@@ -29,16 +29,16 @@ def imputer(df, strategy="mean", fill_value=None):
2929
3030 Examples
3131 ---------
32- >> import pandas as pd
33- >> from eda_utils_py import cor_map
32+ >>> import pandas as pd
33+ >>> from eda_utils_py import cor_map
3434
35- >> data = pd.DataFrame({
36- >> 'SepalLengthCm':[5.1, 4.9, 4.7],
37- >> 'SepalWidthCm':[1.4, 1.4, 1.3],
38- >> 'PetalWidthCm':[0.2, None, 0.2]
39- >> })
35+ >>> data = pd.DataFrame({
36+ >>> 'SepalLengthCm':[5.1, 4.9, 4.7],
37+ >>> 'SepalWidthCm':[1.4, 1.4, 1.3],
38+ >>> 'PetalWidthCm':[0.2, None, 0.2]
39+ >>> })
4040
41- >> imputer(data, numerical_columns)
41+ >>> imputer(data, numerical_columns)
4242 SepalLengthCm SepalWidthCm PetalWidthCm
4343 0 5.1 1.4 0.2
4444 1 4.9 1.4 0.2
@@ -107,18 +107,18 @@ def cor_map(dataframe, num_col, col_scheme="purpleorange"):
107107
108108 Examples
109109 ---------
110- >> import pandas as pd
111- >> from eda_utils_py import cor_map
112-
113- >> data = pd.DataFrame({
114- >> 'SepalLengthCm':[5.1, 4.9, 4.7],
115- >> 'SepalWidthCm':[1.4, 1.4, 1.3],
116- >> 'PetalWidthCm':[0.2, 0.1, 0.2],
117- >> 'Species':['Iris-setosa','Iris-virginica', 'Iris-germanica']
118- >> })
119-
120- >> numerical_columns = ['SepalLengthCm','SepalWidthCm','PetalWidthCm']
121- >> cor_map(data, numerical_columns, col_scheme = 'purpleorange')
110+ >>> import pandas as pd
111+ >>> from eda_utils_py import cor_map
112+
113+ >>> data = pd.DataFrame({
114+ >>> 'SepalLengthCm':[5.1, 4.9, 4.7],
115+ >>> 'SepalWidthCm':[1.4, 1.4, 1.3],
116+ >>> 'PetalWidthCm':[0.2, 0.1, 0.2],
117+ >>> 'Species':['Iris-setosa','Iris-virginica', 'Iris-germanica']
118+ >>> })
119+
120+ >>> numerical_columns = ['SepalLengthCm','SepalWidthCm','PetalWidthCm']
121+ >>> cor_map(data, numerical_columns, col_scheme = 'purpleorange')
122122 """
123123
124124 # Tests whether input data is of pd.DataFrame type
@@ -208,18 +208,18 @@ def outlier_identifier(dataframe, columns=None, method="trim"):
208208
209209 Examples
210210 --------
211- >> import pandas as pd
212- >> from eda_utils_py import cor_map
211+ >>> import pandas as pd
212+ >>> from eda_utils_py import cor_map
213213
214214
215- >> df = pd.DataFrame({
216- >> 'SepalLengthCm' : [5.1, 4.9, 4.7, 5.5, 5.1, 50, 5.4, 5.0, 5.2, 5.3, 5.1],
217- >> 'SepalWidthCm' : [1.4, 1.4, 20, 2.0, 0.7, 1.6, 1.2, 1.4, 1.8, 1.5, 2.1],
218- >> 'PetalWidthCm' : [0.2, 0.2, 0.2, 0.3, 0.4, 0.5, 0.5, 0.6, 0.4, 0.2, 5]
219- >> })
215+ >>> df = pd.DataFrame({
216+ >>> 'SepalLengthCm' : [5.1, 4.9, 4.7, 5.5, 5.1, 50, 5.4, 5.0, 5.2, 5.3, 5.1],
217+ >>> 'SepalWidthCm' : [1.4, 1.4, 20, 2.0, 0.7, 1.6, 1.2, 1.4, 1.8, 1.5, 2.1],
218+ >>> 'PetalWidthCm' : [0.2, 0.2, 0.2, 0.3, 0.4, 0.5, 0.5, 0.6, 0.4, 0.2, 5]
219+ >>> })
220220
221221
222- >> outlier_identifier(df)
222+ >>> outlier_identifier(df)
223223 SepalLengthCm SepalWidthCm PetalWidthCm
224224 0 5.1 1.4 0.2
225225 1 4.9 1.4 0.2
@@ -312,19 +312,19 @@ def scale(dataframe, columns, scaler="standard"):
312312
313313 Examples
314314 --------
315- >> import pandas as pd
316- >> from eda_utils_py import scale
315+ >>> import pandas as pd
316+ >>> from eda_utils_py import scale
317317
318- >> data = pd.DataFrame({
319- >> 'SepalLengthCm':[1, 0, 0, 3, 4],
320- >> 'SepalWidthCm':[4, 1, 1, 0, 1],
321- >> 'PetalWidthCm:[2, 0, 0, 2, 1],
322- >> 'Species':['Iris-setosa','Iris-virginica', 'Iris-germanica']
323- >> })
318+ >>> data = pd.DataFrame({
319+ >>> 'SepalLengthCm':[1, 0, 0, 3, 4],
320+ >>> 'SepalWidthCm':[4, 1, 1, 0, 1],
321+ >>> 'PetalWidthCm:[2, 0, 0, 2, 1],
322+ >>> 'Species':['Iris-setosa','Iris-virginica', 'Iris-germanica']
323+ >>> })
324324
325- >> numerical_columns = ['SepalLengthCm','SepalWidthCm','PetalWidthCm']
325+ >>> numerical_columns = ['SepalLengthCm','SepalWidthCm','PetalWidthCm']
326326
327- >> scale(data, numerical_columns, scaler="minmax")
327+ >>> scale(data, numerical_columns, scaler="minmax")
328328 SepalLengthCm SepalWidthCm PetalWidthCm
329329 0 0.25 1.00 1.0
330330 1 0.00 0.25 0.0
0 commit comments