Skip to content

Commit 2e91a98

Browse files
committed
Formatting changes for README
1 parent d298b34 commit 2e91a98

File tree

1 file changed

+7
-7
lines changed

1 file changed

+7
-7
lines changed

README.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -33,9 +33,9 @@ While Python packages with similar functionalities exist, this package aims to s
3333
- Please see a list of dependencies [here](pyproject.toml).
3434

3535
## Usage
36-
The eda_utils_py package help you to build exploratory data analysis.
36+
The eda_utils_py package will help you in your exploratory data analysis portion of your work.
3737

38-
eda_utils_py includes multiple custom functions to perform initial exploratory analysis on any input data describing the structure and the relationships present in the data. The generated output can be obtained in both object and graphical form.
38+
eda_utils_py includes multiple custom functions to perform initial exploratory analysis on any input data describing the structure and the relationships present in the data. Depending on the function, the generated output can be obtained in object or graphical form.
3939

4040
```python
4141
import pandas as pd
@@ -66,13 +66,13 @@ data_with_scale = pd.DataFrame({'SepalLengthCm':[1, 0, 0, 3, 4],
6666
'Species':['Iris-setosa','Iris-virginica', 'Iris-germanica', 'Iris-virginica','Iris-germanica']})
6767
```
6868

69-
The eda_utils_py will help you to:
69+
The eda_utils_py package contains functions that will help you to:
7070
- **Impute**: Resolve skewed data by identifying missing data and outlier and provide corresponding remedy.
7171

7272
```python
7373
imputer(data_with_NA)
7474
```
75-
Output:
75+
Output of `imputer()`:
7676

7777
![imputer_output](images/imputer_output.png)
7878

@@ -81,7 +81,7 @@ Output:
8181
```python
8282
outlier_identifier(data_with_outlier, method = "median")
8383
```
84-
Output:
84+
Output `outlier_identifier()`:
8585

8686
![outlier_output](images/outlier_output.png)
8787

@@ -93,7 +93,7 @@ numerical_columns = ['SepalLengthCm','SepalWidthCm','PetalWidthCm']
9393
cor_map(data, numerical_columns, col_scheme = 'purpleorange')
9494

9595
```
96-
Output:
96+
Output of `cor_map()`:
9797

9898
![cor_map_output](images/cor_map.output.png)
9999

@@ -105,7 +105,7 @@ numerical_columns = ['SepalLengthCm','SepalWidthCm','PetalWidthCm']
105105
scale(data, numerical_columns, scaler="minmax")
106106

107107
```
108-
Output:
108+
Output `scale()`:
109109

110110
![scale_output](images/scale_output.png)
111111

0 commit comments

Comments
 (0)