqzxz2yUhSQflTnPCoo1SPEHvfKPKPyGbFK9gxVunvgxVrPn5Tf+ZNK8qqq825+9ni59Bh5ZyUq0bu6sqxeF2tNi5an7ZwSfGrJsFz8vQlMPSSrkanTvnUcago+94dsFndqMklNl/5OXsvxFB8fr9KkuOfhS5+zS9PzOzWZoybm4ctqYh6mJifVlJmZWWTHE/Mw83BpnbNKY03Mw5fVxDxMTaVgHs4vi1GQdngxO378uMLDw7Vt2zZFRkba44899pg2b96s7du3X3H9F198Uf/5z3+0adMmNWnSJNcxub1jHRERoYSEBPn7+0u69nfY7nj6Q0ml651QV467Ui5FFS/sNlY9d9eFx7xjLavVqqRXG5W+d0LzzJ2aXK2mcg/vdYwX8nhKTExUUFCQEhMT7fOUmRX3PJw9B0ul6/ndleOulEtRxZmHmYfL2pxV2moq98i+IjuemIeZh1097kq5FFWceZh5uCzNWaWxpqKahxMTExUYGJivOdilzuAOCQmRm5ubTpw44RA/ceKEKleufMV1X375Zb344ov69ttv82xuS5KXl5e8vLxyxK1Wq6zWy35Y//uGXi6vePb6xmXxyx87M+5KuRRV3JVyKap4Ybdx+e/w5Y+vFC/o73txxwuSe15xiy486eY/fuEJvbji1lz2WdA4NZmnpqI6zvL6nTer4p6HXX2ecKVciiruSrkUVZx5mHk4rzg1maSmIjw+mIeZh1097kq5FFWceZh5OK84NZmkpiI8PvLLpWZrT09P3XDDDQ43iMy+YeSlZ3Rf7j//+Y9mzJihdevWqWXLliWRKgAAAAAAAADAyVzqDG5JmjRpkkaMGKGWLVuqdevWmj17tlJSUjRq1ChJ0vDhwxUeHq6ZM2dKkl566SVNnTpV77//vmrUqKHY2FhJUrly5VSuXDmn1QEAAAAAAAAAKF4u1+AeOHCg4uPjNXXqVMXGxqpZs2Zat26d/caT0dHRDh+9eOONN5SRkaEBAwY4bGfatGl65plnSjJ1AAAAAAAAAEAJcrkGtyRNmDBBEyZMyHXZpk2bHB4fOXKk+BMCAAAAAAAAALgcl7oGNwAAAAAAAAAA+UWDGwAAAAAAAABgSjS4AQAAAAAAAACmRIMbAAAAAAAAAGBKNLgBAAAAAAAAAKZEgxsAAAAAAAAAYEo0uAEAAAAAAAAApkSDGwAAAAAAAABgSjS4AQAAAAAAAACmRIMbAAAAAAAAAGBKNLgBAAAAAAAAAKZEgxsAAAAAAAAAYEo0uAEAAAAAAAAApkSDGwAAAAAAAABgSjS4AQAAAAAAAACmRIMbAAAAAAAAAGBKNLgBAAAAAAAAAKZEgxsAAAAAAAAAYEo0uAEAAAAAAAAApkSDGwAAAAAAAABgSjS4AQAAAAAAAACmRIMbAAAAAAAAAGBKNLgBAAAAAAAAAKZEgxsAAAAAAAAAYEo0uAEAAAAAAAAApkSDGwAAAAAAAABgSjS4AQAAAAAAAACmRIMbAAAAAAAAAGBKNLgBAAAAAAAAAKZEgxsAAAAAAAAAYEo0uAEAAAAAAAAApkSDGwAAAAAAAABgSjS4AQAAAAAAAACmRIMbAAAAAAAAAGBKNLgBAAAAAAAAAKZEgxsAAAAAAAAAYEo0uAEAAAAAAAAApkSDGwAAAAAAAABgSjS4AQAAAAAAAACmRIMbAAAAAAAAAGBKNLgBAAAAAAAAAKZEgxsAAAAAAAAAYEo0uAEAAAAAAAAApkSDGwAAAAAAAABgSjS4AQAAAAAAAACmRIMbAAAAAAAAAGBKNLgBAAAAAAAAAKZEgxsAAAAAAAAAYEou2eCeN2+eatSoIW9vb7Vp00Y7duy44viPPvpI9erVk7e3txo3bqwvvviihDIFAAAAAAAAADiLyzW4V6xYoUmTJmnatGnatWuXmjZtqu7duysuLi7X8du2bdPgwYM1ZswY7d69W3379lXfvn31yy+/lHDmAAAAAAAAAICS5HIN7lmzZumee+7RqFGj1KBBA82fP1++vr5atGhRruPnzJmjHj166N///rfq16+vGTNmqEWLFpo7d24JZw4AAAAAAAAAKEnuzk7gUhkZGdq5c6cmT55sj1mtVnXt2lVRUVG5rhMVFaVJkyY5xLp37641a9bkOj49PV3p6en2x4mJiZKkM2fOyGazSZIsFossFosMw5BhGPaxV4tnr5+Zfk6SlD3CclkOzoy7Ui5FFXelXIoqXthtnDlz5sLjy34ns+UVt1qtOX6vCxov7HFzteOpsHGr1aqktCwZl72PZ5VNhpRH3CLjku+y5X+RoorbLtunRTZZpHzHr5w7NblaTVn/Ox7t8UIeT9nz1OXrmVVxz8PZc7BUup7fXTnuSrkUVZx5mHm4rM1Zpa0mW2JikR1PzMPMw64ed6VciirOPMw8XJbmrNJYU1HNwwWZg12qwX3y5EllZWUpNDTUIR4aGqr9+/fnuk5sbGyu42NjY3MdP3PmTE2fPj1HvHr16oXMGnAdQbPGODsFANmeDCrSzZ09e1YBAQFFuk1nYB5GacY8DLiIJwOLfJPMw4DrYx4GXEQRz8P5mYNdqsFdEiZPnuxwxrfNZtPp06dVoUIFWSyXvx+IkpSUlKSIiAgdPXpU/v7+zk4HKNM4Hl2HYRg6e/asqlSp4uxUigTzsOviuAdcB8ej62AeRknhuAdcA8ei6yjIHOxSDe6QkBC5ubnpxIkTDvETJ06ocuXKua5TuXLlAo338vKSl5eXQywwMLDwSaPI+fv78yQCuAiOR9dQGs4Yy8Y87Po47gHXwfHoGpiHUZI47gHXwLHoGvI7B7vUTSY9PT11ww03aP369faYzWbT+vXrFRkZmes6kZGRDuMl6ZtvvslzPAAAAAAAAACgdHCpM7gladKkSRoxYoRatmyp1q1ba/bs2UpJSdGoUaMkScOHD1d4eLhmzpwpSXr44YfVsWNHvfLKK+rVq5eWL1+un376SW+++aYzywAAAAAAAAAAFDOXa3APHDhQ8fHxmjp1qmJjY9WsWTOtW7fOfiPJ6OhoWa0XTzxv27at3n//fT399NN68sknVbt2ba1Zs0aNGjVyVgkoJC8vL02bNi3HR+YAlDyOR6Ds4bgHXAfHI1D2cNwDroFj0ZwshmEYzk4CAAAAAAAAAICCcqlrcAMAAAAAAAAAkF80uAEAAAAAAAAApkSDGwAAAAAAAABgSjS4USyeeeYZWSwW+78KFSqoXbt2+uKLL5ydGmBqlx5bVqtVAQEBaty4sSZMmKDff//dYWynTp0cxlarVk1DhgzR33//nWN74eHhstlsOfZ30003yWKxaOTIkTmWrVu3Tl27dlVgYKB8fX3VvHlzvfbaa8rMzHQYt2TJElksFtWsWTPHstmzZ8tisVzDdwRAbpiHgaLHHAwgP5iDgeLBPIwrocGNYuPj46OoqChFRUXprbfeUlpamnr37q1t27Y5OzXA1LKPrW3btmnlypUaNWqUvv32WzVr1kzLli1zGHvTTTcpKipK3333nZ588kl9/fXXuvnmm3Xu3Dn7GA8PD508eVJbtmxxWPfvv/9WVFSUypUrlyOHV155RT179pS/v7/effddffbZZ+rataseffRRDRgwINc/EA4fPpwjPwDFh3kYKHrMwQDygzkYKB7Mw8iLu7MTQOlltVp144032h+3adNGERERWrp0qdq2bevEzABzu/zYuuWWWzR+/Hj16tVLY8aMUdu2bVWzZk1JUmBgoH3sTTfdJD8/Pw0fPlxffPGFBgwYIEny9PRU165d9cEHH6hTp0727S5fvlwNGzaUm5ubw/53796txx9/XCNGjNCSJUvs8S5duqhBgwYaPXq05s2bpwcffNBhvc6dO+uFF17QsGHDcmwTQNFjHgaKHnMwgPxgDgaKB/Mw8sIZ3Cgx4eHhqlixoqKjoyVJMTExGj16tGrWrCkfHx/Vrl1bTz75pNLT0+3rjBkzRu3bt7c/PnnypKxWq1q1amWPJScny8PDQx999FHJFQO4GG9vb73++uvKyMjQwoUL8xzXsmVLSRfeQb7U4MGDtXLlSp0/f94ee//99zVkyJAc23j99ddlsVg0ffr0HMtGjBihOnXqaPbs2TmWTZkyRQcPHtTy5cvzWxaAIsQ8DBQP5mAAV8McDBQf5mFINLhRgpKTk3X69Gldd911ki5M0MHBwZo1a5bWrVunxx57TEuXLtV9991nX6dDhw768ccflZaWJknasmWLvLy8tHv3bp09e1aStG3bNmVmZqpDhw4lXxTgQho0aKDw8HBFRUXlOSZ7Mq9SpYpDvHfv3kpPT9fXX38tSfrtt9+0d+9eDRo0KMc2Nm/erCZNmqh69eo5llmtVt122206dOiQjh075rCscePGuv322/X888/n+rEtAMWLeRgoPszBAK6EORgoXszDoMGNYpWZmanMzExFR0dr7NixKl++vB5++GFJFw7wl19+WX379lXHjh01atQo/fe//9WyZcvs10Tq0KGD0tPTtX37dkkXJvV+/fopMDBQ33//vT1Wp04dhYaGOqdIwIVEREQoNjbW/tgwDGVmZiojI0M7d+7Uv//9bwUGBqpr164O6/n6+ur222+3v6P8wQcfKDIy0v5H+KWOHTumatWq5ZlD9rJ//vknx7Knn35av//+u1auXFmo+gAUDPMwUHKYgwFcijkYKFnMw2UbDW4Um5SUFHl4eMjDw0PVq1fXypUr9e6776pu3bqSLjzZzJ49Ww0aNJCPj488PDw0dOhQZWZm6tChQ5Kk6667TlWrVrVf8H/Lli3q1KmT2rdvr82bN9tjvGMNXGAYhsOdmL/44gt5eHjIy8tLLVu2VGZmplatWpXrH8GDBw/W2rVrlZqaquXLl2vw4MFFnt8NN9ygW2+9Vc8995wMwyjy7QO4iHkYKFnMwQCyMQcDJY95uGyjwY1i4+Pjox9//FHbt2/XsmXLFBYWpuHDhysmJkaSNHv2bP3rX//S7bffrrVr12rHjh2aN2+eJNk/hiVJHTt21JYtW5SUlKSff/5ZHTp0UIcOHbRlyxalp6drx44dTOrA//zzzz+qXLmy/XG7du30448/ateuXTpx4oQOHDigzp0757pu9+7d5eHhoalTp+rw4cO66667ch0XHh5uv35gbrKXVa1aNdflU6ZM0b59+7RmzZp8VgWgMJiHgZLFHAwgG3MwUPKYh8s2GtwoNlarVS1btlTr1q01dOhQrV69WmfOnNGzzz4rSfroo4/Up08fzZw5U926dVOrVq3k5+eXYzsdOnRQVFSUNm3apJCQENWrV89+PbKNGzcqPT3d4eYbQFn166+/6tixYw53Zg8ICFDLli3VvHlzVapU6Yrre3h4qH///po1a5a6dOmS50cdO3bsqH379uno0aM5lhmGoS+++EI1a9ZUeHh4ruvfeOONuuWWWzRjxowCVAegoJiHgZLDHAzgUszBQMliHgYNbpSYli1bavDgwVq8eLFiY2OVmpoqT09PhzHvvfdejvU6dOiglJQUzZo1y/7udLNmzeTj46MXX3xRERERqlGjRkmUAListLQ0Pfjgg/Ly8tLYsWMLvZ2xY8eqd+/e9usD5ubBBx+UzWbTtGnTcix79913tX//fk2cOPGK+5kyZYp2796tTz/9tNC5AigY5mGgeDAHA7ga5mCg+DAPQ5LcnZ0AypYpU6Zo+fLlmj17tm655RbNmTNHc+fOVZ06dbRs2TIdPHgwxzr16tVTpUqVtHnzZr322muSJDc3N91000368ssvNXTo0JIuA3Aqm82mH374QdKFO7Lv27dPb775pg4dOqQlS5Zc0x+5rVu3vurHpZo3b66XXnpJjz76qBITEzVq1Cj5+vrqq6++0quvvqrbb79d48ePv+I22rdvr44dO2rDhg2FzhVAwTEPA9eGORhAYTEHA9eOeRh5ocGNElW3bl0NGjRIb7zxhqKjoxUfH6+pU6dKkgYMGKDXXntNvXv3zrFehw4dtHLlSofri3Xs2FFffvkl1xxDmZOamqrIyEhJUrly5VSjRg3dfPPNWr16terVq1ciOfzrX/9SgwYN9Morr2jo0KHKyMhQ3bp19fLLL2v8+PGyWq/+AaEpU6bYb5ADoGQwDwPXhjkYQGExBwPXjnkYebEY3LoTAAAAAAAAAGBCXIMbAAAAAAAAAGBKNLgBAAAAAAAAAKZEgxsAAAAAAAAAYEo0uAEAAAAAAAAApkSDGwAAAAAAAABgSjS4AQAAAAAAAACmRIMbAAAAAAAAAGBKNLgBAAAAAAAAAKZEgxsAAAAAAAAAYEo0uAEAAAAAAAAApkSDGwAAAAAAAABgSjS4AQAAAAAAAACm9P8YfiHMdGaLawAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from bioneuralnet.metrics import evaluate_rf, plot_multiple_metrics\n", - "\n", - "# raw omics evaluation\n", - "X_raw = merged_omics.values\n", - "y_global = phenotype.values\n", - "rf_acc, rd_f1w, rf_f1m = evaluate_rf(X_raw, y_global, n_estimators=100, runs=5, mode=\"classification\")\n", - "\n", - "# metrics dictionary\n", - "metrics = {\n", - " \"Accuracy\": {\"Raw\": rf_acc,\"DPMON\": dpmon_acc_tuple},\n", - " \"F1-Weighted\": {\"Raw\": rd_f1w,\"DPMON\": dpmon_f1w_tuple},\n", - " \"F1-Macro\": {\"Raw\": rf_f1m, \"DPMON\": dpmon_f1m_tuple}\n", - "}\n", - "\n", - "plot_multiple_metrics(metrics)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Phenotype-Aware Clustering\n", - "\n", - "BioNeuralNet includes phenotype-guided clustering tools like **HybridLouvain**, which extend standard graph methods (e.g., Louvain) to incorporate phenotype correlation. This allows detection of biologically meaningful modules.\n", - "\n", - "- Accepts any network and omics matrix as input\n", - "- Optimizes modularity while aligning clusters to phenotype signal\n", - "- Can be compared with external clustering (e.g., SmCCNet)\n", - "\n", - "For details, see the [Correlated Clustering documentation](https://bioneuralnet.readthedocs.io/en/latest/clustering.html)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from bioneuralnet.clustering import HybridLouvain\n", - "import networkx as nx\n", - "\n", - "merged_omics = pd.concat([omics1, omics2], axis=1)\n", - "G_network = nx.from_pandas_adjacency(global_network)\n", - "\n", - "hybrid = HybridLouvain(\n", - " G=G_network,\n", - " B=merged_omics,\n", - " Y=phenotype,\n", - " tune=True,\n", - ")\n", - "hybrid_result = hybrid.run(as_dfs=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Number of clusters: 2\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6gAAAG0CAYAAAA/ygrhAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAhbxJREFUeJzs3XlYVGUbx/HvsAsISoArivseGqavmvtCuaeVay6VWWpZtKnlVpmmZpZatmq5lGaWlriFqZlbaVqW+1oqiJagoILMef84AU6AIgIzwO9zXc8V85znnLnPMI3c82wWwzAMREREREREROzMyd4BiIiIiIiIiIASVBEREREREXEQSlBFRERERETEIShBFREREREREYegBFVEREREREQcghJUERERERERcQhKUEVERERERMQhKEEVERERERERh6AEVURERERERByCElQRKZCCg4MZMGCAvcMolMaNG4fFYsnRa65fvx6LxcL69etz9Lr2ZrFYGDZs2C1d42Zeb4vFwrhx427p+fKL3HgfiohI7lOCKiL5yuHDhxk8eDAVK1bEw8MDHx8fmjRpwltvvcWlS5fyJIaEhATGjRtX4JIlR/DOO+8wd+5ce4dhIyU5XrJkSYbHBwwYgLe3dx5HlXuOHTuGxWJh6tSp9g6l0Dl27BgDBw6kUqVKeHh4ULJkSZo1a8bYsWNz5fl27dpF3759CQoKwt3dHT8/P9q0acOcOXNITk62aXv58mXefPNNGjZsiK+vLx4eHlStWpVhw4Zx4MCB1HYpXwyUKFGChISEdM8ZHBxMx44dsxWvI34+iEjOc7F3ACIiWbVixQruv/9+3N3d6devH7Vr1yYxMZFNmzbx3HPP8fvvv/P+++/nehwJCQmMHz8egBYtWuT68xUm77zzDv7+/ul6v5s1a8alS5dwc3OzT2AO7KWXXmLEiBH2DsPh5LfX5dChQ9x5550UKVKEhx56iODgYE6fPs3OnTt5/fXXUz9zcsqHH37IY489RokSJXjwwQepUqUKFy5cIDIykocffpjTp08zatQoAM6ePcvdd9/Njh076NixI71798bb25v9+/fz+eef8/7775OYmGhz/TNnzvDuu+/yzDPP5FjMmX0+iEjBogRVRPKFo0eP0rNnT8qXL8+6desoVapU6rGhQ4dy6NAhVqxYYccIb118fDxeXl52eW6r1UpiYiIeHh7pjtkzrhROTk4ZxlaYpfxeXFxccHHRP+f/ld9elzfffJOLFy+ya9cuypcvb3PszJkzOfpcW7du5bHHHqNRo0ZERERQtGjR1GNPPfUUP//8M3v27EmtGzBgAL/88gtLliyhe/fuNtd65ZVXePHFF9M9R926dZkyZQpDhgyhSJEiORq/iBRsGuIrIvnC5MmTuXjxIh999JFNcpqicuXKDB8+PNPzM5uPNnfuXCwWC8eOHUut+/nnnwkLC8Pf358iRYpQoUIFHnroIcAcghcQEADA+PHjsVgs6eb17du3j/vuuw8/Pz88PDyoX78+y5cvz/B5N2zYwJAhQwgMDKRs2bLXfQ0uX77MuHHjqFq1Kh4eHpQqVYpu3bpx+PDh1Dbx8fE888wzqUP2qlWrxtSpUzEMw+ZaKXMfFyxYQK1atXB3d2fVqlU3jGvlypU0bdoULy8vihYtSocOHfj999+vGzfAnDlzaNWqFYGBgbi7u1OzZk3effddmzbBwcH8/vvvbNiwIfV1TemhzmwO6hdffEFoaChFihTB39+fvn37cvLkSZs2KUNwT548SdeuXfH29iYgIIBnn3023TDG06dPs2/fPpKSkm54T5np378//v7+GV6jXbt2VKtWLV39ggULqFatGh4eHoSGhrJx40ab4ynv3z/++IPevXtTvHhx7rrrLptj17py5QpPP/00AQEBFC1alM6dO/PXX39l+54ycubMGR5++GFKlCiBh4cHISEhfPLJJzZtMvu9pQwjThmuOXXqVCwWC8ePH0/3PCNHjsTNzY1//vkHgB9++IH777+fcuXK4e7uTlBQEE8//XS6If4ZvS4p7/uvv/6a2rVr4+7uTq1atVi1atV17zU6OhoXF5cMezH379+PxWJh5syZACQlJTF+/HiqVKmCh4cHt912G3fddRdr16697nMcPnyYsmXLpktOAQIDA20epwyTXb9+PfXr16dIkSLUqVMn9XVeunQpderUSX0//fLLLzbnp3x2LViwwCY5TVG/fv3UXspt27axYsUKHn744XTJKYC7u3uGw8HHjBlDdHR0uv/PM2K1Wpk+fTq1atXCw8ODEiVKMHjw4NTfeco9Z/b5ICIFixJUEckXvvnmGypWrEjjxo1z9XnOnDlDu3btOHbsGCNGjGDGjBn06dOHrVu3AhAQEJD6B9e9997LvHnzmDdvHt26dQPg999/53//+x979+5lxIgRvPHGG3h5edG1a1e++uqrdM83ZMgQ/vjjD8aMGXPd4YjJycl07NiR8ePHExoayhtvvMHw4cOJjY1N7ekwDIPOnTvz5ptvcvfddzNt2jSqVavGc889R3h4eLprrlu3jqeffpoePXrw1ltvERwcfN245s2bR4cOHfD29ub1119n9OjR/PHHH9x11102CX5G3n33XcqXL8+oUaN44403CAoKYsiQIcyaNSu1zfTp0ylbtizVq1dPfV0z6plJMXfuXB544AGcnZ2ZOHEigwYNYunSpdx1112cP38+3esXFhbGbbfdxtSpU2nevDlvvPFGuiHhI0eOpEaNGumSXIALFy5w9uzZdOXKlSs27R588EHOnTvH6tWrbeqjoqJYt24dffv2tanfsGEDTz31FH379uXll1/m3Llz3H333TY9WCnuv/9+EhISeO211xg0aFCmr80jjzzC9OnTadeuHZMmTcLV1ZUOHTpk2v5mXbp0iRYtWjBv3jz69OnDlClT8PX1ZcCAAbz11ls3fb0HHngAi8XC4sWL0x1bvHgx7dq1o3jx4oD5pURCQgKPP/44M2bMICwsjBkzZtCvX78sPdemTZsYMmQIPXv2ZPLkyVy+fJnu3btz7ty5TM8pUaIEzZs3zzC+RYsW4ezszP333w+YifH48eNp2bIlM2fO5MUXX6RcuXLs3LnzunGVL1+eP//8k3Xr1mXpPg4dOkTv3r3p1KkTEydO5J9//qFTp04sWLCAp59+mr59+zJ+/HgOHz7MAw88gNVqBcwpCpGRkTRr1oxy5crd8HlSvlx78MEHsxRXiqZNm9KqVSsmT558w/UBBg8ezHPPPZe6nsDAgQNZsGABYWFhqV/03Ozng4jkY4aIiIOLjY01AKNLly5ZPqd8+fJG//79Ux+PHTvWyOgjb86cOQZgHD161DAMw/jqq68MwPjpp58yvXZMTIwBGGPHjk13rHXr1kadOnWMy5cvp9ZZrVajcePGRpUqVdI971133WVcvXr1hvfz8ccfG4Axbdq0dMesVqthGIbx9ddfG4Dx6quv2hy/7777DIvFYhw6dCi1DjCcnJyM33//3aZtZnFduHDBKFasmDFo0CCb9lFRUYavr69NfUavdUJCQrq4w8LCjIoVK9rU1apVy2jevHm6tt9//70BGN9//71hGIaRmJhoBAYGGrVr1zYuXbqU2u7bb781AGPMmDGpdf379zcA4+WXX7a5Zr169YzQ0FCbupS2Ke+Ha5/7esXLyyu1fXJyslG2bFmjR48eNteeNm2aYbFYjCNHjqTWpZz/888/p9YdP37c8PDwMO69997UupTXtFevXulem/++3rt27TIAY8iQITbtevfunen79lpHjx41AGPKlCmZtpk+fboBGPPnz0+tS0xMNBo1amR4e3sbcXFxhmGk/7399znmzJmTWteoUaN0v4/t27cbgPHpp5+m1mX0Xpo4caJhsViM48ePp9Zl9D4EDDc3N5v/F3bv3m0AxowZMzK9X8MwjPfee88AjN9++82mvmbNmkarVq1SH4eEhBgdOnS47rUysmfPHqNIkSIGYNStW9cYPny48fXXXxvx8fHp2pYvX94AjM2bN6fWrV692gCMIkWK2LwOKXGn/A5S7nf48OFZiuvee+81AOOff/7JUvuU1z0mJsbYsGFDus+t8uXL27w+P/zwgwEYCxYssLnOqlWr0tVn9vkgIgWLelDtYPp0CAmBYsXA3R3KloX774dff01rExwMFkv68p8v3kUKhbi4OIAMh6LltGLFigHw7bff3vQwz7///pt169bxwAMP2PS2nTt3jrCwMA4ePJiuZ27QoEE4Ozvf8Npffvkl/v7+PPHEE+mOpQxjjIiIwNnZmSeffNLm+DPPPINhGKxcudKmvnnz5tSsWTPD5/tvXGvXruX8+fP06tXLpvfQ2dmZhg0b8v333183/mvnoMXGxnL27FmaN2/OkSNHiI2Nvf7NZ+Dnn3/mzJkzDBkyxGZuaocOHahevXqG85Efe+wxm8dNmzblyJEjNnVz587FMAyb3uQUY8aMYe3atelKu3btbNo5OTnRp08fli9fzoULF1LrFyxYQOPGjalQoYJN+0aNGhEaGpr6uFy5cnTp0oXVq1enG4L833vISEREBEC698FTTz11w3OzKiIigpIlS9KrV6/UOldXV5588kkuXrzIhg0bbvqaPXr0YMeOHTZD1hctWoS7uztdunRJrbv2vRQfH8/Zs2dp3LgxhmGkG8qakTZt2lCpUqXUx7fffjs+Pj7p3gv/1a1bN1xcXFi0aFFq3Z49e/jjjz/o0aNHal2xYsX4/fffOXjw4A1juVatWrVSV9U9duwYb731Fl27dqVEiRJ88MEH6drXrFmTRo0apT5u2LAhAK1atbLpGU2pT7m/m/08vZXP32bNmtGyZcvr9qJ+8cUX+Pr60rZtW5vPltDQULy9vW/42SIiBY8SVDvYsAFiYqBiRahUCU6fhiVLoGVLiI+3bVujBjRsmFYqV7ZPzCL25OPjA2Dzx35uad68Od27d2f8+PH4+/vTpUsX5syZk24YZ0YOHTqEYRiMHj2agIAAm5KyTcR/Fzv5b7KSmcOHD1OtWrXrLvpy/PhxSpcune4PyRo1aqQez+pz//dYyh/brVq1Sndva9asueEiLj/++CNt2rTBy8uLYsWKERAQkLpCaHYS1JR7yWg+Z/Xq1dPdq4eHR+rc4RTFixe3meN2I3Xq1KFNmzbpSkZzovv168elS5dSh3Xv37+fHTt2ZDhMskqVKunqqlatSkJCAjExMTb1WXm/HD9+HCcnJ5skDDJ+rbLr+PHjVKlSBScn2z8jMnuvZcX999+Pk5NTagJoGAZffPEF99xzT+pnAMCJEycYMGAAfn5+qfOJmzdvDmTtvZTRsNasvBf8/f1p3bq1zTDfRYsW4eLikjrEH+Dll1/m/PnzVK1alTp16vDcc8/x67XfQF9H1apVmTdvHmfPnuXXX3/ltddew8XFhUcffZTvvvvuuvfh6+sLQFBQUIb1Kfd3s5+nt/r5O27cOKKiopg9e3aGxw8ePEhsbCyBgYHpPlsuXryY4wtEiYjjyz/L2xUgn30G1y5GOXo0vPoq/P037NsH13yRzjvvgNYAkMLOx8eH0qVLZzgnL6syWiAJSNdDlbLf5datW/nmm29YvXo1Dz30EG+88QZbt2697n6XKXO8nn32WcLCwjJsU/k/3zLZc3XL6z33f4+l3Nu8efMoWbJkuvbXS5wPHz5M69atqV69OtOmTSMoKAg3NzciIiJ48803U6+dm7LSS52TatasSWhoKPPnz6dfv37Mnz8fNzc3HnjggVu6bn5bDTWr/98BlC5dmqZNm7J48WJGjRrF1q1bOXHiBK+//rrNeW3btuXvv//mhRdeoHr16nh5eXHy5EkGDBiQpfdSZu8F4z8LiWWkZ8+eDBw4kF27dlG3bl0WL15M69at8ff3T23TrFkzDh8+zLJly1izZg0ffvghb775JrNnz+aRRx654XOkxFinTh3q1KlDo0aNaNmyJQsWLKBNmzY3vI8b3V/lypVxcXHht99+y1Is1atXB+C3336jadOmWTrnWs2aNaNFixZMnjw5wxEAVquVwMBAFixYkOH5//1iSUQKPiWoduDhAV99Ba+/DnFxsH+/WR8QAFWr2rbt3t3sVS1XDrp2hZdegmu+SBYpNDp27Mj777/Pli1bbIa1ZVXKAivnz59PHcYLmff0/O9//+N///sfEyZMYOHChfTp04fPP/+cRx55JNM/uitWrAiYQx2v/UMyJ1SqVIlt27aRlJSEq6trhm3Kly/Pd999x4ULF2x6Ufft25d6/FaeH8zVRG/23r755huuXLnC8uXLbXp9Mhq6l9lr+18p97J//35atWplc2z//v23dK85pV+/foSHh3P69GkWLlxIhw4dUt+H18poKOiBAwfw9PTM1h/n5cuXx2q1pva6p9if8o9NDihfvjy//vorVqvVphf1v++1a/+/u1Zm/9/16NGDIUOGsH//fhYtWoSnpyedOnVKPf7bb79x4MABPvnkE5tFkW60Qm5O6dq1K4MHD07t5T1w4AAjR45M187Pz4+BAwcycOBALl68SLNmzRg3blyWE9Rr1a9fHzBXmM4Jnp6etGrVinXr1vHnn3+m63H9r5RFmObPn5+tBBXMXtQWLVrw3nvvpTtWqVIlvvvuO5o0aXLDL2Cy+vkgIvmbhvjaSXQ0bNsGe/eC1QoVKsD338O1I/OKFoUyZcDXFw4ehClTICzMbC9S2Dz//PN4eXnxyCOPEB0dne744cOHr7t6aEqCde32HfHx8em2xfjnn3/S9aTUrVsXIHWYr6enJ5D+j+7AwMDUP8Iy+mPyv8M1b0b37t05e/Zs6lYW10qJt3379iQnJ6dr8+abb2KxWLjnnnuy/fxhYWH4+Pjw2muvZTg393r3ltKjc+3rGhsby5w5c9K19fLySve6ZqR+/foEBgYye/Zsm+HXK1euZO/evdlesTYntplJ0atXLywWC8OHD+fIkSPpVu9NsWXLFpsVXv/880+WLVtGu3btstXzm/J7fvvtt23qp0+fftPXykz79u2JioqymY959epVZsyYgbe3d+qQ2/Lly+Ps7Jxu25x33nknw+t2794dZ2dnPvvsM7744gs6duxoswdvRu8lwzCytXJwdhQrVoywsDAWL17M559/jpubG127drVp89/VgL29valcufINpwn88MMPGb7vUuYU5+QQ7bFjx2IYBg8++CAXL15Md3zHjh2pn42NGjXi7rvv5sMPP+Trr79O1zYxMZFnn332us/XvHlzWrRoweuvv87ly5dtjj3wwAMkJyfzyiuvpDvv6tWrNp8HWf18EJH8TT2odvLYYzB4MPz5Jzz/PCxaBD16wJYtZmK6ZAnUqwfOznD1Kjz0EMybB1u3wubN8O/2dyKFRqVKlVi4cCE9evSgRo0a9OvXj9q1a5OYmMjmzZv54osvUvfty0i7du0oV64cDz/8MM899xzOzs58/PHHBAQEcOLEidR2n3zyCe+88w733nsvlSpV4sKFC3zwwQf4+PjQvn17wBxmWbNmTRYtWkTVqlXx8/Ojdu3a1K5dm1mzZnHXXXdRp04dBg0aRMWKFYmOjmbLli389ddf7N69O1v3369fPz799FPCw8PZvn07TZs2JT4+nu+++44hQ4bQpUsXOnXqRMuWLXnxxRc5duwYISEhrFmzhmXLlvHUU0+lm5N4M3x8fHj33Xd58MEHueOOO+jZs2fqa7dixQqaNGmSYfIM5mvv5uZGp06dGDx4MBcvXuSDDz4gMDAwXSIfGhrKu+++y6uvvkrlypUJDAxM10MKZi/166+/zsCBA2nevDm9evUiOjo6dbucp59+Olv3OXLkSD755BOOHj2a4UJJNyMgIIC7776bL774gmLFimWaNNeuXZuwsDCefPJJ3N3dU5O3jPbczIq6devSq1cv3nnnHWJjY2ncuDGRkZEcOnTopq4TGRmZLpkAsxfx0Ucf5b333mPAgAHs2LGD4OBglixZwo8//sj06dNTe/B9fX25//77mTFjBhaLhUqVKvHtt99mOq8wMDCQli1bMm3aNC5cuGCz+BCYw00rVarEs88+y8mTJ/Hx8eHLL7+8qbnEt6pHjx707duXd955h7CwMJsRGWAO727RogWhoaH4+fnx888/s2TJEoYNG3bd677++uvs2LGDbt26cfvttwOwc+dOPv30U/z8/HJ0kavGjRsza9YshgwZQvXq1XnwwQepUqUKFy5cYP369SxfvpxXX301tf2nn35Ku3bt6NatG506daJ169Z4eXlx8OBBPv/8c06fPp3hXqjXGjt2LC1btkxX37x5cwYPHszEiRPZtWsX7dq1w9XVlYMHD/LFF1/w1ltvcd999wFZ/3wQkXzOLmsHi43duw0DzPLeexm3+eabtDb/WYldpFA5cOCAMWjQICM4ONhwc3MzihYtajRp0sSYMWOGzdYu/91mxjAMY8eOHUbDhg0NNzc3o1y5csa0adPSbTOzc+dOo1evXka5cuUMd3d3IzAw0OjYsaPNNiCGYRibN282QkNDDTc3t3Rbdxw+fNjo16+fUbJkScPV1dUoU6aM0bFjR2PJkiWpbVKe93rb2fxXQkKC8eKLLxoVKlQwXF1djZIlSxr33Xefcfjw4dQ2Fy5cMJ5++mmjdOnShqurq1GlShVjypQpqVvRpACMoUOHpnuOG8X1/fffG2FhYYavr6/h4eFhVKpUyRgwYIDN65PR9h7Lly83br/9dsPDw8MIDg42Xn/99dStc67d0iUqKsro0KGDUbRoUQNI3VIis+1KFi1aZNSrV89wd3c3/Pz8jD59+hh//fWXTZv+/fvbbANzvTivt83MF198keFrktn1DcMwFi9ebADGo48+muHxlN/D/PnzjSpVqhju7u5GvXr10t3ntVt3ZOU+Ll26ZDz55JPGbbfdZnh5eRmdOnUy/vzzz5vaZiazMm/ePMMwDCM6OtoYOHCg4e/vb7i5uRl16tSx2TYmRUxMjNG9e3fD09PTKF68uDF48GBjz5496baZSfHBBx8YgFG0aFGbLYRS/PHHH0abNm0Mb29vw9/f3xg0aFDq1inXXi+zbWYyet9n9HmRmbi4uNTtYK7dZifFq6++ajRo0MAoVqyYUaRIEaN69erGhAkTjMTExOte98cffzSGDh1q1K5d2/D19TVcXV2NcuXKGQMGDLD5fzwl3oy2ssno/q63bdCOHTuM3r17p35eFC9e3GjdurXxySefGMnJyTZtExISjKlTpxp33nmn4e3tbbi5uRlVqlQxnnjiCZtte673Xm3evLkBZBj7+++/b4SGhhpFihQxihYtatSpU8d4/vnnjVOnTqW2yezzQUQKFothZGFVAMkx585BRITZW+rmZtZNmgQpU1imTYN27cye0r59zW1okpPh4YchZSTijz9C48b2iV9ERLJu2bJldO3alY0bN2Z7/p6IiEhhogQ1jx07Zs43LVLE3GImNtYc5gvm0N7ffoOjR80tZ9zdzW1lzp4156wCtGoF331n7okqIiKOrWPHjuzdu5dDhw5pgRcREZEs0CJJeaxYMejZE0qVgsOHzT1Qg4LM3tJt26B8eXPv0/BwqFYN/vrLXMW3Th2YOBG+/VbJqYiIo/v8888ZNWoUK1asYPjw4UpORUQk14wbZ+YHGZWrV+0d3c1TD6qIiEgOs1gseHt706NHD2bPnn3dfWJFRERuxbhxMH48+PubIzSv9eOP5qKr+Yn+xRQREclh+u5XRETyWocOMHeuvaO4dRriKyIiIiIiks99+aW5zk2pUtCxI/zyi70jyh4lqCIiIiIiIvmYszOULAnBwRAVBStWQKNG+TNJLXRzUK1WK6dOnaJo0aK5tmhFkSJFcuW6WXHp0iW7PbeIiIiIiOS86+UXBw6Y80/9/MzHa9ZY6NjRnMk5cKCV995LzvC8vM4bDMPgwoULlC5dGienzPtJC90c1FOnThEUFJSrz7F8+fJcvf71dO7c2W7PLSIiIiIiOe9G+cWRI7aPixYN48IFN3755RyrVm3N8Bx75Q1//vknZcuWzfR4oUtQixYtCpgvjI+PT648x630oBqGQUxMDAEBAdnq4Y2Njc32c4uIiIiIiOO5Xn4xZYoTPXpYCQoy84jduwO5cMEVgNDQ27j77rszPC+v84a4uDiCgoJS87HMFLohvnFxcfj6+hIbG5trCeqtsFqtnDlzhsDAwOt2fYuIiIiIiAQHw4kTEBRk4O6ezKFDzhiGBS8v2L4data0d4SmrOZhyoAcTHJyMtu2bSM5OeOx4iIiIiIiIilGjYLWrSEpCU6ccKZ8eejTB3bscJzk9GYUuiG+IiIiIiIiBcWjj5rFajWuGYmZO4vB5gX1oIqIiIiIiIhDUIIqIiIiIiIiDkEJqoiIiIiIiDgEJagiIiIiIiLiEJSgioiIiIiIiENQgioiIiIiIiIOQQmqA0lOhg0bLGzcWIYNGyxoK1QRERERESlMlKA6iKVLITgY2rZ1Ydq0+rRt60JwsFkvIiIiIiJyPcnJyWzbto3kfN7LpQTVASxdCvfdB3/9ZVt/8qRZryRVREREREQKAxd7B1DYJSfD8OFgGOmPpdQNGgQJCeDqCs7OeVucnMBiydvXRERERERECiclqHb2ww/pe07/6++/4cEH8yaejDg5XT+BzeukuSAUJ41dEBERERFJRwmqnZ0+nbV2tWpBQIDZ45rTJaPe22tZrWZJSrr1+5U09k6SC1pRb7+IiIhI/qcE1c5Klcpau5kzoUWL3InBMHIn8b1RsVrt87x5VW4kq+0k63KiR1+jAtK/HiIiIiJ5RQmqnTVtCmXLmgsiZdSTabGYx5s2zb0YLBZwcTGL5JyCnoDbo6i33z7snSQXtKLefhERkcwpJbEzZ2d46y1ztV6LxfYP8JQ/YKZPN9tJ/uLkZBZXV3tHUnDYq7f/RiW/fxlxI1ltJ1mXVz31hWlEgHr7RUQKBiWoDqBbN1iyxFzN99oFk8qWNZPTbt3sFpqIQ1Fvf+7I7wm2Ixb19tuHvZPkglbU2y+SfyQnw4YNFjZuLIOXl4WWLc3/j/Mji2Hc6J/R3DVr1iymTJlCVFQUISEhzJgxgwYNGmTafvr06bz77rucOHECf39/7rvvPiZOnIiHh0eWni8uLg5fX19iY2Px8fHJqdvIEcnJ8P33V1m5chf33FOXli1d8u0bS0SkMHPU3v7rlfzwRYXkPUfphXeUOHLqXkRy0tKlGXd0vfWWY3V0ZTUPs2s/xKJFiwgPD2f27Nk0bNiQ6dOnExYWxv79+wkMDEzXfuHChYwYMYKPP/6Yxo0bc+DAAQYMGIDFYmHatGl2uIOc5ewMzZsbxMefpHnzECWnIiL5lHr7c0d+SKLzW1Fvv33YO0kuaKUw9/YvXWpOFfzv/8snT5r1S5Y4VpKaFXb9p3PatGkMGjSIgQMHAjB79mxWrFjBxx9/zIgRI9K137x5M02aNKF3794ABAcH06tXL7Zt25ancYuIiEje09z+nJcfe/tvVBzhi4wbyWo7ybr80suek3ECDB6c8RdNhmEm7U89BV26pLXPD+yWoCYmJrJjxw5GjhyZWufk5ESbNm3YsmVLhuc0btyY+fPns337dho0aMCRI0eIiIjgwQcfzPR5rly5wpUrV1Ifx8XFAZCUlESSA34dmBKTI8YmIiIiBZOS/5x1q0myeb4lB5L0m7tGxnHf+Bo3vt/017jZ18gwrt9Fqt7+9AwD/vzTnELYvLldZ3UCWc9v7Jagnj17luTkZEqUKGFTX6JECfbt25fhOb179+bs2bPcddddGIbB1atXeeyxxxg1alSmzzNx4kTGjx+frn7NmjV4enre2k3korVr19o7BBERERFxUIXtSwXDAKvVYlPMRNeSjWImzdk5z3zemz/HNu6snWMY128bF+dKTIzXDV+7lSt3ER9/Mg9+S9eXkJCQpXb5anbM+vXree2113jnnXdo2LAhhw4dYvjw4bzyyiuMHj06w3NGjhxJeHh46uO4uDiCgoJo166dwy2SBOY3C2vXrqVt27a4FpZPHBERERERuSkbNlho2/bG7e65py7Nm4fkfkA3kDKS9UbslqD6+/vj7OxMdHS0TX10dDQlS5bM8JzRo0fz4IMP8sgjjwBQp04d4uPjefTRR3nxxRdxymBZNHd3d9zd3dPVu7q6OnQC6OjxiYiIiIiI/bRsaa7We/JkxvNQLRbzuKPsDJLV3MZuC127ubkRGhpKZGRkap3VaiUyMpJGjRpleE5CQkK6JNT531fbzrvliIiIiIiI5BlnZ3MrGUi/inHK4+nT89cCSWDHBBUgPDycDz74gE8++YS9e/fy+OOPEx8fn7qqb79+/WwWUerUqRPvvvsun3/+OUePHmXt2rWMHj2aTp06pSaqIiIiIiIihUG3buZWMmXK2NaXLZs/t5gBO89B7dGjBzExMYwZM4aoqCjq1q3LqlWrUhdOOnHihE2P6UsvvYTFYuGll17i5MmTBAQE0KlTJyZMmGCvWxAREREREbGbbt3MrWS+//4qK1fu4p576jrMsN7ssBiFbGxsXFwcvr6+xMbGOuwiSREREbRv315zUEVEREREJEscPY/Iah5m1yG+IiIiIiIiIimUoIqIiIiIiIhDUIIqIiIiIiIiDkEJqoiIiIiIiDgEJagiIiIiIiLiEJSgioiIiIiIiENQgioiIiIiIiIOQQmqiIiIiIiIOAQlqCIiIiIiIuIQlKCKiIiIiIiIQ1CCKiIiIiIiIg5BCaqIiIiIiIg4BCWoIiIiIiIi4hCUoIqIiIiIiIhDUIIqIiIiIiIiDkEJqoiIiIiIiDgEJagiIiIiIiLiEJSgioiIiIiIiENQgioiIiIiIiIOQQmqiIiIiIiIOAQlqCIiIiIiIuIQlKCKiIiIiIiIQ1CC6mCcnZ1p2LAhzs7O9g5FREREREQkTylBFREREREREYegBFVEREREREQcghJUERERERERcQhKUEVERERERMQhKEEVERERERERh6AEVURERERERByCElR7iYmBJ56A8uXBzQ38/aF1azhyBABLxYpgsaQvffvaOXAREREREZHc4WLvAAqls2ehYUM4etRMTqtWBcOALVvg1CnzcYoaNcDHJ+1x5cp5H6+IiIiIiEgecIge1FmzZhEcHIyHhwcNGzZk+/btmbZt0aIFFoslXenQoUMeRnyLXnrJTE5r1YJjx2DPHvj9dzh/Hu6807btO+/A1q1pZdw4OwQsIiIiIiKS++yeoC5atIjw8HDGjh3Lzp07CQkJISwsjDNnzmTYfunSpZw+fTq17NmzB2dnZ+6///48jjybDAMWLzZ/DgqCtm3BywtCQuDLL8Hd3bZ99+7g4WH2qj7/PMTF5X3MIiIiIiIiecDuCeq0adMYNGgQAwcOpGbNmsyePRtPT08+/vjjDNv7+flRsmTJ1LJ27Vo8PT3zT4IaEwP//GP+vGqV2WtavDj8+iv07g1LlqS1LVoUypQBX184eBCmTIGwMLBa7RK6iIiIiIhIbrLrHNTExER27NjByJEjU+ucnJxo06YNW7ZsydI1PvroI3r27ImXl1eGx69cucKVK1dSH8f92wOZlJREUlLSLUSfOWdn58wPJiamfitg1KiBsXMnAJY77sCydy+WWbOgWTOsixZhueMOcHaGq1exPPwwlvnzYetWrJs2wV13ZXj55OTkHL4bERERERFxdCm5TW7lOLcqq3HZNUE9e/YsycnJlChRwqa+RIkS7Nu374bnb9++nT179vDRRx9l2mbixImMHz8+Xf2aNWvw9PS8+aCzoGHDhpkfNAxKuLlhSUzkcrVqxJ4/D4BvtWoU2bsX67+r+MaULw/nzqWe5t6uHcXnzwcgbs8eLl+7kNI1tm3bljM3ISIiIiIi+c7atWvtHUKGEhISstQuX6/i+9FHH1GnTh0aNGiQaZuRI0cSHh6e+jguLo6goCDatWuHz7Wr4+ag6/agAjRtCpGReBw4gHvx4gBYDhwAwKlaNVz278fvwAFzSxl3d0hOxvLdd6mn+9x+Oz6BgRleun379jlzEyIiIiIikm8kJSWxdu1a2rZti6urq73DSScui2vp2DVB9ff3x9nZmejoaJv66OhoSpYsed1z4+Pj+fzzz3n55Zev287d3R33/y48BLi6utrvFzdhAvzwA5Y//sBSqZJZd/IkODtjjByJ07lzOD36qLlPauXK5rY0Ka9Rq1Y4NWli7omaAScnu08rFhERERERO7FrnnMdWY3JrtmMm5sboaGhREZGptZZrVYiIyNp1KjRdc/94osvuHLlCn379s3tMHNew4awbh20aGEumHT5MrRpAz/+CC1bcrVKFYynn4Zq1eCvvyA+HurUgYkT4dtvM01ORURERERE8jO7D/ENDw+nf//+1K9fnwYNGjB9+nTi4+MZOHAgAP369aNMmTJMnDjR5ryPPvqIrl27ctttt9kj7FvXpAl8/336eqsVa0AAxtSpWNQbKiIiIiIihYjdE9QePXoQExPDmDFjiIqKom7duqxatSp14aQTJ06kG7a6f/9+Nm3axJo1a+wRsoiIiIiIiOQCuyeoAMOGDWPYsGEZHlu/fn26umrVqmEYRi5HJSIiIiIiInlJY0hFRERERETEIShBFREREREREYegBFVEREREREQcghJUERERERERcQhKUEVERERERMQhKEF1MMnJyWzbto3k5GR7hyIiIiIiIpKnlKCKiIiIiIiIQ1CCKiIiIiIiIg5BCaqIiIiIiIg4BCWoIiIiIiIi4hCUoIqIiIiIiIhDUIIqIiIiIiIiDkEJqoiIiIiIiDgEF3sHIMCJE3D2rPnz1av4Hj4Mv/wCLv/+evz9oVw5+8UnIiIiIiKSB5Sg2tuJE1CtGly+DIAr0OK/bTw8YP9+JakiIiIiIlKgaYivvZ09m5qcZury5bQeVhERERERkQJKCaqIiIiIiIg4BCWoIiIiIiIi4hCUoOYXH38Mf/wBhmHvSERERERERHKFEtT8YtYsqFULDh2ydyQiIiIiIiK5Qqv45heNG8PFi1ClSlrd44+bCyh16QLt2oGnp/3iExERERERuUVKUPOLGTMgJCTt8ZUrMH++mbTOnWtuRdO2rZmsduoEgYF2C1VERERERCQ7NMTX3vz9zeTyejw8zHbOzml1Li6wfDkMHw7BwWZP6jffwCOPQMmS8NhjuRq2iIiIiIhITlMPqr2VKwf796fuc5p09So/btpEk7vuwtXl31+Pv7/Z7lrOztCypVnefBN++w2WLTPLjh227c+fh0mTzN7Vhg3BSd9LiIiIiIiI41GC6gjKlUtLKJOSiD19GurVA1fXrJ1vscDtt5tl9Gj46y9wd087vnIlvP66WUqUMIcAd+kCrVtDkSI5fz8iIiIiIiLZoK60gqhsWQgISHtcvjz06gW+vhAdDR9+aCap/v7QrRvs22e/WEVERERERP6lBLUwaNwYFi6EM2dgzRoYOhSCgiAhAb76Cry80tr++iscOWK/WEVEREREpNBSglqYuLmZK/3OnAnHj5tzVWfNMpPVFC+8AJUqQZ068NJL8NNPYLXaL2YRERERESk0NAe1sLJY4I47zJLCMMx6Z2fYs8csEyZA6dLQubM5HLhtW/vFLCIiIiIiBZp6UCWNxQIRERATY+6xet994O0Np07B7NnmSsDXunjRPnGKiIiIiEiBpB5USa94cejTxyxXrsC6deb2NY0bp7WJijIXX7rrLnNF4C5dzMciIiIiIiLZpARVrs/dHe65xyzXWr8eEhPN5HXdOhg+HEJC0pLVevXMHlkREREREZEssvsQ31mzZhEcHIyHhwcNGzZk+/bt121//vx5hg4dSqlSpXB3d6dq1apERETkUbSSqmdPOHQI3ngDmjUDJyfYvRtefhlCQ2HRIntHKCIiIiIi+YxdE9RFixYRHh7O2LFj2blzJyEhIYSFhXHmzJkM2ycmJtK2bVuOHTvGkiVL2L9/Px988AFlypTJ48gFMFf7DQ+HDRvM/VXnzoWuXcHHx3YxpXffhd69zaQ1Ls5e0YqIiIiIiIOzGIZh2OvJGzZsyJ133snMmTMBsFqtBAUF8cQTTzBixIh07WfPns2UKVPYt28frq6uWXqOK1eucOXKldTHcXFxBAUFcfbsWXx8fHLmRnJQUlISa9eupW3btlm+R4eTmGhuafMv5xYtcNq8GQDD1RWjRQuMTp2wduwIZcvaK0oRERERkQLD0fOIuLg4/P39iY2NvW4eZrcENTExEU9PT5YsWULXrl1T6/v378/58+dZtmxZunPat2+Pn58fnp6eLFu2jICAAHr37s0LL7yAs7Nzhs8zbtw4xo8fn65+4cKFeHp65tj9SOaK799PqW3bKLltG0VPnrQ5drZWLX589VXNVxURERERKcASEhLo3bv3DRNUuy2SdPbsWZKTkylRooRNfYkSJdi3b1+G5xw5coR169bRp08fIiIiOHToEEOGDCEpKYmxY8dmeM7IkSMJDw9PfZzSg9quXTv1oOaV9u1Tf0zavx+nb77B8s03WLZuxa9iRdp36JB63GnSJIz//Q/jrrvARWt4iYiIiIhkhaPnEXFZnOqXrzIAq9VKYGAg77//Ps7OzoSGhnLy5EmmTJmSaYLq7u6Ou7t7unpXV1eH/MWlcPT4sq12bbOMHAnR0VhiY3FKuc/Dh2HMGPPn4sWhQwdzReCwMCha1H4xi4iIiIjkE46aR2Q1JrstkuTv74+zszPR0dE29dHR0ZQsWTLDc0qVKkXVqlVthvPWqFGDqKgoEhMTczVeyQUlSkDVqmmPrVbo3x9uuw3++Qfmz4f77wd/f7MXdv16u4UqIiIiIiK5z24JqpubG6GhoURGRqbWWa1WIiMjadSoUYbnNGnShEOHDmG1WlPrDhw4QKlSpXC7ZlEeyaeqVDFXAo6KMlcGDg83VwpOTISVK82kNcXJk/DHH2C/Nb5ERERERCSH2XWbmfDwcD744AM++eQT9u7dy+OPP058fDwDBw4EoF+/fowcOTK1/eOPP87ff//N8OHDOXDgACtWrOC1115j6NCh9roFyQ0uLubeqm+8AQcPwp49MGECtGuX1ua996BWLbMH9tln4YcfIDnZfjGLiIiIiMgts+sc1B49ehATE8OYMWOIioqibt26rFq1KnXhpBMnTuDklJZDBwUFsXr1ap5++mluv/12ypQpw/Dhw3nhhRfsdQuS2ywWMxGtVcu2PjbW3Mrm0CEzkX3jDXMocMeO5rzVDh3AAcfei4iIiIhI5uy6D6o9xMXF4evre8Plje0lKSmJiIgI2rdv75CTmx3KhQuwejUsWwYrVqQNAS5eHKKj0xLUy5fBw8N+cYqIiIiI5DJHzyOymoflq1V8RWwULQr33WeWpCTYtMlMVt3d05JTw4CaNaFUKbNntUsXqFbNvnGLiIiIiEiGlKBKweDqCi1bmuVaBw7A0aNm2bwZXnjBTFBTktX//Q+c7DoVW0RERERE/qW/zKVgq1YNTpyAmTOhbVtzAab9+2HyZGjSxExYRURERETEIShBlYIvKAiGDoU1a+DsWfjsM+jZE3x8ICwsrd2PP0K3bvDJJ3DunP3iFREREREppDTEVwoXX18zOe3Z09xf1dk57diXX8JXX5nFyQmaNk0bClyxov1iFhEREREpJNSDKoWXm5ttgvrQQzBmDISEgNUKGzZAeDhUqgR16kBUlP1iFREREREpBJSgiqSoXRvGj4ddu8xFlaZPNxddcnaGv/+GwMC0tvPmwapVcOWKvaIVERERESlwNMRXJCPBwTB8uFn+/hsOHUpb7Tc5GZ55BmJizK1u7r7bHAbcvr25B6uIiIiIiGSLelBFbsTPDxo0SHt88aK5mFKpUnDhAnzxBfTta/awtm4Nn39uv1hFRERERPIxJagiN8vXF2bPhr/+gm3bYNQoqFULrl6Fdetg9+60tpcvw86dYBj2i1dEREREJJ9QgiqSXU5OZs/qhAmwZ485DPiNN6B377Q2330HoaFQvjwMG2Y+TkqyX8wiIiIiIg5MCapITqlUyVz1t06dtLoTJ8DTE/78E2bNgrZtISDATGIXLYL4ePvFKyIiIiLiYJSgiuSmIUPg7FlYvhwefticpxobC599Zu7F+uefaW2vXrVfnCIiIiIiDkCr+IrktiJFoFMnsyQnm/NWly83hwVXr57Wrndvc3ubLl3MUrs2WCz2i1tEREREJI8pQRXJS87O0LixWa6VlASrV0NcHPz8M4weDRUqpCWrd90FLvrfVUREREQKNg3xFXEErq5w4AB8+KHZ0+rhYfamTp8OLVvCPffYO0IRERERkVynBFXEUZQoYc5TXb7cnLf61VcwYADcdpuZpKY4f95MYt9/H06ftle0IiIiIiI5TmMGRRyRlxd07WqW5GS4ciXt2KpV8O23Zhk8GBo2TBsKXKOG5q2KiIiISL6lHlQRR+fsbG5Vk+J//4PXXjP3YAVz0aVRo6BWLahaFTZvtk+cIiIiIiK3SAmqSH4THAwjR5qJ6cmTMHu2OUfVzQ0OHYKgoLS269fDsmWQkGCvaEVEREREskwJqkh+Vrq0Ocw3IsKct7p6tW2C+vrr5jBhf39zCPDHH8OZM3YLV0RERETkepSgihQURYtCu3a2dbffbva4XrpkLr708MNQsqS5bc306faIUkREREQkU0pQRQqy11+HI0dg924YPx7uuAMMA3780Vxk6Vq//gpWq33iFBEREREhm6v4JicnM3fuXCIjIzlz5gzW//xRu27duhwJTkRygMVi9qTefjuMGQN//mn2ppYtm9YmKgrq1oXAQHMLmy5doHVrKFLEbmGLiIiISOGTrQR1+PDhzJ07lw4dOlC7dm0s2tZCJP8ICoKhQ23rfv/dHCIcHQ0ffmgWT08ICzOT1U6dwM/PPvGKiIiISKGRrQT1888/Z/HixbRv3z6n4xERe2jdGmJiYMMGc9XfZcvgr7/gq6/M8skn0K+f2dZqBSfNDhARERGRnJetvzLd3NyoXLlyTsciIvbk5gZt28LMmXDiBOzYYQ4JrlcPOnRIazdtGtSpAy+9BD/9pHmrIiIiIpJjspWgPvPMM7z11lsYhpHT8YiII7BYzAWVxo+HnTvhttvSjn3zDezZAxMmQIMG5pDhxx+HVavgyhX7xSwiIiIi+V62hvhu2rSJ77//npUrV1KrVi1cXV1tji9dujRHghMRB/T11+a+q19/bSalp07B7NlmKVHCHBrskq2PFhEREREp5LL1V2SxYsW49957czoWEckPiheHPn3McuUKrFtnzlldvtzsUb02OX3kEXP14C5doHx5+8UsIiIiIvlCthLUOXPm5HQcIpIfubvDPfeY5Z134Pz5tGOHD8NHH5k/Dx8OISFmotqlizmvVat/i4iIiMh/3NJSnDExMWzatIlNmzYRExOT7evMmjWL4OBgPDw8aNiwIdu3b8+07dy5c7FYLDbFw8Mj288tIjnEycl2KxpfX5g6FZo2NY/t3g0vvwyhoWZv6vz59otVRERERBxSthLU+Ph4HnroIUqVKkWzZs1o1qwZpUuX5uGHHyYhIeGmrrVo0SLCw8MZO3YsO3fuJCQkhLCwMM6cOZPpOT4+Ppw+fTq1HD9+PDu3ISK5yd8fnnkGNm6EqCiYMwe6doUiReDPP8HLK63toUOwaBHExdktXBERERGxv2wlqOHh4WzYsIFvvvmG8+fPc/78eZYtW8aGDRt45plnbupa06ZNY9CgQQwcOJCaNWsye/ZsPD09+fjjjzM9x2KxULJkydRSokSJ7NyGiOSVgAAYMMDcU/XcOXO+art2acfnzYOePc2kNizMHC781192C1dERERE7CNbc1C//PJLlixZQosWLVLr2rdvT5EiRXjggQd49913s3SdxMREduzYwciRI1PrnJycaNOmDVu2bMn0vIsXL1K+fHmsVit33HEHr732GrVq1cqw7ZUrV7hyzdYXcf/20CQlJZGUlJSlOPNSSkyOGJtIjnBxgbvvNn/+933u5OeHU9WqWA4cgDVrzDJ0KNY77sDo1Anr8OHg7W3HoEVEREQcm6PnEVmNK1sJakJCQoa9loGBgTc1xPfs2bMkJyenu1aJEiXYt29fhudUq1aNjz/+mNtvv53Y2FimTp1K48aN+f333ylbtmy69hMnTmT8+PHp6tesWYOnp2eWY81ra9eutXcIInknOBgmT8b75ElKbttGye3b8du/H6edO0ncv59Vdepg/Ls6sOfp01wKDMRwdrZvzCIiIiIOyFHziKzmiRbDMIybvXjr1q257bbb+PTTT1MXKLp06RL9+/fn77//5rvvvsvSdU6dOkWZMmXYvHkzjRo1Sq1//vnn2bBhA9u2bbvhNZKSkqhRowa9evXilVdeSXc8ox7UoKAgzp49i4+PT5bizEtJSUmsXbuWtm3bpttfVqRQiY7GEhGBJS7O7EEFMAxcqlaFuDiM9u2xduqE0a6deldFRESk0HP0PCIuLg5/f39iY2Ovm4dlqwf1rbfeIiwsjLJlyxISEgLA7t278fDwYPXq1Vm+jr+/P87OzkRHR9vUR0dHU7JkySxdw9XVlXr16nHo0KEMj7u7u+Pu7p7heY74i0vh6PGJ5LqyZeHRRwFI7Ss9eRIuXoR//sGyYAFOCxaYW920bm1uX9OpE5QqZbeQRUREROzNUfOIrMaUrUWSateuzcGDB5k4cSJ169albt26TJo0iYMHD2Y6FzQjbm5uhIaGEhkZmVpntVqJjIy06VG9nuTkZH777TdK6Y9SkYKvTBlzReANGyA8HCpVgitXICICBg+G115La2sYZhERERGRfCNbPagAnp6eDBo06JYDCA8Pp3///tSvX58GDRowffp04uPjGThwIAD9+vWjTJkyTJw4EYCXX36Z//3vf1SuXJnz588zZcoUjh8/ziOPPHLLsYhIPuDiAs2amWXqVPjjD1i2zCxdu6a127gRHnnE7Fnt0gUaNwbNWxURERFxaFlOUJcvX84999yDq6sry5cvv27bzp07ZzmAHj16EBMTw5gxY4iKiqJu3bqsWrUqdeGkEydO4OSU1tH7zz//MGjQIKKioihevDihoaFs3ryZmjVrZvk5RaSAsFigVi2zjBple2z5cnN/1TfeMEtAAHTsaCarbduCAy+SJiIiIlJYZXmRJCcnJ6KioggMDLRJGNNd0GIhOTk5xwLMaXFxcfj6+t5wcq69JCUlERERQfv27R1y7LhIvnHhAqxaZfasrlgB58+nHStSBH79FSpXtlt4IiIiIjnJ0fOIrOZhWe5BtVqtGf4sIuKQihaF++83S1IS/PBD2lDgpCSoWDGt7eTJ5n+7doWqVe0SroiIiIhkc5GkTz/91GbrlhSJiYl8+umntxyUiEiOcnWFVq3grbfg6FH4+WdIGQmSnGzOZX3hBahWDWrUgBEjYMsW0JdxIiIiInkqWwnqwIEDiY2NTVd/4cKF1MWNREQcksViuxVNUhKMHWvOS3VxgX374PXXzUWVSpeGDPZXFhEREZHcka0E1TAMLBZLuvq//voLX1/fWw5KRCTPeHjA0KGwZg2cPQuffQY9e4KPD0RHQ0JCWttLl+CTT+DcOfvFKyIiIlKA3dQ2M/Xq1cNisWCxWGjdujUuLmmnJycnc/ToUe6+++4cD1JEJE/4+prJac+ekJho7rdaoULa8chIGDDAHB58113mnNUuXWzns4qIiIhItt1Ugtr13z0Gd+3aRVhYGN7e3qnH3NzcCA4Opnv37jkaoIiIXbi5mcN+r2W1QkgI7N5t7rO6cSOEh0Pt2mai+thjULasfeIVERERKQBuKkEdO3YsAMHBwfTo0QMPD49cCUpExCF17myWY8fSVgTeuBH27DFLnz5pbaOioHhxcHe3W7giIiIi+U225qD2799fyamIFF7BwTB8OKxbB2fOwPz5MGwYVK+e1uaJJyAgAHr0gIULbfdhFREREZEM3VQPaork5GTefPNNFi9ezIkTJ0hMTLQ5/vfff+dIcCIiDs/Pz+w5vbb31DDgt9/gwgVYvNgsLi7QvLk5FLhzZyhf3n4xi4iIiDiobPWgjh8/nmnTptGjRw9iY2MJDw+nW7duODk5MW7cuBwOUUQkn7FY4I8/YNs2GDUKatWCq1fNRZaefBLuv9/eEYqIiIg4pGwlqAsWLOCDDz7gmWeewcXFhV69evHhhx8yZswYtm7dmtMxiojkP05O0KABTJhgzk89dAjeeAOaNYNrF5OLjYUqVcwhwd99Z+7LKiIiIlJIZStBjYqKok6dOgB4e3sTGxsLQMeOHVmxYkXORSciUlBUqmSu+LthAzz/fFr9ypVm8jpzprlqcEAA9O4NixZBXJz94hURERGxg2wlqGXLluX06dMAVKpUiTVr1gDw008/4a4VK0VErs9iSfu5SxdYvhwefhgCA80e1c8+M/di9fc3VwoWERERKSSylaDee++9REZGAvDEE08wevRoqlSpQr9+/XjooYdyNEARkQKtSBHo1Ak+/BBOnYIffzR7WKtWNYf73nFHWtuvv4ZXXzUXYDIMu4UsIiIiklsshnHrf+Vs2bKFLVu2UKVKFTp16pQTceWauLg4fH19iY2NxcfHx97hpJOUlERERATt27fH1dXV3uGIiD0dPQoVKqQ9vuceWLXK/LlCBbP3tUsXuOsuc5VgERERKbQcPY/Iah6WI3/RNGrUiEaNGuXEpUREJMW1ySlAr17g6gpr15rJ6/TpZvHzg65dzV7Ya4cPi4iIiOQzWU5Qly9fnuWLdu7cOVvBiIjIdfTrZ5b4eFizxpyf+u23cO4cHDtmm5wuXQqNGkGpUnYLV0RERORmZTlB7dq1a5baWSwWkpOTsxuPiIjciJcX3HuvWa5ehc2bbZPTqCi47z5znmrDhmlDgWvUUA+riIiIOLQsL5JktVqzVJSciojkIRcXc2/Vpk3T6qKi4M47zZ+3bYNRo6BWLXPhpWefNfdlFREREXFA2VrF91qXL1/OiThERCSn1K1rJqYnT8Ls2ebiSm5u5n6rb7wBO3emtY2Lg4QEu4UqIiIicq1sJajJycm88sorlClTBm9vb44cOQLA6NGj+eijj3I0QBERyabSpWHwYIiIgLNnYfFi6NMHOnRIa/Pee+Z+q126wMcfw5kz9otXRERECr1sJagTJkxg7ty5TJ48GTc3t9T62rVr8+GHH+ZYcCIikkOKFoX774f58+G229Lqt2+HS5dg+XJ4+GEoWdLctmbKFDhwwH7xioiISKGUrQT1008/5f3336dPnz44Ozun1oeEhLBv374cC05ERHLZ4sWwaxeMHw933GEurPTjj/D88+ZQ4UuX7B2hiIiIFCLZ2gf15MmTVK5cOV291WolKSnploMSEZE8YrFASIhZxoyBP/80e1OXLQNfXyhSJK1tmzbm3qxdukDr1rbHRERERHJAthLUmjVr8sMPP1C+fHmb+iVLllCvXr0cCUxEROwgKAiGDjWLYaTVHz4MkZHmzx9+CJ6eEBZmJqsdO9oOGxYRERHJpmwlqGPGjKF///6cPHkSq9XK0qVL2b9/P59++inffvttTscoIiL2cO2eqUFBsHq12bO6fDn89Rd89ZVZnJzglVfM7WxEREREbkG25qB26dKFb775hu+++w4vLy/GjBnD3r17+eabb2jbtm1OxygiIvbm5gbt2sGsWXDiBPz8M4weDbffDlYr1KiR1vb33+Gll+Cnn8xjIiIiIll00z2oV69e5bXXXuOhhx5i7dq1uRGTiIg4MosFQkPN8vLLcPSoufpvisWLYcIEs5QuDZ07m0OBW7YEd3f7xS0iIiIO76Z7UF1cXJg8eTJXr17NjXhERCS/qVDBdsGk//0P7rsPvL3h1CmYPRvuuQcCAuCBByAmxn6xioiIiEPL1hDf1q1bs2HDhpyORURECoJ77oEvvjAT0YgIePRRs4f1wgX47jsoViyt7caNcPy43UIVERERx5KtRZLuueceRowYwW+//UZoaCheXl42xzt37pwjwYmISD7m4WEmq/fcA+++a85bPXYMXF3N44YB/fqZCWrduuYw4C5dzJ+vXaBJRERECo1sJahDhgwBYNq0aemOWSwWkpOTb+p6s2bNYsqUKURFRRESEsKMGTNo0KDBDc/7/PPP6dWrF126dOHrr7++qecUEZE85OQEDRqYJcX581CunLn36q5dZhk/3qzr3Bl69oQmTewUsIiIiNhDtob4Wq3WTMvNJqeLFi0iPDycsWPHsnPnTkJCQggLC+PMmTPXPe/YsWM8++yzNG3aNDu3ICIi9la8uDnENyoK5syBrl3NuawnTsDMmfDZZ2ltk5MhLs5uoYqIiEjeuOkENSkpCRcXF/bs2ZMjAUybNo1BgwYxcOBAatasyezZs/H09OTjjz/O9Jzk5GT69OnD+PHjqVixYo7EISIidhIQAAMGmHuqnjtn7rP68MPQo0dam02bwN8fwsLgnXfMfVhFRESkwLnpIb6urq6UK1fupntKM5KYmMiOHTsYOXJkap2TkxNt2rRhy5YtmZ738ssvExgYyMMPP8wPP/xw3ee4cuUKV65cSX0c9+838ElJSSQlJd3iHeS8lJgcMTYRkVzn4gJ3320WgH8/C53Wr8c5KQnWrDHL0KFYQ0MxOnXC2qkT1K6teasiIlKoOXoekdW4sjUH9cUXX2TUqFHMmzcPPz+/7FwCgLNnz5KcnEyJEiVs6kuUKMG+ffsyPGfTpk189NFH7Nq1K0vPMXHiRMaPH5+ufs2aNXh6et50zHlFe8yKiFyjbl28Z86k5PbtlNq2jeIHDuC0Ywfs2IHzuHGsf+MNYitVsneUIiIidueoeURCQkKW2mUrQZ05cyaHDh2idOnSlC9fPt0qvjt37szOZW/owoULPPjgg3zwwQf4+/tn6ZyRI0cSHh6e+jguLo6goCDatWuHj49PrsR5K5KSkli7di1t27bFNWWlSxERMT36KABXo6OxrFiB0/LlWPbvp8nQoeZCTIDT889jiYnB2qkTRrt25n6sIiIiBZyj5xFxWVxLIlsJateuXbNzWjr+/v44OzsTHR1tUx8dHU3JkiXTtT98+DDHjh2jU6dOqXVWqxUAFxcX9u/fT6X/fIPu7u6Ou7t7umu5uro65C8uhaPHJyJiV2XLwuDBZklOxtXZ2axPToYFCyAmBqcFC8DdHVq3Nrev6dzZ3I9VRESkAHPUPCKrMWUrQR07dmx2TkvHzc2N0NBQIiMjU5Neq9VKZGQkw4YNS9e+evXq/PbbbzZ1L730EhcuXOCtt94iKCgoR+ISEZF8JCU5BXMe6pIlsGyZWQ4fhogIswweDH36wPz59otVREREritbCWqKHTt2sHfvXgBq1apFvXr1bvoa4eHh9O/fn/r169OgQQOmT59OfHw8AwcOBKBfv36UKVOGiRMn4uHhQe3atW3OL1asGEC6ehERKYScnKBZM7NMnQp//JGWrG7fbva8prh0CcaNg06doFEj20RXRERE7CJbCeqZM2fo2bMn69evT00Qz58/T8uWLfn8888JCAjI8rV69OhBTEwMY8aMISoqirp167Jq1arUhZNOnDiBk1O2tmsVEZHCzGKBWrXMMmoUnDplu9JvZCRMnmyWgADo2NEcCty2LTjwInoiIiIFmcUwDONmT+rRowdHjhzh008/pUaNGgD88ccf9O/fn8qVK/PZtZurO5i4uDh8fX2JjY112EWSIiIiaN++vUOOHRcRKTB+/hneegu+/RbOn0+rL1LETFJfeQVuv91u4YmIiNwMR88jspqHZatrctWqVbzzzjupySlAzZo1mTVrFitXrszOJUVERPJW/fowbx6cOWP2pj75JJQvbw79Xb4c3NzS2v7xBxw8aL9YRUREColsJahWqzXDrNzV1TV1VV0REZF8wdUVWrUye1OPHoVdu2D6dKhePa3NuHFQtSrUrAkjR8LWraB/70RERHJcthLUVq1aMXz4cE6dOpVad/LkSZ5++mlat26dY8GJiIjkKYsFQkJg+HDbeqsVXFxg716YNMlcVKl0aRg0yFwhWERERHJEthLUmTNnEhcXR3BwMJUqVaJSpUpUqFCBuLg4ZsyYkdMxioiI2NeSJXD2LHz2GfTsCT4+EB0NH35o9q5e6+JFu4QoIiJSEGRrFd+goCB27tzJd999x759+wCoUaMGbdq0ydHgREREHIavr5mc9uwJiYmwYYO5fc2125zFxkKpUtCggbkicJcuULGi/WIWERHJZ24qQV23bh3Dhg1j69at+Pj40LZtW9q2bQtAbGwstWrVYvbs2TRt2jRXghUREXEIbm7mSr///huY6ocfzEWWNmwwS3i4mcCmJKv169tudSMiIiI2bmqI7/Tp0xk0aFCGywL7+voyePBgpk2blmPBiYiI5CsdO8KRI+YiSy1bgrMz7NkDEyaYvaoffmjvCEVERBzaTSWou3fv5u677870eLt27dixY8ctByUiIpJvVahgLrK0bp25hc28edC9O3h7w7X/hn76KfToAQsX2u7DKiIiUojd1BDf6Ojo62766uLiQkxMzC0HJSIiUiD4+UHfvmZJTLTdW/Wzz2DVKli82FwhuHlzcxhw587mfqwiIiKF0E31oJYpU4Y9e/ZkevzXX3+lVKlStxyUiIhIgXNtcgrwyiswapS5t+rVqxAZCU8+CcHB5nDgq1ftEqaIiIg93VSC2r59e0aPHs3ly5fTHbt06RJjx46lY8eOORaciIhIgVW/vjk39fff4eBBmDoVmjYFJycoWtTsVU0xdSp89x0kJdkvXhERkTxwU0N8X3rpJZYuXUrVqlUZNmwY1apVA2Dfvn3MmjWL5ORkXnzxxVwJVEREpMCqXBmeecYsMTHmnqspoqLg+efBMMytbtq3N4cC33OPuR+riIhIAXJTCWqJEiXYvHkzjz/+OCNHjsQwDAAsFgthYWHMmjWLEiVK5EqgIiIihUJAgFlSXLkCDz0E33xjLrr02WdmcXU1VwoOD4ewMPvFKyIikoNuKkEFKF++PBEREfzzzz8cOnQIwzCoUqUKxYsXz434RERECrfy5c3taZKTYds2WLbMLPv3w5o10Lt3WtvoaDOJrV1b+62KiEi+dNMJaorixYtz55135mQsIiIikhlnZ2jc2Cyvvw779pmJaocOaW3mzYPnnjO3uunSxSx33WU7n1VERMSB6V8sERGR/Kh6dbNc6++/wd0djh6F6dPN4udnJrFdukDHjuZxERERB3VTq/iKiIiIA3vtNTh3DpYuhf794bbbzKR13jx48EFzmHCKDFbkFxERsTf1oIqIiBQkXl5w771muXoVNm82hwInJoKnZ1q7hg2hSJG0ocA1amjeqoiI2J0SVBERkYLKxQWaNTPLtU6ehF9/NX/etg1GjTK3uklJVhs3Nue8ioiI5DEN8RURESlsypQxk9R334W77wY3Nzh0CN54w0xmhw2zd4QiIlJIKUEVEREpjEqXhsceg5Ur4exZWLwY+vSBYsWgbdu0drt2mb2qH39sbmEjIiKSizTEV0REpLArWhTuv98sSUm2x776CpYvN4vFYg7/TRkKXLWqfeIVEZECSz2oIiIiksbV1SwpevaE8eOhXj0wDPjxR3j+eahWzVxY6ehR+8UqIiIFjhJUERERyVyNGjBmDOzcCcePw4wZ0KaNuQBTVBSULZvWdtEiWLFCW9iIiEi2aYiviIiIZE25cuYCSsOGQWws/PFHWm+rYcALL5hJrJcXhIWZw4A7dDD3YxUREckC9aCKiIjIzfP1hUaN0h5fumQmo2XLQnw8LF0K/ftDiRLQogV88ondQhURkfxDCaqIiIjcOk9PmDULTpyAn3+G0aPh9tshORk2bICffkpre/Wq+dhqtV+8IiLikDTEV0RERHKOxQKhoWZ5+WVzEaXly83Vf1P8+KPZq1q6NHTuDF27mo/d3e0UtIiIOAr1oIqIiEjuqVABhg+HO+9Mqzt6FLy94dQpmD0b7r4bAgKgRw9YuBDi4uwXr4iI2JUSVBEREclbAwZATAxERMCjj0LJknDhAixeDH36wL59aW2vXrVbmCIikveUoIqIiEje8/CAe+6B996Dkydh61YYNQpatYL69dPaDR5s7sE6bhz88ou5WrCIiBRYmoMqIiIi9uXkBA0bmuVahmH2skZFwa5dMH68udVNyrzVZs3StrkREZECwSF6UGfNmkVwcDAeHh40bNiQ7du3Z9p26dKl1K9fn2LFiuHl5UXdunWZN29eHkYrIiIiecJigV9/hTlzzIS0SBFzleCZM6FNG2ja1N4RiohIDrN7grpo0SLCw8MZO3YsO3fuJCQkhLCwMM6cOZNhez8/P1588UW2bNnCr7/+ysCBAxk4cCCrV6/O48hFREQk1wUEmHNWv/oKzp0zVwR++GEIDISWLdPaXb4MXbrAu++aQ4ZFRCRfshiGfSdzNGzYkDvvvJOZM2cCYLVaCQoK4oknnmDEiBFZusYdd9xBhw4deOWVV9Idu3LlCleuXEl9HBcXR1BQEGfPnsXHxydnbiIHJSUlsXbtWtq2bYurhi2JiIhkLDkZLl0yVwMGLBERuHTtmnrYGhqK0akT1k6doHZtszdWRKQAc/Q8Ii4uDn9/f2JjY6+bh9k1QU1MTMTT05MlS5bQ9Zp/VPr378/58+dZtmzZdc83DIN169bRuXNnvv76a9q2bZuuzbhx4xg/fny6+oULF+Lp6XnL9yAiIiL25xETQ9kffqDUtm0UP3AAyzV/3sSXKMGuIUM4GxJixwhFRAq3hIQEevfu7dgJ6qlTpyhTpgybN2+mUaNGqfXPP/88GzZsYNu2bRmeFxsbS5kyZbhy5QrOzs688847PPTQQxm2VQ+qiIhIIRMdjWXFCpyWL8eybh2Wy5dJ2r0batQAwLJlC0RFYbRtm9oDKyKS3zl6HpHVHtR8uYpv0aJF2bVrFxcvXiQyMpLw8HAqVqxIixYt0rV1d3fH3d09Xb2rq6tD/uJSOHp8IiIiDqtsWXN7msGDIT4eNmzAtU6dtGG+M2fCF1+Au7u52FKXLtCpk7kfq4hIPueoeURWY7Jrgurv74+zszPR0dE29dHR0ZS8zj8STk5OVK5cGYC6deuyd+9eJk6cmGGCKiIiIoWYlxe0b29bV6MGVKoEhw/DihVmsVjMbW66doXnn9ecVRERO7HrKr5ubm6EhoYSGRmZWme1WomMjLQZ8nsjVqvVZhiviIiISKbGj4eDB+G33+DVV+HOO809V7duhS+/tE1O9+wxF2QSEZE8YfchvuHh4fTv35/69evToEEDpk+fTnx8PAMHDgSgX79+lClThokTJwIwceJE6tevT6VKlbhy5QoRERHMmzePd9991563ISIiIvmJxWKu7lu7Nrz4ork1zTffQPHiaW1iY+GOO6BYMejY0RwK3LYtaJFFEZFcY/cEtUePHsTExDBmzBiioqKoW7cuq1atokSJEgCcOHECJ6e0jt74+HiGDBnCX3/9RZEiRahevTrz58+nR48e9roFERERye/KlIHHHrOt++MPc4hwTAzMmWOWIkXMJDVl3mpAgH3iFREpoOy+D2pei4uLw9fX94arR9lLUlISERERtG/f3iEnN4uIiBQqSUnwww+wbJlZjh9POzZzJgwdav5stYKTXWdOiUgh5+h5RFbzMH2SioiIiGTG1RVatYK33oKjR+GXX2DcOKhXDzp3Tmv3/vtQsyaMHGnOZbVa7RayiEh+ZvchviIiIiL5gsUCdeuaZexY22PffAN795pl0iRzy5pOncyhwK1bg4eHPSIWEcl31IMqIiIicqsWLoTPPoMePcDHB6Ki4IMPzMWVSpWCS5fsHaGISL6gHlQRERGRW+XrCz17miUxEdavT5u3WrWqubhSiieegIoVzd7VihXtFrKIiCNSgioiIiKSk9zcoF07s8ycCX//nXYsKgpmzTL3XQ0PN7e56dLFLPXr2+7BKiJSCGmIr4iIiEhusVjgttvSHru7w7Rp0KIFODvDnj0wYQI0aABly5rDgkVECjElqCIiIiJ5pXhxeOop+P57OHMGPv0Uunc391s9dcpMYFP8+ac5t/X8eXtFKyKS55SgioiIiNiDnx88+CAsWQJnz8KKFebKvykWLYI+fSAgANq0gRkzbPdhFREpgJSgioiIiNibhwe0b2/2sKYoVszcW/XqVYiMhCefhOBgcw/WcePUsyoiBZISVBERERFH9Mgj8PvvcOAATJ0Kd90FTk6waxdMnmwuxpTi6FFISrJbqCIiOUWr+IqIiIg4sipV4JlnzBITYw4FjooCT8+0Np07m3NW27c3VwS+5x5zP1YRkXxGCaqIiIhIfhEQAAMG2Nb9/TdER0NsLHz2mVlcXaFVKzNx7dzZXCFYRCQf0BBfERERkfzMzw9On4ZNm+C556BqVXO47+rVMHQovPhiWlvDMIuIiINSgioiIiKS3zk7Q5Mm5tzU/fth716YNAkaNYJ7701r98svUKkSPP00rF9vLsAkIuJANMRXREREpKCpXt0sL7xgW798ubmg0vTpZvHzg44dzXmr7dqBt7c9ohURSaUeVBEREZHC4rnnYOlS6NfPTE7//hs+/RS6dwd/f9i9294Rikghpx5UERERkcLCy8sc8nvvvebw3h9/hGXLzPL33+a+qylmzID4eLN3tXp1sFjsF7eIFBrqQRUREREpjFxcoHlzmDYNDh0y91x1dTWPGQa88QaMHGkmrdWqmb2vmzZBcrJ94xaRAk0JqoiIiEhhZ7FA6dJpj5OTYcQIuPtucHODgwdh6lRo2hRKlYJRo+wXq4gUaEpQRURERMSWiws89hisXAkxMbB4MfTpA8WKmY9jY9PaXr0Kc+ea9SIit0hzUEVEREQkcz4+cP/9ZklKgh9+gJIl047/+CMMHGj2wjZpYs5Z7dIFqlSxX8wikm+pB1VEREREssbVFVq1sl1M6coVuOMOc97qpk3mXNWqVc02I0fCsWN2C1dE8h8lqCIiIiKSfe3awY4dcPy4ufJvmzbmEOG9e2HSJNuhv2fOwOXL9otVRByeElQRERERuXXlysGwYbB2rZmULlwIjz4KoaFpbUaONPdbve8+mDfP3NpGROQamoMqIiIiIjmrWDHo1css19q1y9xb9csvzeLsbK4MnDJvtUIFe0QrIg5EPagiIiIikjd+/tkso0fD7beb29msXw9PPw3t29s7OhFxAOpBFREREZG8YbGYQ35DQ+Hll+HoUVi+HJYtM1cATnH5MtSrBy1bmj2rLVua+7GKSIGnBFVERERE7KNCBRg+3CyGkVYfGQn79pnl3XehaFG45x4zWW3f3hxCLCIFkob4ioiIiIj9WSxpP7duDStWmIsslSwJFy7A4sXQpw8EBJgLMIlIgaQEVUREREQci4eH2VP63ntw8iRs3WquAFyzJly9ag7/TbF6NYwfby7AdG0vrIjkS0pQRURERMRxOTlBw4bw2mvw++9w5AhUr552/KOPYNw4M2mtUAGefNIcIpyUZLeQRST7HCJBnTVrFsHBwXh4eNCwYUO2b9+eadsPPviApk2bUrx4cYoXL06bNm2u215ERERECpAKFWyHA3fvDl27QpEicPw4zJgBbdpAYCD07Wv2uIpIvmH3BHXRokWEh4czduxYdu7cSUhICGFhYZw5cybD9uvXr6dXr158//33bNmyhaCgINq1a8fJkyfzOHIRERERsbsePeCrr+DsWXM14IceMuepnj8PBw6AyzVrgi5fbg4ZFhGHZTEM+w7Wb9iwIXfeeSczZ84EwGq1EhQUxBNPPMGIESNueH5ycjLFixdn5syZ9OvX74bt4+Li8PX1JTY2Fh8fn1uOP6clJSURERFB+/btcXV1tXc4IiIiIvlPcrI5b/XyZXPBJYDYWDNxTUqC+vXNFYG7dIHatW17ZEXyKUfPI7Kah9l1m5nExER27NjByJEjU+ucnJxo06YNW7ZsydI1EhISSEpKws/PL8PjV65c4cqVK6mP4+LiAPMXmOSAcxNSYnLE2ERERETyjQYNzP+m/E114gTOoaFYtm3D8vPP8PPPMHo0RsWKWDt2xNq3L9Sta7dwRW6Vo+cRWY3Lrgnq2bNnSU5OpkSJEjb1JUqUYN++fVm6xgsvvEDp0qVp06ZNhscnTpzI+PHj09WvWbMGT0/Pmw86j6xdu9beIYiIiIgULCNG4H7+PCV++olS27YRsHs3zkeO4Pz22/x++TJH27cHwPnyZTAMkosUsXPAIjfPUfOIhISELLWza4J6qyZNmsTnn3/O+vXr8fDwyLDNyJEjCQ8PT30cFxeXOm/VUYf4rl27lrZt2zpk17yIiIhIvte7NwDWixcx1q7F6ZtvqPH889QoVw4Ap/ffx+mZZzBat8baqRNGhw7mfqwiDszR84iUkaw3YtcE1d/fH2dnZ6Kjo23qo6OjKXmDD4GpU6cyadIkvvvuO26//fZM27m7u+Pu7p6u3tXV1SF/cSkcPT4RERGRfK94cXjgAXjgAduVQ3/+Ga5cwRIRgVNEhDlHtWHDtHmr1atr3qo4LEfNI7Iak11X8XVzcyM0NJTIyMjUOqvVSmRkJI0aNcr0vMmTJ/PKK6+watUq6tevnxehioiIiEhh8fHH8Ntv8OqrcOedYBjmoksjR0KdOuaCSyKSK+w+xDc8PJz+/ftTv359GjRowPTp04mPj2fgwIEA9OvXjzJlyjBx4kQAXn/9dcaMGcPChQsJDg4mKioKAG9vb7y9ve12HyIiIiJSQFgs5uq+tWvDiy+aW9N88425jY3FAsWKpbXt2hX8/Mye1bZtwYHXOBHJD+yeoPbo0YOYmBjGjBlDVFQUdevWZdWqVakLJ504cQInp7SO3nfffZfExETuu+8+m+uMHTuWcePG5WXoIiIiIlIYlCkDjz1mlmt3aIyONvdWNQyYMweKFDGT1C5doFMnc1sbEbkpdk9QAYYNG8awYcMyPLZ+/Xqbx8eOHcv9gEREREREMnLt3FM/P1i71uxZXbYMTpwwE9bly812I0fChAn2i1UkH7LrHFQRERERkXzL1RVat4a334Zjx+CXX2DcOKhXz+xVrVo1re2RI2bCunUrWK32iljE4SlBFRERERG5VRYL1K0LY8fCzp1w/Dh065Z2fOlSmDQJGjUyhww/+iisWAGXL9stZBFHpARVRERERCSnlSsHRYumPa5XD3r0MOuiouCDD6BjR/D3h+7d4a+/7BeriANRgioiIiIikttat4bPP4ezZ2H1ahgyxOxJjY+HlSvN+awpNm82hwSLFEJKUEVERERE8oqbG7RrB7NmwZ9/ws8/m72p125PM3gwVKpk7rn60kvw00+2qweLFGBKUEVERERE7MFigdBQ6NMnrS4hwRz26+wMe/aYqwA3aABly8Ljj8N/drgQKWiUoIqIiIiIOApPT/j+e3OP1U8/NeenennBqVMwe7a532oKw4Dz5+0WqkhuUIIqIiIiIuJobrsNHnwQliwx562uWGGu/NurV1qbX36BgABo0wZmzDD3YRXJ51zsHYCIiIiIiFyHhwe0b2+Wa/3wA1y9CpGRZnnySXO14C5dzBISYg4jFslH1IMqIiIiIpIfDR8OBw7A1Klw113g5GT2qo4bZyaqGzfaO0KRm6YEVUREREQkv6pSBZ55xuxNjYqCjz+Grl3NLWwaN05rN2aMuRjT4sUQF2e3cEVuxGIYhWvN6ri4OHx9fYmNjcXHxyfTdsnJySQlJeVhZKakpCQ2btxIs2bNcHV1zfPnl9zn6uqKs7OzvcMQERGRgiw52VwJGMzFlCpUgOPHzcdubtCypTkMuHNnM5mVfM9qtXLmzBkCAwNxcnK8fsis5mFKUP/DMAyioqI4b6cV0QzD4NKlSxQpUgSL5gwUWMWKFaNkyZL6HYuIiEjuMwzYvBmWLTPLgQO2x7t2ha++sktoknMKSoKqRZL+IyU5DQwMxNPTM88TCKvVysWLF/H29nbIN5bcGsMwSEhI4MyZMwCUKlXKzhGJiIhIgWexQJMmZpk8GfbtS0tWt2617UG9ehVeegnuvtuc1+qidEHylnpQr5GcnMyBAwcIDAzktttus0t8VquVuLg4fHx8lKAWYOfOnePMmTNUrVpVw31FRETEfqKizKS0bFnz8caN0Ly5+bOfH3TsaA4FbtcOvL3tF6fcUEHpQXW8yO0oZc6pp6ennSORgi7lPWaPec4iIiIiqUqWTEtOAYoVg/79zeT077/h00+he3fw9zeT1Z9+sluoUjgoQc2A5gVKbtN7TERERBzS7bfD3LkQHQ3r18PTT0PFinDlCqxYYc5nTXHggDlcWCQHKUEVERERERFbLi7mUN9p0+DQIfjtN5gyBerXT2vz+utQowZUqwbPPw8//miuHixyC5Sg5pLkZPNLp88+M/+bX/5fPXbsGBaLhV27dt30uePGjaNu3brXbTNgwAC6du2ardgcSYsWLXjqqafsHYaIiIhI7rNYoHZtePZZuHZuY1KSuWXNgQNm8nrXXVCqFDz8MCxfbtvbKjnvgQfM343FAj17ptUnJcH48WbPt5ubOYT76afh4kX7xXoTlKDmgqVLITjY3F6qd2/zv8HBZn1uySzxW79+PRaLJU+2zXn22WeJjIy8pWvkZby3YunSpbzyyiv2DkNERETEfj79FGJiYPFi6NPHnL8aEwMffwwvvGAmTini4+0WZoE0Zw588UWGhywPPwzjxpn73lasCGfOwPTp5hxiqzVPw8wOJag5bOlSuO8++Osv2/qTJ8363ExS7cUwDK5evYq3t7fdVj/Oa35+fhQtWtTeYYiIiIjYl48P3H8/zJ9vJkKRkfDkkzBoUFqby5ehdGlo2hSmToWDB+0Xb0Fw+LD5GjdqZLvAFeDy669YFiwwH7z1ljlH+MsvzccbNsDXX+dtrNmgBPUGDMP8wicrJS7OfK9kNJohpW74cLNdVq6X06Mi4uPj8fHxYcmSJTb1X3/9NV5eXly4cCG1bt++fTRu3BgPDw9q167Nhg0bUo+l9HKuXLmS0NBQ3N3d2bRpU7ohvsnJyYSHh1OsWDFuu+02nn/+eW51V6N//vmHfv36Ubx4cTw9Pbnnnns4eM2HXEbDjKdPn05wcDAAa9aswcPDI10P7fDhw2nVqhVgbgHTq1cvypQpg6enJ3Xq1OGzzz6zaf/fIb7BwcG89tprPPTQQxQtWpRy5crx/vvv39K9ioiIiOQrrq7QqpWZGIWHp9Vv22b+AbxpEzz3HFStCjVrwsiR5j6s+aBXz2FcvWr2Vjs5wYIF8J/tCt3XrUt70L27+d8OHcDDw/x51ao8CjT7lKDeQEKCueVTVoqvr9lTmhnDMHtWfX0zv4aPjxNlyxbDx8eJhIScvRcvLy969uzJnDlzbOrnzJnDfffdZ9Mj+Nxzz/HMM8/wyy+/0KhRIzp16sS5c+dszhsxYgSTJk1i79693H777eme74033mDu3Ll8/PHHbNq0ib///puvvvrqlu5hwIAB/PzzzyxfvpwtW7ZgGAbt27fP8nYtrVu3plixYnyZ8k0SZiK9aNEi+vTpA8Dly5cJDQ1lxYoV7Nmzh0cffZQHH3yQ7du3X/fab7zxBvXr1+eXX35hyJAhPP744+zfvz/7NysiIiJSEDRvbg43nTED2rQxF2DauxcmTTJ7AadPt3eE+cf48WbC/847UKFCusPOp06lPQgMNP/r5GRuEwRw4kQeBHlrlKAWIN9++y3e3t425Z577rFp88gjj7B69WpOnz4NwJkzZ4iIiOChhx6yaTds2DC6d+9OjRo1ePfdd/H19eWjjz6yafPyyy/Ttm1bKlWqhJ+fX7p4pk+fzsiRI+nWrRs1atRg9uzZ+Pr6Zvv+Dh48yPLly/nwww9p2rQpISEhLFiwgJMnT/J1FocrODs707NnTxYuXJhaFxkZyfnz5+n+77dMZcqU4dlnn6Vu3bpUrFiRJ554grvvvpvFixdf99rt27dnyJAhVK5cmRdeeAF/f3++//77bN+viIiISIFRrhwMGwZr15rzVBcuhB49oGhRuPbv1S+/NOfFzZtn7sMqaX7+GSZOhL59zV7Um5GPFqxSgnoDnp7mgldZKRERWbtmRETm14iLs/LXX+eJi7Pi6XlzsbZs2ZJdu3bZlA8//NCmTYMGDahVqxaffPIJAPPnz6d8+fI0a9bMpl2jRo1Sf3ZxcaF+/frs3bvXpk39a5cZ/4/Y2FhOnz5Nw4YN010nu/bu3YuLi4vNNW+77TaqVauWLrbr6dOnD+vXr+fUv98wLViwgA4dOlCsWDHA7FF95ZVXqFOnDn5+fnh7e7N69WpO3OAbp2t7kS0WCyVLluTMmTM3cYciIiIihUCxYtCrF3z+OZw9C9Wrpx1btMhMUvv1M3sAW7Y0e1iPHrVXtI5jzx5za5AlS9KGX6b8ffrll1h8fEguUSKtfcrfoVYrpIyELFcub2POBiWoN2CxgJdX1kq7duY85WsXLPvvtYKCzHZZuV5m18mMl5cXlStXtillypRJ1+6RRx5h7ty5gDm8d+DAgVhu9sn+fT5H4+TklG6e63+H/955551UqlSJzz//nEuXLvHVV1+lDu8FmDJlCm+99RYvvPAC33//Pbt27SIsLIzExMTrPrerq6vNY4vFglVzKkREREQy5+Zm+0fvqFEwejTUqZO2b+PTT5ur0YaEwKVLdgvVYVy+nH7RmqtXscTHc6VNm7R2KVPaVqwwzwG4++68jTUblKDmIGdnc044pE8uUx5Pn55uLnOe69u3L8ePH+ftt9/mjz/+oH///unabN26NfXnq1evsmPHDmrUqJHl5/D19aVUqVJs27Yt3XWyq0aNGly9etXmmufOnWP//v3UrFkTgICAAKKiomyS1Iz2dO3Tpw8LFizgm2++wcnJiQ4dOqQe+/HHH+nSpQt9+/YlJCSEihUrcuDAgWzHLSIiIiJZVLcuvPwy/PorHDkCb74JLVqYf0C7uUGRImlt334bVq+GG3QiFBgDBpgJ6bWlfHnzWI8eWJOTuRoSgpGyJ+rw4VCjRtpiSU2bQgbbUjoaJag5rFs3s9f9vx2XZcua9d262SeuaxUvXpxu3brx3HPP0a5dO8r+Z3lqgFmzZvHVV1+xb98+hg4dyj///JNunuqNDB8+nEmTJvH111+zb98+hgwZkuX9TX/77Tebocq7d++mSpUqdOnShUGDBrFp0yZ2795N3759KVOmDF26dAHM1XVjYmKYPHkyhw8fZtasWaxcuTLd9fv06cPOnTuZMGEC9913H+7u7qnHqlSpwtq1a9m8eTN79+5l8ODBREdH39S9i4iIiMgtqlABnnoKvv8eoqPN/VVTxMbCs8+aPYL+/uZ81oULIYt/axZkxty5MGaMOZz38GEICDC3GlmxwlwwycE5foT5ULducOyY+f/SwoXmf48edYzkNMXDDz9MYmJipknnpEmTmDRpEiEhIWzatInly5fjn7L6VxY988wzPPjgg/Tv359GjRpRtGhR7r333iyd26xZM+rVq5daQkNDAXNIcmhoKB07dqRRo0YYhkFERETq8NoaNWrwzjvvMGvWLEJCQti+fTvPPvtsuutXrlyZBg0a8Ouvv9oM7wV46aWXuOOOOwgLC6NFixaULFmSrvng2yYRERGRAuu228xhvykSEmDgQChZEi5cgMWLzYWDAgLMlYKXL7dfrHnp2DGzJ/Xzz9PqXF3N1X6PHjV7l0+eNId5XrNjhyOzGLe6MWU+ExcXh6+vL7Gxsfj4+Ngcu3z5MkePHqVChQp4pOwVlMesVitxcXH4+PjglIvfcMybN4+nn36aU6dO4ebmlmvPIxlzhPeaiIiISL5ntcJPP8GyZfD11+b2NQAzZ8LQoebPf/9tLiYUEnLzi7zkI1arlTNnzhAYGJireUR2XS8Pu5bjRS65KiEhgcOHDzNp0iQGDx6s5FRERERE8i8nJ2jYEF57Df74Aw4cgClTbOdafvEF1KtnDhl+8kmIjIT/LKIpjsPuCeqsWbMIDg7Gw8ODhg0bsn379kzb/v7773Tv3p3g4GAsFgvTtanvTZs8eTLVq1enZMmSjBw50t7hiIiIiIjknCpVzLmp1y4IExNjLq50/DjMmGEOAQ4MNIcEL16slYEdjF0T1EWLFhEeHs7YsWPZuXMnISEhhIWFZbp3ZEJCAhUrVmTSpEmULFkyj6MtGMaNG0dSUhKRkZF4e3vbOxwRERERkdz10kvmfqvLlsFDD5nzVM+fNxeL6d3bNkG9csVuYYrJxZ5PPm3aNAYNGsTAgQMBmD17NitWrODjjz9mxIgR6drfeeed3HnnnQAZHhcREREREUnH0xM6dzZLcjJs2WIupHTuHPj5pbVr1cpcWKhLF7PUrl2g5606IrslqImJiezYscNmmKmTkxNt2rRhy5YtOfY8V65c4co134TExcUBkJSURNJ/xp4nJSVhGAZWqxWr1ZpjMdyMlDWrUuKQgslqtWIYBklJSTjbe2NcERERkcKmYUOzQNp81H/+wWXbNizJyfDzzzB6NEbFilg7dcLo1AmjcWNwyf30Kbt/G+ZEHpGcnJyt87Liv7lXZuyWoJ49e5bk5GRKlChhU1+iRAn27duXY88zceJExo8fn65+zZo1eHp62tS5uLhQsmRJLl68SKKdN/y9cOGCXZ9fcldiYiKXLl1i48aNXL161d7hiIiIiAjg/uGHlPzpJ0pu307A7t04HzmC81tvwVtv8Wfz5ux8+ulcj6FhSuKcTTExMdk+d9u2bbf03NeTkJCQpXZ2HeKbF0aOHEl4eHjq47i4OIKCgmjXrl2G28z8+eefeHt7223rD8MwuHDhAkWLFsWi4QQF1uXLlylSpAjNmjXTNjMiIiIijqRPHwCsFy9irF2L0zffYImIoNSDD9K+fXuzzaFDOD/7rNm72qGDuR+rnSUlJbF27Vratm2Lq6trtq6Ren+5IGUk643YLUH19/fH2dmZ6Ohom/ro6OgcXQDJ3d0dd3f3dPWurq7pfnHJyclYLBacnJzstndQSnd8ShxSMDk5OWGxWDJ8H4qIiIiIAyheHB54wCxXr+JitULK320rVkBEBE4REeYc1YYN0+atVq9u13mrjvr3ZVZjslsG5ObmRmhoKJGRkal1VquVyMhIGjVqZK+wREREREREbLm4gJtb2uMuXeDVV6F+fTAM2LoVRo6EmjWhWjVzT1bJFrsO8Q0PD6d///7Ur1+fBg0aMH36dOLj41NX9e3Xrx9lypRh4sSJgDlv749/f9mJiYmcPHmSXbt24e3tTeXKle12HzZOnDCXsc6Mvz+UK5d38YiIiIiISM6qUgVefNEsJ0+aKwIvXw7r1sFff0FwcFrbr782e1TbtjVXE5brsusY0h49ejB16lTGjBlD3bp12bVrF6tWrUpdOOnEiROcPn06tf2pU6eoV68e9erV4/Tp00ydOpV69erxyCOP2OsWbJ04YX5jEhqaealWzWyXC2JiYnj88ccpV64c7u7ulCxZkrCwMH788cdbum5iYiKTJ08mJCQET09P/P39adKkCXPmzLFZjSsqKoonnniCihUr4u7uTlBQEJ06dbLpJQ8ODsZisbB161ab53jqqado0aJFlmM6duwYFouFXbt23dK9iYiIiIjckjJl4PHHYeVKiImBNWtsE9HRo6FrV7OjqmtXmDPHbCcZsvsiScOGDWPYsGEZHlu/fr3N4+Dg4NTlkx3S2bNw+fL121y+bLbLhV7U7t27k5iYyCeffELFihWJjo4mMjKSc+fOZfuaiYmJhIWFsXv3bl555RWaNGmCj48PW7duTf2CoG7duhw7dowmTZpQrFgxpkyZQp06dUhKSmL16tUMHTrUZmVmDw8PXnjhBTZs2JATty0iIiIi4hh8fOCuu9IeJyVBy5YQF2d2Ui1bZhYnJ2jcGB58EB591H7xOiCtwpNV8fGZlxslpdm57k06f/48P/zwA6+//jotW7akfPnyNGjQgJEjR9K5c2fAXHjpvffeo2PHjnh6elKjRg22bNnCoUOHaNGiBV5eXjRu3JjDhw+nXnf69Ols3LiRyMhIhg4dSt26dalYsSK9e/dm27ZtVKlSBYAhQ4ZgsVjYvn073bt3p2rVqtSqVYvw8PB0vaWPPvooW7duJSIi4rr39OGHH1KjRg08PDyoXr0677zzTuqxChUqAFCvXj0sFstN9b6KiIiIiOQJV1d4+204dgx++QXGjYN69cBqhU2bzJLCMGD7dvNYIaYENau8vTMv3btn/7rBwTbXcvLxoVjZstkIzxtvb2++/vprrly5kmm7V155hX79+rFr1y6qV69O7969GTx4MCNHjuTnn3/GMAybHu0FCxbQpk0b6tWrl+5arq6ueHl58ffff7Nq1SqGDh2Kl5dXunbFihWzeVyhQgUee+wxRo4cmekmwgsWLGDMmDFMmDCBvXv38tprrzF69Gg++eQTALZv3w7Ad999x+nTp1m6dOkNXyMREREREbuwWKBuXRg7FnbuhOPHYcYMGDQorc0vv5irAZcpY/aqRkTcWkdYPqUEtYBwcXFh7ty5fPLJJxQrVowmTZowatQofv31V5t2AwcO5IEHHqBq1aq88MILHDt2jD59+hAWFkaNGjUYPny4zdDqgwcPUr169es+96FDhzAM44btrvXSSy9x9OhRFixYkOHxsWPH8sYbb9CtWzcqVKhAt27dePrpp3nvvfcACAgIAOC2226jZMmS+Pn5Zfm5RURERETsqlw5GDYMmjZNqzt0CIoWhago+OAD6NDBnLd6330wbx6cP5/+OidOmAnvzp3wyy/4Hj5sJropdbm09k1usvsc1Hzj4sXMjzk7Z/+6x47ZPLRarcTFxeGTjUt1796dDh068MMPP7B161ZWrlzJ5MmT+fDDDxkwYAAAt99+e2r7lMWo6tSpY1N3+fJlMwYfnyzN+c3OvOCAgACeffZZxowZQ48ePWyOxcfHc/jwYR5++GEGXfOt0tWrV/H19b3p5xIRERERcXgPPGBuX7N+vTlPdflyc4XgL780S2QktGpltr16FU6dMhdg/beX1RVo8d9renjA/v35ahcRJahZlcHQ1Vy5rtUKycnZvpyHhwdt27albdu2jB49mkceeYSxY8emJqjXbpBr+XcD4YzqUobeVq1a1WaBo4xUqVIFi8Vyw3b/FR4ezjvvvGMztxTg4r9fBnzwwQc0bNjQ5pjzrXwZICIiIiLiyNzdISzMLLNmwY4dZrK6fr1tb+uzz8KKFXZdoDW3aIhvAVezZk3is7HoUorevXvz3Xff8csvv6Q7lpSURHx8PH5+foSFhTFr1qwMn+t8RsMRMOfNjh49mgkTJnDhwoXU+hIlSlC6dGmOHDlC5cqVbUrK4khu/26UnHwLybyIiIiIiMOyWKB+fXjlFfjhB3PBpRQrVphDggsgJag5yd/f7Ea/Hg8Ps10OO3fuHK1atWL+/Pn8+uuvHD16lC+++ILJkyfTpUuXbF/3qaeeokmTJrRu3ZpZs2axe/dujhw5wuLFi/nf//7HwYMHAZg1axbJyck0aNCAL7/8koMHD7J3717efvttGjVqlOn1H330UXx9fVm4cKFN/fjx45k4cSJvv/02Bw4c4LfffmPOnDlMmzYNgMDAQIoUKcKqVauIjo4mNjY22/coIiIiIpKvbN0KL79s7yhyhYb45qRy5cwx3mfPZt7G3z9Xuti9vb1p2LAhb775JocPHyYpKYmgoCAGDRrEqFGjsn1dd3d31q5dy5tvvsl7773Hs88+m7pFzZNPPknt2rUBqFixIjt37mTChAk888wznD59moCAAEJDQ3n33Xczvb6rqyuvvPIKvXv3tql/5JFH8PT0ZMqUKTz33HN4eXlRp04dnnrqKcBcFOrtt9/m5ZdfZsyYMTRt2jTdvrkiIiIiIgXSbbeZiyiNGWPvSHKcxcjOCjf5WFxcHL6+vsTGxuLjY7sU0eXLlzl69CgVKlTA40Y9obkkdZEkHx+cnNTBXVA5wntNRERERPKxnTshNPTG7XbsgDvuyP14buB6edi1lAGJiIiIiIiIQ1CCKiIiIiIiIg5BCaqIiIiIiEh+Y8cFWnOTFkkSERERERHJb/6zQGvS1av8uGkTTe66C1eXf9O8XFqgNTcpQc1AIVs3SuxA7zERERERuWXlyqUloElJxJ4+DfXq2e6Zms9oiO81XP/9RSYkJNg5EinoUt5jrvn4w0NEREREJKepB/Uazs7OFCtWjDNnzgDg6emJxWLJ0xisViuJiYlcvnxZ28wUQIZhkJCQwJkzZyhWrBjOzs72DklERERExGEoQf2PkiVLAqQmqXnNMAwuXbpEkSJF8jw5lrxTrFix1PeaiIiIiIiYlKD+h8VioVSpUgQGBpKUlJTnz5+UlMTGjRtp1qyZhn8WUK6uruo5FRERERHJgBLUTDg7O9sliXB2dubq1at4eHgoQRURERERkUJFkxxFRERERETEIShBFREREREREYegBFVEREREREQcQqGbg2oYBgBxcXF2jiRjSUlJJCQkEBcXpzmoIiIiIiKSJY6eR6TkXyn5WGYKXYJ64cIFAIKCguwciYiIiIiISOFy4cIFfH19Mz1uMW6UwhYwVquVU6dOUbRoUYfcZzQuLo6goCD+/PNPfHx87B2OiIiIiIjkA46eRxiGwYULFyhdujROTpnPNC10PahOTk6ULVvW3mHckI+Pj0O+sURERERExHE5ch5xvZ7TFFokSURERERERByCElQRERERERFxCEpQHYy7uztjx47F3d3d3qGIiIiIiEg+UVDyiEK3SJKIiIiIiIg4JvWgioiIiIiIiENQgioiIiIiIiIOQQmqiIiIiIiIOAQlqCIiIiIiIuIQlKA6iI0bN9KpUydKly6NxWLh66+/tndIIiIiIiLi4CZOnMidd95J0aJFCQwMpGvXruzfv9/eYWWbElQHER8fT0hICLNmzbJ3KCIiIiIikk9s2LCBoUOHsnXrVtauXUtSUhLt2rUjPj7e3qFli7aZcUAWi4WvvvqKrl272jsUERERERHJR2JiYggMDGTDhg00a9bM3uHcNPWgioiIiIiIFBCxsbEA+Pn52TmS7FGCKiIiIiIiUgBYrVaeeuopmjRpQu3ate0dTra42DsAERERERERuXVDhw5lz549bNq0yd6hZJsSVBERERERkXxu2LBhfPvtt2zcuJGyZcvaO5xsU4IqIiIiIiKSTxmGwRNPPMFXX33F+vXrqVChgr1DuiVKUB3ExYsXOXToUOrjo0ePsmvXLvz8/ChXrpwdIxMREREREUc1dOhQFi5cyLJlyyhatChRUVEA+Pr6UqRIETtHd/O0zYyDWL9+PS1btkxX379/f+bOnZv3AYmIiIiIiMOzWCwZ1s+ZM4cBAwbkbTA5QAmqiIiIiIiIOARtMyMiIiIiIiIOQQmqiIiIiIiIOAQlqCIiIiIiIuIQlKCKiIiIiIiIQ1CCKiIiIiIiIg5BCaqIiIiIiIg4BCWoIiIiIiIi4hCUoIqIiIiIiIhDUIIqIiJyAxaLha+//treYeSpuXPnUqxYMXuHISIihYwSVBERKdSioqJ44oknqFixIu7u7gQFBdGpUyciIyNz5fnWr1+PxWLh/PnzuXJ9KJwJtYiIFAwu9g5ARETEXo4dO0aTJk0oVqwYU6ZMoU6dOiQlJbF69WqGDh3Kvn377B1ipgzDIDk5GRcX/VMuIiIFh3pQRUSk0BoyZAgWi4Xt27fTvXt3qlatSq1atQgPD2fr1q0ZnpNRD+iuXbuwWCwcO3YMgOPHj9OpUyeKFy+Ol5cXtWrVIiIigmPHjtGyZUsAihcvjsViYcCAAQBYrVYmTpxIhQoVKFKkCCEhISxZsiTd865cuZLQ0FDc3d3ZtGnTDe/x2LFjWCwWli5dSsuWLfH09CQkJIQtW7bYtJs7dy7lypXD09OTe++9l3PnzqW71rJly7jjjjvw8PCgYsWKjB8/nqtXrwLw8ssvU7p0aZvzOnToQMuWLbFarTeMU0REBNSDKiIihdTff//NqlWrmDBhAl5eXumO38r8y6FDh5KYmMjGjRvx8vLijz/+wNvbm6CgIL788ku6d+/O/v378fHxoUiRIgBMnDiR+fPnM3v2bKpUqcLGjRvp27cvAQEBNG/ePPXaI0aMYOrUqVSsWJHixYtnOaYXX3yRqVOnUqVKFV588UV69erFoUOHcHFxYdu2bTz88MNMnDiRrl27smrVKsaOHWtz/g8//EC/fv14++23adq0KYcPH+bRRx8FYOzYsbz44ousWrWKRx55hK+++opZs2axefNmdu/ejZOTvg8XEZGsUYIqIiKF0qFDhzAMg+rVq+f4tU+cOEH37t2pU6cOABUrVkw95ufnB0BgYGBqEnzlyhVee+01vvvuOxo1apR6zqZNm3jvvfdsEtSXX36Ztm3b3nRMzz77LB06dABg/Pjx1KpVi0OHDlG9enXeeust7r77bp5//nkAqlatyubNm1m1alXq+ePHj2fEiBH0798/Nb5XXnmF559/nrFjx+Ls7Mz8+fOpW7cuI0aM4O233+bDDz+kXLlyNx2riIgUXkpQRUSkUDIMI9eu/eSTT/L444+zZs0a2rRpQ/fu3bn99tszbX/o0CESEhLSJZ6JiYnUq1fPpq5+/frZiuna5y9VqhQAZ86coXr16uzdu5d7773Xpn2jRo1sEtTdu3fz448/MmHChNS65ORkLl++TEJCAp6enlSsWJGpU6cyePBgevToQe/evbMVq4iIFF5KUEVEpFCqUqUKFovlphdCShmuem2Cm/T/9u4eJNU2juP4z8KsoYYgGsSkEMEIgyARdGmIO0MIorGhoSHphcLGikpDhCQazMGhMVqcdMiIImhoiYKglykkaIzApmP1DA9H8KmH0zkQyOn7AeH2vv6XXLfbz+vFHz8qasbHx2UYhnK5nPL5vGKxmBKJhKanpz/8zGKxKEnK5XKyWq0VbRaLpeL9R8uRP8NsNpevTSaTJP3W3tBisaiVlRUNDw+/a6uvry9fHx8fq7a2Vnd3dyqVShziBAD4LWwKAQB8S83NzTIMQ8lkUs/Pz+/a/+9vYFpaWiRJDw8P5Xvn5+fv6mw2myYmJpTJZBQOh5VOpyVJdXV1kv6dffyps7NTFotFhUJBDoej4mWz2f70ET/N5XLp9PS04t5/D4nq6enRzc3Nu/E5HI5yaN/d3VUmk9HR0ZEKhYIikciXjx0A8HfhZ00AwLeVTCbl8/nk8Xi0uroqt9utUqmk/f19pVIpXV1dvevzMzQuLy9rbW1Nt7e3SiQSFTWzs7MKBAJyOp16fHzU4eGhXC6XJMlut8tkMimbzWpwcFANDQ1qbGzU/Py85ubm9Pr6Kr/fr6enJ52cnKipqam87/OrzMzMyOfzaX19XUNDQ9rb26tY3itJS0tLCgaDamtr08jIiGpqanRxcaHLy0tFo1Hd398rFAopHo/L7/dre3tbwWBQgUBAXq/3S8cPAPh7MIMKAPi2Ojo6dHZ2pr6+PoXDYXV1dam/v18HBwdKpVIf9jGbzdrZ2dH19bXcbrfi8bii0WhFzcvLiyYnJ+VyuTQwMCCn06mtrS1JktVqLR841NraqqmpKUlSJBLR4uKiYrFYuV8ul1N7e/vXfgmSvF6v0um0Njc31d3drXw+r4WFhYoawzCUzWaVz+fV29srr9erjY0N2e12vb29aWxsTB6Pp/w8hmEoFAppdHS0vIQZAIBfMb195SkRAAAAAAB8EjOoAAAAAICqQEAFAAAAAFQFAioAAAAAoCoQUAEAAAAAVYGACgAAAACoCgRUAAAAAEBVIKACAAAAAKoCARUAAAAAUBUIqAAAAACAqkBABQAAAABUBQIqAAAAAKAq/AMjGUdw7SW4/QAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ClusterLouvain SizeLouvain CorrelationSMCCNET SizeSMCCNET Correlation
0Cluster_1350.821929650.641804
1Cluster_250.800173400.067307
\n", - "
" - ], - "text/plain": [ - " Cluster Louvain Size Louvain Correlation SMCCNET Size SMCCNET Correlation\n", - "0 Cluster_1 35 0.821929 65 0.641804\n", - "1 Cluster_2 5 0.800173 40 0.067307" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Lets compare hytbrid louvain with the SmCCNet clusters\n", - "print(\"Number of clusters:\", len(hybrid_result))\n", - "\n", - "compare_clusters(hybrid_result, clusters, phenotype, merged_omics)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Network Visualization\n", - "\n", - "BioNeuralNet supports flexible visualization of omics networks, including but not limited to clustering results like Hybrid Louvain.\n", - "\n", - "You can:\n", - "\n", - "- Visualize **any adjacency matrix** or feature-level graph\n", - "- **Toggle node labels** and **edge weights** to suit your analysis\n", - "- Apply a **threshold** to filter weaker edges and focus on key structure\n", - "\n", - "This makes it easy to explore network topology, inspect connectivity patterns, and interpret biological relationships across genes, samples, or other entities.\n", - "\n", - "For details, see the [documentation](https://bioneuralnet.readthedocs.io/en/latest/metrics.html)." - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAKaCAYAAAAK3y9lAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdYFNcax/HvAkvvCIINBUVQUWPvBTR2E3uvMRpjYmISTaKxa2JibDGW2HvvvffeYu8NOwiCdNhl5/5B2Ou6q4KiWN7P8/Dc7JkzM+8MtvvjFJWiKApCCCGEEEIIIYQQQohMY5bVBQghhBBCCCGEEEII8b6xyOoChBBCCCGEEEKI90FcXByhoaEkJiZmdSlCiNfMwsICZ2dn3N3dUalUpvu84ZqEEEIIIYQQQoj3yqVLlzh06CA3rl1Gl6IBRQFkJSch3msqFajMccvmSWDRYlSpUgULC8OYTSVrugkhhBBCCCGEEC/n1KlTrFy2iJzZHQks7Ede71xYW1lhZiarOQnxvlIUBY1GS1h4BBcuXePcxRv4FixKixYtDYI3Cd2EEEIIIYQQQoiX8ODBAyZP/Iui/rmpV7v6M6eYCSHeb9du3GLpqq2UrRhMrVq19O0SvQshhBBCCCGEEC/hzJkzWFso1K1VTQI3IT5gvvny8FGgH2dOn+TJsW0SugkhhBBCCCGEEC/h/Lkz+BXII1NJhRAE+PsSHRXBnTt39G3yJ4MQQgghhBBCCJFBiqIQFfkIr+zuWV2KEOIt4JXdHZQUIiMj9W0SugkhhBBCCCGEEBmUkpKCTpeCWq3O6lKEEG8BtVqNSgXJycn6NgndhBBCCCGEEEKIlyRruQkh0jz954GEbkIIIYQQQgghhBBCZDIJ3YQQQgghhBBCCCGEyGQSugkhhBBCCCGEEEIIkckkdBNCCCGEEEIIIYQQIpNJ6CaEEEIIIYQQQgghRCaT0E0IIcQ7LW/evKhUKlQqFcuWLXtmvxo1aqBSqZg1a9abK+4dkPbuXlX79u1RqVS0bNkyXf3HjBmDSqWiUKFCANy8eROVSkXevHlfuZY3adCgQahUKgYNGmTQvmvXLlQqFdWqVcuSutIj7ffOzZs3s7oUIYQQQoj3koRuQggh3hv9+vVDq9W+kXtVq1YNlUrFrl273sj93nafffYZAKtWrSIyMvKF/WfOnGlwnshcHTt2lJBZCCGEECKLSegmhBDivWBra8vly5eZNm1aVpfyQapSpQr58+cnKSmJ+fPnP7fv0aNHOXPmDGq1mnbt2gGQM2dOLly4wPbt299Eua9dmTJluHDhAnPmzMnqUp5p+/btXLhwgZw5c2Z1KUIIIYQQ7yUJ3YQQQrwXvvnmGwCGDBlCfHx8Flfz4VGpVHTu3Bn4/yi2Z0k7Xr9+fTw8PABQq9X4+/vj6+v7egt9Q2xtbfH39ydPnjxZXcoz+fr64u/vj1qtzupShBBCCCHeSxK6CSGEeC/UrVuXqlWrcv/+fcaMGZPh848fP06bNm3IkycPVlZWuLq6UqtWLTZs2GDQL22trt27dwNQvXp1/bpoadP5oqKiMDc3x8XFBZ1OZ3D+kiVL9H2fvnZSUhK2trZYW1uTkJBgcOzRo0f07duXwoULY2tri4ODAyVLluSPP/4w6vtkndWqVSM+Pp4BAwYQEBCAra1tutZNS0lJoXv37qhUKgIDA7l9+/YLz+nYsSPm5uacOHGC06dPm+yTmJjIwoULAcOppc9b0+3KlSt07tyZfPnyYWVlhb29Pd7e3tSrV88o4HvWGmtpnrfW2ooVK+jSpQtFihTBxcUFa2tr8uXLR+fOnbl06dILnz8993lyDcJnfXXs2FHfX6PRMG/ePNq0aYO/vz+Ojo7Y2NhQsGBBevbsyb179wyun/YeZ8+eDUCnTp0Mrv3ke3nemm7x8fGMGDGCEiVK4ODggK2tLYULF+aXX34xOX34ye+foihMmTKFkiVLYmdnh5OTEx9//DEHDx7M0DsUQgghhHjXWWR1AUIIIURm+f333ylXrhx//PEHX3zxBW5ubuk6b9y4cXz33XfodDqKFy9O2bJlefDgAbt27WLLli0MHjyYAQMGAODp6UmHDh3YtGkToaGh1KpVC09PT/218ufPj7OzMyVLluTo0aMcO3aMMmXK6I9v27bN4L/r1q2r/7x//34SEhKoXr06NjY2+vbr168TFBRESEgI7u7u1K1bF41Gw86dO/nxxx9ZvHgx27Ztw8XFxejZEhMTqVatGufPn6dKlSoUK1aMiIiI576P2NhYmjdvzsaNG6lZsybLli3D0dHxhe/Ry8uLunXrsnbtWqZPn864ceOM+qxYsYKoqChy5MhB7dq1X3jNs2fPUrFiRaKjoylYsCD169fH3NycO3fusGfPHu7evUunTp1eeJ30aN68OVZWVhQqVIigoCC0Wi1nz55l5syZLFmyhC1btlChQoVXukfTpk0JDw83eWz9+vWEh4djbm6ubwsNDaVdu3Y4OTkREBBA0aJFiYuL4+TJk4wfP55FixZx4MAB8ufPD4C9vT0dOnRg3759XLt2jYoVK+qPARQvXvyFNT569Ijg4GBOnjyJo6MjQUFBqNVqdu/ezfDhw1mwYAE7dux4ZnjbqVMnFixYQOXKlalfvz4nT55k69at7Nmzh927d1O2bNn0vzAhhBBCiHeYhG5CCCHeG2XLlqVx48asWLGC4cOHM3r06Bees3nzZnr16oWbmxvLly+nSpUq+mNnzpyhbt26DBw4kKpVq1K1alX8/f2ZNWsW1apVIzQ0lJ9++snkqKkaNWpw9OhRtm3bZhS65ciRg6SkJIMALu1Y2rlPat26NSEhITRs2JAFCxZgZ2cHwMOHD6lduzYnTpzgq6++MrmW2uHDhylatChXr141CAef5e7du/qgpFOnTvzzzz8Zmn742WefsXbtWubPn8/IkSOxtLQ0OJ42Mi1tVNyLjB49mujoaIYNG0a/fv0MjiUkJHD06NF01/Yi8+fPp379+vr3C6AoCpMmTaJHjx507dqVM2fOvNJur3/++afJ9qlTpzJ79mw8PDwMntPJyYnVq1dTu3Ztg3ep0WgYOHAgv/32G9988w3r168HIFu2bMyaNYuOHTty7do1unTpYjByLj2+/PJLTp48SdmyZVm/fr0+vH4yjG3Tpg379+83OjckJIRdu3Zx9uxZ/Pz8gNRRk127dmXGjBkMGDCAzZs3Z6geIYQQQoh3lUwvFUII8V759ddfsbCwYOLEiYSEhLyw/8CBA1EUhcmTJxsEbgCBgYH64G78+PEZqiMtONu6dau+7fr169y4cYOaNWsSFBTEmTNnCA0N1R83Fbrt27ePw4cPY2try5QpUwwCIXd3d6ZMmQLAokWLuHPnjsla/v7773QFbqdPn6ZcuXKcPHmSIUOGMGPGjAyv91WvXj08PT2JiIhgzZo1Bsdu3brFjh07ANI9Oi3t/Tw5IjCNjY2N0ffsVbRo0cLg/ULqWnVffvkl5cuX59y5c1y4cCHT7pdmw4YNdO/eHTs7O9atW4ePj4/+mIODAw0bNjQKL9VqNb/++is5cuRg06ZNxMTEZEott27dYunSpahUKqZMmWIwWtTe3p6pU6dibW3NgQMHOHDggMlrjB8/Xh+4AZibmzN8+HAAdu/ejUajyZRahRBCCCHedhK6CSGEeK8ULFiQzp07k5SURP/+/Z/bNzw8nCNHjmBjY0ODBg1M9kkbxfasgOFZKlasiI2NDQcPHtRv7JAWqtWsWVMfrKW1RUVFcfz4cZydnSlVqpT+Ort27QKgdu3aZM+e3eg+JUuWpFixYuh0Ov06c0/y8PCgcuXKL6x38+bNVKpUibCwMObOnfvCd/csFhYWdOjQAYAZM2YYHJs5cyY6nY6qVasaTHl8nrRRgt27d2fz5s0kJia+VF3pdfXqVf7++2++/fZbPvvsMzp27EjHjh314V9G13Z7kePHj9O8eXMgNTgtXbq0yX6nTp1i9OjRfP3113Tu3Flfl1arRafTcfXq1UypZ8+ePeh0Oj766COKFi1qdDxnzpzUqlULgJ07dxodt7CwMDlt2NPTExcXF5KSkl44vVkIIYQQ4n0h00uFEEK8dwYNGsS8efOYP38+P/zwg8nwAODGjRsoikJCQgJWVlbPvebDhw8zVIOVlRWVKlVi69at7N27l1q1arFt2zZUKhU1atQgLi4OSA3d2rRpw44dO9DpdFSvXh0zs///TOzu3bsA5MuX75n38vX15dSpU/q+T0rPpgmQupOoVqvVL9r/Kjp37szvv//Oli1buHv3Ljlz5kRRFGbNmgUYbqDwIr1792bfvn1s27aN2rVro1arKVasGFWqVKFly5bPDKkyKiUlha+++op//vkHRVGe2S86OjpT7gepmw/Ur1+fuLg4Jk+eTP369Y36xMXF0a5dO1auXPnca2VWXen99fZk3yd5eXk9c3Sko6MjkZGRrz04FUIIIYR4W8hINyGEEO8dLy8vvvnmG3Q6HT///PMz+6XtLJq2+Pzzvl4miHpyiqmiKOzYsYPAwECyZ8+Oj48P+fLl0490e9Z6bq/qyQ0ZnidtdFr//v25cePGK93Tz8+PypUrk5KSwpw5c4DUUVE3b97EycmJpk2bpvtatra2bN26lSNHjjBkyBCCg4O5fPkyo0ePpkyZMvTo0SNDtT29m2yacePGMXnyZLJnz86CBQu4efMmCQkJKIqCoii0atUK4LmBXEZERkZSp04dHjx4QN++fenWrZvJfj///DMrV67E39+fVatWcffuXZKSkvR1lS9fPlPrelVPBsZCCCGEEB86GekmhBDivfTjjz8yZcoUNmzYwJ49e0z2yZ07N5C6bteMGTMyPTB4cgrpv//+S0REhD7cSjs+depULl68+MzQLWfOnEDqenDPknYsre/LmDp1Kvb29owbN47KlSuzbds2/P39X/p6n332GXv37mXmzJn8/PPP+qmmLVu2THcQ+KTSpUvrR7VptVpWrVpF+/btmThxIk2bNqV69eoA+rXPnrXG2bPW+VuyZAkA//zzDw0bNjQ6fuXKlQzX/CxJSUl88sknXLx4kbZt2+rXO3teXYsXLzY5YjMz64I39+tNCCGEEOJDID+OFEII8V5ycnKib9++APTp08dknxw5clC0aFFiYmLYtGlThq6fFu5otdpn9vnoo49wc3Pj9OnTLFiwAEhdzy1NWsA2ffp0rly5Qu7cuQ0WoIf/rym3adMmg00X0vz777+cPHkSMzOzV9pUQKVSMXbsWH755Rfu3r1LlSpVOHny5Etfr1mzZjg6OnLlyhXWrVvHihUrgIxNLX0WCwsLmjZtql9b7Mk604KgZ214kLbL59MePXoEgLe3t9Gxc+fOvdK7eJKiKLRv3569e/cSFBRktO5dRuravHkz4eHhJs9Lz69PU6pUqYKZmRknT57k1KlTRsfv37+v/72SFnQKIYQQQgjTJHQTQgjx3urRowd58uTh8OHDHDx40GSfYcOGAam7aa5du9bouKIoHD58mC1bthi058qVC0gNZJ5FpVIRFBSEoihMmDABS0tLg2AsODgYlUrF33//DZieWlqpUiXKli1LQkIC3bp102/KAKkbQaRNS2zZsqV+5N6rGDp0KH/88QcPHz6kevXqz3xvL2Jra6ufktm5c2cSEhIIDAzM8BpsEydONLl5wYMHDzh27BhgGEgFBQVhZmbG5s2bDTaWUBSFv/76i+XLl5u8T0BAAAATJkwwmIJ6//592rdvn+Hw6ll69+7NkiVLCAwMZOXKlS/cHTatrqd3z7106RJffPHFM89Lz69PU/LkyUOzZs1QFIVu3boZbHoQFxdH165dSUxMpEKFClSoUCFD1xZCCCGE+NBI6CaEEOK9ZWVlxZAhQwAMwqonNWjQgHHjxvHo0SMaNmxIgQIFqF+/Pm3atOHjjz/G09OTcuXKsWPHDoPzmjRpAqSOomvQoAGfffYZXbp0MdrlNC1IS0xMpGLFitja2uqPubm5Ubx4cf3C8s9az23BggV4e3uzevVq8uXLR7Nmzfj000/x9fXl6NGjlChRQh/cZYbevXszadIkHj9+TM2aNY2ePb3SRrWlbULxMqPcpkyZgr+/Pz4+PjRs2JC2bdtSq1YtfHx8uHPnDkFBQQbTQXPnzs3XX3+NTqcjODiY6tWr06RJEwoUKMAPP/zATz/9ZPI+ffv2xdLSkqlTp1KwYEFatGhBnTp18PX1JSkpiUaNGr3EGzB0+/ZtRo0aBaTu5tmzZ0/9LqRPfk2bNk1/zsCBA1GpVPTv35+iRYvSqlUrgoODCQwMxMfH55nB16effoqZmRl//fUXNWvWpHPnznTp0oU1a9a8sM4JEyZQrFgxDh8+jK+vL40aNaJZs2bky5ePdevWkS9fPubPn//K70MIIYQQ4n0noZsQQoj3Wrt27QgMDHxun549e/Lvv//StWtXVCoV27dvZ9WqVVy7do2PPvqIv/76i549exqcU69ePaZOnUqRIkXYsWMHM2bMYPr06Vy+fNmg35NBmqlQLa1NpVIRHBxssj4fHx9OnDjBzz//jJubG+vWrWPr1q34+voyYsQI9u3bh4uLS7reR3p98cUXzJ07l6SkJOrVq8e6desyfI3SpUvr372lpSVt27bN8DWGDx9O9+7dcXZ25tChQyxdupTz589TtmxZZs+ezaZNm7CwMFyidsyYMYwaNQo/Pz8OHDjArl27KFSoEIcOHdJPSX1a2bJlOXbsGA0bNiQuLo41a9Zw7do1vv76aw4ePIijo2OGa39aSkqK/r+3bt3K7NmzTX7t27dP369x48bs3r2b4OBg7t+/z5o1awgLC2PQoEFs3LjxmSPlihYtyvLlyylfvjyHDx9m1qxZTJ8+nRMnTrywTjc3Nw4cOMBvv/1Gvnz52LJlC+vWrSNbtmz07duX48ePp3tXXCGEEEKID5lKeVu2uxJCCCGEEEIIId4RWq2WoYP707BWeQILF8zqcjJdzQbt2LP/KEmPLurbdu87zMcNO/BLnx70/+nr13Zvv2JBAFw+9XKj7cXLGzpiPMP+mMCWNbOpWqlsVpfzzvl11FTqf9qSUqVKATLSTQghhBBCCCGEeCfdvHUHK1f/535FPY7O6jLRarXMnr+chs27kse/EvbZA3H3LkWF4KYMHD6WkNt3s6y2tHfYpYfpJSjepLTvWfHy9Q1GyKd5EPoQK1d/ajZolwXVvR1Cw8L5ps8QKtVoTu6CFXHwDMSncFVqfdqRVWu3YGpcWZcePz3398jrZPHiLkIIIYQQQgghhHhb+eTLQ+tmDUwes7ayesPVGAq5fZembXpw+uxFsntkI7haBXLl9CQuLoGTp88zcuxUxvw9gxP715Lfx3i37g/RhUtXmbNgJZ3aNc3qUt46d+7eZ/6i1ZQpVYyG9Wrg6uLEw4ePWL95Jy069KRzu2ZMGjfU5LlfdWuPs5PDG61XQjchhBBCCCGEEOId5psvz2ud7vmyYmJiqd+0C5ev3OC7rz9jUN9vsLKyNOhz9XoIfX4ZQVyc6U2vPjQe7m7EJyQw7Pe/adWsAdbWWRuavm2KFvEn9MYRzM3NDdpjYmKpVLMFM+Yu5esv2lMooIDRuV93b0/ePLneVKmATC8VQgghhBBCCCHea7v3HcbK1Z+hI8YbHXud0yvH/D2Dy1du0Lp5Q34b3NsocAPI7+PNigWTCCjo+9xrpU0RvHnrjtGxoSPGY+Xqz+59hw3aV67ZTI36bcnlVwFHr6LkLVSZ2o06sXLNZgDmLFhBweKpm1rNXbjKYMrhk9dSFIVZ85ZTrXYrsuUpiXPO4pQPasKsecufW8ucBSsoW60xzjmLp3tKqLOzI99+2Yk79x7w9z9z0nUOQHhEJN///Ct+xYNx8Awkl18FWnf6lnPnL5vsf/vOfdp1+Q5Pn7K45i5Bjfpt2Xvg6HPvsffAURq1+oIc+cvh4BlIoVK1GDh8LPHxCUZ9X/TuX5ZarTYK3AAcHOz5OLgSAFdv3Hqle2QmGekmhBBCCCGEEEKITDd7/goA+vb+8oV9LS2NA7lX8c+MhfT8YTBenu40rFcDN1dnQkPDOXriDKvXb6NRw1oUCwzgq27t+fufORQt4k/Duv/fSd47T04gNXDr0PUHFi9fT35fb1o0rY+lpZrtOw/QrWc/Lly6yu9DfzS6/+jxM9i97zAN6gRRo3pFzM3TP+ap11edmTJzESPHTqVz+2a4ujg/t//D8EdUqdWS6zduUbVSGZo3rsvNkLusWLOZjVt3s27ZNCqWK6nvf/9BGFVrteTu/VBqBlXio2KFuHj5OnUbd37m5gn/zFjIN72H4OzkSL3a1XDP5saJk2cZMWoyu/ceZsua2frvYXrefZouPX5i7sJVTP37V9q3bpzud/S0xMQkdu09jEqlopB/fpN9NmzeRWxsHJaWlvj7+RJUtVym/7p7moRuQgghhBBCCCHEO+zajVsmR7F9HFyZsqWLv/mCSF3L7c69B+TK4UkB37xv/P4z5y7F0lLNkd2r8HB3MzgW8SgSgGKBAXzd3YG//5lDsUB/k1N0Z8xZyuLl6+nQujETxgxGrVYDkJycTMuO3zB2wkxaNKlHieJFDM7be+Ao+7YupkihjO9sa29vR9/eX/Jtn6H8Pvofk6Hek/oN+pPrN27Rp1dXhvb/Tt++cetuPm3Rjc+/6svZIxsxM0sN/voPHc3d+6EM7vctP33/hb7/tFmL6fHdQKPrX7h4le9+Gk5g4YJsWjUTN1cX/bGRY6fwy5DRTJgyj15fdQbS9+5fVdjDCP6ZvgCdTiEsPILNW/dw++59funT45lrA/b6cZjBZy9Pd6aM/5WPgytnSk2myPRSIYQQQgghhBDiHXb9xi2G/THB6OvwsVNZVlNoaDgAOXNkz7Ia1Go1arXxWKMnQ6MXmTRtPnZ2towbOUAfuEHqyLwhv3wLwOLl643O+6x9s5cK3NJ06dAcXx9vJk9fwO0795/ZLzk5mcUr1uPm6szP33c3OFanZlWCq1Xg2vUQDhw+oe+/dOVGPNzd+LZHJ4P+nds3I7+vcWA1ddZitFotY37/xejdfd+zC+7ZXFmywvAdpPfdD+3/HacObeCT+jWf+YymPHwYwbA/JvDrnxOZNmsxD8LC+W1wb3758SujvpXKl2bBjLFcPb2Tx/dOce7YZgb+3JOoxzE0afMlx/89k6F7Z4SMdBNCCCGEEEIIId5hNYMqsW7ZtKwu463SrFE9+g4aSYmKDWjRpD5VK5elYtmSODrap/sa8fEJnD1/mRyeHvw5bqrRcY1WC8ClK9eNjpUuUfTliyc1tBrc9xvadvmOwb+NY9qEESb7Xbpyg8TEJKpWKoutrY3R8WqVy7J91wFOnblApfKluHw1tX+1yuWMNmkwMzOjQpkSXL0WYtB+5L/wduuOfezcfdBErRZcunJD/zkj797L0wMvT48Xv5CnFC7kR9Kji6SkpHD77n2WLF/PwOFjOXT0JAtmjMHC4v9xV8e2TQzOze/jTd/eX5LDKzvdevZj+MiJrFgwKcM1pIeEbkIIIYQQQgghhMhU2bNnA+De/bAsuf93X3fGzdWZKTMXMnbCTMb8PQMLCwvqfFyVkcN/Jp/3i3exjIyKRlEU7t4PZdgfE57Zz9RGAh4ebiZ6ZkzTRnUYM2EG8xev4dsencjm5mrUJzomFoDs7qbv55ndHYCYmDgAHken9vfIZnyt1LqzGbU9inoMwIhRk9NVd2a8+/QyNzcnb55c9OnVDXNzC/oOGsn0OUvp1rnVC89t1+pTvukzhIP/jQJ8HWR6qRBCCCGEEEII8R5LW8tLm5JidCz6vxAms3nnzklOr+zcvnufK9duvvL1zFT/PYPW+Bkem3gGlUpFx7ZNOLB9GXevHGDJ3L/5tH5N1m7YTqOWX5Bi4l08zdHBDoASxQuT9OjiM7+2rDHeZVSlUmX0EU1eY/jAH9DpdPQbPPoZNaaOHgt9GGHyeGhY6jRfh/+exem/0WZh4Y9M9g/7r7/hPVLPDQ859tz38GTdr/ruX0bNoIoA7Nl3JF39zc3NcXZyJM5EaJpZJHQTQgghhBBCCCHeYy7OjgDcuxdqdOzk6fOv7b5p0/pGjHrx1L3k5OTnHndOe4b7xs9w6szzn8HN1YVP6tVg/owxVKtSjguXrnL1euoUSnMzcwBSUnRG5zk42OPv58vFy9eJehz9wmd4HapXKUfNoEps2rqbfQeOGR0vWCAf1tZWHP/3jMkRd7v/C6CKBQYAUMA3tf+Jk2dJTEwy6KvT6Th49F+ja5QuWQzgpdYIfN67z2xpoypNrSVnyq0793gQ+lC/U+3rIKGbEEIIIYQQQgjxHvPLnw8HezvWbdrBo8gofXtoWDi/pXPK4Mvo9VVn/ArkY96i1fQfOpqkJONg7UbIHZq27cGFS9eee61SHwUCMHfBSoP2Fas3sWf/UaP+u/cdRlEUgzaNRkNkZOpUybT1zFycHVGpVNy5a3qzgh7d2hEfn0D3b/oTFxdvsv6bt+48t/ZXNXzg96hUKvoPG2N0zNLSkhaN6xEeEckfY6YYHNu8bS9bd+zD18ebCmVLAGBlZUnTT2sT9jCCsRNmGvSfMWcpV67eNLrHF51bYWFhQa+fhnHrzj2j41GPow3C2/S+e4D7D8K4ePk6j6NjXvAWUp0+exGNRmPU/igyigH/vZ/aNavo2x+EPuSuibA56nE0n/f4GYCWTeqn694vQ9Z0E0IIIYQQQggh3mOWlpZ82bUtv4/+h3LVGlO/TjCxsXGs37yTyhVKc/3GrddyXwcHe9Ytm0bTNj34Y8wU5ixYSY3qFciZw5P4+EROnTnPgcP/YmFhzoghfZ57rQZ1g/HJl4c5C1dy+94DigcGcPHyNXbtPUztmlXZtHW3Qf9mbb/C0cGeMqWKkSd3DjQaLdt3HeDCpas0blgL79ypo5vs7e0o9VEgew8co9MXfcjv442ZmRmtWzTEO3dOPu/YgiPHTjJ34SoOHjlBUNUKeHl6EBYWzqUr1zly/DRzpvxJ3jyZt07Z04oFBtCyaX0WLl1r8vjwQT+w58BRfhs1iYNH/6VMyaKE3LrL8tWbsbW1Yerfv+qnGAMMG/A9O3cfYuDwsew/dJziRQO4ePk6m7bupkb1imzbud/g+oUL+fHXyAF8/cNgAsvUoXaNKvjky0NMbBw3bt5m74GjtGvViAmjBwPpf/cA/YeOZu7CVUz9+1fat278wnfx16RZbNi8i/JlS5A7lxc21tbcun2PjVt3ExcXT5NPatPiiRDt0pXr1G38GeXLFCe/T16yZXPhzt0HbNm+l4hHUVSrUo7ve3bJ0PcjIyR0E0IIIYQQQggh3nOD+n6DpVrNrHnLmTprEd55cvLzD92pVzuIlWu3vLb7eufOyYHtS1mwZA3LVm1i6479PIp8jLWVJfl9vfm+52d83rEluXN5Pfc6NjbWbFw5g979RrBz90GOHDtFmVLF2L5uLhs27zIK3YYO+I4t2/dy7MRp1m/eiZ2tDT558zB+1CA6PbWb5YzJv9O73wg2bN7F4+gYFEWhQrkSeOfOiUqlYtqEEdSuUZXpc5ayYfMuYuPi8cjmSn5fb0YM6UNQtQqZ/t6eNqjfNyxfvYnkZONRXu7ZXNm3dQm/jpzIuo3b2X/wOE6O9jSsG8wvfXpQuJCfQX8vTw92bV5I34F/snXHPvYdPEaJYoXZsGIGu/YcMgrdAD7r0JxigQGMmziTfQePsX7zLpwc7cmdy4ue3TvQtmUjfd+MvPuMat38E3Q6hSPHT7F772ESEpNwc3WmUvlStGv5Kc0a1zXo75M3D+1bNeLYv2dYs2Ebj6NjsbezJbCwHy2a1qdzu2aYm5u/Uk3Po1KeHvMnhBBCCCGEEEKI59JqtQwd3J+GtcoTWLhgVpcjhHgL/DpqKvU/bUmpUqUAWdNNCCGEEEIIIYQQQohMJ6GbEEIIIYQQQgghhBCZTEI3IYQQQgghhBBCCCEymYRuQgghhBBCCCGEEEJkMgndhBBCCCGEEEIIIYTIZBK6CSGEEEIIIYQQQgiRySR0E0IIIYQQQgghhIGaDdph5epv0LZ732GsXP0ZOmL8a723X7Eg/IoFvdZ7vO9Mff/Em2eR1QUIIYQQQgghhBAi427eukPB4jWe2yf0xhGcnRzfUEWmabVa5i9ezfLVmzl5+jyPIh9jY21Fgfx5qRlUic7tm+GdO2eW1Jb2Dtu1+pRpE0ZkSQ1p0hOSJT26+AYqeTv5FQsi5PY9k8eqVCzN1rVzjdovXLrGiFGT2LnnEJFRj/H0cKdB3WB++bEHri7ORv2f9z14mV8jEroJIYQQQgghhBDvMJ98eWjdrIHJY9ZWVm+4GkMht+/StE0PTp+9SHaPbARXq0CunJ7ExSVw8vR5Ro6dypi/Z3Bi/1ry+3hnaa1vAzdXZ7p3aZPVZby1nBwd+PqL9kbt3nmMQ9vDR09Sp3FnEhISaVA3GJ+8uTl15iITpsxly4697N60EDdXF+Nr5c5Bu1aNjNqLBgZkuF4J3YQQQgghhBBCiHeYb7489P/p66wuw0hMTCz1m3bh8pUbfPf1Zwzq+w1WVpYGfa5eD6HPLyOIi4vPoirfLm5uLm/l9/Jt4ezkkO730/3b/sTFxbNs/kQa1Pn/dOVRf02n76CRDBg2lgmjBxud550nZ6Z9D2RNNyGEEEIIIYQQ4j32vLXYbt66g5WrP116/JTp9x3z9wwuX7lB6+YN+W1wb6PADSC/jzcrFkwioKDvc6/VpcdPWLn6c/PWHaNjQ0eMx8rVn937Dhu0r1yzmRr125LLrwKOXkXJW6gytRt1YuWazQDMWbBCPz137sJVWLn667+evJaiKMyat5xqtVuRLU9JnHMWp3xQE2bNW/7cWuYsWEHZao1xzlmcmg3avfiFvYT9h45To35bXHJ9hJdvWdp07sXtO/ef2T88IpLu3/Ynl18FnHMWp0JwU1av28qcBSuwcvVnzoIVRuecOXeJtp99h3dAZeyzB1KgaBDf/jiUiEeRRn137T1Eg2afk7dQZRw8A8ldsCJBddswbdbiTH3uF7l24xbnLlyhVIlAg8ANoNdXnXBzdWbBkjWvPeyVkW5CCCGEEEIIIYTIdLPnpwY4fXt/+cK+lpbGgdyr+GfGQnr+MBgvT3ca1quBm6szoaHhHD1xhtXrt9GoYS2KBQbwVbf2/P3PHIoW8adh3WD9+WnTFRVFoUPXH1i8fD35fb1p0bQ+lpZqtu88QLee/bhw6Sq/D/3R6P6jx89g977DNKgTRI3qFTE3z/wxTzt2H6Rh866Ymalo1qgOXp4e7NxziOp1WuPsbLyOX2xsHDXqt+PCpauUL/MRlSqU4u69UNp2+Y6aQZVM3mPtxh206fwtZmZmNKgTRK6cXly4dJVJU+ezdcc+9m1dgouzEwAbtuyicavuODs50qBOEJ6e7oSHR3L63EUWLFlDl44t9NcdOmI8w/6YwC99emRoVFlSsoY5C1Zw/0EYDg72lPookDKlihn1Cw0NByBvnlxGx8zMzMidKwcnT5/n8LFTBFUtb3A86nEM02YtJuJRJC4uzlQo+xFFChVMd41PktBNCCGEEEIIIYR4h127ccvkKLaPgytTtnTxN18QqWu53bn3gFw5PCngm/eN33/m3KVYWqo5snsVHu5uBsfSRmgVCwzg6+4O/P3PHIoF+psMf2bMWcri5evp0LoxE8YMRq1WA5CcnEzLjt8wdsJMWjSpR4niRQzO23vgKPu2Ls5wWBMREfnM3WELFvCheZN6AOh0Or7sNQCtVsv29fOoWK4kkBoSduzWm0XL1hmd/+e4aVy4dJXPOjRn4pgh+vZ2rRpRp1En41oeRdL5iz5kc3Vh56YFBptdLFm+nnaff8/g3/5i7O/9AZg9bzmKorBlzWyKFvE3ulZmeBD6kM+/6mvQVqpEIHOmjsI3Xx59m5ubM4DJkZE6nY7bd1I3ZLhy7aZR6Hb67EV6fDfQoO3j4MpMnzjC6NfSi0joJoQQQgghhBBCvMOu37jFsD8mGLU7OTlmWeiWNtIoZ47sWXJ/ALVajVptHHuYWjz/WSZNm4+dnS3jRg7QB26QOjJvyC/fsn7TThYvX28Uun3WvtlLjY6KeBRl8nsJ0KBusD5023/oODdu3qZe7er6wA1ApVIxpH8vlq7cSEpKisH5C5auwdJSzcCfexq0B1UtT43qFdm2c79B+7xFq4mOiWXsH/2Ndpdt3qQeo/+eztIVG/ShWxpra+PNO55+590/b0uzxvXI5pb+70X71o2pWL4UhQMKYG9ny5VrNxk3cRbzF6+mzqcdOb5vDQ4O9gD45c9Hvry5OXbiDBu27KLux9X01/lr0mwiHkUB8PhxtME9vu3RiUYNPqZA/rxYqtWcu3CFX/+cxOZte2jU6gv2bF6Eubl5umuW0E0IIYQQQgghhHiH1QyqxLpl07K6jLdKs0b16DtoJCUqNqBFk/pUrVyWimVL4uhon+5rxMcncPb8ZXJ4evDnuKlGxzVaLQCXrlw3Ola6RNGXqtuvQD7OHN74wn6nz14EoGK5UkbHvHPnJFdOT0Ju3dW3RUfHEnLrLgEF85PdI5vRORXKljAK3Y4cO5X6v8dPcf3GLaNzEhOTCY+IJDwikmxuLjRvXI9V67ZS5eOWtGhaj6Aq5alYvpTJYC2bm0uGAjeAX378yuBzscAAZkz6HYD5i1czfc5Svu2ROmJPpVLx18gBNG79JU1af0nDusH45MvD6bMX2bZzP0UK+XH2/GXMzAyn/T49VbhcmY9YtWgytT7pwJ79R1m7YTufNvg43TVL6CaEEEIIIYQQQohMlT17arBz735Yltz/u6874+bqzJSZCxk7YSZj/p6BhYUFdT6uysjhP5PP23itr6dFRkWjKAp374c+c/QZpIZzT/PwyNg0xIyKjo5NvY+7q8nj2d2zGYZuMc/vb6reR5GPAZg8bcFza4mLjyebmwtNPq3NUssJ/DVxJlNnLmbytAWoVCqqVi7LH0N/pFhgwIsf7CV06dCC+YtXc/DwCX3oBqlTQnesn8evf05k197DbNy6m8IBBVgy92927jnI2fOXcc9m+n08yczMjM7tm7Nn/1EOHD4hoZsQQgghhBBCCCFSpY3m0T413RD+H95kNu/cOcnplZ3bd+9z5drNV17XzUz13zNojZ/hsYlnUKlUdGzbhI5tmxDxKJJ9B4+zZPl6lq3ayNVrIRzft/qF0wQdHewAKFG8MAd3GO9U+jwqlSpD/TMqbcRe2MNHJo+HPgw37O/w/P5hYRHG9/jv+U/sW0PhQn7pqqth3WAa1g0mJiaWA4f/ZdW6Lcyat5wGzT7n9OENODsZb/DwqtLWb4szEX6WKVWMVYv+MWr/e/JsAEp+VMTomMl7uD77Hs+T+dtnCCGEEEIIIYQQ4q3h8t9OlvfuhRodO3n6/Gu7b8e2TQAYMWrSC/smJyc/93jabpz37hs/w6kzz38GN1cXPqlXg/kzxlCtSjkuXLrK1eshAJibpQZvKSk6o/McHOzx9/Pl4uXrRD219ldWS9uoYP+hY0bHQm7f5c7dBwZtjo72eOfJybUbIYQ9NA7YDh7516it9H+7gh46ejLD9Tk42FOrRmUmjR1K+1aNCA0L109XzWxHj58G/r/j7IuE3L7L/kMnCCiYP93r7qXdI28675FGQjchhBBCCCGEEOI95pc/Hw72dqzbtINHkVH69tCwcH4bNfm13bfXV53xK5CPeYtW03/oaJKSjIO1GyF3aNq2BxcuXXvutUp9FAjA3AUrDdpXrN7Env1Hjfrv3ncYRVEM2jQaDZH/TZlMW+zfxdkRlUrFnbv3Td63R7d2xMcn0P2b/sTFxZus39QOma9bxXIlyeudiw2bd7H/0HF9u6IoDBg6xmgTBYBWzRqQnKxhyFO7o+7ed5itO/YZ9e/QujEO9nYMHD6W8xeuGB2Pj0/g8BOB3N4DR03eNyw8NeR7coOF8IhILl6+TnhE+nY1vXj5uslpvBcvX6ff4FEAtGxa3+BYbGyc0a+Bx9ExdP7iR1JSUhg64DuDY2fPX0Kj0Rjd4+DhE/z51zTUajWNP6mdrnrTyPRSIYQQQgghhBDiPWZpacmXXdvy++h/KFetMfXrBBMbG8f6zTupXKG0yUXyM4ODgz3rlk2jaZse/DFmCnMWrKRG9QrkzOFJfHwip86c58Dhf7GwMGfEkD7PvVaD/xbCn7NwJbfvPaB4YAAXL19j197D1K5ZlU1bdxv0b9b2Kxwd7ClTqhh5cudAo9GyfdcBLly6SuOGtfS7cdrb21Hqo0D2HjhGpy/6kN/HGzMzM1q3aIh37px83rEFR46dZO7CVRw8coKgqhXw8vQgLCycS1euc+T4aeZM+ZO8eV68Rlx6REREMvSpUOxJn3dqiWd2d8zMzJg4ZgiftOhGnUadaNaoDl6eHuzac5gHoQ8JLFyQM+cuGZz7Q88urFyzhakzF3H+whUqli/J3XuhLFu1kXq1q7N+006DjQXcs7kyZ9ooWnf6llJVPuXj4EoULOBDUnIyIbfusnf/UcqV+Ui/icd3Pw3n/oMwKpQriXfuHKhUKg4cOsHRE6cpW6qYwS6rk6bOY9gfE/ilTw/6//T1C9/L0hXrGTdxFpUqlCJP7pzY2dpw5dpNNm3dg0ajoU+vrlSuUNrgnDUbtjNg6BiqVSmLl6cHDx8+Yt2mHTwMf8Sgvt/QoE6QQf+xE2aycctuKpQrSa6cnqgtLDh/8Srbdu5HpVIxbuQAfPPleWGtT5LQTQghhBBCCCGEeM8N6vsNlmo1s+YtZ+qsRXjnycnPP3SnXu0gVq7d8tru6507Jwe2L2XBkjUsW7WJrTv28yjyMdZWluT39eb7np/xeceW5M7l9dzr2NhYs3HlDHr3G8HO3Qc5cuwUZUoVY/u6uWzYvMsodBs64Du2bN/LsROnWb95J3a2NvjkzcP4UYPo9N+01zQzJv9O734j2LB5F4+jY1AUhQrlSuCdOycqlYppE0ZQu0ZVps9ZyobNu4iNi8cjmyv5fb0ZMaQPQdUqZNr7ingU9dxNGxrWq4FndncAgqtVYNOqmQwaPpblqzdjY21F9SrlWTBrLJ91/9HoXAcHe7avn0f/IaNZu3E7x0+epZB/fuZOHcX1m7dZv2knDg6Gu7vW/bgah3etYMz4GezYfYDtuw5gZ2tLzhzZad+6Ma2bN9T37fNtV1at28qJU+fYumMfagsLvPPkZPigH/iic6sXrqH3PFUrl+Xi5eucPHOe/QePE5+QSDY3F2rXrEK3zq2oGVTJ6JwihfwILFKQbTv3Ex4RhZNjagj7zZcdqVa5nFH/BnWCiXocw+mzF9m+6wDJyRo8PbLRvHFdvv6iA6VLZnxHWpXy9Fg7IYQQQgghhBBCPJdWq2Xo4P40rFWewMLpWxdKiLdVx269Wbh0LScPriegoG9Wl/PO+nXUVOp/2pJSpUoBsqabEEIIIYQQQgghxAfh/oMwo7Y9+4+wZMUG/Arkk8Atk8n0UiGEEEIIIYQQQogPwCctumFjbUXRwADsbG24cOkaW7bvxdzcnDEjfsnq8t47EroJIYQQQgghhBBCfADatvyURcvWsnTFBmJi43B2cqBe7er0+bYrZUoVy+ry3jsSugkhhBBCCCGEEEJ8AHp270DP7h2yuowPhqzpJoQQQgghhBBCCCFEJpPQTQghhBBCCCGEEEKITCahmxBCCCGEEEII8R7bve8wVq7+DB0x3qC9ZoN2WLn6Z1FVmc+vWBB+xYKyuowMed++B8KQhG5CCCGEEEIIIcQ76OatO1i5+j/3K+pxdIauOWfBCqxc/ZmzYMVrqvrtkBZEWrn682WvASb7LFm+3mRY+SE5cuwUn335Ix9VaICnT1kcvYoSUPJj2nTuxfF/zxj1T0xMone/3wiu15a8hSrj6FWUPP6VqFa7FbPnL0ej0WTBU2Qd2UhBCCGEEEIIIYR4h/nky0PrZg1MHrO2sqJ0iaKcOrSBbG4ub7iyd8Ps+Sv45suOFCzgk9WlvHX2HTzG9l0HKFOqONWqlMXWxoYbN2+zbtMOlq/exPSJI2jT4hN9/9i4eKbMXETpEoHUqVmNbNlciIyKZsu2PXT9uh9LVmxg7dKpmJl9GGPAJHQTQgghhBBCCCHeYb758tD/p6+f28ffTwIlU3zy5eH6jVsMGDqGxXM+3BFtz/Ll52357uvPjNrPnb9MhRrN+GnAH7Ru3hCVSgWAq4sTD28exdLS0qC/VqulbuPObNu5n03b9lD342pvovws92FEi0IIIYQQQgghxAfqWWu6Pa1Lj5/4/Ku+AHz+VV+DaapPiomJZchvf1G8fH2cchTDI29p6jX5jP2HjhtdM23NssTEJAYOH4t/iZrYeRQxqOVGyB2+6PkL+QOr4+AZiHdAZbr0+ImQ23dN1rlmw3YqBDfFKUcxchesSPdv+hMZ9TijrwWAoKrlqVKxNKvWbeXIsVPpPu/c+cu07vQtufwq4OAZiF/xYL7/+VciHkWa7L//0HFq1G+LS66P8PItS5vOvbh95/4zr68oCrPmLada7VZky1MS55zFKR/UhFnzlhv1TUxMYszfMyhV+RPcvUvhkusj/IoF0brTt5w+ezHdz2SKtbWVyfbChfzw9/Ml7GEE0TGx+nYzMzOjwA3AwsKChvVqAHDt+q1XquldIiPdhBBCCCGEEEIIQYO6NYh6HMPaDdtpUDeYYkWMF/h/FBlFcL12nL94hQplS1CjektiYmJZu3E7HzfswIKZY/nkv3DlSS069OTM2Yt8HFwZJycH8nrnAlLXDKvftAtx8QnUrVWN/D7ehNy6y8Kl69i8bS+7Ny/CJ29u/XXmLVrFZ1/+hKODPa2bN8TZyZENm3dRp1EnkjUaLNXqDD/38IE/UPnjFvQdNJJt6+a9sP/+Q8ep37QLyckaGjf8GO88OTl89CR//zOHDVt2sXfLYoOpvDt2H6Rh866Ymalo1qgOXp4e7NxziOp1WuPs7Gh0fUVR6ND1BxYvX09+X29aNK2PpaWa7TsP0K1nPy5cusrvQ3/U9//sy59YtmojgYUL0r51Y6ysLLlz9z679x3h2IkzFH3i++hXLIiQ2/e4dHIbefPkyvC7SnPtxi0uX71B7pxeODk6vLC/Tqdjy/Z9ABQOKPDS933XSOgmhBAiXRRFISQkhLNnzxIZGYmFhQXe3t4EBgbi4PDiv2iFEEIIIcTrce3GLZOj2D4OrkzZ0sXTfZ1P6tXg8eNo1m7YTsO6wbRv3dioT68fh3H+4hUmjR1K5/bN9O1DH35HhaCm9Og1gFrBlY1GSN1/EMaxfatxdXHWt2k0Gtp2+Q6dTsf+bUsoXrSQ/tj+Q8ep2aA93/88nJULJwMQHR1Lrx+HYWdny/7tS/HLnw+AIb98S51Gnbj/4CHeuXOk+3nTlClVjMYNa7FizWbWb95JvVrVn9lXp9PRpcfPxMcnsHbpVD4Orqw/9vPAkYweP51+g/7kn/HD9f2/7DUArVbL9vXzqFiuJJD6b+uO3XqzaNk6o3vMmLOUxcvX06F1YyaMGYz6vyAxOTmZlh2/YeyEmbRoUo8SxYvwODqG5as3UaJ4YfZtXYK5ubn+OikpKcTExmX4fZhy9PhpNm3djUar5dbte6zbuAOA8aMHmeyfnJzM76P/QVEUIiKj2Ln7EJeuXKdD68YEVS2fKTW9CyR0E0II8VxhYWHMnTuX+fPn8+DBfVA0gC71oMoClUpNpUqV6NixI7Vq1fpgFkUVQgghhHhbXL9xi2F/TDBqd3JyzFDo9iLhEZEsXbmRalXKGQRuAB7ubvT6ujPf/TSc7bsPGAVX/X/62iBwA9iweRcht+4y8OeeBoEbQMVyJWlQJ4g1G7YTHR2Lo6M9azZsIzomli+7ttUHbgBqtZrBv/QiqG6bl362If17sWbDdvoPGU2dmlWf+W/aA4dPcP3GLWrVqGIQuAH06/0ls+YtY9HydYwfNRBLS0v2HzrOjZu3qVe7uj5wA1CpVAzp34ulKzeSkpJicJ1J0+ZjZ2fLuJED9IEbgKWlJUN++Zb1m3ayePl6ShQvggoViqJgbWVlVLO5uTnOToYj6TaumoVGoyWnV/YMvZ+jJ04b/BrL7pGN6RNHUDOoksn+yckag/4qlYpeX3Vm2IDvMnTfd52EbkIIIUxSFIUlS5YwcOBAoh+HgS4eS7WWQvktyO5mhkarcPlmCnce6Ni7ez179+6kfPnKjB49Gm9v76wuXwghhBDig1EzqBLrlk177fc5duIMKSkpJCclmxxZd/V6CACXLl83Ct1Klwg06n/4vzXULl+9YfJ6oWHh6HQ6rly7QcmPAvXrk1UqV8qob7nSxbGwePmIo4BvXjq1a8rUmYuYt2iVyVF+ACdPnwegSqUyRsfs7e0oUbwI23bu5/LVGxQpVFBfc0UTNXvnzkmunJ6E3Pr/2nXx8QmcPX+ZHJ4e/DluqtE5Gq0WgEtXrgPg6GhP7ZpV2bR1N2WrNabJJ7WoUrEMpUoEGgR2aXzz5XnRqzDpy8/b8uXnbUlISOTq9RDGTZxJw+ZdGT7we5MbLdjb25H06CI6nY5798NYv3knA4aO4fDRk6xePAVHR/uXquNdI6GbEEIIIzqdjp9++ol582ZDymMC/RS+bGNHnSpWWFqqDPrevp/C3FUJTF8aycH926hVqxZz586ldOnSWVS9EEIIIYR4HdI2Kzhw+AQHDp94Zr/4+ASjtuwe2YyvF5l6vYVL1z73vnH/XS86OnXBfnd3V6M+5ubmuLk6P/c6L/JLnx4sWLKGIb+Np3njeib7xMSkTtfM7u5m8riXp/t/tcYZ1OxhoubU62QzCN0io6JRFIW790NNjl5M8+Q7XjhzLL+P+YdFy9YxYNhYABwd7GnfujFD+/fC1tbmmdfJKBsbawILF2TahBE8DI+k3+BR1AquTOFCfib7m5mZkSunJ906tyKbqwutO3/LiNGT+XXQD5lW09tMQjchhBBGBg8ezLy5szAjkp++sOWLVrZYWKhM9s3tZU7f7va0aWjNV4OjOX7+Fm3atGH16tUEBAS84cqFEEIIIcTr4uBgB8C3PToZLOSfHiqV8b8l0663YuGk566jliZtdNTDh4+MjqWkpBDxKIqcXh4ZqutJntnd+aZ7R379cyITpswjd07PZ9Yc+jDC5DUehIb/V6udQc1hJmpOvU64wWfH/65fonhhDu4w3qnUFFtbGwb3+5bB/b7lRsgddu89zNRZi/j7nzkkJCYyccyQdF0no2pUr8imrbvZd+j4M0M3g/5BFQHYs+/Ia6nnbSQL7wghhDCwe/dupk79B23yIwrnN2PaknisizygSN2Hzz3v3/Na1u1MIi4ukdjo+/Ts2RONRvOGqhZCCCGEEJkhbSH+lBSd0bFSHwWiUqk4fPRkptyrTMliAOm+XtounPsOHTM6dujoSbT/Tb18Fd993Rn3bK6MHDuFqOgYo+Npa8+ZCo7i4uI5cfIsNjbW+jXn0mreb6LmkNt3uXP3gUGbg4M9/n6+XLx8najH0RmuP593Ljq2bcK2tXOxt7dl/aadGb5Get1/EAaAOp3Teu/d/6+/+sMZ/yWhmxBCCL2UlBR+/PFH0MVQtYya81e15Pe2oFD+5//FmJCo0OvXaLJnMyOHhxkuDomcO3uSmTNnvqHKhRBCCCFEZnBxcQLgzt37Rsc8s7vT9NM6HDzyL6P+mo6iKEZ9jhw7ZXJ6qSkN6gaTJ1cOxk2cxd4DR42OazQa9h86btDf0cGe2fNXcPnqDYN+g4aPTdc9X8TBwZ6fvv+CyKjHjPl7htHxCmVL4JMvD5u37WH7rgMGx34bNYmIR1G0aFwPS0tLIHVDiLzeudiweZfBsyiKwoChY4w2UQDo0a0d8fEJdP+mP3Fx8UbHb4Tc4eatOwA8DH/EufOXjfpERj0mKUmDlZWlQfu1G7e4ePl6un84fvzfMybbT525wNSZi1Cr1QRV+/9upBcuXjX5/Y+PT6DPLyMAqF2zSrru/T74cOJFIYQQL7R9+3Zu3bqOi0MyM0e4YW+X+rOZjn2iOHb22X8x/zY5ljxe5uTLZc6xsxp+7GrHj3/GMnPmTLp06SI7mgohhBBCvCPKlS6OjY014yfPITIqGvdsqWuR/fxDdwD++nMAl6/eoO+gkSxYspqypYvj7OTInbv3OX7yLFevhRByYW+61hGzsrJk4axxNGz+OTXqt6NalXIUCfBDpVJx68499h88hqurM2cObwTAydGB0SP60aXHz1QMbkazxnVxcnRgw+Zd2NhY6ddTe1VdO7Vk/OQ5XL9xy+iYmZkZ0yb8Rv2mXfikRTeafFKLPLlzcPjoSXbvO4JPvjwMG/i9Qf+JY4bwSYtu1GnUiWaN6uDl6cGuPYd5EPqQwMIFOXPuksE9Pu/YgiPHTjJ34SoOHjlBUNUKeHl6EBYWzqUr1zly/DRzpvxJ3jy5uHc/lDJVG1G0iD+BhQuSw8uDiEdRrNu4A41GQ6+vOhtcu86nHQm5fY9LJ7eRN0+uF76LVh2/wdzCghLFCpM7lxfJyRouX73B9l0HUBSFUb/1NbjOslUbGTdxFhXKlcQ7T04cHey5dz+Uzdv2EPEoikrlS9Gze8cMfkfeXRK6CSGE0Fu2bBnoEmhV31ofuL3ItRAto2bEcWCxG2Nmpi4Y26SWDcMnxRIScp0TJ05QqpTxbk1CCCGEEOLt4+rizMJZ4xj2+9/MmLuUhIRE4P+hm6uLM7s3LWTi1PksW7WBRcvWodPpyO6RjaJF/On7w5dkc3NJ9/1KlQjk6J7VjB4/nU3bdnPw8AmsLC3J4ZWdhnVr0LyJ4YYG7Vo1wtHRgRGjJjFv0SqcHB2oXzuIXwf/QNmqjTLlHVhaWjLkl29p/7npxf4rlivJ3i2LGP7HRLbt3M/j6FhyeLrzVbf2/PxDd6PnD65WgU2rZjJo+FiWr96MjbUV1auUZ8GssXzW3XhtPJVKxbQJI6hdoyrT5yxlw+ZdxMbF45HNlfy+3owY0oegahUA8M6Tk/4/fsWuvYfYsfsAEY+iyObmQvGihfiqW3tq1aj8Su+iT69ubNiyiyPHTrF+8050Oh2e2d1p2bQ+3bu0oUypYgb969aqxr0HYRw6cpLDR08SGxePk6M9gYUL0qxRXTq2bfJKu8y+a1SKqfGgQgghPkhlypThTsgplo13oEKJ/w9FTxvpdnaD8U8P63/+iNxe5kwa4mTQr2OfKLYctGbwkN/5/PPP3+RjCCGEEEK8dlqtlqGD+9OwVnkCCxfM6nKEEG+BX0dNpf6nLfWDDmS+jxBCCADi4+O5c+cOoKVwgfT99Gnt9kQO/JvM0G8djI4V8bMARcOlS5dMnCmEEEIIIYQQ77cPZ0yfEEKI50pKStL/t72t8ZbuAAkJiSQkxGNhYYE2xZxvhscyuKcD2VyNf4aTeg3F4LpCCCGEEEII8aGQ0E0IIQQANjZpi92qeByj4OpsHLxpNBqSk1O/xs9TQIFW9W2Iik7dUj5Zo6DTQVS0jvAoHaDC1tb2zT2EEEIIIYQQQrwlJHQTQggBgLW1NXnz5uXmtUecvayhShkroz5arVb/31dDFG7cAfeyoUb9XEqGUrqoBagc8Pf3f611CyGEEEIIIcTbSNZ0E0IIoVeiRAlQWbJ5n+kpoU+Gbl+1VbFhqh0757nqv2pVtiJvLnPWTXEhNFwHKsvUawohhBBCCCHEB0ZGugkhhNBr3rw5K1YsZdmmCHq0sePAiWQAQu6lEB2rY8321A2vyxWHAt4qXFyssbL6/y6ns5YncOeBitv3U9CkWFEwIICiRYtmxaMIIYQQQgghRJaSkW5CCCH0KlWqRMGChYiJt6bvqGia9YyiWc8odh1O5vZ9HZ8PUPh8gMLlm6n9LSyMf3aj0SqMmhEPKnu6dOmCSmV6UwYhhBBCCPFm7N53GCtXf4aOGG/QXrNBO6xc35+lQPyKBeFXLChL7m3l6k/NBu2y5N7i7SWhmxBCCD0zMzP+/PNPzCyc2LI/hanDnVCueKFc8SL2pBP395pxf68ZFT5SYWamwszM8K+Rcf0d8c5hTlyiLWXKVqBVq1ZZ9CRCCCGEEO+/m7fuYOXq/9yvqMfRGbrmnAUrsHL1Z86CFa+p6rdDWhD5vC8J0Qw1bN4VK1d/HL1Mz2QZ/Otf1G7UCd8i1XDKUYwc+ctRPqgJ4ybOIj4+4Q1X+3aQ6aVCCCEMlCxZkt69+/D7778yYNwjbt1L4ecv7A3Wc4PUUW5PDmI7fVHD10OiuXJLTTYPb8aNG2cUygkhhBBCiMznky8PrZs1MHnM2sqK0iWKcurQBrK5ubzhyt5+JYoXpu7H1Uwe886T880W8xabPnsJW3fsw9raCkVRTPaZNG0++X28qVG9Iu7ursTExrFn31H6/DKCeYtWsXvTQmxtbd5w5VlLQjchhBBGevbsSXJyMmPGjGLasmi27IugRR2FmhUUsrmkJm0WFhZotQqnLmqZtzqBZZuSSMGe7F55WbBgAd7e3ln8FEIIIYQQHwbffHno/9PXz+3j7+fzhqp5t5QoXuSF7+5Dd/PWHX7s/zvffNmRFas38SAs3HS/83uwtrYyau/0RR8WLFnD7AUr6N6lzesu960iQxCEEEIYUalU9O7dm7lz5+OZw59boY4MnZhCcCeFjz/T0a6PjkY9kvCr+ZAG3R6zeKMZKSo3Gn7Sgm3bthEQEJDVjyCEEEIIIf7zrDXdntalx098/lVfAD7/qq/BVMsnxcTEMuS3vyhevj5OOYrhkbc09Zp8xv5Dx42umbZuXGJiEgOHj8W/RE3sPIoY1HIj5A5f9PyF/IHVcfAMxDugMl16/ETI7bsm61yzYTsVgpvilKMYuQtWpPs3/YmMepzR1/JSZsxZykcVGuDoVRTfItX4eeBIEhOTntn/zLlLNGzeFbc8JXD3LkXD5l05d/4yXXr8hJWrPzdv3TE6Z82G7dT6tCPZ85XB0asoH1VowOjx00lJSTHop9PpmDFnKRVrNMPTpyxOOYrhU7gqjVp9we59hzPleRVFodvX/fD0dGfgzz2f29dU4AbQ+JPaAFy7fitTanqXyEg3IYQQzxQcHMzevXuZNm0affr0QRurJSoaLt9UcHS0w0JtjZ2jA7Vq1aJTp06ULFkyq0sWQgghhBAvqUHdGkQ9jmHthu00qBtMsSLGmyw8iowiuF47zl+8QoWyJahRvSUxMbGs3bidjxt2YMHMsXxSr4bReS069OTM2Yt8HFwZJycH8nrnAuDIsVPUb9qFuPgE6taqRn4fb0Ju3WXh0nVs3raX3ZsX4ZM3t/468xat4rMvf8LRwZ7WzRvi7OTIhs27qNOoE8kaDZZq9Wt7P7+OnMjg3/4iu0c2OrdvhtrCgmUrN3Lx8jWT/U+fvUhQ3TbExSfwaf2a5Pf15vi/Z6letw1FixQ0ec4vQ0YxcuxUcnpl59P6NXF0tGf/oeP8PHAkR4+fZuGscU/0Hc2ov6bhky8PLZrWw8Hejnv3w9h/6Dg7dh+kaqWy+r41G7Rjz/6jbFkz26D9RSZMmcue/UfZvm4eNjbW6T7vSRu37AKgcECBlzr/XSahmxBCiOeys7MjMDAQNzc3dDodWq0WRVGYNHkKxYoVw8fHR9ZuE0IIIYTIQtdu3DI5iu3j4MqULV083df5pF4NHj+OZu2G7TSsG0z71o2N+vT6cRjnL15h0tihdG7fTN8+9OF3VAhqSo9eA6gVXNlo1NP9B2Ec27caVxdnfZtGo6Ftl+/Q6XTs37aE4kUL6Y/tP3Scmg3a8/3Pw1m5cDIA0dGx9PpxGHZ2tuzfvhS//PkAGPLLt9Rp1In7Dx7inTtHup8X4MTJs88cAfjk+7t6PYThIyeS0ys7h3atwMPdDYD+P35NxZrNTJ7/bZ+hxMTGMXvKSFo2/f+ae4N//Ytf/5xo1H/bzv2MHDuVmkGVWDz7L+zsbIHU0WZf/zCYqTMXsXLNZho1rAXAzLlLyeHlwfG9q43WSnsUGZWh92DKlWs36T90DD26tqNCuRLpPu/Pv6aREJ9A1OMYDh45wfF/z1KjekXatvzklWt610joJoQQ4oUuXrwIpO5uamlpiZubG02aNMniqoQQQgghBMD1G7cY9scEo3YnJ8cMhW4vEh4RydKVG6lWpZxB4Abg4e5Gr687891Pw9m++wD1alU3ON7/p68NAjeADZt3EXLrLgN/7mkQuAFULFeSBnWCWLNhO9HRsTg62rNmwzaiY2L5smtbfeAGoFarGfxLL4LqZny9sBMnz3Hi5DmTx558f4uXrUOr1dLzy476wA3A0dGen7/vTqcv+hicG3L7LvsPHadoEX+DwA3gh2+6MGnafKMpsZOmzQdg4tgh+sANUpd+GT7we6bNWszi5ev1oVvas5ubmxvV/vS7nj7pd+LjE8mTy+sZb8KQTqejy5c/4ZndnSG/fJuuc9KM/msaEY+i9J9bN2/I+D8Hon6NoxDfVhK6CSGEeKHLly8bfC5Y0PRweCGEEEII8ebVDKrEumXTXvt9jp04Q0pKCslJySZHh129HgLApcvXjUK30iUCjfofPnYKgMtXb5i8XmhYODqdjivXblDyo0BOn039QXClcqWM+pYrXRwLi4xHHF06tmDC6MEv7Ke/d3nje1csb7zEyumzlwAoX9Z4hJidnS3FAv3Ztddw3bUjx05hZ2fL7HnLTdZgY2PNpSs39J+bNa7HP9MX8FHFBjRvVJeqlctSrnRxk9NA8+TK2AjA0eOnc/jYKbasmZ3hHUfvXT0EwIPQh+zae4h+g0ZRqWYL1i2bRq6cnhm61rtOQjchhBAvlDbSLY2EbkIIIYQQH560kVkHDp/gwOETz+wXH59g1JbdI5vx9SJTr7dw6drn3jfuv+tFR8cC4O7uatTH3NwcN1fn517nVTyOefa9s7sbP1vMf/09shn3BwxGy6V5FPkYrVZrctRimrj4eP1/j/6tL3nz5GTOgpX8NmoSv42ahLW1FU0/rc3vQ38im5vL8x/qGS5fvcGQEePp9lkrqlQs81LXAPDM7k7Lpg3I75OXijWa8WP/35k/Y8xLX+9dJKGbEEKI59LpdEYj3fz9jRfVFUIIIYQQ7zcHBzsAvu3Rid+H/pihc1Uq1TOvt2LhJKORcaY4OtoD8PDhI6NjKSkpRDyKIqeXR4bqSi8nh//f2zt3ToNjoQ/Djfo7/Nc/LNy4VoCwhxFGbY4OdqhUKv1IsRexsLDgu68/47uvP+Pe/VD2HjjK7PkrmLdoNQ9Cw1m/fHq6rvO0C5eukZSUzORpC5g8bYHJPmk72obeOIKzk+Nzr1eqRCAuzk7s2X/kpep5l0noJoQQ4rlu3bpFYmKiQZuMdBNCCCGEeD+lrQ+WkqIzOlbqo0BUKhWHj57MlHuVKVkMgMNHT6YrdCv6326q+w4do8mntQ2OHTp6Eq1Wmyl1Peveq9ZtZd/BY5R6aqrs/oPHTfRP/ffyoSP/Gh2Lj0/QT1d9UumSxdi8bQ9Xrt2kgG/eDNWXwys7LZrUp1mjuhQpU4cduw+SkJD4UjuO5s2Tk05tm5o8tnTVBhISkmjfqhEAVpaWL7xebGwcj6Nj8MrunuFa3nWy3ZwQQojnunTpklGbhG5CCCGEEO8nFxcnAO7cvW90zDO7O00/rcPBI/8y6q/pKIpi1OfIsVMmp5ea0qBuMHly5WDcxFnsPXDU6LhGo2H/oeMG/R0d7Jk9fwWXr94w6Ddo+Nh03fNltWhaH3Nzc/6aOMtglFp0dCy/jZpk1N87d04qlC3BqTMXWLpig8Gx0eOn8yjysdE5Pbq2A6Db1/2IeBRpdPxB6EMuXLoGQFJSMgdNTPGNi4snLi4etdoCM7P/Rz637tzj4uXr6freFAsMYPJfw0x+ubk4Y2Fhrv+cFupdv3nb5I6pGo2GH/r+hk6no1bNKi+89/tGRroJIYR4rqdDN09PT5ycnLKoGiGEEEII8TqlLcQ/fvIcIqOicf9vTbKff+gOwF9/DuDy1Rv0HTSSBUtWU7Z0cZydHLlz9z7HT57l6rUQQi7sTdfi+1ZWliycNY6GzT+nRv12VKtSjiIBfqhUKm7ducf+g8dwdXXmzOGNADg5OjB6RD+69PiZisHNaNa4Lk6ODmzYvAsbGyu8PDM+kurEybMmN3EAsLa2ove3XQHI7+NNv95fMmTEeEpV/oQmn9bGwtycVWu3UqSwH5ef2OAgzZjffyG4fls6dOvNyrVb8PXJw7+nznPk2CkqVyjF3gPHDIKxWjUq0/eHL/n1z4kUKlmLj4MrkSd3Th49iuLajRD2HTzO4H7fEFDQl4TERKrVaU2B/HkpUawwuXPlIDYujo2bd/Eg9CG9vuqMldX/R6F91v1H9uw/ypY1s6laqWyG39OL7DtwlK++H0SFciXJ550LN1dnQkPD2bH7IHfuPcDfz5chv/TK9Pu+7SR0E0II8VyyiYIQQgghxIfD1cWZhbPGMez3v5kxdykJCanLjKSFbq4uzuzetJCJU+ezbNUGFi1bh06nI7tHNooW8afvD19maAH/UiUCObpnNaPHT2fTtt0cPHwCK0tLcnhlp2HdGjRvUs+gf7tWjXB0dGDEqEnMW7QKJ0cH6tcO4tfBP1C2aqMMP++Jk+c4cfKcyWNOjg760A2gX58eeHl68Nek2UybtRiPbG40a1yXgT/3xDlncaPzixctxI718+k3eBSbt+9BtV1FhXIl2blhPr8MHQ2A439rv6UZ2LcnlSqUYsKUuezcc4ioxzG4uTqTN09O+v/4FS2bNgDAztaG4YN+YOfug+w/eJyw8C24ODvhlz8vQwd8R/PG9YzqeZ3Kly3BZx2as//gcU6fuUDU4xgc7O3w9/Phy67t6N6ldYZ3QX0fqBRT40GFEEKI/wQHB3PhwgX9527dujFw4MAsrEgIIYQQIutptVqGDu5Pw1rlCSwsP5QU6ZeSkkJAiZokJCZx+9L+rC5HZKJfR02l/qctKVWqFCBrugkhhHgOjUbD1atXDdpkpJsQQgghhBAvptVqCY8wXptt5NiphNy+R4O6wVlQlXiTZHqpEEKIZ7p58yYajcagTUI3IYQQQgghXiw2Lp58hasQXK0CBXzzotFqOXr8NMdOnMHL053+P36V1SWK10xCNyGEEM9kaudSPz+/LKhECCGEEEKId4utjTUd2zZl195D7DtwjMSkZLyyu9OlYwv6/vAlXp4eWV2ieM0kdBNCCPFMT4duuXPnxs7OLouqEUIIIYQQ4t1haWnJ+D9lLeQPmazpJoQQ4pme3rnU398/iyoRQgghhBBCiHeLhG5CCCGe6emRbjK1VAghhBBCCCHSR0I3IYQQJiUlJXHjxg2DNhnpJoQQQgghhBDpI6GbEEIIk65du0ZKSopBm4RuQgghhBBCCJE+EroJIYQw6emppWZmZuTPnz+LqhFCCCGEEEKId4uEbkIIIUx6ehOFvHnzYmVllUXVCCGEEEIIIcS7RUI3IYQQJj090q1gwYJZVIkQQgghhBBCvHskdBNCCGHS06GbrOcmhBBCCCGEEOknoZsQQggj8fHxhISEGLTJSDchhBBCCCGESD8J3YQQQhi5cuWKUZuEbkIIIYQQQgiRfhZZXYAQ4tmio6M5f/48UVFRmJubkz17dvz9/bG0tMzq0sR77ulNFNRqNT4+PllUjRBCCCGEEEK8eyR0E+ItEx4ezsKFC1m6dClXr14FtKDoUg+qzFGrrSlZsiRt27alfv36EsCJ1+Ly5csGn319fVGr1VlUjRBCCCGEEEK8eyR0E+ItodVqmTx5Mn/++SfJSdGgJICiIbenGR5uZuh0cONOClExcOhAOIcO7mX48DyMHDmSoKCgrC5fvGeeHunm5+eXRZUIIYQQQgghxLtJQjch3gIPHz6kU6dOnDh+GHTRFA9Q0aGRDR9XcsLF6f9LLyqKQsjdFFZuTWTOyiju342jbdvWdOr0GUOGDMHc3DwLn0K8T54O3WTnUiGEEEIIIYTIGNlIQYgsFh4eTpMmTThxfB+OtlGM7WfL+qkutKhnYxC4AahUKvLmsqBXJ3sOLMnG583MUekimDljCr169UKn02XRU4j3SXR0NPfv3zdok00UhBBCCCGEECJjJHQTIgvpdDq6d+/O1SunyZEtno3TXGhe1waVSvXCc22sVQz+xoF/hjhgoYpi2bJFTJo06Q1ULd53T6/nBjLSTQghhBBCCCEySkI3IbLQ7Nmz2b9/NzbqOBaPdSZfbuMZ37NXxPNRw4dYF75PtjIPqPPZIxISFf3x+kHW/Pa9PaQ85o8/fjcZmAiREU9PLbWysiJPnjxZVI0QQgghhBBCvJskdBMiiyQmJvLHH39ASjS/fGmHr7dx4DZ8YgxfD4mmRT0bNs9w5Z8hTuTLZU5KimLQr3VDa4LLm6NJiuL3339/U48g3lOXLl0y+FygQAFZL1AIIYQQQgghMkg2UhAii6xevZrHUQ/J7amjfSMbo+OXrmsZND6WNZNdqFPVWt/epLZxX5VKxS9f2rP9YCRbtmzm/v37eHl5vdb6xfvr6dBNppYKIYQQQgghRMbJSDchssiqVatASaDtJzaYmxuv4TZzeTz5cpkbBG7PU9DHgnLFzEnRxrN27dpMrlZ8SJ4O3WQTBSGEEEIIIYTIOAndhMgCiqJw6tQpUDRULWNpss+hkxoC/dQMmxCDR9lQLAPuU65pGHuPxpGSokNRjM+pUtoKFE3qtYV4CRERETx8+NCgTUI3IYQQQghjZmZmgIqUlJSsLkUI8RbQ6XTodDqDpXlkeqkQWSA0NJSoqEgszFPw9zH92/BBeArHz2k4fUnDhEGOaJKiGTsnhXqfR3NgYQwebuZYWFigVltgYaHGwsKCIn4WoMQZLYQvRHo9PcoNZHqpEEIIIYQpZmZmWNvYEB0Tm9WlCCHeAtExsaAyw8bm/0tCyUg3IbJAbGwsoGBro8LS0nhqKYBOB7FxCv8M0vFxhWSCysHsESoUBWYsV9DpdCQnJxMXF8/jx4+JiIhASYlEo0nm7NmzTJ48mb179xIREfFmH068054O3ezs7MiZM2cWVSOEEEII8Xbz8fXj8pWQrC5DCPEWuHzlBhZqG/Lmzatvk5FuQmQBC4vU33oaTepUU5XKOHhzdlTh6gSF8qtISEhAp1NwcTSjSAGFSzdNXzf5v+tFRkYyZMgQfXv27NkpXLgwhQoV0v+vj4+P7EgpjJhaz83Ur08hhBBCCAFFihRh8emjXL95G5+8ubO6HCFEFklMTOLEyfP45PfD2vr/67JL6CZEFvDy8sLCwpKEJLj7QEcuL8PwS6co5M+t4+p/PzRTFHgy90hKMn3da7chJUVlFKaFhoYSGhrKjh079G1WVlb4+/tTuHBhfRAXEBCAo6NjpjyjeDc9Hbr5+fllUSVCCCGEEG+/ggULUsC/KEtXbqF2jQoEFPTF0tL0ms1CiPePoijcvRfKlu37iNda0Cy4hsFxCd2EyAJWVlYULFiQc2cecuK8xiB0UxSIfhxNcHmFhevh7BWFYv4W2NvbExah4eyVWLq1MD0z/MxlBW2KCrVa/cIakpKSOHXqlNGmC7lz56ZQoUIUKVKEQoUKUahQIXLnzv3fQrHifaYoitF6gLKemxBCCCHEs1lYWNCqVWuWLFnMui2H2LTtADm83LCxspLZAkK855I1Gh5GRBEdm4yjsxsdOrbHy8vLoI9KUUztgSiEeN2GDRvGxAl/ElQmiXmjXPTtcXHxxMTEoNMp1PtCISoahn3ngIOdBb9NjuVKiJaz693xyGaGVqNFq039evQ4maD2ydx5YIajk0um/oTN3t6egIAAg1Fx/v7+BgtEindfaGgoH330kUHbokWLqFKlShZVJIQQQgjx7oiMjOTcuXPcv3+fxMREFEWX1SUJIV4jtdoSZ2dn/P398fb2NjlQRUI3IbLIzZs3qVChPCrdQ7bOdKFQATXJyclERkaS9rsyIkph+D9qNuzWkKxRqFzKkjF9HSlUwHgk28T5cQybpCFn7sIMHDiQCxcucO7cOc6dO8fdu3czvX4zMzPy5ctnEMQVLlyY7Nmzy0/13lF79uyhZcuWBm3//vsv2bNnz6KKhBBCCCGEEOLdJaGbEFmoW7durF2zmCK+CayZ7Ex09CN0uv//RMzOzg4HB/sXXuf6LS3BHR6RlOLKmDHjadGihcHxx48fc/78ec6fP8+5c+c4f/48Fy9eJDk5OdOfycXFxSCEK1y4MAUKFEjXlFeRtaZMmcKgQYP0n52cnDh//ryEqEIIIYQQQgjxEiR0EyILhYWFUa1aNaIibtAwSMOA7jrMzFIDDktLS1xcXHhR3vEoSkfjHpFcvmVDlaq1WbhwYbpCEq1Wy7Vr1wyCuHPnzvHw4cPMeDQDarWa/Pnz60O4tFDO1dU10+8lXt7333/PwoUL9Z/Lli3LypUrs7AiIYQQQgghhHh3SegmRBbbsmULTZs0xtIijtqVoX93Fa7OFri5ub5w84LzVzR8MSCaq7ct8cxRgHXr1pEjR45Xqufhw4cGQdz58+e5cuUKKSkpr3RdU7Jnz64P4NI2bsiXL5/R7qvizahfvz4nTpzQf27fvj0jRozIwoqEEEIIIYQQ4t0lu5cKkcVCQ0OxUFsSFZ3Aul0KJy8o9OlqTbM6KmysTZ9zPyyFGcvi+WdRIlrFDq+cvixZsuSVAzcAd3d3qlatStWqVfVtSUlJXL582SCMO3v2LNHR0a90r9DQUEJDQ9mxY4e+zdraGn9/f4PpqQEBATg4OLzSvcTzKYrCpUuXDNoKFiyYRdUIIYQQQgghxLtPRroJkYWOHz9O48aN0Wg0aDQaoqOjcbC3xFKtxdFOQ6WSlhQtqCZ7NjNSUuDGHS2nLmo5+K+GFMUazOyoU6c+I0aMwN3d/Y3WrigK9+7dM5qeevPmTV7HHyt58uQxCOIKFSpE7ty5Zb2xTHLnzh3KlClj0LZs2TIqVKiQRRUJIYQQQgghxLtNQjchskhYWBi1atUiNDRU39a2bVt8fHyYPXs2ISHXQUkGRQukba5gDio1qCwpX74CXbt25eOPP36rgqe4uDguXrxoEMRduHCB+Pj4TL+Xg4MDAQEBBkGcv78/1tbPGCIonmnbtm20b9/eoO3MmTO4ubllUUVCCCGEEEII8W6T0E2ILKDRaGjWrBlHjhzRt5UuXZply5ahVqvR6XQcPXqUf//9l7NnzxIVFYW5uTmenp4ULVqUcuXK4evrm4VPkDE6nY6QkBCDIO78+fPcvXs30+9lZmaGj4+Pwai4woUL4+Hh8VaFk2+bCRMmMHz4cP1nd3d3Tp06lYUVCSGEEEIIIcS7TUI3IbJAv379mDlzpv5z9uzZ2bRpE9mzZ8/Cqt68qKgo/WYNaUHcxYsX0Wg0mX4vV1dXoyAuf/78qNXqTL/XuyIlJYU7d+4QGxvLb7/9xtatWzEzM0OlUlGpUiWWLFmS1SUKIYQQQgghxDtLQjch3rClS5fyzTff6D+r1WqWL19OqVKlsrCqt4dGo+HatWtGYdzDhw8z/V5qtZoCBQrop6amhXEuLi6Zfq+3RUhICAsXLuTQoUOcPXuW+PhYQCEqMopkjRZQoVarqVy5MnPmzMHT0zOrSxZCCCGEEEKId5KEbkK8QWfOnKFhw4YkJSXp23777Tc6dOiQhVW9G8LCwoyCuKtXr5KSkpLp9/L09DQK4vLmzYu5uXmm3+tNOXXqFCNHjmTnzh0ougRQkkDRYGWp4GSvQqvVEhUDScmgTQFzC1tsbF2oXbsOvXv3xs/PL6sfQQghhBBCCCHeKRK6CfGGPHr0iFq1ahmsY9aiRQtGjx4ta429pKSkJC5dumS0g2p0dHSm38vGxgZ/f38KFSpEoUKFKFKkCAEBAdjb22f6vTJTcnIyo0aNYuLECaRoHoOSQLUyaj6pYU3xADX5vc1RFB3h4eFotArXb8OZy7DtkJojp3WgskFt5UyfPj/SrVs3LCwssvqRhBBCCCGEEOKdIKGbEG+AVquldevW7Nu3T99WrFgxVq1ahZWVVRZW9v5RFIW7d+8aBXE3b958Lffz9vY2COIKFSpErly53oogNSIigjZt2nD61DHQRfNJsJofu9qRN5dhcJaYmERUVJRBm4eHB5dvpDB8UizbD6aAmSOVKldnxowZb33QKIQQQgghhBBvAwndhHgDhg0bxsSJE/WfXV1d2bx5Mzlz5szCqj4ssbGxXLx4UR/EpX0lJCRk+r0cHR0JCAgwmJ5asGBBrK2tM/1ez/Lo0SMaN27M5UsncXWI448+DtStZvr+sbFxxMbG6j+bm5vj7p4NSA0xl25M5JcxscQmOlCyVEUWLVqEnZ3dG3kOIYQQQgghhHhXSegmxGu2Zs0avvjiC/1nc3NzFi1aRMWKFbOwKgGpu3eGhIQYBHHnzp3j3r17mX4vMzMzfH199UFc2v96eHhk+qi4lJQUmjRpwpHDu/F0jWXpXy74ej97WmhU1GMSExP1n62srHBxcTboc/qihhbfRPE43oHadT5l+vTpb8VoPiGEEEIIIYR4W0noJsRrdPHiRerXr098fLy+beDAgXTr1i0LqxIvEhUVZRTEXbp0CY1Gk+n3cnNzMwri8ufPj1qtfulr/vPPPwwe9Av21lGsn+pCgbzPX4ctPDwCrVar/2xnZ4eDg/EU0hPnNDT6MhKN4sb48RNp0qTJS9cohBBCCCGEEO87Cd2EeE2io6OpXbu2wVpin3zyCRMnTpQRQu8gjUbD1atXjXZQDQ8Pz/R7qdVq/Pz89EFcWhjn4uLywnNv3rxJ9erVSIq/z8g+trT5xOa5/RUFwsJCefJvAicnJ2xsTE9F/Wt2HCOmJOHkmo+9e/eSLVu2DDyZEEIIIYQQQnw4JHQT4jXQ6XR06NCB7du369sCAgJYu3Yttra2WViZyGxhYWEGGzacP3+ea9eukZKSkun38vLyMgri8ubNi7m5ub5Pv379mDljApU+SmLxOGdUKhVLNyYwb3UCx89qiIxWKOBtTs/2dnRqakNKSgrh4REG99n3rz3NekZTuIAFZze4GxzTahXqfPaIc9ft6N2nP7169cr05xRCCCGEEEKI94GEbkK8Bn/++SejR4/Wf3Z0dGTTpk3kzZs364oSb0xiYiKXLl0yCOLOnz9PdHR0pt/LxsZGv2mDr68vw4cPR5v0gMVjHalc2hKA8s3CyZvTnE9rWuPuasbW/Un8MTWOAV/Z8+PnaqKiHuuvl5CkENTRjIREhWwuZkahG8DKLYn0GByPZ85CHDlyBAuL509fFUIIIYQQQogPkYRuQmSyLVu20LFjR/1nlUrFvHnzqF69etYVJbKcoijcvXuXc+fOGQRxT04/flUJCQkkxD+maEGFtZMtsLK0xMLCgqgYM7w8LDEzMydtZnPXX6JYvD6R27vtDNYcHDkDjp21IF8uc46d1ZgM3ZKTFUo2CicixoUFC5ZQrVq1THsGIYQQQgghhHhfyPAEITLRtWvX+Prrrw3a+vTpI4GbQKVSkStXLnLlykWtWrX07bGxsVy4cMEgiLtw4QIJCQkZvodGo8FSDdVKq1B0Ov2OpBYqePgwtQZzc3NUKhV+3ilExyqEPozF3laFSqXi5l2FyQsVDixxZMzMuGfex9JSRbWylizfmsyJEyckdBNCCCGEEEIIEyR0EyKTxMbG0rlzZ2JiYvRttWvXNgrhhHiSvb09pUuXpnTp0vq2lJQUQkJCOHv2rMHGDffv33/utbRaLbZWCgG+KkDRb47w5IDmtLXmDpwAT3ews0k9rlJB/3EKreqrKRbw4p1TixZUs3yLltOnT2f8oYUQQgghhBDiAyChmxCZQFEUevXqxZUrV/Rt+fPnZ9y4cZiZmWVhZeJdZG5ujo+PDz4+PjRs2FDfHhkZqR8Rd/r0aU6cOMGVK1dISkoiJSWFpKQkHGzBN7eCTvfs6x85Dat3wIAv/9+2eZ/CsbMwvr+O+IQE4PkrDwT4WoCSyLVr117xaYUQQgghhBDi/SShmxCZYMKECaxfv17/2d7enhkzZuDg4JCFVYn3QXR0NFeuXOHq1atcuXJF/3Xr1i10Oh1qtRqVSoVWqyUhIQGVSsHW5tnXuxcG3QdDhY/gsyapbYlJMHA8fN8JnB0Uoh9Hk5iooNOp0GpTsLAwN7qOvW3qaLqXmQYrhBBCCCGEEB8CCd2EeEW7d+9mxIgRBm3jxo0jf/78WVSReNcoikJYWJg+UHsyYAsNDX3h+RYWFlhYWPw3qjIFRVFhZmY8xfRxDLTrAy6OMHUIpA3CnLYMzFTQqKaKxzGpJyRrFLRahWs3HuLkaImzkx1WVlb6jRi0Kan91OoXT0UVQgghhBBCiA+RhG5CvIJbt27xxRdfoHtiLl/Pnj2pU6dOFlYl3lYpKSncuXOHy5cvGwVs0dHRr3x9MzMzdLoU7j+E3F4AKn1IlpgMHX5WiI6DNRPB0f7/5129BTfuQpEGxlNK/esqjPg+mQ6fajA3N8PGxhYbGxvuhupAZY6bm9sr1y2EEEIIIYQQ7yMJ3YR4SQkJCXTu3JnHjx/r26pVq0bv3r2zsCrxNkhOTub69esG00GvXLnCtWvXSEpKem33tbCwQJui5cI1KFP0/+0ajY6u/eFKCKwcD17u/z+mUsFXbaBtQzUpKSn6TRfGz1O4dhvG/qzCJ3dq35QUHbGxscTFxXLkpDkpKWqKFCny2p5HCCEyQlEU9u/fz4YNGzh16hSXLl0iISEBtVqNj48PxYoVIygoiNq1a8soXSGEEEK8ERK6CfESFEWhd+/enD9/Xt/m7e3NxIkTMTc3Xv9KvJ9iYmKM1lpLW28tbZfQN0mtVqPRJHLyokIHVCiKgqIo/Dwath1M3TghJg6On0vtb2amoniABUX91djY2GBpaUliYiLx8fEs3pDE/YdQ4SOV0X0UBY6e0RATo2XVqlXkz5+f5s2b4+jo+IafWAghUm3YsIERI0Zw9eol0CUCGlA0gEKyVsXFc6FcPH+UxYvm4ZE9Jz169KBz587yd7YQQgghXiuVkjasQQiRbtOnT6d///76z9bW1qxbt45ChQplYVXidVAUhfDwcKNg7cqVKzx48CCryzOg0WiIinyEh5uODf+Au2tqe9kWcOcZpd7Y6U7eXMY/f2nf+xHHTiezc44ZT/81ce2WQqOvFR49NsPNLRvm5uZYW1vTqFEjOnbsSGBgYGY/mhBCmBQdHU2fPn1Ys2YV6KKxs06mUU1rKpa0pHABCxztVSQkKly6nsKR08ks3ZTIw0fmYOZAqdLlGT9+PN7e3ln9GEIIIYR4T0noJkQGHTp0iGbNmhmMZJo4cSKffvpp1hUlXplOp+Pu3bv6QO3JddeenEL8NrOzs+P27dtYWybxTTvo3koF/H+kmq2tLfb2dv9tuJA+Op1CYmIC8fEJaLVaAH79R8fsVSo0KdY4OzsbnVOiRAnat29Pw4YNsba2ftXHEkIIk6KiomjevDlnzxzDnBi+bGPDV21tcbB/9p9xGo3CovUJDJ0QR2yCLR6e+Vi6dCkFChR4g5ULIYQQ4kMhoZsQGXD//n1q1apFeHi4vq1r164MGjQo64oSGaLRaLhx44bJ9dYSEhKyurx0yZkzJwUKFNB/ubm5sXbtWlavXk1CQgJxsY/xctexdJyK3J4qLK0scXBwQG3x8isKKApoNMkcPxNH068TCYs0w8nJBUtLy2ee4+zsTKtWrWjXrh158+Z96XsLIcTTtFotTZs25cjh3bg5xjL7D2dKFE7/Om13H6TQvk8UF65b4pXTj61bt+Lq6voaKxZCCCHEh0hCNyHSKTk5mcaNG3PixAl9W4UKFVi0aBEWrxBmiNcjLi7O5HprISEh+hFbbzNzc3Py5s1rEK75+fnh6+uLnZ0dAElJSUybNo1x48YRGxsLpE6HjYqKQm2eRNUysGScM9bW1vpdTF+FRqNQp8sjzl21Jq9PIZKSktI9xbZatWp07NiR4OBgWUNJCPHKJkyYwPBhg3CwieKv/o6s3JLIoZPJnL2ixd/HgrMb3A36V2sTwe4jyUbXKVHYgvsR9nzyaUsmTZr0psoXQgghxAdCQjch0ql3797Mnz9f/9nLy4vNmzeTLVu2LKxKREREmFxv7d69e1ldWrpYW1uTP39+g3CtQIEC5MuX75m76ymKwoYNGxg6dCi3bt0yOm5jY0NMTDQWqhg6NbFgWC8HVK+YuqWkKPQYFM2anQqu2XzYtWsXzs7ObN26lVmzZrF37950XSdHjhy0a9eO1q1b4+7u/uIThBDiKffv36d8+fIkJ9xnTF9brK1UfDX4MWWLWXL5phadDpOhmzZF4c8fDTd8MTODJl89JkXlxqJFS6hSpcqbfBQhhBBCvOckdBMiHebPn0/v3r31ny0tLVm1ahXFixfPuqI+IIqicO/ePZPh2qNHj7K6vHRxdnY2CtYKFChAzpw5M7TG2tmzZxkwYACHDh0yOmZmZkb79u354Ycf2Lt3L19+2R1FG0HrBmp+/c4BS8uXC97i4nX0+jWadTt1qK09mDNnLlWrVjXoc/36debMmcOiRYuIjo5+4TXVajV169alQ4cOlC1b9pVDQSHEh2PkyJGMGf0bZYrEs3KiC4qSuhszQMc+URw7qzEZutnbqlg31XgKab/R0cxcoaJmrcbMnj37jTyDEEIIIT4MEroJ8QInTpygUaNGaDQafdvo0aNp2bJlFlb1ftJoNISEhBgFa1evXiU+Pj6ry0sXT09P/VTQp9dde5VgKSwsjBEjRrB48WKj3UQBqlSpwqBBg/D399e3LVq0iO+//w4lJZKCeXWM7edIsYD0r3kEcOBEMt/9Gs2tB2rUVm78888Uateu/cz+CQkJrF69mlmzZnH69Ol03aNgwYJ06NCBJk2a4ODgkKH6hBAfFkVRKFGiBKH3LvDPEFsaBBtu1vIyodu1EC2VWz9CZeHBiRP/kj179tf6DEIIIYT4cEjoJsRzPHz4kFq1ahmsW9W+fXtGjBiRhVW9+xISEkyut3bz5k2DcPNtZWZmhre3t9Gotfz582d6aJSUlMTUqVMZN24ccXFxRsd9fHwYNGgQwcHBJkO9rVu38v333xP+8DZmSix1qqrp0MiWiiXVzwwBU1IUdh5KZvbKBLYf1ICZAzlz+fLXX39Rvnz5dNd+8uRJZs+ezapVq0hKSnphfzs7O5o0aUKHDh0ICAhI932EEB+OW7duUa5cWdSqh1zZ6m40gvfJ0C0lRYe5eepI4mptIjh+ToNOl/pnXNlilgz91p4qZawAqNEhgvPXHZg+Yy516tR5488lhBBCiPeThG5CPINGo6F58+YcPnxY31ayZElWrFjxzLW2hKGoqCiDUO3y5ctcuXKFO3fuZHVp6WJlZYWvr69RuObj4/PcXTszw4vWbXN0dOT777+nY8eOL/z1+OjRI/r168fq1atASQBdPO6uCkULqilSwAIXJzMURSEiSuH0JQ2nL2qJijEDMxtQ2dCuXXv69++Pvb39Sz1LVFQUixcvZvbs2dy8eTNd55QuXZqOHTtSr1691/6uhRDvjvXr1/N5lw4E5o9h80w3o+Pte0dy7Ewye+er0Wg0uLm5kZiUyIh/NOTNpaZgPkvuP0zhz+lxnLqoYfd8N8p/ZMl3v0azaKMF33z7Mz/++GMWPJkQQggh3kcSugnxDP3792f69On6zx4eHmzevFmmnTxFURQePHhgcr218PDwrC4vXRwdHU2ut5YrV64s2Wnzeeu2mZub0759e77//ntcXY2nST3PxYsXmTNnDkuXLiUuLhoUDShaQPdfDzNQWYBKjZOTK61ataJ9+/bkzZv3lZ8JQKfTsW/fPmbNmsWWLVvQ6XQvPMfNzY1WrVrRrl07cufOnSl1CCHeXbNnz+bnn3pRt3Ii0351RlFAq9WSlJREYmIiPQYnc+oS7JqTOsLNxsaGhIQE/fkqlQoLCwuSNOaUb5FAgK8FG6a5MW52HCOnK7Rt350//vgjqx5PCCGEEO8Zi6wuQIi30fLlyw0CNwsLC6ZMmfJBB25arZZbt26ZXG8tNjY2q8tLl+zZsxtMBU37bw8Pj7diIf/0rNs2ePBgChYs+FLX9/f359dff2XAgAGcO3eO06dPc+HCBWJjY1GpVDg4OFC4cGGKFi1KQEBApo8wMzMzo0qVKlSpUoV79+4xf/585s+fT1hY2DPPiYiI4O+//2bChAnUqFGD9u3bU61atSwJQ4UQWS/tz0adTkdMTCyJSYmkaFOe2f/pqe2KoqDRaDBDQ1BZhXW7NISFhREXB4mJZhw6dIg1a9ZQqFAh8uXLJ3/WCCGEEOKVyEg3IZ5y9uxZGjRoYPAP9eHDh9OpU6csrOrNSUxM5Nq1a0bh2vXr19+Z9dby5MljtNZagQIFcHR0zOryTHrVddveZRqNho0bNzJnzhwOHDiQrnPy5MlD+/btadmyZYZH+wkh3k06nY5jx44xevRo1q5ZRtmiKSz403jn52+G6wxGuimKgrm5ucmRtT+P1rFuF5xZY8bgCTrmrVGhMrfXT6W3srLC39+fgIAAChcuTEBAAIUKFcLZ2fl1PqoQQggh3iMSugnxhMjISGrXrs3t27f1bc2bN2fMmDHvXdgRHR1tFKxdvnyZ27dvmxxl9bZRq9UGo9WeXG/Nysoqq8tLF0VRWL9+PUOHDjX4NZcmI+u2vQ8uX77M7NmzWbZsGTExMS/sr1aradiwIR07dqREiRLv3e9RIT50Wq2WgwcPsmHDBjZu3EhYWBharZZHjyLwzKbj4CIVagvD3/dPhm7m5uZYW1tja2uLSqVCq9Wg0WrRarQ8jtFQoWUyAT4w9w8zWnyn4/ApFbZ2zlhbWz+jolReXl4UKlTI4CtfvnxYWMgEEiGEEEIYktBNiP+kpKTQpk0b9uzZo28LDAxk9erVL/wH+NtKURTCwsJMrrf2vCl9bxN7e3sKFCiAn5+fQbiWO3fud3raz5kzZxg4cGCmr9v2PoiLi2PlypXMmjWL8+fPp+ucQoUK0bFjRxo1aoSdnd1rrlB8SCIjIzl9+jQhISFotVrs7OwICAjA399fNvl4DZKTk9mzZw/r169n8+bNREVFGRxXFIXw8HCc7LX89YuKoLIq4hMVdhxMPT5rFYTcg5E/OmBubka1MpZcvJ7CyGmxNKppTd5c5twL1TFqRiznrmjZOc8FN6cUqrWLJTrOivz5C/Dw4cMM121lZUXBggX1o+HSvlxcXF79pQghhBDinSWhm3ivaTQaLl++zL1790hJScHOzo6CBQvi4eFh1Hf48OFMmDBB/9nV1ZVNmzaRK1euN1nyS0lJSeH27dsm11uLjo7O6vLSxd3d3eRmBtmzZ3+vRjC9aN22qlWrMmjQoJdet+19oigKJ06cYNasWaxZsyZd05sdHBxo1qwZHTp0oECBAm+gSvE+io+PZ+XKlcyePZuzZ8+mbjpC2rphKlBZYGlpQ506dejYsSNlypR5r/6cetMSEhLYuXMn69evZ9u2bS8c6RobG0uKNpagsgpThqi4H25Bycam/3zYOc+VXJ7mfDU4mlMXNURE6bCzUVHhI0sGfm1PmWKWDB4fwz+LoXpwQ+bPn8/jx4+5cOECFy5c4Ny5c/r/TkxMzPCzeXp6GoRwAQEB+Pr6yqg4IYQQ4gMhoZt478THx7Nq1SoWLVrEqVOn0GgSQTH8P0uenl7UqFGDjh07UqhQIdatW0fXrl311zAzM2PRokVUqlQpax7iGZKTk02ut3bt2jWSk5OzurwXUqlU5M6d22S45uTklNXlvVZJSUlMmTKFv/7664Nbty0zREREsHjxYubMmcOtW7fSdU6FChVo3749derU+SCm54rMsXPnTr7//nse3L8FSjwoyeTLZYZfXgss1Soio3WcvawlKgZQ2YCZLTVr1uKPP/74oDfbyaiYmBi2bdvGhg0b2LFjh8EOoy+SkpJCTEw0jnYaJg6yp3Et25eu48JVDbU/i0KjuDJnznxq1KjxzHuGhIToQ7jz589z/vx57ty5k+F7Wlpa4ufnZ7BOXKFChT7Ikc1CCCHE+05CN/He0Ol0zJ07l99++43ox+GgJICSjKO9Qr5cFliYQ2S0jht3UlAUCzCzBpUNH31UkrNnzxqMounfvz/du3fPsmeJiYkxOSX01q1bJheDftuo1Wp8fHxMrrdmY2OT1eW9UelZt+2HH36gQ4cOEgylQ0pKCrt27WLOnDls27YtXesPenh40KZNG9q2bYuXl9cbqFK8i3Q6HcOGDWPy5ImgiyZXdi2fNbWhWR0bXJ0NF+xXFIWzl7XMXpnA0o2JaHT2ODl7MWPGDMqXL59FT/D2i4yMZMuWLaxfv57du3dnaHMelUpFmTJlqFevHnXr1mXhwoWM+nMEznZRrJvigk+ejI8ci47R0ahHJBdu2FC7TmOmT5+e4R96REdHG4RwaaPiMhIipsmePbt+NFxaIOfr6yt/NwghhBDvMAndxHshLCyMr776in37dkFKNN45dLT/1IY6Va3wzmlu8I/ouHgdx89qWLA2kQ27k3gcA3EJqdPSbGxsaNiwIZMmTXrto40UReHhw4cmw7XQ0NDXeu/MYmdnZ7CZQdq6a3ny5JGpM6Rv3bYffvhB1vx5Sbdv32bu3LksXLiQiIiIF/Y3MzPj448/pmPHjlSqVAkzM+OdD8WHSVEUfvnlF2bOnAopkXze3JqfutljY/3ivwcuXtPyzbDHnLlijpWNBwsXLqJcuXJvoOp3Q1hYGJs2bWL9+vUcOHCAlJSUF5/0H3NzcypUqEC9evWoXbu2wdIQGo2GTz75hJP/HiC7SxwLRjsTkD/94VRYRAodf3zMyYsWZPPwYdu2bSaXnngZOp2OkJAQfRCX9mXqBy8volar8fPzM9q4wc3NLVNqFUIIIcTrJaGbeOfdu3ePpk2bcvPGeWzUcfTrbkfHJjaYmT3//ywpCpw+/4ifRydx5DQ8jjUjXz5fTp48ia3ty09VeZpOpzO53tqVK1femfXW3NzcTE4J9fLykqmQJsi6bW9WcnIy69evZ9asWRw9ejRd5+TLl4/27dvTokULnJ2dX2+B4q23ZMkSvv32a1S6R4z+2Z4W9TI2IjcxSaFL3yh2HFbh5u7Lrl27PuhQ5O7du2zYsIENGzZw5MiRDO2IrVarqVatGnXr1uXjjz9+7g8lwsPDadq0KZcvnUJtFsP3ne3o2tIWa6tn/72UkqKwamsi/cfGEhVrg4tbbpYuXUqhQoUy9IwvIzo6mkuXLhlMUb1w4QLx8fEZvpaHh4fBOnGFChUif/78MipOCCGEeMtI6CbeaXFxcdStW5crl06SxzOBBaOd0z3FJDY2jtjYWHQ6hcmLYPIiBZU6G+PGjadly5YZrkWj0XD9+nWT6629zOLLWSFXrlwmwzUZiZU+L1q3zdfXl0GDBhEUFCRh5Wty4cIFZs+ezbJly9L1f2StrKz49NNP6dChA8WLF3/9BYq3TmhoKFWrViU68ia1Kpnx6HHqaOjIaIUC3ub0bG9Hp6Y2qFQqbt7Rkq+66Z0trSyhQglLLt60peEnLZg8efIbfpKsdfPmTdavX8/69es5efJkhs61sbEhKCiIevXqERwcjIODQ7rPjYyM5JtvvmHbts2gi8bZXkuLetZU+MiSIn4WONipSEyCi9e1HD2TzKJ1idx+oAIzRwoXKc6kSZPInz9/Bp828+h0Om7duqUP4NICuZCQkAxfS61WU6BAAaONG9zd3V9D5UIIIYRIDwndxDutX79+zJwxGU/XaNb+40pOT/N0nZeUlERkZJRB28yV1oyfp8XWITc7duwgT548Js+NjY3l6tWrRuFaSEhIhqbNZBULCwvy5ctnFKz5+vpm6gi/D4miKKxbt45hw4bJum0ZoNPpXtsUz5iYGJYtW8acOXO4dOlSus4pVqwYHTt2pGHDhh/c2oMfskGDBjHln3EU80sg8rGOfLnM+bSmNe6uZmzdn8QfU+MY8JU9A792IClJ4d/zhuuQKUDtzo8IKm/J4J4O1Ps8ihSVG9u37yQgICBrHuoNUBSFy5cv64O2CxcuZOh8BwcHatSoQb169ahevfor/Z5TFIVly5bxxx9/cPduCOgSQUkGtKR+h1SABagsQGWNk7M73bp1o0ePHm/tn8mxsbFcvHjRYHrqhQsXTP5A50Xc3d0N1okrXLjwezsqLiEhgTt37qDRaLC1tSV37tyYm6fv34ZCCCHE6yChm3hnHT16lE8+aQApESwe64SXhxl/Tovj0Mn/sXff4VFUXQCHf7MtvSf03hHpvYOIQCKdAAkQAgoKonQQRawoIE1s8ImSUAKEDibSpffepPcWSO/bZr4/IgsxARJISLvv8+SBmZ2ZPZNkNztn7j3HwJlLJqqU03AmNPXdXYNB4dOZsSxam0hMHFQpD58MlujQygFbW1t6DIviwCkrWrb25Mcff0x3Sui9e/dy6Iwzx8bGJlW9tUdfZcqUyZcftHPK6dOnmTRpEgcPHkzzmKjb9lh8fDzr1q1j//79nDx5khs3bmAymSxNN2rWrEnTpk3p2LEj1tbWWfa8iqJw8OBBAgICCA0NxWQyPXcfR0dHevfujZ+fH+XKlcuyWITcJykpidq1axMbdY3F0+2pUVmLu2vqRPDgidEsD0km6mjhdMsW7Diop3XfSILnOOPdwYb3JsawYaeGfn7vM3Xq1Fd1Kq+EoiicPn2akJAQQkNDuXLlSqb2d3FxoV27dnh5edG8eXN0Ol2Wxmc2m9m+fTt//vknp06d4tKlS5bmQ6VKlaJGjRq0adMmzybWH5WreHJE3Llz57h+/Xqmj6XRaCyj4p5MyGVVXbtX6fr16yxatIi///6bS5cuYTYbeZRstbGxo3r16nTs2BFvb28cHR1zOlxBEAShgBFJNyHPGjhwIBtDV9Crg8KsTx1ZtzWZYV/G0LCmjovXTcgyaZJuQyZFs3BtEh8PkihfCpaHKmzcDTuXOFG9Ely5acBzUDIPIlU4ObnkieSUi4tLulNCixUrJgrFZ6OwsDCmTJlCcHBwuvWKWrVqxRdffEGlSpVyILrcIyYmhunTp7N8+XLi4yJB0YNiBMw8HoGiBkkLkhVOzh707duXESNGYGdnl6WxPHjwgKVLl7Jo0SLu3r2boX2aN2+Ov78/bdu2Fc1B8qGtW7fi18+HEoViOLDCLd2k2q9LEhj6RSyxxwvjYJ/2PfVRUi7sQGGsrST2HDHQc3gcrh4VOX36dJ6fSi7LMseOHbMk2jLbDKBQoUJ06NABLy8vGjVq9EpfR2azGYPBgFarzdev34SEBMuouCcTcvHx8Zk+lru7u6VG3KOvihUrZnmCNCuEh4czceJE1q9fl9KxXtYDRhztwVonERuvkGyQ/v37YoONrTMffvhhrh7hKAiCIOQ/Iukm5En37t2jfv16yMYH7FjsQqWyGmRZsVww+Y+L5sgZoyXppihw866e8m0i+WIYvNNdsiRK3hwApYpBwHcpF1Pjpsus2SKhSLa56o5osWLF0k2uFeRi3TlB1G3LuC1btjBu3DjC7t8AOZ5yJaFrW2tqVdVSuawGG2uJhCSFC1dNHDtrZPXmR7WW7ClZqgIzZ86kadOmWR6XyWRi+/btBAQEsGPHjgztU6RIEfr27UufPn0oXLhwlsck5IwZM2YwY/rXeL9l5IfPnFCUlNFcT375jY1h9xEjl7Y4o7PSkRCfgCRJ2NnZYTZDkSZhdGxtTcA0ZwD0eoWKbR9iwoPDh49QvHjxnD3JF2AymTh48KClGUJmO2oXL14cLy8vvLy8qFu3rrgBlAMURXnqqLjMfvTXaDRUqFAhTeOGQoUK5djfue3bt/Phhx8SFXkHSYnnjUY6entZU6+6lsLuKdNJzWaFq7fM7DliYNG6JM5fVUDlRI2adfntt98oWbJkjsQuCIIgFCwi6SbkSUFBQYwZ/SH1Xktg/TzXNI//N+mm1xtYGRpB33GwcxFU+Ldcm0ql4sufZRashosbJXRaif0nFAZ9phATr3nlxYfVajWlS5emYsWKVKpUKVW9NXt7+1cai5CaqNuWOfPmzePLLz8HOZbyJU18M8KBFg10z7xAM5sVtu4z8NnsOG6HaVFpnJkxYya9evXKtjgfTUtaunQp0dHRz91eo9HQoUMH/Pz8aNKkSYFPrOYkRVEwGo3Ex8eTkJDSGCcxMTHVckJCQqr//3ebw4cPkxh/n0/fh36dpDTJiIOnFLp9qPD5BxKDe0o4OTkRGxuDooBKJfH3IR29Ryax6Q9X3mpuZdmvjV8E/1xzZPGS5bzxxhuv+lvzQoxGI7t37yYkJIRNmzYRGRmZqf3Lli1rSbTVqFFDvDZyqYSEBC5cuGAZFfeoXlxcXFymj+Xq6ppqRNyjUXFWVlbP3/kl/PXXX7z33mBMhnBeKy8z+1NHXq/07L+7iqKwZnMyn86MJybBliLFyrN27dqn1u8VBEEQhKySf8faC/naqVOnQDHSoEbGkhuyLJOsT/m/1b+7PBoVp9OC3gA376Uk42pWBq0GFEXGbDZnSwFea2trypcvn2bUWrly5UTCJhc6deoUn3/+uajblkELFixISbiZIxnQXcdnH7hhbfX8C3C1WqJdcyua1tHyyYw4Vm4KZ9SoEZYOo9mhTJkyfPbZZ4wdO5b169ezcOFCjh079tTtTSYTGzZsYMOGDVSsWJH+/fvTo0ePXDUqNreSZZmkpKRUia8nE2P/TZQ9LVn25DYZqdH3LNHR0VhpFOxtUkZEP+nuA4X3P1doWhve7ZGyLjEx0bKdLCsEbUjCwxUa1TQhKzpU/yaaHOwkQMlQB92clJyczI4dOwgJCWHLli3ExsZmav8qVarg5eWFp6cnVapUEYm2PMDOzo46depQp04dyzpFUbhz506qhg1nz57l2rVrzxwVFxkZyZ49e9izZ49lnVqtpkKFCmkaN2TVqLhz587x/vvvYdI/pGtbNbM/dUarff5xJUmiWzsbGtfW0Wt4NJdvXaZv375s3rw5S+uICoIgCMJ/iaSbkCedP38eMPF6ped/UFIUiI+Po2yJlOXj/0CpYhIptaTg2NmU9dH/XmvY2kiUKqYQGctLJ92cnJzSnRJaokQJMd0mDxB12zLv3LlzfP75JDBHMWqANWPezfwITXs7FT985oiDfRwLVkUxZswYateuTenSpbMh4hTW1tb07NmTnj17curUKQIDA1mzZg3JyclP3efSpUtMnDiRyZMn061bN/z9/alWrVq2xfiqGY3GF0qOPW2blIRV7htcr4DlpswjMXEKfcYquDjC/G8ky00ao9HAo78dCYkKm/dCn46QmBhPcnIidvZ22NrYPr7Jk80jfl5EfHw827dvJyQkhG3btmU6MVizZk1Lok00GskfJEmiRIkSlChRgrfeesuyPikpifPnz6eZovqs5KzZbObChQtcuHCBtWvXWta7uLikGRVXqVKlTL1GjEYjw4cPx6iPokENMJkU6ncLf2rzrDFTYvlrp56b98xIQOVyGkYPtGPFj860HxjJ5UtnmTZtGpMmTcpwDIIgCIKQWSLplkspioLJZMJsNqPT6USC5j/i4+NBkXF2zMjdTXB2dqFq+Yc0rAHfzoMSRaBcSYXlobD/5OPtHnGyB0lSMnyBWKRIkXSTa+7u7uLOfx6k1+uZN28ec+bMSfeCtEKFCpa6bcJjjy6ITIZoOrRQM/qdtI0QLt8wPbfLMKRcBH49woELV6PZd+Iho0ePZsWKFa/k9VSjRg1mzJjBpEmTWLFiBQEBAVy9evWp2yclJbFkyRKWLFlC3bp16d+/Px07dnylCRdFUUhOTs5QcuxZ0zCfXDYYDK8s/pyiVqsxm+HyzZSmHpIkoTeC38cKcQmwcb4VHm4qJEnCYDBYOmEChO5KSdZ1ezPld1KWZeJi44iNSeDCVRnQ5JqkVExMDJs2bSIkJISdO3dm6mcrSRL16tWzJNpKlCiRjZEKuYmNjQ21a9emdu3alnWKonD37t10R8U9+fr4r6ioKPbu3cvevXst69RqNeXKlUuTjCtSpEi67/VLly7l7JkTuDgk0+0tOz6dGUfDmjpkBdJ76vgEhUE9balSXo0kSazcmITPyGiWzHDm+/GO+I2L5X//m4efnx9lypR5qe+VIAiCIDyNSLrlImFhYQQHB7N//35OnTplqadiZWVFtWrVqF27Nt7e3tSoUSOHI815KV3IJDIys0hRsCROZn8C738OHYekJNNKFIFR/SW+/0Oh0BP9CEyPGis+QaVSUapUqTSJtQoVKoipZfnEo7ptX3/9Nbdv307zuJOTE2PGjMHPz09MA05HaGgoZ8+cxNk+mSljXNO9aDp7yUTIjuRnXig9olJJzJjgwBv9oti3bzd79uyhefPm2XgGqTk5OfHuu+/yzjvvsHfvXgIDA9m4cSNms/mp+xw9epSjR4/y+eef4+PjQ79+/dIdoWc2m7MsOfbo61kXvPmRVqvFzs4Oe3t7y7+2trbpLj9a9+jr0fKBAwf4bOJ4zl2Np1AhV2QZug6N4vJNA7uD3HmtYsrrXFFSkqsJCfGYzSnf5zVbFcoUhzrVUv+en7tiJiFRITYxmsOHD1O6dOkc6ZwZHh7Oxo0bCQkJYe/evZmaiqtWq2ncuDGenp506NBBNA8RLCRJonjx4hQvXpy2bdta1iclJXHx4kVLMu7RV0xMzFOPZTabuXTpEpcuXWLdunWW9c7OzqmScFWrVqVSpUoEBASAksAIfzv6drbBr6st8LiO73/N/dop1XK75lacu2wiYHUimwPcaNVAw44jiSxevJiJEye+5HdGEARBENInGinkAhEREXz11VesWbMGkzEeFD0oRuDRhZ3q33bnKS3P69Spx9dff53qzmNB4+/vz+aNK/nyQw2DetmmffyJRgpGo4nIyEhkWbaMXLt1D5INUKGUxLzl8L9ghRNrH48mbN5H5n6EDe+9P5QWLVpY6q3lxqlCBYmiKMTFxaHX69HpdDg4OGTZKNBTp04xadIkDh06lOYxUbctY7p27crB/VsYPUDF6HfSn1b6rC7DT/PpzFgWrJbo4NWT33//Pcvjfh5FUTAYDCQkJHD16lWCg4NZt24dERERlg6Xj95f0vtydXXFw8MDKysrS4LsWdNW8ytbW9t0E1/pJcv+u016+2RF4jsqKoratWtjSLpDyP+c+XVpAr8tT2LGBAea1Nal2rb2a1p0OkhMTOLG7XhqdjYzrC+Mfzf1e9DkuTKBayXMig1OTk6UL1+esWPH8vbbb2f7qPX79+8TGhpKSEgIBw8ezFQiVqvV0qJFC7y8vHjrrbdwdU3bpEgQMkNRFO7du5dqRNw///zDlStXMn2TwGw2ExMTRRE3E/uW2+PmokWj0aJSqRgwPmN/SwA6vRdJbLzCjiVubNmjp//4eDyKVOHEiRNiZoIgCIKQLcRItxy2ZcsWRo4cSWTEHZDjqfe6mq5tran9mi3lSqqRJHgYKXPqgonNe/SE7Ajn2JEddOz4Nh98MIxx48ZlS6H/3K5GjRps3rSWUxfS3tn8L61Wg6OjY6rOhCWLpvxrNKtYFirj390KFxc71GoNt+4pJCRH4eZeiO+++06MaMpht2/fJjg4mCNHjjwxAjRlKpiDgwPVq1endu3a9OjRg8qVK2f6+M+r29a6dWs+//xzUbftOe7evcvBgwdQS8n06eT21O1UKilNwfrn8etiy4JVUWzevJn4+PjndvKVZZnExMTndq7MTLfL/44SepRoS0pKeu5UvXv37nHv3j3UajU2NjbY2Njk+pIBarU6Q8mx540ke7SNra1trvxb5eLiQufOnVmxPIDZgQnsPJRSjG30d2k7OV7724MyJTTY2dmy/ZCMyRxH97fUPDks+t5DhQ1/Q7JewtHJBoArV67w/vvvU7VqVcaNG8dbb72VpRf3N27cIDQ0lNDQUI4ePZqpfa2trWndujVeXl68+eabYtS2kKUkSaJYsWIUK1aMN99807I+OTmZixcvpkrEnT179pkdpPV6PSrJRK0qCioSiIpKWa9SqdAbZGQZEpOS0Go0aDQay2tMURTMZohPVNiwPZnNe/Qsnu4MQIv6OjRqMw8fPuDu3bsUL148u74VgiAIQgEmkm45KDg4mFGjRiKbIqlaTub78c7UqZY2weNgr6JcKQ1d2lrzMMLMlz/Fs3rzQ36cM5Nbt27x448/5sqLmexUr149kHRs35+AXq9gZSWRmKQQuiNl9MiNu2Zi42VW/pUEQMsGOuzs7PhxYTyO9lC8sMStezBvuRkbazWffeCMlVXKRfDGXQkg6ahRo4ZIuOWgs2dTChxv3boFRU4CxfCfEaAQFx3Ovj232Ld3Kz///BONGzdh1KhRNG3a9LnHF3XbstaJEydAMVKlnJoiHum/H5llmeSkZJKSkrCxedwERVH4d1SY/G8yK/VIsZJFFAq7yVy7G8VHH32Ei4vLMxNqr6JjpCRJWFtbY21tjclkIikpiaSkpGfWgTSbzZZ4rayssLGxQavVZkkCxsrK6rmJr4wkxx4tW1lZFZhRH0OGDGHt2jVs2Xufnz93outbz2/QM6yfPcP62SPLiiXBK8syX/6kEBkjoVJr0/z9+OeffxgwYAA1a9Zk3LhxtGrV6oW/x5cuXSIkJISQkBDOnj2bqX3t7Ox488038fLy4o033sDWNu1ocUHITtbW1tSoUSNVuRRFUQgLC0szPfXKlSuYzWZMJhMaNVQtn/o1I8sysjkl6RYb87jBg52dHQ4O9mzbZ6Ctf0q5Fo0GfprkSI8OKQlxKyuJymXVnL1q5OzZsyLpJgiCIGQLkXTLIbt27UpJuBnD6dNRy7ejM9by3MNNzU+fO/Fmk2SGfxPN2jUr8PDw4Msvv3wFUeceTZs2pXjx0ty5Gcu6bcn09LThQYQZ74+iU233aPnvxa60bOCAgp4ZC4zce5jSlc6zJYx/V0GrMQMqZFlh4dokkBzx8fF55eclpBTj/+GHH5gz5wdMhhhQEmlWV4tXKytqVrGlcjkN1lZgNMKVmyZOnk8ZBbp5Tzz7927Ce/9e/Pz8mThxYrojojJSt23s2LH069dPJF0z4cyZM4CJGlVSf88UBQwGA0lJSU9MqVRISJAxGBVMJjNhYWHPPX7lMjIXryeyevXqXJck0Gg0ODg4YG9vT3Jycroj456kKAp6vR6DwYCdnR0lS5akXLlyODs7v9A0S1tb2xypGZZfVKlShREjRvL9tG8ZMyWaEkVU1K+he/6OpIzctLe3w8bGhk9mRLHnmIHEZBWuro5PTaidPHmSPn36UL9+fcaPH0+TJk2e+zyKonDu3DlLou3SpUuZOkcnJyfat2+Pp6cnLVq0EKUShFxHkiSKFClCkSJFUt3s0uv1XLx4kVGjRnH86E6KeCioVDx3eqqiKMTGxlGrqo7Dq92IiVPYuEvPh1/HotFIvOOd8nfEw1UFV5VnjrITBEEQhJchPqXngNjYWEaOHIlsiqJnBw3Txjuk+nDeqk8EOw+lP11p6Sxner9tQ5e21mg1MGhiNL/99j/atWuXoQ/u+YVaraZfv35M+e5Lpv8eh2dLK8qU0KBcKvrM/T79wI0hPlEYjamnpUZHR+Pm5kbg6mRu3FXh6OJOly5dsvEMhPTExsbi7+/Pgf27QI7Fq5WGjwe7Ur502rcqnQ6qVtBStYKW3m/bcO+BmR8CE1i4NoKFgb9x4MABli1bRpEiRSz7PK9uW//+/Rk9erSo25ZBycnJhIeHEx4ezrFjxzAZ9Xi4pNTdM5nMGI1GzGZzuqO/ZNmELGd8imURD1BJz7/Qyg6ZLdhva2tLWFgYe/bsYd++fZjNZiRJSvX1pIiICJKTk/H29sbPz48qVaq88nMs6IYNG8bhw4fZ8fcmeo+I4ZuR9vR+2zpDI9GiY2UmTI9j3TbQWHnQ9c2WHD58+LnTjg8fPkyPHj1o1qwZ48ePp27duqkel2WZ48eP89dffxESEsKNGzcydU7u7u506NABLy8vGjduLG4iCHmSlZUV1atXp3Llypw9vR8rKzUeHnbIsozJZMJkMqJWJyBJMpKUcqMnpcRAAiBhbW2mXnVnANo0scJkhlHfxuLfzQa1WuLfvigFbsaIIAiC8OqIpFsO+OGHH7h39xplipn4drRbmg/1v3zhSGx86ovU2YEJrNqUzJtNHt+d9mptTd9OBhZviOXjjz9mx44dub5OUFZ65513CAoK4ub103z5Yzzff/z8WjSSJOHs7ExkZGSqDoSyLHPibCSTf5VB7crHH3+MjY1NdoYv/EdiYiJ9+vTh6JG9ONjE8f14Bzq1ef40r0eKFlIzZawjb7c28OFXMVw8f5xu3bqxbt06ZFl+bt22L774gooVK2blKeU5ZrOZ6OhoSyItIiKChw8fWpb/+5WQkGDZNzY2FhV6kpMV4uP1Garblpk+PpmZhZeRgv1PGzmWlQX7R44cSVRUFMuWLWPRokVcv379qdsmJCQQEBBAQEAADRs2xN/fH09PT5EoeUW0Wi2///47gwYNYvu2TYyeEsuaLcl80MeW5vV1luYfT4qNk1mxMZkfFybwIMoKldadGd9Px8fHh3v37jFnzhyWLFny3K6he/bsYc+ePbRp04bRo0eTlJRESEgIoaGh3L9/P1PnUbRoUTw9PfHy8qJ+/foikSDkG0WLFgVJzbXbZiQJ1GoVarUOKysdOp0RtdpIoUIeGAx6IiOjgJTXrF5vSNXAp+7rGmYHKDyMlCnioebqLTNI6pTjC4IgCEI2EN1LX7GkpCRq165NbNQ1Aqfa07ZZxqZ4lGv9gKrlNYTMT91NLC5epl63cOKS3Vi2bAUtWrTIjrBzrb179+Lt3R3MkYwfZMNwf7sM7feoo+mjX/97DxUGfaZw+ZaWN9t2Ijg4uEAlMHOD4cOHsyJ4MU62saz40ZnXK714suH2PTPdh0VxK8wWj8KliY+PJykpKc12BaFuW1JSkiVxFhERYUmYPZlMe7Q+IiLihUaSmUwmYmJi0KoN+HeFT9579vYpCTSJEd8qnLwAuxarkSRVmtFgKtWj/6sYPjmZ9ds1dOzci86dO+e5gv2yLLNr1y4CAgLYunVrhr7P7u7u+Pr60q9fP1Fr6BUxm83MmzePadOmYdBHg5xIEXeFOtW0VCqjQaeViIqVOXPRxPFzRpKNOpBsqVDxNWbPnk2dOnVSHe/mzZvMmjWLFStWPPVn/qg7rl6vt3RmtrOzy/CU4TJlylgSbbVq1SowtfiEgmXDhg28N3gAr5ePY3NA6mY9/+2EHRkZicHweEaDo6MjtrYpN1Lf/yyGpX8mEXG4MNGxCjU6hoO6EOfPnxeNRARBEIRsIZJur9iaNWv4YOggShWOZV+wW7p3z//r7/3xvOEXx8LvHenXJW1SaeLMOP5YDZ269GHu3LnZEXau9uuvv/L111+AOYo+HXV8/qE99nbPT5jp9XqioqI5cFLhsx8Urt+V0Bs0DB8+nO+//z77AxcstmzZQv/+/VApEaz60YmGtTJWT+lpFAXOX07Ac1Asdx+osLF1SFUHLC/XbTObzURFRT119NnDhw9TJdeyq6mAoihoNBqSkpIsReQlDDSrA4umSZbE2rMMnyxz+pKKcxsLP/f5GnuHc+O+M8uDV9G8efOsOYkccufOHRYvXsySJUsIDw9/7vYqlYo333yT/v3707JlS3FD4BW4fv068+fPZ8WKFcTFRaU0cVHMpHQqVYGkAUlL5cpV6d+/Pz4+Ps+sk3blyhVmzJjBunXrLA1CDAYDycnJ6PX6dEd9WltbY29vn24SuVKlSnh5eeHl5UXVqlVFok3I98LCwqhbtw6y8QE7FrtQooja0jzr5yWJXLlpYuaElKRZ/eoyV67H8c1chY6tJcqW1KBS2/Pn38nMD07iu9EOjH/Pnv8tS+SLnwxUr9mcTZs25eTpCYIgCPmYSLq9Yp9++ikLfv+R93opfP6hw3O3j42NY8TkeJb/BafWgr2dGq1Wa7kDLkkSB0+a6TNGj5VtMT7++GM0Go1lm0f/6nS6dNc/+e+jr2dtl1s/2Kck3r4EOY4ShY2MfdeOTm9YY2X19HgvXjMxJzCG4L8MxCdKmGUtzs7OqNVqpk2bRt++fV/hGRRcRqORxo0bc/f2OYb0VvPZsJTXxeUbJqbPT+DACQNnLpmoUk5juYsNKVO7Zi5IIHSnnovXTFjpJBrU0PLlcFvKFE3EYDCyLEThm7kK0XFq3N3d0Wq1+Pv7M3r0aJydnXPojNNKSEhIM+osvZFoDx8+TDVCM6tZW1vj4eGBu7t7ul9ubm48fPiQ7du3s2XLFuLj4y37mkwmIiMjKOIus3WBhLND+q+9xGSF7ftT/h+4TuLGHZj5ScqFUssGOjzc0iYYbt0z07BHBKgLce7cuVz1s3sZRqOR0NBQAgMDOXDgQIb2KVOmDH379qV37964uro+fwfhpSQmJnLixAlOnTrFzZs3MRqN2NnZUbVqVWrWrEnlypUz/HcxISGBwMBA5syZw+XLlzP8OraxscHOzo5atWrh5eWFp6cnFSpUeJnTEoQ8aeDAgWwMXYHv2wrD+tpStvXDdLfbttCFQs4xfPaDzJGz8DASnBwkqpTTMmqgHZ3ftMZgUGjVN4Lr9xyZ9v1s8ZlPEARByDYi6faKdezYkaOHt/HL59Z0afv8elX37j2keicTzevCz5NSP/ZoClZ8okIzX4XwaBXu7h7ZOgpCo9FkSfIuq5KATx7n9OnTzJw5k7D7N1GRjKuTidYNdVSvoqFsCQ1arURMrMLpi0YOnzJy5IwZJGviEmQURcLe3t7yvdNoNAQFBdGsWbNs+14KKVKmjLyDh3MUB1e6Y/1vonTd1mSGfRlDw5o6Ll43IcukSrqduWikrX8k7/SwpUV9HYnJZqb9FseJf2Q2/iZRqYyELCv4jFY4fEbi9er1WLJkySup22YymZ46Gu2/I9HCw8PTnfqaFSRJws3NLVXSzN3dPVVi7cl1T+sKGh0dzapVqwgKCuKff/5JdxtFUYiMjMTW2sDHgyT6d0k/EXHngYp63dOvcfX3YldaNUw7WujbX+P5aYlMi1Zvs2zZsgyefd5y/vx5Fi1axIoVK1IlM59Gp9PRuXNn/Pz8qFOnTq69IVLQxcbGsmXLFkJCQvj777/R6/VAyntEfHy8ZflptFotVlZW2Nvb4+fnx/Dhw1M1hxGEguTgwYN07doZzBGs+smJxrWfPio+Ojqa5OTHr6+UWp6PZ4tMmRfPnEVG3AtVZP/+/djZZaw8iSAIgiBklki6vWJNmjTh+pWjrPvVgfo1nj+Fbsna+/QdqxDwHbR9SnNSSZJo2U/h2h0VLi5uGa4Dkx/JskxSUhJJSUlImNFqFDQaUKtSfs0VBUxmCZMZjCYVtrZ2uLi4EB0dbZmG9+jiVaPR0KBBAxwdHXM0mfisf/PDNDNvb2/27v6LEX4qxg22t6x/svDxf+u1ACQkykiShI01JCQkkpCQQHyCTH1vha5vwuSRKd+b9dslJv2opkz52uzbt++FvmeKolhGoz2vuUB4eDhRUVHZNhrN1tb2qSPR/vvl4uLywvXNZFlm3759BAUFERoa+txOjJBSPy4pMYZKZRRW/yhhb5vy85MkCSsrK2xsbNDpdJlqivAwwkwL30hiklz444+FtG/f/oXOJ6+Ij49n9erVBAYGPjXB+V+vv/46/v7+dOnS5amJU+HViYiIYNOmTYSGhrJ79+403bKfZDQaiY+PT/X60ul0WFlZYWVlleb1q9Pp8Pf3Z9iwYbi7u2fbOQhCbjV27FiWLP6dom5xrJ/rSvEi6f+NS07WEx0dbVnWaNS4ubkjSbBlj56BE2IxS27Mn/8Hnp6eryh6QRAEoSASSbdX7FHSbe0vDjSo+eykm9ks0/PDMP4+BMdXg/YZubSW/eDabbCxTSkqnh+SMS/jUb0co9GIyWRClmUURUGSJEvSSqfTWS5oZFlO09EUUlrIu7q65trvp1qtzrUjDzNyHLPZTLVq1TAb7rE/2JXSxdP/JU8v6aYooNcnExcXn+rn5jlYpmghWPCtJuWutmRDNc+H6M3u7N27n7JlywIpF7uRkZHPbS7waN3zRqS8KJVKZRltlt5ItEfrPTw8cHNzy/akSlhYGMuXL2fp0qXcuHEjU/sqikJERAR21iZ831b48iMdNjY22NhYv3Cyc9CnMYTuUlOteiP++uuvAnNTQVEUjhw5QkBAAH/++eczEzePODo64u3tTf/+/cX0w1csLCyM0NBQQkND2b9/f6Yakmi1WipXrkx4eDh3797N0GvFxsaGd999lyFDhuSb6daCkBFxcXF4eXlx+eJJihdK4o/vnKheOW1tVkWBhw8fIMuPL3NcXV1Ys8XMuGnxGGVnevv0Y+bMma8yfEEQBKEAEkm3V6xz584cPriFnz6zols7m2du+zA8nrJvxNGtLUwZ/fTt4hKgRT94EMG/Hf9UWFtbY2trW2AuULNCSk2qtPWydDodzs7OYvpWNjAajcTERFKxlMy2gMfdK4En/oVhX5s5eV5hT5AOJNBqtJhMxlTdyQBi4hRqd1MY6qvh6xEOKIqCLMv0+DCB/Sc1vFatNjqdzjIaLbvY2dlZkmRPJs8eJdOeXP+ojmBOMhqNbN++naCgILZt2/ZCHUwfUalUxMREYW+jZ9o4e/p1efEk4U+LEvh2bhIaq8Js3LiJ11577YWPlZeFh4ezbNkyFi5cyO3btzO0T7NmzfDz86Ndu3Z5rllIXnHr1i1CQ0MJCQnh6NGjmRrdamVlRatWrfDy8uKtt97C0dERRVH4+++/mTp1KqdPn87QcRwcHBg8eDCDBw/GweH5dWIFIT+4d+8e3t7eXL1yFjXxDO1jw+Betri5pE5Yx8bGkpiYUr7h0g2FX5eq2XFYApUTnTp358cffxTvj4IgCEK2E0m3V2zixIn8MX8O7/ZQ+GrE0z8gKwrMX/aAwZPMrPkRGtZM/diTDp2CdyZCVKxkuXh/9GPV6XRYW1tjZWUlkkYZYDAY0k3G2NjY4ODgIL6HWSwxMRGDPpYOzRV+nvT00R3DJ8ucvAA7FqoA5d/fb+nf/z/ebtx0WLMVdi+WKFbo8c9q8lyZgDUSktoee3v7/x7+udRqNW5ubpYRZ8+a0unm5oaNzbMT6rnFtWvXWLp0KcHBwTx48OCljlW3bl18fX3p2LEjv/zyC7NnTwdzFBOH2vK+j22GOjU/YjIpTP89gTkLk0HtwpdffsOgQYNeKr78wGw2s337dhYuXMj27dszlOQpXLgwffv2pU+fPqIWWBa4cuUKISEhhIaGcurUqUzta2try5tvvomnpydt2rR5ag0pRVHYtGkT06ZN4/z58xk6trOzMx988AEDBgwQU4yFAiEyMpIJEyawYcNakOPRqvW0a66jbjUtVcppsNJJhEcZOXIqjgMnFY6dA71BhbNLcUaPGcMHH3yQ4ze8BEEQhIJBJN1esfXr1/P+e+9QzD2GgyvdUKvTvxDV6w10fj+CM5fg8ArpmcmeyXNlAtdKmBUbnJyc0t2mUKFC9OrVC29vb1xcXDAajZapl0/712AwvNTjj54jq57nv1M/s0tSUhKxsbFp1tvb24tCu1ksISEBszGO3p4K34x4ftLt70AJRVFQqVRpRmMF/wUjp8APn0j07JD69fLrUoVZgSBji6NjSqdMBweHDI1E8/DwwMnJKddOMc6s5ORkQkNDCQoKYt++fS91LGdnZ7y9vfHx8aFKlSqW9Yqi8MUXX/Dbb3PBHE2jmhJTxjpSqezzR96eOm9k3LQ4Tl0A1M6MHTuekSNHvlSc+dGNGzdYtGgRS5cuzdCoTbVaTbt27fD396dp06biBkIGKYrC+fPnCQkJISQkhAsXLmRqf0dHR9q1a4eXlxctWrTA2vr5DZQekWWZDRs28P3333P16tUM7ePu7s5HH31Ev379sLJK25REEPKbv/76izlz5nDy5HFQ9KAYQXnUrEciMcmAwahgMErodFb89NNPDBw4MEdjFgRBEAoWkXR7xfR6PXXq1CEq/DLzJ9vh2Sr9D+CR0TJFm4QxxEfLhMHyU0c0xMYrtHtX4U6YCkcnF3S6Z9eJ02g0dOjQgf79+9O4ceM8deGlKMorSe4ZjUa2bt3KoUOHLM/7SIsWLShSpMhLPY/JlH7nxoIos0m37QEpy5IkWX4ukiSx/SD4f6zwkZ/EJ+9pUalUqb5+CDTywyLo2NmXL7/8Ejc3t0xd/OYHZ8+eJSgoiFWrVqWbVM6MFi1a4OvrS/v27Z/6nqMoCgsXLuTrr78mMf4hKAk0q6ul21vW1KqqpUJpNRqNhNGocPG6iePnjKz4K5nDp82gssPRqQjffvst3bp1e6lY8zu9Xs+ff/5JQEAAR48ezdA+5cuXx8/Pj549ez71Rk1BpigKJ0+etCTarl+/nqn93dzcaN++PV5eXjRt2vSlp6+ZTCZWr17NjBkzuHXrVob2KVKkCCNGjMDHx0dMnxMKhBMnTrBjxw5OnTrF9evXMRqN2NraEh8fz9mzZy2NSTp16sTcuXNzOlxBEAShABFJtxwwZcoU5vzwPcXc4/h7kSsO9s8eQfOoI2diYlKa0V4Tf5BZuUkiSa/F1dU1U0m0SpUq0b9/f3r06CFqwfyH2Wzm3XffZdOmTanW29jYsG7dOl5//fUXPvazkofZlUTMjufJiuRhUlIS+uQY3mys8L+vMpd0s7Kyws7OlsOnFdoNjKa3lzW/f+ec7v6jv4tlaaiGESM/Ydy4cS8dd14RGxvL2rVrCQoKyvRUuP8qUqQIPj4+9OrVi1KlSmV4v5s3b/LFF1+wefMmZHOiZSSCJMloNRJGk4KiqEHSgmSFRmtPx44dmTRpEoULF36pmAuas2fPEhgYyKpVq0hKSnru9tbW1nTp0gV/f39q1KjxCiLMvcxmM0eOHLFMHb17926m9i9cuDCenp54eXnRsGHDbJm2ZjQaWbZsGbNmzeL+/fsZ2qdkyZKMGjWK7t27ixqvQoF0+fJlWrRoYVm2srLi1KlT4nOvIAiC8MqIpFsOSExMpE2bNty4dopOreHnLxyfOs30SYoCBoOexMSklNENfyt8MlshKkaFs4vrC9/NtrOzo0ePHvTv3z/VFLGCLiEhgS5dunD27NlU64sUKcJff/1V4BMCGUkePi+5d/nyZb78YhIeznEcXeOAJD2uWfjorcloNPL+pCTL9FJIqY3k5OTIuUtGmvtG0KS2jjW/uKDRpP86ats/grNXHZj/+0I8PT1fyfcnpyiKwuHDhwkKCmL9+vUkJye/8LE0Gg1t27bF19eXVq1avVQi4fbt2yxdupT9+/dz+vRpEhLiLY85OjpRo0YNmjRpgo+PT4F/bb2s2NhYVq1aRUBAAJcuXcrQPrVr18bPz4/OnTtn+ShQRVE4deoUx48f59SpU9y/fx+TyYS1tTXly5enRo0a1K9fnxIlSmTp8z6P0WjkwIEDhISEsHHjxkzXNSxVqhReXl54enpSu3btVzYFXa/Xs2jRIubMmUN4eHiG9ilXrhxjxoyhU6dO+WaqvCBkVIcOHTh58qRledasWfTq1SsHIxIEQRAKEpF0yyEHDhygZ09vTPqHdG2rZvrHjthYZ2yUmqIoLF6XyMffxxMRI6HT2b5Qcfj0NGrUCH9/fzp06CCmpJDSIcvT05OwsLBU62vWrMnq1avzTMH83MpoNFKhQgWMyXfZvtCFKuUfj8RITFJYuyWexMQEFqxWuH4HvhwmYW1jQ7vm9ihA3S7hKAos/N4Z2ydeP472Eq9VTPn9jYmTqe4VjgkPDh06/Mov7F+V8PBwVqxYQVBQEFeuXHmpY5UrVw5fX1+8vb3x8PDIoggfk2WZhw8fYjQasbKywt3dPU9Ndc8rFEVh//79LFy4kNDQ0AyNTnVycsLHxwc/Pz/KlCnzUs8fGxvL8uXLCQwM5OrVS//WWjICMvCoGYrm31GOWlq1ao2/vz9vvvlmtiWGDAYDu3btIiQkhE2bNhEdHZ2p/StUqICXlxdeXl5Uq1YtR39vExMTWbBgAT///HOGz6NKlSqMHTuW9u3bi9ecUGD8/vvvfPbZZ5blZs2aERwcnIMRCYIgCAWJSLrloPXr1zNs2AeYDBGULW5i6lhHmtbVPvOD8O17Zj6bHcemPSZQO+Pt7UOjRo1YtGgRJ06cyLLYChUqRJ8+fejbty9FixbNsuPmRSdPnqRr165pRgy9/fbbzJ07V4waeEn+/v5s3riKd3uQqqPvhatJVGkXne4+fy92BaB138h0H2/ZQMeOJW4A/LY8kc9/NFC1WmO2bt2ary40zWYzO3fuJCgoiM2bN7/UlF9ra2s6duyIr68vDRo0yFffJwHCwsIICgpi8eLF3Lt3L0P7tGzZEn9/f9q0aZPpqYlbtmxh7NixPAi7BUoidtZGGtTQUqOylrIl1ei0EvGJMv9cMXHyHxPH/zGhYAMqWxo3bsaMGTNeOun3SFJSEtu3byckJIStW7cSHx///J2eUK1aNcvU0UqVKmVJTFkpLi6O3377jXnz5hEXF5ehfWrUqMG4ceNo3bq1eK0L+d7Dhw+pU6eOpUSLJEkcOXKkwH++FQRBEF4NkXTLYbt372b48OHcv3cd5Hiqlpfo3s6aGpW1lCupRq2GBxEyp86b2LJXz9Z9BmRs0Fq5MHr0GIYNG2ZJ+pw4cYLAwEDWrl2LXq/PkvhEx7sUf/75J4MHD06zfvjw4YwfPz4HIso//v77b/r06Y2jTQQHV7rj5KBCrzcQHR2dqomFvb099vaZ6x5rNCq07BPB9XuOTJk6Ez8/v6wOP0fcunWL5cuXs3Tp0gwnUJ6mevXq+Pr60rVrV0tnVyH/MplMbN26lYCAAHbt2pWhfYoVK0bfvn3x9fWlUKFCz9zWaDQyYcIEgoIWgxxL2eIm3uttS7e3rLG3e/oNiht3TCxam8SCVckkGWyxsXNn+vTpdO3aNVPn90hcXBxbt24lJCSE7du3Z3qadZ06dfD09MTT0zPLkn/ZLTo6ml9//ZX58+dnqKYfQL169Rg/fjxNmzbN5ugEIWf17duX7du3W5YnTpzI0KFDczAiQRAEoaAQSbdcIDY2lilTprBs2TKSk2IetzznUdMElWX6DZINzZo158svv6Rq1arpHi8qKoply5axcOFCbty4kWVxVqhQgf79++Pt7V0gL87nzJnDlClT0l3fo0ePHIgof5BlmdatW3PpwlF6tleYOtYmTcLNzs4Oe3t7MpvznfF7PDMWGHFxK8fBgwezbBp2TjAYDGzcuJGgoCB279791I7GGeHo6Ej37t3x8fF5qaYgQt527do1Fi5cyLJly4iJiXnu9hqNBk9PT/r370+jRo3S3IQxGo289957bPxrPSpieL+3NWPetcfaKuMv3Bt3TIz6No79JxRQOzN9+kx8fX0ztG9UVBSbN28mJCSEnTt3YjQaM/y8kiTRsGFDvLy86NChA8WKFcvwvrlNeHg4P/30EwEBARgMhgzt07RpU8aPH0+9evWyOTpByBlr165NlWSrWrUq27Zty8GIBEEQhIJCJN1ykZiYGFatWsWBAwc4efIk9+/fx2w24+TkxOuvv07t2rXp0aMHFSpUyNDxZFlm586dBAQEsHXr1pe6SH+SjY0N3bt3x9/fn9deey1LjpkXKIrC8OHDWblyZar1Wq2WFStW0KBBgxyKLO87cuQInTt3QjY+4PuxCm82fvzYiybcjp4x0nVoNCZcmTv3Nzp16pS1Qb8iFy5cYOnSpaxYsYKoqKiXOlbjxo3x9fXFy8sry4vlC3lXUlIS69evJzAwMMNlCtLrfj1+/HgWLfwDnTqK+ZOdeLOp1QvFI8sKk2bH88cqA5LGjYULF9GmTZt0t33w4AEbN24kJCSEffv2penw/SwajYamTZvi6elJ+/bts6V+YU66f/8+c+bMYcmSJRlOQL7xxhuMGzeuwHezFfKfpKQkatSoQUJCgmXd1q1bC9TnWEEQBCFniKRbAXHr1i0WLlxIUFDQS1+4P6l+/fr4+/vj5eWFTqfLsuPmVgaDAW9vbw4fPpxqvaurKyEhIZQuXTqHIsv7hgwZQsCC/+HmLDPnU4kmtSVsbW1xcHDIdMLt9AUjvYZHE53gwNsdezBv3rw8NTU6ISGBDRs2sGTJEo4ePfpSx/Lw8KBnz574+PhQrly5LIpQyK9OnjxJYGAga9asyVCZAltbW7p3707lypWZOPETJDmCgCmOtG32Ygm3RxRFYezUOIL+lClctDI7duzAyckJgDt37hAaGkpISAiHDx/O1A0lnU5Hy5Yt8fLy4q233sLZ2fml4swLbt26xaxZs1ixYkWGk5IdOnRgzJgxTx1RLwh50YgRI1I1UBgyZEiqBguCIAiCkB1E0q2A0ev1bNiwgcDAwJe+mH+Su7s7vr6+9OvXj+LFi2fZcXOjiIgIvLy8uHnzZqr1FStWZMOGDQVy6u3LOn78OL169eL27dvIcjJuTgqjBlgx3N8FjSbjyTJFUQgOTeaz2fHEJztQp24Tli9fjp1d5mrB5QRFUThx4gRBQUGsXbs21d34zFKpVLRp0wYfHx/atGkjOhELmRYdHU1wcDCBgYFcu3btmdvKskxERARO9jLv9dbxzSiXTCfK05OsV2jrH8GV2/Z08OxKnTp1CAkJyXTTIBsbG9q0aYOXlxdt2rTJ09PMX8bVq1eZMWMGa9euzVCiUpIkOnfuzJgxY0TCXsgXdu/eTa9evSzLhQsX5siRI6jV6hyMShAEQcjvRNKtADt9+jQBAQGsWbMm00Wmn0alUtG2bVsGDBhAs2bN8m1nz4sXL9KxY8c0neJatmzJokWLMt3pryA7ffo03t7exMbGoigKsbGxqFUK9rYydV6DcYPsaFZPh0r19Kt4RVE4dtbErAXxbD8gg8qRJk1bsmDBAsvUt9wqKiqKVatWsXTpUv7555+XOlapUqXw8fGhV69eFClSJIsiFAoyWZbZu3cvAQEBbNq0CVmW02yTmJiIPjmW18orrJwjYWejZuMeDSs3yRw7ayIqVqFiaTUf+dkxoIeNZdRpYpLC1z/HsTwkmfvhZkoUUePfzZZxg+xQqyVMZhP7jybiPTyRiGgJNzf3DF8cOzo60rZtWzw9PWnVqhU2NjZZ+n3Jy86fP8/06dMJDQ3N0PYqlQpvb29GjhxJqVKlsjk6Qcg+ZrOZevXqERYWZlm3fPlymjdvnoNRCYIgCPmdSLoJxMTEsHz5cgICArh+/XqWHbds2bL4+/vTs2dPy7Sg/GTHjh3069cvzXSdAQMGMHny5ByKKm/5559/6N69O9HR0ZZ1PXr0oHHjxnzxxRfExYaBnEiZ4uDVyooalbVUKa/B2krCYFC4ctPMyfNGtuzVc+aSDJItOmtnxo0bz+DBg3Nt8lOWZfbt28eSJUsIDQ3NVMH3/9JqtXh6etKnTx+aNGmSbxPdQs67d+8eS5YsYfHixTx48ABISXhHRkZiZ23g0/cl+nRMSai9/b5MySLw9htaihexZsdBme/nJzBpmD2ff5iSCB/4cTSrNiXz7WgHXqugYd8xI5/PiWNkfx3jBymYTCnvrQM/ldl5SEKttX/mKDUXFxfat2+Pl5cXzZs3FyM8n+P06dN8//33bN26NUPbazQafH19GT58OEWLFs3m6AQhe3z99df8+uuvlmVvb29++OGHHIxIEARByO9E0k2wkGWZ3bt3ExAQwJYtW9Id0fAirK2t6dq1KwMGDMh3nRIDAgL45JNP0qyfPHkyAwYMyIGI8o4LFy7QvXt3IiMjLeu6dOnCjz/+iFqt5t69e/z000+sXLmSuNgIUAyAERQz8OhtSwOSBiQdOisHunTpwgcffEDFihVz4pSe6/79+yxfvpylS5emmZ6cWVWqVMHX15fu3bvj4uKSRREKwvMZjUY2btzIwoUL2blzJ1FRERR1l9kWIOFgl5J0i4hWcHN+PDpVrVYzbjqs3mwi6mhhABxqhTHmHTs+HWKNXp9McrKeD74ycugUHFj+OHm8cbfC6KkKcYla3N3dU8VSuHBhPD096dChA40aNcq1ifbc7OjRo0ydOpU9e/ZkaHudTkf//v0ZNmxYvms+IeR/586d480337Qs29nZcfLkSWxtbXMwKkEQBCE/E0k3IV137txh0aJFLFmyhIiIiCw7bt26denfvz8dO3bEyurlCm3nFhMnTuSPP/5ItU6lUrFo0SJat26dQ1HlbleuXKFbt248fPjQss7Ly4tff/01zUVzQkICISEhHD16lJMnT3L9+nX0ej06nY4SJUpQo0YNatWqRadOnXJl8sloNLJt2zaWLl3Ktm3bXiqZbWdnR5cuXfD19aVWrVp5qjmEkD/Nnj2bLz+fQJNayfw++dmjLAPXKHw8U+HmDhucHLR4NIpl4hAVg7wfbzNxtsyWfXAw+PGxomIVWvkphEep8PDwoFSpUnh5eeHl5UWdOnXE6M4ssnfvXqZNm5amUdDT2NjYMHDgQIYOHZor33sF4WnatGmTqpzDL7/8QpcuXXIuIEEQBCFfE0k34ZkMBgMhISEEBARk+IN4Rri6uuLj44Ofnx8lS5bMsuPmBJPJhJ+fHzt27Ei13t7envXr11OlSpWcCSyXun79Ol27dk1VU6Vdu3b873//y1fTwa5du0ZQUBDBwcGpkosvom7duvTp04eOHTvmiaYQQsExceJE/pg/h0HeMuMHaUlKSsRoNKW77dCvZA6cgGOrJWRZYfwM2H0E5n4hUbE0HD0Hgz9TGNFf4v3eqRPKnoMVrt6x5Yc5P+Pn5ycSztlEURR27NjB1KlTOXXqVIb2sbe357333mPQoEGikZCQJ/zyyy988803luU33niDxYsX52BEgiAIQn4mkm5Chp09e5bAwEBWrVpFUlJSlhxTkiTefPNN/P39admyZZ4dsRAbG0unTp24ePFiqvUlS5YkJCQkzZSogurmzZt069aNu3fvWta1adOG33//HZ1Ol4ORZY3k5GRCQkIICgpi//79L3UsFxcXvL298fHxoXLlylkUoSBkrcGDB/Pn+iAmj9AwoIctipIyujMpKYnk5GRLl8yDpxS6fajw+VB41zvlvV+WYdx0haA/Hx/vw77wyXspfwc0Gg3W1tZYWVvRZ1Qce47b8suvv4sRKa+Aoihs3ryZadOmZbjBi5OTEx988AEDBw4UU/WEXO3evXvUq1fP8v6kVqs5duyYmC4tCIIgZIu8meEQckS1atWYNm0ax48f5+uvv6Z8+fIvfUxFUdiyZQt9+vShWbNmzJ07N1VR/bzC0dGRhQsX4urqmmr9rVu3GDhwIHq9Pociyz3u3LmDt7d3qoRbixYtmD9/fp5PuJ05c4ZPP/2UWrVq8eGHH75wwk2SJFq2bMm8efM4fvw4X3zxhUi4CbmayWQCFB41FZUk0Om0ODk54uHhjoODA2ERKt7/XKFJbRjY/fG+38xV2LYfZoyXWP2jxMT3JX5fCb+vSqnd5u7uhr29HVqNBs2/x3+ZpiNCxkmSRLt27diyZQtz587N0N/7mJgYvv32Wxo1asRvv/0m/u4JuVbRokVp2rSpZdlsNrNu3bocjEgQBEHIz8RIN+GFKYrC3r17CQgIYNOmTWm6eL4oKysrunTpgr+/PzVr1sySY74qhw8fpkePHmkuDLt168aPP/5YYKdE3b9/n27duqXqjtu0aVMWLlyIjY1NzgX2EmJjY1mzZg1BQUGcPn36pY5VtGhRfHx86NWrV56fbi0ULEOHDmXt6oVMHKJmaJ/UU59lWeFuWDxt/eORgDU/gcO/m5y/Cm0GQMB30PENK6ysrLG2tmbKvAS+/jmehwcL42D/+L5gx8GRHP3Hnv/9FsDbb7/9Cs9QgJTk6urVq5k5c2aGm8AUKVKE4cOH4+vrm69KBwj5w/Llyxk5cqRluWbNmvz11185GJEgCIKQX4mRbsILkySJZs2aMX/+fA4dOsTIkSOzZGi+Xq9n+fLldOjQAU9PT4KDg0lOTs6CiLNf/fr1mTlzZpr1q1evLrAt6R88eECPHj1SJdwaNmxIYGBgnku4KYrCwYMHGT58OLVq1WLChAkvnHDTaDR4eXmxePFiDh06xJgxY0TCTchzKlasCJKGf648ruOmKJCQkMitOw/p9kE8sfGwZLqEk4MKlUqFVqvl8s2UGxCvV5RwcHDEzs4WtVpF7de06A1w+/7jmzhms8L5qyaQNLm2M3F+p9Fo6NmzJ7t372batGkULVr0ufvcv3+fCRMm0KxZM5YvX/7vqEhByB08PT1TNfQ6efIkly9fzsGIBEEQhPxKjHQTspTRaOSvv/4iICCAAwcOZNlxnZ2dLY0XSpcunWXHzS7Tpk1j9uzZadbPnTuXTp06vfqAckh4eDjdu3fn0qVLlnV169Zl6dKl2Nvb52BkmfPw4UNWrFhBUFAQV69efaljlS9fHl9fX3r06CHqxwh53rZt2+jXtzflisewe6k7ycnJxMfHo9ebGPipwpEzsOYnicplJbQ6LQ72Dmi1WjbvekD7d80s+Fai85vWuLg4A/D1T3F8Piee+JNFsLVJScxdvGaiVd8obOxLcfHiRdSP5rIKOUav17N48WLmzJmT4UYxZcuWZcyYMXTq1En8DIVc4f3332f9+vWW5eHDhzN+/PgcjOjFmEwmtmzZwo4dOzh16hT3799HURSKFClCjRo1aNmyJW+99ZYYcSoIgpBDRNJNyDbnz58nMDCQlStXkpCQkCXHlCSJ1q1b4+/vT+vWrXPtB3dZlhkyZAgbNmxItd7Kyoo1a9ZQq1atnAnsFYqMjMTb2ztVEe5atWqxbNmyPNHhzmw2s2PHDoKCgtiyZctLjdKwtramU6dO+Pr6Ur9+/QI7zVjIf6Kjo6lZsyaGpDssmylRuYwMwJhpMks2wOcfSDSqpcbGxhadTosE1H5Ni9GYTDOfaO4+gLHvSNSs6sjRszJf/xyHb0cb5n/rbHmOqfPi+WGRTItWb7Ns2bKcOVEhXYmJiQQEBPDTTz9luB5r5cqVGTt2LB06dBDvhUKO2rp1K35+fpblkiVLsn///jzT1EtRFIKCgpg+fTphYXdATgaMoPw7UlhSA1qQrClcpDgjR46kb9++eeb8BEEQ8guRdBOyXVxcHCtXriQwMDBNd8+XUapUKfz8/Ojdu3eaBga5QVJSEt27d+fEiROp1hcqVIjQ0FCKFSuWM4G9AtHR0Xh7e3P27FnLutdff50VK1bg5OSUg5E9361bt1i2bBnLli3j3r17L3WsGjVq4OvrS5cuXfJEolEQMuvEiRP06NGDB/ev4uOl8OWHKRdz9b1lbt9Pf59rf3tQuriGsxce8t08E7uOQEQUlCymxudtG8YPtsfGOiUZYzQq1O0aTniMC//77Q9Rzy2XiouLY/78+cydO5e4uLgM7VO9enXGjRvHG2+8IZJvQo4wGo3UqVOHiIgIy7o1a9bQsGHDHIwqY6KjoxkyZAg7d24DcxzuLia6vWVNvde1lCmRckP6xh0zR88YWbU5mYeRalA70qxZK+bOnZsrPzcLgiDkVyLpJrwyiqKwf/9+AgMD+euvv7KsvotOp6NTp074+/tTu3btXPXhPSwsDE9PzzTJm9dee41169ZhZ2f3lD3zrtjYWHr16sXJkyct66pWrcrKlStxcXHJwciezmAwsHHjRoKCgti9ezcv87bo6OhI9+7d8fX1pVq1alkYpSDkHteuXWPq1KmsX78eg8FATEwUHi4yS2dIVC2vws7ODltb22e+HycmJhEbG2tZdnN3Q6vRpNpm1oJ4vv/dSOGiVTh06JCYHpXLRUdHM3fuXObPn09iYmKG9qlbty7jx4+nWbNm2RydIKQ1ceJE/vjjD8ty3759mTZtWg5G9HzR0dF0796df84dw0oTx8eD7RjQ3RadLv33W6NRIXBNEt/+Gk+yyYHKVWqxatUqkXgTBEF4RUTSTcgRYWFhLF68mMWLFxMWFpZlx61evToDBgygc+fOuaZI/9mzZ+ncuXOaC5C33nqL33//PddOkX0R8fHx+Pj4cPToUcu6SpUqsXLlStzd3XMwsvRduHCBoKAgVq5cSVRU1Esdq0mTJvj6+uLp6Ym1tXUWRSgIucuDBw+YPXs2ixcvttw4URSFmJgYVFIy9aqp2LTAHSur509fUpSUuo+POl9bW1vj7Px4JOw/l420fycao+LKzz/PpWvXrtlzUkKWCw8P5+effyYgIAC9Xp+hfZo0acL48eOpX79+NkcnCI8dP34cLy8vy7KjoyMnT55M1WQhN1EUBT8/P7Zt/ZNCzvEsneVM1QopNyP+3J7MpB/iOHvJRCE3FQN72DJpmD1q9eP6mL1HRHE/0p4WLduxdOnSXHWjWhAEIb8SSTchRxmNRjZt2kRgYCB79+7NsuM6OjrSu3dv+vfvT9myZbPsuC9q8+bNDBgwIM0IqiFDhvDZZ5/lUFRZKzExEV9fXw4dOmRZV65cOVavXk2hQoVyMLLUEhISWL9+PUFBQamSgy+iUKFC9OzZEx8fn1zxeyYI2SUuLo558+Yxd+7cNDcQJEmiY8eO7Pj7b2JjbtGptcRPnzui0Tz/Yu6/o93c3d3RaNTcDTPTeUgUdx7a0b5DV37//XdxcZgHhYWFMWfOHBYvXozRaMzQPq1bt2bcuHHUrFkzm6MThJQkVvPmzVM1SZo/fz6enp45GNXTBQcHM2LEh2ilCDb+7mJJuB04bqBp7wh83ramXxdbzl4yMnFWHEP72DH948flLS5cNdH+nUj0ZlemT5+Nr69vTp2KIAhCgSGSbkKucfHiRQIDA1mxYgXx8fFZdtyWLVsyYMAA2rRpk6OjyubOnctXX32VZv306dPz/IeepKQk/Pz8UiVOy5Qpw+rVqylSpEgORpZCURSOHz9OUFAQ69ate6nGHiqVijZt2tCnTx9at24tprsJ+ZrRaGTRokXMmjUrVd2jR9q2bcuECROoUqUKO3fuxM+vH8bkh7RrJjF7oiNODs8e8ZYy2u0hZnNKAwYbGxtuhdkw4OMY7jywoVyF6qxbtw43N7dsOT/h1bh9+zazZs0iODjYMrLxedq3b8/YsWOpWrVqNkcnFHSzZs3i+++/tyx36NCB33//PQcjSp8syzRp0oSb108yYbCOD/0elyhpPzCSh5Fmjq593BV9xu/xTJgRx61dhSjs/vjz79ygBL76xUDxkq9z4MCBfDXjQhAEITcSSTch10lISGDVqlUEBgam6nz5sooXL46fnx8+Pj45MtVRURTGjh1LUFBQqvUajYalS5fStGnTVx5TVtDr9fTv359du3ZZ1pUsWZLVq1dTvHjxHIwMoqKiWLVqFUFBQZw/f/6ljlW6dGl8fHzo2bNnrkgkCkJ2kmWZ9evXM2XKFG7evJnm8bp16zJx4sQ0Bcc3bdrE4MGDMOojKeyqZ+pYR9o20z1zlFpCQiJxcXEk6xUWrIYFa1SYFAfKla9GcHBwvm46U9Bcu3aNGTNmsGbNmgzVzpQkiU6dOjFmzBjKly//CiIUCqIbN27QuHFjy7JWq+XkyZM4OzvnXFDp+Pvvv+nTpzeONhEcX+dhaTgDULhRGAN72PDdmMej2s5cNFLdK5zAaU74dbW1rNfrFep0CScqwYXAwCW0bdv2lZ6HIAhCQSN6Rgu5jp2dHX5+fmzdupU1a9bQuXNnNP8prv0i7ty5w3fffUfdunUZNmwYR44ceamC+ZklSRLfffddmuSayWTi3XffTTW1Ia8wGAy8++67qRJuxYoVY8WKFTmWcJNlmd27d/P+++9Tq1YtJk2a9MIJN61WS5cuXQgODmbv3r189NFHIuEm5Hu7du2iffv2DB06NE3CrUKFCvzxxx+sX78+3Q5/7dq1Y82atZSrUIuwKEf8P47jjX6RLFiZyPXbpjTvuQaDwqUbGmYHwlvvKPy4WCE6zoq3O3qzfv16kXDLZ8qWLctPP/3E9u3bU9XRehpFUVi3bh0tW7ZkxIgR3Lhx4xVEKRQ0pUuXTlVL0Gg0smHDhhyMKH27d+8GOZlOb1inSrgBJOsVrP7TSOHR8j9XUjcus7KS6NLWCmR9qs9vgiAIQvYQI92EPOHBgwcEBQWxaNGiNJ1AX0a1atXw9/ena9eu2NraPn+HLBAdHY2XlxfXrl1Ltb5s2bKEhITkujurT2M0Ghk0aBCbN2+2rCtcuDBr1qyhTJkyrzyee/fusXz5cpYuXcqtW7de6lhVq1bF19eXbt265dqOq4KQ1U6dOsU333zDnj170jxWuHBhxo4dS8+ePTN0EyQ5OZnp06ezYMECkhKjQUkCxYijvUK5kho0akhIUrh8w4zRpMJoUhEbZ0RBjZOTE8eOHaNkyZLZcJZCbnLmzBm+//57tmzZkqHtNRoNPj4+jBgxgqJFi2ZzdEJBsnDhQj7++GPLcv369Vm3bl0ORpRWjx492LcnlFkTrOjllbpZWL0uD3F3lVjxgzWSJGFvb8eitYn4jY1hcC9b5n3jlGr7VRuT+PAbPfUbts115ykIgpDfiKSbkKeYTCa2bNlCQEBAyh2/LOLo6EjPnj3p37//K5nCcvXqVby8vIiJiUm1vmnTpgQFBeX6OmEmk4khQ4YQEhJiWefh4cHq1atf6RQgo9HI1q1bWbp0Kdu3b0eW5Rc+lp2dHV27dsXX15eaNWuKou1CgXH9+nWmTJnC+vXr0zzm6OjIsGHDeOedd16oI3RsbCwrVqxg9erVnDlzBqMxGZRHNb0kkDQ4OTlTp04d9u7di16vR5Ik+vXrx9SpU1/yzIS84ujRo0ybNi3Df9d1Oh1+fn4MGzYsVzXqEfKu6Ohoatasmarhx/79+yldunQORpVaixYtuHzhECt/tKdRLS1GoxGDwYDBYGDhWgOjpih89ZFEL08VYZHO9Bkdxd0HMu962zL369RJtyOnDXR6P44y5euyb9++HDojQRCEgkEk3YQ868qVKwQGBhIcHJyq+93LatasGQMGDKBt27ZZMq31afbu3YuPjw8mU+ph/z4+PkyfPj3XJn3MZjPDhg1LdWfUzc2NVatWUalSpVcSw9WrVwkKCmLFihU8fPjwpY5Vr149+vTpw9tvv42dnd3zdxCEfOLhw4fMnj2bRYsWpXkf0mq1vPPOO3z44YdZNtrTaDRy4cIF7t27h8lkwtramvLly1OyZEkkSeLHH3/ku+++szz//v37xfTSAmbfvn1MmzYtVRfsZ7GxsWHAgAF88MEHYlSy8NIGDhzIxo0bLctjx45l5MiRORjRY/Hx8TRt2pT7d86y4FsVdauZefIKTpYVvvgppS6myQw6LXz+oQOzAxL4oK8tn3/okOp4h04a6DJUJN0EQRBeBZF0E/K8xMRE1qxZw4IFCzh37lyWHbdo0aL069cPX1/fbLuTHhQUxJgxY9KsnzRpEu+//362POfLMJvNjBw5kpUrV1rWOTs7s2rVqmzvMJeUlERISAhBQUEcOHDgpY7l6upKz5498fHxoWLFilkUoSDkDfHx8cybN49ff/2VxMTEVI9JkoS3tzdjxoyhRIkSrzSuuLg4GjRoYBkBPGDAACZPnvxKYxBynqIo7Ny5k6lTp3Ly5MkM7WNvb8/gwYMZPHgwjo6Oz99BENIRGhrKu+++a1kuV64cu3fvzpGboHFxcRw6dIj9+/ezf/9+Tp06RXh4ONZaPV8Phx7t0o8pNl7hzgMVr1V0RKXSUqjRAzb+4Uq75laptlseksTI7/Q0aeaZ6jOdIAiCkPVE0k3INxRF4dixYyxYsIANGzakmiLwMrRaLZ6envj7+9OgQYMs//D19ddf8+uvv6ZaJ0kSCxYs4K233srS53oZsiwzZswYli1bZlnn6OjIihUrqF69erY975kzZwgKCmL16tUvNaJRkiRatmyJr68v7dq1y/VTeAUhqxmNRhYvXszMmTOJiIhI8/ibb77JhAkTsj2B/iwzZ85k+vTpQMoUwoMHD1K4cOEci0fIOYqisGXLFqZOnZrhTuZOTk4MHTqUgQMHipHLQqbp9Xpq1qyZ6rNGaGgotWrVyvbnjo2NtSTZ9u3bx+nTp9OUzIiPj0cxx9PLU+Gb4Y974alUKnQ6HTqdFp1Oh1qtQZJg0uw4Fq9L4tJWD9Tq1J9dx0yJJehPNe8PHc2kSZOy/fwEQRAKMpF0E/Kl8PBwli5dysKFC7lz506WHbdq1ar079+fbt26YW9vnyXHNJvNvPPOO6kaEgDY2tqybt06qlWrliXP8zIUReHjjz9m0aJFlnUODg4sX748Wz6MxsbGsnr1apYuXcrp06df6ljFihXDx8eHXr16vfKRO4KQG8iyzIYNG5gyZUq63R/r1KnDp59+SuPGjXMgutRiY2OpX78+cXFxAAwePJgvvvgiZ4MScpQsy/z55598//33XLlyJUP7uLm5MWzYMPr374+1tXU2RyjkJ2PHjmXJkiWW5YEDB/LNN99k+fPExsZy8OBB9u3bx/79+zlz5sxz69IaDAZiY6IoVkhm1xIb3F2t/k2yqTl8ysDOQwZqVdWSpFdYvy2ZRWuT+Ot3V95onHqUW3yCTJ0u4cTr3QgOXkWzZs2y/PwEQRCEx0TSTcjXzGYz27ZtIyAggB07dmTZce3t7fH29qZ///5ZUscsISGBzp07p5keW7RoUUJDQ3N0pIeiKHz22Wf88ccflnV2dnYsW7aMunXrZunzHDx4kKCgIDZs2IBer3/hY2k0Gtq1a4evry8tWrRArVZnWZyCkJfs3r2bb775Jt3kdbly5fjkk0/o0KFDrqohOW3aNGbPng2AtbU1hw4dwt3dPWeDEnKcyWRizZo1zJgxg5s3b2Zon8KFCzN8+HB8fX3R6XTZHKGQHxw8eJCuXbtalt3c3Dh27NhLj46Pjo7m4MGDlpFsZ8+eJaOXYIUKFaJx48Y0atSIX3/9lZvXT/GBr5pPhz6u03binJH3J8Vw9nJKfc6GNbV8PcKBxrXT/t5P+188sxeaKFehTo5NnxUEQShIRNJNKDCuXbvGwoULWbp0aZY2XmjSpAn+/v4vPWXx7t27eHp68uDBg1Tra9WqxapVq16oc+DLUhSFr776innz5lnW2djYEBQURMOGDbPkOR48eMDKlSsJCgri6tWrL3WsChUq4OvrS48ePcRFulCgnT59msmTJ7Nr1640jxUuXJjRo0fTu3fvbG0W86KioqJo0KABCQkJAAwdOpSJEyfmcFRCbmE0Glm+fDmzZs3i3r17GdqnRIkSjBo1ih49euTK33kh95BlmUaNGnH79m3LuoULF/Lmm29m6jjR0dEcOHDAMpLt3LlzGU6yFS5cmMaNG9OkSROaNGlC2bJlLYmxTZs2MWBAf1RKBCvnONEonaTasxw5baDr0BjMkiv/+9/vvP3225naXxAEQcg8kXQTCpykpCTWrVvHggULXnrq4pMKFy5M37596du37wuPTDt+/DjdunVLM8rr7bffZu7cuahUqqfsmfUUReG7777jp59+sqyzsrJi8eLFNG3a9KWObTKZ2LFjB0FBQWzdujVN58TMsLGxoVOnTvj6+lKvXj1xx1Yo0G7cuMHUqVNZu3ZtmsccHBz44IMPePfdd7G1tX31wWXC5MmT+fnnn4GUqfaHDh3C1dU1h6MSchO9Xs+SJUv44YcfMtzFukyZMowZM4bOnTuLEdDCU02dOpUffvjBsty5c+c0tXf/KzIykgMHDlhGsmW0DiFAkSJFaNKkiSXRVqZMmWd+lvnwww9ZtTIIB5tYAqY6pTuaLT2HThrwGxdDbKIjnTp7M3fu3AzHKAiCILw4kXQTCixFUTh+/DiBgYGsW7cOg8GQJcfVaDR06NCB/v3707hx40wngdavX59u59IRI0Ywbty4LIkxI2bMmMGMGTMsyzqdjsDAQFq2bPnCx7x58ybLli1j2bJl3L9//6Xiq1WrFj4+PnTu3Fl0qxMKvPDwcGbPns2iRYvSNJHRarUMGDCAjz76KM8krsLDw2nYsCFJSUkADB8+nPHjx+dwVEJulJSUREBAAD/99BNRUVEZ2qdSpUqMHTuWDh06vNKbWULecOnSpVSfdaysrDh16hQODo+nc0ZERFhGsh04cCBTSbaiRYtaRrE1btyY0qVLZ+qzYlJSEn379mX/vh2oiGVwT2s+6m+Hs2P6v8sxcTI/Lkxg7rJkZByp36AZS5cuzfU3XwRBEPILkXQTBFLuUC5btozAwEBu3bqVZcetVKkS/fv3p0ePHqk+rD3P7NmzmTZtWpr1P/74I927d8+y+J7mhx9+YOrUqZZlrVbLH3/8QZs2bTJ9LIPBwMaNG1myZAm7d+9+qbgcHR3p0aMHvr6+vPbaay91LEHIDxISEpg3bx6//vqrZTrmI5Ik0b17d8aOHUvJkiVzKMIX9+WXX1qmtjs4OHDo0CGcnJxyOCoht4qPj2f+/PnMnTs3wyUkXn/9dcaNG0ebNm3EKGkhlfbt23Pq1CnL8pdffkmRIkUsibYLFy5k+FjFixe3JNgaN25MqVKlXvr3LSkpiQkTJhAcvAzkOKy0eto1s6JedS1liquRJLh+x8yR00Y27daTbLQClQPduvVg2rRpIuEmCILwComkmyA8wWw28/fffxMYGMj27dszXH/jeezs7OjRowf9+/enSpUqz91eURQ+/PBDVq9enWq9Vqtl5cqV1K9fP0viSs8vv/ySqlOXRqPht99+o127dpk6zvnz51m6dCkrVqwgOjr6pWJq2rQpvr6+dOjQQXSiEwRS6lotWbKEmTNnEh4enubxN954g08++SRPJ6fDwsJo1KiRZbr96NGjGT16dA5HJeR2MTExzJ07l99++43ExMQM7VO3bl3GjRtHs2bNRPJNAGDWrFl8/fXXGI1GDAYDKpUKFxeXDO1bsmRJS4KtSZMm2XrTY8uWLUybNo2zZ0+DkgyKCRRzyoOSGiQNSNa89trrjB07NtOf5QRBEISXJ5JugvAUN27cYNGiRQQFBb100uhJDRs2ZMCAAXTo0OGZjRf0ej3e3t4cOXIk1XpXV1dCQkIoXbr0U/eNiIggLi4OSOm06ubmlqELifnz5zNp0iTLslqtZu7cuXh5eT13X0gZabB+/XqCgoI4duxYhvZ5msKFC9OzZ098fHwoU6bMSx1LEPILWZb5888/mTJlCtevX0/zeK1atfj0009fuu5ibjFx4kRL52RHR0cOHz6cqVHDQsEVERHBzz//zIIFCzLcDbtx48aMHz+eBg0aZHN0Qm4TFhaWqibbhQsX0tzQcHd3T7cWYKlSpSwJtsaNG1OiRIlXFTaQcqP22LFj7Ny5k5MnTxIWFoaiKBQpUoQaNWrQsmVL6tatKxLKgiAIOUQk3QThOZKTk1m/fj2BgYEcP348y45bqFAh+vTpQ9++fSlatGi624SHh+Pl5ZVmymulSpVYv369pZZZREQEwcHB7N+/n1OnTvHgQRjw6KUt4eFRiBo1atC4cWO8vb3x8PBI81wBAQF88sknlmWVSsVPP/1Ely5dnnkejz7sBQUFsW7dugyPLEiPWq2mTZs29OnTh9atW4suc4LwhD179jB58mROnjyZ5rGyZcsyYcIEvLy88tWF1b1792jUqJGlTt3HH3/MRx99lMNRCXlJWFgYc+bMYfHixWnqHT5Nq1atGDduHLVq1cre4IQcExYWZkmw7d+/nytXrqTZJioqKlW9X3t7e+zs7ChTpgyNGjWyJNmKFy/+KkMXBEEQ8hiRdBOETDh58iQBAQGsXbs2w3fOn0etVtOuXTv8/f1p2rRpmgvmCxcu0LFjR+Lj41Otb9WqFV9++SVz5sxh/fr1GA1xoOhBMSFJJmytU46TmKygKJp/pxhYodU54OnpyejRo6lQoQIAQUFBjBkzxnJsSZKYPXs23t7eT407MjKSVatWERQUlKnaJukpU6YMPj4+9OzZ84U7vwpCfnX27FkmT57Mjh070jzm4eHB6NGj8fHxeebI2bzs448/ZuHChQC4uLhw6NAh7OzscjgqIa+5ffs2s2fPZvny5ZjN5gzt065dO8aNG0fVqlWzOTohu92/f9+SYNu3bx/Xrl177j7JycnExMSgVqvR6XSUK1eOTZs2PfVGqSAIgiCkRyTdBOEFREdHs2zZMhYuXJjuFK8XVb58efz9/fH29k7VkfPvv/+mX79+yLIMpIwuS0pKQpLAxkoBJZFaVdV0bWtN7dc0VKuoxebfpFuyXuHsJRMn/jGydksyR8+aQbJFZ+3CuHHjcHV1ZfTo0anq182YMQMfH5808cmyzJ49ewgKCuKvv/7K8KiB9Oh0Ory8vPD19aVx48aig5yQL5jNZlQqVZaMNrt58ybTpk1LU9sRUkZcfPDBBwwaNCjfF8S+ffs2TZo0wWQyASlTTocOHZrDUQl51fXr15kxYwarV6/OcN3WTp06MWbMGMuNKiH3u3v3bqqRbJn5rFauXDmaNGlCnTp1+OSTT0hOTrY8tm3bNpGEFQRBEDJFJN0E4SXIsszOnTsJCAhg69atWdZ4wcbGhu7du+Pv728phL5gwQI+/fRTZFkmJiYG2WzAwU6mZQMtn33gRK3XMjbK5fQFI9/NjWfHIRmDyZqERANOTk6WpNeUKVPw8/NLtc+9e/dYtmwZy5Yte+nurlWrVqVv37507doVZ2fnlzqWIOQkRVHYt28fGzZs4OTJk/zzzz8YDAYkSaJ06dLUqFGDVq1a0blzZ2xsbDJ83IiICH744QcCAwPTJLa1Wi3+/v589NFHuLm5ZfUp5VqjR49m6dKlQEpdpYMHD2bqeyoI/3Xx4kWmT5/On3/+maHtVSoV3bt3Z9SoUc+sqSrkjDt37lgSbPv37+fGjRsZ3rdChQqWmmyNGjVKNeJ++PDhrFixwrI8ZMgQPvvssyyNXRAEQcjfRNJNELLIrVu3LI0XIiMjs+y49evXx9/fHy8vLyZOnMicOXNQSQYKuSqMHiDh3R5cXFyxstJl+JiKorBobRyf/5DAgwgJs6LD2dmZyZMn88477wAp3RG3bt1KUFAQf//9t2WU3Yuwt7ena9eu+Pr6UqNGjXxVc0oomLZs2cI333zDpUvnQU4GDCld4yy1FDUgaUGywtHJnUGDBvHhhx+i0z39dZqYmMj//vc/fvnllzTTySVJolu3bowdO5ZSpUpl23nlVtevX6d58+aWaYFffvklgwYNyuGohPzg7NmzTJs2jS1btmRoe41GQ+/evRkxYgTFihXL5uiEp7l165YlwbZ//35u3ryZ4X0rVqxoqcfWqFEjChUq9NRtd+3aRe/evS3LhQsX5siRI+k2VBAEQRCE9IikmyBkMYPBwIYNGwgICODo0aNZdlw3NzesrKy4eP4UhdyM/DJJokbllOSVSiXh6uqa4cYDycl6YmKiOXdZ4b3PFW6HSVSvUZ8DBw5w9epVli5dSnBwcJrOXZlVv359fH196dixY76fAicUDAkJCXz88cesWrUC5FhsrQx0e8ua5vV0VK+swdlRhd6gcOGqiSNnjASHJnPzngQqB6pUrcHPP/+cZmqS0WgkKCiImTNn8vDhwzTP2bp1az755BOqVav2qk4zV3pyxEnhwoU5cOAAVlZWORyVkF8cO3aMadOmsWvXrgxtr9Vq8fPz48MPP3xm0kZ4eYqipEqy7du3j9u3b2d4/8qVK9O4cWNLki29ZlJPYzabqVevHmFhYZZ1wcHBNGvWLFPnIAiCIBRcIukmCNno9OnTBAYGsnr16lQ1QV5EUlISCfGxFHKV+f1biZqVAR6PGFOr1bi5uT63Npperyc6OsYyFfbMJYWBn0okJNtTrnwl7ty581Jxurm50bNnT3x8fET9GyFfiYuLw9fXl6NH9qEilvd6WTPC3w4H+6e/5mRZ4c+/9Xw6M46IGGscnYsTFBREnTp1UBSFP//8kylTpqRb1LtmzZp8+umn4uLuX1euXKFly5aWUbeTJ09mwIABORyVkN/s37+fadOmcfDgwQxtb21tzcCBAxk6dCiurq7ZHF3BoCgKN2/eTFWTLTOfTapUqZIqyebu7v5S8Xz11VfMnTvXstyzZ09mz579UscUBEEQCg6RdBOEVyAmJobg4GACAgIy1DHrv2RZJiIiHEc7MyP6SwzyliwXnpIkWaZr6nRaXFxcedrsTb3eQHR0dKracxqNhj9WGZk6XyE2Xo2rq1ump01IkkSrVq3w9fXlrbfeyrddFIWCS5Zl+vbty46/N+JkG0fAVCca1sr4lO6IKJl3Ponm0Gk1Ti6l+Pbbb/ntt984ceJEmm3LlCnDhAkTePvtt8VU7P8YOnQoa9euBaBo0aLs37//mVN2BeFFKIrCrl27mDZtGsePH8/QPnZ2dgwePJj33nsvVSMk4fkUReHGjRupuoveu3cvw/tXrVo1VU22rE5+njt3jjfffNOybGdnx6lTp0RdSUEQBCFDRNJNEF6hR90/AwIC2Lx5c4brpMXHx2M2xlPvdYUl30toNBKgcOWmwtzlcOwcXLgGFUrBwRV2ODo6pkq8RcfKfDojhlWbkomOgyLu4NcFhvROSdiZzQr9P1bYf1JCrbHH3t4+Q3EVL16c3r1707t3b4oXL575b4gg5BGBgYFMmDAWxRhB8cIqbtyViY2XKV5YTZe21nz+oT1ODo9HvG3YlszE2XFcuGqiVDE1E96zp6enNT2GRXHgpEKyQY2zs3OqpJqHhwejRo3C19dXJK6f4sKFC7zxxhuWGwfTpk2jb9++ORyVkF8pisLWrVuZOnUq586dy9A+jo6ODBkyhHfeeSfDf0sLGkVRuH79Ovv27bMk2u7fv5+hfSVJomrVqqlqsrm4uGR7vG3atOH8+fOWdb/88gtdunTJ1ucVBEEQ8geRdBOEHHL37l0WLVrEkiVLnlk7TVEUwsPDcbQ3MXO8RLtmjy/S/9ol8+lsqP0aXLsFsgLbA8DW1gYnJ2ckCRISZZr0DAfMDOkN7i5w9RbEJ8JQ38dJgm0HFIZPVoiJ1+Du7v7UETZarZb27dvj4+ND8+bNRTFhId+LioqiQYMGJMTexKulGhcnFQ1ranFzUXHmookvfoyjzmtaNgekdBPdc8RAq74RvOttSy8va7bvNzD513gCvtNRpawR7xEK98NV2Nk7YW1tjZ2dHUOHDmXw4MHY2dnl8NnmfoMHD7Z0nCxZsiR79uwRSUohW8myTEhICN9//z2XL1/O0D6urq4MGzYMf39/rK2tX+h5IyMjOXjwIKdOneKff/4hISEBSUqp4Vq9enVq1KhBgwYNcn1tQ0VRuHr1aqruok/WSHsWSZKoVq2aZSRbw4YNc6Tz+S+//MI333xjWW7Tpg2LFi165XEIgiAIeY9IuglCDjMajYSEhBAQEMChQ4fSPK7X64mPi6ZCKZmN8yW0msfJMFlWkKSUD7QjvoNTF1KSbpBS483Gxoavf05mxUYTW/8A239nQjw5JfURk0mhw2CFSzdU2No5pblIqFixIr6+vvTo0QM3N7cs/R4IQm7266+/8vVXE3mtXDybF7iiUqV+7fy2PJHBE2O4s6cQxQqraTcggvhEhb3L3ZFlmfj4BPzHJ3DmksKuxSrmLlOYvRD0RivGjBnD8OHDX7rmUEHy36les2bNolevXjkYkVBQmM1m1qxZw4wZM7hx40aG9ilcuDAfffQRffr0yfBU6KNHj7JgwQI2bNiA0ZAAmEAx8rg7surf7shaXF0L4ePjQ//+/SlRosQLnVdWUxSFy5cvW6aKHjhwgAcPHmRoX5VKRbVq1WjSpAlNmjShQYMGODk5ZXPEz3f37l3q169vGWWrVqs5duxYppoyCIIgCAWTSLoJQi7yzz//EBAQwKpVq0hMTARSppbK5nh8vRS++ij9gu2KIjP829RJt0dqdwX/bjC8X8pyegm3RybPlQlYI4HKDgcHB2xsbOjUqRN9+vShbt26or6UUCC1aNGCyxcPM32cNb6d0tbwWb0pie7Dorn2twdFPdQ41L7P1LEODPKWSExMQJYVNu1R8J+gcChYwsYa2g8Co+LO7t17qFSpUg6cVd42YMAANm3aBKTUwNu1a1eGuzcLwssyGo0EBwcza9Ys7t69m6F9ihcvzqhRo+jRo8dTR2bGxMQwadIkVqxYDnIiKElULquiTjUtr1fU4OKkQlHg7gMzp86bOHTKQFiEClS2WFk7MX78xwwaNOiVj0BXFIVLly5ZEmz79u3LcPdzlUpF9erVLY0PGjZsmGtr4nl7e7N3717L8tdff80777yTgxEJgiAIeYFIuglCLhQbG8vKlSsJCAjg8OHDWGv1fDEMenk+Pen10WQ5TdLt1j1o1BumjIZt+2HnYbC1Bs+W8NWHEna2qY+3ZqvCJ7MUrG2LMH36dDp16oSDg0M2naUg5H7R0dG89tprYH7APxvdLXXbzGYFownOXTYx8ONoShdXs26uK2cvGXndM5ylM1S0avD4OFdvKTT1VQj+QUuXts74jopj7wlbZsz8CR8fnxw6u7zr1KlTtG/f3rL8448/0r179xyMSCiIDAYDS5Ys4YcffsjwSK4yZcowevRounTpkio5dvz4cQYOHEjY/RtIShze7XUM6G5LzapPnzptMils229g3tIEDpxUQOVI/QZN+OOPP7J1RLosy1y8eNEyVXT//v1ERERkaF+VSkWNGjUsNdnq16+fa5Ns/7V8+XJGjhxpWa5VqxahoaE5GJEgCIKQF4ikmyDkYoqiUK1aNcLDLhA4RaF21acn3YZPljn5n6Tb0bPQaSjY2YBnC/BuL3H1Nnw7T+GNhvDrF49HzqlUKi7e0OI93ESR4tUy3LFNEPKzPXv20NO7G6WLRLN/xeMpoCWahXEnLKURSvsWVqz80RlbGxWh2x/y9vsm/pwrUbfa49drbIKGyu0NLJnhjG8nG77+KY5fl0n4DxzGt99++8rPKz/o168f27ZtA6B8+fLs2LFD1JgUckRSUhIBAQH89NNPREVFZWifihUrMnbsWDw9PTl69Cg+Pj4kxt+jXAkjsz91pF71jHflVRSFpRuS+eLHeOKT7ahYqSarVq3Ksmnrsixz4cKFVEm2yMjIDO2rVqupWbMmjRo1okmTJtSvXz/P3syLi4ujRo0a6PV6y7rdu3dTvnz5HIxKEARByO3EXAxByMUkSUKj0aDRqClZ3BF7eyOJiYkZ7noq/5tSL1cS5kxMSbA1rwcaNYyZpvDxYIWKZaywsbHB2tqa+GQTkhRFUlJSdp2SIOQpKaM3zJQokjqZEzrflYQkhbOXTHzzSzwdB0cROt/x3ymOJst2arUaBwd71Fod8LhweMrxTBmegiWkNWLECEvS7cqVK4SEhNCpU6ccjkooiGxsbBgyZAj9+vVj/vz5zJ07l9jY2Gfuc+nSJQYPHky5cuW4ceMGZmMEzeooLJjiip1t+qUknkaSJHw72dCwppaew6O4dPEk/fr1Y/369S/UZESWZc6fP5+qJltGk4kajYaaNWtaGh/Uq1cv33RxdXBwoF27dqxfv96ybtWqVYwbNy4HoxIEQRByO5F0E4Rc7vHIDQl7ezvs7OzQ65NJTEzCYDCk2V6SJEuhX+d/P+c2rZN6m5YNVICZexGONKxja1lvMqc8jxgtIgjPVqNKyoVs49o66lfXUqtTOIvXRFCxTMrjcQkSjo4O2NjYIklw635KIs7VWdRFzCp169alRYsW7Nq1C0hpqPD222+jUmUuYSEIWcXe3p4RI0YwYMAA5s2bx2+//UZCQsJTt1cUhSNHjqDTGGhcS+J/X6eMmH1R5UtrWDHHhbcHR3HyxGHmzJnD6NGjn7ufLMv8888/lu6iBw4cIDo6OkPPqdFoqFWrlmW6aL169fJ1F+bu3bunSbqNGTNGvO8IgiAITyWSboKQy7m6uhJ2V83dMJnXK4EkgbW1NdbW1hhNJpISk1KNTHvcKEGhbEkFK92j9aDTWWFra0OiQQ08xGhKnQC4+8AMqHB1dX1l5ycIuVlKXSQ1t++bn7pNjSoatBq4dgfaNgWtBm6HWWFr+zihff5KStKtSrmUP7spx1OJTsAvadSoUZak24ULF9i4cSOenp45HJVQ0Dk5OTFu3DjeeecdfvnlF/74449UUxIfSUpKQpGNuDopTB4JyUnRyGYd9vb26HSZH6EGUK6Uhu/GODDk81h++GE2Xl5eVKlSJdU2ZrOZc+fOpRrJ9ryReY9otVpLkq1JkybUrVs31XtdfteqVStcXV0t02tv3brFkSNHaNCgwXP2FARBEAoqcVtGEHK56tWrg6Th1AVjmse0Gg2Ojg54eHig1Wkt3UXVajVarRadVkWLerD3mIS7uwcuLs5YWVmxdV/KCLk6r6X+UH/qvAkkLa+//nr2n5gg5AGvv/46SBpu3JWJjk1/WvfBE0aMJihdDKx0Ek1qw9ptqV+vy0OTqFpeQ5kSKUm3UxdSXms1atTI9nPIzxo0aECTJk0sy7NmzUKUqhVyCzc3Nz777DMOHDjAwIEDU031VBSFxMRE7G1lhvtJlCic8vfbYDAQGRlJVFQURqOR0B3JtPSNwKNBGFav3aNc6weM+jaWmLinl5no1MaKt5pqMBlimTdvHmazmVOnTjF37lz69+9PtWrVaNeuHV988QWbN29+ZsJNq9XSsGFDRo4cSXBwMOfPn2fdunWMHz+e5s2bF6iEG6R8Pzp37pxq3cqVK3MoGkEQBCEvECPdBCGXq1GjBsHLtRw5k7bOWmKSQuiOZADuhEkkJEnsOGyHrCg0rgU2OhOjB0p0GqLgNzaG/l1tuXTDxITpcfTpZE350qnfAo6eNYJkJRIBgvAvZ2dnKlSowOWLUYTu0LNyYxL1quuoUVmDjbXEyfNGvp+fQLUKEu2bp+wz0l+i+0cmhn4eQ09Pa/4+YCBoQzLLf3AG4EGEmYMnjSBpqVevXs6dXD4xcuRI9u3bB8DZs2fZunUrbdu2zeGoBOGxwoUL88033zBkyBBmz57NsmXLSExMRMKMmzN0fTPtPnq9Ab0+klt31dSrruEjP1vcXFScuWjiix/jOHPRyOaAp42UlRjia8XG3bHMn/8bGzZsIDExMUOxarVa6tata5kuWrduXaytrV/43POj7t27s2DBAsvy+vXr+eabb9DpMt78QhAEQSg4RPdSQcjlrl69SrNmTZHkhxxY4UbJoo/rrV2/baJs64fp7rclwInXy8cBsPuIwtTf1Zy5aMLFSUWfTjZMHumAldXj6aX3H5qp3y0Cs+TB9u1/p5mOIggF1a+//srXX03ktXLxtGmsIzg0mSs3zcgKlCmupttb1vh3ScbWOmXkiVqtZv8peybOiuPCVROliqmZ8J49A71TRoTM+D2eGQvM1K3/Bhs2bMjJU8sXFEWhS5cuHD58GICaNWsSGhpqGfkrCLnN9evX6dSpEzeunWFwTxg94Pm/q9bW1tjb26PRqPlteSKDJ8ZwZ08hihVWoyhgMhkxGIwYDAYMBgOyLNNrpMLhMxLWNk7Y2Nike1ydTke9evVo3LgxjRs3pk6dOiLJ9hyKotCsWTOuXbtmWTd9+nQ8PDy4f/8+JpMJGxsbypcvT7Vq1QrcaEBBEAQhNTHSTRByuXLlytG8eQt27wxh4ZpEPh3qYHmsTAkNyqWi6e6nKBAekYjZZKZ5PYkOrWyxt396cePF65IwK9Y0atxYJNwE4Qm9e/dmxowZnLscj+/bao6v90j1uKIohIU9HkWi0Wjo1MaaTm3SXrheu2Xi58WJoHLlnXfeyfbYCwJJkhg1ahQ+Pj4AnDx5kh07dtC6descjkwQ0lemTBkcHR2xtdHSor4EpC0f8V/JyckkJydjY2ODi1PKNNXomERsdGYMBkOaadWSJNGoFpw4D0aj0ZJ0s7Kyon79+jRq1IgmTZpQu3ZtrKyssvoU8zVJkujevTtTpkwhKSmJ5ORkBg16FydHO+BR/U8JJDUqlY7q1avTp08funbtmq+bTAiCIAjpEzXdBCEPGDBgAKjsmL8iiWu3TBnaR5LA2urxRX96RZwfuXnXzNylSaCyxd/f/2XDFYR8xcXFhYkTJ4Laicm/JnDqfOoLZJMpdZOFp3X/TUiU+eDLWJKNdjRv3jpNXSDhxbVo0YLatWtblmfOnClquwm5Vnx8PFevXkWSzDSp64ybm9tzE19ms0KyXubA8QQ+/yGat5qCi0MCycnJyLIMpP19f608aDTg6OjIuHHjWLNmDRcuXCA4OJhRo0bRqFEjkXB7ARERERw/fpzIyAgUcwJO9iac7JKoXCqWdk2S8WqRTKt6iRR2jkI23ufk8Z2MGzuCunXr8vvvv//78xIEQRAKCjG9VBDyAEVR6N27N7t3bqT+63pW/+yCWv386SgGg9HSYQvAw8MDtTp1rl2WFXp+FM2+EzoaN32TFStWoFKJfLwgPEmWZfr06cPOHZtwso0jcJoTDWqm1O9JTtYTHR1t2dbR0SHNdKLIaJmBE6I5dFqNk0sptmzZQokSJV7lKeR7W7duxc/Pz7IcHBxMs2bNcjAiQUjf9evXadKkEXa6cC5tLWRZbzQaiY+PR683pNmndjeZ+/9Wk2jdAP73FdimP2MUSQJJUnHusoreo2VUWg9GjhxJ4cKFKVy4MIUKFbL8K+qQZc6mTZsYM2YMEeG3MRtjaFpHwbudRMOaUKSQE7b/+aHcf2hm3dZkAtckcf2OBGonGjVqxpw5c8TfAEEQhAJCJN0EIY+4ffs2b7zxBvExN/HrouG7MQ7PrVmkKPDw4UPLXdX/JgMURWHS7Hh+X2nExr4427Zto0yZMtl5GoKQZ8XFxeHr68vRI/tQEcv7va0Z3t8OiSTi4+Mt27m4uGBllXIhK8sKf/6t59OZcUTEWOPoXJygoCDq1KmTU6eRbymKQvv27Tl9+jQAjRo1YvXq1TkclSCkdfnyZVq0aIajTTjnNxVK87jBkJJ8MxhSkm+yLHPuCiQlw4Vr8MMiKFUUls0AtTolyQaS5d9Hzl9V8B6hEB2nwcPDI83zQEqzmP8m4tJLzolpkbBw4UImTBiPYo6majmZb0dZUbpIguVxnU6Lq6truvvKssKitUl8/XMCiXpbChctx4oVK6hQocKrCl8QBEHIISLpJgh5yJ9//sl77w1GMUXg21HLd6Md0GqfnXiLiYklKSml86lOp8PV1QUAo1Hh8zlxBKw2gtqFn376hW7dumX7OQhCXpaQkMCECRNYuTIY5DhsrfR4tVRR5zUTVcuBowM4Orpx+YbM0bNGgkOTuXFXApUDVarW4Oeff6Zq1ao5fRr51saNGxk4cKBledWqVTRu3DgHIxKEtG7fvk2DBvXRSg+5ss0DjSbt33FFSXm/iYuLs0yVliQJRVE4exneegd++0ri7dZP/wxw+LTCgE8UYhO0uLu7v1TM9vb2aRJz6SXoHB0d82UTk9WrVzNs2FAwR9G/q5avhjugVqfc2HzyUsrdwx3NU0oMQEo5j/7jorlwXUeRYhX5888/KVas2Ks4BUEQBCGHiKSbIOQxy5cvZ/ToUcimSKqWk5n9qSPVK2ufur1erycqKhpIuRvu4VGI81dMDP8mlrOXVUgaZ6ZMmUa/fv1e0RkIQt63ZcsWvvnmGy5dOk9iQiQqyYTm3xEnKTXdNCBpQbLC0cmdQYMG8eGHH4qpXNlMlmXatm3LP//8A0CzZs0IDg7O4agEITWz2UzlypVJjLvB9oUuVCmftq9ZYmISsbGx/y4pKApoNGp0Oh2yrFC4SRLjB6kY1kd6av3CJRsUvv4VDCZrnJ2ds++EnmBlZUWhQoUoVKgQRYoUeerIOVdX1zxTyuLGjRu88cYbJMXfYVBPLV98ZG9JLEZFRaeqmWtvb//MplWQUm6g2wdRXLxpTbPm7Vi+fHm+TFQKgiAIKUTSTRDyoC1btjBq1Cgiwm+jJp6Ob+jw72ZD/RraNB/cFAUePHiALMucughrt+kI2WHGpNjh4lqc6dOn06FDhxw6E0HIuxRFYf/+/XTq1In4+HhMJhNqtRp3d3dKly5NjRo1aNWqFZ07d7Z0DhSy34YNG3jvvfcsy+vXr6devXo5GJEgpNW1a1cO7t/ErAlW9PJ6/P6gKCmNFhISElJtr9NpcXZ2QaWSOHDcQOOeESz/wRnvDjYoioIsy8iyGbNZ/vf/MqOnJBH8l4Srewl0Ot0TSbycp9FocHd3T3fE3JPJOnd3dzSatEnJV0WWZby9vdm/dytNahkInuOMSvX4c9Z/a3pqNBrc3Nx4Xg7t2i0TbfwiSTa7MmXK9FT1KAVBEIT8RSTdBCGPioiI4NNPP2X9+rUgJ4GSRPHCUKuqhuqVtLg5q5AkiIyROXI6kVPnTdwOA5NZi7WtKx06eDFlypSn1nkRBOH5oqKiqFatmmW5ffv2/P7772LUQg6SZZnWrVtz6dIlAFq3bs2SJUtyOCpBSG3q1Kn8MHsKLeoms2x2StkHRVGIiYklOTnZst3AT2Xqvq6lQU17bK0lTp438v38BAq5qTi8yh2dLv33moREmdqdw4nXu7FixWqaNm1KUlISDx484MGDB4SFhVm+Hi0/+vfJBkw5TZIk3NzcnltzrnDhwtnSiXXbtm306+eLjSaS7YtcKF08dQIwpXbuA5b+KTPiu7SXVOMH2zFlrGO6x/5teSKfz0nG1aMCx44dEyOhBUEQ8imRdBOEPO706dMEBgayevVqkpPjQTGCYgIetaRXYTQpxMYmYZYl7Ozs2LRpE40aNcrJsAUhXzh69CgdO3a0LA8bNoxPPvkkByMSANasWcMHH3xgWQ4NDaVWrVo5F5Ag/MfNmzdp3LgRiukBe5a6UrqEiuioaIxGY6rt5gVrWLtV5spNM7ICZYqr6faWNWPescPR4enTMxeuSeTjGXrKVajLrl27MjWV02g08vDhw3QTcg8ePOD+/fs8ePAgVaOm3MDJyem5iblChQphb2+f4WP6+fmxdfMa3usFn3/okO42MTGxBKxKZMR3CkHTJQq5W2P3b9Oq4kXUlCyafo03k0mhYY9w7kU489PP80RdXUEQhHxKJN0EIZ+Ij4/nxIkTnDp1inPnzhEfH4+iKDg4OFC2bFmmTZuGJEmoVCoCAgJ46623cjpkQcjzgoODGTFihGV51qxZ9OrVK+cCEoCUmlktWrTg2rVrALRt25bAwMAcjkoQUuvfvz9bNq3hjYZGZo43pUpgSRI4Ojq+0NT06FiZVn0ieBDtxJdffcegQYOyMmwLs9lMREREuom5J/8NCwtLk0zMSba2tqkSc09L0CUnJ1O3bh0U0wP2LnOlbMn0p7kaDEZ+XRzBiO8UzmyQ8HBV4+Hh8dwppgCzFyQw7XcTTZp1YOXKlVl8pkJeoygKd+/eJTIyEpVKRcmSJXF0TH+kpCAIeUfOFUkQBCFL2dvb06xZM5o1a5bu40eOHGHnzp0A/PXXXyLpJghZ4OrVq6mWy5cvn0ORCE9Sq9UMHz7ckhDdsmULZ86c4fXXX8/ZwAThCZ988gmbN21i0+4w1taV6PRGSpZGpZJwcnLGyurFpht+NjuOB1FWlK9YNVubJKnVakvThGe9tlKmzcZYRsg9LTH34MEDEhMTsy3eRxITE7l+/TrXr19/5nYmk4mE+Cjqvy7j4hBPbKwalUqFSq1Crfr3/yoVWq323zpvKeMYZFnGYDBk6OfX8Q0rps1P5NixY5hMphytXyfkDFmW2bNnD4sWLWLfvn1ERUXyeLaKmjJlyvDWW2/h5+dHuXLlcjJUQRBekN2bHdMAAMRhSURBVHhnF4QCon379pak2+bNm8WHO0HIAv9NuokPxLlH165dmTlzJjdv3gRg9uzZzJ8/H0i5mH7w4MG/F8Yp3RZTus4Kwqtz+vRp9AYDiQkqvv5VpqgHNKqlwdnFGe0L/n3+cWECqzYZUWk9mD17NtbW1lkcdeZJkoSzszPOzs5UqVLlmdvGx8enm5D77/KraAqRnJyMSjJTtbxCcrL+qdspioLJnJJwa+WnEBmjULJIBO942zL2XRs0GjWSJD3x9XjfsiXV2NsqxCcncvny5ed+f4T85eLFi4wcOZLjx4+AnAiKHo1axt1FwmSG8CiF61ci+d+8c/zvf/Po18+Pzz77LFNTpAVByHlieqkgFBBhYWHUrl3bsrxq1SoaN26cgxEJQt7Xpk0b/vnnHyClntC5c+dEE4VcJCgoiDFjxgApU+H69u3LpUuXOHPmDMnJSaSMTJGwtbXj9ddfp2nTpvj6+lK8ePEcjVvI3xRFYebMmcyYMcMyCkyRkynkBnM+c6Lzm5mfUmo0Kkz7LZ6fl+hB7cKkSV/y/vvvZ0P0uUNycnKqphD/HTH36P8REREv/BzR0dHoNMl8NgT6dEz7vq4oCo8uo3YcguPnoPZrKVODN++Fheugfxf4dmTqenqpE3ASfcaY2HdCQ5OmrahSpQr29vbY2tpib2+PnZ1dqq/01tna2oq/O3nQ2rVrGT78I4z6aOysE+nlaUO3dta8XlFjaZASHStz6KSRxeuT2LrPCCoHSpWuxNKlSylbtmwOn4EgCBklkm6CUIC8/fbbHDt2DIBBgwbx5Zdf5nBEgpB3ybJM+fLl0etTRkDUqVOHP//8M4ejEp5kNBqpW7culy9fxmDQY2+nwdZGDYoRjVrG2koiWa9gMqtA0oJkhUptS4cOnnzxxRci+SZkOaPRyJgxY1ixYoVlnaIo2NrakpgYgyTH0rmNlq+G2+PhlrHRl6cvGBn1bSxnL6tA7cT48RMYPnx4dp1CnmI0GgkPD3/mlNawsDAePnyI2WxOtW90dDRWmmQmj4RubVMntRRF5mlXUI+aVnz1s8z/VsDRlRKF3Z+eFBs8SWbLPglrG6cXquEnSRK2trbPTc49WvdkQu9p67RarUjkZaMNGzbw/vvvoZgieaORxPSPHSni8ezX+96jBkZ+G8vtMCsKF63Ahg0bKFGixCuKWBCElyHmlglCAdKhQwdL0u2vv/7iiy++EB+qBOEF3bt3z5JwAzG1NLdRFIWgoCDCwu6jViXj5qTQtI6BXm87Uvd1e8qWUKNWS5jNCldumjl+zsiqTcnsORpHyJ/B7Ny5k6+++orevXvn9KkI+URMTAzvvvsue/fuTbX+3Xff5dNPP2X27Nn8/PNPrNseQ+jOCDq+YUUvTxtqVtGk6lSqKAph4TIHThhZvC6JfcdNoLLDxb043333HZ06dXrVp5ZrabVaihYtStGiRZ+5nSzLREZGpurOOnv2bC5fPAZIaLUSsmzGZDLzvPEKiqIgSSk1+n5dpnDmMhR2f/r2hn97TLzo5zFFUUhISCAhIeGF9k+PRqPJUHLuvyPynjZKz9bWVpQ0+detW7cYPHgwUZEP0GoU1myBMxcj+cjPjgE9bCy/BwaDwmez41i0LomoGJnqlbV8PNiOHxclcuH6VT766CNWrlyZqc7EgiDkDPHuJwgFSPv27Zk8eTIAt2/f5ty5/7N353Ey138Ax1/fuXZn7wPrinXfhCJF7jM3RYTkKIqIotjcRa7kRwmFnEW7znXkKJQUudd9JhZ7ze7O7s71/f2xmWy72I3dWfb9fDz2wXy+n8/M+7Nm18x7Pp/35wSVKlVycVRCPJqknlvupaoqY8eOZf78L9ASR/2nYdTrCiWKKhiNNnx9PZ19tVqFsiV0lC2ho8sLRk6es/HuFBMHjl/mnXfe5sKFC4wcOVI+oBAP5PLly7zyyiucPXvW2aYoCuPGjaNv374AjBw5kpYtWzJq1CgOHvyd77cl8f3WeMBGcBEt/j4aHCpcu2HnRrT69+pMI1qDB23atGXcuHHkz5/fRTN8tGk0GvLly0e+fPmoWLEiAMePH+fyxQiuRTlwd9eSmJjg3BKaSs1gtVtqg15/e4tgCjqtFp1O49yOeue2VFVVufwX2B1KrqorabPZMJlMD7V2nru7e6a2y2a2zWg0PpK/lz/44AOiom5SIACmjvAhKJ+WbXtT6Dc6jivX7YwZ5A3AkEkmloQlMWmoN+VKavl6TRIvD43l+7n+vD0hnn379rB8+XJeeeUVF89ICHE/knQTIg8pVaoUpUuXdr7o37x5syTdhPiPzp07l+a2JN1yj2nTpjF//udgj2H0QA96tHMnMSEBgKSkZDw9vdDpMn6DW76UjrDP/flsSSJTF0Qze/aneHl5MWjQoJycgniMHDx4kFdffZVbt24524xGI3PnzqV58+Zp+larVo0NGzZw+PBhFi9ezO7du7l69SoXr9m4eO3vEw0VLRq9njJlytCyZUt69Ohx35VcIuuqVKmC1aZy4Ggi8fEZJXfSHopwuw3Abnew4UcDWi3UfyaAfPnS/r5R1dSE21+RNmLjYwgIyMeyZcuw2WwkJCQ4V67d/rpXm9lsJiEhAYfD8e9gcpXk5GSSk5MfqM7enRRFeaAttBmt0tPr9Q8ltrs5c+YM27f/QKCfyk/LAylZLPWteKM6bkTFOpjxVSIhb3px7YaDL1eZmfmBD4N6pn5I1LyeG9Xa3OLLlWbe6+fJ2P8l8MUXX9C9e/dHMvkoRF4iSTch8piWLVsye/ZsADZt2sSwYcNcHJEQj6Z/r3QrVaqUiyIRd9q3bx8zZ84AewyfvOfJK+08UFWVJLPZ+aY0MTERX1+fu96HVqswtLcX3p4aPpwVw5Qpk6lXrx5PPvlkDs1CPC42bdrEm2++mWYrev78+VmyZAnVqlW767hq1aoxY8YMAKKiojh58iSJiYloNBr8/f2pUKECHh4e2R5/XnXmzBm++eYbYmMTOXJKJToOAnzvntjo+o6DujUVKpQErU7L9n06Fn5n5u1enhnW6lKU1KTRj/ttoDFQpUoVGjdu/J/jVVWVlJSUdIm4jJJz92ozm83OvyclJf3neHKCqqokJCSQ8PcHKg+DXq9Pl8TL7BbajFbkeXh4pFnBuHLlSlCTaPm8mzPhdlv1Cnrmr0oi0axy5JQVux2a1XVzXlcUhWZ13fjfN4l8PdmXaQsTOH/+DPv376d27doP7XsghHj4JOkmRB7TokULZ9ItIiKCS5cuUbx4cRdHJcSj599JNzlJzPWSk5N55513wGHi5dZuvNLOg7OXbExbkMjPBx2cOOegdDH48ZskPL080d3xZmjhd2amfJnA5b/slCupY9JQb/q+5MHB41bCtscxZMgQtm3blu0rIcTjQVVVvvzyS8aPH5+mBli5cuX45ptvslQAPTAwkOeeey47whT/EhcXx7Rp01i0aBF2ux2tTk+i2cK6HfBqh7uPK10cVmxUuXYTHA4bZUvAp6N8GNTz7olRVVX5+nszKF507tz5geJWFAV3d3fc3d3Jl+8eBeSywG63Yzab0yTiMkrO3W9V3p23rVbrQ4ktu1itVmJjY4mNjX1o92k0Gp1JuLNnz6La4qn/tI7Y2Lg0p9ju+jWJwgUUdFoLpoTU75ObIe19uRkgxQI3o1Ua1Daw4UcLBw4ckKSbELmcJN2EyGOqVatGUFAQkZGRAGzZsoX+/fu7OCohHj13Jt0KFSokq05ygbVr13LxwhmCAiyMeSsQgONnbGzclUytanps9hQcjtStXebERHx8Ule7rdyQRL9RcYwa4EWjOgZWbUymw5sx7F4eyKR3vNn9exSnT50gPDxcitSL+7LZbHz44YcsWrQoTXvdunVZsGCB83kncg+bzcbSpUuZOnUqMTExznaj0UiS2cKy9SqdmoG3Z/rVboqiMHOUN54enmg0md/m98NeCyfOqrh5+NClS5eHMo+HSavV4u3tjbe390O7T6vVmulkXWZX6d3vYAtXS0pKIikpiVu3bhETE0OAr4PST1hJTrY5+/x6RGX1FpUxbyrExcVRMDD1ebT/iJXgov+8Xd93KDUZFx3noGo5PRt22Th+/HjOTkgIkWWSdBMij9FoNLRs2dL5ZiA8PFySbkJkkdVq5fLly87bsrU0d1i0aBGoZvq+5OE87bFNIzfaNQkC4JV3bvH7sdQ3Lbdru2m1GsZ8Fk/XF9yZMDT1zWXDZ9w4csrK+DkJbFoQQK8ORmYsMrN48WJJuol7SkxMZMCAAfzwww9p2rt06cInn3wiKyVzod27dzNmzBhOnjyZ7pq7uzuJiYlcuW5j+tcqY99S0l338vZKs2o2M+LiHbz3iQk0PvTp0wc/P78HmcIjQ6/X4+fn99Dmq6oqycnJmdoum9m25OTkhxJbRrGmnmwLAX7/tP91Q+WNMSrPVYe+fy94rFhaQ72ntIyYGs8ThbSUDdbx9RozP+63AKmVAwP9NICN+Pj4bIlXCPHwSNJNiDyoRYsWzqTbb7/9xq1btx7adgQh8oJLly6lKVothyi43pUrVzh8+BA6TQpdX/hnZcadK0+0Oi2QmnRTVZXExERuxRo5fcHOlHfTrj7q+oKRd6eYSElReaWdkZmLovjll5/l96W4q8jISHr06MGxY8fStI8YMYLBgwdLsfNc5uLFi4wbN44tW7bctY+iKPj4+BAXG8P321SeqqTSuqGCTq/Dx9sHgyHrSVSrVWXwBBOR0W6ULF2B4cOHP8g08jRFUTAajRiNxod2cq/dbncm8P7LFtqM2my2f1a1oULy3yUe4+JVur+r4u8DCyYqzv+vNIrC4k98eentWJ59KfXgieJFtHz4phdjPkugUAENJ87aAAWD4V97UIUQuY4k3YTIg+rUqYOPjw8mkwmHw8EPP/xA165dXR2WEI8MObk09zl8+DCoViqU1hLor8mwj4KCRvPPtaSkJI6fTX0pVL5k2pdEFUrpsFjhwp92ypfSUfIJDef+tHHkyBEaNWqUfRMRj6SIiAheeeUVrl275mzT6/XMmjWL9u3buy4wkU58fDyzZs1i/vz5maoxZjAYcDd6EBdv5sPZDtzcjbzS3jeDk0vvLyVF5a3xcWzbq2IwBjJr1izc3d3/wyxEdtFqtfj4+DzUbeAWi4XExERatmzJpfN/cD3anRLFdHQcbCLBbGfnEm8KFVBQVQcOh4pWqyEwUMdv3+fj4p82zEkq5UrqmPFVIoUKaCheREfEOTMoOllpL8QjIONXpUKIx5per6dJkybO2+Hh4S6MRohHjyTdcp8TJ04ANqqUu/fKkzuTbqqq8ue11K05vt5p30H7/31SYXRc6orGquX0gNTPEent2rWLdu3apUm4+fn58e2330rCLRex2+2sWLGCunXrMnfu3CwV9ff396fmU7VRNfkYMc3C2xPiiIt33H/gHf44bqVZ72g2/gh69/zMn7+AmjVrZnUa4hFkMBjw9/endu3aKBo39h6w0+PdRE5dsLPlq0BKl/DE0zP1RFQfH288PT2dY4OL6qhYRo/FCgtXm+n7ogcOh8qeAxZAf89TkIUQuYMk3YTIo1q0aOH8+48//khiYqILoxHi0fLvk0vlk2bXi4uLA9VBgYB7v7RRHQ5UVcXhcKAo4LDZAYiKjiY+PgHb37f/rUCgBlRH6uMI8belS5fSo0cPEhISnG3BwcFs2LBBThTMRfbv30+rVq0YNmwYN2/ezNLYpk2bsmvXLvbs2cOQocPR6AuweqtCvZejmLYggWs3Mv6dAamJ/f2HLQwcE0ebN2I5c8WD/EFlWLZsOU2bNn3QaYlHTNu2bUFj5H9LzWzYmcKoAV6YElT2/WFxfqWkpB4M8b9vEvkmzMyuX1NYtMZM7c63cDcojOjvya5fLVz6S8HbJ4AGDRq4dlJCiPuS7aVC5FENGzbEYDBgsViwWCzs3LmT1q1buzosIR4JdybddDodRYsWdWE04k73OsjOoarYHQ4UJTUx53Co+P5d/i3WZCefX2r9Hb1ez7XI1MLoAb6aNPcrdbkEgMPh4OOPP2bOnDlp2mvWrMmiRYsIDAx0UWTiTlevXmXChAmsW7cuy2PLlCnDuHHj0iQ1RowYQZMmTRgyZAjnzp5kxqIkPl0URbmSWqqW01PyCS06LSQmqZw4a+NQhJXrtxRQjKDxpkOHTkycOBF/f/+HOEvxqGjQoAHBwaXY/2tq4nfYx+kPQbiwMz/BRXWkWFTGfpbIn9ftBPpr6NjMnQlDvNFpFcZ+lgAaT7p27SonpwvxCJCkmxB5lKenJ/Xr12fbtm0AbN68WZJuQmTSnUm3YsWKyYmEuUC+fPlA0XA1MuMtY6oKVovFeVtRFBwOB6WKpd4+ewlK//13q9XKkZMWDHrw944nOdnIn9ftoOgICAjI7qmIXC45OZkhQ4akS+S0adNGanTlEmazmTlz5jB37lxSUlKyNNbX15d3332XHj16ZPi7vWbNmuzYsYPw8HAWLVrEvn2/EHHBRsQFK6i3V70poLiD4oW7pxcdOnTg1VdfpUqVKg9hduJRpdVqmThxIq+80g3FEcWCSd60rJ/x74thfbwY1scrTZvDoTJ8cjxnr2gpULAYQ4cOzYmwhRAPSJJuQuRhLVq0cCbdfvjhB6xWqyQPhLiP+Ph4bty44bwtW0tzh8qVKwN6jpxKyvB6YmJCmhNnIbW+W5lgHaWLW9mwC1rU++fa2h0qdWuC6rAQG2vh4HEHCYn/JOvurA0n8o6oqCheffVVDhw4kKb9zTff5P3335fnhYupqkpoaCgTJ07k+vXrWRqr1Wrp2bMnw4cPv+9KNL1eT9u2bWnbti3Xr1/n8OHDHD58mOvXr2Oz2XB3d6d06dJUrVqVKlWqpKnRJfK2Ro0a8eqrr7Ho6/m8HhLLpHccvNLOeN9V1PEJDt6fHs/3W21o9PmYPn06fn5+ORO0EOKBSNJNiDysadOmaDQaHA4HJpOJX375heeff97VYQmRq124cCHNbUm65Q7VqlUDRceZS3auXLPzRKHU7aHmJJV1PySSkJDAn5EQnwgbdqbuFX22hkK50n6Mf9tC92GxlCvpRp0nVb7bbOGPExD6v9Q3QRf+VLl6HczmFMaOHcvChQvp2LEjnTt3pkyZMi6bs8hZ58+f55VXXuHixYvONq1Wy+TJk+nevbvrAhMAHDp0iJCQkHQJ0cyoV68e48aNo3z58lkeW7BgQQoWLEjz5s2zPFbkTePHjycuLo7Q0O8YMTWO9TtSGNzTk+dq6tMl38xJKmHbkpnxdSJ/3dSj0efj009n0bhxYxdFL4TIKkm6CZGH5cuXj6effppff/0VSN1iKkk3Ie7t34coyMmluUOBAgWoV+95dv+4kaVrk3j/jdRtOddv2nj5nbR1c/p9mJp02/KVJxXLaXm5jRFzssrkeQlMW2inXAkdK2e68WwNOxaLhe82qyRbFAwGNzQaDVevXmX27NnMnj2batWq0blzZ9q1a5e6xVU8ln799Vd69+5NbGyss83Ly4svv/xSCpm7WGRkJB9//DHffvttlscGBwczduxYmjZtKvUaRY7R6XTMnj2bqlWrMnnyx+z5I5Y9B0wEBapULa+naEENViucuWTj6Ckb5hQ9KN4UL1GWGTNmUKdOHVdPQQiRBYqq3qvksBDicTdv3jzGjRsHpH5a+/vvv8v2GCHuYfr06UyfPt15e/Xq1Tz77LMujEjcFh4eTp8+vfAxxrBraQBB+bTExcWRnJycrq/RaMTX1+e+93nhioXGPWO4dlOLh6c3bm5uGfbTarU0bNiQzp0706xZM6nr9RgJDQ1lyJAhWK3/1AssVKgQS5cupUKFCi6MLG9LSUlh3rx5fPbZZ5jN5iyN9fLyYsiQIfTt2xeDwZBNEQpxfxcvXmT+/Pl8++23JCbGgWoD7IACaEHRU7x4CXr27EmvXr3k4AQhHkGSdBMij7t06VKaT8w2btxI9erVXRiRELnbm2++SWhoqPP2H3/8QVBQkAsjErfZ7Xbatm3LHwd20/gZG/PGu2EymdL10+q0BAYEotHce2WLw6Hy0uBYfj5k4JlnGzNq1Ci+//571q5dS3R09F3HeXt788ILL/Diiy9Su3Zt+SDjEaWqKp999hlTpkxJ0165cmWWLFlCwYIFXRRZ3qaqKps2bWL8+PFcuXIlS2MVReHll19mxIgR5M+fP5siFCLrkpKSOHr0KEePHiU6OhqNRkPRokWpVq0aZcuWlf9HhHiESdJNCEHjxo2JiIgAYNCgQbz//vsujkiI3Ktly5YcPnwYAA8PD86cOSPbknKR06dP07RpEyxJ1+nZzsaQnqT591EU8PcPwGC496ExqqoyemY8X6+xYfQqwvbt2wkODgZSTzfdtWsX3333HVu3bsVyx6mo/1akSBE6depE586dKV269EOZo8h+VquV9957j1WrVqVpb9KkCZ9//rkUxneREydOEBISwi+//JLlsbVr12b8+PFygqgQQogcJUk3IQTTpk1jxowZAJQpU4Yff/zRxREJkTupqkq5cuVISEgAUle8bN261cVRiX9bunQp/fv1wdNooXNzeLePgod7auLNy8sLL697J0ziExx8MCOeNVtsKLoA5sz5nPbt22fY12QysX79elavXu2sj3k3Uv/t0WAymejbty979uxJ0/7qq68yfvx4dDopiZzToqKimDJlCsuXL093CvH9FClShJCQENq0aSMfkAghhMhxsk5VCEHLli2dfz9z5gznzp1zYTRC5F43b950JtxADlHIrf78808MbkZiTRpWboKXhqj8+JuKVqu/5wolm01l485kGvaIZs1W0OjzMWPGp3dNuAH4+PjQvXt3QkND2bdvH++9995dnxeHDx8mJCSE6tWr06tXL9atW5dhvTnhOn/++Sft2rVLk3BTFIUxY8YwadIkSbjlMKvVyrx583juuedYunRplhJuRqOR9957j927d9O2bVtJuAkhhHAJWekmhEBVVWrXrs2ff/4JwKhRo3jzzTddHJUQuc++ffvo2LGj8/bQoUN59913XRiR+LdffvmFzp07o6oqKSkpxMfHo9Pa8DSqlCymp0NTd6pX1FOuhBaju4I5SeXkeRsHj1sJ3ZbCXzcU0HhRPPi/nxKnqip//PEHa9asISwsjJiYmLv29fb2pnXr1nTu3Fnqv7nY4cOH6dWrFzdu3HC2ubm5MWfOHFq1auXCyPIeVVXZvn07Y8eOTXdidGZ06tSJDz74gEKFCmVDdEIIIUTmSdJNCAHAhx9+yIIFCwCoWbMm69evd3FEQuQ+y5cvZ/jw4c7bs2fPplOnTi6MSNwpLi6ORo0ace3aNWebw+EgMTERX19fHPZkUFP+Ph3OBqiAAooO0IPihn9AAXr06MHgwYMfyilxVquVnTt3snr1arZs2ZLmBMx/K1q0qLP+W6lSpR74sUXmbdmyhYEDB5KUlORsy5cvH4sWLaJGjRoujCzvOXPmDGPGjGHXrl1ZHlu9enXGjx9PzZo1H35gQgghxH8gSTchBJC6OuTO5IGcyChEehMnTmTu3LnO25s2beLJJ590XUDCSVVVXn/9dTZs2JDuWteuXZk0aRLr16/nl19+4ciRI1y4cAGLxYKbmxslS5akatWqPPfcc7zwwgu4ubllS4y3679999137N+//559n3zySWf9t8DAwGyJR6RasGABY8aM4c6XxKVLl2bp0qUUK1bMhZHlLXFxcUybNo1FixZht9uzNDYoKIhRo0bRsWNHWS0qhBAiV5GkmxACAJvNRrVq1ZzboCZPnkzPnj1dHJUQuUvv3r3ZsmWL8/bJkyfx8fFxYUTitpUrV/LOO++kay9RogRbt27NdadNXr58mTVr1rB69WouXLhw1346nY6GDRvSqVMnmjdvnm0JwbzIbrczduxYFi5cmKb92WefZeHChfj6+roosrzFZrOxdOlSpk6des+t2BkxGAwMGDCAt956K9f9jAshhBAgSTchxB2GDh3KqlWrAGjQoAHLly93cURC5C7169fnzJkzQOrWsyNHjrg4IgFw/vx5mjVrhtlsTtOu0+lYt25drl6NmNX6b23atKFz587UqlVLVvQ8ALPZzMCBA9OdPty5c2emT5+OXq93UWR5y+7duxkzZgwnT57M8tjWrVszevRoWY0ohBAiV5OkmxDCaevWrbz66qsA6PV6jh49Kqt4hPib3W6nZMmSzppctWrVIiwszLVBCaxWK23atMkwAfqoHQpjtVrZsWMHq1evZuvWrVL/LZvcuHGDnj17pnvODBs2jHfeeUdOucwBFy9eZNy4cWlWDmdWxYoVmTBhwn865EQIIYTIaZJ0E0I4JScnU6lSJWch6blz59K+fXvXBiVELnHp0qU0b/K6du3KjBkzXBiRAJg0aRJz5sxJ1/7cc8+xatWqR3Y1WFxcHOvXr2f16tWZqv/24osv0q5dOwICAnIowkfTyZMn6dGjB1evXnW26fV6pk+fTufOnV0YWd4QHx/PrFmzmD9//j2TyhkJDAxk5MiRdO3aFa1Wm00RCiGEEA/Xo/lKVAiRLdzd3WnQoIHz9ubNm10XjBC5zPnz59PcltVFrrd37940B1vc5uvry2efffbIJtwgdQ6vvPIKYWFh/PLLLwwfPpzg4OAM+x46dIhRo0bx5JNP0qtXL9avX09KSkrOBvwI2L17N+3atUuTcPPx8WHFihWScMtmdrudFStWULduXebOnZulhJter+eNN95g7969dO/eXRJuQgghHimP7qtRIUS2aNmypfPv27dvlzduQvzt30m3kiVLuigSARATE8OgQYPIaMH+9OnTKVSokAuiyh7FixfnnXfeYe/evaxfv55XX30VPz+/dP1sNhvbtm3j9ddfp1q1agwfPpxff/0Vh8OR80HnMitXrqR79+7Ex8c724oVK8b69et59tlnXRjZ42///v20atWKYcOGcfPmzSyNbdq0KTt37uTDDz+UchdCCCEeSZJ0E0Kk0aRJE+enyImJiezZs8fFEQmRO5w7dy7NbUm6uY6qqgwfPpzr16+nu9a9e3datWrlgqiyn6Io1KxZk48++ojDhw/z9ddf88ILL2RY9N9kMrF8+XI6dOhAnTp1+OSTT9IljvMCVVWZMmUK77zzDjabzdleo0YNNmzYQJkyZVwY3ePt6tWrvPHGG7Rv356jR49maWzZsmVZsWIFixcvlt+1QgghHmlS000Ikc5LL73kTLZ169aNadOmuTgiIVyvS5cu7N69G0hNfpw/fx43NzcXR5U3LVu2jHfffTdde6lSpdiyZQseHh4uiMp14uLiWLduHatXr+a33367Z9/q1avTuXPnPFH/zWKxMGTIkHQHnrRq1YrZs2djNBpdE9hjzmw2M3fuXObMmZPl1fK+vr68++679OjRQ06QFUII8ViQpJsQIp2vv/6aUaNGAZAvXz7++OMPqaEi8rynn37aWQuqWLFi7Nu3z8UR5U1nz56lefPmzgNfbtPr9WzYsIEqVaq4KLLc4dKlS6xZs4bVq1dz8eLFu/bT6XQ0atSIzp0707Rp08cugRwTE0Pv3r3THUIxYMAARo0a9UjX+8utVFUlNDSUiRMnZrgK9V60Wi09e/Zk+PDh+Pv7Z1OEQgghRM6TpJsQIp2//vqLp556ynl77dq1PP300y6MSAjXSk5OTrPFqUGDBixfvtyFEeVNFouF1q1bc+zYsXTXQkJCGDBggAuiyp1UVeXgwYOsXr2atWvXEhsbe9e+Pj4+tGnThs6dO1OrVi0URcm5QLPBxYsX6d69OxcuXHC2aTQaJk2aRK9evVwY2ePr0KFDhISEcODAgSyPff755xk3bhzlypXLhsiEEEII15KP+YQQ6RQuXJhq1ao5b4eHh7swGiFc78437yD13FxlypQpGSbc6tWrx+uvv+6CiHKv2/XfPv74Yw4fPsxXX31Fq1at7lr/bdmyZc76b1OnTk33nH9U/P7777zwwgtp4vfw8GDx4sWScMsGkZGRDBkyhFatWmU54RYcHMyiRYtYsWKFJNyEEEI8tmSlmxAiQ7NmzWLKlClA6gvjvXv3PvKrH4TIKlVVuXHjBuvXr+eDDz5Aq9WiKAqTJk2id+/erg4vT9m9ezddunRJ1+7v78+OHTsICgpyQVSPntjYWNavX893333H77//fs++NWrUoFOnTjlW/01VVSIjIzl69Cg3btzAbrfj7e1NhQoVKF26NDqd7p7j161bx+DBg7FYLM62oKAgvvnmGypXrpzd4ecpKSkpzJs3j88++wyz2ZylsV5eXgwZMoS+fftiMBiyKUIhhBAid5CkmxAiQ6dOnaJhw4bO2zt27KB8+fIujEiInJGSksK6desICwvj0KFDxMREYzYnkpiQiApotTpeeeUVQkJCCA4OdnW4eUJ0dDSNGzcmMjIy3bWvv/6a5s2buyCqR9/FixdZs2YNa9ascWn9t6tXr/LNN9/w3Xffce3aX6DaAPvfVxVQ9Li7e9CsWTN69erFM888k+ZDIFVVmTt3LpMmTUpzvxUqVGDp0qUUKlToocabl6mqyqZNmxg/fjxXrlzJ0lhFUXj55ZcZMWIE+fPnz6YIhRBCiNxFkm5CiAypqspzzz3H6dOnSUlJoXjx4litVhITE9FqtRQsWJCqVatSs2ZNOnbsSIECBVwdshAPxOFwsHTpUqZMmUJM9A1Qk0C1oNXYMbqppFhUklPAageDmw8arQetW7dh4sSJ8vzPRqqq0rt3b7Zu3ZruWs+ePZk8ebILonq83Fn/LSwsjLi4uLv29fHxoW3btnTu3Jmnn376gVZAJyUl8fHHH/PVVwtx2M3gSEKjWClbQkexQlq0WoiKdXD8jI3EJAUUI2iM1KxZi5kzZ1K6dGmsVisffPABy5YtS3PfDRs25IsvvsDb2/s/xyfSOnHiBCEhIfzyyy9ZHlu7dm0mTJggKw6FEELkOZJ0E0Kk43A4WLlyJe+//z7X/voTNzcVg17BzaAFHIACaEDRg2JAp/eiVatWjBw5Ulb+iEdSdHQ0b7zxBnv27AK7iSJBDl5pa6R+LQMVSulISIzBkmLh2k04dkZh688Gdv5qRVW88PMvzKeffkqzZs1cPY3H0pIlSxg5cmS69jJlyrB582aMRqMLonp8WSwWtm/fzurVq/nhhx+wWq137VusWDE6depE586dKVGiRJYe5/jx4/Tr14+LF06Bw0Tdmjp6tjfS+Fk3jO5pE3kOh8qx0zaWrUti9eZkkiweGNwDGDFiBD/99BM//vhjmv49evRg0qRJ992OKjInKiqKKVOmsHz5chwOR5bGFilShJCQENq0aSMlKoQQQuRJknQTQqRx+fJlhg0bxt69P+KwmfB0S6FFPaheQaHOUwHk89dis8GFP+0cOWUl/McUDhy3g+KBu0cg77//Pn369EGjkXNaxKMhKiqKTp06cfrUYdx18XwwwIvenYxotf+8Qbxx46bzzaZOpyNfvkAizloZMsnE0TMaNLoA/ve/ObRv395Fs3g8nT59mubNm5OSkpKmXa/Xs2nTJipVquSiyPKG2NhY1q1bx+rVq+9b/61mzZrO+m/+/v737Hvo0CG6du2KKfZPCuVLYdpIHxo+k7ktq39F2nl3iomdv9qJMYHBYMTT09N5ffTo0QwYMEASPA+B1Wrlq6++YubMmZhMpiyNNRqNDBo0iDfeeAN3d/dsilAIIYTI/STpJoRwOnz4MN26dSMm6k+MBjPD+3rQ4tlEjO6pvya8fbzx9PBIN+7YaSvj/5fAngMO0PrSseNLfPrpp7LKQOR6drudDh068PtvP1EwIJGVn/pTtkTa563DkXqYwm3u7m74+fkBYLWqjJgaz8qNNnRu+QkNDaNmzZo5OYXHlsVioVWrVpw4cSLdtbFjx9K/f38XRJV3Zbb+m16vT1P/7d+F8q9evUrTpk2Jjb5ErSp2lnzih4931j6ksVisTP0ymllLHMTEa/Dy8sHX15fZs2fTpk2b/zI9cQdVVdm+fTtjx47l/PnzWR7fqVMnRo0aRcGCBbMhOiGEEOLRIkk3IQSQenBCu3btMMVeoWpZO1+M9yG4qA6TyYTZnASAwWAgICDjFQwOh8ri75MY81kiNtWPF1/qxqeffiqrDUSuNnfuXCZOGAOOaCqW0nHyvI0Yk0qZ4loG9/Skd2cjVquN6Oho1m5XWbdT5VCEwl83VKaO8GZ4Xy8cDpUBH5pYv0uhVJnqbNu2TVZ2PARjx47lyy+/TNdev359li1bJqtpXURVVQ4cOMDq1atZu3Ztpuq/vfjiizz11FMAdOvWjR93baJqmRTW/M8PT4+s/TumpKQQGxuHqqp8vkJlznKVeLOB77//nhdeeOGB5ibgzJkzjBkzhl27dmV5bPXq1Rk/frx88CCEEELcQZJuQggsFgstWrTg5InfqFnRyoqZfnh5pr4RSkmxEBMTA4CiQP78BdBo7p5I27I7hb4fmLArAcyc+RldunTJkTkIkVXR0dHUrFmTFPNfeBnt1Kysp31Td/IHaNi2N4VP5ify4VtevNdXT1xcHP1CHFy8CrWfNLDwO4sz6QYQF++gQfcoImN8GR0ynoEDB7p4do+2Xbt20a1bt3TtAQEBbN++naCgIBdEJf7tdv237777ju3bt9+z/lvx4sUpW7YsmzdvxKiPZfviAA6esLJ0bRIHjlnTJbvv/MAm1uTgw0/j+W5zEjFxKgXzwasdFPq9CH1Gw6HTnjRv0ZHFixfnxLQfS3FxcUybNo1FixZht9vvP+AOQUFBjBo1io4dO0oyXAghhPgXSboJIfjkk0/4dOYnBPrEsWtpIDEmB9MWJLLvkIVjZ2yULga7lqS+kPb19SUySkeJhjczvC83A0x/34dJn6fg7VecXbt2UahQoZycjhCZkrrKLYQqpRNYOs2P/IHaNNf7j45l1cZkLv/oSZLZjMOhotEoBAQE4FbpVpqkG8DKDUm883EyxUpUY+/evWi12n8/pMiEW7du0bhxY27eTP87ZvHixTRt2tQFUYn7iYmJcdZ/O3DgQLrrqqoSHR2Nh7uFYb21vPOaN417JRJcRJthsnvMoNRTRxPNDp7rEoVGcfB6F5X8AXDuCiQkwtu93LgV50XDHjGomvzs2bOXkiVL5vTUH2k2m42lS5cydepU5wdsmWUwGBgwYABvvfVWmrp6QgghhPiHFFwSIo+LjY3l888/B4eJj4d5E+ivYc8BCxt3JVO7mgGHClbrP596p6QkUyi/L798G5jmflSgxWvRNKpj4PWuHmzalcIfp27w+eefM378+ByelRD3991334Fq5tWOHukSbgDVK+iZvyoJU7wdvRbnCk+dLuNkWrsm7oybHc/lyxfYv38/derUydb4H0eqqjJs2LAME269e/eWhFsu5u/vT69evejVq5ez/tvq1au5dOkSkJrccThseBmhUzMHJpOJhROhcJAOd3cNbm5uNKrjRlSsgxlfJRLyphcajcLH8xKIi7ez/WvwMKb+DD5bHdzd3fH19SUgABrXMfDDviSWLFnC2LFjXfhdeLTs3r2bMWPGcPLkySyPbd26NaNHj6ZYsWLZEJkQQgjx+JA14ELkcatWrSIl2USl0govNEw9Pa5NIzeu7A5i9f/8qVFRn2Y7aUqKBYMBnqluSPOVYlExJah0a2NEp1N4t58nOMx8++23mM1mV01PiAwlJCRw+vRpUK00fS7jUxP3HLBQJEiD0f2fpLNGo6AoGf/XaXRXeP5pN1At/PHHH9kS9+Nu0aJFbNu2LV17uXLlCAkJcUFE4r8IDg5m2LBh/Pzzz6xdu5YePXqgKApuepUGtcHfJ/X/lABfSE5OITY2lps3b2IymahSVoMpQSXRrGK3O5i/KpEurf5JuAF4eXni6+vL7R2oXV9wB0cyP/74oyum+8i5ePEivXv3pkuXLllOuFWqVIk1a9bw5ZdfSsJNCCGEyARJugmRx33//fegJtGr4z81dP5ds01RNM5rqqqSkmJJdz/L1yfh46XQplFqAfnnnzYQXETFFBfF9u3bs3kWQmRNREQEqmqlUH6FfAHp/yvc87uFlRuTGdbHC7vtdtJNRVVTfwbupmp5HahWjh49mk2RP75OnjzJuHHj0rUbDAbmzp0rh1M8ghRF4emnn2bKlCm0aNECT08DT1XWZ3jAjsPhwGxOYue+RArlB9WRyB/HbnEjKjU512ukg+KNHFR8QWXoxzYSzQ7n2JqV9YCNM2fOyIc89xAfH8/EiROpX78+W7ZsydLYwMBApk6dyubNm2UVrxBCCJEFknQTIg9LSUkhIiICVAsNa2e82uc2g8GQZtydrFaVNVuS6dDUHXe3fxJ39WsZQLVw+PDhhx+8EA8gNjYWVAdB+dJvFf3zmp0uQ2Jo+IyBQT2MuLkZ0Oq0OBwqDoeD6Ojou95vgUANoKbev8i0lJQUBg4ciMWSPqEfEhJChQoVXBCVeJjOnj2LVgNPVfUhf/78+Pj4oNfr0/T59YjK2u3wRleFhIQErt9MTXiPn6Pi560Q9rkPHw3z5rvwZPqN+ufU1KB8WgL9FBwOK+fOncvReT0K7HY7K1asoG7dusydO/eeB178m16v54033mDv3r10795dalUKIYQQWSQ13YTIw06ePInNlkKAr0LhoHvn4N3c3JzJtpSUZFTVx7m1J/ynFKJjU7eW3qlqOT1g4ciRI9kRvhD/WepKGwWHI217rMlBy77RBPppWPM/f3Q6Db6+fkTHRDtP5bPZbABYrbZ093v7/uSNadZMnDgxw21ujRo14rXXXnNBROJhS0pKAhz4eCloNAoeHkY8PIzYbHaSk5M5d8nMG2NsPFcdXut4ezWpBnBQqhgsm5kPnS71ZatOp9BvVByT3rFRslhqm7enQlS8+vfjiNv2799PSEjIf1p927RpU8aOHUuJEiWyITIhhBAib5CkmxB52K1bt0B1UCRIk2a7j8OhYrPZsNlsWK1W7HY78fHxOBwOFAXs9tST6ry8vNDr9Sxbl0RQPg2NnzWkuf8iQRpQ7URFReX01IS4p0KFCoGi4eJVG6qqoigKSckqrftHExfv4Jdv8+HrnZpkM5vNWC3pV4YkJydjMsXj7e3tTEBf+NMOaClYsGAOzubRtn37dhYuXJiuPV++fMycOTPDrYji0ZO6qk3h3z9KOp0Wm8PIK++ZyeevZcFEBxpNatLNN/UAUxo/6+FMuEHqwQkAx8/8k3S7nQO/s19edvXqVSZMmMC6deuyPLZs2bKMGzeO+vXrZ0NkQgghRN4ir0yEyMPsdjsOhx1VVUlISExNstmsd9SwApvN4axjpSgKGo0GVVWxWCxER0eTYtWxfoeFvi95oNX+uxbcP3XghMhNypYti8FgxJSgcOGKnWKFtbw0OIaIczZ2Lw+kSMF/VqqlrsaxZbiCxmw2Y7Va8fPzQ6vVcCjCCoqRqlWr5uR0Hlk3b95k6NChGV779NNPyZ8/fw5HJLJL0aJF+fPyMc5esv1dgy3VncnujV9o8fFSgdT/O0oW0+BmcKSrM3pbsiX1/5ZEs4O/bthBo6Vo0aLZPpfczGw2M3fuXObMmZOuFMT9+Pr68u6779KjR490W3+FEEII8d9I0k2IPCI+Pp6TJ09y4sQJ59ehQ4eIiYnj2g0HCQn2e47XaDTo9DpQwW63Yben7qNbt91KUjK0qpdCYqIZo9HofIN0I8oOigZfX99sn58QWaHX63n66afZu/sWoduSOXXBxoadKUx/3xtTgsq+P/6pLVa9oh5fXx/OXtHwx7FE+DuJHHFeZcNOMBotNH02imSrNz8ftILiyzPPPOOqqT0yHA4HQ4YMSV1x+y99+vShUaNGLohKZJdq1aqx7+ftHD5ppcsLqaUIbDbVmexe/7me/AH/bNnWaDTkCwigWd04tv+cNnm0bW/qz2eNiqmJoWOnbaiqjoIFC1GgQIEcmlHuoqoqoaGhTJw4kevXr2dprFarpWfPngwfPhx/f/9silAIIYTImyTpJsRjxm63c/nyZY4fP05ERIQzwXblypV0fR0OBzY73IiGWzEq+fwVFEVBp9Oi0+nR6XQY3JLR6WwUKPDPihNVTd1aZzYnEvqDheAi8GR5lfj4eBISEjAajXh4eHDklA3QU6lSpRz8DgiROa+88gp79+xi6dpYouNSk8jDPo5P1+/CzvwEF9WxfofKuNn/FIH7bjN8t1mlaEFo/IyDeStiSU7RU6dubcqWLZtj83hUffXVV+zcuTNde4UKFRg9erQLIhLZ6emnn2beFwbCf4xl3GAVvV5h4Ng4NuxMYeIQPTFxVg78fTaCgsLzz/ih02kZM8ibZ1+6Rfd3YujVwYMzl2y8Py2e7m3dKVU89WXsuh3JoBioVauWC2foOocOHSIkJIQDBw5keezzzz/PuHHjKFeuXDZEJoQQQghJugnxCIuLiyMiIiJNcu3kyZOZLiRdqFAhVFVFtUdz/LwbHZt7oNPqSEpW2bQrGYA/r6uYElRWh6feZ/1aBvIHajEa3Yk369l94AZv99QBqckIVVUxm80kJiby468KNruXbLUTuVKrVq0oUjSYq1eO06eTlglDve/Zf+xgb8YO9sbhUImLi0uzdev0RZXFoSqxJhsJCQmYTCZ8fHyyewqPrIiICCZMmJCu3c3NjTlz5uDmdu/TlMWjp2nTpuTLX4jIyHjCf0qhbWN3tu5JXbE2+tN/10xUubBTwcsTalbWs2lBACOnxdP2jWj8fTX07+rBpL9/XhMSHXwXngyaQLp165bDs3KtyMhIPv74Y7799tssjw0ODmbs2LE0bdpU6iYKIYQQ2UhRpdiSELmezWbj4sWLzsTa7STb1atXMzXeYDBQvnx5KlSoQMWKFZ1/BgQEMHXqVGbO+Ig6VZNZMyd1W8nFP22UaHgzw/vauTSABrVT3xDPWZrIW+NMnAjPR5lgDWazmaSkJFRV5fAplR7vqUTHaWnQoAFvvfUWL7zwgtSJEbnKrl276NatK9ijmDfemzaN3TM1TlUhMTGRhIQEYuNVXvtA5chpBYfqjq+vL8HBwSxYsEBWeWYgOTmZFi1acPr06XTXJk2aRO/evV0QlcgJn3zyCZ/OnEKxoHi2LwkANYn4+IQ0fXx9fTEaM/dzCDB6Rjxffe+gZOnq/PTTT85Thh9nKSkpzJs3j88++wyz2ZylsV5eXgwdOpQ+ffpgMBjuP0AIIYQQD0SSbkLkMjExMWkSaydOnODUqVOZLohcuHBhKlas6PyqUKECJUqUuOuJbteuXaNWraexWyIJneNL7Scf7EW4w6GSaE6kz/sJhP8EquLhXPFTqFAh+vTpQ/fu3aXOm8g1Ro8ezVcL56Ello+He9K9rTHTKz9OnU+i7wdxHDkF5mQtAQEBaLWphzC4ubkxefJkunTpkp3hP3JGjRrF119/na69adOmLFq0SFbdPMbi4+Np1KgRV6+coGtLO+++Zknz7+3l7YWXp2em72/P7xZeejsOtIGsWLHqsT9tU1VVNm3axPjx4zMsGXEviqLw8ssvM2LECDmgRAghhMhBknQTwkWsVivnz58nIiIiTf21zBZAdnd3p0KFCulWr/2XZNbw4cNZvuwrggslsH1JIEb3B3vTuzo8icETE7E6fClbtiwXLlxIc93Dw4MuXbrQr18/goODH+ixhHhQdrudd955h+++WwH2OBo9oyHkTW/Klbx7BYZEs4NvwpL4ZH4iSRYPzMkKbm5uGSa3u3fvzsSJE2XLJLBt2zZ69eqVrr1AgQJs376dwMBAF0QlctJPP/1Ex47tURwxvNlN4fUuqQkhDw8PvL29yWzO9cAxK93eiSU+yYdu3Xszbdq07A3cxU6cOEFISAi//PJLlsfWrl2bCRMmULly5WyITAghhBD3Ikk3IXJAVFRUmq2hx48f5/Tp01it/65jk7EnnnjCmVS7/VW8eHHnipoHZTKZaNiwIdeuRtC6Acwd64tO998Sb4cjrHQeFEtiih8j3w9h0KBB7Nu3j3nz5rFt2zbu/JWjKArNmjXj9ddfp3bt2rLCRbiMw+Hgiy++4JNPpmBJjgE1iWeqaXn+aTeqlNMR4KvBYlU5c8nGweM2NuxMJiFJDxpv6tZtwJQpU5g/fz6LFi3K8P6rVKnC/PnzKVasWM5OLBeJjIykcePGREdHp7u2YsWKx36Vkkh15MgRGjduTGxsNH7eDlo3gLGDjBQr6pephJvDofJNWBLj/5dIktWHZ+rUZ/ny5bi7Z35L6qMkKiqKKVOmsHz5chwOx/0H3KFIkSJ8+OGHtG7dWv5/FUIIIVxEkm5CPERWq5WzZ886E2y3k2w3btzI1HgPD490K9fKly+fIwXZf/75Z15+uSvW5Ju0qKfw6SgffLyzVhvnx19T6B9iIj7Jm7r1mrB8+fI0K38uXLjAggULWLlyZbrDHqpWrUr//v1p06aN1H0TLnPmzBkmT57M1q1bsNvMoFpTv/j7v0pFB4oeFDdKlCjNm2++SdeuXZ11pNasWcO7775LcnJyuvv29fVlzpw5NGrUKAdnlDs4HA66d+/Ojz/+mO5a//79GTt2bM4HJXLcpUuXaNOmDbdu3Uo9cCchHm8vhWKFFN7q4clLLd3v+v+O3a6y61cLc5Ymsu+wClpfGjRowoIFC/Dw8MjhmWQ/q9XKV199xcyZMzGZTFkaazQaGTRoEG+88cZjm4wUQgghHhWSdBPZTlVVIiMjuX79OoqiUKhQIQoUKODqsB6IqqrcvHkz3cEGZ8+ezfTqteDg4DSr1ypUqECxYsVcWgR669at9OvXF2tKFAUDLUwe7kPTuob7fkIeE+fg4y8SWLouBTQ+1H7meb755hu8vLwy7B8bG8vSpUtZuHAhkZGRaa4VLFiQPn368Morr0jdN+Ey165dY/369Rw+fJiIiAji4+PR6/U88cQTVKtWjeeff55nn302w5/XiIgI+vbtm25bNaSu7hw6dChDhw59aCtVHwXz5s1j3Lhx6dorVqzIpk2bpKB7HhAVFUWbNm24ePGis61QoUK4ublx8cJpUM0YDRZqV9NTtbye4oW1aDQQHevg6Gkb+49Y+euGAhojRo9ARo0axauvvvrYHZygqirbt29n7NixnD9/PsvjO3XqxKhRoyhYsGA2RCeEEEKIrJKkm8gWqqry+++/s2TJEn766Sdu3rwB3N4WoSEoqCANGzakV69eVKtWzZWh3ldKSgpnzpxJszU0IiKCqKioTI339vZOt3qtXLlyd01Iudrvv//O4MGDuXjhFDjiKVUMurU2UquagUpldLi7KaiqyrUbDo6csrL5pxTCfkjBYnMDjTevvvoaISEhGI3G+z6W1Wpl/fr1zJs3j6NHj6a5ZjQa6dq1K3379qVEiRLZNV0hsoXJZGLo0KGEh4dneL1+/frMmTOHgICAHI4s5x0/fpxWrVql+0DC3d2dLVu2UKZMGRdFJnKK2Wymc+fOHDp0yNlWsGBBNmzYQGBgICtXrmTRokWcOhUBqgVUG2D/u6eSuroUPT6+Abz88su89tprPPHEEy6YSfY6c+YMY8aMYdeuXVkeW716dcaPH0/NmjUffmBCCCGE+M8k6SYeuqtXrzJ8+HB+/HEnOMygpqDV2CgQmPppdOQtBw5VB4o7aIy0aNGKyZMnu3z12+0Vef/eGnr27Fnsdvt9xyuKQokSJZzJtUqVKlGhQgWKFi36yNVSSUpKYvr06SxevJjEhNT6Vqg2FMWG0U3BZgeLFUAPigE0RipXrsqYMWN47rnnsvx4qqry66+/Mm/ePLZu3Zqu7lvTpk15/fXXeeaZZx6576XIu1RV5YsvvuCjjz7K8HdI4cKFmT9/PtWrV3dBdDkjKSmJ5s2bc/bs2XTXJk+eTM+ePV0QlchJNpuN3r17s337dmebj48PoaGhVKhQwdmmqirHjh3j4MGDHDlyhJs3b2K32/H29qZixYpUrVqV2rVrZ+oDnUdNXFwc06ZNY9GiRZl6vXGnoKAgRo0aRceOHR+7VX9CCCHE40CSbuKh2r17N3369CHBFIlBl0jHZu50aeVOtQp63N1SkyXmJJU/TlhZuTGJtT+kYFO98PMvzJIlS3jqqadyJM7k5GROnTrl3BZ6+ys2NjZT4318fNIcalChQgXKlSv32NWVSUhIYM2aNWzbto0jR45w69ZNUmtbKWi1OsqWLUvNmjXp2rUr1atXfygJsXvVfatSpQr9+/enbdu2UvdNPDJ++eUX3njjDW7evJnuml6vZ8KECfTo0eOxTCiPGDGCb775Jl178+bN+eqrrx7LOYt/qKrKsGHDWLlypbNNr9ezYsUKnn32WRdGljvYbDaWLl3K1KlTiYmJydJYg8HAgAEDeOutt/D09MymCIUQQgjxoCTpJh6affv20bVrFyzJN6lZ0cGno3woVVx3zzERZ60MnmDi+Dkdnt6FWbNmDVWrVn1oMamqyl9//ZWm7tqJEyc4f/58pk4B02g0lCpVKt3JoYUKFcpzbxZVVSUqKoqEhAR0Oh358uXL1gLNcXFxzrpv169fT3MtKCjIWffNz88v22IQ4mGJjIzk9ddfZ//+/Rle79y5M1OmTHmsVvFs3ryZ1157LV17UFAQ27dvzxNba/O6qVOnMnPmTOdtRVH4/PPPadu2rQujyh12797NmDFjOHnyZJbHtmnThtGjRz+WW2yFEEKIx40k3cRDYTKZqF+/PpHXTtPsWZUvJ/piMCh8F57E0rVJHDhmJcakUqa4lsE9Pend2ehMWpmTVF4dEcueg1qCS1Zl+/bt/+mNp9ls5uTJk87k2u0/M3vql7+/v3NL6O3Va2XLlpWTv1zMarWyYcMG5s2bx5EjR9JcMxqNdOnShb59+1KyZEkXRShE5litVj7++GO++OKLDK9XqFCBBQsWPBY1DK9fv06jRo0yXD28atUq6tWrl/NBiRz1zTffMGLEiDRt48ePp2/fvi6KKHe4ePEi48aNY8uWLVkeW6lSJcaPH0+dOnWyITIhhBBCZAdJuomHYuTIkSxZ/CUlCifww+JAjO6pCbU6L94iuIiW9k3dyR+gYdveFD6Zn8iHb3kxZpC3c7wp3kGDV6K4Hu3DW4OG8cEHH9z1sVRV5cqVK+m2hl68eJHMPJ11Oh2lS5dOt3qtQIECeW712qNEVVX279/PvHnz2LJlS4Z13/r370+dOnXk31Hkahs2bGDo0KEkJiamu+bt7c2sWbNo0aKFCyJ7OBwOB127dmXPnj3prg0YMICQkBAXRCVy0pYtW+jTp0+aFeUDBw5k9OjRLozKteLj45k1axbz58/P9CnntwUGBjJy5Ei6du2ap049FkIIIR4HknQTDywmJoYaNWqQYv6T7z7z5bmaBue1W9EO8gWkLezbf3QsqzYmE3MgCI3mn+TI5p+See39RHz8S3Dw4EE8PDxISEjg1KlTzhNDb69gS0hIyFRsgYGBVKxYMc0KtjJlymAwGO4/WORaFy9edNZ9M5vNaa5VrlyZ/v37065dO6n7JnKtc+fO0adPH06fPp3h9YEDBzJy5Eh0untv0c+N5s6dy8SJE9O1V6lShQ0bNsjP5WPu999/58UXXyQlJcXZ1rFjRz777LM8Wejfbrfz7bffMnny5AzrOt6LXq+nT58+DBkyBB8fn2yKUAghhBDZSZJu4oF9/fXXjPpgOJVLJbDl64D7rjL6fFkiA8eaMP0RhLdX6gtwVQWr1Ua9l6M5fcmN6jVqk5SUxKVLlzIVg16vp0yZMulODs2fP/8Dz0/kXnFxcSxbtoyFCxdy7dq1NNeCgoJ47bXX6NGjh9R9E7lSYmIi7777LmFhYRlef/bZZ5k7d67LT3bOiqNHj9K6det0K3mMRiNbt26lVKlSLopM5ISzZ8/Stm3bNNuK69Wrx9KlS/NksnX//v2EhIRw9OjRLI9t2rQpY8eOfSy2mwshhBB5mSTdxAMbOHAgYd9/w4i+Gt5+9f4naHUbGsNPv1k4vdUbm82G1WrDZrOhqiozFql8sRIceNz1U92goKA0W0MrVKhA6dKl8+QLepHKarWyceNG5s2bx+HDh9NcMxqNvPTSS/Tr10/qvolcR1VVFi1axNixYzPcchYUFMS8efOoVauWC6LLGrPZTLNmzTh//ny6a1OnTqV79+4uiErklMjISNq0acOff/7pbKtUqRLff/893t7e9xj5+Ll69SoTJkxg3bp1WR5btmxZxo0bR/369bMhMiGEEELkNEm6iQfWoEEDTkfsY9l0Txo+43bXfjabjfBd0bR/086YNxX6v5R+Rdzm3SrvTFYxp7hRsGBBypUr50ys3f4zMDAwO6cjHmGqqvLbb78xb948Nm/enK7G3+26b88++6zUfRO5yoEDB+jXr1+6k3oBtFotISEh9OvXL1c/b4cPH87y5cvTtbds2ZIFCxbk6tjFgzGZTHTs2JETJ04425544gnWr1//SK3UfFBms5m5c+cyZ86cNNtrM8PX15d3332XHj16yIeIQgghxGNEkm7igdWsWZNrfx5j80Ifqpa/+wvFy3/ZqN3pJmWKw8oZSpp6blqtFp1Ox29HoecIG8GlarBnz55Hsp6RyB0uXrzIwoULWbFiRbq6b5UqVeL111+Xum8iV4mKimLAgAEZHkAA0KZNG6ZPn46Xl1cOR3Z/GzdupF+/funaCxYsyPbt2/H393dBVCInWK1WunfvnuZ56+/vz7p16/LMdmJVVQkNDWXixIkZJs7vRavV0rNnT4YPHy4/J0IIIcRjKO9VtBUPnZtb6uq2pOS7529jTQ5e6BdDgK/C4ikGPD098PbxJiAggAIFCpA/fz78/f1QNEY0Wi2+vr6ScBMPJDg4mAkTJnDw4EFGjx5NoUKFnNeOHz/O4MGDqVWrFp999hkxMTEujFSIVIGBgaxYsYLBgwdneH39+vW0atXqrocvuMq1a9cYPnx4unZFUZg9e7YkEh5jDoeDt99+O03Czd3dnSVLluSZhNuhQ4do27Ytb731VpYTbs8//zw//PADkyZNkp8TIYQQ4jElSTfxwEqVKgWKjhNnbRleT0pWad0/mrh4B1u+zk+J4oH4+vrg6eGBwaBPs+It9T50lC5dOoeiF487Hx8fBg4cyL59+/j888+pVq2a81pkZCSTJ0+mZs2ajBw5knPnzrkwUiFSV72MHDmSxYsXZ1jX8uzZs7Rq1Yq1a9e6ILr07HY7gwYNIi4uLt21gQMH8txzz7kgKpFTJk6cmOYgEI1Gw7x586hZs6brgsohkZGRDBkyhFatWnHgwIEsjQ0ODmbRokWsWLGCcuXKZVOEQgghhMgNJOkmHtiTTz4JioEf91vSXbPZVF4aHEPEORubFwZQtJD2nvf1028WUPRpEiNCPAx6vZ527dqxadMmwsLCaNWqlbPGVHJyMkuWLKFevXr07NmTPXv2pKsHJ0ROatq0KVu2bKFSpUrprpnNZgYMGEBISEiGhy/kpM8//5yff/45XXu1atV47733XBCRyClffvklX3zxRZq2Tz75hKZNm7ooopyRkpLCZ599xnPPPce3336bpbHe3t6EhISwa9cumjVrJnUOhRBCiDxAarqJB3b69GkaNKiPxnGTfd8Fpkms9R8dy/xVSUx/35tnqxvSjKteUY+b2z8vOE+dt9GwRwwafQH27/+NwoUL59gcRN50u+7bypUrSUxMTHOtYsWKvP7667Rv317qvgmXSU5O5v3332fVqlUZXq9ZsyZffvllmu3TOeX2tjqbLe0qZw8PD7Zt20aJEiVyPCaRM9atW8cbb7yRpm3YsGEMGzbMRRFlP1VV2bRpE+PHj+fKlStZGqsoCi+//DIjRowgf/782RShEEIIIXIjSbqJh+Kll15iz0+bafasja+n+Do/vQ1ucINLV+0ZjrmwMz/BRVPrtjkcKi8OiuWXwwZatX6RBQsW5FjsQphMJpYtW8bChQv566+/0lwrUKAAvXv3pkePHgQEBLgoQpHXrVixgvfffx+LJf2K4sDAQD7//HPq1q2bY/EkJibStGlTLl68mO7ajBkz6Nq1a47FInLW3r176datW5pVlt27d+eTTz55bFdunThxgpCQEH755Zcsj61duzYTJkygcuXK2RCZEEIIIXI7SbqJhyIiIoIWLZpjTb7O2EEe9O/qkaXx0xcmMP2rFDy8n2D79u0UL148myIV4u6sVivh4eHMmzePP/74I801d3d3XnzxRfr16yc1B4VLHDlyhH79+mW4ykaj0TBy5EgGDhyIRpP9lSOGDh2a4eq7Nm3a8MUXXzy2yZe8LiIigvbt2xMfH+9sa9q0KQsXLnwsDz+KiopiypQpLF++HIfDkaWxRYsWJSQkhNatW8vPgxBCCJGHSdJNPDRffPEF48ePAXs0Q3oZGdrbE73+3i80U1JUPp6XwJerUkAbwLRpM+jWrVsORSxExlRV5cCBA8ybN4/w8PB0b7aaNGlC//79ee655+TNlMhRsbGxDBo0iO3bt2d4vVmzZnz22WcZHsJwL5GRkRw9epQbN25gsVgwGAwULlyYKlWqEBgYmKZvRlsLAQoXLsz27dvx9fXN0mOLR8PVq1dp3bo1kZGRzrYaNWrw3XffYTQaXRjZw2e1Wvnqq6+YOXMmJpMpS2ONRiODBg3ijTfewN3dPZsiFEIIIcSjQpJu4qFRVZXJkycze/anYDdRqbSDt3t50ryeW7rkm8WisnFXCp8uSuTMZS1ofBg1KoQ333zTNcELcReXL19m4cKFLF++PF3dtwoVKjjrvhkMhrvcgxAPl8Ph4LPPPmPq1KkZHvgRHBzM/PnzMzyE4U6HDh1iyZIl7Ny5k8jI66DagDvLAWhB0VOkSBGaNm1Kz5498fb2pnHjxukSEYqisHr1aurUqfMQZihym9jYWNq1a8eZM2ecbSVLlmTdunWP1bZ7VVXZvn07Y8eO5fz581ke36lTJ0aNGkXBggWzITohhBBCPIok6SYeurCwMD744ANiY66DIxEfLzvVyusJLqJFVeHCn3aOnLISn6gDjQf5CzzBJ598QvPmzV0duhB3ZTKZWL58OQsXLuTq1atprhUoUIBXX32Vnj17PlZvQEXu9uOPPzJw4EBiYmLSXXNzc2PKlCm89NJL6a79/PPPTJgwgcOH/wBHEqjJaBQbpYvrKF5Ei0EPKRY4f8XG+St2QAcaIyjugAar1ZrucJHBgwczcuTIbJqpcKXk5GReeuklfv/9d2dbgQIFWLduHcWKFXNhZA/XmTNnGDNmDLt27cry2Bo1ajBu3Dhq1qz58AMTQgghxCNNkm4iW9y8eZOvvvqKZcuWcetW5L9WUGhB0REUVJgePXrw2muv4efn58Johcg8m83Gpk2b+PLLLzl48GCaa25ubs66b2XKlHFRhCIvuXr1Kv37909Xg/C2V155hQkTJuDm5kZiYiIfffQRX3+9EBwJ6LXJtG3sRpdWRmpU0uNhTL9V2hTv4MBxK8vXJxH+YwrxiSqJSQoeHp54enqiKArVq1cnLCxMTvl9DNntdvr168fmzZudbV5eXnz//fePzcEAcXFxTJs2jUWLFmG3Z3zw090EBQUxatQoOnbsmCO1FIUQQgjx6JGkm8hWVquVkydPcvjwYSIjI1EUhUKFClGtWjXKli37WBZeFnnH7bpvmzZtSlf3rXHjxvTv35+6detK3TeRrSwWC2PGjGHx4sUZXq9atSoTJkxg2LBhnD1zHBwmerRz471+XgT6Zy5RYLFYOXU2iulfq2z8ERLMCiqpdd927NhBcHDwQ5yRyA1UVeWDDz5I87zS6XQsW7aMevXquTCyVElJSSQlJaHT6fD29s7y71mbzcbSpUuZOnVqhqtF78VgMDBgwADeeustPD09szRWCCGEEHmLJN2EEOIB3a77tmLFChISEtJcq1ChAv3796dDhw4Pte6b1Wrljz/+4PDhw5w4cYKEhAS0Wi358+enatWq1KhRg1KlSj20xxO53+rVq3nvvfdITk5O02632zGZTPh4aShSwMKs0b7Uezrzz0WHQyUqKsq5Cmj7Lyrj56pcjVQILlmR3bt34+/v/1DnIlxv1qxZTJkyJU3b//73Pzp27OiSeMxmM2FhYezYsYMjR47w559/Oq/5+PhQpUoVatWqRZcuXe677XX37t2MGTOGkydPZjmONm3aMHr0aJ544oksjxVCCCFE3iNJNyGEeEhMJhMrVqxgwYIF6eq+5c+f31n37d+nQWZFZGQkS5YsYdmyZdy4cQ1Ua+oXt3+Vp27fRtFTo8ZT9OrVi/bt28vWvzwiIiKCvn37cuHCBSB1tVJ0dDQGnZXyJVWWTfeiTAlvsrIoKC7ORFJSUpq281dU3hgLt0y+PF3reb7//nu0Wu1DnIlwpVWrVjF06NA0baNHj2bgwIE5HovZbGbGjBksXboUU9wtUJP//p1nJ+3vPT0oBhSNkSZNmhISEkLp0qXT3NfFixcZN24cW7ZsyXIclSpVYvz48XJYiBBCCCGyRJJuQgjxkNlsNsLDw/nyyy85cOBAmmtubm507tyZfv36UbZs2Uzfp6qqrFixgrFjx5IQfwscZgJ87TxVWU+VcjoCfDU4VLh0NfWgkj9O2LDa3UDxoFLlJ5k1axYVK1Z82FMVuZDJZGLo0KGEh4cTHx+PzZpIqSdUlkxRKFxAwc3NDV9fXzSa+2fekpKSiYuLS9eu1Wq5FedL+4GxxCf5MTpknEsSMuLh27FjB7169UpT36xv376MGzcux7fK79+/nyFDhnDxwilwJBBcRKXrC0ZqVtZTqYwOHy8FixXOXbZxOMLG+h3J/PibFRQPDO4BjBgxgtdff53ExERmzZrF/PnzsVqtWYohMDCQkSNH0rVrV0ksCyGEECLLJOkmhBDZ6MCBA3z55Zds3LgxXd23Ro0a0b9/f+rVq3fPN7MpKSkMHDiQ8PD1YDdRrTwM7OZBi+fd0OszHnczys6KDcl8scJMbII7OoMfU6Z8wssvv/xQ5ydyp9v1uKZN+wR/HwezRyvUf/qf54pWq8XPz/eeKyDtdjtRUVE4HOlfJgQEBGAw6Fm5IYl3PjZjMBbkhx+2p1tZJB4thw4dolOnTmlWNrZp04bPP/88xw8KWLduHW+99SY2SzSF81v56B1vmjxnuG+y+PxlG6NnxrNrvwM0vlR7siZXr17l1q1bWXp8vV5P3759efvtt/Hx8XmQqQghhBAiD5OkmxBC5IArV66wcOFCli9ffte6b+3bt8fNzS3NNYvFQq9evfhx11YM2jhG9POkf1cPtNrMrTi5EWVnxCfxbNljB60/U6ZMpUePHg9tXiL36tq1Kzu3r6N1/WQmDUn/fFEUBW9vb4xGY7rtpqoKMTHRWCzpVwV5eXni5eX1dz+VHsNj2fGrgQ6dXmHOnDnZMheR/S5evEibNm2IiopyttWpU4fly5en+72U3X744Qd6934Vu+UWbRtp+eQ9b3y8M5/0U1WVRWsSGDUjkeg40Ok9spQ4a9q0KWPHjqVEiRL/JXwhhBBCCCdJugkhRA6Kj4931n27sxA4QL58+Xj11Vfp1auXs+7bqFGj+PqreXgY4vhmmi91qmf9MAZVVZnwvwS+WGlB0QXy/feh1K5d+6HMR+RO58+fp27d51AcN9mzwh9fz/g0CbQLf6p8vlLl4HE4eQHKl9RxbFN+5/WEhESWrY1n3U6VP07AtZvw4UCFwT0NBAQEpEnSHTlppUWfWPTuhTlw4AD58uXLyamKh+DWrVu0bduWixcvOtvKly9PWFhYjq/yunnzJg0aNCAm6jwvNtcwc5RPprZC32a3O4iPjyc5OZkfflYZPlUlOlaDl7cv7u7u9xxbtmxZxo0bR/369R90GkIIIYQQAOTsXgEhhMjjvL296d+/Pz///DNffvklNWvWdF67desW06ZNo2bNmgwfPpyVK1fy9dcLwRHHvAk+/ynhBqkrmkLe8qJzcx2qPY6hQ4emK4wvHi/ffPMNqEk0edZAiSf0+PsH4Onp4bx+6gJs/wWCi0DZ4qlbSW221BpeFouVhIQENuxSufwXNHn2n/v19fNNtyquank91StosVriWbVqVU5MTzxEiYmJ9OjRI03CrVChQixbtswl2ypHjRpFTPRVKpZy8MyTBjoMjKFo3Ug8q17nyTY3+eo7M3d+XtygexRKmWvOL135SPyfNnPmkkqTZxVef0nB2zM1EffvLf63+fr6MmnSJH744QdJuAkhhBDioZKVbkII4WIHDhxg/vz5bNiwwfmm8Papk14ednp31FOrmjvL1iVx4JiVGJNKmeJaBvf0pHdno7Me3PDJJsJ/TOHyNTsKUK6kjmGvedK1tREAU7yDhj2iuBblw7vvjU53OqF4fDRp0oQTx/Yyb5yRNo3/Wd2TnJxCXFwcdrvDuXro7UkODp+Cn5Zq8fb2ISEhAbvdjsOhOvsUqufgo3eMvD/AL8PHW7TGzAczrTzfoA0rV67M9vmJh8NqtfLqq6+yc+dOZ5uPjw9r166lXLlyOR5PREQEjRs3QqveZPNX/vT9II7gIlraN3Unf4CGbXtT+GR+Ih++5cWYQd5AatLNYrUTMoA0SbVKpcHdTcFqU+k2TOXACQWd3su5NRpSaxv27NmT4cOH4+/vn+PzFUIIIcTjT+fqAIQQIq+rWbMmNWvW5MqVK3z11VcsX76cqKgoVIcNH08Hr7/koNvwFEoU1TFtpA8FAlPffPYbHceV63bnm8+ERJV+L3lQvpQWRVFYvTmJl4fG4nBAt7ZGfLw1fPCGF4MmJLJkyRLeeuutexbSF4+mlJQUTp8+DaqVGpXSrlRyd3dDpwskNjYWm82W5prDoRIbGwukro7895Y+vf7uLxlqVNKDaubIkSOoqprjp1yKrFNVlXfffTdNws1gMLBkyRKXJNzgnxWaLZ43UKmMnvXzAsgX8M+mjEZ13IiKdTDjq0RC3vTCbrdhtVrxdFepXkEDpH/e6XUKfTrDiSkqpsQkPD09URSF559/nnHjxrlsrkIIIYTIGyTpJoQQucQTTzzBmDFjeOedd2jTpg2HDu6mdQPw9lRY9LFKoJ8djSYBDw8P6tf2SvPmU6NR+GKCb5r7a17PjRNnbSz63ky3tqmr3do0cmfs7AQiI6+yc+dOmjVr5oKZiuwUERGBzZZCgK9C4aD0VSR0Oi0BAQGYTCaSk5Od7aqqOrft3Zk4u31qpcVqxWw240xsKKD8/ffihVV0WjuRkddYtGgRQUFBaDQatNrUBLBWq0Wj0aT5+ndbVvrceZ//fozbt2+PERmbMmUK3377rfO2oijMnTuXWrVquSQeVVVZu3YtOJLo2T71g4Q7E263Va+gZ/6qJP66bkKnSSYzGzYa14ECgZBgdhAYGMjMmTNp0qSJJIeFEEIIke0k6SaEELmMt7c3JpMJD6OOzi3d0RtSCPRLLYLvcDhISEggMTGR8iW0mBJUEhId+HhrM7yvQD8NpoR/3pQaDAqt6rvxzboU9u/f/9gm3VRVxeFwYLfb/65XZkvzd4fDkaYto3536/tf+mQljgeNNTo6mtiYKMo94eDmzVvO78cd3x1u31RVFfWO79m/v4epf6Zu2UtJTsFkstz1e+7v4+D6eRPvvfderlpBeb/E3H9N7GUl+ZcTCcasPMaOHTtSV5X9TVEUXnvtNTw9PdmzZ889H/O/zuPfbbfv83bi68qVK8TERKPX2ald7e7Pnz0HLBQJ0mB0t2P9++n4yyEo2dSBwwHVK8B7fRXqPPlPQk2vU3iqMtyIcaN///40bdo0W55rQgghhBD/Jkk3IYTIZW7evMn169dQFBtPVTHi6eGJxZK6yiglJRlVTU2I7PndQsH8kJwUjZvBF71ej6o6sNkgwayyYWcyW/eksPgTH2w2mzPRUqmMgsNhYdeuXTRu3Pi+iaR7JYcySjb9l0TSgyap/h2r3W537T+iC6WkpOBwONBp1bsWjr9NURQU7r1SyOH4Z/VbRtv3btPrUq/mtlKxDofjvt+HvCQ5OZm4uLg0bZ6enixdupSlS5e6JCatVktKSgrxpijqVHMQE3Pz7wM7/nm+KQrsO6yycqOdcYM02G12VFXlmWrQuTmUfAIibyl8vlKly1CV72fDU5VTxxuNRp6uqmH7ryonT550yRyFEEIIkTdJ0k0IIXKZK1euAHYKF9Di6ZG6vcpg0GMw+GK3e5GYaGbHLwms3QEfDgSbzUZ0dDSKovDT76lvOAF0Wpg0VKF+zQRu3Upw3n8BPxWbVeWnn36iU6dOrpiiyAHJKaTZPndnEiPN3zUqiqKi0Wjum5y6fV1RlHRb81IsoIJs2cvFLBYLJpMpTZu7uzuenp4uiiiV3W7HarWiKCr5Am5vdQbuSAj/dUOlf4jKc9XhtY6pCWWNRsPw1+5MsKs0qQMNesHMxSrfzXLD29sbvV5HoQJJgMVZt1AIIYQQIidI0k0IIXIZqzV1K6khgx1WVquN85eTGDAWnq0Off6VM6tREcLnK8QnwM5fVUZ/qqLTQrfW/yRCDPrUpEtuW5GUVYqioNPp0Gg06HQ6tFotWq02w7Z/t9+rz52373Z/97rvrPa5XxxZjfXChQs0atSAqzduERiYH53u3kkwd7dYtForQUH5uXnzxt+JtdTvbephCyqgoij863AFFUXRoNfrSUrRcSvWjLe3L7NmzcLDw+PvE1Adzq9/386o7fZtVVWdf7fb7RnevrN/Zvpk9TH+Sxz3mqur2Ww2YmNj0/zcGwwGfHx8cn2iNC5epfu7Kv4+sGDiP4d8aDQK/17UanSHxs/Axh//Ofzjzl91uX2uQgghhHi8SNJNCCFyGXd3d0Ah0fzPO0WHQyU+3sT1G0m8PCz1zefCicrfCZXUVSGKouDnq+PpKqlvKhs9Cyo2xv7PTo/2BnTavwvi2+0oio3AwEA6dOjw0BJJd0sO/ddE0r2SVLfrRIn0ypYti5eXDwlx0Zy5aKNC6czVV/tn9ZuCVqshX75AHA4HKSkpQKzz2p1UVcVisfD70RSsVtC7pSZxGjZs6PLVU7nN3RKOD5rYy0yfW7du8eGHHzq3XauqSvHixRk+fPjf29IfPIn577aMkpj36nP58mX2/7qHmzFW3NwMzkRZUrJKr5EW4hNh83wDgf6pz0EVFbvNhqIoaRKJqaswU28nJppJTDSj02m5eEWD6tDi5+eXo//uQgghhMjbJOkmhBC5TMmSJQEtN6JVomIceHnYMJniSDDb6TFCxZQAG75Q8PG6nQBRnCvXvL28cXMzOO/ruafMfLEyDrvqS37/1MMW/ow0o9PbaNq8OXPmzMn5CYpspdFoqFKlCr/svcovf1gzTLqZk1Q27Uo9ufTSX3ZMCQ5WhycRZ3JQu6pKgUA4ccbKibM255gLf7mxY78OvdZK/adtzlpvAAeOgdUG5hQT/fv3x2AwUL9+fVq1akXTpk0JCAjI/onncq46TdVkMtGhQwcSEhJwc3MDIDg4mLVr15I/f/4cj+durly5Qu3atTh/5Saenn4YDAo2m0qvkTGcuQy7l+ejYpl/nsuqmrp6LykpicTERCA14WZOUtn2MzxZ/p/7ttnsHDphxZSgsHPnTr744gvatWtHoUKFcnqaQgghhMhjJOkmhBC5jLe3N6VKleLc6Wh274/jmWoWbDaV1z9UOXsJQv+nUCh/+i1Sd54EeNue3634eCnk8//nzf6BY1ZQ9FSrVi3b5yJco2XLlvzy8y6Wrkugd2djuufFjSg7Lw6OTdN2+/aazxQKBMK34cmMm/1PLcBvwpL5JgyKF9FyYWcBLBYLKSnJxCckE/qDgxSLBg9PdyC1dti2bdvYtm0bGo2GZ555hpYtW9KiRQuKFCmSnVMXd7BYLLz22mtEREQ42wIDA1m+fHmuSrgBFC1alICAQKJvRvPLHxbq13Zj4Ng4NuxMYfr73pgSVPb98c/pudUr6tl/xMHUBVbaNfHmiYJw+WoKn32Tws1omD/+n+e8xapy4ARYbQo3btxg/PjxTJgwgWeeeYb27dvTunVr/P39XTFtIYQQQjzmFPVRL+ojhBCPoV69ehG6ZhltGtiZPlLD8E8cLFsPY95UeLpK2r6Vy8DVm+6Mn2PnpZZGgotqnaeXLvg2iY+HeTPidS8A4uIdPNn2Fin2fKxbt4GnnnrKBbMT2c1kMvHkk0+SnPgna/7nQ53qhvsPIvXkXLs9tUB9gQKZS8qs35FM/9EJqJoAgoODuXz58j37V61alRYtWtCyZUvKli0rNbayicPhYODAgaxbt87ZZjQaWb16NdWrV3dhZHc3atQovv5qDi2es/DVZD+CG9zg0tWMTyK+sDM/Nju8Nc7E4ZNWomIdeBoVnq1u4P033Khc2kZKSgqqqrLxR5X3pqqYEnXky5cv3XNOp9PRoEEDOnToQLNmzWRrtBBCCCEeGkm6CSFELpKYmMikSZNYsGAB0dFRFAhwsHauQsdBKn9ez3jMyS1++PkYGDLRxC+HrFy/acfXW0P5kjreec2Tdk3cnX3nLE1k0hdWKlZ+lm3btknC4zH23nvvsfSb+VQsaSZ8QQB6/f3/rbOadEs0O2jcM5rLkd68PeQ93nvvPU6ePEl4eDjh4eEcP378nuNLlChBy5YtadmyJdWrV5c6fQ+JqqqMHTuW+fPnO9u0Wi2LFy+mUaNGLozs3k6fPk2DBvXROG6xcb4f1Spkrh7h3ThUlYSEZFr1NfHHCdDqPfHy8rrnGKPRSLNmzejQoQMNGzZEr3+wGIQQQgiRt0nSTQghcolff/2VIUOGcOnSJQBiYmLQa1NoUEvli7HKv06OTH1z6O3tna79bi7+aaNxzxiSbP7MnDmbLl26PPQ5iNzj5s2bNGjQgJhb5xneR887r9072ZA65hZ2ux2NRqFAgQL37T9qhomvv1cp8kRFduzYgbe3d5rrly9fZvPmzYSHh7N///57npgbFBTkXAFXp04dSXY8gM8//5wJEyakaZs5c+Yj8TM/YMAA1oatpHywmc0LAzAYHuyDgcnzEvjsGyv+gSUZMmQIW7du5eeff87U6c2+vr688MILdOjQgWeeeQatVvtAsQghhBAi75GkmxBCuFhycjKTJ09m/vz5ad4I2mw2oqOj8fO2M/w1hVc7pL751Go1+Pj4pjkw4X6SklVeGhzDgRNuPFevGatWrZJVRXnA2rVrGTCgP1o1mq8+9qFpXbd79r+ddFMUhaCgeyfdvt2UxJBJCaANZNWq76hXr949+9+6dYutW7cSHh7OTz/9hNVqvWtfHx8fmjZtSsuWLWnQoAEeHh73vG/xj9DQUN588800be+99x5DhgxxTUBZFB0dTf369Ym6eY52jRRmf+jz9ynNWbf2h2QGjo1H1QSycOHXtGzZEoDIyEjWrl1LWFgYhw4dytR9BQUF0bZtWzp06EC1atVklbAQQgghMkWSbkII4UIHDx7k7bff5ty5cxleN5vNmBPj8fNxMKKvQp8Xjfj4+GR6dRukbgF87f04dh9Q8PZ9gq1bt1K8ePGHNQWRi6mqyjvvvMOqlUvRa2KZN8GbFs+737V/ZpNuqzYmMWxyAg7Fn4EDBzN69OgsxRUfH8/OnTvZtGkTO3bsICEh4a593dzcaNCgAS1btqRZs2b4+fll6bHykj179tC9e/c0Cc2ePXvy8ccfP1JJoh9//JEePV7BlnKTFvU0zPjABz+fzH9I4HCofL0miTGfJeLAj1d79+Ojjz7KsO/FixcJDQ0lNDSUs2fPZur+g4OD6dChA+3bt6dMmTKZjksIIYQQeY8k3YQQwgUsFgvTpk1j7ty5OByOu/ZTVZWEhASsliT8fRVeaKDn42He5A/M3DanX/6w8M5HJi5d0+PhVYjly5dTq1athzUN8Qiw2WwMGDCAjRvCUNRY+r7ozsjXvTC6p0/C3Lx1C7vt7kk3U7yDsbMTWLkxBbT+vPLKq0yZMuWBEjoWi4Xdu3cTHh7Oli1biIqKumtfrVZLnTp1aNmyJc2bN6dw4cL/+XEfN8ePH6dDhw5pEpgtWrRg/vz5j+S2yPDwcN5443WsKdEEBaQw7m1vXmjghlZ77+fayXM2Qj6NZ+9BB2h9efnlHkydOvW+K3tVVeXEiROEhoYSFhbGX3/9lak4K1WqRIcOHWjXrp2czCuEEEKIdCTpJoQQOezIkSO8/fbbnDp1KlP927RpQ6lSpfjf/2Zjs8Ti45lM1xfceaWdkVLFtOkSHlaryu7fLSwOTWLbXitovClcpCRffvklNWrUyI4piVzOZrMREhLC4sVfg8NEcGEb7/b14oUGbmlqZt26dQtbBkm3pGSVsG3JTF2QwPUoA4rWl0GDBjNixIiHuoLKbrfz+++/Ow9iuHLlyj37V6tWzXkQQ15ecXTlyhXatGnDjRs3nG1PPfUU3377Le7ud1/ZmNs5VwKfjQBHPEWCVF5q6U7NynoqldHh46XBalU5c8nOkZNW1u9IZt9hOygeGD3zMWrUKHr37p3l56jD4eD3338nNDSU9evXEx0dnalxtWrVokOHDrRu3ZrAwMD/MmUhhBBCPGYk6SaEEDnEarUya9YsZs2ahd1uv29/f39/Pv74Y9q2bQvAsWPHGDJkCCdOHAWHGdQkAv0UqpTVEeCnwW6Hy3/ZOX7WhsWqBY0RFCPdunXnww8/xMfHJ7unKHK5nTt3Mnz4cK79dREciQT62enU3J2alfRULa/DwxCL3W5HVVWSrPk4csrGb0ctrNmSjClRD4onwSXK8umnn2b7iklVVYmIiCA8PJxNmzYRERFxz/6lSpVyJuCefPLJR2o75YOIiYmhbdu2abaoly5dmnXr1j0WW3GTk5OZPXs2X3/9NbExN0FNBtUK2IDbL2F1oOhAcUOr86BFi5aMGjWK4ODgB358q9XK7t27CQsLIzw8nMTExPuO0Wq11K9fn/bt29OiRYv7npgqhBBCiMeXJN2EECIHREREMHjwYI4fP56p/s2bN2fKlCnpTpB0OBzs2rWLRYsWsXPnTux2y99vQG//KteCosPPL4AXX3yRnj17UqpUqYc7GfFIM5lMLFiwgKVLl3L9+p/gSAasoNpQHTZ0OrDZQNHoQNEDOtAYKVasBD179qR3794YjcYcj/vixYvOk1B///33e54+WbBgQWcCrnbt2o/tSahJSUm89NJLHDhwwNkWFBTE+vXrKVq0qAsje/iSk5NZv349u3bt4siRI5w/f975HMiXLx9Vq1bl6aefpkuXLhQsWDBbYkhKSuKHH34gNDSU7du33/MwkNvc3Nxo1qwZHTp0oFGjRhgMmT8ARwghhBCPPkm6CSFENrLZbMydO5fp06dn6g2aj48PEydOpFOnTvddqZOcnMyJEyc4ceIECQkJaLVaChQoQNWqVSlevLicTiruyWazsW3bNnbu3MmRI0eIiIggMvI6NpsNgCeeKEalSpWoWrUqTZo0oUGDBrnmOXXjxg3nSah79uy558+Wr68vzZo1o2XLltSvX98lCcPsYLPZ6Nu3L1u3bnW2eXt7ExYWRoUKFVwYWc6w2WwkJydjMBhcksgymUxs2rSJ0NBQ9u7de8/anLf5+PjQsmVLOnbsyLPPPvtI1toTQgghRNZI0k0IIbLJmTNnGDJkCH/88Uem+jds2JDp06dn2yoNIe7FarXSuHFjZ63BK1euPBKrckwmEzt27CA8PJzt27djNpvv2tfd3Z2GDRvSsmVLmjZtiq+vbw5GmjFVVYmMjOTo0aPcupV6eqynpyflypWjTJkyGa7SU1WVESNGsHTpUmebXq9n2bJl1K1bNyfDF6QmgdevX09YWFiaVYf3kj9/ftq2bUv79u2pUaNGntkOLYQQQuQ1knQTQoiHzG63M3/+fCZPnozFYrlvfy8vL8aOHcvLL78sb7yESzVr1oxjx44BcPnyZXQ6nYsjypqUlBR++uknwsPD2bp16z0L4Ot0OudJqC1atMjxZPfp06dZvHgxGzdu5MaNSFBtwO1ajwooegwGd5555hl69OhBs2bNnAm4GTNmMG3atDT39/nnn9OuXbscnYNI79KlS6xdu5bQ0NBMH5ZTrFgx2rdvT4cOHShXrlw2RyiEEEKInCRJNyGEeIguXrzI22+/zW+//Zap/nXr1mXGjBmPXf0l8Whq0aIFR44cAVKTB49yLTSbzcZvv/3mPAn16tWr9+xfo0YNZx24kiVLZltcV69e5f333+eHH7aBmgSOJLQaO2VLaClaUItGgbh4ByfO2TAlKKC4gcaDggWLMmHCBEwmE8OGDUtzn2PHjqV///7ZFrP4byIiIggNDSUsLIw///wzU2MqVKhA+/btad++PU888UQ2RyiEEEKI7CZJNyGEeAgcDgeLFy9m4sSJJCUl3be/0Whk9OjR9OrVK9fUyRKiVatWHDp0CIALFy7g5ubm2oAeElVVOXbsmPMghpMnT96zf9myZZ0r4KpWrfrQVqCuXLmSDz/8kARTJBoSaV7PQI/2RmpXM2B0T/sYDofK+St2Vm9OZtm6JKLi9FhsbiQnW/Hy8nL+3nj99dcZM2bMQ4lPZA9VVTlw4AChoaGsW7eOqKioTI2rWbMmHTt2pHXr1uTPnz+boxRCCCFEdpCkmxBCPKArV64wbNgw9uzZk6n+tWrV4tNPPyU4ODh7AxMii9q0aeOsSXXu3LnH5tCBf7tw4YJzBdz9anAVLlyYFi1aOE9C/S9bblVVZdq0acycOQ3scTxVGWZ+4EOp4pm7r5QUlWkLTMxZZiYuXsHm0OPv70/Hjh353//+J4n7R4jNZmPv3r2EhoayadMmEhIS7jtGo9FQr1492rdvT8uWLfHx8cmBSIUQQgjxMEjSTQgh/iNVVVm+fDljx44lMTHxvv3d3Nx4//336dOnj5xaJ3Kltm3b8vvvvwOpNce8vLxcHFH2i4yMZMuWLYSHh7N3717n6a0Z8ff3d56E+vzzz+Pu7p6px/jf//7HRx9NAHs0w/sYebuXJ1pt5lfP2Wx2oqOjOXLKztuTVC79peDpnZ+IiAgCAgIyfT8id0lOTmb79u2EhYWxbdu2TNUANRgMNGnShA4dOtC4ceNMPweFEEII4RqSdBNCiP/g2rVrDB8+nJ07d2aqf40aNfj0008pXbp0NkcmxH/Xvn179u/fD8DJkyfz3Ioak8nEDz/8QHh4ODt27LjnVnEPDw/nSahNmjS56/fqwIEDtGvXFof1JmPeMvL6y55ZisludxAdHY3dnnrIwqW/VF77AKIT/OjZqx9TpkzJ0v2J3MlkMrF582bCwsLYvXu389/7Xry8vGjVqhXt27enbt26j9zBJ0IIIUReIEk3IYTIAlVVWb16NSEhIZhMpvv21+v1vPvuu7zxxhvyhkjkeh07dmTfvn1AahF4X19fF0fkOsnJyc6TULds2UJsbOxd++p0Op577jlatmxJ8+bNCQoKAlJPU23SpAnnzvxBp2Yqsz/M2vfT4VCJiYnBarU627RaLScvetFlSDxoA1m16jvq1av3n+Yocqdbt26xfv16QkNDnStP7ycwMJC2bdvSoUMHatasKSdhCyGEELmEJN2EECKTbty4wXvvvcfWrVsz1b9y5cp89tlnlC9fPpsjE+Lh6Ny5Mz///DMAx48fx9/f38UR5Q42m41ff/2V8PBwNm/ezF9//XXXvoqiOE9CNZvNzJg+mQJ+cexaFoifj4bvwpNYujaJA8esxJhUyhTXMrinJ707G1EUBVO8gxlfJ7JpVwqnLlgx6KF6BXi/v0KlMloCAgLQ6bSMmmHi6+9VqlSry+bNmyXJ8pi6cuUKa9euJTQ0lIiIiEyNKVq0KO3ataNjx46UL19enhtCCCGEC0nSTQghMmHdunWMHDnynqtdbtPpdLz99tsMHjwYvV6f/cEJ8ZC89NJLzgNBjh49SmBgoIsjyn1UVeXIkSPOgxjOnDlz137R0dF4edgYP1hP/64+6HQ6nn3pFsFFtLRv6k7+AA3b9qbwyfxEPnzLizGDvDl22krTV6N5pY2GmpXspFjg85UqR07BL9/6Ua1C6uEWMXEOqre7hcWRjw0bNlGjRo2c/DYIFzh16hRhYWGEhoZy+fLlTI0pW7YsHTp0oH379hQvXjybIxRCCCHEv0nSTQgh7iEqKooPPviA9evXZ6p/+fLlmTVrFlWqVMnmyIR4+Lp27cpPP/0EwKFDhyhQoICLI8r9zp07x+bNmwkPD+fgwYPOdqvVSmxsNEUKONj2lYK3p4JWqyXBbKBIISN6vZ7bC5D6j45l1cZkYg4EkZSskpCQiOowO+8r0axS6yXo1taYZovqkIlxfLtZx8vd+zJ9+vQcm7NwLVVV+eOPPwgNDWXdunXcvHkzU+Nq1KhB+/btadOmjXMLtBBCCCGyl5wxL4QQdxEeHk7Dhg0zlXDTaDQMGjSIzZs3S8JNPLI0mn9eFshncplTqlQp3nzzTTZs2MDBgwf56KOPqFevHna7HYNe5dnq4O2Zml2z2+0Y3ZKIjo7m5s2bxMWZSElJ4ckKekwJKolmFYXkNAk3gEIFfSldXMdfkY407W0auYOawm+//ZZj8xWud3sL84QJEzh48CCrVq2ia9eu9z345ODBg3z44YfUrFmTl156iRUrVhAXF5dDUQshhBB5kyTdhBDiX+Li4njrrbfo06cPt27dum//UqVKsW7dOt5//30MBkMORChE9rgz6eZwOO7RU2SkYMGCvPrqq6xatYqOHTvi6eFGtfL6DGtqORwOkpKSiImJZfveeAoXUFAdiZhM8Wn6eXl5YrG5ceyMjQql0h7GUrWcDrBx7tw5EhISsnNqIpfSarXUq1ePGTNmcOTIEb766ivatGmDm5vbXcc4HA727NnDsGHDqFq1Kr1792bdunX3PK1XCCGEEP+NJN2EEOIO27dvp0GDBnz//ff37asoCq+//jrbtm2TekrisSBJt4fnzz//RKeFGpW9KVAgP35+fhiNxjTfY4BfjzgI267y+ksqCQkJaVYYGo1GPD29eO8TE4oCb7zskWZs/kAtgX4Kqmrj4sWLOTEtkYsZDAZatGjBvHnzOHr0KLNnz6ZRo0Zotdq7jrFarWzZsoU33niDqlWrMmjQILZv357mxFwhhBBC/He6+3cRQojHn8lkYuzYsaxcuTJT/YODg5k5cya1a9fO5siEyDmSdHt4kpOTARWju4KiKBjcDGg0GnQ6HSkpKVitFq5cc/DGGHi2OrzWKXWcoig4HA7c3d3x8fFh0Roz81clsWiKL0ULpU+eeBoVouJVUlJScnaCIlfz8vKiU6dOdOrUiaioKDZs2EBYWBi//vrrXcckJiayZs0a1qxZg7+/P23atKFDhw48/fTT6ZLFQgghhMgcSboJIfK83bt3M3ToUP76669M9e/duzejRo3Cw8Pj/p2FeIRI0u3hSElJISkpCbvdTkxcIrduxWOz2dL0iYtX6TEC/H1gwQS4/a1XVRVFSU3Ubf4pmf4hcYS86UWvjhn/vrFYVUBBp5OXdCJjgYGB9OrVi169enH16lXWrl1LaGgox48fv+uYmJgYlixZwpIlSyhcuDDt27enffv2VKpUKcPt0kIIIYTImJxeKoTIsxITE5k4cSKLFy/OVP8iRYowc+ZM6tatm82RCeEaffv2ZdOmTQDs3buXEiVKuDii3M9qtRIREcHhw4edX6dOneLWrVsYdMmMeRNefiFtkiIpRaXLUJWrkbBxnoYnCunR6/WkpKRgt9sBOHBc5aWhKi+3NrLgI78MHzsh0UG55jdRNQU4fPgI+fPnz+7pisfImTNnCAsLIzQ0NNPbk0uXLk379u3p0KGD/H4QQgghMkGSbkKIPGnfvn0MHTqUS5cuZap/t27dGDNmDN7e3tkcmRCu079/fzZs2ACkrgAtVaqUiyPKXaxWK2fOnEmTYDtx4kSG9a8SEhJw2BN4+QWVCYNTl7GlLhDS0ut9B78dcbDjGz+qlnfn9sIhm81OVFQUJ8876PCWytNVFDbMD0Kvz3hl0a+HLHR4M56CRSpx8ODBbJq1eNypqsrhw4cJCwtj7dq1REZGZmpctWrVaN++Pe3ataNgwYLZHKUQQgjxaJK9CEKIPCU5OZmPP/6YBQsWkJnPHIKCgpg+fTqNGjXKgeiEcC3ZXvoPu93O2bNnncm1I0eOcOzYsUzXTjMYDCSZdfx62I7R6IXRaECv1/F6SBxbdicx/X1vkpI1/HrI4hxTvaKexGR3ug1PxN0N+r0Ie36Px+juDoCPl0LFMnpn/x37LKAYePLJJx/q3EXeoigKTz75JE8++SQhISHs27eP0NBQNm7cSFxc3F3H3f7ZGD9+PHXq1KFDhw688MIL+Pn55VzwQgghRC4nK92EEHnGgQMHePvttzl//nym+r/44ouMHz8eX1/fbI5MiNxh4MCBhIWFAbBz507KlSvn2oByiMPh4OLFixw6dMiZSDh27BhmszlT4xVFoVSpUlSrVs35VbZsWerVq8etyNPMn+jBCw1TE2fBDW5w6ao9w/u5sDM/56/YaNwzJsPr9WsZ2LUsEACLReWpjre4ZfJnwYJFtGrV6j/MXIi7s1qt7Nq1i++//56tW7eSlJR03zF6vZ4GDRrQoUMHmjVrJrVPhRBC5Hmy0k0I8dizWCxMnTqVzz//PFOrd/Lnz88nn3xC8+bNcyA6IXKPvLDSTVVVLl++7Fy9dvvP+Pj4TN9HcHBwmgRb5cqVM9x63q1bNz6b9QmzvzHTvJ4bOp3CxV0F7n3fRXWYj/inWWFkNBrx9fVJ02/ZuiRuxWgJKlyEZs2aZTp2ITJLr9fTtGlTmjZtSmJiIlu3biUsLIydO3emOxjkNqvVyrZt29i2bRtGo5HmzZvToUMHGjRogF6vz3CMEEII8TiTlW5CiMfakSNHePvttzl16lSm+rdt25aPPvqIgICAbI5MiNxn0KBBrF69GoDt27dTsWJFF0f0YFRV5a+//kpTg+3w4cP33DL3b0888USaBFuVKlUyvfo1MjKS+vXrY4q5yKgBbrz5imcm44bo6Og0teICAwOcSYsr1+w0fCUas9WfSZOm0Lt370zPR4gHFRMTw8aNGwkNDWXfvn2ZKtXg6+tL69at6dChA88880yaBP+DiI+P59dff+Xo0aNcu3YNVVUJCgqiSpUq1K5dW7a6CiGEcDlJugkhHktWq5VZs2Yxa9Ys52mA9+Lv78/kyZNp06ZNDkQnRO4RERHB6tWrOXDgALt27XKu+CpZsiS1atWidu3adOnShaCgIBdHen+RkZHpEmxRUVGZHl+oUKE0CbaqVas+cAJ+1apVDB06GL0SxcpP/ahT3ZCpcVarLU3ser2egIAAzEkOurwdy8EIN555tjGrV69+aAkMIbLq2rVrrF27lrCwMI4cOZKpMUFBQbRv35727dtTtWpVFCXjg0Lu5cqVK8yePZs1a9aQZDYBVlD//r9e0QJ6DG6etGvXjkGDBlG6dOksP4YQQgjxMEjSTQjx2ImIiGDw4MEcP348U/1btGjBlClTyJ8/fzZHJkTucfz4cT788EN++eVnUJNAtWC3pQCp20o1Gh2KxgCKGzq9F+3atePDDz/MNT8nN2/edG4Pvb1FNLOnLkLqNvInn3ySqlWrOhNsBQrce+vnf6GqKv369WPTxlA83Ux8PdmXuk9lLvEWF2dKU0dL0fowYEwS+45o8fUvRnh4OMHBwQ89ZiH+i/PnzxMaGkpoaGima6eWKFGCDh060L59+0wlxlRV5ZtvvmH8+PGYE2+Bw0xwEahZWU+JoloUBS7/5eDAMStnLztA8cDg7sd7743gjTfekAS1EEKIHCdJNyHEY8NmszFnzhxmzJiRZlvW3fj4+DBp0iQ6duz4nz5pF+JR5HA4mDVrFjNnzsBmiUWrJNHieQPN6rpRonAKPp7JOFQwmX05fkYl7IdkfjtqB40n/gFFmDp1ao4X7Y+JiUmTYDt8+DB//fVXpscHBASkWcFWrVo1goKCcuznPjk5mV69erH7px/QYGJgNyPD+3hiMNz78R0OB7du3cLhUPn5D5Xxc1RuxHjg7VeUFStWUKNGjRyJX4isUFWVY8eOERYWRmhoKNevX8/UuMqVK9OhQwfatWtH4cKFM7zfcePG8eWXn4M9jtrV4L1+XjzzpD7dz7Kqqvxxwsb0hQns/NUBWl9efPFlZsyYgVarfSjzFEIIITJDkm5CiMfCmTNnePvttzl06FCm+jdq1Ihp06ZRsGDB7A1MiFzE4XDw7rvvsmLFN2CPpeXzOiYO9aZQgdQ3oSaTCbM5dWVVQEAABkNqDbFDJ6wMn2LixDkNitaPqVOn061bt2yJ0WQyceTIkTRJtsuXL2d6vI+PT7oEW5EiRVyeWE9JSeHdd99l9epvwRFHcGE7fV704MUW7vh4Z7z6xuFQ2bYnnq9XJ7LjV0hIVAjMX4Tw8HAqV66cwzMQIuscDgf79+8nNDSU9evXExsbm6lxzzzzDO3bt6d169bOLd5z585l4sSxYI9h9EAP3njZA43m3j/XqqqybF0S709LxI4fAwYOJiQk5AFnJYQQQmSeJN2EEI80u93Ol19+yZQpU7BYLPft7+Xlxbhx4+jatavL34QLkdM++eQTPp05DQ0xTH3Pi66t3dP8HJhM8ZjNZiBt0g3AalUZ81k8i763ougCWbx4CU2aNHmgeBISEjh27FiaFWwXLlzI9HgvLy/n9tDbW0SLFy+eq3+2N2/ezIgRI7h54yqoZtz0FqqU1VG1nJ6iBTVotQqmBAdHT9k4FGHlRrRCotlBYpKK0eiBr68vu3btkhpV4pFjtVr58ccfCQsLY/Pmzc7fNfei0+moX78+Tz31FNOnTyPBdI38ARAdq2JKcFAkSEv7pu6MGeSFr7cGu11l+sJENuxM4cQ5Kw4HVCuvp1ldA7O/SUbR5ef770OpXbt2DsxYCCGEkKSbEOIRduHCBYYMGcJvv/2Wqf5169ZlxowZFC1aNJsjEyL3OXjwIG3btsFhvcnI/u6cOGtn3yELx87YKF9Sx7FN+dMk3dyN/kyZn8yqjclcv2WnaEEtvToYiYlzsHyjSoGCZdm1a1emTwdMSkri+PHjaRJsZ8+ezdTJhwBGo5EqVaqkWcFWokSJR7JGU0JCAmvWrGHRokWcOhUBqg1UK6n19FRAAUUPig4vLz+eeeYZNm/ejE6nA6Bhw4YsXbo0VycXhbgXs9nMDz/8wPfff8/OnTvvWxIiJiYGgy6FiqWgTnUDz9Y0ks9fw7HTNsbOjqdGRT1bFwWSkOjgiedv8GpHD5o8a0CrhS9Xmlm3I4X2Tdz5+ZCWqk/WJTw8XH5+hBBC5AhJugkhHjkOh4NFixYxceJEkpOT79vfaDQSEhJCz549H8k36EI8KFVVad68OceO/EzHpipNn3PjrXFx1K5m4PRFGw4H6ZJuI2foCd1m4aNh3lQsreOXP6x8OCueYa958vMfFs796UXv1wYwadKkdI+XkpLCiRMn0hxycOrUKRwOR6bidXNzo3LlymlWsZUuXfqxq8Wkqirnzp1zbqeNiorCbrfj4eFB+fLlqVq1KlWqVMFoNNKnTx/Cw8OdYxcvXkzTpk1dGL0QD0dcXBwbN24kLCyMvXv3pkvE22w2oqOjyOfnYP3nCk8UUtBoFNzc3HF3d2dxqI3XQ+K4uqcAQfk0mBJU/H3/+b/eblep3OomxQtrOXnBjsWRjw0bNklNRCGEEDlCkm5CiEfKlStXeOedd9i7d2+m+teuXZuZM2fKCX8iT/vtt99o164N7tpb/B6aDz8fxVkL6dX3Yvn9mDVN0s3hUCnTQuXdvl6MHeztvJ9e78Wy53cLX0/2pevQeDx9ivPrr79y9erVNCvYTp48ic1my1Rser2eihUrplnBVqZMGfR6/f0H5yGXL1/m+eefd26jDw4OZteuXRgMmTsJVYhHQWRkJOvWrSM0NNRZozUxMRGbJZ5mz6l8Pjb9B2fhP8Froxyc2upPmWB3MlrA1uXtGM5eslGnuoHvf9Az8M3hjB49OptnI4QQQoDO1QEIIURmqKrKsmXLGDduHImJifft7+bmxvvvv0/fvn1ldZvI85YvXw4OMx1auhPgd/efh9tvVlUVbDbw9U777tXHS0FVVZ6qbKdEETuHT13i/+3deZxOdeP/8fe5ttmvmTFjSzSSrczI1kqRpYXkjhstaCGUhLKF3KGksZaiUiktJFuLRJFS8itki4SsMWH29drO74/pO91zI1NdM9csr+fj4fG4z+d8ruP9eTzuh2be1+ecU69evSIXPzabTfXr1y9UsDVo0IDiqAhq1aqlhx56SDNmzJAkHTx4UC+//LIGDRoU4GSA/1StWlX9+vVTv379dPDgQS1fvlzPPvussnwZat7oj3+PvF5Tbo+096A07XVTN7aUnCFpyshwy+mMKHRNj8fUtz+41aq5Xdc0cWjpGpe2b99ewisDAFRUlG4ASr3jx4/r0Ucf1RdffFGk+U2bNtWsWbNUp06d4g0GlBHff/+9ZLrUsXXYeWbm/1JrtRrq1cWh2Quy1LyRVKemT99udWnBMreG9DGUnp6hNlea2rHXo9zc3LOWZhaLRfXq1St4wUHjxo116aWXKjg4uBhWWDE89NBDWrhwoY4fPy5Jmjlzprp168ZbmFEuxcXFaciQIVq1apW2bTmty+pZZbV65PV61eLfpo6fzJ/X5krpxSfy/+06279Fz76SpWNJXg29Nzp/wMz+Sy9sAQDgn6B0A1BqmaapxYsX64knnlB6evp559vtdg0fPlwDBgwoeOA4UNFlZmZq//79kjxq3KAot2ya8vlMPfmQSzk5pq67M6PgzMN3SwN65v9y27COZLeZysxxyzAM1alTp9AOtssuu0yhoaHFs6gKKjQ0VOPHj9eAAQMk5T+M/qmnntLzzz8f4GRA8fF4PDIMQ9GRIYqNDZLb7db7z2cpJc2lPft9mvmmqd6jTC2eaVFQUFChz67ZkKfxz2XoiYfC1ayRXTv3uiWZRb79HQCAf4rfSgGUSr/99puGDx+uNWvWFGl+fHy8Zs2apQYNGhRzMqBsSUlJkeSTwy7FRBflVmtDkqmn5pr6fKM0baSh2hdKW3ZJ0+abioow9XBvm+IutMpud+uiKhdp8+bNioiIOO+V8c/deuutmj9/vr799ltJ0pIlS9S7d2+1aNEiwMmA4hEVFSUZFp045ZNhSA6HXdc0i5JpSu2udenKy7PU6s5crfnGpt5d//jcll1udR2UojtvDdETD+f/+5R0yifJUuS3LgMA8E/xoCMApYppmlqxYoVat25dpMLNZrPpscce00cffUThBpyFcbanip9DRES4qlator2HDM1ZKD073FCv22xqc1WIRg2I0Mh+IXr2VVPBwZXkjAiXxWJVREQEhVsJMgxDkyZNKvSsyrFjx8rr9QYwFVB8LrvsMkl2bf/JXWjcMKSgIIeubR4lu106evKPnbz7Dnl08/3JuqapQ/OeiiwY37bHLRl2NWrUqKTiAwAqOEo3AKXG6dOn1b9/fw0cOFCpqannnd+wYUOtXLlSw4YN402HwDlER0fLMKxyuaWTp89fzBiGoSMnQiRJ118Vo8qVYxUVFamwsDC1SAhWnks6esKrI8e9kmFRTExMcS8B/+PSSy9Vr169Co537NihhQsXBjARUHyuvPJKyQjSx+vy5HabZ5zf9INbbrd0Sa38G3iO/+ZVh3uSVesCq95/Pkp2e/4XD6ZpasVneZIRpCuuuKJE1wAAqLgo3QCUCp988olat26tjz766LxzLRaLBg8erE8++YRvq4HzCAsL+/2lIjZt/6lozzGqVzu/dPthd+GSbvNOtwxDuqjG/13Lrvj4eD8nRlGMGDFCkZF/7OCZPHlykZ59CZQ17du3V5WqF+i3ZKuu7XFaT8/J1Edrc/X5N3ma/lqm/vVQihIa2NSlXbByck3dfH+yTqX49MRD4dq516Nvt7r07VaX5r6TrZ8PmQoNi1KXLl0CvSwAQAXBM90ABFRqaqrGjh2rpUuXFmn+JZdcolmzZqlJkybFnAwoP1q0aKF9e7fpo3V5antNkLJzTK38IleSdOhXr9IzfXr/kxxJ0vVXONQ83q7m8Xb1H5empFM+XXKRVZu2uTX5pUzd1y1EwUHSh2tzJcPJs8QCJDo6WiNHjtTjjz8uSUpOTtbUqVM1YcKEACcD/Mtut+uBBx7QpInj9cuxZL37YY6eeckrnynF1bCqX/dQPXZ/mBwOQwePerRtT/6XC50HpBS6jsMuxcRUUp8+fbglHgBQYgzTNM/cpw0AJeCzzz7T8OHDlZSUdN65hmGof//+GjFihIKDg0sgHVB+bN68Wbfe2lFB1lP6bkmsMrN9qt3m5FnnrnurklpfGaQTJ70aNzNDa7526bfTXtWsbtUdnUI08oFwffuDS3c9mqHwyDht2bJF4eHhJbwiSPlvdbzxxhu1e/duSZLVatVnn32m+vXrBzgZ4F8ej0edOnXS9h++UcOL8/TerOgivhhGysj0qdfwVP2/HTbFXZygzz//XCEhIcWcGACAfJRuAEpcenq6xo8fr0WLFhVpflxcnGbOnMkzWIC/yTRN3XLLLdq2dYM6t/Fp7sTI83/oHHJyTbXtfVoHj4erb79B7KwKsI0bN6pr1z9e2diyZUstWrToL71AAygLDh48qNtuu00nkw7ogsp5mj46QtddEfSnn/l+h0tDnkrXgaN2OaNqasmSJb+/mAEAgJJB6QagRH355ZcaNmyYfv311yLNv/feezVmzBiFhoYWczKgfNu+fbs6drxFXtdvmjoyTHd2/us7PUzT1LCnM7ToE5+qXdBAX3zxhZxOZzGkxV8xYMAAffDBBwXHr776qm6++eYAJgKKx/79+9WrVy8d/OUnyZeuqy+36Y5OwWoeb9dFNaySpKMnfNr6o1uLPs7Ruk1uyeJU1WoX6Y033lBCQkKAVwAAqGgo3QCUiKysLE2cOFFvvvlmkeZfeOGFmj59ulq2bFnMyYCKY/r06Zo69RkZvhQ9NTRMfW4PKfKOKJfL1JjpGXr7Q7cs9li99dbbat26dfEGRpEcO3ZMrVq1Um5u/nP6atasqfXr13MrPsql7OxsPf3003rjjfnyerIlM1cy3TIMnwxJPtOQDLtkBMuwhKh79x76z3/+U+jFIwAAlBRKNwDFbuPGjRo6dKgOHz5cpPl33XWXnnjiCR50DPiZaZoaPXq03nzzNcmbqnbX2DRpaIRqXWD90899t92l4VMytPeQRRZbJU2fPkPdu3cvodQoihkzZigxMbHgePjw4Ro6dGgAEwHF6/jx43rrrbe0bt06/fjjj3K58iRJdrtD9evX13XXXae7775bcXFxgQ0KAKjQKN0AFJucnBxNnjxZ8+bNK9L8atWqadq0aWrTpk0xJwMqLtM0NWfOHE2Z8ozceakylK121zjU4dogJTSwqVqsRT5TOnjUq217PFq2Jlfb9nglS7hiK9fUtGnT1L59+0AvA/8jNzdX119/vY4cOSJJCg4O1oYNG3TBBRcEOBlQ/Nxut1JSUmSapqKjo+VwOAIdCQAASZRuAIrJ5s2bNXjwYP3yyy9Fmv/vf/9bEydO5PlQQAnZs2eP/vOf/+jLL9dLZo5kuvP/yPf7DOvvt2g5ZHdEqGvXrho7dqwqVaoUyNj4EytXrlTfvn0Ljjt37qy5c+cGMBEAAEDFRukGwK/y8vKUmJiouXPnyufznXd+5cqVlZiYqA4dOpRAOgD/a//+/Vq8eLG2bNminTt3KjU1VYZhqGrVqmrcuLGuvPJK/fvf/1ZMTEygo+I8TNNUjx49tGHDhoKxJUuW6Oqrrw5gKgAAgIqL0g2A32zfvl2DBw/W3r17izT/tttu09NPP63o6OhiTgagqP7vx4KivmABpctPP/2kdu3ayev1SpIaNmyoTz/9VDabLcDJAAAAKh5LoAMAKPvcbrcSExPVsWPHIhVulSpV0ksvvaQ5c+ZQuAGljGEYFG5lWP369XXPPfcUHO/evVtvv/124AIBAABUYOx0A/CP7N69W4MHD9auXbuKNP/mm2/WM888o8qVKxdzMgComNLS0nTttdcqOTlZkhQVFaWvv/6aLzkAAABKGDvdAPwtHo9Hs2bN0k033VSkws3pdGr27NmaN28ehRsAFKPIyEiNHj264Dg1NVWJiYkBTAQAAFAxsdMNwF/2888/65FHHtEPP/xQpPlt27bV1KlTVbVq1eINBgCQJHm9Xt1yyy3asWOHJMlisWjNmjVq2LBhgJMBAABUHOx0A1BkXq9Xc+bMUfv27YtUuIWHh2v69Ol68803KdwAoARZrVZNmjSp4Njn82ns2LHiu1YAAICSQ+kGoEh++eUX/etf/9LEiRPlcrnOO79Vq1Zat26devbsyUPZASAAWrRoodtvv73geOPGjfrwww8DmAgAAKBi4fZSAH/K5/Pp9ddf11NPPaXc3Nzzzg8NDdW4cePUu3dvyjYACLATJ06oZcuWys7OliRdcMEF+uqrrxQSEhLgZAAAAOUfO90AnNPhw4fVvXt3jRs3rkiF21VXXaXPP/9cffr0oXADgFKgWrVqGjJkSMHxr7/+qhdeeCFwgQAAACoQdroBOINpmnrrrbc0YcIEZWVlnXd+UFCQHn/8cd1///2yWOjyAaA0cblcat26tQ4ePChJcjgc+vLLL1WrVq3ABgMAACjn+O0YQCG//vqr7rzzTo0cObJIhVuzZs302WefqV+/fhRuAFAKORwOPfnkkwXHLpdLEyZMCGAiAACAioHfkAFIyt/dtmjRIrVp00br168/73y73a4xY8Zo+fLlqlOnTgkkBAD8Xe3atVObNm0KjleuXKkNGzYEMBEAAED5x+2lAJSUlKQRI0ZozZo1RZofHx+vWbNmqUGDBsWcDADgL/v371ebNm3k8XgkSfXr19fq1atlt9sDnAwAAKB8onQDyoH9+/dr06ZN2r59u44fPy7TNBUVFaXLLrtMzZo1U9OmTc9666dpmlqxYoVGjx6ttLS08/49NptNQ4YM0cMPP8wvaQBQBk2YMEFz584tOJ44caLuv//+ACYCAAAovyjdgDLKNE2tXr1aL7/8sjZu/EYyXZLpluT9fYZFMuySYVft2pfonnvuUZ8+feRwOCRJp0+f1qhRo/Txxx8X6e9r2LChZs2apUaNGhXPggAAxS4jI0MtW7bUyZMnJUlOp1Nff/21YmJiApwMAACg/KF0A8qgkydPauTIkVq16mPJlyWrkaurm9iVUN+m2hfaZLFISad82rHXrQ2bXcrItktGmOo3iNfMmTN17NgxjRw5UqdPnz7v32W1WjVo0CANGzaM3W0AUA4sWrRIQ4cOLTi+6667lJiYGMBEAAAA5ROlG1DG7Nu3T927d9eJ4wdkt2TpgR7Buq9bqKpXsZ51fla2T0tX5ypxXpZOpgQpK8eQzWZXcHDwef+uunXratasWbr88sv9vAoAQKD4fD7deuut2rp1qyTJMAytWrVK8fHxAU4GAABQvlC6AWXIsWPH1KlTJyUd36e6tVyaO8GphpcUbffZ8d9y9OjTafp0g6m0TIsiI6MUFBR01rmGYWjAgAEaMWLEOecAAMquLVu2qFOnTgXHzZs314oVK2QYRgBTAQAAlC9nPlkdQKnk8/k0dOhQJZ04oPpxLi17MbpIhZvPZyotLV2GL12Jw6UubSVnuE/p6eny+XxnzI+Li9Py5cs1btw4CjcAKKeaNm2qHj16FBx///33WrZsWQATAQAAlD+UbkAZsXDhQm3Y8IWCbVnqdlOw7h2VqgtbJiks4YQuv/WkXlucrf/duDr3nXTVbXdCVa/JUtt7fFr7rfSfhw1dVkcKsnuVkZFRaP59992nzz77TC1atCjJpQEAAmD06NEKDw8vOJ44caKysrICmAgAAKB8oXQDygCfz6cXXnhB8mVoeN8wvbUiR6HBhqaNdurDl6J18/VB6jc2TRNmZ/4+39Rri5P14H+y1PkG6e1EQ80aSfeNMbX9J2nCYENhIaby8nLl9XpVs2ZNLV68WJMmTVJoaGiAVwsAKAlVqlTRsGHDCo6TkpL03HPPBTARAABA+cIz3YAy4KuvvlKPHt0UEXxaW5bHKidXiq1UuDN/YGyqFn2cq6SN0crIyNDVPdxKqC+9OP6PebcO9MkZLr2daNGA8T6t2WioWfOWWrlyZaHdDgCAisHtduuGG27Q/v37JUl2u13r169XXFxcYIMBAACUA+x0A8qA9evXS2auOrUJVlio5YzCTZKaNLQrPdPU0V9TdOCIR/uPSLe2KfxA7NvaGtqwWcpzmerS3qKIMLvCw8Mp3ACggrLb7ZowYULBsdvt1vjx4wOYCAAAoPygdAPKgO3bt0umR80uO/eLEzZsdqlGVYsiwizadyh/7JKLCs+pe5Hkcku/pQTruisqyWLxadeuXXK73cWYHgBQmrVp00bt27cvOF6zZo3WrVsXwEQAAADlgy3QAQCc3+HDhyXTo3q1Q856fsP3Li38OFeTHrHLapVSM/LfShr5PxvYop0WSV65vaGqXdMmh92Uy52nEydOqGbNmsW8CgBAafXkk0/qiy++KPgS5oknntDatWuVl5enHTt2aOfOnUpNTZVhGKpatari4+N16aWXyuFwBDg5AABA6UXpBpQBHo9HkmS3GWecO3TMre6Dk3VtE6lPF488HkNWa3659t+Cg4MVFRUi6bQkyTAMOeySK++P6wMAKqa4uDj1799fs2fPliTt3r1bbdu21aFDh+R250imR5Lv99kWybDL6YxWt27ddO+996pOnToByw4AAFBacXspUAaEhYVJMpSa7isY83p9OnwsXTfdd0pREabmTTJkseSXcpUirZKk9CzJYrEoKipKUVGRSsswfz9vUV6eqewcU5Lx+/UBABXZI488opiYGKWlpSktLUXbtm6QO/dXXRCTqpuuzdW9//Koz20eXd8sR9FhyUpPOaDXXp2tNm1aa+rUqTyqAAAA4H+w0w0oAxo2bKiff9qsHXs9atXCoaysLJ1OyVL3IT6lZ0ofzTXkDDdksVgUFh6mZvEOSSd1+LhdVzePltWS36/vOeCRwy5dXNOqXT975DOtiomJVeXKlQO7QABAwB05ckRZWVmSmaOYKFNd2kp9/mXX1c2izpjr85n66juXXnkvW2u/zdb0ac9o3bp1WrBggSpVqlTy4QEAAEohdroBZUDjxo1lyq61G7N16tRJpaVl6oFxPu07JL0z1VCNqlZFRIQrtnKswkJDVecim+rVtmrll5aCwk2SFq3MUdtrguRwGPrqe5dkONS4cWMZxpm3rQIAKo59+/apW7duys3+TQn1pAVTDP1nkEW1a+SddQebxWLo+iuD9Na0aL00IVxRYWnauuUb9ejRQ+np6QFYAQAAQOlD6QaUcjk5OUpOTtbp5Ex9vdmjA0d8GjXd1JpvpEd6G/KaIdp31Kkde+36fz+4lZeXfwvpfx6O0Dsf5mr8rAx9sSlPA59I06Ztbo17KFxer6kFK3IkI0S33XZbgFcIAAgkt9ut/v37K/nUISXU8+jDlyspvt4fX8akp2fINM/9+VvbBmvF3GjFRmZq187NGjNmTAmkBgAAKP0M0/yzH6MABIrL5dLbb7+t5557TklJSUpNTZXNkqubW5n65gfp6Imzf+6XdZUVd2H+neOvLs7WMy9l6vCvXtW/2Kanh0Wo0w3BenVxtsbNzFV0bB1t2bJFQUFBJbcwAECpMnXqVE2f9ozslhTVqGrVzwe9Ss/0qVqsdFMr6dF7DdWsEaWQkGAlvpKpdz7M0S9HvXJ78h9X0L9nqB66O1Rbdnl028BU+YwYvfHGArVv3z7QSwMAAAgoSjeglPF4PHr//fc1ffp0HT16tGDc7XYrNTVFlSJNzRwToTtuDf1b1//5oEc33pusXG8lTZ6cqD59+vgrOgCgjMnIyFCTJk2UnXFYPTvaZbMaurKxXdGRhjZtTVXia6bi60mLZ9oUGxurcTMzFBFmUaO6NgUHGfp8Y56mvJylSUMj9PjAcE2cnaE5C32Kb9xSq1at4vEFAACgQqN0A0oJn8+nDz/8UImJiTpw4EChcxaLRf/+97/ldDr1yssvym5J1UsTI3TTdcF/6e/45YhH3R5O0fHT4WrZqr0WLlwoi4W7zAGgonr99dc15vHHVLdmpr54u1KhkiwrO1tz3krX8ERTW5cZqnNRuCIiws+4xl3DUvTdDrf2rqmi5FSfmnY5JZcvVh99tFJNmzYtyeUAAACUKvy2DQSYaZpavXq12rdvr4EDB55RuHXu3Fnr16/XjBkz9MQTT+i2Lt3k9kWp75gMTZydody88/fmpmlq0cc5urlvio6fDtMldeM1Z84cCjcAqOA+/fRTyczVXZ1DztiVFhoSqthKVkmS2y1lZ2fJ4/GecY2YKItcv79roVKURR1bB0lmbv61AQAAKjBboAMAFZVpmtqwYYOmTJmiLVu2nHG+ffv2GjlypC699NKCMavVqueff15Op1MLFryhOQvTtfyzU+rdJVS33xisC6tZCv3SlJru0+oNeZq/NEc/7DYlS5SaNrtS8+fPV0xMTImsEwBQOpmmqW3btkmmW1dd/scjC7xeU26P9OM+j2bMN3VjS6lmdUOmmX87alRUlLxeUzm5pr78zqU3l+do/MN/7IC7srFdyz5za/v27YFYFgAAQKnB7aVAAHz33Xd65plntHHjxjPOtWrVSiNGjFCzZs3+9Bpr1qzRiBEjlHTiqGRmS2aeop2Gal9olcUiJZ3y6cgJn2TYJSNEjiCnhg8frv79+8tmo28HgIru1KlTSkiIl7y/6eC6KnI48r+0ubBlko4l+SRJN10XpHmTLLIaeQWf+y0lVI07ZxYcj30wXBOHRhQcb97p1q3901WjVoK+++67EloNAABA6cNv3kAJ2rFjh6ZMmaK1a9eeca558+YaNWqUrrnmmiJdq3379vr222/14YcfasGCBdq6datSsvKUsuf3W38Mi2S1qU6dOurevbvuuOMOxcbG+nM5AIAyLC8vv0hz2I2Cwk2SVs6rpKwcU7t+9mjSi5m6e7hFbz8rORw2maZPkWFZ+nqhUy6PTV9959IzL2fJYpGefCS/eAsNliRTubm5AVgVAABA6UHpBpSAvXv3KjExUR9//PEZ5xo1aqSRI0fqhhtu+MtveQsKClK3bt3UrVs35eXlaffu3UpKSpLP51NkZKQaNWokp9Ppr2UAAMqRoKAgSZLLbcrlMguKt4QGdknS1U0cahFv1+WdT+mzb4PV4RpX/ucchurWylFMTIxaXxkkZ7hFjz6TroF3hqpaZauycyXJUHDwX3vZDwAAQHlD6QYUo4MHD2r69OlasmSJ/vdO7rp162r48OG65ZZb/PJCg6CgIF1++eX/+DoAgIohJiZGkZFRSks+rT0HPAVl239LaGCT3S4dOV74v1Ner1eZmZlyOiPUrJFdXq908KhX1Spbtetnt2TYdMkll5TUUgAAAEolSjegGBw/flwzZszQwoUL5fF4Cp2rVauWHn30Ud1+++2yWq0BSggAqOgMw1Djxo315ReHtWmb+6yl26Yf3HK7pbq1HQoJMZSTk1NwLjs7WyEhwdqw2SXDkGrXzP9v2qZtbsmwKyEhocTWAgAAUBpRugF+dOrUKT3//PN644035HK5Cp2rVq2ahg4dqp49e8puP/MXGwAAStqNN96oL9ev0VsrMvXJ+lw1j3coob5NIcGGtu1xK3FelhIa2NSlXbCychzq/GCWurY3FHeh5PFI325L1svv+dS/Z6iqxlqVnOrTx1/kSUaEOnToEOjlAQAABBRvLwX8IC0tTXPmzNG8efOUnZ1d6FxMTIwefvhh9e7dm+fbAABKlfT0dDVt2lTZGYfV7hqbdvzk1v7DXvlMKa6GVbd3CNZj94fJGWFRXp6pvmOS9fVml46flEKCpLga0gM9QtSvZ6SsVkOTXsjQi+/6FN+4pVatWvWXn1UKAABQnlC6Af9AZmam5s2bp7lz5yo9Pb3QOafTqYEDB6pv374KCwsLUEIAAP5cYmKiZkyfokoRaVq3oJIqx5z70QemKaWmpha8+VTKv001JiZG2/b4dNvAVPmMGM2f/yY73QAAQIVH6Qb8Dbm5uXrjjTf0/PPPKzk5udC50NBQ9e3bVwMHDlRkZGSAEgIAUDQul0s33XST9vz4nRLqubVoVpQiI879gh+P16vTp04XekHQ0SSb7hvj06m0CN3e9U7Nnj27JKIDAACUapRuwF/gdrv17rvvaubMmTpx4kShcw6HQ/fcc48GDRqk2NjYACUEAOCv27dvn7p06aLkUwdVp6ZLz42NVJPLzv380aysbGVkZEiSVn9tatIcUymZobq8yTVasmSJnE5nSUUHAAAotSjdgCLwer1aunSppk2bpsOHDxc6Z7PZdMcdd2jIkCGqXr16gBICAPDP7NmzR3fccYeSThyURZnqcUuQ7usWosvqnlm+eb2mPl57Sm8s8+jL76WMLEN2R5i2bdumiy++OADpAQAASh9KN+BP+Hw+ffzxx0pMTNS+ffsKnTMMQ127dtWwYcMUFxcXmIAAAPhRSkqKxo4dq2XLlki+bMnM0QVVDCXUt6l6FYtMU/rliFfbf/IoOU3KyPIqN89QaGiYwsLC1LNnT82YMSPQywAAACgVKN2AszBNU59//rmeffZZ7dy584zzHTt21PDhw1WvXr0ApAMAoHht2rRJr7/+ulauXCmPJ1cyPZK8kgxJFsmwKyIiSlWqVNFPP/0km81W8Nn33ntPLVu2DFR0AACAUoPSDfgfX3/9taZMmaLvv//+jHNt27bViBEjFB8fH4BkAACUrIyMDO3cuVM7duxQamqqLBaLqlSpooSEBF166aVyu91q3bq1jh07VvCZ2rVra+3atQoKCgpgcgAAgMCjdAN+t3nzZk2ZMkUbNmw449w111yjkSNHqkWLFgFIBgBA6bVmzRr16dOn0NiQIUM0YsSIACUCAAAoHSjdUOH9+OOPmjJlitasWXPGuSZNmmjUqFFq2bKlDMMIQDoAAEq//v3768MPPyw4ttlsWr16tRo0aBDAVAAAAIFF6YYKa9++fZo6dao++OCDM841bNhQI0eOVPv27SnbAAA4j6SkJF1//fVKT08vGGvWrJlWrFghi8USwGQAAACBw09BqHCOHDmioUOHqnXr1mcUbhdffLHmzp2rNWvWqEOHDhRuAAAUQdWqVTV27NhCY5s3b9aCBQsClAgAACDw2OmGCiMpKUmzZs3S22+/LbfbXejchRdeqEcffVRdu3Yt9AY2AABQND6fT//617/03XffFYxFREToyy+/VNWqVQOYDAAAIDAo3VDuJScna/bs2Xr99deVl5dX6FyVKlX0yCOP6K677pLD4QhQQgAAyoe9e/eqffv2hb7c6tixo1555ZUApgIAAAgMSjeUW+np6XrppZf08ssvKysrq9C5qKgoDRo0SPfee69CQkIClBAAgPJn6tSpmj59eqGx119/XTfeeGOAEgEAAAQGpRvKnezsbL322mt64YUXlJaWVuhcRESE+vfvr379+ikiIiJACQEAKL/y8vLUrl077d+/v2CsevXqWr9+vcLDwwOYDAAAoGRRuqHcyMvL04IFC/Tcc8/p1KlThc4FBwfr/vvv14MPPqjo6OgAJQQAoGLYuHGjunbtWmjs/vvv18SJEwOUCAAAoORRuqHEeTweffbZZ/rss8+0bds2HTt2TKZpqnLlyoqPj1erVq3UuXNnhYaGFul6brdb7733nmbMmKFff/210Dm73a5evXpp8ODBqlKlSnEsBwAAnMWjjz6qd999t+DYMAx99NFHatKkSQBTAQAAlBxKN5QY0zS1ePFiPfPMMzpx4qjky5Xklkzv7zMskmGXjCA5I2M1YMAAPfTQQ7Lb7We9ntfr1YoVKzR16lQdPHiw0Dmr1aru3btr2LBhqlGjRrGuCwAAnCk1NVXXXXddod3nDRs21KpVq87533YAAIDyhNINJSIjI0ODBg3SmjWrJF+6YiI96nZTsFrE21Wnlk0Wi3T0hFdbdrm15NNcHTxmSBanGsU30auvvqqaNWsWXMs0Ta1atUrPPvusfvrpp0J/j2EY6tKlix577DHVrl27pJcJAAD+y/Lly/Xggw8WGhszZoweeuihACUCAAAoOZRuKHaZmZnq2bOntmz+RnZLuh67P0z9e4bK4TDOOt/nM7V8Ta7GzshUamaIqteoq2XLlqlmzZr64osvNGXKFG3fvv2Mz910000aPny4GjZsWNxLAgAARWCapu6++26tW7euYCw4OFhr165VXFxc4IIBAACUAEo3FLsHH3xQy5ctVFRYht6dEaXGDc+8pSQzy6cGN57UsSSfvlsao+bxDp046VX3wanadyRYF9aqr2rVqun7778/47PXX3+9Ro4cqcsvv7wEVgMAAP6Kw4cPq02bNsrJySkYu+666/Tuu+/KMM7+BRwAAEB5YAl0AJRvn376qZYvXyqLMvRmYuRZCzdJmvhCpjzewmPVKlv11rRwRYRkaPu277V+/fpC56+44gotXbpU7777LoUbAAClVK1atTR8+PBCY19++aWWLl0aoEQAAAAlg9INxcY0TU2dOlXyZWhAz2A1j3ecdd6e/R698Ha2nhwcXjDmdnuUmpoqhyVVI/pKEWGmsrKyZJqmEhIS9M4772jZsmW66qqrSmo5AADgb+rbt68aNWpUaGz8+PFKTk4OUCIAAIDiR+mGYvPDDz9o164dCrLn6aG7w8457+EJaRpwR6jqX2yTJGVkZOr06dPKzc2TJN3cSoqrIQUHGerVq5c++eQTtW7dmltSAAAoI2w2mxITE2Wx/PGjZ3JysiZOnBjAVAAAAMWL0g3F5quvvpLMPLW/1qHoyLP/X+39T3K0Y69HYwaGKjMzW5KU53IVmmN32NTtphA5I4KUkZFB2QYAQBnUuHFj9e3bt9DYokWLtGHDhgAlAgAAKF6Ubig2O3bskEy3mpzjOW7ZOaaGTU7Xfx4Olis3WS5XXqHzVqtVTqdTsTGxuvLyEMn05F8TAACUScOHD1eNGjUKjY0YMUK5ubkBSgQAAFB8KN1QbE6ePCnJp5rVrWc9P+nFDFWNter+f4dJ+uMluhbDoghnhGJjYxUaGiLDkGpVt0ry6tSpUyWSHQAA+F9YWJgmT55caOzgwYOaOXNmYAIBAAAUI0o3FJv/uw3UZ5557tAxj6a9mqUnB4crK8eiXHewsnPz59uCnDLNYP33XaRenyRxWykAAGVdu3bt1Llz50JjL774ovbs2ROgRAAAAMWD0g3FJv/2EasOHPaece6Xo1653FLHfimKbpakuDbZ6jXCJ0lq2ytF7foUfpvZgSNeSdYzbkkBAABlz4QJE+R0OguOPR6Phg8fLp/PF8BUAAAA/kXphmITHx8vGXZ9t8N1xrnLG9q17q1Khf7MeDz/h++5E5x68cnIQvO/2+6SDJsSEhJKJDsAACg+VapU0bhx4wqNbd68WW+++WaAEgEAAPgfpRuKzQ033CAZQVr//9w6dqLwbrcop0Wtrwwq9OfyS22SpGaN7Gp62R8vX3C7TS1elSsZIfnXBAAAZd4dd9yhK664otDY008/rRMnTgQoEQAAgH9RuqHY1K1bV9de21I+hejZVzL/9nXmvZetk8lWVal6gW666SY/JgQAAIFisViUmJgou/2PL9oyMzM1duzYAKYCAADwH0o3FKtRo0bJsEZo8SqXPvw890/ntr4ySObP1dU83lEwtutnt6a8kiVZIzVixIhCP5gDAICyrW7duho8eHChsZUrV2rVqlUBSgQAAOA/lG4oVs2aNdPAgQ9KligNmpChj9b+efH233740a2eQ1Ll8jrVpk073XHHHcWYFAAABMLDDz+sOnXqFBp7/PHHlZGREaBEAAAA/kHphmI3atQodbr1X3L7ovTAuAwNmZSmX5POfKPp/0nP8OnZlzPVeUCqTqdHKD6hhebMmSPDMEowNQAAKAkOh0OJiYmFxk6cOKFnnnkmQIkAAAD8wzBN0wx0CJR/Ho9HkydP1ty5c2R6M2RRjtpc5VDzRnZdcpFVFot05LhPW39069Ov8pTrdkiWCHXqdJumTp0qp9MZ6CUAAIBi9Nhjj+mdd94pODYMQx9++KGaNm0awFQAAAB/H6UbStT333+vZ555Rt9887Vk5kqmR5Ln97NWybBJRrAaNrxMQ4cOVadOnQIZFwAAlJC0tDRdd911OnnyZMFYw4YNtWrVKp7pCgAAyiRKNwTE3r179fnnn2v79u06duyYTNNUbGysEhIS1LJlSzVv3pzbSQEAqGA++OADDRgwoNDY448/rkGDBgUoEQAAwN9H6QYAAIBSwTRN9erVS2vXri0YCwoK0rp16xQXFxe4YAAAAH8DpRsAAABKjSNHjqh169bKyckpGGvVqpUWLlzILngAAFCm8PZSAAAAlBo1a9bUiBEjCo199dVXWrJkSYASAQAA/D3sdAMAAECp4vF41LFjR+3YsaNgLDo6Wl999ZUqVaoUwGQAAABFx043AAAAlCo2m02JiYmyWP74UTUlJUVPPvlkAFMBAAD8NZRuAAAAKHUSEhLUr1+/QmOLFy/Whg0bApQIAADgr+H2UgAAAJRKWVlZatOmjY4ePVowFhcXp7Vr1yo4ODiAyQAAAM6PnW4AAAAolcLCwjR58uRCYwcPHtSMGTMClAgAAKDoKN0AAABQarVt21adO3cuNDZnzhzt3r07QIkAAACKhttLAQAAUKr99ttvuu6665Senl4w1rRpU61YsUJWqzWAyQAAAM6NnW4AAAAo1apUqaInnnii0NiWLVv05ptvBigRAADA+bHTDQAAAKWez+dT165dtWnTpoKx8PBwrV+/XtWrV5ckpaWl6cCBA3K73QoJCdEll1yikJCQQEUGAAAVHKUbAAAAyoSff/5Z7dq1k9vtLhi7+uqr1aBBA61du1aHDh2S5JVkSjJksdhVr149dezYUXfddZeqVasWqOgAAKAConQDAABAmTFt2jRNmzZNXq9XGRkZcrnyVCkqWDarV5JH1WINhQQbSs80dTrVlAy7ZITIagvVvffep1GjRik0NDTQywAAABUApRsAAADKDJfLpWbNmmnPnt0KcvgUEWrqhqsM9ekapSsbOxQZ8ccji5NOefX1ZpcWrMjRpm1eyeJUXO36eu2119SgQYMArgIAAFQElG4AAAAoMz755BPdc08fufNOKqGeNGGwoXpxhkJDQ+V0Rpzzc19sytOjk9N1/FSwIqMv1NKlS9WwYcMSTA4AACoaSjcAAACUCbt379ZNN90od+5v6nS9V+Me9MpuMwrOV6pUSQ6H/ZyfT033qddjqdr8o03VLqindevWKTIysiSiAwCACshy/ikAAABAYLndbg0ZMkTuvBTdcJWhF56MUZDDWmjOex+n6squpxRx+QlVvyZJ3Qen6MBhT8H5KKdFb0+L0sUXunTi+EGNHz++pJcBAAAqEEo3AAAAlHpLly7Vju1bFBmWq2mjnbLbLYVuJ/1mq6k+ozyqGycteyFaM8c4tW2PWx3uTVZO7h83djgjLJo5xinDzNB77y3Uzp07A7AaAABQEVC6AQAAoFQzTVOvvfaaZGZrUK9QVY3N3+EWFBSsoKAgSdLyz01dWFWaOtyr1lfa1KNjiOZOiNT+w159v8Nd6HrN4x26ra1D8uVo/vz5Jb0cAABQQVC6AQAAoFQ7cOCAduzYJrs1T3d0CikYNwzJ6YyQYRjyeKTw0Pzx9PR0maYK3mR6tkcY9/lXiGTmaPny5fJ4PGecBwAA+Kco3QAAAFCqbd26VTLdanKpTZWiCv/4arVaFR4eru43G9p7UJq/zNSp5Dzt3pelx6dlqMmlNl3bzHHGNVsk2BUW4lN2dqb27dtXQisBAAAVCaUbAAAASrUff/xRMj2Kr3f2N5OGhoaqVXOHXnvK0FNzTdW/2dRlt6Qr6ZRXn7xaSVarccZnLBZD8fVskunWrl27insJAACgAqJ0AwAAQKmWlpYmyafY6LP/6GoY0q79IXp4kqm7bpWWzbbp1UlW+XxSx34phV6k8N9iK1kkmUpPTy++8AAAoMKyBToAAAAA8GdstvwfWT3es5dnkjRscpauv8KmKcODlJOTI0lqkWBT49vytGB5jh7oGXrGZ9y/v1/BarX6PzQAAKjw2OkGAACAUq1GjRqSYdP+w95zzvlxn1vN44MVFhYmiyX/dtLK0W7FRBnaf/jsL0rIv55VF154YXHEBgAAFRylGwAAAEq1hIQESTZt/dF91jeRStJFF1i15Ue3bDarnM5ISdKRE6ZOp5q6sOqZn0nP8Gn/EY9k2H6/PgAAgH9RugEAAKBUa9q0qYKCw3XoV2nzTvdZ5wy4I0zL1+TpkYlp2rBZWrXBod4jTcVGS+2vyZPXW3iX3JJPc2UqSPXq1VdsbGxJLAMAAFQwlG4AAAAo1ZxOp7p06SIZIZrzTvZZ5wzuE6o5Tzr1xf9zqcuDKRo93aU6tSxa8pyhqAhTqalp+r9Ncm63qdeWZEtGiHr37l1yCwEAABWKYZ5rjz4AAABQSuzevVsdOrSX1/WbXn06XDdfH3zez3i9Pp0+fVo+n0+SFBoaKqczQlPnZWr6fLcqxdbRN998I6fTWdzxAQBABcRONwAAAJR6DRs21IMPPiRZnHp0cob27D/7yxH+m9VqUVRUZMFxdna2PlqboVlv5EgWp55++mkKNwAAUGwo3QAAAFAmPProo2ra7CqlZoWr66AUbfjedd7POBwORUSEyzRNLV1jqv+4TLm84erR40517ty5BFIDAICKittLAQAAUGakpqbqzjvv1A9bN0m+dN3dOUiDeoWp1gXWc35m+x63Jr2QonWbvErPtKhSTBXt3r1bUVFRJRccAABUOJRuAAAAKFOysrL01FNPaf781yRflgzlqGUzu1rE29XgYpuCgwxlZJnaudetb7a6tW2PV6YRopTUPAUFBSs0NFRdunTRiy++KMMwAr0cAABQTlG6AQAAoEzauHGjnnvuOa1f/4Vk5kmmW5JXMk3JMCTZJMMuuyNcHTt21M0336xBgwbJ7XZLkp566inde++9gVwCAAAoxyjdAAAAUKb98ssvWrdunbZv364DBw7I5XIpNDRU9evXV0JCgtq1a6fKlStLkhYsWKCRI0dKkux2u5YtW6amTZsGMj4AACinKN0AAABQYZimqUceeUTvv/++JOmCCy7QmjVrFB0dHeBkAACgvKF0AwAAQIWSnZ2tjh076qeffpIktWnTRgsWLJDFYglwMgAAUJ7wkwUAAAAqlNDQUM2bN09hYWGSpHXr1mnWrFkBTgUAAMobSjcAAABUOHXq1NG0adMKjqdOnaovv/wygIkAAEB5Q+kGAACACqlz5866//77JeU/6+3BBx/U8ePHA5wKAACUFzzTDQAAABWW2+3W7bffrs2bN0uSmjVrpqVLl8putwc4GQAAKOvY6QYAAIAKy26366WXXip4e+nmzZs1adKkAKcCAADlAaUbAAAAKrQLLrhAL7zwggzDkCS98sor+uijjwKcCgAAlHWUbgAAAKjwWrdurWHDhhUcDxs2TAcOHAhgIgAAUNbxTDcAAABAktfr1d13363169dLkho2bKiPPvpIISEhAU4GAADKIna6AQAAAJKsVqtmz56t6tWrS5J2796tUaNGie+oAQDA30HpBgAAAPwuJiZGL7/8smw2myRp8eLFeueddwKcCgAAlEWUbgAAAMB/adasmcaPH19wPGbMGO3YsSOAiQAAQFlE6QYAAAD8j/vuu0+dO3eWJLlcLvXr109paWkBTgUAAMoSXqQAAAAAnEVmZqZuvvlm7d+/X5LUoUMHvfbaa7JY+N4aAACcHz8xAAAAAGcRHh6uV155RcHBwZKk1atXa+7cuQFOBQAAygpKNwAAAOAcGjRooGeffbbgePLkydq4cWMAEwEAgLKC0g0AAAD4E926dVOvXr0kSV6vVwMHDlRSUlKAUwEAgNKOZ7oBAAAA55GXl6fOnTsXvMX06quv1qJFi2Sz2QKcDAAAlFbsdAMAAADOIygoSK+88oqcTqckaePGjYVuOwUAAPhflG4AAABAEdSqVUvPP/98wfHs2bO1evXqACYCAAClGaUbAAAAUETt27fXoEGDCo4HDx6sQ4cOBTARAAAorXimGwAAAPAXeDwe9ezZU998840kKT4+Xh988IGCgoICnAwAAJQm7HQDAAAA/gKbzaYXX3xRVapUkSTt2LFD48aNC3AqAABQ2lC6AQAAAH9RlSpVNHfuXFmtVknSW2+9pcWLFwc4FQAAKE0o3QAAAIC/4aqrrtLo0aMLjkeOHKndu3cHMBEAAChNeKYbAAAA8DeZpqn77rtPn376qSSpdu3aWrVqlSIiIgKcDAAABBo73QAAAIC/yTAMzZo1SxdddJEk6ZdfftFjjz0mvtcGAADsdAMAAAD+oZ07d6pTp05yuVySpAkTJqhv374F591ut37++WcdO3ZMpmkqJiZGl156qUJCQgIVGQAAFDNKNwAAAMAP3nnnHT322GOS8t9wunTpUmVnZ2v+/Plat26d8vJyJNOTP9mwymKxq2nTpurdu7c6d+4sh8MRwPQAAMDfKN0AAAAAPzBNU0OHDtV7770nr9crl8ul4CCbDOVKZq7CQ01dXNMmm1U6esKr35JNyQiSjFBdXKe+Zs6cqebNmwd6GQAAwE8o3QAAAAA/ycnJUatWrbRt2w8KdvhUKUq6+7Yw3d05WPUvtsliMQrmHjvh1furcvX6kmz9lhIkw+rU009PVp8+fQK3AAAA4DeUbgAAAICfbN++XbfeeqsyUo+oeSNTkx4xdGm9CIWHh53zM2kZPo2dkaEln3oka7RmzJilHj16lGBqAABQHCjdAAAAAD/Izc1Vu3bt9OOu72U1XPL5TGVmS9VipS7tgzVhSKQiIyySpDUb8vT6kmxt2ubWgSNePXhXqKpXtujFd1wKDquhtWvXKi4uLrALAgAA/4gt0AEAAACA8uCFF17Qgf17FBHqVpd2IWoR71NoUJ72HJCmvZ6rH/f5tOaNGEnSqq/ytG2PR9df4VByWq4MQ3p8YLi2/5SqDVtOafTo0Xr33XcDvCIAAPBPsNMNAAAA+IdcLpeaNWum07/t1dwJYercNlimKSWnJMvtcuutD0wNTzR19KsqqlHNKp/PLHi+W1zr39SpTZBmj4/UoWMeXdsjWT5LZa1f/6Xq1q0b4JUBAIC/yxLoAAAAAEBZt27dOp0+dULVYn265fogSZJhSFGRUbJYLIqOzJ+XnJopSYVeqPDfLqphU4eWDsnM0XvvvVci2QEAQPGgdAMAAAD+oc2bN0tyqd01QbLZ8gs1r9eU22PowLEwzZhv6saWUuWoXOXm5v7ptW5sFSSZLm3durUEkgMAgOLCM90AAACAf2jPnj2S6VGjevaCsYuu/03HknySpPbXWPXiE/n/Oz09XQ5H0Dl3uzWqZ5PMLO3evbv4gwMAgGLDTjcAAADgH8rOzpZkKsr5x4/XK+dV0jfvxeiVpyK195B0z2hDpmkoMjLqnIWbJEWGWySZv18TAACUVex0AwAAAP6h4OBgSYYyMv94R1lCg/xdb1c3cahFvF2Xdz6lr7ZEqntHx59eKyPLJ8lQUFBQMSYGAADFjZ1uAAAAwD9Ur149STbt2uc+6/mEBjbZ7dKBo77zXmvXzx7JsKl+/fp+TgkAAEoSpRsAAADwD11++eWS4dC6b13y+cwzzm/6wS23W7q4pvW811r7rUsy7GrSpEkxJAUAACWF20sBAACAf6hdu3ZyRsbo0K/puu7O07rl+mAl1LcpJNjQtj1uJc7LUkIDm7q0C5YkHTrm0Xfb83fFZeeY2n/Yq/c/yVFqhk8ff5EnGRHq2rVrIJcEAAD+IcM0zTO/igMAAADwl0yYMEFz58yU3UhTVKRFvxzxymdKcTWsur1DsB67P0zOiPwbTeYvyda9o9LOep3qVcPV/Io2+uCDD0oyPgAA8DNKNwAAAMAP0tPT1aZNGx0/tked20izxztls537LaX/a87bWZr4Yo7swdW0atWnatiwYTGmBQAAxY1nugEAAAB+4HQ69dxzz8keFKMP1vp076g0/Xbae97P5eWZevL5DE18MUeyRmv06Mcp3AAAKAfY6QYAAAD40erVq/XAA/3kyk1WVHiuHugRqjs7B6tKTOGXKGTnmFq+JlcvvpOlA0dtksWpRx8drmHDhskwir5DDgAAlE6UbgAAAICf7d69W4888oh27tgqmdmSmae4GhZdcpFNFkM6muTV3l+88vjskhGqKlVr6tlnn1WHDh0CHR0AAPgJpRsAAABQDNxut1asWKE33nhDmzdvlkyPJM/vZy2SYVdcXG317t1bd955p5xOZyDjAgAAP6N0AwAAAIpZSkqKduzYoaNHj8rn86ly5cqKj49X9erVuZUUAIByitINAAAAAAAA8DPeXgoAAAAAAAD4GaUbAAAAAAAA4GeUbgAAAAAAAICfUboBAAAAAAAAfkbpBgAAAAAAAPgZpRsAAAAAAADgZ5RuAAAAAAAAgJ9RugEAAAAAAAB+RukGAAAAAAAA+BmlGwAAAAAAAOBnlG4AAAAAAACAn1G6AQAAAAAAAH5G6QYAAAAAAAD4GaUbAAAAAAAA4GeUbgAAAAAAAICfUboBAAAAAAAAfkbpBgAAAAAAAPgZpRsAAAAAAADgZ5RuAAAAAAAAgJ9RugEAAAAAAAB+RukGAAAAAAAA+BmlGwAAAAAAAOBnlG4AAAAAAACAn1G6AQAAAAAAAH5G6QYAAAAAAAD4GaUbAAAAAAAA4GeUbgAAAAAAAICfUboBAAAAAAAAfkbpBgAAAAAAAPgZpRsAAAAAAADgZ5RuAAAAAAAAgJ9RugEAAAAAAAB+RukGAAAAAAAA+BmlGwAAAAAAAOBnlG4AAAAAAACAn1G6AQAAAAAAAH5G6QYAAAAAAAD4GaUbAAAAAAAA4GeUbgAAAAAAAICfUboBAAAAAAAAfkbpBgAAAAAAAPgZpRsAAAAAAADgZ5RuAAAAAAAAgJ9RugEAAAAAAAB+RukGAAAAAAAA+BmlGwAAAAAAAOBnlG4AAAAAAACAn1G6AQAAAAAAAH5G6QYAAAAAAAD4GaUbAAAAAAAA4GeUbgAAAAAAAICf/X/wuLP/tzz1BAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Omic Degree\n", - "Index \n", - "11 Gene_411 6\n", - "16 Gene_7 5\n", - "24 Gene_174 5\n", - "3 Gene_1 4\n", - "28 Gene_114 4\n" - ] - } - ], - "source": [ - "from bioneuralnet.metrics import plot_network\n", - "from bioneuralnet.metrics import louvain_to_adjacency\n", - "\n", - "cluster1 = hybrid_result[0]\n", - "cluster2 = hybrid_result[1]\n", - "\n", - "# Convert Louvain clusters into adjacency matrices\n", - "louvain_adj1 = louvain_to_adjacency(cluster1)\n", - "louvain_adj2 = louvain_to_adjacency(cluster2)\n", - "\n", - "# Plot using the converted adjacency matrices\n", - "\n", - "cluster1_mapping = plot_network(louvain_adj1, weight_threshold=0.1, show_labels=True, show_edge_weights=False)\n", - "print(cluster1_mapping.head())" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABNEAAAKaCAYAAAAQ48/rAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XVYlOkawOHfDN0ItqvYtYu9diDYHai7dsda69q1tmt3rLF2dxeiohjY3d0YICA9zJw/WOY4OwMMCmI893VxHXnz+T6Qsz68odBoNBqEEEIIIYQQQgghhBDxUqZ2AEIIIYQQQgghhBBCfOlMUzsAIYQQQgghhBDiWxAaGoq/vz8RERGpHYoQIgmUSiU2NjZkzpwZExOTeNtJEk0IIYQQQgghhPgEt27d4tSpkzy4dxt1TDRoNICcnCTE10MBCiXWtvYU/LEQlSpVwsHBQb+VnIkmhBBCCCGEEEJ8nEuXLrF10zqyZLDH9ce8ZHf5AUsLC5RKOT1JiK+FSqUiKPg9t+7c59LV21jYpKVd+w56iTRJogkhhBBCCCGEEB/h5cuX/D1vFoXyZ6V2jcooFIrUDkkI8YneBQWzcu0ObBwz07VbN506SY0LIYQQQgghhBAf4cqVK1iaaqhV3U0SaEJ8Ixwd7KnqXpbnzx7y5s0bnTpJogkhhBBCCCGEEB/h+rUr5M2TTbZuCvGNyZ0zG+YmcOPGDZ1y+ZsuhBBCCCGEEEIkkUaj4V1gAJkypEvtUIQQyczU1JS0zvYEBgbqlEsSTQghhBBCCCGESKKYmBjU6hjMzMxSOxQhRAowMzMlKipKp0ySaEIIIYQQQgghxEeSs9CE+DYZ+rstSTQhhBBCCCGEEEIIIRIhSTQhhBBCCCGEEEIIIRIhSTQhhBBCCCGEEEIIIRIhSTQhhBBCCCGEEEIIIRIhSTQhhBBCCCGEEEIIIRIhSTQhhBBftezZs6NQKFAoFGzatCnedlWqVEGhULBs2bLPF9xXIO7dfarWrVujUCj45ZdfjGo/ffp0FAoFBQsWBODhw4coFAqyZ8/+ybF8TiNHjkShUDBy5Eid8iNHjqBQKHBzc0uVuIwR93fn4cOHqR2KEEIIIcRXQZJoQgghvhlDhw5FpVJ9lrnc3NxQKBQcOXLks8z3pevQoQMA27ZtIzAwMNH2S5cu1eknklfbtm0laSyEEEIIkcwkiSaEEOKbYG1tze3bt1m8eHFqh/JdqlixIrlz5yYyMpLVq1cn2PbMmTNcuXIFMzMzWrVqBUCWLFm4ceMG3t7enyPcFFeyZElu3LjBihUrUjuUeHl7e3Pjxg2yZMmS2qEIIYQQQnwVJIkmhBDim9C7d28ARo8eTVhYWCpH8/1RKBS0b98e+P8qs/jE1depU4f06dMDYGZmRv78+cmVK1fKBvqZWFtbkz9/frJly5baocQrV65c5M+fHzMzs9QORQghhBDiqyBJNCGEEN+EWrVqUalSJV68eMH06dOT3P/cuXO0aNGCbNmyYWFhgZOTE9WrV2fPnj067eLOuvLx8QGgcuXK2nPF4rbPvXv3DhMTE9KkSYNardbpv2HDBm3b/44dGRmJtbU1lpaWhIeH69QFBAQwZMgQfvzxR6ytrbGzs6N48eJMmjRJr+2Hcbq5uREWFsaff/5JgQIFsLa2NurcsZiYGLp164ZCocDV1ZUnT54k2qdt27aYmJhw/vx5Ll++bLBNREQEa9euBXS3ciZ0JtqdO3do3749OXLkwMLCAltbW1xcXKhdu7Zewi6+M8riJHRW2ZYtW+jYsSM//fQTadKkwdLSkhw5ctC+fXtu3bqV6PMbM8+HZ/jF99G2bVtt++joaFatWkWLFi3Inz8/9vb2WFlZkS9fPnr16sXz5891xo97j8uXLwegXbt2OmN/+F4SOhMtLCyMCRMmUKxYMezs7LC2tubHH39k2LBhBrfrfvj102g0LFy4kOLFi2NjY4ODgwPVqlXj5MmTSXqHQgghhBBfGtPUDkAIIYRILhMnTqR06dJMmjSJrl274uzsbFS/mTNn8scff6BWqylSpAilSpXi5cuXHDlyhAMHDjBq1Cj+/PNPADJmzEibNm3Yt28f/v7+VK9enYwZM2rHyp07N46OjhQvXpwzZ85w9uxZSpYsqa0/ePCgzp9r1aql/fz48eOEh4dTuXJlrKystOX379/H3d2dR48ekS5dOmrVqkV0dDSHDx9m4MCBrF+/noMHD5ImTRq9Z4uIiMDNzY3r169TsWJFChcuzNu3bxN8H+/fv6dp06bs3buXqlWrsmnTJuzt7RN9j5kyZaJWrVrs3LmTf/75h5kzZ+q12bJlC+/evSNz5szUqFEj0TGvXr1KuXLlCA4OJl++fNSpUwcTExOePn3K0aNHefbsGe3atUt0HGM0bdoUCwsLChYsiLu7OyqViqtXr7J06VI2bNjAgQMHKFu27CfN4enpyZs3bwzW7d69mzdv3mBiYqIt8/f3p1WrVjg4OFCgQAEKFSpEaGgoFy9eZPbs2axbt44TJ06QO3duAGxtbWnTpg2+vr7cu3ePcuXKaesAihQpkmiMAQEBeHh4cPHiRezt7XF3d8fMzAwfHx/GjRvHmjVrOHToULzJ2Hbt2rFmzRoqVKhAnTp1uHjxIl5eXhw9ehQfHx9KlSpl/AsTQgghhPiCSBJNCCHEN6NUqVI0atSILVu2MG7cOKZNm5Zon/3799OnTx+cnZ3ZvHkzFStW1NZduXKFWrVqMWLECCpVqkSlSpXInz8/y5Ytw83NDX9/fwYNGmRwVVOVKlU4c+YMBw8e1EuiZc6cmcjISJ2EWlxdXN8PNW/enEePHlGvXj3WrFmDjY0NAK9fv6ZGjRqcP3+eHj16GDyLzM/Pj0KFCnH37l2dZF98nj17pk18tGvXjgULFiRpu1+HDh3YuXMnq1evZvLkyZibm+vUx60ci1u1lphp06YRHBzM2LFjGTp0qE5deHg4Z86cMTq2xKxevZo6depo3y+ARqNh/vz5dO/enc6dO3PlypVPus10ypQpBssXLVrE8uXLSZ8+vc5zOjg4sH37dmrUqKHzLqOjoxkxYgR//fUXvXv3Zvfu3QCkTZuWZcuW0bZtW+7du0fHjh11VrYZ47fffuPixYuUKlWK3bt3a5PRHyZXW7RowfHjx/X6Pnr0iCNHjnD16lXy5s0LxK5q7Ny5M0uWLOHPP/9k//79SYpHCCGEEOJLIds5hRBCfFPGjx+Pqakp8+bN49GjR4m2HzFiBBqNhr///lsngQbg6uqqTcTNnj07SXHEJcK8vLy0Zffv3+fBgwdUrVoVd3d3rly5gr+/v7beUBLN19cXPz8/rK2tWbhwoU6CJ126dCxcuBCAdevW8fTpU4OxzJkzx6gE2uXLlyldujQXL15k9OjRLFmyJMnnZdWuXZuMGTPy9u1bduzYoVP3+PFjDh06BGD06rG49/Phir04VlZWel+zT9GsWTOd9wuxZ7399ttvlClThmvXrnHjxo1kmy/Onj176NatGzY2NuzatYucOXNq6+zs7KhXr55eMtLMzIzx48eTOXNm9u3bR0hISLLE8vjxYzZu3IhCoWDhwoU6qzltbW1ZtGgRlpaWnDhxghMnThgcY/bs2doEGoCJiQnjxo0DwMfHh+jo6GSJVQghhBDic5MkmhBCiG9Kvnz5aN++PZGRkQwfPjzBtm/evOH06dNYWVlRt25dg23iVpnFlzCIT7ly5bCysuLkyZPaiw7ikmRVq1bVJsriyt69e8e5c+dwdHSkRIkS2nGOHDkCQI0aNciQIYPePMWLF6dw4cKo1WrtOW0fSp8+PRUqVEg03v3791O+fHlevXrFypUrE3138TE1NaVNmzYALFmyRKdu6dKlqNVqKlWqpLPFMCFxq/i6devG/v37iYiI+Ki4jHX37l3mzJnD77//TocOHWjbti1t27bVJvOSejZaYs6dO0fTpk2B2ETozz//bLDdpUuXmDZtGj179qR9+/bauFQqFWq1mrt37yZLPEePHkWtVlO0aFEKFSqkV58lSxaqV68OwOHDh/XqTU1NDW7TzZgxI2nSpCEyMjLR7cRCCCGEEF8q2c4phBDimzNy5EhWrVrF6tWr6devn8FkAMCDBw/QaDSEh4djYWGR4JivX79OUgwWFhaUL18eLy8vjh07RvXq1Tl48CAKhYIqVaoQGhoKxCbRWrRowaFDh1Cr1VSuXBml8v+/43r27BkAOXLkiHeuXLlycenSJW3bDxlziQDE3pSpUqm0h9h/ivbt2zNx4kQOHDjAs2fPyJIlCxqNhmXLlgG6Fwokpn///vj6+nLw4EFq1KiBmZkZhQsXpmLFivzyyy/xJp2SKiYmhh49erBgwQI0Gk287YKDg5NlPog9jL9OnTqEhoby999/U6dOHb02oaGhtGrViq1btyY4VnLFZez324dtP5QpU6Z4Vy/a29sTGBiY4olQIYQQQoiUIivRhBBCfHMyZcpE7969UavVDB48ON52cTdnxh3GntDHxySWPtzSqdFoOHToEK6urmTIkIGcOXOSI0cO7Uq0+M5D+1QfXlCQkLjVY8OHD+fBgwefNGfevHmpUKECMTExrFixAohdtfTw4UMcHBzw9PQ0eixra2u8vLw4ffo0o0ePxsPDg9u3bzNt2jRKlixJ9+7dkxTbf29LjTNz5kz+/vtvMmTIwJo1a3j48CHh4eFoNBo0Gg2//vorQIIJtqQIDAykZs2avHz5kiFDhtClSxeD7QYPHszWrVvJnz8/27Zt49mzZ0RGRmrjKlOmTLLG9ak+TAALIYQQQnxrZCWaEEKIb9LAgQNZuHAhe/bs4ejRowbbZM2aFYg992rJkiXJngD4cMvmhQsXePv2rTZZFVe/aNEibt68GW8SLUuWLEDseWrxiauLa/sxFi1ahK2tLTNnzqRChQocPHiQ/Pnzf/R4HTp04NixYyxdupTBgwdrt3b+8ssvRif2PvTzzz9rV52pVCq2bdtG69atmTdvHp6enlSuXBlAe3ZYfGeExXdO3oYNGwBYsGAB9erV06u/c+dOkmOOT2RkJPXr1+fmzZu0bNlSe15YQnGtX7/e4IrK5IwLPt/3mxBCCCHE10h+XSiEEOKb5ODgwJAhQwAYMGCAwTaZM2emUKFChISEsG/fviSNH5esUalU8bYpWrQozs7OXL58mTVr1gCx56HFiUuY/fPPP9y5c4esWbPqHMgO/z+Tbd++fTqXEMS5cOECFy9eRKlUftIh+wqFghkzZjBs2DCePXtGxYoVuXjx4keP16RJE+zt7blz5w67du1iy5YtQNK2csbH1NQUT09P7dlcH8YZl9iJ7wKAuFss/ysgIAAAFxcXvbpr16590rv4kEajoXXr1hw7dgx3d3e9c+OSEtf+/ft58+aNwX7GfH8aUrFiRZRKJRcvXuTSpUt69S9evND+XYlLXAohhBBCfC8kiSaEEOKb1b17d7Jly4afnx8nT5402Gbs2LFA7G2RO3fu1KvXaDT4+flx4MABnfIffvgBiE2wxEehUODu7o5Go2Hu3LmYm5vrJLo8PDxQKBTMmTMHMLyVs3z58pQqVYrw8HC6dOmivaQAYi9GiNsG+Msvv2hX1n2KMWPGMGnSJF6/fk3lypXjfW+Jsba21m6BbN++PeHh4bi6uib5DLN58+YZPMz/5cuXnD17FtBNMLm7u6NUKtm/f7/ORQsajYZZs2axefNmg/MUKFAAgLlz5+ps+Xzx4gWtW7dOcjIqPv3792fDhg24urqydevWRG8/jYvrv7fD3rp1i65du8bbz5jvT0OyZctGkyZN0Gg0dOnSRecSgNDQUDp37kxERARly5albNmySRpbCCGEEOJrJ0k0IYQQ3ywLCwtGjx4NoJN8+lDdunWZOXMmAQEB1KtXjzx58lCnTh1atGhBtWrVyJgxI6VLl+bQoUM6/Ro3bgzErnKrW7cuHTp0oGPHjnq3eMYlxiIiIihXrhzW1tbaOmdnZ4oUKaI9aD2+89DWrFmDi4sL27dvJ0eOHDRp0oQGDRqQK1cuzpw5Q7FixbSJuOTQv39/5s+fT1BQEFWrVtV7dmPFrTqLu5ThY1ahLVy4kPz585MzZ07q1atHy5YtqV69Ojlz5uTp06e4u7vrbL/MmjUrPXv2RK1W4+HhQeXKlWncuDF58uShX79+DBo0yOA8Q4YMwdzcnEWLFpEvXz6aNWtGzZo1yZUrF5GRkTRs2PAj3oCuJ0+eMHXqVCD2tspevXppb9n88GPx4sXaPiNGjEChUDB8+HAKFSrEr7/+ioeHB66uruTMmTPeRFaDBg1QKpXMmjWLqlWr0r59ezp27MiOHTsSjXPu3LkULlwYPz8/cuXKRcOGDWnSpAk5cuRg165d5MiRg9WrV3/y+xBCCCGE+NpIEk0IIcQ3rVWrVri6uibYplevXly4cIHOnTujUCjw9vZm27Zt3Lt3j6JFizJr1ix69eql06d27dosWrSIn376iUOHDrFkyRL++ecfbt++rdPuw8SYoSRZXJlCocDDw8NgfDlz5uT8+fMMHjwYZ2dndu3ahZeXF7ly5WLChAn4+vqSJk0ao96Hsbp27crKlSuJjIykdu3a7Nq1K8lj/Pzzz9p3b25uTsuWLZM8xrhx4+jWrRuOjo6cOnWKjRs3cv36dUqVKsXy5cvZt28fpqa6R7xOnz6dqVOnkjdvXk6cOMGRI0coWLAgp06d0m4B/a9SpUpx9uxZ6tWrR2hoKDt27ODevXv07NmTkydPYm9vn+TY/ysmJkb7Zy8vL5YvX27ww9fXV9uuUaNG+Pj44OHhwYsXL9ixYwevXr1i5MiR7N27N96VbIUKFWLz5s2UKVMGPz8/li1bxj///MP58+cTjdPZ2ZkTJ07w119/kSNHDg4cOMCuXbtImzYtQ4YM4dy5c0bf+iqEEEII8S1RaL6U65yEEEIIIYQQQoivhEqlYsyo4dSrXgbXH/OldjjJrmrdVhw9fobIgJvaMh9fP6rVa8OwAd0ZPqhnis2dt7A7ALcvfdxqePHxxkyYzdhJczmwYzmVypdK7XBS1ar127FPm1PnZnlZiSaEEEIIIYQQQnyFHj5+ioVT/gQ/3gUFp3aYqFQqlq/eTL2mncmWvzy2GVxJ51KCsh6ejBg3g0dPnqVabHHvsGN3w0c+fE5xX7MiZerorGCP89L/NRZO+alat1UqRPflSOj7PaW/jqaJNxFCCCGEEEIIIcSXKmeObDRvUtdgnaWFxWeORtejJ8/wbNGdy1dvkiF9WjzcyvJDloyEhoZz8fJ1Js9YxPQ5Szh/fCe5c+rfRv09unHrLivWbKVdK8/EG3+nXLJmptWv+mfWFnItkKLzShJNCCGEEEIIIYT4iuXKkS1Ft1d+rJCQ99Tx7MjtOw/4o2cHRg7pjYWFuU6bu/cfMWDYBEJDDV8C9b1Jn86ZsPBwxk6cw69N6mJpmbpJ0C+VS7YsqfI9L9s5hRBCCCGEEEKIb5iPrx8WTvkZM2G2Xl1KbmecPmcJt+88oHnTevw1qr9eAg0gd04XtqyZT4F8uRIcq2P3QVg45efh46d6dWMmzMbCKT8+vn465Vt37KdKnZb8kLcs9pkKkb1gBWo0bMfWHfsBWLFmC/mKxF7ytHLtNp1tgR+OpdFoWLZqM241fiVttuI4ZilCGffGLFu1OcFYVqzZQim3RjhmKWL0FkxHR3t+/60dT5+/ZM6CFUb1AXjzNpC+g8eTt4gHdhld+SFvWZq3+51r128bbP/k6QtadfyDjDlL4ZS1GFXqtOTYiTMJznHsxBka/tqVzLlLY5fRlYIlqjNi3AzCwsL12ib27r9WshJNCCGEEEIIIYQQyW756i0ADOn/W6Jtzc31E2yfYsGStfTqN4pMGdNRr3YVnJ0c8fd/w5nzV9i++yAN61WnsGsBenRpzZwFKyj0U37q1fr/Teku2bIAsQm0Np37sX7zbnLncqGZZx3Mzc3wPnyCLr2GcuPWXSaOGag3/7TZS/Dx9aNuTXeqVC6HiYnxa5j69GjPwqXrmDxjEe1bN8EpjWOC7V+/CaBi9V+4/+AxlcqXpGmjWjx89IwtO/az18uHXZsWU650cW37Fy9fUan6Lzx74U9V9/IULVyQm7fvU6tR+3gvE1iwZC29+4/G0cGe2jXcSJfWmfMXrzJh6t/4HPPjwI7l2q+hMe8+Tsfug1i5dhuL5oyndfNGRr+jd0EhLF62nrcBgaRJ40jZUkX5qWDKX/AhSTQhhBBCCCGEEOIrdu/BY4OrzKp5VKDUz0U+f0DEnoX29PlLfsickTy5sn/2+Zeu3Ii5uRmnfbaRPp2zTt3bgEAACrsWoGc3O+YsWEFh1/wGtwcuWbGR9Zt306Z5I+ZOH4WZmRkAUVFR/NK2NzPmLqVZ49oUK/KTTr9jJ87g67X+oxI7trY2DOn/G78PGMPEaQsMJuk+NHTkFO4/eMyAPp0ZM/wPbfleLx8aNOtCpx5DuHp6L0plbCJv+JhpPHvhz6ihvzOob1dt+8XL1tP9jxF649+4eZc/Bo3D9cd87Nu2FGenNNq6yTMWMmz0NOYuXEWfHu0B4979p7p89aZerNU8KvDPvAl6cyYn2c4phBBCCCGEEEJ8xe4/eMzYSXP1PvzOXkq1mPz93wCQJXOGVIvBzMwMMzP9tUMfJoESM3/xamxsrJk5+U9tAg1iV86NHvY7AOs379br16F1k09aGdWxTVNy5XTh73/W8OTpi3jbRUVFsX7LbpydHBnct5tOXc2qlfBwK8u9+4844Xde237j1r2kT+fM793b6bRv37oJuXPpX+6waNl6VCoV0ycO03t3fXt1JF1aJzZs0X0Hxr77McP/4NKpPdSvUzXeZ/yv37u3w2ffWp7fPcmbR2fx2beW6lUqcsD7GA1/7WrwZtPkIivRhBBCCCGEEEKIr1hV9/Ls2rQ4tcP4ojRpWJshIydTrFxdmjWuQ6UKpShXqjj29rZGjxEWFs7V67fJnDE9U2Yu0quPVqkAuHXnvl7dz8UKfXzwxCahRg3pTcuOfzDqr5ksnjvBYLtbdx4QERFJpfKlsLa20qt3q1AK7yMnuHTlBuXLlOD23dj2bhVK611aoFQqKVuyGHfvPdIpP/1vMtbrkC+HfU4aiNWUW3ceaD9PyrvPlDE9mTKmT/yFfOC/K/NKlyzKtnV/U71+G44eP8POPd40qFstSWMaS5JoQgghhBBCCCGESFYZMqQF4PmLV6ky/x892+Ps5MjCpWuZMXcp0+cswdTUlJrVKjF53GByuPyQ6BiB74LRaDQ8e+HP2Elz421n6GD99Ok/fUuhZ8OaTJ+7hNXrd/B793akdXbSaxMc8h6ADPFsYcyYIR0AISGhAAQFx7ZPn1Z/rNi40+qVBbwLAmDC1L+Nijs53n1SKZVK2rduytHjZzjhd16SaEIIIYQQQgghhEi6uLOwVAa2uQX/m1RJbi5Zs5AlUwaePHvBnXsPP/lcNKXi32dQ6T9DkIFnUCgUtG3ZmLYtG/M2IBDfk+fYsHk3m7bt5e69R5zz3Y6JiUmCc9rb2QBQrMiPnDykfxNnQhQKRZLaxzfGuBH9qNGgLUNHTWPBrLEGYoxd3eX/+q3BMfxfxW6rtfv3WRz+XQ326k2Awfav/m2vO0ds3zePzmJnl/hKvuR49x/D2ckRgFADSc3kImeiCSGEEEIIIYQQ37A0jvYAPH/ur1d38fL1FJu3bcvGAEyYOj/RtlFRUQnWO8Y9wwv9Z7h0JeFncHZKQ/3aVVi9ZDpuFUtz49Zd7t6P3bJoooxN5sTEqPX62dnZkj9vLm7evs+7oOBEnyElVK5Ymqru5dnn5YPvibN69fny5MDS0oJzF64YXBHn43saiL1EASBPrtj25y9eJSIiUqetWq3m5JkLemP8XLwwwEedsZfQu09uZ85dBiD7vzerpgRJogkhhBBCCCGEEN+wvLlzYGdrw659hwgIfKct93/1hr+M3KL3Mfr0aE/ePDlYtW47w8dMIzJSP1H24NFTPFt258atewmOVaKoKwAr12zVKd+yfR9Hj5/Ra+/j64dGo9Epi46OJjAwdmti3HlgaRztUSgUPH1m+PD+7l1aERYWTrfewwkNDTMY/8PHTxOM/VONG9EXhULB8LHT9erMzc1p1qg2b94GMmn6Qp26/QeP4XXIl1w5XShbqhgAFhbmeDaowavXb5kxd6lO+yUrNnLn7kO9Obq2/xVTU1P6DBrL46fP9erfBQXrJGONffcAL16+4ubt+wQFhyTyFmJdvX6L6OhovfKTfueZMmsxZmZmNKpfw6ixPoZs5xRCCCGEEEIIIb5h5ubm/Na5JROnLaC0WyPq1PTg/ftQdu8/TIWyP3P/weMUmdfOzpZdmxbj2aI7k6YvZMWarVSpXJYsmTMSFhbBpSvXOeF3AVNTEyaMHpDgWHVreZAzRzZWrN3Kk+cvKeJagJu373HkmB81qlZin5ePTvsmLXtgb2dLyRKFyZY1M9HRKryPnODGrbs0qlcdl6yxq5VsbW0oUdSVYyfO0q7rAHLndEGpVNK8WT1csmahU9tmnD57kZVrt3Hy9HncK5UlU8b0vHr1hlt37nP63GVWLJxC9mzJf85XnMKuBfjFsw5rN+40WD9uZD+OnjjDX1Pnc/LMBUoWL8Sjx8/YvH0/1tZWLJozXrulF2Dsn3057HOKEeNmcPzUOYoUKsDN2/fZ5+VDlcrlOHj4uM74PxbMy6zJf9Kz3yhcS9akRpWK5MyRjZD3oTx4+IRjJ87Q6teGzJ02CjD+3QMMHzONlWu3sWjOeFo3b5Tou5gxdyl7D/hQtnRxfsiSETNTU67fvMvBw8dRKBTMnPwnuXJk+5jXbBRJogkhhBBCCCGEEN+4kUN6Y25mxrJVm1m0bB0u2bIwuF83atdwZ+vOAyk2r0vWLJzw3siaDTvYtG0fXoeOExAYhKWFOblzudC3Vwc6tf2FrD9kSnAcKytL9m5dQv+hEzjsc5LTZy9RskRhvHetZM/+I3pJtDF//sEB72OcPX+Z3fsPY2NtRc7s2Zg9dSTt/t1mGmfJ3xPpP3QCe/YfISg4BI1GQ9nSxXDJmgWFQsHiuROoUaUS/6zYyJ79R3gfGkb6tE7kzuXChNEDcHcrm+zv7b9GDu3N5u37iIrSX4WVLq0Tvl4bGD95Hrv2enP85Dkc7G2pV8uDYQO682PBvDrtM2VMz5H9axkyYgpeh3zxPXmWYoV/ZM+WJRw5ekoviQbQoU1TCrsWYOa8pfiePMvu/UdwsLcl6w+Z6NWtDS1/aahtm5R3n1R1a3rwLiiEy1dv4n3kBFFR0WRMn5amjWrRs2sbfi7+abeiJkah+e8aOyGEEEIIIYQQQiRIpVIxZtRw6lUvg+uP+VI7HCFEMlu1fjv2aXPi6empLZMz0YQQQgghhBBCCCGESIQk0YQQQgghhBBCCCGESIQk0YQQQgghhBBCCCGESIQk0YQQQgghhBBCCCGESIQk0YQQQgghhBBCCCGESIQk0YQQQgghhBBCCCGESIQk0YQQQgghhBBCCKGjat1WWDjl1ynz8fXDwik/YybMTtG58xZ2J29h9xSd41tn6OsnPp1pagcghBBCCCGEEEKIpHv4+Cn5ilRJsI3/g9M4Oth/pogMU6lUrF6/nc3b93Px8nUCAoOwsrQgT+7sVHUvT/vWTXDJmiVVYot7h61+bcDiuRNSJYY4xiS9IgNufoZIvkxrNuzA9+RZLly6xtXrt4mKimbRnPG0bt4o3j7Bwe8ZM3E223Z68fLVazJlSEej+jUYNqA7trY2SY5BkmhCCCGEEEIIIcRXLGeObDRvUtdgnaWFxWeORtejJ8/wbNGdy1dvkiF9WjzcyvJDloyEhoZz8fJ1Js9YxPQ5Szh/fCe5c7qkaqxfAmcnR7p1bJHaYXyRRo6bwaMnz0nrnIZMGdLx6MnzBNuHhoZRpW4rLl25QZXK5WjauDYXL19n+pwlHDtxBu9dq7C0TNrfD0miCSGEEEIIIYQQX7FcObIxfFDP1A5DT0jIe+p4duT2nQf80bMDI4f0xsLCXKfN3fuPGDBsAqGhYakU5ZfF2TnNF/m1/BLMnzmW3LlccMmahckzFjJs9LQE20+dtZhLV27Qr3cnxo3oqy0fOmoqU2YuYtb8ZQzo0yVJMciZaEIIIYQQQgghxDcsobPMHj5+ioVTfjp2H5Ts806fs4Tbdx7QvGk9/hrVXy+BBpA7pwtb1synQL5cCY7VsfsgLJzy8/DxU726MRNmY+GUHx9fP53yrTv2U6VOS37IWxb7TIXIXrACNRq2Y+uO/QCsWLNFux125dptWDjl1358OJZGo2HZqs241fiVtNmK45ilCGXcG7Ns1eYEY1mxZgul3BrhmKUIVeu2SvyFfYTjp85RpU5L0vxQlEy5StGifR+ePH0Rb/s3bwPp9vtwfshbFscsRSjr4cn2XV6sWLMFC6f8rFizRa/PlWu3aNnhD1wKVMA2gyt5Crnz+8AxvA0I1Gt75Ngp6jbpRPaCFbDL6ErWfOVwr9WCxcvWf/KzeriVNXrbr0ajYemqTdjaWjOkXzeduiH9umFra82SlZuSHIOsRBNCCCGEEEIIIUSyW746NiEzpP9vibY1N9dPsH2KBUvW0qvfKDJlTEe92lVwdnLE3/8NZ85fYfvugzSsV53CrgXo0aU1cxasoNBP+alXy0Pb3yVbbLJGo9HQpnM/1m/eTe5cLjTzrIO5uRneh0/QpddQbty6y8QxA/XmnzZ7CT6+ftSt6U6VyuUwMUn+NUyHfE5Sr2lnlEoFTRrWJFPG9Bw+eorKNZvj6Kh/Dt7796FUqdOKG7fuUqZkUcqXLcGz5/607PgHVd3LG5xj595DtGj/O0qlkro13fkhSyZu3LrL/EWr8Trki6/XBtI4OgCw58ARGv3aDUcHe+rWdCdjxnS8eRPI5Ws3WbNhBx3bNtOOO2bCbMZOmsuwAd1TZOXdnXsPef7iFVXdy2NjY61TZ2NjTZmSxfA65MuTpy/I+kMmo8eVJJoQQgghhBBCCPEVu/fgscFVZtU8KlDq5yKfPyBiz0J7+vwlP2TOSJ5c2T/7/EtXbsTc3IzTPttIn85Zpy5uBVVh1wL07GbHnAUrKOya32AyZ8mKjazfvJs2zRsxd/oozMzMAIiKiuKXtr2ZMXcpzRrXpliRn3T6HTtxBl+v9fxUMF+S4n77NjDe20/z5clJ08a1AVCr1fzW509UKhXeu1dRrnRxIDbp17ZLf9Zt2qXXf8rMxdy4dZcObZoyb/pobXmrXxtSs2E7/VgCAmnfdQBpndJweN8anVVgGzbvplWnvoz6axYzJg4HYPmqzWg0Gg7sWE6hn/LrjfU53b3/CIDcuQyfs5c7lwteh3y5e/+RJNGEEEIIIYQQQojvxf0Hjxk7aa5euYODfaol0fz93wCQJXOGVJkfwMzMDDMz/bSHs1Mao8eYv3g1NjbWzJz8pzaBBrEr50YP+53d+w6zfvNuvSRah9ZNkpxAA3gb8M7g1xKgbi0PbRLt+KlzPHj4hNo1KmsTaAAKhYLRw/uwceteYmJidPqv2bgDc3MzRgzupVPuXqkMVSqX4+Dh4zrlq9ZtJzjkPTMmDdfbRtm0cW2mzfmHjVv2aJNocQwd1v/fd96tU0uaNKpNWmfjvxZJERwcAoCDvZ3Bens7W512xpIkmhBCCCGEEEII8RWr6l6eXZsWp3YYX5QmDWszZORkipWrS7PGdahUoRTlShXH3t7W6DHCwsK5ev02mTOmZ8rMRXr10SoVALfu3Ner+7lYoY+KO2+eHFzx25tou8tXbwJQrnQJvTqXrFn4IUtGHj1+pi0LDn7Po8fPKJAvNxnSp9XrU7ZUMb0k2umzl2L/99wl7j94rNcnIiKKN28DefM2kLTOaWjaqDbbdnlRsdovNPOsjXvFMpQrU8Jgoiytc5oUS6ClJEmiCSGEEEIIIYQQIlllyBCbqHn+4lWqzP9Hz/Y4OzmycOlaZsxdyvQ5SzA1NaVmtUpMHjeYHC4/JDpG4LtgNBoNz174x7s6DGKTbf+VPr2zgZbJJzj4few86ZwM1mdIl1Y3iRaScHtD8QYEBgHw9+I1CcYSGhZGWuc0NG5Qg43mc5k1bymLlq7n78VrUCgUVKpQikljBlLYtUDiD5ZM7P9dgRYUz0qzuPdhH89KtfhIEk0IIYQQQgghhPiGKZWxh9qr/rO9D/6fjEluLlmzkCVTBp48e8Gdew8/+Vw0peLfZ1DpP0OQgWdQKBS0bdmYti0b8zYgEN+T59iweTebtu3l7r1HnPPdjomJSYJz2tvZAFCsyI+cPKR/E2dCFApFktonVdyKulevAwzW+79+o9veLuH2r1691Z/j3+c/77uDHwvmNSquerU8qFfLg5CQ95zwu8C2XQdYtmozdZt04rLfHhwd9C88SAm5c8aehXb33iOD9XHlce2MlfzXQwghhBBCCCGEEOKLkebfmxqfP/fXq7t4+XqKzdu2ZWMAJkydn2jbqKioBOvjbpt8/kL/GS5dSfgZnJ3SUL92FVYvmY5bxdLcuHVXe/C8iTI2kRYTo9brZ2dnS/68ubh5+z7vgoITfYbPKe7g/uOnzurVPXryjKfPXuqU2dvb4pItC/cePOLVa/2E2cnTF/TKfi5RGIBTZy4mOT47O1uqV6nA/BljaP1rQ/xfvdFuD/0c8uTKTuZM6Tl5+jyhoWE6daGhYZw8fZ7sLj8k6VIBkCSaEEIIIYQQQgjxTcubOwd2tjbs2neIgMB32nL/V2/4a+rfKTZvnx7tyZsnB6vWbWf4mGlERuonyh48eopny+7cuHUvwbFKFHUFYOWarTrlW7bv4+jxM3rtfXz90Gg0OmXR0dEE/rtFMe7w+zSO9igUCp4+e2Fw3u5dWhEWFk633sP1kjFx8T98/DTB2FNCudLFye7yA3v2H+H4qXPaco1Gw59jputdKgDwa5O6REVFM/o/t3/6+PrhdchXr32b5o2ws7VhxLgZXL9xR68+LCwcvw8SbMdOnDE476s3sUm7Dy8cePM2kJu37/Pmbcrc2qlQKGjX0pP378MYP0U3iTt+ynzevw+jQ+smSR5XtnMKIYQQQgghhBDfMHNzc37r3JKJ0xZQ2q0RdWp68P59KLv3H6ZC2Z8NHhqfHOzsbNm1aTGeLbozafpCVqzZSpXKZcmSOSNhYRFcunKdE34XMDU1YcLoAQmOVbeWBzlzZGPF2q08ef6SIq4FuHn7HkeO+VGjaiX2efnotG/Ssgf2draULFGYbFkzEx2twvvICW7cukujetW1t03a2tpQoqgrx06cpV3XAeTO6YJSqaR5s3q4ZM1Cp7bNOH32IivXbuPk6fO4VypLpozpefXqDbfu3Of0ucusWDiF7NkSP2PNGG/fBjLmP0muD3Vq9wsZM6RDqVQyb/po6jfrQs2G7WjSsCaZMqbnyFE/Xvq/xvXHfFy5dkunb79eHdm64wCLlq7j+o07lCtTnGfP/dm0bS+1a1Rm977D2q2/AOnSOrFi8VSat/udEhUbUM2jPPny5CQyKopHj59x7PgZSpcsqr3U4o9B43jx8hVlSxfHJWtmFAoFJ06d58z5y5QqUVjnFtH5i1YxdtJchg3ozvBBPY16N0tWbOSEX2zC8Or12wAsXbmJo8dPA1C2VHHaf5AY69urIzv3HmLKzEVcvHydooULcuHSdQ4ePk6JYq707NrGqHk/JEk0IYQQQgghhBDiGzdySG/MzcxYtmozi5atwyVbFgb360btGu5s3XkgxeZ1yZqFE94bWbNhB5u27cPr0HECAoOwtDAndy4X+vbqQKe2vyS6rc7KypK9W5fQf+gEDvuc5PTZS5QsURjvXSvZs/+IXhJtzJ9/cMD7GGfPX2b3/sPYWFuRM3s2Zk8dSbt/t5nGWfL3RPoPncCe/UcICg5Bo9FQtnQxXLJmQaFQsHjuBGpUqcQ/KzayZ/8R3oeGkT6tE7lzuTBh9ADc3com2/t6G/AuwUsM6tWuQsYM6QDwcCvLvm1LGTluBpu378fK0oLKFcuwZtkMOnQbqNfXzs4W792rGD56Gjv3enPu4lUK5s/NykVTuf/wCbv3HcbOTvf20lrV3PA7soXps5dwyOcE3kdOYGNtTZbMGWjdvBHNm9bTth3we2e27fLi/KVreB3yxczUFJdsWRg3sh9d2/+a6Bl0iTnhd46Va7f9p+w8J/zOaz//MIlmY2PNwV0rGTNhDtt2HsDH9zSZMqTj9+7tGDagO1ZWlkmOQaH57/pGIYQQQgghhBBCJEilUjFm1HDqVS+D64/5UjscIT5J2y79WbtxJxdP7qZAvlypHc4XYdX67dinzYmnp6e2TM5EE0IIIYQQQgghhPgOvHj5Sq/s6PHTbNiyh7x5ckgCLRGynVMIIYQQQgghhBDiO1C/WResLC0o5FoAG2srbty6xwHvY5iYmDB9wrDUDu+LJ0k0IYQQQgghhBBCiO9Ay18asG7TTjZu2UPI+1AcHeyoXaMyA37vTMkShVM7vC+eJNGEEEIIIYQQQgghvgO9urWhV7ek30opYsmZaEIIIYQQQgghhBBCJEKSaEIIIYQQQgghhBBCJEKSaEIIIYQQQgghxDfMx9cPC6f8jJkwW6e8at1WWDjlT6Wokl/ewu7kLeye2mEkybf2NfjWSRJNCPFF0Wg0PHv2jKNHj7J//368vLzw8/MjODg4tUMTQgghhBDii/Lw8VMsnPIn+PEuKGn/Hb1izRYsnPKzYs2WFIr6yxCXWLRwys9vff402GbD5t0Gk4/fkw/fk6GPb/375L/kYgEhRKqLjIxk165dbN26lYsXLxIQ8BY0KkAT20ChBEzJkSMHJUuWpGXLlhQrVgyFQpGaYQshhBBCCPFFyJkjG82b1DVYZ2lhwc/FCnHp1B7SOqf5zJF9HZav3kLv39qSL0/O1A7li1Wx3M9ULFdSr7ywa4FUiCb1SBJNCJFqwsPDmTNnDsuXLyfgrT9owkEThamJmlwuJthaK1Cr4VWAmmf+ah7cDeDBvSusX7+WH390pVevXtSpU0eSaUIIIYQQ4ruWK0c2hg/qmWCb/HklQWRIzhzZuP/gMX+Omc76Fd/virPEVCxXMtHvse+BbOcUQqSK06dPU6VKFaZPm0DA6ztkThtE/w5K9ixy4I5XOg6vcmbnQid2L3bizJa0XN2dljXTbGhWU42FyRuuXTlBly4d6dSpE69fv07txxFCCCGEEOKLFd+ZaP/VsfsgOvUYAkCnHkN0tu19KCTkPaP/mkWRMnVwyFyY9Nl/pnbjDhw/dU5vzLgzvyIiIhkxbgb5i1XFJv1POrE8ePSUrr2Gkdu1MnYZXXEpUIGO3Qfx6Mkzg3Hu2ONNWQ9PHDIXJmu+cnTrPZzAd0FJfS0AuFcqQ8VyP7Ntlxenz14yut+167dp3u53fshbFruMruQt4kHfweN5GxBosP3xU+eoUqclaX4oSqZcpWjRvg9Pnr6Id3yNRsOyVZtxq/ErabMVxzFLEcq4N2bZqs16bSMiIpk+ZwklKtQnnUsJ0vxQlLyF3Wne7ncuX71p9DOJxMlKNCHEZzdv3jzGjRuLJiaIjM5RjOplR81KFpiaxr+izMlRiVspC9xKWTCipy0L14UxZ1UAe3Zv4tSpU6xcuZKiRYt+xqcQQgghhBDi21K3VhXeBYWwc483dWt5UPgn/QPvAwLf4VG7Fddv3qFsqWJUqfwLISHv2bnXm2r12rBm6Qzq166i169Zm15cuXqTah4VcHCwI7vLDwCcPnuJOp4dCQ0Lp1Z1N3LndOHR42es3biL/QeP4bN/HTmzZ9WOs2rdNjr8Ngh7O1uaN62Ho4M9e/YfoWbDdkRFR2NuZpbk5x43oh8VqjVjyMjJHNy1KtH2x0+do45nR6KiomlUrxou2bLgd+YicxasYM+BIxw7sF5n6+whn5PUa9oZpVJBk4Y1yZQxPYePnqJyzeY4Otrrja/RaGjTuR/rN+8mdy4XmnnWwdzcDO/DJ+jSayg3bt1l4piB2vYdfhvEpm17cf0xH62bN8LCwpynz17g43uas+evUOiDr2Pewu48evKcWxcPkj3bD0a/o7v3HzFr/nIiIiLIkjkjbhVKkyVzBqP7fyskiSaE+KymTp3K1KmTICaQZrXMGdXLGXu7pC2KdbRXMqCzLbUrW9BrTDA37j+gadOmrFu3juLFi6dQ5EIIIYQQQnyZ7j14bHCVWTWPCpT6uYjR49SvXYWgoGB27vGmXi0PWjdvpNemz8CxXL95h/kzxtC+dRNt+ZjXf1DW3ZPuff6kukcFLC0tdPq9ePmKs77bcUrjqC2Ljo6mZcc/UKvVHD+4gSKFCmrrjp86R9W6rek7eBxb1/4NQHDwe/oMHIuNjTXHvTeSN3cOAEYP+52aDdvx4uVrXLJmNvp545QsUZhG9aqzZcd+du8/TO3qleNtq1ar6dh9MGFh4ezcuIhqHhW0dYNHTGba7H8YOnIKC2aP07b/rc+fqFQqvHevolzp2H+vaDQa2nbpz7pNu/TmWLJiI+s376ZN80bMnT4Ks38Tg1FRUfzStjcz5i6lWePaFCvyE0HBIWzevo9iRX7E12sDJiYm2nFiYmIIeR+a5PdhyLpNu3RiNTU15bdOLZgweoDOnN862c4phPhsVq1apU2gDfvNiulD7ZOcQPvQj3nM2PF3GsoXUxMa8pwWLVrw8OHD5AtYCCGEEEKIr8D9B48ZO2mu3odfErYnGuPN20A2bt2LW8XSOgk0gPTpnOnTsz2v3wTg7XNCr+/wQT11EmgAe/Yf4dHjZ/zRs4NOAg2gXOni1K3pzj6vowQHvwdgx56DBIe8p02LRtoEGoCZmRmjhvX5pGcbPbwPpqamDB89DbVaHW+7E37nuf/gMdWrVNRJoAEM7f8bTmkcWLd5F1FRUUBsMvDBwyfUqu6mTaABKBQKRg/vYzABNX/xamxsrJk5+U9tAg3A3Nyc0cN+B2D95t2x46BAo9FgaWGBUqn7bysTExMcHXRXuu3dtoxLp/aQJZNxq8jSOTsxbkRfLhzfScCT8zy5dZyNq+aSK0c2Zs1fzuARk40a51shK9GEEJ/Fw4cP+fPPPyHmHf07WvJbC5tkGdfGWsmyiY406x3IuevP6dOnD5s3b9b7PxAhhBBCCCG+VVXdy7Nr0+IUn+fs+SvExMQQFRllcOXb3fuPALh1+77eaq6fi7nqtY9L8t2++8DgeP6v3qBWq7lz7wHFi7pqz/cqX7qEXtvSPxfB1PTjUxx5cmWnXStPFi1dx6p12wyuwgO4ePk6ABXL699UaWtrQ7EiP3Hw8HFu333ATwXzaWMuZyBml6xZ+CFLRh49/v/Zb2Fh4Vy9fpvMGdMzZeYivT7RKhUAt+7cB8De3pYaVSuxz8uHUm6NaFy/OhXLlaREMVedBFycXDmyJfYqdBQskIeCBfJoP7exsaZeLQ9KFi9EiQr1mbtwFf16dyJ9Ouckjfu1kiSaECLFqdVq+vTpQ0TYG8oXV9K7TfIk0OJYWymYN8oB91YB+J06zpIlS+jYsWOyziGEEEIIIcT3Lu7w/hN+5znhdz7edmFh4XplGdKn1R8vMHa8tRt3Jjhv6L/jxa1IS5fOSa+NiYkJzk6OCY6TmGEDurNmww5G/zWbpo1qG2wTEhK7PTJDPEmjTBnT/RtrqE7M6Q3EHDtOWp0kWuC7YDQaDc9e+DN20tx4Y/3wHa9dOoOJ0xewbtMu/hw7AwB7O1taN2/EmOF9sLa2inecj5UxQzrq1vRgycqNnD53iTo13JN9ji+RJNGEECnu4MGD+PmdwNoinKmDnVAq479A4GNlzWTC8O42DJoSxJQpU2jevDnW1tbJPo8QQgghhBDfKzu72F+G/969nc7B9sZQKPT/DRA33pa18xM8hyyOvb0tAK9fB+jVxcTE8DbgHVkypU9SXB/KmCEdvbu1ZfyUecxduIqsWTLGG7P/67cGx3jp/+bfWG10Yn5lIObYcd7ofG7/7/jFivzIyUP6N3EaYm1txaihvzNq6O88ePQUn2N+LFq2jjkLVhAeEcG86aONGiepnJ0dAQgL1U+afqtkv5MQIsUtW7YM1GG0bWRJ1kxJO3TyfaiaH8r7o8jzgrNXohJs27K+FdmzaAgOesO2bds+PmAhhBBCCCG+U3FndMXE6J8LVqKoKwqFAr8zF5NlrpLFCwMYPV7cLZO+p87q1Z06cxHVv1sdP8UfPduTLq0Tk2cs5F1wiF593NltR31P69WFhoZx/uJVrKwstWe2xcV83EDMj5484+mzlzpldna25M+bi5u37/MuKDjJ8edw+YG2LRtzcOdKbG2t2b3vcJLHMNaZc5cBcMmWJcXm+NJIEk0IkaIePnzIkSOHURBOqwZJX0Y8Zu57VDHGtVUqFbRuYAWa8NjEnRBCCCGEECJJ0qRxAODpsxd6dRkzpMOzQU1Onr7A1Fn/oNFo9NqcPnvJ4HZOQ+rW8iDbD5mZOW8Zx06c0auPjo7m+KlzOu3t7WxZvnoLt+8+0Gk3ctwMo+ZMjJ2dLYP6diXwXRDT5yzRqy9bqhg5c2Rj/8GjeB/RvUDhr6nzeRvwjmaNamNubg7EXpCQ3eUH9uw/ovMsGo2GP8dMJyZG/x873bu0IiwsnG69hxMaGqZX/+DRUx4+fgrA6zcBXLt+W69N4LsgIiOjsbAw1ym/9+AxN2/fJzo62oi3AecvXjVYPvvvFRw55kfuXC6UMHDe3bdKtnMKIVLUkSNHQBNJ2aJmuGRJ2o+cm/dUzF0dxtRBdnT907jfwjSrbcWYeW+4evUqb968IW1a/bMXhBBCCCGEEIaV/rkIVlaWzP57BYHvgkmXNvYsr8H9ugEwa8qf3L77gCEjJ7Nmw3ZK/VwERwd7nj57wbmLV7l77xGPbhwz6hwuCwtz1i6bSb2mnahSpxVuFUvzU4G8KBQKHj99zvGTZ3FycuSK314AHOztmDZhKB27D6acRxOaNKqFg70de/YfwcrKQnse2afq3O4XZv+9gvsPHuvVKZVKFs/9izqeHanfrAuN61cnW9bM+J25iI/vaXLmyMbYEX112s+bPpr6zbpQs2E7mjSsSaaM6Tly1I+X/q9x/TEfV67d0pmjU9tmnD57kZVrt3Hy9HncK5UlU8b0vHr1hlt37nP63GVWLJxC9mw/8PyFPyUrNaTQT/lx/TEfmTOl523AO3btPUR0dDR9erTXGbtmg7Y8evKcWxcPkj3bD4m+i1/a9MLUzIziRX4kS+aMhIaFc/rsJS5evo6jgz3L/p5s8IbRb5Uk0YQQKery5cugUVHiJ/2bYRLTc3QQXX+1JreL8T+U0zgoyZlVyb2n0Vy+fBl39+/jgEshhBBCCCGSg1MaR9Yum8nYiXNYsnIj4eERwP+TaE5pHPHZt5Z5i1azadse1m3ahVqtJkP6tBT6KT9D+v1GWuc0Rs9XopgrZ45uZ9rsf9h30IeTfuexMDcnc6YM1KtVhaaNdQ/4b/VrQ+zt7ZgwdT6r1m3Dwd6OOjXcGT+qH6UqNUyWd2Bubs7oYb/TulM/g/XlShfn2IF1jJs0j4OHjxMU/J7MGdPRo0trBvfrpvf8Hm5l2bdtKSPHzWDz9v1YWVpQuWIZ1iybQYdu+mfLKRQKFs+dQI0qlfhnxUb27D/C+9Aw0qd1IncuFyaMHoC7W1kgdivl8IE9OHLsFId8TvA24B1pndNQpFBBenRpTfUqFT7pXXRu/yteh3zxPXmWtwHvUCqVZPshMz27tuH37u34wcC5cd8yhcbQ+kshhEgmVatW5doVX5aMt6JGRUuj+23cG07P0cHcOpAOn1MB1P8tmiOrrKlY0gEDZ5Lq6D4yiK3eZgwYOJLff//90x5ACCGEEEIIA1QqFWNGDade9TK4/pgvtcMRQiSzVeu3Y582J56entoyORNNCJGi/P39QRODS2bjV5O9eRtGn3HvGNvHFhNFuPaA0PDwcAICAlAZODfgQy6ZTUCj5vXr158UuxBCCCGEEEIIEUeSaEKIFBUVFXujpplZIsvH/hUUFMyo2UGkdYRa5YMJCQnRObA0OjqagLdvtcvKDTE3UwAa7dxCCCGEEEIIIcSnkiSaECJFWVhYABAZlfjO8bCwcG7fD2XhBujbHoJC4F2whvf/XkgTFg6hYRrUag1BQUEEBQWjVuuPGzuXQnsjjhBCCCGEEEII8ankYgEhRIrKnDkzr/1vc/9xDD/mif9ygbCwcIKDg3n8AqKiobX++Zo07qWhWEHYvSB2VVt4eDhR0VE4OjhiZvb/H2f3n8SAwpzMmTMn+/MIIYQQQgghhPg+SRJNCJGiChUqxKULx7l8K5q6HoYvFohLoAH8mBs2ztCtv3YXRs6Bif0UFMmvWxejiiEgIABbW1usra1RKODyrWjAhkKFCiX/AwkhhBBCCCGE+C5JEk0IkaIKFSoECjP8LoUarA8P/38CDcDeFsoWjWesfFAon/7ZahqNhpCQECKjIomIsuXRczWYmOLq6poszyCEEEIIIYQQQsiZaEKIFOXu7o7SxJKzV2O4/UClUxceHkFQUHA8PUGhUKBQGHchAUBUZBSL1wcQozalRIkSODo6fmzYQgghhBBCfDN8fP2wcMrPmAmzdcqr1m2FhVP+eHp9ffIWdidvYfdUmdvCKT9V67ZKlbnF5yNJNCFEisqUKRPVqlUHhSXLt4Zpy2MTaEEJ9o1LopUvruDFMSVF8iecUFOpNGzcpyYoOAoLCwu5nVMIIYQQQnzTHj5+ioVT/gQ/3iXwS2tDVqzZgoVTflas2ZJCUX8Z4hKLCX18z0mxsLBwps9ZQutOfXEtVRNL5wJYOOXn4eOnCfa7ffcBzdv9TubcpXHIXJgSFeqzYMlaNJrEL5r7Gsh2TiFEimvXrh379u1m1fa3tG5gTbZMKoMJtA9XnemuQFNgb29PZGQkkZGR8c6zcgc8fwUxahN8fX2pVasW8+fPJ0+ePMn5OEIIIYQQQnxRcubIRvMmdQ3WWVpY8HOxQlw6tYe0zmk+c2RfvmJFfqRWNTeDdS7ZsnzeYL4gr968ZdCfkwBwyZqZNI72BAQmvAjixs27VKrxK+EREXg2qEmmjOnZe8CHXv1GcePWXWZMHP45Qk9RkkQTQqS48uXLU6VKdQ567aDn6ECWjI3B1FR3VZmJiRKFQklMTAzw3yQamJqaYmVlRVhYGO/fv9f7Tca9xxrmrtYQEqbE1tYWhULB9evXqV69OmPGjKF58+ZJ2hoqhBBCCCHE1yJXjmwMH9QzwTb58+b8TNF8XYoV+SnRd/c9SuuUht2b/6FYkR9xSuNIHc+OeB3yTbBPz34jCQoOYfv6hdSoWhGAkUN6UbNhe+YvWs0vjetQumQ8B2B/JWQ7pxAixSkUCiZPnoxCacO5qyqmLNXoJMFMTJTY2zugUkXHO4ZSqUShABsba5ycnDA1NdHWBYVoGDBFw7v3CkxNLbC0/P8toBEREfTv358uXbokun1UCCGEEEKIb1F8Z6L9V8fug+jUYwgAnXoM0dna+KGQkPeM/msWRcrUwSFzYdJn/5najTtw/NQ5vTHjzl2LiIhkxLgZ5C9WFZv0P+nE8uDRU7r2GkZu18rYZXTFpUAFOnYfxKMnzwzGuWOPN2U9PHHIXJis+crRrfdwAt99nv/WX7JiI0XL1sU+UyFy/eTG4BGTiYiIf7fMlWu3qNe0M87ZipHOpQT1mnbm2vXbdOw+KN7tkTv2eFO9QVsy5CiJfaZCFC1bl2mz/9EuOIijVqtZsmIj5ao0IWPOUjhkLkzOHyvR8Neu+Pj6fdJz2traUKVyOZzSOBrV/vbdBxw7cRa3CqW0CTQAc3NzRgzpBcS+u6+drEQTQnwWJ06cICIiguD3SlbvVGNuCn3aajAxMSFNGifCI8KJy6sZWjGmNPl/zt/MzBQnJ2dCQkJ49jKM30ZpuHpHQWSUCU5Odgb779q1i/PnzzNv3jxKliyZYs8phBBCCCHE16purSq8Cwph5x5v6tbyoPBP+pcOBAS+w6N2K67fvEPZUsWoUvkXQkLes3OvN9XqtWHN0hnUr11Fr1+zNr24cvUm1Twq4OBgR3aXHwA4ffYSdTw7EhoWTq3qbuTO6cKjx89Yu3EX+w8ew2f/OnJmz6odZ9W6bXT4bRD2drY0b1oPRwd79uw/Qs2G7YiKjsbczCzF3s/4yfMY9dcsMqRPS/vWTTAzNWXT1r3cvH3PYPvLV2/iXqsFoWHhNKhTldy5XDh34SqVa7Wg0E/5DPYZNnoqk2csIkumDDSoUxV7e1uOnzrH4BGTOXPuMmuXzfyg7TSmzlpMzhzZaOZZGztbG56/eMXxU+c45HOSSuVLadtWrduKo8fPcGDHcp3y5HLU9zQAVSqX06srV7o4NjbWHD1xJtnn/dwkiSaESHHbt2+nZ8+eWFhYYGNrx7uQEJZsUfPgmYLpQx0wMTEhIjxc2/6/STCFQoHyP2VKpYLLty35fVwE9x6rCYswIU2aNJiYmBCf58+f06hRI/r06UPv3r0xNZUfgUIIIYQQ4ut378Fjg6vMqnlUoNTPRYwep37tKgQFBbNzjzf1annQunkjvTZ9Bo7l+s07zJ8xhvatm2jLx7z+g7LunnTv8yfVPSpgaWmh0+/Fy1ec9d2us7IpOjqalh3/QK1Wc/zgBooUKqitO37qHFXrtqbv4HFsXfs3AMHB7+kzcCw2NtYc995I3tw5ABg97HdqNmzHi5evccma2ejnBTh/8Wq8K/Q+fH937z9i3OR5ZMmUgVNHtpA+nTMAwwf2pFzVJgb7/z5gDCHvQ1m+cDK/eP7/zLpR42cxfso8vfYHDx9n8oxFVHUvz/rls7CxsQZAo9HQs98oFi1dx9Yd+2lYrzoAS1duJHOm9Jw7th1rayudsQIC3yXpPXyqu/cfAZA7p4tenYmJCdmzZeHGrXuoVKqv+t9hX2/kQoivwsmTJ1Gr1cydO5dHjx6xa9cuzpw5Q0hYKMfOm1OlbRB92lpQpVQM1lZg6NgyExPdnecPn6qYsyqMNTsjQelArjzZcXBw4ObNm4nGo1armTp1KkePHmXu3Ln88MMPyfWoQgghhBBCpIr7Dx4zdtJcvXIHB/skJdES8+ZtIBu37sWtYmmdBBpA+nTO9OnZnj8GjcPb5wS1q1fWqR8+qKfe1sA9+4/w6PEzRgzupZNAg9jVS3VrurNjjzfBwe+xt7dlx56DBIe857fOLbUJNAAzMzNGDeuDe60WSX6m8xevcf7iNYN1H76/9Zt2oVKp6PVbW20CDcDe3pbBfbvRrusAnb6Pnjzj+KlzFPopv04CDaBf747MX7xabwvq/MWrAZg3Y7Q2gQaxiwrGjejL4mXrWb95tzaJFvfshhYS/Pdd/zN/ImFhEWT7IVM8b+LTBAWHAGBvb2ew3t7OFrVaTcj7UNI4OqRIDJ+DJNGEECnm5s2blClTBpVKhUKhQKPR0KtXL27fvs3bt28ZO3YsF86fZtj0QCbZaKjtBmWLQsFcGtI5/X9Fmlqt5OY9FZdvRbPDO4LDftFosAITZ9q168CQIUOwsLBg+vTpzJw5E7VanWhsZ86coUqVKkyePJm6dQ3fZCSEEEIIIcTXoKp7eXZtWpzi85w9f4WYmBiiIqMMrt6KW4106/Z9vSTaz8Vc9dr7nb0ExJ6nZWg8/1dvUKvV3Ln3gOJFXbl8NfaX5uVLl9BrW/rnIh+1wqlj22bMnTYq0Xbaucvoz12uTHED7W8BUKZUMb06GxtrCrvm58gx3XPLTp+9hI2NNctXbTYYg5WVJbfuPNB+3qRRbRb8s4ai5erStGEtKlUoRemfi2BlZanXN9sPSVuhJwyTJJoQIkUcP36ccuVi98P/9//M8uTJQ968edm+fTtLlixh6NChPHkZwLKtalbvBFMTDQ52YGutIUYNQSFRRKkCQWEGCktQOlK5sjs9evSgTJky2nH79+9PhQoV6N69Oy9evEg0xuDgYLp06cKRI0cYM2YM1tbWifYRQgghhBDiexW3cuqE33lO+J2Pt11YWLheWYb0afXHC4wdb+3GnQnOG/rveMHB7wFIl85Jr42JiQnOTo4JjvMpgkLinztDOv1nC/m3ffq0+u0BndVscQICg1CpVAZXFcYJDQvT/nnaX0PIni0LK9Zs5a+p8/lr6nwsLS3wbFCDiWMGkdY5TcIPlYwc/l2BFvzvirT/Cg55j0KhwM7W5rPFlBIkiSaESHa7d+9GqVTGu989boWZqakpHTt2pGPHjuzYsYMZM2Zw/vx53oWEEhgcu7VTA1haWpE+fUZ++uknSpYsSfPmzcmePbvBuUuXLo23tzf9+vVjz549RsW7du1aTp8+zfz58/npp58+9rGFEEIIIYT4ptnZxSZAfu/ejoljBiapr6HLv+LG27J2vt7KNUPs7W0BeP06QK8uJiaGtwHvyJIpfZLiMpaD3f/ndsmaRafO//UbvfZ2/7Z/9UY/VoBXr9/qldnb2aBQKHh+95RRMZmamvJHzw780bMDz1/4c+zEGZav3sKqddt56f+G3Zv/MWqc5BB3FlrcasQPxcTE8PDxM7K7/PBVn4cGoEy8iRBCGG/v3r0MGzaMqlWrGvUDUqlUolQqadCgAd7e3gQHB3PgwAEaezbFOW0GHByc6NdvALdu3WLbtm0MGTIk3gRaHEdHRxYtWsTEiROxtNRfymzIvXv3qF27NgsXLjRqO6gQQgghhBDforjztWJi9P+buERRVxQKBX5nLibLXCWLFwYwerxC/94W6nvqrF7dqTMXUalUyRJXgnOf1J/7+MlzBtrH3r556vQFvbqwsHDt9tAP/Vy8MG8D3nHn3sMkx5c5UwaaNa7Drk2LyZXThUM+JwkPj0jyOB+rQrmfgdjLEf7r+KlzhIaGUbHsz58tnpQiSTQhRLLZt28fXbp0oUGDBiiVSf/xEvd/2JUqVWLt2rXcvn2b8ePHU7x48QRv3TREoVDQqlUr9u3bR4ECBYzqEx0dzciRI2nVqhWvX79OcvxCCCGEEEJ87dKkiT30/ekz/eNRMmZIh2eDmpw8fYGps/5Bo9HotTl99pLB7ZyG1K3lQbYfMjNz3jKOnTijVx8dHc3xU+d02tvb2bJ89RZu332g027kuBlGzfmxmnnWwcTEhFnzlumsIgsOfs9fU+frtXfJmoWypYpx6coNNm7R3SEzbfY/BAQG6fXp3rkVAF16DuVtQKBe/Uv/19y4dQ+AyMgoThrYUhsaGkZoaBhmZqY6/yZ7/PQ5N2/fN/prk1T58uSkQtkSHDnmxz6vo9ryqKgoRo2fBUC7Vp4pMvfn9HWvoxNCfDH2799P586dUalUtGzZ8pPGilvBZmtrS7t27T5pZVjevHnZs2cPY8aMYcmSJUb1OXz4MFWqVGHmzJm4ubl99NxCCCGEEEJ8beIOpp/99woC3wWT7t8zvQb36wbArCl/cvvuA4aMnMyaDdsp9XMRHB3sefrsBecuXuXuvUc8unEMa2urROeysDBn7bKZ1GvaiSp1WuFWsTQ/FciLQqHg8dPnHD95FicnR6747QViz92aNmEoHbsPppxHE5o0qoWDvR179h/BysqCTBnTJfl5z1+8avBSAwBLSwv6/94ZiN2uOLT/b4yeMJsSFerTuEENTE1M2LbTi59+zMvtDw78jzN94jA86rSkTZf+bN15gFw5s3Hh0nVOn71EhbIlOHbirE6iq3qVCgzp9xvjp8yjYPHqVPMoT7asWQgIeMe9B4/wPXmOUUN7UyBfLsIjInCr2Zw8ubNTrPCPZP0hM+9DQ9m7/wgv/V/Tp0d7LCzMtWN36DaQo8fPcGDHciqVL2XUuxk4fKI2mXftxm0ABg2fhK1t7FnS7Vo1oVzp/1+qMGvyCNxqNqdJq+40aViLjBnSsfeAD9dv3qFbpxYGL1n42kgSTQjxyby8vLQJtGLFipErV65426rV6iStUjM1NTX4G66ksLCwYOzYsVSqVIk+ffoQEGD4XIIPvX79mubNm9OlSxcGDx6Mubl5on2EEEIIIYT42jmlcWTtspmMnTiHJSs3arcExiXRnNI44rNvLfMWrWbTtj2s27QLtVpNhvRpKfRTfob0+y1JB9qXKObKmaPbmTb7H/Yd9OGk33kszM3JnCkD9WpVoWnj2jrtW/3aEHt7OyZMnc+qddtwsLejTg13xo/qR6lKDZP8vOcvXuP8xWsG6xzs7bRJNIChA7qTKWN6Zs1fzuJl60mf1pkmjWoxYnAvHLMU0etfpFBBDu1ezdBRU9nvfRSFt4KypYtzeM9qho2ZBoD9v2enxRkxpBfly5Zg7sKVHD56indBITg7OZI9WxaGD+zBL551AbCxtmLcyH4c9jnJ8ZPnePXmAGkcHcibOztj/vyDpo1q68WTVFt37OfRk+e6ZTsPaP9csVxJnSRawQJ5OOa1npHjZrL3wBFCw8LJkys7Myf/SZf2v35yPF8CheZT/3UqhPiueXl50bFjR6KjowGYNGkSzZo1w8zMTKfdsmXLaNKkCTY2qXsbi7+/Pz179sTX19foPq6ursyfP5+cOXOmYGRCCCGEEOJrolKpGDNqOPWql8H1x3ypHY74isTExFCgWFXCIyJ5ckv/DDHxZVi1fjv2aXPi6fn/bahyJpoQ4qMdPHhQJ4FmZWVFo0aN9BJoJ0+epH379rRv357Hjx+nRqhaGTJkYN26dQwdOtTom2GuXLlCtWrVWL9+/SevihNCCCGEEEJ8H1QqFW/e6p9tNnnGIh49eU7dWh6pEJX4FLKdUwjxUQ4dOkSHDh20CTSAOnXqYG1trdd2xowZ1KxZk9DQUNq3b8/ixYsTvWEzJSmVSrp3707ZsmXp3r07Dx8+TLRPWFgYffr04fDhw0yaNAl7e/uUD1QIIYQQQgjx1XofGkaOHyvi4VaWPLmyE61ScebcZc6ev0KmjOkYPrBHaocokkhWogkhkuzw4cO0b99eJ4EG0Lp1a72VWjExMezfv5+1a9eydOlSNBoNHTp04OZN/SudP7eiRYty4MABneW5idmxYwdVqlTh7Fn9q62FEEIIIYQQIo61lSVtW3py78Fjlq7cxOJlG3j16i0d2zbj+MFNZMqYPrVDFEkkSTQhRJIcOXKEdu3aERUVpVPu6upK8eLFUSgUOuV///03+fPnx97ennTp0jF37lxMTEyoXbs2Xl5eAKm6RdLW1pZZs2YxZ84cbG1tE+8APH36lIYNGzJ9+nRiYmJSOEIhhBBCCCHE18jc3JzZU0ZwxW8vbx6f473/Fe5cPsTcaaPIkjlDaocnPoIk0YQQRvPx8aFt27Z6CTQ7OzuWL19usM/u3bvp168fELsqLX/+/OzatYtatWoxcuRIjh49qpd4Sw2NGjXiwIEDFC1a1Kj2MTExTJ48maZNm/L8+fPEOwghhBBCCCGE+KpJEk0IYZRjx44ZTKDZ2tqydu1aMmbMaLDf1KlTtdsllUolarUac3NzhgwZQu7cuXFzc+Pw4cPxzqtWq5PvIRKRPXt2tm3bRs+ePY1O7J08eRIPDw/27t2bwtEJIYQQQgghhEhNkkQTQiTK19eX1q1bExkZqVMel0ArVqxYvH0LFCig87lSGftjJ1OmTCxfvpyxY8fy448/xts/rv3nYmZmxuDBg1m/fj0ZMhi3xDooKIgOHTowcOBAwsPDUzhCIYQQQgghhBCpQZJoQogExZdAs7GxYc2aNRQvXjzevi9evGDSpEn4+voC6Kzuilth1r9/f9KnN3ygZkxMDMHBwZ/6CB+lfPnyeHt7U7VqVaP7rFy5kpo1a3Ljxo0UjEwIIYQQQgghRGqQJJoQIl7Hjx+ndevWRERE6JTHJdBKlCgRb99Dhw7RqVMntmzZQtWqVVm1ahXPnj3j6tWrvHjxQrvCzMzMLN4xlEol79+/T56H+QhOTk4sW7aMcePGYW5ublSf27dvU7NmTZYsWZKqFyYIIYQQQgghhEhekkQTQhh04sQJWrVqpZdAs7a2ZvXq1fz8888J9h8zZgxly5bl1KlTVK5cmfnz57N69WoKFy6Mu7s7hw4dSjSGyMhIo5NXKUWhUNCuXTv27t1Lvnz5jOoTFRXFsGHDaNu2LW/fvk3hCIUQQgghhBBCfA6SRBNC6Dl16lSCCbSSJUsm2P/t27dcvnyZQYMG6Yw3YMAAYmJiyJs3L3///XeCK7Wio6PZuXMnTk5On/5AyaBAgQLs3buXNm3aGN3Hy8uLKlWqaLezCiGEEEIIIYT4ekkSTQihw8/Pj5YtW+odkG9lZcWqVasoVapUomP4+PhQs2ZNlEolZ86cwdbWlq5duxIdHQ3AsGHDePDgAf7+/vGOYWZmxt69ez/7xQIJsbS05K+//mLJkiU4Ojoa1cff359mzZoxbtw47fMLIYQQQgghhPj6fDn/OhVCpLrTp0/TokULwsLCdMrjEmilS5c2apzixYszZMgQAEqUKIGfnx/w/8sE3r17R1hYGBkzZjTYX61W8+jRI54/f/6xj5KiatSogbe3N2XKlDGqvUajYe7cudSvX5+HDx+mbHBCCCGEEEIIIVKEJNGEEACcOXPGYALN0tKSlStXGp0wAnBxcaFgwYJA7JlimTJlAsDCwgKAv/76ixYtWsTbX6PRsHr1ajJkyJDUx/hsMmXKxIYNGxg4cCAmJiZG9bl48SJVq1Zl06ZNKRydEEIIIYQQQojkJkk0IQRnz56lefPmhIaG6pRbWlqyYsUKypYtmyzzREVFsWrVKiIjI+nVq1e87RQKBRs3biR9+vTJMm9KMTExoXfv3mzbto2sWbMa1Sc0NJRevXrRo0cPQkJCUjhCIYQQQgghhBDJRZJoQnznzp07ZzCBZmFhwYoVKyhfvnySxkvosgBzc3NKlCjBjBkzsLW1NdhGpVJx6NAh/P39v+iVaB8qXrw4Xl5eNGjQwOg+W7ZsoVq1apw/fz7lAhNCCCGEEEIIkWwkiSbEd+zcuXP8+uuvvH//Xqf8YxNoO3fupFOnThw/fpzIyEiDbfLkycPPP/8c7ximpqasWbMG4ItfifYhe3t75s6dy4wZM7C2tjaqz6NHj2jQoAFz5szRnhcnhBBCCCGEEOLLJEk0Ib5TFy5coHnz5noJNHNzc5YvX06FChWSPObIkSPZsGED7u7uFC1alMmTJ/Pw4UNtgujUqVN06dIlwTECAwM5ePAgwFezEi2OQqGgadOmHDhwgEKFChnVR6VSMX78eH755ZcEbysVQgghhBBCCJG6JIkmxHfo4sWL/Prrr3pncpmbm7Ns2TIqVqyY5DH9/f1Rq9X4+fnx+vVrWrZsyezZs8mXLx/169fn5MmTDB06lKioqHjHUKlUrF+/HpVKBXxdK9E+lDNnTnbu3Em3bt2M7uPr64u7uzteXl4pGJkQQgghhBBCiI8lSTQhvjOXLl3il19+ITg4WKfczMyMpUuX4ubm9lHjWlpa0r9/f4KDg7G3t2fIkCE8fvyYY8eOYWNjg5ubG4cPH2bcuHHxjmFqasratWu1n39tK9E+ZGZmxvDhw1m7di3p0qUzqk9gYCBt2rRh6NChREREpHCEQgghhBBCCCGSQpJoQnxHLl++TLNmzeJNoFWuXPmjx3ZwcKBZs2aUKlUKgIiICDQaDSVLlmTdunVMmzaNUqVKxXuLZUxMDBcvXuTOnTvaMmOTT1+ySpUq4e3tjYeHh9F9li5dSq1atbh161YKRiaEEEIIIYQQIikkiSbEd+LKlSvxJtCWLFmCu7v7J89hYmJCTEwMELsyTaFQEB0dDcCUKVNo0qRJvH2VSiWrVq3Sfu7k5ISZmdknx/QlSJs2LStWrGD06NFGP9PNmzepUaMGK1asSPDGUyGEEEIIIYQQn4dpagcghEh5V69epWnTpgQFBemUm5mZsXjx4iStkjLkyZMnzJs3j9DQUJydncmSJQsVKlQgX7582qTRqVOnEtyeGRkZyY4dO7Sff81bOQ1RKBR07NiRMmXK0LVrV+7du5don8jISAYNGsSRI0eYOnUqadKk+QyRCiGEEEIIIYQwRFaiCfGNu3btWoIJtKpVq37S+AEBAdSsWZN79+7x8uVLLl26xPbt2xk2bBgLFy7UtsuQIUO8K6qio6PZvn27zk2hX+ulAon58ccf2b9/P82bNze6z759+/Dw8ODEiRMpGJkQQgghhBBCiIRIEk2Ib9j169dp0qQJ79690yk3MzNj0aJFn5xAA5g1axZZs2Zlw4YNbNiwgeXLl9O3b1+yZcvGjBkzGDJkCGq1GohdjWWImZmZzoUC8O2tRPuQtbU1U6ZMYeHChdjb2xvV5+XLlzRp0oSJEydqt8gKIYQQQojUo1QqAYX2OBMhxLclRhWDiYmJTpkk0YT4Rt24ccNgAs3U1JQFCxZQrVq1ZJknICCA4sWLaz+3s7PDzc2NqVOnMn78ePbv38/Dhw/j7a9Wq3n06BGnT5/WKf+Wk2hx6tSpg7e3NyVLljSqvUajYebMmTRq1IjHjx+ncHRCCCGEECIhSqUSSysrgkPeJ95YCPFV0Wg0BL8Pw8rKSqdckmhCfIPiEmiBgYE65XEJtBo1aiTbXI0aNWLGjBksWLBAZzumWq2mQYMGmJqacvLkyXj7azQaVq9erVf+PSTRALJkycKmTZvo27fvv7/NTNy5c+eoWrUq27ZtS9nghBBCCCFEgnLmysvtO49SOwwhRDJ79fotQSER5MqVS6dckmhCfGNu3rxJkyZNCAgI0Ck3MTHh77//pmbNmsk6n5ubG5MnT2bNmjX06tWLRYsWcenSJZRKJWfOnOHKlSvUrVs33v4KhYKNGzfqlX+rZ6IZYmpqSt++fdmyZQtZsmQxqk9ISAi//fYbffr0ITQ0NIUjFEIIIYQQhvz000+8fPOO+w+fpHYoQohkotFoOOl3ASsbe3LmzKlTJ0k0Ib4ht27dijeBNn/+fGrVqpUi87Zp04bu3bujUCjYsWMH3bt3J02aNPTt25dBgwbFe+6XRqPh0KFD+Pv769V9LyvRPlSyZEkOHjxInTp1jO6zfv16qlWrxuXLl1MwMiGEEEIIYUi+fPnIk78QG7ce4NKVG0RFRaV2SEKITxD4Loidew5x/c4zatSso3cmmkIT33V5Qoivyu3bt/H09OTNmzc65SYmJsybNy/B1WDJJSIiggsXLhAQEICdnR3p06cnf/78CfZp3749+/bt0ys/efIkLi4uKRXqF02j0bB27VqGDx9OeHi4UX3MzMwYNGgQXbp0MXpbqBBCCCGE+HQqlYoNG9Zz6/oVTJVqMmdyxsrCIt5LtYQQXx5VTAzBIaH4vwnC3MKW2nXrU7RoUb12kkQT4htw584dPD09ef36tU65iYkJc+fOpV69eik6f9yPkaT+h0JUVBS5c+dGpVLp1d2/fx9LS8tkie9rdffuXbp168a1a9eM7lOpUiVmzpz5XW2HFUIIIYT4EgQGBnLt2jVevHhBREQEGo06tUMSQhjJxMQUGxsbcufOTd68eTE3NzfYTpJoQnzl7t69S+PGjfUSaEqlkrlz51K/fv0Uj0Gj0WgTaCqVClNTU6P6Xbp0yeAZbfb29ty8eTNZY/xaRUVFMW7cOBYtWmR0H2dnZ2bMmIGHh0cKRiaEEEIIIYQQ3xfZ8yPEV+zevXsGV6AplUpmz579WRJo8P8VaGq1WptAc3Nz07mt05D4bu2UVVT/Z25uzqhRo1i5ciXOzs5G9Xn79i2tWrVixIgRci6HEEIIIYQQQiQTSaIJ8ZW6f/8+np6evHr1SqdcqVQya9YsGjZsmGJzv379mgULFrB69WpWrVrF+fPntXMDvHv3jtq1a2Nra5vgOPFtU/weLxVIjIeHB97e3lSsWNHoPosWLaJ27drcvXs3BSMTQgghhBBCiO+DbOcU4iv04MEDGjVqpHerpUKhYNasWTRu3DjF5vb29uavv/7i6dOn2NnZkTZtWszMzChYsCDNmjUzePhifJo2bYqvr69eecOGDZk7d25yhv3NUKvVLFiwgAkTJhAdHW1UHysrK8aMGcOvv/4qB9wKIYQQQgghxEeSlWhCfGUePnxI48aNDSbQZsyYkaIJNIBRo0ZRqVIlbt68yZkzZxg+fDgVK1bk0qVLDBo0iNu3bxs91n9X0cWRlWjxUyqVdOvWjZ07d5IjRw6j+oSHh9OvXz+6dOlCUFBQCkcohBBCCCGEEN8mSaIJ8RV5+PAhjRo14uXLlzrlCoWC6dOn06RJkxSdPzw8nLdv3+rc9lm2bFn69evHsmXLUCqVjBkzxujx/psIjCNnoiWuUKFCHDhwgGbNmhndZ9euXVSpUoXTp0+nYGRCCCGEEEII8W2SJJoQX4m4FWiGEmjTpk2jadOmKR6DlZUVVatWpU+fPnqXGWTIkIF//vmHc+fO8fz580THioyMjHdVlKxEM46NjQ3Tp09n/vz52NnZGdXn2bNnNGrUiKlTp6JSqVI4QiGEEEIIIYT4dkgSTYivwKNHj/D09OTFixd6dVOnTk3SaqRP1bNnT0xMTGjRogXTp0/Hz89PW3fs2DHCw8PJnDlzouPEt5UTZCVaUtWvXx8vLy+KFy9uVHu1Ws3UqVPx9PTk2bNnKRydEEIIIYQQQnwb5GIBIb5wjx8/pnHjxgaTHVOnTuXXX3/97DFduXKFVatWce3aNezs7Hjx4gVBQUHY29vTokULOnfunOgY586do27dugbrjh49Su7cuZM77G+eSqVi2rRpzJw5E2N/tNvb2zNlyhTq1KmTwtEJIYQQQgghxNdNkmhCfMGePHlC48aNefr0qV7d5MmTadGiRSpE9X+rVq3i3Llz5MmTh8DAQDw9PcmbN69RN0Du2bOHjh07Gqy7efMm9vb2yR3ud+PkyZP06NHD4MrF+DRv3pzRo0djbW2dgpEJIYQQQgghxNdLtnMK8YV6+vQpnp6eBhNokyZNStUEWlRUFAA7duwge/bs/PbbbwwdOpR8+fIZlUCD+C8VsLS0NPp8L2FYmTJl8Pb2pmbNmkb3WbNmDTVq1ODatWspGJkQQgghhBBCfL0kiSbEF+jZs2d4enry5MkTvboJEybQsmXLVIjq/8zNzQkLC2PTpk3aWGJiYpI0RnxnomXIkMHoRJyIn6OjI4sXL2bixIlYWFgY1efu3bvUqlWLRYsWGb0dVAghhBBCCCG+F5JEE+IL8/z5cxo3bszjx4/16saPH0/r1q1TISp9Fy5c4LfffsPZ2ZmYmBhMTEyS1D++lWhyqUDyUSgUtGrVin379lGgQAGj+kRHRzNixAhat27NmzdvUjhCIYQQQgghhPh6SBJNiC/Iixcv4k2gjRs3jrZt237+oOJRunRpJk+eDIBSmfQfJQmtRBPJK1++fOzZs4d27doZ3cfb2xsPDw98fHxSMDIhhBBCCCGE+HpIEk2IL0RcAu3Ro0d6dWPHjk1SAiQlxW3zMzExwcrKCuCjtl/KSrTPy8LCgnHjxrF8+XLSpEljVJ/Xr1/z66+/MmbMGKKjo1M4QiGEEEIIIYT4spmmdgBCCHj58iWNGzfm4cOHenVjxoyhffv2nyWOGzducObMGS5dusSNGzcICQlBrVZjaWlJnjx5KFSoEPny5cPNzQ21Wo2ZmdlHzyUr0VJH1apVOXToED179sTX19eoPvPnz+f48ePMnz+fHDlypHCEQgghhBBCCPFlUmjk9GghUpW/vz+NGjXiwYMHenWjRo2iU6dOKTp/ZGQk27dvZ/ny5Vy4cA40UaBRAdGg0QAaQAEKM1CY8u5dKJZWtjRs2JAJEyaQLl26JM+pUqlwcXExeHj99OnTadas2Sc/l0iYWq1m/vz5TJw4EZVKZVQfa2trxo0bR9OmTeXyByGEEEIIIcR3R5JoQqQif39/GjduzP379/XqRo4cSefOnVN0/hMnTvDHH3/w+NE90IRhZhJJmaJmFM5vhmteU9KmUaJUQvB7DTfuqbh4I5JjZyJ5+w6iY8xInyEbw4YNo3Xr1kk6F83f35+iRYsarFuzZg1ubm7J84AiUXEXRBjaRhyf+vXrM3HiROzt7VMwMiGEEEIIIYT4skgSTYhU4u/vj6enJ/fu3dOr+/PPP+natWuKzR0dHc3IkSNZuvQfUIeQwSmK9p7W/FrHirRO8SfDgoNDCAgMxesEbNhnwrW7SjBxoFy5SsyZM8forZiXL1+mRo0aBuu8vb2NvklSJI+QkBCGDBnC5s2bje6TNWtW5s2bR/HixVMwMiGEEEIIIYT4csjFAkKkglevXtGkSRODCbThw4enaAItPDycNm3asHTJAoh5S8u6Co6ucaZna5sEE2gajYaIiHAsLRTUc1ey9x9nxvxuhaVJAMd9vahXr57BM90Mie9SAZCLBVKDnZ0ds2fPZvbs2djY2BjV58mTJzRo0ICZM2cSExOTwhEKIYQQQgghROqTJJoQn9nr169p0qQJd+/e1asbNmwY3bp1S7G5o6Oj6dy5M0cO78fKLIgVk+yZNNAeO9vEfxRERESiVscuXLW0tMTUVEmHJtZ4r3Aie6Ywnjy6QdOmTXn58mWiY8WXRDM1NTX65kiR/Bo3boyXl1e8W23/KyYmhokTJ9K0aVNevHiRwtEJIYQQQgghROqSJJoQn1FcAu3OnTt6dUOGDOG3335L0flnzpyJ98F9WJoGs2aaA1XKWRjdNzw8XPtnKysr7Z9zZDVl2/w0ZM8cwdMnt+nevTtqtTrBseJLoqVLly5JZ6uJ5Jc9e3a2bdtGjx49jL484OTJk7i7u7N3794Ujk4IIYQQQgghUo/8a1WIz+TNmzc0bdqU27dv69UNGjSIHj16pOj8V69eZdasmaAOYvpQO0oVMTe6r0oVQ1RUFBC7WszMzEynPr2zCWumOWJtHsrJk8dYvnx5guO9evXKYLmxZ6qJlGVmZsaQIUNYv3690V+ToKAgOnTowKBBg3QSrkIIIYQQQgjxrZAkmhCfgVqtZujQody6dUuvbuDAgfTq1StF59doNPTt2xdV1DvqVDalfhXLJPWPiNBdhWZogVL2H0wZ2s0GYoIYO3ZsgueexVcn56F9WcqXL4+3tzdVq1Y1us+KFSuoWbMmN27cSMHIhBBCCCGEEOLzkySaEJ+BRqNhypQpuLq66pT379+f3r17p/j8fn5+XLlyESvzcMb/YZ9o+7uPVHQdHkSRuq8xzf+CnxuFAKBQxJ6HFp82jawoWkBBeFggq1evjredrET7ejg5ObFs2TLGjRuHublxqxdv375NzZo1Wbp0KXIBtBBCCCGEEOJbIUk0IT4DExMTrKys2LRpE4UKFQKgb9++9OnT57PMv2zZMlCH07i6ZYI3cMa5dkfF7iMR5HYxpUBOE+LSIObmFpiYxN9fqVTQqZk1qMNYuXIl0dHRBtvJSrSvi0KhoF27duzdu5e8efMa1ScqKoqhQ4fStm1bAgICUjhCIYQQQgghhEh5kkQTIgUYWn1jamqqTaRNmjSJvn37fpZYwsLCYg9814TTppFV4h2Auu4WPDmWgU1z0uD6Qc7kwwsF4lOrkgVp08Tg7/+MEydO6NWr1Wpev35tsK+sRPuyFShQgL1799K6dWuj+3h5eeHh4YGvr28KRiaEEEIIIYQQKU+SaEKkgLhbDf+bTDM1NcXa2poWLVp8tliuXbtGdHQ4GZzhxzxmiXcgdkUZxCa8Yv69aVOpVGJhkfhtnubmCsoXNwdNNBcuXNCrDwwMRKVSGewrSbQvn5WVFRMmTOCff/7BwcHBqD7+/v40a9aM8ePHx7s6UQghhBBCCCG+dJJEEyIZREZG0rZtW3799Vc6duzIyZMniYqKQqFQ6CXSlEqlNsn2OVy6dAk0KgrlNy6B9qHw8Aj4N/7/3siZkEL5TEETzeXLl/Xq4jsPDWQ759ekZs2aHDp0iDJlyhjVXqPRMGfOHBo0aMDDhw9TNjghhBBCCCGESAGSRBPiE6lUKooXL054eDi1atXizp07jBgxgqlTpxIWFmYwkfY53blzBzQqfsxtmqR+ao2G8PAw7eeRkZG8e/cOlSom0b4/5TUDjSp27v9I6NZOWYn2dcmUKRMbNmxgwIABmJiYGNXnwoULVKtWjc2bN6dwdEIIIYQQQgiRvCSJJsQnOn36NOnSpWP9+vW0atWKI0eOULFiRXx9fZkxYwaRkZGfdeXZf4WFhQEa7GwSj0GjgaioaMLDI3j75o1ewiwyMpK3b98QHByCWh1/YjB2Ls2/c+uKL4mmUChImzZtojGKL4uJiQm///4727ZtI2vWrEb1ef/+PT179qRnz56EhISkcIRCCCGEEEIIkTwkiSbEJwoMDOTy5cu8f/8eiE0GDRw4kHLlynHkyBHOnj0LGL5s4HNISgJPrVbz9u1bAgMDiY5WoVartTdzqtXq2M81scmxN2/eEBYWjqHHiitTKvV/xMS3ndPZ2RlT06StlhNfjuLFi+Pl5UX9+vWN7rN582aqVatm8Ow8IYQQQgghhPjSSBJNiE9UvXp1XF1dGTFiBFFRUUDs+WFDhgwhJiaGhQsXAklLZiUnOzs7QMHbd+oE26lUMQQGBhqR7Pv/pQPBwcEEBLwlKkr3sPjYuRTY2trq9Y5vJZqch/b1s7e3Z968eUyfPh1ra2uj+jx69Ij69eszZ84c1OqEv0eFEEIIIYQQIjVJEk2IJNJoNPj7+/Po0SMg9sbNFi1acPXqVebNm6dNpAF07dqViIiI1AoVgIIFC4LCjCu3Dd+IqdHEbvl8+/ZtvLdmJiQ6WkVAQADv3gURExO7/fPKLRUozChQoIBe+/hWosl5aN8GhUJBs2bNOHDgAK6urkb1UalUjB8/nl9++SXBM/OEEEIIIYQQIjVJEk2IJFCr1ZQrV47mzZtTsGBB+vTpg5+fH+3bt6ds2bLs27ePIUOGEBwcDMDWrVuNPnA9pRQqVAgUply+Ga23yiwmRk3gu0CCg0N06sIjYY+Pgj0+Cp75Q0go7DoS+/Em0PBKtYiICN68ecv796FcuhUNCjMKFy6s105Won0fcubMya5du+jatavRfXx9fXF3d8fLyysFIxNCCCGEEEKIjyNJNCGSoE6dOmTOnJktW7awadMmbt++zfjx49m7dy/Dhw+nUaNGXLhwgezZs1OlShXOnTvHokWLUjXm/PnzY2vrQNB7JcfP/X/bZUREBG/fviUq8v8r5xQKBQqFgoB3Cjr9qaHTnxpOXIDnr6DLiNiP2w/jn0uj0fDCP4TDJ8OJjFJTvHhxvTayEu37YWZmxp9//smaNWtIly6dUX0CAwNp06YNQ4cOJTIyMoUjFEIIIYQQQgjjSRJNCCPF3bI5fPhwHBwcqFmzJlOnTiVbtmwsXLiQU6dO0blzZ/bt28eKFSsYNWoUly5dwsbGJlXjNjMzw9PTE5TWLN8ahlqt4d27IN69C9I5g8rCwgIHBwcUCgVZMyl4cUyp9/H8qIJyxRL+sbHrCAS/h/fvwxk7dixXr17V1sVthTVEkmjfLjc3N7y9vXF3dze6z9KlS6lVqxa3b99OwciEEEIIIYQQwniSRBPCCGq1GqVSyd27d1mzZo22PH/+/PTo0QOFQqEtNzMzo06dOpQrVw5LS8vUCllHmzZtQGHFXp9Izlx6rXNOm0KhwN7eHkdHx0QvP1AoFDg7O2NlZWWwPiJSw5pdGsIjFVhZWXH69GmqV69O//79efv2LSEhIfGeESfbOb9tadOm1SaXzczMjOpz48YNqlevzooVK1LtdlshhBBCCCGEiCNJNCESoVKpUCqVmJmZMXToUE6ePMmWLVu09fny5eP3339n8eLF3Lp1KxUjjV+2bNlImzYdQSEahs+IISYmNiFhZmaGs7Mz1tZWKBQYlagwMTHBwcEeZ2dnzM11kyHz1sK9x6CKMdEmEDUaDatXr6ZcuXLMmjUr3nEzZsz4CU8ovgZKpZJOnTqxe/ducuXKZVSfyMhIBg0aRMeOHXn37l3KBiiEEEIIIYQQCZAkmhAJ8PDwYNWqVdrPy5cvT758+Vi3bh1bt27VllesWPGLWnn2oYsXL1KtWjX8/f2JiFJy7hos3QK2trY4OTlhavr/iw+SstrHzMyUNGmccHBwwMTEhHPXNKzYriEkTIm9vT1Kpe6Pl+DgYGbMmBF7DtsHN5jGkZVo34+ffvqJ/fv307x5c6P77N27Fw8PD06ePJmCkQkhhBBCCCFE/CSJJkQ8SpUqhbW1NW3bttWW5cyZk27dumFvb8+sWbMYPnw4d+/epUePHrx48eKLSgSpVCqmTZtG3bp1uXfvHiYmJtja2hEWYcbctUp2HVHy392bGhJOosVePPDh52BlZcmLAHv6TFAQ/F6JubklFhYWBvur1WpUKhWBgYG8e/eOmJgYbd2X9O5EyrO2tmbKlCksWLAAe3t7o/q8ePECT09PJk2ahEqlSuEIhRBCCCGEEEKXQiMHzQihp0SJEuTNm1d7ztnly5cJCwsjR44cZMiQgSdPnnDgwAH++usvsmfPTnh4ODt37sTJySmVI491//59evbsyYULF3TK27VrB8DSpYsgJpDBXaz5rYU1JiaxmbGwsDCCg0PiHVepVJI+ve4ti4dORtJtRDAh4Xb85FqCrFmzsnfvXoP9Q0NDef/+vfZzhUKBtbU1mTJl+mK3woqU9/TpU7p3786ZM2eM7lO8eHHmzZtH1qxZUzAyIYQQQgghhPg/SaIJ8R8+Pj5UrlyZLVu20KBBA3r27MnJkyd5//4979+/Z8yYMdpklEqlIjIyEnNzc6MPS09JGo2G5cuXM3r0aJ0D/DNmzMiMGTOoWLEiGo2GUaNGsXDhfIgJoviPMGOoPblcTAkNDSMkJP4kmomJCenSpQUgOETNyNnvWbc7EpQOlC5TkWXLlmFvb8+JEycYPnw4N27c0OkfEhJCWFiY3rhWVlYsXryYpk2b6m0DFd8HlUrFzJkzmT59us6tsQmxs7Nj0qRJ1K9fP4WjE0IIIYQQQghJoglh0IIFC+jVqxeFCxdGqVSyZs0a0qZNy5IlS5g2bRr79++nQIECqR2mDn9/f/r06cORI0d0yhs0aMBff/2Fg4ODtkyj0bB27VpGjhzJ+xB/TBWh1KpkQdOaUCBHeLy3dJqamhAc5siKbeGs2x1OcKgFChMHOnbsxODBg3XOhIuJiWH16tVMnDiRwMBAAIKCggzezmlubk6aNGkoVKgQY8eOpUSJEsnwRsTXyM/Pj+7du/P8+XOj+zRr1oyxY8diY2OTgpEJIYQQQgghvneSRBMiHgsWLGDGjBns2rVL5ybBokWL0qpVK/74449UjE7Xjh07GDhwIEFBQdoye3t7Jk6cmOAqnWfPnjFw4EAOHToImnDU0e9xdlRTIBcUzKUgjQMogNBwuPVQw817Cp6+UoLCCpRW5MqVjylTplCqVKl45wgKCmLq1KksXbqUN2/eGLxUwNLSUifJ17BhQ4YNG0amTJk+7oWIr1pQUBD9+/dn165dRvfJkSMHf//9N66urikYmRBCCCGEEOJ7Jkk0IYAePXoQHh5OTEwMXbt2xdXVFRsbGx4+fKg9c8nEJPYWyzp16tC2bVs8PT1TM2QgNtkwZMgQnZtCASpVqsT06dPJmDGjUeNcu3aN5cuXs3jxIt6/D8bURIOpCcTtrNRoQBUDKMxwdEyLh4cHbdq0wc3NTfteEnP79m3Kly/P27dv9eqsra2xs7PTKbOysqJXr1506dLli7z1VKSsuNWSw4YNM7h60RAzMzMGDx5M586dZVuwEEIIIYQQItlJEk1899zc3FAqlbRp04alS5eiVCpxc3Ojd+/eOqujAIYPH87mzZs5ceIEjo6OqRPwv44dO0bv3r15+fKltszS0pLhw4fTtm3beLdkJuSPP/5g5cqVREdHo1Kp0Gg0aDQaFAoFpqamFClShG3btpEmTZqPijl//vy8fv2akJAQnZs57ezssLa2Ntgna9as/Pnnn9SqVeujnkl83e7cuUO3bt24fv260X0qVarEzJkz5cZXIYQQQgghRLKSX9WL79q1a9eIiorCy8uLNm3acOTIEapXr87p06eZNm2a9ibJ27dv07NnT5YtW4a3t3eqJtAiIiIYPnw4zZo100mgFSlSBC8vL9q1a/fRySaVSoWZmRnW1tbY29vj4OCAo6MjDg4O2NjYkDVr1o9OoEVERBAcHIyFhQVp06bF1tZWG2dCq4aePHlCp06daNq0qd5FBeLblydPHnbv3k3Hjh2N7uPj40OVKlU4dOhQCkYmhBBCCCGE+N5IEk1814KDg7l+/bpOMmrAgAG4u7tz4sQJfH19gdjkUu7cuTl37lyqntN16dIlqlWrxj///KMtMzExoW/fvmzfvl3n7LaPkdi2uU/ZVunv76/zuY2NDWnTpsXKysqorXfHjx+natWqDBkyRHtRgfg+WFhYMHr0aFauXImzs7NRfd68eUPLli0ZMWKEwXP4hBBCCCGEECKpJIkmvmtlypShbNmyjBkzhrCwMAAUCgV//PEHDg4OzJ07F4CCBQvSs2fPVNseplKpmD59OnXr1uXu3bva8pw5c7Jjxw769u2LmZnZJ88TGRmZYP2nJNFevXqlV6ZUKrG3t2fp0qUUK1Ys0THUajXLli2jbNmyLF26FJVK9dHxiK+Ph4cHBw8epGLFikb3WbRoEbVr19b5eyOEEEIIIYQQH0OSaOK716xZMx4/fszs2bO1iTSA7t27ExUVpU0spdZB5ffv36dBgwZMnjxZJ2nUrl07vLy8KFq0aLLNFR4enmB9cq5E+1DlypXZsWMHs2bNIkOGDImOFRQUxNChQ6latSrHjh376JjE1ydDhgysWbOG4cOHG504vnbtGtWrV2ft2rXIMaBCCCGEEEKIjyVJNPHd++WXXyhTpgxHjx5l8ODBBAQEALB7927UanWqJc80Gg3Lly+natWqnD9/XlueIUMG1q5dy7hx47CyskrWOVNyO6ehlWgQezOnra0tSqUST09Pjh07Rs+ePY1KkNy6dYtmzZrRvn17Hj58+NGxia+LUqmkW7du7Nixg+zZsxvVJzw8nL59+9K1a1eCg4NTNkAhhBBCCCHEN0mSaOK78+FKFLVajYWFBQMGDKB+/frcuXOHHDlyULt2bdasWcPixYuTZZtkUvn7+9OyZUsGDx6sszqsXr16HD58mEqVKqXIvJ/zTLQ4/90ia2try+DBg/Hx8aFGjRpGjb1v3z4qVarEX3/9RWho6EfHKL4uhQsX5sCBAzRt2tToPjt37sTDw4MzZ86kYGRCCCGEEEKIb5Ek0cR34fLly9pLAuKSaBqNBqVSqU2kderUie3bt7N8+XIGDBjApUuXcHFx+eyx7ty5k8qVK3P48GFtmb29PfPmzePvv/9O0ZtBE0uifcrKt/hWosW3fTN79uwsWbKE9evXky9fvkTHj46OZvbs2ZQvX55NmzahVqs/Olbx9bC1tWXGjBnMmzcPOzs7o/o8e/aMhg0bMnXqVDlXTwghhBBCCGE0SaKJb16tWrXo1KkTnp6eVKxYkYULF/Lu3TsUCoXOqjSFQoGZmRkNGjSgUqVKpEuX7rPGGRwcTI8ePejSpQvv3r3TlleoUIHDhw/ToEGDFI8hNVaiJXYGWoUKFfDy8mLcuHE4ODgYNU+vXr2oX78+Fy5c+KhYxdenQYMGeHl5Ubx4caPaq9Vqpk6diqenJ8+ePUvh6IQQQgghhBDfAkmiiW/asGHDePPmDceOHePWrVuUKlWKHTt28NdffxEYGIhCodCeeXbixIlUi9PX15fKlSuzZcsWbZmFhQVjx45l7dq1ZMqU6bPE8SVs5zTE1NSUdu3acfz4cdq2bWvUOXXnzp2jdu3a/P777wleaiC+HdmyZWPLli307t0bhUJhVJ/Tp0/j4eHBrl27Ujg6IYQQQgghxNdOkmjimxYaGkqzZs0wNzfHwcGBSZMmUadOHa5du8aSJUuIiooC4Pr16zRq1IjAwMDPGl9ERAQjRoygadOmvHjxQlteqFAhvLy8aN++/We92CA1LhYw5jbOOE5OTowfPx4vLy/Kli1rVJ8NGzZQvnx55s6dq/16i2+XmZkZAwcOZMOGDWTMmNGoPsHBwXTu3Jn+/fvr3NArhBBCCCGEEB+SJJr4ppmYmLBixQpt8kShUNCtWzdKlCjB1q1btYfQFyxYkLt375ImTZrPFtuVK1eoXr06ixYt0on3jz/+YOfOneTOnfuzxRInpZJo0dHRvH371mCdMSvR/qtAgQJs3LiRxYsXkzVr1kTbh4aGMm7cONzc3Dhw4IDONl7xbSpXrhze3t5Ur17d6D6rV6+mRo0aXL9+PQUjE0IIIYQQQnytJIkmvmnt2rUjU6ZMjB49WpswUygUjBw5kidPnrBhwwZtW1tb288Sk0qlYubMmdSuXZs7d+5oy3PkyMH27dvp169fqtwIqlKpEj1k/WOTaG/evIm3Likr0T6kUCioVasWPj4+DBw40KhLDx4+fEjbtm1p3rw5t2/f/qh5xdcjTZo0LFmyhL/++gsLCwuj+ty9e5eaNWuyePFiSbYKIYQQQgghdEgSTXzTcufOTY0aNTh37hyTJk3S2apVunRp0qZN+1njefjwIQ0bNmTixIk6Cau2bdvi5eVFsWLFPms8H0psFRp8fBItoTPJPmYl2ocsLS3p3bs3vr6+NGrUyKg+Pj4+/I+9+45qMuvWAP4ECFVQFLsOjm2s2BtiRbCiBPvY66jY21gARezYe+8NRQKoIFJsgGObsfdesSvSIcn9w2u+ySDwCiShPL+17rqf5z3nsDMwjNnZZx9bW1u4urriy5cvWfr6lLOJRCIMGDAAgYGBqFKliqA1ycnJcHNzQ//+/dNNABMRERERUf7CJBrlWUlJSTAwMMD48eNRsWJFPHjwAF26dMHhw4fh6uqKkJAQwTf5ZZVCocDu3btha2uLy5cvK8eLFy+OvXv3Yv78+TA2NtZILGlRZxItrX5oQOYr0f6rZMmSWLNmDfz9/WFlZZXhfJlMhq1bt8La2hq7du2CTCbLljgoZ6pSpQoCAgIwaNAgwWtCQ0PRpk0bnDlzRo2RERERERFRbsEkGuVJCoUC+vr6AIDhw4fj6dOnGDp0KMqWLYu1a9fiypUrOHv2LMqVK6f2WN68eYP+/fvjzz//RHx8vHLcwcEBYWFhaNWqldpjEEIblWhisRiFChXK1J5pqV+/PgICArBs2TJBlYafPn3CtGnTYG9vj3PnzmVrLJSzGBoaYt68edixY4fg/odv375Fr169MHfuXCQnJ6s5QiIiIiIiyslECjZ9oTxs8ODBOHv2rErvseTkZIhEIujp6an96x87dgxTp05VufXTzMwM8+fPh0QigUgkUnsMQj148ADNmzdPd05ISAiqVav203svXboUS5cuTTVeunRpXLx48af3E+rr169YsWIFtmzZIjgB4uDgAFdXV5QpU0ZtcZH2RUVFYcyYMYiIiBC8platWli3bh1+/fVXNUZGREREREQ5FSvRKE9QKBSpjuPFxsaidu3auH37NgAob+gUi8VqT6BFR0dj7NixGDZsmEoCzcbGBmFhYXBycspRCTRAvZVoUVFRPxzPrqOcaTE1NYWrqytOnjyJNm3aCFpz5MgRNGvWDJ6enio99ChvKVGiBA4cOIDp06dDV1dX0JqrV6/Czs4OBw8e5KUDRERERET5EJNolOvJZDLMnz8fHz9+VGnWb2JigrFjx0JPTw8pKSnK453qFhERAVtbW3h7eyvHDAwMMGfOHBw4cAClSpXSSBw/Sxs90bJ6qYBQ5cuXx65du7Bnzx5UqFAhw/mJiYlYvnw5mjVrBl9fXyZM8ihdXV2MGTMGfn5++OWXXwStiYuLw/jx4+Hs7Izo6Gg1R0hERERERDkJk2iUq8nlckyePBlr166Fo6NjqkTad5o4upmYmIjZs2eje/fuePnypXK8Zs2aCAoKwtChQ6Gjk3P/ldNGTzR1V6L9V+vWrREWFobZs2fD1NQ0w/mvX7/GqFGj4OjoiOvXr2sgQtKGunXrIjg4WPDtrgDg6+sLe3t7lYtCiIiIiIgob8u57+iJMvA9gebl5QUAePz4MRwdHfHhwweN37R448YNtG3bFps2bVKO6ejoYPz48Th69CgqV66s0Xgy49+XHqQlu5NomqpE+zexWIzhw4cjIiICffr0EXSs9uLFi2jXrh0mT56M9+/fayBK0jRTU1OsWbMGq1atgomJiaA1z549g6OjI1atWsXbXYmIiIiI8gEm0ShXksvlmDp1Kg4cOKAy/uTJE8ydO1djFV8pKSlYtWoVOnbsiHv37inHy5UrBz8/P0ydOhVisVgjsWSVuirRZDJZmoknTVei/ZuFhQU8PT0RFBSEhg0bZjhfoVBg3759aNq0KTZu3MibGvOobt26ITg4GLVr1xY0XyaTYeHChejZs2eavf+IiIiIiChvYBKNch25XI4///wT+/btS/WsadOmWLx4sUaa9j958gQSiQQLFy5USaj0798fISEhqFevntpjyE4ZJdHEYnGmkpMfP35Ms0pHG5Vo/1WjRg1IpVJs2LBBUL+6r1+/wt3dXXk0lPKe70lwZ2dnwb9LIiMj0bp1awQFBak5OiIiIiIi0hYm0ShXkcvlmDZtGvbu3ZvqmbW1NXbu3AkjIyO1xqBQKLBnzx60adNGpR9SsWLFsHv3bixcuBDGxsZqjUEdMkqiZfafa1qXCgDarUT7N5FIhM6dO+Ps2bOYNGkSDAwMMlzz8OFD9O3bF/369cOjR480ECVpklgsxsyZM+Hl5SX45/Tz588YNGgQpk+fLqiyk4iIiIiIchcm0SjXUCgUmDFjBvbs2ZPqWePGjbFr1y61J68UCgUOHDiAqVOnIi4uTjnesWNHhIWFwdbWVq1fX50yetOf3f3QgJxRifZvRkZGmDRpEs6ePYvOnTsLWhMaGoqWLVtizpw5vK0xD7KxsUFISAjs7OwEr9m5cyfat2+PO3fuqDEyIiIiIiLSNCbRKFf4nkDbtWtXqmeNGjXC7t27sz2BJpfLU42JRCJ069YNVatWBfCtGfmqVauwadMmFC5cOFu/vqapK4mWViWajo4OLCwsMrWnupUpUwYbNmyAj48PqlWrluH8lJQUbNiwATY2Nti/fz+bzOcxRYoUwY4dOzBv3jzo6+sLWnP37l20a9cO27dvh0KhUHOERERERESkCUyiUY6nUCjg4uKCnTt3pnrWsGFD7NmzR/BtekKEhobi7du3afb/EolEWLduHVq0aIGwsDB069ZNIz3Y1E3TlWgWFhbQ1dXN1J6a0rhxYwQFBWHx4sWCkqTv37/HpEmT0KFDB1y8eFEDEZKmiEQiDBo0CIGBgahUqZKgNUlJSZg5cyYGDRqEjx8/qjlCIiIiIiJSNybRKEdTKBRwdXXF9u3bUz1r0KBBtifQnJ2dYWdnhxs3bqRZPaKnp4fKlStj3759KF26dLZ9bW3TdCVaTjvKmRZdXV307dsXERERGDZsGPT09DJcc/36dXTp0gWjRo3C69evNRAlaUrVqlVx/Phx9OvXT/CaEydOwNbWFhEREWqMjIiIiIiI1I1JNMqxFAoFZs2ahW3btqV6Vr9+fezduxcFChTIlq917do1VK1aFbdu3cK7d+/QunXrdKvLRCJRnqg++zdNV6LllEsFhCpYsCDc3d0RGhqKFi1aCFrj6+sLGxsbLF++nI3m8xAjIyMsWrQIW7ZsQcGCBQWtefPmDXr06IEFCxao3OZLRERERES5B5NolCMpFArMnj0bW7ZsSfWsXr162ZpAk8vlGDJkCAwNDXHy5EkUKVIEkZGROHfuHO7evZstXyM3iI+PT/d5difRcksl2n9VqlQJ+/btw86dO1GuXLkM58fHx8PT0xPNmzfH0aNH2R8rD+nQoQNCQ0PRuHFjQfMVCgVWr14NiUSCp0+fqjk6IiIiIiLKbkyiUY6jUCjg7u6OzZs3p3pWr1497Nu3D6amptnytVJSUqCjo4P58+cjMTERXl5e6Nu3L/r16wcXFxe0atUKS5YsQWxsbLZ8vZxM08c5c1sl2r+JRCLY2dnh1KlTcHFxEXSk+MWLFxg+fDi6d++O27dvayBK0oRSpUrh0KFDmDp1quAef3///Tfs7Ozg4+Oj5uiIiIiIiCg7MYlGOYpCoYCHhwc2bdqU6lmdOnWwd+/ebEmgRUVFAfjW70qhUMDOzg4dO3ZE7969IZfLcfnyZQQGBmL69Ok4c+YMTp06leWvmdOpI4mmUCjyXCXav+nr62PUqFGIiIhAz549Ba2JjIyEnZ0dpk2bxmbzeYSuri7Gjx8PqVSKMmXKCFoTExOD0aNHY+zYsYiJiVFzhERERERElB2YRKMcQ6FQYN68ediwYUOqZ7Vr18b+/fthZmaWpa/x9etXODk5YcSIEXj48CFEIhFSUlIAAJ6enli3bh22b9+OQoUKQV9fH3/88Qfu37+PZ8+eZenr5gYZJdGMjIx+es/o6GgkJSX98FlurkT7r2LFimH58uUICAhAvXr1Mpwvl8uxa9cuWFtbY+vWreyRlUfUr18fISEh6Ny5s+A13t7esLe3x5UrV9QXGBERERERZQsm0ShH+J5AW7duXapntWrVwoEDB7KcQHvy5Al+//133Lt3D0lJSdi/fz9kMhnEYrEyiTFkyBAYGBgoE2v6+vooX7684OqS3EwdlWhpVaEBeaMS7b9q164NPz8/rF69WlCSMDo6Gq6urrCzs8OZM2c0ECGpm5mZGdavX4/ly5fD2NhY0JonT56gc+fOWLt2LeRyuZojJCIiIiKizGISjbROoVBgwYIFP0ygWVlZZUsCDQD09PTQqFEjHDt2DC1atMD58+eVPYnEYrHK/9fT0wMA9O/fH1FRUahbt26Wv35Op44kWlr90IC8VYn2bzo6OujatSvCw8MxduxY6OvrZ7jm3r176NWrFwYNGoQnT56oP0hSK5FIhJ49e+LEiROoWbOmoDUpKSmYN28eevXqlW7ymYiIiIiItIdJNNIqhUKBRYsWYc2aName1axZE15eXihYsGCm9//3MbkyZcpgyJAhsLS0xPDhw1GsWDH4+/vj+vXrAACZTAYA+Pz5M7Zt24ZSpUrhw4cPCA8PR+nSpTMdQ27BSrTsZWJigmnTpuH06dPo0KGDoDVBQUFo0aIF5s+fzz5ZeUD58uVx5MgRjBgxQvCa8PBw2NraIjg4WI2RERERERFRZjCJRlqjUCiwePFirFq1KtWzGjVqZDmBNm3aNIwePRpTp05VJspKliwJhUIBc3Nz9O/fH1++fMG+ffvw9etX5c16hQoVQrly5bB27VocO3YsU73AciNNJtHMzc0FVWjlBZaWltiyZQsOHjyIKlWqZDg/OTkZa9asQbNmzXDo0CEe78vl9PX14ebmhn379qFo0aKC1nz8+BEDBgyAi4sLEhMT1RwhEREREREJxSQaac3SpUuxcuXKVOPVq1fHwYMHUahQoUzte+/ePVhZWeHChQto1aoVQkJCsGTJEjx8+BDAt6NWANCiRQvY2tri+vXrOHXqFG7duoVx48bh48ePaN26NSQSSaZfW24UHx+f7vPsPM6ZV49ypsfGxgYnTpzAvHnzBCWH37x5g3HjxsHBwQF///23BiIkdWrZsiVCQkLQqlUrwWu2bduGDh064N69e2qMjIiIiIiIhGISjbRi6dKlWLZsWarxatWqZSmBFhMTAw8PD7Rv3x5hYWHo1asXtmzZgrNnz6pUWn2v7hk3bhwqV64MZ2dn1KhRA6VLl0bhwoUz9bVzO01WouX1o5xp0dPTw6BBgxAZGYlBgwZBRyfjX8H//PMPOnXqhHHjxrFXVi5XtGhR7N69G7Nnz1b2X8zI7du30a5dO+zevRsKhULNERIRERERUXqYRCONW7ZsGZYuXZpqvGrVqjh48CDMzc0zvXeBAgXQqVMndOnSBQCQmJiIunXrwtjYGM+ePVPO+568+PLlC7y8vFCsWDHcunULU6dOzfTXzu00ebFAfqxE+zdzc3PMmzcPwcHBsLGxEbTm0KFDaNq0KdasWcMjfrmYjo4Ohg8fjmPHjqFChQqC1iQkJODPP//EsGHD8PnzZ/UGSEREREREaWISjTRq+fLlWLJkSarxqlWr4tChQ5mqAgsKCkJoaKgySdazZ09YW1sDAAwMDPDhwwekpKTAyspKuUahUCAxMRF//vknunbtikuXLgnqV5VXff/nkZ7M9IZjJVr6qlatCi8vL2zduhW//PJLhvPj4uIwf/58tGzZEkFBQaxMysVq1KiBoKAg9O7dW/CagIAA2Nra4ty5c2qMjIiIiIiI0sIkGmnMypUr4enpmWq8SpUqOHjw4E8n0OLj49G6dWs4Oztj8uTJ6NWrl/KSAoVCoUwwPHz4EMbGxihRogSAb43b379/DwMDA3h6ev7wYoP8RkhlEyvR1EMkEqF9+/Y4ffo0pk2bBmNj4wzXPH36FIMGDUKvXr1w9+5dDURJ6mBsbIylS5diw4YNMDMzE7Tm9evX6N69Ozw9PZGSkqLmCImIiIiI6N+YRCONWL16NRYtWpRq/LfffsPBgwdRpEiRn95z69at0NPTw4MHD3D06FEMHz4ckyZNQmBgIEQiEWQyGQDg1q1bsLCwgK6uLry8vGBlZYWzZ88CAExNTbP2wvKIjI5yAj+fRIuLi0NMTMwPn7ESLTUDAwOMHTsW4eHh6Nq1q6A1Z8+eRZs2beDi4sJjfrlY586dERISgvr16wuaL5fLsXz5cjg5OeH58+dqjo6IiIiIiL5jEo3Ubs2aNViwYEGq8cqVK8Pb2xsWFhY/td/3CrOXL18q15YuXRoDBw7E9OnTMWDAAHz9+hV6enoAgFevXsHS0hLjx4/H6NGj4e7uDicnpyy+qrxFHUm0tKrQAFaipadEiRJYvXo1jhw5glq1amU4XyaTYdu2bWjatCl27tzJ6qRcqkyZMvDx8cHEiRMFXTgBAJcuXYKdnR38/f3VHB0REREREQFMopGarVu3DvPnz081XqlSJfj4+GSqAk0kEgH4dgQxISFB5ejmnDlzUKpUKUyaNAnAt4TbmTNnsHXrVrx48QJPnjxBjx49svCK8iZ1JNHSu0mSSbSM1atXD8eOHcPy5ctRtGjRDOd/+vQJ06dPR9u2bREZGamBCCm76enpYfLkyTh8+DBKlSolaE10dDRGjBiBCRMmIDY2Vs0REhERERHlb0yikdqsX78ec+fOTTVesWJFeHt7Z+oSAeDbUSYAGDVqFPz9/XHs2DGV45seHh64dOkSnj9/DpFIBAcHB2zatAne3t4wMTHJ/AvKw+Lj4zOck51JNB7nFEZHRwc9e/ZEeHg4Ro0aBbFYnOGa27dvo1u3bhg+fDiP+uVSjRo1QmhoKDp27Ch4jZeXF9q2bYvr16+rMTIiIiIiovyNSTRSiw0bNsDDwyPVeIUKFXDo0CFBlTUAEBUVhTdv3igTZwqFAjo6OpDL5ahYsSKmTp2KoUOHIioqCrq6ugC+JR709fVhbm4OAHB2dsbQoUOz6ZXlTZo8zlmgQAFBzfPpf0xNTeHi4oJTp07Bzs5O0JqjR4+iWbNmWLx4MeLi4tQcIWW3ggULYtOmTfD09BT8796jR4/QqVMnbNy4Ufk7k4iIiIiIsg+TaJTtNm3ahDlz5qQaL1++PLy9vQUf5Zs5cyaaNGmCjh07YtCgQbh06RJEIhHkcrmyZ9D8+fNRoUIFDBgwAIGBgQCACxcuoFixYspjn5QxTR7nZBVa5v3666/YuXMn9u3bh4oVK2Y4PykpCStWrICNjQ2kUqny2DPlDiKRCH369EFQUBCqVasmaE1ycjLc3d3Rt29fvHv3Ts0REhERERHlL0yiUbbasmULZs+enWr8119/xeHDhwUn0DZu3Ag/Pz+cOXMG7u7uMDY2RseOHfH27Vvo6Oio9EELDAxEoUKFMG3aNNSuXRu7d+/G4sWLeXTzJ2iyEo390LKuZcuWCA0NxZw5c2BmZpbh/KioKDg7O6NLly64du2aBiKk7FSpUiUcO3YMQ4YMEbzm1KlTsLW1xcmTJ9UYGRERERFR/sIkGmWbrVu3ws3NLdV4uXLlfiqBBnw7ltSoUSOULVsWHTt2xIoVK1CzZk1069YNAJQVaQqFAmZmZti8eTOOHz+OlStX4tGjR6hSpUq2va78QEgSzcjI6Kf2ZCWaeonFYgwdOhQRERHo16+foMrLS5cuoX379pg0aRKrlHIZAwMDeHh4YNeuXYL7Sb5//x59+vTB7NmzkZSUpOYIiYiIiIjyPibRKFts374drq6uqca/J9BKlCgheC+5XI5Pnz6p9M0yMDDAvn37cOXKFWzevBkAoKurC5lMBplMBjMzM5QsWRItWrTI+ovJhzJKouno6EBPT++n9mQlmmYUKVIEixYtwokTJ9C4ceMM5ysUCuzfvx9NmzbF+vXrkZycrIEoKbu0adMGoaGhaNasmeA1mzZtQqdOnfDw4UM1RkZERERElPcxiUZZtn37dsycOTPVuKWlJby9vVGyZMmf2k9HRwft2rXDtm3b8PjxYwCATCZDsWLFMGfOHGzYsAHx8fF48uQJevbsiTNnzmTL68jPMkqiGRoa/nSPOVaiaVb16tVx+PBhbNiwAaVKlcpwfkxMDDw8PNCyZUuEhIRoIELKLsWLF8f+/fvh4uIiOLl948YN2NvbY//+/eyNR0RERESUSUyiUZbs3LkzzQTa4cOHBb2Z/xEnJydYW1tj2LBhAKC8ebNkyZIwNjZWHuOcPn06WrVqlfkXQAAyTqIZGBj81H7Jycn49OnTD5+xEk19RCIROnfujLNnz2Ly5MmC+tg9fvwY/fv3R9++ffHgwQMNREnZQUdHB6NGjcKRI0dQrlw5QWvi4+MxadIkjBw5EtHR0eoNkIiIiIgoD2ISjTJt165dmD59eqrxX375Bd7e3j+VQPtRZcSOHTtw+fJlzJgxA0+fPgUAJCYmolChQtDV1UXhwoVRv379zL8AUoqPj0/3eXZdKgAwiaYJRkZGmDhxIs6ePYvOnTsLWhMWFobWrVvD3d2dCZZcpFatWjhx4gR69OgheI2/vz/atGmDixcvqjEyIiIiIqK8h0k0ypQ9e/Zg2rRpqcbLli0Lb29vlC5dWvBeFy9exJ07d5CSkqIyXrp0afj4+CAgIACOjo7o1q0bhg8fjgEDBvx0ZRSlT8hxzp+R1lFOgMc5Nal06dLYsGEDpFIpatSokeH8lJQUbNy4EU2bNsXevXshk8k0ECVlVYECBbBixQqsXbsWBQoUELTmxYsXkEgkWLZsGb/PREREREQCMYlGP23v3r2YOnVqqvEyZcrA29sbZcqUEbRPUlIS5s2bB0dHRwwbNgwymSxVRVqrVq2wf/9+zJkzBw0bNsTDhw+VN3RS9snuJBor0XKWRo0aITAwEJ6enoJudvzw4QOmTJmC9u3b4/z58xqIkLKDRCJBcHAw6tatK2i+XC7HkiVL0K1bN7x8+VLN0RERERER5X5MotFP2b9/P6ZMmZJqvHTp0vD29kbZsmUF7XPnzh106NABa9euhUKhwKNHj+Du7v7D5vVVq1aFg4MDpk6d+lMVbiRcRkk0IyOjn9ovrUo0fX19mJmZ/dRelD10dXXRp08fREZGYvjw4YIa0t+4cQMSiQQjR47Eq1evNBAlZZWlpSWkUinGjh0r+DKQ8+fPw9bWFseOHVNzdEREREREuRuTaCTYgQMHMHny5FTjpUqVgre3N3755ZcM95DJZFi/fj3atm2LW7duKcfLli0ruHcTZT9NVaIVL178p2/5pOxlZmaG2bNnIywsTPClHH5+frCxscGyZcsy/Fkh7ROLxZg2bRoOHjwouPIzOjoaw4YNw5QpUzLskUhERERElF8xiUaCeHl5YdKkSamOW5YsWRLe3t6wtLTMcI8XL16gR48e8PDwQHJysnK8Z8+eCAkJQePGjbM9bhJGUz3R2A8t56hYsSL27NmDXbt24ddff81wfkJCApYsWYJmzZrhyJEjP7wMhHKWpk2bIiwsDG3bthW8Zu/evWjXrp3KhxxERERERPQNk2iUoYMHD2LixImp3jSXKFEChw8fRrly5dJdr1Ao4OXlhdatW+PcuXPK8SJFimD79u1Yvnw5TE1N1RE6CaTJSjTKOUQiEdq0aYNTp07B1dVVUFP6ly9f4o8//kC3bt2YaMkFzM3NsW3bNsyfP1/whSz3799H+/btsXXrViZLiYiIiIj+hUk0Spe3tzcmTJiQ6o1U8eLF4ePjk2EC7cOHDxg6dCgmTJiAmJgY5bidnd1PV0iQ+miqEo1JtJxJLBZj5MiRCA8PR69evQQduT137hzs7e3x559/4sOHDxqIkjJLJBJh4MCBCAwMxG+//SZoTXJyMlxdXTFgwAB+f4mIiIiI/h+TaJSmw4cPY9y4cZlOoAUHB6N169YIDAxUjpmYmGDp0qXYsWMHihYtqo6wKRN4nJOAb9+fZcuWISAgAPXr189wvlwux+7du9G0aVNs2bJF5Zg25TxVqlRBYGAgBg4cKHhNSEgIbG1tcebMGfUFRkRERESUSzCJRj8klUrTTKAdPnw43R5KsbGxmDJlCgYMGIB3794pxxs0aICQkBD07t2bzeVzmIwaif9MEk0mk+H9+/c/fMZKtNyhVq1a8PPzw9q1a1GiRIkM50dHR8PNzQ1t2rTB6dOnNRAhZZahoSHmz5+P7du3o1ChQoLWvH37Fr169cLcuXOZKCUiIiKifI1JNErF19cXY8aMgVwuVxkvVqwYvL29Ub58+TTXXrx4EW3atMHevXuVY2KxGDNnzoSPj4+gCwhI87KzEu39+/epfna+YyVa7iESiSCRSHD27FmMHz8e+vr6Ga65f/8+evfujQEDBuDJkyfqD5IyrW3btggLC0PTpk0Fr1m3bh06d+7M7y0RERER5VtMopEKf39/jB49Os0EWoUKFX64Ljk5GQsWLIBEIsHTp0+V41WqVEFAQACcnZ2hq6ur1tgp8zJKohkZGQneK61LBQBWouVGJiYmmDp1Ks6cOYOOHTsKWhMcHIwWLVpg7ty5Kr0QKWcpUaIEDhw4gOnTpwv+/Xz16lXY2dnh0KFDvHSAiIiIiPIdJtFIyd/fH87OzqkSaEWLFsWhQ4dQsWLFH667c+cOOnTogNWrVyvXikQijBw5EoGBgahevbraY6esyc5KtLT6oQGsRMvNfvnlF2zevBkHDx5E1apVM5yfnJyMdevWwcbGBl5eXmlWJ5J26erqYsyYMfD19cUvv/wiaE1sbCzGjRuH0aNH4+vXr2qOkIiIiIgo52ASjQAAR44cgbOzM2Qymcq4hYUFDh06hEqVKqVaI5fLsXHjRrRr1w43b95UjpcpUwbe3t5wdXWFgYGB2mOnrMvOJFpalWi6urooUqTIT8VFOY+NjQ2CgoKwYMECQT213r59iwkTJqBTp064fPmy+gOkTKlXrx5OnDgBiUQieI1UKoWdnR2/r0RERESUbzCJRjh27BhGjRqVKoFWpEgRHDp0CJUrV0615sWLF+jRowfc3d2RlJSkHO/ZsydCQ0PRpEkTtcdN2UcTlWgWFhbQ0eGvnLxAT08PAwYMQGRkJAYPHizoKOCVK1fg4OCAMWPGpFutSNpjZmaGNWvWYOXKlTAxMRG05tmzZ3B0dMSqVatS/TeEiIiIiCiv4TvafC4gIAAjR45MM4H222+/qYwrFAocOnQItra2iIyMVI4XLlwYW7duxfLly2FqaqqR2Cn7aKISjf3Q8p5ChQph7ty5CA4Oho2NjaA1hw8fRtOmTbFq1SokJiaqOUL6WSKRCN27d0dwcDBq1aolaI1MJsPChQvRq1cvREVFqTlCIiIiIiLtYRItHwsMDMSIESOQkpKiMl64cGEcPHgQVapUURn/+PEjhg0bhnHjxqn0wbGzs0NYWBjat2+vkbgpeyUnJ2dYQZIdlWhMouVdVapUgZeXF7Zt2yaor1ZcXBwWLlyIFi1aIDAwkA3qc6By5crB398fo0aNErwmIiICrVu3RlBQkBojIyIiIiLSHibR8qmgoCD88ccfqRJo5ubmOHToUKrG4SEhIWjVqhUCAgKUY8bGxvD09MSOHTvYMD4Xy6gKDcieSjT+jORtIpEI7dq1w+nTpzF9+nQYGxtnuObZs2cYMmQIevbsiTt37mggSvoZYrEYLi4uOHDggOB/fz9//oxBgwZhxowZgn63EBERERHlJkyi5UMnTpzA8OHDBSXQYmNjMXXqVPTv3x/v3r1TjtevXx8hISHo06cPRCKRxmKn7JfdSTRWouVvBgYGGDNmDCIiItCtWzdBa8LDw2FnZ4eZM2fi8+fP6g2Qflrz5s0RGhqKNm3aCF6zY8cOdOjQgclRIiIiIspTmETLZ4KDgzFs2DAkJyerjBcqVAgHDx5EtWrVlGOXL1+GnZ0d9uzZoxwTi8WYPn06pFIpypUrp6mwSY2yM4mmUChYiUYAviVNV61ahSNHjqBOnToZzpfJZNi+fTusra2xY8eOVEl+0q4iRYpg586d8PDwgFgsFrTmzp07aN++PXbs2MEju0RERESUJzCJlo8EBwdj6NChqRJoBQsWxMGDB1G9enUA33pkLVy4EF26dMGTJ0+U8ypXroxjx45hzJgxgm7jo9xBSBLNyMhI0F6fP39O9fP1HSvR8qd69erhyJEjWLFihaBE6ufPnzFjxgzY29sjPDxcAxGSUCKRCEOGDEFgYCAqVqwoaE1iYiJmzJiBwYMH49OnT2qOkIiIiIhIvZhEyydCQ0PTTaDVqFEDAHDv3j107NgRq1atglwuB/DtjdMff/yBoKAg5TzKO7KzEi2to5wAK9HyMx0dHfTo0QPh4eFwdnYWVMl0584d9OjRA0OHDsWzZ880ECUJVa1aNQQFBaFv376C1wQFBaF169aIiIhQY2REREREROrFJFo+EBYWhsGDB6dKoJmZmcHLyws1a9aEXC7H5s2bYW9vjxs3bijnlCpVCgcPHsSsWbNgYGCg6dBJA7IziZbWUU6AlWgEFChQADNnzsTp06dhb28vaE1AQACaN2+ORYsWITY2Vs0RklBGRkZYvHgxNm/eDDMzM0Fr3rx5gx49emDhwoVpVqwSEREREeVkTKLlcSdPnkw3gWZlZYWXL1+iV69emDVrFpKSkpRzunfvjrCwMDRt2lTTYZMGaaoSrWjRooJjorytXLly2LFjB/bv349KlSplOD8pKQkrV66EjY0NfHx82F8rB+nYsSNCQ0PRqFEjQfMVCgVWrVoFiUSCp0+fqjk6IiIiIqLsxSRaHnb69GkMGjRIJTEGAKampjhw4ACsrKxw+PBhtG7dWqX3kLm5OTZv3oyVK1cKrjCg3EsTlWiFCxcW3Iyc8o8WLVogJCQEHh4egn7XvHnzBqNHj0bnzp1x9epVDURIQpQuXRre3t6YPHkydHSE/bXi77//hp2dHaRSqZqjIyIiIiLKPkyi5VFnzpzBwIED00ygWVpa4o8//sCYMWPw9etX5XNbW1uEhYWhY8eOmg6ZtCQ+Pj7DOVmtRONRTkqLWCzGkCFDEBERgf79+wtKwly+fBnt27fHhAkT0j1CTJqjq6uLiRMnQiqVonTp0oLWxMTEwNnZGePGjUNMTIyaIyQiIiIiyjom0fKgs2fPYsCAAUhMTFQZL1CgAPbv349Pnz6hVatWOHr0qPLZ9/42u3btYsIjn8moEk0sFguuLkkrocGfKcpIkSJFsHDhQpw4cQJNmjQRtMbLyws2NjZYt25dqg8MSDsaNGiA0NBQdO7cWfCaQ4cOwd7entWFRERERJTjMYmWA338+BHh4eE4duwYjhw5gpCQEDx58kRQH6Dw8HD079//hwm07du34+DBg+jbt69KsqNevXoIDQ1F3759IRKJsv31UM6WURLNyMhI8F6sRKOsqlatGry9vbFp0yaUKVMmw/kxMTGYO3cuWrZsieDgYPZLywHMzMywfv16LFu2TPDvjydPnsDBwQHr1q1T3gxNRERERJTT6Gk7APrWaDkyMhL79u3DhQsX8PLlS0CRDOD7m0ERINKFmVkh1KpVC05OTujcuXOqNyffj0P9N4FmYmICV1dXTJkyBU+ePFGO6+npYfLkyRg1ahT09PijkF9llEQTepQTSDuJVqxYsZ+KifI3kUiETp06oU2bNli/fj1Wr16d4c/pkydPMGDAALRs2RLu7u6CLiwg9RGJROjVqxcaNGiAESNG4ObNmxmuSUlJwdy5c3HmzBmsXLmSyXciIiIiynFYiaZFCoUChw8fRosWLdC9uxOkh3fj5bNrgOwNfi31BQ1rxKBxzRhULx8NfZ33iP70CGdPH8WE8c6oW7cu5s2bh9jYWABAZGQk+vXrl+qNpomJCdq1a4fp06erJNAqV66MY8eOYezYsUyg5XPZmUTjcU7KToaGhpgwYQLCw8Ph6OgoaM2pU6dga2uLWbNmITo6Wr0BUoYqVKiAY8eO4Y8//hC85syZM7C1tUVISIgaIyMiIiIi+nkiBc++aMWbN28wZcoUhIQEAfKvMDFMQrd2hnBobYialfVgWkA1v5mcrMD9Jyk4eT4Ju6TxeB4lAnQK4BfLShg8eDAWLVqUqkG8WCxGyZIl8ezZM5XxYcOGYfr06T+VHKG8a/HixVixYkWazytXroxTp05luE9MTAwqV678w2ebNm1Cp06dMhkh0TcXLlyAi4sLbty4IWh+4cKFMW3aNPTu3Ru6urpqjo4ycvLkSYwbNw7v378XvGbIkCFwcXGBgYGBGiMjIiIiIhKGSTQtOH/+PAYOHIgvn19DrBODiYNMMLibUarEWVpkMgWCIxLhsjwGL97o4sOnZBgbm8DY2FjZ0ywlJQW6uroqPc5KlSqFFStWwMbGRi2vi3KnOXPmYMOGDWk+t7KywvHjxzPc59GjR2n+bPn5+aFBgwaZjpHoO5lMBi8vLyxYsAAfPnwQtKZ69erw8PBA48aN1RwdZeTdu3cYP348Tp48KXhNtWrVsH79eh7RJSIiIiKt43FODTt37hx69+6FL5+eolblBATvKIxxA00EJ9AAQFdXhHbNDRG0zRRObRJRyFSG+LgYxMbGQi6XIzo6GnK5XCWB1rVrV4SFhTGBRqlk13HOtPqhAeyJRtlHV1cXv//+OyIiIjBixAhBx9Fv3rwJJycnjBgx4lvPSdKaokWLYvfu3Zg9ezbEYrGgNbdu3ULbtm2xZ88eXhxBRERERFrFJJoG3b9/H/3790dC3Bu0bqSAdJ05Kv+auX5kSUnJSEn6ArdRIkwdKkIhMzni42Pw/v17GBoaQl9fHwBQqFAhbNq0CatXr4aZmVl2vhzKI/57DPi/hCbR0uqHBrAnGmU/MzMzuLm54eTJk2jdurWgNf7+/mjWrBmWLl2a4c89qY+Ojg6GDx+Oo0ePonz58oLWJCQkYOrUqRg2bBg+f/6s3gCJiIiIiNLAJJqGpKSkYPz48Yj9+gaNreTYOr8QDA1EGS/8gaSkZHz69En5iXy/ziKM6QMULKAAFAro6Hz7trZq1QonT55kLypKl7or0czMzNh/j9SmQoUK2LNnD3bv3i0oIZOQkIClS5eiWbNm8Pf3Z2WTFtWsWRNBQUHo1auX4DUBAQGwtbXFX3/9pcbIiIiIiIh+jEk0Ddm4cSP++fsCzEzisc69IAyyKYEGKCCXyzHICbCuAxgbKRAbG4v58+djz549rACiDGVXEi2tSjQe5SRNsLW1xcmTJ+Hm5gZTU9MM57969QojRoyAk5OT4IsKKPuZmJhg2bJl2LBhg+Bq6devX6Nbt27w9PRESkqKmiMkIiIiIvofJtE04OvXr99uP5RHw31sAZQomrlb4v6bQFMoFJDLv/1vPT0RZjmLYGEOFChghJIlS6r0RCNKS0ZJNCMjI0H7pFWJxkQuaYpYLMaIESMQHh6O33//XdDvwPPnz6Nt27aYOnWq4IsKKPt17twZwcHBqF+/vqD5crkcy5cvh5OTE54/f67m6IiIiIiIvmESTQO8vb0RG/MJFX8BenRIv6on4FQCWvz+AUUbvoFBtdco3+otJs6PxrsPifj8+X8JNLlcrvzfOjoiiEQi/FbBFIO6mUBXlIidO3eq/XVR3qDu45ysRCNNK1q0KJYsWYLAwEBBt8IqFArs2bMHTZs2xebNm5GcnKyBKOm/ypYtCx8fH0ycOFHZliAjly5dgp2dHfz9/dUcHRERERERk2gasXv3bkARh4FORhlWRnz8IkejWmJsmGOGoO2FMXGwCXZJ49B9zEfI5Yr/rz6TK+fr6IigpydG4cJFUKCACfo7GkGEeJw6dRJPnjxR8yujvEDdxzlZiUbaYmVlBV9fX6xbtw4lS5bMcH50dDRmzZqlPBpKmqenp4fJkyfD29tb0PcM+PZ9GzFiBCZOnIi4uDg1R0hERERE+RmTaGr25s0b3LlzGzpIRLd2GScj+nYxxuI/zdC1nRFaNjLAH730Mf0P4PRF4NVbuUoTbB0dEYyNTVCkSGGIxd9u+bQsrQfrOmJAkYgzZ86o7XVR3sFKNMrLRCIRHB0dcfbsWUyYMAEGBgYZrnnw4AH69OmDAQMG4PHjxxqIkv6rcePGCA0NRYcOHQSvOXDgAOzt7XH9+nU1RkZERERE+RmTaGp27do1QJGCyr/qwcz05/5xJyen4NOnTyhUQPH/f/7fM11dXZibF4aZmWmq6ra61cWAIuXb1ybKQHYk0RITE/Hly5cfPmMlGuUExsbGmDJlCs6cOQMHBwdBa4KDg9GyZUvMnTsXX79+VXOE9F+FChXC5s2bsXjxYsHJ/EePHqFTp07YuHGjStU2EREREVF2YBJNzb4lspJh9ZveT61LTEzGq9cf8M8tGZbtBOybAmX//2SLgYE+ihYtCgMD/R+u/fa1kvlpPAmSHUm0tI5yAqxEo5ylbNmy2LhxI7y9vVG1atUM5ycnJ2PdunWwsbGBl5cXEzMaJhKJ0LdvXxw/flzQ9wv49j1zd3dHv3798O7dOzVHSERERET5CZNoavb27VtAIUPZkj93I2cF248oZytHu2FA8cLAWtdv4yKRCMnJKfj8+RPi4uJ/+IbOsrQuoJClm9gg+i4+Pj7d51lNorESjXIia2trBAUFYeHChTA3N89w/rt37zBhwgR06NABly5d0kCE9G+VK1dGQEAAhgwZInjNyZMnYWtri1OnTqkvMCIiIiLKV5hEU7OkpCQAgL44/QsF/itgS2Gc2mMGzynA/WfAgOmAXA7l0c2kpGRER0fj3bt3+PTpM+LjEyCXfzv2Kdb7Noc3zJEQ2VGJllY/NICVaJRz6enpoX///oiIiMCQIUOgq5vxhx3Xrl1D586dMXr0aERFRWkgSvrOwMAAHh4e2LlzJwoXLixozfv37/H777/D3d1d+d9jIiIiIqLMYhJNzb41sRYhMUmR4dx/q/hLMn6z/IrfOwHb5gGR/wDHz6ZOxCkU/+tH9e7dO3z+/AXRXxMBAPr6Pz7uSfSdXC7P8I2lkZFRhvuklUQzNDSEqalppmIj0pRChQrBw8MDISEhaNasmaA1Pj4+aNq0KVauXInExEQ1R0j/Zmdnh9DQUMHfKwDYuHEjOnXqhIcPH6oxMiIiIiLK65hEU7PSpUsDIl08fCb7qXX6Bgb4fhFntQqAWA949CL9RJxCoUBCQgKu3/2KhMQUREdH49y5c+zhQ2kS8uY/K8c5ixcvnuriC6Kc6rfffsOBAwewY8cOlCtXLsP58fHxWLRoEZo3b46AgACV25NJvYoXL479+/fDxcUFenrCeo7euHED9vb2OHDgAL9XRERERJQpTKKpmZWVFQA9XL3zc0cr9XR1IRaLAQB/3wKSU4BfSgJAxn/xv/0QSEkBoqKi0LVrV9SvXx8eHh64ceMG3ziQioyOcgJZO87Jo5yU24hEItjb2+PUqVOYOXMmTExMMlzz/PlzDB06FD179sTt27c1ECUBgI6ODkaNGgV/f39BSU/gW+Jz4sSJGDlyJKKjo9UbIBERERHlOUyiqZmVlRUgEuPJSznevM+4Gs1p1EfMXx+Do2EJ+OeuCbZ4izDU5Vs1WrtmUPY9S88/txRIToEyCRcVFYX169fD3t4eLVq0wPLly/HkyZOsvjTKA7IriZZeJRpRbqSvrw9nZ2eEh4ejR48egtaEh4fDzs4OM2bMwKdPn9QcIX1Xu3ZtnDhxAt27dxe8xt/fH23atOElEURERET0U5hEUzNzc3PUr18fEBlg/5GMExYNa+njUGA8fp/4GZJRn3EgQIQ+DoDvWhEMDXQgEomgp5d28+u7jxW4dg9IThH9sCfagwcP4OnpCWtra3Ts2BFbtmxJtyk85W2sRCNKX/HixbFixQocPXoUderUyXC+XC7Hjh07YG1tje3btyMlJUUDUVKBAgWwcuVKrF27FgUKFBC05sWLF5BIJFi+fDlksp9ruUBERERE+ROTaBowcOBAQGSM3X5xSE5Ov5Js2h8F8I9/UURfKYGYqyVwM7A4po8Qw9TkW18pkUgEhQKwsLCAqZmpstrsO68ABRISRTAwMMzwprl//vkHbm5uqFevHnr27AkvLy8eb8lnWIlGJEzdunVx5MgRrFq1StDP9ZcvXzBz5kzY2dkhPDxcAxESAEgkEgQHBwtKeAKATCaDp6cnunfvjlevXqk5OiIiIiLK7ZhE04BOnTqhiEUJvH6ni40H4n5qrUgEmBZQvd1QJpMhISEBJsbGKFKkMCwsLFCgQAE8eKYD31AgPlEk6EbF7+RyOc6ePYsJEyagZs2aGDJkCI4dOyYowUK5W3x8fIZzMkqiyWQy/Pbbb6hYsSLMzMxUnrESjfISHR0ddOvWDWfPnsWYMWNSfYjxI3fv3kWPHj0wZMgQPH36VANRkqWlJXx9fTFmzBjBF5v89ddfsLW1RUBAgJqjIyIiIqLcTKRgp3mNOHToEMaNGw2x6ANObC+M38oLu00MABQK4OPHj0hO/t/lBCKRCBYWFtDV/ZYHTU5WoN3gj7j50ABlfqkMuVyOqKioLMVcoEABdOjQARKJBE2bNhV8AxrlHpGRkejWrVu6c65cufJTybCkpCS8f/8eUVFRKFu2LIoWLZrVMIlypCdPnmDOnDk4fvy4oPlisRgjRozA2LFjBV1YQFkXHh6OMWPG/FTbgr59+8Ld3f2nPowiIiIiovyBSTQNUSgUGDBgAEKC/VGpbDx815vDvKDwQsCkpGR8/PhRZczY2BhmZqZQKBSYuugr9h6VobBFBZw6dQqFCxfGhQsXIJVKceTIEXz+/DlL8VtYWKBz586QSCSoW7eu4E/3KWcLCwtD3759051z586dVBVmQikUCv6sUJ539uxZuLq64t69e4LmFy9eHDNnzoSTkxN0dFgQrm4fP37ExIkTceLECcFrKlWqhPXr16NatWpqjIyIiIiIchsm0TTozZs3aN++PaJe3Uf1CknYv9wcFoWFv4H6/PmLyhFLkQgwNy+C2avjsMMnGTpiC2zbth329vYq65KTk3Hq1ClIpVIEBQUJOsKXHktLSzg6OkIikaBy5cpZ2ou0KyAgAEOHDk13ztOnTwUdWyPKz1JSUrBr1y4sXrxYcG/JevXqYc6cOYL7d1HmKRQK7Ny5E7Nnz0ZSUpKgNfr6+nBzc8OgQYP4YQARERERAWASTePu37+Prl274v3bxyhRJAFLp5uhVWMDQWtTUmT48OEDvn/LXr5RwGO9Di5c14NIrzCWLVuOnj17prtHbGwsTpw4AalUilOnTmX55rhq1arByckJXbp0QenSpbO0F2mej48PRo8eneZzHR0dPH/+nG8giQT6+PEjPD09sXv3bsjlckFrevbsiWnTpvEiDg24ffs2Ro0ahbt37wpeY2dnh2XLlqFIkSJqjIyIiIiIcgMm0bTg0aNH6NevHx4/ugPIo9GjvT7G9DNBBcuMe459/foVUW9jcfgEsOGAAh+/iGBqVgLr1q9Hly5dfiqOjx8/4tixY5BKpfjrr78y+3KUGjVqBIlEgk6dOqFw4cJZ3o/Ub9++fZg8eXKaz42NjfHgwQMNRkSUN9y+fRuurq6IjIwUNN/ExATjx4/HsGHDoK+vr+bo8reEhAS4u7tj586dgtcUL14cq1atQrNmzdQYGRERERHldEyiaUl8fDwWLlyILVs2QyH7CijiYVNPjC62hqhVVQ+//aoHsfhb9Y9CocCzVzJcu5OCsL8S4RMUh6+xQGy8DkQ6YjRs2BCnTp3KUm+dly9fws/PD1KpFDdv3szSa9PT00PLli0hkUhgb2/PBto52LZt2+Di4pLm88KFC+PGjRsajIgo71AoFAgICIC7uztevHghaE25cuXg7u6ONm3asAJUzY4fP46JEycK7hkqEokwcuRI/PnnnzziTkRERJRPMYmmZZcuXcLq1asREhIMhTweUCQBimSI9eQoZCaCjgiIiVMgNl4EiPQA6CM+QYG4+EQYGxvD0NAQIpEIq1atyvCWRaHu3bsHX19fSKVSPH36NEt7GRkZoW3btpBIJGjZsiXfeOQw69atw9y5c9N8XqpUKVy6dOmHz/59aQAvECBKW0JCAjZs2IDVq1cL7knZokULuLu7s++kmr1+/RpjxowRXDEIALVq1cL69etRrlw59QVGRERERDkSk2g5xPPnz+Hl5YULFy7g2rVriI7+AuB7Px0RxGIDVK1aFbVr14aDgwMmTpyI58+fK9eXLFkSERERMDQ0zLaYFAoF/vnnH0ilUvj5+eH9+/dZ2q9QoUJwcHCARCJBw4YNeStdDrB06VIsXbo0zefly5dHeHh4ms+jo6Ohp6cHY2NjAN8qLPX09JgsJfqB169fY+7cuZBKpYLm6+rqYtCgQZg0aRIKFiyo5ujyL5lMhrVr18LT0xMymUzQGhMTEyxYsCDbPrwiIiIiotyBSbQcSKFQ4OXLl/j69StkMhmMjIzwyy+/qCQm/P39MWLECJV106dPx5gxY9QSU0pKCiIjIyGVSnHs2DHExMRkab+SJUtCIpFAIpGgWrVqrGLSknnz5mHt2rVpPq9WrRpCQkJSjcfExMDT0xMhISGwtLTEtGnTEB8fj3379kEmk8HZ2RlVq1ZlhRrRD1y8eBGurq64du2aoPmFCxfGn3/+id9//x26urpqji7/unz5MpydnfHs2TPBa5ycnLBgwQKYmpqqMTIiIiIiyimYRMulFAoFHBwc8PfffyvHChQogMjISFhYWKj1ayckJCA0NBRSqRTBwcFITk7O0n6VKlWCo6MjJBIJj8domKurK7Zu3Zrm83r16uHIkSOpxufPn4/w8HA0bdoUd+7cQVxcHGQyGQwNDfHu3TuIRCJs3LgRFSpUUGf4RLmWXC7HwYMHMX/+fMFVvtWqVYOHhweaNGmi5ujyr+joaEybNg2+vr6C11haWmLt2rWoW7eu+gIjIiIiohyB5+lyKZFIhFmzZqmMxcTEYNmyZWr/2oaGhujYsSO2bNmC69evY/ny5WjWrFmmj2fev38fnp6esLa2Vu779u3bbI6afiQhISHd52kdD/b398egQYMwc+ZM7N69G1euXIG9vT0OHDiA0NBQJCYmZvmCCqK8TEdHB7169UJ4eDhGjhwp6Aj0rVu30LVrV/zxxx+CLyqgn2NmZoa1a9dixYoVymPqGXn69CkcHR2xevVqwcdBiYiIiCh3YhItF2vQoAE6duyoMrZ79248ePBAYzGYmZmhZ8+e8PLywuXLlzFnzhzUqVMn0/v9888/cHNzQ926dZX7RkdHZ2PE9G8ZJdGMjIx+OB4fHw9zc3Pln+Pi4lCrVi3ln9+/f88eTkQCmJmZwdXVFSdPnkSbNm0ErTly5AiaNWuGJUuWCL6ogIQTiUTo0aMHgoODYWVlJWhNSkoKFixYgF69eiEqKkrNERIRERGRtjCJlsvNnDkTenp6yj/LZLJ0b1tUp+LFi2Po0KE4duwYIiMjMWXKFFSsWDFTe8nlcpw9exYTJkyAlZWVct/ExMRsjjp/yyiJVqRIkR+O9+nTB+PGjcPMmTMxYcIEFC1aFH/99Re+fPmCp0+fIiUlhUdziX5C+fLlsWvXLuzZs0fQMejExEQsW7YMNjY28PPzAzszZL9ff/0VR44cwahRowSviYiIgK2tLU6cOKHGyIiIiIhIW9gTLQ9wc3PDli1bVMa8vb1hbW2tpYj+R6FQ4NatW5BKpZBKpXj9+nWW9jM1NUWHDh0gkUhgbW2tkkCkn9evXz+Ehoam+XzMmDGYPn16qvFPnz5h0aJFuH//PipWrIiOHTti8ODBqFevHs6dO4e+ffvCw8ODTdCJMiE5ORnbt2/H0qVL8fXrV0FrGjZsCA8PD9SsWVPN0eVPZ86cwdixY3+q1cCgQYPg6uqarbdmExEREZF2MYmWB3z69AlNmjRROfZoZWWFgICATPcpUwe5XI4LFy5AKpXiyJEj+Pz5c5b2K1q0KDp37gyJRII6derwFshM6N69OyIiItJ87u7ujmHDhv3wmUwmw8ePH1G0aFEAQEhICMLDw1GvXj04ODioJV6i/OT9+/dYtGgR9u3bJ6jSTCQSoXfv3pg2bZraL5jJj96/f48JEyak+8HDf1WpUgXr16/Hb7/9psbIiIiIiEhTmETLI9avXw8PDw+VsTVr1sDJyUlLEaUvOTkZp06dglQqRVBQUJb7+lhaWkIikUAikaBSpUrZFGXe5+DggMuXL6f5/Ec/Q3FxcXjx4gUqV64M4FsyTSQS5aiELVFecv36dbi6uuLChQuC5puammLixIkYPHiwoAsLSDiFQoGtW7fCw8ND8M3UBgYGmD17Nvr3788Pe4iIiIhyOSbR8ojExEQ0b94cz58/V46VLl0aZ8+ezfFHSWJjY3HixAlIpVKcOnUKKSkpWdqvevXqkEgkcHR0RKlSpbIpyrypTZs2uHXrVprP9+7di1atWqmMRUZGwsHBAb169cKQIUNQt25d5TOFQsE3iURqoFAocOTIEcyZMwevXr0StKZChQpwd3dH69at1Rxd/nPz5k2MHDnypy7yadeuHZYuXapyKQsRERER5S4sHckjDAwMMGPGDJWxly9fYuvWrVqKSDgTExNIJBLs2rULV65cwcKFC9GoUaNM73fz5k3MnTsX9evXh5OTE3bv3o1Pnz5lY8R5R0YXC/zohs3r169DLpcjOjoazs7OcHV1xY0bNyCXy5lAI1ITkUiEzp074+zZs5g0aRIMDAwyXPPw4UP07dsX/fv3x6NHjzQQZf5RvXp1HD9+HH369BG85vjx47C1tUVkZKQaIyMiIiIidWIlWh6iUCjQqVMn/PPPP8oxU1NTREZGpnnLYk728uVL+Pn5wcfHJ91qKSH09PTQqlUrSCQS2Nvbw9jYOJuizN3q16+fblXLmTNnUt2wOmXKFMTExGDlypWYN28eAgMDYWBggN69e6N79+7KHmlEpD4vXrzA3Llz4e/vL2i+WCzGkCFDMH78eJiZmak5uvzl6NGjmDx5skpf0vSIRCKMGTMGkyZN4nFbIiIiolyGSbQ85vz585BIJCpjgwYNwrx587QUUfa4e/cufH19IZVK8ezZsyztZWRkhLZt20IikaBly5b5+k1MjRo18PHjxzSfX7lyBcWKFVMZ69WrF+rVq4cpU6YAAKKiorBu3Tps27YNBQoUwKhRozBw4EC+USfSgHPnzsHV1VXwBw0WFhaYPn06evbsyT6G2ejly5cYPXo0zp8/L3hNvXr1sHbtWvzyyy9qjIyIiIiIshOTaHnQkCFDEBgYqPyznp4eTp48iQoVKmgxquyhUCjw999/QyqVwt/fH+/fv8/SfoUKFYKDgwMkEgkaNmyY795UVqxYEXFxcWk+v3//PkxMTFTGGjRogHHjxqFv375ITk5WJiETEhKwdetWjB8/Hnv27EHPnj3VGjsRfSOTybBv3z4sXLhQ8NF1KysreHh4oEGDBmqOLv9ISUnBqlWrsGzZMsjlckFrTE1NsWjRIjg6Oqo3OCIiIiLKFkyi5UGPHj1Cy5YtVRr0t2vXDtu2bdNiVNkvJSUFERERkEqlCAgIQExMTJb2K1mypPKGz2rVquX5/l4KhQJly5ZN983e8+fPoaurqzI2depUDBkyBL/99hvkcjl0dHSQkpICPT09AMDXr18hFotz/IUWRHnNly9fsHTpUmzfvh0ymUzQGolEAhcXF5QsWVLN0eUfFy5cgLOzM16+fCl4TY8ePTB37lwUKFBAjZERERERUVYxiZZHubi4pEqa+fj4oHHjxlqKSL0SEhIQEhICqVSKkJAQJCcnZ2m/SpUqKW/4LFeuXPYEmcMkJyfD0tIyzeempqa4e/duqvHPnz/DzMws31XtEeUW9+7dw6xZs3D69GlB842MjDBmzBiMGDGCye9s8uXLF0ydOhVHjhwRvKZcuXJYv349atWqpcbIiIiIiCgrmETLoz5+/IgmTZrg69evyrHatWvj6NGjeT75ER0djYCAAEilUkRERAg+VpOWunXrQiKRwMHBIVV/sNwsOjoaVapUSfN5xYoVcebMmR8+k8vlePHihbKXT3JyMr58+QJzc/NUlWtEpHkKhQIhISGYNWsWnjx5ImhN2bJl4ebmhg4dOuT5SlxNUCgUOHDgAFxcXBAfHy9ojVgsxp9//okRI0bk+f9WExEREeVGTKLlYevWrcPcuXNTjeWn3itv3rzBkSNHIJVKVW4tzQwdHR3Y2NhAIpGgffv2ub5x/tu3b1G7du00n1tbW8Pb2zvV+PHjxzFlyhQULlwYNjY2GD9+PJYvX47Hjx+jSZMmGDt2rBqjJqKfkZSUhC1btmD58uWIjY0VtMba2hoeHh6oWrWqmqPLHx48eICRI0fi5s2bgtc0b94cK1euRPHixdUYGRERERH9LCbR8rDExETY2Nio9GUpU6YMzp49CwMDAy1Gph1PnjyBVCqFj48PHj58mKW99PX1YWdnB4lEAltb21z5z/PZs2fpHu+VSCRYu3atytjz58/Ro0cPtG/fHiVLloSXlxcsLS3x6NEjWFtbY//+/Zg4cSJGjx6t7vCJ6Ce8ffsWCxYsgJeXl6D5Ojo66NevnzJhTlmTlJSE+fPnY9OmTYLXFClSBCtWrICtra0aIyMiIiKin8EkWh4nlUrh7OysMubi4oJRo0ZpKSLtUygUuHnzJqRSKaRSKaKiorK0n6mpKTp06AAnJydYW1vnmuOM9+7dQ8uWLdN8PmLECLi6uqoc6woODsakSZNw7do1AMDhw4fh7Oys/Gfo7e2NFStWIDw8XK2xE1HmXLlyBa6urrh8+bKg+WZmZpg6dSr69eunvImXMi8sLAzjxo3Dhw8fBK8ZOnQoXFxcoK+vr8bIiIiIiEgINtzI47p06ZKqSfGqVavw8eNHLUWkfSKRCDVq1ICrqysuXbqEw4cPo2/fvihYsGCm9vv69Su8vLzQs2dP1K1bF66urvj777+R0/PTCQkJ6T7/Uf+39+/fq1SlvHjxQuVygpSUlBz/uonys9q1a8PPzw+rV68WdFQwOjoaLi4usLOzw9mzZzUQYd7WunVrhIaGokWLFoLXbNmyBR06dMD9+/fVGBkRERERCcEkWh6no6MDNzc3lbHo6GgsX75cSxHlLDo6OmjSpAkWL16Ma9euYefOnejSpUumb6h79+4dtm7dik6dOsHa2hqLFy/OsW98Mkqi/egNdp06dSCTydCyZUtMmDABQUFBKFSoEC5evIg3b94gMjKSN8sR5XA6Ojro2rUrwsPDMXbsWEEVTvfu3UPPnj0xaNAgwRcV0I8VK1YMe/fuhZubm+Dqvlu3bqFt27bYu3cvP6ggIiIi0iIe58wnBg0ahKCgIOWf9fT0cPr0afz6669ajCrnio2NRVBQEKRSKU6dOgWZTJal/apXrw6JRAJHR0eUKlUqm6LMmjNnzqBXr15pPvfx8flhz7TTp09j165dMDExQZcuXXD8+HGEhIRALBajcOHCWLRoERNpRLnI06dPMWfOHAQGBgqaLxaL8ccff2Ds2LEoUKCAmqPL265du4aRI0fi8ePHgtd06tQJnp6ema6eJiIiIqLMYxItn3j48CFatmypkgzq0KEDtmzZosWococPHz7g6NGjkEqluHDhQpb3a9y4MSQSCTp16gRzc/NsiDBzgoODMWDAgDSfnzt3TuWo5r8lJiYqL1OIiYmBt7c3FAoFHBwcYGFhoZZ4iUi9wsPD4ebmhjt37giaX7x4ccyYMQNdu3aFjg4L2zMrNjYWLi4ugi99AIBSpUph3bp1aNiwoRojIyIiIqL/YhItH5k5cya2b9+uMubr68u/hP+EFy9ewM/PD1KpFLdu3crSXnp6emjVqhUkEgns7e1hbGycTVEK4+/vjxEjRqT5/P79+zAxMfnhs6ioKNy6dQtyuRxly5ZFhQoVoKenp65QiUhDUlJSsHv3bixevBhfvnwRtKZu3bqYM2cO6tatq+bo8jY/Pz9MnToVX79+FTRfR0cHEyZMwLhx4/j7l4iIiEhDmETLRz58+IAmTZogJiZGOVanTh0cPXpU5QZGEubu3bvw9fWFVCrFs2fPsrSXkZER2rVrB4lEghYtWmjkFryDBw9i/Pjxacbz8OHDVOPv37/H0KFD8ezZM1hYWEAsFkNXVxelSpVCnz590KxZMzVHTUSa8OnTJyxZsgQ7d+6EXC4XtKZHjx6YPn26oAsL6MeePXsGZ2dnwbenAkCDBg2wdu1alClTRo2RERERERHAJFq+s2bNGsyfP19lbMOGDejcubOWIsr9FAoF/v77b0ilUvj7++P9+/dZ2s/c3BwODg6QSCRo0KCB2o5J7dq1C9OmTfvhM0tLS5w7dy7VeOfOnVG4cGF06tQJxsbGSEpKwosXL3D27FkEBARg3759cHBwUEu8RKR5t2/fhpubGyIiIgTNNzExwbhx4zB8+HBBFxZQaikpKVi2bBlWrlwp+BIBMzMzeHp68vcvERERkZoxiZbPJCQkwMbGBq9evVKOlS1bFmfPnuUbnmyQkpKCiIgISKVSBAQEqFT9ZUapUqXg6OgIJycnVK1aNVsrBjdt2oTZs2f/8FnDhg3h6+urMhYfH4+iRYviy5cv0NXVTbXm6NGjmDZtGm7cuJFtMRKR9ikUCgQGBsLd3R3Pnz8XtKZcuXKYNWsW7O3tWemcSefOncPo0aPx+vVrwWumTp2KcePG8Z85ERERkZqwE3A+Y2hoiOnTp6uMPX/+HNu2bdNSRHmLnp4eWrRogRUrVuDatWvYtGkT2rdvn+njma9evcK6devQpk0btGrVCitXrsTTp0+zJdaEhIQ0nxUrVizV2MePH1GkSBG8fPnyh2tq1qyZ5jMiyr1EIhE6dOiAM2fOYNq0aTAyMspwzZMnTzBo0CD07t0b9+7d00CUeU+TJk0QGhqK9u3bC5pvYmKCrl27Cj5+S0REREQ/j5Vo+ZBcLkf79u1x/fp15ZiZmRnOnTun1dsi87Lo6GgEBATAx8cHERERgo/opKVevXqQSCRwcHBA0aJFM7XH4sWLsWLFih8+GzJkCNzd3VWOkqakpGD+/PlYv349RowYgdq1a6N48eIwNjbG169fsWvXLkRFRcHPzy9T8RBR7hAVFYW5c+fCx8dH0HxdXV0MHDgQkydPRsGCBdUcXd6jUCiwZ88euLm5ITExMc15q1atgkQi+WGlMBERERFlDybR8qmIiAh0795dZWzYsGFwd3fXUkT5x5s3b+Dv7w+pVIorV65kaS8dHR00a9YMEokE7du3h6mpqeC1c+bMwYYNG374bPr06RgxYkSqCrovX75g586dOHXqFBISEqCrq4u4uDg8ePAAtWrVwtatWzOd1COi3OXSpUtwdXXF1atXBc03NzfH1KlT0bdvXyZ6MuHu3bsYNWoUbt++neqZk5MT1qxZo4WoiIiIiPIXJtHysQEDBiA4OFj5Z7FYjNOnT6NcuXLaCyqfefz4MaRSKaRS6Q9vw/wZ+vr6sLOzg0Qiga2tLQwMDNKdP2PGDOzYseOHz5YvX45u3bql+Ub3/v37ePz4MT58+ACxWIwGDRrA0tIyS/ETUe4jl8tx6NAhzJ8/H+/evRO0pmrVqvDw8IC1tbWao8t7EhMTMWfOHGzfvl05ZmlpibCwMBgYGKR5EU1cXBweP36M69evo1KlSqhXr56mQiYiIiLKU5hEy8cePHiAVq1aQSaTKcc6deqETZs2aTGq/EmhUODGjRvKhNqbN2+ytJ+pqSk6dOgAJycnWFtb/zAZNmHCBHh5ef1w/YEDB9C8efMsxUBE+cfXr1+xcuVKbN68GcnJyYLWdOrUCa6urihbtqyao8t7goODMX78eHz9+hVHjhxB9erVoaenl+b8rl274uHDhzA3N8fly5cxZswYzJs3T4MRExEREeUNTKLlcz+qRvL390f9+vW1ExBBJpPh/PnzkEqlOHr0KL58+ZKl/YoVK4bOnTtDIpGgdu3aylvbRo4cmWb/stOnT6NSpUpp7qlQKJR93RQKBXR1dXH//n0UL14cZmZmWYqXiHKvx48fY/bs2SpVzukxMDDAqFGj4OzsDGNjYzVHl7e8efMGkZGR6NKlS5oVaADQt29fXLp0Cdu3b0eTJk3w+vVrtG/fHtu3b0edOnU0GDERERFR7sckWj73/v17WFtbIyYmRjlWr149+Pv7K5MtpD1JSUk4deoUfHx8cOLEiXRv1BSiXLlykEgkkEgkmDdvHoKCgn447/bt2+k2AP+eRBOJRJDJZNDT04ONjQ3Gjx+Pbt26ZSlGIsr9Tp48iVmzZuHBgweC5pcoUQKurq5wdHTkf3t+wvffw2nZtm0bRo0ahYsXL6JmzZoAvt363K5dO6xZs4YVx0REREQ/iUk0wurVq7FgwQKVsY0bN8LBwUFLEdGPxMTEICgoCL6+vjh16pTKMdzMkMvliI+Ph6GhocpxT7FYjKdPn/5wTXpv2GJiYmBgYJDqMgIiyp+Sk5OxY8cOLF26FNHR0YLWNGjQAB4eHrCyslJzdHlfXFwcypQpA1dXV0yYMAEymQy6urp48OABOnXqhLVr18LW1lbbYRIRERHlKkyiERISEtC0aVO8fv1aOWZpaYnTp09DX19fi5FRWj58+ICjR49CKpXiwoULGc6vVKkS2rZtC0tLS8jlciQkJODz58+IiYlBfHw8kpOTkZKSgpSUFBgbG2Pp0qVp7nX9+nU8efIEYrEYxYsXR7ly5WBubp6dL4+I8pAPHz5g0aJF2Lt3L4T8lUMkEqFXr16YNm0ab/vNgt27d2P9+vU4evQoChcurPwQpEePHnj27Bn++usv5dzvzzKqbCMiIiLK75hEIwCAt7c3xo4dqzI2e/ZsDB8+XEsRkVAvXryAn58ffHx8cPv27VTPBwwYgHnz5kGhUEAulwOAyhtZkUgEHR2dNG/i/O7GjRvo168fRCIRihUrBl1dXejp6aFs2bLo27cvGjdunL0vjIjylJs3b8LFxQXnz58XNN/U1BQTJkzAkCFDWOGaCQEBAZg1axb++usv5e/3jRs3YuzYsbh8+TJq1KihrE77zt/fH7q6uujYsaO2wiYiIiLK0ZhEIwDfjva1a9cON27cUI4VLFgQ586dQ6FChbQXGP2UO3fuwNfXF1KpFM+fP0fFihVx5syZLO/7/v17dO7cGS1btkS7du0gk8mQkJCAJ0+eICgoCBcuXICPjw8TaUSULoVCgSNHjmDOnDl49eqVoDXly5eHu7s7jx7+pL/++gv9+vXD1q1b8csvv+DYsWOYNm0aVq5cicGDB6ea/+rVK/j5+WHt2rX49ddfcfDgQRgZGWkhciIiIqKci0k0UgoPD0ePHj1Uxv744w/MmjVLSxFRZikUCvz999+Ijo5Gs2bNoKenl6X9/vrrL/Tu3RuPHz/+4fO1a9fCy8srWxJ2RJT3xcfHY926dVi7dq3gC1Nat24Nd3d3VKhQQc3R5R179uzBlClTUKpUKVhYWKBt27aYOHFimsc2Y2NjsWbNGixfvhyenp7o16+fFqImIiIiyrmYRCMVAwYMQHBwsPLPYrEYZ86cgaWlpRajoqzIjh43ISEhmDx5Mk6fPv3DWzsPHz6MOXPm4OrVq1n6OkSUv7x8+RIeHh7w9/cXNF9PTw9DhgzBhAkTYGZmpubo8obo6Gg8e/YM1atXV/63QC6XQ0dHRznn+38n/vrrL6xevRoFChTAunXroKurm2ouERERUX7GJBqpuH//Plq3bq1y82Pnzp2xYcMGLUZF2hYfH49x48YhICAAw4YNQ40aNWBubg4jIyM8e/YMe/fuRbVq1bBw4UJth0pEudD58+fh4uKCmzdvCppfpEgRTJ8+HT179sywnyP9z86dO2FhYaHS8+x7Au358+dYvnw57t69iyVLlqBq1apISUlRVjLHxsbCxMREW6ETERER5QhMolEq06ZNw65du1TGjhw5gnr16mkpIsoJPnz4gN27dyM8PBwxMTEoWLAgoqOjcevWLfTs2RMeHh4wMDDQdphElEvJZDIcOHAACxYswMePHwWtqVmzJjw8PNCwYUM1R5c33LhxAzt37oSbmxtMTU2V44mJicqbPIcPH44ePXqoVDEHBgZi79696NixI3r37q2t8ImIiIi0jkk0SuXdu3ewtrZGbGyscqx+/frw8/PL8rFAyt0UCgXu37+PmJgY7Ny5E1WqVMGgQYNgaGio7dCIKI+Ijo7GsmXLsG3bNqSkpAha06VLF7i6uqJUqVJqji7v+PDhA6Kjo/Hrr7/iyJEj2LhxI+rUqQMPDw8A/6tQk8vl+PvvvxEeHo6JEyfC1dUV7u7uWo6eiIiISDvY5IJSKVq0KEaPHq0ydunSJQQEBGgpItKkpKSkNJ+JRCJUrlwZdevWxb179/DLL7/A0NBQ5fhvWhITE7MzTCLKo8zMzDB79myEhoaiZcuWgtb4+fnBxsYGy5YtE3xRQX4XFRUFe3t79OjRAwEBAbCwsMC4ceMAfOuZ9v1DMx0dHdSvXx+lSpWCvb09P0wjIiKifI1JNPqh4cOHo0SJEipj8+bNQ3JyspYiouySnJyM+Ph4JCUlISUlBTKZDHK5XPm9TS+J9n09APz999/KSwYyajotl8tRt25dTJw4EeHh4YKSbkSUv1WqVAl79+7Fzp07Ua5cuQznJyQkYMmSJWjWrBmOHDkCFtqnr3r16jh27Bju37+PjRs3wtHRERYWFpDJZMrf6XK5HMC3Y6CHDh1CxYoVMWzYMAAQXCVIRERElJfwOCel6eDBgxg/frzK2Jw5czB06FDtBETZYv/+/Th//jzMzc0hFothaGgIAwMDiMVilClTBhYWFmjQoEGG1QYODg7YsmULihcvnuHX/PjxI2rUqKH8c7FixdClSxdIJBLUqlWLlQ1ElK7k5GRs2bIFy5cvR0xMjKA1TZo0gYeHB6pVq6bm6HK/0aNHY8eOHfDz84OtrS2Abz3qdHV1ERcXhz///BNv3rzBmDFj0KxZM5V+aeHh4ahZs+YPb24mIiIiymuYRKM0yWQytGvXTuW2tEKFCuHcuXP8y3IuZm9vj7///hsNGzZETEwMEhMTkZSUhKSkJIjFYtSvXx9btmzJcJ/379/DwsIiw3kymQyXL1+Go6PjD5+XK1cOTk5OcHR0RMWKFX/25RBRPvL27VssXLgQXl5egirNdHR00KdPH/z5558oXLiwBiLMvYKDg2FgYIDmzZurjK9YsQLBwcHo2rUrBg8erPLswYMHmD17Nm7evAlXV1c4OTlpMmQiIiIijWMSjdIVHh6OHj16qIyNHDkSrq6uWoqIsur3339H1apV0/we1qxZE15eXtlWvaFQKDB58mTs378/w7k1atSAk5MTunTpgpIlS2bL1yeivOfq1atwcXHB5cuXBc03MzPD5MmTMWDAAIjFYjVHl7spFAp4enqiR48e+Pz5M1xdXVGzZk24urrCyMhIpQotKSkJnz9/Rp8+fXD37l0cPXoUVlZWWn4FREREROrDnmiULhsbG+XRju+2bNmCZ8+eaSkiyqqOHTvC0NAQb968AfDtmJRMJlP2OitevDiioqLSXP+9R86/KRQKKBQKyGQyZXXI915rFy5cgI+Pj6DYbty4gTlz5qB+/fro1q0b9u7di8+fP//kKySivK5WrVrw9/fHmjVrBB0pj46OhpubG9q0aYPTp09rIMLcSyQSwcjICOXLl0e3bt1QtmxZjBw5EkZGRioXDqSkpEBfXx93795FSkoKRo8ejV9++UXL0RMRERGpFyvRKEN3796Fra2tSvKkS5cuWL9+vRajIm15/fo1GjdujKJFi6JYsWIoXrw4mjdvjkGDBinnJCYm4sWLFwgMDMTixYuz1IBaLBajZcuWcHJygp2dHYyNjbPjZRBRHhEbG4s1a9Zg/fr1GV6M8p29vT1mz54t6MKC/OrKlSvo06cP4uLi8OjRI5XelXK5HDo6Ovj06RP69OmDX375BRMnTkTlypWVz4iIiIjyIibRSJCpU6diz549KmNHjx5F3bp1tRQRZdWXL18QGxsLsVgMXV1dFChQAPr6+hmue/z4MZo2baoy1rt3byxduvSH82/fvg1fX19IpVK8ePEiSzEbGxujXbt2kEgkaN68OY9lEZHSs2fPMGfOHAQEBAiaLxaLMXz4cIwbNw4FChRQc3S5V7du3SCXy7F9+3aYmpqqJMjGjRuHhw8fYuLEiWjdujWAbxVqenp62Lp1K7y9vXH48GF++EFERER5BpNoJMjbt29hbW2NuLg45VjDhg0hlUp5s2IuI5fL4efnh6CgINy6dQtv376FpaUl6tati2HDhqF8+fLprr916xbatGmjMjZ+/HhMnTo13XUKhQKXL1+GVCqFv78/Pnz4kKXXYW5ujs6dO0MikaB+/fqsfCAiAN96ebq5ueHOnTuC5hcrVgwzZsxAt27d+HskDY8fP8avv/6qUmW2Y8cObN68GUOHDkW/fv2gp6eHpKQk6Ovr49GjR6hSpQosLS0RFxeHzZs3o0OHDlp+FURERERZx78tkiDFihWDs7OzytiFCxdw/PhxLUVEmbVr1y5MnDgRX79+hZWVFaKjo2Fubo6bN2/C2toaly5dSnd9fHx8qrFixYpl+HVFIhHq16+PefPm4e+//8bevXvRrVs3mJiYZOp1fPr0CTt37oSjoyMaNWqEefPm4fbt24Ju7COivMvGxgYnTpzA/PnzUahQoQznv337FuPHj4eDg4Pgiwrym19//RUAsH37djRt2hTHjh3D/v370bp1a7Rt2xZ6enpQKBTKaub27dtj0KBBuH//PhYtWoQ+ffpg8uTJ2nwJRERERNmClWgkWFxcHJo2bapsSA8A5cqVw+nTp3msLhcpW7YsDh8+jIYNGwL41vNu1KhRCA0NxY4dO3Dw4EEcPHgwzeNNP7qxdevWrWjfvn2m4omPj0dwcDB8fX0RGhqqvOAgs3777TdIJBI4OjqyyTVRPvf582d4enpi165dkMlkgtZ069YNM2fOFHRhQX40fvx4rFq1CtWrV0dAQADKli2rcmPnpUuX0LFjR9SoUQM+Pj4oWLAg3rx5A29v71QfxhERERHlNkyi0U/x8vLChAkTVMbmzp2LwYMHayki+llFihTBw4cPVSo0ChcujMePH6NgwYIwNzfHs2fPYGpqmmqtQqFAcHAwBg4cqDKeXf3xvnz5goCAAEilUkRERGS5qqxevXpwcnKCg4MDLCwsshwfEeVOd+7cgZubG8LDwwXNNzY2xrhx4zB8+HAYGBioObrcJzIyEh07dkTLli0hlUpVniUlJUFXVxcTJ05ESEgIDh8+jCpVqiif/zvhRkRERJTbMIlGP0Umk8He3h63b99Wjpmbm+PcuXMwMzPTYmQkVL9+/VCiRAkMGDAAJiYm8PPzg1QqRVhYGHR1dVGoUCG8e/fuh9WFMpkMx44dw4gRI1TGL168iNKlS2drnFFRUfD394dUKsXVq1eztJeuri6aNWsGiUSCdu3a/TBBSER5m0KhQFBQEGbPno1nz54JWmNpaYlZs2ahbdu2TPz8R1JSElxcXNCzZ09YWVnhw4cPKFGihErftJ49e6Jnz55wcnLScrRERERE2YNJNPppZ86cQa9evVTGRo0aBRcXFy1FRD/jwYMHcHJygomJCeRyOZ4/f46DBw/CxsYGly9fhpubG44dO/bDtcnJyfDx8UlVjfj06VO1Hul99OgRpFIpfHx88Pjx4yztZWBgAHt7e0gkErRu3VrQjaRElHckJiZi06ZNWLlypcplOemxsbHBnDlzVCqq6H/u3LkDb29vTJ48GYaGhsrxunXrws7ODosWLVKZz2o0IiIiyq2YRKNM6dOnD06ePKn8s1gsRnh4OMqWLavFqEgouVyu7D/WvHnzNPuf/VdSUhL279+P6dOnK8e+X0qgCQqFAtevX4dUKoWvr69Kf77MMDMzQ8eOHSGRSNCkSRPo6upmU6RElNNFRUVh/vz58Pb2FjRfV1cX/fv3x5QpUwRdWJCffPjwAR06dIChoSGOHDkCMzMz7N27F+vXr4erqyvatm2rMl8mk2Hfvn3o1asXe6oSERFRrsIkGmXKnTt30KZNG8jlcuWYo6Mj1q1bp8Wo6Gf8+8jNv6VXIZCUlITt27fD3d1dOValShWEhYWpLc60yGQy/PXXX5BKpTh69Ciio6OztF/x4sXRuXNnSCQS1KpVi1USRPnE5cuX4erqiitXrgiaX6hQIUydOhV9+/aFnp6eeoPLZYYPH44TJ06gRo0aCAsLw+zZs9G3b1+UKlVKOUehUGDx4sVYuXIl6tWrh7Vr1/ISGCIiIso1mESjTJs8eTL27dunMnbs2DHUqVNHSxGREO/evcPevXvx4sUL1KlTB507d1b2CPv69StWr16NGTNm/HBtUlISNmzYgIULFyrHmjdvjgMHDmgk9rQkJSXh5MmTkEqlCAoKQmJiYpb2K1euHJycnCCRSFChQoVsipKIciq5XA5vb2/Mnz8fb9++FbSmatWqmDNnDpo2barm6HKX8+fPIyEhAYaGhmjUqJHKs5SUFFy+fBldu3ZVfghnamqKRYsWwdHRUQvREhEREf0cJtEo0968eQNra2vEx8crxxo1agQfHx9W8eRQcXFxcHV1xeHDh9GwYUNERkbC1tYW69evh7GxMR4+fAhra+s0j0kmJydj+fLlWLFihXKse/fuWLlypYZeQcZiYmJw/PhxSKVSnDlzBjKZLEv71axZExKJBI6OjihRokQ2RUlEOVFMTAxWrlyJTZs2ITk5WdCaDh06wM3NjdVUGZDJZIiNjUWrVq3w+vXrVM979uyJuXPnwsTERAvREREREQmT+iwXkUDFixfHqFGjVMbOnz+PoKAgLUVEGXn27Bn8/f1x+/ZtHDx4ENeuXcPLly8xYMAAAEB8fDwMDAzSXC8SiZCQkKAyVqxYMbXG/LMKFCiAbt26Ye/evfjnn38wb9481K9fP9P7Xb9+HXPmzEG9evWU+37+/Dn7AiaiHKNAgQKYOXMmTp8+DXt7e0FrAgIC0Lx5cyxatEjwRQX5ka6uLsaPH//DBBoAeHl5wd7eHteuXdNwZERERETCMYlGWTJy5EgUL15cZczDw0PwJ/ikWdHR0dDV1YWRkRHi4+NRuHBh+Pj44OPHj3B2dkZiYmK6PX50dHRSJdH++/3PSSwsLDBo0CD4+/vj/PnzmDFjRqZv11MoFIiMjMSUKVNQq1YtDBw4EP7+/iqVmESUN5QrVw47duzA/v37UalSpQznJyUlYeXKlbCxsYGPjw9Y5K9KJpNh586dOH78eLrzHj9+DAcHB6xfv16l5yoRERFRTsEkGmWJsbExpk6dqjL2+PFj7NmzR0sRUXpEIhGMjY0RFRUFIyMjyGQymJmZYffu3Xj69Cl69eqV7pHFHyXRclolWlrKli2L0aNHIywsDKGhoRgzZgzKlCmTqb2Sk5Nx4sQJjBgxAjVr1sSYMWMQFhbG5DFRHtOiRQuEhIRgzpw5MDMzy3B+VFQURo8ejS5duuDq1asaiDB3kMlkOHTokKC5ycnJ8PDwQJ8+fQT3pyMiIiLSFCbRKMt69OiRqrpnyZIlWb4tkbJfyZIl0b59e/zzzz8Avh2vkcvlKFWqFNavXw+RSJTucU4AuaoSLS1Vq1bF9OnTcf78efj7+2PQoEEoXLhwpvaKi4vD4cOH0bdvX9SpUwczZszAxYsXWUVBlEeIxWIMHToUERER6N+//w9vNf6vS5cuoUOHDpgwYQITQQD09fXh4+ODYcOGCV5z+vRp2NraIjQ0VI2REREREf0cXixA2eLUqVP4/fffVcacnZ0xc+ZMLUVEaUlKSkJycvIPmzd/+vQJL168QM2aNdNcP3jwYJUjOZGRkShXrpw6QtWo5ORkhIeHQyqVIjAwELGxsVnar0yZMnB0dIREIkHVqlWzKUoi0rabN2/C1dUVf/31l6D5BQoUwIQJEzB06FCIxWI1R5fzhYaGYvz48fjw4YPgNcOGDcPMmTOhr6+vxsiIiIiIMsYkGmWb3r174/Tp08o/6+vrIzw8PNNH5kg9FApFmrenyuXyDKss/vt9fvDgAYyNjbM1Rm2Lj49HcHAwpFJpthzTrFKlCiQSCbp06cIb/IjyAIVCgaNHj2LOnDl4+fKloDW//vorZs+ejTZt2uT7G6zfvn2LsWPH4syZM4LXVK9eHevXr0fFihXVGBkRERFR+phEo2xz+/ZttGnTRqWhspOTE9asWaPFqOhn7Nq1C1euXMGyZcvSnCORSHD+/HkA3yos7t27p6nwtOLLly84duwYpFIpIiMjs9wwvF69enBycoKDgwMsLCyyKUoi0oaEhASsW7cOa9asSXXUPS2tWrWCu7t7vk8GyeVybNy4EQsXLhT8QYWRkRE8PDzQu3fvfJ+IJCIiIu1gEo2y1cSJE3HgwAGVscDAQNSqVUtLEdG/ffz4EU+fPoWhoSH09fVhYGAAfX196OjowMLCAlOnTsWDBw/g4+OT5h7t27dXNswuX748wsPDNRW+1kVFRcHPzw9SqRTXrl3L0l66urpo1qwZJBIJ2rVrB1NT02yKkog07dWrV5g7dy58fX0FzdfT08PgwYMxceJEQRcW5GXXrl3DyJEj8fjxY8FrOnXqBE9PTxQsWFCNkRERERGlxiQaZauoqCg0bdoU8fHxyrEmTZrA29ubnxrnAJs2bcK8efNQvXp1JCUlQSQSKf/P1NQUYWFh6NevH1auXJnmHq1atcLdu3cBfPveHj58WFPh5ygPHz6Er68vfHx8furN348YGBjA3t4eEokErVu3Zt8folzqwoULcHFxwY0bNwTNd3Z2xowZM/L9fx9jY2Ph4uICLy8vwWtKly6NtWvXomHDhmqMjIiIiEgVb+ekbFWiRAmMHDlSZezcuXMIDg7WUkT0b8+ePUPBggXRr18/DBw4EL169YKTkxM6dOiAjh07okSJEhk2vv73kaVixYqpO+Qcq0KFCpg0aRLCw8MRGBiI4cOHZ/qm0sTERBw5cgSDBw+GlZWVcl+ZTJbNUROROjVs2BCBgYFYsmQJihQpku5cc3NzjB07NstHxPMCExMTLF++HOvXrxdclfvy5Us4OTlh6dKlSElJUXOERERERN+wEo2yXWxsLKytrfHu3TvlWIUKFRAWFsabybRs8+bN+Oeff7BgwYIfHoPp168fSpQoAU9PzzT3qFOnDt68eQMAGD58OGbPnq2ucHMdmUyGc+fOQSqV4tixY4iOjs7SfsWLF0eXLl0gkUhgZWWV76tViHKT6OhoLF++HFu3bv1hkmfu3LkYMGAAdHV1tRBdzvXs2TM4Ozvj8uXLgtc0bNgQa9euRenSpdUYGREREREr0UgNTExMMHXqVJWxhw8fYu/evVqKiL5r1aoVOnTogLi4OADfGjv/+/87OjrCwcEh3T1YiZY2XV1d2NjYYOnSpbh27Rq2bdsGBwcHGBgYZGq/N2/eYNOmTWjfvr1y34cPH2Zz1ESkDmZmZpg1axZOnjyJ1q1bqzz77bffmEBLwy+//AIfHx+MGzdO8AcHFy5cgK2tLY4eParm6IiIiCi/YyUaqUVKSgrs7OyUvbMAoHDhwoiMjMz3TZRzu19//RWJiYkAgNWrV6Nr165ajijn+/r1K4KCgiCVSnHmzJksH9O0srKCRCJBly5dUKJEiWyKkojUKTQ0FLNmzcKjR4/g7e2Nhg0bQk9P74dz5XI5dHT+9zlnXFwc7ty5g7t376J3796aClnrIiMjMXr0aERFRQle8/vvv2POnDkwNjZWY2RERESUXzGJRmoTFhaGvn37qoyNGTMG06dP11JEBAAKhSLNT/dlMlm6lRFyuRxlypRR/vngwYOwsbHJ9hjzsvfv3+PIkSOQSqW4dOlSlvYSiUSwtraGRCJBx44deVMdUQ6XnJyM0NBQtGvX7ofP//07+Hsi7cqVKxg/fjy+fPkCXV1dvHz5Env37k1V3ZZXffr0CZMmTcLx48cFr6lYsSLWr1+P6tWrqzEyIiIiyo94nJPUplWrVmjWrJnK2KZNm/Dy5UstRUTAt8TLf3Pn3yuj5s2bh7/++ivNtcnJySp/5nHOn2dhYYFBgwbB398ff/31F6ZPn47ffvstU3spFApERERg8uTJsLKyUu7779txiSjnEIvFaNeuXZqXCYSHh6Nt27YIDw+Hjo4Obt++jSVLlsDAwABBQUG4dOkSxo0bB29vbw1Hrj3m5ubYunUrFi5cKPho/IMHD9ChQwds3ryZFzcQERFRtmIlGqnVzZs3YW9vr/KX2G7dumHVqlVajCr/Sq8KDQAWLFiADh06oFatWj98Hh0djSpVqij/fPv2bVY/ZZPbt29DKpVCKpVmOdFsYmKC9u3bw9HREc2aNeOFHkS5iIeHB1atWoWePXvCwMAAjx8/xqRJk9C0aVMAwLFjx9C/f3+8fPkShoaGWo5Ws+7evYtRo0bh9u3bgtfY2tpi+fLlsLCwUGNkRERElF8wiUZqN2HCBHh5eamMBQUFoWbNmlqKKH+Ljo7Gw4cP8fHjRyQlJaFQoUIoW7YsLCwsMnxD9u7dO2WCTV9fH48fP+aNkdlMLpfj8uXLkEql8Pf3x8ePH7O0X+HChdG5c2dIJBLUq1dPpc8SEeUc//6QQ6FQYN68eXj8+DGqVKmCKVOmKOf9+eefePDgAby9vaFQKPLdv9MJCQnw8PDA9u3bBa8pWrQoVq1ahRYtWqgxMiIiIsoPmEQjtXv9+jWaNm2qcqujtbU1Dh06xASMhr179w7z5s1DcHAw3r59C4VCgYSEBBgaGqJt27ZYtGiRSs+z/3r+/DkaNWoEAChbtizOnz+vqdDzpeTkZJw9exZSqRSBgYHKW1Uzq0yZMnB0dIREIkHVqlWzKUoiyk5JSUnQ19dHQEAA3Nzc4OXlhQoVKgD4Vt3t5uYGKysruLi45OvbPU+cOIEJEybg06dPgteMHDkS06ZNY3UuERERZVr++viStKJkyZIYMWKEylhkZCRCQkK0FFH+NXXqVNy+fRsrV67E8+fP8f79e3z48AFhYWGIjo6Gs7MzPnz4kOb6fydC2Q9N/cRiMVq3bo3Vq1fj+vXr2LBhA+zt7TP9BvDFixdYs2YNbG1tlfs+f/48m6MmoqzQ19cHAFy5cgUpKSnKBBoA7N+/HykpKWjdujV0dXV/2O/r9u3b8PX1xZMnTzQVslbY29sjNDT0py63Wb9+PRwcHPD48WM1RkZERER5GZNopBGjRo1K1Y/Ew8MDKSkpWooof/L398fWrVvRpk0bGBoaQi6Xw8DAAFZWVjhy5AguXLiAz58/p7n+3w3rixcvroGI6TsjIyN07twZO3bswNWrV+Hp6Qlra+tMV3PeuXMHCxYsQKNGjdC5c2ds374d79+/z+aoiSiz2rRpA3Nzc2Wl1apVq3D69GmVS3tEIhHkcjkAICoqCkuWLEGjRo2wadMmVK9eHTNmzNBa/JpQokQJ7N+/HzNmzICenp6gNdeuXYOdnR28vLx46QARERH9NCbRSCMKFCig0tMF+HZ71r59+7QUUf5kaWmJ48ePIzY2FgCUvXTkcjk+fPgAhUIBY2PjNNcziZYzFCpUCH369IG3tzcuX74MNze3LPUYvHTpEmbOnIk6deoo942JicnGiInoZ9WqVQulS5eGpaUlHB0dMWPGDAwdOhQDBgwAAGXyTEdHB3K5HBs3bsThw4exYcMGBAQE4Pz584iMjMSzZ8+0+TLUTldXF6NHj4afnx8sLS0FrYmLi8OECRMwatQoREdHqzlCIiIiykvYE400JiUlBba2trh//75yzMLCAhERETA1NdViZPnH4cOH4e7uDltbW9SrVw+lSpWCTCbDixcvsHr1ajRs2BCrVq1SHif6r5MnT6JPnz4AvjW3HjdunCbDpww8ePAAvr6+8PHxyfJRLgMDA7Rt2xYSiQStWrVK82eCiNTr8uXLeP36NSpUqKDSy1Amk0EkEkFHRwe+vr7YvHkzWrZsiSlTpkAul0NHRwclS5bEypUr0aNHDy2+As35+vUrZsyYgcOHDwteU7ZsWaxbtw716tVTY2RERESUVzCJRhoVEhKC/v37q4yNGzcOf/75p5Yiyn+OHj2KtWvX4saNG4iNjYVMJkPJkiUxYMAATJ06Nc1G1XK5HMePH8fQoUMBAMuWLUOvXr00GToJpFAocPXqVfj6+sLPzw9v3rzJ0n5mZmbo1KkTJBIJGjdunK+bmRPlBO/evUPRokUBALGxsZgxYwY+ffqEhQsXolSpUgCA8+fPY9iwYdi9ezdq1aqFpKQkhIaG4tmzZ3ByclKuz4u8vb0xffp0ZdV1RnR1dTF58mSMHj2av9+IiIgoXTzOSRpla2ubqgnwhg0b8Pr1ay1FlL8oFAp06tQJgYGBeP78OT58+IAvX77gzp07mD59erpvHmQymcotaLxYIOcSiUSoXbs2Zs+ejUuXLuHgwYPo3bs3zMzMMrVfdHQ09u3bh+7du6N+/fpwd3fHtWvX2E+ISAuuXr2KSpUq4c2bN1AoFJDJZLhx4wYaNGigTKAB33pgVqlSBSYmJoiJicH48ePRp08fBAUFoWLFiliwYIEWX4V6devWDcHBwahdu7ag+TKZDIsWLUKPHj349xEiIiJKF5NopFEikQhubm4qzdATExOxaNEiLUaVf/y3Cf3PNKUXi8WIiIhQ/pk90XIHXV1d2NjYYOnSpbh27Rq2bdsGBwcHGBgYZGq/N2/eYOPGjWjXrh2aNWuGpUuX4tGjR9kcNRGlpVatWnj06BGKFy8OkUiEL1++ICIiAnZ2dso5R48exfXr12FlZYWKFStCJpPhzJkz2L9/P3x8fHD27FkEBgbi6tWrWnwl6lWuXDn4+fnB2dlZ8H/rzp07h9atWyMwMFDN0REREVFuxSQaaVyNGjXQrVs3lbFDhw7hxo0bWoqIMpKSkoKXL1/i+PHjyjFWouU++vr6aNeuHTZu3Ihr165h5cqVaNmypfKCiZ/16NEjLF26FDY2Nsp9o6KisjlqIvqvwoULK/93sWLF0KFDB/zzzz8AgPv378PT0xPFixfHwIEDAQCvXr1CqVKl0LZtWwCAlZUV7t69i2vXrmk8dk0Si8WYOXMmvLy8BH/w8+XLFwwZMgTTpk1TuUyHiIiICGBPNNKSV69eoWnTpkhMTFSO2djYwMvL66eqo+jnvXv3DklJSTA0NISBgQH09fXTbRovk8lw7tw5jB07Vpkg0dXVxdOnTzOdfKGc5d27dzh69Ch8fHxw+fLlLO0lEolgbW0NiUSCjh07omDBgtkUJRGlZefOnRgzZgzq16+PFy9ewMrKCsuWLUPhwoWxcuVKXLhwAZcuXVJeHrNjxw4cPHgQO3fuRN26dQF8O+6fl//7++HDB0ycOBHBwcGC11SuXBnr169XudCBiIiI8jcm0UhrFi5ciFWrVqmM7d69G7a2tlqKKH+YMGECvLy8VMZEIhEMDQ1haGiIli1bYu3atQCAPXv2YO7cuYiOjlaZX7x4cWXVA+UtT58+hZ+fH3x8fHDv3r0s7SUWi9G6dWtIJBLY2dnByMgom6Ikov+KjY3FoUOHYGVlpUyM7d69G3v37oWtrS369OmD0aNHIyQkBG3btsXAgQPRtm1b6OnpKfdISEjA0aNHER0djcGDB2vrpaiNQqHAjh074O7ujqSkJEFr9PX1MWvWLAwcODBPJxmJiIhIGCbRSGtiYmJgbW2N9+/fK8cqV66MkJAQlb/UU/YaMWIE/P3903zetm1bbN++HQAwffp07Ny5M9UcKysrlaOdlPcoFArcuXMHPj4+8PX1xcuXL7O0n4mJCdq3bw+JRIJmzZrx33EiNfpeVbZlyxasXbtW5UMPJycnjB07Fi1btlRZs3z5cty6dQu7du2CkZER/P390bx5cw1Hrhm3b9/GiBEjcP/+fcFr7OzssHz5cpWjtERERJT/8CwWaU2BAgUwefJklbF79+7hwIEDWooof0hISEj3uaGhofJ/v3nz5odzeKlA3icSiVC1alXMnDkT58+fh6+vLwYMGABzc/NM7RcbGwtvb2/06dMHderUwcyZM3Hp0iXe8EmkBt8rpr7fznnnzh0AwNu3bxETE6P8MwCsWrUKAwYMQHh4OCQSCWxsbDBx4kRUqVIFAHDjxo081+uwatWqOH78OPr16yd4TXBwMGxtbREeHq7GyIiIiCinYxKNtOr3339HxYoVVcY8PT0RExOjpYjyvp9Jor19+/aHc3ipQP6io6ODhg0bYsGCBbhy5Qp2794NJycnGBsbZ2q/Dx8+YPv27ejcuTMaN26MBQsWqLypJ6LsYWNjg/bt26Nhw4YYNGgQunfvjsTERFSvXh1XrlxBz549cf78eYwYMQKHDx/G/fv3YWBggObNmyt/z9++fRtWVlYYO3asll9N9jIyMsKiRYuwZcsWwb0b37x5g549e2L+/PlITk5Wc4RERESUEzGJRlqlp6cHV1dXlbF3795h/fr1Wooo78soifbvvlWsRKP/EovFsLW1xZo1a3Dt2jVs2LAB9vb2EIvFmdrv+fPnWL16NVq3bq3c9/nz59kcNVH+NXPmTNy/fx8lS5ZEp06dsHr1ajRr1gwBAQE4dOgQqlSpgiZNmuDp06c4cOAA2rRpg8aNGyvXd+/eHRcuXMD9+/dRokQJ7N69W4uvJvt16NABoaGhKq85PQqFAmvWrIGjoyOePHmi3uCIiIgox2FPNNI6hUKBHj16ICIiQjlWsWJFBAUFsRG5GrRr1w7Xrl1L8/mIESPg5uYGhUKBcuXK/fDT9oULF6J///7qDJNymc+fP+PYsWOQSqU4d+5clo9pNmjQABKJBA4ODihSpEg2RUlE/+bt7Q1XV1cUKlQIFhYWKF68OGbMmIHy5csr58hkMujq6gIAtmzZguHDh2PAgAHYsGEDDAwMtBV6tpPJZFi9ejWWLl0KmUwmaE2BAgWwYMECdO3aVc3RERERUU7BSjTSOpFIBDc3NwBAwYIF4erqitDQUOjr62s5srxJ6HHOz58/p3lchZVo9F+FChVCnz594O3tjUuXLsHNzQ01a9bM9H4XL17EjBkzULt2bfTt2xfe3t485k2Uzbp164bbt2+jUqVKCAoKwq1bt1Qa5ysUCmUC7e7du4iIiEC1atXQvXv3PJVAAwBdXV2MHz8eUqkUZcuWFbQmJiYGY8aMwZgxY/D161c1R0hEREQ5AZNolCPUrFkTq1evxvnz5zF8+LIKsmYAAIrBSURBVHCIxWLlX9wpewlNoqV1lBNgTzRKX8mSJTFixAgEBQXhzJkzmDhxIsqVK5epvWQyGcLCwjB27FhYWVkp901KSsreoInyKblcjqdPn6J3796oUqUKTp06pXz2/YKCEydOoFOnTvj8+TM2bNiADh065NlLQerXr4/g4GB06dJF8JrDhw/D3t5e5RZUIiIiypt4nJNyjO8/it//0k7qUbt27TQvDACA2bNnY/jw4Thz5gx69er1wzmXLl1CqVKl1BUi5UEKhQJXr16FVCqFn59fuj+DQpiZmaFTp06QSCRo3Lgxk+5EmaBQKBATEwNPT080bNgQnTp1SjXH09MTBw4cQJUqVbB3714tRKkdCoUCBw8exMyZMxEXFydojZ6eHqZOnYpRo0ZBR4efUxMREeVFTKJRrqNQKJhoy4IqVaogOjo6zeff+50dOnQI48aN++Gcp0+fZrqRPJFMJsO5c+fg4+ODgICAdH8ehShevDgcHR0hkUhQs2ZN/n4gyoSUlBTo6ekpe6BFRUVh9erVWLlyJVavXg1HR0eYm5ur9EgDvlWyJScn57njnd89evQII0eOxPXr1wWvsbGxwerVq9n6gIiIKA/ix2SUqyQlJfEYVxbFx8en+/z7cc60KoWKFCnCBBplia6uLmxsbLBs2TJcvXoVW7duRadOnTLdB/HNmzfYuHEj2rVrh2bNmmHp0qV49OhRNkdNlLfp6ekB+Pbv54cPH9CoUSNcuHABa9aswaBBg2Bubq58/p1cLsfnz5/RokUL7N69W3BD/tykfPnyOHr0KEaMGCF4TXh4OFq3bo3g4GA1RkZERETawCQa5Qrv37/H5MmTYWNjg+7du8PFxQVfvnzRdli5jkwmS/OygO8y6onGfmiUnQwMDNC+fXts2rQJ169fx4oVK9CiRYtMH4V69OgRli5dChsbG+W+6fX3I6LUTE1N0bt3b+zZswcDBgwAgB/2QNPR0cG8efPw7Nkz/Pnnn2jbti3++usvTYerdmKxGG5ubti3bx+KFi0qaM2nT58wYMAAzJw5E4mJiWqOkIiIiDSFxzkpx1uwYAHmzp2LChUqYOzYsXj37h3OnTsHHR0d+Pr6aju8XCUuLg4VK1ZMd87OnTthZ2eHESNGwN/fP9Xzli1bYt++feoKkQgA8O7dOxw5cgRSqRSXL1/O0l4ikQhNmzaFRCJBhw4dULBgwWyKkij/SklJwd27d9G2bVvI5XKVZ507d4aLiwvKlCmjpejU5/379xg/fjzCwsIEr6latSrWr1+PypUrqzEyIiIi0gQm0SjHevfuHYYOHYqLFy/C09MTffr0UXleunRpREZGwtLSUksR5j4fP35EjRo10p3j5eWFZs2aQSKR4Pz586me9+zZE8uXL1dXiESpPH36FL6+vvDx8cH9+/eztJdYLIatrS0kEgns7OyUlZdE9PO6dOmCixcv/vCZgYEBnJ2d4ezsDCMjIw1Hpl5yuRxbt27F3LlzM6zu/s7AwADu7u7o168f+zYSERHlYjzOSTnW5cuX8eLFCwQFBSkTaAqFAgqFAlKpFCVLltRyhLlPQkJChnN4nJNyGktLS4wbNw6nTp1CSEgIRo0alenbYZOTk3H8+HH88ccfqFmzpnLflJSUbI6aKO9KSUmBr69vmgk0AEhMTMSyZcvQrFkz+Pn5/fA4aG6lo6ODYcOG4dixY6hQoYKgNYmJiZg2bRqGDh2Kz58/qzdAIiIiUhsm0ShHUigUOH78OJo2bYqaNWsqx0UiEV68eIE9e/bA2tqaVWg/6WeSaGldLMDbxkhbRCIRqlWrBhcXF1y4cAG+vr4YMGCAsuH5z4qNjcWhQ4fw+++/o06dOpg5cyYuX76cp97sE6mDrq4uYmJiYGpqmuHcV69eYeTIkZBIJLhx44YGotOcGjVqICgoCL///rvgNYGBgbC1tcW5c+fUGBkRERGpC5NolCOJRCIUKVIE165dA/Ctl1dsbCzWrFmDmjVr4vXr15g4caKWo8x9hCbRYmJiEBcX98PnrESjnEBHRwcNGzbEggULcOXKFezevRtOTk4wNjbO1H4fPnzA9u3b4eDggMaNG2PhwoW4e/duNkdNlDeIRCL07dsXERER+P333wUdT7xw4QLatm2LKVOm4P379xqIUjOMjY2xZMkSbNy4EWZmZoLWvH79Gt26dcPixYtZBUtERJTLsCca5Wi1a9eGqakpSpYsiYsXLyImJgazZs3C6NGjtR1arnT58mU4ODikO+f8+fNITk6GjY3ND5/7+fmhQYMG6giPKMvi4uIQHBwMHx8fnDx5MstvUKtWrQqJRAJHR8c82SSdKDtcv34drq6uuHDhgqD5ZmZmmDhxIgYNGgSxWKzm6DTnxYsXcHZ2TveY63/Vq1cP69atQ9myZdUYGREREWUXJtEoR3v48CGuXr2KmzdvonTp0hg8eLDymUwmg66urhajy30iIiLQvXv3dOdcvXoVDx48QNeuXX/4/Ny5czxGS7nCp0+fcOzYMUil0mw5OtWgQQNIJBI4ODigSJEi2RAhUd6hUCjg7++POXPm4PXr14LWVKhQAXPmzEGrVq3UHJ3mpKSkYOXKlVi+fHmqW0vTYmpqisWLF6NLly5qjo6IiIiyikk0ynXkcjl0dHSUfYv+fYxEoVDw1qt0hIaGol+/funOuXv3LsLCwjBy5MgfPn/06BFvNKRc59WrV/Dz84NUKs1yXyZdXV20aNECEokEbdu2RYECBbIpSqLcLy4uDuvWrcPatWuRmJgoaE2bNm0we/ZslC9fXs3Rac758+fh7OyMV69eCV7Ts2dPzJ07FyYmJmqMjIiIiLKCPdEox/vy5Qs8PDxSjYtEIohEIly/fh0hISGIioqCTCbTQoS5h9CeaGndzGlmZsYEGuVKpUqVwsiRI3HixAmcPn0aEyZMQLly5TK1l0wmQ1hYGMaMGQMrKyuMGDECJ06cQHJycvYGTZQLGRsbY/LkyTh79myG7QO+CwkJQatWreDh4YHo6Gg1R6gZjRo1Qmjo/7V332FRnN/bwO/dpXcEFXuvsWML2BuKqCwxar4x0ZgYFWOPJhawa+xdTGyxxVjCAHYRK6LG2FssiS0WFKTXLfP+4ev+RNoAu9T7c11ckZl5njlrRHfPnPM8IfDw8JA8ZteuXejWrRtu3LhhwMiIiIgoL5hEo0LP1tYWsbGxOHHiBIC3C4oDwIkTJ+Di4oKOHTti0qRJ8PDwgI+PT0GGWuhll0RTKBQwNjbOdGdObipAxUGtWrUwceJEnD17FgcOHMA333yD0qVL52qu5ORkBAUFYfDgwWjUqBEmTpyIsLAwyW1cRMVVxYoV8fPPP+OPP/5A/fr1s71epVLBz88Pbdq0we+//14sfoZsbW3x888/Y/HixZIfQD18+BAeHh5Yt25dsfg9ICIiKm7YzklFQlJSEszNzQEAKSkp+Prrr7Fz504MGjQIEydOhEKhgCiKaNq0Kc6fP49GjRoVcMSF044dOzBx4sRMz1taWuL+/fsYNWoU/vjjj3TnXV1dsWfPHkOGSFQgNBoNwsLC4O/vj4MHDyIuLi5P8zk5OcHT0xNKpRINGjRgmzmVaBqNBr/99ht++uknREVFSRrTqFEjzJkzB82bNzdwdPnj/v37GDFiBG7fvi15TPv27bFixQo+wCIiIipEWIlGRcK7BFpSUhJGjBiBhw8f4ty5c9i0aRPq1auH2rVro06dOvDw8MDRo0cLONrCK7tKtHdPyjNr5+QbeSquFAoF2rZti2XLluH69evYuHEjPDw8YGJikqv5Xr58iXXr1sHNzQ3t2rXD0qVL8fDhQz1HTVQ0KBQKfPHFFwgLC8M333wjaVOg69evo3fv3hg5cqTkjQoKs1q1aukqX6U6deoUunTpguPHjxswMiIiIsoJJtGoSHn27BkuXryIqVOnomXLltBqtbp2h4sXL+LWrVtwdXUt4CgLL6lJtMzaOcuWLav3mIgKG1NTU/To0QO//PILrl+/juXLl6N9+/a6VvKc+ueff7B48WK4urrC3d0d69evzzRRTVSc2draYtasWQgJCUH79u0ljREEAW3atMHy5cslretZmJmammLWrFnYtm2b5B1+IyIiMHDgQEyfPh2pqakGjpCIiIiywyQaFSm3b9+GmZkZ3N3dAbxdH00ul+PPP//EmDFjdBVplDFWohHljI2NDfr164edO3fiypUrmDNnDpydnXM939WrVzF9+nQ0a9ZMN29xWUidSKratWvjt99+w5YtWyRt8JGUlISFCxeiffv2OHDgAIr6SiSdO3fGsWPH0K5dO8lj1q9fj549e+LBgwcGjIyIiIiywyQaFSm9e/fGvXv3sH37doSFheHy5cv4/PPP8fHHH6NGjRr4/fffUapUqYIOs9BKSkrK8ryZmRlSUlIQExOT4XlWolFJVrp0aQwZMgT79u1DWFgYfvjhB9SqVStXc4miiNDQUEyYMAENGzbUzVvUK22IpJLJZOjatStOnjyJadOmwdLSMtsxT58+xdChQ9GvXz/cuXMnH6I0nLJly+K3336Dj48PjI2NJY25desW3NzcsHPnziKfSCQiIiqquLEAFTmCIGDt2rWIiIjAq1evULt2bcyePRtt2rQB8HaHLyMjIwDgYt4fmDZtGjZt2pTpeWdnZ6xduxatWrXK8PyePXvYLkv0HlEUcefOHfj7+yMgIADPnz/P03xWVlbo0aMHlEol2rRpo/u7jKi4Cw8Px08//YRdu3ZJul4ul+PLL7/ExIkTYW9vb+DoDOvatWsYMWIEHj16JHlMr169sGjRItjY2BguMCIiIkqHSTQqkpKTk/Hw4UOYm5vrWkHi4+NhZWUFURSZPMvE999/j99++y3T823atMEPP/yAXr16ZXj+9OnTqFmzpqHCIyrStFotLl68CEEQEBQUhOjo6DzN5+joiF69esHLywvNmjXj32tUIly9ehU+Pj64dOmSpOttbW0xceJEfPnll0U66RwfH49p06Zh9+7dksdUqFABa9euRYsWLQwYGREREb2PSTQq8pYtW4Zdu3ahRo0aSElJga2tLaytrVG+fHlYWlpi4MCBsLW1LegwC4XvvvsO/v7+mZ7v0qULBgwYkOnuYX///TefehNJoFKpcOrUKQiCgMOHD2fbSp2dypUrw9PTE0qlkus+UrGn1Wrh7++PuXPnSt6Eo06dOpg1axbatm1r4OgMKyAgAD/88APi4uIkXS+XyzFu3DiMGTOmSCcRiYiIigquiUZFXmpqKq5fv44VK1ZAqVRi8ODBKFWqFF68eIFRo0bhhx9+KOgQCw0pGwtk9oHFzMwM1tbWhgiLqNgxNjZGly5dsGbNGty4cQNr165F165dc/0h98mTJ1i5ciU6duyIzp07Y82aNfjvv//0HDVR4SCXy9G3b1+EhoZi9OjRktYMu3v3Lvr374+vvvoqR22RhY2npyeCg4Mlb2Ci1WqxZMkS9O3bF8+ePTNwdERERMQkGhV5Q4cOhZOTE/766y98/vnnqFixIiwsLBAYGIhOnTph6NChBR1ioSElifbq1asMz5UtW5btZES5YGFhAU9PT2zZsgXXrl3DggUL0Lp161zPd+fOHcydOxctW7bUzfvmzRs9RkxUOFhaWuLHH3/E6dOn0b17d0ljjhw5gvbt22P+/PmIj483cISGUblyZfj7+2PMmDGS/939888/0blzZ+zfv9/A0REREZVsbOekYmHVqlVYvXo1vv/+eyxcuBAAMHPmTPzvf/8r4MgKl759+yIsLCzT8wMHDoRarcbvv/+e7lyLFi0QGBhoyPCISpTnz58jICAAgiDg1q1beZrLyMgI7du3h1KphJubm6SdDomKmjNnzsDX1xd3796VdH3ZsmUxZcoUfPLJJ5DLi+Zz47Nnz2LUqFF4+fKl5DGff/45Zs6cCQsLCwNGRkREVDIVzXcURO+Jjo5GqVKl8Pr1a4wfPx4//vgj7t+/ny6BFhERUUARFh55rUQjIv0pX748vL29ERwcjJMnT2Ls2LG6jVJySq1WIyQkBN999x0aNmyIESNGIDg4GCqVSr9BExWgtm3bIjg4GHPnzpW01ml4eDjGjBmD3r174/Lly/kQof65uroiJCQEbm5uksfs2LED3bt3x+3btw0YGRERUcnEJBoVecHBwfjiiy/QsmVLWFhY4Ouvvwbwdq004O2Hy+3bt2Pw4MEFGGXhkN3i5lmtiVamTBlDhEREAGrXro1Jkybh7NmzOHDgAL755huULl06V3MlJycjMDAQgwYNQqNGjTBp0iScO3cOWq1Wz1ET5T8jIyN89dVXCAsLw1dffSWpwuzy5cvw8PDA2LFjJW9UUJjY29tj06ZNmD9/PkxNTSWNefDgAXr06IENGzaATSdERET6w3ZOKhb+++8/VKxYEadOnUKzZs1gZWWVbh2Rpk2bYtiwYRg+fHgBRVnwXF1d8fDhw0zPf//99/j1118zrNqbPHkyRo0aZcjwiOg9arUa586dg7+/Pw4ePCh5t77MODk56Xb4bNCgAdc4pGLhzp078PX1xdmzZyVdb2lpibFjx2Lo0KEwMTExcHT69/fff8Pb2xt///235DGdO3fGsmXL4OjoaMDIiIiISgYm0ajIE0URMpkMWq0WsbGxsLOz050LCQnBP//8g2+//RZHjx7FkCFDSvSOds7Oznjx4kWm5ydPnoyffvopw6fWy5YtQ//+/Q0ZHhFlIiUlBSEhIRAEAcHBwbpK29yqUaMGlEollEolqlWrpqcoiQqGKIo4dOgQZs6ciadPn0oaU7VqVcyYMQNdu3Ytcgnl5ORkzJ49G5s3b5Y8pkyZMli5ciXatWtnwMiIiIiKP7ZzUpH37s3vkydP8Pvvv6dZ06tu3boYP348IiIi0K1bN9StWxd//vlnQYVa4LJbE02j0WTa9sE10YgKjqmpKdzd3bF+/Xpcv34dy5YtQ7t27XK9WPo///yDxYsXw9XVVTdvUWxzIwLevg9wd3fH6dOn8cMPP8Dc3DzbMY8ePcLgwYPx2Wef4d69e/kQpf6YmZlh7ty5+PXXX2Fvby9pzKtXrzBgwADMmTOHayUSERHlASvRqNi4ePEiPvnkE9y9exfm5uZITU2FiYkJunXrhvDwcJQuXRpyuRz+/v6wsrIq6HALRI0aNbJcF2306NFYuXJlhudCQkJQr149Q4VGRLnw6tUr7Nu3D4Ig5HnhdLlcDhcXF3h5ecHd3R02NjZ6ipIof718+RJz5syBv7+/pOsVCgUGDx6M77//XtKGBYXJy5cvMWrUKMntrADQuHFjrF27llWoREREucBKNCo2WrRogSpVqmDx4sUAABMTE4SHh6NVq1aoUqUKKlasiG+++QaWlpYFHGnBEEUx20q0rBJs3FiAqPApU6YMvv76a+zfvx9hYWGYNGkSatasmau5tFotQkNDMX78eDRs2FA3b3Z/bxAVNk5OTli9ejWCgoLQuHHjbK/XaDTYuHEjXFxcsHXrVmg0mnyIUj+cnJzw+++/Y/LkyVAoFJLGXLt2DV27dsXu3bu56QAREVEOsRKNipXr16/D3d0dc+fOhZmZGW7fvo2KFSti6NChSEhI0CXQEhISoFKp0qyfVtylpqaiatWqWV7z+eefY8eOHemOGxkZ4dGjR7luHSOi/COKIm7fvg1BECAIQpbrIEphZWUFd3d3KJVKuLq6wsjISE+REhmeVqvFnj17MG/ePLx+/VrSmHr16mH27NlwcXExcHT6dfnyZXh7e+PJkyeSx3h6euKnn35i5SkREZFETKJRsbNhwwb89ttvCA8PR6lSpTBlyhT06NEDarUaRkZGSExMxJIlS3D58mUIglDQ4eab2NhY1K1bN8tr+vTpg8DAwHTHy5Urh0uXLhkqNCIyEK1Wiz///BOCIGDfvn2Ijo7O03yOjo5YtGgRunXrVuQWY6eSLS4uDitWrMD69eslrwnm4eEBX19fVKxY0cDR6U9cXBwmT54suZUVACpXrow1a9bA2dnZgJEREREVD0yiUbGkUqnw4MEDVKhQIcOnqykpKahduzZ+/vlndO/evQAizH/h4eFo2rRpltd06tQJx48fT3e8SZMmOHjwoKFCI6J8oFKpcOrUKQiCgMOHD2fZvp2VEydOoFatWqxMpSLp33//xcyZMxEcHCzpelNTU3h7e2PkyJGwsLAwcHT6s3fvXkyePBkJCQmSrlcoFJg4cSJGjhwpuS2UiIioJOI7YCp2RFGEsbExatasidTU1DTn1qxZg19//RWmpqaYOnUqfvzxxwKKMv9JWdcoNjY2w+NcD42o6DM2NkaXLl2wZs0a3LhxA2vXrkXXrl1z1J5Zp04d1KlTR3ICLTIyskTviEyFT/Xq1bFlyxbs2LFD0vqBKSkpWLZsGdq2bYuAgIAis4ZY3759ERwcjCZNmki6XqPR4KeffkL//v3x8uVLwwZHRERUhDGJRsXOuxajs2fP4o8//kBqaqruTW/Tpk0xduxYAG/bNCpVqlRi3ixKSaJl1upVtmxZPUdDRAXJwsICnp6e2LJlC65du4YFCxagdevW2Y7z9PSEWq2WdI/Vq1ejb9++6N+/PxwcHPDzzz/nNWwivenYsSNCQkIwc+ZMSeuBvXjxAt7e3vD09MT169fzIcK8q1q1KgIDA+Ht7S15TFhYGDp16oQjR44YMDIiIqKii0k0KrZev36N5cuXw8TEBKIoQqPRwMXFBU5OTmjZsiWaN28OBwcHODk5FXSo+UJKEi0qKirD46xEIyq+7O3t8cUXX8Df3x8XL17EtGnT8NFHH2V4bd++fbOsXHu3q6EgCFixYgU8PT3x8OFD/Prrr/jjjz/w6NEjQ7wEolwxNjbG0KFDERoaioEDB0pa5+/ixYvo0aMHJkyYgIiIiHyIMm+MjY0xbdo07Nq1S/K/5dHR0fjqq68wefJk7s5LRET0ASbRqNj69NNPoVarsW3bNsjlcigUCly/fh0eHh5o1KgRvvrqK0ydOrWgw8w32b0RFkURb968yfAcK9GISoYKFSrA29sbwcHBOHnyJMaOHYsqVaoAAJo1a4YKFSqkG5OcnIz9+/fj5cuXUCgUUKvV8Pf3h6urK8aMGQMA6NWrFy5evIiHDx/m6+shksLR0RELFy7EkSNH0KpVq2yvF0URO3fuhKurK9atWyd5o4KC1LZtW4SEhKBLly6Sx2zZsgU9evTA33//bcDIiIiIihYm0ahYW7ZsGebOnYtly5Zh8eLFWLhwITp16oQNGzZg1qxZqFWrVkGHmG+kJNG0Wm2G55hEIyp5ateujUmTJiEsLAz79+/H1KlTM2zlVKlUCAgIQIUKFdClSxcsWrQIUVFR6NWrl+6ahw8fok6dOpmuuwi8XXsqNDQUMTExBnk9RNlp0KAB/P39sW7dOpQvXz7b6+Pi4jBr1ixda2hh5+DggC1btmDOnDkwMTGRNObu3bvo3r07Nm/eXGTWgyMiIjIkJtGoWPPw8MCkSZMQGBiIoKAgWFhY6BJnJW33qeySaO/asDLCdk6ikksmk6FZs2b4+OOPM2zltLa2xoYNG6BSqeDt7Y2EhARYWlqm2Q34r7/+goODA8zNzQEg3YfxW7duoVOnThg/fjzKly+P//3vf5J3FSTSJ5lMht69e+PMmTOYMGECTE1Nsx3z77//4osvvsAXX3yBf/75Jx+izD2ZTIYhQ4bg0KFDkh8kpqamYurUqfjqq68yrVgnIiIqKZhEo2JvyJAhOHbsGHbt2oW1a9eWqOqz92WXRNNqtZmuB8NKNCLKjCiKUKvVkMvl8PLygq2tLSIjI1G9enVdsuz8+fOwtrZG48aNAbz9IP+u8vXq1auYPHkySpcujXPnzuHRo0eIjo7GgQMHCuw1EZmbm2PChAkIDQ1F7969JY0JCQlBx44dMWvWrCyrLguDevXq4fDhwxg4cKDkMUePHkXnzp1x9uxZA0ZGRERUuDGJRiWCkZERypUrl66KoiS1JmSXRMusMk8mk8HR0dEQIRFRMSCTyWBkZKT7+1SlUiE+Pl537sKFCzh//jxcXV3TJOTl8rdvQQICAqBWq7FkyRIoFAqULl0aZmZmOHTokG6+P//8E5MnT8aXX36J06dP5/MrpJKsQoUKWLduHfz9/TPdcON9arUa69atQ5s2bbBz584sq7wLmrm5ORYuXIgNGzbA1tZW0pjw8HD069cP8+fPLxJrwREREekbk2hUIqnVaqSmppaoD2NJSUlZns+sCs3BwSHL3fiIiID/+ztkyJAhMDY2hre3N/bu3Ysvv/wS9erVQ//+/QG8/fv3XRXaf//9h5s3b8LZ2Rk1atTQzWVsbKxrI9+5cye++uorpKamokqVKvjiiy+wYcOGfH51VNK1bt0ahw8fxsKFC1GqVKlsr4+IiMCECRPg7u6OP//8Mx8izD13d3eEhISgdevWkq4XRRGrVq2Cp6cnd9wlIqISh0k0KlHePRHet28fXF1dMXDgQDx48KCAo8of2VWiZZZE43poRJQTTk5OWLlyJaKjo7Fy5UpMmDABy5cv1/1dYmRkpKtCu3//PuLj43VtngDwzz//QKVSoUyZMkhOTsb27dsxePBgLFq0CLNnz8ayZcuwfv16vH79Os19C3v7HBV9CoUCAwcORFhYGIYOHSrpAdONGzfg6ekJb29vPH/+PB+izJ3y5ctjz549mDhxouQ1Y69cuYJu3brB39/fwNEREREVHkyiUYmiUqng4eGBkSNH4tmzZ9BoNJgzZ05Bh5UvpOzOmRGuh0ZEOdW0aVP89ttvOH36NL799ltYWVkBeLv+2dq1a3XX2dvb4+HDh2kqYM6cOYOUlBQ0adIE0dHRSE1NReXKlXWJt8aNG+P69eu6Bd/j4uIwduxYdO7cGbVr18b69esz3WmYSB9sbGwwc+ZMhISEoEOHDpLGBAQEoG3btli2bFm2/x4XFIVCgXHjxkEQBFSsWFHSmPj4eHz33XcYPXq0ro2biIioOGMSjUoUMzMzNGvWLM2xo0ePIiwsrIAiyj9SNhbICJNoRKQvycnJuH37tu57U1NTvHr1Kk0S/7fffkONGjXQrFkzODk5wcjICE+fPtWdX7duHcqWLQuNRoOnT59i0qRJ2L9/P7Zu3YoZM2Zg48aNuHnzZr6+LiqZatWqhR07dmDLli2oWrVqttcnJSVh0aJFaNeuHfbv319o12Vt3rw5jh07JnlDBQDYu3cvunXrhqtXrxouMCIiokKASTQqccaNGwcbG5s0x2bNmlXsKxeyS6Kp1eoMjzOJRkT60rp1a6xevVr3fd26dTFo0CAMHDgQ27dvx8CBA/Ho0SOMHDkS9vb2AIARI0bg559/Rs+ePTF69GisWLECrVu3hr29PXbv3o0nT55g48aNqFevHv73v/+hSpUqWLZsme4eGo0GN2/exMGDB/P99VLxJ5PJ0LVrV5w8eRLTpk3TVV1m5b///sO3336LTz/9NE1SuTCxsbGBn58fli5dCnNzc0ljHj16hN69e2PNmjXF/j0VERGVXEyiUYljb2+PMWPGpDl2/fp1BAQEFExA+SSrJJooikhNTc3wHNdEIyJDkclkmDlzJjp37oxVq1ahfv362LNnD+rUqYPU1FSoVCp88sknOHPmDL788ktUrFgR9evXR7du3aDVanHkyBG0bNkSLVq00M2ZmJio22kwISEBY8aMwddff40JEybAwcEBW7duLaiXS8WYiYkJvL29ERoaqttEIzthYWHo1q0bfvzxR7x588bAEeacTCbDgAEDcPToUTRo0EDSGLVajblz52LAgAEIDw83cIRERET5j0k0KpGGDBmCSpUqpTk2f/78QrtOiT5kl0TjmmhEVBBsbW3h6+uLCxcuYMqUKbpNBpKTkzFz5kyEhYXByckJHTp0wLlz51CxYkV8/vnnuHz5MlJSUtCoUSNYWFgAeLu5QFxcnG6nz6VLl+LixYuYNWsW7ty5g8WLF2Pv3r2IiIgosNdLxVuZMmWwbNkyHDx4EM7Oztler9VqsXXrVri4uGDjxo1QqVT5EGXO1KhRA/v378ewYcMkjwkNDUXnzp0RHBxswMiIiIjyH5NoVCKZmppiypQpaY49e/YMGzduLKCIDC+rJFpWbRdMohFRQTAyMkJiYiL69OmD2rVro3///rCzs8OqVatgamqKly9fwszMDNWrV9eNOXHiBGQyGRo2bIjHjx/j2LFj6NevH9zc3CCKIvr27Ytjx44hKiqqAF8ZlQRNmjRBUFAQVq9eLenf0djYWPj4+KBr1644ffp0PkSYMyYmJpg+fTp27NgBR0dHSWPevHmDQYMGYdq0aUhJSTFwhERERPmDSTQqsXr37p1uk4GVK1ciMjKygCIyrKSkpEzPabVayGSyDM+xnZOICoKFhQWWLl2K169fY/v27Vi+fDk2b96MatWqAQBq1qyJM2fOoHTp0roxv/76K6pVq4ZWrVph//79sLa2RseOHQG8bU27efMmKlasmOkakET6JJPJ4OXlhdDQUIwZMwYmJibZjrl37x4GDBiAwYMH49GjR4YPMoc6duyIkJAQ3c+VFJs2bYK7uzvu3btnwMiIiIjyB5NoVGLJZDL4+vqmORYXF4elS5cWUESGlV0lGpNoRFRYtWzZEk2aNAEAXet5uXLl4OHhgU2bNiE8PBxLlixBcHAwvv32W5ibm+PatWuoUqWKrrUTeFup1rBhw3R/36nVapw5cwbnz5/nguikd5aWlvjhhx9w6tQpuLu7Sxpz9OhRtG/fHnPnzkV8fLyBI8yZ0qVLY9u2bZgxYwaMjY0ljblz5w66d++Obdu2FdpdSYmIiKRgEo1KtJYtW6Z7Q7tt2zb8888/BRSR4WSVRNNoNBkm0WxtbWFqamrIsIiIcuTd31W2trYYM2YMAgMD0aBBA1y+fBlr1qxB69atkZqaCjMzM911wNuHBWfPnkWdOnVQuXLlNHMaGRlh3rx58PLyQosWLTBnzhzcunWLH/ZJr6pUqYINGzZg9+7dqFu3brbXq1QqrFmzBm3atMHu3bsLVYJXLpfj22+/xf79+9O0VGclOTkZP/zwA4YOHYro6GjDBkhERGQgTKJRiTd16lQYGRnpvn+3s1Rxk5tKNK6HRkSFmaurKy5evIh///0Xv/zyCwYNGgTg7fpNGo0Gz5490127e/duPHz4EF26dNFtRAC8rWx78uQJrl27BgB48eIF1q5di65du6JDhw5YtmxZoWyro6KrTZs2OHr0KObNmwc7O7tsr3/16hXGjh2LXr164fLly4YPMAcaNmyII0eOYMCAAZLHHDx4EJ07d8a5c+cMGBkREZFhMIlGJV61atV0H7zeOXz4MM6fP19AERlGbjYWYCsnERUF1tbWsLS0THNs5MiRePz4MQYPHoyZM2di4sSJGDRoEDp16pTmOo1Gg71792Y47/3797Fo0SK4uLigZ8+e2LBhA169emWw10Elh5GREQYPHoywsDB89dVXUCgU2Y65cuUKPDw8MHr0aISHh+dDlNJYWlpi6dKlWLduHWxsbCSNefHiBT799FMsWrSIaxQSEVGRIhPZq0CEN2/ewMXFBbGxsbpjTZo0wf79+yGXF49cc6tWrfD06dMMz0VFRcHExCTdh9BPPvkEq1atyo/wiIj07s6dO1i1ahViYmLwzTffZLoYert27fDgwQNJc8rlcri6usLLyws9evSQnDQgysrff/8NX19fhIaGSrrewsICY8aMwbfffluoll14+vQpRo4cib/++kvymObNm2PNmjWoVKmSASMjIiLSDybRiP6/tWvXYs6cOemOeXp6FkxAetakSZNMKygiIyNhbm6epsUJALy9vTFt2rT8CI+IyOBEUUzTuq7VanHnzh107do1V/OZmJigS5cuUCqV6NKlS6FKZlDRI4oijhw5ghkzZuDJkyeSxlSpUgXTp0+Hm5tbphsE5Te1Wo3ly5dj+fLlktdxs7GxwcKFC9G7d28DR0dERJQ3xaPEhkgPvv76a1SsWDHNsXnz5iElJaWAItKv3GwswHZOIipOPvx7TiaT4fnz53BycsrVfKmpqTh48CCGDh2KRo0aYdy4cTh9+jTb0yhXZDIZunfvjlOnTmHy5MnpHmxl5PHjxxgyZAgGDBiAu3fv5kOU2TMyMsL333+PvXv3oly5cpLGxMbGYvjw4Rg3bhwSEhIMHCEREVHuMYlG9P+ZmppiypQpaY79999/2LhxYwFFpF9JSUkZHhdFMV11xjvcWICIijOZTIauXbvir7/+wh9//IGBAwfqdvPMqbi4OOzatQsDBgyAs7MzfHx8cPnyZe7wSTlmamqKUaNGITQ0FH379pU05syZM+jSpQumTp1aaHa+bN26NUJCQtLtgp6VXbt2wc3NDTdu3DBgZERERLnHdk6i92i1Wnh4eODq1au6YzY2NggLC0OpUqUKLrA80mg0ma41olarERkZCTs7u3StSH/88Qc+/vjj/AiRiKhQUKlUOHnyJPz9/XHkyJEsq3ilqFKlCpRKJZRKJWrVqqWnKKkkuXTpEnx8fNK8N8mKvb09Jk2ahM8//zzN7uMFRRRF/Pbbb/Dx8ZH882RsbIwpU6Zg6NChxWZtWiIiKh6YRCP6wPnz5+Hl5ZXm2Ndff43Zs2cXUER5l5iYiJo1a2Z4LjU1FVFRURkm0UJDQ1G9evX8CJGIqNBJSEjAkSNHIAgCTp48CY1Gk6f5PvroIyiVSnh6eqJ8+fJ6ipJKAq1Wiz179mDevHl4/fq1pDH16tXDrFmz4OrqauDopLl//z5GjBiB27dvSx7ToUMHrFixAqVLlzZgZERERNIxiUaUgSFDhuDw4cO6742MjHDq1ClUq1atAKPKvTdv3qBBgwYZnktOTkZMTAzs7e1hYmKS5ty9e/dgZWWVHyESERVqkZGR2L9/PwRBwJ9//pnn+Vq3bg2lUgkPDw/Y29vrIUIqCeLi4rBixQqsX78eKpVK0piePXvCx8cHlStXNnB02UtJScGcOXNytFSGo6MjVqxYkenuukRERPmJSTSiDPz777/o0KFDmsWh3d3dsWHDhgKMKveeP3+O5s2bZ3guMTERcXFxKFWqFIyNjXXHLSws8ODBg/wKkYioyPjvv/8QGBgIQRByVFWTESMjI3Ts2BFKpRLdunWTtJg80cOHDzFz5kwcPXpU0vUmJibw9vbGd999Vyj+jB07dgxjx47FmzdvJI/59ttvMWXKlHQP/IiIiPITk2hEmZg6dSo2b96c5lhAQABatmxZQBHl3r///os2bdpkeC4+Ph4JCQlwcHBIs3ZK1apVERYWll8hEhEVSXfv3kVAQAAEQcCTJ0/yNJe5uTm6d+8OpVKJ9u3bp3mwQZSRkydPYvr06bh//76k652cnODj4wNPT88MNxTKT+Hh4Rg9ejTOnDkjeUyDBg3g5+eHGjVqGDAyIiKizDGJRpSJyMhIuLi4IC4uTnesadOm2L9/f4G/8cyp27dvo0uXLhmei42NRVJSEhwdHaFQKHTHW7VqBUEQ8itEIqIiTRRFXL58GYIgICgoCBEREXmaz97eHh4eHlAqlWjZsiUXV6dMqVQqbNmyBYsXL0ZsbKykMc2bN8ecOXPQqFEjA0eXNa1Wi3Xr1uGnn35KU/2fFXNzc8yZMwcDBgwocu/HiIio6GMSjSgLa9aswdy5c9McW7duHXr37l1AEeXOpUuX0KtXrwzPRUVFITU1NV0SrXfv3li3bl1+hUhEVGyo1WqcPXsWgiDg4MGDiI+Pz9N85cqV0+3wWb9+fSYOKEORkZFYuHAhtm/fDilv72UyGfr374/JkycX+ML9165dw4gRI/Do0SPJY3r37o2FCxfCxsbGcIERERF9gEk0oiwkJyejbdu2ePbsme5YpUqVcObMmSK1JsfZs2fx6aefZnguMjISarUapUuXTlPp8M0332DWrFn5FSIRUbGUnJyMY8eOQRAEHDt2TPJi8JmpVauWbofPqlWr6idIKlZu3boFHx8fnD9/XtL1VlZWGDduHL755psCbSGOj4/HtGnTsHv3bsljKlasiDVr1qBFixYGjIyIiOj/sDeAKAtmZmaYPHlymmNPnz7Fpk2bCiii3ElOTs70nFarBYB0lQ1ly5Y1aExERCWBmZkZPDw8sHHjRty4cQNLly5FmzZtcl1Ndv/+fSxcuBAuLi66eV+9eqXnqKko++ijj/DHH3/g559/RoUKFbK9Pj4+HrNnz0aHDh1w7NixfIgwY1ZWVli+fDnWrFkjeWfw//77D0qlEkuXLoVGozFwhERERKxEI8qWVquFu7s7rl+/rjtmY2ODc+fOwd7evgAjk+7AgQMYOnRouuOiKOo+fH2YNFuxYkWm1WtERJQ34eHhCAoKgiAIuHr1ap7mksvlaNOmDZRKJXr06MH2NtJJSkqCn58fVq9eneUDtfd16tQJM2bMQM2aNQ0cXeYeP36MkSNH4vLly5LHtGrVCqtXr5aUOCQiIsotVqIRZUMul8PX1zfNsdjYWCxfvrxgAsqFzN44v6tCywgr0YiIDKds2bIYOnQoDh48iLNnz+L777/P9Y6DWq0Wp0+fxrhx49CoUSPdvCkpKXqOmooac3NzjB8/HqGhoejTp4+kMcePH9cl0qRuVKBvVapUgSAIGD16tOSqzQsXLqBz5844cOCAgaMjIqKSjJVoRBINHjwYR48e1X1vbGyMU6dOFYk1aXbs2IGJEyemO65SqfDmzRvIZDKUKVMmzbnjx4+jbt26+RUiEVGJJ4oibt68CUEQEBAQgJcvX+ZpPmtra7i7u8PLywsuLi5pNo+hkunChQvw8fHBzZs3JV3v4OCAH3/8EQMGDCiwPz9nz57Fd999h/DwcMljPv/8c8yaNQvm5uYGjIyIiEoiJtGIJHrw4AE6duyYZs0NDw8P/PLLLwUYlTQbN26Ej49PuuMpKSmIjo6GXC5PtzPXrVu3iky7KhFRcaPVanH+/HkIgoD9+/cjJiYmT/OVLl0affr0gVKpRJMmTbjDZwmm0Wiwa9cuzJ8/H5GRkZLGNGjQALNnz0arVq0MHF3GoqKiMH78eBw5ckTymFq1asHPzw/169c3YGRERFTSMIlGlANTpkzBr7/+muZYUFAQmjdvXjABSbRmzRrMnTs33fHExETExcVBoVDA0dFRd9zY2BiPHj3ihywiokIgNTUVJ0+ehCAIOHLkiOS1rTJTtWpV3Q6ftWrV0lOUVNTExsZi2bJl2LhxI9RqtaQxffr0wbRp0wpk3TFRFLFlyxbMnDlTcquysbExfH19MWTIEL6nISIivWASjSgHIiIi4OLigvj4eN0xZ2dnBAUFFeo3Z0uWLMGSJUvSHY+Pj0dCQgKMjIzg4OCgO16hQgVcvHgxP0MkIiIJEhIScOTIEQiCgJMnT+Z5R8KPPvpIl1ArX768nqKkouTBgweYPn06Tpw4Iel6MzMzjBw5Et7e3gXSLvn3339jxIgRuHv3ruQxXbp0wbJly9K81yEiIsoNbixAlAOOjo4YNWpUmmOXLl3Cvn37CigiaZKSkjI8ntnGAtxUgIiocLK0tISXlxe2bduGq1evYv78+WjZsmWu57t16xbmzJmD5s2b6+aNiorSY8RU2NWsWRM7duzA1q1bUa1atWyvT05OxpIlS9CuXTsEBQUhv5/H161bF4cOHcLgwYMljzl27Bg6d+6M06dPGy4wIiIqEViJRpRDycnJcHV1xYsXL3THKleujNOnT8PExKQAI8vctGnTsGnTpnTHo6OjkZKSAmNjY5QqVUp3vHv37hleT0REhdN///2HwMBA+Pv7486dO3may8jICB07doRSqUS3bt1gYWGhpyipsFOpVNi4cSOWLl2apuo+K61bt8bs2bPx0UcfGTi69I4cOYJx48YhOjpa8hhvb2/88MMPMDY2NlxgRERUbLESjSiHzMzMMHny5DTHnjx5gs2bNxdQRNnLbP2cd5VoH7aishKNiKhoqVixIkaOHImQkBAcP34co0ePRqVKlXI1l1qtRnBwMLy9vdGwYUOMHDkSx44dg0ql0nPUVNgYGxtj+PDhOHv2LAYMGCBpqYrz58/Dzc0NP/zwg+SNCvTFzc0Nx48fh6urq+Qxa9euRe/evfHo0SPDBUZERMUWK9GIckGr1aJ79+5ptoi3sbHB+fPnYWdnV3CBZeK7776Dv79/uuOvX7+GVquFqalpmrgnTpyIcePG5WOERESkb6Io4vLly/D390dQUFCeExz29vbo1asXlEolWrRoAbmcz2KLu2vXrsHHxwd//fWXpOttbGzw/fffY9CgQfla6aXRaLB27VosXLhQ8jqBlpaWmDdvHvr27Vuo17UlIqLChe9+iHJBLpfD19c3zbHY2FgsX768YALKRkaVaKIoshKNiKgYk8lkcHZ2xty5c3HlyhX89ttv+PTTT2FpaZmr+aKiorB161YolUq0bNkSc+bMwe3bt/N9TSzKP40bN0ZgYCDWrFkDJyenbK+PjY2Fr68vunTpglOnTuVDhG8pFAqMGjUKAQEBqFy5sqQxCQkJGDNmDL777jvExcUZOEIiIiouWIlGlAeDBg1CcHCw7ntjY2OcOnUKVatWLbigMjBw4EAcP348zTGNRoOIiAgAgLm5OWxsbHTntm7dii5duuRrjERElD+Sk5MRHBwMQRAQEhKS5zbN2rVr63b4rFKlip6ipMImMTERq1evxtq1a5GamippTNeuXTFjxgxJGxboS2xsLCZPngxBECSPqVy5MtasWQNnZ2cDRkZERMUBk2hEeXD//n106tQpTetAr1698PPPPxdgVOn17dsXYWFhaY6pVCq8efMGQPok2pEjR9CwYcN8jZGIiPJfTEwMDh48CEEQcPbs2TxXlTk7O0OpVKJXr14oXbq0nqKkwuTp06eYNWsWDhw4IOl6Y2NjDB06FGPGjIG1tbWBo3tLFEXs3bsXU6ZMQUJCgqQxCoUCEydOxMiRI6FQKAwcIRERFVVMohHl0Y8//oitW7emObZv375C9TTTw8MDly9fTnMsJSVFt5uVhYVFmje2V65cYUsnEVEJEx4ejsDAQAiCgGvXruVpLrlcjrZt20KpVKJHjx75ljyh/HP27Fn4+vpK3g22TJkymDx5Mj799NN8W0/v0aNHGDFiRI7+PLu6umLVqlWS2leJiKjkYRKNKI9ev34NFxeXNE86nZ2dERQUVGgWqu3cuXO6N7lJSUmIjY0F8HZxXSsrKwBvP/g8fvyYT2GJiEqwhw8fQhAE+Pv7499//83TXCYmJujWrRuUSiU6deoEU1NTPUVJBU2tVmPHjh1YsGCB7sFcdpo0aYLZs2fn28NGlUqFBQsWYO3atZLH2NnZYdmyZXBzczNgZEREVBQxiUakBytWrMCCBQvSHPvll1/g4eFRQBGl5erqiocPH6Y5lpCQgPj4eACAlZWVbqHpMmXK4OrVq/kdIhERFUKiKOLmzZsQBAGCICA8PDxP89nY2KBHjx7w8vKCi4sLH9gUE9HR0Vi8eDG2bNkieXfMTz75BFOnTs23iq/Tp09j9OjRePXqleQxgwcPhq+vL8zMzAwYGRERFSVMohHpQVJSElxdXfHy5UvdsSpVquD06dP5usV7ZpydnfHixYs0x2JjY5GUlAQAsLa2hoWFBQCgQYMGOHr0aL7HSEREhZtGo8GFCxcgCAL27dunq2bOrTJlyqB3795QKpVo0qRJoanepty7e/cufH19cebMGUnXW1hYYPTo0Rg2bFi+VChGRkZi3LhxOHbsmOQxdevWxdq1a1G3bl0DRkZEREUFk2hEerJ7926MHTs2zbGZM2di6NChBRPQez766CNERUWlORYdHY2UlBQAaZNonTt3xrZt2/I9RiIiKjpSU1Nx8uRJ+Pv74+jRo0hOTs7TfFWrVoVSqYRSqUTNmjX1FCUVBFEUcfToUcyYMQOPHz+WNKZy5cqYPn06unfvbvBkqiiK2LRpE2bNmiV5Z1pTU1NMnz4dgwYNYrKXiKiEYxKNSE80Gg26d++OW7du6Y7Z2tri/PnzsLW1LcDIgBo1auiqzt558+aN7s2jjY0NzM3NAQCfffYZlixZku8xEhFR0RQfH48jR45AEAScOnVKcjtfZho0aAClUglPT0+UK1dOT1FSfktJScH69euxfPlyJCYmShrTpk0bzJo1K1+qvm7fvo3hw4fjwYMHkse4ublh6dKlsLe3N2BkRERUmDGJRqRHoaGh6NevX5pjw4cPh6+vbwFF9PaJa8WKFfHhj3pERITug46tra1uvY+xY8di0qRJ+R4nEREVfZGRkdi3bx8EQcDFixfzNJdMJkPr1q2hVCrh4eEBOzs7/QRJ+So8PBzz5s3Dnj17JF0vl8sxaNAgTJw40eD/z5OSkjB9+nRs375d8piyZcti9erVcHV1NWBkRERUWDGJRqRnX3zxBUJCQnTfGxsb4/Tp06hSpUqBxJOamoqqVaumOSaKIl6/fq1LrNnZ2enWIpk/fz4GDRqU32ESEVEx8/TpUwQGBkIQhHQ7ROeUsbExOnToAC8vL3Tt2lW3BAEVHZcuXYKvry+uXLki6Xo7OztMnDgRX3zxBYyMjAwa24EDBzBhwgTJ6/zJZDKMGjUKEyZMKBRr3xIRUf5hEo1Iz+7evYvOnTtDq9XqjvXu3Rvr1q0rkHhiY2PTtUVotVq8fv1a9729vT1MTEwAAJs2bUL37t3zNUYiIire7ty5g4CAAAiCgP/++y9Pc1lYWKB79+5QKpVo164dkxhFiFarxR9//IG5c+dK3iWzbt26mDVrFtq0aWPQ2J49e4bvvvsOFy5ckDymWbNmWLNmTYE9KCUiovzHJBqRAUyaNClda8C+ffvg7Oyc77GEh4ejadOmaY6p1WpERkbqvi9VqpTuQ8j+/fvRrFmzfI2RiIhKBlEUcenSJQiCgKCgoDT/FuWGvb29bofP5s2bQy6X6ylSMqT4+HisXLkSP//8s+TF/d3d3eHr64vKlSsbLC6NRoMVK1Zg6dKlaR6GZsXKygoLFiyAUqk0WFxERFR4MIlGZACvXr2Ci4tLmoV0W7RogYCAgHzf1enx48f4+OOP0xxLTU1Ns1vn+0m0ixcvokKFCvkaIxERlTwqlQqhoaEQBAGHDh1CQkJCnuarUKECPD09oVQqUa9ePe6iWAQ8evQIM2fOxJEjRyRdb2JiguHDh2PUqFGwtLQ0WFwXL16Et7c3nj17JnnMp59+irlz58LKyspgcRERUcFjEo3IQJYtW4ZFixalObZhwwa4u7vnaxx3795Fx44d0xxLSkpKs+6Hg4ODbr2Rx48fszWGiIjyVVJSEoKDgxEQEICQkBDJ1UmZqV27tm6HT7baFX6nT5+Gr68v7t27J+n6smXLYtq0afDy8jJYsjQ2NhaTJk1CUFCQ5DFVq1aFn58fGjdubJCYiIio4DGJRmQgiYmJcHV1RXh4uO5Y1apVcerUqXxNUl27dg09evRIcywhIQHx8fG67x0dHaFQKGBvb49bt27lW2xEREQfiomJwcGDByEIAs6ePZtud+mccnZ2hlKpRK9evVC6dGk9RUn6plKpsHXrVixatEjyAv/Ozs6YPXs2mjRpYpCYRFHErl27MHXqVCQlJUkaY2RkhB9//BHDhw9nezERUTHEJBqRAe3atQvjxo1Lc2z27Nn4+uuv8y2GCxcupFunIy4uLk2raenSpSGXy1G3bl0cP34832IjIiLKysuXLxEUFARBEHDt2rU8zSWXy9G2bVsolUr06NED1tbWeoqS9OnNmzdYtGgRtm3bJnldsv79+2Py5MkoU6aMQWL6559/MHz48Bw9aGzXrh1WrFiBsmXLGiQmIiIqGEyiERmQRqNBt27dcOfOHd0xOzs7nD9/HjY2NvkSw6lTp/DZZ5+lORYTE4Pk5GTd92XKlIFMJkO7du3w+++/50tcREREOfHvv/9CEAT4+/vj4cOHeZrL1NQUXbt2hVKpRKdOnWBqaqqnKElfbt++DR8fH5w7d07S9VZWVhg7diy++eYb3Y7j+pSamop58+bhl19+kTymVKlSWL58Obp06aL3eIiIqGCwxpjIgBQKBaZPn57mWHR0NFauXJlvMbyfLHvnwye779YT4dNSIiIqrKpXr44JEyYgNDQUhw8fxrBhw3L971ZKSgr279+Pr7/+Go0bN8b48eMRGhoKjUaj56gpt+rXr4+9e/fil19+QcWKFbO9Pj4+HnPmzEGHDh0QHByc5zbgD5mYmGDGjBnYsWMHHB0dJY158+YNvvzyS/j4+CAlJUWv8RARUcFgJRpRPvj8889x4sQJ3ffGxsYIDQ1FpUqVDH7vwMBAjBgxIs2xiIiINB8U3n0IGTlyJKZOnWrwmIiIiPRBo9Hg/PnzEAQB+/fvl7yWVmbKlCmDPn36QKlUonHjxtzhs5BITk6Gn58fVq1aleHDwYx06NABM2fORK1atfQez+vXrzFmzBicPHlS8pj69evDz8/PIPEQEVH+YSUaUT7w8fFJs7isSqXC/Pnz8+Xe2VWivf8BgZVoRERUlCgUCri6umLx4sW4fv06Nm/ejN69e+e6PfPVq1dYv3493N3ddfM+ePBAz1FTTpmZmWHcuHEIDQ2Fp6enpDEnT55E586dMX369DwnVz9UunRpbN++HdOnT5e8WdTt27fh5uaG7du3671KjoiI8g+TaET5oG7duhgwYECaYwEBAbhy5YrB7/3hblKiKKZ58/Z+Es1QC/ISEREZmomJCdzc3LBu3TrcuHEDK1euRMeOHaFQKHI136NHj7B06VK0a9dON++LFy/0HDXlRPny5bF27VoEBASgYcOG2V6vVquxfv16uLi4YPv27Xpt15XL5Rg2bBj279+P6tWrSxqTnJyMSZMmYejQoYiOjtZbLERElH/YzkmUT8LDw+Hi4pImqdWqVSv4+/sbtF1k3bp1mDVrlu57tVqNyMhI3fdyuRylS5cGAAiCgFatWhksFiIiovwWERGBffv2QRAE/PXXX3maSyaT4eOPP4ZSqUTPnj1hZ2ennyApxzQaDXbv3o358+cjIiJC0piPPvoIs2fPRuvWrfUaS0JCAqZNm4Zdu3ZJHlOuXDmsWbNG77EQEZFhsRKNKJ+ULVsW3t7eaY5duHABR44cMeh9P2znzGxTAYDtnEREVPw4Ojriq6++QlBQEC5cuIApU6agbt26uZpLFEWEhYVh4sSJaNy4MQYNGoTAwEAkJibqOWrKjkKhwGeffYbQ0FAMHz4cRkZG2Y65desWvLy8MHz4cPz33396i8XS0hLLli3DunXrYG1tLWnMixcv0LdvXyxatAhqtVpvsRARkWGxEo0oHyUmJsLV1RXh4eG6Y9WqVcPJkyclr6mRUz/99FOa3UCTk5MRExOj+97IyAgODg4AgAcPHsDCwsIgcRARERUmd+7cQUBAAARByHNCxcLCAt27d4dSqUS7du0M9m86Ze6ff/7BjBkzEBISIul6U1NTfPfdd/D29oa5ubne4nj69Cm8vb1x6dIlyWOaN2+ONWvW5MuGU0RElDesRCPKRxYWFpg0aVKaYw8fPsT27dsNdk+plWhWVlZMoBERUYlRr149TJ48GRcuXEBQUBC++uorlCpVKldzJSYmwt/fH1988QWaNGmCyZMn488//0z3by4ZTo0aNbBt2zZs27ZN0hplKSkpWLJkCdq2bYugoCC9LfZfqVIlCIKAcePGpdlUKit//fUXunbtiqCgIL3EQEREhsNKNKJ8ptFo0LVrV/z999+6Y/b29jh37hxsbGz0fr8ff/wRW7du1X0fFxeXpu3ExMQE9vb2qF69OkJDQ/V+fyIioqJCpVIhNDQUgiDg0KFDSEhIyNN8FSpUgKenJ7y8vFC3bl2DroFK/0elUmHTpk1YunQp4uLiJI1p1aoVZs+ejQYNGugtjvPnz2PkyJE52pBiwIABmDNnDh9sEhEVUqxEI8pnCoUCvr6+aY5FRUVh1apVBrmf1Eo0rodGREQlnbGxMTp27IiVK1fi+vXrWLduHdzc3HLdnvns2TOsWbMGnTt3RqdOnbBy5Uo8efJEz1HTh4yNjTFs2DCEhobif//7n6Tk5YULF+Dm5oaJEyem2YApL1q3bo2QkBC4u7tLHvP777+jW7duuHHjhl5iICIi/WIlGlEB+eyzz3Dq1Cnd9yYmJggNDUXFihX1ep/hw4enaQ+IiopCamqq7ntTU1PY2dmhT58+8PPz0+u9iYiIioOYmBgcOHAAgiAgLCwsz61/zs7O8PLyQq9eveDo6KinKCkzN27cwLRp03Dx4kVJ19vY2GD8+PH46quv9LK+nSiK2L59O6ZPn57u4WZmjI2NMWXKFAwdOlRyWygRERkek2hEBeTOnTvo0qVLmjfiXl5eWL16tV7vM2jQIAQHB+u+j4yMTLMLlJmZGWxtbfHtt99ixowZer03ERFRcfPy5UsEBgZCEARcv349T3MpFAq0bdsWSqUS3bt3l7yzI+WcKIoICgrCrFmzJLdX1qxZEzNnzkTHjh31EsO9e/cwYsQI3LlzR/KYjh07Yvny5ShdurReYiAiorzhYw2iAlKvXj0MGDAgzTF/f39cu3ZNr/eR2s5ZpkwZvd6XiIioOHJycsKwYcNw+PBhnDlzBhMmTEC1atVyNZdGo8HJkycxZswYNGrUSDfv+xXjpB8ymQx9+vTBmTNnMH78eJiammY75sGDB/j888/x5Zdf4uHDh3mOoXbt2jh48CCGDBkiecyJEyfQuXNnnDx5Ms/3JyKivGMlGlEBCg8Ph4uLC5KSknTHPv74Y+zdu1dviw/36dNH174giiJevXqV5ryFhQWsra2xatUqfPLJJ3q5JxERUUkiiiKuX78OQRAQGBiI8PDwPM1nY2ODnj17QqlU4uOPP4ZCodBTpPTO06dPMWfOHOzbt0/S9cbGxhg6dCjGjBmjl4rB4OBgjBs3Dm/evJE8ZtiwYZg8eTJMTEzyfH8iIsodJtGICtiSJUuwZMmSNMd+/fVXdOvWTS/zu7m56Ran1Wg0iIiISHPe0tISVlZW2L17N9q0aaOXexIREZVUGo0G586dgyAIOHDgAGJjY/M0X9myZdGnTx94enqicePG3OFTz86dOwcfHx/cvn1b0vWOjo6YMmUK+vXrl+e1ysLDwzFq1Kgc7Y7eoEED+Pn5oUaNGnm6NxER5Q6TaEQFLCEhAa6urmkqxGrUqIHjx4/rZTHb9u3b4/79+wDebvn+4RPPd0m0kydPonbt2nm+HxEREb2VmpqK48ePQxAEHD16FCkpKXmar2rVqvDy8oJSqWQSRY80Gg127NiBBQsWICoqStKYRo0aYc6cOWjevHme7q3VauHn54cFCxakWbM2K+bm5pg7dy769+/PpCoRUT5jEo2oEPjtt9/w/fffpzk2b948DB48OM9zt2rVCk+fPgXwdn20mJiYNOetrKxgaWmJO3fuwNbWNs/3IyIiovTi4uJw5MgRCIKA06dPQ6PR5Gm+hg0bQqlUwtPTE05OTnqKsmSLiYnBkiVLsHnzZsn/f5RKJaZNm4Zy5crl6d5XrlzByJEj8ejRI8ljevfujYULF8LGxiZP9yYiIumYRCMqBDQaDbp27Yq///5bd6xUqVIICwvL8xujxo0b4/Xr1wCAxMRExMXFpTlvbW0NOzs7PHz4kE8ziYiI8kFERAT27dsHQRDw119/5WkumUyGjz/+GEqlEj179oSdnZ1+gizB7t27B19fX5w+fVrS9ebm5hg9ejSGDRsGMzOzXN83Pj4eU6ZMwd69eyWPqVixItauXZvnijgiIpKGSTSiQuLEiRP4/PPP0xwbNWoUJk+enKd569Spo0ucxcfHIyEhIc15Gxsb1K5dGxcuXMjTfYiIiCjnnjx5gsDAQPj7++Pu3bt5msvY2BgdO3aEl5cXunbtCnNzcz1FWfKIoojg4GDMmDFDcnVYpUqV4OvrC3d39zw9mPT398ePP/6I+Ph4SdcrFAqMHz8eo0eP5iYUREQGxiQaUSEhiiI+++yzNE89TU1NERoaigoVKuR63ipVqkClUgEAYmNj0+wECgC2trZwdXWVvDsVERERGcadO3cgCAIEQcCzZ8/yNJeFhQV69OgBpVKJtm3b6mWd1ZIoNTUV69evx/Lly9M9iMyMq6srZs2ahXr16uX6vo8ePcLIkSNx5coVyWNat26N1atXo3z58rm+LxERZY1JNKJC5Pbt2+jatSve/7Hs27cvVq5cmav5NBoNKlWqpPs+Ojo63aLGdnZ2UCqV2LBhQ+6CJiIiIr3SarW4dOkSBEFAUFBQuk2BcqpUqVLo3bs3lEolnJ2d87yrZEkUHh6On376Cbt27ZJ0vVwux5dffomJEyfC3t4+V/dUqVRYvHgxVq9eDakf2WxtbbFkyRK4u7vn6p5ERJQ1JtGICplx48ale4N25MgRNGzYMMdzJSQkoFatWrrvIyMj0+38ZGdnh+HDh2Pu3Lm5C5iIiIgMRqVS4cyZMxAEAYcOHUJiYmKe5qtYsSI8PT2hVCrzVClVUl25cgU+Pj64fPmypOttbW0xadIkfPHFFzAyMsrVPUNDQzFq1CiEh4dLHjNw4EDMnDmTLb1ERHrGJBpRIfPy5Uu4uLggOTlZd8zFxQV79uzJ8foakZGRaZJvr1+/hlarTXONvb09fHx8MGbMmLwFTkRERAaVlJSE4OBg+Pv748SJE7rlGnKrbt26UCqV6NOnDypXrqynKIs/rVYLf39/zJ07V3Jiq06dOpg9ezbatGmTq3u+efMG48aNQ3BwsOQxtWrVgp+fH+rXr5+rexIRUXqs5SYqZJycnDBixIg0x8LCwnDs2LEcz/V+Ik4UxXQJNODtrl5ly5bNeaBERESUr8zNzdG7d2/8+uuvuHbtGhYtWgQXF5dcL2L/999/Y/78+WjdujV69+6NzZs3IyIiQs9RFz9yuRx9+/bVVYhJWW/u7t276NevH4YMGYLHjx/n+J6lSpXCr7/+irlz58LExETSmPv378Pd3R2bNm2S3A5KRERZYyUaUSEUHx8PV1dXvH79WnesZs2aOH78eI5aAf755x+0bdsWwNv10TJ6Y+zg4IDff/8dnTp1ynvgRERElO9evnyJgIAACIKAGzdu5GkuhUKBtm3bQqlUonv37rC2ttZTlMXX48ePMXPmTBw+fFjS9cbGxhg+fDhGjx4NS0vLHN/vzp078Pb2ztFurl27dsXSpUvh4OCQ4/sREdH/YSUaUSFkZWWFiRMnpjn24MED/Pbbbzma5/1KtIyq0ABWohERERV1Tk5OGD58OI4cOYIzZ85gwoQJqFq1aq7m0mg0OHnyJMaMGYNGjRph2LBhOHz4MFJTU/UbdDFSpUoVbNq0Cbt27UKdOnWyvV6lUmHVqlVo06YN9u7dm+l7tMzUq1cPhw4dwqBBgySPCQ4ORpcuXXDmzJkc3YuIiNJiJRpRIaVWq9GlSxfcu3dPd8zR0RFnz56V/FT40qVL6NWrFwAgJSUF0dHR6a5xdHTEzZs3Ubp0ab3ETURERAVPFEVcv34dgiAgMDAwR4vSZ8TGxgY9e/aEUqnExx9/DIVCoadIixe1Wo1t27Zh4cKFiImJkTTG2dkZs2bNQtOmTXN8v8OHD2P8+PEZvsfLiEwmw4gRI/DDDz9IakMlIqK0mEQjKsRCQkLwxRdfpDk2ZswY/PDDD5LGh4aGol+/fgDeLkYcGxub7honJyc8ffqU290TEREVUxqNBufOnYMgCDhw4ECG7wdyomzZsujTpw+USiUaNWqU6zXZirOoqCgsWrQIW7dulVxp1q9fP0yePDnHHQIvXrzAqFGjEBYWJnlM48aN4efnl+uKRSKikopJNKJCTBRF9O/fH6GhobpjpqamCAsLQ7ly5bIdf+zYMXz55ZcA3q6zlpCQkO6aBg0a4Nq1a/oLmoiIiAqt1NRUHD9+HIIg4OjRo0hJScnTfNWqVYOXlxc8PT1Ro0YNPUVZfNy5cwe+vr44e/aspOstLS0xduxYDB06VPIGAsDbROmaNWuwaNEiaDQayfeaP38++vbtK/k+REQlHZNoRIXcrVu30K1btzS7KvXr1w/Lly/Pduz+/fvx7bffAgBiY2ORlJSU7pouXbrgyJEjeouXiIiIioa4uDgcPnwYgiDgzJkzkpMvmWnUqBGUSiX69OkDJycnPUVZ9ImiiEOHDmHmzJl4+vSppDFVq1bFjBkz0LVr1xxV+l26dAkjR47EkydPJI/x8vLC/PnzuYkEEZEETKIRFQFjx47F7t27dd/LZDIcOXIEDRo0yHLc3r17MXr0aABAdHR0hk+bBw4ciC1btug3YCIiIipSXr9+jf3798Pf3x+XLl3K01wymQwuLi5QKpXo2bMnbG1t9RRl0ZacnIyff/4ZK1euzPDBZkbat2+PmTNnonbt2pLvExsbix9//BEBAQGSx1SpUgVr1qxBs2bNJI8hIiqJmEQjKgJevHgBFxeXNEmwNm3aYNeuXVk+ndy+fTsmTZoEAHjz5g1UKlWa8zKZDOPGjcOiRYsMEzgREREVOY8fP0ZgYCD8/f3TbHCUG8bGxujUqROUSiW6du0Kc3NzPUVZdL148QJz586Fv7+/pOsVCgUGDx6M77//XnJCUhRF7NmzB1OmTEFiYqKkMUZGRpg4cSK8vb25cQQRUSa4kjhREVCuXDkMHz48zbHQ0FAcP348y3HJycm6X2e0qK1MJsvx4rVERERUvFWpUgWjR4/GiRMnEBISgpEjR6JChQq5mkulUuHIkSMYPnw4GjVqhNGjR+P48ePpHuyVJOXKlcPq1asRFBSERo0aZXu9RqPBxo0b4eLigq1bt0pqu5XJZOjXrx+Cg4Ml3QN4u7Po/PnzMWDAALx8+VLSGCKikoaVaERFRHx8PFxcXBAREaE7Vrt2bRw7dgxGRkYZjlm9ejXmzZsHURTx+vVrfPjjrlAosGHDBt3mA0REREQZ0Wq1+OuvvyAIAoKCghAVFZWn+UqVKoXevXtDqVTC2dm5xO4SrtVqsXv3bsybNy/Ne7ys1K9fH7Nnz8bHH38s6XqVSoUFCxZg7dq1kuOyt7fHsmXL0K1bN8ljiIhKgpL5rxVREWRlZYXvv/8+zbF79+7h999/z3TMu0o0URTTJdAAVqIRERGRNHK5HC1btsT8+fNx9epVbNu2DV5eXrCwsMjVfG/evMGvv/6KPn36oHXr1pg3bx7u3Lmj56gLP7lcjgEDBuDs2bMYMWIEjI2Nsx1z+/ZtfPLJJxg2bBj++++/bK83NjbGtGnT8Pvvv6NMmTKS4oqKisLgwYMxderUNJ0NREQlHSvRiIoQtVqNTp064cGDB7pjjo6OCAsLg5WVVbrr58yZg7Vr10KtViMyMjLdeSMjI5w/fx5NmzY1aNxERERUPCUmJuLYsWPw9/fHiRMn8tymWbduXSiVSnh6eqJSpUp6irLo+PfffzFz5kwEBwdLut7U1BQjR46Et7e3pIRmREQExo0bh5CQEMkx1a1bF35+fqhTp47kMURExRWTaERFTHBwMAYNGpTm2NixY3UbCLxv6tSp2Lx5M1JSUhAdHZ3uvLGxMR4+fIhy5coZKlwiIiIqIaKjo3HgwAEIgoBz585lWAWfE82bN4dSqUSvXr3g6OiopyiLhhMnTsDX1xf//POPpOvLlSsHX19f9O7dO8tNp4C3HQobN27E7NmzJSc9TU1NMWPGDHz55ZfZzk9EVJwxiUZUxIiiiH79+uHs2bO6Y2ZmZjh79my6ZNiECROwc+dOJCUlITY2Nt1cJiYmiI2NldQ6QERERCTVixcvEBgYCEEQcOPGjTzNpVAo0K5dOyiVSnTv3j3D6vviSKVSYfPmzVi6dGmG7+My0qJFC8yZMwcNGzbM9tpbt25hxIgRaTocstO9e3csWbIE9vb2kscQERUnTKIRFUE3btyAm5tbmmP9+/fHsmXL0hwbOXIkBEFAQkIC4uPj081jY2OT54WBiYiIiLLy4MEDBAQEwN/fH48ePcrTXKampnBzc4NSqUTHjh1hYmKinyALsYiICCxYsAC//fabpOo+mUyGzz77DD/++GO2FXyJiYmYPn06duzYITkeJycnrF69Gi4uLpLHEBEVF0yiERVRo0ePxt69e3Xfy2QyHD16FB999JHu2Ndff41Dhw4hLi4OiYmJ6eZwcnLCs2fP8iVeIiIiKtlEUcS1a9cgCAICAwPx6tWrPM1nY2MDDw8PKJVKtG7dGgqFQk+RFk43b96Ej48PLly4IOl6a2trjB8/HkOGDMm262D//v34/vvvJVe8yWQyjBo1ChMmTGBHAxGVKEyiERVRz549Q5s2bZCSkqI71qZNG+zatUu3VsXnn3+OEydOICYmJsOdlWrWrIm7d+/mW8xEREREAKDRaHDu3Dn4+/vj4MGDkpM3mSlbtiw8PT2hVCrRsGHDYrtulyiK2LdvH2bNmoXnz59LGlOjRg3MnDkTnTp1yvK6Z8+e4bvvvpOcpAMAZ2dnrFmzBpUrV5Y8hoioKGMSjagImz9/PlatWpXm2Pbt23Vvkj755BOcO3cOkZGRaRaOfffGsmnTpvjrr7/yL2AiIiKiD6SkpOD48eMQBAFHjx5FampqnuarXr06lEollEolqlevrqcoC5ekpCSsXbsWq1evTvNANSudO3fGzJkzs/w9UavVWLlyJZYuXQqtVitpXmtrayxYsACenp6SriciKsqYRCMqwuLi4uDi4oLIyEjdsdq1a2PDhg3Yt28flixZgvDwcKjVashkAETg/R/4evXq4fz587Cxscn32ImIiIg+FBcXh0OHDkEQBJw5c0ZyIiczjRs3hlKpRJ8+fVC2bFk9RVl4PHv2DLNnz0ZQUJCk642MjPDNN99g7NixWb7/+/PPPzFy5MgcLfvRr18/zJkzp8Rs/EBEJROTaERF3K+//oopU6YAePskNzExEeZmpjAzkyE5KRZymRYKBfCuqUEUAbUGUKkBESYo61QJXl5eGDZsGGrUqFFwL4SIiIjoPa9fv8a+ffsgCAIuXbqUp7lkMhlcXV3h6emJnj17wtbWVk9RFg7nz5/HtGnTcPv2bUnXOzo6YvLkyejfvz/kcnmG18TExGDSpEnYt2+f5DiqVq0KPz8/NG7cWPIYIqKihEk0oiJOpVKhbdu2uHHjBlSpyTA3E2FuKqKzixlaNFChbjUtalQSYWH+NoH2Jga48y9w+wFw/IIc/zxVAHILGJvYYNKkHzBs2DAYGRkV9MsiIiIi0nn8+DECAwPh7++Pe/fu5WkuY2NjdOrUCUqlEl27doW5ubmeoixYGo0GO3fuxE8//YQ3b95IGtOoUSPMnj0bLVq0yPC8KIr4/fffMW3aNCQlJUma09jYGD/88AOGDx+eaYKOiKioYhKNqIgLDQ3FF198gdfhj2FtJeJ/PYEBPWWoV9MaSUmJ0Gi0mbZCWFpa4M6/5li5NQEn/9QCchs0c26FjRs3FsuWByIiIiraRFHE33//DX9/fwiCIHlx/cxYWlqiR48eUCqVaNu2bbF4kBgTE4OlS5di8+bNUKvVksZ4enrCx8cH5cqVy/D8gwcPMGLECNy6dUtyHO3atcOKFSv4npKIihUm0YiKsODgYHzzzddQpUSgZqUUzPxORL0abxs3320eIIpaaLUZ/5jb2FjDysoKoihi98FkTF8Zj9hES1SpWg9//PEHypcvn2+vhYiIiCgntFot/vrrLwiCgKCgIERFReVpPgcHB/Tu3RtKpRLOzs5FfofP+/fvw9fXF6dOnZJ0vbm5Ob777juMGDECZmZm6c6npqZi3rx5+OWXXyTH4ODggOXLl6Nz586SxxARFWZMohEVURcuXED//v2QmvQK7u1lWDHVEnFxaUv33/14Z/ZjbmdnBwuL/2thePxMjQFjo/H4hTmq12yI/fv3w87OzmCvgYiIiEgfVCoVTp8+DUEQcPjwYSQmJuZpvkqVKsHT0xNKpRJ169bVU5T5TxRFHDt2DNOnT8ejR48kjalYsSJ8fX3Rs2fPDBOJx48fx5gxY9JsbJWdb775BtOmTYOJiYnkMUREhRGTaERFUFxcHDp16oRnT2/DzVXE+rm2MDKSISYmBklJybrrtFotZDJZpkk0e3t7mJunfdL47KUGfUZE4XmEFbw++R9Wr15t0NdCREREpE+JiYkIDg6Gv78/Tpw4IbmlMTP16tXT7fBZqVIlPUWZv1JTU7FhwwYsX74c8fHxksa4uLhg9uzZqFevXrpzr169wpgxYyRXuQFA/fr14efnh1q1akkeQ0RU2DCJRlQETZo0Cdu3bUAVp3iEbHWAhfnbp4QajQYREZG6pFl228KXKlUKZmam6Y5fvqVC7+HR0MocsHnzFri5uen/RRAREREZWFRUFA4cOABBEHDu3Lk8z9eiRQsolUr06tULDg4Oeogwf7169Qrz58/Hrl27JF0vl8sxcOBATJo0CaVKlUpzTqvV4pdffsH8+fOhUqkkzWdmZobZs2fjf//7X5FvlyWikolJNKIi5saNG3Bz6wpoIvHHalt83DRtWXxcXDwSEhIAZJ1Ek8mAUqUcYGqacVn9nDVxWLtTg/IV6+P8+fPFYqFdIiIiKrmeP3+OwMBACIKAmzdv5mkuhUKB9u3bQ6lUws3NDVZWVnqKMn9cvXoVPj4+uHTpkqTrbWxsMHHiRHz55ZcwNjZOc+769esYMWIEHj58KPn+Hh4eWLRoEWxtbXMUNxFRQWMSjaiIGT9+PH7/bSP6dFLDb1b6Nx5arYiIiAhotVoEhmjhHwxcvwfExAHVKgJfewH93QG5XAYHBweYmBhncBcgJUVEc68IRMbZY+PGLejRo4ehXxoRERFRvrh//z4CAgIgCILktcIyY2Zmhm7dukGpVKJjx45FZt0vURTh7++POXPmIDw8XNKY2rVrY9asWWjXrl2a4wkJCZg2bZrkCjcAKF++PNauXYuWLVvmKG4iooLEJBpRERITE4MmTZogJfEZgtbZoHnDjN+kJSYmIjY2Dj2HaVHJCXBrCzjYAWf+AtbuBMYNAiZ8JYOjo0O6p4nvm78uHqu2a9GmnTt2795toFdFREREVDBEUcTVq1chCAICAwPx+vXrPM1nY2MDDw8PKJVKtG7dGgqFQk+RGk5CQgJWr14NPz8/pKamShrj5uaG6dOno2rVqmmOBwYGYtKkSYiLi5M0j1wux7hx4zBmzBh2PRBRkcAkGlERIggCRnoPRd2qcQjZWirTtSREEYiIeI3w12qUskt7btIiIOgEcOcAUKZsaRhn8Ybl6QsNWvWNBBRl8Pfff8PGxkaPr4aIiIio8NBoNAgLC4O/vz8OHjwoORGUmbJly+p2+GzYsGGhXwPs8ePHmD17Ng4ePCjpemNjYwwbNgyjR49O08765MkTjBw5UnKrKPB2rbk1a9agYsWKOY6biCg/yQs6ACKS7tq1a4CowsdNjbN8IyaTARYWFukSaADwUS0gLgFITAZkyPrNXKVyClRykgNQ4/r163kLnoiIiKgQUygUaNu2LZYtW4br169j48aN8PDwyHV7Znh4OH7++Wd0794dbdu2xZIlS3K0blh+q1KlCjZs2IDdu3ejbt262V6vUqmwevVqtG3bFnv27NGtxVu5cmUIgoCxY8dKThxevHgRXbp0wb59+/L0GoiIDI1JNKIi5G0iS4VGdTJvwXzH2DjjN3wXbwBOpQErCxmSU5KRnJyMlJRUqFQqqNUaaLVavF+f2qiuESCqmEQjIiKiEsPU1BQ9evTAL7/8guvXr2P58uVo37495PLcfXz6999/sWTJEri6uurmlboOWX5r06YNjh49irlz50pa+D88PBxjxoxBr169cPnyZQCAkZERJk2ahL1796JcuXKS7hsbG4thw4ZhwoQJSExMzNNrICIyFLZzEhUhzZs3x/OnN7D/Fxs0+yjrRFpKSirevHmD93/E/7wOfDIG8PUGhn6KLN8IymQyyOVyrNmhxYptMlSsXBddunSBjY0NbG1tYWdnB1tbW9jY2Oh+/e7LzMxMb6+ZiIiIqLB4/fo19u3bB0EQctSumBGZTAZXV1colUq4u7sXyp0qo6KisHjxYmzZsiXLXd/f9+mnn2LKlCkoW7YsACA6OhoTJkzAoUOHJN+3Ro0a8PPzQ4MGDXIVNxGRoTCJRlSENGrUCBHhfyNkiy3q1cw6iaZWa5CQkIDk5CRoNFo8fwX0GgHUrALsXAzI5Vkn0d7Z9IeIBRsAjWgheU00ExOTNEk1Ozu7NMm2zH5ta2sLKyurQr9mCBEREdGjR48QGBgIf39/3L9/P09zGRsbo3PnzlAqlejatWuheyB5584dTJ8+HaGhoZKut7S0xJgxYzB06FCYmppCFEVs374dvr6+SElJkTSHsbExpk6dim+++SbXFYBERPrGJBpREdK0aVOEP7+Fo5tt0aB29i2dwNtFcsNfJ6PbkARoNRoErJHBxkp6kuqX3SKWbM5ZEi0v5HK5LrEmpert/S8bGxvu7ERERET5ShRF3LlzB/7+/ggICMDz58/zNJ+lpSXc3d2hVCrRpk2bQvPeRhRFHD58GDNnzsSTJ08kjalSpQpmzJiBbt26QSaT4e7du/D29sadO3ck37djx45Yvnw5SpcundvQiYj0hkk0oiKkc+fOuHMzDJt/soBbW1NJY5KSRXQdHInHzzQIWiuiXOmcVXnNWqPFtiAZZAqrNDsvFVZWVlZpkm/ZJd7YhkpERET6otVqcfHiRQiCgKCgIERHR+dpPgcHB/Tu3RteXl5o1qxZoajWT0lJwc8//4yVK1dKXrusXbt2mDlzJurUqYOUlBTMmjULmzdvlnzP0qVLY8WKFejQoUMuoyYi0g8m0YiKkHHjxmHXzg0YN0iGiUOzT2ip1SKU3lEIu5KK0785oG51BURR/P+bB7z7rxZarZjB92//22+sCueuymBhaVfsk0wmJibZVr19WCH37tdsQyUiIqL3qVQqnDp1CoIg4PDhw0hKSsrTfJUqVYJSqYRSqUSdOnX0FGXuvXz5EnPnzsUff/wh6XqFQoFBgwZh4sSJsLW1RXBwMMaOHYuoqCjJ9xw2bBgmT56c6x1TiYjyikk0oiJk8+bNmDplAjo0T8Jvy+yzvf7badFYvysJSyZbw6Vp2jcbTesbw9Q066RPUrKIum6voRIdcfToMVhZWSE2NhYxMTGIjo5O9+vo6GjExMSk+9JoNHl63UXB+22oUqre3m9Ttba2LjStGkRERKR/iYmJOHr0KARBwIkTJ6BWq/M0X7169aBUKuHp6YmKFSvqKcrcuXTpEnx8fHD16lVJ19vb22PSpEn4/PPPERkZiVGjRkleaw0AGjZsCD8/P1SvXj2XERMR5R6TaERFyL1799ChQ3soxNe46O8Ap9KKLK+v2uEVHj/LOIH18ERpVK2YdeJm14EkjJuXjMrVGuPcuXO5qrQSRRGJiYnpEmvvEm7vJ98ySsQlJyfn+J5FkZWVVa4q4Ozs7GBqKq21l4iIiApeVFQU9u/fD0EQcP78+TzP16JFCyiVSvTq1QsODg56iDDntFot9uzZg3nz5uH169eSxtSrVw+zZ89G69at4efnhwULFkhOLlpYWGDu3Lno168fOwGIKF8xiUZUxCiVSlw4F4wJX8kx4WvDrlHW4+s3uHbPEtN8ZsPb29ug98pMampqjqre3v+Ki4srkJjzm6mpaZbVblntjMo2VCIiooLz/PlzBAYGQhAE3Lx5M09zKRQKtG/fHkqlEm5ubgWylm1cXBxWrFiB9evXQ6VSSRrj4eEBHx8fREREwNvbG48fP5Z8v969e2PhwoX5svkVERHAJBpRkRMYGIgRw4fCzjIKp3aUQmmHrKvRcuvomRQM/jEOJublcfnyZZQqVcog9zEkjUaDuLg4yVVvH7aploQ2VIVCoatqy6zqLbMKORsbGygUhvnzR0REVNLcv38fAQEBEAQBjx49ytNcZmZm6NatG7y8vNCxY0cYG0vb1V1fHj58iBkzZiA4OFjS9SYmJvD29sagQYMwZ84cyeusAUDFihWxdu1aNG/ePLfhEhFJxiQaURGjUqng7u6OWzfOw72dBuvn2uq9kig6VosOn0fiVbQtvEeOxbRp0/Q6f1EgiiISEhLSVMBlV/n2fiIuJSWloF9CvnjXhppZy2lWa8SxDZWIiCg9URRx9epVCIKAwMBAye2RmbG1tYWHhweUSiVat24NuVyup0izd/LkSUyfPh3379+XdL2TkxN8fHyg0WgwefJkJCQkSBqnUCgwfvx4jB49mg/4iMigmEQjKoJu3bqFHj26Q50SjkWTLPF5H3O9za3RiPh2WgwOnZGjZu1mCA4OZrIjF1JSUnRJNSlVb+//uiS1oUqtevswSWdpack2VCIiKvbUajXOnTsHf39/HDx4MM/vEZycnODp6QmlUokGDRrky7+lKpUKW7ZsweLFixEbGytpTPPmzTFixAisXr0aV65ckXyvjz/+GKtWrUL58uVzGy4RUZaYRCMqolasWIEFC+ZCLkZh5TQreLnlPZGmVov4/qdY7D6kgbFZGQhCAJo1a6aHaCkn1Go14uLiJFe9fdimWtLaUKVUvbENlYiIirqUlBSEhIRAEAQEBwcjNTU1T/PVqFEDSqUSSqUS1apV01OUmYuMjMTChQuxfft2SPkIKpPJ8Omnn8LS0hK//vqrpDHA28q7pUuXokePHnkNmYgoHSbRiIooURQxceJE/LZjK2RiFMYNNseYQZYwNs7dE8XwCA0mzI/F8fMi5MYOWLfuZ3h4eOg5ajK0d22oUhJvGe2SWlLaUK2trTPcaEHKzqgmJiYFHT4REZVwsbGxOHToEARBQGhoKLRabZ7ma9KkCZRKJXr37o2yZcvqKcqM3bp1Cz4+PpJ3JrWyskKvXr0QEhKCV69eSb7PF198gRkzZsDcXH8dG0RETKIRFWFarRa+vr7YtGk9oI1F/RpaLJxkg2YfSV88Vq0W8ceRZExfGY/YBDMYm9pj3bqf+fSuhHq/DTWzltPMNmeIj48v6PDzxbs21Owq3jLaGZVtqEREpG+vXr3Cvn37IAgCLl++nKe5ZDIZXF1d4eXlBXd3d4PteimKIvbt24dZs2bh+fPnksZUrFgRdnZ2OdrFtHbt2vDz80O9evVyGyoRURpMohEVA0FBQZgyZQreRP4HaBPg/JECXyrN0aGlSYa7d2q1Ih79p0FgSDK2BSThZYQckNugcZPmWLZsGerWrVsAr4KKuozaULOqenv/upLShmpkZAQbGxvJVW/vV8hZW1uzDZWIiLL06NEjBAQEwN/fHw8ePMjTXMbGxujSpQuUSiW6dOkCMzMzPUX5f5KSkuDn54fVq1cjOTk52+tFUUTVqlXx9OlTydV3JiYm8PX1xVdffcUHWUSUZ0yiERUTERERmD17NgICAqBKjQPEJEBUwclRho9qGcPKQgatFoiI0uLmfRXiEmSAzASQWaCUQ1mMGDECw4YNg5GRUUG/FCqBPmxDzaoCLqOvktaGml3yLaMkHdtQiYhKDlEUcfv2bQiCAEEQ8OLFizzNZ2VlhR49esDLywuurq56f7/47NkzzJ49G0FBQZKuF0URpqamSElJkZwY69q1K5YuXQoHB4e8hEpEJRyTaETFzOvXr7Fz5074+/vj/v37EEUVIKoBiABkb79kxjAxMYOzszM+//xzeHh48AM2FWkpKSmSq94+/CopbahmZmaSq94+TNJZWFjw6T0RURGl1Wrx559/QhAE7Nu3D9HR0Xmaz9HREb169YKXlxeaNWum138fLly4AB8fH0ktm6IoQq1WQ61WS173rGzZsli1ahXatGmT11CJqIRiEo2oGIuPj8fNmzfx4MEDJCcnQ6FQwMrKCh999BFq1aoFY2Ppa6cRFVfvt6FKqXr78CuvizkXBe/aUKVWvb3/xTZUIqLCQ6VS4dSpUxAEAYcPH0ZSUlKe5qtcuTI8PT2hVCpRp04dvcSo0Wjw+++/Y/78+Xjz5k221ycnJyM1NRXm5uaS3tvKZDJ4e3tj0qRJfC9MRDnGJBoREVEuiaKI+Pj4dFVvmSXiPqyWS01NLeiXkC/erQOXWdVbVmvE8QMOEZFhJCYm4ujRoxAEASdOnIBarc7TfPXq1YOXlxf69OmDihUr5jm+2NhYLF26FJs2bco2No1Gg9jYWMjlclhbW0Mul2c7f5MmTbB27VpUrVo1z7ESUcnBJBoREVEBedeGKrXq7f0kXUlrQ5VS9fZhqyrbUImIpImKisL+/fshCALOnz+f5/latmwJpVKJXr16oVSpUnma68GDB5g+fTpOnDiR5XWiKCIxMREJCQmwtLSU9G+ApaUl5s+fj759++YpRiIqOZhEIyIiKoLUajViY2MlV719+OuS0oaak6q396vlrKysDN6Gev78eezcuRNWVlbo1asXWrdubdD7ERFJ8ezZMwQGBkIQBNy6dStPcxkZGaF9+/ZQKpVwc3ODpaVlruYRRREhISGYPn06Hj58mOW1KpUKMTExAN5uyGNqaprt/F5eXpg/fz6sra1zFR8RlRxMohEREZUwWq02zW6oWVW+ZdSmWhLaUGUyWaa7oWaWfLO3t0f16tWznFcURchkMuzZswcrVqxA3bp1ERcXh9jYWEydOjXTxa41Gg127tyJ5cuXw9zcHN7e3vjss8905+/du4e7d+/C0dER9vb2cHBwgIODg6SWJiKizNy7dw8BAQEQBAGPHz/O01xmZmZwc3ODl5cXOnTokKt2fZVKhQ0bNmDZsmVZVmRrtVrExcUhOTkZJiYmsLa2znZH0SpVqmDNmjVo1qxZjuMiopKDSTQiIiLKkeTkZMlVbx8m5hISEgo6fIMpV64cLl26lO11UVFRGDhwIMqXL4/169cDeFsFYWpqip07d6a59l3Sbf78+di7dy/GjBmDmJgY7NmzByNHjkT//v0BAF9//TU2b96MBg0a4OXLlzAzM8O8efMwcOBAaLVaXTItISEBfn5+iI6OxujRo1GmTBloNBrcu3cPr1+/hr29PUqVKoVSpUpJ3u2OiIo/URRx5coVCIKAoKAgvH79Ok/z2draolevXlAqlWjVqlWOE/6vX7/G/PnzsWvXLmT2cVYURSQnJyMuLg6iKMLc3BxWVlZZ3svIyAiTJk2Ct7c3H0IQUYaYRCMiIqJ8864NVWrV2/u/LuxtqHXq1MlyzR6VSgVjY2McPnwYixcvxsSJE+Hm5gYAWLNmDQ4dOoRly5ahVq1aAP4vgfbvv//i66+/hpubG3788UcAwJdffomUlBTs3LkTcrkcnp6eaNGiBaZOnZrhvd8l0jZu3Ijhw4fD2dkZP//8Mxo3bozY2Fh8+umnCA4ORq1atfD8+XNUr14dy5YtQ6dOnXRxEBEBb/8eDwsLgyAIOHDgQJ7X6HRycoJSqYRSqcRHH32Uo79vrl27Bh8fH/z1119ZxhsTEwO1Wg2ZTAYrKytYWFhkOW+bNm2watUqlC1bVnIsRFQyZF3TSkRERKRHRkZGukqnnNJqtYiPj8+y6i2rNeJUKpUBXtH/sbW1zfL8u9alyMhImJmZpflw9m4B7HcfRkVR1CWvrly5AiMjozStni1atEBwcDDu3buHunXr4tWrV7hw4QJu3boFMzMzVK5cWXe/dwk0f39/3Lx5E25ubnBycoKZmRmAt62rqamp2LFjR5oW0XeYQCOi9xkZGaFdu3Zo164d5s+fj5CQEAiCgGPHjuWq3f/ly5fw8/ODn58fatasCU9PTyiVSlSrVi3bsY0bN0ZgYCACAgIwe/ZsvHz5MsN4S5Uqhfj4eCQmJiIuLg5JSUmwtraGiYlJhvOGhoaiU6dOWL58Obp27Zrj10RExReTaERERFQkyOVy2NjYwMbGBhUrVszx+HdtqFKq3nLThmpnZ5fh8QcPHmDAgAG4f/8+6tSpg6ZNm8LGxibNh7eUlBTI5XJdYut9L1++hKWlJRwcHHTH3rVavksMtmjRAqdOndJVqI0fPx6DBg2CQqGAXC5HREQENm7ciFGjRqFs2bK4ceOGbo6UlBRERETg/Pnz6NChA2QyGcqWLZtp8iwoKEi3a+r7X+bm5ky4EZUwZmZm6NmzJ3r27InY2FgcOnQI/v7+OHv2bK4qhx88eIDFixdj8eLFaNKkCZRKJXr37p1lRZhMJtNtXLB69WqsXbs2XTLv3TqXJiYmiI2NhVqtRlRUFExNTWFtbZ3hRjJRUVEYNGgQvvrqK/j4+GT49zMRlTxMohEREVGJYGZmlq4CTCqVSoW4uLgsq95q1qyZ4diaNWvi2LFjePXqFVJTU3H58mWsX78+TTvRgwcPYGNjA3t7e92xdwkpURSh1WrT7DAXFxcHIyMjWFlZAQB8fX11SbbDhw9j4MCBKFu2LHr27AkAGDZsGBo3bozu3bvj2LFjMDY21n1o1Gg0cHZ2RnBwMIKDg2FpaYk5c+boWk0/9N1330GtVqc7bmxsnOVuqFntjJrdOkVEVPjZ2Nigf//+6N+/P8LDw7Fv3z4EBATg8uXLuZrv6tWruHr1KmbOnAkXFxd4eXnB3d0dNjY2GV5vYWGBSZMmYcCAAZg9ezYOHDiQ7hpTU1M4ODggJiYGqampSElJQWpqKiwsLGBpaZnhg4DNmzfj3Llz8PPzQ506dXL1Woio+OCaaERERET5KDExERUrVsT69evxySefQBRF1KhRAxMmTMCIESPSJZMOHjyIKVOm4MCBA6hQoQIAYMiQITA2NsZPP/2kS7xpNBqkpqbC3Nwcbdq0gbu7O6ZMmYLVq1fjzp07WLJkCczMzDBy5EjY2tpi3rx5unjUarXug+nKlSuxaNEiHDhwAI0aNUoTS1JSEmrUqKH335N3VSIZJdmk7Iyam13+iCh/PHr0CAEBAfD398eDBw/yNJexsTG6dOkCpVKJLl26ZFkdFhoaiunTp+POnTvpzomiiKSkJMTHx+s2JpDL5bC2ts50TlNTU8ycORNffPEFq26JSjAm0YiIiIjyybv1yVasWIE//vgDtWrVQlxcHKKiorBz5044OjpCq9Xi+fPnKF++PORyObRaLZycnDB//nx8/fXXePbsGerXr48tW7bA09MTsbGx6Soz6tatizFjxmDEiBFwcXHBrVu3UKNGDTg6OuLOnTuwt7fHwIEDMXr0aN0HRrVaDa1WCxMTE5QrVw6rVq1C375908z7+vVrNG7cON9+v6SysLCQXPX2LvH27ryZmRk/EBPlA1EUcfv2bQiCAEEQ8OLFizzNZ2VlBXd3dyiVSri6usLIKH2TlVqtxo4dO7BgwQJER0enO69SqRATEwONRqM7ZmxsDGtr60yT8927d8eSJUvSVA4TUcnBJBoRERFRPtNoNNizZw8uXrwIKysrjBo1Co6OjgCAN2/eoF69ejh16hTq1q0LADh06BCmTJmClJQUmJubo2PHjpgzZw7MzMxw6NAh3Lx5E3Xq1EHp0qWxa9cuCIKA0NBQVKpUCXfv3sWLFy/w6tUrJCQkYOnSpbCzs0Pnzp11c1pbW6eJzd7eHn/88Ue6BbUfPHiAdu3a5d9vVD5414Yqtert3a/ZhkqUe1qtFn/++ScEQcC+ffsyTHDlhKOjI3r37g2lUolmzZqlS4xHR0dj8eLF2LJlS5qEGfA2ufdus4H3mZubZ/oz7uTkhNWrV8PFxSVPcRNR0cMkGhEREVERcO/ePTx+/BgA0L59e93GBH/++SeWL1+OO3fuQKVSwdnZGdOnT0f16tUznKdFixbw9PTE1KlTAQDbt29HQkIC6tevDwsLCyxduhQ3btxAWFiYbs21d6KionD48OF0O6N++Ov82A21MMiqDTWjqrcPq+XYhkr0thrs5MmTEAQBR44cSZfMyqnKlStDqVRCqVSidu3aac79/fff8PX1RWhoaLpxycnJiI2Nxfsfj2UyGSwtLWFpaZnueplMhtGjR2P8+PH8WSYqQZhEIyIiIipBjh07hjJlyujWOwsMDMTatWvx8OFDGBkZoUOHDvD19YWTk1Ou7yGKom431Iy+stsZNTExUV8vt1CzsLCQXPX24XVsQ6XiKCEhAUePHoUgCDh58mSGm5jkRP369eHl5YU+ffro1pQURRFHjhzBzJkzdQ8m3tFoNIiJiUn3EEChUMDa2jrNBi/vODs7Y82aNahcuXKeYiWiooFJNCIiIiIqVFQqVZaVbh9Wvb2foPuwkqS4er8NVUrV2/uJOLahUlHw5s0b7N+/H4Ig4MKFC3mer1WrVlAqlfDw8ECpUqWQkpKCX375BStWrEiTuBdFEQkJCUhISEg3h4mJCaytrdOtv2ZtbY0FCxbA09Mzz3ESUeHGJBoRERERFRtarRbx8fGSq94+TMSVhDbUd7sQSq16e/+LbahUEJ49e4bAwED4+/vj9u3beZrLyMgI7du3h1KphJubG+Lj4zFv3jzs2bMnzXWpqamIjY1Nt4Ya8LaK1MrKKl01aP/+/TFnzpwM2z+JqHhgEo2IiIiICGnbUD+sesusNfX9r5LShmppaZlppVt2O6OyDZXy6u7duwgICIAgCHjy5Eme5jI3N4ebmxuUSiVsbGwwa9YsXLlyRXdeq9UiNjYWKSkp6cbK5XJYWVnB3Nw8zfFq1arBz89P1zIvVVJSEh49eoTExEQoFArY2NigSpUqUCgUuXtxRGQQTKIREREREemBSqXKUdXb+9VycXFxJaYNNbtqt8zWiGMbKr1PFEVcvnwZgiAgKCgIEREReZrPzs4OPXv2hK2tLfbs2YPXr1/r7pOcnJzpz6iRkRGsra11m70Ab/+c//jjjxg2bFimf2a1Wi3Onj0Lf39/XL16Fffv34dWqwLw7h5yWFhY4aOPPkLLli3xv//9D9WqVcvTaySivGMSjYiIiIiogL1rQ5Va9fZhtVxJa0OVmnh7d621tTXbUIsxtVqNsLAw+Pv74+DBg4iPj8/TfGXLloWDgwNu3boF4O1OnGq1GjExMZludmBmZgYrK6s0lWPt27fHihUrUKZMmTSxbtu2DRs3bsS//94HtEmAqAKggp21DNaWMmhFIDJKi+RUGSAzBmQmgMwc7dt3wKhRo+Di4pKn10dEucckGhERERFRESaKIpKSkiRXvX24OUNJakOVshtqRmvEmZmZFXT4JFFycjJCQkIgCAKCg4PzlGDWaDSQyWRITEyEmZkZFAoF4uPjM/2ZkclksLCwgKWlpa5t2cHBAcuXL0fnzp1x//59jB07Flcu/wmI8bAyV6FvdzN0bGWKRnWNUNZR8d69RfzzRINrf6uw73gKQs6lQoQ5ILfEl18OxrRp02BlZZXr10ZEucMkGhERERFRCfauDVVq1dv7O6OWlDZUExMTyVVvH64RZ21tzXXgCkhsbCwOHToEf39/nD17FlqtNlfzpKamIi4uDjKZTLeuX3x8fKbzvauafD/56urqiot//onUlChYWyRh0lBL9Hc3g5WltBblx8/UWLM9EduDUgC5DSpXqYVt27ahVq1auXpNRJQ7TKIREREREVGuZNWGmtHmDB9WyGXWGlecyOVyXaItqwq4jNpUbWxsYGRkVNAvoVgIDw/Hvn37IAhCms0DciIxMRHx8fEQRRHGxsbQarUZ7t75jrGxMWxsbJCamoqE+DjY2Yjo4mqCpZNtUa5M7jYMCP0rFRPmx+JpuCnsHSpj7969qFevXq7mIqKcYxKNiIiIiIjy3bs2VKlVbx8m4ZKSkgr6JeSLzNpQpeyMyjbUjD169AiCIMDf3x///PNPjsZqtVokJCQgMTExXRVmRhWHoihCJgNK2YgYpAS+H/I2qWpubo7cFii+idbi8wnRuHbXCGWcauLQoUMoV65c7iYjohxhEo2IiIiIiIqc99tQs6t6+7ACriS1oUqtevvwy8rKqti3oYqiiFu3bkEQBAiCgJcvX0oeq1arERcXh9TUVIiiqPvz9O73TCaT6Y7b2wADewM/DoVut04zMzPY2NhALs/d73FMnBZeI6Nw56E5OnR0x44dO4r9/y+iwoBJNCIiIiIiKlE0Go2uDVVK1duHXyWpDVVq1dv7Sbqi2Iaq1Wpx4cIFCIKAffv2ISYmRtK4lJQUxMXFQa1WZ5iYtTADWjYCtswH3v2WvE2cyaBQKGBrawsTk9ztHPvgsRpdBr1BqtYBS5euwIABA3I1DxFJxyQaERERERGRRO+3oUqpevuwWq6ktKFaWVllmXDLao04U1PTAo1dpVLh5MmT8Pf3x5EjR5CcnJzl9aIoIjExEQkJCdBqtbpkmlwOODkCOxcDNaukHSOTATLZ26o0Kyur/7+jZ85jXbsjAXPWpsDesQYuX75c4L93RMUdk2hERERERET5JDU1VXLi7cOv2NjYgg4/X7xrQ81J4u1dwk7fbagJCQk4cuQIBEHAyZMns9xIQKvVIi4uDklJSRBFEVYWwGAlMPnbzOeXyWTYfQgYOz/9x/IfvrXETxNtsoxPrRbxcb9IPHtti5Wr/NC3b1/Jr42Ico5JNCIiIiIioiLg/TZUKVVvH/66JLShKhQKSbuhZrRGnI2NDRSKzHfNjIyMxP79+xEQEIALFy5kel1KSgqiot7A0R7Yuzx9FdqHdh0Cxv8E/L5UDqcyVjD9/+2dFZwUqFQu+108V/yagAUb1HBu0Qn79u3L9noiyj0m0YiIiIiIiIq5dy2H2VW7fZiIe5eky66lsbh414aaWeXbu4Rbamoqrly5gjNnzuDff//VbRgAAElJSUhJioGrs4gt87O/57sk2o1AwLGUDObmFrC2sYZcYkXdq0gNmvSOBBRlcPPmTZQqVSq3L5+IslG0VnskIiIiIiKiHJPJZLC0tISlpSXKly+f4/Hv2lClVr29/+ui1IYaHx+P+Ph4PHv2TPIYrVaLxMREpKSkQKvVQqvVwsJMRNN6/7dLp/S5RCQkJECtVqFUKQdJ66SVcVCgWkU5Hj5X4caNG2jfvr3k+xFRzjCJRkRERERERFkyMTFB6dKlUbp06RyP1Wg0iIuLk1z19mGbalbrkBUGRkZGus0B1Go1oqKiYGQE1KuOHCXQOg4G3sQAFcsCQz6VY5q3CIVCWjVaozrGePhcjevXrzOJRmRATKIRERERERGRwSgUCtjZ2cHOzi7HYzNrQ82qAu796/KzDVUmk8HY2BgymQxGCqBqBWmVaGUdgO+/AprWf7tr57FzcsxanYzXb2KxerqtpHvXqKwARA2eP3+uj5dCRJlgEo2IiIiIiIgKJX23oWZV9fZhBVxcXFyeYjcxlkEmk72XSBORUT6tQ8u3X+/071UGpezisOzXBEwdYYVyZbLfXMDEWAZAi5SUlDzFTERZYxKNiIiIiIiIiiV9tKFKrXp79xUVFQVADdV7m6HKZDIAMshkyDKhJpfLIZfL0M/dDIs3JuDqHZWkJJpKLQKQwcTEJMevk4ikYxKNiIiIiIiI6AO5bUPt3r07rl89hbhkM5QubQqtVgtRFNP9V6PRQKVKRWqqSjfW1NQ0V7E+fqYBZMYoU6ZMrsYTkTRMohERERERERHpScOGDXH9ahhu3tOgVyc5FAp5lteLIpCYmAgAsLS0AAD8fiAZCgXQtL6xpHte+1sNwAKNGjXKU+xElDUm0YiIiIiIiIj0pGHDhoDMGH/dSJR0ffchkejU2hQN6xgBSEZQSAp+2ZWIMYMs4VQ6+1bO6FgtHjxRA3IjJtGIDIxJNCIiIiIiIiI96dChA2RyU5y7GoNH/6lRtWLWH7vrVjfCxr2J+O+lBlotULuaEZZPtcGoLy0k3W/3wWSIMEW9evXZzklkYEyiEREREREREelJ5cqV0bFjJxw/FoitQhJ8R1lnef0KH1usyOW9tFoRW4REQGaDwYMH53IWIpIq6+ZsIiIiIiIiIsqRQYMGAXILbBGS8fiZOvsBubRzXzIe/ieDlXUpeHl5Gew+RPQWk2hEREREREREetS5c2e4uLRFUqoFxs+Lg1Yr6v0ez15qMHN1PCC3xYQJE2Bpaan3exBRWkyiEREREREREemRXC7HkiVLYGFVGueuarFsc4Je509KFjFiegzik8zRouXH+Oabb/Q6PxFljEk0IiIiIiIiIj2rUqUKZs2aBSjssWRTMtZs108iLSFRi8E/ROOvW3LY2JXHsmXLoFBkv4snEeUdk2hEREREREREBvC///0PEyf+ACjsMdcvCWNmxyAmTpvr+W7dV6H38CicuSSHhVV5bNu2DdWrV9djxESUFZkoivpvziYiIiIiIiIiAICfnx/mzJkNUROLsqVSMHOMNdzbm8LISCZpfHSsFut3JWLVtiSoRUvYl6qArVu3wtnZ2cCRE9H7mEQjIiIiIiIiMrC//voLY8eOxb//3AG08XBy1GJgH3N0aGWKj2oawdQ0bULtTbQW1++qEHgsBQHHkpGiMgXkVujRwwM//fQTSpcuXUCvhKjkYhKNiIiIiIiIKB8kJydj9erV2LJlCyIjXgJiEiCmwkihRfVKClhZyKAVgYgoLf57qQVgBMhMALkF6tdvgDFjxsDDwwMymbQKNiLSLybRiIiIiIiIiPJRamoqDhw4AH9/f1y9ehWRkRGAqAbw/z+ey+QAjFCtWjW0bNkSAwcORLNmzZg8IypgTKIRERERERERFRBRFPHixQs8ePAASUlJkMvlsLGxQb169WBjY1PQ4RHRe5hEIyIiIiIiIiIiyoa8oAMgIiIiIiIiIiIq7JhEIyIiIiIiIiIiygaTaERERERERERERNlgEo2IiIiIiIiIiCgbTKIRERERERERERFlg0k0IiIiIiIiIiKibDCJRkRERERERERElA0m0YiIiIiIiIiIiLLBJBoREREREREREVE2mEQjIiIiIiIiIiLKBpNoRERERERERERE2WASjYiIiIiIiIiIKBtMohEREREREREREWWDSTQiIiIiIiIiIqJsMIlGRERERERERESUDSbRiIiIiIiIiIiIssEkGhERERERERERUTaYRCMiIiIiIiIiIsoGk2hERERERERERETZYBKNiIiIiIiIiIgoG0yiERERERERERERZYNJNCIiIiIiIiIiomwwiUZERERERERERJQNJtGIiIiIiIiIiIiywSQaERERERERERFRNphEIyIiIiIiIiIiygaTaERERERERERERNlgEo2IiIiIiIiIiCgbTKIRERERERERERFlg0k0IiIiIiIiIiKibDCJRkRERERERERElA0m0YiIiIiIiIiIiLLBJBoREREREREREVE2mEQjIiIiIiIiIiLKBpNoRERERERERERE2WASjYiIiIiIiIiIKBtMohEREREREREREWWDSTQiIiIiIiIiIqJsMIlGRERERERERESUDSbRiIiIiIiIiIiIssEkGhERERERERERUTaYRCMiIiIiIiIiIsoGk2hERERERERERETZYBKNiIiIiIiIiIgoG0yiERERERERERERZYNJNCIiIiIiIiIiomz8P4gOEsecQzVBAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Omic Degree\n", - "Index \n", - "1 Gene_7 4\n", - "2 Gene_6 4\n", - "3 Gene_1 4\n", - "4 Gene_446 4\n", - "5 Gene_53 4\n" - ] - } - ], - "source": [ - "cluster2_mapping = plot_network(louvain_adj2, weight_threshold=0.01, show_labels=True, show_edge_weights=True)\n", - "print(cluster2_mapping.head())" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BioNeuralNet version: 1.1.1\n" - ] - } - ], - "source": [ - "import bioneuralnet\n", - "print(f\"BioNeuralNet version: {bioneuralnet.__version__}\")" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": ".enviroment", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file diff --git a/docs/jupyter_execute/TCGA-BRCA_Dataset.ipynb b/docs/jupyter_execute/TCGA-BRCA_Dataset.ipynb deleted file mode 100644 index d3e6011..0000000 --- a/docs/jupyter_execute/TCGA-BRCA_Dataset.ipynb +++ /dev/null @@ -1,1354 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "d182cc95", - "metadata": {}, - "source": [ - "# TCGA-BRCA Demo\n", - "\n", - "## Dataset Source\n", - "\n", - "- **Omics Data**: [FireHose BRCA](http://firebrowse.org/?cohort=BRCA)\n", - "- **Clinical and PAM50 Data**: [TCGAbiolinks](http://bioconductor.org/packages/release/bioc/html/TCGAbiolinks.html)\n", - "\n", - "## Dataset Overview\n", - "\n", - "**Original Data**:\n", - "\n", - "- **Methylation**: 20,107 × 885\n", - "- **mRNA**: 18,321 × 1,212\n", - "- **miRNA**: 503 × 1,189\n", - "- **PAM50**: 1,087 × 1\n", - "- **Clinical**: 1,098 × 101\n", - "\n", - "- **Note: Omics matrices are features × samples; clinical matrices are samples × fields.**\n", - "\n", - "**PAM50 Subtype Counts**:\n", - "\n", - "- **LumA**: 419\n", - "- **LumB**: 140\n", - "- **Basal**: 130\n", - "- **Her2**: 46\n", - "- **Normal**: 34\n", - "\n", - "## Patients in Every Dataset\n", - "\n", - "- Total patients present in methylation, mRNA, miRNA, PAM50, and clinical: **769**\n", - "\n", - "## Final Shapes (Per-Patient)\n", - "\n", - "After aggregating multiple aliquots by mean, all modalities align on 769 patients:\n", - "\n", - "- **Methylation**: 769 × 20,107\n", - "- **mRNA**: 769 × 20,531\n", - "- **miRNA**: 769 × 503\n", - "- **PAM50**: 769 × 1\n", - "- **Clinical**: 769 × 119\n", - "\n", - "## Data Summary Table\n", - "\n", - "| Stage | Clinical | Methylation | miRNA | mRNA | PAM50 (Subtype Counts) | Notes |\n", - "| ------------------------------ | ----------- | ------------ | ----------- | -------------- | -------------------------------------------------------------- | --------------------------------------- |\n", - "| **Original Raw Data** | 1,098 × 101 | 20,107 × 885 | 503 × 1,189 | 18,321 × 1,212 | LumA: 509
LumB: 209
Basal: 192
Her2: 82
Normal: 40 | Raw FireHose & TCGAbiolinks files |\n", - "| **Patient-Level Intersection** | 769 × 101 | 769 × 20,107 | 769 × 1,046 | 769 × 20,531 | LumA: 419
LumB: 140
Basal: 130
Her2: 46
Normal: 34 | Patients with complete data in all sets |\n", - "\n", - "## Reference Links\n", - "\n", - "- [FireHose BRCA](http://firebrowse.org/?cohort=BRCA)\n", - "- [TCGAbiolinks](http://bioconductor.org/packages/release/bioc/html/TCGAbiolinks.html)\n", - "- [Direct Download BRCA](http://firebrowse.org/?cohort=BRCA&download_dialog=true)\n" - ] - }, - { - "cell_type": "markdown", - "id": "c9698b74", - "metadata": {}, - "source": [ - "## Raw Data Overview\n", - "\n", - "Let's take a look at the data from FireHose directly after download:\n", - "\n", - "Some of the first things we noticed were:\n", - "\n", - "- **Different sample sizes** for each data type\n", - "- **Multi-index structure** in some datasets\n", - "- **Presence of NaN values**, especially in clinical data\n", - "\n", - "**Dataset Shapes:**\n", - "- `mirna` shape: **(503, 1189)**\n", - "- `rna` shape: **(18321, 1212)**\n", - "- `meth` shape: **(20107, 885)**\n", - "- `clinical` shape: **(18, 1097)**\n", - "\n", - "**Additional Notes:**\n", - "- `mirna`, `rna`, and `meth` use gene names as index and patient/sample IDs as columns.\n", - "- `meth` and `clinical` datasets include metadata rows (e.g., \"Beta_Value\", \"value\") as part of a multi-index.\n", - "- `clinical` data contains missing values (e.g., in \"days_to_death\"), which will require preprocessing." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "9c0bda23", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "mirna shape: (503, 1189), rna shape: (18321, 1212), meth shape: (20107, 885), clinical shape: (18, 1097)\n", - " TCGA-3C-AAAU-01 TCGA-3C-AALI-01 ... TCGA-E2-A10E-01 TCGA-E2-A10F-01\n", - "gene ... \n", - "hsa-let-7a-1 13.129765 12.918069 ... 14.060268 12.990403\n", - "hsa-let-7a-2 14.117933 13.922300 ... 15.047592 14.006035\n", - "hsa-let-7a-3 13.147714 12.913194 ... 14.074978 13.018659\n", - "hsa-let-7b 14.595135 14.512657 ... 16.370741 15.439239\n", - "hsa-let-7c 8.414890 9.646536 ... 10.885520 11.385638\n", - "\n", - "[5 rows x 1189 columns]\n", - " TCGA-3C-AAAU-01 TCGA-3C-AALI-01 ... TCGA-Z7-A8R5-01 TCGA-Z7-A8R6-01\n", - "gene ... \n", - "?|100133144 4.032489 3.211931 ... 1.178747 2.783771\n", - "?|100134869 3.692829 4.119273 ... 2.866572 4.631075\n", - "?|10357 5.704604 6.124231 ... 6.410173 7.388457\n", - "?|10431 8.672694 9.139279 ... 10.155173 9.970921\n", - "?|155060 10.213110 9.011343 ... 7.977670 7.894918\n", - "\n", - "[5 rows x 1212 columns]\n", - " TCGA-3C-AAAU-01 TCGA-3C-AALI-01 ... TCGA-Z7-A8R5-01 TCGA-Z7-A8R6-01\n", - "Hybridization REF ... \n", - "Composite Element REF Beta_Value Beta_Value ... Beta_Value Beta_Value\n", - "A1BG 0.483716119676 0.637191226131 ... 0.617859586161 0.568150149265\n", - "A1CF 0.295827203492 0.458972998571 ... 0.691835387189 0.224696596211\n", - "A2BP1 0.187699869591 0.240515847704 ... 0.522169978143 0.33955834608\n", - "A2LD1 0.62958551322 0.666272288675 ... 0.791229999577 0.637764188841\n", - "\n", - "[5 rows x 885 columns]\n", - " tcga-5l-aat0 tcga-5l-aat1 ... tcga-xx-a89a tcga-z7-a8r6\n", - "Hybridization REF ... \n", - "Composite Element REF value value ... value value\n", - "years_to_birth 42 63 ... 68 46\n", - "vital_status 0 0 ... 0 0\n", - "days_to_death NaN NaN ... NaN NaN\n", - "days_to_last_followup 1477 1471 ... 488 3256\n", - "\n", - "[5 rows x 1097 columns]\n" - ] - } - ], - "source": [ - "import pandas as pd\n", - "from pathlib import Path\n", - "root = Path(\"/home/vicente/Github/BioNeuralNet/TCGA_BRCA_DATA\")\n", - "\n", - "mirna_raw = pd.read_csv(root/\"BRCA.miRseq_RPKM_log2.txt\", sep=\"\\t\",index_col=0,low_memory=False) \n", - "rna_raw = pd.read_csv(root / \"BRCA.uncv2.mRNAseq_RSEM_normalized_log2.txt\", sep=\"\\t\",index_col=0,low_memory=False)\n", - "meth_raw = pd.read_csv(root/\"BRCA.meth.by_mean.data.txt\", sep='\\t',index_col=0,low_memory=False)\n", - "clinical_raw = pd.read_csv(root / \"BRCA.clin.merged.picked.txt\",sep=\"\\t\", index_col=0, low_memory=False)\n", - "\n", - "# display all shapes and first few rows of each dataset\n", - "print(f\"mirna shape: {mirna_raw.shape}, rna shape: {rna_raw.shape}, meth shape: {meth_raw.shape}, clinical shape: {clinical_raw.shape}\")\n", - "print(mirna_raw.head())\n", - "print(rna_raw.head())\n", - "print(meth_raw.head())\n", - "print(clinical_raw.head())" - ] - }, - { - "cell_type": "markdown", - "id": "aacae339", - "metadata": {}, - "source": [ - "## TCGA-BioLink: Pam50\n", - "\n", - "This section demonstrates how to use the `TCGAbiolinks` R package to access and download clinical and molecular subtype data. It begins by ensuring `TCGAbiolinks` is installed, then loads the package. It retrieves PAM50 molecular subtype labels using `TCGAquery_subtype()` and writes them to a CSV file. Additionally, it downloads clinical data using `GDCquery_clinic()` and formats it with `GDCprepare_clinic()`, saving the result as another CSV file." - ] - }, - { - "cell_type": "markdown", - "id": "a445601f", - "metadata": {}, - "source": [ - "```R\n", - " # Install TCGAbiolinks\n", - " if (!requireNamespace(\"TCGAbiolinks\", quietly = TRUE)) {\n", - " if (!requireNamespace(\"BiocManager\", quietly = TRUE))\n", - " install.packages(\"BiocManager\")\n", - " BiocManager::install(\"TCGAbiolinks\")\n", - " }\n", - "\n", - " # Load the library\n", - " library(TCGAbiolinks)\n", - "\n", - " # Download PAM50 subtype labels\n", - " pam50_df <- TCGAquery_subtype(tumor = \"BRCA\")[ , c(\"patient\", \"BRCA_Subtype_PAM50\")]\n", - " write.csv(pam50_df, file = \"BRCA_PAM50_labels.csv\", row.names = FALSE, quote = FALSE)\n", - "\n", - " # Download clinical data\n", - " clin_raw <- GDCquery_clinic(project = \"TCGA-BRCA\", type = \"clinical\")\n", - " clin_df <- GDCprepare_clinic(clin_raw, clinical.info = \"patient\")\n", - " write.csv(clin_df, file = \"BRCA_clinical_data.csv\", row.names = FALSE, quote = FALSE)\n", - "```" - ] - }, - { - "cell_type": "markdown", - "id": "3505b6b8", - "metadata": {}, - "source": [ - "## Preprocessing: Phase 1\n", - "\n", - "- Loaded raw data from FireHose and TCGABiolinks\n", - "- Transposed `mirna`, `meth`, and `rna` to have samples as rows\n", - "- Standardized sample IDs (e.g., trimmed barcodes, uppercased indices)\n", - "- Aligned clinical data from both sources and merged them\n", - "- Filtered to patients present in all datasets" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "128f63dd", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Initial shapes\n", - "meth: (20107, 885)\n", - "rna: (18321, 1212)\n", - "mirna: (503, 1189)\n", - "pam50: (1087, 1)\n", - "clinical TCGABioLinks: (1098, 101)\n", - "clinical FireHose: (1097, 18)\n", - "\n", - "After tranpose\n", - "meth: (885, 20107)\n", - "rna: (1212, 18321)\n", - "mirna: (1189, 503)\n", - "Patients in both clinical datasets: 1097\n", - "Combined Clinical shape (1097, 119)\n", - "Patients in every dataset: 769\n", - "\n", - "Final shapes:\n", - "meth: (863, 20107)\n", - "rna: (865, 18321)\n", - "mirna: (855, 503)\n", - "pam50: (769, 1)\n", - "clinical: (769, 119)\n", - "\n" - ] - } - ], - "source": [ - "import pandas as pd\n", - "\n", - "# from Firehose\n", - "mirna = pd.read_csv(root/\"BRCA.miRseq_RPKM_log2.txt\", sep=\"\\t\",index_col=0,low_memory=False)\n", - "meth = pd.read_csv(root/\"BRCA.meth.by_mean.data.txt\", sep='\\t',index_col=0,low_memory=False) \n", - "rna = pd.read_csv(root / \"BRCA.uncv2.mRNAseq_RSEM_normalized_log2.txt\", sep=\"\\t\",index_col=0,low_memory=False)\n", - "clinical_firehose = pd.read_csv(root / \"BRCA.clin.merged.picked.txt\",sep=\"\\t\", index_col=0, low_memory=False).T\n", - "\n", - "# from TCGABiolinks\n", - "pam50 = pd.read_csv(root /\"BRCA_PAM50_labels.csv\",index_col=0)\n", - "clinical_biolinks = pd.read_csv(root /\"BRCA_clinical_data.csv\",index_col=1)\n", - "\n", - "print(\"Initial shapes\")\n", - "print(f\"meth: {meth.shape}\")\n", - "print(f\"rna: {rna.shape}\")\n", - "print(f\"mirna: {mirna.shape}\")\n", - "print(f\"pam50: {pam50.shape}\")\n", - "print(f\"clinical TCGABioLinks: {clinical_biolinks.shape}\")\n", - "print(f\"clinical FireHose: {clinical_firehose.shape}\")\n", - "\n", - "meth = meth.T\n", - "rna = rna.T\n", - "mirna = mirna.T\n", - "\n", - "print(\"\\nAfter tranpose\")\n", - "print(f\"meth: {meth.shape}\")\n", - "print(f\"rna: {rna.shape}\")\n", - "print(f\"mirna: {mirna.shape}\")\n", - "\n", - "def trim(idx):\n", - " return idx.to_series().str.extract(r'(^TCGA-\\w\\w-\\w\\w\\w\\w)')[0]\n", - "\n", - "meth.index = trim(meth.index)\n", - "rna.index = trim(rna.index)\n", - "mirna.index = trim(mirna.index)\n", - "pam50.index = pam50.index.str.upper()\n", - "clinical_biolinks.index = clinical_biolinks.index.str.upper()\n", - "clinical_firehose.index = clinical_firehose.index.str.upper()\n", - "\n", - "idx1 = clinical_biolinks.index\n", - "idx2 = clinical_firehose.index\n", - "\n", - "# intersection and unique counts\n", - "common = idx1.intersection(idx2)\n", - "only_in_1 = idx1.difference(idx2)\n", - "only_in_2 = idx2.difference(idx1)\n", - "\n", - "print(f\"Patients in both clinical datasets: {len(common)}\")\n", - "common = clinical_biolinks.index.intersection(clinical_firehose.index)\n", - "clinical_biolinks = clinical_biolinks.loc[common]\n", - "clinical_firehose = clinical_firehose.loc[common]\n", - "\n", - "clinical = pd.concat([clinical_biolinks, clinical_firehose], axis=1)\n", - "\n", - "print(f\"Combined Clinical shape {clinical.shape}\")\n", - "\n", - "common = sorted(set(meth.index) & set(rna.index) & set(mirna.index) & set(pam50.index) & set(clinical.index))\n", - "print(f\"Patients in every dataset: {len(common)}\")\n", - "\n", - "meth = meth.loc[common]\n", - "rna = rna.loc[common]\n", - "mirna = mirna.loc[common]\n", - "pam50 = pam50.loc[common]\n", - "clinical = clinical.loc[common]\n", - "\n", - "print(\"\\nFinal shapes:\")\n", - "print(f\"meth: {meth.shape}\")\n", - "print(f\"rna: {rna.shape}\")\n", - "print(f\"mirna: {mirna.shape}\")\n", - "print(f\"pam50: {pam50.shape}\")\n", - "print(f\"clinical: {clinical.shape}\\n\")" - ] - }, - { - "cell_type": "markdown", - "id": "32ba4b2c", - "metadata": {}, - "source": [ - "## Handling Multiple Aliquots per Sample\n", - "\n", - "To ensure each patient appears only once across datasets:\n", - "\n", - "- Identified and counted patients with multiple aliquots in `meth`, `rna`, and `mirna`\n", - "- Converted all data to numeric (with coercion for errors)\n", - "- Aggregated duplicate rows by computing the mean per patient\n", - "- Aligned all datasets to retain only shared patients across `meth`, `rna`, `mirna`, `pam50`, and `clinical`\n", - "\n", - "**Duplicate summary:**\n", - "- meth: 91 patients with multiple aliquots (94 extra rows)\n", - "- rna: 93 patients (96 extra rows)\n", - "- mirna: 84 patients (86 extra rows)\n", - "\n", - "**Final shapes after aggregation and filtering:**\n", - "- meth: (769, 20107)\n", - "- rna: (769, 18321)\n", - "- mirna: (769, 503)\n", - "- pam50: (769, 1)\n", - "- clinical: (769, 119)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "b841497a", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "meth:\n", - "patients with >1 aliquot: 91\n", - "total duplicate rows: 94\n", - "\n", - "rna:\n", - "patients with >1 aliquot: 93\n", - "total duplicate rows: 96\n", - "\n", - "mirna:\n", - "patients with >1 aliquot: 84\n", - "total duplicate rows: 86\n", - "\n", - "Post-aggregation shapes:\n", - "meth: (769, 20107)\n", - "rna: (769, 18321)\n", - "mirna: (769, 503)\n", - "Patients in every dataset: 769\n", - "\n", - "Final shapes\n", - "meth: (769, 20107)\n", - "rna: (769, 18321)\n", - "mirna: (769, 503)\n", - "pam50: (769, 1)\n", - "clinical:(769, 119)\n" - ] - } - ], - "source": [ - "for name, df in [(\"meth\", meth), (\"rna\", rna), (\"mirna\", mirna)]:\n", - " counts = df.index.value_counts()\n", - " n_multiple = (counts > 1).sum()\n", - " total_duplicates = counts[counts > 1].sum() - n_multiple\n", - " \n", - " print(f\"{name}:\")\n", - " print(f\"patients with >1 aliquot: {n_multiple}\")\n", - " print(f\"total duplicate rows: {total_duplicates}\\n\")\n", - "\n", - "meth = meth.apply(pd.to_numeric, errors=\"coerce\")\n", - "rna = rna .apply(pd.to_numeric, errors=\"coerce\")\n", - "mirna = mirna.apply(pd.to_numeric, errors=\"coerce\")\n", - "\n", - "meth = meth.groupby(level=0).mean()\n", - "rna = rna.groupby(level=0).mean()\n", - "mirna = mirna.groupby(level=0).mean()\n", - "\n", - "# Now each has one row per patient\n", - "print(\"Post-aggregation shapes:\")\n", - "print(f\"meth: {meth.shape}\")\n", - "print(f\"rna: {rna.shape}\")\n", - "print(f\"mirna: {mirna.shape}\")\n", - "\n", - "common = sorted( set(meth.index) & set(rna.index) & set(mirna.index)& set(pam50.index) & set(clinical.index) )\n", - "print(f\"Patients in every dataset: {len(common)}\")\n", - "\n", - "meth = meth.loc[common]\n", - "rna = rna.loc[common]\n", - "mirna = mirna.loc[common]\n", - "pam50 = pam50.loc[common]\n", - "clinical = clinical.loc[common]\n", - "\n", - "print(\"\\nFinal shapes\")\n", - "print(f\"meth: {meth.shape}\")\n", - "print(f\"rna: {rna.shape}\")\n", - "print(f\"mirna: {mirna.shape}\")\n", - "print(f\"pam50: {pam50.shape}\")\n", - "print(f\"clinical:{clinical.shape}\")" - ] - }, - { - "cell_type": "markdown", - "id": "9d8dac23", - "metadata": {}, - "source": [ - "## Review Data:\n", - "\n", - "After preprocessing (phase 1), the datasets are aligned and filtered to include only patients present in all sources.\n", - "\n", - "**Sample views:**\n", - "- `meth`: Methylation data with 20,107 features\n", - "- `rna`: Gene expression data with 18,321 features\n", - "- `mirna`: miRNA expression with 503 features\n", - "- `clinical`: Demographic and clinical information with 119 columns\n", - "- `pam50`: Subtype distribution \n", - " - LumA: 419 \n", - " - LumB: 140 \n", - " - Basal: 130 \n", - " - Her2: 46 \n", - " - Normal: 34\n", - "\n", - "All datasets now share a consistent set of sample ids." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "4f35bd67", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Hybridization REF Composite Element REF A1BG ... psiTPTE22 tAKR\n", - "0 ... \n", - "TCGA-3C-AAAU NaN 0.483716 ... 0.247304 0.506404\n", - "TCGA-3C-AALI NaN 0.637191 ... 0.163022 0.623865\n", - "TCGA-3C-AALJ NaN 0.656092 ... 0.252328 0.504451\n", - "TCGA-3C-AALK NaN 0.615194 ... 0.471956 0.682468\n", - "TCGA-4H-AAAK NaN 0.612080 ... 0.314877 0.744877\n", - "\n", - "[5 rows x 20107 columns]\n", - "gene ?|100133144 ?|100134869 ... ZZZ3|26009 psiTPTE22|387590\n", - "0 ... \n", - "TCGA-3C-AAAU 4.032489 3.692829 ... 10.205129 0.785174\n", - "TCGA-3C-AALI 3.211931 4.119273 ... 8.667973 9.855788\n", - "TCGA-3C-AALJ 3.538886 3.206237 ... 8.992994 5.143969\n", - "TCGA-3C-AALK 3.595671 3.469873 ... 9.453001 6.057699\n", - "TCGA-4H-AAAK 2.775430 3.850979 ... 9.784147 7.548699\n", - "\n", - "[5 rows x 18321 columns]\n", - "gene hsa-let-7a-1 hsa-let-7a-2 ... hsa-mir-99a hsa-mir-99b\n", - "0 ... \n", - "TCGA-3C-AAAU 13.129765 14.117933 ... 7.024602 15.506461\n", - "TCGA-3C-AALI 12.918069 13.922300 ... 7.885299 13.626182\n", - "TCGA-3C-AALJ 13.012033 14.010002 ... 7.580704 15.013822\n", - "TCGA-3C-AALK 13.144697 14.141721 ... 10.031619 14.554783\n", - "TCGA-4H-AAAK 13.411684 14.413518 ... 10.078201 14.650338\n", - "\n", - "[5 rows x 503 columns]\n", - " project synchronous_malignancy ... race ethnicity\n", - "TCGA-3C-AAAU TCGA-BRCA No ... white not hispanic or latino\n", - "TCGA-3C-AALI TCGA-BRCA No ... black or african american not hispanic or latino\n", - "TCGA-3C-AALJ TCGA-BRCA No ... black or african american not hispanic or latino\n", - "TCGA-3C-AALK TCGA-BRCA No ... black or african american not hispanic or latino\n", - "TCGA-4H-AAAK TCGA-BRCA No ... white not hispanic or latino\n", - "\n", - "[5 rows x 119 columns]\n", - "BRCA_Subtype_PAM50\n", - "LumA 419\n", - "LumB 140\n", - "Basal 130\n", - "Her2 46\n", - "Normal 34\n", - "Name: count, dtype: int64\n" - ] - } - ], - "source": [ - "print(meth.head())\n", - "print(rna.head())\n", - "print(mirna.head())\n", - "print(clinical.head())\n", - "print(pam50.value_counts())" - ] - }, - { - "cell_type": "markdown", - "id": "17f7d599", - "metadata": {}, - "source": [ - "## Preprocessing: Phase 2\n", - "\n", - "After reviewing the data, we applied the following steps to prepare it for downstream analysis.\n", - "\n", - "1. **Methylation (B -> M-value)**\n", - " - Clip B-values to \\[E, 1-E] and apply logit transform: M = log_2(B / (1-B)).\n", - " - Drop the original `Composite Element REF` column.\n", - "\n", - "2. **mRNA & miRNA:**\n", - " - Already in log_2 scale (RSEM normalized and RPKM).\n", - "\n", - "3. **Quality Control:**\n", - " - Count samples with all-zero rows in each modality.\n", - " - Compute NaN counts post-transformation, then replace all NaNs with 0.\n", - "\n", - "4. **Column Name Cleaning:**\n", - " - Replace all `-` and `|` characters with `_`.\n", - " - Replace `?` with `unknown`.\n", - "\n", - "5. **Label Encoding:**\n", - " - Map `PAM50` subtypes to integers: \n", - " - Normal = 0\n", - " - Basal = 1 \n", - " - Her2 = 2\n", - " - LumA = 3\n", - " - LumB = 4\n", - "\n", - "6. **Alignment & Aggregation:**\n", - " - Trim barcodes to patient level.\n", - " - Aggregate duplicate aliquots by mean per patient.\n", - " - Drop the `project` column from clinical.\n", - " - Subset all tables to the common patient set (no missing or all-zero samples).\n", - " - Set up a commong index across all files.\n", - "\n", - "7. **Final Output Shapes:**\n", - " - Methylation M-value: 769 × 20,107\n", - " - mRNA (log_2): 769 × 20,531\n", - " - miRNA (log_2): 769 × 503\n", - " - PAM50 labels: 769 × 1\n", - " - Clinical covariates: 769 × 101" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "5bb6450e", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "All zeros: meth: 0, rna: 0, mirna: 0\n", - "nan_meth: 0, nan_rna: 0, nan_mirna: 0, nan_clinical: 0, nan_pam50: 0\n", - "NaN counts after filling:\n", - "0 0 0 46476 0\n", - "new shapes: meth: (769, 20106), rna: (769, 18321), mirna: (769, 503), pam50: (769, 1), clinical: (769, 118)\n", - "Hybridization REF A1BG A1CF ... psiTPTE22 tAKR\n", - "patient ... \n", - "TCGA-3C-AAAU -0.094004 -1.251175 ... -1.605783 0.036955\n", - "TCGA-3C-AALI 0.812517 -0.237291 ... -2.360128 0.729981\n", - "TCGA-3C-AALJ 0.931878 -0.059301 ... -1.567104 0.025686\n", - "TCGA-3C-AALK 0.676913 0.741678 ... -0.162004 1.103860\n", - "TCGA-4H-AAAK 0.657963 0.044649 ... -1.121575 1.545812\n", - "\n", - "[5 rows x 20106 columns]\n", - "gene unknown_100133144 unknown_100134869 ... ZZZ3_26009 psiTPTE22_387590\n", - "patient ... \n", - "TCGA-3C-AAAU 4.032489 3.692829 ... 10.205129 0.785174\n", - "TCGA-3C-AALI 3.211931 4.119273 ... 8.667973 9.855788\n", - "TCGA-3C-AALJ 3.538886 3.206237 ... 8.992994 5.143969\n", - "TCGA-3C-AALK 3.595671 3.469873 ... 9.453001 6.057699\n", - "TCGA-4H-AAAK 2.775430 3.850979 ... 9.784147 7.548699\n", - "\n", - "[5 rows x 18321 columns]\n", - "gene hsa_let_7a_1 hsa_let_7a_2 ... hsa_mir_99a hsa_mir_99b\n", - "patient ... \n", - "TCGA-3C-AAAU 13.129765 14.117933 ... 7.024602 15.506461\n", - "TCGA-3C-AALI 12.918069 13.922300 ... 7.885299 13.626182\n", - "TCGA-3C-AALJ 13.012033 14.010002 ... 7.580704 15.013822\n", - "TCGA-3C-AALK 13.144697 14.141721 ... 10.031619 14.554783\n", - "TCGA-4H-AAAK 13.411684 14.413518 ... 10.078201 14.650338\n", - "\n", - "[5 rows x 503 columns]\n", - " synchronous_malignancy ajcc_pathologic_stage ... race ethnicity\n", - "patient ... \n", - "TCGA-3C-AAAU No Stage X ... white not hispanic or latino\n", - "TCGA-3C-AALI No Stage IIB ... black or african american not hispanic or latino\n", - "TCGA-3C-AALJ No Stage IIB ... black or african american not hispanic or latino\n", - "TCGA-3C-AALK No Stage IA ... black or african american not hispanic or latino\n", - "TCGA-4H-AAAK No Stage IIIA ... white not hispanic or latino\n", - "\n", - "[5 rows x 118 columns]\n", - "pam50\n", - "3 419\n", - "4 140\n", - "1 130\n", - "2 46\n", - "0 34\n", - "Name: count, dtype: int64\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "import pandas as pd\n", - "\n", - "def beta_to_m(df, eps=1e-6):\n", - " B = np.clip(df.values, eps, 1.0 - eps)\n", - " M = np.log2(B / (1 - B))\n", - " return pd.DataFrame(M, index=df.index, columns=df.columns)\n", - "\n", - "# find rows that are all 0s\n", - "zeros_meth = (meth == 0).all(axis=1).sum()\n", - "zeros_rna = (rna == 0).all(axis=1).sum()\n", - "zeros_mirna = (mirna == 0).all(axis=1).sum()\n", - "print(f\"All zeros: meth: {zeros_meth}, rna: {zeros_rna}, mirna: {zeros_mirna}\")\n", - "\n", - "# find rows with all nans\n", - "nan_meth = meth.isna().all(axis=1).sum()\n", - "nan_rna = rna.isna().all(axis=1).sum()\n", - "nan_mirna = mirna.isna().all(axis=1).sum()\n", - "nan_clinical = clinical.isna().all(axis=1).sum()\n", - "nan_pam50 = pam50.isna().all(axis=1).sum()\n", - "print(f\"nan_meth: {nan_meth}, nan_rna: {nan_rna}, nan_mirna: {nan_mirna}, nan_clinical: {nan_clinical}, nan_pam50: {nan_pam50}\")\n", - "\n", - "# map PAM50 subtypes to integers\n", - "mapping = {\"Normal\":0, \"Basal\":1, \"Her2\":2, \"LumA\":3, \"LumB\":4}\n", - "pam50 = pam50[\"BRCA_Subtype_PAM50\"].map(mapping).to_frame(name=\"pam50\")\n", - "\n", - "# drop and transform methylation\n", - "meth_clean = meth.drop(columns=[\"Composite Element REF\"], errors=\"ignore\")\n", - "meth_m = beta_to_m(meth_clean)\n", - "clinical = clinical.drop(columns=[\"project\"], errors=\"ignore\")\n", - "\n", - "# clean column names and fill nans\n", - "for df in [meth_m, rna, mirna]:\n", - " df.columns = df.columns.str.replace(r\"\\?\", \"unknown_\", regex=True)\n", - " df.columns = df.columns.str.replace(r\"\\|\", \"_\", regex=True)\n", - " df.columns = df.columns.str.replace(\"-\", \"_\", regex=False)\n", - " df.columns = df.columns.str.replace(r\"_+\", \"_\", regex=True)\n", - " df.columns = df.columns.str.strip(\"_\")\n", - " df.fillna(0, inplace=True)\n", - "\n", - "# check for nans after filling\n", - "print(\"NaN counts after filling:\")\n", - "print(meth_m.isna().sum().sum(),rna.isna().sum().sum(),mirna.isna().sum().sum(),clinical.isna().sum().sum(),pam50.isna().sum().sum())\n", - "\n", - "# align index to PAM50\n", - "X_meth = meth_m.loc[pam50.index]\n", - "X_rna = rna.loc[pam50.index]\n", - "X_mirna = mirna.loc[pam50.index]\n", - "clinical= clinical.loc[pam50.index]\n", - "\n", - "print(f\"new shapes: meth: {X_meth.shape}, rna: {X_rna.shape}, mirna: {X_mirna.shape}, pam50: {pam50.shape}, clinical: {clinical.shape}\")\n", - "print(X_meth.head())\n", - "print(X_rna.head())\n", - "print(X_mirna.head())\n", - "print(clinical.head())\n", - "print(pam50.value_counts())" - ] - }, - { - "cell_type": "markdown", - "id": "54fae854", - "metadata": {}, - "source": [ - "## Save & Load\n", - "\n", - "Our data is clean and consistently structured across all modalities.\n", - "\n", - "- All-zero rows: meth: 0, rna: 0, mirna: 0 \n", - "- All-NaN rows: meth: 0, rna: 0, mirna: 0, clinical: 0, pam50: 0 \n", - "- NaN values exist in clinical data:\n", - " - A total of 46,476 NaN entries\n", - " - Will be addressed in the next step\n", - "\n", - "**Final dataset shapes:**\n", - "- meth: 769 × 20,106 \n", - "- rna: 769 × 18,321 \n", - "- mirna: 769 × 503 \n", - "- clinical: 769 × 118 \n", - "- pam50: 769 × 1\n", - "\n", - "**Saving files:** \n", - "Set a common patient index across all datasets and saved each one as a `.csv` file.\n", - "\n", - "**Verifying saved files:** \n", - "Loaded each `.csv` and printed the head to confirm successful read/write with preserved structure and content.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "2f0714e8", - "metadata": {}, - "outputs": [], - "source": [ - "# Setting up a commong index and saving to csv\n", - "X_meth.index.name = \"patient\"\n", - "X_rna.index.name = \"patient\"\n", - "X_mirna.index.name = \"patient\"\n", - "pam50.index.name = \"patient\"\n", - "clinical.index.name = \"patient\"\n", - "\n", - "X_meth.to_csv(root / \"meth.csv\", index=True)\n", - "X_rna.to_csv(root / \"rna.csv\", index=True)\n", - "X_mirna.to_csv(root / \"mirna.csv\", index=True)\n", - "pam50.to_csv(root / \"pam50.csv\", index=True)\n", - "clinical.to_csv(root / \"clinical.csv\", index=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "ef2982ef", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " A1BG A1CF ... psiTPTE22 tAKR\n", - "patient ... \n", - "TCGA-3C-AAAU -0.094004 -1.251175 ... -1.605783 0.036955\n", - "TCGA-3C-AALI 0.812517 -0.237291 ... -2.360128 0.729981\n", - "TCGA-3C-AALJ 0.931878 -0.059301 ... -1.567104 0.025686\n", - "TCGA-3C-AALK 0.676913 0.741678 ... -0.162004 1.103860\n", - "TCGA-4H-AAAK 0.657963 0.044649 ... -1.121575 1.545812\n", - "\n", - "[5 rows x 20106 columns]\n", - " unknown_100133144 unknown_100134869 ... ZZZ3_26009 psiTPTE22_387590\n", - "patient ... \n", - "TCGA-3C-AAAU 4.032489 3.692829 ... 10.205129 0.785174\n", - "TCGA-3C-AALI 3.211931 4.119273 ... 8.667973 9.855788\n", - "TCGA-3C-AALJ 3.538886 3.206237 ... 8.992994 5.143969\n", - "TCGA-3C-AALK 3.595671 3.469873 ... 9.453001 6.057699\n", - "TCGA-4H-AAAK 2.775430 3.850979 ... 9.784147 7.548699\n", - "\n", - "[5 rows x 18321 columns]\n", - " hsa_let_7a_1 hsa_let_7a_2 ... hsa_mir_99a hsa_mir_99b\n", - "patient ... \n", - "TCGA-3C-AAAU 13.129765 14.117933 ... 7.024602 15.506461\n", - "TCGA-3C-AALI 12.918069 13.922300 ... 7.885299 13.626182\n", - "TCGA-3C-AALJ 13.012033 14.010002 ... 7.580704 15.013822\n", - "TCGA-3C-AALK 13.144697 14.141721 ... 10.031619 14.554783\n", - "TCGA-4H-AAAK 13.411684 14.413518 ... 10.078201 14.650338\n", - "\n", - "[5 rows x 503 columns]\n", - " synchronous_malignancy ajcc_pathologic_stage ... race.1 ethnicity.1\n", - "patient ... \n", - "TCGA-3C-AAAU No Stage X ... white not hispanic or latino\n", - "TCGA-3C-AALI No Stage IIB ... black or african american not hispanic or latino\n", - "TCGA-3C-AALJ No Stage IIB ... black or african american not hispanic or latino\n", - "TCGA-3C-AALK No Stage IA ... black or african american not hispanic or latino\n", - "TCGA-4H-AAAK No Stage IIIA ... white not hispanic or latino\n", - "\n", - "[5 rows x 118 columns]\n", - " pam50\n", - "patient \n", - "TCGA-3C-AAAU 3\n", - "TCGA-3C-AALI 2\n", - "TCGA-3C-AALJ 4\n", - "TCGA-3C-AALK 3\n", - "TCGA-4H-AAAK 3\n" - ] - } - ], - "source": [ - "# To confirm our data saved and loads properly:\n", - "meth = pd.read_csv(root / \"meth.csv\", index_col=0)\n", - "rna = pd.read_csv(root / \"rna.csv\", index_col=0)\n", - "mirna = pd.read_csv(root / \"mirna.csv\", index_col=0)\n", - "pam50 = pd.read_csv(root / \"pam50.csv\", index_col=0)\n", - "clinical = pd.read_csv(root / \"clinical.csv\", index_col=0)\n", - " \n", - "print(meth.head())\n", - "print(rna.head())\n", - "print(mirna.head())\n", - "print(clinical.head())\n", - "print(pam50.head())" - ] - }, - { - "cell_type": "markdown", - "id": "09265512", - "metadata": {}, - "source": [ - "## Feature Selection: Phase 1\n", - "\n", - "To explore different ways of selecting informative features, we evaluated three built-in methods:\n", - "- variance thresholding \n", - "- ANOVA F-test \n", - "- random forest importance \n", - "\n", - "Each method highlights different statistical properties: overall variability, class-based separability, and model-derived relevance. Here, we applied all three and compared the overlap between selected features to assess their agreement.\n", - "\n", - "**Methods applied:**\n", - "- Selected the top 6000 features for both methylation and RNA datasets using each method \n", - "- Compared feature overlap across methods \n", - "- miRNA was excluded due to its limited feature count (503 total) \n", - "- Selection was necessary for methylation and RNA, which originally had over 20,000 and 18,000 features, respectively\n", - "\n", - "**Methylation feature selection:**\n", - "- ANOVA F-test & variance share: 2,091 features \n", - "- Random forest & variance share: 1,871 features \n", - "- ANOVA F-test & random forest share: 2,201 features \n", - "- All three methods agree on: 815 features\n", - "\n", - "**RNA feature selection:**\n", - "- ANOVA F-test & variance share: 2,152 features \n", - "- Random forest & variance share: 1,829 features \n", - "- ANOVA F-test & random forest share: 2,216 features \n", - "- All three methods agree on: 805 features\n", - "\n", - "These overlaps suggest that while each method captures unique aspects of the data, there is meaningful agreement, particularly between ANOVA and random forest." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "fa70dcca", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2025-05-28 11:30:33,011 - bioneuralnet.utils.preprocess - INFO - [Inf]: Replaced 0 infinite values\n", - "2025-05-28 11:30:33,011 - bioneuralnet.utils.preprocess - INFO - [NaN]: Replaced 0 NaNs after median imputation\n", - "2025-05-28 11:30:33,011 - bioneuralnet.utils.preprocess - INFO - [Zero-Var]: 0 columns dropped due to zero variance\n", - "2025-05-28 11:30:33,115 - bioneuralnet.utils.preprocess - INFO - Selected top 6000 features by variance\n", - "2025-05-28 11:30:35,816 - bioneuralnet.utils.preprocess - INFO - [Inf]: Replaced 0 infinite values\n", - "2025-05-28 11:30:35,817 - bioneuralnet.utils.preprocess - INFO - [NaN]: Replaced 0 NaNs after median imputation\n", - "2025-05-28 11:30:35,817 - bioneuralnet.utils.preprocess - INFO - [Zero-Var]: 0 columns dropped due to zero variance\n", - "2025-05-28 11:30:35,911 - bioneuralnet.utils.preprocess - INFO - Selected top 6000 features by variance\n", - "2025-05-28 11:30:38,886 - bioneuralnet.utils.preprocess - INFO - [Inf]: Replaced 0 infinite values\n", - "2025-05-28 11:30:38,886 - bioneuralnet.utils.preprocess - INFO - [NaN]: Replaced 0 NaNs after median imputation\n", - "2025-05-28 11:30:38,886 - bioneuralnet.utils.preprocess - INFO - [Zero-Var]: 0 columns dropped due to zero variance\n", - "2025-05-28 11:30:39,052 - bioneuralnet.utils.preprocess - INFO - Selected 6000 features by ANOVA (task=classification), 17514 significant, 0 padded\n", - "2025-05-28 11:30:41,772 - bioneuralnet.utils.preprocess - INFO - [Inf]: Replaced 0 infinite values\n", - "2025-05-28 11:30:41,772 - bioneuralnet.utils.preprocess - INFO - [NaN]: Replaced 0 NaNs after median imputation\n", - "2025-05-28 11:30:41,773 - bioneuralnet.utils.preprocess - INFO - [Zero-Var]: 0 columns dropped due to zero variance\n", - "2025-05-28 11:30:41,923 - bioneuralnet.utils.preprocess - INFO - Selected 6000 features by ANOVA (task=classification), 16864 significant, 0 padded\n", - "2025-05-28 11:30:44,909 - bioneuralnet.utils.preprocess - INFO - [Inf]: Replaced 0 infinite values\n", - "2025-05-28 11:30:44,910 - bioneuralnet.utils.preprocess - INFO - [NaN]: Replaced 0 NaNs after median imputation\n", - "2025-05-28 11:30:44,910 - bioneuralnet.utils.preprocess - INFO - [Zero-Var]: 0 columns dropped due to zero variance\n", - "2025-05-28 11:30:53,200 - bioneuralnet.utils.preprocess - INFO - [Inf]: Replaced 0 infinite values\n", - "2025-05-28 11:30:53,201 - bioneuralnet.utils.preprocess - INFO - [NaN]: Replaced 0 NaNs after median imputation\n", - "2025-05-28 11:30:53,201 - bioneuralnet.utils.preprocess - INFO - [Zero-Var]: 0 columns dropped due to zero variance\n" - ] - } - ], - "source": [ - "from bioneuralnet.utils.preprocess import select_top_k_variance\n", - "from bioneuralnet.utils.preprocess import top_anova_f_features\n", - "from bioneuralnet.utils.preprocess import select_top_randomforest\n", - "\n", - "# feature selection\n", - "meth_highvar = select_top_k_variance(meth, k=6000)\n", - "rna_highvar = select_top_k_variance(rna, k=6000)\n", - "\n", - "meth_af = top_anova_f_features(meth, pam50, max_features=6000)\n", - "rna_af = top_anova_f_features(rna, pam50, max_features=6000)\n", - "\n", - "meth_rf = select_top_randomforest(meth, pam50, top_k=6000)\n", - "rna_rf = select_top_randomforest(rna, pam50, top_k=6000)\n", - "\n", - "meth_var = list(meth_highvar.columns)\n", - "meth_anova = list(meth_af.columns)\n", - "meth_rf = list(meth_rf.columns)\n", - "\n", - "rna_var = list(rna_highvar.columns)\n", - "rna_anova = list(rna_af.columns)\n", - "rna_rf = list(rna_rf.columns)\n", - "\n", - "inter1 = []\n", - "for x in meth_anova:\n", - " if x in meth_var:\n", - " inter1.append(x)\n", - "\n", - "inter2 = []\n", - "for x in meth_rf:\n", - " if x in meth_var:\n", - " inter2.append(x)\n", - "\n", - "inter3 = []\n", - "for x in meth_anova:\n", - " if x in meth_rf:\n", - " inter3.append(x)\n", - "\n", - "meth_all_three = []\n", - "for x in meth_anova:\n", - " if x in meth_rf and x in meth_var:\n", - " meth_all_three.append(x)\n", - "\n", - "inter4 = []\n", - "for x in rna_anova:\n", - " if x in rna_var:\n", - " inter4.append(x)\n", - "\n", - "inter5 = []\n", - "for x in rna_rf:\n", - " if x in rna_var:\n", - " inter5.append(x)\n", - "\n", - "inter6 = []\n", - "for x in rna_anova:\n", - " if x in rna_rf:\n", - " inter6.append(x)\n", - "\n", - "rna_all_three = []\n", - "for x in rna_anova:\n", - " if x in rna_rf and x in rna_var:\n", - " rna_all_three.append(x)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "cc981cdb", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Methylation feature selection:\n", - "\n", - "Anova-F & variance selection share: 2091 features\n", - "Random Forest & variance selection share: 1871 features\n", - "Anova-F & Random Forest share: 2201 features\n", - "All three methods agree on: 815 features\n" - ] - } - ], - "source": [ - "print(\"Methylation feature selection:\\n\")\n", - "print(f\"Anova-F & variance selection share: {len(inter1)} features\")\n", - "print(f\"Random Forest & variance selection share: {len(inter2)} features\")\n", - "print(f\"Anova-F & Random Forest share: {len(inter3)} features\")\n", - "print(f\"All three methods agree on: {len(meth_all_three)} features\")" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "da639dd6", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "RNA feature selection:\n", - "\n", - "Anova-F & variance selection share: 2340 features\n", - "Random Forest & variance selection share: 2218 features\n", - "Anova-F & Random Forest share: 2546 features\n", - "All three methods agree on: 1134 features\n" - ] - } - ], - "source": [ - "print(\"\\nRNA feature selection:\\n\")\n", - "print(f\"Anova-F & variance selection share: {len(inter4)} features\")\n", - "print(f\"Random Forest & variance selection share: {len(inter5)} features\")\n", - "print(f\"Anova-F & Random Forest share: {len(inter6)} features\")\n", - "print(f\"All three methods agree on: {len(rna_all_three)} features\")" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "1c371389", - "metadata": {}, - "outputs": [], - "source": [ - "out_dir = Path(\"/home/vicente/Github/BioNeuralNet/TCGA_BRCA_DATA/ANOVA\")\n", - "\n", - "rna_af.to_csv(out_dir / \"rna_anova.csv\")\n", - "meth_af.to_csv(out_dir / \"meth_anova.csv\")" - ] - }, - { - "cell_type": "markdown", - "id": "c2168980", - "metadata": {}, - "source": [ - "## Data Accessibility: Using `DatasetLoader`\n", - "\n", - "To make this dataset easy to use, we've packaged it into the `DatasetLoader` component. Due to GitHub and PyPI file size limits, we included only the top 6,000 features from Methylation, RNA. Selected using the ANOVA F-test from the previous step.\n", - "\n", - "If you have additional preprocessed or raw datasets you would like to contribute, feel free to reach out and we are happy to help expand the platform." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "2d0340f6", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "TGCA BRCA dataset shape: {'mirna': (769, 503), 'pam50': (769, 1), 'clinical': (769, 118), 'rna': (769, 6000), 'meth': (769, 6000)}\n" - ] - } - ], - "source": [ - "from bioneuralnet.datasets import DatasetLoader\n", - "\n", - "tgca_brca = DatasetLoader(\"brca\")\n", - "\n", - "print(f\"TGCA BRCA dataset shape: {tgca_brca.shape}\")\n", - "brca_meth = tgca_brca.data[\"meth\"]\n", - "brca_rna = tgca_brca.data[\"rna\"]\n", - "brca_mirna = tgca_brca.data[\"mirna\"]\n", - "brca_clinical = tgca_brca.data[\"clinical\"]\n", - "brca_pam50 = tgca_brca.data[\"pam50\"]\n" - ] - }, - { - "cell_type": "markdown", - "id": "0ddf042e", - "metadata": {}, - "source": [ - "## Feature Selection: Phase 2\n", - "\n", - "We used `preprocess_clinical` to reduce the clinical dataset to the top 10 most informative features based on random forest importance.\n", - "\n", - "- Dropped samples with missing PAM50 labels \n", - "- Subset all datasets to matched patients \n", - "- Ignored non-informative age-related columns \n", - "- No scaling applied\n", - "\n", - "**Result:**\n", - "- Clinical data reduced to 10 features across the 769 patients " - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "338dc995", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2025-05-28 11:31:03,616 - bioneuralnet.utils.preprocess - INFO - [Inf]: Replaced 0 infinite values\n", - "2025-05-28 11:31:03,616 - bioneuralnet.utils.preprocess - INFO - [NaN]: Replaced 31384 NaNs after median imputation\n", - "2025-05-28 11:31:03,617 - bioneuralnet.utils.preprocess - INFO - [Zero-Var]: 39 columns dropped due to zero variance\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "RNA shape: (769, 6000)\n", - "METH shape: (769, 6000)\n", - "miRNA shape: (769, 503)\n", - "Clinical shape: (769, 118)\n", - "Phenotype shape: (769, 1)\n", - "Phenotype counts:\n", - "pam50\n", - "3 419\n", - "4 140\n", - "1 130\n", - "2 46\n", - "0 34\n", - "Name: count, dtype: int64\n", - "Nan values in pam50 0\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2025-05-28 11:31:03,978 - bioneuralnet.utils.preprocess - INFO - Selected top 10 features by RandomForest importance\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " year_of_diagnosis number_of_lymph_nodes ... laterality_Right primary_diagnosis_Infiltrating duct carcinoma, NOS\n", - "patient ... \n", - "TCGA-3C-AAAU 2004.0 4.0 ... False False \n", - "TCGA-3C-AALI 2003.0 1.0 ... True True \n", - "TCGA-3C-AALJ 2011.0 1.0 ... True True \n", - "TCGA-3C-AALK 2011.0 0.0 ... True True \n", - "TCGA-4H-AAAK 2013.0 4.0 ... False False \n", - "\n", - "[5 rows x 10 columns]\n" - ] - } - ], - "source": [ - "from bioneuralnet.utils.preprocess import preprocess_clinical\n", - "\n", - "#shapes\n", - "print(f\"RNA shape: {brca_rna.shape}\")\n", - "print(f\"METH shape: {brca_meth.shape}\")\n", - "print(f\"miRNA shape: {brca_mirna.shape}\")\n", - "print(f\"Clinical shape: {brca_clinical.shape}\")\n", - "print(f\"Phenotype shape: {brca_pam50.shape}\")\n", - "print(f\"Phenotype counts:\\n{brca_pam50.value_counts()}\")\n", - "\n", - "#check nans in pam50\n", - "print(f\"Nan values in pam50 {brca_pam50.isna().sum().sum()}\")\n", - "brca_pam50 = brca_pam50.dropna()\n", - "\n", - "X_rna = brca_rna.loc[brca_pam50.index]\n", - "X_meth = brca_meth.loc[brca_pam50.index]\n", - "X_mirna = brca_mirna.loc[brca_pam50.index]\n", - "clinical = brca_clinical.loc[brca_pam50.index]\n", - "\n", - "# for more details on the preprocessing function, see bioneuralnet.utils.preprocess\n", - "clinical = preprocess_clinical(clinical, brca_pam50, top_k=10, scale=False, ignore_columns=[\"days_to_birth\", \"age_at_diagnosis\", \"days_to_last_followup\", \"age_at_index\", \"years_to_birth\"])\n", - "print(clinical.head())" - ] - }, - { - "cell_type": "markdown", - "id": "89cb8500", - "metadata": {}, - "source": [ - "## Graph Construction\n", - "\n", - "We built a k-NN cosine similarity graph to capture relationships across omics\n", - "\n", - "- Selected 1,000 features each from methylation and RNA, and all 503 from miRNA \n", - "- Combined into `X_train_full` (769 × 2,503), no NaNs found \n", - "- Transposed the matrix to treat features as nodes \n", - "- Constructed a cosine similarity graph with `k=15`\n", - "- Graph shape: 2,503 × 2,503 (features × features)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "b4646135", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2025-05-28 11:31:04,871 - bioneuralnet.utils.preprocess - INFO - [Inf]: Replaced 0 infinite values\n", - "2025-05-28 11:31:04,871 - bioneuralnet.utils.preprocess - INFO - [NaN]: Replaced 0 NaNs after median imputation\n", - "2025-05-28 11:31:04,871 - bioneuralnet.utils.preprocess - INFO - [Zero-Var]: 0 columns dropped due to zero variance\n", - "2025-05-28 11:31:04,914 - bioneuralnet.utils.preprocess - INFO - Selected 1000 features by ANOVA (task=classification), 6000 significant, 0 padded\n", - "2025-05-28 11:31:05,822 - bioneuralnet.utils.preprocess - INFO - [Inf]: Replaced 0 infinite values\n", - "2025-05-28 11:31:05,822 - bioneuralnet.utils.preprocess - INFO - [NaN]: Replaced 0 NaNs after median imputation\n", - "2025-05-28 11:31:05,823 - bioneuralnet.utils.preprocess - INFO - [Zero-Var]: 0 columns dropped due to zero variance\n", - "2025-05-28 11:31:05,866 - bioneuralnet.utils.preprocess - INFO - Selected 1000 features by ANOVA (task=classification), 6000 significant, 0 padded\n", - "2025-05-28 11:31:05,945 - bioneuralnet.utils.preprocess - INFO - [Inf]: Replaced 0 infinite values\n", - "2025-05-28 11:31:05,945 - bioneuralnet.utils.preprocess - INFO - [NaN]: Replaced 0 NaNs after median imputation\n", - "2025-05-28 11:31:05,945 - bioneuralnet.utils.preprocess - INFO - [Zero-Var]: 0 columns dropped due to zero variance\n", - "2025-05-28 11:31:05,948 - bioneuralnet.utils.preprocess - INFO - Selected 503 features by ANOVA (task=classification), 465 significant, 38 padded\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Nan values in X_train_full: 0\n", - "Nan value in X_train_full after dropping: 0\n", - "X_train_full shape: (769, 2503)\n", - "\n", - "Network shape: (2503, 2503)\n" - ] - } - ], - "source": [ - "from bioneuralnet.utils.preprocess import top_anova_f_features\n", - "from bioneuralnet.utils.graph import gen_similarity_graph\n", - "\n", - "meth_sel = top_anova_f_features(X_meth, brca_pam50, max_features=1000)\n", - "rna_sel = top_anova_f_features(X_rna, brca_pam50 ,max_features=1000)\n", - "mirna_sel = top_anova_f_features(X_mirna, brca_pam50,max_features=503)\n", - "X_train_full = pd.concat([meth_sel, rna_sel, mirna_sel], axis=1)\n", - "\n", - "# we check again for nan values then drop if any\n", - "print(f\"Nan values in X_train_full: {X_train_full.isna().sum().sum()}\")\n", - "X_train_full = X_train_full.dropna()\n", - "print(f\"Nan value in X_train_full after dropping: {X_train_full.isna().sum().sum()}\")\n", - "\n", - "print(f\"X_train_full shape: {X_train_full.shape}\")\n", - "# building the graph using the similarity graph function with k=15\n", - "A_train = gen_similarity_graph(X_train_full.T, k=15)\n", - "\n", - "print(f\"\\nNetwork shape: {A_train.shape}\")" - ] - }, - { - "cell_type": "markdown", - "id": "376f8a5b", - "metadata": {}, - "source": [ - "## DPMON Run Summary\n", - "\n", - "We evaluated **DPMON** for PAM50 subtype classification using multi-omics data (RNA, methylation, miRNA), a feature graph, and clinical covariates.\n", - "\n", - "**Performance Metrics:**\n", - "- Accuracy: 0.9870\n", - "- F1-Weighted: 0.9875 \n", - "- F1-Macro: 0.9651\n", - "\n", - "DPMON is an end-to-end optimized pipeline that fuses multi-omics data and network structure for disease prediction using GNNs. \n", - "\n", - "For implementation details, see the [documentation](https://bioneuralnet.readthedocs.io/en/latest/gnns.html#how-dpmon-uses-gnns-differently). \n", - "\n", - "For the full paper, see:\n", - "[2] Hussein, S., Ramos, V., et al. *Learning from Multi-Omics Networks to Enhance Disease Prediction: An Optimized Network Embedding and Fusion Approach.* \n", - "**IEEE BIBM 2024**, Lisbon, Portugal, pp. 4371–4378. DOI: [10.1109/BIBM62325.2024.10822233](https://doi.org/10.1109/BIBM62325.2024.10822233)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "43396d92", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2025-05-29 13:09:32,081 - bioneuralnet.downstream_task.dpmon - INFO - Output directory set to: /home/vicente/Github/BioNeuralNet/dpmon_output\n", - "2025-05-29 13:09:32,081 - bioneuralnet.downstream_task.dpmon - INFO - Initialized DPMON with the provided parameters.\n", - "2025-05-29 13:09:32,082 - bioneuralnet.downstream_task.dpmon - INFO - Starting DPMON run.\n", - "2025-05-29 13:09:32,096 - bioneuralnet.downstream_task.dpmon - INFO - Running hyperparameter tuning for DPMON.\n", - "2025-05-29 13:09:32,096 - bioneuralnet.downstream_task.dpmon - INFO - Using GPU 0\n", - "2025-05-29 13:09:32,177 - bioneuralnet.downstream_task.dpmon - INFO - Number of nodes in network: 2503\n", - "2025-05-29 13:09:34,491 - bioneuralnet.downstream_task.dpmon - INFO - Starting hyperparameter tuning for dataset shape: (769, 2504)\n", - "2025-05-29 13:10:23,658 - bioneuralnet.downstream_task.dpmon - INFO - Best trial config: {'gnn_layer_num': 4, 'gnn_hidden_dim': 64, 'lr': 0.02435222881645533, 'weight_decay': 0.0005853927207500042, 'nn_hidden_dim1': 64, 'nn_hidden_dim2': 128, 'num_epochs': 2048}\n", - "2025-05-29 13:10:23,659 - bioneuralnet.downstream_task.dpmon - INFO - Best trial final loss: 0.9653064608573914\n", - "2025-05-29 13:10:23,659 - bioneuralnet.downstream_task.dpmon - INFO - Best trial final accuracy: 0.9466840052015605\n", - "2025-05-29 13:10:23,661 - bioneuralnet.downstream_task.dpmon - INFO - gnn_layer_num gnn_hidden_dim ... nn_hidden_dim2 num_epochs\n", - "0 4 64 ... 128 2048\n", - "\n", - "[1 rows x 7 columns]\n", - "2025-05-29 13:10:23,663 - bioneuralnet.downstream_task.dpmon - INFO - Best tuned parameters: {'gnn_layer_num': 4, 'gnn_hidden_dim': 64, 'lr': 0.02435222881645533, 'weight_decay': 0.0005853927207500042, 'nn_hidden_dim1': 64, 'nn_hidden_dim2': 128, 'num_epochs': 2048}\n", - "2025-05-29 13:10:23,663 - bioneuralnet.downstream_task.dpmon - INFO - Best tuned parameters: {'gnn_layer_num': 4, 'gnn_hidden_dim': 64, 'lr': 0.02435222881645533, 'weight_decay': 0.0005853927207500042, 'nn_hidden_dim1': 64, 'nn_hidden_dim2': 128, 'num_epochs': 2048}\n", - "2025-05-29 13:10:23,663 - bioneuralnet.downstream_task.dpmon - INFO - Running standard training with tuned parameters.\n", - "2025-05-29 13:10:23,663 - bioneuralnet.downstream_task.dpmon - INFO - Using GPU 0\n", - "2025-05-29 13:10:23,746 - bioneuralnet.downstream_task.dpmon - INFO - Number of nodes in network: 2503\n", - "2025-05-29 13:10:26,097 - bioneuralnet.downstream_task.dpmon - INFO - Training iteration 1/5\n", - "2025-05-29 13:10:36,562 - bioneuralnet.downstream_task.dpmon - INFO - Training Accuracy: 0.8362\n", - "2025-05-29 13:10:36,565 - bioneuralnet.downstream_task.dpmon - INFO - Model saved to /home/vicente/Github/BioNeuralNet/dpmon_output/dpm_model_iter_1.pth\n", - "2025-05-29 13:10:36,567 - bioneuralnet.downstream_task.dpmon - INFO - Training iteration 2/5\n", - "2025-05-29 13:10:47,086 - bioneuralnet.downstream_task.dpmon - INFO - Training Accuracy: 0.5878\n", - "2025-05-29 13:10:47,090 - bioneuralnet.downstream_task.dpmon - INFO - Model saved to /home/vicente/Github/BioNeuralNet/dpmon_output/dpm_model_iter_2.pth\n", - "2025-05-29 13:10:47,093 - bioneuralnet.downstream_task.dpmon - INFO - Training iteration 3/5\n", - "2025-05-29 13:10:57,548 - bioneuralnet.downstream_task.dpmon - INFO - Training Accuracy: 0.9870\n", - "2025-05-29 13:10:57,551 - bioneuralnet.downstream_task.dpmon - INFO - Model saved to /home/vicente/Github/BioNeuralNet/dpmon_output/dpm_model_iter_3.pth\n", - "2025-05-29 13:10:57,553 - bioneuralnet.downstream_task.dpmon - INFO - Training iteration 4/5\n", - "2025-05-29 13:11:08,005 - bioneuralnet.downstream_task.dpmon - INFO - Training Accuracy: 0.7802\n", - "2025-05-29 13:11:08,007 - bioneuralnet.downstream_task.dpmon - INFO - Model saved to /home/vicente/Github/BioNeuralNet/dpmon_output/dpm_model_iter_4.pth\n", - "2025-05-29 13:11:08,010 - bioneuralnet.downstream_task.dpmon - INFO - Training iteration 5/5\n", - "2025-05-29 13:11:18,421 - bioneuralnet.downstream_task.dpmon - INFO - Training Accuracy: 0.8700\n", - "2025-05-29 13:11:18,423 - bioneuralnet.downstream_task.dpmon - INFO - Model saved to /home/vicente/Github/BioNeuralNet/dpmon_output/dpm_model_iter_5.pth\n", - "2025-05-29 13:11:18,426 - bioneuralnet.downstream_task.dpmon - INFO - Best Accuracy: 0.9870\n", - "2025-05-29 13:11:18,426 - bioneuralnet.downstream_task.dpmon - INFO - Average Accuracy across 5 models: 0.8122\n", - "2025-05-29 13:11:18,426 - bioneuralnet.downstream_task.dpmon - INFO - Standard Deviation across all models: 0.1465\n", - "2025-05-29 13:11:18,427 - bioneuralnet.downstream_task.dpmon - INFO - Returning best model predictions and average accuracy (predictions, avg_accuracy).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "DPMON results:\n", - "Accuracy: 0.9869960988296489\n", - "F1 weighted: 0.9874857727588546\n", - "F1 macro: 0.9695114345114344\n" - ] - } - ], - "source": [ - "from bioneuralnet.downstream_task import DPMON\n", - "from sklearn.metrics import accuracy_score, f1_score\n", - "\n", - "save = Path(\"/home/vicente/Github/BioNeuralNet/dpmon_output\")\n", - "brca_pam50 = brca_pam50.rename(columns={\"pam50\": \"phenotype\"})\n", - "\n", - "dpmon = DPMON(\n", - " adjacency_matrix=A_train,\n", - " omics_list=[meth_sel, rna_sel, mirna_sel],\n", - " phenotype_data=brca_pam50,\n", - " clinical_data=clinical,\n", - " repeat_num=5,\n", - " tune=True,\n", - " gpu=True, \n", - " cuda=0,\n", - " output_dir=Path(save),\n", - ")\n", - "\n", - "predictions_df, avg_accuracy = dpmon.run()\n", - "actual = predictions_df[\"Actual\"]\n", - "pred = predictions_df[\"Predicted\"]\n", - "\n", - "dpmon_acc = accuracy_score(actual, pred)\n", - "dpmon_f1w = f1_score(actual, pred, average='weighted')\n", - "dpmon_f1m = f1_score(actual, pred, average='macro')\n", - "\n", - "print(f\"\\nDPMON results:\")\n", - "print(f\"Accuracy: {dpmon_acc}\")\n", - "print(f\"F1 weighted: {dpmon_f1w}\")\n", - "print(f\"F1 macro: {dpmon_f1m}\")" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": ".enviroment", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.3" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} \ No newline at end of file diff --git a/docs/requirements.txt b/docs/requirements.txt index a34533e..ce36eae 100644 --- a/docs/requirements.txt +++ b/docs/requirements.txt @@ -6,3 +6,4 @@ pandoc nbsphinx myst_nb furo +sphinx-copybutton diff --git a/docs/source/conf.py b/docs/source/conf.py index 3f3ca7b..34836ce 100644 --- a/docs/source/conf.py +++ b/docs/source/conf.py @@ -20,6 +20,7 @@ "sphinx.ext.intersphinx", "nbsphinx", "myst_nb", + 'sphinx_copybutton', ] nb_execution_mode = "off" myst_enable_extensions = ["colon_fence"] diff --git a/docs/source/datasets.ipynb b/docs/source/datasets.ipynb index c94a360..1880b5c 100644 --- a/docs/source/datasets.ipynb +++ b/docs/source/datasets.ipynb @@ -12,7 +12,7 @@ "- Users can explore the structure of any dataset via the `.shape` property, which returns a mapping from table name to `(rows, columns)`. \n", "- Three datasets are available out-of-the-box:\n", "\n", - " 1. **Example1**:\n", + " 1. **example1**:\n", " - Synthetic dataset designed for testing and demonstration \n", " - Contains small DataFrames: `X1`, `X2`, `Y`, `clinical_data` \n", " - Useful for quick checks of package functionality\n", @@ -23,7 +23,7 @@ " - Workshop details: \n", "\n", " 3. **brca** :\n", - " - Breast cancer cohort from TCGA (BRCA project) \n", + " - Breast Cancer cohort dataset from The Cancer Genome Atlas(TCGA). \n", " - Provides comprehensive omics DataFrames: `rna`, `mirna`, `meth`, `pam50`, `clinical` \n", " - Full dataset description available at: \n", "\n" @@ -83,7 +83,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Example 1: Synthetic dataset" + "## Example 1: Synthetic dataset." ] }, { @@ -640,7 +640,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Monet: Set from the **Multi-Omics NETwork Analysis Workshop (MONET)**, Univ. of Colorado Anschutz " + "## Monet: Set from the **Multi-Omics NETwork Analysis Workshop (MONET)**, Univ. of Colorado Anschutz." ] }, { @@ -1345,7 +1345,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### BRCA: Breast cancer cohort dataset." + "## BRCA: Breast Cancer dataset from The Cancer Genome Atlas." ] }, { diff --git a/docs/source/index.rst b/docs/source/index.rst index c1bebbb..210e1fb 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -52,7 +52,7 @@ Citation If you use BioNeuralNet in your research, we kindly ask that you cite our paper: - Vicente Ramos, et al. (2025). + Ramos, V., Hussein, S., et al. (2025). `BioNeuralNet: A Graph Neural Network based Multi-Omics Network Data Analysis Tool `_. *arXiv preprint arXiv:2507.20440* | `DOI: 10.48550/arXiv.2507.20440 `_. @@ -206,13 +206,13 @@ We welcome contributions to BioNeuralNet! If you have ideas for new features, im - Run the test suite and and pre-commit hooks before opening a Pull Request(PR). - A new PR should pass all tests and adhere to the project's coding standards. -.. code-block:: bash - - git clone https://github.com/UCD-BDLab/BioNeuralNet.git - cd BioNeuralNet - pip install -r requirements-dev.txt - pre-commit install - pytest --cov=bioneuralnet + .. code-block:: bash + + git clone https://github.com/UCD-BDLab/BioNeuralNet.git + cd BioNeuralNet + pip install -r requirements-dev.txt + pre-commit install + pytest --cov=bioneuralnet .. toctree:: diff --git a/requirements-dev.txt b/requirements-dev.txt index 846dfd5..fa6935e 100644 --- a/requirements-dev.txt +++ b/requirements-dev.txt @@ -14,6 +14,7 @@ nbconvert ipykernel myst_nb furo +sphinx-copybutton # code quality and formatting flake8 From c3d3d4097da68710886217001aec666296c55d6c Mon Sep 17 00:00:00 2001 From: Vicente Date: Sun, 26 Oct 2025 16:26:59 -0600 Subject: [PATCH 3/3] Addressing copilot suggestions --- README.md | 2 +- docs/source/datasets.ipynb | 19 +++++++++---------- 2 files changed, 10 insertions(+), 11 deletions(-) diff --git a/README.md b/README.md index e2a517c..ab33058 100644 --- a/README.md +++ b/README.md @@ -24,7 +24,7 @@ If you use BioNeuralNet in your research, we kindly ask that you cite our paper: > Ramos, V., Hussein, S., et al. (2025). > [**BioNeuralNet: A Graph Neural Network based Multi-Omics Network Data Analysis Tool**](https://arxiv.org/abs/2507.20440). -> *arXiv preprint arXiv:2507.20440* | [**DOI: 10.48550/arXiv.2507.20440**](https://doi.org/1048550/arXiv.2507.20440). +> *arXiv preprint arXiv:2507.20440* | [**DOI: 10.48550/arXiv.2507.20440**](https://doi.org/10.48550/arXiv.2507.20440). For your convenience, you can use the following BibTeX entry: diff --git a/docs/source/datasets.ipynb b/docs/source/datasets.ipynb index 1880b5c..683d3ec 100644 --- a/docs/source/datasets.ipynb +++ b/docs/source/datasets.ipynb @@ -6,25 +6,24 @@ "source": [ "# Datasets Guide\n", "\n", - "\n", - "- The `DatasetLoader` class provides a simple interface to access example multi-omics datasets included in this package. \n", - "- Each dataset is loaded as a collection of **pandas DataFrames**, with table names as keys and the corresponding data as values. \n", - "- Users can explore the structure of any dataset via the `.shape` property, which returns a mapping from table name to `(rows, columns)`. \n", + "- The `DatasetLoader` class provides a simple interface to access example multi-omics datasets included in this package.\n", + "- Each dataset is loaded as a collection of **pandas DataFrames**, with table names as keys and the corresponding data as values.\n", + "- Users can explore the structure of any dataset via the `.shape` property, which returns a mapping from table name to `(rows, columns)`.\n", "- Three datasets are available out-of-the-box:\n", "\n", " 1. **example1**:\n", - " - Synthetic dataset designed for testing and demonstration \n", - " - Contains small DataFrames: `X1`, `X2`, `Y`, `clinical_data` \n", + " - Synthetic dataset designed for testing and demonstration.\n", + " - Contains small DataFrames: `X1`, `X2`, `Y`, `clinical_data`\n", " - Useful for quick checks of package functionality\n", "\n", " 2. **monet**: \n", " - Multi-omics benchmark dataset from the **Multi-Omics NETwork Analysis Workshop (MONET)**. \n", - " - Includes multiple DataFrames: `gene_data`, `mirna_data`, `phenotype`, `rppa_data`, `clinical_data` \n", + " - Includes multiple DataFrames: `gene_data`, `mirna_data`, `phenotype`, `rppa_data`, `clinical_data`\n", " - Workshop details: \n", "\n", - " 3. **brca** :\n", - " - Breast Cancer cohort dataset from The Cancer Genome Atlas(TCGA). \n", - " - Provides comprehensive omics DataFrames: `rna`, `mirna`, `meth`, `pam50`, `clinical` \n", + " 3. **brca**:\n", + " - Breast Cancer cohort dataset from The Cancer Genome Atlas (TCGA).\n", + " - Provides comprehensive omics DataFrames: `rna`, `mirna`, `meth`, `pam50`, `clinical`\n", " - Full dataset description available at: \n", "\n" ]