Skip to content

AttributeError: 'Param_Discrete_Numeric' object has no attribute 'search_categories' #69

@dhristozov

Description

@dhristozov

Hi,

Thanks for the nice package.

I am encountering issues when trying to use Param_Discrete_Numeric.

If I understand the code correctly the idea is to use this as a continuous variable during optimisation and mapping the suggested evaluation values to the closest of the numerical categories (via the unit_demap method).

However, by the virtue of Param_Discrete_Numeric inheriting from Param_Discrete this seems to be broken and I get the following exception when trying to use Param_Discrete_Numeric.

params = [
    Param_Categorical("Category", ["Cat-1", "Cat-2", "Cat-3"]),
    Param_Discrete_Numeric("Temperature", list(range(25, 86, 5))),
]
X_space = ParamSpace(params)
target = [
    Target('Desired', aim='max'),
    Target('Undesired', aim='min')
]
campaign = Campaign(X_space, target, seed=42)
X0 = campaign.designer.initialize(4, 'LHS')
Z0 = pd.concat([X0, pd.Series([35.,56.,67.,23.], name="Desired"), pd.Series([60.,48.,27.,70.], name="Undesired")], axis=1)
campaign.add_data(Z0)
campaign.fit()
X_suggest, eval_suggest = campaign.optimizer.suggest(
    acquisition = ['NEHVI', ], m_batch=4
)
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
Cell In[110], [line 15](vscode-notebook-cell:?execution_count=110&line=15)
     [13](vscode-notebook-cell:?execution_count=110&line=13) campaign.add_data(Z0)
     [14](vscode-notebook-cell:?execution_count=110&line=14) campaign.fit()
---> [15](vscode-notebook-cell:?execution_count=110&line=15) X_suggest, eval_suggest = campaign.optimizer.suggest(
     [16](vscode-notebook-cell:?execution_count=110&line=16)     acquisition = ['NEHVI', ], m_batch=4
     [17](vscode-notebook-cell:?execution_count=110&line=17) )

File [~/dev/obsidian/obsidian/optimizer/bayesian.py:711](~/dev/obsidian/obsidian/optimizer/bayesian.py:711), in BayesianOptimizer.suggest(self, m_batch, target, acquisition, optim_sequential, optim_samples, optim_restarts, objective, out_constraints, eq_constraints, ineq_constraints, nleq_constraints, task_index, fixed_var, X_pending, eval_pending)
    [708](~/dev/obsidian/obsidian/optimizer/bayesian.py:708)     raise TypeError('Each item in acquisition list must be either a string or a dictionary')
    [710](~/dev/obsidian/obsidian/optimizer/bayesian.py:710) # Compute static variable inputs
--> [711](~/dev/obsidian/obsidian/optimizer/bayesian.py:711) fixed_features_list = self._fixed_features(fixed_var)
    [713](~/dev/obsidian/obsidian/optimizer/bayesian.py:713) # Set up the sampler, for MC-based optimization of acquisition functions
    [714](~/dev/obsidian/obsidian/optimizer/bayesian.py:714) if not isinstance(model, ModelListGP):

File [~/dev/obsidian/obsidian/optimizer/base.py:114](~/dev/obsidian/obsidian/optimizer/base.py:114), in Optimizer._fixed_features(self, fixed_var)
    [112](~/dev/obsidian/obsidian/optimizer/base.py:112) for x in self.X_space.X_discrete:
    [113](~/dev/obsidian/obsidian/optimizer/base.py:113)     if x.name not in fixed_var.keys():  # Fixed_var should take precedent and lock out other combinations
--> [114](~/dev/obsidian/obsidian/optimizer/base.py:114)         df_i = pd.DataFrame({x.name: x.search_categories})
    [115](~/dev/obsidian/obsidian/optimizer/base.py:115)         df_list.append(df_i)
    [117](~/dev/obsidian/obsidian/optimizer/base.py:117) # Merge by cross

AttributeError: 'Param_Discrete_Numeric' object has no attribute 'search_categories'

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions