From f75cf4bfbe9b13f52fed6d72ad07ac9e803f1bf6 Mon Sep 17 00:00:00 2001 From: Amit Rai <42401957+ardev472@users.noreply.github.com> Date: Sun, 17 Feb 2019 02:18:32 +0530 Subject: [PATCH 01/11] Created using Colaboratory --- intro_to_pandas.ipynb | 1800 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1800 insertions(+) create mode 100644 intro_to_pandas.ipynb diff --git a/intro_to_pandas.ipynb b/intro_to_pandas.ipynb new file mode 100644 index 0000000..713d3d1 --- /dev/null +++ b/intro_to_pandas.ipynb @@ -0,0 +1,1800 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "intro_to_pandas.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "YHIWvc9Ms-Ll", + "TJffr5_Jwqvd" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "JndnmDMp66FL" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "hMqWDc_m6rUC", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "rHLcriKWLRe4" + }, + "cell_type": "markdown", + "source": [ + "# Intro to pandas" + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "QvJBqX8_Bctk" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Gain an introduction to the `DataFrame` and `Series` data structures of the *pandas* library\n", + " * Access and manipulate data within a `DataFrame` and `Series`\n", + " * Import CSV data into a *pandas* `DataFrame`\n", + " * Reindex a `DataFrame` to shuffle data" + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "TIFJ83ZTBctl" + }, + "cell_type": "markdown", + "source": [ + "[*pandas*](http://pandas.pydata.org/) is a column-oriented data analysis API. It's a great tool for handling and analyzing input data, and many ML frameworks support *pandas* data structures as inputs.\n", + "Although a comprehensive introduction to the *pandas* API would span many pages, the core concepts are fairly straightforward, and we'll present them below. For a more complete reference, the [*pandas* docs site](http://pandas.pydata.org/pandas-docs/stable/index.html) contains extensive documentation and many tutorials." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "s_JOISVgmn9v" + }, + "cell_type": "markdown", + "source": [ + "## Basic Concepts\n", + "\n", + "The following line imports the *pandas* API and prints the API version:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "aSRYu62xUi3g", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "599d94dd-9505-4bc6-bf65-7a1685d45919" + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import pandas as pd\n", + "pd.__version__" + ], + "execution_count": 1, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "u'0.22.0'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 1 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "daQreKXIUslr" + }, + "cell_type": "markdown", + "source": [ + "The primary data structures in *pandas* are implemented as two classes:\n", + "\n", + " * **`DataFrame`**, which you can imagine as a relational data table, with rows and named columns.\n", + " * **`Series`**, which is a single column. A `DataFrame` contains one or more `Series` and a name for each `Series`.\n", + "\n", + "The data frame is a commonly used abstraction for data manipulation. Similar implementations exist in [Spark](https://spark.apache.org/) and [R](https://www.r-project.org/about.html)." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "fjnAk1xcU0yc" + }, + "cell_type": "markdown", + "source": [ + "One way to create a `Series` is to construct a `Series` object. For example:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "DFZ42Uq7UFDj", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 85 + }, + "outputId": "9f1c8053-7629-4c44-ebb7-82f168d45dae" + }, + "cell_type": "code", + "source": [ + "pd.Series(['San Francisco', 'San Jose', 'Sacramento'])" + ], + "execution_count": 2, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 San Francisco\n", + "1 San Jose\n", + "2 Sacramento\n", + "dtype: object" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 2 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "U5ouUp1cU6pC" + }, + "cell_type": "markdown", + "source": [ + "`DataFrame` objects can be created by passing a `dict` mapping `string` column names to their respective `Series`. If the `Series` don't match in length, missing values are filled with special [NA/NaN](http://pandas.pydata.org/pandas-docs/stable/missing_data.html) values. Example:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "avgr6GfiUh8t", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 142 + }, + "outputId": "e28d6784-41f9-46d5-9344-858a9e6c8912" + }, + "cell_type": "code", + "source": [ + "city_names = pd.Series(['San Francisco', 'San Jose', 'Sacramento'])\n", + "population = pd.Series([852469, 1015785, 485199])\n", + "\n", + "pd.DataFrame({ 'City name': city_names, 'Population': population })" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulation
0San Francisco852469
1San Jose1015785
2Sacramento485199
\n", + "
" + ], + "text/plain": [ + " City name Population\n", + "0 San Francisco 852469\n", + "1 San Jose 1015785\n", + "2 Sacramento 485199" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 3 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "oa5wfZT7VHJl" + }, + "cell_type": "markdown", + "source": [ + "But most of the time, you load an entire file into a `DataFrame`. The following example loads a file with California housing data. Run the following cell to load the data and create feature definitions:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "av6RYOraVG1V", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "outputId": "27e3b0df-c669-4775-cbcc-bdcdbd489bf7" + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "california_housing_dataframe.describe()" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
longitudelatitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomemedian_house_value
count17000.00000017000.00000017000.00000017000.00000017000.00000017000.00000017000.00000017000.00000017000.000000
mean-119.56210835.62522528.5893532643.664412539.4108241429.573941501.2219413.883578207300.912353
std2.0051662.13734012.5869372179.947071421.4994521147.852959384.5208411.908157115983.764387
min-124.35000032.5400001.0000002.0000001.0000003.0000001.0000000.49990014999.000000
25%-121.79000033.93000018.0000001462.000000297.000000790.000000282.0000002.566375119400.000000
50%-118.49000034.25000029.0000002127.000000434.0000001167.000000409.0000003.544600180400.000000
75%-118.00000037.72000037.0000003151.250000648.2500001721.000000605.2500004.767000265000.000000
max-114.31000041.95000052.00000037937.0000006445.00000035682.0000006082.00000015.000100500001.000000
\n", + "
" + ], + "text/plain": [ + " longitude latitude housing_median_age total_rooms \\\n", + "count 17000.000000 17000.000000 17000.000000 17000.000000 \n", + "mean -119.562108 35.625225 28.589353 2643.664412 \n", + "std 2.005166 2.137340 12.586937 2179.947071 \n", + "min -124.350000 32.540000 1.000000 2.000000 \n", + "25% -121.790000 33.930000 18.000000 1462.000000 \n", + "50% -118.490000 34.250000 29.000000 2127.000000 \n", + "75% -118.000000 37.720000 37.000000 3151.250000 \n", + "max -114.310000 41.950000 52.000000 37937.000000 \n", + "\n", + " total_bedrooms population households median_income \\\n", + "count 17000.000000 17000.000000 17000.000000 17000.000000 \n", + "mean 539.410824 1429.573941 501.221941 3.883578 \n", + "std 421.499452 1147.852959 384.520841 1.908157 \n", + "min 1.000000 3.000000 1.000000 0.499900 \n", + "25% 297.000000 790.000000 282.000000 2.566375 \n", + "50% 434.000000 1167.000000 409.000000 3.544600 \n", + "75% 648.250000 1721.000000 605.250000 4.767000 \n", + "max 6445.000000 35682.000000 6082.000000 15.000100 \n", + "\n", + " median_house_value \n", + "count 17000.000000 \n", + "mean 207300.912353 \n", + "std 115983.764387 \n", + "min 14999.000000 \n", + "25% 119400.000000 \n", + "50% 180400.000000 \n", + "75% 265000.000000 \n", + "max 500001.000000 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 4 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "WrkBjfz5kEQu" + }, + "cell_type": "markdown", + "source": [ + "The example above used `DataFrame.describe` to show interesting statistics about a `DataFrame`. Another useful function is `DataFrame.head`, which displays the first few records of a `DataFrame`:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "s3ND3bgOkB5k", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "75b661a0-0e35-4705-9df5-ca908188623d" + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe.head()" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
longitudelatitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomemedian_house_value
0-114.3134.1915.05612.01283.01015.0472.01.493666900.0
1-114.4734.4019.07650.01901.01129.0463.01.820080100.0
2-114.5633.6917.0720.0174.0333.0117.01.650985700.0
3-114.5733.6414.01501.0337.0515.0226.03.191773400.0
4-114.5733.5720.01454.0326.0624.0262.01.925065500.0
\n", + "
" + ], + "text/plain": [ + " longitude latitude housing_median_age total_rooms total_bedrooms \\\n", + "0 -114.31 34.19 15.0 5612.0 1283.0 \n", + "1 -114.47 34.40 19.0 7650.0 1901.0 \n", + "2 -114.56 33.69 17.0 720.0 174.0 \n", + "3 -114.57 33.64 14.0 1501.0 337.0 \n", + "4 -114.57 33.57 20.0 1454.0 326.0 \n", + "\n", + " population households median_income median_house_value \n", + "0 1015.0 472.0 1.4936 66900.0 \n", + "1 1129.0 463.0 1.8200 80100.0 \n", + "2 333.0 117.0 1.6509 85700.0 \n", + "3 515.0 226.0 3.1917 73400.0 \n", + "4 624.0 262.0 1.9250 65500.0 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 5 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "w9-Es5Y6laGd" + }, + "cell_type": "markdown", + "source": [ + "Another powerful feature of *pandas* is graphing. For example, `DataFrame.hist` lets you quickly study the distribution of values in a column:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "nqndFVXVlbPN", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 396 + }, + "outputId": "b8c111d4-f171-4fa5-91a3-726ce922165e" + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe.hist('housing_median_age')" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([[]],\n", + " dtype=object)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 6 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAFZCAYAAABXM2zhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X1UlHX+//HXMDAH0UEEGTfLarf0\naEmaa5l4U0Iokp7IVRPWdU3q6Iqtlql499WTlajRmmZZmunRU7GNtofcAjJxyyRanT0uuu0p2VOr\neTejKCqgSPP7o9Os/FRguP1Az8dfcTEz1+d6H+3pdQ1zYfF6vV4BAAAjBTT3AgAAwPURagAADEao\nAQAwGKEGAMBghBoAAIMRagAADEaogVo6cuSI7rjjjkbdxz//+U+lpKQ06j4a0h133KEjR47o448/\n1ty5c5t7OUCrZOFz1EDtHDlyREOHDtW//vWv5l6KMe644w7l5ubqpptuau6lAK0WZ9SAn5xOp0aO\nHKn7779f27dv1w8//KA//elPio+PV3x8vNLS0lRaWipJiomJ0d69e33P/enry5cva/78+Ro2bJji\n4uI0bdo0nT9/XgUFBYqLi5MkrV69Ws8++6xSU1MVGxur0aNH6+TJk5KkgwcPaujQoRo6dKheeeUV\njRw5UgUFBdWue/Xq1Vq0aJEmT56sgQMHatasWcrLy9OoUaM0cOBA5eXlSZIuXbqk5557TsOGDVNM\nTIzWrl3re42//e1viouL0/Dhw7V+/Xrf9m3btmnixImSJI/Ho5SUFMXHxysmJkZvvfVWleN/9913\nNXr0aA0cOFDp6ek1zrusrEwzZszwrWfZsmW+71U3hx07dmjkyJGKjY3VpEmTdPr06Rr3BZiIUAN+\n+OGHH1RRUaEPPvhAc+fO1cqVK/XRRx/p008/1bZt2/TXv/5VJSUl2rhxY7Wvs3v3bh05ckTZ2dnK\nzc3V7bffrn/84x9XPS47O1vz5s3Tjh07FBERoa1bt0qSFi5cqIkTJyo3N1ft2rXTt99+W6v179q1\nSy+88II++OADZWdn+9Y9ZcoUrVu3TpK0bt06HTp0SB988IG2b9+unJwc5eXlqbKyUvPnz9eiRYv0\n0UcfKSAgQJWVlVft47XXXtNNN92k7Oxsbdq0SRkZGTp27Jjv+3//+9+VmZmprVu3asuWLTp+/Hi1\na37nnXd04cIFZWdn6/3339e2bdt8//i53hwOHz6s2bNnKyMjQ5988on69eunxYsX12pGgGkINeAH\nr9erxMREST9e9j1+/Lh27dqlxMREhYSEyGq1atSoUfr888+rfZ3w8HAVFRXp448/9p0xDho06KrH\n9e3bVzfeeKMsFot69OihY8eOqby8XAcPHtSIESMkSb/97W9V23ew7r77bkVERKhDhw6KjIzU4MGD\nJUndunXzna3n5eUpOTlZNptNISEhevjhh5Wbm6tvv/1Wly5d0sCBAyVJjzzyyDX3sWDBAi1cuFCS\n1KVLF0VGRurIkSO+748cOVJWq1WdOnVSRERElYhfy6RJk/Tqq6/KYrGoffv26tq1q44cOVLtHD79\n9FPde++96tatmyRp3Lhx2rlz5zX/YQGYLrC5FwC0JFarVW3atJEkBQQE6IcfftDp06fVvn1732Pa\nt2+vU6dOVfs6d911lxYsWKDNmzdrzpw5iomJ0aJFi656nN1ur7LvyspKnT17VhaLRaGhoZKkoKAg\nRURE1Gr9bdu2rfJ6ISEhVY5Fks6dO6elS5fqpZdekvTjpfC77rpLZ8+eVbt27aoc57UUFhb6zqID\nAgLkdrt9ry2pymv8dEzV+fbbb5Wenq7//Oc/CggI0PHjxzVq1Khq53Du3Dnt3btX8fHxVfZ75syZ\nWs8KMAWhBuqpY8eOOnPmjO/rM2fOqGPHjpKqBlCSzp496/vvn97TPnPmjObNm6c333xT0dHRNe6v\nXbt28nq9KisrU5s2bXT58uUGff/V4XBo0qRJGjJkSJXtRUVFOn/+vO/r6+1z1qxZ+v3vf6+kpCRZ\nLJZrXinwx7PPPqs777xTa9askdVq1bhx4yRVPweHw6Ho6GitWrWqXvsGTMClb6CeHnjgAWVlZams\nrEyXL1+W0+nU/fffL0mKjIzUv//9b0nShx9+qIsXL0qStm7dqjVr1kiSwsLC9Ktf/arW+2vbtq1u\nu+02ffTRR5KkzMxMWSyWBjue2NhYvffee6qsrJTX69Wrr76qTz/9VDfffLOsVqvvh7W2bdt2zf2e\nOnVKPXv2lMVi0fvvv6+ysjLfD9fVxalTp9SjRw9ZrVZ9/vnn+u6771RaWlrtHAYOHKi9e/fq8OHD\nkn782Ntzzz1X5zUAzYlQA/UUHx+vwYMHa9SoURoxYoR+8YtfaMKECZKkqVOnauPGjRoxYoSKiop0\n++23S/oxhj/9xPLw4cN16NAhPfbYY7Xe56JFi7R27Vo99NBDKi0tVadOnRos1snJyercubMeeugh\nxcfHq6ioSL/+9a8VFBSkJUuWaN68eRo+fLgsFovv0vmVpk+frtTUVI0cOVKlpaV69NFHtXDhQv33\nv/+t03r+8Ic/aNmyZRoxYoS+/PJLTZs2TatXr9a+ffuuOweHw6ElS5YoNTVVw4cP17PPPquEhIT6\njgZoFnyOGmihvF6vL8733XefNm7cqO7duzfzqpoec0Brxxk10AL98Y9/9H2cKj8/X16vV7feemvz\nLqoZMAf8HHBGDbRARUVFmjt3rs6ePaugoCDNmjVLN910k1JTU6/5+Ntuu833nrhpioqK6rzua83h\np58PAFoLQg0AgMG49A0AgMEINQAABjPyhidu9zm/Ht+hQ4iKi+v+Oc2fO+ZXd8yufphf3TG7+jFt\nfpGR9ut+r1WcUQcGWpt7CS0a86s7Zlc/zK/umF39tKT5tYpQAwDQWhFqAAAMRqgBADBYjT9MVlZW\nprS0NJ06dUoXL17U1KlT1b17d82ePVuVlZWKjIzUihUrZLPZlJWVpU2bNikgIEBjx47VmDFjVFFR\nobS0NB09elRWq1VLly5Vly5dmuLYAABo8Wo8o87Ly1PPnj21ZcsWrVy5Uunp6Vq1apWSk5P19ttv\n65ZbbpHT6VRpaanWrFmjjRs3avPmzdq0aZPOnDmj7du3KzQ0VO+8846mTJmijIyMpjguAABahRpD\nnZCQoCeeeEKSdOzYMXXq1EkFBQWKjY2VJA0ZMkT5+fnav3+/oqKiZLfbFRwcrD59+sjlcik/P19x\ncXGSpOjoaLlcrkY8HAAAWpdaf4563LhxOn78uNauXavHHntMNptNkhQRESG32y2Px6Pw8HDf48PD\nw6/aHhAQIIvFokuXLvmeDwAArq/WoX733Xf11VdfadasWbry9uDXu1W4v9uv1KFDiN+fcavuw+Ko\nGfOrO2ZXP8yv7phd/bSU+dUY6gMHDigiIkI33HCDevToocrKSrVt21bl5eUKDg7WiRMn5HA45HA4\n5PF4fM87efKkevfuLYfDIbfbre7du6uiokJer7fGs2l/7xYTGWn3+25m+B/mV3fMrn6YX90xu/ox\nbX71ujPZ3r17tWHDBkmSx+NRaWmpoqOjlZOTI0nKzc3VoEGD1KtXLxUWFqqkpEQXLlyQy+VS3759\nNWDAAGVnZ0v68QfT+vXr1xDHBADAz0KNZ9Tjxo3T/PnzlZycrPLycv3f//2fevbsqTlz5igzM1Od\nO3dWYmKigoKCNHPmTKWkpMhisSg1NVV2u10JCQnas2ePkpKSZLPZlJ6e3hTHBQBAq2Dk76P293KE\naZcwWhrmV3fMrn6YX90xu/oxbX7VXfo28rdnAcC1TErf2dxLqNGGtJjmXgJaGW4hCgCAwQg1AAAG\nI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCA\nwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMA\nYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QA\nABiMUAMAYDBCDQCAwQg1AAAGC6zNg5YvX659+/bp8uXLmjx5snbu3KmDBw8qLCxMkpSSkqIHHnhA\nWVlZ2rRpkwICAjR27FiNGTNGFRUVSktL09GjR2W1WrV06VJ16dKlUQ8KAIDWosZQf/HFF/rmm2+U\nmZmp4uJiPfLII7rvvvv09NNPa8iQIb7HlZaWas2aNXI6nQoKCtLo0aMVFxenvLw8hYaGKiMjQ7t3\n71ZGRoZWrlzZqAcFAEBrUeOl73vuuUcvv/yyJCk0NFRlZWWqrKy86nH79+9XVFSU7Ha7goOD1adP\nH7lcLuXn5ysuLk6SFB0dLZfL1cCHAABA61VjqK1Wq0JCQiRJTqdTgwcPltVq1ZYtWzRhwgQ99dRT\nOn36tDwej8LDw33PCw8Pl9vtrrI9ICBAFotFly5daqTDAQCgdanVe9SStGPHDjmdTm3YsEEHDhxQ\nWFiYevTooTfeeEOvvPKK7r777iqP93q913yd622/UocOIQoMtNZ2aZKkyEi7X49HVcyv7phd/bS2\n+TXl8bS22TW1ljK/WoX6s88+09q1a7V+/XrZ7Xb179/f972YmBgtXrxYw4YNk8fj8W0/efKkevfu\nLYfDIbfbre7du6uiokJer1c2m63a/RUXl/p1EJGRdrnd5/x6Dv6H+dUds6uf1ji/pjqe1ji7pmTa\n/Kr7R0ONl77PnTun5cuX6/XXX/f9lPeTTz6pw4cPS5IKCgrUtWtX9erVS4WFhSopKdGFCxfkcrnU\nt29fDRgwQNnZ2ZKkvLw89evXryGOCQCAn4Uaz6g//PBDFRcXa8aMGb5to0aN0owZM9SmTRuFhIRo\n6dKlCg4O1syZM5WSkiKLxaLU1FTZ7XYlJCRoz549SkpKks1mU3p6eqMeEAAArYnFW5s3jZuYv5cj\nTLuE0dIwv7pjdvXj7/wmpe9sxNU0jA1pMU2yH/7s1Y9p86vXpW8AANB8CDUAAAYj1AAAGIxQAwBg\nMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAA\nGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYLbO4FAA1lUvrO5l5CtTakxTT3\nEgC0QJxRAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDB\nCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAbj91EDTcT035ct8TuzARNxRg0AgMFqdUa9fPly7du3\nT5cvX9bkyZMVFRWl2bNnq7KyUpGRkVqxYoVsNpuysrK0adMmBQQEaOzYsRozZowqKiqUlpamo0eP\nymq1aunSperSpUtjHxcAAK1CjaH+4osv9M033ygzM1PFxcV65JFH1L9/fyUnJ2v48OF66aWX5HQ6\nlZiYqDVr1sjpdCooKEijR49WXFyc8vLyFBoaqoyMDO3evVsZGRlauXJlUxwbAAAtXo2Xvu+55x69\n/PLLkqTQ0FCVlZWpoKBAsbGxkqQhQ4YoPz9f+/fvV1RUlOx2u4KDg9WnTx+5XC7l5+crLi5OkhQd\nHS2Xy9WIhwMAQOtS4xm11WpVSEiIJMnpdGrw4MHavXu3bDabJCkiIkJut1sej0fh4eG+54WHh1+1\nPSAgQBaLRZcuXfI9/1o6dAhRYKDVrwOJjLT79XhUxfwgNc+fg9b2Z68pj6e1za6ptZT51fqnvnfs\n2CGn06kNGzZo6NChvu1er/eaj/d3+5WKi0truyxJPw7b7T7n13PwP8wPP2nqPwet8c9eUx1Pa5xd\nUzJtftX9o6FWP/X92Wefae3atVq3bp3sdrtCQkJUXl4uSTpx4oQcDoccDoc8Ho/vOSdPnvRtd7vd\nkqSKigp5vd5qz6YBAMD/1Bjqc+fOafny5Xr99dcVFhYm6cf3mnNyciRJubm5GjRokHr16qXCwkKV\nlJTowoULcrlc6tu3rwYMGKDs7GxJUl5envr169eIhwMAQOtS46XvDz/8UMXFxZoxY4ZvW3p6uhYs\nWKDMzEx17txZiYmJCgoK0syZM5WSkiKLxaLU1FTZ7XYlJCRoz549SkpKks1mU3p6eqMeEAAArUmN\noX700Uf16KOPXrX9rbfeumpbfHy84uPjq2z76bPTAADAf9xCFIBPS7jNKfBzwy1EAQAwGKEGAMBg\nhBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGHcmQ61wxyoAaB6cUQMAYDBCDQCA\nwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMA\nYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABgssLkXAADAlSal72zuJdRoQ1pM\nk+2LM2oAAAxGqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMBihBgDAYLX6HPXXX3+tqVOnauLEiRo/\nfrzS0tJ08OBBhYWFSZJSUlL0wAMPKCsrS5s2bVJAQIDGjh2rMWPGqKKiQmlpaTp69KisVquWLl2q\nLl26NOpBAUBz4TPAaGg1hrq0tFRLlixR//79q2x/+umnNWTIkCqPW7NmjZxOp4KCgjR69GjFxcUp\nLy9PoaGhysjI0O7du5WRkaGVK1c2/JEAANAK1Xjp22azad26dXI4HNU+bv/+/YqKipLdbldwcLD6\n9Okjl8ul/Px8xcXFSZKio6PlcrkaZuUAAPwM1BjqwMBABQcHX7V9y5YtmjBhgp566imdPn1aHo9H\n4eHhvu+Hh4fL7XZX2R4QECCLxaJLly414CEAANB61ele3w8//LDCwsLUo0cPvfHGG3rllVd09913\nV3mM1+u95nOvt/1KHTqEKDDQ6teaIiPtfj0eVTE/4OeDv+/115QzrFOor3y/OiYmRosXL9awYcPk\n8Xh820+ePKnevXvL4XDI7Xare/fuqqiokNfrlc1mq/b1i4tL/VpPZKRdbvc5/w4CPswP+Hnh73v9\nNfQMqwt/nT6e9eSTT+rw4cOSpIKCAnXt2lW9evVSYWGhSkpKdOHCBblcLvXt21cDBgxQdna2JCkv\nL0/9+vWryy4BAPhZqvGM+sCBA1q2bJm+//57BQYGKicnR+PHj9eMGTPUpk0bhYSEaOnSpQoODtbM\nmTOVkpIii8Wi1NRU2e12JSQkaM+ePUpKSpLNZlN6enpTHBcAAK1CjaHu2bOnNm/efNX2YcOGXbUt\nPj5e8fHxVbb99NlpAADgP+5MBgCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMA\nYDBCDQCAwQg1AAAGI9QAABiMUAMAYLA6/T5qAEDLNSl9Z3MvAX7gjBoAAIMRagAADEaoAQAwGKEG\nAMBghBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMRagAADEao\nAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMR\nagAADFarUH/99dd68MEHtWXLFknSsWPH9Lvf/U7JycmaPn26Ll26JEnKysrSb37zG40ZM0bvvfee\nJKmiokIzZ85UUlKSxo8fr8OHDzfSoQAA0PrUGOrS0lItWbJE/fv3921btWqVkpOT9fbbb+uWW26R\n0+lUaWmp1qxZo40bN2rz5s3atGmTzpw5o+3btys0NFTvvPOOpkyZooyMjEY9IAAAWpMaQ22z2bRu\n3To5HA7ftoKCAsXGxkqShgwZovz8fO3fv19RUVGy2+0KDg5Wnz595HK5lJ+fr7i4OElSdHS0XC5X\nIx0KAACtT42hDgwMVHBwcJVtZWVlstlskqSIiAi53W55PB6Fh4f7HhMeHn7V9oCAAFksFt+lcgAA\nUL3A+r6A1+ttkO1X6tAhRIGBVr/WERlp9+vxqIr5AUDtNeX/M+sU6pCQEJWXlys4OFgnTpyQw+GQ\nw+GQx+PxPebkyZPq3bu3HA6H3G63unfvroqKCnm9Xt/Z+PUUF5f6tZ7ISLvc7nN1ORSI+QGAvxr6\n/5nVhb9OH8+Kjo5WTk6OJCk3N1eDBg1Sr169VFhYqJKSEl24cEEul0t9+/bVgAEDlJ2dLUnKy8tT\nv3796rJLAAB+lmo8oz5w4ICWLVum77//XoGBgcrJydGLL76otLQ0ZWZmqnPnzkpMTFRQUJBmzpyp\nlJQUWSwWpaamym63KyEhQXv27FFSUpJsNpvS09Ob4rgAAGgVLN7avGncxPy9pMCl2/qpzfwmpe9s\notUAgPk2pMU06Os1+KVvAADQNOr9U99oGJyxAgCuhTNqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAM\nRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAA\ngxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYA\nwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMFtjcC2gKk9J3NvcSAACoE86oAQAwGKEG\nAMBghBoAAIMRagAADFanHyYrKCjQ9OnT1bVrV0lSt27d9Pjjj2v27NmqrKxUZGSkVqxYIZvNpqys\nLG3atEkBAQEaO3asxowZ06AHAABAa1bnn/q+9957tWrVKt/Xc+fOVXJysoYPH66XXnpJTqdTiYmJ\nWrNmjZxOp4KCgjR69GjFxcUpLCysQRYPAEBr12CXvgsKChQbGytJGjJkiPLz87V//35FRUXJbrcr\nODhYffr0kcvlaqhdAgDQ6tX5jPrQoUOaMmWKzp49q2nTpqmsrEw2m02SFBERIbfbLY/Ho/DwcN9z\nwsPD5Xa7a3ztDh1CFBho9Ws9kZF2/w4AAIA6asrm1CnUt956q6ZNm6bhw4fr8OHDmjBhgiorK33f\n93q913ze9bb//4qLS/1aT2SkXW73Ob+eAwBAXTV0c6oLf50ufXfq1EkJCQmyWCy6+eab1bFjR509\ne1bl5eWSpBMnTsjhcMjhcMjj8fied/LkSTkcjrrsEgCAn6U6hTorK0tvvvmmJMntduvUqVMaNWqU\ncnJyJEm5ubkaNGiQevXqpcLCQpWUlOjChQtyuVzq27dvw60eAIBWrk6XvmNiYvTMM8/ok08+UUVF\nhRYvXqwePXpozpw5yszMVOfOnZWYmKigoCDNnDlTKSkpslgsSk1Nld3Oe8kAANSWxVvbN46bkL/X\n/mt6j5pfygEAaEgb0mIa9PUa/D1qAADQNAg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiM\nUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAG\nI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCA\nwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABgssCl2\n8sILL2j//v2yWCyaN2+e7rrrrqbYLQAALV6jh/rLL7/Ud999p8zMTBUVFWnevHnKzMxs7N0CANAq\nNPql7/z8fD344IOSpNtuu01nz57V+fPnG3u3AAC0Co0eao/How4dOvi+Dg8Pl9vtbuzdAgDQKjTJ\ne9RX8nq9NT4mMtLu9+tW95wPMh72+/UAADBBo59ROxwOeTwe39cnT55UZGRkY+8WAIBWodFDPWDA\nAOXk5EiSDh48KIfDoXbt2jX2bgEAaBUa/dJ3nz59dOedd2rcuHGyWCxatGhRY+8SAIBWw+KtzZvG\nAACgWXBnMgAADEaoAQAwWJN/PKuhcXtS/3399deaOnWqJk6cqPHjx+vYsWOaPXu2KisrFRkZqRUr\nVshmszX3Mo20fPly7du3T5cvX9bkyZMVFRXF7GqhrKxMaWlpOnXqlC5evKipU6eqe/fuzM5P5eXl\nGjFihKZOnar+/fszv1oqKCjQ9OnT1bVrV0lSt27d9Pjjj7eY+bXoM+orb0/6/PPP6/nnn2/uJRmv\ntLRUS5YsUf/+/X3bVq1apeTkZL399tu65ZZb5HQ6m3GF5vriiy/0zTffKDMzU+vXr9cLL7zA7Gop\nLy9PPXv21JYtW7Ry5Uqlp6czuzp47bXX1L59e0n8vfXXvffeq82bN2vz5s1auHBhi5pfiw41tyf1\nn81m07p16+RwOHzbCgoKFBsbK0kaMmSI8vPzm2t5Rrvnnnv08ssvS5JCQ0NVVlbG7GopISFBTzzx\nhCTp2LFj6tSpE7PzU1FRkQ4dOqQHHnhAEn9v66slza9Fh5rbk/ovMDBQwcHBVbaVlZX5LvlEREQw\nw+uwWq0KCQmRJDmdTg0ePJjZ+WncuHF65plnNG/ePGbnp2XLliktLc33NfPzz6FDhzRlyhQlJSXp\n888/b1Hza/HvUV+JT5rVHzOs2Y4dO+R0OrVhwwYNHTrUt53Z1ezdd9/VV199pVmzZlWZF7Or3l/+\n8hf17t1bXbp0ueb3mV/1br31Vk2bNk3Dhw/X4cOHNWHCBFVWVvq+b/r8WnSouT1pwwgJCVF5ebmC\ng4N14sSJKpfFUdVnn32mtWvXav369bLb7cyulg4cOKCIiAjdcMMN6tGjhyorK9W2bVtmV0u7du3S\n4cOHtWvXLh0/flw2m40/e37o1KmTEhISJEk333yzOnbsqMLCwhYzvxZ96ZvbkzaM6Oho3xxzc3M1\naNCgZl6Rmc6dO6fly5fr9ddfV1hYmCRmV1t79+7Vhg0bJP34llVpaSmz88PKlSu1detW/fnPf9aY\nMWM0depU5ueHrKwsvfnmm5Ikt9utU6dOadSoUS1mfi3+zmQvvvii9u7d67s9affu3Zt7SUY7cOCA\nli1bpu+//16BgYHq1KmTXnytKYqYAAAArElEQVTxRaWlpenixYvq3Lmzli5dqqCgoOZeqnEyMzO1\nevVq/fKXv/RtS09P14IFC5hdDcrLyzV//nwdO3ZM5eXlmjZtmnr27Kk5c+YwOz+tXr1aN954owYO\nHMj8aun8+fN65plnVFJSooqKCk2bNk09evRoMfNr8aEGAKA1a9GXvgEAaO0INQAABiPUAAAYjFAD\nAGAwQg0AgMEINQAABiPUAAAYjFADAGCw/wdkB5RjykY3PgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "XtYZ7114n3b-" + }, + "cell_type": "markdown", + "source": [ + "## Accessing Data\n", + "\n", + "You can access `DataFrame` data using familiar Python dict/list operations:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "_TFm7-looBFF", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 102 + }, + "outputId": "19f05fbe-d5ed-48ae-cdda-b16cac57a725" + }, + "cell_type": "code", + "source": [ + "cities = pd.DataFrame({ 'City name': city_names, 'Population': population })\n", + "print(type(cities['City name']))\n", + "cities['City name']" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 San Francisco\n", + "1 San Jose\n", + "2 Sacramento\n", + "Name: City name, dtype: object" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 7 + } + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "V5L6xacLoxyv", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + }, + "outputId": "1ea4d22c-eb5e-4df0-f3d2-31d2c55864f9" + }, + "cell_type": "code", + "source": [ + "print(type(cities['City name'][1]))\n", + "cities['City name'][1]" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'San Jose'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 8 + } + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "gcYX1tBPugZl", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 128 + }, + "outputId": "464e8fdb-b815-4988-a979-5d413d0083b3" + }, + "cell_type": "code", + "source": [ + "print(type(cities[0:2]))\n", + "cities[0:2]" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulation
0San Francisco852469
1San Jose1015785
\n", + "
" + ], + "text/plain": [ + " City name Population\n", + "0 San Francisco 852469\n", + "1 San Jose 1015785" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 9 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "65g1ZdGVjXsQ" + }, + "cell_type": "markdown", + "source": [ + "In addition, *pandas* provides an extremely rich API for advanced [indexing and selection](http://pandas.pydata.org/pandas-docs/stable/indexing.html) that is too extensive to be covered here." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "RM1iaD-ka3Y1" + }, + "cell_type": "markdown", + "source": [ + "## Manipulating Data\n", + "\n", + "You may apply Python's basic arithmetic operations to `Series`. For example:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "XWmyCFJ5bOv-", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 85 + }, + "outputId": "a3f7a54f-d54a-4dd4-ef3e-929a7f51bc2d" + }, + "cell_type": "code", + "source": [ + "population / 1000." + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 852.469\n", + "1 1015.785\n", + "2 485.199\n", + "dtype: float64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 10 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "TQzIVnbnmWGM" + }, + "cell_type": "markdown", + "source": [ + "[NumPy](http://www.numpy.org/) is a popular toolkit for scientific computing. *pandas* `Series` can be used as arguments to most NumPy functions:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "ko6pLK6JmkYP", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 85 + }, + "outputId": "8461bf89-b7c4-43a4-e5b6-38b8af0fcc3a" + }, + "cell_type": "code", + "source": [ + "import numpy as np\n", + "\n", + "np.log(population)" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 13.655892\n", + "1 13.831172\n", + "2 13.092314\n", + "dtype: float64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 11 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "xmxFuQmurr6d" + }, + "cell_type": "markdown", + "source": [ + "For more complex single-column transformations, you can use `Series.apply`. Like the Python [map function](https://docs.python.org/2/library/functions.html#map), \n", + "`Series.apply` accepts as an argument a [lambda function](https://docs.python.org/2/tutorial/controlflow.html#lambda-expressions), which is applied to each value.\n", + "\n", + "The example below creates a new `Series` that indicates whether `population` is over one million:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "Fc1DvPAbstjI", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 85 + }, + "outputId": "a515a586-99a4-4f07-e19c-48520a9a202e" + }, + "cell_type": "code", + "source": [ + "population.apply(lambda val: val > 1000000)" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 False\n", + "1 True\n", + "2 False\n", + "dtype: bool" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 12 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "ZeYYLoV9b9fB" + }, + "cell_type": "markdown", + "source": [ + "\n", + "Modifying `DataFrames` is also straightforward. For example, the following code adds two `Series` to an existing `DataFrame`:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "0gCEX99Hb8LR", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 142 + }, + "outputId": "b26e8730-6761-46db-d9bc-95724a28a2b4" + }, + "cell_type": "code", + "source": [ + "cities['Area square miles'] = pd.Series([46.87, 176.53, 97.92])\n", + "cities['Population density'] = cities['Population'] / cities['Area square miles']\n", + "cities" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulationArea square milesPopulation density
0San Francisco85246946.8718187.945381
1San Jose1015785176.535754.177760
2Sacramento48519997.924955.055147
\n", + "
" + ], + "text/plain": [ + " City name Population Area square miles Population density\n", + "0 San Francisco 852469 46.87 18187.945381\n", + "1 San Jose 1015785 176.53 5754.177760\n", + "2 Sacramento 485199 97.92 4955.055147" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 13 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "6qh63m-ayb-c" + }, + "cell_type": "markdown", + "source": [ + "## Exercise #1\n", + "\n", + "Modify the `cities` table by adding a new boolean column that is True if and only if *both* of the following are True:\n", + "\n", + " * The city is named after a saint.\n", + " * The city has an area greater than 50 square miles.\n", + "\n", + "**Note:** Boolean `Series` are combined using the bitwise, rather than the traditional boolean, operators. For example, when performing *logical and*, use `&` instead of `and`.\n", + "\n", + "**Hint:** \"San\" in Spanish means \"saint.\"" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "zCOn8ftSyddH", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 142 + }, + "outputId": "df6b1984-59d2-4b92-ca1e-a3b47957abb4" + }, + "cell_type": "code", + "source": [ + "# Your code here\n", + "cities['Has Saint name and area greater than 50sq.miles'] = (cities['Area square miles'] > 50) & cities['City name'].apply(lambda name: name.startswith('San'))\n", + "cities" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulationArea square milesPopulation densityHas Saint name and area greater than 50sq.miles
0San Francisco85246946.8718187.945381False
1San Jose1015785176.535754.177760True
2Sacramento48519997.924955.055147False
\n", + "
" + ], + "text/plain": [ + " City name Population Area square miles Population density \\\n", + "0 San Francisco 852469 46.87 18187.945381 \n", + "1 San Jose 1015785 176.53 5754.177760 \n", + "2 Sacramento 485199 97.92 4955.055147 \n", + "\n", + " Has Saint name and area greater than 50sq.miles \n", + "0 False \n", + "1 True \n", + "2 False " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 14 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "YHIWvc9Ms-Ll" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a solution." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "T5OlrqtdtCIb", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 142 + }, + "outputId": "17b8d2f1-f352-425a-828c-09b342a77143" + }, + "cell_type": "code", + "source": [ + "cities['Is wide and has saint name'] = (cities['Area square miles'] > 50) & cities['City name'].apply(lambda name: name.startswith('San'))\n", + "cities" + ], + "execution_count": 15, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulationArea square milesPopulation densityHas Saint name and area greater than 50sq.milesIs wide and has saint name
0San Francisco85246946.8718187.945381FalseFalse
1San Jose1015785176.535754.177760TrueTrue
2Sacramento48519997.924955.055147FalseFalse
\n", + "
" + ], + "text/plain": [ + " City name Population Area square miles Population density \\\n", + "0 San Francisco 852469 46.87 18187.945381 \n", + "1 San Jose 1015785 176.53 5754.177760 \n", + "2 Sacramento 485199 97.92 4955.055147 \n", + "\n", + " Has Saint name and area greater than 50sq.miles Is wide and has saint name \n", + "0 False False \n", + "1 True True \n", + "2 False False " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 15 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "f-xAOJeMiXFB" + }, + "cell_type": "markdown", + "source": [ + "## Indexes\n", + "Both `Series` and `DataFrame` objects also define an `index` property that assigns an identifier value to each `Series` item or `DataFrame` row. \n", + "\n", + "By default, at construction, *pandas* assigns index values that reflect the ordering of the source data. Once created, the index values are stable; that is, they do not change when data is reordered." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "2684gsWNinq9", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "0220cabf-8bd2-42aa-9b18-0b5d2dde1a17" + }, + "cell_type": "code", + "source": [ + "city_names.index" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "RangeIndex(start=0, stop=3, step=1)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 16 + } + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "F_qPe2TBjfWd", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "bde1ac55-1932-4321-9e74-1d1d57c5b89b" + }, + "cell_type": "code", + "source": [ + "cities.index" + ], + "execution_count": 17, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "RangeIndex(start=0, stop=3, step=1)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 17 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "hp2oWY9Slo_h" + }, + "cell_type": "markdown", + "source": [ + "Call `DataFrame.reindex` to manually reorder the rows. For example, the following has the same effect as sorting by city name:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "sN0zUzSAj-U1", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 142 + }, + "outputId": "8db86ccc-4d02-4b8f-891d-3a6908680ef0" + }, + "cell_type": "code", + "source": [ + "cities.reindex([2, 0, 1])" + ], + "execution_count": 18, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulationArea square milesPopulation densityHas Saint name and area greater than 50sq.milesIs wide and has saint name
2Sacramento48519997.924955.055147FalseFalse
0San Francisco85246946.8718187.945381FalseFalse
1San Jose1015785176.535754.177760TrueTrue
\n", + "
" + ], + "text/plain": [ + " City name Population Area square miles Population density \\\n", + "2 Sacramento 485199 97.92 4955.055147 \n", + "0 San Francisco 852469 46.87 18187.945381 \n", + "1 San Jose 1015785 176.53 5754.177760 \n", + "\n", + " Has Saint name and area greater than 50sq.miles Is wide and has saint name \n", + "2 False False \n", + "0 False False \n", + "1 True True " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 18 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "-GQFz8NZuS06" + }, + "cell_type": "markdown", + "source": [ + "Reindexing is a great way to shuffle (randomize) a `DataFrame`. In the example below, we take the index, which is array-like, and pass it to NumPy's `random.permutation` function, which shuffles its values in place. Calling `reindex` with this shuffled array causes the `DataFrame` rows to be shuffled in the same way.\n", + "Try running the following cell multiple times!" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "mF8GC0k8uYhz", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 142 + }, + "outputId": "a63e5a6a-5a7c-483e-bc01-a91d1e278bec" + }, + "cell_type": "code", + "source": [ + "cities.reindex(np.random.permutation(cities.index))" + ], + "execution_count": 19, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulationArea square milesPopulation densityHas Saint name and area greater than 50sq.milesIs wide and has saint name
1San Jose1015785176.535754.177760TrueTrue
2Sacramento48519997.924955.055147FalseFalse
0San Francisco85246946.8718187.945381FalseFalse
\n", + "
" + ], + "text/plain": [ + " City name Population Area square miles Population density \\\n", + "1 San Jose 1015785 176.53 5754.177760 \n", + "2 Sacramento 485199 97.92 4955.055147 \n", + "0 San Francisco 852469 46.87 18187.945381 \n", + "\n", + " Has Saint name and area greater than 50sq.miles Is wide and has saint name \n", + "1 True True \n", + "2 False False \n", + "0 False False " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 19 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "fSso35fQmGKb" + }, + "cell_type": "markdown", + "source": [ + "For more information, see the [Index documentation](http://pandas.pydata.org/pandas-docs/stable/indexing.html#index-objects)." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "8UngIdVhz8C0" + }, + "cell_type": "markdown", + "source": [ + "## Exercise #2\n", + "\n", + "The `reindex` method allows index values that are not in the original `DataFrame`'s index values. Try it and see what happens if you use such values! Why do you think this is allowed?" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "PN55GrDX0jzO", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 173 + }, + "outputId": "ffdf2462-a51b-4c0b-98a0-9e97e4bde564" + }, + "cell_type": "code", + "source": [ + "# Your code here\n", + "cities.reindex([0, 2, 4, 6])" + ], + "execution_count": 21, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulationArea square milesPopulation densityHas Saint name and area greater than 50sq.milesIs wide and has saint name
0San Francisco852469.046.8718187.945381FalseFalse
2Sacramento485199.097.924955.055147FalseFalse
4NaNNaNNaNNaNNaNNaN
6NaNNaNNaNNaNNaNNaN
\n", + "
" + ], + "text/plain": [ + " City name Population Area square miles Population density \\\n", + "0 San Francisco 852469.0 46.87 18187.945381 \n", + "2 Sacramento 485199.0 97.92 4955.055147 \n", + "4 NaN NaN NaN NaN \n", + "6 NaN NaN NaN NaN \n", + "\n", + " Has Saint name and area greater than 50sq.miles Is wide and has saint name \n", + "0 False False \n", + "2 False False \n", + "4 NaN NaN \n", + "6 NaN NaN " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 21 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "TJffr5_Jwqvd" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "8oSvi2QWwuDH" + }, + "cell_type": "markdown", + "source": [ + "If your `reindex` input array includes values not in the original `DataFrame` index values, `reindex` will add new rows for these \"missing\" indices and populate all corresponding columns with `NaN` values:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "yBdkucKCwy4x", + "colab": {} + }, + "cell_type": "code", + "source": [ + "cities.reindex([0, 4, 5, 2])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "2l82PhPbwz7g" + }, + "cell_type": "markdown", + "source": [ + "This behavior is desirable because indexes are often strings pulled from the actual data (see the [*pandas* reindex\n", + "documentation](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.reindex.html) for an example\n", + "in which the index values are browser names).\n", + "\n", + "In this case, allowing \"missing\" indices makes it easy to reindex using an external list, as you don't have to worry about\n", + "sanitizing the input." + ] + } + ] +} \ No newline at end of file From db072fe72120f9919e4478bb9f3a2bc0b83981da Mon Sep 17 00:00:00 2001 From: Amit Rai <42401957+ardev472@users.noreply.github.com> Date: Sun, 17 Feb 2019 19:00:29 +0530 Subject: [PATCH 02/11] Created using Colaboratory --- first_steps_with_tensor_flow.ipynb | 1706 ++++++++++++++++++++++++++++ 1 file changed, 1706 insertions(+) create mode 100644 first_steps_with_tensor_flow.ipynb diff --git a/first_steps_with_tensor_flow.ipynb b/first_steps_with_tensor_flow.ipynb new file mode 100644 index 0000000..ee8db42 --- /dev/null +++ b/first_steps_with_tensor_flow.ipynb @@ -0,0 +1,1706 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "first_steps_with_tensor_flow.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "ajVM7rkoYXeL", + "ci1ISxxrZ7v0" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "4f3CKqFUqL2-", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# First Steps with TensorFlow" + ] + }, + { + "metadata": { + "id": "Bd2Zkk1LE2Zr", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Learn fundamental TensorFlow concepts\n", + " * Use the `LinearRegressor` class in TensorFlow to predict median housing price, at the granularity of city blocks, based on one input feature\n", + " * Evaluate the accuracy of a model's predictions using Root Mean Squared Error (RMSE)\n", + " * Improve the accuracy of a model by tuning its hyperparameters" + ] + }, + { + "metadata": { + "id": "MxiIKhP4E2Zr", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The [data](https://developers.google.com/machine-learning/crash-course/california-housing-data-description) is based on 1990 census data from California." + ] + }, + { + "metadata": { + "id": "6TjLjL9IU80G", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "In this first cell, we'll load the necessary libraries." + ] + }, + { + "metadata": { + "id": "rVFf5asKE2Zt", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ipRyUHjhU80Q", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, we'll load our data set." + ] + }, + { + "metadata": { + "id": "9ivCDWnwE2Zx", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "vVk_qlG6U80j", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "We'll randomize the data, just to be sure not to get any pathological ordering effects that might harm the performance of Stochastic Gradient Descent. Additionally, we'll scale `median_house_value` to be in units of thousands, so it can be learned a little more easily with learning rates in a range that we usually use." + ] + }, + { + "metadata": { + "id": "r0eVyguIU80m", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 419 + }, + "outputId": "4073261a-79aa-4c3a-a441-438a80eae9f5" + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))\n", + "california_housing_dataframe[\"median_house_value\"] /= 1000.0\n", + "california_housing_dataframe" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
longitudelatitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomemedian_house_value
12308-121.538.69.0745.0175.0297.0160.03.477.5
6740-118.333.943.02021.0379.01051.0352.03.4129.9
11625-121.338.629.01276.0225.0600.0223.04.1109.1
9002-118.934.224.03689.0585.01898.0581.05.9239.4
11890-121.438.722.02878.0599.01362.0541.02.896.5
..............................
10009-119.836.98.03468.0675.01604.0626.04.2128.3
8615-118.534.318.03674.0577.01590.0550.08.2308.4
6757-118.333.811.02274.0617.01897.0622.03.5162.9
6839-118.334.052.01718.0354.01026.0312.02.0128.0
376-116.933.913.07804.01594.03297.01469.02.195.6
\n", + "

17000 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " longitude latitude housing_median_age total_rooms total_bedrooms \\\n", + "12308 -121.5 38.6 9.0 745.0 175.0 \n", + "6740 -118.3 33.9 43.0 2021.0 379.0 \n", + "11625 -121.3 38.6 29.0 1276.0 225.0 \n", + "9002 -118.9 34.2 24.0 3689.0 585.0 \n", + "11890 -121.4 38.7 22.0 2878.0 599.0 \n", + "... ... ... ... ... ... \n", + "10009 -119.8 36.9 8.0 3468.0 675.0 \n", + "8615 -118.5 34.3 18.0 3674.0 577.0 \n", + "6757 -118.3 33.8 11.0 2274.0 617.0 \n", + "6839 -118.3 34.0 52.0 1718.0 354.0 \n", + "376 -116.9 33.9 13.0 7804.0 1594.0 \n", + "\n", + " population households median_income median_house_value \n", + "12308 297.0 160.0 3.4 77.5 \n", + "6740 1051.0 352.0 3.4 129.9 \n", + "11625 600.0 223.0 4.1 109.1 \n", + "9002 1898.0 581.0 5.9 239.4 \n", + "11890 1362.0 541.0 2.8 96.5 \n", + "... ... ... ... ... \n", + "10009 1604.0 626.0 4.2 128.3 \n", + "8615 1590.0 550.0 8.2 308.4 \n", + "6757 1897.0 622.0 3.5 162.9 \n", + "6839 1026.0 312.0 2.0 128.0 \n", + "376 3297.0 1469.0 2.1 95.6 \n", + "\n", + "[17000 rows x 9 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 3 + } + ] + }, + { + "metadata": { + "id": "HzzlSs3PtTmt", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Examine the Data\n", + "\n", + "It's a good idea to get to know your data a little bit before you work with it.\n", + "\n", + "We'll print out a quick summary of a few useful statistics on each column: count of examples, mean, standard deviation, max, min, and various quantiles." + ] + }, + { + "metadata": { + "id": "gzb10yoVrydW", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "outputId": "ea44a482-2fc2-4d94-ca74-8fee8ff18320" + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe.describe()" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
longitudelatitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomemedian_house_value
count17000.017000.017000.017000.017000.017000.017000.017000.017000.0
mean-119.635.628.62643.7539.41429.6501.23.9207.3
std2.02.112.62179.9421.51147.9384.51.9116.0
min-124.332.51.02.01.03.01.00.515.0
25%-121.833.918.01462.0297.0790.0282.02.6119.4
50%-118.534.229.02127.0434.01167.0409.03.5180.4
75%-118.037.737.03151.2648.21721.0605.24.8265.0
max-114.342.052.037937.06445.035682.06082.015.0500.0
\n", + "
" + ], + "text/plain": [ + " longitude latitude housing_median_age total_rooms total_bedrooms \\\n", + "count 17000.0 17000.0 17000.0 17000.0 17000.0 \n", + "mean -119.6 35.6 28.6 2643.7 539.4 \n", + "std 2.0 2.1 12.6 2179.9 421.5 \n", + "min -124.3 32.5 1.0 2.0 1.0 \n", + "25% -121.8 33.9 18.0 1462.0 297.0 \n", + "50% -118.5 34.2 29.0 2127.0 434.0 \n", + "75% -118.0 37.7 37.0 3151.2 648.2 \n", + "max -114.3 42.0 52.0 37937.0 6445.0 \n", + "\n", + " population households median_income median_house_value \n", + "count 17000.0 17000.0 17000.0 17000.0 \n", + "mean 1429.6 501.2 3.9 207.3 \n", + "std 1147.9 384.5 1.9 116.0 \n", + "min 3.0 1.0 0.5 15.0 \n", + "25% 790.0 282.0 2.6 119.4 \n", + "50% 1167.0 409.0 3.5 180.4 \n", + "75% 1721.0 605.2 4.8 265.0 \n", + "max 35682.0 6082.0 15.0 500.0 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 4 + } + ] + }, + { + "metadata": { + "id": "Lr6wYl2bt2Ep", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Build the First Model\n", + "\n", + "In this exercise, we'll try to predict `median_house_value`, which will be our label (sometimes also called a target). We'll use `total_rooms` as our input feature.\n", + "\n", + "**NOTE:** Our data is at the city block level, so this feature represents the total number of rooms in that block.\n", + "\n", + "To train our model, we'll use the [LinearRegressor](https://www.tensorflow.org/api_docs/python/tf/estimator/LinearRegressor) interface provided by the TensorFlow [Estimator](https://www.tensorflow.org/get_started/estimator) API. This API takes care of a lot of the low-level model plumbing, and exposes convenient methods for performing model training, evaluation, and inference." + ] + }, + { + "metadata": { + "id": "0cpcsieFhsNI", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Step 1: Define Features and Configure Feature Columns" + ] + }, + { + "metadata": { + "id": "EL8-9d4ZJNR7", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "In order to import our training data into TensorFlow, we need to specify what type of data each feature contains. There are two main types of data we'll use in this and future exercises:\n", + "\n", + "* **Categorical Data**: Data that is textual. In this exercise, our housing data set does not contain any categorical features, but examples you might see would be the home style, the words in a real-estate ad.\n", + "\n", + "* **Numerical Data**: Data that is a number (integer or float) and that you want to treat as a number. As we will discuss more later sometimes you might want to treat numerical data (e.g., a postal code) as if it were categorical.\n", + "\n", + "In TensorFlow, we indicate a feature's data type using a construct called a **feature column**. Feature columns store only a description of the feature data; they do not contain the feature data itself.\n", + "\n", + "To start, we're going to use just one numeric input feature, `total_rooms`. The following code pulls the `total_rooms` data from our `california_housing_dataframe` and defines the feature column using `numeric_column`, which specifies its data is numeric:" + ] + }, + { + "metadata": { + "id": "rhEbFCZ86cDZ", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Define the input feature: total_rooms.\n", + "my_feature = california_housing_dataframe[[\"total_rooms\"]]\n", + "\n", + "# Configure a numeric feature column for total_rooms.\n", + "feature_columns = [tf.feature_column.numeric_column(\"total_rooms\")]" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "K_3S8teX7Rd2", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**NOTE:** The shape of our `total_rooms` data is a one-dimensional array (a list of the total number of rooms for each block). This is the default shape for `numeric_column`, so we don't have to pass it as an argument." + ] + }, + { + "metadata": { + "id": "UMl3qrU5MGV6", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Step 2: Define the Target" + ] + }, + { + "metadata": { + "id": "cw4nrfcB7kyk", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, we'll define our target, which is `median_house_value`. Again, we can pull it from our `california_housing_dataframe`:" + ] + }, + { + "metadata": { + "id": "l1NvvNkH8Kbt", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Define the label.\n", + "targets = california_housing_dataframe[\"median_house_value\"]" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "4M-rTFHL2UkA", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Step 3: Configure the LinearRegressor" + ] + }, + { + "metadata": { + "id": "fUfGQUNp7jdL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, we'll configure a linear regression model using LinearRegressor. We'll train this model using the `GradientDescentOptimizer`, which implements Mini-Batch Stochastic Gradient Descent (SGD). The `learning_rate` argument controls the size of the gradient step.\n", + "\n", + "**NOTE:** To be safe, we also apply [gradient clipping](https://developers.google.com/machine-learning/glossary/#gradient_clipping) to our optimizer via `clip_gradients_by_norm`. Gradient clipping ensures the magnitude of the gradients do not become too large during training, which can cause gradient descent to fail. " + ] + }, + { + "metadata": { + "id": "ubhtW-NGU802", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 136 + }, + "outputId": "a2e55909-2d0d-4f74-e108-2637e6b98b25" + }, + "cell_type": "code", + "source": [ + "# Use gradient descent as the optimizer for training the model.\n", + "my_optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.0000001)\n", + "my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + "\n", + "# Configure the linear regression model with our feature columns and optimizer.\n", + "# Set a learning rate of 0.0000001 for Gradient Descent.\n", + "linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=feature_columns,\n", + " optimizer=my_optimizer\n", + ")" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "-0IztwdK2f3F", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Step 4: Define the Input Function" + ] + }, + { + "metadata": { + "id": "S5M5j6xSCHxx", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "To import our California housing data into our `LinearRegressor`, we need to define an input function, which instructs TensorFlow how to preprocess\n", + "the data, as well as how to batch, shuffle, and repeat it during model training.\n", + "\n", + "First, we'll convert our *pandas* feature data into a dict of NumPy arrays. We can then use the TensorFlow [Dataset API](https://www.tensorflow.org/programmers_guide/datasets) to construct a dataset object from our data, and then break\n", + "our data into batches of `batch_size`, to be repeated for the specified number of epochs (num_epochs). \n", + "\n", + "**NOTE:** When the default value of `num_epochs=None` is passed to `repeat()`, the input data will be repeated indefinitely.\n", + "\n", + "Next, if `shuffle` is set to `True`, we'll shuffle the data so that it's passed to the model randomly during training. The `buffer_size` argument specifies\n", + "the size of the dataset from which `shuffle` will randomly sample.\n", + "\n", + "Finally, our input function constructs an iterator for the dataset and returns the next batch of data to the LinearRegressor." + ] + }, + { + "metadata": { + "id": "RKZ9zNcHJtwc", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model of one feature.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(buffer_size=10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "wwa6UeA1V5F_", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**NOTE:** We'll continue to use this same input function in later exercises. For more\n", + "detailed documentation of input functions and the `Dataset` API, see the [TensorFlow Programmer's Guide](https://www.tensorflow.org/programmers_guide/datasets)." + ] + }, + { + "metadata": { + "id": "4YS50CQb2ooO", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Step 5: Train the Model" + ] + }, + { + "metadata": { + "id": "yP92XkzhU803", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "We can now call `train()` on our `linear_regressor` to train the model. We'll wrap `my_input_fn` in a `lambda`\n", + "so we can pass in `my_feature` and `target` as arguments (see this [TensorFlow input function tutorial](https://www.tensorflow.org/get_started/input_fn#passing_input_fn_data_to_your_model) for more details), and to start, we'll\n", + "train for 100 steps." + ] + }, + { + "metadata": { + "id": "5M-Kt6w8U803", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "_ = linear_regressor.train(\n", + " input_fn = lambda:my_input_fn(my_feature, targets),\n", + " steps=100\n", + ")" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "7Nwxqxlx2sOv", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Step 6: Evaluate the Model" + ] + }, + { + "metadata": { + "id": "KoDaF2dlJQG5", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's make predictions on that training data, to see how well our model fit it during training.\n", + "\n", + "**NOTE:** Training error measures how well your model fits the training data, but it **_does not_** measure how well your model **_generalizes to new data_**. In later exercises, you'll explore how to split your data to evaluate your model's ability to generalize.\n" + ] + }, + { + "metadata": { + "id": "pDIxp6vcU809", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + }, + "outputId": "1a91e709-1fed-4f6c-efe5-2c95c9680a3d" + }, + "cell_type": "code", + "source": [ + "# Create an input function for predictions.\n", + "# Note: Since we're making just one prediction for each example, we don't \n", + "# need to repeat or shuffle the data here.\n", + "prediction_input_fn =lambda: my_input_fn(my_feature, targets, num_epochs=1, shuffle=False)\n", + "\n", + "# Call predict() on the linear_regressor to make predictions.\n", + "predictions = linear_regressor.predict(input_fn=prediction_input_fn)\n", + "\n", + "# Format predictions as a NumPy array, so we can calculate error metrics.\n", + "predictions = np.array([item['predictions'][0] for item in predictions])\n", + "\n", + "# Print Mean Squared Error and Root Mean Squared Error.\n", + "mean_squared_error = metrics.mean_squared_error(predictions, targets)\n", + "root_mean_squared_error = math.sqrt(mean_squared_error)\n", + "print(\"Mean Squared Error (on training data): %0.3f\" % mean_squared_error)\n", + "print(\"Root Mean Squared Error (on training data): %0.3f\" % root_mean_squared_error)" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Mean Squared Error (on training data): 56367.025\n", + "Root Mean Squared Error (on training data): 237.417\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "AKWstXXPzOVz", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Is this a good model? How would you judge how large this error is?\n", + "\n", + "Mean Squared Error (MSE) can be hard to interpret, so we often look at Root Mean Squared Error (RMSE)\n", + "instead. A nice property of RMSE is that it can be interpreted on the same scale as the original targets.\n", + "\n", + "Let's compare the RMSE to the difference of the min and max of our targets:" + ] + }, + { + "metadata": { + "id": "7UwqGbbxP53O", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 85 + }, + "outputId": "e85aa68d-0007-415e-e1d3-25a385cbf334" + }, + "cell_type": "code", + "source": [ + "min_house_value = california_housing_dataframe[\"median_house_value\"].min()\n", + "max_house_value = california_housing_dataframe[\"median_house_value\"].max()\n", + "min_max_difference = max_house_value - min_house_value\n", + "\n", + "print(\"Min. Median House Value: %0.3f\" % min_house_value)\n", + "print(\"Max. Median House Value: %0.3f\" % max_house_value)\n", + "print(\"Difference between Min. and Max.: %0.3f\" % min_max_difference)\n", + "print(\"Root Mean Squared Error: %0.3f\" % root_mean_squared_error)" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Min. Median House Value: 14.999\n", + "Max. Median House Value: 500.001\n", + "Difference between Min. and Max.: 485.002\n", + "Root Mean Squared Error: 237.417\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "JigJr0C7Pzit", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Our error spans nearly half the range of the target values. Can we do better?\n", + "\n", + "This is the question that nags at every model developer. Let's develop some basic strategies to reduce model error.\n", + "\n", + "The first thing we can do is take a look at how well our predictions match our targets, in terms of overall summary statistics." + ] + }, + { + "metadata": { + "id": "941nclxbzqGH", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "outputId": "386e60b3-5a7c-4cd1-dfc4-8f38a0d036e0" + }, + "cell_type": "code", + "source": [ + "calibration_data = pd.DataFrame()\n", + "calibration_data[\"predictions\"] = pd.Series(predictions)\n", + "calibration_data[\"targets\"] = pd.Series(targets)\n", + "calibration_data.describe()" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predictionstargets
count17000.017000.0
mean0.1207.3
std0.1116.0
min0.015.0
25%0.1119.4
50%0.1180.4
75%0.2265.0
max1.9500.0
\n", + "
" + ], + "text/plain": [ + " predictions targets\n", + "count 17000.0 17000.0\n", + "mean 0.1 207.3\n", + "std 0.1 116.0\n", + "min 0.0 15.0\n", + "25% 0.1 119.4\n", + "50% 0.1 180.4\n", + "75% 0.2 265.0\n", + "max 1.9 500.0" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 12 + } + ] + }, + { + "metadata": { + "id": "E2-bf8Hq36y8", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Okay, maybe this information is helpful. How does the mean value compare to the model's RMSE? How about the various quantiles?\n", + "\n", + "We can also visualize the data and the line we've learned. Recall that linear regression on a single feature can be drawn as a line mapping input *x* to output *y*.\n", + "\n", + "First, we'll get a uniform random sample of the data so we can make a readable scatter plot." + ] + }, + { + "metadata": { + "id": "SGRIi3mAU81H", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "sample = california_housing_dataframe.sample(n=300)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "N-JwuJBKU81J", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, we'll plot the line we've learned, drawing from the model's bias term and feature weight, together with the scatter plot. The line will show up red." + ] + }, + { + "metadata": { + "id": "7G12E76-339G", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 361 + }, + "outputId": "48e6a03f-941f-4c0b-d161-8b328dc01bba" + }, + "cell_type": "code", + "source": [ + "# Get the min and max total_rooms values.\n", + "x_0 = sample[\"total_rooms\"].min()\n", + "x_1 = sample[\"total_rooms\"].max()\n", + "\n", + "# Retrieve the final weight and bias generated during training.\n", + "weight = linear_regressor.get_variable_value('linear/linear_model/total_rooms/weights')[0]\n", + "bias = linear_regressor.get_variable_value('linear/linear_model/bias_weights')\n", + "\n", + "# Get the predicted median_house_values for the min and max total_rooms values.\n", + "y_0 = weight * x_0 + bias \n", + "y_1 = weight * x_1 + bias\n", + "\n", + "# Plot our regression line from (x_0, y_0) to (x_1, y_1).\n", + "plt.plot([x_0, x_1], [y_0, y_1], c='r')\n", + "\n", + "# Label the graph axes.\n", + "plt.ylabel(\"median_house_value\")\n", + "plt.xlabel(\"total_rooms\")\n", + "\n", + "# Plot a scatter plot from our data sample.\n", + "plt.scatter(sample[\"total_rooms\"], sample[\"median_house_value\"])\n", + "\n", + "# Display graph.\n", + "plt.show()" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAFYCAYAAACoFn5YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXt8FPW9///a+yYkIbdNISASwyVV\nIFyichERCN5aNB5ulkKrWKoHtHjqOWotVmhpvXusrbb9oQiinEZDf5zYU0URsIiAQiCAFkJCLRgu\n2SSbbEL2lt35/oG7bHZnZmd2Z3Zmdt/Px8OHZHd25jOfnf28Pu/L5/3RMQzDgCAIgiAITaJXugEE\nQRAEQcQPCTlBEARBaBgScoIgCILQMCTkBEEQBKFhSMgJgiAIQsOQkBMEQRCEhjEq3YB4sNu7ZDt3\nXl4mHI4e2c6falB/iYf6TBzUX+KhPhOHFvrLZsvmfI8s8giMRoPSTdAU1F/ioT4TB/WXeKjPxKH1\n/iIhJwiCIAgNQ0JOEARBEBqGhJwgCIIgNAwJOUEQBEFoGBJygiAIgtAwJOQEQRAEoWFIyAmCIAhC\nw5CQs+Dx+dHi6IHH5+d9Tc7rSX3urh4vvrZ34+uWLtmvI9e9sF2P7TpS96dU5wuex+3tlaRdQq4l\n9/dAEITyyFbZbd++fVixYgWGDx8OABgxYgR+9KMf4eGHH4bf74fNZsOzzz4Ls9mM2tpabNiwAXq9\nHvPnz8e8efPkahYv/kAAa7ccwe76ZrQ7PcjPsaB8eCF0AA6daA29Nm6EDQtmDINBn9g8yB8IoHp7\nIw422GU9d5vT0+c9q1mPyaMH4nszh8d1HY/Pj85uD/pnWeD3B7BpW0PoOnodEGCA/Gwzxo8skuRe\nwuHrMwCS9qdU30/keWx5GRhTWiB530jZZoIgtIOOYRhGjhPv27cPb731Fl566aXQaz/72c9w/fXX\n45ZbbsELL7yAAQMGoKqqCnfccQdqampgMpkwd+5cvPnmm8jNzeU8t1wlWjdta8C2/V8LOrayYjAW\nVo6Q5XpynjuR67CJRP8sC06ecUp2jVjw9RkASftTqu9Hzu9ZyWslC5stW9ayzKkI9Zk4tNBfqinR\num/fPsycORMAMH36dOzZswf19fUYPXo0srOzYbVaMX78eNTV1SWzWQAuWpkHG+yCjz/Y0JqQ25Lv\nenKeO5y643ZR16ne3oht+79Gm9MDBkCb08Mr4kDi9xIO333VHbdL2p9SfT9yfs9KXosgCPUg66Yp\njY2NuO+++9DZ2Yn7778fLpcLZrMZAFBQUAC73Y7W1lbk5+eHPpOfnw+7nV+E8vIyJa+Ne7b1Atq7\nPLEP/AZHlxsGswm2wn6SX0/Oc/e9jkfwddzeXhxuahPdlkTvJRz+PuO+33jaINX3I+f3rOS1kg2f\nNUKwQ30mDi33l2xCPnToUNx///245ZZbcPr0afzgBz+A33/JIuDy6Avx9MuxS43f50d+tiUqnsxF\nXrYVfq8vbncM3/XkPHff61gEX6fF0QO7wyW6LYneSzj8fWaBTgfJ+lOq70fO71nJayUTLbg91Qb1\nmTi00F+KuNa/9a1v4dZbb4VOp8OQIUNQWFiIzs5OuN1uAMD58+dRVFSEoqIitLa2hj7X0tKCoqIi\nuZrFicVkwLgRNsHHjxtRCIspfq8A3/XkPHc440faBF+nf5YF+TkW0W1J9F7C4buv8SNtkvanVN+P\nnN+zktciCEI9GFatWrVKjhPX1tbik08+wfjx42G32/HGG29g1qxZ8Hg8KCsrw+uvv47x48fj+uuv\nx4svvoiqqir09vbixRdfxIMPPgiLhVs0enq8cjQZVw7Ng06vR2uHCx5vL/JzrJg06lu4ojgHzgu+\n0GtTRg/AghnDoNfpEr6ey9OLzm6vjOf2wOXpGxu1mg24fmwx7pw5XPB1jAY9WjvdrDHxy4qyYDLo\n4PL4odcBDID8bAumjBkoyb2Ew9dno0ryJe1Pqb6fyPPY8jIwaZQ037NcbVYT/fpZZPvNpyrUZ+LQ\nQn/168etibJlrXd3d+M///M/4XQ64fP5cP/99+Pb3/42HnnkEXg8HhQXF+PJJ5+EyWTC+++/j9de\new06nQ6LFi3CbbfdxntuOV0gNls2vj7TEVpeFbRiwpdcSW3ZJOPcGRYjOi94AYaBLS8zrutcylpv\nhaPLjbxsK6aUF2P2pCHo9TOh67g8vbLcSzh8fSZ1f0p1vuB5SocWoKtTfJginmvJ/T0kAy24PdUG\n9Zk4tNBffK512YRcTuQWcrV/oUoTLhKDi3Opv0RCz5g4qL/EQ30mDi30F5+Qy5q1TqQmFpMBRXmZ\nSjeDIAiCAJVoJQiCIAhNQ0JOEARBEBqGhJwgCIIgNAwJOUEQBEFoGBJygiAIgtAwJOQEQRAEoWFI\nyAmCIAhCw5CQEwRBEISGISEnCIIgCA1DQk4QBEEQGoaEnCAIgiA0DAk5QRAEQWgYEnKCIAiC0DAk\n5BrC4/OjxdEDj8+vdFMIgiAIlUDbmGoAfyCA6u2NONhgR7vTg/wcC8aNsGHBjGEw6GkuRhAEkc6Q\nkGuA6u2N2Lb/69DfbU5P6O+FlSOUahZBEAShAsicUzkenx8HG+ys7x1saCU3O0EQRJpDQq5yOrs9\naHd6WN9zdLnR2c3+XhCKqxMEQaQ25FpXOf2zLMjPsaCNRczzsq3on2Vh/RzF1QmCINIDGtFVjsVk\nwLgRNtb3xo0ohMVkYH0vGFdvc3rA4FJcvXp7o4ytJQiCIJINCbkGWDBjGCorBqMgxwq9DijIsaKy\nYjAWzBjGeny6x9UpnEAQRDpBrnUNYNDrsbByBOZMK0Vntwf9syycljggLK5elJcpV3MVg8IJRLLw\n+PyCfosEkQxIyDWExWQQJMDxxtW1Di3TI+SGJouEGqEnLwWJN66uZdI9nEAkB8o9IdQICXmKIjau\nrnUSXaZHELGgySKhVsi1nqKIjatrnXQNJxDJI11zTwj1QxZ5ihOMq6eyiAPpGU4gkktwssgGTRYJ\nJSEhJ1KGdAsnEMmFJouEWiHXOpEyJDOcQMuP0pPgpPBgQyscXW7kZVsxbkQhTRYJRSEhJ1IOocv0\n4oGWH6U36ZZ7QmgDEnIiCrI2uaG16gQg72SRIMRCQk6EIGuTn1jLj+ZMK6WJD0EQSYdGZyKE2otd\nKF1DndaqEwShRsgiJwCo29pUi6eA1qoTBKFGyCInAKjb2lSLp4CWHxEEoUZIyEWitHtXLpJZ7EJM\nH6qtLCatVScIQm2Qa10ganHvykXQ2gzPyA4ilbUZTx+qrSwmLT8iCEJtkJALJB2WHcld7CKePlRr\nXJqWHxEEoRZIyAWg5kQwKZHT2oy3D5PhKSAIgtAyJOQCUJt7V27ksDYT6UMqi0kQBMENCbkA1Ore\nVTOR1eES6UOKSxMEQXBDQi4Acu8Khy+hLdE+pLg0QRBENCTkAiH3rjD4EtqoDwmCIKSHhFwg5N6N\njZCENupDgiAIaZF1AbTb7UZlZSX+8pe/4OzZs1i8eDEWLlyIFStWwOv1AgBqa2sxZ84czJs3D++8\n846czZGEoHuXBCgaodXhqA8JgiCkQ1Yh/8Mf/oD+/fsDAF566SUsXLgQmzZtwuWXX46amhr09PTg\n5Zdfxvr167Fx40Zs2LABHR0dcjaJkJFkVocjCIIgLiKbkDc1NaGxsRE33HADAGDfvn2YOXMmAGD6\n9OnYs2cP6uvrMXr0aGRnZ8NqtWL8+PGoq6uTq0mEzFAtcoIgiOQjm5A//fTTePTRR0N/u1wumM1m\nAEBBQQHsdjtaW1uRn58fOiY/Px92O3uMldAGVIucSHdSdT8GQr3Ikuy2ZcsWjB07Fpdddhnr+wzD\niHo9kry8TBiN8ll3Nlu2bOdORSL7a8X3JsDt7YXD6UFejgVWM+VURkLPmDi00F9+fwDr3v0Ce4+e\nhb3DBVtuBiaOGogls6+CwZD8/Ri00GdqQsv9JcsIu3PnTpw+fRo7d+7EuXPnYDabkZmZCbfbDavV\nivPnz6OoqAhFRUVobW0Nfa6lpQVjx46NeX6Ho0eOZgO4+GXa7V2ynT/V4OsvI4CuTheoN/tCz5g4\ntNJfm7Y19Fl62eJwoXbXSfS4vEnfj0ErfaYWtNBffBMNWaaJL774IjZv3oy3334b8+bNw7JlyzB5\n8mRs3boVAPDBBx9g6tSpKC8vx5EjR+B0OnHhwgXU1dWhoqJCjiYRBEHIhtq22yXSi6T5PB944AE8\n8sgjqK6uRnFxMaqqqmAymfDQQw/hnnvugU6nw/Lly5GdrV33BkEQ6Um67cdAqAvZhfyBBx4I/fv1\n11+Pev/mm2/GzTffLHczFCGy3jhBEKkJ7cdAKAllIckAX71xgz75SS8EkSzSdfJK+zEQSkJCLgN8\n9caTnfRCEMmAJq+0lwChHCTkEiOk3jjNzolUgyavtB8DoRzpMVVOIkLrjRNEqkAZ232hvQSIZENC\nLjHpXm+cqlqlHzR5JQhlIde6xKRr0gvFSNMXytgmCGWhEVYG0rHe+KZtJ7Bt/9doc3rA4FKMtHp7\no9JNI2SGNsshCGUhi1wG0inpxe8PYOPWY/j40BnW9ynBLz2gjG2CUA4SchkJJr2kMuve/QI7DrKL\nOEBVrdIFpSav6bpunSDCISEn4sbj82Pv0bO8x1CMNL1I1uSVcjII4hIk5ETcdHZ7YO9w8R5DMVJC\nDmjdOkFcgqauRNz0z7LAlpvB+p5eB0wfPyglY6S0xE5ZaN06QfSFLHIibiwmAyaOGojaXSej3ps2\nthiLbxypQKvkQ4g7l2K28kM7jRFEX0jICV5iCdOS2Vehx+WVNFtZrWLI585dMGMYxWyTBK1bJ4i+\nkJATrAhNJjIYpMtWVnMCUyx3rj/AYEddc+g1itnKR7oWXSIILshUIFgJWp9CC7xIUV9a7DWTCZ87\nt93pxqGGVtb3KGYrD+lYdIkguCCLnIgi2Tu4eXx+2B09qt41js+d2z/LjA6OeuIUs5WHdCq6RBCx\nICEnokhWMlG4K51NIOW4ZrzwunOHF+JwUxvFbBUgHYouEUQsyLWeZnAtnQp/PVk7uIW70vlQgxj6\nAwEEGAZW86WfjNVswMwJg7Bw1giqNU4QhGKQRZ4mcCWSzb3hCtTsPBn1evnwQmw/0Bx1HqmEic99\nH0nZkNyEr5co1dsbo/rD7fVDp9PBoNdTrXGCIBSDhDxN4Fo6dfxUB063dEe9PnPCIFRWDBYkTPEs\nF+Nz3wOADoDFbADAYPfRczh2ypH0DPbgfWVYjILi9xSzJQhCCUjI0wA+67fZ3s36+qETbViz9Fpe\nYfIHAli75Qh21zeLXi7GlzyWn23BiMv6Y++XLaHXkrmcK9J7cTGZzct6bGT8nmK2BEEkG4qRpwF8\n1m+AYf9MUKD4lpVVb29E7a6TcS0X49vDunx4IU583cn6XjKWc0Uug+MScUAd8XuCINIbEvI0gC95\nTa9j/0wsgZKi3jXXWuDKCYNjZs3LhZjYPUDJbARBKA+51tMAvqVTg2xZfWLkQWIJlBRL1LjWAnt8\nfsVKcMaK3edlWdB5wZOSyWxqLY1LEAQ/JORpAldW9aWsdXHZ1lLWu46MKytZgpPvvgpyLPjFXVfD\n5elNKbFTc2lcgiBiI0rIGxoacOrUKVRWVsLpdCInJ0eudhESw1cJK55sa7nFVqnlXHz3dcHtw7uf\nfqUqgZPCiqa9vQlC2wgW8vXr1+Ovf/0rvF4vKisr8corryAnJwfLli2Ts32aR23uSq6s6niyrRfM\nGIbMDDN2158RJbZC+kTJEpzB9n9y+Czc3kuxfrc3gG37v0aPuxeLbxqp6PcplRWd7HK8Qtukpt8M\nQagdwUL+17/+FW+//TZ++MMfAgAefvhh3HnnnSTkHKSDu9Kg12Np1Wjccs1lggZeoX0SOZAnezmX\nQa/HnGmlqDve0kfIg3x69ByOK7CuPRyprGg17e3N9XzcP39cUq5PEFpFsJD369cP+rABS6/X9/mb\n6Es6uSuFim2sPlHT5Kez2wNHF/eyMyW/TymtaDXt7c31fGRmmFE1ZWjS2kEQWkPw6DhkyBD8/ve/\nh9PpxAcffIAHH3wQpaWlcrZNs0ixNCvVENInatrGlG/JXjhKfJ9CrGih8K3nT+bSOr7nY+/Rs2n5\nmyEIoQgW8l/84hfIyMjAt771LdTW1qK8vBxPPPGEnG3TLFIOtKlCrD6xd7hUNfnhE7hwlPg+pd7U\nRg17e/M9H60drrT8zRCEUAS71g0GA+6++27cfffdcrYnJVCTu1ItxOoTMIxqYrVBgkJWd9yO9i72\ntinxfUq9YkANe3vzPR+FuRlp+ZshCKEItsivvPJKXHXVVaH/Ro0ahUmTJsnZNs2iFnelmojVJ7a8\nzKRsnSqGoMD9+scTMWXUANZjlPo+5bCi+crxyg3f8zFx1MC0/M0QhFAEW+THjh0L/dvr9WLPnj04\nfvy4LI1KBWhby2j4+sSg1ytWBCYWFpMBd91ahgyrUTXfpxqsaKnhej6WzL4K7e0XFG4dQagXHcMw\nHNtmxOaHP/whNmzYIGV7BGG3d8l2bpstW9Lzp/qa2Hj6i6tPLmWtswt9oueXAinOLfUzlmpE9jH1\nl3ioz8Shhf6y2bI53xNskdfU1PT5+9y5czh//nz8rUoTaFvLaLj6JFErMxnL1+j7lB/qY4IQh2Ah\nP3DgQJ+/s7Ky8OKLL0reIIKIdyBPp7X7BEEQQQQL+ZNPPilnOwgiIdRYapQgCCIZxBTyadOmQafj\n2LQawM6dO6VsD6Ex3N5etDh6FM8BUFOpUYIgiGQSU8g3bdrE+Z7T6ZS0MYR2CMajDze1we5wKV5L\nPhXW7qslMVIt7SAIQhgxhXzQoEGhfzc2NsLhcAC4uARtzZo1eO+99+RrHSE5Ug3SaopH+wMBbP64\nCRfcPtb3lV6+Fgu11JhXSzsIghCH4Bj5mjVrsHv3brS2tmLIkCE4ffo0lixZImfbCAmRcpBWWzw6\nclIRxGo24LoxA1W/dl8tkyK1tIMgCHEIHsGPHDmC9957D2VlZdi8eTPWrVsHl8slZ9sICZFyQxI1\n1ZLnm1RkWoyYM61U1dakWjbYUUs7CIIQj+ARzmw2AwB8Ph8YhsGoUaNQV1cnW8MI6ZB6kJZ6045E\n4JtUdHR7VL/ZhlomRWppB0EQ4hEs5CUlJXjrrbdQUVGBu+++G6tXr0ZXl7or4RAXkXqQVlMteTVN\nKuJBLe1XSzsIghCP4Bj5L3/5S3R0dCAnJwd//etf0d7ejnvvvZfzeJfLhUcffRRtbW3weDxYtmwZ\nysrK8PDDD8Pv98Nms+HZZ5+F2WxGbW0tNmzYAL1ej/nz52PevHmS3BxxETkyuoNx58NNbWjtcClW\ne1zqncCSjVrar5Z2EAQhHsFCPn/+fNx+++34zne+g9tuuy3m8Tt27MCoUaOwdOlSNDc3Y8mSJRg/\nfjwWLlyIW265BS+88AJqampQVVWFl19+GTU1NTCZTJg7dy5mzZqF3NzchG6MuIQcg3SwnOq9czLQ\n9FUbbxa83MuZtL5BjVrar5Z2EAQhDsFC/sgjj+C9997DHXfcgbKyMtx+++2YMWNGKHYeya233hr6\n99mzZ/Gtb30L+/btw+rVqwEA06dPx7p161BSUoLRo0cjO/tiQfjx48ejrq4OM2bMSOS+iAjkGqSt\nZiNnoZVkLWfS+k5gamh/cLI1Z1qpZvuRINIVwUI+YcIETJgwAT//+c/x2Wefoba2FqtWrcLevXt5\nP3fnnXfi3Llz+OMf/4i77747JPwFBQWw2+1obW1Ffn5+6Pj8/HzY7eyJWUHy8jJhNMo3wPDtMiMX\nbm8vHE4P8nIssJoFfy2iWPG9CbJch6u/1m45wrqcKTPDjKVVoyW5diSDZTmr9HD1WbLb7/cHsO7d\nL7D36FnYO1yw5WZg4qiBWDL7KhgM6sn2V+I3qXWoz8Sh5f4SNZI7nU5s27YN77//Pk6fPo0FCxbE\n/Myf//xn/OMf/8B//dd/IXzHVK7dU4Xsqupw9AhvtEiSvZ2dEkU4jAC6Ol3oQuJub67+8vj82F3f\nzPqZ3fVncMs1l6WttaemLRM3bWvoM9lqcbhQu+skelxe1awdV1N/aQXqM3Foob8k2cb0nnvuwYkT\nJzBr1izcd999GD9+PO/xR48eRUFBAQYOHIhvf/vb8Pv96NevH9xuN6xWK86fP4+ioiIUFRWhtbU1\n9LmWlhaMHTtWaLM0j1JFOOSeQFDtc/WjtsI+BEHEh+AR+wc/+AF27NiBxx9/PErE165dG3X8/v37\nsW7dOgBAa2srenp6MHnyZGzduhUA8MEHH2Dq1KkoLy/HkSNH4HQ6ceHCBdTV1aGioiKRe9IMShbh\nkLJADBu0nCl+PD4/Whw9shdhobXjBJEaCLbIp02bxvnerl27sHTp0j6v3Xnnnfj5z3+OhQsXwu12\n4xe/+AVGjRqFRx55BNXV1SguLkZVVRVMJhMeeugh3HPPPdDpdFi+fHko8S3VUcpqTYYlZjEZUD68\nENsPRLvXy4cXkKXHQrLDLKmw0QxBECJj5FywxbWtViuef/75qNdff/31qNduvvlm3HzzzVI0RVNI\nPZAKjXcnawLBtfkt96a46U2ywyy0dpwgUgNJhJxvv3KCG6kGUrGWXDIsMY/Pj0MnWlnfO3SiDXNv\n8JNQhKFUvJrWjhOE9pFnnRMhGCkGUjGWXNBqHzOsEDvqot3eUlliclv9qbZntlJhFjWsYScIIjFI\nyBUm0YFUqCUXabXnZZtxWVEWetw+OLo8kltiiVr9XEKdqntmKx2vtpgMkkwUUm2CRRBCUfLZl0TI\nhw4dKsVp0pp4B1Khllyk1d7e5UV7lxfTxxXjpmuGSP7wxRs2iCXUqbpnttGgQ6bVxCrkWohXp+oE\niyBioYZnX/BVmpub8ZOf/ASLFy8GALz99tv46quvAFzcUCVVcHt7k7L0RyqELPPis9oPN7XH5QUQ\n0kcLZgxDZcVgFORYodcBBTkWTBk1AFVTr+D8DN+yOKWW6yVjOVj19kacbumOev2yoixNxKvlXs5I\nEGpFDc++YIv88ccfx/e///1Q1nlJSQkef/xxbNy4UbbGJZPgrOpwUxvsDpdmLAohlm+Lo0eS+Cvb\nzHNK+SDMnjSEtY+CYYNbJw7Bm1sb8M+znfj06DkcO+Vg7dtYQn19eXFS48jJmmnz3XePuxe9fgYq\nqpYaBRWWIdIVtTz7gocHn8+HmTNnhjLUr776atkapQTBWVWLw6U5iyLa8rWismJwyJKTqjgL28yz\ndtdJzj7yBwLYtK0Bj/1/+1B3ohWObh9v38YKE4BhklpkJlkzba0XZtF6+wkiXtTy7Iua5zudzpCQ\nnzhxAh5PavxAlaywJgVBy3fN0mvxmx9PxJql12Jh5YiQ1Ri02tkIWu2x3Mfx9FFQCN1e9nNGfi7W\nhMOWlxnzPqQimc+E1qvgab39BBEvann2BbvWly9fjvnz58Nut2P27NlwOBx49tln5Wxb0kiVuuB8\nCXNzb7gCx091oNnejQAD6HXAIFsW7ri+BJu2NcR0H4vtIz4h5PqckDBBstY9d3Z7WBPPAKDd6Ybd\n0QOzySBJkmCyC7NInV2rlsIylDFPJBu1PPuChXzixInYsmULGhoaYDabUVJSAoslNWbaSi/9SQY1\nO0/2SaYKMMDplm489ebBPq9zZYGL7SM+4ef7XCyhTta65/5ZFljNeri9gaj39HrgtzWHJY2bJ2OC\nImfMX8nCMmrIGibSFzUUVRIs5EePHoXdbsf06dPx3//93zh06BAeeOCBlNjgRC2zKrngs46b7dGZ\n0kB0oobYPuITfr7PCRVqqdY988NesdAfQOi+pFr+lowJipxL95QsLJOqSxIJbaCGokqCp6tr1qxB\nSUkJ9u/fjyNHjuDxxx/HSy+9JGfbkkowYawoL4M1YUzL8FnHAY7t39kSNdiS6m6begVrH/HF5a1m\nQ8y+DQq1UpOozm4PPByxfTakipvLdd/Jivkn+3vTen4LkTooOWYJtsgtFguGDh2K6upqzJ8/H8OG\nDYM+hdxWwVnVvXMy0PRVW0rF2fisY72OXczZ3N5sM8/Bxbmw27tYrxvtcrKgbEgevjdrBDItFx89\ntcY1hXgUwlF7LkWq5IFEkqr3RRBiECzkLpcL7733HrZt24bly5ejo6MDTqdTzrYpgtVsTLkfPp9b\nfJAti7UQCV9IQahbm8/llGhcU+4JAF+fsaH2XIpUzQNJ1fsiCDEIFvKf/vSneOONN/Af//EfyMrK\nwu9+9zvcddddMjaN4CIeEeNKyJh7wxWo2XlS1kQNNuGPN66ZzMQmtj7LtBpFT3zUQKrmgaTqfRGE\nGHQM22biLAQC0dm7ABRxr3O5cqXAZsuW9fyJ0OPxYdOHJ3DsX+1wdHnjEjGuSUC8Fm48/eXx+bFy\n7V5WK6ogx4pf3FUBl6eXtS2btjWwDtqVFYNlS2wK7xujQffNRCJ64iP0O1DqGbs0CYq/7UoQq7+k\nvC+1hnrEouZxTI1oob9stmzO9wQLeVlZWZ99x3U6HbKzs7Fv377EWyiSdBPy4ED1yeGzrMVV5BSx\nWMTTXy2OHvzsT3vB9eDlZVnQ0R1tbceaAKxZeq3q1yx7fH4YzCb4vT7FhEJrYiX0GUvkvlJtCZsa\nxzE1o4X+4hNywa71Y8eOhf7t8/nw6aef4vjx44m1TIUEN01R0yAX6YaORGv1rGMlkjm62Zd2qWmP\nc7HL3/oIRZcH+dnKCUVylu4ln0Tui5awEVomrm1MTSYTpk2bhnXr1uHHP/6x1G1SBLVumhJPhbRk\ntCkoePEgNpEsOFGRK7EpGdaYFEKhNUtaK6hl4wuCiBfBQl5TU9Pn73PnzuH8+fOSN0gp1Dojj7dC\nmhyI3f2Mj8hEspx+ZnR0e1mPDZ+oyJHYJPd3n6hQpJrbV23QEjZC6wgW8gMHDvT5OysrCy+++KLk\nDVICNc/I462QJgdsgle76yR6XF7Rghe5NC3DYsQv13/Oep+5WZbQREXqcojJ+O4TFQq1TjJTBVrC\nRmgdwUL+5JNPAgA6Ojqg0+nQv39/2RqVbNQ4Iw93o3JZoVazAdeNGZiU6nNyCV54XJPrPns8vdj8\ncVPIAo23HCKbazoZ330iQqGoFmJ3AAAgAElEQVTmSWaqQEvYCK0jWMjr6urw8MMP48KFC2AYBrm5\nuXj22WcxevRoOduXFNQ0I2dzo5YPL8TMCYNw6ERbnwppc24ohdfnR6+fgUFmD2syBC84IYnMznd7\n/VEWqJjEJj7XdDK++0SEQo2TTDa0Hr9Xw8YXBBEvgoX8+eefxyuvvIIRIy4OpF9++SV+/etf4623\n3pKtcclCTTNyNjfq9gPNqKwYjDVLr0VntwdZmSZs2fVP/PqN/UmLmcYreGIGeINejznTSnGwwc66\nzC6WBcp1rViu6WR89/EKhZommWykSvxeDRtfEES8CBZyvV4fEnEAuPLKK2EwpM6DHhxQDze1obXD\npciMXIgbtSgvM6ooSjJipnyTnUyrEUZD353C4h3g47FA+a7V62di9mkyrLFwoRCzjlxNk0w2Ui1+\nn6pL84jURpSQf/DBB5g8eTIA4O9//3tKCbkaNk0RImL9syyKxUwXzBiG46c6okqUnm7pRvX2xj4D\nd7wDfDwWKN+1KicMFjQxSJY1ZjEZYCvsJ6r4hFrdvhS/Jwh1INj3tXr1alRXV2P69OmYMWMGtmzZ\ngtWrV8vZNkUIbpqixAAUFDE2giImROzlotfPoMftY30vfMvIRLaW5Nv+lM0CjXWtDIsxZp+GX1uJ\n797j86PF0cPZL8FJ5pql1+I3P56INUuvxcLKEYq7rpV8FgmCuIRgi3zo0KF47bXX5GxL2iPEjapk\nzFSo2zvRBC0xFmisa7k8vap1TYutna82t6/a4/ephtYTCgn5ECzke/bswRtvvIGuri6El2dPhWQ3\nNRFLxJIRM+UaMIQO3IkO8GISj4Rci6tPq6aWKFKO1+8PYNO2hqjsfK3Fl9Uev08VUiWhkJAPwUK+\nevVqLFu2DAMGDJCzPWmPEBGTK2Yaa8AQOnDzHTdmWIGk9cyFtim8T7Myzdiy6ySeeO0zRQbGde9+\nkTK189Uav08lUi2hkJAewUI+aNAg3HbbbXK2hQiDT8TkWiojZMCIHLgLczMwprQgauCOHuAtyLSa\nUH/Cjp11zZKKp1AxCfapkKx/udyYHp8fe4+e5T1GTevDY0HLtuSFEgoJIcQU8tOnTwMAKioqUF1d\njWuuuQZG46WPXXbZZfK1TgWoOS4lZcxU6IAROXCXDi1AV6cr6jORx2397BR2HDwTel9Kq0KMmMS6\nz6qpJdiy65+yuTE7uz2wd0T3VzhajC+rLX6fKmilIBChLDGF/Ic//CF0Ol0oLv6nP/0p9J5Op8NH\nH30kX+sURKtxqXgnHrEGDLujB+Zvku0sJkNo4LaajeBaSBVsS4bFiMNNbazHSGlVCBGTWPe56cMT\n+PToudBrUrsx+2dZYMvNQIuDW8wpvkwEoYRCQggxhXz79u0xT7JlyxZUVVVJ0iC1oLW4VKITD74B\nw2wy4Lc1hwWfN7ItOf1M6LzAvmwt2VYF/8BowbF/tbN+TqoJh8VkwMRRA1G762TUe8msnU9oA0oo\nJIQgiWn5l7/8RYrTqIZE1kErRXDi0eb0gMGliUf19kbW4yPXLvOt33Z7/YLPCwCbtp3o0xYuEQeS\nb1Xw3WfZkDw4uvi3UpWCJbOvQmXFYBTkWKHXAQU5FkwZNQDPLZ+iivXhRDSx1vrLyYIZwyKeFysq\nKwbThI8IITjZjY/w5WipgNbiUnwTj08On0XV1BJkWkwAoq3lvGwzyi7Px8JZw6OSxnKzLOjx9PLW\nPQ/HHwhg04cN+PjQmajjuVDCquBejnYFjp1y8LoxpciZMBgoQUwrqCHERgmFRCwkEXKdThf7IA2h\nRFwqEYHgm3i4vX5s+vAEfvTdKwFEhwzau7z49Og51DXYQ27d4IDh7Q3gidc+Yz1vcEIzOOy16u2N\nfRLa+MjPtmD8SJsiVgXfwMjlxhw7vACbP26SdECnBDH1o6YQGz0vBBeSCHmqkcy4lBQzfr6JBwAc\n+5cDHp8fXp8f+4+1sB4TuVVoUV4mPD6/4AkNn1cgEh2A5XeMQkmxsD3t5Vo5wDYwclnrAYbBRyoZ\n0InkQEu/CK1AQs5BsgpdSDHjt5gMKBuSh91h2dbhOLo8eHPrcXz5lQMd3ewx4CDhA5SYCQ2fVyAS\nBsDL//8RjB9ZJCppLhluTTZrHQBWrt3LejwN6KmL1kJsRPoiiZBnZWVJcRpVkYy4VLwzfjYL9Xuz\nRuBAQwvc3kDU8RazgVPkI4kcoIROaGJ5BSJp7/LGnLAo6dYMt9ZbHD00oKchtPSL0AqChdxut+Nv\nf/sbOjs7+yS3rVixAq+88oosjVMDcsalxM74+SzUTIsR140pZrWexSQjRg5QQic0fNa7xaSHxxc9\nwQD6TljCJygX31OHW5MG9PQknZZ+qbnwFREbwUJ+7733YuTIkRg0aJCc7UkrxApELAuVLevcYjLg\nbHuP4DZxDVBCJjRc1vuU0QOw+vX9rJ9xdLnR7nRjx8HmPhOUkUPyVGMFp9OATvQl1WvJqyErn0gc\nwUKemZmJJ598Us62pB1iBEKoG75PWdTPT2NHXTP39Y169Ms0oaPLI8kAxWW9e3x+FPBMWLYd+LpP\nO9ucHnx69BynJa+EFZzqAzrBTqov/VJTVj4RP4KFvLy8HE1NTSgtLY19MCEYoQIhxg0f3Lf8cGMr\n77Wnji2WZYCKtN55d0MrzedsJ5c7XgkrONUH9HRDrCs5FZd+UVZ+6iBYyHft2oX169cjLy8PRqMR\nDMNAp9Nh586dMjYv9REqEGLd8LGyyKeMGhBynyVjgOKasEwbO1Dw2nM1lDBNxQE9nRDiSk6XeDFl\n5acOgoX8D3/4Q9RrTqeT9zPPPPMMDhw4gN7eXtx7770YPXo0Hn74Yfj9fthsNjz77LMwm82ora3F\nhg0boNfrMX/+fMybN0/8nWicWAIhNk7LJ/z52RYsumlkUmNgXBOW9e//Q/A5Mi1GzJlWSrE7Im74\nXMkLZgxLq3gxJXGmDqL2I29sbITD4QAAeL1erFmzBu+99x7r8Xv37sWJEydQXV0Nh8OBO+64A5Mm\nTcLChQtxyy234IUXXkBNTQ2qqqrw8ssvo6amBiaTCXPnzsWsWbOQm5srzR2mEGLitHzCX3Z5nuxt\n5SI4YfEHAti49Rg+qeffmzucjm6PKCshXSwrQhixXMn+ABOVq5HK8WJK4kwdBAv5mjVrsHv3brS2\ntmLIkCE4ffo0lixZwnn81VdfjTFjxgAAcnJy4HK5sG/fPqxevRoAMH36dKxbtw4lJSUYPXo0srOz\nAQDjx49HXV0dZsyYkch9qZp4BUZsnDZc+NudbljMF4/dc/Qcjp9yKGptiCnnGoStmhxbP1AmLsEG\nnyu53enGoQb2XI1UjhdTEmdqIFjIjxw5gvfeew+LFy/Gxo0bcfToUXz44YecxxsMBmRmXrScampq\ncP311+OTTz6B2WwGABQUFMBut6O1tRX5+fmhz+Xn58Nu5y/1mZeXCaNRvh+VzZYty3n9/gDWvfsF\n9h49C3uHC7bcDEwcNRBLZl8Fg0GcwAyOfQgAYMX3JsDt7cUfNh/G9v2nQ68HrY3MDDOWVo0Wde1I\nxPZXZ7cHdQLLuYYzpbwYg4tzY/bj2i1HWN2nUtyrVMj1jKUqUvRXdv8M2PLY94LPy7HA0cUdLzaY\nTbAV9ku4DclEaJ8FxwiH04O8HAus5vQs+Knl36TgbywowD6fDwzDYNSoUXj66adjfm7btm2oqanB\nunXrcOONN4Ze5ypSIqR4icMhfF20WGy2bNjtXbKce9O2hj4C0+JwoXbXSfS4vLK67jw+P+ob2Gus\n764/g1uuuSxua0NMfwUt5QPH7HDE2BLUoNehfz8zOrovLY2bPWkI7PYu3n6cM60Uu+vZl9wleq9S\nIeczlopI2V9jSgtYXcnlpQU43NTGGS/2e32a+s7i6TMjgK5OF7Rzl9Khhd8k30RDsJCXlJTgrbfe\nQkVFBe6++26UlJSgq4v/xnft2oU//vGPePXVV5GdnY3MzEy43W5YrVacP38eRUVFKCoqQmvrJZdW\nS0sLxo4dK7RZmkHJpR5qyU6NTDTiwx9g8MDcMcgwG/q4zmP14/Xlxaq4V0Kd8LmSDQb255PixYTa\nESzkq1evRmdnJ3JycvB///d/aGtrw7333st5fFdXF5555hmsX78+lLg2efJkbN26Fbfffjs++OAD\nTJ06FeXl5Vi5ciWcTicMBgPq6urw2GOPJX5nCuHx+WF39AA6HWy5GaEBQEkxVUN2qpjd0YL8/VAz\nFt9U1ue1WHFOMIzi95oKpGqiIF+eCcWLCa0SU8i//PJLXHnlldi799LuT4WFhSgsLMQ///lPDBgw\ngPVzf/vb3+BwOPDggw+GXnvqqaewcuVKVFdXo7i4GFVVVTCZTHjooYdwzz33QKfTYfny5aHENy3h\nDwTwPx+dwKdHzoY2LrGaDZgyegDunDlcUTFVQ3aqmN3RghxuaofH5+/TPr5+1OmAHYfOYOzwQnx0\nINq9Hu+9pqqosZEuiYJsyz2p6E96kIq/55hCvmXLFlx55ZWsG6PodDpMmjSJ9XMLFizAggULol5/\n/fXXo167+eabcfPNNwtpr2qp3t6I7RHi4fb68dGBZuh0OiysHKGYmHp8fkwfNwh+fwCHm9pZrQ25\nH26xu6MB3J6KkUPy8CnLbm4BBthR14wZEwahsmJwwpZVuohaOFSyk4r+pCp8v2etE1PIg27ujRs3\nyt4YreLx+VF3nD2ZDLi4i9ecaaVJd92xPbhjhhWicsJg5OdYYTEZ4A8EsGlbQ1xi5fH5cbb1AvwR\nVjMbfF4Bq1nPuv1quKci8l74dlSrP9GGNUuvTdiySjdRo5KdRCrD93te8b0JSjVLEmIK+eLFi6HT\n6Tjff+ONNyRtkBbp7PagvcvL+X5716VCJom47sRazWwP7o66Zhj0upAQxSNW8VqqXBOZAMNEeTOA\nvp6KyHZyiTjQ15KP17JKR1FTS1KkEqSiu5W4RKzfs9vbm+QWSUtMIV+2bBmAi8vIdDodJk6ciEAg\ngE8//RQZGRmyN1AL9M+yID/bzCnm+dmWPjFwsa67eIRTiBB5fX7sP8buSeATqz9/dKJPDDoo/gzD\n4PuzRnLeB1cM0h8IQK/T9dl+tezyPFRNLQndC5/HIxIpcg7SUdTUkBSZbNIxfJKOxPo9O5we4Znf\nKiRm24Mx8Ndeew2vvvpq6PUbb7wR//7v/y5fyzSExWTA+JFFnEurxo2wJTTLj8dq5ntw25xubHjv\nGI6f6kBHN/vkw9Hlhr3DBbNRH7X8a/eR6Pg0AOw+cg5zbxgmyM0eLoJBga+aegXe3Hocx045QtXn\nxg4vhMvdy+vxiESKnIN0FDU1JEUmG7WET8gjIC+xfs95ORZ0dUYXCtIKgich586dwz//+U+UlFy0\nkk6dOoXTp0/H+FRqwfdjWzBjGAIMg0+PnIPb6wdwKWs9kRh4PC5ej88Pb28AeTxegr1fnue9rtlk\nwItvH4Kjy9vHSrF3uEL3F4nb64e9w4XBtize++Eqq/r0W3U43dIdeq3N6WHNPg/Hajagn9UIh0R7\nqgdJR1ED0msJlhrCJ+QRSA6xfs9Ws1HThXAEC/mDDz6Iu+66Cx6PB3q9Hnq9XtPrvcUg5Mdm0Oux\naNZIzLthGOs68ngR4+KNSggzx39tt9cfEuxw13m3K0YsiaMyX6w+3PRhQx8RF8p1YwbKtlwonUQt\nSDotwVJD+EQtHoF0IJV/z4KFvLKyEpWVlejo6ADDMMjLU24HrWQj5sdmMRkwuCixdfDhVqsYF29k\nOy95Btizwtkwm3Tw+tjF+JPDZ3mTzKxmA2wcAx9fH86ZVoqDJ9g3rOBjssx7qqeTqEWSDkuwlA6f\nqMEjkE6k8u9ZsO+mubkZP/nJT/DAAw8gLy8P77zzDr766isZm6YOYv3YPD52N3M8BJeCrVy7Fz/7\n016sXLsXmz9uwtjhhazHh7t4u3q8OHCMvZ1CN0GwmPScIg7wZ4oDwOTRA1h/GLH60O7o4YzVc7bV\nrMfiJO2pHhS1VPnRExcJulvZSEb4RIhHgJCeVPw9Cx4FH3/8cdx+++2hTU2GDh2Kxx9/XLaGqYVk\n/tiCVmub0wMGYS5tAJUVg1GQY4VeBxTkWFFZMRgLZgwLif8T6z7j3Iik84IXuVnmmNfnWWUYkymj\nBuB7M4ezXz9GH0KnQ0GOSOuHAewdLkknUkT6sWDGMM7fltwEPQJspGpCJSEPgl3rPp8PM2fOxPr1\n6wFc3G88HUiW+43PauUrcBK5Exgb+dlWjCnN59z/uyDHgssHZKOOYz/mWORnW7CIxzrun2XhTLzL\ny7bClpvBmYjChccXwBOvfaZIchBlGKcOSrpb0zWhkpAeUUvnnE5nqDjMiRMn4PGkvusnWT82oYk3\n4XFLoRuRXNrdSd8n0WN0aR7cvgAa/uVAXUMr9LqLZU7FMn4k9/I6fyCAzR83ocfDbjkH+zBoAX1y\n+CxnVnwk4V4LgDs5SCrhpQzj1EWpnIBUTsAikodgIV++fDnmz58Pu92O2bNnw+Fw4Nlnn5Wzbaoh\nGT+2eCz/zm4Pb+3yvCwLJpRdEppIy2Pzx03Ye/Bs6HixIl6QY8GU8kGYPWkI5zFcW5dazQZcN2Zg\nqA/D15L/z4cNOHbKAUeXB2aTQZCwsyUHSS28lGFMSE0qJ2ARyUPUfuR33HEHfD4fjh07hmnTpuHA\ngQOcm6akEsn4sYm1/P2BALZ+fprTis7NMmPVkquRndk3Nh60POLZVjScgfmZ+PkPJ+Dywfmw29lX\nYPZ4fPjk8FnW9xgwqJpaEiWomRYj7vnulSErOivThC27/omDDa1od7rBNddgWy4kpfBShjEhJ+mw\nSoCQD8FmydKlS/HVV1+ht7cXw4YNg9FoRG+vtuvTikXubEcxiTfV2xuxo66Z04quKCuKEvFw4tlW\nNJyz7T3Y9OEJ3hrFF99nt6Y93gA2fXiC87PBvs60mLCwcgTWLL0Wq5dczZkUF+m1kHq1AWUYqwOP\nz48WRw8lORJEGIIt8tzcXDz55JNytiXtEWr584mUDsC1VxaF6pRzEc+2opF8evQcTjyzHaNK8vvs\nqBZs47F/tfN+/ti/HFH7jXMRXJ8v1GshdbEPpdccpzuUn0AQ3AgW8lmzZqG2thbjxo2DwXBpwCwu\nLpalYelMLDcbn0gxAPZ92YITX3fyDnR8rnwx2B0u7HA0Y0ddMwrCBtfObg8cMeqjd3R7RAuq0HwF\nqYWXMoyVhfITCIIbwUJ+/PhxvPvuu8jNzQ29ptPpsHPnTjnaRfAQy5oWms0dLop88WehBK/pcvdi\n/oxhvLXegfgE1aDXY860UlxfXgwwDGwcoQ45hJcyjJXB7e2l/ASC4EGwkNfX1+Pzzz+H2Ry7sAgh\nL2Ksab6BLtyVb3f04Lc1hxNytQfZffQc9h9vQa+ff2ogVlDFulelFl7KMFYGh1P5mugEoWYEC/mo\nUaPg8XhIyFWCUGtayEAXK/48edQAWEx61De2ob1LmNDzlXMNd8GLQax7VS7hpQzj5JKXQ/kJBMGH\nYCE/f/48ZsyYgdLS0j4x8rfeekuWhqUyQgqUxDpGqDUtZqDjs2ANej3mz/Djza3Hsfso+37kscjP\nseDBuWM43eF89Hh68clh9sp0sdyrJLzaxmo2Un4CQfAgWMjvu+8+OduRFghxDYt1H4vN5uYjlgVr\nMRlw161lyLAacbChFW1Ot6j77/imwEs8A+//fNjAuYMbuVdTH8pPIKg0MjeChfyaa66Rsx1pAZdr\n2O8P4KZrhoSqrYnNzvUHAggwTJ/tSq1mA6aMHhDXQMdnwYaLfbvTjd1fnMe+o2cFxdbjdYN6fH4c\nO+XgfD/3m+1e1U5wIMrun6F0UzQH5SekL7T0MDaiaq0T8cO39vvjQ2ew8+AZ5OdYcMHtYz0m6D4G\nEL1xyocNURuiuL1+BAIM2jrdslWiG1jQD/8+pxyzJ12OjVuP49MYLncu70CsmXas4jUjL89V9aAe\nORDZ8jIwprSABqI4oDBJ+kFLD2NDQp4k+MQoWJ2Nz6p1dLmxcetxHD/lCM1Ky4cXIhBg8PdD7LHj\n8AkC2wxWKleVxWTA3beWIfMbl3u70w2L+eL5vD4/pxtU6Ew71nI7s0ndYhg5ELU4XDQQEYQAqDSy\nMEjIk0SildTMJkMfi7fN6cH2A828nwmfIIQLh1hXlRDBZ3N9AtHeg3CEzrQtJgPGDCvEjjr2+z3a\nJLxCXLKhgYgg4kfqCo2pirpNmRQiuPY7fhIt13KpxnhQQNucnj7FY6q3N/Y53h8IYNO2Bqxcuxc/\n+9NerFy7F5u2NcAf6Jt0Fl7/OrwePV9ter4NVQ422KNqaVdOGMx5X+G1ztVWi5tqtBNE/AQNIDZo\n6eElyCJPIpFrv3UcO5dZzQZkWozo6PYgL9uKsiG5cS/5CsfR5Ya9wyXYQoxlMfsDAazdcgS765tF\nJ6HwbajS5vRg49bjuPvWstB58nOsKOBZS5yVacambQ2qS4ihGu0EET9UGlkYJOQJIibOHOl+3vr5\naVZ38XVjBka5qI+dciRcdS0v2wowjCBXlRCXcDwZ9oCwDVU+PXoOmVZj6DyxftBbdp1UZUIMDUQE\nkRi09DA2JORxksiSiKDLeWHlcBj0Os4CLOGxHyk2OBk3ohC2vExBFmIsl7Dd0RN37FfIhips5+H6\nQVdNLcETr30WV1uSQWS7C3MvZa0TBMEPLT2MDQl5nEixJELMA8omYuXDC6D75jW+0ql6HTBt3KDQ\nBEGIhRjLJQydLu4kFKGJf5Hn6fUzqJwwGLMnD4XL0xvqrxZHj6oTYiK/59KhBejqdCnWHoLQIrT0\nkBsS8jiQOhNZyAPKJ/pzbxjGWzp12thiLL5xZOhvPldVeKhgzLAC7KiLXtp25eW5AMPEHfsVuulL\n8Dx83g9AO3Ho4PdsNRvRpXRjCIJIGUjI40DJJRFsoh8snWq1GLD7yLlQEpnVbMDk0QPwvZnD+xzP\nNikwGnRRYsmV+b3ryDnsOnIOVjN7CEFI7Dd8MsFV6jV4nk3bGni9H1qMQ1O5SYIgpIKEPA76Z1k4\n99pWqlyoQa/H92eNxNwbhsHe4eLdqztI+KSATSxjEV4Olq/wC1d7w0u9btt/Goeb2lk9BEK8H1pJ\niEkk0z8cmggQBBGEhDwOLCYD+mWwC3m/DJOiA6vFZMBgWxbn+2wCwCeWQsi0GPHY4gmw5WaIvvdg\nqdfFN5Wxtq2tU1j8WysJMYnmVlDdaYIgIiEhjwOPz89ZE73H7VNVlbGgOGZlmrBl1z9ZBSBWLfNY\ndHR7YDbqE75ntrCB2Pi3mhNipMitoLrTBEFEQkIuEn8ggI1bj/NYiR7Fs6SBaMvNYjb0KcASLgBz\nppUmVD42XFCldvmKjX+r2eUcc0lfhwtmo56z7VTulSAINkjIRVK9vZF3l69Es6RjCZFQoYq03Liq\nqAUFgEssszKM6Hb18rZ53IhCGA062SqrCYl/a8HlzOddMJsMePHtQ3B0eTnbnuwkSzVPigiCuAQJ\nuQiExJLjzZKOJURihEpMzDsoAHxi2dXjxZtbG3DyTCc6Lvig/6a0bF6WBZPGDMQd1w2V1eUrJP6t\nBZczn3fB7fWHJltcbU/WMjstTIoIgrgECbkIYsWSp4waEHeWdCwhEiNUYmLeOf3MyLAYecUyN8uK\n++eMgcfnR7vTja2f/etihnm3B/v/cR4ulxeHm9pYzy+ly5cr/q0ll/OCGcOQmWHG7voz30yYLu5B\nH1wBEE5k25O1zE4LkyKCIC5B02sR8O3Ek59twaKbRsZlscQSoq4eL+/7keu9+doZSUe3F79c/3lo\nVzO+HcssJgN2HGzG3+vPoaP7YsZ+i8OFHQfPcMbXY+3wJcVuZVLtMJaMndMMej2WVo3GmqXX4jc/\nnogVc8fAwyLiAHvbF8wYhsqKwSjIsUKvAwpyrKisGCzZMrtYz6JadpUjCOISZJGLgM8iKh9eGHc8\nMZYQfd3SLSo2ytdOi0kPj6+vcEQmvnHdB98gr+fYyY3L5Sul+zZRl7OUbREaVw5OmDw+v6i2y73M\nTqo4PMXXCSJ5kJCLJDqWbEGm1YT6E3bsrGuOSwRiCdHgoixBg31w8MywGDF93CD4AwwON7aizekJ\nCW2mxQAwgKc32gr85PBZ1B1vQXuXF7lZZowbXog5NwxDd48X/bMsvIM8m4gD3C5fKd23ibqcpWhL\nvJOBeNsu1zI7NU2KCIIQBgm5SKK2Iv3sFHYcvFSPPB4RiDWYZ2eaed8PZowHRTgo2gU5FlgtRgCe\nkNA6utnXvwN9E646ur3YcfAM/l5/Bv7AxXONGVbIWdEuP9uC8uGFONzYFrOymtCYthirLt7KblLF\n1xOZDKipKp0aJkUEQYiDhDxOLCYD+mdZJEvyijWY870fOXgGRfuiVZXYHub+wKVz7ahrxmVFWaxC\nPn6kDQsrR8AzPbb4xnLftjvd2HGwWZRVx+dy5psQSOFKTnQyoLaqdEpPigiCEAcJeQJIua431mDO\n9X6i5VXF0uP2Yfq44lBd9Mi9tYW4fGO5b7cd+Bo76ppDr4mx6sKvL8TNK8WSLqmeA7VUpYt3YqHk\nZkIEkc7IGrRqaGhAZWUl3nzzTQDA2bNnsXjxYixcuBArVqyA13vRsqutrcWcOXMwb948vPPOO3I2\nSVL4ssNzsyzw9gZEZ/nyZY2zvR9veVWr2QALx+5lfDi6PLjpmiGhrOuXH56BhZUjRMU/g+5bNsaU\n5uNwYyvre2KzpoOeijanBwwuTQiqtzcCuCj0mz9u4iy3K3RJF99zoKZtVMUS61mMJFX7gSDUjmxC\n3tPTg1/96leYNGlS6LWXXnoJCxcuxKZNm3D55ZejpqYGPT09ePnll7F+/Xps3LgRGzZsQEdHh1zN\nkhQ+Qbrg9uGJ1z7DyrV7Q0u75EDMUrNwxg4rQKZZvJszOCCH760dD1zLqCorLpNsKVmsZVRBoY9c\nw201G0Qt6TIadMi0mtk2MY0AABm+SURBVFjfU+s2qnLA93tIp34giGQjm2vdbDZj7dq1WLt2bei1\nffv2YfXq1QCA6dOnY926dSgpKcHo0aORnZ0NABg/fjzq6uowY8YMuZomKZHxRLNJD7c3EFriFbQC\nGYbB92eNlPz6fMlJbOj1gMmgx74vW8CRaM6LVAMyl/u2q8eL/lnm0Dr1cMRYdULqmnMJfabFiDnT\nSgV7Gaq3N+J0S3fU65cVZaluG1W5UVPiHkGkC7IJudFohNHY9/QulwtmsxkAUFBQALvdjtbWVuTn\n54eOyc/Ph92evJhvooQLkt3Rg19vPMB63CeHz+K2KSXIzjRL3oaqqSXocffiH1+1w8EigOEEAoBH\nhHfAYtLD6wsgP0eaATky8Sxo2fsDgVCtdjYRB8RNImLFvsEwnELf0S184xs+y7/H3YtePwNDGq26\nUlviHkGkA4oluzEMuz3I9Xo4eXmZMBrlGxxstuy4Pter00UVWwni8QWwev3nuK58EJbMvgoGCUZ3\nvz+Ade9+gb1Hz8Le4UJBfyuuvnIATn7dgTanO+Hz6wA8t+J6WExG5OVYON3oQvorsq223AxMHDUw\n1Bdrtxzh9CoU5fU9VihTygehdtdJlteL8e3hRbDlZaDF4Yp6vzA3A6VDCwSFDc62XkB7F7flbzCb\nYCvsF/VevM+Ylhgs4bnSob+khvpMHFrur6QKeWZmJtxuN6xWK86fP4+ioiIUFRWhtfVSclNLSwvG\njh3Lex6Ho0e2Ntps2bDbu+L6rKP9Au/77U4PanedRI/LK8ma2k3bGvqIX2uHG60d3DuziSU/xwoj\nw8DIBNDV6QJbrwjtr8i2tjhcob6YM60Uu+ubWT+Xl2XBzxdPQHamGe0x+jeS2ZOGoMfljXLzzp40\nBF2dLowpLWCdPIwpLeC830j8Pj/ys7ktf7/XF9U/iTxj6Qj1l3ioz8Shhf7im2gk1ek3efJkbN26\nFQDwwQcfYOrUqSgvL8eRI0fgdDpx4cIF1NXVoaKiIpnNkgxbXiasAjLB9x9rQVcPvwucjfBa4FIu\nO+PKXpciHu7x+fG1vRt1x1tY3z/Y0Ap7h4vTzd15wQOX59I2qmLqoQfdvMEM+zVLr+2TYS9F3XJK\ndCMIQmlks8iPHj2Kp59+Gs3NzTAajdi6dSuee+45PProo6iurkZxcTGqqqpgMpnw0EMP4Z577oFO\np8Py5ctDiW9aITzuO3n0QGw/wG5dBuno9mLVus8xoUxY6crw9dBtTg9ys8wYPjiXc6MSsVw3eiB0\nOl3Ics3NsqDs8jxUTS2J+5yRa7i5AiZtTjf8gQBnxbjcLAv6Z1kSKv3JtT5binguJboRBKE0OkZI\nUFplyOkCEeNiYROXscMLwQA4eNweM/EMACorBsd0s0e6paXCajbgujEDQ2LY4+nF/3zYgGOnHILF\nkqu/xLR5+rhiNDY7OQVx9ZJrOM/H139yb9zh8fmxcu1e1glVQY4Va5Zey3pdLbjxhJCsjVFSpb+S\nCfWZOLTQX3yudarslgBsdaU/OtCMyorB+M29k/Dm1uPYfZQ/Zh2rdGUiLnQdgJU/mIC8HCs272zC\nsVMOOLo8IYt74azhyLRccgtv/ripT3vjrZMtts31jW0XG8tCj9sXcxvXyP5L1sYd6VrJTI0bo9Bu\na0Q6Q0IeJ109Xuw/xh33nTOtFHfdWoYMqxH7j7VwLqmKNeB3dnvidqEzAPplmJCbZcE9372Sc7Dz\nBwLY9GEDPj50hvU8kWIZfh6uNoupNufgyPoOvid2G9dkbdwhRXlXLaKmjVHUOKkgiGRDT7pIguud\nV637PKY4B2Owq5dcgzyOQT3WgN8/y4LcrPjWnudnW/qcm6vkZvX2Ruw4eIZzK9Lg/QTvfeXavfjZ\nn/Zi5dq9WLvlSFTVOrHV5vKy+Ut7Brdx5Xo//B6FVHSTinSsZJbM/hVCrDK8BJEOkJCLJDhwOHhK\nhUaKS3amGRPK4hvwLSYDxg0vjKut40faeF32LY4eXrd1kOD9sA2atbtORg2afALH1U4+QQxu48r1\nfvg9CnF3S4kUme9aItn9y4faJhUEoRTkWheB0NgvmzgLKV3J5fpeOGsEZzJYOMF9yHOzzBg3nL0K\nW6Qrkqscajhjhxd803bhcerw+213uqHTgdXit5oNqJpaEvpsPNu4hpNsd3e6VTJTUzghXXMUCCIS\nEnIRxIr95maZUVFWxCqgfAN+rDifQa/HL+6qwKZtJ7D/Hy3ocrHv1hVggJxMEzq7vTjc1AaDoTEq\nVhgZ34wl4sDFWLvYQTP8fk82d+K5Px9i/azX50d3jw+Zeaa4tnGNhK/2vJzubrVsQSp30pdS/cuG\nmiYVBKEkJOQi4B04sixYteRq3lrqXIOskOQhg16PxTeORNV1JVi17nNO176zx8d5Do/Pz1mYhY/6\nE224fUpJXIOmxWTAFYP6C/5sLEEUIpjpuHFHMpO+1NK/appUEISSkJCLgG/gmFBm4xRxvkG218+I\nclkH4+1C12iHn6Oz28NadCUWji43XJ7euAdNKQZcMZZmurm7geRmkqupf9UyqSAIJSEhF0k8Awff\nIFs5YbDoOF9kG3L6cce5w8+RYTGG4uhiCFZXY7v3KeXFmD1pCO/n/YEAAgwDq1kf2vvbajZgyugB\nqJp6BVocPZxiIEdFt1QjVtIXX52CRFBD/6ppUkEQSkFCzgGXBdjrZ1A5YTBmTx4Kl6c35sARa5Cd\nPXmoaJd15OCVYTHil+s/j3kOl6dXtIgDQNnlebCYDPD4/FH3Prg4N2ZFpOrtjVFla91ePxpOd+KJ\n1/bxCnQ8lma6FQehpC91TCoIQilIyCPw+y/tix0uMHNvuAI1O0+yWoZ8xBpkE3VZBwcvIefon2VB\nAcekgc9SNxmBNz88jvoTraLuHeCfyIRn4XPF9NVY0U1tUNIXQaQ3JOQRrHv3C1YL8PipjpjCw4aQ\nQVaKOJ+Qc/DFqgfZsjiXt318qG+Z2fB7X/G9CbztElvlLSqmH8PS7J9lCf1/88dNqqk4lkwo6Ysg\n0hsS8jA8Pj/2Hj3L+l6znV3kYsUghQ6yCytHYPbkofi6pRuDi7J4s9/ZEBor5BL8uTdcgertTfj4\nYLNg9/vBhla4vb28x/BNZNgIdwXzT4Is2PrZKRxuakO704O8bDN6POwFQOSME6sFSvoiiPSFhDyM\nzm4P7B0u1vdilS/li8/FGmSldAnHihXyCf5NV1+GHXX8W7CG4+hyw+H08D5EfBMZNsJdwXyfzbSa\nsOPgpdrwfNn46RAnpqQvgkhfSMjD6J9lgS03Ay2OaDHniiELiUHGGmSV2ISCTfD5Yuhs5GVbkZdj\nQVcn++QnyKWJzMX91Pni8ZGuYLZJ0JhhBag/IXx3NTFxYq0nylHSF0GkHyTkYVhMBkwcNRC1u05G\nvccVQxYTg2QbZIVktQvJjpcCsdbzuBGFsJqNiLWLb3Ai4/cHODdnKchhdwWzTYI6uz3YKcJzIOQ7\nStdEOYIgtA8JeQRLZl+FHpeXNYZ8MWtd2hgkX0JXm9ONJ9Z9hs5ub9KEhc0CHju8AAwuVniL9949\nPj8ON7WxvpebZcYv7qrgzQsInwTxxc6tZgP6WY1wdHlEtVNNW3MSBEGIgYQ8AoOB2w0uRwwyVjJY\nsNCLXMIS6UrmCwPMuyF+tzPfhMV5wQuXp1dwgh+f5+C6MQNFf0dKFVQhCIKQAhJyDrhijVLHIMW6\ns6USlliuZLb7TOTe+SYsZpMBWSKz9PkSCA16vah2UkEVgiC0DAm5CogUpf79LJybokglLMl2JfNN\nWNxeP7bsOinqulJmaVNBFYIgtAxl8agAg16POdNKsWLuaKxacg1WLbkaBTns4iGFsMRyJXt87Oux\nE6VqagmsZnaxjfe6QS9BIh6K4CSDDSqoQhCE2iGLXGG4XNzlwwuj6pMD0giLUq7k7h4fPF52sVba\nhU0FVQiC0Cok5ArD5eKeOWEQKisGyyIsSrmS1ezCpoIqBEFoFRJyBeFzcR860YY1S6+VRViUqs2t\nhZrgVFCFIAitQUKuIEJd3HIIi1KuZHJhEwRBSAsJuYIo6WpWypVMLmyCIAhpoax1BVFDtrQUWd9a\nui5BEESqQRa5wpCrmSAIgkgEEnKFIVczQRAEkQgk5CqBsqUJgiCIeKAYOUEQBEFoGBLyNMHj86PF\n0SNb+VWCIAhCGci1nuLE2uWMIAiC0DYk5ClOsnc5IwiCIJILmWQpjFK7nBEEQRDJg4Q8hRFSApYg\nCILQNiTkKUywBCwbSu82RhAEQUgDCXkKo4YSsARBEIS8ULJbikMlYAmCIFIbEvIUh0rAEgRBpDYk\n5GkClYAlCIJITShGThAEQRAahoScIAiCIDQMCTlBEARBaBgScoIgCILQMCTkBEEQBKFhVJO1/pvf\n/Ab19fXQ6XR47LHHMGbMGKWbRBAEQRCqRxVC/tlnn+Ff//oXqqur0dTUhMceewzV1dVKN4sgCIIg\nVI8qhHzPnj2orKwEAJSWlqKzsxPd3d3IyspKfmNWrUJOXX306wwj7DUpjkWC55WgXTqhx5qN6O/x\niWiDwHZxHSxXn7O8xtoHUlzLqEcu685zct2vwM+LPK/gZyTR79egR14vS38l8Vngel3cM8J6oCzt\ngg7ID6hwvLj4hvRtSPTZ1wEFQvuL63WDAd1rnoLnzu+zf0ZGVCHkra2tuOqqq0J/5+fnw263cwp5\nXl4mjEYZqpP19gKvvgpLc7P0505hzEo3QCp0OmGvSXCsSabzqvbYBD9vlKtdajiW9TW213WirmVQ\n6/3KdWyCn9cnel6DATnDLgds2ezHy4gqhDwShnMmdxGHo0e2a9uamtB68gz7m1w/OMHHJu+hZrga\nJvG1bLZs2O1dit+v6GMVJNRnhCCov8RDfSYOSftLpn638UwQVCHkRUVFaG1tDf3d0tICm4191y7Z\nsVjAFBYqc20tYrUCVhbXOkEQBJEUVLH8bMqUKdi6dSsA4IsvvkBRUZEy8XGCIAiC0BiqsMjHjx+P\nq666CnfeeSd0Oh2eeOIJpZtEEARBEJpAFUIOAP/5n/+pdBMIgiAIQnOowrVOEARBEER8kJATBEEQ\nhIYhIScIgiAIDUNCThAEQRAahoScIAiCIDQMCTlBEARBaBgScoIgCILQMCTkBEEQBKFhdEysHUoI\ngiAIglAtZJETBEEQhIYhIScIgiAIDUNCThAEQRAahoScIAiCIDQMCTlBEARBaBgScoIgCILQMKrZ\nj1xpfvOb36C+vh46nQ6PPfYYxowZo3STFOeZZ57BgQMH0Nvbi3vvvRejR4/Gww8/DL/fD5vNhmef\nfRZmsxm1tbXYsGED9Ho95s+fj3nz5sHn8+HRRx/FmTNnYDAY8OSTT+Kyyy5T+pZkx+1247vf/S6W\nLVuGSZMmUX/xUFtbi1dffRVGoxE/+clPMHLkSOovHi5cuIBHHnkEnZ2d8Pl8WL58OWw2G1atWgUA\nGDlyJFavXg0AePXVV/H+++9Dp9Ph/vvvx7Rp09DV1YWHHnoIXV1dyMzMxPPPP4/c3FwF70g+Ghoa\nsGzZMtx1111YtGgRzp49m/CzdezYMda+VgUMwezbt4/58Y9/zDAMwzQ2NjLz589XuEXKs2fPHuZH\nP/oRwzAM097ezkybNo159NFHmb/97W8MwzDM888/z7z11lvMhQsXmBtvvJFxOp2My+VivvOd7zAO\nh4P5y1/+wqxatYphGIbZtWsXs2LFCsXuJZm88MILzL/9278xmzdvpv7iob29nbnxxhuZrq4u5vz5\n88zKlSupv2KwceNG5rnnnmMYhmHOnTvH3HTTTcyiRYuY+vp6hmEY5qc//Smzc+dO5tSpU8wdd9zB\neDwepq2tjbnpppuY3t5e5ne/+x2zdu1ahmEY5s9//jPzzDPPKHYvcnLhwgVm0aJFzMqVK5mNGzcy\nDMNI8myx9bVaINc6gD179qCyshIAUFpais7OTnR3dyvcKmW5+uqr8dvf/hYAkJOTA5fLhX379mHm\nzJkAgOnTp2PPnj2or6/H6NGjkZ2dDavVivHjx6Ourg579uzBrFmzAACTJ09GXV2dYveSLJqamtDY\n2IgbbrgBAKi/eNizZw8mTZqErKwsFBUV4Ve/+hX1Vwzy8vLQ0dEBAHA6ncjNzUVzc3PIexjss337\n9mHq1Kkwm83Iz8/HoEGD0NjY2KfPgsemImazGWvXrkVRUVHotUSfLa/Xy9rXaoGEHEBrayvy8vJC\nf+fn58NutyvYIuUxGAzIzMwEANTU1OD666+Hy+WC2WwGABQUFMBut6O1tRX5+fmhzwX7Lvx1vV4P\nnU4Hr9eb/BtJIk8//TQeffTR0N/UX9x8/fXXcLvduO+++7Bw4ULs2bOH+isG3/nOd3DmzBnMmjUL\nixYtwsMPP4ycnJzQ+2L6rKCgAC0tLUm/h2RgNBphtVr7vJbos9Xa2sra12qBYuQsMFS1NsS2bdtQ\nU1ODdevW4cYbbwy9ztVHYl9PFbZs2YKxY8dyxmmpv6Lp6OjA73//e5w5cwY/+MEP+twz9Vc0//u/\n/4vi4mK89tprOHbsGJYvX47s7OzQ+2L6Jh36iwspni219R9Z5ACKiorQ2toa+rulpQU2m03BFqmD\nXbt24Y9//CPWrl2L7OxsZGZmwu12AwDOnz+PoqIi1r4Lvh6csfp8PjAME5oRpyI7d+7ERx99hPnz\n5+Odd97BK6+8Qv3FQ0FBAcaNGwej0YghQ4agX79+6NevH/UXD3V1dbjuuusAAGVlZfB4PHA4HKH3\nufos/PVgnwVfSxcS/S3abLZQWCP8HGqBhBzAlClTsHXrVgDAF198gaKiImRlZSncKmXp6urCM888\ngz/96U+hzNbJkyeH+umDDz7A1KlTUV5ejiNHjsDpdOLChQuoq6tDRUUFpkyZgvfffx8AsGPHDlx7\n7bWK3UsyePHFF7F582a8/fbbmDdvHpYtW0b9xcN1112HvXv3IhAIwOFwoKenh/orBpdffjnq6+sB\nAM3NzejXrx9KS0uxf/9+AJf6bOLEidi5cye8Xi/Onz+PlpYWDBs2rE+fBY9NFxJ9tkwmE6644oqo\nvlYLtPvZNzz33HPYv38/dDodnnjiCZSVlSndJEWprq7G7373O5SUlIRee+qpp7By5Up4PB4UFxfj\nySefhMlkwvvvv4/XXnsNOp0OixYtwm233Qa/34+VK1fiq6++gtlsxlNPPYX/1979hES5xWEc/86M\nDUTQIFkzZavCSCxm+mMkZRAkhEltZhONi4wso2iIyhqiTUM55SYFadFCqMUsJDCJVkEtmjJECNNa\n9A9shIjAqFmkr/O7i25ypbKsi/e++nx285533vObw8DDOTOcs3jx4v/wE02f1tZWiouL2bx5M42N\njRqvH0in03R0dADQ0NDA6tWrNV6TyOVyJBIJ3r9/j+M4HD16lIULF3L27Fny+TzhcJjTp08DcO3a\nNbq6uvB4PMTjcSoqKsjlcpw4cYLh4WHmz5/PpUuXJizNzxRPnjwhlUqRzWYpKCggGAzS3NzMqVOn\n/ui79fz58++O9f+BglxERMTFtLQuIiLiYgpyERERF1OQi4iIuJiCXERExMUU5CIiIi6mIBcREXEx\nBbmIy3V2dk7afu/evQm7Un1PbW0tmUzm3yxLRKaJglzExcbGxmhra5v0nvb2dj58+DBNFYnIdNOh\nKSIulkgkyGaz1NXVUV1dTTqdZu7cuSxYsIBkMsnNmzfp6enh+PHjXLhwgVevXnH16lX8fj9jY2Nc\nvHiRpUuX/rSfN2/e0NDQwIoVKygpKWH//v2cP3+e/v5+ADZu3Eg8Hgegra2Nu3fvUlBQQElJCWfO\nnOHt27ccOHCATZs20dPTQ2FhITt37qSzs5NsNsvly5dZuXIlzc3NPHz4EL/fTzAYJJVKzfg91EX+\n2HQdfC4i/77BwUGrrKy0bDZrW7ZssY8fP5qZWVNTk7W2tpqZ2datW+3169dmZtbR0WHZbNbMzK5c\nuWJNTU1mZhaLxez+/fuT9lNaWmovXrwwM7Ouri6rr6+3fD5vjuNYNBq17u5u6+3ttV27dtnIyIiZ\nmR05csRu3Lgx/v6XL1+O1/S1vpaWFksmkzY8PGyRSMQcxzEzs1u3bo3XKiI/phm5yAwwMDBAWVnZ\n+GE/GzZsIJ1Of3NfUVERjY2NmBnv3r1jzZo1v9xHIBBg2bJlADx+/JiKigo8Hg8+n4/169fT19eH\nz+ejvLycOXPmjNfR19dHeXk5hYWF43v3B4NB1q5dC0AoFGJoaIhAIEBlZSWxWIyqqiqqq6sJhUJ/\nNC4is4F+IxeZgcwMj8cz4dro6CjxeJxz585x/fp1amtrp/TMr+EMfPPsr/396DqAz+eb0PbP1/b3\nkQ8tLS0kk0kAYrEYT58+nVKNIrORglzExbxeL47jsGrVKvr7+/n06RMAmUyGcDgMfAldx3HI5XJ4\nvV6Ki4v5/Pkzd+7cYWRk5Lf6jUQiZDIZzAzHcXj06BHhcJhIJEJ3dzejo6MAPHjwYLyOnxkcHKS9\nvZ3ly5dTV1dHVVUVz549+636RGYTLa2LuNiiRYsoKiri0KFD1NfXs3fvXvx+P6FQiGPHjgFfzv4+\nePAgqVSKmpoaotEoS5YsYd++fZw8eZLbt29Pud/t27fT29vL7t27yefzbNu2jXXr1gGwY8cO9uzZ\ng9frpaysjJqaGoaGhn76zGAwyMDAANFolHnz5hEIBDh8+PCUaxOZbXSMqYiIiItpRi4iwJel7UQi\n8d22RCJBaWnpNFckIr9CM3IREREX05/dREREXExBLiIi4mIKchERERdTkIuIiLiYglxERMTF/gJ7\nlhW5EHDh4gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "t0lRt4USU81L", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "This initial line looks way off. See if you can look back at the summary stats and see the same information encoded there.\n", + "\n", + "Together, these initial sanity checks suggest we may be able to find a much better line." + ] + }, + { + "metadata": { + "id": "AZWF67uv0HTG", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Tweak the Model Hyperparameters\n", + "For this exercise, we've put all the above code in a single function for convenience. You can call the function with different parameters to see the effect.\n", + "\n", + "In this function, we'll proceed in 10 evenly divided periods so that we can observe the model improvement at each period.\n", + "\n", + "For each period, we'll compute and graph training loss. This may help you judge when a model is converged, or if it needs more iterations.\n", + "\n", + "We'll also plot the feature weight and bias term values learned by the model over time. This is another way to see how things converge." + ] + }, + { + "metadata": { + "id": "wgSMeD5UU81N", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_model(learning_rate, steps, batch_size, input_feature=\"total_rooms\"):\n", + " \"\"\"Trains a linear regression model of one feature.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " input_feature: A `string` specifying a column from `california_housing_dataframe`\n", + " to use as input feature.\n", + " \"\"\"\n", + " \n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + "\n", + " my_feature = input_feature\n", + " my_feature_data = california_housing_dataframe[[my_feature]]\n", + " my_label = \"median_house_value\"\n", + " targets = california_housing_dataframe[my_label]\n", + "\n", + " # Create feature columns.\n", + " feature_columns = [tf.feature_column.numeric_column(my_feature)]\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda:my_input_fn(my_feature_data, targets, batch_size=batch_size)\n", + " prediction_input_fn = lambda: my_input_fn(my_feature_data, targets, num_epochs=1, shuffle=False)\n", + " \n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=feature_columns,\n", + " optimizer=my_optimizer\n", + " )\n", + "\n", + " # Set up to plot the state of our model's line each period.\n", + " plt.figure(figsize=(15, 6))\n", + " plt.subplot(1, 2, 1)\n", + " plt.title(\"Learned Line by Period\")\n", + " plt.ylabel(my_label)\n", + " plt.xlabel(my_feature)\n", + " sample = california_housing_dataframe.sample(n=300)\n", + " plt.scatter(sample[my_feature], sample[my_label])\n", + " colors = [cm.coolwarm(x) for x in np.linspace(-1, 1, periods)]\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " root_mean_squared_errors = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions.\n", + " predictions = linear_regressor.predict(input_fn=prediction_input_fn)\n", + " predictions = np.array([item['predictions'][0] for item in predictions])\n", + " \n", + " # Compute loss.\n", + " root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(predictions, targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " root_mean_squared_errors.append(root_mean_squared_error)\n", + " # Finally, track the weights and biases over time.\n", + " # Apply some math to ensure that the data and line are plotted neatly.\n", + " y_extents = np.array([0, sample[my_label].max()])\n", + " \n", + " weight = linear_regressor.get_variable_value('linear/linear_model/%s/weights' % input_feature)[0]\n", + " bias = linear_regressor.get_variable_value('linear/linear_model/bias_weights')\n", + "\n", + " x_extents = (y_extents - bias) / weight\n", + " x_extents = np.maximum(np.minimum(x_extents,\n", + " sample[my_feature].max()),\n", + " sample[my_feature].min())\n", + " y_extents = weight * x_extents + bias\n", + " plt.plot(x_extents, y_extents, color=colors[period]) \n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.subplot(1, 2, 2)\n", + " plt.ylabel('RMSE')\n", + " plt.xlabel('Periods')\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(root_mean_squared_errors)\n", + "\n", + " # Output a table with calibration data.\n", + " calibration_data = pd.DataFrame()\n", + " calibration_data[\"predictions\"] = pd.Series(predictions)\n", + " calibration_data[\"targets\"] = pd.Series(targets)\n", + " display.display(calibration_data.describe())\n", + "\n", + " print(\"Final RMSE (on training data): %0.2f\" % root_mean_squared_error)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "kg8A4ArBU81Q", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Achieve an RMSE of 180 or Below\n", + "\n", + "Tweak the model hyperparameters to improve loss and better match the target distribution.\n", + "If, after 5 minutes or so, you're having trouble beating a RMSE of 180, check the solution for a possible combination." + ] + }, + { + "metadata": { + "id": "UzoZUSdLIolF", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 955 + }, + "outputId": "8314a421-c01b-435b-eea3-1a4203d45711" + }, + "cell_type": "code", + "source": [ + "train_model(\n", + " learning_rate=0.00002,\n", + " steps=500,\n", + " batch_size=5,\n", + " input_feature = \"total_rooms\"\n", + ")" + ], + "execution_count": 18, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 225.63\n", + " period 01 : 214.42\n", + " period 02 : 204.04\n", + " period 03 : 194.97\n", + " period 04 : 186.92\n", + " period 05 : 180.27\n", + " period 06 : 175.88\n", + " period 07 : 171.91\n", + " period 08 : 168.72\n", + " period 09 : 167.09\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " predictions targets\n", + "count 17000.0 17000.0\n", + "mean 118.4 207.3\n", + "std 97.7 116.0\n", + "min 0.1 15.0\n", + "25% 65.5 119.4\n", + "50% 95.3 180.4\n", + "75% 141.2 265.0\n", + "max 1699.5 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predictionstargets
count17000.017000.0
mean118.4207.3
std97.7116.0
min0.115.0
25%65.5119.4
50%95.3180.4
75%141.2265.0
max1699.5500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Final RMSE (on training data): 167.09\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCUAAAGkCAYAAAAG3J9IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VFX6wPHv9ElIJj0QupTQOyJF\nBAKYALqA0kQCltW18FPsumtdXeuKFbAr4KooiyCIIBFY0UU0BJAmISAkoaZO6rQ79/dHzCwlgYRM\nZibk/TyPj2Tm3nPee+8k98x7T9GoqqoihBBCCCGEEEII4WNafwcghBBCCCGEEEKIxkmSEkIIIYQQ\nQgghhPALSUoIIYQQQgghhBDCLyQpIYQQQgghhBBCCL+QpIQQQgghhBBCCCH8QpISQgghhBBCCCGE\n8AtJSgjhR506deL48eP+DuOcbrjhBpYtW3bW62+88QZ/+9vfznr9xIkTXHXVVV6rPzk5mRUrVlzw\n/m+88Qb9+/cnKSmJpKQkEhMTeeKJJygvL691WUlJSeTm5tZqn+rOnxBCiIahU6dOjB492nMfGT16\nNH/9618pKyurU7mff/55la8vW7aMTp06sWHDhtNet9ls9O3bl4cffrhO9dZUZmYmt912G4mJiSQm\nJjJhwgRSUlJ8UndtzJ8/v8pzsmXLFrp37+65bqf+11BkZ2fTqVOn09ow119/PXv27Kl1WS+//DKf\nfvpprfZZsWIFycnJta5LiNrS+zsAIcTFpWnTpqxatcrfYZwmMTGRf/zjHwA4HA7mzJnDvHnzuP/+\n+2tVzpo1a+ojPCGEEAFu8eLFNGvWDKi4j9xzzz28/fbb3HPPPRdUXk5ODu+99x5Tpkyp8v24uDhW\nrVrFiBEjPK9t2LABi8VyQfVdiPvvv5/x48fz1ltvAbBjxw5mzZrFN998Q1xcnM/iqIu4uLgGf+/W\n6XSnHcPq1au58847Wbt2LUajscbl3HffffURnhBeIT0lhAhADoeDZ555hsTERBISEjwNAoBt27Zx\nzTXXkJSUxNixY/nvf/8LVGTTL7/8cp599llmzJgBVDzdWb58ORMmTODyyy/no48+8pSzZMkSkpKS\nSEhI4N5778VmswGQlZXF5MmTGTVqFPfddx+KotQq9uzsbLp27QpUPO256667+Otf/0piYiJjx45l\n//79ABQVFfHAAw+QmJjIyJEj+fe//11tmenp6UyaNIlhw4bx6KOPoigKd911F++///5p2wwcOBCX\ny3XO+IxGI1OnTuXHH388bxydOnXi7bffJjExEUVRTuvZsmjRIsaOHUtSUhK33347+fn5Xjl/Qggh\nApvRaGTo0KHs3bsXALvdzuOPP05iYiJjxozh+eef9/zt/+2335g2bRpJSUmMHz+eTZs2ATBt2jSO\nHj1KUlISDofjrDr69u3Lli1bTuvVt3r1aoYMGeL5uS5thUWLFnH11VczdOhQVq9eXeVxpqen06tX\nL8/PvXr1Yu3atZ7kzJtvvsmwYcOYMGEC77zzDgkJCQA8/PDDzJ8/37PfqT/Xpg2zdetWrr32WkaP\nHs2UKVPIysoCKnqMzJkzhxEjRjBjxowL7nG6bNkyZs+ezaxZs3jxxRfZsmUL06ZN4+677/Z8gf/m\nm2+46qqrSEpKYubMmWRmZgIVvTAfffRRJk2adFrbCuDuu+/mgw8+8Py8d+9eLr/8ctxuN6+88oqn\n58nMmTM5ceJEreMeO3YsNpuNgwcPAtW35x5++GGee+45rr76ar755pvTrkN1n0u3283f//53hg8f\nzqRJk/jtt9889f78889MnDiRsWPHMmbMGL755ptaxy5EdSQpIUQAevfdd8nIyGDlypWsWrWKtWvX\nerpxPv7449x8882sWbOGW2+9lSeeeMKzX2FhIV26dOHjjz/2vJaRkcHy5cuZP38+c+fORVEUUlNT\nee2111i4cCHr168nJCSE1157DYB//vOfDBo0iJSUFGbNmkVaWlqdjuX7779n+vTprF27lssuu4yF\nCxcC8Pzzz6PVavnmm2/44osveOONN0hPT6+yjC1btrB48WLWrFnDL7/8woYNG7jqqqtO65Gxbt06\nrrzySvT683cAczqdnqcL54tDVVXWrl2LTqfzvLZ9+3bef/99T0zNmzfn5ZdfBrx//oQQQgQWq9XK\nqlWr6NOnDwALFy7k+PHjfP3113z55ZekpqayatUq3G439957LzNmzGDNmjU888wz3HfffZSUlPDs\ns896nuJX9bTbaDQyaNAgvvvuOwBKSkrYu3evp0648LZCQUEBWq2WlStX8te//pVXX321yuO84oor\nuOuuu1i0aBEHDhwAKnpDajQa0tPTWbhwIUuXLmXp0qVs3769Rueupm2YkpISbr/9du69917WrVvH\nzJkzufvuuwH497//TW5uLuvWreONN97ghx9+qFHdVfnxxx956qmnePDBBwHYs2cP06ZN4+WXX+bo\n0aM89thjzJs3jzVr1jB8+HAef/xxz77/+c9/eOedd7jhhhtOKzMxMZH169d7fl63bh1JSUkcOHCA\nNWvWeK7V6NGj2bx58wXFrSgKRqPxnO05gM2bN7N06VLGjBnjee1cn8tNmzbx448/8vXXX/Pxxx+T\nmprq2e+FF17gkUceYfXq1SxYsCAgh/KIhkuSEkIEoA0bNjB9+nSMRiPBwcGMHz+eb7/9FoDly5d7\nbi79+vXzPDmAii/bo0ePPq2s8ePHA9CtWzfsdjt5eXmsX7+esWPH0rRpUwCuu+46T/mpqamMHTsW\ngJ49e9KuXbs6HUv79u3p3r07AF27duXYsWOeY5w5cyZarZbIyEhGjx7tieFMiYmJBAUFERQUxLBh\nw9i+fTvDhg0jMzPT86QgJSXFE/e5lJSU8Mknn3jO0/niGD58+FllbNy4kcTERKKiogCYPHmyp+eF\nt8+fEEII/0tOTiYpKYmRI0cycuRIBg4cyC233AJU3BOmTJmCXq/HbDZz9dVX8+OPP5KdnU1ubi7j\nxo0DoEePHjRv3pydO3fWqM5x48Z5ku8pKSmMGDECrfZ/TfcLbSu4XC6uueYaoKJtcPTo0Srrf+ml\nl7j++utZuXIlV111FQkJCZ45CbZu3cqll15KTEwMer2+xnNJ1bQNs3XrVpo2berpGXLVVVeRmZnJ\n0aNHSU1NZfTo0ej1eiIiIk4b4nKmY8eOnTWfxPPPP+95v23btrRt29bzs9lsZtCgQUBFwuKyyy6j\nTZs2QMW9fsuWLZ4emb169SIyMvKsOocPH86ePXsoLCwE/peUsFgs5Ofns3LlSqxWK8nJyUyYMKFG\n562SqqosWbKEpk2b0rZt23O25wAGDRqEyWQ6rYxzfS5/+eUXhg0bRpMmTTCbzaclM6Kioli+fDkH\nDhygbdu2nocxQniDzCkhRAAqLi7mueeeY+7cuUBFF82ePXsCsHLlShYtWkRpaSlutxtVVT376XQ6\nQkJCTisrNDTU8x5UZMiLi4tZt26d5+mCqqo4nU6g4gnQqWXUdfxqZf2VMVR2aS0uLmbOnDmeuOx2\ne7WTT5160w8NDSUnJweTycTo0aNZtWoVkyZNIicnhwEDBlS5/9q1a9m6dSsABoOB0aNHe55snC+O\n8PDws8rLz88nNjbW87PFYiEvLw/w/vkTQgjhf5VzSuTn53uGHlT2zMvPzycsLMyzbVhYGHl5eeTn\n5xMaGopGo/G8V/nFNDo6+rx1DhkyhEcffZTCwkK+/vpr7rjjDn7//XfP+3VpKwQHBwOg1Wpxu91V\n1m8ymbj55pu5+eabKSoqYs2aNTz77LO0bNkSq9V62v2tMkl/PjVtwxQVFZGVlXXa/dhoNJKfn4/V\naj2tbWGxWCgtLa2yvvPNKXHqdTvz54KCgtOOMTQ0FFVVKSgoqHLfSsHBwQwePJiNGzfSr18/ioqK\n6NevHxqNhjfeeIMPPviAp59+mksvvZSnnnrqvPNzKIriOQ+qqtKhQwfmz5+PVqs9Z3uuuhjP9bm0\nWq1ntW8qPfvssyxYsIAbb7wRs9nMvffe26AmDRWBTZISQgSg2NhYbrrpprOy/ydOnODRRx/liy++\noEuXLhw6dIjExMQLKn/ixIk89NBDZ71nsVgoKSnx/Fw5V4K3xcbGMm/ePOLj48+7rdVqPe3flTfZ\ncePG8dxzzxEaGkpiYuJpT5BOdepEl3WJo1J0dLTnCQhUdDmtbGD66vwJIYTwvcjISJKTk3nppZdY\nsGABUP09ISoqCqvViqqqni+AhYWFNf4CbzAYGDFiBMuXL+fw4cP06dPntKREfbYV8vPz2bt3r6en\ngsViYcqUKWzatIn09HRCQ0MpLi4+bftKZyY6Ku/htYkrNjaWdu3aVbl6lcViqbZub4qKimLbtm2e\nn61WK1qtloiIiPPum5iYyLp16ygoKCAxMdFz/QcOHMjAgQMpKyvjhRde4J///Od5exycOdHlqc7V\nnjvXcVX3uTzXuY2Ojuaxxx7jscce44cffuD//u//GDp0KE2aNKlx3UJUR4ZvCBGARo4cyRdffIGi\nKKiqyvz58/n+++/Jz88nODiYdu3a4XK5WLJkCUC1Twiqk5CQwLfffuu52aSkpPDOO+8A0Lt3b9at\nWwdAWlqaZ1Inb0tISOCzzz4DKrqSPvvss+zevbvKbb/99lvsdjtlZWVs2rSJ/v37AzB48GAKCwtZ\nvHjxaV0M6yuOSsOHD/c0NgA+++wzhg0bBvju/AkhhPCPG2+8kW3btvHzzz8DFfeEpUuXoigKZWVl\nrFixgmHDhtGyZUuaNWvmmUgyLS2N3NxcevbsiV6vp6ys7LyTM48bN453332XUaNGnfVefbYVbDYb\nd911l2cCRIDDhw+zY8cO+vfvT58+fUhNTSU/Px+Xy8Xy5cs928XExHgmSMzKyvLMrVSbuHr16kVO\nTg47duzwlPPAAw+gqiq9e/dm/fr1KIpCfn4+33//fY2PqzaGDBlCamqqZ4jJZ599xpAhQ2o0d9WI\nESPYtm0bKSkpnvbJDz/8wFNPPYXb7SY4OJjOnTuf1lvhQpyrPVedc30u+/Tpww8//EB5eTnl5eWe\nZIjT6SQ5OZmTJ08CFcN+9Hp9tQ+DhKgt6SkhhJ8lJyefNoniM888w/Tp08nOzmbcuHGoqkr37t2Z\nNWsWwcHBXHHFFZ75DB5++GHS0tJITk7m9ddfr3Gd3bp147bbbiM5ORm3201UVBRPPfUUAA888AD3\n3XcfK1asoFevXgwePLjack4dFgHQpUuXGi85NWfOHJ566inPU5KhQ4fSqVOnKrcdPHiwZ5bq4cOH\nM3ToUKDi6UFSUhLfffcd/fr1q1G9dYmjUs+ePbn11lu5/vrrcbvddOnShSeffBKo3fkTQgjR8ISE\nhHDrrbfywgsvsHTpUpKTk8nKymLcuHFoNBqSkpIYM2YMGo2GuXPn8sQTT/Dmm28SFBTEa6+9RnBw\nMJ06dSIsLIwhQ4bw5Zdf0rx58yrrGjBgABqNpso5k+qzrdC8eXMWLFjA66+/zjPPPIOqqoSEhPDI\nI494VuSYOnUqEydOJCIigiuvvNKzutaUKVOYPXs2V155JV27dvXcXzt37lzjuMxmM6+//jpPP/00\npaWlGAwG7r77bjQaDVOmTCE1NZVRo0bRvHlzRo0addrT/VNVzilxphdffPG856BZs2Y888wz3HHH\nHTidTlq2bMnTTz9do/MXEhJCt27d2LdvH7179wbg0ksv5euvvyYxMRGj0UhkZCTPPvssAA8++KBn\nBY3aOFd7rjrn+lyOGDGCjRs3kpSURHR0NMOGDSM1NRWDwcCkSZM8Q1+1Wi2PPvooQUFBtYpXiOpo\n1FMHcwkhRAPz7rvvUlBQ4Jk5WwghhBC+lZqayoMPPnjaqhNCCFFT0udGCNFg5efn8/nnn3Pdddf5\nOxQhhBBCCCHEBZCkhBCiQfrss8+49tprueWWW2jVqpW/wxFCCCGEEEJcABm+IYQQQgghhBBCCL+Q\nnhJCCCGEEEIIIYTwC0lKCCGEEEIIIYQQwi8a5JKgOTlVL/tTFxERwRQUlHm93IagsR57Yz1uaLzH\nLsfd+DTWY6/P446JCa2Xcn2lPtoQ0Hg/a4FEroH/yTXwP7kG/ifXoGrnaj9IT4k/6PU6f4fgN431\n2BvrcUPjPXY57sansR57Yz1uf5Jz7n9yDfxProH/yTXwP7kGtSdJCSGEEEIIIYQQQviFJCWEEEII\nIYQQQgjhF5KUEEIIIYQQQgghhF9IUkIIIYQQQgghhBB+IUkJIYQQQgghhBBC+IUkJYQQQgghhBBC\nCOEXkpQQQgghhBBCCCGEX0hSQgghhBBCCCGEEH4hSQkhhBBCCCGEEEL4hSQlhBBCCCGEEEII4Rd6\nfwfQGNmdCtYSO2EhJgCsJXaCTHqsJXbQaIgJD8Jk0J1z3yCTnnK7i7AQ02nbnlr2+cqorP9YbimK\nU6nR9mfWlVNYDqpKTERwtfvX5nxcaBneFGjxCCGEEEIIIcTFqt6SElu2bOHuu++mY8eOAMTHx/Pn\nP/+ZBx98EEVRiImJ4aWXXsJoNPLVV1+xcOFCtFotU6ZMYfLkyfUVll8pbjdL1mewLT2HvCI7ZqMW\nVQW7033admajjiE9mjFtZEd0Wu1p+6btO0l+sQOtBtwqRFlM9ImPYdLwdizdeJBt6TnkF9mJ/OP1\nqQkdziqjchuTUQeo2BxuTznn2j7ylLq+2HCAH3cex+ZQ/ohZy+AecVx3Ssy1OR/VxexLgRaPEEII\nIYQQQlzs6rWnxIABA3j99dc9Pz/yyCNMnz6dMWPGMHfuXJYuXcqECROYN28eS5cuxWAwMGnSJEaP\nHk14eHh9huYXS9ZnkJKa7fnZ5nBXuZ3NofDd1iNoNBqmj4qvcl+3WvH/vCI7KanZ7MssJOtkief9\nyteBasuoTCjUdPvq6qo8lvVbj6A9Jebano+qYvClQItHCCGEEEIIIS52Pn38u2XLFkaOHAnAiBEj\n2Lx5Mzt27KBHjx6EhoZiNpvp27cvaWlpvgzLJ+xOhW3pObXaZ1t6DnanUqN9j+SUVPn6tvTcGpdR\n0+2rqwsgbV9FzOdzrvIrY/ClQItHNHyqqpL13DyOzV9Ub3Vos/ai//4zUJz1VketOMvBmgUuh78j\nqZZLgd9OGjle1PBGLxYUu1m8xsbugy5/hyJOkVtYzutLf+X3o1Z/hyKEEEI0SPXaKsvIyOC2227D\narUye/ZsysvLMRqNAERFRZGTk0Nubi6RkZGefSIjI8nJOfeX54iIYPR674/1j4kJ9XqZlY7llpJf\nbK/VPvnFdnRGg+ff51LZc+JMBcW2GpdR0+2rq6ti/4qYY6KbnLOec52PyhjOV4Y3VF7zQInHl+rz\n8x7IfHXc6X9/g2NvfEjT8aPqpU7Xob2Ufb8E9AbCw81ozMHn3L6+j9tZVoz1cCaqWyG8eSsMwYHz\n+ao89jK7yqbfVIrKwRICMTFBfo6s5n7db+etpQWUlKl0bR9ETEzIefdprL/jvlZqc7E9I5d/fPgz\nj87sRxOzwd8hCSGEEA1KvSUl2rZty+zZsxkzZgxZWVnMnDkTRfnf02ZVrfqbbXWvn6qgoMxrcVaK\niQklJ6fY6+VWUpwKkaEm8opqnpiIDDWhOJyef59r38o5Js4UEWqucRkV25s4fsJKWIip2u2rq6ty\nf8XhPO+5PNf5qIy5Pq8HnH7NAyEeX6rvz3ug8tVx5y77hoNPv4mpTQuaP/OQ1+vUnMzEkPIRaDQ4\nh19PbrECxdXXUe/H7Sit6CGhusHSgsJSoDQwPl+Vx15s17LzmAmHoqWFxUlckIPz5L8Dgtut8u3P\nDlJ+dqLVwrUjTPTt4D7v9azPay7JjtO1aRbKVYPbsuq/h3hv5R7+b1JPtBqNv8MSQgghGox6G77R\ntGlTxo4di0ajoXXr1kRHR2O1WrHZbACcOHGC2NhYYmNjyc3N9ex38uRJYmNj6yssvzEZdPSJj6nV\nPn3iYzAZdDXat7r2T5/46BqXAVBqc/LEB7/w949+Ibiapz0tzvGErm+nmBqtWHGueCpj9qVAi0c0\nXMVbtvP7vX9HZwkhftGrGKIivFq+puA4hg2Lwa3gGjoVtWlbr5Zfa44SKMz8IyHREsxh/o2nCrml\nOrYdMeNQNHSIstMxxlHt38xAUlKm8u4KG+t+dhIequH/JgcxuIcBTUMIvpGZcPkl9I6PYceBPL7e\nfNjf4QghhBANSr0lJb766ivef/99AHJycsjLy+Oaa65h7dq1AHz77bcMHTqUXr16sXPnToqKiigt\nLSUtLY3+/fvXV1h+NTWhA6P6tyTKYkZDxSobJsPZl8Bs1DGyXwumJnQ4a9/IUFOVZSvu/+2r1UCU\nxcyo/i2rLCPKYkarqdjWbNR5YoGKCStVKiZ5zDpZQqvYEM/2lWX+bWZfRvZr4dmnst6EM2Kuzfmo\nLmZfCrR4RMNjO5TN/pvuA7ebDu++SFDHS7xbQXE+hu8WoXHYcA2eiLtVZ++WX1v2YijMqvh3WCsw\nW/wbzxlUFfYfU9l1vOLvZvdmdlqGN4z5GH4/pjD30zLSsxS6tNVx73XBtGoqydFApdVquP/6fkRa\nTCz//iC7f8/3d0hCCCFEg6FRazJe4gKUlJRw//33U1RUhNPpZPbs2XTp0oWHHnoIu91O8+bNee65\n5zAYDKxZs4b3338fjUbDjBkz+NOf/nTOsuujS6ovu7PbnQrWEjthIRUNZWuJnSCTHmuJHTQaYsKD\nqn0yb3cq5BSU8eoXO8gvPnsyuSiLibsn9SQmIvicZZxav0uj4Ym3/1tNeWYev6E/5XYXYSGm08q0\nOxVyCstBVc9Z3/mcGo8veyRUd839FY8vyfAN73MVFrHn6huxHThM25f+Ruz1E71bQXkxxrXvoSnO\nx9V/LEqXQTXetV6O21YERdmABsJbgfH8cxz4kluFA7lGjhQZMOrc9IizE2qqesWjQKKqKpu2O1n5\nowNVhTEDjYzob6j1cAAZvlG9+jwvP+3I5vmP0wgy6XnyxkuJtJjrpS5RtcZ6bwskcg38T66B/8k1\nqNq52g/1NqdESEgIb7311lmvf/jhh2e9lpSURFJSUn2FEnBMBh2xEf+blK7y36HBxhrtazToKKgi\ngQAVE00a/xiuUdP6dRrtOcqzUW53nbb9qeW0rMFka+dzZjz+FmjxiMDndrrIuPUhbAcO0+y2ZO8n\nJBzlGL5bWJGQ6DG8VgmJemGzQtER0GgrekgYA2sSWJcb9pwwkV+mxxIEXWNsmA31kn/3KptdZcl3\nNn7NUAgN1jAj0USHVg1vlZDGrH3zMK4b1ZGPv01n/vJdPDS9Lwa9Txc6E0IIIRocuVM2QGEhJiIt\nVQ/jiAg1e3pA1FSExbvlCdGYqKrK4Yefo+iHX4hIGk6rv832bgUuB4b1H6MtOIESPwClV4J3y6+t\n8sL/JSTCWwdcQsLu0rD9iJn8Mj0RQS4SumkaRELiWK7CK0vK+DVDoV1zLfdeFyQJiQZqRJ8WDOrW\nlINHi1iyfr+/wxFCCCECniQlGiBvT8poNuplkscz2J0KJwvKsDuV828sGrXjCxaT8+kKgnt0pt2b\nT6PRefH3xa2g/89naHMyUdr2wDVgXPWz2vpCWT4UHwWNDsLbgCGwehSV2LVszTZT4tARZ3HSI86O\nQR/4k0L+stfJa5+Xk1uoMqKfgduuCcLSRG7PDZVGo2FmYmdaxDRhfdoRNu8+7u+QhBBCiIAmj2Ea\nqMrJF7el51JQbCMi1Eyf+OgLnpTR2+U1VIrbzZL1GWxLzyG/yE6kxUSf+BimJnRAp5UvCeJ0+d9s\nIOsfb2CIiyV+4SvogoO8V7jqRv/jMnRH9+Nu3hHX4Gsqeif4S1kelJyoSEhEtAF9YI2VzyvVseeE\nCUXV0C7SQatwZ8CvsOF0qXz5HztbdrswG2HGODPd28tt+WJgMuq4c2IPnl74CwvX/Ear2BCvDHcU\nQgghLkbS+mmgdFot00fFc+2w9l6ZlNHb5TVUS9ZnkJKa7fk5r8ju+Xn6qHh/hSUCUOmvezl456No\ng8zEL3wFY7PaLfl7TqqK/pfV6A79ijumNc5h00Dnxz/XpTkV/2n1FT0k9IE1pOuIVc/+XCNaDXRt\naiM2JPB7OOUWulm42sbRXDctYrTMGmsmKkwSnxeTZpHB3DS2K/O+3Mm8ZTt5/IZLCTJJs0sIIYQ4\nk7SAGrjKSRm9lUDwdnkNid2psC09p8r3tqXnylAO4WE/cpz0WffgtjtoP/8fNOneyavl635dj27f\nFtzhTXGOmAH680+CWy9UFUpO/pGQMEB424BKSKgqZOQa2Z9rwqCFXs0bRkJi5wEXr3xWxtFcNwO7\n6fm/yUGSkLhI9esUQ9JlrTlRUM4HX++lnhY8E0IIIRo0aQUJ8QdriZ38InuV7xUU2yqWbBWNnlJS\nyv5Z9+I8kUvrJ+8h4sorvFq+bu9m9L9uRA2JwDlyFpi8OCSkNlS1YrhGWS7oDBDR1n/JkSoobth9\nwkS21UCwwU3fluWEmQN7yU9FUVn5g52PvrahuGHaaBOTR5obxLwX4sJdO6wdnVqFszU9h7U/Z/k7\nHCGEECLgSFJCiD94e1UTcfFRFYWMO/5G2Z50YmdNoumfr/Nq+dqD29GnrkYNCsEx6gYIrn4953ql\nqlByHMrzQWes6CGhM/gnlirYXRq2HzWTW6on3KzQp0U5QQG+woa1xM1bX5azMc1JdLiGu6cEcWmX\nwDmnov7otFpuG9+NsBAjSzceYF9mgb9DEkIIIQKKJCWE+IO3VzURF5/Mp17FmvIDlmEDafP0/Wi8\nOJOiNnsf+v9+iWo0V/SQCI30Wtm1oqpQfAzKCyqGakS0DaiERKlDQ9oRM8V2Hc1CnfRsbiPQfzUz\nslzM/bScg0fd9Oqg556pwcRFB3jQwqvCQkzcPr47AAtW7KZQet4JIYQQHpKUEOIUUxM6MKp/S6Is\nZrQaiLKYGdW/ZaNbhUSc7cRHX3DivU8Jim9Hh7efR6P33oR1mhOH0H//GWh1OEcko0Y081rZtaKq\nUHQUbIUVq2uEt62Y3DJA5JdpSTsShN2l5ZJIB51iHGgDeOSDW1VJ+cXBW8ttlNlVJlxhJHmMCbMp\ngIMW9Sa+VThTRrSnqNTBguUo8RD0AAAgAElEQVS7cCmBPdxICCGE8JXAaW0KEQBkFRJRlcIN/+Xw\nY/9EHx1J/OJX0Vu8t7SfJv8ohg0fg6riHD4dNba118quFVWFomywF4M+CMJbgzZwPvvHivSk51TM\nadEl1kbT0MCe0LLMpvLJtzb2HlIIC9Ewc4yZtnGBcz6Ff4y+tBUZR4tI/e0kSzceYNrIjv4OSQgh\nhPA7SUoIUYXKVUiEKPstg4y/PIJGryP+w5cxtWrutbI1RXkYvlsETgeuyyehtvDTFxTVDdZscJSA\nIRjCWgVMQkJV4fd8A5mFRvRale7NbIQHBfYT5swTCotW2ygoVolvreP6RDMhQdI7QoBGo+HGMZ3J\nPlnCt79k0aFFGP07x/o7LCGEEMKvZPiGEEJUw3Eyl/TkObhLSmn36pOE9OvhvcLLijCkfITGVopr\nwFW4L+npvbJrQ3WDNasiIWFsElA9JBQ37DlhIrPQSJDBTd8W5QGdkFBVlR9/dfLmF+UUFqtceZmR\nW/4kCQlxuiCTnjuv6YHJoOP91Xs5llfq75CEEEIIv5KkhBBCVMFdbmP/TffjOHKclg/dTtT4K71X\nuL2sIiFRWoir10jcnQZ4r+zacCtQmAmOUjCGVPSQ0ATGbcGhwI6jZnJK9YSZFfq2KCfYGLgrbNgd\nKv/61s6yjXZMRrhlvJnEy4xoA3nSC+E3LaKbcMOYztgdCvO+3IXN4fJ3SEIIIYTfBEbrUwghAojq\ndnNwzpOUpu0iavI44u66yXuFO+0Y1i9Ga83B1XkQSo9h3iu7NioTEs4yMIUGVEKi1KEhLTuIIruO\n2BAXvQJ8hY0T+W5eW1LGtn0u2jTTcu91wXRqI6Mjxbld1rUpo/q15GhuKQvX7ENVAzfpJoQQQtQn\naTUJIcQZjrz0FvkrUwi9rA+XvPg37y39qbgwbPwUbW42Srs+KP2TwIvLitaY21WRkHDZwBQGlub+\niaMKBeVadh8343JraBPhoG2EM1BCq1LaPidfrLfjcMLQ3gauGmJErwvggEVAmZLQgUPHi9my5wTt\nm1sY1b+Vv0MSQgghfC4wHosJIUSAyPl8FUdf+wDTJa3o8P5LaE1G7xTsdqP/YSna4wdQWnbGNWi8\nf3omuF1QcLgiIWEOD6iExPFiPb8eNaO4oXOMnUsiAzch4XKp/HuDnX+ttaMBZo4xM+EKkyQkRK3o\ndVpun9Cd0GADS9ZnkHHE6u+QhBBCCJ+TpIQQQvyhaPNWDj3wDLpwC/ELX8EQGe6dglUV/ZaV6DJ3\n445ti2voFP9MJqk4oeAQKHYIioDQuIBISFSusPHbSRM6LfRsbqOZJXDH2OcXuXnz3+X8d6eTZlFa\n5kwLpldH6XgoLkxEqInb/tQNt6qyYPkuikod/g5JCCGE8ClJSjRgdqfCyYIy7E7F36EI0eDZDmay\n/88PgqrS8d0XCerQ1mtl67atQ5eRijsyDueI60Fv8FrZNaY4ofAQKA4IjoKQZgGRkHCr8NtJE4cL\njJj1bvq0KCcigFfY2HvIxdxPy8g64aZ/Zz13TwkiNkJupaJuurSN5Nph7SkotvPWil0o7sD9HRBC\nCCG8TR7tNECK282S9RlsS88hv8hOpMVEn/gYpiZ0QKeVxrEQteUqsLJv5hyUAiuXzH0cy5D+Xitb\nt/sH9Ls34bZE4UyYCUaz18quKcVhq+gh4XZCcDQ0iQmIhIRTgV3HzVhtOiwmhe7NbBgD9K7kdqus\n3eIg5Rcneh1MTjBxWTe99+YbEY3emMtac+CIlW37c1m+6XeuHdbe3yEJIYQQPiHfYBugJeszSEnN\nJq/IjgrkFdlJSc1myfoMf4cmRIPjdjjZ/+cHsB/MJG72DcRM+5PXytZmbEWfthY12IJz5A0QFOK1\nsmvMZafw9z0VCYkmMRASGxAJiTKnhrQjQVhtOmKaVKywEagJieIyN28vt5Hyi5Moi4b/mxzEwO4G\nSUgIr9JoNNw8rgux4UF8vfkw29Jz/B2SEEII4ROSlGhg7E6l2obKtvRcGcohRC2oqsqhB/9B8eY0\nIsYl0PLhO7xWtjZzN/qfVqCagnGOmgUhXpqfojZcFT0k3C4nhDStSEoEAGu5lrTsIMqdWlqFO+ja\n1I4uQO9GB48ozP20nIxshW7tdNxzXTAtYwN4fVLRoAWbDdx5TQ+Mei3vfb2XEwVl/g5JCCGEqHcB\n2gwU1bGW2Mkvslf5XkGxDWtJ1e8JIc527M2PyP18FU16d6Xda39H46XhT5pjB9Fv+gJ0BpwJyahh\nsV4pt1ac5RWrbKgKIXFtK+aRCAAninVsP2bG5Yb4GDvtowJzhQ1VVdmQ5mDBsnJKylSuGmLkxnFm\ngkwBGKy4qLSKDSE5sRPldhfzlu2Shw1CCCEuegHaWVZUJyzERKTFRF4ViYmIUDNhISY/RCVEw5O/\nKoXs5+ZhbN6Ujh/NRRfsnbkeNLnZGDb+CwDn8Omo0S29Um6tOMugMBNUN4TGERTZlJKcYt/HcQpV\nhcxCA7/nG9FpVbo1sxEZHJiT+ZXbVT5bZ2PXQYXQYA3JY8y0byG9I3zpxRdfZOvWrbhcLv7yl7/Q\no0cPHnnkEVwuF3q9npdeeomYmBi++uorFi5ciFarZcqUKUyePNnfoXvFkB5xHDhiZeP2o3y8dh83\njesiw4WEEEJctCQp0cCYDDr6xMeQkpp91nt94qMxGaThLMT5lGzbxYG7nkDbJJj4Ra9ijI32Srka\n60kM6xeD4sR1xVTUOD9MVOcoBWtWRULC0gLMYb6P4QxuFdJzjBwvNmDSu+nRzEaISfV3WFU6kqOw\ncLWNPKtK+xY6ZiSZsDSRToW+9NNPP7F//36WLFlCQUEBEydO5LLLLmPKlCmMHTuWf/3rX3z44YfM\nnj2befPmsXTpUgwGA5MmTWL06NGEh/thqFQ9uG5UPIeOF/PjruO0bxnG8N4t/B2SEEIIUS8kKdEA\nTU3oAFTMIVFQbCMi1Eyf+GjP60KI6tmzj7H/hvtQHU46LnyB4K4dvVNwaSGGlIVo7GU4B07A3bqb\nd8qtDUcJFGYBKlhagtni+xjO4FRg9wkzheU6QkwKPZrZMekDMyGxZbeTZRvtuBQY2d9A4kAjOq08\nnfa1Sy+9lJ49ewJgsVgoLy/niSeewGSq6AkYERHB7t272bFjBz169CA0NBSAvn37kpaWRkJCgt9i\n9yaDXssdE7vz1Ie/8Mm6dNo0DeWSOP//TgshhBDeJkmJBkin1TJ9VDzXDmuPtcROWIhJekgIUQPO\nohLSZ87BmZNHm2ceIHzk5d4puLwEQ8pHaMqKcPVNxN2xn3fKrQ17MVj/6EEV1gpMob6P4QzlTg07\nj5kpc2qJCnYF7ISWDqfKsv/Y+WWPiyATzBprpuslcnv0F51OR3BwMABLly7liiuu8PysKAqffPIJ\nd955J7m5uURGRnr2i4yMJCfn4lqxIjosiL/8qRuvfL6D+V/u4okbLyUkyODvsIQQQgivklZXA2Yy\n6IiNCPZ3GEI0CKrLxbabHqT8twPE3jiFpjdN9U7BDhuG9YvRFuXh6nY5SjcvJTpqw170R0JCA+Gt\nwOiHpUfPUGTTsvO4GaeioWWYk/ZRjoCc0DKn0M3C1TaO5bppFatl5lgzkZYAzJw0QikpKSxdupQP\nPvgAqEhIPPjggwwcOJBBgwaxcuXK07ZX1Zr1wImICEavr59EfkyM95OBI2JCOW6188na3/hozT4e\n//NA6cFzDvVxDUTtyDXwP7kG/ifXoHYkKdEI2Z2K9LAQjc7hJ+aSs+Z7whIG0+ape71TqOLEsPET\ntPlHUTr0Q+lzpXfKrQ2bFYqOgEZb0UPC2MT3MZwhp0TH3pMm3Cp0jLbTIszl75Cq9GuGi8/W2bA7\nYXAPPeOHmtDr5cteINi0aRNvvfUW7733nmd4xiOPPEKbNm2YPXs2ALGxseTm5nr2OXnyJL179z5v\n2QX1tMxmTEwoOfU0oWxC7zh27s8hbd9JPlyxk/GXX1Iv9TR09XkNRM3INfA/uQb+J9egaudK1Mjj\noEZEcbv5JCWdR9/9iUfe/olH3/2JT1LSUZTAnAFfCG85/v5nnPzwc0K7x9NhwbNo9F7Ix7oV9N9/\njvbE7yitu+K67E/4vCtAeeH/EhLhrf2ekKhYYUPP7hMVY/97NAvMhISiqKz43s7C1TZUFaZfaeLa\nEWZJSASI4uJiXnzxRd5++23PpJVfffUVBoOBu+66y7Ndr1692LlzJ0VFRZSWlpKWlkb//v39FXa9\n0mo03HJ1V6IsZr764Xd2Hszzd0hCCCGE10hPiUZkyfqM01btyCuyk5KaTXCQkQlD2vovMCHqUWHK\nD2Q+MRdDTBSXrnibkiAvDG1Q3eg3r0CX/RvuZu1xXT4ZtD7O8ZblQ8lx0OgqEhKGIN/Wfwa3Cvtz\njRwrMmDUuekRZyfUFHgJz8JiN4vX2Dh0zE1shIZZY4NoFiX5+UCyevVqCgoKmDNnjue1o0ePYrFY\nSE5OBqB9+/Y8+eST3Hfffdx8881oNBruvPNOT6+Ki1FIkIE7r+nOs4u38s5Xu3nihkuJDvfv770Q\nQgjhDZKUaCTsToVt6VVPAPbTrmOMGdBKhnKIi07Znv1k3P5XtEYDHRfOJah1c0rq2p1OVdFtXYvu\n4DbcUS1xDr8OdD7+U1qWByUnKhISEW1Ab/Zt/WdwuWHPcRP55XqaGBV6xNkxB+AKG/syXfxrjY1S\nG/SO1zMlwYTJKL0jAs3UqVOZOrVmc74kJSWRlJRUzxEFjrbNLFw/Op6Fa/Yxb/ku/jqjL4Z6mh9D\nCCGE8BV5PNRIWEvs5BfZq3wvt7Aca0nV7wnRUDlO5JI+cw7u0jLavf4UIb29s0Snbtf36Pf+F3dY\nDM6RyWAweaXcGivNqUhIaPUQ0dbvCQmbS8O2I0Hkl+uJDHbRp4Ut4BISblXl2y0O3l1uw+aAicOM\nzEiUhIRomK7o1ZzLe8Rx+Hgxn6Ts93c4QgghRJ1JT4lGIizERKTFRF4ViYno8CDCQnz8xUqIeqSU\n2dh/w704jp6g5SOzibxqlFfK1ab/jH57CmqTMJwjZ4HJh6vfqGpFQqIsF7QGCG8DeqPv6q9CsV3L\nzmMmHIqW5hYnHaIdBNqiAMWlbt5bYWNfpkJEqIaZY8y0biZPlkXDpdFomHFlPIdPFPOf7Udp3zyM\ny3vG+TssIYQQ4oJJT4lGwmTQ0Sc+psr3BnaPk6Eb4qKhut0cvOsxSnfsIXrq1cTNnuWVcrWHdqLf\nsgrV1ATnqBugSZhXyq0RVYXSkxUJCZ3hjyEb/k1I5Jbq2HbEjEPR0D7KTscATEgcPq7w2IIc9mUq\ndG6j455pwZKQEBcFo0HHnRO7E2TSs/jbfWSekFnehRBCNFySlGhEpiZ0YFT/lkRZzGg1EGUxM6p/\nS2662jvd2oUIBNnPzaNg9QZCB/ej7Qt/ReOFFTE0R/ej//HfYDDiHDUT1RLthUhrSFUrJrQsywOd\nEcLbVvzfj7IL9ew6XtG7qlszO63CXT5feORcVFVl0w4H85aWU1DkZswgIzf/yUyToAAKUog6io0I\n5paruuJ0uZn/5S7KbE5/hySEEEJcEBm+0YjotFqmj4rn2mHtsZbYCQsxYTLo0OkkNyUuDjmfLOfY\nvIWY27Wm47svojUa6lym5mQmho2fgkaDc8QM1MjmXoi0hlQVio+BrRB0pooeElr//dlWVcjIM3LE\nasCgc9OjmR2LObBW2LA5VL74zs72/S5CgjTcOTWCWIvD32EJUS96d4xm3KA2fL35MO+t2svsa3ug\nDaQMoRBCCFED8m20ETIZdMRGBMuQDXFRKfoxlUMPP4cuIoz4Ra+ij6j78ApNwXEMGxaDW8E1dCpq\n07Z1D7SmVBWKjlYkJPRmvyckXG7YddzEEauBYIObfi1sAZeQOJan8OqSMrbvd9E2Tsu91wXRrb3M\nlyMubhOHtqNLmwi2Z+TyzU+H/R2OEEIIUWuSlPAhu1PhZEEZdqfi71CEuKiUZxxi/58fAI2Gju+/\nhLld67oXWpyP4btFaBw2XIMn4m7Vue5l1pSqQlE22K2gD6qY1NKPCQm7S8P2I2byyvREBCn0bVGO\n2RBYK2yk7nXy2pJycgpUhvUxcMc1QYSFyC1OXPy0Wg1/Gd+NiFATy74/yJ5D+f4OSQghhKgVGb7h\nA4rbzZL1GWxLzyG/yE6kxUSf+BimJnRAp5VGsxB14cwrJH3mHBRrMe1eexLLwL51L7S8GON3C9GU\nF+PqPxZ3u951L7OmVDdYs8FRAoZgCGsFWv/1aiqxa9h5zIxd0RIX6qRjTGBNaOl0qaz43s7mXS7M\nRpg+1kzPDo371lZY5OTT5Rm0a2Pisj7h/g5H+IAl2MgdE7rz/L/SePur3Txxw6VEWvy7XLAQQghR\nU/KN2AeWrM8gJTWbvCI7KpBXZCclNZsl6zP8HZoQDZrb7mD/zfdjP5RN8zk3Ez35qroX6ijH8N1C\nNMX5uHoMR+kyqO5l1pTqBmvWHwmJJhDe2q8JibwyHduOBGFXtLSLdBAfYAmJPKubN78oZ/MuF82j\ntdwzLbhRJyRUVWXjf/O469E9fP7VEfaml/g7JOFD7VuEMW1kR4rLnCxYsQuXEljDq4QQQojqNN7W\nm4/YnQrb0nOqfG9bei7XDmsvczsIcQFUVeX3B56h5OftRF49mhb3/6XuhbocGNZ/jLbgBEr8AJRe\nCXUvs6bcbrBmgrMMjCEQ1hI0/ssbH7XqSc81otFA16Y2YkMCa9jZ7oMuPl1no9wOA7rquWa4CYM+\ngDImPnYy185bi7LYtqsIk1HLXbe054rLLP4OS/hYQt8WHDhi5ac9J1iyPoPrR8f7OyQhhBDivCQp\nUc+sJXbyi+xVvldQbMNaYic2ItjHUQnR8B197X3ylq6mSd/utHv1CTR1HQrlVtD/5zO0OZkobXvg\nGjAOn61z6VagMBNc5WAKBUtL39V9BlWFg3kGsqxGDFqV7nE2wgJoQkvFrfLNZgcbtjrR62DqKBMD\nutZ9lZWGyu1W+WZ9Dh//+yg2u5ve3UK5fVZrunWJJien2N/hCR/TaDTMSupM1skSvtuaTfsWFgZ2\nbebvsIQQQohzkqREPQsLMRFpMZFXRWIiItRMWIjMDC9EbeUtX8uRF9/C2DKO+A9fRhtUx7HTqhv9\nj8vQHd2Pu3lHXIOv8V0vBbcChYfBZQOTBSwt/JaQUNyw96SJ3FI9QQY3PeNsBAXQhJZFpW4+XmPj\nwBE30WEaZo010zym8fY0yzpSzryPMtl3oJSQJjr+b0YbRgyORCNLQjZqJqOOOyZ25+mFqXz0zW+0\nigmhRUyIv8MSQgghqiVzSvhAp9YRVb7eJz5ahm4IUUvFqb9y8J6n0IU2IX7xqxhioupWoKqi/2U1\nukO/4o5pjXPYNND5KF/rdkHhoYqEhDncrwkJhwu2HzWTW6onzFyxwkYgJSQOZCvM/bScA0fc9Giv\nY8604EabkHC63Hz+1THufeo39h0oZcil4bzxTFcShkRJQkIAEBfVhJvGdsHhdPPml7sot7v8HZIQ\nQghRLekpUU/OXHHDbKxoPNsdCpEWM33io5ma0MHr9dqdCtYSO2EhpnpNePiqHiFOZc88wv4b70N1\nKbT/8GWCO7Wvc5m6X9ej27cFd3hTnCNmgN7ohUhrQHFW9JBQHBAUASHN/JaQKHVo+PWYGbtLS9MQ\nJ51iA2dCS7eqsnGrk9WbHWg08KehRq7obWi0X77TD5Yy/6PDHM62ERlu4C/JrRggK2yIKvTvHEvi\ngFas/TmLD1fv5fYJ3Rvt740QQojAJkmJelK54kYlm6Nikrgh3ZsxI7GT17/Ie2PZ0ZokGmR5U+Ev\nrqIS0mfegyuvgDbPPUz48LqviqHbuxn9rxtRQyJwjpwFpiAvRFoDpyUkIiGkqd8SEgVlWnadMKO4\nNbSNcNAmwumvUM5SZlP5dJ2NPb8rWJpomDnGzCXNG2cS1GZX+PTLY6xadxK3ClcOi2bm5BY0CW6c\n50PUzLXD2vP70SJS9+Xw7S9ZJA5o7e+QhBBCiLNIUqIenGvFjd8yC+ulzjOTIJXLjgJMH3Xu2bcV\nxc0nKek1SjTUpR4hLpTb6SLj1ocoTz9I01uuo+msSXUuU3twO/rU1ahBIThG3QDBoXUPtCYUBxQc\nBrcTgqOhSYzfEhLHivSk51T0DOkca6NZaOCssJF1UmHRahv5RSodW+m4PtFEaHDjTHz+uqeI+R9l\nciLXQVysiTtubE33Tj76vIoGTa/TctuE7jz14S98seEAl8RZiG8lPWuEEEIElsbZwqtnNVlxw5vO\nt+yo3XnuLxofrNxNSmo2eUV2VP6XaFiyPsOr9QhxIVRV5fCjL1L0/RbCRw2l9eNz6lymNnsf+v9+\niWo0V/SQCI30QqQ14LJDwaGKhESTGAiJ9UtConKFjX05JnRa6NU8cBISqqqyeaeTNz4vJ79IZfQA\nA7eONzfKhERJqYs3PjjME//MICffwcQxTXnl710kISFqJTzExG3juwGwYPkur7dBhBBCiLpqfK08\nH6hccaMq9bHiRl2SIHanwk+7jlX53pmJBl8nW4QAOPHuJ+QsXkZwt3jaL/gHGl3duqtrThxC//1n\noNXhHJGMGuGj5fJctopJLd2uiuEaTWJ8U+8ZKlfYyCw0EmRw07dFOeFBgbHkp92p8uk6O0s32DEZ\n4c9/MpM00IQ2UCa48KHNqQXc9ege1v+QxyWtg3jxsc7MnNwCk1Fu26L2OrWOYNLw9lhLHSxYsRuX\nEhi/80IIIQTI8I16YTLo6BMfc9owh0r1seJGXZYdtZbYySksr/K9ykRDbERwnesR4kIUrP0PmU+9\niqFpNPELX0HXJLhO5SknszFs+BhUFefw6aixPhpf7SyHwkxQlYoJLYN91DPjDA4Fdh03U2TTYTEr\ndG9mwxggUxKcLHCz8Gsbx/PdtG6qZeZYMxGhje8LeH6hk3c+zmRLmhWDXsOMa5szPrEpen3jS8wI\n70oc0IoDR61s3ZfDsv8cZEo9TLYthBBCXAhJStSTypU1tqXnUlBsIyK0/lbcqEsSJCzEREx4ECcL\nzk5MnJlo8HWyRTRupTt/48Cdj6I1m4hf+ArG5k3rVJ6mKI+yde+B04Hr8kmoLTp6KdLzcJb9kZBw\nQ2hcxUobflD2xwobNpeW2BAXnWLs6ALkO//2dCeff2fH7oTLexm4+nIjel3j+hKuqirfbcrjwyVH\nKCtX6Bofwh2zWtMizuzv0MRFQqPRcNPYLhzJKWXNz5m0b2GhX6dYf4clhBBCSFKivui0WqaPiufa\nYe19snTmhSZBTAYdA7vH8dWmg2e9V1WiwZfJFtF4OY6dJP2Ge3GX2+j43ks06dmlbgWWFWFI+Qi1\nrATXgKtxX9LTO4Gej6MUrFkVCQlLCzCH+abeM+QUqaQdCcLl1tA63MElkYGxwoZLUVn1g4NNO5yY\nDDAjyUSfeIO/w/K5YyftLFiYyc69xQSZtfwluRVXDotulMNWRP0KMum5c2J3nl6Uyvtf76V5dBPi\nopr4OywhhBCNnCQl6pnJoPMMf6hPdUmC3HR1N8rKHTVKNPg62SIaH6W0jPRZ9+A8dpJWj91NxJjh\ndSvQXoYh5SM0pYWYBo/F3n6AV+I8L0cJFGYBKlhagtnim3rPcLxYx76DKqjQKcZOnMXllzjOVFDs\nZtFqG5kn3DSLrBiu0TQyQLpu+IiiqKxcd5JPlx/F4VDp38vCX5JbEx1p9Hdo4iLWIiaEG5I6887K\nPcz/chePzuyPKVDGcQkhhGiUJClxkbmQJIhOV/tEg6+SLaJxURWFA7Mfo2zXPmKun0iz22bUrUCn\nHcP6xWitObg6DyL0stGQW+KdYM/FXgzWP4Y5hbUCk+9XS1BVOFxg4FCBEYMOusbaiAgOjMntfjvk\n4l/f2iizQd9OeiYlmDAZGlevgENZZcz7MJOMQ2VYQvXMvrEllw+IQBMIXVjERW9gt2YcOFLEd2nZ\nLFzzG7dc3VU+e0IIIfxGkhLCQxINvmV3KtLb5AxZ/3iTwrX/wXL5ANo8+1DdGsmKC8PGT9HmZqO0\n64PSP8k3jW570R8JCQ2EtwJjSP3XeQa3CvtOGjlRYsCsdzOsqw57qf8TEm63yrc/O0j52YlWC5NG\nmBjYXd+ovgw5nG6+WHmcL785jqLA8EGR3HhdSywhcjsWvjV1ZAcOHS/ipz0naN8ijJH9Wvo7JCGE\nEI2UtIKE8DHF7WbJ+gy2peeQX2Qn0mKiT3wMUxM6oNM2ru7rpzr58TKOv7UYc4e2dHjnebSGOvx5\ncrvR/7AU7fEDKC074xo0HjQ+OLc2KxQdqagrrBUYfT9W26nA7uNmCm06Qk0KPZrZsASHklPq81BO\nU1Km8vFaG/uzFCItGmaONdMqtnEl4/buL2HeR4c5csxOTJSR22a2om8P/8wzIoRep+X2Cd158sNf\n+Oy7/bRtFkr7FvJ5FEII4Xv12kq32WyMGjWKZcuWcezYMZKTk5k+fTp33303DocDgK+++oprr72W\nyZMn88UXX9RnOKKG7E6FkwVl2J2Kv0O5KC1Zn0FKajZ5RXZUIK/ITkpqNkvWZ/g7NL+xfr+FQ4+8\ngD4ynPhFr6IPr8P8C6qKfstKdJm7cce2xTV0Cmh98OW3vPB/CYnw1n5JSJQ7NaQdCaLQpiO6iYve\nzW0YAyD1/PsxhbmflrE/S6FrWx33TAtuVAmJ8nKFdz7O4m/Pp3P0uJ1xI2N47e9dJCEh/C7SYua2\n8d1wqyrzl++isOTsJb+FEEKI+lavzdUFCxYQFlbR6Hr99deZPn06Y8aMYe7cuSxdupQJEyYwb948\nli5disFgYNKkSYwePZrw8PD6DEtUQ57g1z+7U2Fbek6V721Lz+XaYe0b3VCO8vSDZNz6EBqdlo4f\n/BNz27p1IdZtW4cuIxV3ZBzOEdeD3gerOZTnQ/Fx0OgqEhKGoPqv8wxWm5Zdx8w43RpahTtoFwAr\nbKiqyvfbnaz60YGqwrRoCfMAACAASURBVNjBRkb0M6D1d2A+tPVXK28tyiQ330nLODN33tiazh18\nP6RHiOp0bRvJpGHt+WLjAd749688NL0vxkZ2HxJCCOFf9fZN88CBA2RkZDB8+HAAtmzZwsiRIwEY\nMWIEmzdvZseOHfTo0YPQ0FDMZjN9+/YlLS2tvkIS5yFP8OuftcROflHVT6IKim1YG9lTKmdeAekz\n70EpKuGSuY8TOqB3ncrT7f4B/e5NuC1ROBNmgtHspUjPoSzvfwmJiDZ+SUicLNGx/agZpxvio+20\nj/J/QsJmV1m02sZXmxw0MWu4baKZkf2NjSYhUVTs4pV3fueZVw9QYHUy+epmzH2ysyQkREBKuqw1\nQ7o34/djxXywei+qqvo7JCGEEI1IvfWUeOGFF3jsscdYvnw5AOXl5RiNFcucRUVFkZOT8//s3Xd4\nlHW2wPHv9EnvvdBCqKFbly4oYAHpveha0b2u7uquut29u6vXsq51dZWiCIKIiDRpig2F0IuhB9L7\nJJn2tvtHgEUNkDIlk/w+z+PzSJJ557wzk8n8znt+51BaWkp0dPSF20RHR1NSUv9VZMG7xBV834gI\ntRAdbqGsnsREVJiViFBLo44XyM0yVaeLo/MewZWbR/LDdxE7fnSzjqc/tgtj9ga04HCkG+ZCkA8W\nf7WlUFsMeiNEtgNj456/5tI0yK00cbLcjEGn0SPJRXSw/7dd5ZcqLFzrpLRSo2OynlmjrYSHtI1q\nK03T2L6jgv8sOYutRiajQzAPzGtHu1TfJ6sEoaF0Oh2zR3WlqNLBt4eLSY4J4baBHfwdliAIgtBG\neCUpsWrVKvr06UNaWlq9379UBr6hmfmoqGCMRs8vwOLifD+2r6UwmE2UV1/6Cr7BbCIu1vd75L3N\nH8/5z3qnsHr7iXq+nkxqcsO2LimKylsfH+SbAwWUVDqIiwzi2p5J3HFrDwyGhi3+/Pl61zSNPbP/\nSM3OfSRPvYU+f3+kWRMYpKN7cXzzETprCCGT7scQk3jJn/XEeWuahr0kD3ttMXqTmch23TBYfFCV\ncRFV1cg+qXGyHILMMLCLnsiQS0/P8dXzvT3bzoKPa5BkuHlQCBNvCMNg8G91hK/OvajEybOvHuWr\nneVYzHoevLMTE29N8dv5t+W/aULjmYx6HhifxVMLd7Lqi5MkxgRzdbcEf4clCIIgtAFeSUps27aN\nM2fOsG3bNgoLCzGbzQQHB+N0OrFarRQVFREfH098fDylpaUXbldcXEyfPlcu366osHs85ri4MEpK\nqj1+3EAQFxeG4paIDrv0FXzFLbW6x8dfz/mt16Vjd7jZnVNKRbWTqDArfTNjufW69AbHs2RTDpt2\nnr3w7+IKB6u3n8DucDN9ROYVb+/v1/vZ/3ud/KVrCB3Qi+T//S2lpTVNPpau4ASmLYvAYMI9bCZO\nNQQucW4eOW9Nq6uOsJeBwYQank65TQKk5h23EWQFDhZZqXAYCDUrZCW5kOwaJZd4a/TF8y3JGiu3\nufj2kIzVDDNvsdKzo47y8qY/t57gi3NXVY0N20pZvCIPh1OlV7cw7puTTmK8xW/n783zFsmO1is8\n2MwvJvbir4t38Z9PDhMXGUSHpGY0HhYEQRCEBvBKUuKFF1648P//+te/SElJYffu3WzYsIGxY8ey\nceNGBg0aRO/evXnyySex2WwYDAays7N5/PHHvRGScAUWk4G+mXE/WOie1zczNuC2BrRkBr2e6SMy\nmTCkU5O2XgT6VpvSlevIf+4NLOkpdH77WfTWpm950JWexbTtXQCkodPRYpvXJPOKNA1qiuoaWxrM\ndVs2DD5opHkRp6RjX4EVu6QnJlime4KLBhbHeE1ppcrCtU7yS1VS4/TMHmMlJqJtbNc4W+DklQWn\nOXy0lpBgAw/Ma8fwgdHNqvwRBH9KjQvl3tt68OKKfbz4wT5+P+cqosJ8uzVNEARBaFt8NizuwQcf\n5LHHHmPZsmUkJyczbtw4TCYTjzzyCHfeeSc6nY758+cTFiauwPjLlOEZAD+5gn/+64JnWUwG4qMu\nXW5/KQ1pltmU4/pC9bd7OPnwnzGEh5K5+AVMMVFNPpauqhjTlsWgSMiDp6AldfJgpPXQNKguAGcl\nGCx1TS31vp23aXPq2V9oQVL0pERIZMS4/d7Qcv9xmaWfOnG64dqeRsYNtmAytv4FuSxrrFpfxLLV\nBciyxnUDIrlrRhpREb5NUgmCN/TOiGXy8AyWbTnGiyv28ZuZ/Vp0slsQBEEIbF7/RP3ggw9e+P+3\n3377J98fNWoUo0aN8nYYQgM09wq+4BuebpbpK85TZzl6x6/QFJWMf/+DoM7NaKJWW4lp00J0LjvS\nteNQ03t4LtD6aBrY8sFVBUZr3dhPHyckSmoMHC62oGqQEeMiNVL26f3/mKJorP3azbZsCZMRpo20\nMKBb21iQHztZy8sLcjl1xkFUhJG7Z6ZzbX8xylpoXW68Ko2Cslo+31vAm2sOcd+4nm1meo4gCILg\nW779VC0EhKZewRd8IxC32siVNnJmP4RcXkn7Z54gYvA1TT+YowbTpgXo7Dbkfjehdu7vuUDro2lg\nywOXDYxB5xISvnuMNQ3OVhk5XmZGr4OeiS5iQ/w7YaOqRmXxeicn81XiInXMGWMlKbblve48zeVS\nWfpRPqs3FKNqMGJwDHMnpxASLP6UCq2PTqdj5o1dKCp3sOv7ElZtP8n4wR39HZYgCILQColPUoIQ\ngAJpq40qyRy7+zGcx06ReO8s4mfc3vSDuZ2YtixGbytD7jEQpcdAzwVaH02FqrPgrgFTMESk+TQh\noWpwrNRMvs2E2aCSleQizKL67P7rc/SMzDvrXdQ4NHp3NjJ5uAWrpfVfPd1/uJpXFuZSWOwiIc7M\n/XPb0aub2G4otG5Gg5755yZyrPnqFMkxwVzb49LTjQRBEAShKURSQhACUKBstdE0jdO//Tu2L74j\n8qYhpD3xQNMPpkiYti1BX56PktEfpe+Nngu0PpoKVWfAXQumEIhMA53vmjfKKhwqslBuNxJiVslK\ncmI1NmxssjeomsaWnRLrv3Gj18G4IWYG9jK1+oaOtXaZBe/nsenzMvQ6GDsqnmljk7FY2kYjT0EI\nDTKdm8ixk7fWHiEuMohOKRH+DksQBEFoRURSQhB8zCUpHksktPStNoWvvUPJklUE9+xCp5efQmdo\n4vmqCsbP30dfdBIlvTvyNbfh1Q6PqgpVuSDZwRwKEak+TUg4ZR37CyzUug1EB8l0T3Rh9OMa2O7U\nWLLRyeFTCpGhOmaPttIuqeUlwTxtR3Ylry8+Q0WVRPvUIObPSyejQ4i/wxIEn0uODeG+sT15fvle\n/rVyP7+bPYCYCKu/wxIEQRBaCZGUEAQfUVSVZVuOsTunhHKbi+hwC30z45gyPAODvvVddS1ft5Uz\nT72IKSmezIXPYwgOatqBNBXj1x9hOHsENbET8sBJ4M3HS1XOJSQcYAmD8FTvJkB+pNqlZ3+BBbei\nJzlcIiO2rjLBX3KLFBatdVJRrZGZbmDGTVZCg1p3dURFlcQb757h652VGI06pt+exO2jEzG2gaki\ngnApPTvGMO2GzizZdJQXP9jHb2f2w2oWHyMFQRCE5hN/TQTBR5ZtOfaD5pRlNteFf08fkemvsLyi\ndt9hTsx/En2QlcwFz2FOim/agTQNw64NGE7sRo1JRRo6DQxefNtSFag8DbITLOEQnuLThERprYFD\nRXUTNjrFuEiNkP028lPTNL7aL/PR5y5UFW66xsyIq0zo/Zkh8TJN09j6ZTlvLztLTa1C14wQ5s9r\nR2qSuCIsCAA39E8lv8zOtt15vPHxIeaPzxITOQRBEIRmE0kJQfABl6SwO6ek3u/tzillwpBOLbIn\nRFO48grJmfNLVJebzm8/S0hW1yYfy3Dgc4yHv0KNiEO6YRaYvDjuVJXPJSRcYI2EsCSfJiTOVhk5\nVlo3YaNHgou4UP9N2HC5NZZvcbE7RybECjNGWemS3rr/XBSVuHh1US57D1Zjtei5e2YaNw2NbdVJ\nGEFoLJ1Ox/QRnSkqt7P7aCkrPzvBxKGd/B2WIAiCEOBa96dMQWghqmpclNtc9X6votpJVY2rRfeG\naCil1s7ROQ8jFZWS/sdfEnXj4CYfS5/zLcY9m9BCIpBumAMWLz4+ilSXkFDcEBQFoYk+S0hoGhwv\nM3O2yoTJoJGV6MRikCiu8E8D08IylUVrHRRVaLRL1DNrtJWosNa3veg8RdX4ZFMxS1YW4HKr9O8V\nzj2z0omLMfs7NEFokYwGPfeN68lfF+1k7TenSYoJ5mdZSf4OSxAEQQhgIinRgnmyIaLgXxGhFqLD\nLZTVk5iICrMSEerFCgAf0RSF4/c9gf1QDvGzJ5Bw1/QmH0t/aj/GHWvQLCFII+ZCiBc7vf8gIREN\noQk+S0go5yZslNmNBJtUeiTY+Wj7Ub/1Hcn+XmL5ZhduGQb3MXHzz8wYDa23UuD0WQcvv32aoyft\nhIUauH9uewZdE9XqJ4oIQnNdmMixaBcL1x8hPiqIzqmR/g5LEARBCFAiKdECteSGiCJR0jQWk4G+\nmXE/6ClxXt/M2FbxWOb++QUqN20nfMi1pP/l101e2Onyj2L88gMwmZFGzEYLj/VwpBdR3FBxGlQJ\ngmMhJM5nCQmXrGN/oYUal4HIIIUeCU6Wbz3ql74jsqzx0XY3X+2XsJhg9mgrvTu33j8PkqSy4pNC\nVn5ShKxoDL42ijumphIRbvJ3aIIQMJJiQrjv9p48v2wvL52byBEb2cSGxoIgCEKb1no/dQYwfzRE\nvFKyoSUnSgLFlOEZQF0PiYpqJ1FhVvpmxl74eiArWrCcojfeIyizIxmv/x29qWlvLbriXEzb3gOd\nDmnYTLToZA9HehHZVVchocp1yYiQOO/d14/UuHTsL7TikvUkhklkxrmRZP/0HSm3qSxa6+RMsUpS\njJ45Y6zERbXe3+kjx2p4+e1czhY4iY02cc+sdAb09mIljiC0Yj3aRzNjZGcWb8zhnx/s4/GZ/Qmy\niI+WgiAIQuOIvxwtjK8bIiqqyhur9vPl3rzLJhva0uQIbzHo9UwY0onBvZNB04iLCm4VFRKV277m\n9O/+D2NMFJmLnscYHtqk4+gqCjFtXQyqgjxkGlpCe88GejHZeS4hodRt1wiO8d59/Ui53cDBQguK\npqNDtJv0SAmdzj99Rw6dlFmy0YnDBQO6GZkw1ILZ1Dq3LjicCu+uzGft5hI0DUYPj2PWhGSCggL/\nd1AQ/GlYv1TyS+1szj7L66sP8osJvUSDWEEQBKFRRFKihfH1wuRSyQa7U2bWTV2wmAxtanKEt7TW\nShP7kWMcv+c36IwGOr/9LJb0lKYdqLoc0+ZF6NxOpJ9NQE1r+sSOK5IcUJkLmlLX0DI42nv39SP5\nNiM5JWZ0Ouie4CT+ogkbvuw7oqoaG3a42fSdhNEAk2+wcHV3Y6vtpbD7gI1XF+ZSUuYmJdHC/XPb\n0T2zackzQRB+auqIDAor7Ow7XsbybceYMryzv0MSBEEQAkjgroZaqfMLk/p4emFyuWTDVwcKefKN\nb1iyKYdym/OKiRLh8s4nf8psLjT+m/xZtuWYv0NrMqmkjJzZv0SprqXjC38kbECvph3IUY1580J0\njmrkAWNQO/bxbKAXkew1dRUSmlI38tNHCYm6CRsmckosGPXQJ+mHCQn4b9+R+niy70i1XeX1VU42\nfScRE67jwUlBXNPD1CoTErYamb88d4Q/P3eM8ko3E29J5Lk/dRMJiQDw9NNPM2XKFCZMmMDGjRsB\nWLRoET169KC2tvbCz61evZoJEyYwadIkli9f7q9w2zyDXs99Y3uQFBPMhm/P8PnefH+HJAiCIAQQ\nUSnRwviyIeLlqjLgvwtnRVFb/eQIb2qNlSaqw0nOvEdwny0g5dF7iRl7Y9MO5HZg2rwQXXU5ctZQ\nlG7XeTbQH9yXnarSXNBUCE8Bq2/6CCgqHCm2UFJrJMikkpXkJNik1fuz3u47ciJPYfF6J7ZajR4d\nDUwbaSXI0vqSEZqm8eV3Fbzx7lls1TKd2gUzf146HdIDf+xuW/DNN99w9OhRli1bRkVFBbfffjt2\nu52ysjLi4+Mv/Jzdbufll19mxYoVmEwmJk6cyMiRI4mMFFMg/CHYWjeR46mFO1m84XsSooLokh7l\n77AEQRCEACCSEj7Q2IkVvmqIGGQxEhlqoeIKlQ77jpfTKyOWrdl5P/lea5kc4U3+6BXgTZqqcuKh\nP1KbfYCYiWNI/p87m3Yg2Y1pyzvoK4pQMq9G6T3cs4FezF0DlWfQAMJTwRruvfu6+G5l2F9opdpl\nIMKq0DPRyeV+XQx6PdNHZDJhSCePTrnRNI2t2W7WfukG4JaBZob2bZ3VEaXlbv79zhm+21OF2azj\n/nkdGX59BIZWPNq0tbnqqqvo1auu8io8PByHw8ENN9xAWFgYH3/88YWf27t3L1lZWYSFhQHQr18/\nsrOzGT7ci+8lwmUlRAUz//Ysnl22h5c/PMCTs/sH1N83QRAEwT9EUsKLmtpHwFsLk/riulJCAuoW\nziP6p2LQ61rl5Ahv82WvAF/Ie+Y1yj/eRNg1fenwzJNNW9iqCsbPlqIvyUVpn4V89c3eG8Xpqoaq\nusqj8PTO2Jy+edurdevYX2DFKetJCJXpEu+iob3fLCaDxz7IO1waL75Xwa7DbsJDdMwaZaVjSutL\nJKqqxqefl7JoeR52h0rPrqHcP7cdvXrEUlJS7e/whEYwGAwEB9e9/lesWMHgwYMvJB4uVlpaSnT0\nf7dgRUdHU1JSf1XaxaKigjEavfM7EBf30zjbmri4MOyyxkvL9/DyqgM88+BgQoJ8N25XPAf+J54D\n/xPPgf+J56BxRFLCi5o7scKTC5PLxXUlUWFWosOtXk2UtGa+3JLjbaXL15D/z7ewtE8l481n0FvM\njT+IpmL8ciWG/KOoyZ2Rrx8POi+1t3HZziUkdBCRhiUsCpzeX6BWOPQcLLQiqzraR7lpFyV5Ledy\nOWeLFRatdVJm08hINTDjJgvhIa2vlVBeoZNXFuRyKKeG4CAD989NZ8SgmFZZCdKWbNq0iRUrVvDW\nW2816Oc1rf5tUT9WUWFvTliXFBcXJhJg5/TrFM2NV6Wx8bszPPWfb/ifSb180tRZPAf+J54D/xPP\ngf+J56B+l0vUiKSEl7TUPgKXi0uvA7Wez3QXL5y9lShp7Xy1JcebbN9kc/JXT2GICCNz0QuYYpqw\nb1vTMH63FsOpfahx6UhDpoLBS29Dziqw5dVVYESkgznEO/fzI4U2I9+X1CVrusa7SAyTfXK/F9M0\njW8Pyazc5kJW4NbBIQzqBYZWNqZPljU+2lDEso8KkGSNa/pGcPfMNKKjmpAsE1qU7du389prr/Hm\nm2/WWyUBEB8fT2lp6YV/FxcX06eP9xrlCo0zeVgGheV1EzmWbTkmxocLgiAIlySSEl7SUvsIXC6u\n+hISafGhAbVwbqm8vSXH25wncjl6569B0+j85jMEZbRv0nEM+7Zg+H4HamQC0rCZYPTS4tFRCdX5\ndRUYkelg8v7vmqbBqQoTpyvMGPUaPROdRAapXr/fH3NLGiu3ufjusEyQBeaMsTLk6vBWl7E/ftrO\nK2+f5kSug8hwI3fNTOO6/pGiOqIVqK6u5umnn2bBggWXbVrZu3dvnnzySWw2GwaDgezsbB5//HEf\nRipcjl6v457bevDXxbvYtPMsyTEhDO3bxLHRgiAIQqsmkhJe0lL7CFwurvrYnTKyomFofRXffhGI\nlSZyRRXfz34IpaKKDs/+jvCfDWjScQyHv8a4bxtaaBTSDXPAEuThSM9xVEB1wbmERDsweel+LqJq\ndRM2imuMWI0qvZKcBJsbVkruSSUVKgvXOikoU0mL1zN7jJXo8Nb1y+tyqyz7qICPNhShqjB8YAxz\nJ6cQFir+nLUWa9eupaKigoceeujC16655hp27NhBSUkJd911F3369OHRRx/lkUce4c4770Sn0zF/\n/vxLVlUI/hFkMV6YyPHupzkkRAXRrb1vRjELgiAIgUN8ivOSltpH4HJx1ScQp0MInqO6JY7e9Siu\nE7kkzZ9D3LSxTTqO/sQejDvXogWF4h4xF4K9tHCwl0FNEegMENUOjFbv3M9F3AocLLRS5TQQblHo\nmeTE7Idf771HZZZtcuKS4PosE2MHmTEaPVM10NgJQt5y4PtqXlmQS0GRi4RYM/fNSad3D99MUhF8\nZ8qUKUyZMuUnX3/ggQd+8rVRo0YxatQoX4QlNFF8ZBAPjM/imfd288qqAzw5ewAJ0eIzhSAIgvBf\nIinhRZ7uI+CphcGP44qJsFJtl3C6lZ/8bCBOhxA8Q9M0Tj32v1R/tYuoMcNI/e38Jh1Hf/Z7jF99\niGa21lVIhHnpKlltKdQWg95YVyFh9P7r1u7Wsb/QikPSExci0zXe5fOqIlnR+ORLN5/vkTAbYcZN\nFvp18Uyn+6ZOEPK0WrvCohV5bNxWil4Ht94Yz/Tbk7BaAmcLlCC0ZZlpkcwZ1ZW31h7mhRX7eHJ2\nf0KsvpvIIQiCILRsIilxjtMtU1xh9+iVQE/1EfD0wuDHcXVqH8PrH+y9bFVHS7lSKvhOwUsLKV32\nMSG9u9Pxxb+ga8JrTVd0CuPnS0FvQBo2Cy0q0fOBahrUloC9FPSmcwkJ7zc6rHToOXBuwkZ6pJsO\n0b6fsFFZrbJonZPThSrxUTrmjAkiMcZzyYLmThDyhG93V/L64jOUV0qkp1iZP68dmR1907RUEATP\nGdgrifyyWtbvyOXVVQd4aFJvjGJvqCAIgoBISlxY8O87XkZJhcMrVwKb20fAWwuD83FZzcZLVnVM\nHNqRJZty/H6lVPCt8jWbOPu3lzAnJ9B5wXMYghu/DUJXno9p6zugaUhDp6PFp3s+UE2rq46wl9Ul\nJKLagcH7CYmiagNHiusqMbrEuUgK9/2Eje9zZd5d76TWCX0yjUwebsFi9lxWxN8ThCqrJN5ccoYv\nv6vEaNAxdVwS48ckYDKK9x1BCFQTh3SisMzOnmOlvLf5KLNu7OLvkARBEIQWoM0nJVrClcDLufzC\noMRjC4NLVXUs2ZTToh8fwfNqdh/g+C/+gD4kmMxFL2BOiG30MXS2MkybF4HkRh40CS2ls+cD1bS6\n/hGO8rpERGQ7MHi3HFjT4HSliVPlZgx6jR4JTqKDfTthQ9U0Nn0rsXGHG70exg+1cH2W0eNTJ/w1\nQUjTNLZ9Vc5bS89SU6vQpVMI8+emk5bi/YalgiB4l16v465bu/O3d7LZmp1HckwIN/RP9XdYgiAI\ngp+16UtOV7oS6JJ+2mPB16pqXJeclFFmc1FV07ApGg11vnri/JYNbz8+LkmhuMLeIh5rAVxnCzk6\n9xE0t0TGq/9LcPcmJBNqqzBtWoDOWYt89S2o7bM8H6im1U3YcJSDwQJR7b2ekFA1OFJi5lS5GYtR\npV+Kw+cJiRqHxpsfOdmww01kmI4HJgbxs14mr4zBPD+ppz7e6jVTXOriL88f58X/nEaWNX4+PZW/\n/jZTJCQEoRWpm8iRRXiwifc2HeXAyTJ/hyQIgiD4WZuulPDXlcDGCLIY0evqFkQ/ptfVfd9bLvf4\nlNucnMiromNKRIvokyE0n1JdQ86ch5BKykj/y6+IHDGw8Qdx2TFtXoiuthK59w2oXa72fKCaBtX5\n4Kyqm64RmV7X3NKLpHMTNiqdBsIsCj0TXViMvh35ebpAYeE6J1U1Gt3aG5g20kpIkPeaWPhygpCi\naqzdXMKSlfk4XSp9e4Zz7+w04mNFk11BaI1iI4J4YEIvnl6SzaurDvLk7P4kxYheMYIgCG1Vm05K\nnL8SWF8lQkuZOuFwyfUmJKAuUeFwyYQFe2cP/eUeH50O/m/pniYnE1r6tpm2RpNljt33OI7Dx4if\nN5nEO6c2/iCSC9OWxeirSpC7XoeSNcQLgWpgywOXDYxB5xIS3m286pB07C+wYpf0xIbIdPPxhA1N\n0/hin8TH292oGoy+zszwASb0Puiq6ekJQvU5k+fgpQW55ByvJTTEwP/MaseQ66K9Uv3RVlTZJD7Z\ncpr0JBNZ3bw0flcQmikjJYJ5o7vxxppD/HP5Pp6cM4DQIDGRQxAEoS1q00kJT14J9NZ0iohQC9Fh\nZsqr3T/5XnSYxauJk8s9PucTJU1JJvi7gZ7wU6f/8BxVW74iYvj1tPvTw40/gCJj2vYe+tKzKB37\nogwYhcdHUWgqVOWBuxpMwRCR5vWERJVTz4ECK5KqIzVColOM26cTNpxujfc3u9h7VCY0SMfMURY6\np/nubdtTE4TqI8kqKz8pYsWaQmRFY+DVUdw5PZXIcLEoaapau8xH64v5+NNinC6V0cPjRFJCaNGu\n65lIflktn3x9mlc+3M/DU/qIiRyCIAhtUJtOSsB/rwTuO15GaaWj0VcCvb0NwWIy0K9LfL2JgX5d\n4ry+eD//OGR/X0J59aX7VzQmmRAI22baksL/LKX47fcJ6tqJjFf/F52xkW8LqorxixXoC4+jpHZF\nvm4s6Dz8oVJToeoMuGvBFAKRaZ6/jx8prqmbsKFq0DnWRUqEbydsFJQpLFzrpKRCo0OynlmjrESE\n+ufDenMnCP1YzvFaXl5wmtw8JzFRJu6ZlcZVfSI9dvy2xulS+GRTCavWF1FTqxAVYeS+uR25rl+o\nv0MThCu6fXBHCsrsZOeU8M7GHOaM6iIqpQRBENqYNp+UOH8l8J4JQRw/VdboK4G+2IbgixLqSzn/\n+CiqxtbsvEv+XGOSCYGwbaatqNz8Bbl/eA5TXAyZi17AENbIRYymYdyxGkPuQdSE9siDJnu+ekFV\noSoXJDuYQyEi1asJCU2DM5UmTpSbMeg0shJdxIT4thHrzsMSK7a6kGQY2s/EmOvMGAyB/yHd6VJY\nsrKANZuK0TS4aWgssyamEBIsKqOawi2pbNhWygefFFJlkwkNMTB7UjJjhseTmhpBSUm1v0MUhCvS\n63TcdUt3/vbOR7YmxgAAIABJREFULj7fm09KbAgjr0rzd1iCIAiCD7X5pMR5VrOx0VcCfbUNwZsl\n1A3hkhT2HSu97M80JpngywZ6Qp36thfZDx3l2L2PozOb6LzgWSypSY0+rmH3pxiO7UKNTkIaOgOM\nHi69V5VzCQkHWMIgPNXz20IuvjsNjpaaKbCZMBtUeiW5CLX4bsKGJGus+tzFNwdkrGaYcbOVrE6t\n4216z0Ebry7MpbjUTVKChfvnptOzi9ha0BSyrLHlyzLeX11AWYVEkFXPlNsSufXGBJHgEQKSxWzg\nFxN78ZeFO1m65SgJ0cH06hTj77AEQRAEH2kdn3b9xNfbEDxdQt1QlzvP8xqbTPBn9UdL5K2eJJfa\nXvTzQSnkzH4ItdZOxr//Tmjfno0+tuHgFxgPbkcNj0EaPhvMVo/FDdQlJCpPg+wESziEp3g1ISEr\ncLDIQoXDSKhZISvJtxM2yqpUFq51kleikhyrZ84YK7GRgb+3urpGZsGys2z5shy9HsaPSWDybUlY\nzIF/br6mqBpf7Khg2UcFFBS7MJt1jBsVz+2jEwkPE3/OhcAWHW7lwQm9+MeSbF776ABPzOpPSpzY\ngiQIgtAWiE8xzdBWtiFc7jz1OhjSJ7nRyQR/V39cjrcSBPXxdk+S+rYXbfv6BOl/+h3m/CJSfzuf\n6FtGNPq4+mO7MGZvQAsOR7phLgR5+IOjKp9LSLjAGglhSV5NSDglHfsLrdS69UQHy3RPcGH04Zr5\nwAmZpZ86cbjg6u5Gxg+1YDIG9nYNTdP4amclb757hkqbTMf0IObPa0fHdqJfTGNpmsaO7CqWrMrn\nTJ4To0HH6OFxTLwlkehI0RhUaD06Jodzx5huvL76IP9csY/fzRngtQljgiAIQsshkhLN4KttCL5c\nJNfncuc5pG8Ks27s0qxjt5Smlt5OENTHmz1J6t1epKkM27gM8/HjRE26maQH5jb6uPrcgxi/+QjN\nEow0Yg6EerhBoSLVJSQUNwRFQWiiVxMS1S49+wssuBU9KeESGbG+m7ChqBrrvnazdZeE0QBTRli4\nunvgLzLLK9z8+50z7NhdhdmkY9bEZMbelNAq+mL4kqZp7DlYzZKV+Rw7ZUevg+EDY5hyWyLxsa0j\n6S0IP3ZN9wQKympZ/eUpXl65n19N6ysmcgiCILRyIinRTN7chuCPRfKltIXtFr5oWnoxb/ckqW/b\nzdVfbaDT8f3kp3Sk3eMPN7rDua7gOMbty8FgQho+Cy0ivsnx1esHCYloCE3wakKitNbAoaK6CRsZ\nMS5SI303YcNWq7J4nZMT+SqxETrm3GwlObZlVAs1laZpfPp5GQvfz8PuUOjRJZT756aTnODhrT1t\nwKGcGt5dmc+hnBoABl4dxdSxSaQkicdSaP1uG9iB/DI7O48Us2j998wb01VM5BAEQWjFRFKimX68\nDSHIYsThkpEVjeYm9n29SL6clrzdwhN81bT0Yt7uSfLjbTddDn5Hv11bqYyMZdeMuxkd3bgtF7rS\ns5i2LQFAGjodLTa1ybHVS3FDxWlQJQiOhZA4ryUkNA3OVhk5XmZGr4OeiS5ifThh49hZmXfWu6i2\na/TqZGDyCCtBlsD+wF1Q5OSVhbkcOFJDcJCe+2anM2JwDHp9YJ+Xrx07WcuSDwvYfcAGwFV9Ipg2\nLokO6S2jokwQfEGv03Hnzd0orXTwxf4CkmNDGHVNur/DEgRBELxEJCU8xGjQsWnXWY9VNfhjkdwQ\nLWm7hSf5umkpeL8nycXbbpLPHGPw1g9wWoNZd9s8hlyV0ajXj66qGNOWxaBIyIOnoCV1alZsPyG7\n6iokVLkuGRES59njX0TV4HipmbxzEzayklyE+WjChqppbN0lse7rui0iYweZGdTHFNBXABVFY/XG\nYpauysctaVzVJ4J7ZqUREyX2gTdGbp6DJR/msyO7CoBe3cKYPj6ZLp1C/ByZIPiHxWTgwQm9+MvC\n71i+9RiJ0cH06Rzr77AEQRAELxBJCQ/xdFWDPxbJbZk/mpb6oifJlOEZmArySfr3YkDH15N+zlUj\n+nLHrT0oL69t2EFqKzFtWojOZUe6dhxqeo9mx/UDsvNcQkKB0Pi6KgkvkRWNA4UWyu1GQswqWYlO\nrCbfTNiwOzXe2+jk0CmFiBAds8ZY6ZAU2NVGJ3PtvPx2LsdP24kIN/KLO9O4/qrIgE6y+FpBkZOl\nHxWwfUcFmgZdOoUwY3wyWd3EuFRBiAqz8IuJvfj7O9m8/vFBHp/Zn7R4MZFDEAShtRFJCQ/wRlWD\nJxbJ/m6QGUh81bT0x7zdq0OtsJH56gu4nA5i//pbHpo5DovJgKGhe4scNZg2LUBntyH3uwm1c3+P\nxHWB5IDKXNCUuoaWwdGePf5FXLKOrQc1Ku1GooJkeiT6bsLGmSKFReuclNs0OqcZmHGThbDgwG3c\n5pZU3l9dwIfrilBVGHp9NPOmphIeKv6kNFRpuZv3Vxew+YsyVBU6pAcx/fZk+vcKF0kdQbhI+8Rw\nfn5Ld15ZdYAXV+zlyTlXEREiKrEEQRBaE/EJ0gO8UdXQnEVyS2qQGUj80czTm706VJebYz//Na5T\nZ0n+nztInTehcQdwOzFtWYzeVobcYxBKj4EeiesCyX4uIaHWjfwMivLs8S9S49Kzr8CCW4GkcInO\nsW580epA0zS+OSDz4WcuVBVGXm3ixqvNAd1n4VBODa8sOE1eoYu4GDP3zUmnb89wf4cVMCqrJD74\npJAN20qRZI2UJAvTxiVzXf/IgH5dCII3Degaz+2DOvDh9pO8vHI/v57WB5NRXGwRBEFoLURSwgO8\nVfrf1EVyS2qQGUj82czT0706NE3j5K+fonrHbqJvHUnKr+9t3AEUCdO2d9GX56Nk9EfpO9JjsQHg\ntkPVuYREeDJYPTxW9CJl5yZsKJqOXuk6ooy+GfnpkjQ+2OJi1/cywVaYcaOVru0D9y3X7lBYvCKP\n9VtL0englhFxTB+fTJBVLAwaoqZWZtX6ItZ8WoLLrRIfa2bK2CSGXBstRqUKQgPccn178svs7DhU\nxIJ13/PzW7qJqiJBEIRWolGfkHNycsjNzWXEiBHYbDbCw8XVMfBe6X9TFskttUFmIGlqgqAlbZfJ\n/+d/KFuxlpB+Pen4wh/QNaZCRlUwfv4++qJTKOndka+5zbNTMNw1UHkG0CA8Fazeex/JqzJytLRu\nwkb3BCddkoMpqf/Xw6OKylUWrXVSWK6SnqBn9hgrUWGBW6W0c28Vry3KpaxCIi3Zyv1z0+maIfZ1\nN4TDobBmUzGr1hdjdyhERZiYOyWFGwbFYPLV/iFBaAV0Oh3zRnelpNLB1wcLSY4N5ubr2vs7LEEQ\nBMEDGpyUWLBgAWvWrMHtdjNixAheeeUVwsPDuf/++70ZX8DwZul/YxbJokGm77W07TJlH20k7+nX\nMKcmkfn2s+iDrA2/saZi/PojDGePoCZ2Qh44CTx5Dq5qqDqXvItIA4t3mvlpGhwvM3O2yoRJr9Ez\nyUmE1TcTNnbnSCzf7MIlwcDeJm4daMYYoFfCq2wS/3nvLNt3VGA06JhyWyITbk7EZBKL6StxuVXW\nby1h5SdF2GpkwkINzJ2cwqjhcVjM4vEThKYwmww8OD6LvyzayQefnSAxOoT+Xbw3rUkQBEHwjQYn\nJdasWcP777/PnDlzAHj00UeZOnWqSEqc48/S/4tdbiuJ2WQgNFg0h/K0lrRdpnrnPk489Ef0oSFk\nLnoeU1xMw2+saRh2bcBwYjdqTCrS0Glg8OB2A5ftXEJCdy4h4Z0r7YoKh4stlNYaCTapZCU5CfLB\nhA1Z0fj4Czdf7JWwmGDWKAt9Mk1ev19v0DSNz7+p4D/vnaG6RiGzYzD3z21Hu9Qgf4fW4kmyyubt\nZaxYU0hZhURwkJ5p45K4dWQ8QUGiSk0Qmisi1MIvJvTif9/ZxRtrDhIb0Z92iWJajSAIQiBr8Ioj\nJCQE/UVXTPV6/Q/+LdSpr6rBl2X9l9tK4nQrrNp+wusL5Za0jcHbWtJ2GVduHkfnPYImK3R++1mC\nuzauSsdw4DOMh79CjYhDumEWmDw4BtVZBba8um0gEelgDvHcsS/iknUcKLRQ7TIQaVXokejEFw9/\nRXXddo3cIpXE6LrtGgnRgfn+WFLm5rVFuWTvt2Ex67ljaipjRsRhEE0YL0tRNT7/upxlHxVQVOrG\nYtYzfkwC40YlECamkgiCR6UnhHH3rT14aeV+XvxgH7+fM8Aro7sFQRAE32jwJ6X09HReeuklbDYb\nGzduZO3atXTq1MmbsQU8f5X1jxvUgS/2FeB0Kz/5njcXyi1tG4MvtJTtMrKthpzZv0Quq6Dd335D\n5NDrGnV7fc63GPdsRguJQLphDlg8GLOjEqrzQaeHyHQweefxqHXr2FdgxSXrSQyTyIzzzYSNI6dk\n3t3oxO6E/l2MTBhuwWIKvAW8qmqs31rC4hX5OF0qvXuEcd/sdBLixAf9y1FVjW+yK3nvwwLOFjgx\nGnXcPCKOCTcnEhURmJUyghAI+mXGMWFIRz747AT/WrmfR6f19XdIgiAIQhM1OCnx+9//nkWLFpGQ\nkMDq1avp378/M2bM8GZsAc9fZf01dglXPQkJ8O5CuSVtY/AVb01eaQxNljl2z29w5Jwg4efTSJgz\nsVG315/aj3HHGjRLCNKIuRAS4bngHBVQXXAuIdEOTN4p/y+36zlYZEVRdXSIdpMeKXl9woaqamz8\n1s2mbyX0epg43MK1PYwB2Q3+TL6DVxbkcuRYLaEhBh6c2Y5h10cH5Ln4iqZpZO+3sWRlPidyHej1\nMGJwDJNvTSIuRmyTEwRfGHNtO/JL7Xx9sJC31x3hiTuu8XdIgiAIQhM0OClhMBiYN28e8+bN82Y8\nrYY/y/r9sVBuSdsYfMlbk1caStM0Tj/5DLbPviFixEDS//BQo26vyz+K8csPwGRGGjEbLTzWc8HZ\ny6CmCHQGiGoHxkY03GyEApuRnJK6RWC3eCcJYfUn5Dyp2q7y7gYXR88oRIfrmD3GSlp84L2+JVll\n1boi3v+4EFnWuH5AJD+fkSau8F/BgSPVvLsynyPHatHpYPC1UUwZm0Rygnde44Ig1E+n0zH33ESO\nHYeKWLT2MGOuTvN3WIIgCEIjNTgp0b179x9cNdPpdISFhbFjxw6vBBbo/FnW74+FckvZxuAP3py8\nciVFb75H8aIPCO6eScYrf0VnaPhzqyvOxbTtPdDpkIbNRItO9lxgtaVQWwx6Y12FhNHziTBNg5Pl\nJnIrzRj1Gj0TnUQGeX/Cxsl8hcXrnFTVanRvb2DajVaCrYFXUXD0ZC0vv32a02edREeauHtWGtf0\njfR3WC1azolalqzMZ++hagCu6RvBtNuTRQNQQfAjk1HPA+Oz+Ns7u1ix5SiKrHDr9e39HZYgCILQ\nCA1OShw5cuTC/7vdbr7++mu+//57rwTVGvi7rN/XC2V/n68/+WvySsXGz8n94/OYEmLpvPA5DKEN\nbx6plORj2roYVAV5yDS0hPaeCUrToLYE7KXnEhLtwej5UnZFhSPFFkpqjQSZVLISnQSbvTthQ9M0\nPt8jseZLN5oGN19vZmh/E/oA2+Lgcqm8tyqfjzcWo2owcnAMcyanEBIsmjFeyqkzdpZ8WMB3e6oA\n6NMjjOnjk+ncwTsNWwVBaJzwEDO/ntaXp9/bzYefn8BiMnDjVaJiQhAEIVA06VOo2WxmyJAhvPXW\nW9x9992ejqlV8HdZv68Xyv4+35agvskr3lK7/wjH738CvcVM5sLnsaQkNvzG1eXYP/0POrcT6WcT\nUNO6eiYoTaurjrCXgd5Ut2XD4PmEhFuBAwVWbC4DEVaFnj6YsOFwaSzb5GT/cYWwYB0zR1nISA28\nRfy+QzZeWZhLUYmbpHgL981JJ6ubGKV3KXmFTpauKuDL7yrQNOjWOYQZ45Pp0UU8ZoLQ0kSHW3nq\n3p/x6L8+Z+nmo5hNeob2SfF3WIIgCEIDNPhT9YoVK37w78LCQoqKijweUGviz7L+83y5UG4J59sW\nuAuKyZn7MKrDScabTxPSq1vDb+yoxrx5IVqtDXnAGNSOfTwTlKbV9Y9wlNclIiLbgcHzfQlq3Tr2\nF1hxynriQ2W6xru8PmEjv0Rh4VonpVUanVL0zBxlJTwksKbJ2GokXnrrNJu/KEOvg9tHJzBlbBIW\nc2Cdh68Ul7p4f3UhW78qQ1WhU7tgpo9Pom/PcNH8UxBasKTYEH41tS//WJLN4vXfYzEauK5nI5L2\ngiAIgl80OCmxa9euH/w7NDSUF154weMBtSb+Kuv3l7Z2vv6g2B3kzH0YqaCYtCd/QfToYQ2/sduB\nafNCdNXlmK+5EVdm48aGXpKm1U3YcFaCwXIuIeH5KoIKh56DhVZkVUe7KDfto7w/YePbQxIfbHUh\nKzC8v4lR15kx+GLOqAd9vauC/yzJo6zCTfu0IB6Y145O7Vtnf5fmqqiSWLGmkI2flSLLGmnJVqbd\nnsS1/SJFMkIQAkRybAiPTOnD00t28+YnhzAZ9QzoGu/vsARBEITLaPDK4W9/+5s342jVfFmt0BK0\ntfP1FU1ROD7/Sez7jxA3fRyJ981q+I1lN6Yt76CvKELpcg2W60dTXVrjgaA0qM4HZ1XddI3I9Lpe\nEh5WWG3k++K6rSBd41wkhssev4+LSbLGym0uvj0kE2SB2aOt9OgYWNs1yisl3nj3DN/sqsRs0jFz\nQjJjb0rAaBSL6x+z1cisWlfEJ5uLcbs1EuLMTB2XxKBrogMuCSUIAqQnhPHLKb35v6V7eH31QUxG\nPb0zPDhdShAEQfCoK37KHjJkyGWvEG3bts2T8QjnuCRFVBsIP3Dmry9RueEzwgdeRbu//abhV24V\nGeNnS9GX5KK0z0K+aoxnrvpqGtjywGUDY9C5hIRnX6uaBqcqTJyuqJuw0SPRSZSXJ2yUVqosXOsk\nv1QlNU7P7DFWYiICZ5uDpmls/qKMBcvyqLUrdOscwu8e7k6QxfujUgON3aHw8cZiVm8swu5QiYky\nMXlqEsMHxojkjSAEuE7JETw0sRfPv7+Xlz88wEOTetG9fbS/wxIEQRDqccWkxJIlSy75PZvNdsnv\nORwOfvOb31BWVobL5eL++++na9euPProoyiKQlxcHM888wxms5nVq1ezcOFC9Ho9kydPZtKkSU07\nm1ZAUVWWbTnG7pwSym0uosMt9M2MY8rwDAz6lrUwEokT3yl+90MKX1uMtVM7Mv79D/SmBl6111SM\nX63EkH8UNbkz8vXjQeeB15GmQlUeuKvBFAwRaR5PSKgafF9soajGiNWokpXkJMTLEzb2H5dZ+qkT\npxuu62lk7GALpgBanBYWu3h1YS77DlcTZNVzz6w0bhwSS0JCMCUl1f4Or8VwuVTWbinhw3WFVNco\nhIcZuWNqMjcNi8Vsalnvs4IgNF2X9CgenNCLf67Yy4sf7OORKX3onCpGHwuCILQ0V1zZpKT8t3Px\nsWPHqKioAOrGgj711FOsW7eu3ttt3bqVnj17ctddd5GXl8cdd9xBv379mD59OqNHj+a5555jxYoV\njBs3jpdffpkVK1ZgMpmYOHEiI0eOJDKybf7RWLbl2A8mWJTZXBf+PX1Epr/C+oFASpy0BlWf7+D0\nb/+OMSqCzMX/xBgZ3rAbahrG79ZiOLUfNS4dachUz/R60FSoOgPuWjCFQGSaZxIdF5EUOFBopcpp\nINxSN2HD7MXdE4qi8clXbj7bLWEywrSRFgZ083yjTm9RVI01G4tZsioft1ujf69w7p2dTmy056ef\nBDJJVvn0szJWrCmkokoiJNjAjPHJ3DwijiCrSKwKQmvUo0M0943rySsfHuCF5Xv51dS+dEhq4N9R\nQRAEwSca/DH/qaee4ssvv6S0tJT09HTOnDnDHXfcccmfHzNmzIX/LygoICEhgR07dvCnP/0JgGHD\nhvHWW2/RoUMHsrKyCAurG7HWr18/srOzGT58eFPPKWC5JIXdOSX1fm93TikThnRqERUJgZA4gdZR\nyeE4epJjdz8Gej2d33oWa/vUBt/WsG8Lhu93oEYmIA2bCUYPLFBVFapyQbKDORQiUj2ekLBLdRM2\nHJKeuJC6CRsGL+a6qmpUFq1zcqpAJS5Sx5ybrSTFBM7r5dQZOy8vyOXYSTvhoUYemJvKwGuiRGPG\niyiKxravylm2uoCSMjdWi56JtyQyblQ8IcGB1StEEITG69s5jrtu7c7rqw/y3LI9PDa9H6nxof4O\nSxAEQTinwZ/G9u/fz7p165g1axaLFy/mwIEDfPrpp1e83dSpUyksLOS1115j3rx5mM11C6OYmBhK\nSkooLS0lOvq/e/yio6MpKal/YX5eVFQwRqPnFw1xcf6dPV9QWkt5tave71VUOzGYTcTFhnjlvi91\n7k63TIXNRVS4BavZiNMts+94Wb0/u+94GfdMCMLqzUvaDaAoKm99fJBvDhRQUukgLjKIa3smccet\nPTD8aHXr7+f8clwl5eyf+0sUWw19Fj5Dyi2DGn7b7M9w7duGLiKG8Mn3ow+N+MnPNPbcVUWmKvd7\nZMmOOSyK8NQMdB6ujCmt1thzWsMtQ5dkyEozodN59mr/xed98LiLV5dXYqtVubqnlTvHRRBkCYxq\nH7eksnDZad5ZcQZF0bhpaDwP/jyDyIj6Kzxa8mvdW1RVY/P2Yv7z7ily8xyYTTqmjE1h5sR0oiJb\nfxVJW3zOBeFSru6WgFtSeWvtYf5v2R5+M6MfidGiKbcgCEJL0ODV4/lkgiRJaJpGz549+cc//nHF\n2y1dupTDhw/z61//Gk37737wi///Ypf6+sUqKuwNjLrh4uLC/L7nWpEUosMslNl+mpiICrOiuCWv\nxFjfuV9qi8awvimUVDjqPU5ppYPjp8p8MnnjclUQSzbl/KCSo7jCwertJ7A73D+o5GgJz/mlqE4X\nRybfh+PkWZJ/eRfmkcMaHKv+xB5MX36IFhSKa9hsnA49OH5420afu6pA5WmQnWAJx21NpLSstjGn\ndEVF1QaOlFjQNMiMc5MUJFNa6tG7uHDeqqaxZafE+m/c6HUwboiZgb0M1Nhq8cBMEq87cqyGl9/O\n5WyBk9hoE/fOTqd/rwgkt5OSEudPfr4lv9a9QdM0du6tYsmHBZw648BggBuHxjLplkRio83IkouS\nkvoTwK2FN59zkewQAtXAXkm4ZYV3NubwzHu7+e2MfsRGBvk7LEEQhDavwUmJDh068O677zJgwADm\nzZtHhw4dqK6+9AeeAwcOEBMTQ1JSEt26dUNRFEJCQnA6nVitVoqKioiPjyc+Pp7Si1YexcXF9OnT\np3lnFaAsJgN9M+N+sKA+r29m7BW3IHhyu8Kltmgoikp0+KUTJxGhlmbd75VcqZ9FoGyBuRxN0zjx\n8J+p2bmP6HE3kfKruxt8W/2ZIxi/+hDNbEW6YQ6EeaDTuCqfS0i4wBoBYcngwa0Bmga5lSZOlpsx\nnJuwER3svQkbtQ6NJRudHDmtEBmqY/ZoK+2SWvZr4jyHQ+Gdlfms21L3Gh9zQxwzxycTFBQY8fvC\nvkM23v2wgJzjteh0cNOwBMbeFEtSvHffmwRBCAzD+6XikhSWbz3O0+/t5rcz+xMVJt4fBEEQ/KnB\nSYk///nPVFZWEh4ezpo1aygvL+eee+655M/v3LmTvLw8nnjiCUpLS7Hb7QwaNIgNGzYwduxYNm7c\nyKBBg+jduzdPPvkkNpsNg8FAdnY2jz/+uEdOLhBNGZ4B1C2gK6qdRIVZ6ZsZe+Hr9fF048nLLez3\nHS+nV0YsW7PzfvK9hiROmutK/SyqalyU15MwgbotMFU1Lp9UcjRH/nNvUL5qA6H9e9Hxud83uDeA\nrugUxu3LQG9AGjYLLSqx+cEoElTmguKCoCgITfRoQkLVIKfETGG1CYtRJSvRSajFexM2jp918+JS\nOxXVGl3SDUy/yUpoUGD0Xti1r4rXFuVSWi6RkmThgXnt6Joh9kSfd+RYDe+uzOfAkbpal+v6RzJt\nXBL9+sS3qSoRQRCubPQ17XC5FVZ/eYpn3tvNYzP6ERHS+rd0CYIgtFQNTkpMnjyZsWPHcvPNN3Pb\nbbdd8eenTp3KE088wfTp03E6nfz+97+nZ8+ePPbYYyxbtozk5GTGjRuHyWTikUce4c4770Sn0zF/\n/vwLTS/bIoNez/QRmUwY0qnBVQ+ebjx5pYX9iP6pGPS6RiVOPKEhVRARoRa/VnI0V+nKdeQ9+28s\n6Sl0XvAsemvD4tWV52Pa+g5oGtLQ6Wjx6c0PRpHqKiQUNwRFQ2iCRxMSkgIHi6xUOgyEWhSyEl1Y\njN5JSGiaxpf7JFZ/UYOqwKhrzdxwlQl9ADSDtFXLvLX0LJ99XY7BAJNuSWTirYlidOU5J3PtvLsy\nn1376kZU98sKZ/rtyXRq37KTj4Ig+NfYgR1wSyrrv83l2aW7eXR6P0KDAmfqkiAIQmvS4KTEY489\nxrp167j99tvp2rUrY8eOZfjw4Rd6TfyY1Wrl2Wef/cnX33777Z98bdSoUYwaNaoRYbd+FpOhQVf0\nvbFd4UoL++hwa6MTJ57Q0CqI5myB8afqb/dw8uE/YwgPJXPR85hiohp0O52tDNPmRSC5kQdNQkvp\n3PxgFDdUnAZVguAYCIn3aELCcW7Chl3SExMs0z3BexM2XG6N97e42JMjExasZ9qNZrqkt/yJC5qm\n8cWOCt5cchZbjUxG+2Dmz0unfZpYbAOcLXDy3of5fLWzEoAeXUKZfnsy3TNF9YggCFem0+mYNKwT\nLllha3Yez7+/h19N7UuQpeX/fRAEQWhtGvzO279/f/r3788TTzzBt99+y+rVq/njH//IN9984834\nhCvwxnaFhva2aGjixFMaWgXRlC0w/uY8dZajd/wKTVHJ+Pc/CMrs2LAb1lZh2rQAnbMW6epbUdtn\nNT8Y2VVXIaHKEBJX958H2Zx69hdakRQdqRESnWLcnsx3/EBhmcrCtQ6KKzTaJer55cxYFLfnG+V6\nWmm5m9cjY1/TAAAgAElEQVQX57Jzrw2zWcfcySncMjIeg6HlV3Z4W1GJi2WrC/jsq3JUDTI6BDNj\nfDK9u4eJMaiCIDSKTqdjxshM3JLCl/sLeWH5Xh6e3AeLueVewBAEQWiNGpUOttlsbNq0ifXr13Pm\nzBmmTJnirbiEBvLWdoWWuLBvaLKkKVtg/EmuqiZn9kPI5ZW0f/pxIgZf07AbuuyYNi9EV1uJ3PsG\n1C5XeyAY57mEhAKh8RAc2/xjXqSkxsDhYguqBp1jXaREyB49/sWyv5dYvtmFW4bBfUzc8jMz0REG\nrjBx2K9UVWPjZ6UsWp6Hw6mS1S2M++akiyaNQHmFm+VrCtn0eRmyopGeYmX6+GSu7hMhkhGCIDSZ\nXqdj3uhuSLLKt4eL+dfKffzPxF6YvDB6XhAEQahfg5MSd955J0ePHmXkyJHce++99OvXz5txCQ3U\n3Ikdl9JSF/aNSZb4upKjKVRJ5thdj+E8dorEe2YSP3N8w24ouTBtWYy+qgS563UoWUOaH4x0LiGh\nKXUNLYM9MLnjHE2DM1VGTpSZ0esgK9FFTIjiseNfTJY1Ptru4qv9MhYTzBljpVdGyy/HzStw8srC\nXA7l1BAcZGD+vHRuGBjT5hfctmqZlWsLWbelBLekkZRgYdrYJH52dRR6fdt+bARB8Ay9XsfPb+mO\nW1LZc6yUV1cd5P7be2L01r5CQRAE4Qca/El99uzZDBw4EIPhpwvTN954g7vuusujgQkN582qhpa2\nsG+pyZKm0DSN07/9O7YvviXypiGkPflgw26oyJi2vYe+9CxKx74oA0Y1v9+D5DiXkFAhLKlu0oaH\nqBocLTVTYDNhNqhkJbkIs3hn5Ge5TWXRWidnilWSYvXMGW0lLqplf6iUZY1V64t4f3UBkqxxbf9I\n7pqRRnRk2264VmtX+GhDER9vLMbpUomNNjHltiSG/SxGbGNpA55++ml27dqFLMvcc889ZGVl8eij\nj6IoCnFxcTzzzDOYzWZWr17NwoUL0ev1TJ48mUmTJvk7dCFAGQ167hvXgxdX7GPPsVLe+PgQ99zW\nQyQ/BUEQfKDBSYkhQy59JXb79u0iKeFFLkm57AK8NS3UG6qlJUuaovC1dyhZsorgnl3o9PJT6OpJ\n+P2EqmL8YgX6wuMoqV2RrxsLumYuut12qMqtS0iEJ4M1snnHu4iswqFCC+UOIyFmhawkF1YvTdg4\ndFJmyUYnDhdc1c3I+KEWzKaW/WHy+Ck7L719mlNnHERFGLlrZhrX9fdcQigQOV0Kn2wqYdX/s3fe\ngVGV+fr/TJ9Meq+E0IL0KgrSIYAFAVGQprh7XXfR3dUt7t4t3nWv/qwr3t0ru97dRYo0RcQGIqEY\niqAQeu+B9EwmmbRp55zfH0MiJWUymWRS3s9fZGZyzndmMsN5n/f7fZ4v8ymvkAgL0TJ/ZgKTxkSh\nE4kjHYJ9+/Zx7tw51q1bh8ViYcaMGQwfPpy5c+dy77338tZbb7F+/XqmT5/OO++8w/r169HpdDz8\n8MOkpaURFua77zBBx0Kn1fDMzP4sXneY704XoNeqeeL+Xm0iqUkgEAjaMj7paVaU5llkdHQkWWbd\n9vMcOltIsdVORIiBQanRzB7fHY369ovz9rBQ7yhYNu/k6kt/RRcXTeryxWhMAQ3/kqKg3f8pmqwT\nyLEpuEbNAnUTxSdHBZRkAQqEJIExpGnHuwGby52wUeFQE3E9YUPbDGtKSVbYss/BtgNOtBqYNcHA\nXX2a3mXQkBjYpGPbZdZ+ksOnXxUgyzBhZCQLZycSFNj6x0yaC6dTZsvOIj76Io8Sq4ugQA0LHk7g\nvgnRGA3tW2QV3Mydd95J//79AQgJCaGqqor9+/fz4osvAjBu3DiWLl1Kly5d6NevX02M+ODBg8nM\nzGT8+PF+q13Q9jHoNPz8kQG8ufYwe47nodNpWDAptcOP0gkEAkFz4pMr4I7wRV1W6eBaQTlJMUEE\nm9wxqM25aAFYt/38TV4RZqu95ue5E1N9dh6bw0WBpbJDdFi0BiqOnuLCM39AbTSQunwx+vgYj35P\nc2grmvMHkSPicY6dB9omLrzt5VB61f3v0E5gCG7a8W6gzK7mWK4Bh6QmIcRJ9ygHzdEBa62QWbXF\nzvlrEpGhKh6/z0hidNP+hhsrBjaWY6fKWLI8i7wCO7HRehY9nkz/3r4Tg9oakqSwfY+ZDz7NpajY\nidGgZtaDcTw4KZZAk/g+6ohoNBpMJrfAvn79ekaPHs3u3btrIsgjIyMpLCykqKiIiIjvvW8iIiIo\n9MDJNjzchLaZTAyjo333PSrwDl+9By8vuoffLdnDzkPZhIUY+cHUPh3ietcXiM+B/xHvgf8R70Hj\n6Ljbch7icLl4eUUm2YXlyAqoVZAQHUiPpFCOnjc3y6IF3ILHobO1X1wdOlvEzDHdmiwgVC++jpwv\norDERkSwnsE9Y3z6PGqjucWc1owjJ5+zjz+HbLPTY+mbBPa7w6Pf05zYjfbELuSQSJzjHwO9sUl1\n2K3F7pENVNcFiaAmHe9Giio0nMx3J2x0i7STFOpqlsjPC9kS739pw1qh0LerhkfTjAQYmn6i5hID\nKypdLP8gm60ZZtQqmDY5hjnTEzAYOuZIgiwr7P7WwtqNueQW2NHrVEybEsND98YREiz+axJAeno6\n69evZ+nSpUyaNKnm9rq6Mz3t2rRYmicWODo6mMLCsmY5tsAzfP0ePPtwf15bncnGry8guySmj/Iw\nrrsDIz4H/ke8B/5HvAe1U59QI678GuDlFZlcLSiv+VlW4FpBBdcKKmpua44OhtJyO8W1xHwCWMps\nlJbbmzyqsWbbObYfzK75ubjMQfqBa8iKwvy0nk06dm009w50a0eqqOTsY8/hzC8i+U/PET7Zs8QM\n9fmDaDO3oJhCcE5YCAFNFBBspVgLctzmmKHJoA+suaupgtG1Ei3nryds9ImzE90MCRuKorAz08mm\nvQ4Apo7UM2aQzic7WM0lBu7PLOHdlVexlDrpnGTk6Sc606NLYMO/2A5RFIVvD5Wy+uMcsrJtaDUq\npoyL4pEH4ogI1/u7PEErYdeuXfzjH//gX//6F8HBwZhMJmw2G0ajkfz8fGJiYoiJiaGoqKjmdwoK\nChg4cKAfqxa0N0IC9fzq0UG8uuogn+65jEGn4d67O/u7LIFAIGh3+ESUSElJ8cVhWh1llQ6yC8sb\nfuB1fNXBABAaZCAixIC5FmEiPNhIaJChSce3OyX2Hsut9b69x/J4ZGx3n3cxtNQ4SmtEkSQu/OT3\nVJ48S/SCh4h9cq5Hv6fOOoF23ycoBhPOiY9DUBMN3KpKoCwHlVqDEtoJdG5hq6mCkaLAebOe7FId\nOo1Mvzg7IUbfJ2xU2RXWbLVx4qJESKCKBVOMdE303d+pr8XAklIn/1x1lb0HStBqVcydEc/0e2PR\nNYe5RitHURSOnChj1cc5nL9UiVoF4++JYNaD8cRGN+37TNC+KCsr4/XXX2fZsmU1ppUjRoxgy5Yt\nTJs2ja+++opRo0YxYMAA/vCHP2C1WtFoNGRmZvK73/3Oz9UL2hvhwQZ+/eggXl2dyYc7L6DXaZgw\nJMnfZQkEAkG7wmNRIjs7m9deew2LxcLKlSv54IMPGDZsGCkpKfz5z39uzhr9xrUC98iGp/iqgwHc\nRkuDUqNvWsRXMyg1qsmCQaGlEpuj9kWjzSFRaKkkKcZ3s1AtMY7Smsn689uUpO8iZPRddH7peY92\n9VW5F9Du+hA0OpzjF6CEeuY9USdVFijLBZWa0JQ7KCn//o+7KYKRS4ZT+QbMlVpMOpn+8TaMOt+b\n314rkFixyYbZqtA9ScP8KQaCTb5d3PtKDFQUhR17inlv3TXKKyTu6B7IooXJdErwwNC0HXLybDmr\nNuRw8qxb5L3nzjAenZ5AUnzTxpAE7ZNNmzZhsVh49tlna2579dVX+cMf/sC6detISEhg+vTp6HQ6\nfvnLX/LDH/4QlUrF008/XWN6KRD4kqiwgOsdE5ms2noWvVbNqAEJ/i5LIBAI2g0eixJ//OMfmTdv\nHu+99x4AXbp04Y9//CMrV65stuL8TVJMEGoVHgsTvuhguJHZ47sD7kW7pcxGeLCRQalRNbdX41XL\nfUOLYh+bALTEOIq/qet9yF++nvx/riEgtSvd330Vta7hj52q6Bq6nasBcI6dixLVxF2ZSjOU54NK\nA2Gd0QUEQXlZTd3eCkZ2l4pjuQbKHRrCAyT6xNrwtX+coijsP+Hi46/tuCSYeKeOyXfpmyU73hdi\nYH6hnb+vyOLIiTKMBjVPzktiyrjoDpl1f+FyJas25HDouBWAoQNCmDsjgS7JbfuzLmheZs+ezezZ\ns2+7vfr640amTJnClClTWqIsQQcnLsLErx4dyOurD7Fs82n0Og139Y71d1kCgUDQLvBYlHA6nUyY\nMIFly5YB7siu9k6wSU9idNBNnhL14YsOhhvRqNXMnZjK1BEpXMq1EhSgJTE6uKadvikt99FhARj1\nGmyO22f+jXoN0WG+3dFtjnGU1mKYWd/7UJaxnyt/eANtZDipKxajDW14F09VWoBu+0qQnLhGz0aJ\n79a0AiuKoKIA1FoI6wzam19rbwWjcrs78tMuqYkPdtIj2vcJGw6nwkc77Rw45SLAAAvvN9IrpXmt\ncDwVA29FkhU2pReyakMOdofM4H4h/PixZKIjO55PQlZ2FWs25rLvYAkA/XoFM3dGPHd0952hqqB+\nRKqSQOB7kqKD+MXsAbyx5hD//OwkOq2awanR/i5LIBAI2jyNurq3Wq01befnzp3Dbq99IdOe+P1j\ng+tJ3yhu1KKlsUiyzNpt59hzLK9GPDDq1YzoF8+cCT2a1HJv0Gm4p18c224wuqzmnn5xPr+I9eU4\niq8MM3110V7X+6C/dpUur/wZlVZDj/f+giE5seGDVZSgS1+Oyl6J8+7pyMl9vK4LRYHKIqgorFOQ\nAO8EI3OlhpN5BiRFRdcIB53CnD5P2Ci0yCzfZCPXLNMpVs1j9xqJCGl+L4ZqMXDmmG4ei15XrlWx\nZNkVzl6sJDhIw48f78yYuyM6XHxcboGddZ/kkrGvGEWB1G6BzHsogf69REt9S1H9/Xj0gplCS1Wr\nNRS+fPlyu/WjErRvUuJCeO6Rgfxl3WH+8clxfjazP327Rvq7LIFAIGjTeCxKPP3008yaNYvCwkKm\nTp2KxWLhjTfeaM7aWgV6rZYXfzCMskoH1wrKSYoJItjk3vm0j2venfp128/fJhrYHDLbD2ajyApH\nL5hr/T1PPRoendADlUrlvngtqSIi+PuL1+bA2x3oW2mqYaYvL9rrGn0IqCwj8rV3kMoq6LbkZYKH\n9m/4YFXl6NKXoaq04ho8GbnHkEbVchOK4u6OqDSDWgfhnUFT+459YwWjnFItZ4v0qFTQO9ZGTJDv\nEzaOnHOxLt2G3Qn39Nfx4Eg9Wm3LLvANOk2DI0VOp8xHX+Tx0Rf5uCSFUXeF88M5SYSG6FqoytZB\nUbGDDz/LY9vuIiQJUjoFMHdGAkMHhHQ4YcbftCZD4SeeeOKmkYslS5awaNEiAF544QVWrFjRovUI\nBL6ie1IoP5vZj8UfHuVvG47xi1kD6Jkc7u+yBAKBoM3isShx9913s3HjRs6ePYter6dLly4YDB3H\nMT3YpKdXSsRNt3myaPGW+ub8ATLPFmKtcNZ6n6ceDdU7wk/NDODCZXOzt/l6swN9K74wzPTlRXtt\now8al5PJny8nsLSYsGd+SOT0yQ0fyGFDt30laqsZV59RSH1GNqqOm1AUt39EVbFbiAjrDJr6F8me\nCEaKAhfNOq6W6tGpFfrG2wj1ccKGS1L4fI+DXYed6HUwb7KBwT1b5wL/zIUK3nnvCldzbESG63hq\nQTJ3Dgz1d1ktSonVyYYv8vlyRyFOl0JinIE50xMYPjSsQ3po+JvWZijscrlu+nnfvn01ooSi+N4M\nVyBoSXqlRPDMQ33520fHeHv9UX41eyDdEjvW/wECgUDgKzwWJY4fP05hYSHjxo1j8eLFHD58mJ/+\n9KcMHTq0OevrsNQ35w9QWuEkPMiApbzpHg1GvbZFTSabIuY01TDT1xftt40+KDLjtn5AXF4WV/oO\npf+vnmz4IJIT3c5VqItzkLoPQRqU5vH5b0NRoCwPbBbQGK4LEg1/zBsSjCQZThUYKKrQEnA9YSPA\nxwkbljKZlZttXMmTiQ1X8dh9AcRFtp5282qqbBKrNuSwaVshigJTxkWx4OFETAEdZ26/vMLFxi/z\n+SK9EJtdJjpSz6PT4hkzPAKNRogR/qK1GQrf2iVzoxAhOmgE7YH+3aL48bQ+/H3jCRZ/cITn5w4i\nOVaMqwkEAkFj8fiK/6WXXqJLly4cOHCAY8eO8cc//pG//vWvzVlbh6Z6sVsXEcEGBqZG1Xqfrw03\nPcHulCiwVGJ3+r6V/0bqe108EWM8uWhvDNWjD9XcuW8r3c8dITchBedzP8Wob0AQkCW0GR+gzr+M\nlNwb110Pep98oihQluMWJLTG6yMbjTOFrBaMbvz7cbjgcI6RogotYUaJwYlVPhckzlxxsXhNJVfy\nZAalavn5bFOrFCQOH7fy8z+e4ov0QuJjDLz821SeWpDcYQSJKpvEh5/l8uPfnOCjL/IJMGr40fxO\nvPNKb8aPjBSChJ+p/n6UXSpsJXpctu//Ln2dDuUNQogQtEeG9Izhhw/0osru4s21h8kuqvB3SQKB\nQNDm8HjFYjAYSElJYd26dcyaNYvu3bujbkWmWe2N+ub8AQb3jGb6qK44HBKnsyxYyuzNZrhZH74y\nnfSUphpmNkcKSPXrXbx+E0O+20Z5eBRVv/8tsyf3qv8XFRntN5+guXYaOa4brpGPgLevmaKANRvs\nVtAGQFgyqJu+UK5wqDiaa8TuUhMb5KRnjG8TNmRZYet3Trbud6BWw8yxBob307a6xYu13MV7a6+x\nc2+xu877Y5n1YDx6Xcf4DnQ4Zb7cUchHX+RjLXMRHKTh8VmJ3DsuGoOhY7wGrR1JVjh+qpyq/CBK\nr7oAFfoQO9q4KsA/YnVpaSnffPNNzc9Wq5V9+/ahKApWq7VFaxEImpPhfeJwOCWWf3mGN9ce4rfz\nBhPbxmPOBQKBoCXxWJSoqqpi8+bNpKen8/TTT1NSUiIuKpqZ2eO7oyjKLekbGu7uG4uiKPzXv/dT\nbLUTHqzn7j5xzE3rgcngnr9vqbhMf5iqNcUw05cpINVo1GoeCCrnzOa1qEKCGLL+HUJ7NRDjqSho\nDm5Bc/EQcmQSzrFzGt3V8P2xZCjNBkcZ6AIg1DeChKVSzfF8I5KsIiXcQedw3yZslFcprNpi42yW\nRHiwisfuM5Ic27o6DhRFYe93Jfxz9VVKrS66dg7gmSc60yW5Y1xsulwK23YX8eFneZgtTkwBah6d\nHs/UtJgO0x3S2ikqdrBtl5ltu80Umh0AhIZpMITacemriAhpebG6mpCQEJYsWVLzc3BwMO+8807N\nvwWC9sSYgYk4nDJrtp3jzTWH+O28IUSGGv1dlkAgELQJPF4F/eIXv2DFihU899xzBAUF8be//Y2F\nCxc2Y2kCjVrNvLSePDy2O4UlVaAoRIeb+OjrCzctqovLHOw9nofJqGX2+O4t1rngL1O1phpmVl+c\nH71gpqikqskdJrZLVzn3w1+DopD6rzcIaUiQADTHv0Z7ai9yaDTOCQtA52VbtSJD6VVwVIAuEMI6\ngarp73OuVcvZQndaxx0xNuKCfTuWcyVXYvlmG6XlCr1SNMxJMxIY0Lq6I8wWB++uvMp3h0vR61Q8\n9kgiD06K6RAjCpKssGtfMWs/ySW/0IFer2LGvbFMvzeWkCAvxTOBz3C5FA4cKWVrRhGHjltRFDAa\n1KSNjiRtTBTdU0yEhJlaxMC4PlauXOmX8woE/iLtzk7YnRIbMi7yxvWOiTA/j00JBAJBW8Djq8th\nw4YxbNgwAGRZ5umnn262ogQ3Y9BpSIoOAuoXAnYfzcUlyew8lFNzmyedCzaHiwJLZaMvXv1tquat\nYaYvU0dcllLOLvg5kqWULm/+gZCRdzb4O+qz36I9vA0lMBTnhMfB4OVrpMhQkgXOStAHQWhSkwUJ\nRYFLxTqySvRo1Qp942yEBfguYUNRFHYfcfLpbgeKAvcN1zNuqA51KxrXkGWFrRlFrPgwm8oqmb53\nBLHo8WTiY9v/jpeiKOw7WMKajblczbGh1aq4f0I0Mx+IIzy0daagdCRy822k7zKzY48ZS6k72SK1\nq4m00VHcMyycAOP332MtbWBcG+Xl5axfv75mA2Pt2rWsWbOGzp0788ILLxAVVbsvkkDQlnlgRAp2\np8QX31zhzbWHeX7uIEJMtUdyCwQCgcCNx6JE7969b5rzVqlUBAcHs3///mYpTHA7dqfExezSWv0Q\nAGwOiW+O5dV638HThUwdkULwDf8xVvtBHL1gptBS1eiuiubwZ2hJmnrRLjucnHvyeWwXs4h/+nGi\n505v8HfUl4+h3f85iiEQ58SFEOhlfJgsQWkWOKtAHwyhiU0WJCQZzhQaKCh3J2z0i7Nh0vvO0NJm\nV/hgm50j510EBaiYP8VAj06ta9c9J9/GkmVZnDhTjilAzU8eTyZtdGSr87jwNYqikHnMyuqPc7h4\npQq1GiaOiuSRqXHERLXuz3F7x+GU2X+whK8yijh+uhyAoEAN90+MJm10FJ2TAvxcYd288MILJCYm\nAnDp0iXeeust3n77bbKysnj55ZdZvHixnysUCJqHh0Z3xe6USD9wjbfWHeb5OYMwGYWwKxAIBHXh\n8Yrg9OnTNf92Op3s3buXM2fONEtRrZWW8mm4lVvNJNUqkOtYK9pdte9qW8rt/NfSbxl6R0yN6OCt\nH8SNr4Ov/RnaCoqicPk3/4+yvQcJv28cSf/ZcOeQKucc2j0fgU6Pc+JjKCFe7hLKEpRcAZcNDCEQ\nkuh9Ysd1HBIczzNitWkIMUr0jbOh9+Hbl1sksXyTjcIShS4JahZMMRIa1HoMEiVJ4ZMt+az7JBeH\nU+GuQaH8aH4nIsLb/+7W8TNlrN6Qw6lzFahUMOqucGZPiycxrv13hrRmsrKrSM8ws2OvmfIK9/hU\nn55BpI2O4u4hYRj0refzUxdXr17lrbfeAmDLli1MmTKFESNGMGLECL744gs/VycQNB8qlYo5E3rg\ndMl8fTiHxR8c4RezBxJgaF1CvEAgELQWvPp21Ol0jBkzhqVLl/KjH/3I1zW1Olo6YeJWbhUPFC83\nr0vKHTXHmTmmW6P9IGp7HQb0iGLCkEQOnzM32nSyLZP7v8spWvcZgQN60/Wv/42qgb8DVUEWup1r\nQKXCOW4+SkSCdyeWXe6RDZcNjKEQnNBkQaLyesKGzaUmJshFz2g7Gh/+WR845WT9DjtOF4wdrOO+\n4fpW5ctw8Uol77x3hYtZVYSGaPn5k50YPiSs3XdHnLtUwaoNORw5UQbAsEGhzJ2R0Kp33ts7NrvE\nnm9L2JpRxJkL7ljB0BAtM+6NZcKoyDYnFJlM33eiffvttzz88MM1P7f3z5dAoFKpWDC5Jw6nxDcn\n8vnbR0d59pEB6Nvxho1AIBB4i8eixPr162/6OS8vj/z8fJ8X1BrxR8JENfV5SHjLobOFjB6Q0Gg/\niNpeh+0Hs5k4NImXnrzLL10k/qD483SuvfK/6ONj6bHsLTSm+hcKKkseuh0rQZZwjZmDEpvi3Ykl\nl7tDQrJDQDgExTVZkCipUnM8z4hLVpEc5qBLhO8SNpwuhY1f29l3woVRD/PuN9KvW+vZJbI7ZD74\nNJeNX+YjyzD+nggWzk4iuJ0bOV65VsXqj3P49lApAAP6BDN3RgKpXQP9XFnH5cLlSr7KKGLXvmKq\nbDIqFQzqG0La6EiGDgxFp239XRG1IUkSZrOZiooKDh06VDOuUVFRQVVVlZ+rEwiaH7VKxQ/u74XD\nJXPwTCH/+/ExfvpQ/zb7mRYIBILmwuOr74MHD970c1BQEG+//bbPC2pt+Cthopr6zCS9xWy1g6I0\nyg/Ck9ehsf4M/hqHaQrlh45z4Wf/hTrQROqKxehjGxjBKCtGt20FKocN5z0zkTvd4d2JJed1QcIB\nAREQFNtkQSKvTMOZAvf73DPaTnyIq0nHuxFzqczyTTayC2USotQ8fp+RqLDWcxF24kwZ7yzLIjff\nTkyUnp88nszAPiH+LqtZycm3sXZjLru/taAocEf3QObNTKBvTxHN6A8qKiV27S9m69dFXMxyL9Aj\nw3VMnRTDhJGR7cLL48knn+S+++7DZrPxzDPPEBoais1mY+7cucyaNcvf5QkELYJGreapB/vwvxuO\ncfSCmXc/PcFPpvdpkU5bgUAgaCt4LEq88sorAJSUlKBSqQgN9dKgr43h74SJ+swkvUWtotF+EL58\nHfw9DuMt9mt5nFv4SxSHkx7LXsPUp4Eumaoy9NuWo6oqwzX0PuSuA707seQAyxWQnWCKhMCYJgkS\nigInrimcLjCiUSv0jbURbvJdwsbxiy7WfGXD5oC7+miZMcaATts6WrUrKl38Y0UWW3YWoVLB1LQY\n5j4Uj9HQNkQxbyg0O/j3mjNs2paHLEPX5ADmPpTA4H4hooW+hVEUhdPnK9iaUcSe7yw4HApqNdw1\nKJSJo6MY1C8Ejbr9vCdjxoxh9+7d2O12goLcCVJGo5Ff//rXjBw50s/VCQQth1ajZtH0vvzP+qNk\nni3k35+f4j8e6I26HX3eBQKBoCl4LEpkZmby/PPPU1FRgaIohIWF8cYbb9CvX7/mrM/v+DthwqDT\n1CkeeIusQJXdVeP7cPSCmaKSqtv8IG7sZPDl6+DPcRhvkcrKOfv4szgLzST/+VeETWzggtpRhW7b\nclRlxbj6jUXqNdy7E7vs7g4J2QWB0WCKapIgIStwpkBPfrmCUSvTL95GoI8SNiRZYfM3DnYcdKLT\nwuyJBob1bj1u498dLuGfq45TaHbQKdHIMws7k9qt/Y4sWEqdfPR5Hlu+LsLlUkiKNzJnRjx3Dw4T\nF9Xw8jYAACAASURBVMItjLXMxY69ZtIzzFzLtQEQG60nbXQU4+6JJCKs9XxOfElOzvfx1Fartebf\nXbt2JScnh4QEL711BII2iF6n4acz+/HWuiPsO5mPXqfmsSl3tKpIbIFAIPAXHosSf/nLX1iyZAmp\nqe5F48mTJ3n55ZdZtWpVsxXXGqhPFGjOhIkbBYFqkeDQ2aIaM0mTUcvVgvIGaldjd96+Ax4R7BYZ\nNGo1cyem8tTMAC5cNteMUUiyzOr0s7d1MgzoEcX2g9m3Ha8xr4O/x2G8QXG5OP+T31F16jwxCx8h\n9oez6/8FlwPd9vdRW/KRet6FNGC8dye+SZCIgUAv0zqu47yesFFq0xARCHdEVaH3kX2CtUJm5WYb\nF3NkosJUPH6fkYSo1vE+llid/Hv1NXZ/a0GrVfHo9Hgeui+23c70lpW7+HhzPpu2FWJ3yMRG63ly\nflcG9gloV7vwrR1ZVjh+uoytGWb2ZZbgcilotSpGDgsnbUwUfXsGtXtxaPz48XTp0oXo6GjA3SlS\njUqlYsWKFf4qTSDwC0a9lmcfGcAbaw6RcSQXnVbD3Ik9RNeaQCDo8Hi8JFGr1TWCBEDv3r3RaFrH\noqO5qU0UaK6EifpGG2aO6VYjVGg1quuPc9dU7eZsd0hEhLjrkxWlVhFhcM/omxb+Rr32ptGLujoZ\nJgxJZOLQpCa9DvWNgZitNoqtNuIjW9fuddafFlO6fS+h40bQ+c+/rP/iQXKh/Xot6sIspJR+uO68\nz7vOBqfNLUgoktvQ0hTh/RMAqpzuhI0qp5qoQBejeuuwFDfpkDWcv+bi/S/tlFUq9O+uYfYEI0aD\n/y+wFEXh62+K+feaa5RXSKR2C+QPz/Ui2IejKq2JqiqJT7cW8OmWfCqrZCLDdTzxaCITRkYRHx9C\nYWGZv0vsEBSXONm+20z6riLyCx0AJMUbSRsTydjhkYQEt28j1Rt57bXX+OSTT6ioqOD+++/ngQce\nICKiad9lAkFbx2TU8ovZA3h99SG2HbyGQadh5piuQpgQCAQdmkaJEl999RUjRowAICMjo8OIEtUd\nBTeKAs21m9/QaMON4sGtNQE31SfJMmqVqlEiQn2dDIfPmXnpybua9Do05JGRfuAqCyZ7aQbZDOT9\ney35S9cRcEc3uv/j/6HS1vORUWS0ezegyTmHnNAD14iHQOXFbryz6rogIUNwvDtpowmU2tQczzXi\nlFV0CnPQNcKJVqNv0jEBZEVhxwEnm/c5UKlg2ig9owbqWsWFVUGRnX+suMqh41aMBjU/nJPEvROi\niYsNbHeLc7tDZvP2QjZsyqOsXCIkSMsTj8YzeWw0Bn377AZpbUiSQuYxK+m7ijhwpBRZBr1exfh7\nIkgbE0XPboGt4nPR0kybNo1p06aRm5vLxx9/zLx580hMTGTatGmkpaVhNLatiFOBwFcEm/T86tGB\nvLoqk037rmDQqZl6Txd/lyUQCAR+w2NR4sUXX+S///u/+f3vf49KpWLgwIG8+OKLzVlbq8Og0zSr\nqaU3ow231nTjv70RUzw1tPT2dTDoNPTvHsWOzNs7OACOXijG7pRaxQhHybbdZP3XW+iiI0ld8Taa\n4KC6H6woaL/bhObyMeToZJxjHgWNFzuijkoozbouSCRAQJj3TwAoKNdwqsCAokBqlJ2E0MYnbNSW\nklJpU1j9lY1TlyVCA1UsuM9Il3j/v2eSrPDl9kLe/ygHm11mYJ9gfvJ4crtIMrgVp0smPcPMh5/l\nYSl1YgrQMHdGPA9MjCEgwP/vRUegoMhO+i4z23ebMVucAHTtHEDa6ChG3RVBoEm8DwDx8fEsWrSI\nRYsW8eGHH/LSSy/x4osvcuDAAX+XJhD4jdAgA7+eM4hX3s/k412XMOg0TBqW7O+yBAKBwC94vGpK\nSUnh3//+d3PW0uEpLKlqlqSPxogpLWHsOXFIUp2iREskmnhC5clznP/x71DpdfR47y8YkuLrfbzm\n6HY0Z/Yjh8XiHDcftF50IjgqrgsSCoQkgtH7hBtFgawSHZeK9WhUCn3i7USYpEYdo65RohF9urBq\ni4Niq0JqJw3zJhsJMvl/F/hqdhXvLMvizIUKggI1/Gx+Z8aOiGh3O9SS5B5LWfdpLgVFDowGNTPv\nj2X6lFiCAjvOaIC/cLpkvjtcSnqGmcMnrCgKBBjVTB4bRdqYKLp19u93V2vEarXy6aefsmHDBiRJ\n4qmnnuKBBx7wd1kCgd+JCDHy67mDePX9g6zdfh6dTsO4QYn+LksgEAhaHI+vYL/55htWrFhBWVnZ\nTWZV7d3osiWoXvxlnimgrhyExgoCte1ue4Knxp7Vxw8waKmyu247T13nl2SZ9IPXUKvcSRCePE9v\nn4u3OAqKOPvYs8gVlXR/91WCBvet9/GaU9+gPboTJSgc54THwRDQ+JPay6H0qvvfoZ3AEOxF5W5k\nBc4W6skr02HQuBM2ggyNT9iobZQo47CdzFM2UFRMGqYjbZje72Z9TpfMhk35rP88D5dLYeSwcH44\nJ4mw0PaVaCDLCt8cKGHNxhyy8+zotCqmpsXw0P2xhIW0r+faGsnOs5GeUcT2PcVYy9wdR3d0DyRt\ndBQj7gxr17Gy3rJ7924++ugjjh8/zqRJk3j11Vdv8qYSCAQQExbAr+cM4tVVmazccganS2bSnZ38\nXZZAIBC0KI0a31i0aBFxcXHNWU+H5NbFX214mnBRn1GmRu3ZfHl9xp43Ht9stdeICxHBegb3jOHh\nsV1Zv/Ninedft/18nV0Stz5PXzyXxiJV2ji38Bc4cvJJ+s+niZg6sd7Hqy8eRntgE0pAEI6JC8Hk\nhZhgL7suSKiuCxL1jIk0gEuCE/lGLFUagvQS/eLtGLSNFyRuHyVSY9KnYNBGoSguFt5vol+3pvtS\nNJWzFyt4570rZGXbiAjT8dSCTgwb1LSRl9aGoigcOGJlzcYcLmVVoVbDpDFRPDI1jqgI/78H7Rm7\nQ+abgxa2fm3m5Fl32lFwkIapk2KYOCqS5EQvBMgOxH/8x3+QkpLC4MGDKS4u5r333rvp/ldeecVP\nlQkErYv4yECenzOIN9cdZu22c5RXOZkxqku76/QTCASCuvBYlEhMTOTBBx9szlo6JPX5SABE3rAQ\n94SGjDI9oT4vitXpZ286fnW3Q3GZg/QD1ziTVXJTVOmN5585pludz1WtgjEDE256nr54Lo1BkWUu\n/vwFKg6fJGrWA8Q/s7Dex6uvnka792MUvdHdIRHshau8rRSs2e6EjtBk0HufPGK7nrBR6VQTaXLR\nO9aOxkvt5kZvEbXKSJChOxq1CZdUTqXzPLERgwH/LYhtdonVH+fyxdYCZAUmjY3isYcT290M/9FT\nZazekMOZCxWoVDD67nAenRZPfKwwCGxOLl+tJD3DzM5viqmodI899esVTNroSO4eHIZOJwxEPaE6\n8tNisRAefrNh77Vr9QvxAkFHIzE6iN/NH8Jf1h7m872XqbQ5mZuWiloIEwKBoAPQoChx9aq7pXzo\n0KGsW7eOYcOGob0hgaBTJ9Fi1hTqM5YE6JEUdtMCvL5RBm+MMuuj2ovC7pQosFQSYNDWK6AAZBeW\n13r7obNFjB6QUOdzVYDJw5JrOiB8/Vw84dqrS7B8sZ3g4YNJef339e5QqPIvo921DtQanOMWoIR7\n0UFUVQJlOe6EjtBk0Hs/i261qTmWZ8ApqUkMddI90uFVEmk11d4i1opAAvVdUKk02Jx5VDmvEhli\n8Im3iLccOWHl78uzyC9yEB9jYNETyfTt6f24S2vkzIUKVm3I4dgpd1LI3UPCmDM9XuzMNyNVNond\n31rY+nUR5y5VAhAeqmXK/bFMGBkphCAvUKvVPPfcc9jtdiIiInj33Xfp3Lkz77//Pv/3f//HQw89\n5O8SBYJWRXRYAP85fzB/WXeE7ZnZVNpc/OD+Xmi93WEQCASCNkKDosTjjz+OSqWq8ZF49913a+5T\nqVRs27at+arrAIQGGQgP1lNc5qj1/nPXSrA7JbQaVYOjDJ4mZ3jKreMToUF6Ssprr7Oa2nwiqs+P\notRpohlxi5eEr59LQxSu/ZTc/12GoWsy3f/5Omp93TP6quIcdDveB0XBOXYuSowXbtlVFijLdQsS\nYZ1B5/1is/B6woasQPdIO0lhjU/YuBWNSk1kcDdkVxCKIlFuP49TKgY8HyXyNeUVLt5bl8323WbU\naphxbyyzp8W3q9jLS1mVrP44hwNHrAAM6hvCvIcS6JYizBObA0VROHepkq0ZRezeb8Fml1GrYEj/\nENJGRzGkfyhardil9JbFixezbNkyunXrxrZt23jhhReQZZnQ0FA+/PBDf5cnELRKQoMM/GbeIP7n\nw6PsO5lPpd3FT6b3bRWpZAKBQNBcNChKbN++vcGDbNy4kenTp/ukoI6GQachNTmcfSfya73fbLVT\naKkk42hug6MM9SVn6HUagkyNM8O7dXyiIUECqNfAMjrc5JGJJrRMCkg11j0HuPz8y2jCQ+m54m10\nEXV7EqisZnTbVoDTgWvUIyiJPRp/wspiKM8Dlea6IOHdDqyiwLVSLRfMetQq6BtnJyqwcQkbtVFs\nlVm52UahJQijwYnddRHJVkpkyPfeIi2Joih8c7CEf75/lRKriy7JATz9ROd2lXKQnWtjzcYc9nxX\nAkDv1CDmPZRA71Tv/UUEdVNe4SJjXzFbvzZz+VoVANGReqbfG8mEkZHCq8NHqNVqunXrBsCECRN4\n5ZVX+M1vfkNaWpqfKxMIWjeBRh2/nD2QdzYe4+gFM2+tO8zPH+6PyShMjQUCQfvEJ/lxGzZsEKKE\nF0iyzOqtZzl5yVzv415eebDOVvwbRxnqS86wOSQ27rrksRdDQ14XdREbbiK3uPK226tFh/pMNG/E\n0xSQplJ1/jLnnnweVCp6/Ot1jF3r6XqoKEWXvgyVrQLnXVORU/o1/oQVRVBRAGqtW5DQeieuyAqc\nL9KTY9Wh18j0i7cTbJC9OtaNnLrsYvVXNiptMOQOLTPHBQIDWzT95EaKLQ7+7/2r7D9Uik6rYv7M\nBKZNjm03u9cFRXbWfZLLzr3F7k6XFBNzH0pgYJ9gYXDmYxRF4eTZcrZmmPnmgAWHU0GjgeFDwpg4\nOpIBfULQ+DlJpr1x699wfHy8ECQEAg8x6DX8bGZ//vX5Sb49VcDrqw/x3OyBhAYK0VQgELQ/fCJK\n3BgRKvAMSZb587IDN5lC1oXdWfdi89ZRhumjurL7aA42x+2/0xgvhoa8LsKDDFjKv0/fMOjUqFQq\ncosrMerVgAqHU7pNdKjPRPNWPBUwvMVRVMzZx55FKrHS5e0/ETJ8SN0Ptlei27YcVUUJroETkFOH\nNe5kigKVRVBR2GRBwiXDyXwDxZVaAvXuyE+jFwkbNyLLClv2O0j/zolGDQ+PN3B3H+31RYXGp6My\nnqAoCum7zCxbl01llUTv1CAWLUwmMa59zPUXWxx8+Hke6RlmXJJCcqKRuTMSGDYoVIgRPsZS4uDj\nzfmkZxSRk+/+TouPNZA2OpJxIyLbXXRsa0b8bQsEjUOrUfOjqX0wGbTsPJzDK+8f5FezBxIVJvyF\nBAJB+8InooS40Gg8q9PPeSRINMStowzllQ7stQgS0DgvhvrGJyJDjLywcChVdhcBBi0fbD/PnuN5\nNfdXCyIj+saxYHLPWkWHahPN+miMgNFYZLuDgwt+hv3yNeJ/9gTRsx6o+8FOO7rtK1GXFuK6YzhS\n3zGNO5miuLsjKs2g1kF4Z9B4t9Nhc6k4lmugwqEhIsBF7zg72iZaKpRVyqzaYufcVYmIEBWP3Wek\nU4z/Zldz820sWZ7F8dPlBBjVPLWgE5PGRKFuB7vY1jIXGzbnsXlbIQ6nQnyMgUenx3PPsHCxS+9D\nZFnh6Mkyvsoo4rvDpbhcCjqtitF3h5M2Ooo+PYPE/1stwKFDhxg7dmzNz2azmbFjx6IoCiqVip07\nd/qtNoGgraBWq1gwuSeBATq++OYKr6zK5BezB5IY5X1al0AgELQ2fCJKCBqH3Slx+GyRT47VXF4M\nDY1PBJv0BJv02J0Sp7MstR7jTFaJh8+i4Vp8uVOvKAqXnn+Z4t0HiJg6kaTnf1L3gyUXup1rUBdd\nQ+o6CGnoFBoVa6EoUJ4PVcVuISKsM2i825kts6s5lmvAIalJCHHSPcpBU9exl3IkVmy2Ya1Q6N1F\nw5w0IyajfxZrkqTw2dYC1mzMweFQuHNgKD+a36ldzPdXVEp8+lU+n31VQJVNJjJcx+xp8YwbEdlu\nRlFaA0XFDrbvNpO+y0yh2e2B07VzIONGhDNmeATBQeK/vJbkyy+/9HcJAkG7QKVSMXNMNwKNOj7Y\ncZ7XVmXy3KwBdIkP8XdpAoFA4BPEFZofKC23U1Je92hEXRj0agINOkrK7V55MfTvFuFxx4HdKTFu\nUCKSJHP0QnGd4xP1jXkUW21czC6la2Joq3KNzv3rUswffkHYsAF0fftPqNR1tBrIMtrd61HnXUBK\nugPX8GnutAxPURQoywObBTSG64KEdx+5ogoNJ/PdCRvdIu0khbqaFPmpKApfZzr4fI8DBbj/Hj1j\nB+v8lod+KauSd97L4sKVSkKCtfz0B0ncc2d4m9/NttklNm0r5OPN+ZRXSISGaJkzI4HJY6PQ69pP\naog/kSSFg0dL2ZpRROZRK7ICRoOaiaMiSRsdxYi7YikqanpXmqDxJCYm+rsEgaBdMeWuZAKNWpZ9\neZrX1xziZw/1o1dKhL/LEggEgibjE1EiKKjjOMTbnVKTRwkaigGti1H9E7zyYggLMhAYoOPoBTM7\nD+XUGidaza0xoBEhBvp3j2LikCQiQoy3nbO+zgyVCt5ce7je87U05k++4tprf0efGMfQDUuwquvo\nHFEUtPs/RZN1Ajk2BdfoWaBuxPutKFCWA7ZS0BohLNntJeEF10q1nC9yJ2z0ibUTHdS0hI0qu8Jf\n11g4eMpBsEnFgilGuiX5RzRyOGU++DSXjV/mI0kwdngET8xJIqSN72g7nTJffV3E+s/zKLG6CArU\nMH9mAvdPjMZoaD0CXVsmr8BO+q4itu8uxlLqBKB7FxNpo6IYdVc4AQHu17mtC1sCgUBwI6MGJGAy\nann30xMs/vAIP57Wl8Gp0f4uSyAQCJqEx1f+hYWFbNq0idLS0puMLX/+85+zZMmSZimuNVHbYt3b\nhbZBp+GOzhHsvcGHoT6Meg339IurOVdjvRg27b9CxuHcmvtrixOt5tYYULPVzo7MbDRqVa3JHfV1\nZlRHg9Z3vpak7MBRLj77J9RBgaSueBtDbBQUltX6WM2hrWjOH0SOSMA5dl7jRi4UBazZYLdeFyQ6\nN07QuOEwF8x6rpXq0GkU+sXZCDE2LWEjp1Bi+SYbRaUK3RI1zJ9iICTQP0LRybPlLFl2hew8O9GR\nen78WCcG9wv1Sy2+QpIUduwx88FneRSaHRgNah6ZGse0yTEEmtq20NIacDpl9h8qYevXZo6ecn92\nTQEa7h0fTdroSLokt5+YWIFAIKiLIT1jePYRLX/76BjvfHyMhffewaj+Cf4uSyAQCLzG46vkp556\nip49e3bYdszaFutNWWjPTetB5tlCbI66d73DAvX8dGY/EqKDvOrK0GpUbPnuKruP5NZ6f3UaRzX1\nxYDWl9xxY2dGsdWGSvW9IOHpMZob+9Uczj3xSxSnix5L38TUq+4ED82J3WhP7EIOicQ5fgHoG5H4\noMhQmg2OMtAFQGiyV4KEdD1hw1ypxaRzJ2wE6JqWsPHtSScf7bDjkuCBUYGMHoBfzBUrqyRWrs/m\nyx1FqFRw/4Ro5j2UULOz3RaRZYU931pY80kuufl2dFoV0ybHMOPeWEJDRLpDU7maU0V6hpmde4ux\nlrsA6J0aRNroSIYPDcegF6MwAoGgY9E7JYJfzxnE4g8O896m01TaXEweVk+suUAgELRiPBYlTCYT\nr7zySnPW0mrxdrFeHyaDjpH942vtMKjGWukgMEDn9SJ+3fbz7MjMrvP+6jSOpOs/1+cPUV9yx42d\nGRezS3lz7eFGH6M5cVnLOfvYs7jMFjr/v98QNm5EnY9Vnz+INnMLiikE54SFENCI0SRFhtJr4CgH\nnck9stEYD4rr2F0qjuUZKLdrCAuQ6BNroyk6jtOlsGGnnW9PuggwwGP3Ghl7VwiFdXSJNCcHjpTy\njxVZmC1OkuKNPP1EMnd0b7vjX4qi8O3hUtZ8nMOVazY0Gpg8NopHpsYRGd72DTr9id0us+eAhfSM\nIk6dqwAgJEjLtMkxTBwdRVJ8+4iHFQgEAm/pmhDCb+cN5i/rDrNu+3kqbE5mjOoqxtYEAkGbw2NR\nYsCAAVy4cIFu3bo1/OB2hreL9YaYPb47kqzw9aHsWjsLGpOWcSv1CSl1Hb+pyR0GnYauiaE+Sf/w\nFYrLxfmnfkvVmYvE/sccYhc+Uudj1Vkn0O77BMVgwjnxcQgKa8SJZCjJAmcl6IMgNMkrQaLcruJY\nnhG7S01csJPU6KYlbBSWyCzfZCO3SCYpWs1j9xmJDG35XeVSq5Ola6+Rsc+CRgOzHozj4fvj0LVR\ns0dFUThysozVG3I4d6kStQrG3RPB7AfjiY1u2b/x9sbFK5VszSgiY5+Fyip3J9mAPsGkjY5i2KBQ\ndE3NwBUIBIJ2RGJ0EL+bP4Q31x3m871XqKhyMW9Sqt+MqwUCgcAbPBYldu3axbJlywgPD0er1Xao\nnHFfxWzeikatZsGknqAo7DiUc9v9t8Z9gudGm/UJKXUdv6EYUE86NnxxDF+hKApX/vAG1q/3ETpx\nJMn/9Wydj1XlXkC760PQ6HCOX4ASGuP5iWQJSrPAWQX6YAhN9EqQKK7UcCLPgKSo6BLhIDnM2aSE\njaPnXaxLt2FzwPB+WqaNMqBr4fhJRVHI2Gfh32uuUlYu0aOLiaef6EznpIAWrcOXnDpXzqoNOZw4\n4050GDE0jEenx9Mpoe0+J39TWSWxa38xW782c+FKJQARYTrunxDNhFGRQugRCASCeogKC+A/5w/h\nrXWH2XEomwqbk/94oDdajRBxBQJB28BjUeLvf//7bbdZrVafFtNaqW+hbTJq0Woat9C7VViYm5aK\nRqN2m2iW2YkI/t5Es5rGGG3anRIOp1SnkKJWwZiBCbfFicLtyR11RY/Why+O4Qvy/7WGghUfEdC7\nB92XvIxKU7sgoiq6hm7nagCcY+eiRCXV+rhakSUouQIuGxhCICQRb5SEHKuWs4V6VCroHWsjpgkJ\nG5Kk8MVeB18fcqLXwpw0A0N7tbyvQaHZwbsrszh41IpBr+aJRxO5f2KMX3wsfMGFK5Ws3pBD5jH3\n996Q/iHMnZFA187CXNEbFEXhzIUKtmaY2fOtBbtDRq2COweGkjY6ksH9QtE08rtVIBAIOiqhgXp+\nM3cQb68/yrenCqiySyya0bdVRbILBAJBXXgsSiQmJnL+/HksFgsADoeDl156ic2bNzdbca2J2eO7\ncyarhKsFN+fdXy0oZ9328x6ZXdYlLDw8tivgvkhXFG5KN6nGE6PNW49fl/nbmEGJ7g6NWrg1ucOb\n6FNfHKOpWL7KIOtPi9HFRJK6fDGaoMBaH6cqLUC3fSVITlyjZ6PEN2I8SXa5RzZcNjCGQnBCowUJ\nRYGLxTqulujRqt0JG6EB3idslJbLrNhs43KuTHS4isfvMxIf2bKvvSwrfLmjiJXrs7HZZQb0DubH\njyUTF9M2d7uvZlexZmMu3xwsAaDvHUHMeyihTXth+BNruYuvvylma0YRV7NtAMRE6Zk4KpLxIyOF\nF4dAIBB4icmo45ezB7Lk4+Mcu2jmL+sO8+zD/TEZheGyQCBo3XgsSrz00kvs2bOHoqIikpOTuXr1\nKj/4wQ+as7ZWhUtSqLQ5a73PU7PLuoSFW8WO4jLHTYKDp0abtx7f5nAvbo16DXanRFiggYGpUcyd\n2KPB52vQaZpsSOmLY3hDxfEzXFj0e9QGPT2WL8aQGFfr42SrBV36clT2Spx3T0dO7uP5SSSXu0NC\nsoMxHILjGi1ISDKcLjBQWKEl4HrChqkJCRtnr7pY9aWd8iqFAT20zJpgwKhv2Z3ma7k23nnvCqfP\nVxBo0vDME50ZPzKiTZpu5RXYWfdJLhn7ipEVSO1qYt5DCfTrFdwmn48/URSF46fL2ZpRxL6DJThd\nClqNihFDw0gbE0X/XsGo22gHjUAgELQmDDoNP53Zj39/cYr9J/N5bfUhfjFrQIt7egkEAkFj8FiU\nOHbsGJs3b2bBggWsXLmS48ePs3Xr1uasrVXRVLPL+oSF7MLyWm+vFhw8OXdokKHO4yuKQmigHku5\nnaPni9CoVbWOfbQHHHmFnH38OeTKKrr/63WCBvSu/YFV5VR+vhRVpRXX4MnIPYZ4fhLJeV2QcEBA\nBATFNlqQcLjgWJ6RMruGUKNE3zjvEzZkRWHbd0627HOgVsOMMXru6a/zauHsqWfJrbhcCh9vzuOD\nz/JwuRSGDw3jyXmdCA9te7szZouDDz7LY9uuIiQJUpICmPtQPEMHhAoxopFYSp3s2GMmPcNMboH7\nOywxzkDa6CjGjogQcakCgUDQDGg1ap6c2huTUcuOzGxeeT+TXz46kOgw4X0kEAhaJx6LEnq9u6XW\n6XSiKAp9+/bltddea7bCWhtNNbssLKmqU1ioLXkDbhYcGjp3fcKF3SljdzqA2sc+2gtSZRVnH38O\nZ24BnX7/UyLuG1/7Ax02dNtXIlsKcfUZhdRnZCNO4gDLFZCdYIqEwJhGCxIVDhXHco3YXGpig1z0\njLF7nbBRUaWw+isbp69IhAWpeOw+I53jGq9uNMaz5FbOX6rgnfeyuHytivBQHT+a34m7hzQiuaSV\nUGp18tGmfL7cXojTpZAQa+DR6fHcc2e42MVvBJKscPi4la0ZRRw4UookgV6nYuyICNJGR9GrR6AQ\ndwQCgaCZUatUzE9LJdCo4/O9l3nl/YP8cvZAEqPF6KFAIGh9eCxKdOnShVWrVjF06FCeeOIJobI0\ntAAAIABJREFUunTpQllZWb2/8/rrr3Pw4EFcLhdPPfUU/fr14/nnn0eSJKKjo3njjTfQ6/V8+umn\nLF++HLVazaxZs3jkkbpjG/1FfWaX/btH1rm7XL3YyzxTQF2N+WpV7cJEteDgSaJFfcJFbXg6ctJW\nUGSZi8/8kcpjp4meM424RY/V/kCXE93OVaiLc9D1vRv7wDTPT+KyuzskZBcERoMpqtGChKVKzYk8\nIy5ZRUq4g87h3idsZOVJrNhsw1KmcEdnDXMnGQkM8O5gnniW3IrdLrNmYw6ffVWArMDE0ZEsnJVI\noMnjr5VWQUWli41fFvD51gJsdpnoSD2zHoxj3IhIYbTYCArNDrbtKmLbbjNFxe5Rt5ROAaSNjmLM\n8PA293chEAgEbR2VSsVDo7sSZNSydvt5Xl2VyXOzBtI1IcTfpQkEAsFNeHyV+OKLL1JaWkpISAhf\nfPEFZrOZp556qs7H79u3j3PnzrFu3TosFgszZsxg+PDhzJ07l3vvvZe33nqL9evXM336dN555x3W\nr1+PTqfj4YcfJi0tjbCw1rfTenuqhAGTUceRc4XszMyudXf51sVebSRGB91moAk3R2g2lGhRn3BR\nG56MnLQlrr78Nyxf7iRk5J10fuW3te/EyhLaXR+gzr+MlNyb4ImzKDdXeHaCmwSJGAiManSNudcT\nNgDuiLETF+xq9DHAPY6z56iTT3c5kGWYcreeCXfqvM4k99Sz5EaOnipjybIr5Bc6iI3Ws2hhZ/r3\nCvbq/P6iyibxRXohG7/Mp6JSIjxUy4KHE0kbHYlO1/5Gm5oDl0vhwJFStmYUcei4FUUBo0HNpDFR\npI2OpFuKSXRFCAQCgZ+ZNCwZk1HHe5tP8caaQzwzsx99UiL8XZZAIBDU0KAocfLkSXr37s2+fftq\nbouKiiIqKopLly4RF1e7ieCdd95J//79AQgJCaGqqor9+/fz4osvAjBu3DiWLl1Kly5d6NevH8HB\n7gXN4MGDyczMZPz4Olrv/citqRJbvs1ix6Gcmvtv3V2ub7EHEHlD+sb6nRfrjdD0JNHi4bFdOZNV\nQnZhObICKkCtViHV0obhychJW6Fg1cfk/X0lxm6d6f5/r6HW1zKnrshov/kEzbXTyHHdcI18BJWn\nnhpOm1uQUCS3f4QpslH1KQpctui4YnEnbPSNsxHmZcKGzaHw4XY7h8+6CDTC/ClGUpObtgPdGL+U\nikoXy9Zlk77LjFoF06bEMGdaAgZD21nEO5wyW3YU8dGmPEqtLoICNTz2SCL3jY9uU8/Dn+Tm29ia\nYWbHHjMlVre4ltotkLRRkdwzLJwAY/vowBIIBIL2wsj+8ZiMWv7xyXH+58MjPPVgH4b0jPF3WQKB\nQAB4IEps3LiR3r17s2TJktvuU6lUDB8+vNbf02g0mEzuhcz69esZPXo0u3fvrvGmiIyMpLCwkKKi\nIiIivldrIyIiKCyseyHfGqgelzh6wVzr/Z4YVKqAnz/cn6QYtxhTn+Bwq/lgXd0N63devKnjQoFa\nBQm4uQujLVOasZ8r//kq2vBQUlf+D9qwWloSFQXNwS1oLh5CjkzCOXYOaDxcyDurrgsSMgTHQ0B4\no+qTFXfCRkG5FqNWpn+8DZPeu4SNPLPE8k02CiwKKfFqFkwxEhbc9EW0p34p3xy08M/3r2IpdZGS\nFMDTTyTTvUvtUautEZdL4ZMvc1i6+jJmi5MAo5rZD8YxdVIsgaa2/1lobhxOmX0HS9iaUcTx0+7v\nmaBADfdPjCZtdBSdk4SBmsC3nD17lkWLFrFw4ULmz5/PhQsXeOGFF1CpVKSkpPCnP/0JrVbbJkZA\nBYLWwODUaJ57ZAB/3XCMJRuPs3DKHYwakODvsgQCgaBhUeJ3v/sdACtXrvTqBOnp6axfv56lS5cy\nadKkmtsVpfaFWV2330h4uAmt1veLiOhoz9vPc4sqKC6re3dZo9fRLSWI6PAACixVt58rPIBePWIw\n6t1vgc3hwmW10y0lqOY2SZJZ+tkJ9h3PpbCkiuiwAO7uG88PpvZBo7l5MWpzuOoUSQIMGoJNeopK\nqogKC2Bor1imjupKcGhAzbka89ybE5vDhcVqJzzEUFNbXZSdukDmU79FpVZz54YlRNzZq9bH2fd/\nhf3UXtSRcQTN+gnqgO8X0vU9b2dlGaVXslAUmeDErhjDohv1XOxOhb1nFYrKITII7umpwaDzzmBq\n75Eqln5SgcOpMGVEILMmBaNtot/Bjc/9ngGJfLrr4m2PuWdAAgEBJhb/49z/Z++8w6O67vT/mT4a\nzaiNupAoogmE6JgqqjDGxoCxjQ3GxnESx3Z21ymbbHaddbLJbzfFKZus0+wYlxgbF3DFxqL3XoQA\nIbpQ10gjaaTpc+/vj0FCZSSNBEISnM/zJA+euXPPmaa55z3f7/uyfa8FjVrBN1cNYMUDyajVfaOq\nwOeT2byznNfeuUxRiROdVsmKB/qxclnKHZX+0NXv+MUr9Xz6VQmbtpVRa/NXRYwdFc6i+QnMnBqD\nTtv7Pwe95e/braYvP2+73c7PfvazZhsfL730Et/85jeZOXMmL7/8Ml988QVz587tMy2gAkFvIG1A\nFD94dCy/e+8Ea77Io97pZcFdKT09LYFAcIfToSixatWqdnuC33zzzTbv27VrF3/5y1949dVXMZlM\nGAwGnE4ner2esrIyYmNjiY2NxWKxND6mvLycMWPGtDsnq9Xe0bQ7TUyMiYqK9o07m+Lz+Igytb27\n7HN7sNVIZKSaA5tjppqx1Tiobif1oKUfRbnVwSe7LmJ3uFuZD5Zb7VQEED8AXG4fP1qZjkqlZPPh\nqxzILeGLvZcbx/r2w2OpqgrSW6Gb6Gz6g6fSyulF38BbY2PQH/8L37BhAd8/5dmDaA5uRA6NwDFr\nFY46Cer8x7X7nrvroabA33sRloTNo8fWic+H3a3gZKkeh0dJTKiX4TEuaquDfvj15+mV+XiXi30n\nveg08MRCPRmDFVirAsfIBkvL575oSgp2h7tZC9GYIWYMvlBWfOsg9XYfwweH8tyT/emXoMdq7dnP\nSzDIssz+o9W881EJV4ucqFUKlt2XyMI5ZqIiNLhdTioqnD09zVtCZ/++OV0+dh+0kr2zkvwL/vc6\nPEzN0nvimJdpJjFOD0BtTe//HHT2ud8udOfzvhVih1ar5ZVXXuGVV15pvO3KlSuNbaEzZsxg7dq1\nREdH95kWUIGgtzAwIYx/WzmO36w7znvbzlPv9PBA5iDhASQQCHqMDkWJZ599FvBXPCgUCiZPnowk\nSezdu5eQkLbLdW02G7/61a94/fXXG3cspk6dyqZNm1i8eDFfffUVM2bMYPTo0bzwwgvU1taiUqk4\nevRoY3VGbyaYRAzo2KCyrdQDr09i/6mygGMHMh/sqAQ/JtLAhzsuBPTAMIRoWTJtQOPtLdtFbgWd\nSX+QnC7Ofe37uK4UkfidbxC9bGHAcyovn0R98DNkXSieeU+AIUi3aVcd1Fz1/zs8GXSduwCvdijJ\nvZawkRLhZmBU1xI2qmol3tjopLBcIiFayRML9cREdM+udEvPEqcDXltbxAenr6LXKfnmY8ncPSu6\nT0RjyrLMsdxa1q4v4cIVO0oFzJluZvn98YxMi74jF6jBIMsyFy7byd5Vya79VTicEgoFjE0PI2um\nmYmjI1Cre//7L7g9UKvVqNXNL1GGDh3Kjh07WLJkCbt27cJisXSpBbS7qi2hb1en3C6I9yA4YmJM\nvPTPmfz4r3v5fN8VfCj41gMZqG7C77x4D3oe8R70POI96BwdihINpZN///vfefXVVxtvnz9/Ps88\n80ybj9u4cSNWq5Xnn3++8bZf/OIXvPDCC6xbt47ExESWLFmCRqPhe9/7Hk899RQKhYLnnnuuccej\nt9OR4ACtF3shOjUOlxevT8bra9sIc19uKS5PYDPEQMkZHYkk/nkGHmt/bgn3TEpGrVJ0qlrhZtGZ\n9AdZlrn0vZ9Rd+gEUUvuJun73wz4OEXxOdR7PgSNFs+8x5HDgkzLcNmg5tprGJ4Mus61W5TZVOSV\n+z0YhsW4SAjrWsLG6Ute1n7lxOGCiSPULJulQ3MLFoRqlZJ9B228s6EEl1tifEYYT69KIcas7fax\nbwanztpYu6GE0/n+SpLpkyJ5ZHECSQn6Hp5Z76Xe7mPn/iqyd1q4VOCvtjJHarh/fixzppuJjb49\nDHEFfZ8f/vCH/OQnP2H9+vVMmjQpYLtnMC2g3VFtCXduVU5vQrwHnUMB/ODRsfx23XG+3HeZqmo7\nX79vBGpV16/5xHvQ84j3oOcR70Fg2hNqgrbtLy0t5dKlSwwcOBCAgoICrl692ubxy5cvZ/ny5a1u\nX7NmTavbFixYwIIFC4KdSrcTbKWASqlk2cxUMkcngiwTE2lo83i1SsHmI4XNFvzDUiLbNMJsS5AA\niDTpGs0Hm861PZGkssbZ5liWagc1dS42HykMulrhZtKZ9Ifi375C5YYvMY7PYNBv/zNgqaGivADN\n9ndAocAz+zHkqCBNnJy1UFsIKCAiBbTBmzjKMlyp1nC5SotKKTMyzkmUofMJGz5JZtN+N1sOe1Cr\n4OG5Ou4aeWt8D64UOvi/NVc4f8lOmFHNs6tTmHFXZJ8o5zx3qZ6164s5fsr/AzBxTDiPLklgYMrt\nEXl7s5FlmTPn6tm8y8KeQ1bcbhmlEu4aG07WzGjGpIfdlN0ygeBmkpCQwF//+lfA3x5aXl7epRZQ\ngUBwnbBQLT9YMY4/fHCCg2fKsbu8PLdkFDqtMIAWCAS3jqBFieeff57Vq1fjcrlQKpUolco+0WbR\nGTrja9BZD4RA7Ql7c0vRa1U43b5OzXN4SiRqlYK1m/MDjh8oxaO99o7oiBBCdOqgqxVuNsGmP1jW\nf0nRb/6GNjmRIWteQqlvvYOrsJai2fYWSD68Mx9FjhsQ3CQc1WArBoUSwlNAG/xiVpLhbIWWMpsG\n3bWEjdAuJGzU1kv840sXF4p8mMMVPLFQT1JM918UeDwS739WyvqNpfh8kDk5kq890q9PmEBeKXTw\nzoZiDhyrAWD0CBMrliYyNLXvpILcSmptXrbtrWTzzkoKS/x+GvGxOubNMDN7mt9rQyDorfzhD38g\nIyODWbNmsX79ehYvXtxnW0AFgt6EQa/mO8vH8OePcsm5UMlv1h3nXx7KIFQvfhMEAsGtIWhRYt68\necybN4/q6mpkWSYysnPRiH2BzvgadOZYu8vDrpxiAhN48arXKnG6W++067UqHs0a2uH4LWND22vv\nmJyegMPlDbpa4UYIVIUSjD+H7eBxLn33p6hMoQx76/dooqNaHYutCs2WN1C4nXimLUNKHh7cpBxW\nsJX4BYmI/qAJPtrQ44NTpXqqnSpMOh/p8S506s4LEheKfLz1hRObXWZUqorl8/SE6Lp/pzrvfB0v\nrymgsMRJdJSGbz2ewviM8G4f90YpKXPy7scl7DpgRZZhWGooKx9IZFRa32j9upVIksyh41Y++KSA\nA0dr8Ppk1GoF0ydFkjUzmvRhxj7hFSK4s8jNzeWXv/wlRUVFqNVqNm3axPe//31+9rOf8cc//pEJ\nEyYwa9YsgD7bAioQ9CZ0GhXffmAUr31+hv2ny/jl20f57vIxRBhFC59AIOh+ghYlioqK+OUvf4nV\nauWtt97i/fffZ+LEiQwYMKAbp3frcLq9QVcKdMYDAWBt9jlcAQQG/7jNb9drlUwblYBPltl+tLWQ\nMXVUPCqloktVDcvnDMbj87Evtwz3tfYQvVaFJMsYDdqgqhW6SkeVJe21njivFHLua99H9kkM/tsv\nCRk6qPUADhvaza+jcNThnbAQaVCQ5bv2KqgrBYXqmiARvPeAw6PgZIkeu0dJdKiXtFgXnW3DlGWZ\nbUc9fLHXDcCi6VpmjtV0e8uE3eHj1bevsnFrBbIM98yJYdWyREJCene5pqXKzbpPSti6uxJJgoEp\nIaxYmsj4jLA+0WZyK6myutm6p4rNuyyUVfg/X8mJerIyo5k5NYowY9B//gWCW056enrAKPIPPvig\n1W29rQVUIOirqFVKvr5oBKF6DVuOFvKLfxzle4+MISYi+M0agUAg6ApBX5X++Mc/ZuXKlY2eEAMG\nDODHP/5xwIuGvoi1Nnhfg854ILg8Ps5crgx6Hk63hEKhoK2loaKT4zfQIAocOFXeKEj4x/Px2e5L\nOJ2eoNJEmtKZlI6OKjtaGoI2nNNbYyN/1fN4q6oZ8MsfET5zcuuTux3+Cok6K95Rs/ClTWl9TADs\nlmK/IKFU+z0k1MELEjVOJbklejySgn7hHlLN7k4nbDhcMm9vcnDmsoTJAI8vDGFQYveLAkdP1vC3\nf5yirMJFUoKO51b3J21I5ww9bzXVNR4++LyUTdsteL0ySQk6Hl2SyJTxEWKXvwk+n8zRk7Vk77Rw\nJKcGSQKdVsnCefHMmBTGsNRQId4IBAKBoE2UCgUrsoYQGqLmkz2X+e9/HOF7y8fQL6Z3XycIBIK+\nTdCihMfjYe7cubz++usATJw4sbvm1CNEhgXnawDBeyCAX0Cw1nk6NZcjeeVtLrSOn6vk/mkDO13V\n0FIUaD1mBT9ePR5oP00EOu+n0ZnKEp1G1SioSB4v57/xQ5znLxP/9EpiVy1rfQKvG83Wf6C0luEb\ndhe+0UFk08sy2C3U11dcEyT6gzr4SpDyOn/ChiTDkGgXSeGdT9i4UurlLxvqcHvUeHw11LkK2X86\nkv7x3Zd0Umvz8tq7hezYV4VKpeDB++J5aFE8Wk33JavcKLY6Lx99WcbnmytwuSXiorUsX5xA5pQo\nYcTYhHKLi807K9m6p5JKq//vzaD+IWRlRjPjrigG9I8QLtACgUAgCAqFQsGSGYMI1Wt4Z8s5fvn2\nUZ5/aDSpSb2/vVMgEPRNOlW/W1tb27jLdu7cOVyuwLv1fRG9Vh10pUAwHggNhBt1RJm0VNncQc/F\nWuemreWW1ebE4fJ2qqrBZndzOK+8gzFd/HTNISamxfHTpyZRZ3e3WQHRGT8NCL6yo2nlhVat5Mq/\n/5La3QeJmJ9J8gv/3PrBPi/qHe+irCjAN2AU3okL6bBcQZahvhzslSg1OqSwZFAFF3cpy3C1WsPF\nKi0qhcyoeBfm0M6ZlMqyzIFTXj7Y5kSW1Tg8RTg9ReCCzYfrgZufdCLLMrsPWnl1bSG1Ni+DBxj4\nj++mEWHsvPfFrcLh8PFpdjkfbyrD7pCIitCwenkSc2eY0ah7r4hyK/F4JQ4dryF7h4UTp23IMhhC\nlCyYHc28zGhS+4vkEYFAIBB0nayJyRj0atZszOOld4/z7QdGMXJgAE8vgUAguEGCFiWee+45Hn74\nYSoqKli0aBFWq5Vf//rX3Tm3W057vgZdPVatUhAa0jlRwhSiQqlUUVPf+jENlRDBjN9Q0XAkr4Lq\nuo7Hr6n3sPlwIZIs81jWsIDHdNZPAzquLDEaNK2SRGZfOEj0OxswpA8j9eWfo1C1EEdkCfXe9aiK\nz+FLHIJ36gN+o8r2kGWoKwNHFai0RAxMo6o6uPdFkuGcRUtJrQatSiIjwYVR17nIT7dH5sNtLg7n\neQEfNucFvFJNs2NudtKJpcrNX98q4PCJWrRaBasfTuK+rFji4429cufc5Zb4cmsF6zeWUVvnJcyo\nZvXDCSyYE4NOK8QIgKISJ9m7LGzbU0WtzV+lM3xwKFmZ0UydGIFe17t9QQQCgUDQd5g2KgGDXs2f\nPzrF798/wdP3j2TC8NienpZAILjNCFqUGDhwIEuXLsXj8ZCXl8fMmTM5cuQIU6YE17/fF2jL1+BG\njl239TxXy+s6NQ+bwwcE3oFvWgnR0fgdtWy0xd6TpTw0a3DA59Ne1UNVrZMKq51+sc2dzzuqLPlo\n16Vm95mOHcH8+Vq8kZEMfeN3qEJb7PjKMupDG1FdPokUk4J35iOg6uCjLMtgKwWnFVQ6iEhBpdEB\nHYsSXh+cKtNhdagxan2MSuh8wkaFVeL1jU5KKyUSzJBXmIsktx77ZiWdSJLMVzssvPl+EQ6nRPpw\nI8+u7k9CrA6Xx0eJpR6fx9dtMa+dxeOV2LKrkvc/LaWq2oMhRMmjSxJYlBXb6803bwUut8S+I1ay\nd1RyOt//98RkVLFofixZM8wkJwkTMoFAIBB0D2OHxPDdh0fzhw9z+PPHuTzhGk7m6MSenpZAILiN\nCFqU+MY3vsHIkSOJi4tj8GD/brzX2/le+r5AU1+DGzm2vaqCzmIOC1yJ0db4NzK20+0LKC5A+1UP\nMvC/H+SQkWpm3oRkosL0jYvetio7lswYxIt/P9B4jujyQuZuegevWs32B77O+Ghzq3FUOVtRnT2A\nFBGHZ/ZjoO6g/UKWwVYMzhq/mWVEit9LogltmXY6PQpOluqpdyuJMngZEeeis90DJ855WbfZicsD\n0zI03D1ZxU9eU1BZ2/rYm5F0UlTq5E+vF3A6vw5DiIrnVqcwd4YZSZavV6TYXESZ2vcCuRX4JJkd\n+6p47+MSyixudFoly+6NY/HdcZhEOgSXr9rJ3lnJjn1V1Nv9QmVGmol5mWYmj4tA04v9QAQCgUBw\n+zC8fyQ/WDGW3647wetf5FHv8HDP5P49PS2BQHCbEPRVf0REBP/zP//TnXO57WivqqAzhBu1PLNk\nBEkxplaLx7YW0zc8dhveDO1VPYDfX2LbsWK2HSvG3MIAM1BlR7nV3jjPUFs193y6BrXXy6Z7H6fA\nGNOqakB1Zh/qnO3Ixkg8c58AXQc7xLIMtUXgqr0mSPQH5fXXqT3TTrtHzckSHW6fkqQwD4OjO5ew\n4fXJfLbHza7jHrQaWHm3jnHDNACdTjoJajyvzMebylj3cQker8xd48L55spkoiL9os26Lec65QXS\nnUiSzL4j1bzzUTFFJS7UagX3zovhwXvjiQjX3NK59DYcDh+7DlrZvNPCuUt2ACLD1Sy4N465M6JJ\niBWZ8YKOqa3z4PXKqNXCEFYgENwcBsSH8aPHxvHSu8d5f/sF6pweHpyZKlKdBALBDRO0KJGVlcUn\nn3zC2LFjUTXp709MFOVbbdFeVUFnqKlz8/M3jzZb5APtJmDcyNh6rardTOqG8Y+e9e+4t0WgRW/L\nyo6GedZYarnn09cJrbexd/p9XE4diblF1YDy4nHUhzcih5hwz1sNhtaVHM2QpWuChA00IRCe0kyQ\ngLZNO/WGcKLjByLJMNjsol9E56qCrDaJt75wcqVUIi5SwRP3hhAXdV1Q6ox/STBcuGLn5TVXuFTg\nICJMzTcfS2bKhMjG+7viBdIdyLLMkZxa3tlQzMUCB0olzMs08/CiBGLMwRmO3o7Issy5S3ayd1rY\nfcCK0yWhVMD4jDCyZkYzflS4WFwK2qXe7uPUWRs5Z/z/u1rkZMHsaJ5eldLTUxMIBLcRCeZQ/v2x\n8by07jhf7C/A7vSyav4wEc8tEAhuiKBFibNnz/Lpp58SERHReJtCoWD79u3dMa/bgo6qCjpL00U+\n0O6u942MPW1UPADlVntAr4qGqofM0Ym8+PeDdOSu0N6iV6dRMXawGfXbfyHaUsyp9LvIGTsDaF41\noLyah3rvBmStHs/cx8HUgfuzLEFNIbjrQGO4Jkg0rzJxur0BF+ppQwYSGTsQgPR4F9GdTNjIu+Ll\n7U1O7E4YO0zNQ7N16LTNf6w741/SHi63xLqPS/h4UxmSBHOnm1m9PAljaPOvdrAJKN3JyTM21m4o\nJu98PQoFZE6OZPniBBLj9N06bm+mrt7Ljn1VZO+0cKXQCUCMWcuSe8zMnW4mOurOFWoE7eP2SJw9\nX98oQpy/VI90zXtXq1UwaWwk0ydFtn8SgUAg6ALmcD0/WjmO3713gh3Hi6l3evnmohGoVaKlUCAQ\ndI2gRYkTJ05w6NAhtFpxkdwZAu2IG/TqTptfNuVYfgWyHFgKaCoAtBxbq1HhdLe/wJ6aHo8MvPDK\n/oAVGE2JiQgJqhqjo0Xv1D2fU37pDKUDh7F31hLM4SHNqgYUZZdR71oHShWe2auQI+PbHQ9Zguqr\n4KkHbSiEJwdM5rDWNl+oKxQKJo4eyfAhA3E4nIyIcxAdGvznXZJksg+6yT7oQamEZbN0TBmlbres\nsTP+JS3JzbPxp9cLKCl3ERet5ZknUhg9MizgsR0loNyoj0V75F+o5+31xeSc8ad93DUunEeXJNK/\n351pzijLMqfy68jeYWHf4Wo8XhmVCqaMjyBrZjQZI0yoxI6ToAU+SebiFTs5p22cPGPjzLk63B7/\n74BSCUMGhpKRZiJjhIlhqaEkJob3yoQdgUBwexAWquUHK8byhw9yOJxXjsPl5dtLR/X0tAQCQR8l\naFEiPT0dl8slRIlOEmhHXK1SXGu9sFBZ6+z0OatsLtrQJJoJAC3HNho0fLj9AjuOFyMFeHyUSYdO\nq2LrkaLG29rzHQi2GqO9RW/ZGx9Q/so76IcMZN6HLzNZpW1WNaCoKkaz7R8gy3hmrUCO7aAUWfJB\nTQF4HKA1QXhSm1GhkWHXF+pqlYrMyePplxiHtaaWo8dPMGfV6PbHakKdXebtr5zkF/iINCl4fKGe\nlLjuaYeot/t48/0ivtphQamA++fH8ujShHajIDtKQOmO1o3LV+2s3VDCoeP+2NMxI02seCCRIQND\nb/pYfYHqWg/b9lSxeaeF4jK/OJQQpyMrM5rZU6PueC8NQXNkWaao1EXOaRs5Z2rJzatrNDsFSEnS\nXxMhwhg5zIhBpNQIBIJbTIhOzXceHs1fPj7F8fMWXnr3GD97ZlpPT0sgEPRBghYlysrKmDNnDqmp\nqc08Jd5+++1umVhfp6UBZcsd8QaxoKrWyeYjheScr7xWSaFDo1ZR73BdiwZtTZRJhyzLVNlaR0pq\nNSqMhubCUdOxV909HBQKth0tavXY0YPN5Jy3BByzoQIDaPa8mlZjtCWwtLXord6+jysv/Bq1OZJh\nb/0eXXQETWsGFLWVaLa8CR433hkPIScNCXj+RiQfVF8BrxN0YRCW1KZhJ4Beq2bs0BhHiJaJAAAg\nAElEQVT25FqYO30SUZHhFJeWs2PfEWaOiQ96oX65xMebXzipqZNJG6BixXw9Bn337HQfOFbN3966\nSlW1h5QkPc892Z+hg4Jb5N9sH4u2KCpx8u7HJew+aAUgbUgoKx9IZOSwDjxAbkMkSebEaRvZOywc\nPF6NzwcatYLMyZFkzYxm5FCjMAgTNFJpdV8TIfzVEJVWT+N9MWYtU8ZHkJFmYlSaSYhYAoGgV6DV\nqHh2aTprNuax71Qp3/ndDr51/0j6x995v/kCgaDrKOS2+gBacPDgwYC3T5o06aZOKBi6oyQ1JsZE\nYXE1FdUO3B4vWo2amIiQTu8gt5fm0F7sYoOIsXH/ZXaeKG13jHkT+gG0WaEwe2yiX3wIZo42FzER\nIWSkmpk9NokXXjkQ0CNCqYDJI+M5W2AN+LxcHl8AgeX6orflc7efvcCZ+7+G5PYw/L0/Y5rYoiqh\nvgbtpldR1FfjuWsR0tBJzV6nVh4MkheqC/yChD4cTIntChLgf8/PF9g4XKBBpdZy7uIVzp0/x5gh\n5qBiMmVZZtcJD5/udiPLcM9kLbMnaFB2wyKzusbDq2uvsudQNWq1gofui2fpwjg0nc0nxf8aqrQa\nfG7PTa2QKLe4WPdJKdv3VCLJkNrfwIoHEhibHtZrFt4xMaZbUtJuqXKzdXclm3dVUlHpFw/799OT\nlRnNzClRrTw/uptb9bx7I735udfVe8nNq+PE6VpOnrFRVHq9vSrMqGZUmpGMtDBGjTARH6Pt1Peo\nO593TEzfXmx05+vSWz9rdwriPeg5JFnm412X+HTvZdQqJSuyhjBzdGKv+f2/kxDfg55HvAeBae/6\nIegr454QH24VPknirxtyyD54BZdbarxdp1EyPSOBR+YO6XCB2kBbaQ7QfuyiWqVg06Gr7M5pW5Bo\nmM/yOYNxeXzsOlGMyyO1Om7H8WJQKFgxr/15y7KMLNPoTxFu1LbpO6DVqNibe31uTZ9XQ3tIVJie\nVfOH4Zp9XTgAqKxxNhMRPBWV5K96Hp+tntSXf95akHDZ0Wx5A0V9Nd4xc5GGTmpf7JElf4WEzwX6\nCDAldChIAJRYZXJKDKjUClIinKSNNxAxa1JQC3WnS2bdFic5530YQxSsWqBjcPLNX2jKssy2vVWs\nebeQunofw1JDeW51CslJXfdj0GlUxESH3rQ/llXVHj74rJTsHRa8PpnkRD2PLk1g8riIO+pixOeT\nOZxTQ/YOC8dO1iLJoNcpmZdpJmtGNEMGGe6o10PQGpdb4sy5ukZfiItX7I2tdHqdknGjwsgYYSIj\nzUT/fiHCzV4gEPQZlAoFSzMHMW5EPC/94zBvfnmWc1drePzuYei0or1MIBC0z63druultBQSGnB5\nJLYcKUKhULQrKFw/vuuxi+u2ng/YUtFyPg2LmneyzwUUJAAkGbYdLUKlDDzvls+3otrZ+N9t+Q54\nvIFbSXbnlAQUCszh+oAiwkNT+pH/te/jLiwh6ftPY166oMVALjRb3kJZU4F3+BR86TMDzrlBFAnR\nyCxNV4HPDSFRYIwLSpAoqlFzziKjVMCIOCexRh8QnOFkicXH6xudWKplBiUqeWyBnnDjzXecLre4\n+PMbBRw/ZUOvU/L1Ff1YMCem15gg1tZ52bCxlI1bK3C7ZeJitDyyJIEZd0X1mjneCkrLXWzeZWHr\n7iqsNf5y+8EDDWRlRjNjUiQhotf/jsXnkzl/2U7O6VpyztjIO1+P1+tXIdQqBcOHGBvbMYYMMnSp\n8kkgEAh6ExPS4vjJk5P400e57DtVSkGZjWeXppNgvjP9pAQCQXDc8aJEe0JCA8fyK9oVFBroauxi\nMHNo4OjZCursHvafLuvw2EBCSEfCyU+fmsTZgupW6SC+wPoHTrevMdGjw8jSQwXEvfwHTEdOYl52\nD4nf+Xrzk/m8aLa/g7KyEPeA0ZSlziTcK12bW+s5m40qMpPd4FOBwQyhsR0KErIMFyq1FNZo0Kn9\ngkS4vo0nF4BDZzx8uM2FxwuzxmlYOFV70xfgPklm45YK1q4vxumSGJsexrceTyY2uvsSMjqD3eHj\nk01lfPJVOQ6nhDlSw8OPJDBnuhm1+s4QIzweiQPHqsneUdmYKhJqULFwbgzzZpgZmNK98aqC3oks\ny1wtdnLiWiXEqbM27I7rf18GpoQ0ihAjhhoJ0QvBSiAQ3H6Yw/X86LFxrNt6ni1HCvmvNw7z5D3D\nmZQW19NTEwgEvZQ7XpRoT0hooMrmajfSsoGuxi4GM4emcwlGkIDAQkhHwklVrRO70xPw/mA5ll+B\nJLVe6E/cn43p0H5CJ45m4Es/bl7KLkmod3+AsvQCBbp+/PZkHJY9B4gK0zE8JbLVaxobpuJfF0Rh\nNqqoU0ZgDEKQ8ElwplyHpV6NQSMxa6QKuy04QcLjldmww8WBU170Wlh5r55RqTf/61NQ5ODlNVfI\nv2jHGKriXx7vz8zJUb2i7N/lkti4tZz1G8uoq/cRZlLz6JJE7p4djVZzZ+zwXi12kL2zku17K7HV\n+cW4EUONZGWamTIhEp32zngdBNcpt7gajSlPnrFhrfE23hcfq2P6Xf52jFHDTYSZ7vifXIFAcIeg\nVilZmTWUIf3CWfNFHn/5+BTnCmtYPmcwapX4rRQIBM2546+Q2hMSGogy6doUFJrS1djFYObQFQIJ\nIR0JJ8hy0AJJWwQ699AzRxh/aAs1YVEk/+5nKHVNEkJkGfWBT1AVnKJEG8d/XhyEB0/jufbklqLX\nKnFe8/tIjFDx/QVRRBhUfH7SwbzMYR0KEi6vgtxSHTaXigi9j5HxTkL1JuxB2CpYqiXe/MJJUYVE\nYrSSJxbqiY64uT+oHq/E+s/L+OCzUrw+memTInlqRT8iwnreYd/jkcjeaeGDz0qx1ngJNahY+UAi\n986LuSN2el0uiT2HrWTvsJB3vh6AMJOaxQtiyZoRTVKCvodnKLiV1Nq8nMyzNaZklJZf/3sXEaYm\nc3Iko9L8QkRvqW4SCASCnmJSWhzJsUb+tCGXLUcKuVRSyzOL0zGHi99OgUBwnTtelGhPSGhg7NCY\noFMKOopdDJQeEcwcukIgIaQj4SQm0tCmaKHXqjDo1FTXuQgP1WKtax1JCv6kDlmmMcUjoegiM7d8\ngEsXwpeLv8bk+Ohmr4Ph5BZU54/gi0zgdwUj8RDIv8IvOiRHqfn+3VGYQpSs3V8LhqgO35s6l4KT\npXpcXiXxJg9DY9wE23GRe8HLO9lOnG6YPFLNkpk6NDe5ReHshXpefv0KV4ucmCM1PL0qmYljIm7q\nGF3B55PZtreS9z4ppaLSjV6n5MH74lmyIJZQw+3/p+PiFTvZOy3s3F+F3SGhUMCYkSbmZUYzaWy4\n6P+/Q3A4fZzOr+PkGb8IcanA0XhfiF7JxDHhjEozMXqEieREfa+oahIIBILeRII5lBcen8Cbm/LY\nd6qMn6w5yDfvH8moQeaenppAIOgl3P4riyBYPmcwer2GzQevNO7GN6DXKpFkGZ8kBZXAoVIqWTFv\naGMiRYP44JMk1m7Ob2b8mJFqZt6EZKLC9M3EjKpaZ8BYzo7Qa1W4Pb5WQkgDDULAkhkDG8ey2pxE\nX4sEbYjBbEu0mJ6R0Pi83F6J//x74JhYqcnkw6ot3P35m4DMVwsfwxoZy3tbz5N3LVr0QXMxS/Rn\nkUxmSic8RHHuyYDndHt83H9XPPOHSOg1Cj44YgdDVKvn2JIqu5JTZXp8koKBUW5SIjzB+GD6fR32\nutl+1INGDY9k6ZiYdnOrFhxOH2vXF/P5lgpkGe6eFc2qB5MINfRs9YEkyew5ZOXdj0ooLnOhUStY\nND+WBxbG9YrKje7E7vCxc38V2TstXLziX3xGRWi4d24sc2eYiYsRO9+3O16vTP7F+kYRIv9CPV7f\nNXNKtYL04X5zyowRYQweYEClEiKEQCAQdIROq+Lr941gSHIEa7Pz+f17J7hv6gAWTx8okoYEAoEQ\nJcAvJDy9NIN770rhjS/z2H/qumeD0y2x9UgRyiATOBrQaVTNvBwCpUdsO1bMtmPFmJukViybmUpR\nhY3/futos8V9ezQ8fsmMQdTZ3c2qMIA24zR/+tQk6uxuUgeYsdVc3/1rr9pDpVQSG2nA5fERZdJS\nZWtdLRFp1KJQKqgvt7Lwk9fQO+1sn7OMouQh6LVK9lyLFp1pKGGJ/iyVXh1b9JksMEe1WaUxdoCB\nxSP9opBNFc2ieeYOKyRKatXkV/jbRNJincSZAieItKS2XuKtL5xcLJaIjlCweqGehOibKxQcz63l\nz28WUG5xkxin49nVKYwc1nZ2761AlmUOHa/hnQ0lXC50oFLB/FnRPHRfPNFR2o5P0EeRZZmzF+rJ\n3lnJnoNWXG4JpRImjgknKzOacaPCxMLzNkaSZK4UOsg542/JOJ1fh9PlF6cVCkjtb/C3Y4wwkTbY\niE4nKmQEAoGgKygUCmaNSWJAvIk/bcjl072XOV9Uw9P3jyQs9Pa9zhAIBB0jRIkWnLtaHfD2jiI9\n26OjdI2mqRUr5g3FGKINWpCYmh7PqruHNc7LoGv9lrYVp9kwHkC51d4oZjSt9qioduD2+tCqlHh9\nMg3eRDqNinHDYgNWVIwfHgteLyGv/4GIagvHxs8iL/2ua/f6F3cT9BV8PSIPm0/DLypH43I4WTA3\ncCTpsHgtT003IssShCUSFtJ+a4Msw6UqDQXVWtRKmfR4JxEhwRlanr/q5R+bXNjsMhmDVSyfq0ev\nu3kLUludlzXrCtm2pwqlEpbdG8fD9yf0qFGkLMvknLaxdkMx+RftKBQwa0oUyxcnEB97+1YG1NZ5\n2bG3iuxdFq4WOQGIi9Yyd4aZudPNREWKC6TbldJy1zVPiFpOnqmjtu66OWVSvK5RhEgfZsJkFD+T\nAoFAcDMZEB/Gi09O5O+fneH4eQs/ff0Q31o8kiH9er51VSAQ9AziaqsJXY30vJHzNqVB+AjRa1Aq\nCChMKK79X1SL6oW2aD8CtAKfT+LUZSsVVkdjBUVDpcQH28+z52RpY+SnXqtk6qgEHp07BJVS2WZF\nxcOzU7ny/Z9TWXiBwmEZHJy6gCiTjuH9I9mXW8pIXRXfjjqFS1bxq8oMir2hKK+9vg3n3J1TgtPt\nY2SSln+aG4lSAS9vsWKOVbNiXts/Wj4J8sp1VNSrCdFIjIp3YtA2fyEb2lhM4SGNt0myzLbDHr7Y\n70ahgMWZWmaM1ty0/nBZltl7uJpX3r5KTa2XQf1DeG51fwb179noyLzzdby9vpjcPH8E7JTxETy6\nJIHkpJAOHtk3kSSZnDM2Nu+0sO9INV6vjFqlYNrECLIyoxmVZhJlpLch1TWexnaMnDM2yi3XK7yi\nIjTMmhJFxgh/VOftXBUkEAgEvYVQvYZvLxvFpgMFfLDjAr9ae4wHZ6Uyf2Ky8OYRCO5AhCjRhK5G\net7IeZvSIHy8vCG3zUqJWWMTuXtSSqsWjbZoTxBpaCFp+t9NqxS2HClqdnzLVpa2/DOK/+91Ktd9\ninPAQA4uWQUOGYXC3084OtzBtw25APyuKp2LnjDg+uurUipZNjOVo2fLGR6n5pk5Ecgy/HGLlZOF\nbszVbVesuH2QW6Kn1qUiXO8jPd5J08NatrHERPq9NBZNTWXdZjdnLvsINyp4/B49AxJuXrtGpdXN\n3/5xlYPHatBqFDz+UCL3z4/r0ZaA/As2Xn7tPEdyagEYNyqMFQ8kktrDIkl3Ya3xsHV3Jdv2VlFU\n4q+KSErQkTUjmllTowi/zb0y7jTsDh+nzvrNKU/l13PxSn3jfaEGFXeNCycjLYyMESaS4nXiAlgg\nEAh6AKVCwT2T+zMoMYy/fHyKdVvPc66whq8tTMOgF0sUgeBOQnzjm9DVSM+2aJowkZFqbiYABCLS\npEelVFBUUdfmMYumDSDCGHyMUnuCSFvVGEfPVrRrtHn0bEUzYaCpf0bVZ5sp/O//wxMVxXtzVmB3\n+M9UWevibE4+P4k9hg4f/1uVzilXVOM5m76+NXUuUs0KvjErAp9P5n83V5NX4t/ZbKtipd6t4GSJ\nHqdXSazRy/BYV6uEjZZtLOVWB9uOWjl5zobbo2ZosoqVd+sxGm7OAkWSZDbvrOSN9wuxOyRGDjPy\n7OoUEuN6LgbrarGDdz4qYd9hf5vSyGFGVj6QSNoQY4/NqbvwSTLHc2vJ3mHh0IkaJAl0WiWzpkaR\nlRlN2pBQsRi9TfB4JM5eqG+M6Tx3qR7pWseWVqtk9LUqiNEjTAzsb0AlqmEEAoGg1zAsJZKfPDmR\nv35yiqP5FRRW1PHsknRS4nrWa0sgENw6hCjRgo4iPYOh5Y68TquiISCzLSEA/AvzcqujXT+JEou9\nU6JEe0JLW+NYba52RQmrzRVQGKg7fooL//wiylAD25Z9HXtIeON9ZpWTfzOfIFThYafpLi7VRaF0\nBX59IzVOnp4dgcsj8/tsK+fKPNfvC1CxYnUoOVWqxysp6B/pZkBk64SNQG0sWnUsBk0Kbo+CORPU\n3DNZd9NK90vKnPzpjQJy8+owhCh55vEU5mWae6w1oLTcxbpPSti5rwpJhrQhJh6+P47RI0y33cK8\notLNll0WtuyuxFLl/+wMTAkhKzOapfem4HQ4OjiDoLfjk2QuFzjIOVPrN6c8V4fbff1v7OCBBjJG\nhJGRZmLa5Hhqa+o7OKNAIBAIepJwo47vPTKGDTsvsXH/Ff7fW0d4LGsoM0Yn9vTUBALBLUCIEi1o\nqyWhM7TckW/wZIDrQkBStIHKWlcTvwYVsiyTEG1oU7hQKqBfbPA72tcjQAcBzYWWjMFmTpyrCJye\nYdIh4xcfAhFp0rUSBlyFpZxb/V1kt4eY//svLuVdX+iGKd38m/k4ZrWLd2pSmX7fHH5u1AV+fR1W\nNPZS3D4FL31ZxSWLp9k4LStWSm1qzpb7e8CHx7iID/MSiOZtLEoM2gHo1NFIsge76yIT09JuimDg\n88l88lUZ735UgtsjM3FMOE+vSsbcQ6aJlVY3739ayuZdFnw+6N9Pz6NLE7k3qx8WS9sVOX0Nr1fm\n0IlqsndUcvxULbIMIXol82dFkzXDTOoAAwqFApNRjVNoEn0OWZYpLnNx8oyNE6dt5ObZqKu//nc1\nOUnvj+lMMzFymKlZrK5OK9IyBAKBoC+gUip5cFYqg5PCefWz06z5Io9zhTWsnD+0S0bzAoGg7yBE\niTZoGekZLB0lbTTQVJAAv3Cx5UgRCoWCpBgjV8tbLxiTYoyYDIEXt01bRdQqRRsRoBOps3uapGwo\nAlZQjB5sxuWR2HsturMl44bFNI8ctdWR/8TzeMorSXzxOzB1ElHFOVTWughRePmB+QSJGgef2FLY\npxzKvW15c9iroK4UFCpU0cmkDlBT6w5csSLLcNmq4YrVn7AxMt5JZDsJGw1tLFabAqNuMCqlAa+v\njjr3eaJMyi77hTTlUoGd/1tzhYtXHISHqfnnp5KZOjGiRyoRamo9rN9YxpfbKnB7ZBLidDy6OIFp\nkyJRKhW3TXVEcZmTzTsr2bankupavyA1NDWUrEwz0yZGEqIXFzF9lSqru9GYMue0jUrrdYEyxqxl\n0tiIxraMyHDhCSIQCAS3C2OGRPPikxP500e57D5ZwuVSG88tTScu6vb0vRIIBEKUuOkEm7TRVJBo\nytGzFbz4tUn8eu1Rii31SLK/QiIpxsh/PD6u1fEtW0WiwnQY9JpmokagCFC43qqSc6ESS7WDCKOO\n0BANORcqqap1odcq8XglfNfW+nqtiqmj4lkyY2BjhKhWIXP+mX/HceY81XOzeN/bn6rXDqHTKtHg\n47vmkwzU1rGtPoF1tYOYO97MhzsutBJMHpkcidJeAUo1RKSgUuvbrFiRZH/CRnmdGr1aYlSCk1Bt\n+xmqOo2K/nHJ+DzhKBQqnJ5SHJ6rgMzYof1uSIF3eyTe+6SEDV+UIUkwe1oUq5f3I6wHogTr7V4+\n/rKcT7PLcbokYsxaHl4Uz+xp5h411ryZuD0S+49Uk73T0pgaYgxVcd+8GOZlRtO/3+2ZHHK7U2/3\nkptX1yhCFF4zJAUwGVVMnRBBxgh/NUR8rDCnFAgEgtuZmIgQ/v2xcbyz5TzbjxXx09cP8bWFaUwY\nHtvTUxMIBN2AECVuMsEmbbRFlc3Fe1vO4XB5kWQwGTSMHWLm4TlDqLa5CTcqmi2gW7aKVNa62hy7\nIXK04fENrSpPLwvhwuVKNh26yraj1xM3nG6/GjF5RBwLJ6cQFR7CR7su8uLfDzYKClkHNhKxdS/1\nGaNZlzYH+Vo7iNvt5fmo04zQVXPQEcNH0mjmTYhBkmW2tJhviMeK0u69Jkj0B/X1qoWWFSseH+SW\n6qlxqgjT+RM2tB18ir1emU92u7lUFIVKJSFzBZe3jNhr6Rud8Qtpyen8Ol5ec4XiMhcxZi3PPJHC\n2PSwLp+vqzhdPj7fXMFHX5ZRV+8jIkzNY8sSmT8zGo3m5pWvN63IudWllFcKHWTvtLBjX1Vj6X76\ncCNZmdFMHh+B9iY+T0H343JLnD3vFyFOnLZx8bK9sW1Np1UyNj2sUYQYkBwioloFAoHgDkOjVvH4\n3cMYkhTOG5vy+NNHucyfmMyDs1JRq8RvvkBwOyFEiZtMe8aSwbKnSduEze5h54lSDp6pwOX2EWnS\nMrx/FCuyhqBSKoNqFWmgZXJFwwLTFB5CuFFHznlLwMedK6whJtLAhzsuNHte8bu2ErFjE65+/fjq\n7hXILv+iQYHMNyLOMj7EQp7XjHnx4/wsyu+g/MIr+5ud+4HxRu4bbaSq3kdowkB06rbbKOwef8KG\nw6MkJtSfsNHRb1JVrcRbXzgpKJOINyt5YqGBcONwauoGkjrAjK2mawYDdoePN98vYtN2CwoF3Dcv\nhhUPJN7ydgG3R2LTdgsffl5KTa0XY6iKVQ8msnBuDHrdzZtLoIqcsUNjWD5nMCpl910YOJw+9hyy\nkr2zkvwLfrPCiDA1S++JY16muUeTTASdw+eTuXDZ3tiSkXeuDo/Xr0KoVP62m4wRJkaPCGPIIAMa\ntbjgFAgEAgFMSY8nJc7Inz7K5atDV7lYXMu3Fo8kKkxcAwgEtwtClOgGWiZ4aK/tKLvcPqLC9AxL\niWjTr6EtGto9qmxu9uaWcjS/gvFDYzpVkdGQXNFygRkTGcLgpPA2206qbE4Ky2zszrkeaZpy+QzT\ndn6CPcTIlsVPUeZq2MWUWRF+nszQUs67TbxUOYIXtVp0GhXlVnuzMR6ZZGJ+eiilNV5+s6mKf12Z\nSmwbvy81DiUnryVsJEe4GRTVOmGjJWcue1n7lRO7EyYMV7Nstg6txv+g2EgDeq0aW9Cv3nUOHa/h\nr28VUGn1kJyo59nVKQwffGsjNb1ema17Knn/0xIsVR70OiUP3x/P/fPjmpn83SwCVeQEagm6Gciy\nf/GavbOSXQeqcDglFAoYNyqMeZlmJo6OQK0Wu+a9HVmWKSx2NooQuXl12B3X29YGJIf4zSlHmBgx\nxEhIiPD/EAgEAkFgkmKM/PiJCbz+RR4Hz5TzkzWHePr+kYwcGNXxgwUCQa9HiBLdQKAED6DZv88W\nWLvc4gF+kWJPbik6jRKXp22Dx6Y0JFes3ZzfbIFZbnVQbnWg16oCel3IMvz63eO4vf5xoiwlzPvi\nbSSlii8XraZCHUpEqJbqOjeLjVdYaCyk0GPg15WjMRiNjc+5obWlqtbFY1PCmJ1moMjq4aUvrag1\n2jbNJstsKvIqdMgyDI1xkdhGwkYDkiSz6YCbzYc8qFXw0Bwdd41U33APenWth7+vLWT3QStqlYLl\n98ez7N74m9oe0RE+SWb3ASvrPi6hpNyFVqNg8YJYHrgnnjBT93yd2zNvbdkSdCPU273s2Gdl8y4L\nlwr8FSzRURrunx/L3BnRxJh7JsFEEDyWKjc5p22cOF3LyTN1WGuum1PGxWiZNtHvC5E+3EREmDCn\nFAgEAkHw6LVqnr5/JEP6RfDulnP8dt1xFk8fyH3TBqAUPkMCQZ9GiBLdSEs/hKb/vtEWjwbaEiSS\nY43Ynd5WyRXBpoO0pEGQCKm3cc8na9B63GQvWEl5fApRRh2jB5tR5h/i4fBLVHj1/MIyhjpJw+Qm\nEZ46jYpxQ6NJ1tuYPtRAQaWH32yqwuaUmTcyutXCVpahoFrDpSotqmsJG1GG9gUYm13iH1+6OF/o\nIypMwRML9fSLvbEFsyzL7NhXxWvvFmKr8zF0kIHnnuxPStKtM1SUZZkDR2tY+1ExV4ucqFUKFsyO\n5qH74onq5rjR9sxbW7YEdRZZljlzrp7snRb2HrbidsuoVHDXuHCyMqMZkx6GSngJ9Fpq67zk5vmN\nKXPO2Cgpu/45CQ9TM31SJKNH+KshYqNvPOFGIBAIBHc2CoWCueP7MTAhjD9/dJKPdl/ifFEN31g0\nos2EOoFA0PsRosRNoCvmf8vnDMbu9Ha6jaMj9FoV0zMSWD5nMF6f3GpelTX2NheYLrePaenx5LVR\nxaH2uLnns9cx1VVzYMoCLgwdDcCw/hGsGuJGW56PTdLyq8rRKI3hzGsS4QmALLN8ggGl20dBlZff\nfFmFVqdjXnp0K7NJSYb8Ci2lNg06tcSoeCdGXfsJGxeLfbz1hZPaepmRA1U8kqXHoL+xBW25xcVf\n3rzKsdxadFolX3ukHwvnxdyyhbIsyxw/ZWPt+mLOX7ajVMCcaVEsX5xwyxZ57Zm3NrQEdZaaWg/b\n91aRvctCUYn/vPGxOubNMDNnullEPPZSnC4fZ87Vk3O6lpwzNi4VOJCvfS1D9EomjA4jI81vUJmS\npBcJGQKBQCDoFgYlhvHik5N45dPTnLxYyU/WHOLZJemkJoX39NQEAkEXEKLEDXAj5n8qpZJVdw+7\n4TaOloTq1SybmYpKqUSlpNUOdnsLzKgwPY/dPYwKq53/fO1Q8ztlidnZ64gtu8rZtPEcmzC78a5B\nUinafbtAo0MxZzX/rIlqLdDIEtQWoXTbQBNC3KAk/mO1N6CQ4/HBqTI91Q4VRuYtGh0AACAASURB\nVJ2PUfEudOq2BQlZltlxzMPne/zJH/dO0zJ7nOaGFkSSJPPF1gr+8WExTpfE6JEmnnk8hbiYW7fb\nezq/jrfXF3M63x97OW1iBI8sSaRfwq01dmrPvHXs0NYVLm0hSTInz9jI3mnhwNEavD4ZtVrBjLsi\nycqMZuQwo0hY6GV4vTLnL9dz4rS/GiL/Qj1en/+7qFYrGDHU2OgLMXhAqPD6EAgEAsEtwxii4V8e\nyuDzfVf4aNdFfvH2UZbPGczc8f2EKC4Q9DGEKHED3Kj5381I6miJ1eZqt5w+mAVmTKQBcwvhYtK+\nTaSeP0lx0iB2zFlGg8vkEG0Nc6tPgFqBZ/ZjaGL70SpBWpagphDcdaAxQHgKOqWSWG3rMjvHtYQN\nu0eJ2eBlRFz7CRsOl8y6zU5OXvBhMihYdY+e1KQba9e4WuTg5dcLOHuhHmOoin96rD+zp0bdsh+4\n85fqWbuhhGO5tQBMGB3GiqWJDEzpWovEzaCleWvTlqCOqLK62bK7ki27Kimz+IWj5EQ9WZnRzJwa\nRZhR/BnqLciyzJVCh9+c8rSNU2frcLr8LVMKBQxMCWH0iDAy0kykDTGi04mEDIFAIBD0HEqFgkVT\nB5CaGMbfPjnF2s3nyC+s4cl7hhOiE9cXAkFfQXxbu4jL4+Po2fKA9x09WxG0+V/TxV5lrbPN45Ji\nQkmJNZJ/tZoqmwsF/haHlgRTTt9ygRkdEUJGqrnx9pbCxbDThxh3eBvVEdFsWrgKSeX/2CSr6/hX\ncw5qJCzjlhEWN6D1YLIE1VfBUw/aUAhPBkXghUytU8nJEh0eSUmCycXQGG+7CRtFFT7e2OikskYm\nNUnFYwt0hIV2fZHk8Ups2FjG+5+V4vXKTJ0QwTdWJhNxi1oJCoocrN1QzIGjNQCMSjOx8oFEhqWG\n3pLx2yOQeWt7n2+fT+boyRqyd1ZyJKcGSQKdVsmc6WayMs0MSw0Vuxi9hLIKV6MIcTLPRk3tdSPZ\nxDgdGSNMZKSZGDncJAQkgUAgEPRKRgyI4sUnJ/GXj3M5nFfO1fI6nluSTr/YW5uOJhAIuoa4wuwi\nNXUuqmzugPdVdVCt0JSGxd6iqQN48bWDVNe1PmekUcsLj09Ap1E1+ldsOljAtmPFrY5tWk7fltdF\nywVm6gAzthpHs/M0CBSFX+0lc+uHuPUGtj7wFK4Q/wI5RuXgh9EnCFV6ecuRweLU9NZPTvJBzVXw\n2EFrgvCkNgWJMpuS06U6UCg4eOwkloqSdlthDpzysH67C68P5k7QcPdk7Q35PORfrOdPr1/hSqGT\nqAgN31yVzF1jI7p8vs5QUubk3Y9L2HXA6k8YSQ1l5QOJZKSZbsn4naGleWtLyi0uNu+sZMvuSqqq\n/ckLqf0NZM00M+OuKAwi9rHHqan1cDLPxonTNk6etjVWrwBEhmuYOSWqsSUjOkqYhgkEAoGgbxBp\n0vGvj45l/Y6LfHmwgJ+/eZjHFwxjanpCT09NIBB0gBAlukiITo1SEbhaQamgsWQsWBNMh8tLTQBB\nAqCm3t0ocjQsCldkDUWlUgYsp+/I66LpnGIjDei1amwtxlQplSwdqOP0p2/iUypJe+M3FLjC2Xy4\nkHClix9FHydS5ebN6sH40ka3fm6SD6oLwOsAXRiEJRGo7EGW4WqNmgsWLV7Jx859Rygq9VegBGqF\ncXtk1u9wcei0lxAdPLFQz4iBXf8YO10+3tlQwmfZ5UgyzJ8ZzeMPJRJq6P6vhqXKzXuflLBldyWS\nBAOSQ1ixNJEJo8P6VBWBxytx8FgN2Tst5Jy2IctgCFGyYHY0WZnRDOrfc20nAnA4fOw9VMmu/eWc\nPG3jcuF1AdIQomLS2HBGjzAxKs1EvwRhTikQCASCvotapeThOYNJTQrntY2nefWzM+RfrWFl1hA0\narExIhD0VoQo0UUcLm9AQQL8QkWdw8Oney8HbYLZ2YSD9srp127OD+h1IcsyCoWi1Zy+/fDYVmN6\nqqrJf/x5fDW1DPzdi5hnTGS5JKGV3Mwq3kicysmXrlR8aVNa+wpI3muChBP04WBKDChISDKcs2gp\nqdXgcjnJ3nkAa01ts2OO5VsaW2EqqiXe2OikxCLRL1bJ4/foMYd3vV3j8Akr//P7PMosbhJidTy7\nOoX04d1fnVBd4+HDz0vZtN2CxyuTFK/j0SWJTJkQ0aeMHotKnGTvsrBtTxW1Nn/J//DBoWTNjGba\nhEjhN9BDeLwS+RfqG1syzl2qx+fz36dRKxqrIEalmUjtb0Cl6jufOYFAIBAIgmH8sBj6xU7kzxty\n2XmimMultTy7dBSxEbcuzl0gEASPECW6SLhR18oMsgFzmI7Nh682a6/oyASzqwkHLcvpXR4fx/Ir\nAh6752QpTrev1ZwMIVqWTBvQeLvkcnP+qX/FdekqCf/0JDHLFwGgkrw8Ku1DqbJh6z+OqZMXodO2\n+AhJXrBeAZ8L9BFgSggoSHglOF2qo8qhRqfy8uHmXdQ7WntqWG1OaupclFZqeTfbicsDU0apWTxD\nh6aLTv919V7WrCti6+5KlEpYek8cyxcnoNN27yK6rt7LR1+W8Vl2BS63RGy0luX3JzBzSlSfWRi6\n3BL7DlvJ3lnZmApiMqq4f34s82aYSU4SP/a3GkmSuXzV4W/HOGPjdH4dLrffnFKpgNQBBiZPMDO4\nv45hg43d/jkXCAQCgaA3EBdp4N9XjWft5nx2nijhp2sO8fV70xg7NKanpyYQCFogRIku0p6IkDE4\nmpzzloCPa7rz35IHZw3ibEE1RRV1SLJ/QZEUY+TBWYOCnldNnYuqNiJGmwoSTdmfW8I9k5LRaVTI\nssylH/w/bAeOEXnfXPr98Bn/QT4v6h3voqwooD5xBPLk+1oLEj4PVF8BnxtCosAYF1CQcHr9CRv1\nbiVRBi+Do+ys18jUO1odSoRRz+4TCvbkONGqYcV8HeOHd914ct9hK6+8fRVrjZchg4w8vaofqd3c\nXuBw+PhsczkffVmO3eEjMlzDEw8nMS/TjEbdNxaIlwrsZO+sZMe+KuwO/+coI81E1kwzd42NQKPp\nG8/jdkCWZUrKXeSctpFzxkZung1b3fXvdr//z957xrd13uffX+wNEiTAPTQoSqIkSrL2oia1vCQ7\nlm15ZjVtkj592oz2n6ZJ/Mm/6ZPETdM0SdM6iRM7sa3E8basvfcWKYmSSC3ugUESIDZwnhcgQVIE\nKVLW1v19Awnj4D44B+C5r/v3u65Mbawdo8jE+NFGDHolNpuJlparm7QEAoFAILi3UasUvLhiLAXZ\nyby+6Rz/9U45y2fk8fj8EQkrlwUCwe1BiBKfgv5iEhdOzmbHsbqEr+la+U9kFvj2jovUNHvi/49K\nUNPs4e0dFwcVMQoDt4H0h73VFx9Tw89+i+PPH2OYPI6R//kSMrkcpCiKve+gqK/kdNjKjw7bSDp3\nqHc7SiQYq5CIhkCfCoa0hIKEOxBL2AhG5GSZQxRYg8hliQUemUyFXj2GvWURbBYZL67UkpF6ff2A\nztYQ//uHag4ea0OllPHs41l84dmRuFwd17W9wRAIRtmwvYV3Pm6i3RPGZFTwwppsViy03RWtDT5f\nhN2HXGzeZafqkheIGSGuWGRlyTwrGWkDp7wIbhzO1hDlFTERorzCTYuj23/GmqJi2pwkJhSZKB5j\nIsUizCkFAoFAIOjJ3OJM8jNM/PLdcjYcrOZiXRt/vWo8yddIrBMIBLcGIUp8CvrzdQiEIkPyh4CB\n2y4Gqq64GqVChl6rSvjeWrUcf2dZd0+syTqSjBocH2ym9of/jTo7g1Gv/jtynRYkCeXh9SiulHM+\nYOZlRxFh5L3bURbkxyokomHQW8FgSyhI2DsUnGnSEJVgZGqAnKTuyM+rBZ5kgxWFLJ8On4JJo5Q8\nsViDVj30FgdJkti628Gr6+rw+iIUFRr58gt5ZGdqUXZWKQzWjHSwhMJRtu528PZHjThcIfQ6OU+t\nyuTh0rQ7Pn1CkiQqL3rZvMvOnkMu/IEochlMKTZTOt/K1OKku6bV5G6mwxvh9Dl3vBqipr67tclo\nUDBrSnIsqrPIRGaaRphTCgQCgUBwDXLTjHznxWm8ur6CI+da+N6rh/nSI+MYm2+53UMTCO57hCjR\niT8YptnlvebENNEE9mpfh+vxhxio7WKg6oqrWbetqle1RRe5aUZG5Sax7WjfCo6Z4zMJlZ3h4t99\nF7nRQOFrP0WdZgVAUbYNxbmD1EWM/NhRTFDqPfa6BieSS0ImRWLVEQZrwnHVtiqpcqiRy2BcRgCb\noXcrSZfAs7pkBBv2B9h7UkKSw+r5auYUq65r0tXQHOC/f19NeYUbnVbOl57LZf5sC25vkEAoQiQS\n5Y0t5wdtRnotIlGJXfudrHu/gSZ7ELVaxuoV6axakY7ZeGd/1dyeMDv3O9my286V2tgE2JaqZvWK\nVBbNTRXRkDeZYCjK2aoOys60U17hpuqSN26kq1bLmDzezIROg8rhubq7yhBVIBAIBII7BZ1Gyd+s\nGs/mI7X8eXsVL791nNXzRrByVj5yIfALBLeNO3umdAvois8su+CgxeXrd2J6rZjNngRCERZOziYS\niVJ2wdknsjMRQ03fSMRA1RZef5jHSkYgl8n6tJs8NSGZfXP/CikUZtRvX0Y/NjZGRcV+lGU7COuT\n+bcLRXil3l4OuSlKvlRiiAkSxvRY28ZVSBJUOdTUtalQKaJMyAhg1vat1gDo8Em8sSnE2SsSFpOM\n51doycsYemVBJCLx4eZm3nyvnmBQYupEM194JoetJ6r5zm/Ox49fklHDxfrutI9rmZH2RzQqceBY\nK2++20Btgx+lUsaDi208/lAGlqTr97+42UiSxOnzHjbvtLP/SCuhsIRCAbOmJrO0xEpxkUlMfm8S\nkajExSteyjrNKSsqPQRDMRVCLofCkYa4CDF6hEF4dggEAoFAcIOQyWQsnZbLiEwz//3+Kd7ZdZGq\nuja+8FARRt2de90mENzL3PeixLptVQnjM6H3xHQwz0skXBQXWFkyJYcUs3bACozrTd/oybWqLTze\nUJ92E4XPx7HHv0jY7iT/X79J8sLZAMgvnkB5ZD2SzoRv0fPIm85Dj20PS1XyD8tTMGrkhPTpqBII\nEuEoVDRpcHiV6FVRijP9aFWJc1SvNEZ4bb2fVo/EmHwFa5dqMeiGPiG+XOPlF69WU3XZi9mk5Kuf\nzWHudAtvbq3sc/z6890YbLuMJEkcK2/njXfquVjtQy6HJfNSWfNIJrbUO7eyoLUtxKZd1bz3ST0N\nTbHPICtdw5ISKwvnpJBsFn+QbzSSJFHX2GlOeaadU+c8dHi7q4Xyc7QUjzVTXGRiXKER3R3e5iMQ\n3ArOnz/Pl7/8ZV588UWeffZZDh8+zE9+8hOUSiV6vZ4f/ehHJCUl8etf/5oNGzYgk8n46le/yvz5\n82/30AUCwV1AQU4S3/3sNF754DRlFxy89Ophvrx6PMMzzbd7aALBfcd9LUoM1sdhsM9LJFxsP1aH\nQi4b1Mp7f8aZ/VVXXM1gqy262k2kcJhzX/onPKcrSf/8U6R/dg0A8pqzKPe9i6TWElr8PGqLjcmF\nrvi+jUxT8fdLLWiVMvbXyJk1pa8gEQjLKG/Q4AkqsOgijEv3o0wwz5Ikib1lIT7YHSQaheUz1Sye\nphpyCV0wFOXPHzby7ieNRCIwf1YKn3sqB7NJOeDxS4RzEO0yp866+eM79Zyt6kAmg3kzLDy1KpOs\ndO2Qxn2riEQlys642bzTzqETrUQioFbJmD8rhdKSVIoKjcKX4AZjdwZjxpSdvhDO1lD8sTSrmllT\nkykea2LCWJMQggSCq/B6vXz/+99n1qxZ8fv+7d/+jZdffpkRI0bwq1/9inXr1rFixQrWr1/PW2+9\nhcfjYe3atcydOxeFQgh7AoHg2pj1av5+zSQ+2HuJD/de5l9fO8rs8Rk8NGcYacki5lwguFXc16LE\nYH0cBvO8JKPmUxtV9mecOViGUm0hSRJX/uVl2nceIG3lAvK+9/cAyJouo9y9DuQKQgufQ7JkAN2C\nSZurlc/O1qNSyNhXo2DWlL5iiycQi/wMRORkmkKMsgVJ1AXgD0r8eWuAE5VhjDoZzyzTUJg39FOy\notLDL353hbqGALZUNV96LpcpxUnxxwc6fomQARsPVbO2tLBPa875ix288U49J8/E4hWnT05i7eos\n8nPuzD9cdmeQrXscbN3tiCc25OdoWb0yhykT9BgN9/VPwA3F7Qlzqsuc8oyb+qbuc85sUjJ3uiXW\nkjHWJJJLBIJroFareeWVV3jllVfi91ksFlpbWwFoa2tjxIgRHDx4kHnz5qFWq0lJSSE7O5uqqipG\njx59u4YuEAjuMuRyGavmjWBUTjJvbq1kT3kD+083MmdCBg/NGoZViBMCwU3nvp6RDLayYDDPG2ji\nO5iV955cbZw5FAZbbdH0m7do/v3b6IpGMfkP/47LLyFz1qPa/geQJEIL1iKl5cWfr5DLWTsvC6kt\nAkiEDVnMnZbc5/0dXgVnGjVEJBkjUoLkJocSBXHQ6Ijwu/V+WlwSwzLlPL9CS5JxaH3zPl+E1/9S\nz4btMTFo5WIbzz6W1af0fagxqVEJth+vR6GQxytcLtd4eePdBg6faANg4jgTa1dnUTjCMKQx3wrC\nYYmjZW1s3mXneHk7UQm0GjlLSlIpLbEyarietDQzLS3u2z3Uu5pAIEpFlScuQlys9iJ1didpNXKm\nFMfMKScWmcjLFuaUAsFQUCqVKJW9L1G+9a1v8eyzz2I2m0lKSuJrX/sav/71r0lJSYk/JyUlhZaW\nlgFFCYtFjzJR6d4NwGYz3ZTtCgaPOAa3n7v1GCywmZg3NY89J+p4c9M5dp1sYG95I0um57FmSeF1\nX5vfDu7WY3AvIY7B0LivRYnBVhYM5nkDTXwHWnm/HgKhCC0uL8hk2JJ1vSogBlNt4dq0i+rv/gRV\nWiqFv/sPlCYjsubLqLa+BqEAjgceRZ02Ak2P9/O1u0iKtCADSMpFpen7RatvU3LerkYmg6J0P2nG\nSJ/nABw9G+LtbQGCYZg/WcWDs9VDjpk8WtbGr16rxu4MkZ2p4aufzWdMgTHhcwc6fjk2A/X2jnjS\nQU+On7cza0wO73zUxN7DLiQJxhQYeObxLMaPvvN+aBqaA2zdbWfbHgeutjAAo4brKZ1vZe40i/Ap\n+JREIhKVlzoor4i1Y5yt6iAcjp04SoWMsaOMsZjOsSZGDTegVAoRQiC4kXz/+9/n5z//OVOmTOGH\nP/whb7zxRp/nSFJi36KeuFzemzE8bDaTEHtvM+IY3H7uhWNQlJvES5+dxsEzTXyw9xIbD1xhy6Fq\nSiZl8eDMfFLMd2arbhf3wjG42xHHIDEDCTX3tSgB3ZUFZRcc2Ft9/VYWDKYCYUyehb2nGvu8R6KV\n9+shEo3y5tZK9pU34A/GEiy0agVzJmTw1OJRvQSPLqHkamGi49Q5Lnz5n5Fr1Iz63U/Q5GQQdbei\n3PI7ZP4O1vmL+PDDdlLMB5g0yooESN42np5hIBSF3dUKFkw30HN6K0lw0aGipk2NSi4xPtNPUoKE\njVBY4v1dAfafCqNVwwsrtRQXDO0UbHeH+c2bNew64EKhgCcezuCJhzKumU6Q6PjNmZjFjDE2/vmV\ng30/65CMmkoZX//eWaJRGJGvY+3qLB6YYL6jvBdCoSgHjrWyZZeDsorYj59Br2DlYhulJakMy717\nVP07DUmSqK7zx3whKtycOuvG54+d1zIZDM/VMaFThCgqNKLVCNFHILiZnDt3jilTpgAwe/ZsPvzw\nQ2bOnMmlS5fiz2lqaiItLe12DVEgENwjyOUyZo3PYHpRGgdOx8SJ7cfq2H2ynvmTslk5Mx+LSbRi\nCgQ3ipsqSlztnN3Q0MA3v/lNIpEINpuNH//4x6jVaj744AN+//vfI5fLWbNmDU888cTNHFYvuioL\nvvS4jguXHf36OPRXgRCJRnljy3mOn2/B0R5Aq5bHBYOrGay3RH+s21bFtqN1ve7zByNsPVqHTCYb\nMAVkcqGN1UVJVL7wD0S9Pgp+/SOMk8ZBwIt3/avIO1r5U9twPvCkAzGTzq1H65g5UssX5iURCEv8\ndLOLyqYQTR55j/eCimYN9g4lWmWEHEMrWoUK6L2PjrYor33ip7Y5SqZVzgsrtdiSB181IkkSuw+6\n+M0btbR7whQM1/OVF/MGPelOdPxyspKprW8ltUeFSzQsw+/UEmhTgyQjO1PDM6uzmDkl+Y4SI2rq\nfGze7WDHPgduT6wipajQSOn8VGZNsaBRiwjJ66HZHqCswh2P6mxtD8cfy0zTMG9mrB1j/BgTZuN9\nr+kKBLcUq9VKVVUVBQUFlJeXk5+fz8yZM3n11Vf527/9W1wuF83NzRQUDM4cWiAQCK6FQi5nzoRM\nZhSls/9UIx/uu8zWo7XsOlnPgknZrJyZF2/3FggE189Nu6pO5Jz9s5/9jLVr17JixQp+8pOf8Pbb\nb7Nq1Sp+8Ytf8Pbbb6NSqfjMZz5DaWkpycl9/QpuJlq1clC9Ylf7PVyduNGfIAExU8yWVh9qpXzI\nJpaBUIRj55r7ffz4+ZYBU0B27L9Iznd+g7ahidx//ltSVi6CUADV1teJOhrZHsznfU9+r23OK9Tx\nwhwzvqDEf2xycbEl1PleMXFFJlNQ3qjFHVAQ8LnZuO8wzc6OuAjy5KICFHI5py+GeXOzH18Aphcp\neWyBBtUQStvtziC/eq2ao2XtqNUyXnwym4dK01BcR4/+1cevq7Vj08E6/E4NgVYNSDLkqghTp+r5\n5ueLrut9bgb+QIR9h1vZvMvO2aoOIGag+OjyNErnWcnOvLPLCe9E2t3heDtGWYWbxubu9itLkpKS\nmZZ4VOedHPMqENxrnDp1ih/+8IfU1dWhVCrZuHEjL730Et/+9rdRqVQkJSXxgx/8ALPZzJo1a3j2\n2WeRyWR873vfQ34D2iQFAoGgJ0qFnHkTs5g1PoO95Q18tO8ym4/UsPNEHQsfyGbFjHzMBnGdIBBc\nLzdNlEjknH3w4EFeeuklABYuXMhvf/tbhg8fzoQJEzCZYj0mDzzwAMeOHWPRokU3a2g3jKFGTapV\nCn76pxO43ME+E/dr0eYJ4HQH+33c6Q70nwIiRVm88U20ly+RsuZhMr78PETCqHa8idxRS2jkZH67\nK4mY+0WMRWP1PDvLjNsf5d83OKl2dq8Yu9x+mtvC1HYYCYTleN0O3tm4n2hnL6+jPcCWI7VIEiTr\n89l2NIRSAWsWa5gxbvDRh9GoxMYddl5/uw6fP8qEsSa+/ELeDU0u8PoiyDxGOqqTCIdAroySmh2m\nZFYyTy8ZdUcIEheueNm8087ug068vigyGUwaZ6J0vpVpk5JQKcUF+GDx+iIcLWujvMLNyTNuLtf4\n4o/pdXKmTUqieKyJ4iITuVnaO6o6RiC4nxg/fjyvv/56n/vfeuutPvc999xzPPfcc7diWAKB4D5H\nqZAzf1I2cyZksrssJk5sPFTD9uN1LH4gh+Uz8jDphTghEAyVmyZKJHLO9vl8qNWxL2pqaiotLS3Y\n7faEztl3A0ONmvQHI/iDsVL7rok7EG+FCIQi/ZpTGvVqNCoZgVBiE68Uk6bfFJCZez9h+MXT1OWM\n5NSC1QyPRNDsfRt54wUiOWPQL3sKy4nt8RaGZeP1PDndTJs3wo83uKhvDffaXkF+FpfbLUQkGTlJ\nfv5n49G4INGFDBXHKsxACGuSjBdWasmyDb4ypLbBzy9/d4WKyg4MegVf+Wwei+em3rBJYiAQ5Y13\nanj9z1dweyKxioNVacyYYsRq0V13i82NosMbYfdBJ5t32bl4JTZxTrWoeHBJGkvmpZJmFaWCgyEU\njlJ50UvZmXbKKtycv+glEomdqyqljPFjjEwsMlM81sTIYfohG64KBAKBQCC4/1Aq5CycnM3cCZns\nOlnPx/sv88nBarYdq2PJ1ByWTc/DqBv8QpxAcL9z25qi+3PIHoxz9s2K8xpqdIspSYfNoqPZ5Rvw\nebZkLW5vMGFrR9kFB19YpeGNjec4cKqBllYftmQdM8dn8rmHx6FQxFbBX3mvvF9BAmDOxGxyspKx\nBsO9xjTm1EEmHduJy2Jj48rnCJ5tYSlvMtJ9HkXOSEyPfR6ZUsWcidl8sPsiD0008NgUE86OCD/+\nxElTe+8EjYJhucyYOhEJGdNHylDLJJzu3iKIUm7CoBkJqBk/UslXn0pFrx3can44HBMLXn3zCqGw\nxILZVv7fLxVgTbkxk/BQKMoHmxp47U/VOJxBjAYFX3x2GE88koP+NqdTSJLEqbPtfLixgW17WvAH\noijkMG9GKg8tzWTGlBSUN3DSfC9GFUWjEhcud3DkpIujJ1s5ebq1lznlmAITUyYmM2VirC1Dcx+Z\nU96Lx3uw3K/7fr/ut0AgENwqVEo5i6fkUDIxkx0n6lm//wof77/C1qO1LJmay7LpuRi0QpwQCK7F\nLRUl9Ho9fr8frVYbd8hOS0vDbrfHn9Pc3MykSZMG3M7NiPO63uiW4pGpCaMmu5AB2VY9J6r8CR+3\nt/r4r7eO90rtaHb5+GD3Rby+IGuXFBIIRdh7si7h6wEWTM7i4Vl58fF3jSm7ppJ5O97Fp9XzycOf\nJajV86T5AiPd1UQsmQTmPIXX5cdmU/HwzFwKzD7Gp0u0uMP8eo+X8aMyGAecrHTgcvuZOXkcBSNH\noJRLjM/woSeK1x9Go+o299QoM9GpcmL7Lq/n6dIRdLg76BjER1t1qYNf/K6ayzU+LElKvvhsLrOm\nWJAiQVpa+m9dGQyRiMSOfU7WfdBAiyOIViPnuSfyWFqSjNGgpMPjpcPzqd7iumn3hNm5L1YVUVMf\nO0/SrWoef9DKojkppFhi1UUu540b4L0SVSRJEo0tQcrPuCmraKe8wkO7p7uyJztTE/OEGGti/Bgj\nw4dZ4vvd3n5zYgHvRO6V43093K/7fjP3W4gdAoFA0BuVUkHp1FzmT8xilbfkpAAAIABJREFUx/E6\n1h+4wkf7LrP1aA2lU3NZOi0XvRAnBIJ+uaWixOzZs9m4cSOPPvoomzZtYt68eUycOJFvf/vbtLe3\no1AoOHbsGN/61rdu5bA+FU8uKiASibLzRD3RBIUMGrWCE1XOfl+fbNRwttqV8LEuQ8k2TyDeWpGI\n5dPzevlSPLmogMilKwz71euAjI0PvkB7spUHjdU8YqqmIawjOvUJrOqYMaIkSSi8LYxPl4jKVcgs\nOfzDWkO8heHx+REqmtS0B7XoVFEmZPjRq2M7+97ui/iDUWQo0KtHoFZaiEaDeIJVLHwgGa26/1Os\nq11Fq1bx7sdNfLCxmagES+al8sKabIyGT396RqMS+464eOu9BuoaA6iUMh4uTeOxB9MZNTLltk1W\nolGJU+c8bN5p58CxVsJhCaVCxtzpFpbMS2XCWBPyO8DP4k6ktS0UT8goq3DT4ugWrFItKhbOSaF4\nrIkJY02kWkRfp0AgEAgEgluDWqVg6fQ85k/KZvvxOj45eIUP9l5my5Falk7PpXRqLjqNSO8SCK7m\npn0rEjlnv/zyy/zTP/0T69atIysri1WrVqFSqfja177G5z//eWQyGV/5ylfippd3Awq5nOeWjQGZ\njO3HElUzDNyOMibfwv4eVRI9cbn9cY+J/qJGtWpFnyiiqKuNCb/5OcGgn62lT9KYPZz5+gbWJl3A\nEdbwK/8Mvpba6eMhSXgaLoPPCQo18uR8rIpuJTcYgYoWA+1BBWZthPEZftSdFe9dRp8KmR6DpgCF\nXEso0kZH4AIatcSqeZMT7lfPyNKmxgj+Fj2hgJx0m5ovv5BHcZF5wM9sMEiSxJGTbbzxbgOXa3wo\nFLB0vpUnHs7AmjLwRHUgb49Pi7M1xPa9DrbsdsSTHrIzNZSWWFk4OxWzSfyhuhqvL8Lpc90iRHVd\nd9WR0aBg5pTkmDnlWBNZGRphTikQCAQCgeC2olErWD4jjwWTs9h2rI4NB6t5b/clNh+uYen0PJZM\nyRHihEDQg5v2bejPOfvVV1/tc9/y5ctZvnz5zRrKTaVrAvv4/JEo5DKOn2/B6Q6QYtIwJs/Sqy3j\najJT9KwtHcW5alfCSgiLSdtDcBjcRCvqD1D5ua8TrK7D+ehqKvOnMFXbwheSz+KOqPj/HBMpmpQL\nQLOzg1S5C3+wHZQaSM4Hefcp4Q3KKGvQ4g/LSTOGGW0LoOhhDdHq9uPpMGPS5iOTyfGF6vCHYsKM\nPwhtniB6Td9StXXbqth0sA5fi5Zguw6Q0Fj8zF5ouCGCRNmZdv74bgPnL3Qgk8H8WSk8+WgmmddI\n7egpljjbA0NOSOl/uxInTrWzeaedwyfbiEZBrZaxcE4KpSVWxhQYxES6B6FQlHMXOuIiROWlDqKd\nepxaLWPiOFNchBier78jElIEAoFAIBAIrkarVrJyZj4LJ2ez9WgtGw9V8+6ui2w+XMOy6bksnpIz\nYFWxQHC/IL4FQ6RLhDDq1by3+2KvCaxeqyIajSJJsZV6tVqBxajC5Qkl3FYwHEEhlzO50JbQl2Jy\noRWNSkGzy0sgGEmwhe7xpFn0SJLEpa99H8/hk6Q8upQHfv5PaDbsYYnjNAFJwf/4pzJm4kgkSeI7\nvz7A6kla0kbqcPnlmLPyUPQQJFp9ck41aglHZeQlBxmeEqLnvDkQkth8SI5eM5yoFMbjryQcbes1\nti1Ha3lu6eg+49190EH7ZRNSRI5CHUGf4UWpjVB+0UEgFLnu6oSzVR7++E49p87GvBdmTknm6VWZ\n5GXrBvX6dduqeh2HRAkpQ6HZHmDrHgdbdztwuGLnwPA8HaUlVkpmWjDoxdcPYqLNpSveWEtGhZuK\nSg/BYKzCSC6HUcMN8ZjO0SMNqFQiAlUgEAgEAsHdg06j5KHZw1g8JYfNR2rYdKiGv+y8yMZDNayY\nmceiyTlo1PeP+bZAcDViVjRIrl5F11zVTuFo7+374HQH2X6sjswUPZBYlHC5A7R5Ajy5qACIeUi4\n3H4sJi2TC63x+5OMGlLMmoTVFJIEnxy6wrOlo2n86W9wvLsB45RiRvzHd1G4GljWvgsUcpzT1/BX\nw0bzl50X2H6slr9ekMyUYVoqm4L8dJOLORPl8Yl3o1vBueZYVcFoW4BMc+9I0GZXlN997KPJKaHT\nBmhwVSBJfY0oy6ocBBZ2iwyuthA/f/UyjRc0IJPQpvrQpgTiYkdXu0qaRT+YQxLnUrWXP75Tz9Gy\ndgAmjzfzzGNZjBw2+O10taIkosvbYzBiSTgscfhEK5t3OThxuh1JAp1WztIFVpaWWIc0pnsVSZKo\nbwzERYhTZ914OrpFt7xsbVyEGDfadNtTUQQCgUAgEAhuBDqNkkfmDGfJlBw2Ha5h85Ea/rz9AhsP\nVrNiZj4LJmff9lh6geB2IESJQXL1Knoif4dEBEKxdIpAqO/zu9ozFPKYIPD4/JHUt3hwe0MMzzLH\nWwY0KkW/1RQAO483YDl4gIxf/Q/qnEws//F9Ih4X2m2vQyREuORJkvKKCIQilFe18NVFyUzM01JR\nH+BnW1oJhCWOn2/hsZKR1LarqW3TopBJjM/wY9H3Hvexc0He3OwnGpUTCDURpSGhIAHdIoMtWcf2\nvU5eXVeLpyOC1hhBndqBQtN7273bVa5NbYOfN9+tZ9+RVgCKCo0881gWRYXGQW+jizZPAGc/ZqKD\nEUvqm/xs2eVg214Hbe0xEWf0SANLSlKZM82CTnt//4FxuoJxEaLsjDteOQJgS1UzY3IyxUUxc0pL\nknCnFggGiyRJuDsiNLcEaGoJ0tgSoNkepM0dYc60JObNSLndQxQIBALBVei1KlbNG0HptFw2HYqJ\nE+u2VbHhYDUrZ+azYHIWKuX9fe0ouL8QosQgGGgV/Vq0eoJMH5vOgTNNfR4bk5cc/3cwHOYHrx+j\nrsVDVAK5DLJtRv75+QdQK5WsmjeCPWX1CcWQjPrL2N79HyI6HR8++ALud0/yvbTjyOR+AjMegbxx\nALS5fTw7Q8+4bA3ltQF+vtVFqHOB2uUJsbEsQJLFjLvDy7Hjx6nJ1sf9FMIRiY/2BNl9MoQkSXQE\nqwhFnP0VgQAxkSHgh5d+UsXJ0260GjlffCYXV9TJ1qN9Uy+62lWuRVNLgHUfNLBzn5OoBCPydTy8\nzMrMByzX3Zc3UDVKf2JJMBRl/5FWNu+yc/pcrGXEaFDw0BIbS0qs5OcMrm3kXsTTEebUWU+nENFO\nXUP352oyKpg9NZmJRWYmFJnIsKmFp4ZAMADBUJRme5CmTuGh2R6gsce/vb7EIvmIPO0tHqlAIBAI\nhoJBq2J1SUyc2Hiomi1HanlzayWfHLzCg7OGUTIxC5VStK0K7n2EKDEIBlpFvxZqlYJz1bFIULkM\nohJo1bEfl72nGjlb7WJyoY2zV1zUtnTEXxeVoKbZw7++doyXPjcdjzdIIIEgYWpzsOyj3yOLSqxf\n+gztOiP/knoMi9zPG20jCVQnsbYQiEZIiTaTlq3h+BU//729lXCXeaBKxYLZU0myWGlxuNi+9xD+\nQJArDbFxr5hRwGvr/VQ3RYlEvXgCVUQlf5+x9ESSwBA1842XzhMIRnlggpm/fj4PW6qaSDQVmUzW\nb7tKfzhdQf78USNbdjkIRyTysrXkjIAmr5PXdzTw8bHrN6YcqBrlarHkSq2Pzbvs7NzvjLcdjB9j\nZGmJlRlTklHfh54HgWCUs5WeeDXExcveeESuViPngQnmeEtGfo5OxJ0KBD2IRiVcbSGaWrqEhwBN\nPUQIZ2ti9VerkZNmVZNu05DedWvTkG5TUzQmFY/be4v3RCAQCATXg1Gn4vH5I1k6LZcNh6rZerSW\nP24+z/oDV3ho9jDmFWeiVNx/15eC+wchSgyCgVbRr4U/GMHfaVLZNUm72ouiv7YMgLoWD25vMOEY\n1AEfKz54FZ2/g50LH8MxbAT/nHqcLJWPD9x5fOzJQ1vWwKq5eei9DSijfg5f8vG/O9qIdI7FaNCz\neO4MksxGrtTWs+fQCSKR7v7+Y2f9VFz04vVDIGzHG7wMJF6Vsxg1tHUE0Ct1dDTqOFkZxGRU8Dcv\nDKNkpoVgOEqzy0uSURNvVxlM9Ga7O8w76xv5ZFsLwZBEZpqGp1ZlUtPewtYeMayf1phyIG8Pnz/C\n3kMuNu+yc/5i7EI/2axk9Yp0lpSkkpV+f61IRiISFy7HzClPnmnnXFUHoXDspFIoYHRBlzmlmVEj\n9ELlF9z3dHgj8QqH5h5tFk2dt13fn57IZWBNVTN+jJEMm4Y0qzp22yk8JJmU/VYZ6bQKPH0L0gQC\ngUBwB2PSq3liQQHLpuWx4WA1247V8vrGc6zff5mHZg9jzgQhTgjuTYQoMQgGWkXXqhUEQxEsplj6\nRocvRKsngMWkocMfGrT3RH9EJaht9jB2WEqvMcgjEZau/wMprmZOTppH1YRpfDO1jOFqD9s6MlnX\nPgIAhSyKt+EiegNE1GbeOuyICxK2VAsL50xDq9Fw6mwVx8oreu+bKptoJItAUAJZLd5gQ7/jTDVr\n+T/PPMA765vYsM1JJBKlZKaFZz+TRVgK84dN5yi74OgTtTmQT0OHN8L7G5v4cFMz/kAUa4qKNY9k\nsnB2KhEpyoevVCR83VCMKXvS09ujzRPAbFBTUxfgf1+vZdcBJ/5AFJkMHphgprTEytSJSSiV98eK\nvyRJ1Nb7OdkZ03n6nLtXyfiwXB0TOz0higqN972HhuD+IxyWaHF2igydokOX4NDYEuhl5toTk1FB\nfo6OdFtXxUNMcEizabClqO+b3xiBQCAQdGM2qFmzqIBl03P55GA124/X8fsN5/h4/xUenj2MWeMz\nhDghuKcQosQg6W8VfdW84Xi8ofhqf1dEZzAU4bu/Pfyp31cug5w0Y3wMHf4Q+8sbmbvjXXJqKrk8\nfCyH5q7g71LOUKRp5ZDPxm9bRwMyzFo5X19uwWqAiDoJRVIWk0Z52H68nvycTOZOn4xMJmP/0TIq\nL16Jv6cMJQbNSFSKJCSCrFmi5pfv9S9IAORZLHz3RxepbfCTalHxV8/lUGVv4UdvHelTYXKtigZ/\nIMLHW1p4b0MTno4ISWYlzzyWxdIF1nhrhNP16YwpByIckjhyrIPNu65wucYHgDVFxarl6Syam4ot\nVX1d273baHEEKTsT84Qor/DgausuIc9I0zB3uonisSbGjzGSZBbmlIJ7G0mSaHOHe7dYtARpssdu\nHc5gvBquJyqljDSbmsIRhqvaLGK3Il1GIBAIBP2RZNTw1OJRLJ+Rx/r9V9hxop5XPznLR/sv88ic\n4cwclz7klmWB4E5EiBKD5OpV9J4tB3pN94RMo1KQZtETCEWG1PKhkMuIJLiizbYZMenV8TE8v2wM\n/Okdik4fwm7NYuuyp/lCSiVTdHbK/RZ+4SxCQkayXs43lqeQmaxk65kOJhTnkyaT8fSSQoLyZEaO\nGEkwFGLX/qPUN7X0GIcRo7oAuVxNMOLigdFeRucNj/thXI0UhRRS2b7FhyTB8oVWnvtMNu/tvTBg\nWwr0rWgIhaJs3GHnLx830toexmhQ8OzjWTy4xIZW0/vC/XqMKQdCkiQqKjvYvNPOviMugiEJhQJm\nPJBEaYmVSePNKDp9ELqEp2u1ndxttHvCnDobS8coO+Omobn7s002K5k3wxL3hUizDu3zFQjuBvyB\nSLylorElGEu06OHtkMjXByDVomLMKGN3e0Wn8JBhU5OcpBIeKgKBQCD4VCQbNawtLWTFzHw+3n+Z\nXSfr+c3HFXy0LyZOzChKF39rBHc1QpQYIj1Fhy5/hEQT02vFeF7N/EmZVNa2J0zf6Il3y26Kt35A\nh8HMJw+/wBpbDSWGRqqCJn7WOp4wclINcr6xIoU0s5JPyjxsOx9m7hwtUQmqHFpGjhhJOBxk38Ej\nNDQ70GmU+AJhNMp0dKpcQIY3WIPN4ub55VNxtPkTChKhDiXeJj2t4QhZ6Rq+8tl8igqNg04r6apo\nSDXr2LbXwZ8+aMDuDKHVyHni4QweXZaGQZ/4FB2KMeVAtLWH2LHPyebd9nhCRGaahiUlqSyck9or\nnjISjbJuWxXHz7f0aUO5G1VqfyDCmfMxc8ryM24u1cSEJQCdVs60SUlMGBurhsjL1oqEDMFdTyQq\n4XAG4y0V3UkWMQGitTPO92r0OjlZGZpelQ5dAoTNqr4vzW0FAoFAcOuxmDQ8u3Q0K2fm89H+K+w+\nWc8rH53hw32XeWTuMKaPSb/dQxQIrgshSgyRoUxME7V8TByVigw4UenoY6aokMtxe4PUNnvISeuu\nkOiio+wsF776bRRaDc5//EceoYmVmloaIkYO5a5gVp6a8vONfGNFCqlGBe8f9/D+cQ9LpuagkCso\nb9Di8ikwqiNMyA8zb8R42jwBMtKSeOl/62l164hKQeTyamYX61i7ZCoKuRydRkmyUU2rJwhANCLD\n16wj6FYDEqtWpPH0qqz4hflg00qSjVrKz3j5y4eXaGgOoFbJeHRZGqtXpA+qHWAgY8qBiEYlyirc\n7DpQw+4DdsIRCZVSRslMC0vmWRk32phQbV63raqXCPJpjTVvNeGwROWlDsoq3JytvMCps+2EOw1G\nlEoZ40YbKR4b84UYNdyAQiFECMHdhSRJeDoivdIr2j0NXK7x0NQSxO4Ixs/5nigUYEvVMDFXF/d0\n6ClAGA0KIcoJBAKB4I4hxazl+WWjWTkzj4/2XWFveQP/+8EZPtx7mbXLxjA62yw8JwR3FTJJkhKs\ngd/ZtLTceEtxm800qO2+seV8wtX5JVNz+p2YJir3H0oLQCAUwVFVQ+PavyHcbGfUb35M6nA9qkMf\nEtYl4Sv9POokC5Ggj0DLJfQq+MsRNwcuR5hcaOXReaM43aTHG5KTqg9TlB6g63eq3h7hDxuDNDki\nDMuU8+Bsiew0LRqVopcA42gPIEkQ8qjwNuuQInIUmjCLFpn48hNj+4z3268c6Ld1RZIg1KFC0WGi\nvS2KQgGlJVY+81AGqZah+zUM9rN0uIJs2+Ngy24HzfaYwJKbraW0xMr8WSmYjf1rdAPtU6pZy//9\n4ow7rpUjGpWorvPFYjrPuDl9zoM/ECs/l8lgRJ6e4qJYO8bYAiMazb3/x2uw3/N7jXtpv4OhKC32\nbi+Hq+Mzvb7EhpLJZiVpnS0VaV3CQ+dtqkV9z4lwN/OY22ymm7LdW8XN/Fzule/Z3Yo4BrcfcQxu\nDy2tPj7cd5l95Y1EJYlUs4bSqbnMm5iFTiPWoG814nuQmIGuH8RZOgQGaksYKPGhq+XjWvddTZco\nUHaqlpLf/hSrvQX7088wvTAF5d63kTQGoks/i9psgbAfRVs1ehWEdTbmzRrGQ6UaAhEVJxo0hCJy\nspNCFKQG6VrwO3QmxF+2BwhHYOEUFStmqeO+CdC7MiAakuFt1hPqUIFMIjUnxIK5yTy9ZFTC/U3U\nWiFJEPYqCbn0BLxy5LIoC+ek8OQjmaTbrt+jYKDPMhKROFbexuZdDo6ebCMqgUYtZ/HcVJ54NI+0\nFAa1AjpQ9cenNda8kTS1BDh5xk15RSwlo93dXY6ela6JixAL5mQS8Ptv40gFgsREoxKtbaFYS0Wn\n8NAzPtPZGiKRlK5Ry0mzqRlnM5JuVccFiDGFKagUoT6+NAKBQCAQ3CvYknV8buVYHp49jN3ljWw6\ndIW3tlXxwd7LLJiczZKpOSQP0W9NILiVCFFiCNzqiem6bVVsPVTNso9/j9Vez5nxM3BlZ/PI3r+A\nSk1oyfNI5lQI+aC1GqQImDJQ6lJIA1o8CiqaNUQlKLAGyEmKTVBDYYl3dwY4eDqMVg1fedJCnjXU\n6727BBhJgmCbGq9dB1EZSl2IjOFhfvDlaX3aS7qIRKNIkoRWrcAfjK1aykNq8BhpbYmt1M+emsxT\nqzLJzdLdsM+rJ00tAbbsdrBtjwNna2zfRubrKZ2fyrwZKeh1iiGpmDfaWPNG0doeigsQ5WfcNHVW\ngACkJKtYMCuFCUUxXwhrSvfxMptUtAhRQnCb8PoifdIrYhUPsTjNULiv6iCXQWqKmnGjjb1bLDrb\nLJLMyoQCo81mEKsVAoFAILgvsCXr+NJjxSydmsO2Y7VsPVrL+gNX2HS4mpnjMlg+PY8sq+F2D1Mg\n6IMQJYbArZyYdokCM/d+zLBLFdTmjqKxdCH/mFpORAL/vKdRpmQR9HlQumuQISEzZYEuGUmC2jYl\nFxxq5DIYnxHAaoiJA/bWKL9f76feHiXbJueFlVrGFGhpaektSrR5ArTYQ3Q0GQn7lMjkEro0L+qk\nIL4I+ALhfkWJdduq2Hq0DoCwX4HPriXsVQFRphSbWbs6ixH5N76qIBSOcuhYG5t32zl5OjYJ0evk\nLF9opbTE+qne80YZa35afL4IpzvNKcvOtHOltltYMOgVzJicRHGRmeIiE9kZGtEHL7gthMMSdmfw\nKuGhu83C7UncYmE0KMjP0cXTK3oKD9YUFSrlvd9iJBAIBALBp8WoU/HInOEsn57HvlONbDxUzZ6y\nBvaUNTCpwMryGXmMykkS14mCOwYhSgyBWzUxDYQiXKxrI33vDiYe343Tksbph1fzf9JOo5JJ/Kdz\nPI9pMzi9/yzz8iNIcnjjUAdyfTNrFpq56NRS365CrYgyITOASROrTii/EOatzX78QZg5Tsmq+RpU\nyr4/RuGwxI49rbRfMSFJMlSGIPp0H3JlbPVyIAGmS0yJBOT4HFpCnphwodSFSM+P8o2vDL/hE/ja\nBj9bdtnZvtdJuydWDTJ2lIElJVbmTLXcMK+E6zXW/DSEQlHOXeygrLMlo/JSB5HO+ZxaJWNiUcyY\nsrjIxIh8fa/2G4HgZiFJEm3uMM1XeTp0tVnYHcGEiT1KpYx0q5pRww3d8Zm2rhhNDQa9aLEQCAQC\ngeBGoVYpWDA5m5KJWRyvtLPh0BVOVNk5UWVnRJaZ5dPzeKDQJuJEBbcdIUoMkZs5Me1pLKkvL2fF\njvfxaQ0cWvU0X885h0Ee5pfOsVxW53D6fA0l+RHkMvjv7a0cuxJAqfSRkj4CrV6FQR1lQqYfrVIi\nEpFYvz/IjmMhVEp4qlTDtLGJ0y0uXPHyy1evcLHah0YrR2nxoDKG6CmkDiTAVF12U31OQdCtBWQo\ntGF0Vj8qfRi/xA1rcQkEouw74mLLbgdnznsAMBkVPLI0jSUlqTelLUQhl7N2SSGPzx85aJPSoRKN\nSlyq8cVFiDPnPQSCMVFJLoOC4fpOEcLMmAKDiCIU3DQCgWiv1oruGM3Yv7tMU68mJVnF6AJD3xYL\nmxpLkkpc+AgEAoFAcIuRy2VMGW1jymgblbWtbDhYzfFKO7987xRpFh3LpuUyZ0Im6jvMtF1w/yBE\niSFyMyemXcaSFkcjSz75A1G5nD2PrOX/KajGogjyWuso9voyeG66hXnDIkgS/NdWF+W1QfQ6LYvm\nTkerTyJZG2Z8ZgClHNo8Uf6wwc/F+ii2ZBkvrNSSae073kAwyrr3G3h/YxPRKCyak8JzT2Sx/tDl\nQQkwdmeQP3/YyNbddiJRNQp1BK3Vh8oQjgsaN6LF5VK1l827HOzc74y77E8sMlFaYmX65CRUt2CS\nPhiT0sEiSRINzQHKzsQSMsrPuvF0dJe252ZpKe6shBg32iRWkgU3jEhUwukKdbdYdHo6dP27tT2c\n8HU6rZyMtJ7pFd3iQ5pVLYQygUAgEAjuYEblJDMqJ5kGRwcbD1Wz71Qjr286z7u7L7F4Sg6LHsju\nt0VbILhZCFHiOrmRE1PobnvQej2s+PBVNEE/u5av4fPFLtKVft5tz+eIooDPLk5hbn6UYEjiZ1ta\nqWgIkpJsZtHc6eh1Os5fuMyjUw0o5XqqasK8viGAxycxsUDJmsUatJq+q5THy1v5wX+epaEpQJpV\nzd+8kMekcWaAawowre0h3vm4iQ3bWwiFJVSaKNoUX5/qCrj+FhefL8Lugy4277JTddkLgCVJxYpF\nVpbMs5KRdne5CTtbQ5RVtFN+JmZQaXd2+3lYU1RMn5xM8dhYW0ZKcuKKFoFgMHg6wjS1BDl13k/l\nhdZYokWnCNHiCBKO9O2xUCjAmqJmYpEpLjR0tVmk2zSYDArRgyoQCAQCwV1OZqqBF1eMZfW8EWw5\nWsuO43W8v+cSnxy4wpziTJZNy70jkuUE9wdClLiJBEKRQVdTtHkCtDk9PPTR7zC3uzg2cwmfmS0n\nX+VmU0c2w1euptQmR+ltQELGb/Z2UNEQJDszjZKZU1AqFBw5eZqmxnrMC6az5XCQDQdi8Z+rStTM\nnajqM5Ho8EZ47e06Nu2wI5PBw0vTWLs6s090XiIBxtMR5r0NTXy8pQV/IIreIEOV6kVtDvYRI1LN\nQ29xkSSJ8xe9bNllZ88hF/5AFLkMpk40U1piZUpxEgrF3TEx6vBGOHXOHRchauq7zSmNBgWzpibH\nqyEy04Q5pWDwhEJRmh292yu6fB4aW4LxaqKrSTIrGZGv65Ve0VXxkGpR3zXfLYFAIBAIBJ+OJKOG\nx+eP5MFZ+ew+2cCmwzVsP1bHjuN1TCm0sXxGPiOyzLd7mIJ7HCFKdOIPhml2eYfUjtGf6NDTG8LZ\nHiDZqGFSoZW1S0ahkCcubTbrVSzd8TYZjdVUjp5EyfI0Rmtc7POm8SfvGP49RULZ0YAvFOUnG13U\ntYYZPXIY0yaPJxqJsnP/EarrGimZlMMfN4SouBwhySjj+RVahmX23Z9Dx1v5n9drcLaGGJ6n56+f\ny6Vw5LUjgnz+CB9tbub9jc10eCNYkpQ8vTqTXeercHqCfZ6fbFTznRenDroMzO0Js3O/k8277FTX\nxSbvtlQ1j61MZeGc1F6xlncqwVCUs1UdlJ1pp+yMmwuXvXHTP41azuTxsXSM4rEmhuXqRI+9oF8k\nScLVFu5sseg2lOxqsXC2hpASGEqq1TLSbRqKrAbSbRpGDjNj0EnxygedVrQBCQQCgUAg6EarVlI6\nLZdFU7I5fLaZDQerOXKuhSPnWijMTWb5jDyKR6YiF4tngpvAfS98i7BoAAAgAElEQVRKdAkIZRcc\ntLh8pJg1TC608eSign4FhGuJDl3eEF24PAG2H6ujqraN77w4NeF27f/5G/LOHKchcxijPzOeyToH\nJ/wp/Mo1lvljtWgDzbgDUf59g5MaZ5gpE8dRVDgCnz/Atj2HcLhaUcgNnLuURjAUoTBPwTPLtBh1\nvX84WttC/PqNGvYebkWpkPHUqky+9HwBra0dA35OwVCUDdtb+MvHTbS7wxgNCp5/IpuVi2y0ef28\nf6xvTCpAe0dwwPhQiE28Tp/zsHmXnf1HWgmFJZQKGbOmJrO0xEpxkemOnrhHohIXLnspr4j5Qpyt\n8hAMxWaKCgUUjjTERYjCkQYRayjohc8XiXs5dKVXdAkPzfZA/FzqiUwWa7EYN9pImlVDhk1NWqex\nZIZNQ5JZ2avixmYz0dLivpW7JRAIBAKB4C5EIZczsyiDGWPTqbjiYsPBak5dcnK+ppXMVD3Lp+cx\nc1yGuJ4V3FDue1HiagHB0R6I/3/tksJBvaan6PCPz0zm+PmWhK+rafbwxubzPLdsTK/77X/+iPqf\n/hpVXhapT85ljtnBuUAS/+kcz5LxRp6cbqbNG+HlDS6a3BILZk8jNzuD1jY3W/ccpMPrQ6NMQ6fK\nIxiSsXiqkuUzNb0m8pIksWOfk9++VYunI0LhSANfeTGPvGzdgOaQ4bDE1j12/vxhIw5XCJ1WzlOP\nZvLw0jT0uthqa5JcQ4pZg6O9rzAxkLlla1uI7fscbN7loKEp9tqsdA2l860smJ1CsvnO9FOQJIna\nBn9chDh1zkOHt7tMfliOjgmdIsS4QiM6nViVvp8JhyXszpjA0NgpNMQFiJZgPMb2aowGBblZunhk\nZrexpBprqlpcDAgEAoFAILhpyGQyioalUDQshZpmDxsOVnOooolXPznLO7svsmRKDgsnZ6PX3pnX\n64K7i/talOgyl0zE8fN2Hp8/sk8rx0CvqWn28PrG8zgTTM7j2620s2ZRJL5d98HjXPr6/0VhNjL8\n60+Q7jtPdcjAy44JLC0289gUE86OCC9/4qQtqGTpgulYU5JpaGphx/4jhEJR9OoRaJRWolIIj/8C\n9U49EmOAmCjRbA/wq9dqOH6qHa1GzuefzmHFYhuKAaoPIlGJ3QecvPV+A00tQdRqGatXpLNqRTpm\nY+/TRqNSMLnQ1kuo6eJqc8tIVOLk6XY273Jw+EQrkQioVTLmz0qhtCSVokLjHempYHcGKavo9oVw\ntnabU6Zb1cyemkxxkYnxY0x3rJgiuDlIkkS7O2YoGU+v6LxtbgnQ4gwSTZCeqVTKSEtVM3KYvjs6\ns4e3g0F/X/88CwQCgUAguEPITTPyxYeLeHz+CDYfqWHniXr+svMiH+2/wvyJWZROzSU1SXu7hym4\ni7mvr3rbPIF+BQSX20+bJ9DH4HGg1wCcveIiyaimNYG/Quz1wfh2/ZdqqPzc10GSGP0vL5LqO489\nquOH9oksf8DCQxON2N0RfrzBSUSuZ+XiGRj0OiovVXPwaBmgwawdhUKuIxzx4AlWIUlB9p1qR69V\n8uSiUazf2sIb79TjD0SZPN7MXz+fS5q1/7QKSZI4cLSVN99roKbej1IhY+ViG48/mDFgEkSXiWV/\n8aF2Z5Ctux1s3eOgxRH7bIbl6Cidn0rJzBSMhjvrVHR7wpw6GxMgys64qW/qPuZmk5K50y3xlox0\n292V/iEYOoFANFbh0NPTwR6I/9sfSKA6ACnJKgpHGHqlV3QJDynJqju6LUkgEAgEAoGgJylmLU8u\nGsXDs4ez80Qdm4/UsOlwDVuP1jJtbBrLp+eRl2663cMU3IXcWTPBW0yScehtB0lGDclGDS5P/x4K\nM4rSOHCmOeHjKebYdsOt7Zx/7u8Iu9oY8Y/Pkxq9gKQzsd24iGW5EsvGG2hqC/PjDU40xlRKZ09F\nqVRyrLyCU2erUClSMKiHI5Mp8Ica8YVqgO7e84MnHZzYH6XykhejQcHfPZfP/Fkp/VYhSJLEsfJ2\n3ni3notXfMhlsHhuKmseyRhQxOhCIZf3iQ9VyOQcOdHG5l12jpe3E5VAq5FTWpJK6XwrBcP0d0xV\nRCAQpaLSExchLlZ74waCWo2cKcXd5pR52cKc8l4jEpVwtYbiLRWNncaSXf4OrrbELRZajby7taLH\nbZo15vGgUYsWC4FAIBAIBPcWeq2SFTPzKZ2Wy4HTTWw8VM2B000cON3EuGEWls/Ip2iY5Y65zhfc\n+dzXosRQ2g56vmZSoZXtx+oSbjPFrOXZZWOos3upafYk3K5KinLui9/Ef7GazGcfJCvVgaTSElr0\nPA8po8j9rTS1R/jRJ07yhw1nQtFY5DJwNF+ivq4OvTofjTIdiOAJVBKKuOLblyTwOzW4HGrAy9zp\nFj7/dA7JSf1XORwvb+WXr1ZRURkzu5w73cJTqzLJzhh6GZZGpSASUvCn9xvZvtcRn8yNGq6ndL6V\nudMsd4THQiQicepsG7v2NXHyjJtzFzoIh2MqhFIho6jQGI/pLBhmQKkUP6p3Ox3eMM4qN2crXfH0\niq4YzRZ7kHCkr6GkXB5Lf4lVxPQWHtKtGkxGhfiDKxAIBAKB4L5EqZAztziT2RMyKL/gYMPBak5f\ndnH6sou8NCPLZuQxbUwaSoVYpBEMzH0tSkB320HZBQf2Vl+ftoNErF0yiqratn5FB71GyXdenMob\nm89zvNJOmydIijm23TULR3L5G/+Ke+8RLAunM6JYBnI5oYXPInUKEig1JOXk8OLjWhx+PUq5xIQM\nPxGblStXDNQ2S2SkyFi7TM9//KkDZ6epftinoKNJTzSoQKGS+PsvDmPO1JR+96PyUgd/fKeek6dj\nG5g2KYm1qzMZlqvv9zX9EQpFOXCslc27HJRXxLZn0Ct4cLGNJSWp17XNG4kkSVTX+Sk746asop3T\n5zz4/LGSe5kMhufpOkUIM2NHGdBqbr9wIhgaoXCUFkcwLjj0brMI9jIj7YnZpGREvi6eXhETHmJt\nFtYUNQqFEB0EAoFAIBAI+kMukzGxwMrEAiuXGtr55GA1R88188qHZ3hn5wVKp+Yyb2IWOs19P/UU\n9INMkhKl3N/Z3IxoO1OSjguXHSQZNQkrJK4mEo0mFB2ujhINhCLxdgaNSkHDL35Pzb/+F4aiAoqf\nG4NCyf/f3n2HR1WmjR//Tk8mM+kzKaQQSkgj9BaahaCLCC/YAAO66xbFuquryOur7M9VF8Ut4vru\nrujqIi6sZRVXRVEReSU0QSChhECEkJDeJnXa+f0xyRBMaFIm5f5cl1ecmTOZ5z4nM5xzz/PcN44r\n5qGYjNBSB1o/XIHxHKgwUt6gxV/nZnBUM0eLHKz6pJmmFhiZpOWGKw3odSre/CyP9duO01ThR0uN\nAVChD2phWmYot00b1OnYjx5v4s1/F7NtVy0AI4cGc9N1EST2Dzjv/VZY1MT6ryrZsLmS+gbPRV9K\noonMyWGMGxHi0+nrZRUtrUkIz3+1dSen4EdFGBgzPJSBCX6kJZk7FO/s6bpji0hFUaiudbZ2sfAs\nsygtP9nRorLaQWefZnq9iohwz5KKhDgzgSaVt6OFNVyPv1/PT0B1x+N9sfTW2C9l3BZL914vfCn3\nS2/8W+tK5Bj4nhwD3+sqx6CspolPtx3j//acwO50YzRouXJ4H6aMiDltZ76eoqscg67mTOcPvetK\n7Az89NoORS3bfD+xAJ4aCvOvSeLmqzo+1p5Bp/H+3qqPvqDwqeXoI8NJmTMIjdqNM+NGFJO/JyGh\n88ceEMfekgBsLRqC/FykWJv4Yoedz7Y70GrgpqsMjEnVeqeMJ0VE8OGJBloaFNQ6F1H9nGSMCOt0\npkdxaTOr3zvB/22rRlEgaUAAt86O5sqJ0ef1xmlucfH1tho+21TBgXzPko9As5b/utbKlEnhP2jZ\nx8VQW+cg50A9u/fVsWe/jdLyk8VGQ4J0TB4X6l2SER6qlw+MLqipyeWZ2dBay+FkfQc7ZZUt2O0d\nsw4qFYSF6EhJNLXrXnFy1kNw4Mn3ixxzIYQQQohLzxrsT9bUQcyckMCGnUV8vvM4H2Yf5ZNtxxiX\nGsm1Y+KICjv/L0RFzyRJiTNwud2s+SKfXXnlVNW1EBpoYFii5ZTZEO2TDmdS/20uR+75H9RGP1Ju\nH4mfwY1j9HTcIcHQYgOdkQZjHHtPBNDsVBNhchJtauLVD1rIP+4iLFDFgml+xFhbW4nWO3ltzXG+\n+LoKtRpmXGMh88oQLCH+HZIj5ZV2/rX2BF98XYnbDf3i/Jk3O5rhgwPPaz384aONrN9YwaatVTQ2\nuVGpYFhaIJmTwhg5NAid9vLOimhqdrEvr947G+K7wibvY0Z/DaOHBXmSEMlmYqL9ZO1/F+ByKVRU\n2dt1sWg5udyiwk6drfOCkgFGDTFRft9rm+lJPFhC9eh0slZRCCGEEKKrMRv1zJiQwLVj4vg6p4RP\nth1j054TbNpzgqEDwrl2TBwDY4LkPL2Xk6TEGaz5Iv+UIpiVdS3e2/OmJJ7z72k5XsKh23+F2+4g\n+c4rMIeocA65Crc1Euz1oA+gWh9PbrERp1tF3xA7rsZm/ri6mboGhdR+GuZm+uFvUKEoCpt31LBi\nVSE1dU76xfmz8Mfx9I/vmBiprnXwzn9K+GRjBU6nQkyUH3NnRTF2ePA5d49oaHSxaWsV6zdWcOSY\n56I/LETHdVOsTJkYdk6dOS4Wh9PNoSON7GmdCZF3pAFXa5kAnVbF4NYERHqKmf7xRqkF4AOKomCr\nd3mWV1S0Szi0/iyvsuPupHumVqPCEq6nf7yRCIunc0WkRY+1NQnR1VrGCiGEEEKIc6fXabhyWB8m\nD4lm16Fy1m09xrf5FXybX0G/6ECuHR3H8ESLdLjrpeRM/zRaHC525ZV3+tiuvApumNz/3GpP1DeQ\nd9sDOMoqSZgzjvB4A86ksbhi+oKjAfQmTqj6knfCs+QhydLM/vwmPvras/Rg+ng9VwzXoVKpqKq2\n89c3Ctm2qxa9TsX8G6OZMTWiQ2cIW72Tf39cykefl9NidxMRrueWmVFMGheK5hze6IqicPBwA+s3\nVvD19hpa7G7Uahg9LIjMSeEMGxx4Tr/nQrndCkePN7F7n6dN5/5D9TS3eK5o1Sro39fobdM5aIBJ\n2i9eJi12tzfh4KnvYKesNfFQUt7iPUbfFxKkI7FfgLdlZvtWmiHBusvyNyWEEEIIIXxHrVYxYpCV\n4YkWDh2v9SYnXnovB2uIP1NHxTI2JQKj3+k7B4qeR5ISp1Fb30JVXUunj1Xbmqmtbznrsg3F6ST/\nrsU07c8n8urB9BkahKvfEFz9ksHZhKI3852rL0dr/NCqFQaGNfHRV43kHHERGKAi61o/+vfRoCgK\nn26s4PV/FdHY5CIl0cTC2+M61G5oanKxdn0Zaz8ppbHJTWiwjttv6cPVE8POaWlFnc3Jl9mVfPZV\nJYXFzQBEhOuZMimcq8aHEhqiP8e998MoikJJWYunMOU+GzkH6qmrPzmdPybKz5uESEsyEWCUP99L\nwe1WqKpxdOhe0Xa7utbR6fP8DGpP8Uhvy8yTLTSt4QZJGgkhhBBCCABUKhWJscEkxgZzorKBT7Yd\nY3NOCW98msfqz/MZNjCcjLRIUhNCpaVoLyBXdacRZDIQGmigspPERIjZ75yqxh77zR+p/fxrgtP7\nMuDqaNyxSTgHDQVXM4ohiP3NCZTV6/DTuokwNPLKvxuprFUYEKPh1msMBAaoOVHazEuvHyPnQD1G\nfzV3Loglc1L4KVObWuxuPv6inHc/KsFW7yLQpOX2W6K49krLWS8E3W6FHbureXttIVt21uB0Kmi1\nKiaMDiFzUhhpSeZLOo2qutbB3tYkxJ79NsorTxanDAvRceX4UG9diEudFOlNbPVOjhxt9NZyaL/E\noqzSjtPZsaCkWg2WUD2Dk81EtOte0ZaACDRrZT2gEEIIIYQ4L1FhAdz+o2RmTezHpj0n2JxTwvYD\nZWw/UEagUceYlEgy0iKJizDJuWYPJUmJ0zDoNAxLtJxSU6LNsMTwsy7dKH11DaWvrMY/1kLy7AEo\nUQk4U0eB247LEMye+gRqm7UEGlzYa+v5y3+acbrg6pE6rhmrBwX+/XEpq98rxu5QGDU0iJ9nxRIe\nevLC3OF089lXlbz1QQnVtQ6M/hrmzYpi+hQr/v5nHl9VjYMNX1fy2aZKSso8iZeYKD8yJ4dxxbgw\nAs2X5k+jodFF7sGTbToLi5q9j5kCNIwbEUx6ipnByWaiIwzywfMDOZxuyivt3u4VZRVtXSw8/9/W\nvvX7Ak1aEmL9T+le0TbjITxUL3U6hBBCCCHEJRFkMjA9oy/XjYvnuxIbm/eWsHV/Ket3FLJ+RyF9\nLAFkpEUyNiWSEHPPbiva20hS4gza2mruyqug2tZMiNmPYYnhnbbbbK/mi685+vjz6IIDSJuXgjo6\nDseQDMCFQx/Kztq+NDk0hBkd5O6rY3uuE38D3DbNj5QELQXHGvnz349x+GgjgWYt994Rw/hRId4L\ndJdLYWN2FWvWnqCswo5Br+aG6yKYeU0EZtPpD6nLrbBrbx3rv6pgx+5a3G7Q61VMuzqCCaODSBoQ\ncNGTAA6HmwP5Dd4kRH5Bg7fQoV6vYmiquXVJRiB94/ylrsA5UhSFmjpnh+4VbUmHyio77o6THdDr\nVFjDDaQnBxEcpPEkHsIN3p9nS2YJIYQQQghxKalUKhKiAkmICuSWqwew93Alm3NK+Da/grc2HObt\nLw+T0jeUjNRIhidaMOjl/LW7k6TEGWjUauZNSeSGyf2prW8hyGQ46wyJxv355N+5GJVWQ8q8wejj\nY3AMmwBqaNaFs6M6HqdbTbh/C+s21HGiwk2sVc2CaX6Y/OGNd4r498eluN1wRUYoP54TQ2BrosHt\nVsjeUcM/3y+m6EQLWq2K6VMs3HBdJMFBpy8GU1bRwuf/V8nnmyqprPbUA+gX50/m5HAmjgmlb3ww\n5eW2i7LPXG6FgqON3iTE/rx67A7P1bFaDQMTAjzLMVLNDOoXIK0cz6Cp2UXZ95ZWeOs7VLRgt3fM\nOqhUEBqsI2mg6WT3Cm/iwUBwoBa1WoXFYr5ox1wIIYQQQohLQatRMyzRwrBEC/VNDrYfKGNzzgly\nC6rILajCoNcwMtFCRlokg+JDUMss625JkhLnwKDTnLWoJYC9rIK8BQ/grm8gad5QzMnx2EdcATot\n9Vor31TFAiqM7kbefN9GiwMyBmuZOdFA3pEG/vz3oxSXtmAJ03PXbXEMSwsEPN+K79hdxz/fK6bg\nWBNqNWROCuPmGVGnLOdoz+F0s+PbWtZ/Vcm3uXUoCvj7qZl6RThTJ4XTv+/Z4zkXiqJQXOIpTrl7\nXx25B+tPWRoQH+NHenIgg5PNpA4yYZRv4r1cLoXKaru3e0XbMovSck9Hizqbs9PnGf01xET6ebpY\nWNq6WHjqO1jD9JLoEUIIIYQQPY7JX8eVw/pw5bA+lFY1sjmnhOzcEr7O8fwXGmhgXGok41IjiQ4P\n8PVwxXmQpMRF4mps5tCPH8ReVEL8NYmEj+qHY8QVYDBQrY5kd3UsGpVCbbmNtVub0Gth3lQDyfFq\nXvlnIes2VKBSwXVTLNw6Oxp/P8/F+579Nt58t5iDhxtQqWDS2BDmzIwiKsKv03EUlTTz2VcVbNhc\nRW2d56J2UP8AMieFM350MH6GC08KVFbbvYUp9+63eWdfAFjD9YwdHkx6sqcuxJlmcPR0iqJga3C1\nznRoV0iytb5DRZUdVyelHbQaFZZwPf3ivlfbobW+gylA3rZCCCGEEKL3igg1MmtSP2ZOTOBQYY23\nOOaH2Uf5MPsoCVFmMtKiGJ1sxWyUYvldnVzdXASK282RB56gYVcu1hExxGQm4RgxGcUYQAnRHKjt\ng07tJjenhoMFDqwhKm6b5s/x4zbue+wYldUOYqL8uPvHcSQNMAFw8HADq94tZu9+zxT7McODmPtf\n0cTH+Hd4/Ra7my3f1LD+qwpyD9YDnqKR12damTIpjLg+HZ9zPuobnOQcqG9dklFH0YmTHUkCTVrG\njwomPSWQ9GQzkdbeVXTG7nC3W2LRsb5DU7O70+eFBGkZmBDQrnuFgQirZ5lFaIhOamsIIYQQQghx\nFmqVikFxIQyKC+HWzER2HaogO7eEnCNVFJzIY/XnhxjcL4yMtEiGDAhHp5UZxV2RJCUuguNL/5fq\n/3xOYL8wBtw4GOfwSSiBIRS6YjncGIlO5WTDxmqq69wMTdRy7Sg1K98+yqat1Wg1Km6eEcmN10Wi\n06kpONbIm/8uZsfuOgCGpQUyb1YUAxI6TkE6eryJ9Rsr2LilyrtkYnCymcyJYYwZEYz+B07jb7G7\nOXCont37PDMhjhxt9BZN9DOoGZHuWY6RnmwmPsb/krYM9TW3W6GqxuGd3VDWmnhoW2pRVePo9Hl+\nBjURFj3WcEPr8oq2//f8NBjkA1EIIc4kLy+PhQsXcvvtt5OVlcV9991HdXU1ADU1NQwdOpQnn3yS\nFStWsG7dOlQqFffccw+TJ0/28ciFEEL4gl6nYUxKBGNSIqitb2HrvlJvgcxv8ysI8NMyKjmCjLRI\n+kcHSpe/LkSSEheofM0HnFj+d/zCA0iePwz38Im4Q60UOOI51mzF3WLn/S88J1GzJutxNNh48DfH\nsdW7GJhg5O4fxxMf40/RiWb++V4xX2+vASAl0cS8WVGkDjKf8npNzS7+b1s1n31VQd6RRgCCA7XM\nnhbBlIlhp13WcSZOl8LBww3s2VfHnv02DuY34HB6shBajYqkgSZPccoUMwMTAtBqe9YbuKHRRVlF\nS2vLzJOFJcsqPImHtn3RnloN4aF6BiebvS0zvT8tegLNWvmgE0KIH6ixsZEnn3yScePGee974YUX\nvP//6KOPctNNN1FYWMhHH33E6tWrqa+vZ968eUyYMAGNRuoXCSFEbxZkMjB1dBxTR8dRWFZPdk4J\n2ftK+HJXEV/uKsIa4k9Gmqf+hCX4wmaViwsnSYkLULd5B989/BRao57U20egGj0BV0QMec0JnHCE\nU1XeyNfbbISYVVyfoWHtR8fYubcOg17NT+bEMG2KhcoqO8tf+Y4vN1fhVqB/vJFbb4hmaKrZe1Gr\nKAr53zWyfmMFm7ZW09ziRq2CEemBZE4KZ0R60HklChRFobC42VsXYl9ePQ2NJ4sbJMT5t7bpNJOS\naLoodSh8yeF0U1Fp9y6paEs8VNY4KTrRdEphzvbMJg3xsf5EthaRbJ94CA/V97jkjBBCdBV6vZ6X\nX36Zl19+ucNjR44cwWazkZ6ezttvv83EiRPR6/WEhobSp08f8vPzGTRokA9GLYQQoiuKtZqIvWoA\nN17Rn31Hq9icU8LOg+W8t6mA9zYVkBgbTEZaJCMHWTH6yeWxL8he/4GaDh/l0B2/BpeL5B8PRz9+\nPM4+/dnX1I9yZwj5eTb2H2okKV6D1c/G7/5YTHOLmyEpZu66LQ6dTs2KVYV89lUlTpdCbB8/5v1X\nNGOGB3mTEQ2NTjZmV7H+q0q+K2wCIDxUx39dG8HVE8NO23mjM+WVdnbvq2Nva3HK6tqTnR1iovwZ\nP9rTqnNwkplAc/f6s1AUhdo6Z4fuFWWt7TMrq+ze5Sft6fVqLGE6BvUPwBrumeHQPgEhnUKEEMI3\ntFotWm3n/xb94x//ICsrC4CKigpCQ0O9j4WGhlJeXn7GpERIiBGt9tJ8vlss5rNvJC4pOQa+J8fA\n9+QYnF5ERCBXju5LY7ODzXtOsOGbQvbkV5BXWMOb6/MYkxbFVSNjGZZoQaP54cut5Ricn+519dlF\nOKpqyJt/P65aGwNvHIxpykScCSnsbRxAlTOI7TtqKC23k5GqYvvWY3yU30CAUcO9P4lnRHog/15X\nysefl2N3KERaDcyZGcWEMSFo1CoURWFfXj3rN1aweUc1doeCRgNjRwSTOSmMIamB51QEsc7mZO+B\n1g4Z+2ycKDtZnDI4UMuksSHeuhCpyeGUl9su5S67YM0trg5FJE/WebDTYu9YUFKlgtBgHUkDTZ4O\nFuHtOlmE6xk4IJTKynofRCOEEOKHsNvtfPPNNyxZsqTTxxWlkwz091RXN17kUXlYLOYu/29pTyfH\nwPfkGPieHINzNyQhhCEJIVTUNrEl11N/YtO3RWz6tojAAD1jUzz1J2KtpvNali3HoHNnStRIUuI8\nuVvs5N/xEC3fHSf2yn6Ez5qMY+AQ9jYOpLzZxNfZVbicTpIiGlm9pginU2HcyGBunR3NV1uquGtR\nLk3NbsJCdNw8I4qrxoeh1aqorXOwYXMVn31VQVGJJ4EQZTUwZVIYV44PI+QsrTWbW1zsy6v3JiEK\nCptoOzcz+qsZNTTIWxciNtqvy9U7cLkVKqvsnsRDRccuFm3tTb/P6K+mT6QBa1vrzPCTPy3h+jMW\n++zJBTqFEKIn2r59O+np6d7bVquVgoIC7+3S0lKsVqsvhiaEEKKbCg/yZ3pGX64bF893JTY27y1h\n6/5SPt1eyKfbC4mxBJCRFsWYlAhCzL2r0+DlIkmJ86AoCt89/BS2rd8SPjiSmPlXY08ezZ6mJIpr\n/di8pYpgo5uio0V8mN1ASJCOH8/pQ3mlnUVPHaS+wUVQoJa5s6K55opwtBoVe/bZWP9VBdt21eJ0\nKei0KiaNDSFzUjipg06flXM6FQ4VNHjrQuQdbsDpai1OqVWROqitOGUgA/oa0Wh8ewGuKAq2Bpe3\ne8X3Ew/llS24OintoNGANcxA31h/Iiwnu1e0LbMwBWi6XIJFCCHEpbF3716SkpK8t8eOHcvf//53\n7r33XqqrqykrK2PAgAE+HKEQQojuSqVSkRAVSEJUILdcPYC9hyu93Tv+tSGft77MJ6VvKBlpkQwf\naMGgl6XeF4skJc7DiRdepeKtDzHFBNH/zim0DJnInqZk8kt07NhZTYihiS1fHsOtwNUTwoiONPDq\nP49TU+ckwKgh64Zopl1tobHJxfvrSvlsUyVlFXYA4vr4kXSY6z0AAB3gSURBVDkpnMnjQjGbOh4W\nt1vh6PEmz0yI/TZyD9bT3OJZsqBSeQpkDk42MyTFTNJAEwb95W85aXe4vTUd2rpXtK/z0NjUcYkF\neJaTDOgb4J3hYG2t7RBhMRAaojun5SpCCCF6jpycHJYuXUpRURFarZZPPvmE5cuXU15eTlxcnHe7\n6Ohobr75ZrKyslCpVCxZsgS1WlouCyGEuDBajZphiRaGJVqob3Kwfb9neUduQRW5BVUY9BpGDrKQ\nkRbFoLhg1PIl6QVRKeeyALOLuRRrdM629qfy/U85fNdiDMF+pD96Hc6rrme3PY29R1QcPFCHrayc\n4sIaIi16xgwPZvOOGsor7fgZ1FyfaWV6poUD+Q2s/6qCnXvqcCtg0KuZMDqEzMnhJPYzdvjGv6Ss\nxZuE2LPfRp3t5BKGPpEG0lMCSU82k5ZkwhTww/NL57ruye1WqK51tGubeWp9h8pqR6fPM+jVp9Ry\naGubGdE628FX3T1683qv3hq7xN379NbYL2Xc3b1416XcL73xb60rkWPge3IMfE+OwaVVUtVIdk4J\nm3NKqKxrBiAs0MDY1Egy0iKJCguQY3AaUlPiAtXvzOHI/Y+jMWhIvmsyjsnT+bZlMNtynBQds3E4\npxC3w8HI9ECOlzTz/idl6LQqZky1MnFMCFt31fLLJw5QVeO5aB/Q10jmpHAmjAk5pcNDTa3Dm4DY\ns9/mnUUBEBai44qMUG9diLCQc++8cT4am1yntM082UbTk3hwODvmsNQqCAvVk5Zk8tZ0iLScrPMQ\nZNbKEgshhBBCCCFEtxYZamTWpH7MnJjAocIaNueUsP1AGR9mH+XD7KMkRAUyLj2acJOeuAgTIWaD\nXAedA0lKnEVLYTGH5t+L4nAy6Ofj4fqb+caezqYddo4dLqf4SCnhoTo0Gj079tSh0UDmpDD6xRnZ\nsrOGtZ+WAWD01/CjqyxkTgojIc4IQFOTi+3f1rYmIuo4erzZ+7oBRg1jhgeRnhxIeoqZPpEX5w/a\n6VQor2qd3VDu6V5Ra3Nz7HgDJeUt1Dd0UtgBMJs0xMf4E9GupkOERY/VYsASqkerlTebEEIIIYQQ\noudTq1QMigthUFwI8zIT+fZQBZtzSsgpqKTgRJ13O5O/jliribgIE3FWM3ERJiLDjGhkqeEpJClx\nBs66evLm3IWj2ka/2enos24ju2koG7c2ciiniKZaG6HBWsor7ahVMHpYEIEmLVt31rL+q0oAkgcG\nkDkpnIyRIajVcPBIA2/+u5g9+2wcKmjA3VpmQa9TMSTV06IzPdlMQrzxB9VSUBSFWpvz1CUW7QpL\nVlbZcXeyYEenVWG16EnsF9BhmYU13ECAUQq5CCGEEEIIIUR7Bp2GMSkRjEmJoK7BTlWjg72HyjlW\naqOwtJ79R6vZf7Tau71WoybGEuBJVESYibOaibEG4KfvvZfmvTfys1CcTg7ffh9NBUVETUgg8L47\n2dgwnM831VCQW4hW5cTlUqisdjCgrxG3W2HbrloAAk1aZl5j5arxYThcCnv21fG7Fw+z71A9drsn\nI6BWw4CEAG8SYtCAgDO2r2yvpcXdmmTobJmFnRZ75wUlw0J0DBoQ0NrFwlPPIcJiICUpFLezRVpk\nCiGEEEIIIcQPFBigp3/fMPpaArz3NbU4KSyrp7CsnqOtiYrj5fV8V2IDTgCgAqwh/sRGmImPMBHb\nOqsiKEDfK5Z/SFKiE4qicPTBJ6jdsoeQJCuW/7mPdbWj+HR9CSXfleByurEDllAdtgYX+d81ApCe\nYmZkeiBqtYrcg/X899K8U5ZDxPbx8yYhUgeZTzv7wOVWqKp2UFre2r3iey00a+qcnT7P6K8mOtKT\nbPAkHU7Wd7CE60+b9LCEGSgvt3f6mBBCCCGEEEKIH8bfoCUxNpjE2GDvfU6Xm5LKRk+SoqzeM6ui\nrJ4dB8rYcaDMu12gUUdchJnYdss/IkKMPe7LZElKdKLshb9R9tYnGCPN9Hn6ft6ryuCTjwuoKasB\nwM+gprnFTXmVg+BALYOTTWg1KvKONLJn38lKq5YwPWOGBZOeYmZwspmQIB3gSXrUN7g4/F0jJd/v\nYlFup7zSjtPVcY2FRuNJIAyJ9fcWlPT+tBgwBWh6RSZNCCGEEEIIIborrUZNjNVEjNXkvU9RFCrr\nmiksredYu0RFTkEVOQVV3u30OjWxFhOxEWbirCZiI0zEWEwYdN13ub0kJb6n+v0POfrsy+hMevo+\nfTerKq/g83UHaWk4WYSyucWNNVzvXb6x/VtPMROzSUPGSE8SImWgCZUKyirtlJbbeX9d6SlLLBqb\nOi8oGRSopV9fI5GttRzaJx7CQvRoNJJ0EEIIIYQQQoieRKVSER7kT3iQP8MSLd77G5od3kRFYamN\nY2WepR+Hi+vaPdfTGSSuXaIiLsJMoPHSdGy82LpMUuLpp59m9+7dqFQqFi9eTHp6+mUfQ+OOXRy+\n/0nUWjV9H7+dv1ROJXvjAdxOTwJBowG3CxSgrMKOXq9iYD8jEeF6AoxaWuwuyiocvPVBCVU1DpRO\nCkoa9GqsFj2pFpO3pkP7BISfoftmuIQQQgghhBBCXDwBfjqS4kNIig/x3udwuimuaOBYme1kwqLM\nxonKRrbuK/VuF2zSe5Z/WE3Ety4DsQT7o+5is+u7RFJi27ZtHD16lDVr1nD48GEWL17MmjVrLusY\n6g8dJm/B/bjtTvr+aja/r55Bzq78U7ZxucBk1KBSe9p52u0Kh440cuhIo3cbtQrCQvWkDjKdsrSi\nrc5DUKBWllgIIYQQQgghhPhBdFo18ZFm4iPN3vvcikJFbbNnNkWpZ/nHsbJ69hyuZM/hSu92Br3G\nk6SwttaqiDDRJzwAndZ3X453iaREdnY2U6ZMAaB///7U1tZSX1+PyWQ6yzMvnm9m/RR7TSNRt0zk\n/zXcTNG+4k63q290YQrQEB9j9CYcvD/D9YSH6dFppe+sEEIIIYQQQojLQ61SYQ32xxrsz4hBVu/9\ntkZ7azHNeu/MiiNFdeQfr/Vuo1GriAozEms1MyAmiInpUWg1l++atkskJSoqKkhNTfXeDg0Npby8\n/LRJiZAQI9qLnMkxxFjwS4zjceUn1BytIzRYS9/YAOJjA4iK8KNPpB/Rkf5ERfhhCugSu+2isljM\nZ9+oB+qtcUPvjV3i7n16a+y9NW4hhBBCnGQ26knpG0pK31DvfXaHi6KKBu9sisJST8vS4+UNZOeW\n0DfSTEJU4GUbY5e8ulY6K8bQTnV14xkf/yEcS17k6HEby9KDCQnSnabNikJTYxNNF//lfcpiMVNe\nbjv7hj1Mb40bem/sEnfv01tjv5RxS7JDCCGE6N70Og0JUYGnJB7cikJ5dRO2Rgd9Iy/vv/VdIilh\ntVqpqKjw3i4rK8NisZzhGRffxLFWksr9L+trCiGEEEIIIYQQvqZWqYgINRIRevZtL/prX/6X7Gj8\n+PF88sknAOTm5mK1Wi9rPQkhhBBCCCGEEEJcfl1ipsTw4cNJTU1lzpw5qFQqnnjiCV8PSQghhBBC\nCCGEEJdYl0hKADz00EO+HoIQQgghhBBCCCEuoy6xfEMIIYQQQgghhBC9jyQlhBBCCCGEEEII4ROS\nlBBCCCGEEEIIIYRPSFJCCCGEEEIIIYQQPiFJCSGEEEIIIYQQQviEJCWEEEIIIYQQQgjhE5KUEEII\nIYQQQgghhE9IUkIIIYQQQgghhBA+IUkJIYQQQgghhBBC+IQkJYQQQgghhBBCCOETkpQQQgghhBBC\nCCGET6gURVF8PQghhBBCCCGEEEL0PjJTQgghhBBCCCGEED4hSQkhhBBCCCGEEEL4hCQlhBBCCCGE\nEEII4ROSlBBCCCGEEEIIIYRPSFJCCCGEEEIIIYQQPiFJCSGEEEIIIYQQQviE1tcD6Aqefvppdu/e\njUqlYvHixaSnp/t6SBfFs88+yzfffIPT6eQXv/gFX3zxBbm5uQQHBwNwxx13cMUVV7B27Vpef/11\n1Go1N998MzfddBMOh4NFixZRXFyMRqPhmWeeITY21scRnd3WrVu5//77GThwIACJiYn89Kc/5eGH\nH8blcmGxWHjuuefQ6/U9Km6At956i7Vr13pv5+TkkJaWRmNjI0ajEYBHHnmEtLQ0VqxYwbp161Cp\nVNxzzz1MnjwZm83Ggw8+iM1mw2g08vzzz3v/VrqqvLw8Fi5cyO23305WVhYnTpy44GN94MABlixZ\nAsCgQYP4zW9+49sgO9FZ3I8++ihOpxOtVstzzz2HxWIhNTWV4cOHe5/32muv4Xa7e0zcixYtuuDP\ntO4QN3SM/b777qO6uhqAmpoahg4dyi9+8Quuv/560tLSAAgJCeGFF1447Xt78+bN/P73v0ej0TBp\n0iTuvvtuX4bYbfXUc4ju5PvnO1OnTvX1kHql5uZmpk+fzsKFC5k9e7avh9PrrF27lhUrVqDVarnv\nvvu44oorfD2kXqehoYFHHnmE2tpaHA4Hd999NxMnTvT1sLoHpZfbunWr8vOf/1xRFEXJz89Xbr75\nZh+P6OLIzs5WfvrTnyqKoihVVVXK5MmTlUceeUT54osvTtmuoaFBmTp1qlJXV6c0NTUp1113nVJd\nXa28++67ypIlSxRFUZRNmzYp999//2WP4YfYsmWLcu+9955y36JFi5SPPvpIURRFef7555VVq1b1\nuLi/b+vWrcqSJUuUrKws5eDBg6c8duzYMWXWrFlKS0uLUllZqVxzzTWK0+lUli9frrz88suKoijK\n6tWrlWeffdYXQz9nDQ0NSlZWlvLYY48pK1euVBTl4hzrrKwsZffu3YqiKMqvfvUr5csvv/RBdKfX\nWdwPP/yw8uGHHyqKoihvvPGGsnTpUkVRFGX06NEdnt+T4r4Yn2ldPW5F6Tz29hYtWqTs3r1bKSws\nVGbNmtXh8dO9t3/0ox8pxcXFisvlUubOnascOnTo0gbSA/XUc4jupLPzHeEbv//975XZs2cr77zz\njq+H0utUVVUpU6dOVWw2m1JaWqo89thjvh5Sr7Ry5Upl2bJliqIoSklJiXLNNdf4eETdR69fvpGd\nnc2UKVMA6N+/P7W1tdTX1/t4VBdu1KhR/OlPfwIgMDCQpqYmXC5Xh+12797N4MGDMZvN+Pn5MXz4\ncHbu3El2djaZmZkAZGRksHPnzss6/otp69atXH311QBceeWVZGdn9/i4//znP7Nw4cJOH9u6dSsT\nJ05Er9cTGhpKnz59yM/PPyX2tv3Ulen1el5++WWsVqv3vgs91na7naKiIu83nV1xP3QW9xNPPME1\n11wDeL4dr6mpOe3ze1LcnelpxxvOHPuRI0ew2Wxn/Ha+s/d2YWEhQUFBREVFoVarmTx5cpeMvavr\nqecQ3cm5nu+IS+vw4cPk5+fLt/M+kp2dzbhx4zCZTFitVp588klfD6lXan8OVldXR0hIiI9H1H30\n+qRERUXFKX8woaGhlJeX+3BEF4dGo/FO2X/77beZNGkSGo2GN954gwULFvDLX/6SqqoqKioqCA0N\n9T6vLf7296vValQqFXa73SexnK/8/HzuvPNO5s6dy9dff01TUxN6vR6AsLCwDvFBz4i7zZ49e4iK\nisJisQDwwgsvcOutt/L444/T3Nx8TrGHhYVRVlbmk/GfK61Wi5+f3yn3XeixrqioIDAw0Ltt2+/o\nSjqL22g0otFocLlcvPnmm1x//fUA2O12HnzwQebMmcPf//53gB4VN3BBn2ndIW44fewA//jHP8jK\nyvLerqio4L777mPOnDne5VydvbfLy8s73U/i/PTUc4ju5HTnO+LyWrp0KYsWLfL1MHqt48eP09zc\nzJ133sm8efMkyewj1113HcXFxWRmZpKVlcUjjzzi6yF1G1JT4nsURfH1EC6qzz77jLfffptXX32V\nnJwcgoODSU5O5m9/+xsvvvgiw4YNO2X708XfXfZL3759ueeee/jRj35EYWEhCxYsOOUbk/ONr7vE\n3d7bb7/NrFmzAFiwYAGDBg0iLi6OJ554glWrVnXYvrMYu2Pc33cxjnV32g8ul4uHH36YsWPHMm7c\nOAAefvhhZsyYgUqlIisri5EjR3Z4XneOe+bMmRf1M627xN3GbrfzzTffeGtiBAcHc//99zNjxgxs\nNhs33XQTY8eOPeU53S3G7kb2r++0P98Rl9d7773H0KFDu00Nrp6qpqaGF198keLiYhYsWMCGDRtQ\nqVS+Hlav8v777xMdHc0rr7zCgQMHWLx4Me+++66vh9Ut9PqZElarlYqKCu/tsrIy7zfM3d2mTZv4\ny1/+wssvv4zZbGbcuHEkJycDcNVVV5GXl9dp/FarFavV6v22x+FwoCiK9xvoriwiIoJp06ahUqmI\ni4sjPDyc2tpampubASgtLfXG15Pibm/r1q3eC7PMzEzi4uKA0x/z9vukLfa2+7obo9F4QcfaYrGc\nsvShO+2HRx99lPj4eO655x7vfXPnziUgIACj0cjYsWO9x7+nxH2hn2ndNe4227dvP2XZhslk4oYb\nbkCn0xEaGkpaWhpHjhzp9L19us8BcX568jlEd/L98x1xeX355Zd8/vnn3Hzzzbz11lu89NJLbN68\n2dfD6lXCwsIYNmwYWq2WuLg4AgICqKqq8vWwep2dO3cyYcIEAJKSkigrK5PlZOeo1yclxo8fzyef\nfAJAbm4uVqsVk8nk41FdOJvNxrPPPstf//pXb2X6e++9l8LCQsBz4Tpw4ECGDBnC3r17qauro6Gh\ngZ07dzJy5EjGjx/PunXrANiwYQNjxozxWSznY+3atbzyyisAlJeXU1lZyezZs73H+NNPP2XixIk9\nLu42paWlBAQEoNfrURSF22+/nbq6OuDkMR87dixffvkldrud0tJSysrKGDBgwCmxt+2n7iYjI+OC\njrVOp6Nfv37s2LHjlN/R1a1duxadTsd9993nve/IkSM8+OCDKIqC0+lk586dDBw4sEfFfaGfad01\n7jZ79+4lKSnJe3vLli0888wzADQ2NnLgwAESEhI6fW/HxMRQX1/P8ePHcTqdbNiwgfHjx/skju6s\np55DdCedne+Iy+uPf/wj77zzDv/617+46aabWLhwIRkZGb4eVq8yYcIEtmzZgtvtprq6msbGRqln\n4APx8fHs3r0bgKKiIgICAmQ52TlSKTLXkGXLlrFjxw5UKhVPPPHEKSd53dWaNWtYvnw5CQkJ3vtm\nz57NG2+8gb+/P0ajkWeeeYawsDDWrVvHK6+84p3iPWPGDFwuF4899hjfffcder2e3/3ud0RFRfkw\nonNTX1/PQw89RF1dHQ6Hg3vuuYfk5GQeeeQRWlpaiI6O5plnnkGn0/WouNvk5OTwxz/+kRUrVgDw\n0UcfsWLFCvz9/YmIiOCpp57C39+flStX8sEHH6BSqXjggQcYN24cDQ0N/PrXv6ampobAwECee+65\nLv2NU05ODkuXLqWoqAitVktERATLli1j0aJFF3Ss8/Pzefzxx3G73QwZMoRHH33U16GeorO4Kysr\nMRgM3ouh/v37s2TJEp577jm2bNmCWq3mqquu4q677upRcWdlZfG3v/3tgj7Tunrc0Hnsy5cvZ/ny\n5YwYMYJp06YB4HQ6eeyxxygoKMDlcjF37lxuuOGG0763t2/fzrJlywCYOnUqd9xxhy/D7LZ64jlE\nd9LZ+c7SpUuJjo724ah6r+XLl9OnTx9pCeoDq1ev5u233wbgrrvu8hb+FpdPQ0MDixcvprKyEqfT\nyf333+9dUivOTJISQgghhBBCCCGE8Ilev3xDCCGEEEIIIYQQviFJCSGEEEIIIYQQQviEJCWEEEII\nIYQQQgjhE5KUEEIIIYQQQgghhE9IUkIIIYQQQgghhBA+IUkJIYQQQgghxCVz/Phx0tLSmD9/PvPn\nz2fOnDk8+OCD1NXVnfPvmD9/Pi6X65y3nzt3Llu3bv0hwxVCXGaSlBBC8P7775/x8Y0bN1JTU3PG\nbebPn8/mzZsv5rCEEEII0UOEhoaycuVKVq5cyerVq7Farfzv//7vOT9/5cqVaDSaSzhCIYSvaH09\nACGEb7lcLl566SVmzpx52m1ee+01lixZQnBw8GUcmRBCCCF6qlGjRrFmzRoOHDjA0qVLcTqdOBwO\nHn/8cVJSUpg/fz5JSUns37+f119/nZSUFHJzc7Hb7fzP//wPJSUlOJ1OZs6cybx582hqauKXv/wl\n1dXVxMfH09LSAkBpaSkPPfQQAM3Nzdxyyy3ceOONvgxdCPE9kpQQopdbvHgxRUVF/OQnP2HatGms\nXr0af39/wsLC+O1vf8vatWvZsWMHDz30EM888wwFBQWsWLECvV6Py+Xi2WefJSYm5qyvc/z4ce66\n6y4SExMZOHAgP/vZz3j66afJzc0FYOzYsTzwwAMAvPTSS3z55ZdotVoGDhzIY489RmlpKb/4xS8Y\nP348O3bsICQkhBkzZvD+++9TVFTEn/70J5KSkli2bBlbtmxBr9cTERHB0qVL0ev1l3QfCiGEEOLc\nuVwu1q9fz4gRI/j1r3/Nn//8Z+Li4jhw4ACLFy/m3XffBcBoNPLGG2+c8tyVK1cSGBjI888/T3Nz\nM9OmTWPixIls3rwZPz8/1qxZQ1lZGVdffTUAH3/8Mf369eM3v/kNLS0tvPXWW5c9XiHEmcnyDSF6\nuXvvvZfQ0FB++9vfsnz5cl577TVWrlxJVFQUr732GvPmzcNisbBs2TIGDBhAXV0df/jDH1i5ciWT\nJ09m1apV5/xahw8f5u677+bOO+/k448/5vjx4/zzn/9k1apVfP3112zbto1du3bx6aefsmrVKt58\n802qq6v5z3/+A0BBQQFz587l3XffpaCggMLCQl599VWmT5/OO++8Q21tLatWrWLNmjW8+eabZGZm\nUlFRcal2nRBCCCHOUVVVlbemxIIFC7Bardxwww0UFBTw3//938yfP5+nnnqK+vp63G43AMOHD+/w\ne3bv3s348eMB8PPzIy0tjdzcXPLy8hgxYgQAVquVfv36ATBx4kSys7NZtGgRX3zxBbfccstlilgI\nca5kpoQQAoB9+/aRmpqKyWQCYPTo0axevbrDduHh4TzyyCMoikJ5eTnDhg0759cICgryniTs3r2b\ncePGoVKp0Gg0jBw5kr1796LRaBg1ahQ6nc47jr179zJq1ChCQkJISEgAICIiwnuyEhkZSXFxMUFB\nQUycOJGsrCwyMzOZNm0akZGRF7RfhBBCCHHh2mpKtGez2dDpdB3ub9N2LtCeSqU65baiKKhUKhRF\nQa0++X1rW2Kjf//+fPjhh2zfvp1169bx+uuvd3p+I4TwHZkpIYToVNs/8u05HA4eeOABnnzySd54\n4w3mz59/Xr+z/cnF6U4qTnc/0KHAVfvbiqIA8MILL/Db3/4WgKysLPbv339eYxRCCCHE5WE2m4mJ\niWHjxo2AZ0bkiy++eMbnDBkyhE2bNgHQ2NhIbm4uqamp9O/fn127dgFw4sQJCgoKAPjggw/Yu3cv\nGRkZPPHEE5w4cQKn03kJoxJCnC9JSgjRy6nVapxOp3f6Y319PQCbN29myJAhgCeB4HQ6aWhoQK1W\n06dPH1paWvj888+x2+0/6HWHDh3K5s2bURQFp9PJtm3bGDJkCEOHDmXr1q04HA4AsrOzveM4m8LC\nQl577TX69+/PT37yEzIzMzlw4MAPGp8QQgghLr2lS5fy17/+lVtvvZVFixZ5l2aczvz582loaODW\nW2/ltttuY+HChcTExDBz5kyqq6uZN28ef/jDHxg8eDAAAwYM4He/+x1ZWVksWLCAn/3sZ2i1Mllc\niK5E3pFC9HJWq5Xw8HAWLlzIz3/+c3784x+j1+uJjIzkV7/6FQATJkzgzjvvZOnSpUyfPp0bb7yR\n6Oho7rjjDh5++GE+/vjj837da6+9lp07dzJ37lzcbjdTpkzxrgW97rrruPXWW1Gr1aSmpjJ9+nSK\ni4vP+jsjIiLYt28fN954IwEBAQQFBXHPPfec99iEEEIIcfHExMTw1VdfdfpYSkoKb775Zof7v7+k\n4+DBgwBotVqWLVvWYXuTycQrr7zS6Wv861//Ot8hCyEuI5XSNudZCCGEEEIIIYQQ4jKSmRJCiIum\nsLCQxYsXd/rY4sWLSU5OvswjEkIIIYQQQnRlMlNCCCGEEEIIIYQQPiGFLoUQQgghhBBCCOETkpQQ\nQgghhBBCCCGET0hSQgghhBBCCCGEED4hSQkhhBBCCCGEEEL4hCQlhBBCCCGEEEII4RP/H8GSmnLU\nZHwsAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "M8H0_D4vYa49", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "This is just one possible configuration; there may be other combinations of settings that also give good results. Note that in general, this exercise isn't about finding the *one best* setting, but to help build your intutions about how tweaking the model configuration affects prediction quality." + ] + }, + { + "metadata": { + "id": "QU5sLyYTqzqL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Is There a Standard Heuristic for Model Tuning?\n", + "\n", + "This is a commonly asked question. The short answer is that the effects of different hyperparameters are data dependent. So there are no hard-and-fast rules; you'll need to test on your data.\n", + "\n", + "That said, here are a few rules of thumb that may help guide you:\n", + "\n", + " * Training error should steadily decrease, steeply at first, and should eventually plateau as training converges.\n", + " * If the training has not converged, try running it for longer.\n", + " * If the training error decreases too slowly, increasing the learning rate may help it decrease faster.\n", + " * But sometimes the exact opposite may happen if the learning rate is too high.\n", + " * If the training error varies wildly, try decreasing the learning rate.\n", + " * Lower learning rate plus larger number of steps or larger batch size is often a good combination.\n", + " * Very small batch sizes can also cause instability. First try larger values like 100 or 1000, and decrease until you see degradation.\n", + "\n", + "Again, never go strictly by these rules of thumb, because the effects are data dependent. Always experiment and verify." + ] + }, + { + "metadata": { + "id": "GpV-uF_cBCBU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Try a Different Feature\n", + "\n", + "See if you can do any better by replacing the `total_rooms` feature with the `population` feature.\n", + "\n", + "Don't take more than 5 minutes on this portion." + ] + }, + { + "metadata": { + "id": "YMyOxzb0ZlAH", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 955 + }, + "outputId": "4f022a15-3d52-4a88-cacd-b5996df06726" + }, + "cell_type": "code", + "source": [ + "# YOUR CODE HERE\n", + "train_model(\n", + " learning_rate=0.00001,\n", + " steps=3000,\n", + " batch_size=5,\n", + " input_feature=\"population\"\n", + ")" + ], + "execution_count": 20, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 220.00\n", + " period 01 : 204.86\n", + " period 02 : 193.12\n", + " period 03 : 184.51\n", + " period 04 : 179.32\n", + " period 05 : 176.79\n", + " period 06 : 175.92\n", + " period 07 : 176.09\n", + " period 08 : 176.71\n", + " period 09 : 177.29\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " predictions targets\n", + "count 17000.0 17000.0\n", + "mean 141.7 207.3\n", + "std 113.8 116.0\n", + "min 0.3 15.0\n", + "25% 78.3 119.4\n", + "50% 115.7 180.4\n", + "75% 170.6 265.0\n", + "max 3536.4 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predictionstargets
count17000.017000.0
mean141.7207.3
std113.8116.0
min0.315.0
25%78.3119.4
50%115.7180.4
75%170.6265.0
max3536.4500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Final RMSE (on training data): 177.29\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCUAAAGkCAYAAAAG3J9IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VFX6wPHv9EmZ9AaEDgm9oyAi\nEIIJxbWDoKCurmth1bWturouu66uurprw/bTFbChuKKgtFAUFNFARJQSOgkB0id12r3398csswaS\nkD4TeD/P4yMzc+49Z+6dzD3z3nPeo9M0TUMIIYQQQgghhBCijen93QAhhBBCCCGEEEKcmyQoIYQQ\nQgghhBBCCL+QoIQQQgghhBBCCCH8QoISQgghhBBCCCGE8AsJSgghhBBCCCGEEMIvJCghhBBCCCGE\nEEIIv5CghBB+lJyczPHjx/3djHrdcMMN/Oc//znt+RdffJE//vGPpz1/4sQJpk2b1mL1z549m08/\n/bTJ27/44ouMGDGC9PR00tPTSUtL47HHHqO6urrR+0pPT6ewsLBR29R1/IQQQrQPycnJTJo0yXcd\nmTRpEg8//DBVVVXN2u+HH35Y6/P/+c9/SE5OZv369TWedzgcDBs2jAcffLBZ9TbUkSNHuPXWW0lL\nSyMtLY3LLruMjIyMNqm7MebPn1/rMdmyZQsDBgzwnbdf/tde5ObmkpycXKMPc+2117Jz585G7+vZ\nZ5/l/fffb9Q2n376KbNnz250XUI0ltHfDRBCnF3i4+NZvny5v5tRQ1paGn/7298AcLlc3H333bz8\n8svcd999jdrPypUrW6N5QgghAtyiRYtISEgAvNeR3//+97z22mv8/ve/b9L+CgoK+L//+z+mT59e\n6+sdOnRg+fLlTJgwwffc+vXrCQsLa1J9TXHfffdx6aWX8uqrrwKwfft2rr/+elasWEGHDh3arB3N\n0aFDh3Z/7TYYDDXewxdffMEdd9zBqlWrMJvNDd7Pvffe2xrNE6JFyEgJIQKQy+Xi8ccfJy0tjZSU\nFF+HACArK4srrriC9PR0pkyZwjfffAN4o+kXXnghTzzxBNdddx3gvbuzdOlSLrvsMi688ELefvtt\n334WL15Meno6KSkp3HPPPTgcDgBycnK4+uqrSU1N5d5770VRlEa1PTc3l379+gHeuz133nknDz/8\nMGlpaUyZMoW9e/cCUFZWxv33309aWhoTJ07k448/rnOf2dnZXHXVVYwbN45HHnkERVG48847efPN\nN2uUGTVqFB6Pp972mc1mZsyYwddff33GdiQnJ/Paa6+RlpaGoig1RrYsXLiQKVOmkJ6ezm233UZx\ncXGLHD8hhBCBzWw2M3bsWHbt2gWA0+nkT3/6E2lpaUyePJm///3vvu/+3bt3c80115Cens6ll17K\nxo0bAbjmmmvIy8sjPT0dl8t1Wh3Dhg1jy5YtNUb1ffHFF4wZM8b3uDl9hYULF3LJJZcwduxYvvji\ni1rfZ3Z2NoMHD/Y9Hjx4MKtWrfIFZ1566SXGjRvHZZddxuuvv05KSgoADz74IPPnz/dt98vHjenD\nbN26lSuvvJJJkyYxffp0cnJyAO+IkbvvvpsJEyZw3XXXNXnE6X/+8x/mzp3L9ddfz9NPP82WLVu4\n5ppruOuuu3w/4FesWMG0adNIT09nzpw5HDlyBPCOwnzkkUe46qqravStAO666y7eeust3+Ndu3Zx\n4YUXoqoq//znP30jT+bMmcOJEyca3e4pU6bgcDg4cOAAUHd/7sEHH+TJJ5/kkksuYcWKFTXOQ12f\nS1VV+ctf/sL48eO56qqr2L17t6/e7777jssvv5wpU6YwefJkVqxY0ei2C1EXCUoIEYDeeOMN9u3b\nx7Jly1i+fDmrVq3yDeP805/+xE033cTKlSu55ZZbeOyxx3zblZaW0rdvX9555x3fc/v27WPp0qXM\nnz+f5557DkVRyMzM5Pnnn2fBggWsW7eO0NBQnn/+eQD+8Y9/MHr0aDIyMrj++uvZtm1bs97LV199\nxaxZs1i1ahXnn38+CxYsAODvf/87er2eFStW8NFHH/Hiiy+SnZ1d6z62bNnCokWLWLlyJd9//z3r\n169n2rRpNUZkrFmzhosvvhij8cwDwNxut+/uwpnaoWkaq1atwmAw+J774YcfePPNN31t6tixI88+\n+yzQ8sdPCCFEYLHb7SxfvpyhQ4cCsGDBAo4fP87nn3/OJ598QmZmJsuXL0dVVe655x6uu+46Vq5c\nyeOPP869995LRUUFTzzxhO8ufm13u81mM6NHj2bt2rUAVFRUsGvXLl+d0PS+QklJCXq9nmXLlvHw\nww/zr3/9q9b3edFFF3HnnXeycOFC9u/fD3hHQ+p0OrKzs1mwYAFLlixhyZIl/PDDDw06dg3tw1RU\nVHDbbbdxzz33sGbNGubMmcNdd90FwMcff0xhYSFr1qzhxRdfZNOmTQ2quzZff/018+bN44EHHgBg\n586dXHPNNTz77LPk5eXx6KOP8vLLL7Ny5UrGjx/Pn/70J9+2X375Ja+//jo33HBDjX2mpaWxbt06\n3+M1a9aQnp7O/v37Wblype9cTZo0ic2bNzep3YqiYDab6+3PAWzevJklS5YwefJk33P1fS43btzI\n119/zeeff84777xDZmamb7unnnqKhx56iC+++IJXXnklIKfyiPZLghJCBKD169cza9YszGYzwcHB\nXHrppaxevRqApUuX+i4uw4cP9905AO+P7UmTJtXY16WXXgpA//79cTqdFBUVsW7dOqZMmUJ8fDwA\nM2fO9O0/MzOTKVOmADBo0CB69OjRrPfSs2dPBgwYAEC/fv04duyY7z3OmTMHvV5PVFQUkyZN8rXh\nVGlpaQQFBREUFMS4ceP44YcfGDduHEeOHPHdKcjIyPC1uz4VFRW89957vuN0pnaMHz/+tH1s2LCB\ntLQ0oqOjAbj66qt9Iy9a+vgJIYTwv9mzZ5Oens7EiROZOHEio0aN4je/+Q3gvSZMnz4do9GI1Wrl\nkksu4euvvyY3N5fCwkKmTp0KwMCBA+nYsSM7duxoUJ1Tp071Bd8zMjKYMGECev3/uu5N7St4PB6u\nuOIKwNs3yMvLq7X+Z555hmuvvZZly5Yxbdo0UlJSfDkJtm7dysiRI4mNjcVoNDY4l1RD+zBbt24l\nPj7eNzJk2rRpHDlyhLy8PDIzM5k0aRJGo5HIyMgaU1xOdezYsdPySfz973/3vd6tWze6devme2y1\nWhk9ejTgDVicf/75dO3aFfBe67ds2eIbkTl48GCioqJOq3P8+PHs3LmT0tJS4H9BibCwMIqLi1m2\nbBl2u53Zs2dz2WWXNei4naRpGosXLyY+Pp5u3brV258DGD16NBaLpcY+6vtcfv/994wbN46QkBCs\nVmuNYEZ0dDRLly5l//79dOvWzXczRoiWIDklhAhA5eXlPPnkkzz33HOAd4jmoEGDAFi2bBkLFy6k\nsrISVVXRNM23ncFgIDQ0tMa+bDab7zXwRsjLy8tZs2aN7+6Cpmm43W7Aewfol/to7vzVk/WfbMPJ\nIa3l5eXcfffdvnY5nc46k0/98qJvs9koKCjAYrEwadIkli9fzlVXXUVBQQHnnXderduvWrWKrVu3\nAmAymZg0aZLvzsaZ2hEREXHa/oqLi4mLi/M9DgsLo6ioCGj54yeEEML/TuaUKC4u9k09ODkyr7i4\nmPDwcF/Z8PBwioqKKC4uxmazodPpfK+d/GEaExNzxjrHjBnDI488QmlpKZ9//jm33347Bw8e9L3e\nnL5CcHAwAHq9HlVVa63fYrFw0003cdNNN1FWVsbKlSt54oknSExMxG6317i+nQzSn0lD+zBlZWXk\n5OTUuB6bzWaKi4ux2+01+hZhYWFUVlbWWt+Zckr88ryd+rikpKTGe7TZbGiaRklJSa3bnhQcHMwF\nF1zAhg0bGD58OGVlZQwfPhydTseLL77IW2+9xV//+ldGjhzJvHnzzpifQ1EU33HQNI1evXoxf/58\n9Hp9vf25utpY3+fSbref1r856YknnuCVV17hxhtvxGq1cs8997SrpKEisElQQogAFBcXx69//evT\nov8nTpzgkUce4aOPPqJv374cOnSItLS0Ju3/8ssv5w9/+MNpr4WFhVFRUeF7fDJXQkuLi4vj5Zdf\nJikp6Yxl7XZ7jX+fvMhOnTqVJ598EpvNRlpaWo07SL/0y0SXzWnHSTExMb47IOAdcnqyg9lWx08I\nIUTbi4qKYvbs2TzzzDO88sorQN3XhOjoaOx2O5qm+X4AlpaWNvgHvMlkYsKECSxdupTDhw8zdOjQ\nGkGJ1uwrFBcXs2vXLt9IhbCwMKZPn87GjRvJzs7GZrNRXl5eo/xJpwY6Tl7DG9OuuLg4evToUevq\nVWFhYXXW3ZKio6PJysryPbbb7ej1eiIjI8+4bVpaGmvWrKGkpIS0tDTf+R81ahSjRo2iqqqKp556\nin/84x9nHHFwaqLLX6qvP1ff+6rrc1nfsY2JieHRRx/l0UcfZdOmTfzud79j7NixhISENLhuIeoi\n0zeECEATJ07ko48+QlEUNE1j/vz5fPXVVxQXFxMcHEyPHj3weDwsXrwYoM47BHVJSUlh9erVvotN\nRkYGr7/+OgBDhgxhzZo1AGzbts2X1KmlpaSk8MEHHwDeoaRPPPEEP//8c61lV69ejdPppKqqio0b\nNzJixAgALrjgAkpLS1m0aFGNIYat1Y6Txo8f7+tsAHzwwQeMGzcOaLvjJ4QQwj9uvPFGsrKy+O67\n7wDvNWHJkiUoikJVVRWffvop48aNIzExkYSEBF8iyW3btlFYWMigQYMwGo1UVVWdMTnz1KlTeeON\nN0hNTT3ttdbsKzgcDu68805fAkSAw4cPs337dkaMGMHQoUPJzMykuLgYj8fD0qVLfeViY2N9CRJz\ncnJ8uZUa067BgwdTUFDA9u3bffu5//770TSNIUOGsG7dOhRFobi4mK+++qrB76sxxowZQ2Zmpm+K\nyQcffMCYMWMalLtqwoQJZGVlkZGR4eufbNq0iXnz5qGqKsHBwfTp06fGaIWmqK8/V5f6PpdDhw5l\n06ZNVFdXU11d7QuGuN1uZs+eTX5+PuCd9mM0Guu8GSREY8lICSH8bPbs2TWSKD7++OPMmjWL3Nxc\npk6diqZpDBgwgOuvv57g4GAuuugiXz6DBx98kG3btjF79mxeeOGFBtfZv39/br31VmbPno2qqkRH\nRzNv3jwA7r//fu69914+/fRTBg8ezAUXXFDnfn45LQKgb9++DV5y6u6772bevHm+uyRjx44lOTm5\n1rIXXHCBL0v1+PHjGTt2LOC9e5Cens7atWsZPnx4g+ptTjtOGjRoELfccgvXXnstqqrSt29f/vzn\nPwONO35CCCHan9DQUG655RaeeuoplixZwuzZs8nJyWHq1KnodDrS09OZPHkyOp2O5557jscee4yX\nXnqJoKAgnn/+eYKDg0lOTiY8PJwxY8bwySef0LFjx1rrOu+889DpdLXmTGrNvkLHjh155ZVXeOGF\nF3j88cfRNI3Q0FAeeugh34ocM2bM4PLLLycyMpKLL77Yt7rW9OnTmTt3LhdffDH9+vXzXV/79OnT\n4HZZrVZeeOEF/vrXv1JZWYnJZOKuu+5Cp9Mxffp0MjMzSU1NpWPHjqSmpta4u/9LJ3NKnOrpp58+\n4zFISEjg8ccf5/bbb8ftdpOYmMhf//rXBh2/0NBQ+vfvz549exgyZAgAI0eO5PPPPyctLQ2z2UxU\nVBRPPPEEAA888IBvBY3GqK8/V5f6PpcTJkxgw4YNpKenExMTw7hx48jMzMRkMnHVVVf5pr7q9Xoe\neeQRgoKCGtVeIeqi0345mUsIIdqZN954g5KSEl/mbCGEEEK0rczMTB544IEaq04IIURDyZgbIUS7\nVVxczIcffsjMmTP93RQhhBBCCCFEE0hQQgjRLn3wwQdceeWV/OY3v6Fz587+bo4QQgghhBCiCWT6\nhhBCCCGEEEIIIfxCRkoIIYQQQgghhBDCLyQoIYQQQgghhBBCCL9ol0uCFhTUvuxPY0RGBlNSUtUC\nrTl7yDGpSY5HTXI8apLjUZMcj9OdrcckNtbm7yY0S0v0IWpztp7v9kTOgf/JOfA/OQf+J+egdvX1\nH87ZkRJGo8HfTQg4ckxqkuNRkxyPmuR41CTH43RyTM4tcr79T86B/8k58D85B/4n56DxztmghBBC\nCCGEEEIIIfxLghJCCCGEEEIIIYTwCwlKCCGEEEIIIYQQwi8kKCGEEEIIIYQQQgi/kKCEEEIIIYQQ\nQggh/EKCEkIIIYQQQgghhPALCUoIIYQQQgghhBDCLyQoIYQQQgghhBBCCL+QoIQQQgghhBBCCCH8\nQoISQgghhBBCCCGE8AsJSjSQ062QX1KF0600q0xz6j357/IqV7311NeOhu7jTNuUV7nYdaiY8ipX\ns99XS5QTwt/ksyqEEEIIIUTjGVtrx1u2bOGuu+6id+/eACQlJXHzzTfzwAMPoCgKsbGxPPPMM5jN\nZj777DMWLFiAXq9n+vTpXH311a3VrEZTVJXF6/aRlV1AcZmTqDALQ5NimZHSC4Ne3+Ayza3XYjag\naSpOt4ZeB6oG0afUU187AN9rRWVO3z6ibGaGJcf5ytTWhm178ikud/m2MehBUb1l9DroFBvKH+cM\nw2w888epoceqNY6pEK1BPqtCtLynn36arVu34vF4+O1vf8vAgQN56KGH8Hg8GI1GnnnmGWJjYwO6\n/yCEEEKIhmm1oATAeeedxwsvvOB7/NBDDzFr1iwmT57Mc889x5IlS7jssst4+eWXWbJkCSaTiauu\nuopJkyYRERHRmk1rsMXr9pGRmet7XFTm9D2elZrU4DLNrdfh+t/dV1WrvZ762gHU+PfJfRSXu3zP\n3zVzeL1tOLnNyYDEyedy8iv428JtzPv1eY1+X3Udq9Y4pkK0BvmsCtGyvv32W/bu3cvixYspKSnh\n8ssv5/zzz2f69OlMmTKFd999l3//+9/MnTs3oPsPQgghhGiYNr2Nt2XLFiZOnAjAhAkT2Lx5M9u3\nb2fgwIHYbDasVivDhg1j27ZtbdmsOjndClnZBbW+lpVd6JtScaYyLVlvXfWUV7nq3GbbnoIz7i8r\nuxCHy9PkNhwtqDjjVI6GHqvWOKZCtAb5rJ7O/tUW9t58P+7i0voLOioxbvoIfc6u5lfqLAd7Dqgt\nf7wLKgz8fNyCpx2cSk3T+G6nm0UrHLg9mr+b02QjR47k+eefByAsLIzq6moee+wx0tLSAIiMjKS0\ntDRg+g+FpdW8sORH8goq2rxuIYQQ4mzQqiMl9u3bx6233ordbmfu3LlUV1djNpsBiI6OpqCggMLC\nQqKionzbREVFUVBQ/4/hyMhgjEZDs9sXG2ur9/VjhZUUlztrfa2k3IHBbAI4Y5nYmJBGtau+euuq\np9yl1tOOM++rpNxBSZmTDv89Jo1tg6pBuUulR9e6j2lDjmdsTEiDy7WFM31GzjVyPGoymE0B81kN\nBMo3W9g7527Q64mw6Aiu4/OilpdS9fm/UYtPEJzYFUszPldVRceptOeg0+uJigpGbzI3eV+/pGka\nu47Czyc0jHqIiDIRZNY1ej9t9TdT7VR5+zM7m390YgvWEx4RSkhQ+5w+ZDAYCA4OBmDJkiVcdNFF\nvseKovDee+9xxx13NKn/AC3Xhzgpv9zFD/sKeX/NHu6dNfzMG4hWJdcp/5Nz4H9yDvxPzkHjtFpQ\nolu3bsydO5fJkyeTk5PDnDlzUJT/3WrStNrv4tT1/C+VlFQ1u32xsTYKCsrrLaO4FaJsForKTv/R\nEWmzorjcAGcsc6Z6GlNvbSJtVmxmfT3tsKDTUe/+Im1WIsMsvrY2tg16HdjM+nrfa0OOZ0FBeYPL\ntbaGfEbOJXI8aoqNtaG43AHxWQ0ErowN/HDjH9BbzCQt+CeVIeFU1vLedWWFmDLeRldpx9P3Apxd\nR0BTjpGmQcUJqC4GvREtvDNFpU6g4cHUuigq7M63UFBpxGJUGZjgoMKu0dj74G31N3O0QGHhCgeF\npRpdE/Rcl26lqqKSqla6cd9WHa2MjAyWLFnCW2+9BXgDEg888ACjRo1i9OjRLFu2rEb5hvQfoGX6\nEL8UG2qiQ3Qwm344yqWjuxIeamnR/YuGk+uU/8k58D85B/4n56B29fUfWu02Snx8PFOmTEGn09Gl\nSxdiYmKw2+04HA4ATpw4QVxcHHFxcRQWFvq2y8/PJy4urrWa1SgWk4GhSbG1vjY0KQaLydCgMi1Z\nb1312ILNdW4zLDn2jPsbmhSD1fy/GFVj29ApNhRbcP13KBt6rFrjmArRGuSz6pX/7if8cP39GEKC\nSP7gZcLGjKi1nK4oD9PK//MGJIakogxPB10TLkOaCmVHvQEJgxkiu4EpqHlv4r+cHh1ZeVYKKo2E\nWxWGJ1YTagnMqRCapvHNj25e+LCawlKNCcNN3HFlEFFh7XOExC9t3LiRV199lTfeeAObzduJeeih\nh+jatStz584FCJj+g06nI3V4Ih5FY33W0TavXwghhGjvWq3n8tlnn/Hmm28CUFBQQFFREVdccQWr\nVq0CYPXq1YwdO5bBgwezY8cOysrKqKysZNu2bYwYUXuH1h9mpPQidUQi0WFW9DqIDrOSOiKxxmoV\nDSnT3HqtZgMWk/d06f87gjg6zFKjnvra8b/XLDX2EWWz1NnWk9tE2WpuY9D/bwizXged47yrbzTl\nfdV1rFrjmArRGs71z+rxN97j0P1/wxwdQZ+PXsU2YlCt5XQnDmJa8xY4q3Cf/yuUgeNA1/jpEKgK\nlB4GZxmYgiGyuzcw0QLKHHq25lqpcBpIsLkZ3NGBOUDjStVOjUUrnXy8wYnZBDf/ysq0MRYMhiYc\n0wBTXl7O008/zWuvveZLWvnZZ59hMpm48847feUCqf8wekACIVYjG37Iw+1Rz7yBEEIIIXx0WkPH\nOzZSRUUF9913H2VlZbjdbubOnUvfvn35wx/+gNPppGPHjjz55JOYTCZWrlzJm2++iU6n47rrruNX\nv/pVvftuieEwjR1W43Qr2CuchIda6rz72ZAyjfXLfQLYK5wEWYxUOz111lNfO06+Vts+6jomtW3j\ncivk5leQGHfmERJnel/1HavWOKYNJUOvapLjUdOpx8Ofn1V/0DSNYy+8Re5Tr2CKj2H06gU4YuNr\nLavP2Y1x42LQNDxjrkTtNrBplSouKD3i/b8lDMI6Nm2kRS1OlBvYXWBB06BntIvEcE+TYia/1Fp/\nMzn5Cou+cFBUptG9o57r0qxE2NpudERrT99YvHgxL774It27d/c9l5eXR1hYGKGhoQD07NmTP//5\nz43uP0DL9CFq89nmwyz9cj83T+vLBQM6tEodon5ynfI/OQf+J+fA/+Qc1K6+/kOrBSVakz+CEu1N\nU34gne3HpLHkeNQkx6Omc/l4aJpG7pMvc+yltzEndqDPh6/QeWTfWo+H/sAPGL/5BPQG3ONnonXs\n3bRK3dVgP+IdKREcDSFxTRtpcQpNg4PFJo6UmjHoNfrFO4kObpmlNlr6M6JpGpt+dLNsowtVhZQR\nJtJGmWuMXmsL7T15V2v93Sp6Pbc8mUGXeBt/un4Euhb4fIrGOZe/lwOFnAP/k3Pgf3IOaldf/6FV\nV98QbU9RVRav20dWdgHFZU6iwiwMTYplRkovDHrvnbSWuqN7rt0ZFkKApqocfvQf5P/7Q6w9upC8\neD6WTgm1ljXs2owx8ws0sxV3ymy02C5Nq9RZDvZcQIPQBAiOOuMmDeFRYdcJC0VVRoJMKgMSHISY\nAzNOX+XQ+HCtgx37FUKDdMy62EJyV7mEB5KE6BCG9Ioha28h+4+W0Ssx3N9NEkIIIdoF6dGcZRav\n20dGZq7vcVGZ0/d4RkqvMwYsGqIhgQ8hxNlHUxQO3vc4hYuXEdSnJ30Wz8cUG11LQQ3D9nUYd2xA\nC7LhnjgHLbL2wMUZVZdA+TFAB+GJ3mkbLaDareOn41YqXXoighT6xzsI1NjqkeMKi1Y6KC7T6NnJ\nwLVpFsJD5bs2EKWO6EzW3kIytuZIUEIIIYRoIAlKnEWcboWs7NrXaM/KLkRRVNZn5fme+2XAYlZq\nUoPrqS/w0Zj9CCHaD9Xt4cDvHqX4szWEDO5H0rsvYIqKOL2gpmL8/gsMe7ag2aJwTbwebE0Y2aBp\nUFkAVYWgM0BEZ29iyxZQWq3n5+NW3KqOjmFuesW4aOMZEA2iaRpfZblZ/o0LTYWLzzMx6Twz+kBs\nrACgT5cIEmNDyNxdQPEEB1FhVn83SQghhAh4cqvlLGKvcFJc5qz1teJyB1l7C2t9LSu7EKe7YXOo\nzxT4aOh+hBDth+pwsu/m+yn+bA2h5w2hz4fzaw9IKB6Mm5Zg2LMFNTIeV9rNTQ9IlOd5AxIGk3eF\njRYKSBwrM7I9z4pbhd4xTpJiAzMgUeXQeGu5g882uQix6vjt5VbSRlkkIBHgdDodqSM6o2qyPKgQ\nQgjRUBKUOIuEh1qI+u+Sn6eKCLFQWuGq9bWScgf2itqDGaeqL/DRmP0IIdoHpaqa7Dm/p3TNRsIu\nOp/k917EYAs9rZzmdmHc8B6GQztQY7vgnnQTBDUhIaKqeFfYcNjBGOQNSBibv+SnpsG+QjN7CiwY\n9DC4g4NO4Z5m77c1HDym8Ox7Vew8qNC7s4F7ZwXRu7MMbGwvRvWLJ8Rq5Msf8nBJoF4IIYQ4IwlK\nnEUsJgNDk2JrfW1IUgzRdQQsIm1W35KjZ1Jf4KMx+xFCBD5PWQV7Zs6lbNN3RKSNI2nBPzEEB51e\n0FVN1cevYMjbi9KxN+7U68FSS7kzUdxQcgjclWC2QWRX0Df/x7hHgR3HLOTaTQSbVIYlVhMZrDZ7\nvy1N1TTWbXUxf0k19kqN9FFmbrnUii1YLtXtidlkYNyQTlRUu9my84S/myOEEEIEPOnpnGVmpPQi\ndUQi0WFW9DqIDrOSOiKRWam96wxYDE2KafDqGfUFPhqzHyFEYHMXlbJ7+m1UfL+dqMvS6PX6U+gt\ntYxYqC7HtPpNlLyDKN0G4hk/q2kjGzwOKDkIihOCIr1JLXXNv0RVuXVsOxpEcbWRqCAPwzpVE2wK\nvBU2Kqo03vzMwedfuwgN1nHIxUqTAAAgAElEQVTb5UGSP6IdSxnWCb1Ox5rMXNrhyutCCCFEm5Lx\noH7QmktpGvR6ZqUmceW4nqfVMSOlF+DN/VBS7iDSZmVoUozv+YZqqf0IIQKTK7+QPTNup3rPAWJn\nXkq3px9GZ6jlu6q8BPPat9GVF2MafCHOgZOaFkhwVXiX/NRUCImD4GjQNf/HeEmVnp9PWPGoOhLD\n3fSMdrXEblvcgaPe1TXKKjX6dDUwc5KV0OAAbKhosKgwK8OSY8ncnU92TinJXSL93SQhhBAiYElQ\nog215VKaFpOBuMiaieHqC1g0RkvtRwgReJy5x9k94zacB3OIv+kausy7B10t30+6kuOY1i5EV12O\nZ+B4bCmXUlFY0fgKq0u9SS3RQVgnsLbMMopH7Ub2FprRAcmxTjqEBV7+CFXTWJfpZuW3LnTA1AvM\njB9uQh+IkRPRaJNGJJK5O581mbkSlBBCCCHqIUGJNhQoS2nWFrDw536EEIHBcTCH3dNvw3X0OB3u\nvJHEP9yOrpYfyLqCI5jWLULncuAZMQWl7+hay9VL07yra1QWeEdXhHcGc0iz34P634SWeWUmTHqN\n/gkOIoICL39EeZXKe6ucZOcohIfqmJ1upXtHCe6eTXp1CqdrvI2svQUUllYTE9GEPCtCCCHEOUBy\nSrQRWUpTCBHIqvbsZ9flN+M6epzEh+6g84N31B6QyNuLac3b4HbhvuAKlL6jG1+ZpkH5MW9AQv/f\nJT9bICDhVuDHY1byykyEmL0JLQMxILEvx8Oz71WTnaPQr5uBe2cGS0DiLORdHjQRTYN122R5UCGE\nEKIuEpRoI7KUphAiUFX+uJvdV9yCO7+ILn+5j46/u7HWcvpDOzCtfxc0Dc+4a1B7Dm18ZaoK9hxw\nlILRCpHdwNj8VXsqXd6ElqXVBqKDPQztVE1QgCW0VFWNVVtcvLrUQaVD45ILzfz6EishQTJd42x1\nXt94woJNfLU9D6dLbj4IIYQQtZGgRBuRpTSFEIGo/Pvt7L76t3hKy+j+7KMk3HxNreX02d9j3PgR\nGIy4U+egdu7b+MoUD5Qe8ia2NIdARFcwmJr3BoCiKgPbjgZR7dbTJcLFgAQnxgC7upVVqry21MHq\nLS4iQnXMvTKI8cPMjZ/2ItoVk1HP+KGdqHJ6+Obn4/5ujhBCCBGQAqzbdvaSpTSFEIHGvvE79lxz\nB0qVg54vP07szEtPL6RpGHZ8iWnLZ2AJxj3p12jx3RtfmcfpXfLT4wBrBIR3AX3zvvc0DXJKjew4\nZkHVoG+cgx7R7oBbYWPPEe90jX25CgN6GLhnZjBdO8h3/rli/NBOGPQ6MjJzZHlQIYQQohaS6LIN\nyVKaQohAUbJmI/tu+QNoGr3feIrI9PGnF9I0DFtXYtz1DVpIOO7UG9DCYhpfmasK7Ef+u+RnLATH\nNHvJT1WD7AIzx8tNmA0qAxKchFkDK3+Eomis2Oxk7fdu9Hq47CIzFw42yeiIc0xEqIWRfeP49ucT\n7DxUQv/uUf5ukhBCCBFQJCjRhmQpTSFEIChelsH+O/6Izmik99vPET5u1OmFVAXjt59i2J+FGhaD\nO/UGCGnCcp2OMig7Cmhg6whBEc1tPi4Ffj5uxe4wEGpRGJDgxGoMrDvQ9gqV1z8tZs9hN1FhOmZP\nttIlXr7vz1WTRnTm259PkJGZI0EJIYQQ4hQSlPADWUpTCOEvBYuXcfDev6IPDiJ50b+wnV9LskrF\njXHjRxhydqFGd8KdMhusTVgdo6oIKk54l/wM6wyW0Ga3v8KpY8dxK06PntgQD33inBgCbCLi7kMe\n3lvtoNIBg3oZmD7RSpBFRkecy7p3CKNnxzB+3F/EiZIq4qUPIIQQQvgEWFdOiLOP062QX1Ily74K\nvzvx9kcc/P08DOE2+nz0Su0BCZcD09pF3oBEQg/ck25sfEBC06D8uDcgoTdCRLcWCUgUVhrIOhqE\n06OnW6SLfvGBFZBQFI3lXzt54zMHDhfMmRbGnMkSkBBeqSM6owFrt+b6uylCCCFEQJGREkK0EkVV\nWbxuH1nZBRSXOYkKszA0KZYZKb0w6APol5Q4Jxx7eQE5f3sRU2w0yR+8THDfWnLZOCoxrV2IvjgP\npXNfPGOvbvzqGJrqna7hLAeDBSK6NHuFDU2DI6UmDhab0OugX7yDuNDACvKVlKu8s9LBoWMqMeHe\n6RpD+4dQUFDu76aJADE8OZaIUDObfjzG5WN7EGSRLpgQQggBEpQQotUsXrePjMz/3RErKnP6Hs9K\nTfJXs8Q5RtM0jj7zGnn/+j/MHeJJ/nA+QT27nl6w0o4p4230ZYUovYbjOf+Sxq+OoXqgNAc81WAK\nhvDOzV5hQ1FhT4GF/AojFoPKgA5ObJbASmj58wEPH2Q4qHLAkCQjV0+wYJXREeIURoOeCcMS+eSr\nA3y94xipIzr7u0lCCCFEQJDbtUK0AqdbISu7oNbXsrILZSqHaBOapnFk3j/J+9f/YemWSN+lb9Qa\nkNDZCzCvfAN9WSGefhfiGXVpo4MJissBJYe8AQlLuHeERDMDEk6Pjh/yrORXGAmzKAxLdARUQMKj\naHy20clbyx243HB1ioXr0iQgIeo2bkhHjAY9a7fmosryoEIIIQQgIyWEaBX2CifFZc5aXyspd2Cv\ncEqyU9GqNFXl0INPUvDOJ1h7d6fP4vmYE2JPK6crOopp7UJ0zio8QyehDLio8ZW5qyk5kA2KB4Kj\nISSu2Ut+ljv17DhmwaXoiQ91kxTrCqj8EcVlKotWODhyQiU2UsecyVY6xsjqGqJ+YcFmRvWLZ9OO\nY/x0oIhBPZuwxK4QQghxlpGghBCtIDzUQlSYhaJaAhORNivhoRY/tEqcKzSPhwO/n0fRxysIHpBM\n8vsvYYqOPK2c7vhBTBveBbcL96hLUXuPaHxlznKw56KhgS0Bgpq/3GF+hYHd+RZUDXpEuegc4W5u\njKNF7djvYXGGg2onDO9j5MrxFizmAGqgCGipIxLZtOMYazJzJSghhBBCIEEJIVqFxWRgaFJsjZwS\nJw1NisFikjuqonWoThf7b/8jJSvWEzp8EEnvPI8x3HZaOX3OLoxffQhoeC6ajtp1QOMrqyqGiuOA\njrAuSZQ5mndJ0TQ4VGLicIkZg05jQIKTmJDAmerk8Wgs+9rFpu1uTEaYkWphZF8jukCKmIiA1yXe\nRlLnCH4+WExeYSUdY5qw3K4QQghxFpGghBCtZEaKd3WDrOxCSsodRNqsDE2K8T0vREtTqhzs+80D\n2Nd/g23MCJLefg5DyOnThPT7szBuXgoGI+5xM9E6NvIzqWlQmQ9VRaAzQEQXLLZIcDR9pQlFhd35\nFgoqjViNKgMSHIRaAmfOfWGpyqKVDnLzVeKj9MyZbCEhWoKLomlShyeSnVPK2q25zE5L9ndzhBBC\nCL+SoIQQrcSg1zMrNYkrx/XEXuEkPNQiIyREq1EqKsm+/veUb95G+MQx9H79KfRB1tPKGXZ+jXHr\nSjRzEO6U2WixjVwBQFOhLA+cZWAwQ3gXMJqb1XaHR8dPxyxUuAyEWxX6JzgwB9Cfyva9Hj5c68Dh\ngpH9jFw+zoLFJKMjRNMNTYohOszC1z8d48pxPQi2Nm/ZXCGEEKI9C6C0YSJQOd0K+SVVsmJEE1lM\nBuIigyUgIVqNp7SM3dfcQfnmbUROTaH3m/84PSChaRiyMrwBiSAb7rSbGh+QUBUoPeINSBiDILJb\nswMSdoeerblWKlwGOtjcDO4YOAEJt0fj4/UOFq5woGowc5KFa1KtEpAQzWbQ60kZlojLrfLV9mP+\nbo4QQgjhVzJSQtRJUVUWr9tHVnYBxWVOosIsDE2KZUZKLwx6iWcJEQjchcXsuWYuVTuzib56Kj2e\nfRSd8ZSvdlXF+P1yDNnfo9qicKfeAKGnJ76sl+L2BiQUJ1hsENYJdM37HjhebmRPgRlNg17RTjqF\newImoWVBqcrCLxzkFap0iNYze7KV+Cj53hMtZ+zgjny66SDrtuVy8cjO6PUB8uEXQggh2pgEJUSd\nFq/bVyNRY1GZ0/d4VmqSv5olhPgv17F8ds+4Hce+Q8TNuZKuT/wB3akBQ8WD8euPMRz+CTUyAffE\n6yEotHEVuR1gPwKqx7u6Rmh8s5b81DQ4UGwip9SMQa/RP8FJVHDgjMTatsfNknVOnG4YNcDIZRdZ\nMBnlB6NoWaFBJkYPSODLH/L4YV8hw5JOX7JXCCGEOBfIbR9RK6dbISu7oNbXsrILZSqHEH7mPHKU\nXZf/Bse+QyTcOpuuTz54ekDC7cK04V1vQCKuK+6Lf934gISzAkoPeQMSofHeZT+bEZDwqPDTcQs5\npWaCTCrDOlUHTEDC7dH4cK2Dd1d5l/K9Lt3C1SlWCUiIVpM6PBGAjMwcP7dECCGE8B8ZKSFqZa9w\nUlzmrPW1knIH9goncZGnZ/UXQrS+6n2H2D3jdtzH8ul07y10vOc3py9L6azCtP4d9AU5KJ2S8Fw0\no/H5H6pLoTwP0EFYIljDmtdut46fjlupdOmJDFLoF+8gUFKtnChWWbjCwfEilY4xeuZMsRIbIXF7\n0bo6xYbSr1skOw+VkJNfQee4RgYNhRBCiLOA9LhErcJDLUSFWWp9LdJmJchilOSXQvhB1c697Lri\nFtzH8un8p7vpdO8tpwckqsoxrX7TG5DoPgjP+FmNC0hoGlQWeAMSOgNEdG12QKK0Ws+23CAqXXo6\nhbsZ2CFwAhKZu9z864MqjhepjBlk4s7pQRKQEG0mdbg34ayMlhBCCHGukpESolYWk4GhSbE1ckqc\nFGw18pe3v5fkl0K0sYqsn9hz7Z0opWV0+/uDxM256vRC5cWYM95GV1GCJ3kUysjJjUtIqWlQfgwc\npaA3QUQXMNYeoGyoY2VGsgu8QZGkGCcdwz3N2l9Lcbo1Ptng5PtdHqxmmDPZyuDe7f+ymLndzlvv\n5zJ2VCQzL+vo7+aIMxjUK5q4iCC+3XmCq8b3xBbcvBVthBBCiPam/fe+RA1Ot4K9wkl4qKXZS1DO\nSOkFeHNIlJQ7iLRZCbYaycmv8JWR5JdCtI2yb7eRPftu1GoHPZ7/MzFXTzutjK7kOKa1C9BVV+AZ\nNAFl0ITG5X9QFSjLBVclGK0Q3gUMTb9MqBocKDKTazdh1Gv0T3AQGaQ2eX8t6XiRwsIVTk4Uq3SO\n866uER3evgOrZRUe3no/ly83F2M06OgYbz3zRsLv9DodKcMT+WDtXr7ansfU0d383SQhhBCiTUlQ\n4izRGst3GvR6ZqUmceW4ntgrnARZvCMkapOVXciV43o2OxAihDhd6YbN7Pv1fWiKQq/XniRq6sTT\nyujyD2Na/w46lwP3yKmofUY1rhLFDfYc8DjAHOrNIdGM0U9uBXaesFBSbSTYpDKwg4Mgk9bk/bUU\nTdP4bqeHT7504vbA2CEmpl1gxtjOk1l+k1nC6+/kYC/z0Kt7MHNv7ErXxCB/N0s00IUDO/DJxgOs\n23aUtPO6YDS07wCZEEII0RgSlDhLtObynRaTgbjIYPJLqiT5pRBtrGTFBvbd9hDo9fR+6x9ETLzw\ntDK6o3sxffk+qAruMVeh9hjcuEo8Tig9AqobrBFg69CsFTaqXDp2HLdS7dYTFeyhX7wTYwD8xnK6\nNJasd7Jtj4cgC1ybZmVgz/Z9GSyxu3njnRw2by3FbNJx/fROXDIpDoOhfQdZzjXBViMXDujA2m25\nbMsu4Ly+8f5ukhBCCNFm2ndvTABnXr6zpUYwnEx+WVRLYCLSZiU8tHnzzoUQNRX+ZyUH7noMvcVM\n0oJ/EjZmxGll9Ad/xPj1x6DX4xk/CzUxuXGVuCq9IyQ0FUJiITimWQGJ4io9O09Y8ag6Ooe76BHt\nbs7uWkxeocLCLxwUlGp0ifdO14gKC4BISRNpmsaX3xbz5nu5VFQq9EsK5Y4bu8iUjXZs4ohE1m7L\nJWNrrgQlhBBCnFMkKHEWaKvlO+tLfjk0KUambgjRgvLf/YRDDzyBwRZC0jsvYBsx6LQy+j3fYfxu\nOZjMuCdchxbfrXGVOOxQlgdoYOsIQRHNavNRu5G9hWZ0QHKskw5h/k9oqWka3/7kYelXTjwKjBtq\nYsoFZozteCRBYbGLVxceYeuPZVgten5zbWfSJ8Sg17ff9yQgISqYgT2i2XGgiEPHy+iW0LwVb4QQ\nQoj2QoISZ4G2HMFQW/LLoUkxvueFEM13/I33OPLYcxijIkh+/yVCBvapWUDTMOz4EuP2tWjWENwT\nr0eL6tDwCjQNqoqgMt+7Mkd4Z28eiSZSNdh2UGV/oQWTQWNAvIPwAEho6XBqfLTOyQ97PQRb4fop\nVvp1b7+XPU3TWPNlEQs+yqWqWmVwfxu3X9+FuBgZpXa2mDQikR0HisjIzOXmaf383RwhhBCiTbTf\n3pnwacsRDKcmv2yJVT6EEF6apnHshbfIfeoVTPEx9Fk8n6CkHqcUUjFkrsS4ezNaSATu1BvQwqIb\nUwlUHIfqEtAb/7vkZ9OH/LsV+Pm4lVIHhJgVBiY4sQZAQsvcfIVFKxwU2jW6ddBzXbqVSFv7na5x\nPN/J/AVH2LGrnOAgA3fc2IWJF0ajC4S5MaLF9OseRUJUMN/tOsHVE3oRHiLLgwohhDj7SVDiLNHW\nIxhOJr8UQrQMTdPIffJljr30NubEDvT58BWs3RJrFlIVjJuXYjjwA2p4LO7UGyC4EUO8NRXsR8FV\nDgaLNyBhMDW5zZUuHTuOWXF49HSKhO4RDr8ntNQ0ja9/dPPZRheKCinDTaSPMrfbxI+qqvHF2gLe\n+TgPp0tl5JBwbp3dmahI+bF6NtLrdKSOSOSd1dl8mXWUX13Y3d9NEkIIIVqdBCXOEjKCQYj2S1NV\nDj/6D/L//SHWHl1IXjwfS6eEmoU8bowbP8SQuxs1JhF3ymywNCIwqHqgNAc81WAKgfBE0Df9O6Ko\n0sDOExYUTUfXSBcjkywUFjZ5dy2i2qnxYYaDH/crhFhh1sVW+nRrv5e5o8ccvPTvw+zeV4kt1MAd\nN3TjwvMjZXTEWe6CAQl8/OUB1mcdZcrorrI8qBBCiLNe++2tiVrJCAYh2hdNUTh43+MULl5GUJ+e\n9Fk8H1PsKdMxXA5MG95Ff+IQakJP3ONngqkReQQ8TrAfAcUN1nBvUssm/rDVNMi1G9lfZEavg75x\nDuJtCjqdf1d9OHLCO12juEyjR0fvdI3w0Pb5Y05RND5ddYIPlh7D7dEYMzKCm6/tTERY00e1iPbD\najYydlAHVn+fw/e78xndP+HMGwkhhBDtmAQlhBDCT1S3hwO/e5Tiz9YQMrgfSe++gCnqlBUwqisw\nrVuIvvgYSpf+eC68CgyN+Op2V3lHSGiKd7nPkNgmByRUDbILzBwvN2E2qAxIcBJm9W9CS03T2PiD\nm+Vfu1BVSB1p4uLzzRja6UoUh3OrefHNw+w/XEVEmJHfzu7CqOHNWxVFtD8pwxNZ830OGZk5jOoX\nL6NjhBBCnNUkKCGEEH6gOpzs++2DlK7ZSOh5Q0he9C8MtlNWwKgoxbT2bfRlRSi9huM5/1egb8Td\nf2eZN4cEGtg6QFBkk9vr8sBPJ6yUOQzYLAoDEpxYjP5NaFnl0Pggw8HPBxRCg3Rcm2YhqUv7vKy5\nPSofLz/Ox5+fwKNoTBgTxY0zErGFts/3I5onLiKIIb1jyNpbyIG8Mnp2Cvd3k4QQQohWI72dAOJ0\nK5IPQohzgFJVzd4b7qVs03eEXXQ+vd/6B4bgoBpldPZ8TBkL0FWV4ek/FmXopMaNcKgq9q6yodNB\nWGew2Jrc3gqnnh3HLTg9emJDPfSJdeLvae6HjyksWumgpFyjV6KBa9MshIW0z+ka+w5W8tK/D3M4\n10FMlIlb53Rh+CD5EXquSx2eSNbeQtZk5khQQgghxFlNghIBQFFVFq/bR1Z2AcVlTqLCLAxNimVG\nSi8MjbkrKoQIeJ6yCrJn30XF99uJSBtHr1efRG+puZKCrjAX07pF6JxVeIalofS/sOEVaBpU5kNV\nkTeRZXgXMAWdebs6FFQa2HXCgqrp6BblomuEu6mzP1qEqml8uc3NF5tdaBqknW8mdaQJfTucruF0\nqSz+9BifrjyBqkHa+BjmXN2J4CAJSgvo0zWSTrEhbN1TQEm5k0hbI/LICCGEEO2IBCUCwOJ1+8jI\nzPU9Lipz+h7PSk2SERRCnCXcRaXsufZ3VP24i6jL0ujx/Dz0pppfw7pj+zFteA8UN+5Rl6H2Ht7w\nCjQVyvK80zYM5v8u+dm0pSM1DY6UmjhYbEav0+gf7yA2VGnSvlpKRbXGB2sc7DqkYAvWcV26hV6J\n7fMytmtvBS+9dZi8E07iY83ccUNXBvZt+mgWcfbR6XSkDk9kwco9rM/K5YqLevq7SUIIIUSraJ+9\nuXbs1ACD062QlV1Qa9ms7AIUReXH/UUygkKIds6VX8ieGbdTvecAsTMvpdvTD6Mz1Awy6o/sxLjx\nQwA8F81A7dK/4RWoCthzvIktTUHeERJNXPJTUWFPgYX8CiMWozehpc3i34SWB/IU3lnpwF6hkdTF\nwKyLLdiC29/3YLVD4d3/5PHFWu/3/iUXxzHr8g5YLRJwFqcb1T+BJRv2syErj0su6IbJKJ8TIYQQ\nZx8JSrSRuqZoTBjaieIyZ63bFJU5WZ+VV+PxL0dQCCHaB2fucXbPuA3nwRzib7qGLvPuQXdKYFG/\nbyvGbz8Fgwn3+FloHRpxV1RxQekR7/8tYRDWEXRN+8Hu9Oj46biFcqeBMIvCgAQHZj9eKVRNY32m\nm5XfutCAyaPNpIwwoW+HqxH8uLOMl98+Qn6hi04dLMy9sSt9eoWeeUNxzrKYDIwb0okvvj3MtztP\nMHZQR383SQghhGhxEpRoI3VN0VAUlagwC0W1BCb0Ou8SfKfKyi7kynE9ZSqHEO2A42AOu6ffhuvo\ncTrceSOJf7j9tOX9DD9vwrhtFZolGHfKbLSYxIZX4K72jpBQPRAUBaHxTV7ys8yh56fjFlyKnnib\nm+RYF/5M1VBepfL+aid7jiiEh+i4Lt1Kj07t73uvskrh7Q9zyfiqCL0erpwaz/RfdcBsan8jPUTb\nSxnWiZVbjrA2M5cLB3aQ5UGFEEKcdSQo0Qbqm6Lx4/5iBvWKYf22o6e9VltAAqCk3IG9wklcZHBL\nNlMI0cKq9uxnz4zbcecXkfjQHXT83Y01C2gahqw1GH/eiBYchnvi9WgRcQ2vwFkOZbneBBCh8RAc\n3eS25lcY2J1vQdWgR7STzuEevya03J+r8M4qB2WVGn26Gph5sZXQoPb3Yyxzu51XFx6hqMRNt8Qg\n5t7UlZ5d5btbNFxUmJVhybFk7s4nO6eU5C5NX9pXCCGECEQSlGgD9gpnnVM0SsodpA5PxKDXkZVd\nSEm5g0iblUG9otm+t4Dictdp20TarISHShZuIQJZ5Y+72TPzDjwldrr85T4Sbr6mZgFVxfjdMgx7\nM1Ft0bhTb4DQiIZXUF0C5ccAHYQneqdtNIGmwaESE4dLzBh0GgMTnESH+C+hpapqZHzvZvV3LnTA\ntDFmxg1rf9M1yio8vLpwF6s25GM06Jh5WQcunxKPySijI0TjpQ5PJHN3PhlbcyUoIYQQ4qwjQYk2\nEB5qqXOKRqTNSlSYlVmpSVw5rmeNJJgGva7GlI+ThibFyNSNs4isrnL2Kf9+O9nX3YlSUUX3Zx8l\ndualNQsoHoxfL8Fw+GfUqA64U+ZAUANzC2gaVBZAVSHoDBDRGUxNu/OuqLAr30JhpRGrUWVgBwch\n5jqGaLWBskqV91Y72ZujEBGqY/ZkK906tL+/iW8yS3j9nRzsZR56dQ9m7o1d6ZrY9GVZheidGE7X\neBvbsgsotFcTEy6fJyGEEGcPCUq0AYvJwNCk2DMGGCwmQ40pGTNSegHUGEExNCnG97xo3+pKfiqr\nq7Rv9o3fsfeGe1Bdbnq+/DjRl6XVLOB2YvryffTH9qPGdcM94VowWxu2c02D8jxw2EFv8i75aWza\nqCmH25vQssJlINyq0D/BgdmPv/+zczy8t8pJeZVG/+4GrplkJdjavkZHlNjdvPFODpu3lmI26bj9\nxh6kXBCOwdC+3ocIPDqdjtQRibz5+S7WbzvK1ROkHyCEEOLsIUGJNtKUAINBr691BIU4O9SV/BRk\ndZX2qmTNRvbd8gfQNHq/8RSR6eNrFnBWYVq3CH1hLkpiMp6xM8BoatjOVQXsueCuBKPVG5DQN+0r\n3P7fhJZuRU+HMDe9Y/yX0FJVNVZ/5yLjOzd6PfxqrJmLhpjaVTI/TdP48tti3nwvl4pKhX5Jodxx\nYxcGD4iloKDc380TZ4nz+sbz0fp9fLU9j1+N6Y7Fn1FEIYQQogW1alDC4XAwbdo0br/9dkaPHs0D\nDzyAoijExsbyzDPPYDab+eyzz1iwYAF6vZ7p06dz9dVXt2aT/KY5AYZTR1CI9q++5Keyukr7VLws\ng/13/BGd0Ujvt58jfNyomgWqyjBlLEBvz0fpMRjP6MtB38BzrLjBfgQ8TjCHenNINHHJz+PlRvbk\nm9GAXjFOOoX5L6GlvULl3VUO9h9ViQrTMTvdSpeE9vW5Lyx28erCI2z9sQyrRc9vru1M+oQY9P5c\ntkSclUxGPeOGdGLZN4fYvPM444d08neThBBCiBbRqmPEX3nlFcLDwwF44YUXmDVrFu+99x5du3Zl\nyZIlVFVV8fLLL/P222+zaNEiFixYQGlpaWs2ye9OBhja4gen062QX1KF0+2/pHWidmdKfmqvqP01\nEZgKFi9j320Po7NaSX7/pdMDEmVFmFe+gd6ej6fPaDwXXNHwgITHASUHvQGJoEgI79ykgISmwf4i\nE7vzLRj0MKiDg0Q/rrCx+7CH596vZv9RlYE9DdwzM7hdBSQ0TWP1hkLuenQnW38sY3B/G8//tS9T\nJsZKQEK0mgnDOmHQ61ibmYum+S//ixBCCNGSWm2kxP79+9m3bx/jx48HYMuWLcybNw+ACRMm8NZb\nb9G9e3cGDhyIzWYDYAqKd8AAACAASURBVNiwYWzbto2UlJTWatY5QXIVBL4zJT+V1VXajxNvf8Th\nh5/CEBlO8nsvEjq4X43XdcXHMK1diM5RgWdwCsrA8TQ4EuCqBHsOaCqExHmX/GxCFMGjwq4TFoqq\njASZVAYmOAj2U0JLRdVYudnFuq1uDHq4fJyZMYPa13SN4/lO5i84wo5d5QQHGbjjxi5MvDC6Xb0H\n0T5FhFoY2SeOb3eeYNfhEvp1i/J3k4QQQohma7WgxFNPPcWjjz7K0qVLAaiursZsNgMQHR1NQUEB\nhYWFREX974IaFRVFwf+zd9+BbZX3wse/2vLee2U6e8+SvUggDSSEDBKyoBRuQid9obe0vaW345Z7\n20tbwqWlTUhIgCx2E0J2QsjeznDiLO8tW7a1zznvHyITDzmRJdl+Pv8QfOTjR9KxrOen3yirP6W9\nrWqJyQvv77jEjmMFN///Rq8CRVGYP6mbV36GcH88bX7qTWLKh/cVLV9F3m//ii4uhm7vLye4x509\nYlQl19DtWgtOO86h30buNszzk9uqwfz173F4Chgj7mmNVqeKM0VGLE41UUEueibY8dfTX1Ujs2ar\njauFMjER7ukaafGt51qUZYXNO8pYs6kQu0NmSP8Inl2QRkyU3t9LE9qRiYPTOHiuhO1H80VQQhAE\nQWgTWiQo8dFHH9G/f3/S0tLqPd5QyqGnqYhRUcFotff/RjYuLuy+z3GvJElmxadnOZhVRFmVlbjI\nIIb3TuKpab3QaO49m8HmcPFVVkm9x77KKuG5x/tj1Df8tN94TGwOFyaznahwQ6O3b+ta8hp5fvYA\ngoP0HMwqorzKSqyXroG7efNa8+fvTCBRFIXsX/2ZvN++gTE1kWFb3yY0s+Mdt3FeOYt1x2pQJIIe\nfhJd90Een9taXkiduQCVWkN4eib6kPB7WmeZWeHEdQWHC7okQr8MHWpVy22gG7s+Tmbb+PsHVdRa\nFIb2NvLUoxEEG1tP5lZuvoXf/yWbM+fNRIRp+en3uzFxdFyT2RHid0bwtk7J4XRKDudUTjmlJovo\nOSUIgiC0ei2y29y9ezd5eXns3r2b4uJi9Ho9wcHB2Gw2jEYjJSUlxMfHEx8fT3l5+c3vKy0tpX//\n/k2e32Sy3Pca4+LC/NoV/d3tF+/4lLzUZOWTfVewWB33NXkhv6wWq91V7zGr3cX5nDJS40LrPR4X\nF0ZxSbUo/fiaL66R6SM68NDQtDsyGCor67z6M7x1rfn7dyZQKIpC7iv/S8nf38XQIZVu697AGhWL\n9bbHRn3lFNqvPgC1BtfY+dhjMsGTx05RoLYYrCZQa1Ei06m2qMDS/Me90KzlUpk7AJEZ5yA5xEVF\neRPfdB8auj4kSWHzAQe7jzvRamDmOAPf6q2hrqaOulZwOUmSwsdbS3j/oyKcLoURQyL5zvw0IsN1\nlJfXNvq9bfV3RgRa/G/i4FT+/sk5dhwr4ImJXf29HEEQBEG4Ly0SlHjttddu/vuvf/0rKSkpnDhx\ngq1bt/Loo4/yxRdfMGrUKPr168fPf/5zzGYzGo2G48eP87Of/awllhRQWnTyQlPZJk0cF2Mqfa8l\np6uIKR/epcgy1376e8rWfEhoj850Wfs6+sS4O26jvnAQ3ZF/oeiMOMc/iRKf4enJ3SM/HbXukZ8R\naaDxcFzobWQFLlfoKajWoVUr9E60ERkkN/s83lBpllnzuY3rxTKxkSoWPmQkJa71XG/X8iy8viKX\ny9ctRIZreXZBOsMHRfp7WYLA4G7xrAvN4cszhUwf1ZEgQ/vNaBQEQRBaP5/9Ffve977HSy+9xLp1\n60hOTmb69OnodDpeeOEFnn76aVQqFcuWLbvZ9LIt82Tywr1sUiVZZtfJwgaPG/Ua4ho5r83hEhvY\nNqalrrX2SHG5uPKjV6jYtIXg3t0Y/sXbmLktaKAoaM7sRntqJ4oxFOfERShRiZ6dXHZBVa570oY+\nBMJTPZ/OcRunBOdKjJisGoJ1Mn2SbATp/NPQMuuyi/e327DaYUA3LY+PM2DUt45GkE6XzKbPitn4\nr2IkCcaNiGbJnFTCQsXGTwgMWo2a8QNS+HDfVb7KKmbCoFR/L0kQBEEQ7lmLv8P63ve+d/PfK1eu\n/MbxKVOmMGXKlJZeRkBpqckL63bmsOt4QYPHH+iT2GhQwWQWG9i2Rkz58A7Z7uDy0pcxbdlF6KC+\nZK75M4a46FslGYqM5sgWtNkHUUKjcExcDGEeNqBz2d0BCdkJxkgIS7qnCRsWh4ozxUasTjUxwS56\nJNjR+qHiyiUpfLbfwb6T7nKN2RMMDO2pbTWTKXKu1vH6yutcz7cRG63juYXpDOp7b01GBaEljemf\nwqdfXWP70TzGDUxB3Up+xwRBEAThbu2rSUCAuDF5oT73OnmhsTR9tQrGDUjmiQmN151Ghbs3sPUe\nExvYVqklrrX2RrLYuPTUTzBt2UXYiMF0e/91tBG3ZXTJEtr9H6DNPogcGY9j8nc8D0g4LGC65g5I\nhMTdc0Ci0qLmeEEQVqeatEgHvRP9E5CoqJZ5fYOVfSedJESp+OHcIIb1ah3jPu0OmdUbCnjpN9lc\nz7cxeWwsf/7PniIg4Sevvvoqc+bMYebMmXzxxRcArF69ml69elFXd6vvzieffMLMmTOZNWsWGzZs\n8Ndy/SI8RM+wngmUmKxkXan093IEQRAE4Z6JXFQ/mTPePTrwxMVyTDU2osKMDMiMvfn15mosTV8B\nJg9Nb7JRpVGv9fmYSqHleftaa0+k2jouLvoRNQeOEzFhBF3//gfUQcZbN3A50e5dh6YgGzk2Def4\nJ8HgYTaRzfz1yE/FHYwIimr2+hQFCsxacsr1qIDu8XYSw+pvdNvSjpy18tYHFmwOGNxDy2NjDRh0\ngR+MADh/qZbXV1ynsMROQpyeZYsz6NOj7ZcSBqqDBw9y6dIl1q1bh8lkYsaMGVgsFioqKoiPj795\nO4vFwvLly9m4cSM6nY7HH3+cSZMmERnZfvp+TByUxv4zxWw/mkffzjH+Xo4gCIIg3BMRlPATjVrN\nvImZzBzTmTKTBVQq4iKD7nnCRWNp+tHNyHIQG9i25/Zr7fYpH0LjXFVmsp/8PnXHs4iaOp7Oy3+L\nWn+rh4Rit6LbsQp16XXkpC44xzwBOg/HbVoqoLYEVGoITwND/RNxGiMrcKlcT5FZh07jbmgZYfR9\nQ0unS+HTLx3sP12LXgtzJxkY0qP5DTr9wWqTWPtBIZt3uLPMpj0Yz7wZSRgN4vfDn4YMGULfvn0B\nCA8Px2q1MmHCBMLCwvj0009v3u7UqVP06dPnZi+qgQMHcvz4ccaPH++XdftDRmIYmakRZF2tpKii\njqSYEH8vSRAEQRCaTQQl/EiSZTbtueyV8Zs30vTvN8tBbGDbrpac8tHWOMsryZ77PJZzF4mZNZVO\nf/wFKu1tL5fWWuo+X4O6rAApozeuETNB48HLqaK4gxHWSlBr3RM2dEHNXp9DgrPFRqptGkL1Er0T\n7Rj90NCyvEpm9RYbBWUyqfFanpikJzGmdVQFnj5nZvnbuZSWO0hJMvD8kgy6d2l+cEjwPo1GQ3Cw\n+7Vq48aNjB49ut4m2OXl5URH3yqVio6Opqys/jLG20VFBaPVtszfNX+MS31sQib/teoI+8+W8G8z\n+/n85wcaMbLW/8Rz4H/iOfA/8Rw0jwhK+JG3x296M8uhvWxg7U5JBF+EOziKSrkwZym2nGvEL5xJ\nxu9eQnV7kLDWhG7728g1lUhdh+Aa+m3wJIioyO5yDXsNaPQQme7+bzPVOVScKTJic6mJDXHRI96O\nxg9xgBMXnWzYYcfuhGG9tHznsVjM1bW+X0gz1Vkk3l6fz/a9FajVMHNqArMfSUKvax3BlPZk+/bt\nbNy4kRUrVnh0e6WpkdhfM5ks97OsBsXFhVF2o/mtD3VOCCEm3MCOI3k8PDSNYGPryFRqCf56DoRb\nxHPgf+I58D/xHNSvsUCNCEr4SWONKe91/KbIcvCcJMus25njlSwVoe2w5xZwYfZS7LkFJD63gLRf\nfP+OJo2qqlJ0O1ahspjRD51ETeYozxpTyi6ozgOnFXTB7gyJexj5WV6n4XyJAUlRkRHloEOU8176\nYt4Xp0vh4712DmS5MOhg/mQDA7vpMLSCcZ9HT1Xz5upcKkxOOqQG8fzTGXTOaPvB19Zo3759vPnm\nm/zjH/9ocFR4fHw85eXlN/+/tLSU/v37+2qJAUOjVjN+YCobdl9m3+kiJg9N9/eSBEEQBKFZxO7L\nh+xOiVKT5ean802N37xXN7IcRECiYTeyVCrMdhRuZams25nj76UJfmK9dI1zM57BnltAygvf/WZA\noiwP3dZ/oLKYcQ2agnHkVM8CEpLDPWHDaQVDuDtDopkBCUWBXJOOrGIDCtAzwUbHaN8HJEpNMn9e\nb+VAlovkWDU/mhvMwG6B/6msudbFa29d47d/vky12cUT05N49ZfdREAiQNXU1PDqq6/yt7/9rdGm\nlf369ePMmTOYzWbq6uo4fvw4gwcP9uFKA8eofsnotWp2HMtHln1fyiUIgiAI90NkSvhAfZ/K9+0S\nS1SYnsoaxzduL8ZvtqyWyFIRWjfLuUtcmLMUV4WJtF/+kKTnnrzjuKroMrrd74LkxPmtGchdBnp2\nYqcVqnJBkSA4BkLimz3yU1Ygu0xPSY0OvUamd6KdcD80tDx2wcnGXXYcTvhWHy2PjjKg0wZ+dsRX\nR038fU0e1WYXXToG8/ySDDJSm9/HQ/CdzZs3YzKZ+OEPf3jza8OGDePQoUOUlZXxzDPP0L9/f158\n8UVeeOEFnn76aVQqFcuWLWswq6KtCw3S8a3eiew5WcipnPIGR0ELgiAIQiASQQkfqK93xK7jBaTF\nh9YblBDjN1uWJ1kq7aGfhuBWeyKL7PnfR6oy0+G/fkr8wsfvOK6+fhbtlxsAcI2ei5ze07MT22ug\nOh9QIDQRgqOb/Ja7OVyQVWzEbNcQZnA3tDRoffspqMOp8OEeO4fPucs1Fkwx0D8z8LMjTNVO3lqT\nx4FjVeh1KhbNTmHapHg0msAPpLR3c+bMYc6cOd/4+vPPP/+Nr02ZMoUpU6b4YlkBb8KgVPacLGT7\nsXwRlBAEQRBaFRGUaGGNfSpvsTkZNyCZ05crxfhNH2psfKrIUmlfzAePc3HBD5GtNjr9+VfEzvr2\nHcfVl46iPfQJaHQ4x81HSezk2YmtJqgpAlTu/hGG5n96W2NXk1VswO5SEx/qoluc7xtaFlfIvLPF\nRnGlTGqcmgUPGYmNDOyqP0VR2HOwkn++m09tnUTPzFCWLk4nJdHo76UJQotKjQulR0YU56+byC+t\nJTVeTJMRBEEQWgcRlGhhjX8qb2fy0HRmj+8qGlP6kLfGpwqtW9XuA+Q89RMUSaLL335P9NQJdxzX\nnN2H9vgXKIZgnBMWosSkNH1SRYG6UrBUgEoDkWnuxpbNVFar4XypAVlR0THaQXqk7/tHHD7n5IPd\ndpwuGNlPx7QRerQBXq5RXungzdW5HDttxmhQ88z8NKaMi0WtDux1C4K3TBycyvnrJrYfy2fxQ939\nvRxBEARB8IgISrQwTz6Vby/jNwOJN8enCq1P5ZZdXH7u30GjoeuK/yFywshbBxUFzfEv0J77EiU4\nHOfExSgRHqRCKwqYC8Fe7R71GZEO2uaN/FQUuF6l41qlHrVKoVeijbgQqZn37v7YHQof7LZz9IIL\nox7mPWykb5fA/lOhKArb9lSwakM+FqtMv15hLF2UTnysyHoS2pd+nWOJizRy4Gwxj4/tTGhQ4Jda\nCYIgCEJgv9NsA8Sn8oFJjE9tv8o/2MKVH/wKtUFP5qr/JXzEbd36ZRntoU/Q5BxDDo/FOXERhDTc\n/f/W90lfj/y0gDbInSGhbt7LqyRDdpmB0lotBq1Mn0Q7oQbfNrQsKpdYvcVGqUkhLUHNgilGYiIC\nu1yjuNTOG6tyOXO+huAgDcuWpDNhZMwdk1MEob1Qq1VMGJjK+ztz2HuqkIeHZ/h7SYIgCILQJBGU\n8AHxqXzgElkq7Uvp2g+59uLv0ISFkLnmL4QN7nvroORC++UGNLnnkKOTcU5YCMaQpk8qOd0TNiQ7\n6MMgIgVUzdvI210qsooN1Ng1hBsleifY0Pvw1VlRFA6ddfHhHjsuCUb31zF1hB5tADeFlGWFzTvK\nWLOpELtDZkj/CJ5dkEZMVPOyUwShrRnZN5kP911l5/F8Jg9NQ6MO7MCiIAiCIIighA+0xU/l7U7J\na/fFm+cShIYUv/Uuuf/xJ7TRkXR773VC+txWb+20o9v9LuriK8gJHXGOnQd6DxojumzugITsgqBo\nCE1o9shPs83d0NIhqUkMc5IZ58CXLRBsDoWNO+2cuOgiyAALHjLSu1Ng/2koKLLx+srrXMipIyxU\nw7LFHRg5LEpkRwgCEGzUMqJPIjuPF3DiYjmDu8f7e0mCIAiC0KjAfufZxrSFT+UlWWbdzhxOXCyj\n0mwnOtzAgMw45ozv0uxPY7x5LkFoiKIoFP75nxS8+ia6hFi6r3uDoMzbpmjYLeh2vIO6Ih8ptTuu\n0bNB03QdtqO2GkzXQJHdwYig6GYHJEpqNGSXGZAV6BxjJzXC5dOGlgVl7nKN8iqFjEQ1T04xEh0e\nuL97kqTw8dYS3v+oCKdLYcSQSL4zP43IcFE3f7s6i8S2veVkdgqhZ6aYwNAeTRiUys7jBWw7mieC\nEoIgCELAE0EJoVnW7cy5oz9Ghdl+8//nTcz027kEoT6KopD/u9cpWr4KfWoS3df/H8YOqbduUFeN\nbscq1NVlSJ0H4Br+KKg9yNaxVlFdWuT+d3gKGCOauS64Wqkjt0qPRq3QJ8FOjA8bWiqKwoEzLj7e\n5y7XGDdIx0PD9WgCuFzjWp6F11fkcvm6hchwLc8uSGf4IA/6fbQjTqfM57vL2fBpETW1EpPHxoqg\nRDuVFBNC707RZF2p5HpxDRmJzR9LLAiCIAi+IoISgsfsTokTF8vqPXbiYjkzx3T2uPzCm+cShPoo\nssz1X/wPpSvXY+yUTrd1b2BISbx5XGUuR7f9bVR11bh6PIA0aHLTvSAUBSzlUFeGSq1BCU8FvQd9\nJ27jkuFCqYHyOi1GrUyfJBsheuVe7uI9sdoVNuywcyrHRbARFk810qND4P4pcLpkNn1WzMZ/FSNJ\nMG5ENEvmpBIWGrhr9jVZVth/xMTaTYWUlDsIDlLz5Mxkvj1RfELenk0anEbWlUq2H83j6W/39Pdy\nBEEQBKFB4l2d4LHqWjuV9Yw2BTDV2KiutXtcnuLNcwnC3RRJ4uoLv6F8/acEde9M93VvoIuLuXlc\nVVmIbvtqVPY6XP0nIvUe3XTphaJATRHYqkCtI7JTD0xmV7PWZXOqOFNsoM6hIdIo0SvRhi9jb3kl\nEu9ssVFhVuiYrObJyUYiwwK3XCPnah2vr7zO9XwbsdE6nluYzqC+zctKaevOnK9h9YYCcq5Z0GpU\nfHtiHLOmJREeJv68t3e9OkaTEB3MofMlzBrXhfAQ0QRWEARBCEziXYvgsYhQA9HhBirqCSZEhRmJ\nCDX45VyCcDvZ6eLK87+g8tNthPTrSebav6CLvpXmryq5hm7XGnA6cA6bhpw51IOTymDOA0cdaI0Q\nkYbWEATUeLyuaquarGIjTllFcriTLrG+a2ipKApfnnLy6ZcOZBkmDNYxebgejS87ajaD3SGz7uMi\nPv68BFmByWNjWTgrheAgkT11w/V8K+9sLODYaTMAI4dGMe+xZJLixWun4KZWqZg4KJW12y6y+2QB\nj4zo6O8lCYIgCEK9RFCinbmfSRcGnYYBmXF39IG4YUBmbLPO581ztWdicsmdZJudnGd/StW2fYQO\n7U+3d15DE3arpl6ddwHtvnUgy7hGzULu0Kfpk0ouqM51T9rQh0J4KjSzEWuRWcvFMj0K0DXWTkpE\n8zIs7ofFprB+h40zlyVCg1TMe9BAt4zAfek/d7GW5SuvU1hiJyFOz7LFGfTpIerhbyivdPDeR0Xs\n2l+BokDv7qEsnJVC147NKyMS2ocHeifywd7L7DpRwMPDM9BqAjczShAEQWi/AvedqeDVDae3Jl3M\nGd8FcPd9MNXYiAozMiAz9ubXm7Pmps4lNExMLvkmyWLl0uIXMH95mPDRw+i64n/QBAfdPK6+chLt\nVx+CWoNz3JMoKV2bPqnL/vXITycYIyEsqVkTNhQFLlfoya/WoVUr9EywER0s38vduyfXiyXWfG6j\n0qzQOUXD/MkGIkID8/qw2iTWbipk8053r5lpD8Yzb0YSRoMItoF7osYHm4v5bFspDqdCWoqRRbNS\nGNgnXIxCFRoUZNAyqm8yXxzJ4+iFUob3Smz6mwRBEATBx0RQooXcT0ChJTac3pp0oVGrmTcxk5lj\nOt9x/yRZ5t3tF5u15obOJTRNTC65k8tcy8UFP6D2yCkiJ4+hy5u/R224VT+tOX8A7dHNKHojznEL\nUOLTmz6pow6q89wjP0PiIDi2WQEJlwTnSg1UWrQE6WT6JNoI9lFDS0VR2HvCyWdfOVBkeHCojklD\n9agDtFzj9Dkzy9/OpbTcQUqSgeeXZNC9i5gaAd+cqBETpWPu9CTGjYgJ2PIbIbCMH5TKtiN5bD+W\nL4ISgiAIQkASQQkv80ZAwdsbTovdxZenC+s9Vt+kC08CKgad5o5GlPez5rvP1Ra0ZFmFmFxyJ2dF\nFdnznsdy5gLR0yfT6c+voNZ9/dKmKGhO70R7ejdKUCjOCYtQojx4U26rBnMhoEBYMgQ1b/Sk1ani\nTJERi1NNVJCLngl2nzW0rLMqvL/NxrlrEmHBKuZPNtA1LTBf6ussEm+vz2f73grUapg5NYHZjySh\n1wVmNocvNTZRw2AQj4/gufjIIPp1ieVkTjmXC6vpnCyaxQqCIAiBJTDfqbZi9xtQaIkN53vbLmJz\n1J8yfvukC0lqfrZDS625tfJFWYWYXHKLo6Sc7LlLsWZfIe6JR+nw6s9Qab6+1hQZ7ZHNaLIPoYRG\n4Zi4GMKiGz+hooC1EmpL3ONBI9LcfSSawWRVc7bYiEtWkRrhpFOM7xpaXi2SWLPFRlWtQtc0d7lG\nWHBgbmCPnqrmzdW5VJicdEgN4vmnM+ic0T6u26aIiRqCt00anMrJnHJ2HM2n8yMiKCEIgiAEFvEO\nx4u8sTn39obT7pS4kGtq8HhkqOHmpIsVn569p4CK2CTf4ouyCjG5xM2eX8yFOf+G/WoeCU/PJf2V\nH6O6EfiRJbT7N6G5dgY5MgHnhEUQ3ESzREVxByOslaDWQkQ66IzNWlNhtZZL5e6ykW5xdpLCfdPQ\nUlYUdh9zsuWAAwWYMlzPhMG6gCzXMNe6WPFePnsOVKLVqHhiehIzHk5Apw3M4IkviYkaQkvpnhFF\nSlwIRy6UMmtcF6LCxDUlCIIgBA4RlPAib2zOvb3hbGxN4H6jYtBpsDslDmYV1XubpgIqYpPs5quM\nETG5BGxXcrkwZymOgmKSvr+E1JeW3mr253Kg3bsOTcFF5Lh0nOOeBENQ4ydUZDAXgL0GNAaITAeN\nzuP1yApcLtdTYNahUyv0SrQRGeSbhpa1FoX3ttm4cF0iPETFk5ONdE4NzGvgq6Mm/r4mj2qziy4d\ng3l+SQYZqU08N+2AmKghtDTV1+NBV32eze4TBcwY3cnfSxIEQRCEm0RQwou8sTn39oazsTUZ9Rrm\nTXJPIKiutVNWZa33HE0FVMQm2c2XGSPteXKJJfsy2XOW4iytIPXfl5H8vSW3Djqs6HatRV16HTm5\nK87Rc0Gnb/hkALILqvLAZQVdsLtkQ+35NeuU4FyJEZNVQ4hepneijSCdbxpaXi5wT9cw1yl0z9Dw\nxCQjocGBlx1hqnby1po8DhyrQq9TsWh2CtMmxaPRBN5afanOIvHhlmI+/UJM1BBa3vBeiWzcfZnd\nJwv49gMZ6LTt42+zIAiCEPhEUMKLvLU59+aGs7E1jeybRLDB/WlwRKiBuMggSk3fDEx4ElBpz5vk\nG3yZMdJeJ5fUnT5P9hPP4zJVk/7rn5D4nbm3Dlpr0O1YhdpUgtShD64HHgNNEy9xLgdU54LkAEME\nhCc3a8JGnUNFVrERq1NNTLCLHgl2fFGFICsKO486+fygAxUw9QE9YwfpUAfYRlZRFPYcrOSf7+ZT\nWyfRMzOUpYvTSUlsXllMW3P3RI3oSB1PzBATNYSWZdBpGN0/mS0Hczl8vpQRfZL8vSRBEARBAERQ\nwuu8sTn39obTkzUZdBqG907ik31XvvH9ngRU2usm+Xb+yBhpi5NLGlJz+CQXF/wAqdZCxz/+grgn\nHr3toAn9jrdR1VQiZQ7FNWQqNNVY1GlxZ0goknvcZ0hcswISxVUKxwuCkGQV6ZEOOkY7m/Pt96zG\nIvPuVjsX8yQiQlUsmGKkY3Lg/a6VVzp4c3Uux06bMRrUPDM/jSnjYgOyz4WviIkagr+NH5DK1kN5\nbDuaxwO9E0VGjiAIghAQRFDCy7y5OffWhtOTNUmyjKwoGPXqm5M6jHoNI/okNiug0p42yfURGSMt\no3rfYS4t/jGyw0nn5b8hZvrkm8dUphJ0O1ahstbg6jMGqd+EpoML9hqozsc98jMJgqI8XouiQEG1\nlpwKBZUKusfbSAyT7vGeNc+lPBdrt9qpsSj07KBh7iQjIUGBtalQFIVteypYtSEfi1WmX68wli5K\nJz62ffSWaYiYqCEEgpgIIwMzYzmaXcal/Goy05o37lgQBEEQWoJ4N9RCAnFz3tia7p4aAWBzSKhU\nKq+NsmwPRMaI95m27SPnuy+BotD1rT8QNWXszWOqsjx0O99B5bDiGvwQUo8Hmj6hpRJqiwGVu3+E\noYmpHLeRFbhUpqeoRodBBz3jbUQYW76hpSwrbDvsYNthJyo1TBupZ8wAXcB9yllcaueNVbmcOV9D\ncJCGZUvSmTAyJuDW6UtiooYQaCYOTuNodhnbj+aJoIQgCIIQEERQQvDZ1Ij2JBCDUq1RxSfbuPL8\nz1FptXR9+09E1n2ksAAAIABJREFUjBl+85iqMAfd7ndBlnA+8Bhy5wGNn0xRoK4ULBWg0rgnbOg8\nn/zgkOBssZFqm4ZQvcSYXlrqzC0fkDDXyazdaicnXyIqzF2ukZEUWL+Psqyw4ZN83lx1FbtDZkj/\nCJ5dkEZMVBNNRtuw8koHb72bzec7ipHFRA0hgHRNjSA9IZTjF8upqLYRE9G+e7wIgiAI/ieCEoJP\np0YIgqfK1n3K1Rf+E3VwEN3eeY2wYbeCDuprZ9Du3wSocI2Zi5zWo/GTKTKYC8FuBo3+65Gfnm+Y\na+3uhpY2l5q4EBfd4+0EG8Kou8f75qnsXBfvbrVTa1Xo3UnDnIlGgo2BlXVQUGTj9ZXXuZBTR1io\nhmWLOzByWFS7zY4QEzWEQOceD5rGis3n2Xkin1ljRXmhIAiC4F8iKCE0OjUiIsRAkEFcJoJvlaxc\nz/WXX0UTFUG3d/9KaL+eN4+pLx5Be+hT0OlxjpuPktCx8ZPJElTnuRtb6oK+Hvnp+TVdXqfhfIkB\nSVHRIcpBRlTLN7SUZIUvDjnYccSJWg3TR+sZ2S+wyjUkSeHjrSW8/1ERTpfC+JFxLHg8kchwnb+X\n5hdOl8znu+6cqPHdhR0Z3DdETNQQAs6wnvFs2J3D3pOFPDKio8iGFARBEPxK7DbbAbtTarS/QWNT\nI0y1dn799hEGZMYxZ3yXFu0v0dQ6hfahaPkq8n77V3RxMXR7fznBPb7+FE9R0GTtRXtyO4ohBOeE\nhSgxyY2fTHK4J2xIdnfviPAUUHl2DSsK5FXpuFKpQ62Cngk24kNbvqFlVY3M2q02rhTKRIerWPCQ\nkfSEwPp9uJZn4fUVuVy+biEyXMuzC9KZNiWNsrIafy/N525O1PigkJKyOydqpKZGtMvHRAh8Oq2G\nMf1T+Oyraxw8W8yY/in+XpIgCILQjomghB+19CZckmXW7czhxMUyKs12osMNDQYX5ozvQnCQnv2n\nCqkw2+44VmG23wxYzJuY6dd1Cm2XoigU/PffKHztH+iTEui2/g2COmfcOIjm+Fa05/ajhETgnLAI\nJSKu8RM6bVCdC7ILgqIhNMHjkZ+SDBfLDJTUatFrZPok2QkztHz/iPPXXLz7hQ2LDfp20TB7gpEg\nQ+B8yu50yWz6rJiN/ypGkmDciGiWzEklLLR9/ikREzWE1mzcgBS2HLzO9qP5jO6XHFCZWIIgCEL7\nIt45+YGvNuF3T9RoLLigUat5ZnofJgxI5j9WHKaq1vGN87VU08vmrLMtEZkhtyiKQu4r/0vJ39/F\nkJFC9/X/hyHt6ywIWUJ78BM0l48jh8finLgYQiIaP6G9Fsz57l4SoQkQHOPxWuwuFVnFBmrsGsIM\nEr0T7Ri0yr3fOQ9IksKWgw52HXOiUcNjYw080EcbUJuEnKt1vL7yOtfzbcRG63huYTqD+jbxPLRR\nYqKG0BZEhRkY3D2eQ+dKuHDdRI8O0f5ekiAIgtBOiaCEH/hiE36vEzWsdhfV9QQkoGWaXrbHyR8i\nM+ROiixz7ae/p2zNhxi7dqT7ujfQJ36dBSE50e7bgCbvPHJMCs7xC8DYxPQCaxXUFAIqCE8FY7jH\na6mxq8kqMmCX1MSHuugWZ0fTwk+JqUZmzec2rhXJxEa4yzVS4wPnmrc7ZNZ9XMTHn5cgKzB5bCwL\nZ6UQHBQ4a/SV8koH731UxO79FWKihtAmTBycyqFzJWw7mi+CEoIgCILfiKCEj/lqE36vEzUaa3oZ\nFWYkItS7nwS2x8kf7TUzpD6Ky8WVH71CxaYtBPfKpNv7y9HFRLkPOu3odq1FXXIVObETzrHzQNfI\n9acoUFcGlnL3yM+INNB7fu2U1mq4UGpAVqBjtIP0yJZvaHn2iov3ttmw2qF/ppZZ4wwYA6hc49zF\nWpavvE5hiZ2EOD3LFmfQp0eYv5flc2KihtBWdU6OoGNSOKdyyimtshIf6fmYZEEQBEHwFhGUaAGN\npeX7ahN+r8GFxppeDsiM9XrWgjeDIK2hHKI9ZoY0RLY7uLz0ZUxbdhEyqA/d1vwFbcTXG15bHbqd\n76CuKEBK64Fr1CzQNDLVQVGgpghsVaDWuUd+aj27dhQFrpt0XDPpUasUeifaiQ1p2YaWLklh81cO\n9pxwotXArPEGhvUKnHINq01i7aZCNu90X6vTHoxn3owkjIb2cW3eUN9EjSdmJDFuRIyYqCG0GZMG\np/L3T8+x81g+cyd09fdyBEEQhHZIBCW8yJO0fF9lItxPcGHOePe0gxMXyzHV2IgKMzIgM/bm173J\nG0EQT8shAiFo0R4zQ+ojWWzkPPMi1bu+ImzEYDLf/hOakK/vd101uu1vozaXI3UeiGv4I6Bu5PmS\nJXf/CEcdaI3ugISHIz8lGS6UGiir02LQyvRJtBFqaNn+ERXV7nKN3BKZuCgVCx8ykhwbOJv90+fM\nLH87l9JyBylJBp5fkkH3LqH+XpZPybLCV0dNrNnknqgRZLw1UcNgaH8lVkLbNrh7POt25bDnVCEP\nD88gPETv7yUJgiAI7YwISniRJ2n5vsxEuNfggkatZt7ETGaO6eyTTfz9BkGaetwtdhfvbbvIhVyT\n33s4+Lo8JhBJtXVcXPQjag4cJ2LCCLr+/Q+og4wAqKrL0G1fhcpSjavnCKSBkxufmCE53RM2XHbQ\nh0JEqscjP20uFVlFBmodGiKMEr0SbehbODZw5rKL97fZsDlgUHctM8caMOgD4xP3OovE2+vz2b63\nArUaZk5NYPYjSeh17WsTfvdEjakT45j17UQiwhvJ1BGEVkyrUTPtgQ6s+eIiH395lQWTu/l7SYIg\nCEI706ygxMWLF8nNzWXixImYzWbCwz1vINfWNSct31eZCPcbXDDoND751P5+1tn4416GJMkcOFuM\nzXFrnKM/ezj4ujwm0LiqzGQ/+X3qjmcRNXU8nZf/FrXevdlTVRSi27EKld2Ca8AkpF6jGg9IuGxQ\ndWPkZxSEJno88tNsU5NVbMAhqUkMc5IZ56Als/FdLoVP9zv48pQTnRbmTDQwpEfglGscOVnN397J\npcLkpENqEM8/nUHnjLafsXM7MVFDaM9G90tm+9F89pwsZMKgVJJjRfNWQRAEwXc8Dkq8/fbbfPbZ\nZzgcDiZOnMgbb7xBeHg4S5cubcn1tRrNScv3RiZCc0oRfBVcuF/3ss7GHvcKs51dJwob/F5/9XDw\nZXlMIHGWV5I993ks5y4SM2sqnf74C1Ra90uQqvgqut1rwenAOewR5MwhjZ/MUQfVee6RnyHx7pGf\nHm7wS2o0XCgzoCjQOcZOaoSrRRtallfJvPO5jfxSmYRoNQsfMpAYExjBJ3OtixXv5bPnQCVajYon\npicx4+EEdNr2kx1RXung/Y+K2PX1RI1e3UJZNFtM1BDaF61GzexxXfjLptNs2JXDD2b18/eSBEEQ\nhHbE46DEZ599xvr161m0aBEAL774InPnzhVBia/dS1r+vWzCA3WcpL/6NTT2uKtVIDfSHsBfPRx8\nXR4TCBxFpVyYsxRbzjXiF84k43cvofr6elXnnUe7dz2g4Bo9Gzmjd+Mns1WDuRBQIDwFjBEerUFR\n4GqljtwqPRq1Qq9EO9HBLdvQ8tQlF+t3uMs1hvbUMmOMAb0uMLIjvjpq4u9r8qg2u+jSMZjnl2SQ\nkdp+Ou/XN1Fj4eMpDOorJmoI7VO/LjF0T4/k1OUKzl+rFCNCBUEQBJ/xOCgREhKC+rZNr1qtvuP/\n27vG0vK7pUd67ecE2jjJhoIk00d1pNbibPENd2OPe2MBCfB/D4fWksFyv+y5BVyYvRR7bgGJzy0g\n7Rffv7npU18+gfbAR6DW4Bw7HyW5kWwRRQFLBdSVuvtGRKSD3rNPs10ynC8xUGHREqST6Z1oI0Tf\ncg0tnS6FT/bZ+eqMC70OnphkYHCPwOhJYKp28taaPA4cq0KvU7FodgrTJsWj0bSPjbiYqCEI9VOp\nVMwZ35VX3j7Cup05/HLJENQiQCcIgiD4gMdBifT0dF5//XXMZjNffPEFmzdvpnPnzi25tlbn9rT8\nSrMNw9dd8w5kFZOda7rvjIZAHCfZUJDky9NF2B2STzI56iuH6NslhlOXyqiscTT4fe2hh4O/WS9d\n48LcpTiLSkl54bsk//iZmwEJzbmv0B7bgqIPwjl+AUpcWsMnUhSoLQaryT1ZIzLdPWnDkzU4VWQV\nG6lzqIkMkuiVYKMln/Yyk8zqLTYKy2WSYtQseMhIQrT/A7iKorDnQCX/fC+f2jqJnpmhLF2cTkqi\nZ49jaycmaghC0zISw/hWr0QOnC3mQFYxI/ok+XtJgiAIQjvgcVDil7/8JatXryYhIYFPPvmEQYMG\nMX/+/JZcW6tze1r+mq3Z7M8qvnnMGxkNgTZOsrEgic3hTov3RSZHQ+UQGrWq3gwKo17DyL5Jbb6H\ng79Zzl3iwpyluCpMpP3yhyQ996T7gKKgObkDbdYelKAwnBMWoUQlNHwiRYbqfHDUgtbgzpDQeJZ1\nUGVVc7bYiFNWkRzupEtsyza0PJ7tZONOO3YnDO+tZfpoAzqt/z9pLK908ObqXI6dNmM0qHlmfhpT\nxsWibieZAVkXali1XkzUEARPzBzTiaPZpXyw9wqDu8eL4L0gCILQ4jwOSmg0GpYsWcKSJUtacj1t\nxoVcU71fv5+MhkAbJ9lYkORuvsjkuLsc4u4MishQA90zopg3qSvBBrEZaUm1J7LInv99pCozHf7r\np8QvfNx9QJbRHvkXmouHkcOicU5YDGFRDZ9IdrknbLhsoAtxj/xUf/Maqq+nSZFZy8UyPQrQNdZO\nSoTL6/fzBodT4aO9dg6ddWHQwZNTDAzI9P81pigK2/ZUsGpDPharTL+eYSxdnE58bPuYKCEmaghC\n80WHG3lwSBr/OnCdLw7nMm1ER38vSRAEQWjjPA5K9OzZ847mXyqVirCwMA4dOtQiC2vNWiKj4cam\nq2+XWHYdL/jGcX+UIjQWJLmbPzI52mNDyUBgPniciwt+iGy10enPvyJ21rfdByQX2v2b0FzPQo5K\nxDlhEQSFNnwil/3rkZ9OdzPLsORvTNhoqKfJkH69KDDr0aoVeiXYiAqWG/gh96+k0l2uUVwhkxyr\nZuHDRuIi/V8OUFxq541VuZw5X0NwkIZli9OZMCqmXTRxFBM1BOH+PDw8g32nCtl8MJfR/ZL92n9J\nEARBaPs8DkpcuHDh5r8dDgcHDhwgOzu7RRbV2nkzo+HuTVdUmJ60+FAsNiemGrtfx0k21mTybv5s\nKnkvDSXtTomi8jokpyQCGc1QtfsAOU/9BEWS6PK33xM9dYL7gNOBbu/7qAsvIcdn4Bw3H/SNTHpw\nWqAqDxQJgmMhJK7ekZ939zQxWyQUYwoFZj3BOpneSTaCdS3X0PLoeSebdtlxuGBEXx3TRur9Xq4h\nywqbd5SxZlMhdofMkP4RPLsgjZgovV/X5QtiooYgeEeQQcv0UZ1YvTWbj768yqIp3f29JEEQBKEN\n8zgocTu9Xs+YMWNYsWIF3/3ud729plavsc16czMa7t50VdY4qKxxMG5AMpOHpvv90/+7SyT0Os3N\nfhK3ay1NJe8IAtXYiQ4LjJGrrUHlll1cfu7fQaOh64r/IXLCSPcBuxXdrjWoy3KRUjJxjZ4D2kY2\nyHYzVBcACoQlQVD95R139zQJCwlm3MihRIaHUVpWztQBeoJb6JqzOxXe+qCKfSfsGPWw8CEj/bre\n08upVxUU2Xh95XUu5NQRFqph2eIOjBwW1eY35GKihiB436h+SWw/ls/eU4VMGJRKalwjmW2CIAiC\ncB88fhe9cePGO/6/uLiYkpISry+orahvIkRzMxoaayR5+nIls8d39ftG/+4SidBgPR/tu3Jf99uf\nAm3kamtR/sEWrvzgV6gNejJX/S/hIwa7D1hq0O1YhbqqBKlDX1wjHqu3J8RNlgqoLXFnRYSngSGs\nwZveXiaVGBfDmAcGY9DrOZt9mZNnzjG223BCDN4vFyqqkHhns40Sk0JavHu6RkyEfwNWkqTw8dYS\n3v+oCKdLYcSQSL4zP43INt7IUUzUEISWo1GrmT2uM69tOM2GXZf50ex+/l6SIAiC0EZ5HJQ4duzY\nHf8fGhrKa6+95vUFtRXe6GcQaNM2GnN7iURr7eMQiCNXW4PStR9y7cXfoQkLIXPNXwgb3Nd9oKYS\n/fa3UdWakLoNwzXkYVA1sFFUFHcwwlrpHvkZkQa6Rso7uFUmFRuXyJD+vVGA/UdOcvlaHjHh3i8X\nUhSFw+dcfLjHjtMFD34rmAkDVGj9XK5xLc/C6ytyuXzdQmS4lmcXpDN8UKRf1+QLYqKGILS8Pp1i\n6JERxZkrFZy9WkmvjtH+XpIgCILQBnkclPj973/fkutos+6ln8ENgTZtoznu5377S2sKAgWK4rfe\nJfc//oQ2OpJu771OSB933bHKVIxuxypU1lpcfcch9R1Xb08IwD3y01zoLtvQ6CEy3f3fJui0GsZ+\nawAh4XFYbXb2fHWU0opKwPvlQjaHwqZddo5nuwgywPzJRsYPj6CsrMZrP6O5nC6ZTZ8Vs/FfxUgS\njBsRzZI5qYSF+r+MpCWJiRqC4DsqlYo547vwysojrNuZw6+WDGk3o4QFQRAE32ny3euYMWMarUfe\nvXu3N9cj3OZee1PUNx7R23zxM3ytNQeBfE1RFAr//E8KXn0TXUIs3de9QVBmJwBUpbnodr2DymHD\nNfhhpB7favhEsgTVueC0gi7YnSHRWHnH15wSnC0xEhIegtNh5cCho5RXVhET7v1yocIyidVbbJRV\nKaQnuMs1osP9WxqQc7WO11de53q+jdhoHc8tTGdQ3wi/rqmliYkaguAf6QlhPNAnkf1nitl/pohR\n/ZL9vSRBEAShjWkyKPHuu+82eMxsNjd4zGq18tOf/pSKigrsdjtLly6le/fuvPjii0iSRFxcHP/9\n3/+NXq/nk08+YdWqVajVambPns2sWbPu7d60Mp5s7JvTm6Kh8YjebNLoi5/hL95sUNqWKYpC/u9e\np2j5KvSpSXRf/38YO6QCoCq4hG7PeyBLOEfMRO7Uv+ETSQ73yE/JAYZwCE9uuLzjNnUOFWeKjNhc\namKCXfToKDO6Sz+vB8kUReFglouP9tpxSTBmgI6HH9Cj1fjvU0K7Q2bdx0V8/HkJsgKTx8aycFYK\nwUFt99oUEzUEwf8eG92ZI+dL+WDfFYb2SMCgb7uvOYIgCILvNRmUSElJufnvnJwcTCYT4B4L+pvf\n/IYtW7bU+327du2id+/ePPPMMxQUFPDUU08xcOBA5s2bx0MPPcSf/vQnNm7cyPTp01m+fDkbN25E\np9Px+OOPM2nSJCIj225NdHM29p72prA7Jd7Zms1XWcU3v9YSTRrbeiNIbzQobcsUWeb6L/6H0pXr\nMXZKp9u6NzCkJAKgvnoa7f5NoFbjGjsPObVbwydyWt0ZErIEwTEQEt9wecdtKuo0nCs1IMkq0iMd\ndIx2olKBVu3dciGbXWHDTjsnL7kINsKih4307OjfsohzF2tZvvI6hSV2EuL0LFucQZ8eDTcCbe2c\nLpmtu8pZLyZqCILfRYUZmDw0nU+/usbnh3N5dGRHfy9JEARBaEM8fpf9m9/8hv3791NeXk56ejp5\neXk89dRTDd7+4YcfvvnvoqIiEhISOHToEK+88goA48aNY8WKFXTs2JE+ffoQFuZ+cz1w4ECOHz/O\n+PHj7/U+Bbzmbuwby6i4PcBRX9kBeK9JY3toBHl7EEij1yE5nK3+PnmLIklc/fF/Ur7+U4K6d6b7\nujfQxcUAoM4+jPbwZ6DT4xz3JEpCh4ZPZK8Bc767uWVoIgQ33ThNUSC/WsvlCj0qFfSIt5EQ9s3R\ns96QX+ou16ioVuiQpObJKUaiwvyXBWS1SazdVMjmne7fvWkPxjNvRhJGQ9u8LsVEDUEITA8NT2fv\nqUK2HLrOmP7JRIqSRkEQBMFLPA5KnDlzhi1btrBgwQLeeecdsrKy2LZtW5PfN3fuXIqLi3nzzTdZ\nsmQJer27gV1MTAxlZWWUl5cTHX1rUxIdHU1ZWf0b3xuiooLRau//DXlcnO8/ZbQ5XJy+XFHvseMX\ny1g8rffN3gWSJLPi07MczCqirMpKXGQQw3sn8dS0Xmg07jfnb310pt5yg9uZamxo9DriYpuuvW7s\nMSkqr6OypuFGkJ7+DKH1kZ1OTix4gfINW4gY1Juh//oH+pgoFEXBcXgb9sObUQWHEvzYc2jiUxs8\nj7WylNrqPFCpCE/riiG86YCEJCscv6pwrQKMOhjRTUV0qPcbjiqKwvZDFt77vBaXBN8eFcJjE8Ia\nLddo6deQo6dM/OEvFykqtZGRGsy//yCT3t0Dt3fE/T4ex89U8caKK1zIqUGrVfH4tBQWzUknKqLp\nxqeByh9/ZwShJRj1WmaM7sTbWy7w4d4rLHm4h7+XJAiCILQRHgclbgQTnE4niqLQu3dv/vCHPzT5\nfe+//z7nz5/n//2//4eiKDe/fvu/b9fQ129nMlk8XHXD4uLC/NI5v9RkocxkrfdYpdnO9/57F4O6\nu0s57s6oKDVZ+WTfFSxWB/MmZmJ3Suw/VdDkz4wKMyI5nDfvb0OZF009JpJTIjqs4UaQt/8MX2qp\nppv+ukYCjWyzk/PsT6nato/Qof3p8s5rVMtaKK1Gc2wr2vNfoYRE4pi4GJsqAup7zBQF6srAUg4q\nDUSmYbbr6r/tbRwud0PLapuGUINE70Q7klWhzOrd591qV1i/3cbpyxIhRlgy1Uj3DipMlbUNfk9L\nXh91Fom31+ezfW8FajXMnJrA7EeS0OvUAXtN3s/j0dhEDZfDTllZ/cHQQNdWX0NEoKX9GtkniW1H\n8/jydBETB6eRFh/q7yUJgiAIbYDHQYmOHTuydu1aBg8ezJIlS+jYsSM1NQ2/2crKyiImJoakpCR6\n9OiBJEmEhIRgs9kwGo2UlJQQHx9PfHw85eXlN7+vtLSU/v0baY7XyjU24QHAVOsu5ZBkhdM55fXe\n5kapRGMjLG93o0nj/TapDLRGkG256WagkCxWLi1+AfOXh4mdOIKMN/8LTXAQyBLaAx+juXICOSIO\n58TFEBxe/0kUBWoKwVYNGh1EpIO26bTfWruKM8VG7C41cSEuusfb0ai9/7znlki8s8VGpVmhU7K7\nXCMi1H/Xz5GT1fztnVwqTE46pAbx/NMZdM5om6NoxUQNQWhd1GoVc8Z14U/rT7F+Vw4vzGm779cE\nQRAE3/E4KPHrX/+aqqoqwsPD+eyzz6isrOTZZ59t8PZHjx6loKCAl19+mfLyciwWC6NGjWLr1q08\n+uijfPHFF4waNYp+/frx85//HLPZjEaj4fjx4/zsZz/zyp0LRI1t7G938mI5ptqGSyVufELcWIAj\nOszAwG5xN5s0eqNJZSA1gmzrTTf9zWWu5eKCH1B75BSRk8cweNPr7iCY5ES7dz2a/AvIMak4JywA\nQwObZlmC6nxw1oE2CCLTQN30y055nYZzJQZkRUWHKAcZUc6bfTC99bwrisK+k04+2+9AlmHiEB0P\nDtP7rYmiudbFivfy2XOgEq1GxRPTk5jxcAI6bdsLsImJGoLQevXuFEOvjtGcvVrJmSsV9OkU4+8l\nCYIgCK2cx0GJ2bNn8+ijjzJ16lQeeeSRJm8/d+5cXn75ZebNm4fNZuOXv/wlvXv35qWXXmLdunUk\nJyczffp0dDodL7zwAk8//TQqlYply5bdbHrZVt3YwB+9UEpVraPe21TV2YkM1dd7PCrMeDNlvaEA\nx/Ce8Tz8rQ7ERQahUas9alLpidsbQZZVWUFRiIsK9nlmQntouulPzooqsuc9j+XMBaKnT6bTn19B\nY9CDoxrd7rWoS64hJ3bCOXYe6BrIepCcX4/8tIM+DCJSmhz5qSiQW6XjaqUOtQp6JdiIC73V0NJb\nz7vFpvD+Nhtnr0qEBqmYP9lAZrr/pmt8ddTE39fkUW120aVjMM8vySAjNchv62kpYqKGILQNc8Z1\n4T+uHWb9zhx6dogS2YmCIAjCffH4XfhLL73Eli1bmDFjBt27d+fRRx9l/PjxN3tN3M1oNPLHP/7x\nG19fuXLlN742ZcoUpkyZ0oxlt243NvbTHujAr1YcqTcjIjrMSN/O0ew6UfiNY7eXSnwzc8FAsFHH\nxbwqDp07fDO1fdyAlAZLPW5kXjTcnvBOkiyzac9lv5ZNNFa6cuP+eHNEZHviKCkne+5SrNlXiHvi\nUTq8+jNUGg2ypRbdtpWoKwuR0nviGjkLNA28hLhs7oCE7IKgKPeUjSY+AZdkyC4zUFqrxaCV6Z1o\nJ8wg33Ebbzzv14ok1nxuw1Sj0CVVw/zJBsJD/POG2lTt5K01eRw4VoVep2LR7BSmTYpH00hzzdZI\nURT2H7lzosb8x5KZNklM1BCE1ig1PpSRfZLYd7qIL08XMaZ/StPfJAiCIAgN8DgoMWjQIAYNGsTL\nL7/M4cOH+eSTT/jVr37FwYMHW3J9bVpYsJ5B3Rvu0TBnfBc0GnWjpRK3Zy5U19rZejj3jkDGjdR2\nSVYaLPW4kXnhqUAom2isdKW590e4xZ5fzIU5/4b9ah4JT88l/ZUfo1Kroa4Ky2erUZvKkLoMwjXs\nEWgoAOWodZdsKDKExENwTJMBCbtLRVaxgRq7hnCDRK9EOwbtN5ve3s/zLisKe4472XzAgaLA5GF6\nJg7RofbDJ/SKorDnQCX/fC+f2jqJnpmhLF2cTkqi0edraWlZF2pYtaGAnKsWtBoVUyfGMevbiUSE\n6/y9NEEQ7sOM0Z04dL6ED/ddZVjPBIx6/2WbCYIgCK1bs/6CmM1mtm/fzueff05eXh5z5sxpqXW1\nG431aLg74NDYlAGDTkNEqIFTDTTHPHWpnH5dYprMvGhKoJRNBFrTzbbAdiWXC3OW4igoJun7S0h9\naSkqlQpVdSm67auQLWZcvUYhDZjUcJDBWuVuaokKwlPA2PT4yhq7mjNFBhySmoRQJ5lxDjQNxDvu\n9XmvtbrJF/smAAAgAElEQVTLNc5fkwgLVvHkFANdUv3zBrq80sGbq3M5dtqM0aDmmflpTBkX65fg\nSEtqbKKGIAitX2SogYeGZfDxl1fZcjCXGaM7+XtJgiAIQivl8bvyp59+mkuXLjFp0iSee+45Bg4c\n2JLrajc8CTwYdBqPShGqa+1U1tTfo6Kyxs7EwWlNZl7U5/bRi4FUNnGvTTdbaoRoa2bJvkz2nKU4\nSytI/fdlJH9vCQCqigJ0O1ajslswjJqGvcPQ+k+gKO5xn3Vl7r4REWmgb3qCQmmthgulBmQFOkU7\nSIt0NpVU0ezn/UqhxJotNqrrFDLTNcx70EBYsO9LBhRFYdueClZtyMdilenXM4yli9OJj21bm/QK\nk4P3PrxzosbCWSlkdhITNQShrZkyNJ09JwvYejiXsQNSiAprW69ngiAIgm94HJRYuHAhI0eORKP5\n5iburbfe4plnnvHqwtobTwMPjQkyaFGrQP5m1jtqFYQG6TzOvID6Ry/27RJLVJi+3uCHr8smmpNJ\nAmKEaEPqTp8n+4nncZmqSf/1T0j8zlwAVEVX0O1eC5IT5/BHCR8yDsrqGQOsKFBTBLYqUOsgsumR\nn4oC10w6rpv0aFQKvRPtxIZIjX7PDZ4+77KisOuok88POlCAh76lZ/xgHWo/THcoLrXzxqpczpyv\nIThIw7LF6UwYFdOmJk3U1rlYs6mAT7eV4nCIiRqC0B4Y9BpmjO7Eys0X+GDvZZ6e2tPfSxIEQRBa\nIY+DEmPGjGnw2L59+0RQIgBY7a56AxLgDlRY7S7CgvUeB0Dq6x2x63gBafGh9QYl/FU2cT/3p72P\nEK05fJKLC36AVGuh4x9/QdwTjwKgzj2Hdt96AFyj5iBn9Kr/BLIM5nx3Hwmt0Z0hoWm8V4Akw4VS\nA2V1Woxamd6JNkINDVy4jWjsea+xyLz7hZ2LuRIRISqenGKkU4rvr01JVti8o4y1mwqxO2SG9I/g\n2QVpxETV3yC4NboxUWPjZ8VU17jcEzXmi4kagtBejOidxLYj+Xx1pphJg9NIT2jbE9QEQRAE7/NK\nUbWiNH9DIXhfRKiB6AayGGLCDc3KYmisd4TF5mTcgGROX65sVtmEPwVKL4xAUr3vMJcW/xjZ4aTz\n8t8QM30yAOqc42gPfgQaHc6x81CSGhgXK7vcEzZcNnepRngqqBt/DG0uFVlFBmodGiKMEr0Sbei9\n/LDn5LtYu9WOuU6he4aGJx40Ehrk+81xfpGN5SuvcyGnjrBQDcsWd2DksKg2kzVw90SN4CCNmKgR\nAMw1LrbvK2fX/krGPhDNzKmJ/l6S0Map1SrmTOjCH98/ybqdOfxkbv828zonCIIg+IZXghLij4//\n3RjTabHXnwI/IDOuWZvuxntH2Jk8NJ3Z47u2mt4MgdQLIxCYtu0j57svgaLQ9a0/EDVlLACac/vR\nHvscRR+Ec8JClNgGBsX+f/buPDCq8l78/3v2yZA9maxkI2yCLLLJoixhkUUEFUFFKl5rrWBvbfu7\n7W2rfktrr1bv1fZaqPZWRMAFxF1BtgCy76vIvmRPJslkz2znnN8fY2Igk2QSZjJJeF7/KDNz5jxn\ntpzncz7P5+Oyf9/y0wnGcAiJb7HDRrlNzakCA05JTXyIk15mB768kC7LClsOOtl0wIEKuHuMnnFD\n2n+5hiQpfLaxkA8+zcfpUhgzPJwfz08ivAt1m/DUUeOnC3vicnj+jgn+d/5yNeu3Wth9wIrTpWDQ\nq4kI6zqfOaFj658ayYAeUZy8VMKJiyUM6hkd6CEJgiAInYjo39RFXL80oY5Rr+GOgfGtzmIINukw\n6DXYHI2DHHW1I3xRB8MfPBWyFC1Ef1Dy+WYuPf0sKq2WXiteJWzcSFAUNMe2oD31DYopFOfER1HC\nYzw/gaMGyrO+b/lpBlN0iwGJgkotZy16FAV6RtlJDHO1WNCyNSqqZd7daOdCjkR4sIoF04ykxrd/\noOxKdg1/X57Fxas1hIdqeXJBMiOHhrf7OPyluY4aEWF6LBYRlGhPDqfM7gNW1mdauHC5BoCEWANT\nM8xkjImkm0n8iRfaz9wJ6Zy6XMLabRe4tUfkTV2rSRAEQWgdccbSBTS3NMGo1zBzdGqrTw4+3XnZ\nY0ACOm7LzeYKWYoWom6WNV9w+Vd/Qm0Kos+qvxJy+20gy2gPfIHm/CHkkCickxZCcBMTaVsFVOQC\nCoQkQFDzE25FgUulOrLL9GjUCv3j7ESavCto6a1z2S7e22inskahf5qGBycbMRnbNzvC6ZL56MsC\n1n1VgCTBhDGRPDavOyHBXeMnVnTU6FiKiu18va2YrTtLqKhyoVbB8MFhTJ9oZuAtIV2ivezLL7/M\n4cOHcblcPPnkkwwYMIBf//rXSJKE2WzmlVdeQa/X8/nnn/POO++gVquZO3cuDzzwQKCHftNKNAcz\ndlACO47l8c3xfCbclhjoIQmCIAidhE/OmFNTU33xNEIbNbc0oazKwR+WH2RoX++7TLQU5Jg+MoUi\na02HW7bRUiFLb1pJNsyy6GoK317L1d+/jCYijD7vvU7woH4gudDuXofm6rfIEXE4Jz4KQcEet68p\nzncXtVSpITQJDJ4fV8clw3eFBkpqtATpZAbE2TDpfVd/RpIVNh9wsOWAE7Ua7rlTz9jBunZfTnbh\ncjWvL79KVq6NqAgdTz2azNCBYe06Bn+prpH4ZEOB6KjRAciywonTlazPtHD4eDmyAiHBGu6dFsvU\nCdFdqrXsvn37OH/+PGvWrMFqtXLvvfcyatQoHn74YaZNm8arr77KunXrmD17NkuXLmXdunXodDrm\nzJnD5MmTCQ/vOtlJnc3sO9LYd7qQz3ZeYmS/WIIMXSMwKwiCIPiX138tcnNz+ctf/oLVamXVqlWs\nXbuWESNGkJqayh//+Ed/jlFoQXNLEwCsVa3rMtFckMPmkPjTikOUVXWslpreFrJsqpWkpyyLMYMS\nmTkqOeDH5gv5S98h+8+vo42OpO+aZZhu6QlOO7odH6DOv4Ack4JzwiOgNzbeWFGgqpDq2lJQayEs\nGXQeHtdArVPFqQIj1Q41EUES/WJt+DJ+VV4ls/prG5fyZCJDVSyYaiQ5rn0DZHa7xMoPc/ns60Jk\nBaaMj+bRBxIxBXWcQF1b1XXUWPtFPpVVkuioEUDVNRKZu0v4OtNCXqH7d7lnmolpGWbuGBGBXtf5\nf5+uN3z4cAYOHAhAaGgotbW17N+/nyVLlgAwYcIEli9fTlpaGgMGDCAkxN3tYciQIRw5coSMjIyA\njf1mFxZsYPrtyXyy8zLr913l/nFNFEoWBEEQhAa8Dko899xzzJ8/n7fffhuAtLQ0nnvuOVatWuW3\nwQneaW5pQkPedpnwJsgBHaulZmsKWXqqheEpy+LznZeoqXUE/NhuhKIo5L7yJnl//Rf6+Fj6rF1G\nUHoK2GvQZa5GXZyNlNgH19h5oPVQFE+R3cs17JVoDEFIwd1bbPlZVqvmVIERl6wiMcxJepRvC1qe\nuerivY02qm0wIF3DvElGggztO1E+fa6KN1Z9R3ZuLbFmPYsXpjDgls7fBu/6jhpBRrXoqBEgV3Nq\nWZ9p4Zu9pdjsMjqtivGjI5mWYe7yy2Y0Gg0mk/s3et26dYwdO5Zdu3ah17tb6UZFRWGxWCguLiYy\nMrJ+u8jISCwWz8Fpof1MGZHM9mN5bDqYzYTbEokMbT6ILQiCIAheByWcTicTJ05kxYoVgPtKhtBx\n1C1BOHSmiLKqxi1BwfsuE94GOep0hJaaN1LIsqu2C1UUhawlr1H4z/cwpCTSd+0/MCQlQE0Fuq3v\noC4rQkobhGv0vZ5becouKM8GZy3oTISn3UJJaW2z+8yr0HLe4p449I62kxDm8tnxSLLC13sdZB52\nolHDveP0jBnYvss1am0S736Ux/pM9+dl5pQYHr43HqOh830+ruepo8YDd8cR1oW6hnR0LpfC/iNl\nrM+0cPpcFQDmKD0PzIxm0p3RhIbcXKnwW7ZsYd26dSxfvpwpU6bU395UG3Jv25NHRJjQav3znTWb\nO39w0hcW3t2P194/ylf7s/jlw0Pbdd/iPQg88R4EnngPAk+8B63TqjOcioqK+gnA+fPnsdtFpfWO\nQqNW8/Ck3swcncoflh+sz2ZoqDVdJq6vvxDaTX/DwQ5/upFCll2xXagiSVz57UtYVn+CsVcafdcs\nQx9nhooS9FtWoKouw9V3JNKwae4aEdeTHO6Wn5IDDKEQmoBa0/TPhazAxRI9ueU6tGqF/nE2IoJk\nnx2PtdK9XONKvkxUmLu7RlJM+wYCTpyuYOmKLIqKHSTGG3jul7cQG9X5swea66ghtI/SMiebdxSz\ncXsx1nInAIP7hzAtw8zQQWFdcsnMlStXmq1HtXPnTt544w3+9a9/ERISgslkwmazYTQaKSwsJCYm\nhpiYGIqLi+u3KSoqYvDgwS3u22qt8cUhNGI2h2CxVPrluTub/snhJMcGs+1wDncOiCM1LrRd9ive\ng8AT70Hgifcg8MR74FlzgRqvgxKLFy9m7ty5WCwWZs6cidVq5ZVXXvHJAAXfCTHpGdrX8+R8YM+o\nRrUUmlIX5KirvxBk0PLHFQc7dEtNbwpZetLV2oUqLheXnllCyccbMPXvTZ8PlqKLikBVmo9u60pU\ntipcgzKQBoz33MrTWesOSCgSmKKgW0yzLT+dEpwuNGCt1WLSyQyItxGk811By9OXXby/2UaNDQb1\n0jI3w4CxHZdrVNdIrFibw5ZvSlCr4f4Zscy9J57EhLBO/QdHdNQILEVR+O58NRsyLew9bEWSwBSk\n5u5JZqZmmEmM6/wp74899lj9kk+AZcuWsWjRIgCef/55Vq5c6XG7yspKXn75ZVasWFFftHL06NFs\n3LiRWbNmsWnTJu68804GDRrEs88+S0VFBRqNhiNHjvC73/3O/wcmtEitUjFvQk9e+eAYazMv8B8P\n3SaK4wqCIAhN8jooMXLkSD799FPOnTuHXq8nLS0Ng6FzTdY6o4bdILxdQtB4cm7AZNRx/LyF7Udy\nW1WgsmH9BX+31GzLsTZ0fSDF2+fpSu1CZbuDi4t+j3XDNroNHUCf1f+LNiwEVdFVdJmrUTltOEfc\njdznds9PYK+E8hxAgeA4MEV6ftz3ahwqThYYqXWqiTS56BdrR+uj5AFJUli/18H2I060Grh/goFR\nt2rb9cT24LFy3lyVRYnVSWr3IJ5+PIX0lM6VNXO91nbUuNHvpXAtm13im71WNmRauJLjXg6V0t3I\ntAwzY0dGEmTsOq+xy3Xt8q19+/bVByWaW2qxfv16rFYrzzzzTP1tL730Es8++yxr1qwhISGB2bNn\no9Pp+NWvfsXjjz+OSqVi8eLF9UUvhcC7JTWSQelRHL9YwrELxdzWyxzoIQmCIAgdlNdBiVOnTmGx\nWJgwYQKvvfYax44d42c/+xnDhg3z5/huWp66QXgbSLh+cr7xQBbbjubV3++pQKXdKZFfXI3klJqc\neLQ1E8Gfx+qJp0KWLfF0bGMGJTBzVHKr9x8oUo2NC0/8mvJtewgZM4zeK15F082EOvcc2h0fgCzh\nvGMOctogz09QWwqVBYAKwpLA0PzJfWmNmtOF7oKWSWEOekQ5m0uoaJXSCplVG2xkFcqYw1X8aJqR\nBHP7TdYqqlwsfz+HHXtL0WpUPDQ7nnunx6LzVcQlAFrbUcPX38ubXV6hja8zi9m6q4SaWgmNBsYM\nD2dahpl+vYO75FXk64+pYSCiueOdN28e8+bNa3R7w6yLOlOnTmXq1Kk3MErBnx6Y0JOTl0r5cNtF\nBvSIQqsRvx2CIAhCY14HJV544QVeeuklDh06xMmTJ3nuuef44x//2GT6pXBjPHWDaG2nC4NOQ1iw\ngRMXSzzef+hMEdNHprB+31X3xKPSTmRI0xOPtmYitMQXx3qjPB1b94TwTpOeL1VVc+7RX1C59whh\nE8fQ659/QR1kRH35ONrdH4Nag2vCfORED6+nokB1EdSUgEoD4cmgC2pyX4ryfUHLYj0qoI/ZTnyo\n7wpanrro4oMtNmrtMKSPlvsnGDDq22/CtueQlX+uzqa8wkXPNBNPP5ZCSvemX4+Orq0dNTrC97Kz\nkySFg8fKWL/VwrFv3b8lEWFaZk6OY8q4aCIj9AEeYfvqioEXoXkJ0d0YNziBbUdz2XEsj4lDuwd6\nSIIgCEIH5HVQwmAwkJqaypo1a5g7dy49e/ZELa6W+YUvu0E0V8SxrMrBb9/Yi931Q0FCbyYebclE\naEqgOl80lZLuy2PzZn++4Cqr4Oz8n1F99FsiZmSQvvTPqPU61Gf3oz3wFegMODMeQYlJabyxIkNF\nHtgrQKOHsGTQNj1RkhW4UKwnr0KHTqNwa5yNMKNvClq6JIUvdzvYecy9XGPuRAMj+rXfcg1ruZP/\nW53N3sNl6HUqHp2byMzJMWg0nXci1daOGl21I017qah0sWVnMVu+KSW/yAZAv97BTMuI5vYh4Z06\n46Y1ysvL2bt3b/2/Kyoq2LdvH4qiUFFREcCRCe1p1h1p7P22gM92XWZU/zhMxpuri4wgCILQMq//\nMtTW1rJhwwa2bNnC4sWLKSsrEycVfuLLbhDNFXEErglINNReE4/27nzR3inp/t6fs7iUsw8+Tc3p\nc0Q9MIMe//McKo0GzYltaI9nohiDcU78EUpkfOONZen7lp81oA2C8CRQN/2TYHcqnMgzUmbT0E0v\nMSDOjtFHBS1Lyt3LNbKLZGIjVCyYbiQ+qn0mvYqisGNvKW+9n0NVtUS/3sEsWpjcqQsNZuXWsvLD\ntnfU6IodadrDhcvVrM+0sGu/FadLwWhQM2VcNNMyoklNuvler9DQUJYtW1b/75CQEJYuXVr//8LN\nIbSbnhmjUvhoxyW+2neFB8bf2JJPQRAEoevxOijxy1/+kpUrV/KLX/yC4OBgXn/9dRYuXOjHod28\nfNkNorkijs1pr4lH88dq8Hnni/ZOSffn/hz5RZyZ+xS2i1eJ+dH9pPzXb1CpQHNoPdoz+1C6heOY\ntBBCoxpvLDm/b/lpd9eOCE303Br0e9UOFQdPKVTbNUR3c9E3xncFLY+fd7F2qw2bA4bdouW+8QYM\nuvbJTigudfDGyiwOn6jAaFDzxPwkpk6IRt1JWzD6qqNGV+tI408Op8zuA+7Clecvu1tNxscamDbB\nzAOzUrDV1gZ4hIGzatWqQA9B6CAmD0ti+9FcNh/MYcLgRKLDO++SOEEQBMH3vA5KjBgxghEjRgAg\nyzKLFy/226Budr7uBlFXxPHQmSLKqhxebdNeE4/mjrXa5uSjHRd9llXQ3inp/tyfPSuXM3MXYc/K\nJe6nC0h67t9RKTLa3Z+guXwcOSwG56RHweShN7zTBuVZILsgKBKCY5tt+VlSreF0oQFJgZQIB6kR\nvilo6XQpfL7TwZ6TTvRaeHCygeG3NL+swFcURWHzjhLe+TCHmlqZQf1CWLQwmZjozjnZbtRRI8HI\ngjmJDBvkuaNGS7pSRxp/KSq2s3F7MVu+KaGiyoVKBcMHhzE9w8zAfiGo1SpCgrXYbt6YBFVVVaxb\nt67+AsYHH3zA+++/T0pKCs8//zzR0dGBHaDQbvQ6DfeNS+f/vjjNx99c4if39A/0kARBEIQOxOug\nRL9+/a45uVWpVISEhLB//36/DOxm58tOF3VFHGeOTuUPyw9irfKclt1Qe0486o5p14l8bA6p/nab\nQ/ZpFkN7p6T7a3+1569w5sFFOPOLSPzVT0j45ROoJBfanWvQ5JxFjk7CmfEIGDw8t6PK3fJTkd3B\nCJOHLIrvKQrklGu5WKJHrYLbe6oIUpytHq8nljL3co1ci0xclJoFU43ERbXPOvuCIjvL3sni5HeV\nmII0LF6YzMQ7ozplET6PHTUe/r6jxg3WwvBXt53OTFEUjp+uZEOmhUPHypEVCAnWcO+0WO4aH02s\nuXMGtfzl+eefJzExEYDLly/z6quv8te//pWsrCz+/Oc/89prrwV4hEJ7ur1fLJsPZrPvdCGThiXR\nI8FD0FwQBEG4KXkdlDhz5kz9/zudTvbs2cPZs2f9MijBP50uQkx6hvb1fPXTqNfgcEoBmXho1Gru\nH5fOkbNF1wQl6vgqi6G9U9L9sb+ab89x5sHFuEqsJD3/DPE/fQQcNnTbVqMuuoocn45z3EOg8/Dc\ntWVQmQeoILQ7GJs+IZQVOGfRU1CpQ6+RuTXOTnJ0NyyeEz9a5eg5Jx9utWN3wu39tcwea0DfDss1\nJFlh/VYL736Uh90hM3xwGE8uSCKqE3ZAUBSFPQfLWPVRbqs6arSGv7rtdEbVNRLbdpfw9TYLuQXu\n73PPVBPTJpoZMzwCg/7mKFzZWtnZ2bz66qsAbNy4kalTpzJ69GhGjx7NV199FeDRCe1NrVIxL6Mn\nf3nvKGszz/Ob+UM6ZTBYEARB8L02lUDW6XSMGzeO5cuX85Of/MTXYxIa8HU3iKaufs6+Mw290YDk\ncAZk4lFeZcda6XlpyfVZBQ07WdRt682Eqb1T0n29v6ojpzg7/2dI5ZWkvvSfxPxoDtRWodv6Dmpr\nAVJKf1xj5oDmuq+1okBNMVRb3HUjwpJB3/RnyuGCU4VGKmwaQgwSt8bZMWhvvKCl06Xw6Td29p1y\nYdDB/LsMDOnTPss1cvJtLH37KmcuVBMSrGHxwlTuuD2iU54QN+yoodHgdUeNtvJXR5rO4GpOLRsy\nLezYW4rNLqPVqhg/OpJpGeZW1+m4GZlMP3xuDhw4wJw5c+r/3Rm/e8KN65McwW29ojl6vpgj54oZ\n2scc6CEJgiAIHYDXQYl169Zd8++CggIKCwt9PiDBv5q7+mmO7obFUhmQcXmTVXB9JwuDXgMo2Bwy\nUV52tWjvlHRf7a9i72HO/egXyLU2evztD0Q/cDdUWdFteQd1ZQlSr2G4RsyE649dUaAyH2xloNZB\neDJom87QqLKrOVlgwO5SExPsoo/ZjsYHF4GLrDIrN9jIL5ZJiFbzo2lGzBH+v7osSQqfbSzkg0/z\ncboUxgwP58fzkwj30wTen67vqDFmeDjz70sgPrbzdgnpiFwuhf1Hy1i/1cLpc1UAmKP0zLk7mkl3\nRvkt+NMVSZJESUkJ1dXVHD16tH65RnV1NbU3cQHQm90DE3py4mIJH26/wKCeUWh98UdGEARB6NS8\nDkocPnz4mn8HBwfz17/+1ecDuhk1vPLfXlkKHe3qpzdZBe9tOXfN/Q2Xenjb1aK9U9J9sb+ybXs4\n//h/gCTR880XiZwxEVVZEbqt76CqqcB161ikwZMaF6uUJajIAUc1aI3uDInrsygasFRr+K7QgKyo\nSIt0kBzum4KWh884WbfNjsMJowZomXWnAZ3W/1dJr2TX8PflWVy8WkN4qJYnFyQzcmi43/frayVW\nBx98mk/mrhvrqCE0r7TMyeZvitm0vZjSMnftlEH9Q5iWYWbYoDA0nbQjSyA98cQTTJ8+HZvNxtNP\nP01YWBg2m42HH36YuXPnBnp4QoDERZoYPziRrUdy2HY0l8nDkgI9JEEQBCHAvA5KvPjiiwCUlZWh\nUqkICwvz26BuFtdf+Y/08mp/V9VcVkFznSwa8rb+RHsHZdq6v9IN27j409+CRkOv5f9N+MQ7UBXn\noNu6EpWjFtfQqUj9xjTeUHJCeTa4bKAPdteQ8PCZsjslyirtVMkhZJcbUasU+sfaMAc3ru3RWg6n\nwsc77Bw87V6usWCqgcG9/X+V2emS+ejLAtZ9VYAkwYQxkTw2rzshwW1arRYwvu6oITSmKArfna9m\nQ6aFvYetSBKYgtTMmGRm2gQzifEiC+VGjBs3jl27dmG32wkODgbAaDTyH//xH9xxxx0BHp0QSPfc\nkcqeb/P5fNdlxtwah8koMpAEQRBuZl6fpR85coRf//rXVFdXoygK4eHhvPLKKwwYMMCf4+vS1mRe\nuObKv7dX+/0pEFkbdZrLKigpr2myk0VD/uiiESjFH2/g0s//gNqgp/c7rxE6Zhiq/Ivotr8HkhPn\nqHuRew5pvKHLDmVZIDvBGA4h8Y2yKOoCYscvlNC3T1/Sks24XA6GJzsJ80H7+IIS93KNwlKZ7mY1\nC6YZiQ73f6DtwuVqXl9+laxcG1EROp56NJmhAztXANWfHTUEN5td4pu9VjZkWriS415GkJxoZFqG\nmXGjIgky3pwFPX0tLy+v/v8rKirq/79Hjx7k5eWRkJAQiGEJHUCISc/do1L5cPtFvtxzlbk3cVcf\nQRAEoRVBif/5n/9h2bJl9O7tniyfPn2aP//5z7z77rt+G1xX1tyVf191m2gNSZb5v09Psvt4bsCz\nNjxlFTRXc6Ihf3TRCISi1R9z5TcvognpRu/V/0vIsIGos75Fu/NDAFxjH0RO7td4Q0e1O0NCkaGb\nGUzRjZd14A6I7T5lYcKYEURHhlNUXMr2PQcpGhBzQwExRVE4+J2Lj7fbcbrgjkE6Zo7Ro/Xzcg27\nQ2bNZ/l89nUhsgJTxkfz6AOJmII6z+SyPTpq3OzyCm18nVnM1l0l1NRKqNUwelg40yaa6d87WGSg\n+FhGRgZpaWmYze5ihoryQ8FclUrFypUrAzU0oQOYNKw7mUdy2XI4mwlDEjGH+yAiLgiCIHRKXgcl\n1Gp1fUACoF+/fmg0neeEv6Mpr7I3eeW/uav9/spk6IhZGw01V3OiIX900WhvBf98l6w/vIY2Mpw+\n7/+dbgP6oj5/CO3+z0Gjwzl+Pkp8j8Yb2sqhIg9QICQBgjzXT7A7JS4V2Jkx6U5MQUFcuJLNvsMn\nkGX5hgJidofCR9vtHD7jwqiHh6cbGdjT/0smTp+rYunbV8krtBNr1rN4YQoDbgnx+359qb07atxM\nJFnhyIkKNmRaOHrKfbU+IkzL3ZPjmDIuulO2hO0s/vKXv/DZZ59RXV3NjBkzuPvuu4mMjAz0sIQO\nQqfVMGd8Om9+/i0f7bjIT2fdGughCYIgCAHSqqDEpk2bGD16NADffPONCErcAG+6TTTkz/oTgcra\naH9LwA0AACAASURBVG2A5fqaE/rvt7E7JCJD/dtFoz0oikLe394i9+U30MVG03fNMoJ690Dz7U60\nRzahGEw4MxagRHe/fkOoKYHqou9bfia560g0IasERo4Yjkat5tDxbzl97lL9fW1d/pJfLLFyg40i\nq0JSrJoFU41Ehfn36n6tTeLdj/JYn+n+7M6cEsPD98ZjNHSe3yXRUcN/KqpcbN1ZzNfbiikqdrcb\nvqVXN6ZPNHP7kHB0WpF94m+zZs1i1qxZ5Ofn88knnzB//nwSExOZNWsWkydPxmgUn/Ob3YhbYth0\nMJsD3xUxeVg56Ymda7mdIAiC4BteByWWLFnCn/70J37/+9+jUqkYPHgwS5Ys8efYujRvuk001FQm\ngyQrLJjS54bG0tasjbZqa4DFU82JuvH7OnPE7pTIL65GckrtknmhKAo5//V38pe+g757PH3X/gNj\nSiKaIxvRfrsLxRSKc9KjKGEx128IVQVQawW19vuWn55P9BUFrlh15FZ3Q1FcZO46QG5B0TWPae3y\nF0VR2P+ti0922HFJMHawjhlj9Gj9XPvgxOkKlq7IoqjYQWK8gacfS6Fvz6YDMR2N6KjhPxcuuwtX\n7jpgxeFUMOjVTB4bxbQMM2nJnb/WTGcUHx/PokWLWLRoER9++CEvvPACS5Ys4dChQ4EemhBgKpWK\neRk9eendI6zJvMBvHxkillEJgiDchLwOSqSmpvLWW2/5cyw3nea6TTTUXCbDjqO5oCg8PLl3sxP6\n5rISWpu1caNudKnI9TUn/BYwqbQTGeL/2hqKLHP12VcoWvEhxh7J9FmzDEN8DNp9n6G5cBg5NArn\npIXQLfz6DaE8FxyVoDG4AxIaz+n+kgzfFRkortZi1MoU5ZxvFJCA1i1/sdkVPtxm59g5F0EGWDDN\nyK09/Ltco7pGYsXaHLZ8U4JaDffPiGXuPfHodZ3jqrfoqOEfTqfM7oPuwpXnLtUAEB9jYGpGNBlj\nogju1rk6r3Q1FRUVfP7553z88cdIksSTTz7J3XffHehhCR1E76RwhvY2c/ichcNnLQzrG9PyRoIg\nCEKX4vWZ2t69e1m5ciWVlZXXFKsShS7brrluEw2VVtiaLPAoK7DtaB4ajdrjhN6brITWZm3ciI5W\n4PN67V1bQ5EkLv/qBYrXfkFQ33T6rlmGLjIM7c41aLJOI0cm4Jz4IzBedwVddkFZNrhqQdcNwrqD\n2vPrZnOqOFlgoNqhIcwo0T/OxvCk7ricthYDYk3JKZJYtcFGcblCSpyaR6YaiQz1b2Dg4LFy3lyV\nRYnVSWr3IJ5+PIX0lM5x5buuo8aHXxRQUeUSHTV8xFLiYON2C5u/KaGi0oVKBcMGhTJ9YgyD+oWg\nVovXNpB27drFRx99xKlTp5gyZQovvfTSNbWpBKHOnAnpHLtQzIfbLzC4VzRaTecINAuCIAi+0arl\nG4sWLSIuLs6f47kpeeo20dCWQ9ktPoenCb3dKbF641l2nyqov62pSfa8jJ6YgvTsPp7Xpkmqt9p7\nqUhrtHfARHY4ufSz5yn9YjPdBvWj97v/iy4kCF3matQFF5FjU3GOnw/665ZjuBzIZVdRy04kfSia\nsESPHTYAym1qThUYcUoq4kOd9Ip24J6neRcQu56iKOw56eLzne7lGhOG6pg2Uu/XiXVFlYvl7+ew\nY28pWo2Kh2bHc+/02E5RE0B01PA9RVE4cbqSDZkWDh4rR1YguJuGe6fFctf4aGLNnb/7Tlfx4x//\nmNTUVIYMGUJpaSlvv/32Nfe/+OKLARqZ0NHERpiYMCSRLYdyyDycw5QRyYEekiAIgtCOvA5KJCYm\ncs899/hzLIIHdqfEiYslLT6u4YS+LjviyNkiSisdHh9//SRbo1bzxOwBTBuRdM0k1e6UKCmv8VnN\nhvZeKtIazQVMSn0cMJFtdi785D8p27KT4BGD6bPqr2j0anSbV6AuyUHq3hfX2LmNlmNI9mqcJVcx\nauHLY1XsuGDltt41HpeXFFRoOWvRowA9o+0khroaxS5aCog1VGOTWbnBxokLEiYjLJxh5JZU/6bF\n7zlk5Z+rsymvcNEzzcTTj6WQ0r1ztI07dbaSd9aKjhq+UlMrsW13CRu2WcjNd39P01NMTJ9oZsyI\nCAx6EeTpaOpaflqtViIiIq65Lyen+U5Kws3nnjFp7DlZwBd7rjB6QDzBQeK3UhAE4WbR4owiO9t9\nlX7YsGGsWbOGESNGoNX+sFlSUpL/Ric0O1FuqOGE/volCJ40lZVQN0mVZJn3tpxrc7ePpmpYtOdS\nkdZqLmCiAjYeyGqxdoc3pOoazj/2/1Gx6wChY2+n1/L/RoMT3cblqMstSD1uwzVqVuPlGPZKFGs2\nOrXCO7sr2HG2FqBR5ouiwKVSHdllerRqhX6xNiJN8g2NObtQ4r1VxRRZJdIS1Dxyl5HwEP9NAq3l\nTv5vdTZ7D5eh16l4dG4iMyfHdIqlDlm5taxal8uh46Kjhi9k5dayIdPC9j2l2OwyWq2K8aMimZZh\nplcPk6jF0YGp1Wp+8YtfYLfbiYyM5M033yQlJYXVq1fzz3/+k/vuuy/QQxQ6kOAgHXePTmXttgt8\nuecKD07sFeghCYIgCO2kxaDEo48+ikqlqq8j8eabb9bfp1Kp2Lp1q/9GJzQ7UW6obkLf3BKEhlrK\nSmhrbQVvalh4W+CzvTUXMGmpdoe3XBVVnHvk36k6dILwu8bR840X0dgr0W1Zgaq6DFffUUjDprpb\nezZUU4pSVYAsKyzNtHIy59oMmLrMF41Gw+lCA6U1WoJ0MgPibJj0Cm2lKAq7jjv5YpcDWYGJw3Tc\nNVKPxk9r9RVFYcfeUt56P4eqaol+vYNZtDCZxLiOP6EXHTV8x+VSOHCsjPVbLXx7tgqA6Egdc+6O\nY+KdUYSLbJNO4bXXXmPFihWkp6ezdetWnn/+eWRZJiwsjA8//DDQwxM6oIlDu7PtaA5bD+cwYUgi\nsQFazikIgiC0rxaDEpmZmS0+yaeffsrs2bN9MiDhWgadhkG9osk8nOvx/qjQayf03mZWDOwZ1WQt\ngRupreBNMMPbAp+BMC+jJ5KssONoLrKHufyN1JZwlpRx9uGnqTl5hsjZd9Hjb0vQVBah27oSla0a\n1+CJSLeOu7Y+hKJAdRHUlCCj5qWvirhS4mr03NZKG5ZyJ3k1wdQ41UQEuegXa+dGXtYam8KaLTZO\nXZIIDlLx1NwI4sI8LwfyheJSB2+szOLwiQqMBjVPzE9i6oToDl+sUHTU8B1ruZPNO4rZuL2Y0jIn\nAIP6hTAtw8ywQWGdIlNG+IFarSY9PR2AiRMn8uKLL/Kb3/yGyZMnB3hkQkel06qZM74n//j0FB9t\nv8iiewcEekiCIAhCO/DJgvCPP/5YBCX8qKnT8NG3xrHgrj7XTJBbyqyICjVgMuo4ft7C9iO512Qy\n1GlrMcrWBjO8qWfQXCtTf9Co1dw1PIltRzwHgdpajNNRWMzZBxdRe/YS5odmkfry71AXZ6Pbthqc\nDpwjZiL3GXHtRooMFXlgrwCNHle3RCqdJUDjoER6cjxXKiNwyWoSw5ykR9UVtGybqwXu7hrWSoX0\nRA3z7zLQM82AxeL7oISiKGzeUcI7H+ZQUyszqF8IixYmExPdsQsWOp0yX20pYu3noqPGjVAUhe/O\nV7Mh08K+w2W4JIUgo5oZE81MzTDTPb7jZ8kInl0flIuPjxcBCaFFw/qYSU8M5dBZC+dzyujVPbzl\njQRBEIROzSdBiYYtQgXfsjsljp0v9njf2ayya/4tyTIf7bhItc3p8fGjb43DoFOz7Whe/W0NMxl+\n/tBQoO3FKH3ZWcObZSD+EhZsIMqHxTjtOfmcmbcI++VsYh9/kOQlv0STdx7tNx+ALOO6Yw5y2sBr\nN5IlKM8GZw3ogiAsGYPa8/KSXmnJjBw6EEmG3mY7CaGNgxbeUhSFHUedfLXHgSLDlBE6Jo/Q+y1b\noaDIzrJ3sjj5XSWmIA2LFyYz8c6oDp1hUNdR4/3PTpObbxMdNdrIZpf4Zp+VDZkWrmS766MkJRqZ\nnmFm3MhIgoI6RvaU4Dsd+XstdBwqlYp5Gb34r1WHWZN5gd8vGCo+O4IgCF2cT4IS4o+F/7Rmot9U\ngUujXsMdA+OZfWcP/t9b+z0+19Fzxdgc7slsW4tR+rKzRltrWviCL4tx2i5lcWbuUzjyCon/98fo\n/ptFaC4fR7vnE1BrcE54BCXxumJekgPKstz/NYRCaEJ9jYmG9TjKquyMHjaQtJRktGqZW+PshAe1\nvaBlda3CB5ttnL4iEWJSMf8uA72S/NNdQ5IV1m+18O5HedgdMsMHh/HkgiSCgzVYymo71JKehq7t\nqKESHTXaIL/QxoZtxWTuKqG6RkKthlHDwpmeYaZ/n2Dx96QLOXr0KOPHj6//d0lJCePHj0dRFFQq\nFdu3bw/Y2ISOrWdiGMP6xnDoTBEHzxQx4pbYQA9JEARB8CP/9vMTbpi3E/3mlk6YDNr6+g3NBTis\nFfb6D0RzxSj93VnjRmpa+Mq8jJ6YgvTsPp7X5mKcNWcucPbBxTiLSuj+28Uk/OwxNN/tRXtoPYre\niHPCApSY63qxO2vdGRKyC4IiITj2mhoTdfU4Zt2ZzukCI9UuPSadzIB4G0G6tmcsXc6TWP21jbIq\nhV5J7uUaISb/XPXPybex9O2rnLlQTUiwhsULUxk1PIy12y4GJDPGG546avzsx70x6NqelXIzkWSF\nIycq2JBp4egp92sYHqrlgZlxTBkXTXSkPsAjFPzh66+/DvQQhE5szvh0jp6zsG77RW7rZUanDfzf\nAkEQBME/RFAigLypl+DtRL+5gENZlb1+P80FOCJCDVSWu9OoPRWj1GpU7dJZw5fLQNpKo1bzxOwB\nTBuR1KqaFnXvqe7yJS4v+DkuaznJf/z/iHt8HprjmWhPbEMJCsY58VGUiLjrNq6Cimx3ccvgWDBF\nedxHjUPFqcJgal1qokwubom109ZzNVlR2HbYydd7HSjA1JF6Jg7T+WW5hiQpfLaxkA8+zcfpUhgz\nPJwfz08iPFTHe1vOBSwzpjnXd9To1zuYR+e6O2qYzUFYLJUBG1tnUFHlYuvOEjZus1BY7K5H0rdn\nN6ZPNDNyaLiYZHRxiYmJgR6C0InFhAcxcWh3Nh3MZuvhHKbentzyRoIgCEKn5JOgRHBwsC+e5qbR\n2noJ3kz0vcmoaCnAYdRruX6K1bAYpTcTR1901vDlMpAb5U0xTrj2PdWdOcuML5ajddhJ/e9niX3o\nHrQHv0Jzdj9KcASOSQshJPLaJ6i1QmU+oILQ7mAM9bif0ho1pwuNuGQVSeEOekQ6aWu2e1WNwvub\nbZy5KhHaTcUjdxlJ7+6fDJQr2TX8fXkWF6/WEB6q5ckFyYwc6i5e1hEyY64nOmrcmItXalifaWHX\n/lIcTgW9XsWksVFMzzCTlixa/AmC4J2ZY1LZfTKfL/ZcYcyAOEJMIqtKEAShK/I6KGGxWFi/fj3l\n5eXXFLb8+c9/zrJly/wyuK6qtfUSvJnoe5tR0dZMBn901vC0j7rj81VNh/ZS954mZp9n6hcr0EgS\nW+56iB7mvszfuQ7N1ZNIYTG4Ji0EU8gPGyoKVFugphhUGghPAl3j101RILdCy4ViPSqgb4yduJC2\nLx24mOterlFRrdA3RcNDk40Em3w/2Xa6ZD76soB1XxUgSTBhTCSPzetOSPAPPz0dITOm4Xg3bS8W\nHTXawOGU2b63hA2ZxZy7WA1AXIyBaRnRZIyJIribSMwTBKF1uhl1zByTxgdbz/PF7is8PDlwmXOC\nIAiC/3h9lvjkk0/Sp08fkY55g27kqnBLE31vAg5tzWTw58TRU+bI4F7RZAxN5Pj5kjYvA2kvde9p\n8uXTTFm/GpWisGn6AvJ69mXO1a/RGUo4Zw/lrZwB9N2Tz7yMbu6MGEWByjywlYNaB+HJoG2cBSIr\ncL5YT36FDp3GXdAyzNi2gpayrLD1kJON+x2ogBmj9YwfqkPth6v/Fy5X8/ryq2Tl2oiK0PHUo8kM\nHRjW6HEdITOmrqPG6o/zKCiyi44arWApcbBxu4Wtu0opK3dn7gwbFMq0DDOD+4f6rXOLIAg3h4wh\niWQeyWHb0VwyhnYnLlJkWwmCIHQ1XgclTCYTL774oj/HclPw5+S+NQGH1mYy+HPi6ClzZOvhXCYN\n684LT9ze5mUg7aW8yk74oQNkbHofWa3h65kLKU1J4zdRx+lrKOe4LZK/ld6KXZHJqcuIyUiH8hxw\nVoPW6A5IqBt/HR0SfFtgpNymIVgvcWucHWMbC1pW1si8u9HO+WyJsGAVC6YaSUvw/Wtqd8is+Syf\nz74uRFZgyvhoHn0gEVMTLR592e2kLa7tqAEzJpp5YKboqNEcRVE4+V0l67daOHisHFmB0BAts6fG\ncNd4M3Ex7bfEShCErk2rUfPA+HSWfnKKddsv8vR9AwI9JEEQBMHHvA5KDBo0iIsXL5Kenu7P8XR5\n7XFVuC1LJ7x5Tn9MHL3JHGmv1P22kjZsZtLG93Bq9ay/59+oTUrg2ahjpOir2FsTwz+styDxw9X2\ni1klyFYNaskO+mAI617f8rOhKruKUwVGbC410d1c3BJjR9PGi/bns128u9FOZY1Cv1QND0420i3I\n91ewT5+rYunbV8krtBNr1rN4YQoDbglpcTtfFEhtLU8dNebfl0B8rNFv++zsamoltu8pYX2mhdx8\n929Yj5QgpmfEcO+MJCoqagI8QkEQuqIhvc306h7GkXMWzmZZ6ZMcEeghCYIgCD7kdVBi586drFix\ngoiICLRaregz3kaBvip8I/wxcfRl5og33Ux8rfDttWT//mXkbsF8cfdjkBDN89FHidPWsqUqgRXl\nvVH4YfKfGK5l0fhgd0AiKAKC4/BUqbK4WsN3hQYkRUVKhIPUiLYVtJRlhU0HHGw54ESlhpl36Bl3\nm87nxRprbRLvfpTH+kx3gGnm5Bgevi8eo8G798EXBVK91VxHDcGzrNxaNmRa2L6nFJtdRqtVMW5U\nJNMyzPTuYUKlUmHw8r0WBEFoLZVKxdyMnvx55WHWbrvA7380zC/LDgVBEITA8Doo8Y9//KPRbRUV\nFT4dzM0iEFeFfcEfE0dfZI60tpuJr+QvfYfsP7+ONjqSfu//HWuWlQlFmwlX2/nans6Htako/FD7\noW+cnqcnhmMyqHEFRaMNNjcKSCgKZJfpuFSqQ62CfrE2YoKlNo2volpm9dd2LuZKRIS4l2ukxPt+\n4njidAVLV2RRVOwgMd7A04+l0Ldn2zry+CPLp47oqNE6kqRw4GgZ6zMtnDpTBUB0pI77Z8QxaWwU\n4WJ5iyAI7Sg9IYwRt8Rw4LsiDpwuZGT/uJY3EgRBEDoFr4MSiYmJXLhwAavVCoDD4eCFF15gw4YN\nfhtcV3X95D7IoKXW7sIlKW1Oz29Pvpw4+iJzpLXdTG6UoijkvvImeX/9F/r4WPqsXYYpVM3sU+tQ\nqe1Y+01k9MA7yd9xsX4cI3sY+bc73UUed2epGTMsptHzSjKcs+gprNKh/76gZWgbC1qeverivU12\nqmoVbu2hYd4kIyajbyfe1TUSK9bmsOWbEtRquH9GLHPviUev61gfYtFRo3Ws5U427yhm045iSqxO\nAAbeEsK0DDPDB4eJ10wQhICZMy6dI+csfLTjIkP7mNFpRYaWIAhCV+B1UOKFF15g9+7dFBcXk5yc\nTHZ2Nv/2b//mz7F1eVqNii2Hc9r9Cn9HcyOZIzfSzaQtFEUha8lrFP7zPQwpifRd+w+Mmhp0m98D\nWcI5+j5M6bc1OC6FcFUV0wcEUetQ2J2tYcLtjQMldpeKbwsMVNg1hBjcBS0N2tYXtJRkhY37HGQe\ncqJWw+yxeu4Y5PvlGgePlfPmqixKrE5Suwfx9OMppKd0rNofoqOG9xRF4cyFajZkWth7qAyXpBBk\nVDN9opmpE6JJSggK9BAFQRCIDg9i0rAkvt6fxeZDOUwfmRLoIQmCIAg+4HVQ4uTJk2zYsIEFCxaw\natUqTp06xebNm/05ti6huToHbbnC3151E9qzPsONLAvxZzeT6ymSxJXfvoRl9ScYe6XRd80yjPZC\ntN+sA1S4xj2InHRL/eM1KhUP3x4KtRISGjTRSUzq3ngslXY1pwoM2F1qYoJd9DG3raBlWaXMuxtt\nXMqTiQpVsWCakaRY3753FVUu3novm2/2WdFqVDw0O557p8ei03asSf6ps5WsXJvLedFRo1l2u8w3\n+0vZkGnhclYtAEkJRqZlmBk/KpKgJjqmCIIgBMrdo1LYdSKfr/Ze4Y6B8YSa9IEekiAIgnCDvA5K\n6PXuH32n04miKNx666385S9/8dvAOruW6hy09gp/e9VNCFR9BmjbspD26GYCoLhcXHpmCSUfb8DU\nvzd9PliKofQi2n2fg06Pc/x8lLi0BhvI7pafjirQGtCEJaPRNJ4QW6o0fFdkQFZUpEU6SA5vW0HL\n7664eG+TjRobDOypYe5EI0EG32ZHbNtt4b+XnaO8wkXPNBNPP5ZCSveOdQVddNTwTn6hja+3FbN1\nVwnVNRJqNYwaGs70iWb69wkWNTYEQeiwTEYd94xJ5b0t5/l812UemdIn0EMSBEEQbpDXQYm0tDTe\nffddhg0bxmOPPUZaWhqVlZXNbvPyyy9z+PBhXC4XTz75JAMGDODXv/41kiRhNpt55ZVX0Ov1fP75\n57zzzjuo1Wrmzp3LAw88cMMHFmgtZUG09gp/e9VNaO/6DN5qLnOjT3IEe04VNNrGV91MZLuDi4t+\nj3XDNroNHUCfVX/DkHMM7dHNKAYTzok/QolKbLCBC8qywGUDXTd3y0/1teNQFLhq1XHFqkeFQp/o\nGuLDGi/XaCljRZIU1u91sP2IE40a7htvYPQArU8nldZyJ/+3Opu9h8vQ61Q8OjeRmZNjOlRtAdFR\no2WSrHD0ZAUbMi0cOekO2oSHanng7jimjI8mOlJcbRQEoXMYf1siW4/ksv1oHhOHdic+SvzWC4Ig\ndGZeByWWLFlCeXk5oaGhfPXVV5SUlPDkk082+fh9+/Zx/vx51qxZg9Vq5d5772XUqFE8/PDDTJs2\njVdffZV169Yxe/Zsli5dyrp169DpdMyZM4fJkycTHh7ukwMMhOayIA6dKWLm6NRWXeFvr7oJNoer\nXeszeKOpzI0543uwbvul+tuNeve47A6JyFDfdTORamxceOLXlG/bQ8iYYfR++3/Qn92J9vRuFFMY\nzkmPooSZf9jAZXcHJGQnGMMgJKFRhw1Jhu+K9BRX66iprWXrzv2oFcc1GSneZKxYK2VWbbBxtUAm\nOsy9XKN7jG/rZ+zYW8pb7+dQVS0xqH8YT8xPJDGuY2Qd2J0SBcU17NhVzldbLaKjRhMqq1xs3VXC\n15kWCosdAPTt2Y3pGWZGDgvvcEtvBEEQWqLVqJk7Pp3XPz7Jh9su8u9zBgZ6SIIgCMINaDEocfr0\nafr168e+ffvqb4uOjiY6OprLly8TF+e5JdPw4cMZOND9RyI0NJTa2lr279/PkiVLAJgwYQLLly8n\nLS2NAQMGEBISAsCQIUM4cuQIGRkZN3xwgdJcFkRZlYM/LD/I0L5mBveKZuvh3EaPuf4Kf3vVTbBW\ntF99Bm81lblxNquM7KKq+tttDnfbzDG3xvHIXX18EjxxVVZxbsG/U7n3CGETx9Drjf9Cf3wTmotH\nkEOjcU5aCN3CftjAWQNl2aBIYIqGbo1bftpdKk4WGKiyayi0lLBj7yFsdvdEsWFGSksZK6cuufhg\ns41aO9zWW8ucDANGve8m4cWlDt5YmcXhExUYDWqemJ/EgrlplJRUtbyxn0myzPubz7Njj5WSPC2K\npMYYpOKpR5OYeEd0h8rgCKSLV2vYsNXCzv2lOJwKer2KSWOjmJ5hJi25YxUlFQRBaK3BvaLpnRTO\nsQvFnLlqpW9KRKCHJAiCILRRi0GJTz/9lH79+rFs2bJG96lUKkaNGuVxO41Gg8nkPvFdt24dY8eO\nZdeuXfW1KaKiorBYLBQXFxMZGVm/XWRkJBaL56v1nUVzWRAA1ir3BDNjaCKThnVvsetEe9VNiAht\nn/14q7kMkVyL58nxmawyn+zbVVbB/kefofLgCSJmZJD+v39Av/9TNNnfIUcl4sxYAMYG6aK2CqjI\nBRQIiYegxidHFTZ3QUuHpCY7J5cd+48hy9e2/Dx6rpiZo1ObPO4jZ0swamvZfUJCq4EHMgzc3t93\nyzUURWHzjhJWrM2h1iYzqF8IixYmExNtQK0O/GRfURT+++3vOHCgBtmpB7WCMaoWY4SdYmc3NBpz\ny0/ShTmdMnsOlbE+08K5i9UAxMUYmDohmol3RBHczevkOEEQhA5NpVIxL6Mnf3rnEGsyL/DcwmGB\nHpIgCILQRi2eof7ud78DYNWqVW3awZYtW1i3bh3Lly9nypQp9bcriud2h03d3lBEhAmtD3pTm80h\nN/wcTRkzKJHPd15q9jGnLpWy9NfujBBrhZ2IUANGvee3pKnnGzMoge4Jvlvq0l778UZ+cTWllZ4D\nO3ITHxNrpQ2NXoc5uu3rS+1FJRx4cBEVJ86Q+Mhser32WxzrV6IpuIQmqRchsx5Hpf9hCUNNSQHV\nFTmo1GpCu/dGH9L4dcoqVjiWpyArkBbtYNW6I3j6qFsrbVQ6ZI/HrVbpcTrT2H1CIj5aw+J5ESTH\n+a6bRG5BLS+/fo7DJ8oI7qbhP3/WmxmT464JePjzO9OSoyfLWPr2Rc6ctwNqDOF2jJE21N+3Tj1x\nsYQn7w9q8jvkD4F8PRoqtNj4dEM+X2zKp6zcXSx19LBI7p2RwO1DItstoNRRXo+ORLwmguA/afGh\njOwfy75vC9n3bQGzYkIDPSRBEAShDVo8e1+wYEGzV2FXrlzZ5H07d+7kjTfe4F//+hchISGYTCZs\nNhtGo5HCwkJiYmKIiYmhuLi4fpuioiIGDx7c7Jis1pqWht0iszkEi6X5Qp03YuaoZGpqHRw6caDH\ndAAAIABJREFUU0RZlcPjY4rLarl4pYSYCBNaoLK8lutHVFfocMqw7tTUOhplVcwcleyz4zCbQ+rH\n7c/9eEtySkSGeM7cUKs8ByYiQoxIDmebx+rIL+LM3KewXbxK0hPz2DNqMpr/e5UUTQXHnTEcdw5n\njtWORu10V6usKoTaUlBrUcKSKLdpwPbDvhUFLpfqyCrTo1ErDIi1E6x3NHlcESFGQvTqRvfrNBGY\n9GmoVVpu663hgQwjBo0Ni8XWpuNsSJIV1m+18O5HedgdMsMGhfLTHyUTFaGnuPiHjBR/f2eacn1H\nDX2wA2O0DY3+2iyTht+n9hCo16OOoiicPFPF+q1FHDxajqxAcDcNs6bGMHW8mbgYd2ZTey25CfTr\n0RF11ddEBFqEjuT+sekcOmPhox2XuGtMj0APRxAEQWiDFoMSixYtAtwZDyqVipEjRyLLMnv27CEo\nqOl2gJWVlbz88susWLGivmjl6NGj2bhxI7NmzWLTpk3ceeedDBo0iGeffZaKigo0Gg1Hjhypz87o\nzDRqNQ9P6s3M0an8YflBrFWtWxJRY3fy3ubznLlairXSUV/ocMnjw6mqcTbZjeFG2BwuSspt3D8u\nnfvHpV/T9cHulCgpr/HLfpti0Gm4rbf5mtoKdRLNwdfUlKhzIx037Fm5nJm7CHtWLnE/XcCJsRmM\nu/QliboatlfH8VZZH+SifCSVhocn9nQv17BXgkYP4cnu/zbgkuFMkYHiai1GrcyAeBvd9ArQ9HHd\n1juaEJO+wf0qgnTJGHWxKIpESoKV+Xd199lyjZx8G0vfvsqZC9WEBGtYtDCVO2+P6BBFIj111Hj4\nvnhWbDlBSYXc6PGBWGIUCDW1Etv3lLIh00JOvjso1SMliGkZZu4cEYnBIApXCoJw84gKMzJleBLr\n913l/Y1nuXtkcqCHJAiCILRSi0GJupoRb731Fv/617/qb58yZQpPPfVUk9utX78eq9XKM888U3/b\nSy+9xLPPPsuaNWtISEhg9uzZ6HQ6fvWrX/H444+jUqlYvHhxfdHLriDEpGdo36YnoNdPoOu6Luw6\nkV9fvBH825qzbp8nLpZgsdYSHmxgcO9oHp7UC4D3tpxrtguEJy21svRWXX2N6zM3fui+0Xw9Dm/V\nnr/CmQcX4cwvIvFXP8H86D1EffUWkTobX1Um8V5FOuCeqJ+9UoJcqkMt1YLOBGFJjVp+2pzugpbV\nDg3hQRL9Y200fBmaOq662+dl9MTm0PDthRDABNjon17BwumpPgkYSJLCZxsL+eDTfJwuhTHDw/nx\n/CTCQ323HKStamolPtlQyOebCj121Lgty/vvE/jusxho2bm1rM+0sH1PKTa7jFajYuzICKZPjKF3\nD1OHCCQJHYPdLnP2UjVJCUYiwgL/nRYEf5sxKoVDZ4v4ePsFukebGNwzOtBDEgRBEFpBpXhTxAG4\n++67ef3110lLSwMgKyuLRYsW8eWXX/p1gJ74Ih22qbRaf0xgfmjv2HgCev3E/r0t5zxOuOpEhRp5\n4YnbfTq5amqfSTHB9EoKI9NDh5BJw7p7DI5408qyLZp6X3zxftV8e44zDy7GVWIl6flnSHggA82W\nd9A4avigvAdfVCVTF5CIDtbwiykRxIdrwRAKoQmguva4ymvVnCow4pRVJIQ66RntoKkl/U2N/9g5\nJ2u32rE7YUA63D/BSIjJN7USrmTX8PflWVy8WkN4qJYnFyQzcmjL9UL8nYrudMls2l7M2s8LqKhy\nERmu46HZ8UwYE3VNRw1vv0/++izWaY/UfElSOHDUXbjy1Bl3ZlBUhI67xkczeWw04R1owtlVlyrc\niPZ8TfILbRw+UcGRkxV8e7YSh1Nh/OhIfv7jVJ/vq7Mv3/DXeyK+A4GVVVjJn1cdRq9V8/8eG050\nWNPZvIL/iO9B4In3IPDEe+BZc+cPXs9ynnnmGRYuXIjdbketVqNWq7vEMos6/pzA1C3luH5JxPWa\n6zZRx9etOZvbZ3ZRFUXWao/3HT1XzP3j0hsdR0utLNvKoNN4POambvdW1ZFTnJ3/M6TySlJf+k9i\n7xqKbvNycNpZa7+VL6p+6OaQGqXl51MiCAvS4DJEog2NbdTyM79CyzmLHgXoFW0nMczVquNyuhQ+\n22ln70kXeh08NNnAsFt8M/F0umQ++rKAdV8VIEkwYUwkj83rTkhwYDsyKIrCnoNlrP44j4IiO0FG\nNfPvS2Dm5BiPSxG8/T7567PYHsrKnWz+ppiN24spsToBGHBLCNMyohkxOFy0PRWwO2S+PVvJke8D\nEflFPywRTOluZMiAMKZOEFeLhZtHcmwIT947kL9/eIx/fPotv31kCFqNWM4mCILQGXg9G5k0aRKT\nJk2irKwMRVGIiOha/aDbYwLT0gS6vMpOaRNtROv4Yt18w6vzLe3T7vScSFNaacNSVkt3c/A1z9tU\ngKOpIEYgVew9zLkf/QK51kaPv/2BmJHpaLesBBRcd85FyQ2B7zuRDOxu4KkJYeg0Kg7mqhl+W9w1\nz6UocLFET065Dq1aoX+sjQhT47oHzbFYZVZusJFXLBMfpWbBNCOxkb45obpwuZr/n703DYzqvu6/\nP3d2bTMaSaMdIRASmyRALAYDBsRisION19h4w3GcemvTPk2bf9skdpq2adq0Tdo6qeM4dky8Bhwb\nJ8aY3RiMWQRIiEXsElpH0mgWafa5z4tBQsvMaJdYfp9XoJm59zdz752555zv+Z7/+c0lKqtdJBrV\nPPtEFjMLDUOy7f7S+fw7c76NN9+v5syFNpRKuHOpiQdWp2LoQxtJpOvpejsXIZicOX2ulc07zOw7\n2ILPL6PTKlhVbGLVkiTGZIiq381ObYObI2VWSspslJ2y4/EEv591WgW3zDBQVGigqEBPUoKmly0J\nBDcmK27J4vCJOr4sr+P9HWdZu/zaTkALBAKBIEifkxLV1dX85Cc/wWKxsH79en7/+98ze/ZssrOz\nh3F5I8O1EsAYYrUk6ENPZWincELigNcSSg1SmJOIIVYTdkJIOGQZfvb+UYomJneoSSIlOIZa4TFY\nWnbu48xTfwN+PxNe+TFJkxJQ7X4HWaHCueAhVFkT+UZRDG1ODxqvjXtnROELwJ5KJQtmdb3J8fnh\nRIOW5jYVUeoABakuojV96orq4PApLxt2uvF4YW6+ijW3aVGrBl8Nd3sCvPdRLR99Wk9AhhWLk3ji\ngQyio0Y+IO98/jWYvfhaYmizBtcxf3Y8j9ybTlqKrpet9I3r6Vx0uwPs+SpoXHm+0glAZpqOO5aa\nWDwvgahROFaCawOPN8CJ0w4OlwYTETX1V8/pMRk6igr0zCwwMCk3BrVKVIQFAkmSePz2iVyqt7Pt\n8GVyx8Qze1LyaC9LIBAIBL3Q56TE97//fR555BFef/11ALKzs/n+97/P+vXrh21xI8VoBjDdPQUm\nZRnZe7wu7POXzcwc8L5CqUF2Hqkh0xQTNimhVIA/TMG/2e7poiaJlFSJj9Xi8QVwe/2jXqFu3ryT\nc8/8HSiV5P7mpxjTJNT7PqBVVvNv9QVY/tjIjDyJ5x+Yztq58dDmI4ACDJksSo/tsq02r8TxWh1t\nXgXGKB9TUtz05+15vDIffu7mq3IfWjU8ulLLjLyhadc4UeHg5dcvUVPvJsWk4fl1YymYPHq94O/t\nOMtn+6txNurw2OIACVWUj9sWxvHnDw3tGLdI5+K1MqWjtsHNlp1mtn/RhKPVj0IBc2fGc0exifxJ\nscK48ial3uympMzG4VIrx085cHuCX8A6rYI5M4JKiKICA6ZEoYYQCEKh1Sh5bk0+//jbg7z+yUmy\nkmNJSbg2ktACgUAgCE2fkxJer5elS5fyxhtvADB79uzhWtOIM9IBjNvrp9nmYtvhy5SebeziYfHg\n0lwOVzTg8vTMBCTqdSToB1ZJjqQGaXP5yDTFcNnc0z8iXEKiM0cqGlmzcDwffH6OlhCjTwHa3D5e\nfO3AkJsN9pfGDzZz/tsvodBqyHvjPzHGWlEd3o3Fr+FfG6dx2RcLXjc7Sy6zMFtmjN4PSg0KQxYa\nVdcgwOJUUF6nwxeQyDR4GZ8Y3tAyFPXNwXaNuqYA6UkKHr9Dhyl+8J+J0+XnrY01fLIjeLxXL09m\n7b1p6LSjlwyy2Dxs22nBWqcHWUKh8ROV5EQd46Oy2TfkyapI42QHMzZ2sAQCMkeO29i8w0xJmQ1Z\nBoNexQNfS2XF4iQhu78J8XoDlFc4KCmzUVJqpbru6ndoZtoVNUShnsm5sajVQg0hEPSF9KQYnlg5\niVc/PsEvPjzOPzw2E8011rInEAgEgqv0y+HOZrN1VO/OnDmD2x3Z/+B6YaQCmM7y9e4JkM4eFgsK\n04d8LZHUIC0ON3/90HT2ltezr7QGq8ODMU5Lm9vXZSxpOCx2F+9srYio8GjfzmiaDTb87gMufvfH\nKONiyFv/M4yBKpRlBzAHovlncyFmf7BnP0ot8fzSeMbo/QSUOhTGLFB0vVSqrSrONgYDyIkmN2n6\nyIaW3Tl40ssHO914fDC/UM3qBZohadcoPWHj5TcqaWj0kJGm5YUnxzJpQmzvLxwm2idqvPtRLY5W\nNZIyQFSSE43e0+EROlxqpN7Gro4kdoePHV80sXmnmXpzUJU0aUIMq4pNzJsZL4LNm4yGxqAaoqTM\nRtlJOy53MPur1SiYPb1dDaEnOWn0FT0CwfXKvKmpnKlqYdfRGt7eVsG6VZNHe0kCgUAgCEOfkxLP\nP/88Dz74IGazmdWrV2OxWPj3f//34VzbiDISAUz39olQHKlo5IdPze6xlsIJiSyZkTHginJvapAE\nvY5n75vG6nljsTrceHwBXnztQJ+2HR+r5eSl5n6tZ6TNBut+9RaVL/0XSmM8uv/4EXGOUygvl+OJ\nS+aligm0BII3/8YYBX+13Ehmgpojl1xk5GSR3CkhEZDhbKOGGpsatUJmaqqL+Ki+G1q6vTIf7HJz\n6KQPnQYeX6VjWu7gp1+0tvl54/3LbPu8CYUC7rszhQfvSkMzSsFuqIkaCeleAtGt3SeoDls7RV+n\ndAwn5y+1sXmHmc/3N+PxymjUEssWJrKq2MT4sUJOfLPg9QY4ecZxpS3DxuVaV8djGanaDoPKKXmx\no3bNCgQ3Ig8vy+V8rY3Pj9WSmxnP/IK00V6SQCAQCELQ52ho3Lhx3HPPPXi9Xk6dOsWiRYs4fPgw\n8+bNG871jRjDHcD0ZdwnBKvGjjZvx1qabS62Haqi9Gwju0qqB9z+0Fc1SPtEA7fX36vpZjuTxhrZ\nF0ElEYqhqI539+MIhSzL1Pz8Nar/7f9wxRnY/LV1PFG1H62umYsBI3FL1qGsKQWbm0yjir9cYSQh\nRsm2E61sP+3jpelXJx54/VBer6PFqSRGEyA/1UWUuu+GlrVNftZ/4qLeIjMmOThdI9Ew+ADk4FEr\nr6yvpMniJTsziheeGkvOKAa8x0/bQ07U+NOBC2w71LNFaLjbKQY7Nra/eL0B9h1qYfMOM6fPBd9v\niknDqiUmihckjvoIVsHIYG7ysPdQDZ9/2UDpiatqCI1GYmahnplXEhEpJqGGEAiGC7Uq6C/xwzcO\nsv6z02SnxpFhGj31oEAgEAhC0+e746effpqpU6eSkpLChAlB9YDP1z/J+vXAcAUwfRn3CV2rxlq1\nkp1Hqtl5pKbj8cG0P/RHDRIpiaHTKPF4/R2vX7NwHKcuNdNs7/sEj8FUx0NNEQmVqJFlmcv/8r/U\nvvxb2uIT+PTudTybU02e1sZRVwI/b84nZeNJZuSZqKlp4PnieKI0Ct47YGPL8TbuWji+I1hu9Ugc\nr9Ph9CpIjPYxOcVNX83uZVnmwAkfH+xy4/PDwulqvnarBtUg2zVsDh+vvV3F5/stqJQSD69J4547\nUkbNhb+y2sn6DdUcOmYDek7UuJbaKYaDxmYPW3Y1svXzRqw2H5IEMwv1rCo2MSNfj6I/hiOC6w6v\nL8CpM62UlFk5XGajqvqqGiI9RRtsySg0MHWiUEMIBCNJsjGab9wxmZf/cJxffHic7z8xC51GJIcF\nAoHgWqLP38rx8fH8+Mc/Hs613ND0ZdwndK0aD/Wo0v6qQcIFkWsWjsfR5uny+midul9JicIJiQNW\npISaItI9USMHAlz63r/T8Mbv0YzLYtPSB/mr7ItkqVvZ25bCK5ZJ+FFQbXbwt/eOI8rtIxCQeWVX\nC2cbYdmsTL6xeirNza00tSk5Ua/FH5DIivcwLsFLXwcjuDwyG3e6KTntI0oLj67UUZAz+JuhfYcs\n/Op3VVhtPiaMi+aFJ8cyNjOq9xf2g74oUQCaLR7e+aiWHXuaCMgwJS+WJx7IIC8npsvzroV2iqFG\nlmWOn3LwyQ4zB460EAhAbIySu29P5vYlJtKSRRX8Rqax2XPFG8JK6Qk7TtcVNYRaoqhAz6Jbk8kd\npxXngUAwysycmMzyWWPYeqiKNz89zdOrp4gJRwKBQHAN0efoaPny5WzatIkZM2agVF4NJNLT04dl\nYTcakZQHEJys0b1qHEld0Wxzcb7ayvgMQ78Du76qQSIFkdHaq6eO2+vH0eaNuC1jrBZrqxtjnJZo\nnZpjZ8wDakfpS6JGo4ALf/1PNL7/MVGTctD96Lt8p2IzKSoXnzkyeNOai0zwZuSOwhhiPGZQKPDF\nZXDPcmXH+1QoJKpaVJxr0iBJMCnZRWpc78af7dSY/by52YW5RSYrJdiukaAfXIXUYvXy6u+q+PJw\nCxq1xBMPZrB6eTJK5dDdXIVTorzw4Iwuz2tz+vnD5no2fVaPxyMzJl3HY/dnMGuaPuLN3ki3UwwH\nTqefjX+qZsOmy1TVBCvi47OiWFVsYuEtCWi1ohJ+I+LzyZw656CkNJiIuHT5qhoiLVlL8Xw9RYV6\npk6MQ6tRYDLFYTbbR3HFAoGgnQeW5HC+xsr+E/XkjYln8YyM0V6SQCAQCK7Q56TE6dOn+fjjj4mP\nj+/4myRJ7Nq1azjWdUMSSnlQmJPAslljSNDreiQXIqkrJAl++u7RAQX1/a1Sd/aZaLC09Xit1eHG\n2hpeJREfq+Glb8zG6fax5UBlv9pRuq83UqLGYnfR0uzA/oN/pfnjrcRMm8LEX3yPqEN/QKFy8YEt\nm432bEBCIcFjt+pZNDGagKRCYRyLRqUl+UqsHJDh8AWZC01a1MoA+aluDLq+GVrKssyXx3189Hmw\nXWPRDDV33KpBNYjEgSzL7P6ymdfeuYyj1c/k3Bief3IsGakDGxEbiXBKlOgoDWvmZ3dM1Hh/Ux02\nhw+jQc0316ZRPD9xSJMj1yJVNU4272hk594mXO4AKqXEbXONrCo2MTEnRlTebkCaLB6OlNk4XGaj\n9ISNNmfwe0CtkpiRr7/SlqEnPWXor0WBQDB0qJQKnrk7n5deP8Db2yoYl6ZnbGrcaC9LIBAIBPQj\nKXHs2DEOHjyIRqMZzvXc0PRXvh5JXRG44q/YV4+JvvowDOS1vbWmzMhNIi5ag0atpPRcU8jnfFFa\ny5qF4zsUGOH2uWbhuLD7SoxSYvnOi9i2f0HsnOlM/M/vEHXg90geF5v8U9loTwZAq5J4dkk8hWO0\n1LT4Sc/JBaW6YzseP5TX6bC6IFbjJz/NjU7VN0NLl1vm/R1ujp3xEa2DJ+7QMWXc4No1Gps9/N+b\nlRwutaHTKnj6kUxWLjENi0dBJCXKl2W1GJVxvPthXcdEjbX3pLF6RTI67fXdhhEJv1/mwNEWNu9o\npOxksOqdaFTz6ANZzJ8ZR7xB3csWBNcTPp/M6XOOjpGdF6ucHY+lmDQsvjVoUJk/MU4oYgSC64xE\ng46nV0/lZ78/xi8+LOPFdbOJ1onvcIFAIBht+hwt5efn43a7RVJiCOiPfL2zuqLZ5kKSriYkOhPO\nY6JdadBfhUJnevNw0KqVFE5IYmdJdY/XjkmOZe3y4PYjqRxcHj/vbK3gqa9N6XWfoRI1Ko+bVdve\nxXaiHP1tt5D3z8+g2/8+BPx459/Hkqx89r1Zgt3Rxl8sM5KdpOZMg4+xEyd1SUg43EFDS5dPQWYC\njDO4UPYx7rjcEGzXaLLKZKcpeHSlDmPcwIMWWZbZuruJN96/jNMVYNqUOJ5bl0Vy0vD1p4c7Rt42\nJecrlfzswKUuEzUM+hv3Zq7F5mXr7ka27GqkyRJsT8qfFMsdS03MmR5PaqpeSPNvEJpbvFfUEFaO\nldtpcwbbtNQqielT4ygqMFxRQ2iFGkYguM4pzEnkznlj+dOXl/jNJ6d4/p58cV0LBALBKNPnpER9\nfT3FxcXk5OR08ZR46623hmVhgiCd1RXnq6389N2jIZ9nsbswtzjRqILKBZVS6qI0CPd725thptvr\np+R0Q8jHSk6bWbNwHB/uucCxM8HquuJK0sQYq2V6XhJrl+V2KDEMsVqMcZqwhpinKi24vf4r6wrv\nG/HDp+Z0/Ntid2FSy6zcvJ6oMxXE376IvL97BM3+jSBJ+BY9TGDMJGSvn79Yk0e8rwElPjwqPblT\nM+j8wTS2KjlZr8UvS2QbPczK1dLYGPpz64wsy+wt9bJpjwd/AIpnqlk5VzOoVoa6Bje/+G0lZSft\nREcpeX5dFksXJg77jVN31YvfrcDZGIW3NZh8mDvTwOP3Z3RM1LjRkGWZ0+da2bzDzL6DLfj8Mjqt\ngpVLklhVbCIrY2jNRAWjg98fPM4lZVZKymxcqLyqhkhO0nDbXCNFBQYKJsfe0CoggeBmZc3CcZyr\ntlJSYWbrwSpWzMka7SUJBALBTU2fkxLPPPPMcK5D0AtatZLxGYawrQsatZKfvX8Ui91Dgj5oJlnV\n4Oh4XA7TfdBsc2F1uMMqN6wOd9gkQrPdzdtbz7DveF3H39pVHNNzE3lsxUTcXj9N1qs+FHlZRvaX\n14fcnsXuxupwX1lXeN8IR5unI1HTXFVP4zN/g/NMBQlrbmfCC19D89WHoNbgXfIoPlMW722roKXZ\nwhPzYlBqFZTWKZg6Na0jISHLUNWi5nyzGoUEU1JcJMf6kaTeA2+nW+a9bS7KzvmJ0cHaFTomZQ+8\nXcMfkPlku5m3Ntbg9gSYNU3PM49nkWgcGYVSe8vQZ/urcTbq8Ng0gIQqyseKZQk8fU/OiKxjpHF7\nAuz5qpnN282cvxKgpqdquW1ePCsWmTDqhULsesdiDaohSsqsHC2309oWTICqVBLTpsRRVKinqMBA\nRqpQQwgENzpKhYJv3TWVl14/yO93nWN8hoEJGYbRXpZAIBDctPQ5epozZ85wrkPQByJ5TLg8flye\n4E12k83d6+jRdmTg0wOVPLI8dAtHlFbVoX7ojkKCkxdDe0QcO9sE0mlKzzbSbHNj1GuJ0amxt7pC\nPh/AGKfDEBtsTQiXfOn8HKnZQuNTf4nz9HlMD99NzmPzUR/+BFkbg3fZ48gJ6cGERKOZp2+LR1LA\nrz9vYd9ZF8saggoUfwAqzFrqHSq0ygD5aW7itH0ztKys87P+UxfNNpnx6cF2DUPswNs1Lte6ePn1\nS5w620pcrJLn1mWz8BbjiAZIbU4/AWsMjksG/H5QavwkZ/mZP9vIn399Gs3NrSO2lpGgrsHNp7vM\nbN/ThKPVj0KCOTMMRBndXLZa+Ky8nkNVF/tlJiu4NvAHZM6cb+XwlUkZ5y9dVUOYEjUsmGOkqEBP\nweQ4onRCDSEQ3GzEx2r5s7um8tN3j/DLD4/z0pOziYsWCWiBQCAYDQbnwCcYcdYsHI/T5eNUpQWL\nPThis9XlxeXpWyAdil1HalApFXz74Zk9HnO6fSETEhBMVFgcoUeBNtvdXTwmmm3h/STamZGX1NFG\nEi750v4c9+VaTn39OdwXqkh56uuMWz0FddlO5BgD3mXrkPVJuD0+4mQba4uNOD0BXt7WwomaoOrj\nSEUjqxdMoKIxGrtbSZzWT36qG20nQ0uXxxdy2ogsy3x+1Muf9noIBGDZbDUrbtGgHKDxpN8v89GW\net79sBavT2b+7Hi++cgY4kfQryHURI0H7kphekEMCYbgZBhlX801rnECAZkjx21s3mGmpMyGLIM+\nTsU9q5KZMzOOg2fr2FlyVf3TH/8VwejSYmtXQ9g4Wm7D0XpFDaGUKJgcx8yC4LSMzHSdUENcB1RU\nVPDcc8+xbt06Hn30Uc6dO8cPfvADJEkiOzubl156CZVKxaZNm/jtb3+LQqHgwQcf5IEHHhjtpQuu\nEyaPNbJm4Xj+8Pl5fv3Hk3z7gUIU4rtBIBAIRhyRlLhO6D6NwhinYe7UVJbPzuQfXz806O0fqTDj\n8vh6/N0QqyUxjGohQa8FWQ7b3tFXEjtN82gn1PjUGXlJfL14Aq7zlZx68Fk8NfWk/fk6shemoTq9\nn4DBhHfpExBjAFnGb6tl9bRoLK1+frbVQlXz1fcnKbUcq43GF1CSEusjz+TuMLRs/6xLzzVhtji7\nTBtxeyTe3eqi/IKf2CiJR27Xkpc18MvoYlUb//ubSs5daiNer+LPHsti7sz43l84RMiyzL5DLfxu\nY82ITNQYyEjaodqX3eFjxxdNfLqrkbqG4Pk8MSeG25ckctneROm5S+x630243FJv/iuCkccfkDl7\noY3DpVaOlNk4e7Gt47GkBDW3zgqqIQonxxEVJY7b9URbWxs/+tGPmDdvXsfffvrTn/Ktb32LRYsW\n8fLLL7N582aWLl3Kyy+/zIYNG1Cr1dx///0sX768y/hygSASd84by5nLLZSdb+KTLy/xtVuzR3tJ\nAoFAcNMhkhLXCd2nUTTbPew7XodWrYg4jrOvNNvdWGzuHieEVq0kWqcOuf0YnZqJWfEhFQ19RQK+\nfX8hmcldZ4WHG5/aduospx96Hm9DE5nffYaswiiUF44SSMzAW/wY6GJADoCtmuiAnVqrn59+2oSl\n9aqSJCsjjYW3zMAXUDA+wcOYeG8XI9Bwkz8cbWrqG5NpcchMyFTyyO1a9DEDUw94fQE2/rGODX+q\nw++HJfMTePLrmcTFjtwlWX7azm/fr+bMhbZhn6gxmJG0g91XjEqHyh1LdZUfj0dGo5afPYAzAAAg\nAElEQVRYuiCRVUtN5IyN5u1tFew8clXVE04ZZLFH9l8RjAxWm5cj5TZKSoNqCLsjqIZQKoPTUYoK\ngiM7szKEGuJ6RqPR8Oqrr/Lqq692/O3SpUsUFhYCsHDhQt5++22SkpIoKCggLi74G1JUVERJSQnF\nxcWjsm7B9YdCknj6a1N46fWD/GHPeXIyDEweaxztZQkEAsFNhUhKDBHDWQF2e/1hp1EcO9tEXlY8\nTSHMI8ckx2JucXZ4TUQiIU6LUa/FbnV2+bvb66fVGVoJ0er0smbhOKCromFCpoGvToQ2s+yxX70O\nU4Qgr/P41NbSk5x++AV8FitZL36bMeO8KC6fIpA6Hu/itaDWQsAHLVXgc4I6mi+q3F0SEoWTc5me\nP4lAINiukRTT9bMJ91lrVamcvpiEJMncfouGZbPVKAbYrnHmQiv/+5tLVFa7SDSqefaJLGYWjpzB\nVlW1k/Ubazh41ArA/NnxPHJv+rBO1OhtrOxQ72vrwct47WpcLbE0u1SAj5hYiYfXZFC8IBH9leRP\npGurO539TAQjhz8gc+5CW8ekjLMX2zqMexONapbdFs/MAgOFU+KIFmqIGwaVSoVK1fUWJS8vj927\nd7NmzRr27NlDY2MjjY2NJCQkdDwnISEBs7lv17RA0E5ctIZn787nJ2+X8Mqmcn745GzxfS8QCAQj\niEhKDJKRqABbHeH9GJrtbr4qr0enCd6Muz1+EvTBVoc1C8fzg1/v71NSYkaeCZ1GhT3Evi1h2jNa\nHG6arS6Wzcxk9a3ZON2+jh/xo2cacHvDlJy77DepT0kc+4GjVDz2bfyONsb9+G9JT2pCUV+DP2sK\nvgUPgFIFPg9YK8HvAa0B9Oncu1jGG5A4draZyZMmkT0mA5/XzZxsH/oQMXj3z1pCRYx2PGplPAHZ\nwyPLtcyaPDAjLLcnwHsf1fLRp/UEZFixOIknHsgYsUCq2eLhnY9q2bGniYAMU/JieeKBDPJyYoZ1\nv5EC/6FuiahpcLJtpwVrgx7ZH7z+VNFedPFuUtJUrFra9XyLdG11p6/nqmDw2Ow+jhy/MinjuB2b\nI9h6pVAEz9uiAj0zCw1CDXGT8d3vfpeXXnqJDz74gDlz5iCHGCsV6m/dMRqjUamG51o2meJ6f5Jg\nWBnoMTCZ4lhnc/HapnJ+s/k0P3rm1gF7Rd3siOtg9BHHYPQRx6B/iKTEIBmJCnCUVoUhVkOLI3Ry\nQIaOxMP8/FQevX0iWrWSBktb2IRCOzqNkvkFqV38HDpjiNVGHEP68w2lIZMxJmM0lxt6TmpQKIIL\n7uwR0RvWPQc4s+7/I+DxkvMff0dqVBWK5kb8E2biu+Wu4Ea9TmipBNkP0YkQkwyShFKSuHfxRHLz\ntLR6lcRpfRRk+9CEuR/t/H5VilhiNBNQKDR4/VY0mssUTJjV63pDcaLCwcuvX6Km3k2KScPz68ZS\nMHlkvqzanH7+sLmeTZ/V4/HIjEnX8dj96cyaZhiRgC5S4D8ULRGyLHP8lIPNO8x8daSFQECNpAig\nNbrQGjwoNUGlTIvD12Nfkc5vhRS8thL6ca4KBkYgIHPuUhslZTZKSq2cuXBVDWE0qFm2MDHoDTFF\nT0y0SAzdrKSlpfHKK68AsGfPHhoaGkhOTqaxsbHjOQ0NDUyfPj3idiyWtoiPDxSTKQ6zuXtqXzCS\nDPYY3Do5mZKT9Rw508iv/3CMe2+7McdgDyfiOhh9xDEYfcQxCE2kRI1ISgyC4a4Ad1ZhhEtIdOdU\nZUvHvyMFXIYYNX9xXyHpptiIa+zPGNL259y3KAenq6dpJoAxVsu37y/EZIzu02dj+exzzv7Z/wNZ\nJvfn/0CKfBrJZsM3dQH+GStAksBtB+tlQIa4NIi62gtqcyk4XqfF41eQGuclz+QJa2TY/n6n55rY\ne8yPTp0JgNNThctXy7KC4P9DTeQIh9Pl562NNXyyI3ierF6ezNp704bFRLI7oSZqfHNtGsXzE1Eq\nR676E+k8HExLhNPpZ9eXzWzeYaaqJjhqNnuMjlaFDa+6DambUCnUviKd34ump3P7nKwRMeW8GbE5\nfBw7HpyUUXLchs1+VQ0xOTeohigq0JM9JkqoIQQA/Pd//zeFhYUsXryYDz74gLvvvptp06bxve99\nD5vNhlKppKSkhL//+78f7aUKrlMkSeKpOyfzwzcO8sd9l5iQEU9hTuJoL0sgEAhueERSYhAMdwW4\nuwqjL3Teb6SAa/bkFMal983HoPskjPjY4BhSt7fnGNKS02ZuK0yL8Lm40VwJ8HoL7ps2beX8C99D\nUqnI++9/IMlZiuRuw1e0Av/UhcEntTWDow6QwDAGtFczcHV2JafNWmQZJiS6yTD46C22sbcFcDgy\nidIEAC8O9xn0MT5uzc1AlmW+9+r+PrfplJ6w8fIblTQ0eshI0/LCk2OZNCE28gKGgFATNe5elcQ9\nq1IxxI78DPZI5+FAWiKqapx8urORnXubcLoCqJQSC28xcsdSExNzYnhn+xm2HepZCQ23r0iTXoba\nhPNmJhCQuVDppKTMyuFSG2fOt3aYihoNKooXBNUQ06fGERMtfppudo4fP85PfvITqqurUalUbNmy\nhe985zv86Ec/4n/+53+YNWsWixcvBuCv//qveeqpp5Akieeff77D9FIgGAjROjXPrSngn9cf4td/\nPMFLT84mIVS/p0AgEAiGDHHnNwiGqwIMkVUY8TEaJIWExd77fu9fPJ7TlS1Umx0E5KAkPcMUy/2L\nx/d5Ld0nYXh8AX7w2oGQz222u0GSwn4u8bFathysovRsY8Tg3vzuJi58559QREcx8Wd/S6K1BPxe\nvHPvJpA7C2QZWhugrQkkJcRngToKCD50oVlNZYsGpUJmaqqbhOjefTXOXvbx1hY3tlaZSWOVPH1/\nIg0NWgyxWjbuPtfnNp3WNj9vvH+ZbZ83oVDAfXem8OBdaWjUwx/gdp+oMSFPjT/Kxp5zzZS/WTVs\nEy96I1LgH47O5rEqhYKDR61s3mGm9GRQDpdoVHPPqhSW3ZaE0XB1Ykh/9xVu0otg8DhafRwtD6oh\njpTZaLFdUUNIkJcTw8xCQ4caYqDGsYIbk/z8fNavX9/j7xs2bOjxt5UrV7Jy5cqRWJbgJmFsahwP\nL8tj/ZbT/PLD43z3kSJUSpGkFggEguFCJCUGwVBXgDsTSYVhbfUwIzcpZFKi+3437DpPVYOj4/8B\nGaoaHLy3/SyP3T6pX2tqn4Rhbwu2QIQanaiQwBCjCfu5xESp2VlydfxiqOC+/vX3ufQP/4bSaGDy\nf/wV8U0HAfAtfJDA2PwrIz9rwG0DpSaYkFAGFQC+AJys19LUpiJKHSA/1UWMJrLxWSAgs+2gl88O\neJCAr83XMLdAgc/n7Ujw9LVN5+BRK6+sr6TJ4iU7M4oXnhpLztjhHyHZfaLGrbPiMaR52H+6Bq4M\nVBnOiRe90Z/Av3PbUmOzB4U7GqdFg7MteBzzJ8VyR7GJ2dPjUal6BrIDTTJ0nvQiGBiyHFRDHC4N\nTsqoOHdVDRGvV7FkfgIzCwxMmxpHbIz4+REIBNcui6enU1HVwlcn6tmw6xwPLc0d7SUJBALBDYu4\nKxwkA6kA94VIKgxJgiNnGkNO3Oi830hqi91Ha0CSWLsst99Vc4fTGzIhAcFEhdPtC/m5FOYkUHqu\nKeTr2oP7plfWc/lf/hdVUgJT/v0F9OYDoFTjXbwWOS0HAn6wVoG3LaiMMIwBRfA0dnoljtfpaPUo\niI/yMzXFRW+xqK01wFtb3Jy97McYJ7F2hYb9Jy/wg1+baba7SYjTMjHL2Gubjk6t4bW3q/h8vwWV\nUuLhNWncc0cKatXwVlbCTdQYm6Xje6/uD/maoZ540R/6Evi/u/0MW76ow92ixePQgyyBFCAnV8Nf\nPD6BrIyoIduXYPC0tvk4Wm7nxJkavjzYiMXaVQ0R9IYwMC5LqCEEAsH1gyRJPLFyIpX1dj47WEVu\nZjwzJ5pGe1kCgUBwQyKSEoNkuKTfkVQY7QmBUBM3OhNJbRGQYWdJNUqF1O+q+bZDVWEfS9QH2x1C\nfS5Wh5tdR2pCvs5ic3LxX17G+sqbaNJSmPLjbxJXfxBZE4W3+DFk0xjwe4MTNvzuoHeEPoN2N8MW\np4LyOh3egES63suEpMiGlgAVlT5+t8VFqxMmZytYuyKKD78406NNY9/xOnQaZcjRqsY4HSdPO3n9\n3bNYbT4mjIvmhSfHMjazb4HzQOk+USMzTcfjD1ydqNFgaRtWv5PhwO0JsGtfEx9/ZMfdFuwJV2j8\naA1utHoPkkFHSvLIe2IIuiLLMhernEGDyjIbp846CFyxl9HHqVg8L4GiQj3Tp+qJixU/MQKB4PpF\np1Hx7Jp8/um3h/jNJycZkxxzzf12CgQCwY2AuGMcIoajKttZbdBscyGFaZnoPHGjM5HUFu0cqWhk\n9a3ZON0+4gy9B9Jurz+s2gGgcELX9pHOn0vY9cgyiw9sxvrVLrRjM5jy4iPE1pcgR8XhXfYEcnwK\neF1grYSAD6ISIDaFdtfKWpuKCrMGGchNChpaRsIfkNmy3832Q15Axump4lRVCxt3J0Z8b90J+CSc\n9TH87FeX0KglHrkvjfm36EkwDF/g7PUF2Lq7kfc+ijxRYzj9ToaaerObT3ea2banCUerH5BQx3rQ\nxntQRV01J71Wkyk3A61tfkpP2DhcauPIcRvNLd6Ox7QxARQ6N6ZUJXMKY3hoaZYwCBUIBDcMmaZY\nHrt9Iq/96SS/+PA4//DYTNQq4TskEAgEQ4lISlzDdFYbnK+28tN3j4Z8XrhgLZLaop0mm4sXf3MA\nq8ODyRhFYU5iRCPESOoLgGUzg2MzO5sUticpQq1HCgRYuPMD8soPoMsdR/531xBlLiMQl4B32TqI\nNYLbAbbLQS+J2BSITsTt9dNid9Pi01Nr16JSyExNcWGM7jkRpOv6A/zuUxfnawL4Ax5aPWfxB1px\n2WFnGBUHBFtk5uencqqyhWabC5U3Gku1BqvHz6TcGLInynx16Tyby/o2maO/hJqosfaeNFavSA45\nXnQ4/U6GgkBA5shxG5t3mCkpsyHLwSr7mlXJHLlcic3t6vGaay2ZMhqEuq6GA1mWuXQ5qIY4XGrj\n9DkH/itCIX2sikXzEnBJrZyqb0ChDGZK7V7YfrgNSeq/+kogEAiuZeYXpFFR1cKe0lre2X6Wx2+f\nONpLEggEghsKkZS4DtCqlYzPMAyo8v314gn4/QF2H60J6wPR4vAA0GBx9mqEGKkCn6gPruPtbRUc\nqTCHnK7RWf3RYm1lxa6NjC0/RNSUXPL/cgW6plMEjKl4lz6BWxWFu6meOH8TEhLoM/FrYnlvWwVl\n5y3kT8knI02L1+Nk1ng/sdrI/RqnLvp4+zMXrS5AasHuOodM15aMcAaeCXodj94+kcZmD//3ZiXH\nK1rRaRWseyQdS8DC9sNXExpDbSjZfaLGnUtNPLA6FYNeHfF1w+V3MhgcrT62f9HElp2N1DYEz6G8\nnBhWFScxf5YRtVqBelvbNZtMGS06m3/2dSRtf2lz+jl24uqkjCZLUA0hSTAhOzroDVFoICc7Gp8/\nwPde3d+RkOjMaHqWCAQCwXDxyPI8LtTa2XWkmrxMA3Onpo72kgQCgeCGQSQlrhMiVb6jdSpUytAB\nuVKhCE7ZkKQuUy8i0Tmo6F6Z7a0C/+Ge8xFHZ7arP+6ZO4Zzz/09bccPETNjKvnfmo/Gcp5A8lis\ntz7EO9srGRPrZMWUKFrdAfZWqVk6N5b3dpzlq1MWlsyfTbw+jsu19ezZX4J5emrYBIA/IPPplx52\nHPaiVMCy2RIbdlcQKkcTLnEzPTeR3XstvPH+ZZyuANOmxPHcuiwMBhXfe/VMr5/jQAg1UePR+9JJ\nS+nbvPRwfidur58ma9uIjr68UNnGJzvMfL6/GY9HRqOWKF6QyB3FJnKyuyp8rsVkymjz3o6zfR5J\n21dkWaay2nXFG8LKyTNX1RCxMUpum2tkRoGeGVP1PRJgTdbwiinRZnNtMFKqGoHgZkGjVvLcPfn8\n4xsH+e2np8lKiSM9KWa0lyUQCAQ3BCIpcR3x9eIJnK5s6TLiE66M+NxxNmJwEpyyIXUEeoYYLRZH\n+KCi2eZi55HqkJXZcEHjmoXjePG1AyG32TlA97e5qPzW39K260vi5s1g6qPTUduq8Gfk8ZZ/Jnt+\nfYivz45lYV40ZruP/9pioc7mp94uU22RuWPpArQaDeWnz1FSegKZ8AkAiz3YrnGxNkCiQeKxVTqS\njbDjSGi1R0Kclmm5SZSebep4b7npCZw6IrHhVCXRUUqeX5fF0oWJw2YoGW6iRl7OwG5+2n09/IFA\nRBXLUOP1Bdh/qIVPdpg5dbYVgJQkDbcvMbF0YSL6MCaIw2Uee70SaYpOfxNfTqef0pP2jkREY/NV\nb4gJ2dEUFQYnZUwYF40yglPs9eRZMtJ0TgaMBiOhqhEIblZSE6J58o7J/PLD4/zyw+N87/FZaDU3\n7++TQCAQDBUiKXEN0Vtly+eXaXN5Q7yy9+Cke6AXpVXxj28cDBtUbDtU1cVjoXtl9r5FOdw2LR1k\nGZMxGq1a2acAPVEtU/H4X2HfX4Jh8S1Mvm8Cakcd/nHTWO/MZ8+xWp4tjqcgU8sFs5efb7VgcwV9\nIizuKObMnIQM7D14lHMXq3psv3MC4MQFH+9sddHmgmm5Kh4s1qK70uIRTu1RNNHE2mV5uJf4QaXi\nky21vPdhHW5PgFnT9DzzeBaJxqtGlkMZnPU2UWOwDEe1PRRNFg9bdjWydXcjLbag6eiMfD13LDUx\no0AfMdjtjBjpGSSSj0tviS9Zlrlc4+LwlUkZJysc+PxBOVBsjJIFc4wUFeiZka8n3hC5Hagz17pn\nyWgQKhkwf1oGq+eNrPHnSF3nAsHNyuxJyVTMzGT74cus/+w0T905eUh+owUCgeBmRiQlRoHuyYe+\nVrYiBSfNNhdmSxuZyXER99050AsXVBROSKT0bGPI15ecNuMPyJSebeyx1t4C9Bifi1OP/hWtR8ox\nrljA5DszULY145s4l7bpKzj7u4N8984ExiaqOVbp4pe7rHh8MpIkMWd6PhMnZON2e9ix9wDmJkuP\n7bcnAPx+mT/t87D7iBeVEu5bomVevqrLTUNvLQLmRi+/+t0Fyk7aiItV8ty6bBbeYuxx4zEUwVlf\nJ2oMhqGstodClmXKTzv4ZIeZr0paCAQgJlrJ6hXJrFySRHofW04EPelv4svp8lN20s7hK94Q5iZP\nx2M5Y9u9IfTkjosZ1PnV/RpKir9qlHszEioZsGnPedqcnhFLBgz3dS4QCII8uGQC52us7DteR96Y\n+GCRRiAQCAQDRiQlRpBwyQdZltl++KrfQ7jKVqTgRAZ+vqG0XzLdcEHFkhkZ7ArjP9Fsd3fxpui+\n1nAB+qxUNecffh7niTMk3VXMxMVGFC4bvmnF+AsW47BYeXZxHEmxSnaeauOtL20EZNCo1SyaN5O0\nFBM2mx2H5VKPhARcTQA02wKs3+yisj6AKV7i8VU60k09b8LDtQj4/TIffFLHux/W4vXJzJ8dzzcf\nGUN8BFPJgXogtE/UeGtjDbV9mKgxGAZTbY+E0+ln9/5mPtlhpqo6ODEje0wUdyw1sfAW45C/j5uR\n3hJfGpWCqhpnh0FleYUDny+ohoiJVjJ/djxFhQZm5Osx9kMN0Rvdr6Gc7ETsVueQbf964lpJBgzX\ndS4QCLqiVil49u58fvjGQd7aWkF2ahxZKZGLQgKBQCAIj0hKjCDhZLW6MP2I3W9mexvx2V+Zbrig\nwu31h01+hJtO0b7WUAH6rCSJSf/1rzjPXcJw91ImLoxF4W3DO/tOApPmgqeVBH8dUqySDYfsfFIa\n9B8wxMWyZMEc9LExVFbX4rXXsG5VHgS8IRMAZed8vLfNhdMNRRNV3LdEi04TuRLcWTlysaqN//1N\nJecutRGvV/E3z+cxJbf3Cv9APBDKT9t58/fVVJzv30SNgTLUHgCXa118usPMjr1NOF0BlEpYeIuR\nVcUmJk2IEVLWIab7dWWI1pGmj8dWo+WZ75bT0HhVDTE+K4oZBXpmFhrIGz84NURfaL+GdBoV9mHd\n07XLtZIMEF4fAsHIkRQfxVNfm8J/byjlFx8e58V1s4nSittqgUAgGAji23OEiFRJc3n8If8e6ma2\nPTgpOW2m2R76Jri/lbnuQUWk5Ee46RTt7SMatZL7FuV0BOi65kbOr30ed1UtjfPmMvsWLbLPy27j\nAmbnzUHpsoKtBgmZLy5KHQmJ9NRkbptbhEatpvREBScrzvD/Hi3C55d7JACUCgUff+Fhz9Fgu8aD\nS7XMmaLqc2Ds9QXY+Mc6NvypDr8fFt+awDceymT8OCNmc9/DrL54IAx2osZAGUybSXu7UXSsjq9K\nWvhku5nSk8HPJSFezZqVKSxflDSkVXhBVxSSxKKpWUR59Rw6ZuVMWRvnfS7ARXSUkltnxVNUYGBG\ngZ6EeHEcRpprJRkgvD4EgpFl+oQkVt2SxeavKnl98ymevXuqSMoLBALBABBJiREiUiUtHKFuZtur\n8rdNS+fF1w6EHGs5FJW5UIqHwpwEviyvw+UJ9Hi+QhFsH+nclnJ3loqKh1/AW9tA3fx5rPlaPLIk\n8Z9NUzlao0abVcGMtABICjBkMW9WFFuP24k1JDNz2hTkQIA9+0u4UFWNTqPkH18/1MXDItkYTZM1\nwPrNTqoaAqQYJR67Q0daYvDGuy8j8c5caOV/f3OJymoXiUY1zz6RxcxCw4A/t3AMdKLGUI7162+b\nSXu70cFyM/WXwWvX4fMEb7amTozljqUm5kyPR6USN2DDgdsd4PhpO4dLg5My6s1X1RDZY6Io6qSG\nEMdgdLmWkgFipK5AMLLcu2g856qtHDrVwPZMA8tmjRntJQkEAsF1h0hKjBCRKmk6jTKkWiLSzawp\nPmpYK3OhWhIAviyvD/l8f4COtTTZ3BzZfIDsP/4Gld2GbcUi7iuOximr+GljAWe88Tw6T8+MtACy\npEIyZoFKhyTDQ3fOp96hweVysWPvQRyOYEW+/fPp3KIydex43t/uwuWBWZNV3LtYi1Yt9ck41O0J\n8N5HtXz0aT0BGVYsTuKJBzKIjhq64MHt9VPX2MbuvVb+tM3cZaJGwZRYbK0e3F5/yGM8HGP9+tNm\nIssyv3j/NF98acXj0IEsgSSjNbhZND+eZ+8XLv7DQU29i5LS4KSM46fseK94Q0RHKZg3Mz44KaNA\n32UCjODaIFQyYP60dFbPyxrRdYiRugLByKJUKPizu/N56fUDvLfjLOPTDYxP14/2sgQCgeC6QiQl\nRohIlbRbC1JRSFK/KluRtlc4IbHXm9DeKvCdH29XXDRY2nCHaTXpTHJdJXd+9Boqt5O0b93Fwhwv\nLX4N/9ZUSG0gjheK45kxVkdVs5eo5EySVDo8Piiv12F1KYnV+ilK95JvyuXnG0pDJGwkDp/UcPiE\nC40KHlquZfbkq5L13kbinahw8PLrl6ipd5Ni0vD8urEUTB46gyp/IMA7W8+w+0sLTdUqZL8CXZTE\nM4+PYcn8BDbsPsf7vy6PmGwYzrF+kdpM3J4Aew9Y+NO2Bs5XOgENCrUfbbwbrd6DpITzDXLYZIqg\nf7g9AY6fsnOkzMbhMht1DVeTjGMzdRQVGCgq1DMpJ1aoIa5xQiUDMtPj+9UCNpSIkboCwchhjNPy\nrbum8p/vHuWXHx7nxSdnExslWukEAoGgr4ikxAgSSVarVCj6Xdm6uj0zTTZ3hwnlsTNmlAopZFW9\nvQJfcrqBZruHhDgNRROTO7YVqUIfSe3RTtrlc6z6+HVUPi+uuxYxIcdLUyCKfzYX0qaO5W9XxjPe\npKG82s07B518/8kYHG6Jsjodbp8CU6yPSSY3SoUCl0vZo+VFIWmJ0U4AOYakeHjyzmhSE6++x0je\nHYdPNmKv1bFlV3Dc6erlyay9N21IJ0TIssxP3zjFga9aCXg1oJDRJTrRGd00+WLYsNvSa7JhNJz8\n681uPt1pZtueJhytfiQJ1DEetPEeVNE+OrfIChf/wVHb4Kak1NqhhvB4g2qIKJ2CW4oMwUREgZ6k\nBKGGuB4RyQCB4OZkanYCdy0Yx0dfXOC1P57gz+8vRCH8JQQCgaBPiKTECNKbrLa/N7Pt2/P7A+w8\nUtNhQtls94Stqr+z/Qw7Oo0fbX9uQJb5q7Wzeq3QR5r+MebiaW7/02+RZBnF/YtYPiuKZqWBbcnL\nkFut/MMKI8l6FXvPOHljr5UlRZnYPBpO1msJyBLZRg9jjd6OALh7EkStTCBGMw5JUoLUxAv3ZxAX\n3TXpEs67w9uq4uIFNee9jWSkaXnhybFMmhDb58+6L5SftvPG+9WcveACFGjj3egSXChUwQNzpMKM\nLId2Cu2cbBgpJ/9AQOZouY3NO8wcLrUhy6CPVXHfnSksWZDAzzaW0GTz9XidcPHvHx5vgPLTDkpK\nrRwus1Fbf/XYjsnQMbNAT1GBgUm5MahVA2vNEQgEAsHos/rWbM5cbuHYuSa2fFXJqrljR3tJAoFA\ncF0gkhKjwFBW0txeP6XnmkI+1r2q7vb62VdWG/K5+8rq+IbDHbZCX3LazG3T0lmzcHzHtpttrg6j\nzexzx1m++S1kSSL6oduYM03HWY+eX7tn8Xd357CyoAqdCjYdcbDnnI8lRZnMK5pCeZ0WhSQzNcWF\nKbZrm4ZWrSRap6bJ5iFaPRatOhlZ9uNwnyMgN/HxPncPNUj3RIbshzZzFB6bFpC5e2Uya+9JR6Me\nuuCv+0QNTawHXZILpaarIWiz3U2YnESXZMNwO/k7Wn3s2NvEpzsaqb3SLpA3PppVxSZunW3s+Gyu\nFeO+65G6BjclZUGDyrJTdjye4IHXaRXMmWFg5pVJGabEm08NMZTmrQKBQHAtoVBIfGv1VF56/QAb\nd59nfLqeiVnG0V6WQCAQXPOIpMR1Tn+q6mZLW8jJGRA0kqyotITdVrPdzYuvHcbircoAACAASURB\nVOho5/jhU7Nptrr4+YZSEg58yZKt7+NXqUh8ZD7TJusocxn5r+Z8pmapUdmrkBQyb3xho6wmwIyJ\nJqbl53PJokarCpCf6iZO23Ndbq8fR5tEnG4qKkU0vkArre5zBGQXQEg1SGevDY9DRVtDNLJPgVLj\nZ0lxLOsezOz7h9sLoSZqPHxvKr/dVkaTref7SYjTIssyzXZPj8c6JxuGy8n/QmUbm3eY+Xy/Bbcn\ngFolUTw/gVXFJiaM6zkFpHu7UVJ8FIU5icLFPwReb4DyCscVk0or1XWd1BDpOooK9BQV6JmcG4t6\nCBNi1xPDYd4qEAgE1xr6GA3P3J3Pv719hP/bVM4Pn5yDPubmS0ALBAJBfxBJieuASJXFflXVe+lt\n7M0zQqZnO8ei6lJMn72HV6Ml44lbmTRBy/42E7+0TGHR5FgenhuHxxfglztbKLvsIUqnRWvIxtyq\nRq/1MzXVjVYVWj6wt9SF7M9DpVDi9tbT5q28soqrhPJYuGNONl/tc1FZ4wNkEtK9LFkYz8PLcyO+\n/77S5vTz4eZ6PvqsvstEjVnTDEiSxIzKcAkFE0Cfkg1DNdbP6wuw/3ALm3eYOXmmFYDkJA0rlySx\ndEES+rjgV0Coc6x7u1FOdiJ2q7Nf+7+Rqa13sW23mcOlVspOOnBfSfhpNQpmTzd0JCKSk0SrCwyv\neatAIBBcS+SNiee+xeP5/c5zvLKpnL/++nQUCuEvIRAIBOEQSYlrmL5UFrVqJYU5iew8UtPj9d0D\nXVN8VNjxozqNkqzUuIieEZ05UtHIbWcOkPz6a/hjY8l54hayszTsaE3j9ZaJ3D9bz8qCGKzOAD/7\nrJlLTT4S4g0smT+bmOgoLlfXcN/cWLSqUJM/ZP6w283BEzKSBA73Wbz+5pDr6K4G2XfIwq9+V4XV\n5iMnO4pH7k9lSq5+SGTiXl+ArbsbeW9THTa7D6NBzTfXplE8PxGl8urNRl8SCr0lGwY71q/J4uGz\n3Y1s3d2IxRr0hZiRr2dVsYmiQj3KKzdHfT3Hko3R6DQqRmeOwLWB1xvgRIXjSluGjcu1ro7HMtK0\nFBUYmFmgZ0rezauGCMdomLcKBALBaHL7nCzOVFk5eraRTXsvdLS/CgQCgaAnIikxBLRXmaO0Kpxu\n35D1SvdWWWwPKNs9JdqnbyTEaSmaaGLNwnE0WNo61qNVK5lfkMr2TkaX7cwvSEWnUXUJqDt7RnRB\nlsne9kdq9n+G2pRA0dNziDFIHNZN5mNHFn+2JIrZ46JoccI/f9xEk8PP2Mw05s+egVKp4PCxE5w8\nc44VBXOJ0nT11qhr8vPmZjf1zQEyTQoMhnq+KA2dkICrahCL1curv6viy8MtqFUSj9yXxj0rU7sk\nCwaKLMvsO9TCWxtrqG1wE6VTsPaeNFavSA45uSNUQgGgyerCEKvtV7KhP/4jsixTXuFg83Yz+0ta\nCAQgOkrJ6hXJrFySRHqKrsdrRPU6MuYmDyVlVg6X2ig7acflDqohNBqJW2cnkD8xhqICPSkmoYaI\nxEiZtwoEAsG1gkKSeOprk/nh6wf5eO9FJmQayB+XONrLEggEgmsSkZQYBN3Ha7YnBRKHoFe6L5XF\njbvPdQko26dvFE4I/ui9+NqBHtXvh5bmIklSsDJud5MQd/Ux6BpQmy1t/GxDaddgQpa5Zd9mZhze\nhSbNRMFTRUTHSfiKbid/8jz+qfkSqoALn0LHlrMeLK1+pk3JY9rUiXi9PnbsPUB1bQOJ+q6tJbIs\nc/Ckjw92ufH6YME0Navna5AU49Bp/HxRWhtS4TE9N5EvD7bw2tuXcbT50cX60Sa18tWlNjw77YPu\nVy8/befN31dTcb4NpRLuWGrigdWpxOsjzx9vT1TFRqvZuPtcSCXCUAVhTpef3V82s3mHmcrqYPU+\nOzOKVUtN3DbXGHbkqahe98TrC3DyTCslZVZKSm1U1VxVQ6SnaJlZGGzLmDIxlox0A2bzzawd6TvD\nbd4qEAgE1yIxOjXPrsnnX9Yf5lebTvDDb8zBGCe+7wQCgaA7IikxCLpXmduTAkNRbe6tsljd6ODw\nqdAB5f7y+i4BfPt6/AGZ22eP4b5FOb1W6rVqJZnJccTo1FfXIQdYsHsT+aX7cCclMvupGWj1Srxz\n78Y7diqOy6cx6ODAeSfrv2zA7ZNYOHcmYzPTsTta2bn3IC22YBDXubXE7ZHZuMvN4VM+dBpYe4eO\nwgntp6bE2mV5rFk4jre3nuHUJQstDjfGOB0TMxI4f1zJhrJLKFUQZWpDG+9BkgZ/DKpqnPzHK5f4\n4qugCuXWWfE8el86aSHUBp3p3g6h7dYuM5RKhOpaF5t3mNm5r4k2ZwClEhbMMbKq2MTk3BikXjxE\nBlO9vpEmKDQ2ezoMKo+d6KqGmFkY9IWYUWAgLVncSA6U4TJvFQgEgmudcWl6Hlqay1tbK/i/j47z\nNw/PQKUULX4CgUDQGZGUGCCRqsztDKbaHKmyqFEr+Z8NpVhbvSFfG0pRALD7SDU7S6r7rORwe/20\nOoOTIqSAn0XbNzLp5CHakpJY8GfT0Bo0+BY+SCBtHJ6G8xh0sLmslQ0H7URF6Vi5ZA4JRgN15iZ2\n7zuE2xNUkyyant6hzKhp9PPmZhdmi8yYFAWPrdSRaOi5pmitmm9+bQpur58Wu4tDR1p5a2MNTleA\ngsmx2FSN2Nw9p1r09xg0Wzy8+1Et2ztN1HjigQzycnpOpwhF90RVuGMx0HPDH5A5dMzK5u1mjp0I\nJniMBjV33Z7C8tuSSIiPrODozECq1zfCBAWfT+bUWQeHS62UlNk61CUAaclaiq4kIqZOjEOruT7e\n0/XAUJm3CgQCwfVGcVEGFVUtHDzVwAefn+fBJeJ7TyAQCDojkhIDJFKVuZ3B9EpHqiy6PP6wwW4k\n+qvksDrcWOweFH4fS7e8S87ZUpypKSx+Op9AdBTmOQ9iSBmDbLmIViXzuy/t7DjZRlKCkSXzZxGl\n01Fx/hIHSsoIyMGdywTNnxSSxJfHvXy4243PD7dNV3PnfA2qXjwgLBYfv/htDWUn7URHKXh+XRYF\n+VH8/a9Cm3P29RiEmqjxwjdzyMvW9Ko4aKcviar+rqsdq83Ltj1NbNnViLkpmHyZOjGWVcUmbpkR\nj0rVf++MgVSvr1cPiiaLp8Og8li5DafrihpCLTEjX9+hiOhNCSMYOIM1bxUIBILrFUmSWLdqEpX1\ndj79qpLcTAMzck2jvSyBQCC4ZhBJiQHS2/hMGHyvdM/KopZWlxfXldGD4dBpFL0+p327nav1Lo+v\nizGmIVZLUrSCme+uJ/viSdyZaRQ/PRWnOppXnLN4Ji0FrFWAxC92tFByyc34rEzmzSpEUig4cKSM\nU2cvdtlnQpwOrUbD77a4OVrhI0oLj63SkT8+8qnoD8h8st3MWxtrcHsCzJqm55nHs0g0anB7/QPu\nV480USM1Vd8vz4C+JKr6uq52Ks63snm7mS8OWvD5ZHRaBbcvTmJVsYmxmVF9Xls4+lO9dnl8140H\nhc8nc/qcg8OlNo6U2bh4+eoo0xSThiXzg94Q+RPj0GqFGmIk6Y95q0AgENwoRGlVPHdPAf/05iFe\n++NJXnwyFlP84H/HBQKB4EZAJCUGSKQqczuD7ZXuXln0eP28+JuDYZ9vjNUyc5KJgCyzI8SEje60\nV+sTDbqOKR5mi7NDkn//Lems2vQ60RdP4h2XyZJvTP7/2bvv8Cbve///T+1hDduyvME2HmCwDbZJ\nwgzEhJlmN4sAIelO0n7b056e1V+bNP2enp7219NzmuakSZvRjIbMlrYhJAQIhJKQYMBmmmnAS5aH\nZEnWrXV//5D3wgYDNnwe15UrXMaSbt+ShT7v+/15v2hVxvAfzuncuzQLja8BFCqCpjSqW5opKZxC\nwZRcAoEgH+34jLqG/gvYyROSeepNCadLJiNZyapleuItQy8Kz9b5+c3z1Rw+5sVsUvHw2kzmXxfX\n1cFwPlf8R5qo0dNg8xSGU6g613EBSIEIO3a1sGFzI8dO+YDokMXlZXZumGsjxjh6C/+RXL1ucY/t\nBIXmlgDl+7u7IXzt0cKcRh3thigujHZDpCbpht39IgiCIAijZUKiiVWL83h+w2H+90/7+ZdVpWjU\nojAuCIIgihIXoPNqcvmRaJLFQOkbo6HzyuJQHQGxJi2PPXQNZqOWcCSCUqGIxnq2+VHQvXWjp86r\n9QO15G/bcZS0Jx7DeLQKbWEWc+/NpQETz0jX8dAXUpkUL4NKA9aJKJU6Fs27Dn2MFVebhy0f78Lt\n8fZ6LKUCpmXmUVUdSzgic0OphuWztANGdnYlVxi0vLfZyWt/qiMYkpl7TSxfvn/CgMkXI7nif76J\nGueapzBUcUSvVREIhoc8LodT4r0tTjZtd9LmCaNUwLXFVpaX2SnKN6NUXryF9HCuXsdZxlaCQjgs\nc+R4R1JGpZuTp3t0QyRouX6WhdIiKwVTTOcsNAmCIAjCpTCvKIWqM63s2F/P65uPcf+Ssbv1URAE\n4VIRRYkL0Pcqs0Gnpl0KXbS90kMtemdOScRs1A54XBt3nWbLntp+tynOSwDo15Kvb/dy059+h6Gx\nhvjZk8m/ORM5IQ259E6+r2tHGfKBWo8Uk0Zjq0yNT48+RoW/3c3m7Z/Q5u27aFUx0Z7P2QYjRj2s\nXKInP7P/S6/not/RGERqNCH5lMRa1Hx19QRml8YNem6Gc8X/TG07L71Zy2d7XcDwEzU6DWeewmDF\nkdvmT8LjC/Q7rkhEZt/BNjZsbuTzfS5kGSwmNXesSGLpwgQSE8ZO4oNeq77sCQotriB7Kt3srogm\nZXh90dkqarWC6dPMlBRaKC20kposuiEEQRCEsUehULBq6WRONbTxYflZcidYuTY/6XIfliAIwmV1\nUYsSVVVVPPzww6xdu5ZVq1ZRV1fH97//fcLhMHa7nZ///OdotVrWr1/Piy++iFKp5O677+auu+66\nmIc16npeZe4sDFwsI+kI0GlU2Kx6FEpFrzkTeq2KuYXJ3FOWQ5PL36sl3+h184V3niW+uQFtSTZT\nb8miXp+MtWwVNn8jhCRkrYnXd7dzwnGc4unT0etUeFwOlk03cH3udfzxgyoOn26hpU0i1hSHRpmF\ny6MmK1XJqqV6Ys0Dtyqu23yMDz47i79Jj7/ZDCjQWgIsWBwzZEGi78/c94r/hSZqwNBDLHvOUxiq\nOGLUdf+6eX0hNn/czIYtjdQ1RM9/bpaRFYvszLkmDq1mbLZzXuoEhXBYpuqEt2NIpYsT1d3dEHab\nlnnXxlFaZKFgihmDXnRDCIIgCGOfTqPi4dsK+PGLn/P8hsNMTDKTHC9m7QiCcPW6aEUJn8/HE088\nwezZs7u+9j//8z+sXLmS5cuX88tf/pI333yT2267jd/85je8+eabaDQavvjFL7J48WJiY2Mv1qGN\na+fqCOg772Dd5mP95kv4A2EUCgUqpbLXHASTu4Wb33kGq6sJ46xcSm7Nplyy85Z/Gt9rPkuMFjDE\n8dqnbk42qZg1cwYAOz/fx9GTp3E3p7Pyxjy+9IWp+AMhNn8usbVcJhiERTM1LJ2lRTXIFgQpGGbn\nHifuajORgAqFOkJMkhdNTIgD1RGkYHjEV+I7EzXWv+9ACkRIT9Gz5q5UZk63jvgq+lBDLAeapzDY\ndohTZ3xs2Ozko53NSIEIGrWCG+bGs7zMTm7W8Iskl8ulSFBodQUp3x8dULn3gBuPt6MbQqWgKD/a\nDVFSZCE9RS+6IQRBEIRxKcUWwwPLJvPM+oM89U4l/7Zm5pgZFi0IgnCpXbSihFar5dlnn+XZZ5/t\n+tqnn37K448/DsANN9zAc889R1ZWFoWFhZjNZgBKSkooLy+nrKzsYh3aFaHvonegeQdFOQnsO3ru\nq/vFeXY+27SHL7z9LGZPK9YFkylcnsX29hS26Qv5x0XxGLUQMiQQ0sbjV2qYMzMDSQqwdefnNDQ2\n9brPcFjJuk1B9p+QMRkUrFyiY3LG4C81KRDhuXVnOHtIByjQWiWMCe0oOv5tHukQxYESNb60Mp2y\nubYBZ1gMx1BDLIeT8PFpeSvvftjIoaPRWRt2m5blZQksmpeAxTz+dlGNZoJCOCJztLMbosLN8Wpf\n198lxGuYc00cJYUWiqaYMRjEBzZBEAThyjBrajJHz7jYsqeGVz6o4qEV+Zf7kARBEC6Li7YaUqvV\nqNW97769vR2tNrq9wWaz0djYiNPpJD4+vut74uPjaWwceCHdKS7OiFp94YsTu918wfcxVjz7p8p+\n8w62lA+ewNHS5kel1WBPiOGBaTFkfetZVJ5WEhZPJf/GDDZ40jlmK+A782ORgd9ubcWUoGfqlAlk\nZVhpdbWxeccuPF5fr/usaVawbqMfZ2uY/CwtX/9iLHGWwZ+rfQdc/Mevj3Cmph2NDnR2DxpjqNf3\nJMQayM60odcO/XKVZZmtf3fy2xdPcrauHaNBxZdXZXLPreldrf3+QIgWt0ScRXfO+4Per5G509NY\nv/1Ev++ZOz2V9NTuzp7OxwiHYOPmRta/V0dTSwCAa0viuOOmVGaXnn+B5HIard+ZltYAn5a38Mnu\nZnbtacbdFn3OVSoFJUWxzCqNZ1ZpPFkTjWO6G+JKeg8ZDeJ89CfOiSAIQ7l3UQ4nat18XFFHXnos\n84pSLvchCYIgXHKX7RKtLA8QBzHE13tqafGd83vOxW4309jYdsH3czl1btUw6NR8vHfgaNLORJC+\n4sx6woEgpz7cxZH7HkXV6mLSnTNIuzaFN9xZBDOn8tVrLHilCL/+sIU6j5ay3Cxc7WoaHI1s3vE5\nwVDv4kFsTDr/+4YPOQJLrtWw+FoNIcnHQDWmdn+YV96q5d3N0b+8eXEi6jgvWzuGUPZUlG2jzdXO\nUM/WUIkaTc1tNLv9bNp9lopjzgGTMwbS9zVy8+yJ+NoD/eYp3Dx7Io2NbYQjEV778Cg7y5tprFEQ\n8GpAVmA0KLl5cSJLb0ggLTk6VLO52TPETzM2XcjvTDgic/ykj90dSRnHT/no/FW3xWlYfL2NkkIr\nRVPNGLu6ISI4nWP3PF0J7yGjSZyP/i71OQkEI9Q7JOoaJBqcEtOnWshIN4z644hCiyCMHo1axTdu\nL+Dx5z/jxfcOE4pEWDgj7XIfliAIwiV1SYsSRqMRv9+PXq+noaGBxMREEhMTcTqdXd/jcDiYMWPG\npTyscafvVg2tWokUigz4vQMVJCCalhDYU0nV6v9D2OMj5+4ZpJSmstNyDZaMFBZOMeL0hPnV+83I\n2jhWLCpFp9Wy//AxDh4+QrDH4ylQY9RNQo7EYjIquH+pjtwJg7+09h1w89SLp3E4A6Sl6Hj0wQym\n5JgIRyKo1YoRDVEcKFHj/jtTSU3SE45EeHVTFXuqGvttuxgoOeNchpqn0O4P84vnD7Nvn49wILqV\nQ6UNo4uVWLrQzppl6cN6jCuJuy3Env3RAZV79rtp80RnQ6hU0WGjpUUWSgqtTEwTsyEEYbiCoQgN\njQHqGvzUNkQLEHUNEnUOCWdzgJ51/bK57XzzS5mX7VgFQRiexFgD37qzkCffruQP7x3hVF0b9y/O\nQ6Mem0OvBUEQRtslLUrMmTOHjRs3cuutt/L+++8zf/58pk+fzg9+8APcbjcqlYry8nL+9V//9VIe\n1rjTN5pysIIEgM2ioyjbRsXx5l4L/eXaZo7c9z0igQCTVxZjn56Cful9FKsNKIJeqpuC/Pf7LSSl\nTuSaGdOQZZmPd+3hRHX34+q1KsJhAyZdDqAld4KS+5fqMRsH/kfU6wvzwutn2bStCaUS7rwpibtv\nSelKmhjJEMXhJGr0PU8D6TlbY7h6zlOoqfOzYUsjmz9uot0fAZRozAF0Vgm1IYxCAZUnms5rUOd4\nE4nIHDvlY09HUsbRk93dEPGxGm6cH0tJkYWifAsxxiv7XAjChQiFZBqcvQsOdQ1+6hokGpsCAxab\nbXEapk02kZKoIyVJT0qijunTREeDIIwXkyfG8aO11/Dk25Vs21fL2UYPj9xeSJx57ESDC4IgXCwX\nrSixf/9+fvazn1FTU4NarWbjxo384he/4J//+Z9Zt24dqamp3HbbbWg0Gr773e/ypS99CYVCwSOP\nPNI19FLob6hoyoEU59lZeWNer1QO35YdHHvgnyESIX9VMbbCNELz78KrM6Dwe4mojfzu41om509j\ncnYm7X6JrX//jMamll73bdCkotBE9z4uvU7LopkalIOka3y218VvXzpNU0uQzHQDj34pg+yMgQcl\nDjVEcbiJGsM9TyMdognRrQi797l4d3Mj+w5EW7OtFjXEeNFaAyjVvVcM5/MY44XbE2Lffje7K93s\n2e/umg2hVEJ+rimalFFoIXOCQXRDCEIP4bCMoynQVWyoa5CinQ8OCYdTIjJArTnOqmZKbmfhQUdq\nUvT/yYk69DpR6BOE8S4h1sC/rC7lD+8dZueBBh5/4TMevq2AvAkikU4QhCvbRStKFBQU8NJLL/X7\n+vPPP9/va8uWLWPZsmUX61CuKENFU/Y1pyC5a+tD50K/af0HnHj0ByhUSqauKSa2IJ3g9fcga2Qi\nfi/oYwkbU5g7eyJ6g5nmVhdbPv4Mb3t71/0qUBOjmwRyLDEGWLPcQHb6wB+I3Z4Qv3/1DNs+aUGt\nUnDfbSncviJpxC2JAyVqPHRfOovmDTwwcrjn6VzJGb3u0x1k0/YmNm510tgUHVw5Nc/EijI7M4rM\nPPbcpzS5+1/CHMljjHWRiMyJah/lldFCxLET3q6rtnFWDYvm2SgpsjB9qpkY4/hLFRGE0RQOyzic\nUq9tFrUdRQiHM0Ao3P/9wmpRkzcphpQkHSmJOlKT9F1/FukzgnDl02lUfPkLU8lMsbDuw2P8/I97\nuHdRLmUlaaK4LwjCFUusGsaZoaIpe7JZdKxeOrnXEMfG19Zz8ns/QaXTMO2BGVimTowWJBQSRMIY\n7Wk0BqxU1hjQG5RUn61jx649hMLhrvtQK83EaLNRKrWgcPOtexKxDZKu8ffPW3jm5TO43CFysow8\n+mDGiIeuybLMzt2tvPxmLXUOCYNeycrbU7h5SeKQVwaHe56K8xLOua2i6oSXDZsb2bGrhWBIRqdV\nsmRhAivK7L1+nuI8+4DbRYbzGGNZmyfE3gNuDh6tYefnTbjc3d0Qk3NiKCm0UlokuiGEq1MkItPU\nEuw948ERLT44GgMEQ/0LD2aTikmZRlI7Oh6iXQ96khN1YmuTIAgoFAoWz5zAxEQTT/1pP698UMXJ\nOjdrlk5GO44/TwiCIAxGFCUuop5bJka6KB3stjqNatDFb0/FefZet2t4/nWq/+0/UZsNFDwwA1N+\nFoH5d0LEB7IM5lTcmjTKT0YIywqOHj/OzvKDve5Tr05Fr4lOhPYFzjBvugqbJbXfY7e4gjz78hl2\n7m5Fq1HwwN1p3Lw4ccQRmAerPLz4+tkBEzXO5VznyWYZeohmIBhhw4f1vPan0xw/Fe0SSUnSMX+W\nlaULE4m3avvdpvO+RjKocyyKRGROnmmnvCKalFF1vLsbItaipmxuPCWFVqZPM2OKEW8hwpVPlmWa\nW4PdWyw6uh1qHRINDolAsH/hIcaoIifLhN2m7p7z0LHlQvzeCIIwHJ1zJn7zTiV/319PTaOXR+4o\nIME6+qk6giAIl5P4ZHQR9E3HiDNrmZIRz8rFuRh1Qy+o+952oOjKvovfzqq5FAgTP8Biu/bJFzj7\n70+isRopfLAEQ342gTm3QNgLCiWyZQJn2mM5USujVEBajJuXehQkots1stGorEQiEgrVaebPiOm3\n2JZlmY92NvP7P57F4w2TnxvDIw9mdMVg9jVY4WWoRI2RuKcsh3A4wp6jTlyeAPEWPUXZ8dw4cwLx\nFv2AhSKHU+K9LU42bXd2pEXIaGJCmO1B5Bg3HxxqoLymesA40ZEM6hxrPN4Q+w60Ud4R2dna2Q2h\ngLzsGEoKLSy6PoVYszzo3BBBGM9kWabFFeqe8eDoPWhSCvQf8mA0KJmQaujR7RCd75CapMdsUpGY\naBExqYIgXJB4i55/vr+El9+vYntFHT9+4XO+ces08jPjL/ehCYIgjBpRlLgI+qY+NLcF+Pv+esqr\nGplXlNJvMTvUbQeKrhxo8Qv0WwjLskzNz5+m9le/RxtvovChEvT5UwheuyRakFCqiVgncqTFQkOb\nBr0Gpib60ano2vqgVpqJ0WWjVGgJhFvQqmt47EslmI29OwWczQGe/sNpdle40euUfOX+dJbdYB9w\nATtY4WVxSQZvrK8fMlFjuDofo+J4Ey5PgFiTjqIcGytvzO137iMRmYqDbby7uZHP97mQZdDqQBfn\nRxcbQKWJIANScPDnpKehBnWOFbIsc+pMe3Q2RIWLI8e9XYP1LGY1C+fEU1JoYcY0C2ZT9G3CbjeL\nBZYwrsmyjKst1G++Q2cBwi/1LzzodUpSk3U9hkvqu4oQVrNabFkSBOGi06hVrF0+hawUC698UMUv\n1u3lroU5LL12gngPEgThiiCKEqNsqNQHfyA85GJ2qNsOFF3Zd/Hb88+yLHP68f+i4ZlX0dstFD5U\njHZaEcHi+RD2gUpHwDSR/Q4zbr8Ksy7MgmlqPK4IoGJGrp0dFTJ6dSog4wucRgrVM7swvVdBQpZl\nPvioiRdeP0u7P8L0qWYeXjuRxITBBzv2Lbw4WyT+8p6Tt9d5CIcZNFFjJPo+RotHYkt5DSqlouvc\ne30hNu9oZsPmRuoaorMncrKMLFlg472KKlo8Q8+jOJ840cvJ6wuz76Cb8go35ZVuWlzRKotCAbmT\nYijtSMqYlGEU3RDCuOb2dBYe/L2GTNY5/Pja+xcetFpFryjNzlSLlCQ9cVZReBAE4fJTKBQsLE4j\nPdHEb96p5PUtxzhV7+bB5fnotOPjc4ggCMJgRFFilA0n9WGwxexQtx1JrKQcDnPqn/+DxlfewZBi\npfChEtSFpQSnzYSwHzRGPIYMKuuNSCEliaYQk+0SBq0ZD+DyRGh1p2PQMPJbfQAAIABJREFURIAA\nHv9RLKYw8/PSe23ZqHdIPPXiaSoPtWE0KHlk7UQWzbcN+QG+Z+FFlkFq1eJv1iOHlag0Ml+5bwJL\nF9hHPH9isMfoa0+Vk5nZqXy4rZmPdjYjBSJo1AoWzolneZmdvEkxOFp8vPb3cyd3jPWoT1mWqT7b\nzu6OIsThY57ubgiTmgWzu7shLGbxViCMLx5vqEfBwd8xXFKi3iHh8Yb7fb9GrSA5SUdhYnfBobP4\nEB+rEYUHQRDGhZw0Kz9aew1PvbOfXYcc1Dq9PHpH4Zj9LCIIgjAcYiUyyoaT+jDYYnao2w43VlIO\nhTjx7cdpensDMelxFDxYjGrGHEK5UyEcAJ2FRuUEDtUaiMgKsuIDTIwN0vl5/Eh1iFffl/C0yxRM\nUnH7QguBYGGvbSHhiMy7Hzbyylu1SIEIJYUWHl47EVtc/+GPfbk8Ek0uiYBHQ7tTTySoAqWM3taO\nMV5iZnH+BRUkOh+jb3FHliHo0XDqjJp/+rwKALtNy7IbErhxfkKvRflwkzvGYtSnr727G2LPfjdN\nLT26IbKMlBRaKS60kJMpuiGEsc/XHu69zaJjuGRdg79j5ktvarWCJLuW/FxTj+0W0QKELU4jXvOC\nIFwRYk06vr+ymD9+eJQt5TX8+IXP+dqt0yicZLvchyYIgnBeRFHiHEaaoDGcdIzBFrND3XY4sZIR\nKcDxh/+Nlg1bMGfaKFhbDKULCE3IgkgI2WDjdDCNk04dSoXMtCQ/dlP0g304IvPGB27+us2PUgm3\nXa9l3vTOq4fdL5OzdX6efK6aI8e9KNUyMck+XNp2Nu6ODDkro1NtXRBfrQXJqwRkdLES+ng/SrVM\nvGV0Fvk9iwqRkAKpVYfk0iKHo8dWNNXETYsSKZ1uRTXAImX4CSeXP+pTlmVO1/i7BlQeOhrdAgPR\n2MHrZ8VRUmhlxjQz1mGklgjCpdbuD/caKNm15cIhdcXP9qRSQVKCjrxJMd3zHToKEAk27YC/04Ig\nCFcatUrJ6iWTyUw289LGKn71+j5uv34SN83OEJ1fgiCMO6IoMYjhpGAMpnOLw8cVdfgD/a/mDbWY\nPd9YybDPz7Ev/yOurTux5tiZtmYG8rWLCSenABEiMckc9qTg8KjRqSMUJkuYdNFe/ta2CC9v9HOy\nNoLNomD1cj0TknofXzgs8+eNDbz2pzqCIRmNKYAxsR2lWqa5jSFnZUDfRA0lGlMAQ4IflbZ7f/do\nLfK1aiXpsfFUH3YR9GgABSijBZAb5sXxtTsGPsae7inLwWjQsmNf7bASTi6l9vYw+w52J2V0dkNA\ndCZGSaGF0kIr2VlGsUATxgRJilDn8PeI1OwuQLS4+hcelEpITNAxaaKxx3yHaMdDok17wd1UgiAI\nV4r5Ramk2008+XYlb287QXV9Gw/dlI9BJz7iC4IwfihkWe4fsD7GjUYCwFBJAlIwzMsbj7Bjf32/\nv7txZvqgC+++fFKIP35QxeHTLbS0Sb0KDOcqbIykQyPs8VK15ju0fVJOXH4SU1YVI89aSsRmAxQE\nTelUNNtpk1RY9GEKkvxoO/6tOnQqxKvv+/H54Zppem6dp8Kg6/2B/9QZH08+d5rj1T6sFjUGuxdJ\n1d7vOGwWPT/5ynW9jreu0c+r79Sw49NoqsXUPBOr7kxhT3XdgIWXc52XobT7w2z7JDq4svqsHwCt\nIYLG4icpVUlp/sgew243c7a2dciEk0tBlmXO1Pq7kjIOH/USCkd/bU0xKooLogMqZxRYiL2I3RAi\nfaM3cT56s1hj2H/Q2aPw4O9KtehZOOukVES3UCV3dDr0TLVIStChVo//wsOV+hqx282X+xAuyMV6\nTq7U53s8uZqfA7c3wNN/3s/h062k2Iw8ekchKbaRp5ddqKv5ORgrxHNw+YnnYGBDfX4QZdQeOrsj\nyo84aG4LDPg9I0lcMOrUfOkLUwcsMJyr6DDcWMlQi4sjq76Fd88BbIXJTF5ZSmT2MiKxVlCo8Bgz\nqHDEEQgrSTYHybMHUCqinQ/v7gywtTyISgl3LNRxa1ksTqen676DoQhv/bWeN/9WTzgMC+fEc8ty\nGz956bMBj6XJ7afZ7SfFFkObN8hPnz7M4UMB5IgCjT7Ctdca+fbqbNQqFfm55l6RpheyyK+p9/Pe\n5kY272jG1x5GpYK518SyvMxOdpYBtzdw3o8xVMLJxdTuD1NxqI3ySjd7Kt00NnW/HrMzot0QJUUW\ncifFiG4I4ZIJBiPUN0p95jtECxBNLUH6lrgVCkiI11KUb+4qOHTOeEhK0KLRnH8RUhAEQehmidHy\n3Xtn8MaW47z/2Rl+8ofP+fIXplKca7/chyYIgnBOoijRQ98YyYGcT+JCz4XthWwL6SvobObwvY/Q\nfvAoiSVp5NxbQnDWMhQWM6i01CszOFJvRQaybRLp1hAKBbS0RXhpg5/q+ggJ1uh2jfREVa89iEdP\nennyuWpO1/ixxWn4xgMTKS2yIgXDQw6BfH/XaezaBP7w5lkkSUahkjEmtqO1BjhY7+b1LequTpPh\nFl4GEo7I7N7nYsPmRvYeiFYi46xqbl6czJIFCcT3GLqp1479l7ksy5yt83fFdR486iEU6u6GmHdt\nHMWFFkoKLMRaL+5siJHOURGuLKGQTIOzR+GhR8eDsylAZIDeOluchhkFVhLi1L1SLZITdWhF4UEQ\nBOGSUCmV3Lsol8xkMy9sOMyv36rklrmZ3DIvC6WYMyEIwhg29ldrl8hQMZI9xZn1GHRqHC2+81q0\n9S18NLmlc85jGEigtoHD9zyM/3g1ybMmkHzLDI5lzyfTYqbRC7tbbOitsQSCQfZWVFIbr+CeshwO\nnYzw2gd+2iUozlPzxTIdem33P1Rt3iAvv13DB1ubkWVYsjCBB+5Kw2iI/pw6jYqinAS2lNf0Op7O\ndIu/rfcSlNpRKGX0Nj/6OAlFjzVJz06T81n8uttCbNru5L0tzq7ugal5JpaXJXBdSSwa9fhZAPml\nMJUd3RC7K3p3Q0yaaKCkyEpJoYW8STGXZA99z4JZk1si1qSlODeBlYvzLmhbjTD2hMMyDmd3hGbX\nlguHhMMpdUXH9hRn1TAl19Q946EzWjNRj06nFK2KgiAIY8SsacmkJsTw5NuVrN9xiur6Nr5y81SM\nejHwWhCEsUkUJTo0tvjOGQEJYNSr+fELn51Xl8NQhY+RbAvxV5/l8N0PEzhTS9r1WViXFdEyYyGZ\nqTbKqyUOtk8iPS2VNo+XzR/vwtXm4fAJBWfqLTiaTahVcFeZjuumqbu6I8KRCD95upwPN7kISkrU\nughz5xn56n3p/X62G0vTexUlgj4V7U4DYb8akJl1jZnDTWdRqPtfUm1pi27x2LKnZkTdIkdPetmw\nuZGPP20hGJLRaZUsWZDA8rIEMieMj2xuWZapqZe6BlQeONLdDWE0qJgzM5bSIiszCizEx176Dw59\nC2atngBb9tRyrMbND9fOvOTHc6W4XJ0n4YiMsynQb8ZDbUO08BDuP4MXq0XdkWoR3WLRud0iOVGH\nQS+6ZgRBEMaLiUlmfrj2Gn775/3sO97EEy9+zqN3FJJmN13uQxMEQejnqi9K9Lw6PBSbRYdRr+GM\no3vmwki7HFweieZBCh/D3RbSfvQUh+/5BsH6RibemIO+rIjwdWUk2SxsPSLRbCwgPS2WeoeTj3Z+\njhQIolRoidHm4Gg2kRCr4IEVelITuhcY7f4wP/zVQY5VBQAFulg/hgQ/FWfcrNus7vezxVv02Cw6\nHI1B2p0Ggt7oAlpjCpCSKfPwAxn8+AXHgEWeOLOeTbvP9ipqDHYeA8EIO3a1sGFzI0dP+gBISdKx\nvMxO2dx4Yoxj/+UrSREqD7exu8LFnko3Dc7uboisiYbobIhCK5OzL003xKDHOUTB7IzDw6ubjvIP\n94vCxEiM5latwUQiMk0twe4YzY5uh9oGPw2Nga6iV08Wk5rszBhSE3U95jxECxCdHVGCIAjC+Gcy\naPjO3TN4a9txNnxymp/8YTdfuimfmVMSL/ehCYIg9DL2V3UX2XDmSMwpSOaeshx+/MLAAx6H2+Vg\nNekGnccQZ9Z3JTwMxnegisP3PkKoqYWsm6agmj8d/bwb0JuM/HV/CFXSTOL1eo4cP8WuPfuRZRmN\nKg6jNgulQk0g5GT1MnuvgsS+A25+88JpGpuCKLURYpJ8qA3dl1AH+tm83giRVjPu6iCgQG0IYUho\nR20Ic11ROmajluI8+4DntSg7nopjziHPo8sVYuNWJ5u2NeH2ROdgXDPDyooyO0VTzSjH8GBHWZap\nbZAor3RTXuHiwBEPwa5uCCWzS2MpKYrOhug59+Jyc3mkITuF9lY58Qf6RzcKgxutrVqRiExza7DH\ncEl/15/rHVLX66snU4yKrAmGXgWHzi0Xppir/m1fEAThqqFUKrhrYQ6ZyRae+9shnvrTfpbPmsid\n12eP6c9TgiBcXa7qT6fDmSOh16ow6FR42oMX3OWg06gGXawX5yUMWdTwlO/nyMpvEna3kXP7NJhX\ngmX+AmSVhrcqlcROuBaFQsGn5ZUcOX4KUGDQZKDXJCHLYbzSCUxGD/a4CQB4fWFeeP0sm7Y1oVSC\nPt6PPt7fa/4DQHObn8bWdtLtJtrbw7zzXgPrNzqQAhHMFiWmRAlJ6SPeoqc4L4V7ynIAuv7fN/bz\nhuI0tu6p7ffzyTI01If46f8cp/Kgh4gMZpOK25cnseyGBBIThi7YXE6SFGH/kehsiPJKN/WO7tdJ\nZrqB4kILpUUWJmebxmzModWkI9akpdUzcOpMq1eixS1d3W8YIzDSrVqyLNPiCkW3WPSY79C55SIQ\n6F94MBqUTEwz9Eu1SEnSYTGJZ0oQBEHods2URFJsRp58u5INn5zmdIOHr90yDZNBzJkQBOHyu6o/\nuQ61naKTPxDmw901RGQuqMsBou3cEVlGr1XiD0Qnyem1KuYWJnct4gfi3rmbqjXfJuLzk3d3EXEr\n5iEXXoM3pGDjUTO2zHykQIBtO3dT53CiVOiI0eWgVsYQjvjwSMeJyO2UTE5Hp1Hx2V4Xv33pNE0t\nQTLTDXx1TTrPvV9Bk7v/Y8sy/Ne6vViVsRw/EsHdFiLOquGh+9JZNM9GKBIZcL+8Sqlk5Y15/WI/\n+6Z3yGGQ3FqkVh2RoIp9Zz3kZBpZvsjOvGvjxuzk/roGf9eAygNH2ggEo4tGg17JrNJYSgotFBdY\nSIgfO90QQ9FpVBTnJrBlgIIRQLxZT5xFR5ur/RIf2fg00HuLLIMcVuBoCPLu5ga8Hrlru0Vdg4Rf\n6j9dUq9Tkp7c2enQPeMhJVGHxazulZgjCIIgCENJt5v44QMzeeYvB6k43sSPX/iMR+8oZGKS+XIf\nmiAIV7mruigx1HaKviqONVGUbRtw0XauLodO6zYfY/Pu3qkV/kAYhUIx6B7z1i1/5+hD34NQiPz7\nZxC3YgGhKTNoboePHWnEp6XjcnvYvGMXbR4vOnU8Jv0kIhElKJrxSCeIM2spzktnxbWZ/NczJ9n2\nSQtqlYL7bkvh9hVJaNRKik/17+DoTNQ4dVJHJBhArYaVt6dw85JE9Lroz6tSDR3rqdOosJp0vQoT\nxXl2Nu6oxd+qI+DWgqwAhUxGlpqH788mb1LMOc/lpSYFIhzo0Q1R19D9mpmYpqek0EJpkZXJOTHj\nKgGkp5WL8zhW4+41N6VTcV4Ceq0aka0wNFmWafOEaWgIoQ4YcbsjhINKIgEl4aAKItEiwh/W1Xfd\nRqdVdidZ9JnxEGsRhQdBEARh9Bj1Gr71xSLWf3yS9TtO8e8v7Wbt8inMmpZ8uQ9NEISr2FVdlBhq\nO0VfLW1+bpw5AZVK2W9LwlBdDp3OJ3mjecMWjn/9X1Agk7+mGMuKMkI5BUTUBipbM7AkWKitd/DR\nJ7sJBsMYNZnoNImoVXDnIh2FOWm4PAlYTTp273Pz7R8exuUOkZNl5NEHM8hIN3Q91j1lORgNWnbs\nq6HJLfVL1NDFSqRkyNyyLHHYCQJ9B/3FmXTYDbG4HGrc1RYAlOoIcUkh5l4Xy5oVuWMqerKmvp1N\nWxspr3RRebitq4Ver1NyXbGVkkIrJUXjpxviXFRKJT9cO5NXNx1lb5WTVq9E/Ahe41eTNk+IxhY3\nBw+39Eq1qGuQ8Po6Z7L0eF0oZJSaCCptmEkTYii7NqUrWjM+ViMKD4IgCMIlo1QouG3+JDKSzTz7\nl4M885eDnKpv464bssfU5zBBEK4eV3VRAnrPPmh2+1EoINJ/+zZxZj3xFv2AWxKGo9ntH7QjY6CZ\nFM633uXEtx9DqVIwbW0pphVLCGfkElSb+cydi6xR43E52FtRgRxWE2fMBwwk2xSsWW4gKT76j4pG\nqeG/n6lm5+5WtBoFD9ydxs2LE/slPaiUSr5yWyHpVjP/+dtjvRI1DAl+VNoI7naGNTsDokWYlzce\nYcf+eiIhBZJLR8txHcfDEiAxfZqZxdfbyJ6kI86iv6RRiYMJBCMcPOLp2JbhorZHN8SEVH10QGWh\nlfzc8dsNcS4qpZLVSyZz9w05lyXGcizx+sLdMx46tlh0plx4vP3zNNVqBcl2HVPzTKQm6UhK1HKk\nxskpZyttfn/H3JWEUU3fEARBEITzVZxr5/97YCZPvl3J+5+d4XRDG1+/tQBLzJVxsUUQhPHjqi9K\n9J19sPGzM73iKjv13KKh0wy9ZWEgm3YP3o3RdyaF4+W3OfVPP0WlUzHtoZkYVywnnJ6FVxXP561Z\ngII8u0Rqdgx2XQnvfBQkGIJZBWpuu16HRq1AlmU+2tnM7/94Fo83TE6WgYcfzCArfeDjbm4N8vy6\nKv7yfh2yrOmVqNFJp1Wdc3ZGZ3fE7sMOHI4wkstIsE0DKEAZ7bhISod/+eb0S77YlYLhfgvthsaO\npIxKF5WHPEidsz50SmZfE0/WRA2zS+NJTzYMdddXnPN5jY9H7e3hrpkOtR0dD52DJt1t/dNGVCpI\nStAxOTuG7EwzsRZl15wHW7wWVZ9J5stJHPB1JwiCIAhjQYothh+smcnv/3aI8qpGfvziZzxyeyFZ\nKZbLfWiCIFxFrvqiRKfORdjKG3NRKRXntUVjMFIwPGgMJkRjMjsXK/XPvMLpx/4LdYyWgq9ci37Z\nciLJE3Aqktnfmo5aCQXJfozqMOs2Sew6GEKngVXLdBTnRbsbnM0Bnv7DaXZXuFGpIWFigCZ1K0+t\nb6Y4z97rSm3fRI20FB0+TQuyLsD5dJS/8v5RNm5tRGrVEQ5EfyalNow+VkJrCaBQgjc4/I6L0dBz\nG0lTq4RBaSBGYcLnUlJT390NkZaio7TQyowCM/tr6jlwqo4jle3sqtb1O2/C+OGXwr0GStZ2RGnW\nNfhpcfUvPCiV0cJDTqaxd6pFog67TdvVZWS3m2lsPPeUjaulwCMIgiCMTwadmodvL+DdndW8s+0E\nP325nNVL85hflHq5D00QhKuEKEr0MVhqxIU4V8rHjTMnIMsytb/6PTU/fxqtWUfB12ajWbaccEIK\nZ8IZnPAlYtREKEzx424L8+wGP/VNEVITlKxZocceq0SWZT74qIkXXj9Luz9CYrIKv6GFsCZ69b/J\nLXXNz7h7YS7vf+Rk3fq6rkSN//PVHDInKvjB7xoGPM5AxxXfgRZYtQ1+/rrJwcatHiJhIyCjMQXQ\nxUqoDeFeBY7hppWMluf+UsXWnU6CXg1Bn54WWQEEUalg5vTogMqSQktX7Oirm6rYsqe7W6bneVt5\nY94lO25h+KRApKPQIFHn8HfNd6hrkGhuDfb7fqUC7DYtM6aZe6daJOlItOnGbHSrIAiCIFwMSoWC\nL8zJZGKSmWfWH+D5dw9zqr6N+xblolaJCzKCIFxcoigxiNG8ujlUyofNoifOrOPs//01dU/9AV2c\ngYJvzEO9ZDmR2EQOB7JpkGKxGUPkJ0nsORLk7S0SgRDMLdJw8zwtGrWCeofEUy+epvJQG0aDkq+u\nTufDg0cJtvWOGZRl2P5JM9s3HaDeEUCvU3YlakxIj+Vsbeuwo0/DEZnyChcbNjvZsz+aJ6pQyejj\nJXRWCaVmgOEcDD+t5HwFQxEOHfVSXuFid4WLs3USEH0ulZowmpggmpgQiUlqvve13ttIzmcgqXBp\nBIMdhYfOjocecx6czf0LDwoFJMRrmT7VTEqSjuTE7q6HpAQtmjEaNysIgiAIl0tRto0fro3OmdhS\nXsMZh4eHbysg9hJeTBIE4eojihKXwFApH8U58dQ/9v/jeOENDAkxFDx6PcpFywlbEtjjzaMtHMOE\n2ABp5gBvbJL4/HAIvRbWLNczPVdNOCLzlw8cvPJWLVIgwszpFr6+ZiJhQrz5ae/CQmeiRqtfjVIZ\nYMUiO3fdnEysRTO8Y+0oJrg9IT7c7uS9LU4czgAA+bkxLF5g42/lR2j2DNwVYrN0b4MYbc7mAOUV\nbnZXuqg42IZfihZjNBoFmpgg6pggGmMIlba7SOPyhvp1fgzV1TLQQFJhdAVDERyNgWing8Pf1e1Q\n2yDhbA4gD1DnssVpKJhi6orRTEnSkZqoIylRh1YUHgRBEARhRBLjjPzb6pk8v+EQuw45ePyF6JyJ\nnDTr5T40QRCuUKIocYn0TPnomlWRHcd1f/sjjjf+hjHZRME3F8ENSwnEJPB5Wx4BWcuURAk5IPHf\n6/w4WmQmJCpZvVyPzarkbJ2f3zxfzeFjXswmFQ+vzWT+dXEoFAqkoKqr4yEsKWl3GroSNUxxYZ74\nzjQyBxl6OeCx5iVQOimVX//+FNs/bSEYktFplSy+3sbyMjtZE6P3VedrHrCgMacgmdVLJ49al0Ew\nFOHwUS/llS52V7o5U+Pv+ruUJB0lhdFtGTlZBn784i6a3IF+9zHQNpKhulou9baTK1U4LONwdkdo\n9hw02dgUIBLpf5s4q4b8XFPXFovodgs9yXYdOp0oPAjClaiqqoqHH36YtWvXsmrVKj777DN++ctf\nolarMRqN/Od//idWq5Xf/e53vPfeeygUCh599FEWLFhwuQ9dEMY9nVbF126ZRmayhTe2HuNnr5Rz\n/+I8FsxIFTHWgiCMOlGUuET6zqowa5XUfOdHNP31Q0zpVqZ+60ZYsASvzk65OxelSsmMpHYOHQ/w\nzkcSoTDMn6HhC3O0KBTw1t/qWffnOoIhmTkzY/nKqgn9Oh6mTLDx/uYWAi4toOhK1Fg2P2XQgkTf\nY3W2tHPwSDsfbG3ijVerAEhJ1LG8zE7ZvHhijL1fQoMVNEZjSKSzOdCVlFFxsI12f3T1qtUoKCm0\ndP2XkqTvdbtzdX70NJxOEeHcwhGZRmego+Dg7xouWdsg4XBKhPsnahJrUTM5O4aUJH138SExuu3C\noBfnXRCuJj6fjyeeeILZs2d3fe2nP/0pv/jFL5g0aRJPP/0069atY/ny5bz77ru89tpreDweVq5c\nybx581CpxHuGIFwohULBsusmMjHJxNN/PsAfNh7hZJ2bVUvy0KjF75ggCKNHFCUGcbFi/HQaFQkG\nFce+8n1aP9yBJTOO/O8sQ56ziGZVMpVtWcRoZXJt7fxlm589R0IYdLBqmZ7CbDWnzvh48rnTHK/2\nEWtR89XVE5hdGtfrMToTNT7Y6CcQ0KHRR9DbvCQmqymZnDKs7RMOp8TGrU42bWvC7QmhUESHQq5Y\nlMj0qWaUyoGr5MMdFDqc8xsKyRw+7qG8IlqIqD7b3Q2RnKijbK6F4kILBVPM6LSDFzyGKpQM9f0V\nx5twtraPSgLLlSgSkXE2B7q6HWo75jvUNUg0NAYIhfvvtbCY1ORkxvQaLNmZbGE0iA84giBEabVa\nnn32WZ599tmur8XFxdHa2gqAy+Vi0qRJfPrpp8yfPx+tVkt8fDxpaWkcO3aMyZMnX65DF4QrztTM\n+K45E9sr6jjb6OWR2wuIt+jPfWNBEIRhUMjyQLu0x7bhxPCdy2Bxfj3jI5vdEvGW0Y2DDHt9HH3g\n27j/Xk5sro3J37kJ+bqFnI2kc8yfTkJMmFilj5ff89PYKjMxKbpdw2yEt/5az5t/qycchoVz4nno\n3nTMpu66Uigk90vUuPe2FOZdF4unPXDOAktCgokPP6rl3c2NfL7XRUQGU4yKxdcnsHRhAkn2C9+6\ncK7z29zS2Q3hZt9BN772jtkQagUFU8zRbogiC6lJI/+HcKSFJrPVwPFTTaNemBpPIhGZ5tYgdQ0S\nbT6oOu7qmvNQ75AIhvq/fZhiVL1iNLu3W+j6ddaMZ8ONBL1aiPPR35V6Tux28yV7rF//+tfExcWx\natUqjh8/zqpVq7BYLFitVl599VV+97vfYTAYeOCBBwD4x3/8R2699VbmzZs36H2GQmHU4iqvIIyY\nFAzz1Jv72Pz5GWJNOr6/ZiaF2QmX+7AEQbgCXDkrhFGybvOxXq37oxkHGXK1UXX/o3jKD2Cbmkju\nP9xKuGQOxwKTqAkmkhEboLbWx0vbots1FhRrWDFHy8nTPh7/eTWna/zY4jR844GJlBZ1DxuSZZmd\nu1t5+a1a6hqkXokael30g5dRP/hT7fWF2fr3Jt7/6BCna9oByM4wsmKRnbnXxg3ZhTBSfc+v0yWx\nYVsdlXsl/G1qTp1p7/q7pAQtC2ZH4zoLp5gveHbASBNV9Fr1VTHUUpZlWlqDPdIsovMd6hok6hsl\nAoH+hQejQUVGuqGr4BAdLhkdNNmzUCYIgjBannjiCZ588klKS0v52c9+xquvvtrve4ZznaWlxXcx\nDu+KLUKNJ+I5uPjuX5RDcqyedZuP8YP//Tv3LMrhxtL0rjkT4jm4/MRzcPmJ52BgQ13UEKuHHi5m\nHGSwqZUj934d34Fj2KenMOm7dxAqnMX+9mxaI7HkxPvZ/ImXfUdDGPXwwAo92WlKXnmrhvUbHURk\nWLIwgQfuSuvV5n6wysOLb9RQddyLSgXLy+zcfUvvRI3BVJ9tZ8PmRj7a2YxfiqBRK1g4O57lZXZy\nJxlHfZBR5/mNhBQEvRqCXjUhnwY5ouAwQdTqENOnmSktjBYiUpMj9vDbAAAgAElEQVR1YpjSKJFl\nGZc71GO4pL/rz/UOqSutpCe9Tkl6sr5ri8XkHCsmo0xKog6LWS2eG0EQLqkjR45QWloKwJw5c/jL\nX/7CrFmzOHnyZNf3NDQ0kJiYeLkOURCueAqFghtnTmBikpmn3qnkj5uOcqrOzZplU67arlJBEC6c\nKEr0cLHiIAMNTo588au0Hz9N0jXpZH33bgJ5pezzTUZSGEg1ePnDeh9NLpnMFCWrlumpq/PxnR9V\nU9cgkWTX8sjaDArzu6tLZ2rbefmtWnbtcQEwe2Ysq+5MPee2hlBI5tM9rWzY3MiBIx4A7DYtX/xC\nAvfclkEoOPDPfyHCYZmqE16272riZKWGsGTo+julOoLWHEBrCvJ/HylhQrJp1B//aiHLMu62UI/5\nDh0zHjo6IDoHg/ak0yp7ba9I6eh2SE3SYbX0LjyIqq8gCJdTQkICx44dIycnh8rKSjIyMpg1axbP\nP/883/zmN2lpacHhcJCTI+b/CMLFljchlh89eC2/eaeSnQcaqHF6efT2wku6vUsQhCuHKEr0cDHi\nIKWzdRy+8ytIZ+pJnZvBxO/djy9zOnu9k9Fo1YSa3TyzTSIcgbJSDQuKVbz2Tg3vbo52bNy8OJGV\nd6R0bcNobg2y7s91bNrmJCLD1DwTa+5KY3J2zJDH0eIK8v5HTt7f6qS5NQjA9KlmlpfZmTndikql\nIC5WS2Pj6BQlWl1Byve7Ka9wsfdAG15fR9yCQoXaGEQTE0JjDKLURlAowGbRk2gzDH2nAgBtnlB0\ni4XD37XdIrrlQsLX3j/WQqtRkJzYHaPZvd1CR1ysRnQ8CIIw5uzfv5+f/exn1NTUoFar2bhxI48/\n/jg/+MEP0Gg0WK1W/v3f/x2LxcLdd9/NqlWrUCgUPPbYYyhHYf6TIAjnFmfW8U8rS3jlgyq27avl\nxy9+zpoV+UybGItBJ5YYgiAMn3jH6GG04yD9J05z+M6vEGhoIr0sm7TvrqY1uZAKTx5Wo0z5nhYq\njoWJ0cPKJXokr4/vPnYahzNAWoqORx/MYEpOtHOgM1Fj/UYHUiBCeoqe1V9M5ZoZ1kEXlbIsc+io\nlw2bG/lkdyuhsIxBr+SmRXaWldlJTxm9qcnhiMzRE96OpAw3x6u79+zabVrmXhtHaaGFw/UNbN1X\n0+/2Im6zN68v1F1scHR3PdQ2SHi8/QsPGnW08FAwxdRjuGQ0WjM+VjNoWoogCMJYVFBQwEsvvdTv\n66+99lq/r61evZrVq1dfisMSBKEPjVrJ2uVTyEwx8+oHVTz1VgVatZJrpiQyf3oquemDf04VBEHo\nJIoSfYw0PnIwvsPHOPLFrxJsdpOxbDIp/7CWhvgCDvkmYdUEWL/RTbNbZlKqkjsWaHn7bzVs2taE\nUgl33pTE3bekoNUoB0jUUPPQfeksmmdDpRr4Td4vhdn2SQsbPmzk1Nno4MgJaXpWlNlZMCsewyhF\nL7a6g+zd72Z3hZu9B9xdi2W1SkFhfkdSRqGFCan6rn+QSiMW1BrFBZ/fK0F7e7ij4ODv6nToLES4\nPaF+369WKUiya5mSE9NVcOgsQNjitahE4UEQBEEQhMtg4Yw0pmcnsPdEMxt3nmLH/np27K8nKd7I\n/KIU5hYkn1fHsSAIVwcRCTqIkcZH9uStOMSRu79OyO1l0m0F2L+1ltOmQk4G0ol4fbz7kZdIBBZd\noyFe7+fZl0/T1BIkM93Aow9lkJ1pHDBR444VSb0SNfqqa/CzYYuTD7c34WsPo1TCdSWxrCizM22y\n6ZyV6nOdk3BE5thJH+WVLsorot0Qna8eW5yG0qLogMqifPM5Cx8Xcn4vldGYoeCXwh2DJaUehYdo\nEaLV3b/woFRCUkLvGM3OaE27TTtoIepSEDMlehPnozdxPvq7Us/JeN8zfrGekyv1+R5PxHNw+dnt\nZhocbo6cbmV7RS27jzQSDEVQKhQUZduYPz2FomwbKrHN6qIRvweXn3gOBibSN87DSOMjO7Xt2kvV\nykcJt/vJuWcG8Q+vpUo3ncZQItXHXOw9HMBkUHD79Wq2fFTLtk9aUKsU3HdbCrevSEKjVo4oUSMc\nkSmvcLNhcyN79rsBiLWo+cLiZJYsSMAWp72g8+ByB9lzwM2eSjd79rtp80S7IVQqmDbZ1NENYWVi\nmn5E7Xnne37HIikQod7RHaPZswjROb+jJ6UC7Alaigss0eJDYncBwm7ToVaLjgdBEARBEMYnpUJB\nfkYc+Rlx+BYH+eRgA9v31bH3mJO9x5xYY7TMKUzm+qJUkuKvjM+CgiBcGFGUGEWujz7h6NrvEAmG\nmLz6WixffYD9qhm0hS1s+7iJxpYIOekq8pL9/Op/j+Nyh8jJMvLogxlkpBtGlKjh9oT4cHsT721p\nxOEMADAlJ4YVi+zMKo1Foz6/CnQkInPslI/yChfllW6OneruhoiP1XDj9bGUFFqYPtXSK5r0ShcI\nRmhw9Jzv0F2EaGrpX3hQKCAhXsv0qeauroeUxOiWi0S79ryfH0EQBEEQhPHCqNdQVpJOWUk6pxva\n2L6vjp0H6tnwyWk2fHKavAmxzC9KYeaUxDHbOSsIwsUnihKjpGXjVo599Z8gEmHKl+difHANeyIz\ncHm1vLeliXAErp+h4nBFHU/+tRWtRsGau9K4ZUkirrYQ//vi6WElahw/5ePdDx18vKuFQFBGq1Ww\n+Hoby8vsZE08v2qz2xNi7343B6vOsvPz5q55Bkol5OeaKC2KzobISDdc0cOKgqEIDY2Bjk4HPy2u\nek5Wt1HbIOFsDjDQRqeEeA2F+eYewyWjqRZJiTq0GlF4EARBEARBAJiYZOb+JWbuLstmd1Uj2/fV\ncai6haozrby6qYrr8pOYPz2VzGTzFf15UxCE/kRRYhQ0vbOBE9/6EQol5D9yA6qVD7A7VMjp2jCf\nlLdiiVEwLU3izTfO4PGGyc+N4ZEHM4i3ali3vu6ciRrBYIQdn0cHV1adiKZaJCfqWF6WQNlcG6aY\nkT2NkYjMiWofuyujSRlHT3i7FtxxVg2L5tkoKbIwfaqZGOOV9RIJhWQcTVKfwZLRjofGpgCRAQoP\n8bEapuaZumc8JEZjNZMTdei0ovAgCIIgCIIwXBq1illTk5k1NRlHazsfV9Sxo7KOrXtr2bq3lnR7\nDPOLUpldkIzJ0H/rsiAIV54ra8V5GTS+/BYn/+k/UGmV5H9rCeEvrmFfcCq79/k4dUYiK0VBc00D\nr7zeil6n5Cv3p3Pj/AQ2bW86Z6JGY1OAjVsb+WBbE+62EAoFzJxuYXmZnRnTLCOKeWzzhNh7wE15\nhZs9B9y43L27IUoKLSy6PgWrKTLuq9PhsExjU6BjroO/V6qFo0ki3D9Rk1iLmsk9Uy2SdEydEo9e\nExp0sKggCIIgCIJw/hJjDdxx/SRum5fF/pPNbK+oZe9RJ3/88ChvbD1GSZ6d+UWp5GfGoRznn08F\nQRicKEpcgIZnXqL6sf9GbdSQ/92b8N78AAd8k9jycTQeMzc5yLYt1bT7I0yfauYbD0zgRHU73/7R\noa5EjftuS+GWpd2JGrIsU3GwjQ2bG/lsr4uIDKYYFbctS2TpQjvJicOLU4pEZE6ebo8mZVS6qTru\n7eoCiLOqKZsbT0mRlRnTursh7HbTuJkUG47INDUHehUc6hzRjoeGxgChcP+WB4tZTW5WTNdwydSk\n7o6HgeZjjKfzIQiCIAiCMF4pldF0jqJsG25vgL/vr2d7RS27DjnYdciBzaJnXlEK8wpTsFn7z1oT\nBGF8E0WJ81T7y6c5+4vfoTFpmfpvd+C8YTX7nGls29mKTi2jk5xsfK8Zo0HJI2snkpKk45fPVA+a\nqOFrD7NlRxMbtjRSUycBMCnDwIqyROZdFzesbQIeb0c3RGU0LaMzclKpgLzsGEoKLZQWWcmcYBhR\nl8XlEonINLcGe8VodhYhGholgqH+hQdTjIpJGYZojGbHfIfOWQ9X2lYUQRAEQRCEK40lRsuy6yay\n9NoJHK91s31fLbsOO/jzxydZ//FJpmbFM78oheJcuxgcLghXCLFKGyFZlql54pfUPv1HtFY9Ux+7\nl7OzV7PzlJU9+1qJM4Y5UF5Ne3uImdMt3LI0kb9+0DhoosbpmnY2bG5k69+b8UsR1GoFC2bHs7zM\nTt4k45BbKWS5sxvCze4KV69uCKtFzQ1z47uSMsymsflUy3K08FA3QKpFvUMiEOxfeIgxqsiYYCC1\no8shWnyIFiHG6s8pCIIgCIIgDJ9CoSAnzUpOmpX7bszls0MOtlfUceBkMwdONmMyaPh/7d15eFTl\n3Tfw75l9MlvWycISIECAkKQGLbIEFQQV+1RfqIiU+KiXWhupXm2h5IpY7CNVYlEpYBctrbzUCoI8\nrT4o7vrwSohlMUAAw04g62SZyUxmn/P+kWQykwQENTmB8/1cVy6Sc04m99xJOGe++d2/MykrBfm5\nqRicZJR6uET0LfAV3GUQRRFVS/8LtX9/G7p4PcY8cx+O5SzAx/s1OHPWCYXHjj3762AyKvHQj4fg\ndFUbnvrd8R531AgEROza04x3P27AoaNOAO13cZh7ewpunpYQrp7ojastgC8rWjuqIexotrdXQwgC\nMHpEVzXE8KEDpxpCFEW0OAJRgUPXkgsvvL5Qj8/R6xQYnKZrX2IReWeLZB1MRuUV3/eCiIiIiC6N\nTqNCfm4a8nPTUG1ztTfHPFSDD/ZU4YM9VRieakZ+biomjk2GXsuXN0RXGv7WXiIxGMTpx4rR8N8f\nQW81IvO5h3EoYx7e+zwEh92F2uPn4Wp1Y+I1FliTNPi/W873uKNGiyOAN96qwfuf2dDY7AcA5Iw1\nYfaMJFyba4lqchn+uqKI01Xt1RD7Djpw9LgToY7X8GaTCjdO6qiGGG+GWcIqAVEU4WgNoKa+510t\nauq9cHt6Bg86rSIibOi6q0VashYWs4rBAxERERFFSUs0YN70kZhzwwiUH7dh54EaHDzZiFM1Dmz6\n6Biuy7QiPzcNowZbeC1JdIVgKHEJxEAAJx/8ORrfL4UhzYwRzz+G0qQf4sNPvGhrceL0V+dhMihw\nc34CvvjSjrL99vAdNaZPicexU2148eXTKN3TgkBQhF6nwOwZSbj1pkQMSdP3+HqutiAOHHaEg4im\nlvYAQxCAUcNjkJdtQV6OGRnpMf1eDeFwBsKBQ3XHEovOXg9t7p63tdBohI5KB11Hc0ltuNFkXKya\nJwsiIiIiumwqpQITMq2YkGlFk8ODzw/V4v8dqMbnh2rx+aFaJMfHYFpOKiaPT4HFeGmN4olIGgwl\nvkbI68OJewvRvPNLmNLjkP7iEnyomInPP3Wh7mw9WupbkJVphK3Jhw93NobvqHHLjYn44ks7ljz9\nFU5XuQEAQ9J0uG16Em6cFA99xN0eRFHE2fMe7D1gD1dDdN620mxUYdr1ccjLtuCa8WaYTX3/LXO1\nBaLualEdUfHgdPUMHtQqASlWLcaPMUb1d0hN1iI+Vj1glpEQERER0dUn3qzDf0wehtsnpeOrsy3Y\neaAae79qwJZPT+DNz04id2QC8nPSkJ0RD6WCzTGJAsEQWtv8cLh8cLT52v/teF8UgTvzh0On6b+o\ngKHERQTbPDg+/0HY9xyFZWQiUlY/ia3N1+PLA3ZUn6iGThnAoBQtKr5yhu+oceOkOHz+7xY8WnwY\nrrYgFApg0oRYzJ6RhKxMY7gyoM0dxIHDreFbdnYu5xAEIGNYDCZkm5GXbUHG8Bgo++BFfZs72NFc\nsuuuFramAM6ea4PDGehxvEopINmqwdhRxq4eDx3/JsZrGDwQERERkaQUgoCx6XEYmx4H10w/yg7X\n4X/Lq7H/mA37j9lgMWowZXwq8nNSkRwfI/Vwib5T/kAQdpcPDlfvYYPD5YPd5UNrmx9Ot/+Cj6MQ\nBEzJTsUQa/81kGUocQFBRysq596P1orTiBuXDMsLv8WGE1k4fLAeDVV1SIhVoaExAHtrANdPiMU1\nWSbs3mfH0t9WAgBizSrc9R8pmHVDIhLjNeFqiPYlGXYcOdZVDWE0KJE/MQ55OWZck2WG5SKNLi+H\n2xNEbbceD9UdFQ92R8/gQakUYE3UYNSImPCSi87lFokJmj4JR4iIiIiIvmsGnRrT8wZjet5gnKlt\nxc4D1dhdUYd3dp/BO7vPYPSQWEzLTcWETCu0auXXPyBRPxNFER5fMCJc8EcHDS4f7G0+tHaEDm5v\nz4r27gw6FcwGDQYlGmA2aNrfYtRd7xs0SLToYTFo+uEZdmEo0YtAYzMq/89/wnm8GgnfGwRlySq8\nvH8wjh2qgt/pgBgMoaHRh9EZBmSkx2DfATt2720BAIwZacDs6Um4/tpYBAIiDhxpxZa3a7HvoB22\npq5EauSwGFyTbUZethmjRhi+8Qt+rzeE2obou1p0hhDN9p4JmEIBWBO1GDE0JqraIS1Zi3FjE9Hc\n5Pxmk0ZERERENAClp5iQnpKJeTeNxL7KBuw8UIMjZ5pRWdWC1z6oxMRxKcjPScWwFBP7nVGfEkUR\nLk8ArRGVC9FVDdHBgy/Q82YBkQQBMOnVSDDrIkKG6H8tHdtNMWqolANz+RJDiW78tXX46s7/RNtZ\nG5ImDoPzqd/jtf814tThkwh6vQiGAGuiBslJWhw91orKEy5oNAJunpaA225KhFqlwL6DDjz94gkc\nqXQiEBQBtFdDTP1+HPKyzbhmvBmxlkuvhvD5Q1ENJWvqPB1LL7zhZR+RBAFIStAgN8vU0Vyyq8eD\nNVEDtar3H0ZVL3f/ICIiIiK6GmjUSlyflYLrs1JQ3+Jub4x5sBaf7j+PT/efR3KcHqkJBiTG6pAU\nqw+/JVp0rKagC+oMGuxOL+wuH8SzLThX64gIG6KXUwRD4kUfT6kQYDZokJpggMmghiVGE1XJEBk4\nmPRXR/8+hhIRfGfP4eid98FT24LkaaNR9Ys1eP1/Aqg7cwrBQAgxeiWMRiXqG3yot/mQYtViRn4C\nkuLVOHLMhZXrTqGh0Rd+vBHpeuRlWzAhx4xRww293vKzkz8QQl2Dr2uJRedbvRe2pvaGI90lxquR\nPdbU0VxSGw4eUpK0UKsHZgpGRERERCQ1a6wec6Zl4M6pI3DoVCN2ltfg8Jkm1DW7ez3eYtB0hBS6\njqCi6/1YkxYKVlhcdbz+jh4NTh/srvbAwe7sqm5o6QghLiVoUKsUMMdoMDTZ1FG5oO61qsFs0MCg\nU8muYoehRAdP5TF8NfcheBudSL0lG3sLVmPbFhtaG+1QKgCtRoE2dxBuTxBZmUakJWtR1+DF5n/V\nIBBo/yGM0Ssx5brY9jtlZJsR160aIhAQUWeLDhw6G002NPrQ289yQpwaWZnGqB4PKdb2N62GwQMR\nERER0TelUAjIyUhETkZi+C/eDS1uNLS4YbN7wu83tLhxstqB4+ftPR5DpRSQEBFSJFn0UQGGXsuX\nXANFKCSita09WLB3BAuOiLDBHl5S4f3aHg0qpQIWgwbpKe1BQ+cyiUEpZihCoaiqBp1GKbug4XLw\nN6TD8YJH4W10YtCd12H7jGfw0dYq+DztVQ/BEKAWgGFD9Gh1BlDxlRMVX7X3Xhg+VI+8jjtlZGYY\nAAD1jT6cOtuGXZE9Huq9qLd5EeplWVCcRYUxEXe16GwumWLVQqdlqRgRERERUV8TBAFGvRpGvRrD\nU8099gdDITQ7vO0hRVRg0f5+XVNbr49r1KuRFKvrqK6ICC9i9Yg3a3mb0m9JFEW4vUHYXd5wn4au\nkMEbFTi0tvVegd5JAGCKUSPBrIfFqAmHDRaDBmajBhaDFrEd2/Xa3isakpJMaGho7bsnfBViKNEh\nbvoEJMTo8Ir1p/jy3dMQO8oW9DoFfL4QPN4QTle5EaNX4voJsRg9IgaJ8Ro4XUHU1Hmx7Z1a1NR5\nUW/zhftIRLKYVRg9whBuLhnu82DVQq9n8EBERERENJApFQokxuqRGKvH2F72u72BcEhhs0cHFlX1\nTpyq6flCVSEIiDdrI3pYRPezkGMpf6dAMBQOGcJLJaIqGtoDh0tpCKnTKGExaJASZ4HZqI0KGywd\nYYO5Y1kFQ6L+N2BCiWeeeQbl5eUQBAHFxcXIycnp16//G9XD8DuDaDl1Lmq72xNCfJwa8bFqqJQC\nHE4/9pR33W0jksmoxIhhMVH9HdKSdUixamGIYfBARERERHS10mtVGJpswtBkU499IVGE3emLWg4S\nWXFx5Ewzjpxp7uUxlT0qLDr7WSRa9BdsYP9dCoZCCARE+IMhBIMh+IMhBIIiAsFQ+9uF9gXa9/uD\nYsS+jv2BiPc79wVC8PqDcLT5YXd64fIELjquzoaQaYmGcLhgNmi7hQ3tSyh0mgHzspd6MSC+O198\n8QXOnDmDzZs348SJEyguLsbmzZv7dQzNtc0IRCwbEgSES3uamv1o6rjLhSFGiWFD9O1LLDr6PHQu\nuTAaBsR0EhERERHRAKIQBMSZtIgzaTF6SGyP/V5/MNzDwhZRYdFgd6OuuQ1V9c4enyMAiDV1VFlY\ndEiM1SPWoofd7u4ICcSuICAQQiDUHgZ0BQji1+8Lhi663KEvGHQqWIza9qaQ4SUU2oglFO1vBr2a\nDUavEgPiVXRpaSluvvlmAEBGRgbsdjucTieMRmO/jSFGr4TD2Z5K6HUC0pL1EdUO7f0d0pJ1MBnZ\npISIiIiIiL47WrUSgxINGJRo6LFPFEW0tvm7VVl0BBh2N45VtaCy6pt9XZVSgFKpgFqpgEopQKVU\nQKtWQ6VUQK2K3Ne1v3OfKry9+77ojy/6WKr2bUqlAHX4c7l8Qm4GRChhs9mQlZUV/jg+Ph4NDQ0X\nDCXi4mKgUn375RBJSV2lVa+8OAGNTT4MSdMj1qKWbfAQOSfE+eiO8xGN8xGN89ET54SIiL4tQRDC\nd3LIGGTpsd8fCKHJ4UGD3Q2TSQ+n03PBF//RYYEg29c8NLAMiFCiO/FraoSam3vvbHs5undF1SiB\n1CQFAn4vbDbvt378KxE7xUbjfETjfETjfETjfPR0tc4JgxYiooFFrVIgOT4GyfExV+25h65uA6I2\nxmq1wmazhT+ur69HUlKShCMiIiIiIiIior42IEKJKVOm4L333gMAVFRUwGq19ms/CSIiIiIiIiLq\nfwNi+UZeXh6ysrIwf/58CIKA5cuXSz0kIiIiIiIiIupjAyKUAIDFixdLPQQiIiIiIiIi6kcDYvkG\nEREREREREckPQwkiIiIiIiIikgRDCSIiIiIiIiKSBEMJIiIiIiIiIpIEQwkiIiIiIiIikgRDCSIi\nIiIiIiKSBEMJIiIiIiIiIpIEQwkiIiIiIiIikgRDCSIiIiIiIiKSBEMJIiIiIiIiIpKEIIqiKPUg\niIiIiIiIiEh+WClBRERERERERJJgKEFEREREREREkmAoQURERERERESSYChBRERERERERJJgKEFE\nREREREREkmAoQURERERERESSUEk9ACk888wzKC8vhyAIKC4uRk5OjtRD6lOVlZUoLCzEfffdh4UL\nF6Kmpga/+tWvEAwGkZSUhN/97nfQaDR46623sGHDBigUCsybNw933XUX/H4/ioqKUF1dDaVSiWef\nfRZDhgyR+il9K8899xz27t2LQCCAn/zkJ8jOzpbtfLjdbhQVFaGxsRFerxeFhYUYM2aMbOejk8fj\nwQ9+8AMUFhZi0qRJsp6PsrIyPP744xg1ahQAYPTo0XjwwQdlPSdvvfUW/vKXv0ClUuGxxx5DZmam\nrOdD7uR2TTEQdT+vz5o1S+ohyVLkuXPOnDlSD0d2up+bbrzxRqmHJDsulwtLly6F3W6H3+/Ho48+\nivz8fKmHdWUQZaasrEx8+OGHRVEUxePHj4vz5s2TeER9y+VyiQsXLhSXLVsmbty4URRFUSwqKhLf\neecdURRF8fnnnxdfe+010eVyibNmzRIdDofodrvF22+/XWxubha3bdsmPvXUU6IoiuLOnTvFxx9/\nXLLn8l0oLS0VH3zwQVEURbGpqUm84YYbZD0f27dvF19++WVRFEXx3Llz4qxZs2Q9H51eeOEFcc6c\nOeKbb74p+/nYvXu3+LOf/Sxqm5znpKmpSZw1a5bY2toq1tXVicuWLZP1fMid3K4pBqLezuskjchz\nJ/Wv3s5N1P82btworlq1ShRFUaytrRVvueUWiUd05ZDd8o3S0lLcfPPNAICMjAzY7XY4nU6JR9V3\nNBoNXnnlFVit1vC2srIyzJgxAwBw0003obS0FOXl5cjOzobJZIJOp0NeXh727duH0tJSzJw5EwAw\nefJk7Nu3T5Ln8V257rrr8Pvf/x4AYDab4Xa7ZT0fs2fPxkMPPQQAqKmpQXJysqznAwBOnDiB48eP\nh//CIPf56I2c56S0tBSTJk2C0WiE1WrF008/Lev5kDu5XVMMRL2d14PBoMSjkp/u507qX72dm6j/\nxcXFoaWlBQDgcDgQFxcn8YiuHLILJWw2W9QPSHx8PBoaGiQcUd9SqVTQ6XRR29xuNzQaDQAgISEB\nDQ0NsNlsiI+PDx/TOS+R2xUKBQRBgM/n678n8B1TKpWIiYkBAGzduhXTpk2T9Xx0mj9/PhYvXozi\n4mLZz0dJSQmKiorCH8t9PgDg+PHjeOSRR3DPPffg888/l/WcnDt3Dh6PB4888ggWLFiA0tJSWc+H\n3MntmmIg6u28rlQqJR6V/HQ/d1L/6u3cRP3v9ttvR3V1NWbOnImFCxdi6dKlUg/piiHLnhKRRFGU\negiSutDzv9ztV5oPP/wQW7duxV//+teotadynY9NmzbhyJEjWLJkSdRzktt8/POf/8T3vve9C67x\nl9t8AMCwYcOwaNEi3HbbbaiqqsK9994b9VdIOc5JS0sL1q1bh+rqatx7772y/p2haPx+SifyvE79\n6+vOndQ/up+bPvnkEwiCIPWwZOVf//oX0tLSsH79ehw9ehTFxcXYtm2b1MO6IsiuUsJqtcJms4U/\nrq+vR1JSkoQj6n8xMTHweDwAgLq6Olit1l7npXN75199/CZKdDEAAAivSURBVH4/RFEM/0XwSrVz\n50786U9/wiuvvAKTySTr+Th06BBqamoAAGPHjkUwGITBYJDtfHz66af46KOPMG/ePGzZsgV/+MMf\nZP3zAQDJycmYPXs2BEHA0KFDkZiYCLvdLts5SUhIwDXXXAOVSoWhQ4fCYDDI+ndG7nhNMTB0P69T\n/+rt3Llr1y6phyUrvZ2bmpqapB6W7Ozbtw9Tp04FAIwZMwb19fVcTnaJZBdKTJkyBe+99x4AoKKi\nAlarFUajUeJR9a/JkyeH5+D9999Hfn4+cnNzcfDgQTgcDrhcLuzbtw/XXnstpkyZgh07dgAAPvnk\nE0ycOFHKoX9rra2teO655/DnP/8ZsbGxAOQ9H3v27An/Vclms6GtrU3W87F69Wq8+eabeOONN3DX\nXXehsLBQ1vMBtHfzXr9+PQCgoaEBjY2NmDNnjmznZOrUqdi9ezdCoRCam5tl/zsjd7ymkF5v53Xq\nXxc6d1L/6e3cxH4G/S89PR3l5eUAgPPnz8NgMHA52SUSRBnWGq5atQp79uyBIAhYvnw5xowZI/WQ\n+syhQ4dQUlKC8+fPQ6VSITk5GatWrUJRURG8Xi/S0tLw7LPPQq1WY8eOHVi/fj0EQcDChQvxwx/+\nEMFgEMuWLcPp06eh0WiwcuVKpKamSv20vrHNmzdj7dq1GD58eHjbypUrsWzZMlnOh8fjwRNPPIGa\nmhp4PB4sWrQI48ePx9KlS2U5H5HWrl2LQYMGYerUqbKeD6fTicWLF8PhcMDv92PRokUYO3asrOdk\n06ZN2Lp1KwDgpz/9KbKzs2U9H3Inp2uKgai383pJSQnS0tIkHJV8dZ47eUvQ/tf93NTZgJn6j8vl\nQnFxMRobGxEIBPD4449j0qRJUg/riiDLUIKIiIiIiIiIpCe75RtERERERERENDAwlCAiIiIiIiIi\nSTCUICIiIiIiIiJJMJQgIiIiIiIiIkkwlCAiIiIiIiIiSTCUIKJ+VVBQgF27dl30mLfffhuhUCh8\nfDAY7I+hERERUR84d+4cxo8fj4KCAhQUFGD+/Pn45S9/CYfDccmPcbnXA/fccw/Kysq+yXCJqJ8x\nlCCiAWft2rXhUGLjxo1QKpUSj4iIiIi+jfj4eGzcuBEbN27Epk2bYLVa8cc//vGSP5/XA0RXL5XU\nAyCigaWsrAyrV69GWloazp8/D5PJhBdffBE7duzApk2boNfrkZCQgBUrVsBoNGLcuHEoLCxEWVkZ\nXC4XVq5cidGjR2P69On429/+hvT09PBjvv766+GvEwqFsHz5cpw8eRI+nw+5ublYtmwZ1qxZgzNn\nzuC+++7DunXrMHHiRFRUVMDn8+HJJ59EbW0tAoEA7rjjDixYsADbtm3Drl27EAqFcOrUKQwaNAhr\n166FIAgSziIRERFdzHXXXYfNmzfj6NGjKCkpQSAQgN/vx69//WuMGzcOBQUFGDNmDI4cOYINGzZg\n3LhxF70ecLvd+PnPf47m5makp6fD6/UCAOrq6rB48WIAgMfjwd13340f/ehHUj51IuqGoQQR9VBR\nUYHVq1cjOTkZS5YswauvvootW7Zg+/btMBqNKCkpwauvvopFixYhGAxi1KhRWLRoEbZs2YI1a9Zg\n3bp1X/s17HY7MjMz8fTTTwMAbr31VlRWVuKxxx7DSy+9hFdffRUqVdd/URs3boTZbMbzzz8Pj8eD\n2bNnIz8/HwCwf/9+bN++HVqtFjNnzsSRI0cwbty4vpkcIiIi+laCwSA++OADTJgwAUuWLMFLL72E\noUOH4ujRoyguLsa2bdsAADExMfj73/8e9bkXuh7YtWsXdDodNm/ejPr6esyYMQMA8O6772LEiBH4\nzW9+A6/Xiy1btvT78yWii2MoQUQ9jBw5EsnJyQCAvLw8bNiwAVlZWTAajQCA73//+9i0aVP4+KlT\np4aPXb9+/SV9DbPZjJqaGtx9993QaDRoaGhAc3PzBY8vLy/HnDlzAAA6nQ7jx49HRUUFACAnJwc6\nnQ4AkJqaCrvdfpnPmIiIiPpSU1MTCgoKALRXS1577bWYO3cu1qxZgyeeeCJ8nNPpDC/hzMvL6/E4\nF7oeqKysxIQJEwAAVqsVI0aMAADk5+fjH//4B4qKinDDDTfg7rvv7tPnSUSXj6EEEfUgimLU+z6f\nr8f+yOURkcf3tmzC7/f32LZ9+3YcPHgQr732GlQqVfgC40K6P27kGLqvMY0cDxEREUmvs6dEpNbW\nVqjV6h7bO6nV6h7bLnQ9IIoiFIqudnmdwUZGRga2b9+Of//739ixYwc2bNgQ9YcVIpIeG10SUQ8n\nT55EfX09AGDv3r2YO3cuKioq4HQ6AQC7du1Cbm5u+Pjdu3eHj83MzAQAGI1G1NTURO2P1NjYiOHD\nh0OlUuHQoUM4e/ZsOPwQBAGBQCDq+NzcXOzcuRMA0NbWhoqKCmRlZX2XT5uIiIj6kclkwuDBg/HZ\nZ58BAE6dOvW1S0AvdD2QkZGB/fv3AwBqampw6tQpAO139Dp48CAmT56M5cuXo6ampsc1BhFJi5US\nRNTDyJEj8cILL+DMmTOwWCy4//77kZqaivvvvx8ajQYpKSn4xS9+ET7+8OHDeP3112G321FSUgIA\neOCBB/DEE09g2LBhvZZf3nrrrXjkkUewcOFC5OXl4YEHHsCKFSvwxhtvID8/H3Pnzo3qyl1QUIAn\nn3wSP/7xj+Hz+VBYWIjBgwfjiy++6PsJISIioj5RUlKCFStW4OWXX0YgEEBRUdFFj7/Q9cAdd9yB\njz/+GAsWLMDgwYORnZ0NoP2aZvny5dBoNBBFEQ899FBUzyoikp4gss6ZiCL0dqeMi8nMzERFRQVP\n8EREREREdNm4fIOIiIiIiIiIJMFKCSIiIiIiIiKSBCsliIiIiIiIiEgSDCWIiIiIiIiISBIMJYiI\niIiIiIhIEgwliIiIiIiIiEgSDCWIiIiIiIiISBIMJYiIiIiIiIhIEv8finOQpTc0giMAAAAASUVO\nRK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + } + ] +} \ No newline at end of file From 21bb66c8e3ddf64a9521543e6b994d297aa8e2c7 Mon Sep 17 00:00:00 2001 From: Amit Rai <42401957+ardev472@users.noreply.github.com> Date: Sun, 17 Feb 2019 20:15:49 +0530 Subject: [PATCH 03/11] Created using Colaboratory --- synthetic_features_and_outliers.ipynb | 943 ++++++++++++++++++++++++++ 1 file changed, 943 insertions(+) create mode 100644 synthetic_features_and_outliers.ipynb diff --git a/synthetic_features_and_outliers.ipynb b/synthetic_features_and_outliers.ipynb new file mode 100644 index 0000000..1a63d75 --- /dev/null +++ b/synthetic_features_and_outliers.ipynb @@ -0,0 +1,943 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "synthetic_features_and_outliers.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "i5Ul3zf5QYvW", + "jByCP8hDRZmM", + "WvgxW0bUSC-c" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "4f3CKqFUqL2-", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Synthetic Features and Outliers" + ] + }, + { + "metadata": { + "id": "jnKgkN5fHbGy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Create a synthetic feature that is the ratio of two other features\n", + " * Use this new feature as an input to a linear regression model\n", + " * Improve the effectiveness of the model by identifying and clipping (removing) outliers out of the input data" + ] + }, + { + "metadata": { + "id": "VOpLo5dcHbG0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's revisit our model from the previous First Steps with TensorFlow exercise. \n", + "\n", + "First, we'll import the California housing data into a *pandas* `DataFrame`:" + ] + }, + { + "metadata": { + "id": "S8gm6BpqRRuh", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup" + ] + }, + { + "metadata": { + "id": "9D8GgUovHbG0", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 419 + }, + "outputId": "849c8f82-1552-4047-af58-8346b0dcc672" + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import sklearn.metrics as metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))\n", + "california_housing_dataframe[\"median_house_value\"] /= 1000.0\n", + "california_housing_dataframe" + ], + "execution_count": 1, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
longitudelatitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomemedian_house_value
3374-117.933.825.01785.0248.0750.0251.06.8266.7
4609-118.133.937.01161.0254.0882.0236.04.4158.0
7165-118.334.329.03034.0732.01776.0702.03.1230.2
13057-121.937.425.04430.0729.02685.0721.05.7261.1
15239-122.337.823.05679.01270.02690.01151.04.8291.7
..............................
15796-122.437.852.02164.0606.02034.0513.02.0178.1
4194-118.033.817.02545.0737.01468.0699.01.9177.7
10688-120.635.18.06638.01054.02710.0966.04.7295.5
1517-117.233.82.04198.0805.01943.0673.03.9122.1
2424-117.633.916.04157.0586.02036.0594.06.2246.4
\n", + "

17000 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " longitude latitude housing_median_age total_rooms total_bedrooms \\\n", + "3374 -117.9 33.8 25.0 1785.0 248.0 \n", + "4609 -118.1 33.9 37.0 1161.0 254.0 \n", + "7165 -118.3 34.3 29.0 3034.0 732.0 \n", + "13057 -121.9 37.4 25.0 4430.0 729.0 \n", + "15239 -122.3 37.8 23.0 5679.0 1270.0 \n", + "... ... ... ... ... ... \n", + "15796 -122.4 37.8 52.0 2164.0 606.0 \n", + "4194 -118.0 33.8 17.0 2545.0 737.0 \n", + "10688 -120.6 35.1 8.0 6638.0 1054.0 \n", + "1517 -117.2 33.8 2.0 4198.0 805.0 \n", + "2424 -117.6 33.9 16.0 4157.0 586.0 \n", + "\n", + " population households median_income median_house_value \n", + "3374 750.0 251.0 6.8 266.7 \n", + "4609 882.0 236.0 4.4 158.0 \n", + "7165 1776.0 702.0 3.1 230.2 \n", + "13057 2685.0 721.0 5.7 261.1 \n", + "15239 2690.0 1151.0 4.8 291.7 \n", + "... ... ... ... ... \n", + "15796 2034.0 513.0 2.0 178.1 \n", + "4194 1468.0 699.0 1.9 177.7 \n", + "10688 2710.0 966.0 4.7 295.5 \n", + "1517 1943.0 673.0 3.9 122.1 \n", + "2424 2036.0 594.0 6.2 246.4 \n", + "\n", + "[17000 rows x 9 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 1 + } + ] + }, + { + "metadata": { + "id": "I6kNgrwCO_ms", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, we'll set up our input function, and define the function for model training:" + ] + }, + { + "metadata": { + "id": "5RpTJER9XDub", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model of one feature.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(buffer_size=10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "VgQPftrpHbG3", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_model(learning_rate, steps, batch_size, input_feature):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " input_feature: A `string` specifying a column from `california_housing_dataframe`\n", + " to use as input feature.\n", + " \n", + " Returns:\n", + " A Pandas `DataFrame` containing targets and the corresponding predictions done\n", + " after training the model.\n", + " \"\"\"\n", + " \n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + "\n", + " my_feature = input_feature\n", + " my_feature_data = california_housing_dataframe[[my_feature]].astype('float32')\n", + " my_label = \"median_house_value\"\n", + " targets = california_housing_dataframe[my_label].astype('float32')\n", + "\n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(my_feature_data, targets, batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(my_feature_data, targets, num_epochs=1, shuffle=False)\n", + " \n", + " # Create feature columns.\n", + " feature_columns = [tf.feature_column.numeric_column(my_feature)]\n", + " \n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=feature_columns,\n", + " optimizer=my_optimizer\n", + " )\n", + "\n", + " # Set up to plot the state of our model's line each period.\n", + " plt.figure(figsize=(15, 6))\n", + " plt.subplot(1, 2, 1)\n", + " plt.title(\"Learned Line by Period\")\n", + " plt.ylabel(my_label)\n", + " plt.xlabel(my_feature)\n", + " sample = california_housing_dataframe.sample(n=300)\n", + " plt.scatter(sample[my_feature], sample[my_label])\n", + " colors = [cm.coolwarm(x) for x in np.linspace(-1, 1, periods)]\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " root_mean_squared_errors = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period,\n", + " )\n", + " # Take a break and compute predictions.\n", + " predictions = linear_regressor.predict(input_fn=predict_training_input_fn)\n", + " predictions = np.array([item['predictions'][0] for item in predictions])\n", + " \n", + " # Compute loss.\n", + " root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(predictions, targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " root_mean_squared_errors.append(root_mean_squared_error)\n", + " # Finally, track the weights and biases over time.\n", + " # Apply some math to ensure that the data and line are plotted neatly.\n", + " y_extents = np.array([0, sample[my_label].max()])\n", + " \n", + " weight = linear_regressor.get_variable_value('linear/linear_model/%s/weights' % input_feature)[0]\n", + " bias = linear_regressor.get_variable_value('linear/linear_model/bias_weights')\n", + " \n", + " x_extents = (y_extents - bias) / weight\n", + " x_extents = np.maximum(np.minimum(x_extents,\n", + " sample[my_feature].max()),\n", + " sample[my_feature].min())\n", + " y_extents = weight * x_extents + bias\n", + " plt.plot(x_extents, y_extents, color=colors[period]) \n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.subplot(1, 2, 2)\n", + " plt.ylabel('RMSE')\n", + " plt.xlabel('Periods')\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(root_mean_squared_errors)\n", + "\n", + " # Create a table with calibration data.\n", + " calibration_data = pd.DataFrame()\n", + " calibration_data[\"predictions\"] = pd.Series(predictions)\n", + " calibration_data[\"targets\"] = pd.Series(targets)\n", + " display.display(calibration_data.describe())\n", + "\n", + " print(\"Final RMSE (on training data): %0.2f\" % root_mean_squared_error)\n", + " \n", + " return calibration_data" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "FJ6xUNVRm-do", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Try a Synthetic Feature\n", + "\n", + "Both the `total_rooms` and `population` features count totals for a given city block.\n", + "\n", + "But what if one city block were more densely populated than another? We can explore how block density relates to median house value by creating a synthetic feature that's a ratio of `total_rooms` and `population`.\n", + "\n", + "In the cell below, create a feature called `rooms_per_person`, and use that as the `input_feature` to `train_model()`.\n", + "\n", + "What's the best performance you can get with this single feature by tweaking the learning rate? (The better the performance, the better your regression line should fit the data, and the lower\n", + "the final RMSE should be.)" + ] + }, + { + "metadata": { + "id": "isONN2XK32Wo", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**NOTE**: You may find it helpful to add a few code cells below so you can try out several different learning rates and compare the results. To add a new code cell, hover your cursor directly below the center of this cell, and click **CODE**." + ] + }, + { + "metadata": { + "id": "5ihcVutnnu1D", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 955 + }, + "outputId": "f5275bde-a440-400c-bec6-cfb7a2d63a5e" + }, + "cell_type": "code", + "source": [ + "#\n", + "# YOUR CODE HERE\n", + "#\n", + "california_housing_dataframe[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] / california_housing_dataframe[\"population\"])\n", + "calibration_data = train_model(\n", + " learning_rate=0.05,\n", + " steps=500,\n", + " batch_size=6,\n", + " input_feature=\"rooms_per_person\"\n", + ")" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 212.75\n", + " period 01 : 190.30\n", + " period 02 : 172.22\n", + " period 03 : 154.85\n", + " period 04 : 141.74\n", + " period 05 : 133.89\n", + " period 06 : 130.85\n", + " period 07 : 130.75\n", + " period 08 : 130.92\n", + " period 09 : 130.83\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " predictions targets\n", + "count 17000.0 17000.0\n", + "mean 191.3 207.3\n", + "std 87.1 116.0\n", + "min 45.0 15.0\n", + "25% 157.1 119.4\n", + "50% 188.4 180.4\n", + "75% 214.9 265.0\n", + "max 4159.2 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predictionstargets
count17000.017000.0
mean191.3207.3
std87.1116.0
min45.015.0
25%157.1119.4
50%188.4180.4
75%214.9265.0
max4159.2500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Final RMSE (on training data): 130.83\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCUAAAGkCAYAAAAG3J9IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl4VOXZ+PHv7JNJJvsCISyyBIIs\nCZtsIWwxYSvILoK2L9Va61YXXIr2tbWurW/Vqm2tfYv68xVFRUXZFwWqaAiiFRTCmrCEyb7Ods75\n/TEyEEjYzGQy5P5cl5fMzFnu55zJzJn7PM/96DRN0xBCCCGEEEIIIYRoYfpgByCEEEIIIYQQQoi2\nSZISQgghhBBCCCGECApJSgghhBBCCCGEECIoJCkhhBBCCCGEEEKIoJCkhBBCCCGEEEIIIYJCkhJC\nCCGEEEIIIYQICklKCBFEPXv25Pjx48EO45x++tOf8u677571/PPPP89vfvObs54vLi5m8uTJzbb/\nBQsW8P7771/y+s8//zyDBg0iNzeX3NxccnJy+O1vf0t9ff1Fbys3N5eSkpKLWqep4yeEECI09OzZ\nk+zsbP/3SHZ2Ng8++CB1dXU/artvvfVWo8+/++679OzZk40bNzZ43ul0MmDAAO6///4ftd8Ldfjw\nYW6++WZycnLIyclh2rRprFu3rkX2fTFefPHFRo/Jtm3b6NOnj/+8nf5fqCgqKqJnz54NrmGuu+46\ndu3addHb+tOf/sT//d//XdQ677//PgsWLLjofQlxsYzBDkAIcXlJSkpixYoVwQ6jgZycHP7whz8A\n4Ha7ufPOO3nhhRe45557Lmo7q1atCkR4QgghWrnXXnuNdu3aAb7vkV//+tf87W9/49e//vUlbc/h\ncPCPf/yD2bNnN/p6+/btWbFiBWPGjPE/t3HjRiIjIy9pf5finnvuYerUqfz1r38FYOfOndxwww2s\nXLmS9u3bt1gcP0b79u1D/rvbYDA0aMPHH3/Mr371K1avXo3ZbL7g7dx9992BCE+IZiE9JYRohdxu\nN48++ig5OTmMHTvWf0EAsGPHDqZPn05ubi4TJ07k3//+N+DLpo8cOZLHHnuM+fPnA767O8uXL2fa\ntGmMHDmSf/3rX/7tLF26lNzcXMaOHctdd92F0+kEoLCwkFmzZjF+/HjuvvtuFEW5qNiLioro3bs3\n4Lvbc/vtt/Pggw+Sk5PDxIkT2bt3LwBVVVXce++95OTkMG7cON55550mt7lnzx5mzpxJVlYWixcv\nRlEUbr/9dl555ZUGywwdOhSv13vO+MxmM3PmzGHr1q3njaNnz5787W9/IycnB0VRGvRsefXVV5k4\ncSK5ubn88pe/pKysrFmOnxBCiNbNbDaTmZnJ7t27AXC5XDz88MPk5OQwYcIEnnjiCf9n/3fffcfc\nuXPJzc1l6tSpbN68GYC5c+dy9OhRcnNzcbvdZ+1jwIABbNu2rUGvvo8//pgRI0b4H/+Ya4VXX32V\nKVOmkJmZyccff9xoO/fs2UP//v39j/v378/q1av9yZm//OUvZGVlMW3aNP7+978zduxYAO6//35e\nfPFF/3qnP76Ya5jt27czY8YMsrOzmT17NoWFhYCvx8idd97JmDFjmD9//iX3OH333Xe59dZbueGG\nG3jqqafYtm0bc+fO5Y477vD/gF+5ciWTJ08mNzeX66+/nsOHDwO+XpiLFy9m5syZDa6tAO644w7+\n+c9/+h/v3r2bkSNHoqoq//M//+PveXL99ddTXFx80XFPnDgRp9PJ/v37gaav5+6//34ef/xxpkyZ\nwsqVKxuch6bel6qq8rvf/Y7Ro0czc+ZMvvvuO/9+v/jiC6655homTpzIhAkTWLly5UXHLkRTJCkh\nRCv08ssvU1BQwIcffsiKFStYvXq1vxvnww8/zMKFC1m1ahU33XQTv/3tb/3rVVRUkJaWxuuvv+5/\nrqCggOXLl/Piiy/yzDPPoCgKeXl5PPvssyxZsoQNGzYQERHBs88+C8Af//hHhg0bxrp167jhhhvI\nz8//UW359NNPmTdvHqtXr+aqq65iyZIlADzxxBPo9XpWrlzJ22+/zfPPP8+ePXsa3ca2bdt47bXX\nWLVqFV9++SUbN25k8uTJDXpkrF27lquvvhqj8fwdwDwej//uwvni0DSN1atXYzAY/M999dVXvPLK\nK/6YkpOT+dOf/gQ0//ETQgjRulRWVrJixQoyMjIAWLJkCcePH+ejjz7ivffeIy8vjxUrVqCqKnfd\ndRfz589n1apVPProo9x9993U1NTw2GOP+e/iN3a322w2M2zYMNavXw9ATU0Nu3fv9u8TLv1aoby8\nHL1ez4cffsiDDz7In//850bbOWrUKG6//XZeffVV9u3bB/h6Q+p0Ovbs2cOSJUtYtmwZy5Yt46uv\nvrqgY3eh1zA1NTX88pe/5K677mLt2rVcf/313HHHHQC88847lJSUsHbtWp5//nm2bNlyQftuzNat\nW3nkkUdYtGgRALt27WLu3Ln86U9/4ujRozz00EO88MILrFq1itGjR/Pwww/71/3kk0/4+9//zk9/\n+tMG28zJyWHDhg3+x2vXriU3N5d9+/axatUq/7nKzs7ms88+u6S4FUXBbDaf83oO4LPPPmPZsmVM\nmDDB/9y53pebN29m69atfPTRR7z++uvk5eX513vyySd54IEH+Pjjj3nppZda5VAeEbokKSFEK7Rx\n40bmzZuH2WzGZrMxdepU1qxZA8Dy5cv9Xy4DBw703zkA34/t7OzsBtuaOnUqAFdeeSUul4vS0lI2\nbNjAxIkTSUpKAuDaa6/1bz8vL4+JEycC0K9fP7p27fqj2tKtWzf69OkDQO/evTl27Ji/jddffz16\nvZ7Y2Fiys7P9MZwpJyeHsLAwwsLCyMrK4quvviIrK4vDhw/77xSsW7fOH/e51NTU8MYbb/iP0/ni\nGD169Fnb2LRpEzk5OcTFxQEwa9Ysf8+L5j5+Qgghgm/BggXk5uYybtw4xo0bx9ChQ7nxxhsB33fC\n7NmzMRqNWK1WpkyZwtatWykqKqKkpIRJkyYB0LdvX5KTk/nmm28uaJ+TJk3yJ9/XrVvHmDFj0OtP\nXbpf6rWC1+tl+vTpgO/a4OjRo43u/+mnn+a6667jww8/ZPLkyYwdO9Zfk2D79u0MHjyYhIQEjEbj\nBdeSutBrmO3bt5OUlOTvGTJ58mQOHz7M0aNHycvLIzs7G6PRSExMTIMhLmc6duzYWfUknnjiCf/r\nXbp0oUuXLv7HVquVYcOGAb6ExVVXXUXnzp0B33f9tm3b/D0y+/fvT2xs7Fn7HD16NLt27aKiogI4\nlZSIjIykrKyMDz/8kMrKShYsWMC0adMu6LidpGkaS5cuJSkpiS5dupzzeg5g2LBhWCyWBts41/vy\nyy+/JCsri/DwcKxWa4NkRlxcHMuXL2ffvn106dLFfzNGiOYgNSWEaIWqq6t5/PHHeeaZZwBfF81+\n/foB8OGHH/Lqq69SW1uLqqpomuZfz2AwEBER0WBbdrvd/xr4MuTV1dWsXbvWf3dB0zQ8Hg/guwN0\n+jZ+7PjVk/s/GcPJLq3V1dXceeed/rhcLleTxadO/9K32+04HA4sFgvZ2dmsWLGCmTNn4nA4GDJk\nSKPrr169mu3btwNgMpnIzs7239k4XxzR0dFnba+srIzExET/48jISEpLS4HmP35CCCGC72RNibKy\nMv/Qg5M988rKyoiKivIvGxUVRWlpKWVlZdjtdnQ6nf+1kz9M4+Pjz7vPESNGsHjxYioqKvjoo4+4\n5ZZbOHDggP/1H3OtYLPZANDr9aiq2uj+LRYLCxcuZOHChVRVVbFq1Soee+wxUlJSqKysbPD9djJJ\nfz4Xeg1TVVVFYWFhg+9js9lMWVkZlZWVDa4tIiMjqa2tbXR/56spcfp5O/NxeXl5gzba7XY0TaO8\nvLzRdU+y2WwMHz6cTZs2MXDgQKqqqhg4cCA6nY7nn3+ef/7zn/z+979n8ODBPPLII+etz6Eoiv84\naJpG9+7defHFF9Hr9ee8nmsqxnO9LysrK8+6vjnpscce46WXXuJnP/sZVquVu+66K6SKhorWTZIS\nQrRCiYmJ/Nd//ddZ2f/i4mIWL17M22+/TVpaGgcPHiQnJ+eStn/NNddw3333nfVaZGQkNTU1/scn\nayU0t8TERF544QVSU1PPu2xlZWWDf5/8kp00aRKPP/44drudnJycBneQTnd6ocsfE8dJ8fHx/jsg\n4OtyevICs6WOnxBCiJYXGxvLggULePrpp3nppZeApr8T4uLiqKysRNM0/w/AioqKC/4BbzKZGDNm\nDMuXL+fQoUNkZGQ0SEoE8lqhrKyM3bt3+3sqREZGMnv2bDZv3syePXuw2+1UV1c3WP6kMxMdJ7/D\nLyauxMREunbt2ujsVZGRkU3uuznFxcWxY8cO/+PKykr0ej0xMTHnXTcnJ4e1a9dSXl5OTk6O//wP\nHTqUoUOHUldXx5NPPskf//jH8/Y4OLPQ5enOdT13rnY19b4817GNj4/noYce4qGHHmLLli3cdttt\nZGZmEh4efsH7FqIpMnxDiFZo3LhxvP322yiKgqZpvPjii3z66aeUlZVhs9no2rUrXq+XpUuXAjR5\nh6ApY8eOZc2aNf4vm3Xr1vH3v/8dgPT0dNauXQtAfn6+v6hTcxs7dixvvvkm4OtK+thjj/Htt982\nuuyaNWtwuVzU1dWxefNmBg0aBMDw4cOpqKjgtddea9DFMFBxnDR69Gj/xQbAm2++SVZWFtByx08I\nIURw/OxnP2PHjh188cUXgO87YdmyZSiKQl1dHe+//z5ZWVmkpKTQrl07fyHJ/Px8SkpK6NevH0aj\nkbq6uvMWZ540aRIvv/wy48ePP+u1QF4rOJ1Obr/9dn8BRIBDhw6xc+dOBg0aREZGBnl5eZSVleH1\nelm+fLl/uYSEBH+BxMLCQn9tpYuJq3///jgcDnbu3Onfzr333oumaaSnp7NhwwYURaGsrIxPP/30\ngtt1MUaMGEFeXp5/iMmbb77JiBEjLqh21ZgxY9ixYwfr1q3zX59s2bKFRx55BFVVsdls9OrVq0Fv\nhUtxruu5ppzrfZmRkcGWLVuor6+nvr7enwzxeDwsWLCAEydOAL5hP0ajscmbQUJcLOkpIUSQLViw\noEERxUcffZR58+ZRVFTEpEmT0DSNPn36cMMNN2Cz2Rg1apS/nsH9999Pfn4+CxYs4LnnnrvgfV55\n5ZXcfPPNLFiwAFVViYuL45FHHgHg3nvv5e677+b999+nf//+DB8+vMntnD4sAiAtLe2Cp5y68847\neeSRR/x3STIzM+nZs2ejyw4fPtxfpXr06NFkZmYCvrsHubm5rF+/noEDB17Qfn9MHCf169ePm266\nieuuuw5VVUlLS+O///u/gYs7fkIIIUJPREQEN910E08++STLli1jwYIFFBYWMmnSJHQ6Hbm5uUyY\nMAGdTsczzzzDb3/7W/7yl78QFhbGs88+i81mo2fPnkRFRTFixAjee+89kpOTG93XkCFD0Ol0jdZM\nCuS1QnJyMi+99BLPPfccjz76KJqmERERwQMPPOCfkWPOnDlcc801xMTEcPXVV/tn15o9eza33nor\nV199Nb179/Z/v/bq1euC47JarTz33HP8/ve/p7a2FpPJxB133IFOp2P27Nnk5eUxfvx4kpOTGT9+\nfIO7+6c7WVPiTE899dR5j0G7du149NFHueWWW/B4PKSkpPD73//+go5fREQEV155Jd9//z3p6ekA\nDB48mI8++oicnBzMZjOxsbE89thjACxatMg/g8bFONf1XFPO9b4cM2YMmzZtIjc3l/j4eLKyssjL\ny8NkMjFz5kz/0Fe9Xs/ixYsJCwu7qHiFaIpOO30wlxBChJiXX36Z8vJyf+VsIYQQQrSsvLw8Fi1a\n1GDWCSGEuFDS50YIEbLKysp46623uPbaa4MdihBCCCGEEOISSFJCCBGS3nzzTWbMmMGNN95Ix44d\ngx2OEEIIIYQQ4hLI8A0hhBBCCCGEEEIEhfSUEEIIIYQQQgghRFBIUkIIIYQQQgghhBBBEZJTgjoc\nvml/YmJslJfXBTma4JC2S9vbGml722w7tO32t8a2JyTYgx3Cj3LyGqK5tcZz1dbIOQg+OQfBJ+cg\n+OQcNO5c1w8h3VPCaDQEO4Sgkba3TdL2tqkttx3advvbcttDjZyr4JNzEHxyDoJPzkHwyTm4eCGd\nlBBCCCGEEEIIIUTokqSEEEIIIYQQQgghgkKSEkIIIYQQQgghhAgKSUoIIYQQQgghhBAiKCQpIYQQ\nQgghhBBCiKCQpIQQQgghhBBCCCGCQpISQgghhBBCCCGECApJSgghhBBCCCGEECIoJCkhhBBCCCGE\nEEKIoJCkhBBCCCGEEEIIIYLCGOwAxOXN5VFwVNSDppEQY8NiMgQ9nsoaF1ERlrNiOfO10x8DTa53\n+rphFiOVNS7Q6UiIDvNvx1Feh8erYjLqiYqwUO/yNrqfizk+l7peS21PCCGEEEIIIc4nYEmJbdu2\ncccdd9CjRw8AUlNT+fnPf86iRYtQFIWEhASefvppzGYzH3zwAUuWLEGv1zN79mxmzZoVqLBEC1FU\nlTfX72XrN8dxuhUArGY9w/u259pxPTDoW7aTjqKqLN1QwI49DsqqXMRGWshITWDO2O4ADV6LsZsJ\nDzNT5/RQVuXCYjYAGk63Stxp6xn0ev92878/QVm1u8E+LSY98dFWSiudON3qWTHFRJiIsFn8+4k9\nY9uX0pZLOa7NvT0hhBBCCCGEuFAB7SkxZMgQnnvuOf/jBx54gHnz5jFhwgSeeeYZli1bxrRp03jh\nhRdYtmwZJpOJmTNnkp2dTXR0dCBDEwG2dEMB67cfafCc062yYfsR9Dod88antng86/KK/I9Lq1wN\nHp/+77Jqd4MEw8mkypnrzRufetZ2T+fyqBxx1DUZU3mNh/IaT5PbvpS2XMpxbe7tCSGEEEIIIcSF\natHboNu2bWPcuHEAjBkzhs8++4ydO3fSt29f7HY7VquVAQMGkJ+f35JhiWbm8ijs2ONo8vX87x24\nPEqTr7dkPPnfO84Za1N27Cmhus59SeteyLabOj5Ot7fJfZ5rvaac69hcyvaEaEkl766i4Kb7YNsq\nDNtXN76QpkGtA6qPt2hsmgbHqox8W2xBObujlLiMlFTU89yyryk6UR3sUIQQQoiQFNCeEgUFBdx8\n881UVlZy6623Ul9fj9lsBiAuLg6Hw0FJSQmxsbH+dWJjY3E4zv1DLybGhtHoG/OekGAPXANaudba\n9mMltZRVuZp8vbzahcFsIiE+/JL3cTFtP1ZSS1l14/GUN/H8+ZRXO6l2q01u98cor3Y2eXzO3Zam\n12tKc28v0Frre74ltOW2Q8P2q243u+59kkMvvo7RZkE/ACw9ehJ+xjFSvR6qigrw1FZhtNqIjo9A\np9MFPFa3VyNvv8aRMjAbITbOhNl46ftt6+e+tausc/NVQQl/f+8bbpveN9jhCCGEECEnYEmJLl26\ncOuttzJhwgQKCwu5/vrrUZRTd101TWt0vaaeP115ua9LfEKCHYejbd6ZaM1tVzwKsZEWSptITMTY\nLShuzyXHf7FtVzwKsfbG44mxW9DpaDLWpsTYrdjN+ia3+2PE2K1NHp+YqLBztKXp9Zpy7mNz8dsL\npNb8ng+0ttx2aNh+93EHBTfdR03e19jaR9F7fn/0aenUDbuGutOPkacOKotA9YI5Am9EB0pKagIe\na0W9nt3FFlyKniirQlqSi8ry83+vNaU1nntJkjTULTmK3l1i2LHHwbcHy7iyS+z5VxJCCCGEX8CG\nbyQlJTFx4kR0Oh2dOnUiPj6eyspKnE4nAMXFxSQmJpKYmEhJSYl/vRMnTpCYmBiosEQLsJgMZKQm\nNPn6gJ4JLTq7w7niGdAz4ZyxNiUjNR67zXxJ617Itps6Plazscl9nmu9ppzr2FzK9oQIpOptX/Ft\n7nxq8r4mPj2Z/r+6ClP2NLyj5oLZ6ltI06CuFMoP+hIS4YkQ1RH0gX0vqxocKDPx1VErLkVHlxg3\n6clOrMZLT0iI0DFrtK9o8rKN+1Av4OaKEEIIIU4JWE+JDz74AIfDwcKFC3E4HJSWljJ9+nRWr17N\n1KlTWbNmDZmZmfTv35/FixdTVVWFwWAgPz+fBx98MFBhiRYyZ2x3NE07Y/YNA8P7tvPPeNHS8YCv\nTkJ5tZMYu5WM1PgGsZx8LTrCQniYiTqnh/JqF+Yffpi73AqxkQ3XO/n//O8dZw2DOP/sG2YibGb/\nfhqL6VLb0tzHRohg0jSN46+8SeEj/4OmqnSd3Iv243rjHTUHrX23UwuqKlQfBVeVLwkRmQLmwA8/\nqvfo2H3CQpXTgMWo0jvJRZRVCkm0JZ3b2cnKSOGTHUV8sbuYob3bBTskIYQQImTotAsZL3EJampq\nuOeee6iqqsLj8XDrrbeSlpbGfffdh8vlIjk5mccffxyTycSqVat45ZVX0Ol0zJ8/n5/85Cfn3PbJ\nrqytsVtrSwmVtrs8Co6KetA0EmJszXLn/ce03eVRqKxxERVhOSuWM187/THQ5HqnrxtmMVJZ4wKd\njoToMP92HOV1eLwqJqOeqAgL9S5vo/s53/E5ve0Xs96PPTatQai85wOhLbddqXNy/OGnOPLGB5js\nVnpd24/IIf3wZM2F8NNmafK6oLIQFDeYwnwJCYMp4PGdqDHwvcOCoupIjPDSI95Fc/75tMZzH+rD\nNwJ1PBW9npufWE+M3cJjNw3FaJAplVtaa/x7aWvkHASfnIPgk3PQuHNdPwQsKRFIkpSQtkvb2x5p\ne9tru/NQEQULF1G3aw/2zjGkzeuPcdBIvEMmNUw4OCt9PSQ0DcJiISIJAlzQ0qtCQYmZ49Um9DqN\nHvFu2tm9zb7b1njuJSnRuIQEO8/+33bW5RVx7fgeZA/qGJD9iKa1xr+XtkbOQfDJOQg+OQeNO9f1\nQ0Bn3xBCCCEuRcWGrey79SGUiiraXdWRrtP6oA6firfHoFMLaRrUFEN9Gej0ENkBrJEBj63apWdX\nsYV6j54Ii0LvRBc2c8jl90UATBnehS1fH+PDrQcZ2bc9YRa5zBJCCCHOR/oWCiGEaDU0VeXIn//B\nngV3otbW0mNmH1KvH4ky6ReopyckFI+vmGV9GRgsEHNFwBMSmgaHK4zkF1mp9+jpGO1mQAenJCSE\nn91mZsLQztTUe1i57XCwwxFCCCFCgqTwhRBCtAreqhr23/YQFWs3Y4kNJ+26/oQPyiB82n/hrD3t\nh7+7BiqPgKaAJQoi2/t6SgSQy6vjuxMWyusNmA0qvRKdxNqkmKU429WDOrIhv4g1Xx5m7IAORP9Q\nl0gIIYQQjZOeEkIIIYKu7rsCvp14PRVrNxPVI56MW4cSdvUkPOOuR2+L8C2kaVDrgIrDvoRERDuI\nTA54QqK01kBeYRjl9QZibV4GpdRLQkI0yWI2MG3kFbg9Ku9vORDscIQQQohWT5ISQgghgqr0g7Xs\nmvwzXPsPkzK6K31uHAYTFqAMzPFN7QmgKr7ZNWodoDf5hmvYYgNa0FJRYW+JmW+OW/Gq0D3ORd92\nLszSx1Ccx8h+7WkfZ2PzzmMcK60NdjhCCCFEqyZJCSGEEEGheb0cfuTP7Lv5AVC9pM3PoPOcEXin\n/BK1cx//cp76Wijb7xu2YQ6H2Ct8034GUK1bR/4RK0cqTdhMKgNTnKREN//sGuLyZNDrmZHVDVXT\neOeT/cEORwghhGjV5H6PED+Cy6NQWeMiKsKCxWQIdjhChAxPSRkFNz9A9b+3E5Zop/f8dCyDBuMZ\nPh3MVt9CmgbOCiocx33/tsVDeEJAe0doGhyrNlJQYkbVdLSP9NA9zo1BUvjiImX0iKd7hyjy9zgo\nKKqke0pUsEMSQgghWiVJSghxCRRVZemGAnbscVBW5SI20kJGagJzxnbHoJdfL0KcS03+fyi4cRHu\nYyeI69OOHrP7ohs6Ae+VmacSDpoK1cfAWYnOYESLSAZLREDj8ijwvcNCSa0Ro14jLdFJQoQS0H2K\ny5dOp2PWmG48/no+b28q4P7rBqCTrjZCCCHEWSQpIcQlWLqhgHV5Rf7HpVUu/+N541ODFZYQrd6J\n//ceh37zFJrXS5fcVDrk9ME7ag5q+26nFvK6oaoQvC4wWom5ohdlle6AxlVRr2d3sQWXoifKqpCW\n5MJqlKk+xY/TIyWajB7x7NhbwlcFJWT0SAh2SEIIIUSrI7d0hbhILo/Cjj2ORl/bsacEl0furApx\nJtXp4sDdv+fgvX/AYNLT52eD6DAjE8+kW9BOT0i4qqF8vy8hERYDMV0wmAM3paKqwYEyE18dteJS\ndHSJdZOe7JSEhGg207O6odPBsk37UFSZtUUIIYQ4k/SUEOIiVda4KKtyNfpaebWTyhoXiTG2Fo5K\niNbLVXScghsXUbtzF+Ep0fS+rj+mIZl4hkwCg8m3kKZB7QmoKwV0YE+GsOiAxlXv0bG72EKVy4DV\nqJKW5CLKKj8aRfPqEB9OZr/2fLrzGFu/Oc6o/snBDkkIIYRoVaSnhBAXKSrCQmxk43duY+xWoiIC\nd1f3Yrg8CifK66Tnhgiqys1f8G3ufGp37iJxYAf63TIMw8Rr8Q6bdiohoXih4pAvIWEw+2bXCHBC\norjaQF5RGFUuA4kRXgal1F8WCQlF1fhkh5s3VjtRVOnt0VpMHdkVs1HP8s375TNZCCGEOIP0lBDi\nHBqbXcNiMpCRmtCgpsRJGanxQZ+FQ4pwitZA0zSOv/QahY/9BZ0Oul9zJUljrsQ7eh5afMqpBd11\nUFUEqhcsdl8PCX3g/oa8KhSUmDlebUKv0+iV4CLJfnlM9XnUofDWeheFJ1SiwnV4FWTWkFYixm4h\ne3BHPvrsEOvyCpk0rEuwQxJCCCFaDUlKCNGI8/2wnzO2O+CrIVFe7STGbiUjNd7/fDBJEU4RbEpN\nLfvv+h3lK9Zjjgoj7br+RAwZgCdzNoT9MIOGpkF9GdQU+x5HJEFYbECn+6xy6tl9wkK9R4/dopCW\n6MJmDv3eBB6vxtov3Gzc7kHVYFAvI1MyLVhMl0Gm5TIy4arOfPLVUT7+/BBZ6R2ICDMFOyQhhBCi\nVZCkhBCNON8Pe4Nez7zxqcz7PBUXAAAgAElEQVTI6nZWT4pgOl8RzhlZ3VpFnOLyVV9wkL0L78W5\n9wCRXeNIm9cf/VXj8GSMP9UDQlWg+qivqKXeCJEdwBwesJg0DQorTBwoM6Gho2O0mytiPegvg9/s\n+4oU3trgpKRCI8auY+ZYC706y1d7a2SzGpk8vAtvrt/Lin8fZO64HsEOSQghhGgV5MpFiDPUuTxs\n+fpYo6+d+cPeYjK0qqKWUoRTBFP5yk3su+Nh1Jo6OozsQuef9EXNnIHSuc+phbxOqCwCxQ0mG0Sm\ngCFwX0Uur47vTlgorzdgNqj0SnQSawv92hH1Lo0VW118/h8vOmBUuoncoWYs5ssg03IZG5PRgXV5\nhWzIL2L8wBTio8OCHZIQQggRdJKUEOIMb6zdi9PdeCGy1v7D/mQRztJGEhOtqQinuLxoikLRU3/l\n2PP/i95spOe1/Ykf1Rdv1jy06MRTCzoroeoooIEtDsITAzpco6TWwPcnLHhUHbE2L70SXZgvg45C\n3+zz8u4mF1W1Gu3i9MweZ6Fzu8ugYW2AyajnmlFdefnDXby3eT83Trky2CEJIYQQQSdJCSFO4/Io\nfHeorMnXY+yWVv3DvrUX4RSXH09ZBftu+Q1Vn27DGh9B7/npWIcMwTN8OpitvoU01Vc7or4cdHrf\ncA1LZMBiUlTYX2bmSKUJnU6je7yLDpGhX8yyqlblvU0uvt6nYNBD7lAzYwaaMBpCvGFtzFW9k1i9\n7TCff1tMzpBOdEqyBzskIYQQIqgkKSHEaSprXJRXu5t8vVenmFb/w741F+EUl5far79j78/vxV10\njJi0RHrO7Y9u2AS8V2ae6gGheKCy0Ddsw2jxDdcwBi6xV+vWsavYQq3bgM2k0jvJSYQltItZaprG\nF7u8fLjFRb0LrkjWM2uslaRYmVojFOl1OmaO6cYzS3eybNM+7pqTHuyQhBBCiKCSpIQQpznX8Aer\n2cC12a1/9orWWoRTXF4cb63g4H2PobnddMruTscJ/fCOmo2afFryy1UDVUdAU8AaBfb2vp4SAaBp\ncKzKSEGpGVXTkRzpoVucO+SnxCwu9fK395wUFClYTDBjtIWhfY3oQ73bRxvX54o4eneJ4T8Hyth1\nsIzeXWKDHZIQQggRNCF+uSZE8zo5/KExI/u1x2YJnTzeySKckpAQzUl1ezj4wBMcuPO/0RvgyhsG\n0nF2Fp7Jt6CdTEhoGtQ6oPKwb+iGvT3YkwOWkPAo8G2xhT0lFvQ6uDLJSWpCaCckFFVjw3Y3D/7F\nQUGRQu8rDCyab2N4P5MkJC4Ts0b7/l7e3rgPVQvt3jxCCCHEjxE6v7CEaCEy/EGIxrmPnaDgpvup\n2f41tvaR9F6QjnlIJp6rJoPB5FtI9fp6R7hrQW+CqBQwBW6GgfJ6PbuLLbgVPVFWhbQkF1ZjaP/A\nKzqh8NZ6F0ccKpHheuaON9G/hxGdJCMuK53b2bmqdxLbdhXz5e4TXNU7KdghCSGEEEEhSQkhziDD\nH4Q4W9Xn+ez7xf14HGUkpCfTfVY/tBFT8fYYdKp+hKfeN92n6gFzhK+gpT4wfzuqBgfLTByu8CVD\nroh10ynaE9LFLD1ejdXb3HyS70HVYHCakZ9Ni6O+tjbYoYkAmT6qK3nfneDdT/cxsGcCxlDu3iOE\nEEJcIklKCNGEk8MfLlcujyJJF3FemqZR/MqbHH7kz6CpdJ2SRvvsvnizrkVL6HhyIXCWQ3UxoEF4\nAtjiAzbdZ71Hx+5iC1UuA1ajSlqSiyirGpB9tZSCQi9vbXBRWqkRG6lj1lgLqZ2MRNj01EtO4rKV\nEB3GmAEdWJdXxMYdR8ge1DHYIQkhhBAtTpISQrQxiqqydEMBO/Y4KKtyERtpISM1gTlju2PQy106\ncYpSV8/Be/9A6XurMEVaSbu2P/ZhA/FkzoawCN9CmgpVx8BVCToDRHXw9ZIIkOJqA3tKLCiqjsQI\nL6nxLowhnFOrc2p8uMXFF7t8U5ZmZZjIGWrGYgrhLh/iokwe3oUtXx/jw60HGdm3PWEhVLtICCGE\naA7yzSdEG7N0QwHr8or8j0urXP7H88a3/tlFRMtwHixi78J7qN9dgL1zDGnXpWMYNg5PRvapIRle\nl2+4huICY5ivfsTJ2hLNzKvCXoeZ4hoTBp1Gr0QXSRHekB6u8XWBl3c3uaiu02gfr2fOOAsdk0I4\nwyIuSaTNzIShnXnv0/2s3HaY6aO6BjskIYQQokVJUkKINsTlUdixx9Hoazv2lDAjq5sM5RBUrN/C\nvlsfQqmspv2wTlwxrT/qqBkonfucWshZBdVHfT0lwmIhIilgwzXKajS2F4VR79Fjt/iKWdpMoVvM\nsrJG5b1PXHyzT8FogInDzIweYMJgCOEMi/hRrh7UkQ35Raz58jBjB3QgOsIS7JCEEEKIFiNJCSHa\nkMoaF2VVrkZfK692UlnjuqzraIhz01SVo//zD4488zI6g57UWX1JGNsfb9Y8tOjEHxbSoKYY6ssA\nna+YpTUqMPFoUFhh4sB+DU3T0THazRWxHvQh+ttd1TS2fetlxRYXTjd0TdYza5yVxBgZNtXWWcwG\npo68gldXfc8HWw5wfW6vYIckhBBCtBhJSohWTYoxNq+oCAuxkRZKG0lMxNitRMnduTbLW1nN/tse\npmLdZiyxNnrPTyds6FA8w6eD2epbSPH4pvv01IHBDFEdwRiY94zLq2P3CQsV9QasJugZ7yTGFrrF\nLB3lKm9vcLLviIrVDDPHWrjqSiP6UB5/IppVZr/2rP2ykE93HiN7cEfax4UHOyQhhBCiRUhSQrRK\n5yrGKC6dxWQgIzWhQU2JkzJS4yXx00bV7S5g78J7cB0sIrpHPD3npaMfPgFvn0zQ/XAX310LVUWg\nKmCJBHv7gE33WVJr4PsTFjyqjjiblxFpJqoqQjMhoSgam/I9rPnCjVeBK7samDHaQlSE9I4QDRn0\nemZkdeMv737DO5/s59bpfYMdkhBCCNEiJCkhWqVzFWO849qBwQrrsnAysbNjTwnl1U5i7FYyUuMl\n4dNGlb63igP3PIpa76TjmK50mpKOd9RslOQf3g+aBnWlUHvC9zgiyVdDIgB3+BUV9peaOVJlQqfT\n6B7vokOkF4vJ3Oz7agmFxQpvrXdxtETFbtNxTZaFft0N6KR3hGhCRo94uneIIn+Pg4IjlXTvEJih\nUUIIIURrIkkJ0eqcrxij0+1t4YguLwa9nnnjU5mR1U2GxrRhqsdL4R+eo/jvb2CwmkhbkEHsqAF4\nsq6FiOgfFlKg6ii4q0Fv9M2uYQpMzZFat45dxVZq3XpsJpXeSU4iLKFZzNLt0Vi9zc0nOzxoGgzp\nbWTKSAs2qyQjxLnpdDpmjenG46/n8/bGAu6/boAksYQQQlz2JCkhWp3zFWMsr3LJG7cZWEwGKWrZ\nRnkcpRT84gGqP88nLNFO7wXpWIaNwjNkMhh/mNLT4/QN11DcvkREVIovMdHMNA2OVhnZV2pG1XQk\nR3roFufGEKKjG/Yc9rJsg4vSKo24KB2zxlro0VE+scSF65ESTUaPeHbsLeGrghIyeiQEOyQhhBAi\noORKSbQ65yvGGBNpobqyPgiRCRH6arZ/w94bF+E57iCubzt6zE6HzKl4eww6NSSjvgKqjwEa2OIh\nPCEgwzU8CnzvsFBSa8So10hLcpIQrjT7flpCnVPjgy0uvtzlRa+DMQNNXD3EjNkkd7nFxZue1Y2v\nCkp455P99OsWh0Efolk6IYQQ4gJIUkK0Oucrxmg1G6kOQlxChDJN03C89g6HHvojmlehy4SedJjQ\nH2/WtWgJHX9YSIXq4+Cs8BW4jEwBiz0g8ZTX69ldbMGt6Im2KvRKcmE1ht5wDU3T+LpA4b1PXFTX\naSTH65kz3kJKogyJEpeuQ3w4mf3a8+nOY2z95jij+icHOyQhhBAiYCQpIVolKcZ4NpdH4VhJLYpH\nkRoQ4qKo9U4OPvgkJUs/xBhuoddPM4gaMRhP5mwIi/AtpLihsgi8TjBafcM1DM1fYFLV4GCZicMV\nvmEiV8S66RTtCURHjICrqFZ5d5OLbw8oGA0waYSZrHQTBkMINka0OlNHduXzb4tZvnk/V/VOks99\nIYQQly1JSohWSYoxntJgetRqF7H2U9OjSpdecT6uomPsXXgvdd98R0THaNKuS8c4YjyejOxTU3q6\nqqHqiK+nhDUa7O1OTQXajOo9OnYVW6h2GbAaVXonuYi0ht5Un6qm8fl/vKzY4sLlgW4dDMwaZyEh\nWv4eRfOJsVvIHtyRjz47xLq8QiYN6xLskIQQQoiAkKSEaNXaQjFGl0c5Z+LlXNOjzhuf2mJxitBT\n+cnn7LvlN3jLK0kanEK3Gemoo2agdOnrW0DToNYBdSWADuztISwmILEUVxvY47CgaDoSI7ykJrgw\nhuBv+BPlKm+vd7L/qIrVDLPGWrjqSqPMkCACYsJVndm04wgff36YrPQORISZgh2SEEII0ewkKSFE\nkDToAVHlIjby7B4Q55sedUZWtzbbg0Q0TdM0jv1lCUVPvohOD92n9yEpO91XPyI6ybeQ6oXKI+Cp\nBb3ph+k+w5o9Fq8Kex1mimtMGHQavRJdtLOH3rS+XkVjU76HNdvcKCr062bgmtEWIsNDMLMiQobN\namTK8C68uaGAFf8+yNxxPYIdkhBCCNHsJCkhRJBcSA+I802PWlnjuux7koiLo1TXsP/ORyhfuRFz\ndBhp16UTPnwonhEzwGz1LeSp89WPUL1gjoDIDqeGcjSjKqeeXcUWnF49dotC7yQXYabQK2Z5+LjC\nW+tdHCtViQzXMX20hb7d5OtTtIwxA1JYt72IDflFjB+YQnx08ycPhRBCiGCSWzxCBMH5ekC4PL5p\nEU9Oj9qYGLuVqIjGXxNtU/3eA3w78QbKV24kqlsc6bcNx/aTmXhHX+tLSGga1JVB+UFfQiI8EaI6\nNntCQtPgULmJHUesOL06OkW7yejgDLmEhMuj8f6nLp57u55jpSpDrzSyaL5NEhKiRZmMeq4Z1RWv\novHe5v3BDkcIIYRodnJlJUQQXGgPCIvJQHqPeNZvP3LWcuk94mTohvAr+2g9++98BLW2jg6ZV9Bl\nan+8o+eiJP8wY42qQvVRcFWBzuAbrmEOb/Y4XF4du09YqKg3YDaopCW6iLGFXjHL7w95WbbRRVmV\nRny0jlljLXRPka/MlvLUU0+xfft2vF4vv/jFL+jbty+LFi1CURQSEhJ4+umnMZvNfPDBByxZsgS9\nXs/s2bOZNWtWsEMPiKt6J7F622E+/7aYnCGd6JQUmKl6hRBCiGCQKywhguBkD4jSRhITZ/aAaOre\ncmjdcxaBonm9FD35EsdeWILeYqTXvHTixgzEkzUXIn4oWul1QWWhb9pPUxhEpoCh+QvmldQa+O6E\nBa+qI87mpWeiC3OI5c1q6zU+2Owi7zsveh2MHWji6qvMmIxSyLKlfP755+zdu5elS5dSXl7ONddc\nw7Bhw5g3bx4TJkzgmWeeYdmyZUybNo0XXniBZcuWYTKZmDlzJtnZ2URHRwe7Cc1Or9Mxc0w3nlm6\nk2Wb9nHXnPRghySEEEI0Gxm+IUQQWEwGMlITGn0tIzXe3wPC5VHYubek0eV27i31D/MQbZOntILv\n593OsReWYE2IIP2WocROn4gn5+enEhLOSijf70tIhMVCdJdmT0goKuxxmPnPcSuKBj3iXfRpF1oJ\nCU3T2LHHw1Ov15H3nZeUBD13zg1j0giLJCRa2ODBg3n22WcBiIyMpL6+nm3btjFu3DgAxowZw2ef\nfcbOnTvp27cvdrsdq9XKgAEDyM/PD2boAdXnijh6d4nhPwfK2HWwLNjhCCGEEM1GkhJCBMmcsd0Z\nPyiFuEgreh3ERVoZPyiFOWO7+5e5kGEeom2q2bmLb3PnU7XlC2J7J5J+2wjMU+fhHXYNGE2+wg7V\nx6HqCKDz9Y6wt4Nmnrqy1q0j/0gYR6tM2EwqAzvU0yHK29y7CajyapV/fujk9VUuXB6NySPN3D4n\njA4JIZRVuYwYDAZsNl8B32XLljFq1Cjq6+sxm80AxMXF4XA4KCkpITY21r9ebGwsDkfjtXouFzNH\ndwPg7Y37UDXpLyeEEOLyIMM3hAgSg17PvPGpzMjqRmWNi6gIy1k1Ii5mmIdoOxz/9z4HH3gSzeOm\n89U9SJmUgXf0tWgJHX0LKB6oKgJPPRgsvvoRxuZ9r2gaHK0ysq/UjKrpSI700C3OjSGEUt2qpvHv\nrz18/G83Lg90TzEwa6yF+OgQasRlbN26dSxbtox//vOfXH311f7ntSZ+jDf1/JliYmwYjYFJOCUk\nBLbWQ0KCnVEZx/h0xxG+P1LFqIyUgO4vFAX6HIjzk3MQfHIOgk/OwcWRpIQQQWYxGZqc1vPkMI/T\npw496fRhHqJtUF1uDj38RxyvvYvRZqbndYOIzhqCJ3M2hEX4FnLXQOUR0BSwRII9GfTN+yPbrcD3\nJyyU1hkx6jV6JzmJDw+toUTFZSpvrXdy8JhKmAXmjLcwOM2ILpS6eFzGNm/ezF//+lf+8Y9/YLfb\nsdlsOJ1OrFYrxcXFJCYmkpiYSEnJqeFtJ06cID39/LUWysvrAhJzQoIdh6M6INs+3cSrOrF151H+\nteJberS3YwylTGCAtdQ5EE2TcxB8cg6CT85B486VqJFvMiFauQsZ5iEuf+6jxeyecROO194lPDmS\n9FuHETl9Gp7xN/gSEpoGtQ6oOOxLSES0g8gOzZ6QKK/Xk1cYRmmdkWirwuCO9SGVkPAqGmu2ufnT\nG3UcPKbSv7tvms8hvU2SkGglqqureeqpp/jb3/7mL1o5fPhwVq9eDcCaNWvIzMykf//+fPPNN1RV\nVVFbW0t+fj6DBg0KZugtIjE6jDEZHXBUONm44+yZmYQQQohQIz0lhGjlTh/mYTCbUNwe6SHRxpR+\nso3/zL0Db0k5iRnJdJudgZY1E6VLX98CquKrHeGuAb3RN1zD1Hjvm0ulanCwzMThChM64IpYN52i\nPSFVO+LQMYW31rs4XqYSGa5jxmgLfbrJ12Br8/HHH1NeXs6dd97pf+6JJ55g8eLFLF26lOTkZKZN\nm4bJZOLuu+9m4cKF6HQ6fvWrX2G3t43uspNHdGHLN8f4cOtBRvZtT5hF3sdCCCFCl3yLiTbN5VFw\nVNSDppEQY2vVP/YtJgMJ8eHSHawN0TSN4pffoPD3zwEa3ab2JunqDJQx89Cik3wLeeqhsghUD5jC\nIaqDLzHRjOo9OnYVW6h2GbAaVXonuYi0qs26j0ByuTVWfuZmy04PGjCsr5FJwy2EWUIoo9KGzJkz\nhzlz5pz1/P/+7/+e9Vxubi65ubktEVarEmkzM2FoZ977dD8rtx1m+qiuwQ5JCCGEuGSSlBBtkqKq\nvLl+L1u/OY7T7et6bjXrGd63PdeO64Ghmbu8C3GxlLp6Dtz1O8o+WIs50kqvef2JyByOd8QMMFt9\nC9WX+2bYQANbPIQnNPvsGserDex1WFA0HUkRXnokuDCG0J/Hdwe9LNvoorxaIyFax+xxVrp2aL3J\nRyEu1NWDOrIhv4g1Xx5m7IAOREvhYyGEECFKkhKiTVq6oYD12xuOxXW6VTZsP4Jep2Pe+NQgRSYE\nOPcfZu/P76X+u31Edokh7boM9KMm4e2TCTo9aKovGeGs8D2OTAFL83Zb96qw12GhuMaIQafRK9FJ\nO3vo1I6oqdd4/1MX+d970eth/GAT4webMRmld4S4PFjMBqaOvIJXV33PB1sOcH1ur2CHJIQQQlwS\nSUqINsflUdixp+m57PO/dzAjq1urHsohLl/lazez/7aHUKpqaD+8M1dck4F92k8pD/9h6j+v2zfd\np9cJRquvfoTB3KwxVDn17Cq24PTqsVsUeie5CDNd2HSLwaZpGvnfe3n/Uxe1TuiYqGf2OAvJCfL3\nLC4/mf3as+aLQj7deYzswR1pHxce7JCEEEKIixZCnXCFaB6VNS7KqlxNvl5e7aKypunXhQgETVUp\nevpv7L3h12j19aTO6UfXn43DO/VXGLuk+RZyVUP5fl9CwhoDMV2aNSGhaXCo3MSOI1acXh2dot1k\ndHCGTEKirErlHx84eWONC48XfpJp5vbZYZKQEJctg17PjKxuqJrGO5/sD3Y4QgghxCWRnhKizYmK\nsBAbaaG0icREjN1ClIzNFS3IW1HFvtseonL9ViyxNnrPTyds1Gg8Q6aA0YSmaVBTDHWlgA7syRAW\n3awxuLw6dhdbqHAaMBtU0hJdxNhCo5ilqmps/drDx5+5cXsgtaOBmWMtxEVJ3l1c/gakxtO9QxT5\nexwUHKmke4eoYIckhBBCXBS5YhNtjsVkICM1ocnXB/RMOGvohsujcKK8DpcndMbUi9BQ9+0evp2w\ngMr1W4lOjSf9jpFYps/HO+waMJpA9VJ56DtfQsJghtgrmj0hUVJr4MvCMCqcBuJsXgZ1rA+ZhMTx\nUoW/LKtn+adujAa4NtvCTdOsbTohIZ9XbYtOp2Pm6G4AvL2xwJfEFEIIIUKI9JQQbdKcsd3RNO2M\n2TcMDO/bjjlju/uXU1SVpRsK2LHHQVmVi9hICxmpCcwZ211m6BA/Wsm7Kzl4z6OoThcdx3aj09QB\neEfPQ03o6FvAXQdVRXhUr6+QpT0Z9M03FEFRYV+pmaNVJvQ6jR7xLpIjvc09gUdAeL0a6/PcrM/z\noKiQnmpk2igzdlvb/buUz6u2K7VjNOnd4/mqoISvCkrI6NF04l0IIYRobQKalHA6nUyePJlbbrmF\nYcOGsWjRIhRFISEhgaeffhqz2cwHH3zAkiVL0Ov1zJ49m1mzZgUyJCEA3zjc67J7MnN0dxwV9aBp\nJMTYzuohsXRDAevyivyPS6tc/scyQ4e4VKrHS+Hv/kzxK29isJroff0AYsZehSdzDoRF+Io71Jf5\nhmwA4UmdqFXDm3W6zxqXjt0nrNS69YSbVdISnURYQuMO64FjCm+vc1JcrhEVoWPmGAu9r5Acu3xe\ntW0zRndj574S3vlkP/26xUkiSgghRMgI6DfWSy+9RFSUb2zjc889x7x583jjjTfo3Lkzy5Yto66u\njhdeeIF//etfvPbaayxZsoSKiopAhiREAxaTgZSECFIS7Y0O2Whqlo4de0qka7S4JO4TJXw/+5cU\nv/ImtiQ76bcOI2rmNXjG/9SXkFAV3+waNcWgN0J0Z2zx7ZstIaFpcKTSyPYjYdS69SRHehjQoT4k\nEhJOt8a7m1y88HY9xeUaI/qZWHSdTRISnPq88rr0VBeFU7E/Eu2HETjyedU2dIgPJ7Nfe46W1LL1\nm+PBDkcIIYS4YAFLSuzbt4+CggJGjx4NwLZt2xg3bhwAY8aM4bPPPmPnzp307dsXu92O1WplwIAB\n5OfnByokIS7KuWbpKK92ygwd4qJVf7mTb3PmU71tB/H92tH/jlGYpv8MZdAE37AMrxPKD/hm2TDZ\nIOYKMDffFH9uBf5z3MLeEgsGHfRp5yQ1wY0hBG6o7jrg5anX69j6tYeEGB23zgxj+mgLVksIjDVp\nAQcKazi8x0D1ITveOhNGiwI/HBr5vGo7po7sitmoZ/nm/ZKIEkIIETICdnvpySef5KGHHmL58uUA\n1NfXYzb7pq6Li4vD4XBQUlJCbGysf53Y2FgcjsbvTAvR0s41S0eM3SozdIgLpmkaJ/71Nof/+xk0\nReGKSb1oP3Egyph5aNFJvoWclVB1FNDAFgfhic06XKO8Ts/uExbcip7oMIW0RBcWY+vvHVFdp/L2\nW+V8/o0Tgx6yh5gYP8iM0SjJCIDaOi/vfFTMirUn8HjNGCwKYfH1mMK9/mXk86rtiLFbyB7ckY8+\nO8S6vEImDesS7JCEEEKI8wpIUmL58uWkp6fTsWPHRl9vqjL0hVaMjomxYTT6utonJNgvLcjLgLQ9\n8Eb078AHm8+e+31E/2RSkpt3BoQLJec9tCj1Tr655bcceX05pggLveYNIP7qLMJyr0NnCUNTVWqK\nD+OsKkan12Pv0B1LZOxZ27nUtquqxrdFGt8d8+U4+nbU0TPZiE5n+rFNCyhN09j6VT3/b2UttfUa\n3VJMLJwWRUpS6447EBo7926PyvKPj/KvpYeoqvaSGG8htbeR/xw7clYuK5ifV6LlTbiqE5t2HOHj\nzw+Tld6BiLC29zcjhBAitAQkKbFp0yYKCwvZtGkTx48fx2w2Y7PZcDqdWK1WiouLSUxMJDExkZKS\nEv96J06cID09/bzbLy+vA3wXag5HdSCa0OpJ21um7VOGdaKu3s2OPSWUVzuJsVvJSI1nyrBOQTn+\nct5Dq+2uw0fYu/Be6r7dQ0THaNLmZ2AcPYnaPqOorfKCUgaVReCtB4MFLSqFKpcJzmjnpba93qNj\nV7GFapcBq1Gld5KLSLPKaR+7rVJZlcrbG1zsOaxgNsF1EyNJ76qg1ztxOJzBDq9FnXnuNU1j65fl\nvL7sKMUlbmxhehbMTGbS+ESMRli6QRfwz6tQTA62JTariSnDu/DmhgJW/Psgc8f1CHZIQgghxDkF\nJCnx5z//2f/v559/ng4dOrBjxw5Wr17N1KlTWbNmDZmZmfTv35/FixdTVVWFwWAgPz+fBx98MBAh\nCXFJDHo988anMiOrG5U1LqIiLGcVxBSiMRWbPmPfLx9Eqaym3ZCOdJ01AGXMXJTkH34guGqg6gho\nClijwN4edM1X3OF4tZG9DjOKpiMpwkOPBDfGVl47QlU1tuz0sPIzN24v9OxkYOZYCz27hYdcQioQ\n/vN9NUveOkLBgTqMBh1TshOZObkdkfZTX+XyeSUAxgxIYW1eERvyixg/MIX46LBghySEEEI0qcVK\nlt92223cd999LF26lOTkZKZNm4bJZOLuu+9m4cKF6HQ6fvWrX2G3yx0Y0fpYTAYSY2zBDkOEAE1V\nOfb8/1L01F/RGXT0mNGHxNwheEZdC/YY3/QXdSVQ6wB0vmSENbrZ6kd4VdjjsHCixohBp5GW6CTJ\n3voL3h0tUXhrvYvCYkvAXSoAACAASURBVBWbFWaOtTCgpxFdM9bVCFWFR+p57Z2jfPlVJQAjh8Qw\nb3oy7RMbrxMhn1fCZNQzfVRXXl6xi/c27+fGKVf+f/buO76p+178/0vzSB7ylifbGJuwzQ7TbMJK\nAEOYmW2/7e23v3vbpL1Nk2b0tje34/b+bttf702bRdMkQBYQCBtCIKxAAoRpNl7y3jrSGb8/dOEm\nARsP2ZKtz/PxyOMRy7L0PpKRdd56j0CHJAiCIAiNavekxPe///1b///KK6/c9v2ZM2cyc+bM9g5D\nEASh3SnVtVz6wc+p3LoXKdpO1oohhE2ajHfkXDBbQFN8wyw9tWC0QFQaWPz3CWaV28iZYgm3YiRS\nUumfKGO3BPcwS6+is+OIh12fedE0GNrPzILxEhFhIhlRXunl5bfP8+G2QjQd+mdEsDo3lYze/tvI\nInRdo+5JZOvhaxz8spgZI7vTPVF86CMIgiAEJ7HcXeiUZK8qypOFoNJw/hIXHvkR7kvXiEqPI3P5\nMAyT70fpO8JXBeFt8M2P0Ly+NZ+OVDD65yVY1+FapYXL5b6Bdt2jPfSM9WIM8vP6SwUq63a6cVXo\nREcYWJQjkdVT/FlqaFB5f2sxH3zkQvZopCXbWLU4heGDo0TliNBsRoOBRZP78Lu3v2D9nov805K7\nz+wSBEEQhEAQ7/6ETkXVNF56/yT7v8invFom1iExNCOBJTnpmIxB3jAvdFnlG3dw6R+fQ6tvIG1i\nL3osyEbJWYaW0N2XMWiogJoiQIfwBAiL91u7hqwYOFMsUek2YTVpZCXKxNg1v9x2e3HLOh8ekDlw\nUsEAjBtsYdYYKzZraJ9wK4rOjn2lvPVBIVXVCjFRZn7wrXRGDg7HZArtx0ZonXt6xpLVI4ZTl8s5\nfaWc/j1v3+wjCIIgCIEmkhJCp/L2rjx2HL1x6+uyavnW18umZgQqLCFE6YrC9V/+kaI/r8Eomclc\nPoS4aWPwjl8C9gjQNagpBHcVGEy+6ggpwm/3X1pn4qxLQtEMxIUpZDplgr1w6MtLCu/slqmq00mM\nNZI7RaJncpAH3c50Xefw8SrWrM8nv0jGJhlZuiCZ+TOcdEuLFkM+hVYzGAwsntyH5189yro9F3l6\ndQxGUW0jCIIgBBmRlBA6Ddmrcvx8yR2/d/x8KXPH9qRBVkRLh9AhvGUV5H3nn6nZfxR7QjhZK4ci\nTZqBd9h0MJpAkX3tGqoMZhtEdQOTxS/3rWpwscxKQbUFo0Gnb7xMikPxV/FFu6ip13hvr4cvLiiY\njDB9lJUp2RbM5iAOugOcu1jHa2tvcOZCHUYjzJwcz5J5yURH+ed3RRB6JjkY1T+RQ6eLOXLGxaj+\niYEOSRAEQRC+RiQlhE6jqlamvFq+4/fKqt08+/IRKmvbv6VDzLMQaj//krzHnsRTUExcfyd9H8yG\nKbmoPQf6riBX+wZa6hrYYyAi0W/rPmtlA6eLbdR7jYRbNfonugm3Bu8wS13XOXJGYcM+mQYZeiQZ\nyZ1iIykutNutCord/O2dAj49WgnAqKFRrFiUSlqyLcCRCV3R/RN6c/Ssi3c/vkh2vwTMptD+9ycI\ngiAEF5GUEDqNqAiJWIdEWSOJiYpa3+Xt1dKhahpv78rj+PkSMc8ihLneeJ+rT72I7vXSY0YGqXNH\noE5ehh6T6JsfUeeC+jLA4GvXsEX55X51HfKrzVwss6LrBlIdXnrHeQjmc4uyKo11u2QuXFeRLHD/\nRCtjB1owBvsEznZUVe1l3cYiPtpTgqpCRp9wVi9OpX+G/9p6BOGbnNF2Jg9NZcdnN9hzPJ+pw7sF\nOiRBEARBuEUkJYROQ7KYGJqR8LWZEk05fr6UhRP7+K2aQcyzCG2a7OHqz35NyRvvYQ6zkrliOI4p\n41HuXQhWG6heqM4Hbz2YrL51n2b/fOote3VOFUmU1ZsxG3UyE93Eh6t+ue32oGo6+z738tFBD14F\nsnqaWDhZIiYyiDMo7UyWNTZud/Hu5iIa3BpJTomVi1IYkx0tNmoIHWLOvT355GQhG/Zf4d6Bydgl\n8RZQEARBCA7iL5LQqSzJSSfMbmX/FwVU1LhxhFuprPXc8boVNW6qamWcMWFtvt+7zbPwZ/JDCD5y\nfhF5jz9J3eenCU9xkLVyGJacOSgDJvjaMjx1voSEpoAUCZEpvrkSflBRb+TgNR2310y0XSXLKSOZ\ng7ddo6BEZe1OmesujXAb5E6RGJphDtkTb1XT2bO/nDffL6CswosjwszyZSlMnxSPxRy6SRqh4znC\nrMwa1Z339l1my6FrPDChd6BDEgRBEARAJCWETsZkNPL4goHMGtmNqloZu2Tm+VeP3LGlIybSRlSE\n5Jf7bWqehT+TH0Lwqd5/lLzv/DNKWQXOYan0WTIcbcpS1JS+vp6K+lKodfmuHJEI9li/rPvUdLhc\nbuF6pQWDAXrHeugW7Q3aYZZeRWf7YQ+7P/Oi6ZCdaWbeeIkIe5AG3M50XefYyWpeX5fPtXw3VouB\nhfclcv+sJMLDRAJTCIzpI7qz63g+245cI2dYKtF++hspCIIgCG0hkhJCpyRZTLeSAI21dAzNiPdb\n9UJT8yz8mfwQgoeu6xT9+W9c/5f/xGDQ6bOgP4mzRqJMWg6RMaCpUFMAcg0YzeBIA6t/ElP1XgNn\niiVqZBM2s8a9mUbUBq9fbrs9XLyhsm6Xm5JKnZhIA4tyJDJ7hO6fl4tX63ltbT4nz9RgMEDOuDge\nXJBMfKw10KEJIU6ympg/rhevf3SODZ9cZtXMzECHJAiCIAgiKSF0fkty0gFfG0VFjZuYSBtDM+Jv\nXe4PTc2z8GfyQwgOal09l//peco37sDqsJG1fAjhOTkoo+aC2QKK+3/WfXrAEuabH2Fs+8uprkNx\nrZkLJVZU3UBihJe+CR5iIyIpafDDgflZg6yzab/MwVMKBmDCEAszR1uRrKFZHeEqlXnj3QI+PlgB\nwLCBDlYtTqVHmj3AkQnC/xo/KJlth6/z8ReFTBvRjeS48ECHJAiCIIQ4kZQQOj2T0ciyqRksnNin\nXVd1dkTyQwi8hotXyXv0RzScv4yjZwyZK7Mx5jyAkjHC15bRUAk1hYAOYXEQ7vRLu4aiwvlSCVet\nGZNBJ8vpJjEyeIdZnryo8O4emeo6naQ4I7lTJHokhWZyrrZOYf2HRXy4owRF0end3c7q3FQG9XcE\nOjRBuI3JaGThxD788b2TvLv3Et97YGCgQxIEQRBCnEhKCF3GV1s62kNHJT+EwKn4aA+XfvBz1Jo6\nUu7tQc9FI1BzlqEldAddg+oicFf4hls60nxDLf2gym3kTLGEWzESKan0T5SxW4JzmGV1ncZ7e2RO\nXFQxGWHmaCuTsy2YTaFXHeH1amzeWcL6D4uorVNJiLOy/IEUxo+KCem1p0LwG5YRT59UB5+dLyEv\nv4r0VP+sLhYEQRCE1hBJCUFoofZOfggdT1dV8n/73xT8/q8YLSb6LR1E/Ix78U7IBXukr02j6oav\nbcMsgaMbmNs+H0DX4VqlhcvlFgC6R3voGeslGM9ndV3n8GmFjZ/INMjQK8XI4hwbibGht0FC03Q+\nOVzBG+8W4Cr1EB5mYnVuKrOnJGC1hN7jIXQ+BoOBxZPS+dc3jrFudx4/WT4sZDfkCIIgCIEnkhKC\n0AyyVxXVEV2UUlHFxe/9jKo9n2KLCyNrxVBsU2biHTbdt9ZTrvGt+9Q1sEVDZJKvUqKN3IqBs8US\nlW4TVpNGVqJMjF3zwxH5X2mlxrpdMnk3VCQLLJwkMXqgGWMInsScOFPDa2tvcOlqA2azgXnTnSya\nk0RkhPhzKnQuGd2iGZIez+d5pXyRV8aQvvGBDkkQBEEIUeJdlCA0QdU03t6Vx/HzJZRXy8Q6JIZm\nJLAkJx2TUXwi2tnVnTpH3mNPIF8rICYzgX7LsmFKLmqvQb4yhlqXb+UnBohMBnuMX+63pM7EOZeE\nohmID1folyATjLkuVdPZe9zL1oMeFBX69zTxwGSJmMjQ+92/eqOB19flc+xkNQATRsew7P4UEhPE\n5h2h81o4qQ9fXCxl/d6LDOwTK/6uCYIgCAEhkhKC0IS3d+V9beNGWbV86+tlUzMCFZbgB6XrNnH5\nyV+iyx66T00nbcFI1MnL0WMSQVOgKh+8dWC0+LZrWNq+QUHV4GKZlYJqC0aDTka8TLJD8cecTL+7\n4VJZu1Mmv0Qjwm7g/olWBvc1h1yJd1mFhzffK2T3/jI0HQZkRvBQbhp9eooWLqHzS40PZ9zAZPad\nKGT/ySImDE4JdEiCIAhCCBJJCUFohOxVOX6+5I7fO36+lIUT+4hWjk5I83i59uzvcL26DpPdQr+H\nsomeNh7l3oVgtYO33jc/QlPAGgGOVF8bRxvVygZOF9uo9xoJt2r0T3QTbg2+YZZeRWfrIQ97j3nR\ndBiRZWbuOIlwe2glI+obVN7bUsyGbcV4PDrdUm2sXpzKsIGOkEvMCF3bgvG9OXS6mPf2XSK7XwLh\nNkugQxIEQRBCjEhKCEIjqmplyqvlO36vvMZNSWUDaQkRHRyV0BaeohLyvvVjao+eICwpkqyVw7BO\nmYsycAJggPpyqC3yXTk8AcLi27zuU9chv9rMxTIrum4gNcpL71gPpiCsks67rrB2l0xZlU6sw8Ci\nHIl+3UPrz4Si6GzbW8LbHxRRXasQG23hweXJTL43DlMwTiAVhDaKiZS4b2xP3vv4Em/uuMBjc/oH\nOiRBEAQhxITWu01BuIPGhlhGRUjEOiTK7pCY0HX4/drPGdbPKeZLdBI1h46T9+2f4HWVkTA4mfQH\nR6BNeRA1te//rPvMB7kaDCaISvVVSbSRR4VzLomyejMWo06/RDfx4aofjsa/6t06m/bLHPrS10oy\ncaiFGaOtSJbQOQnXdZ2Dn1Wy5p0CCotl7DYjy+5PZu50JzZJVEQJXdvs0d05dr6EA6eKyO6XwNC+\nCYEOSRAEQQghIikhhKy7DbGULCaGZiR8babEV5XXeMR8iU5A13WKX36b68/9O7qm0XtOJklzR6NM\nWg6RMaDIvnYNVQaz3Tc/wtT28uXyeiNnXRIe1UiMXSXTKSOZg69d40Sewrt7ZGrqdZLjjeROkeie\nGFon4Wcu1PLa2nzOXazDZIJZOQnkzksi2iHK2IXQYDIaeey+LJ579QivfXSOvmnRRNjF778gCILQ\nMURSQuiyGquAuHn51iPX2X0s/9bldxpiuSQnHYDj50vuWDHh+56YLxGs1Ho3V578F8re3YIlQiJz\n+WAip05BGTUXzFZwV0NNga9Swh4LEYltbtfQdLhcbuF6pRUDOr1jPXSL9gbdMMuqWo339sqcvKhi\nNsGsMVYmD7NgMgVZoO0ov9DNmnfyOXSsCoAx2dEsX5hCapItwJEJQsdLTYhgwfjerN9zkTe2n+fb\n8+4JdEiCIAhCiBBJCaHLaawCYtGk3qzfc+lWgqGx9vCvJhlMRiPLpmYwYVAyz7x85I7Xr6hxU1Ur\n44wR0/iDifvqDfIefYL60xeI7B5N5spsTFMfQMkY6btCTRE0lPuSEI5UsEW1+T7rPQbOuCRqZBN2\ni0aWU8Zh09p8u/6k6TqHv1TY+ImM2wO9U4wsnmLDGRM6LUiVVV7e3lDItr2laBpkpoezOjeVzHQx\nI0YIbTNHduf4+RIOnS4mOyOB4ZnOQIckCIIghACRlBC6nMbWeJ67Vsl1V+2ty7VGKunvlGRIiAkj\nrpH5EjGRNqIiJP8dgNBmlbv2c/G7P0OtriFpdDd6Lx6JOnU5WkJ3UL1QfQO8DWCyQlQ3MLft+dN1\nKK4xc77UiqYbSIz00jfegznIzvNLKjTW7XJzMV/DZoVFkyVGDTBjDLYyjnbillU2bHXx3pZi3LJG\nSqLEykWpjBoWJTZqCAJgNBp45L4snn3lCGu2nSOjezSOMGugwxIEQRC6OJGU6IIaa1sIltvzh6Za\nMxpb45lfUnvHy7/pTkmGpuZLDM2I7/DHJRifk2CgaxoF//Ey+b/5LwwmA30XDcR53zi8E3LBHgme\nOt/8CF0FyQGRKdDGIaWKCudLJVy1ZkxGnawEN4mRwTXMUlV19hz3su2QB0WFe3qbWDhJIioiyLIm\n7URVdXbtL+PN9wqpqPIS5TCzOjeVqePjMZtFMkIQvio5LpwHJvTm7V15/G3beb67YECgQxIEQRC6\nOJGU6ELuNrgx0LfnD6qm8dL7J9n/Rf4dY2pqjWdjlRHf1FiSYcH4XtS7Fc5eraCyViYm0sbQjPhb\ncyeao63JBFXV+PuO80H1nAQLpaqGS//3GSq370OKsZO1Yij2qTPxZs8AgxHqSqHO5btyRBLYY9o8\nP6LKbeRMsYRbMeKQVLISZeyW4Bpmed2lsnaHTEGpRmSYgfsnSgxKN4VEZYCu6xz9opo16/O5XuBG\nshpZPDeJ+2cmYreLZJ4gNGba8G58dr6Eo2ddHD5TzMisxECHJAiCIHRhIinRhTTWtgCt2w7h79vz\nh7vF1NQaT6PhzokJowF0ILaRJMOdkjNj7kniwWkZhEnN+yfkrwTPyxu/DLrnJBjUn83jwiNPIF+5\nTnR6HP1WDscwdQlqr0GgqVB1HTy1YDT7tmtY2jb/Q9fhaqWFK+W+6fQ9Yjz0iPE2OqckEDxena2H\nPOw97kXXYWR/M3PHSYTZgijIdpR3uY7X1uVz6mwtRgNMnRDHg/OTiY0RpeiCcDdGo4FHZ2fx85cP\ns2brOfp1ixZtioIgCEK7EUmJLqKptoXWbIfw9+35Q3NjaqzNIjUh4mszJW6aOCSFGSO7N1q9cKdE\nyP5TRdht5mYnAvyR4JG9KgdPFd7xe6G8AaTsg21c/qfn0RrcpE3qTfdFo1AnL0eLSQKv25eQ0Lxg\nCYeoVF9iog3cioEzxRJVbhOSSSMrUSbaHlzDLM9fU1i/S6asWifOYWDRFImMbqHxcl9cIvO3dwr4\n5HAFAMMHO1i5KJXuqfYARyYInUtibBiLJvXh7zsu8PrWc/zDAwNDosJKEARB6Hih8S41BDTVttCa\n7RD+vj1/aG5M/7vGs5SKGvetNov/3b7x9cuX5KSjqHqLZ1Q0NxHgrwRPVa1MSWXDXY8/VOiKwvV/\n+U+K/usNTJKZrJVDiZk5EeXehWC1Q0Ml1BQCOoTFQ3hCm9s1SmpNnCuRUDQD8eEK/RJkgikPVO/W\n2fCJzJHTCgYDTBpmYcYoK1ZL1z+RqK5VWL+piC07S1BUnT49wlidm8rArMhAhyYInVZOdhqfnSvh\n+IVSDp4uZsw9SYEOSRAEQeiCRFKii2iqbaE12yH8fXv+0NyYbq7xXDixz22Jhm9ebjYZbmurGJQe\nz9TsNGIdNr8kZ/yV4ImKkEiItuOquD0xEWobQLyl5eR955+pOfAZdmcEWSuGIU2fizJwou8K1QXg\nrvTNknCkgdS2E1NVg7wyK4XVFowGnYwEmeRIpa05Dr/RdZ0TeSrv7ZWpqddJiTeyZKpEmjOIMibt\nRPZobN7pYv2mYuobVBLjrSxfmMK9I2IwBlM/jSB0QkaDgYfvy+Lnfz3M37efJ7N7DDGRofO3RhAE\nQegYIinRRfh7O0SwbZtoTUySxXTHk/2vXv73Hedva6vYfSyf3cfyiXNIDOoT1+bkjL8SPJLFxOgB\nyWzYd+m27wXqOQmE2mOnuPDYE3iLSoi7J5G+K0bC1AdRUzNA9fi2ayhuMNt88yNMbZshUCsbOV0s\nUe81Em5V6Z8oE24NnmGWlTUa7+6R+fKyitkE9421MnGoBZOpa5+Qa5rOxwfLeePdAkrLvUSEm3h4\naSqzJidgsYT20FdB8CdntJ3cyX1Ys+08r310lh8sGiTaOARBEAS/EkmJLqSxtoWWbIdoz9vzhyU5\n6YTZrez/oqDNMTXVVgH/k6A4XkA3Z8QdEwrNTQT4M8HzyNx7qG/wBNVz0lF0Xcf1t3e5+tSv0RWF\nnrMySFkwFmXSMoiMBbkGqvNB18AWDZFJvkqJVt8f5FeZuVhmRcdAapSX3rEeTEFyvqvpOgdPKWz6\nREb2Qp9UE4unSCREB0mA7ejzL6t5fV0+l681YDEbuH9WIg/MTiQiXPxJE4T2MHFoKkfPlXDiYhn7\nTxYxblByoEMSBEEQuhDxDq4LaaptIRhuzx9MRiOPLxjIrJHd2hxTU20VX1XX4GXysFRO5JW1OhHg\nrwSPyRR8z0lH0NwyJ771K268+g7mcCuZq4bjmDkFZdQ8MFmg1gX1pYABIlPAHt2m+/OocNYlUV5v\nxmLUyXS6iQtX/XMwfuCq0Fi3082lAg2bFRbnSIy6x9zlP728fK2eNesLOH6q2jczY0wsD96fjDNe\nlJMLQnsyGgw8PDuTZ/56mDd3nqd/zxhiHbZAhyUIgiB0ESIp0QU11rYQLLfnD/6Iqam2iq+qrJWZ\nMaIbuZPTW50I8HeCJxifk/Yi3ygi7/EnqPviDOGpDrJWZWOevgglYyToKlReBW+9Lznh6AaWtr1R\nLq83ctYl4VGNxNhVMp0ykjk42jUUVWfPMS/bDnlQNRjYx8T9EyWiIrp2dURxiZs//PUKew6Uo+sw\nuH8kqxan0rtHaPwbEIRgEB9lZ+mUvry65SyvbjnLP+YO7vKJUEEQBKFjiKSE0CXIXrXFJ/tNtVV8\n1c25D/5IBIRSMsEfqvYd5uL/+SlKeSWJ2an0fnAU2tQVaM7uvkRE1Q3QFLBGgiMFjK1P9Gg6XC6z\ncL3KigGd3nEy3aKCZ5jltWKVtTtkCss0HOEG7p8oMSi9a7+E19WrvLu5iE07SvB4NHqk2Vidm8aQ\neyLFyZAgBMD4QckcPevi1OVy9p0oZMLglECHJAiCIHQBXfsdrdDlqZp22/aMoRkJLMlJx2S8+6fH\nX22rKKt23/E6HTFEsjVJla5M13WK/vQ613/1RwwGSL//HlIfmEjD2MVgi4D6Mqgt9l053AlhcW1a\n91nvMXDaJVErm7BbNPonykRKmp+Opm1kr84bW6rZ9mkDug6j7zEzZ5yEXeq6J+VeRWPr7lLWbiyk\nplYlIc7K0vnJTBwbi0ls1BCEgDEYDDw0K5On/3qYt3ZeoH/PGOKj7IEOSxAEQejkRFJC6NTe3pV3\n2/aMm18vm5px159XVJ2p2WnMHduT2gYvO45e58TF8g4bItnWpEpXpNbWcekfn6Piw11Yo2xkLR9C\n2IzZhM9YREPp/wyzlKt9VRGONLCGt/q+dB2KasxcKLWi6QaSIr2kx3swB8lDf+6qwvrdMuXVOvFR\nBhZPkUhP67ov27quc+BIJWveyae4xEOY3ciKhSk8/GBvqqvrAx2eIAhArMPGg1P68vLmM7yy+Sw/\nXDoEo6hcEgRBENqg6767Fbq8prZnHD9fysKJfRqtOmgsGbBsWga5OXqHVS20NanS1TRcuMKFx57A\nfeEyUb1j6bdyOMbpS1F7DUL1ylBx2bf202L3JSRMllbfl1eFC6USrlozJqNOVoKbxMjgGGZZ16Cz\nYZ/M0bMKRgPMGR/OuIFgMXfdN/5fnqvhtbX5XLhcj9lkYM7UBBbPTcYRaUaSRPWQIASTewcm8dk5\nF19cLGPv8XwmD0sLdEiCIAhCJyaSEkKnVV7tbnRIZUWNm6paudH5DY0lA1RVY+WMzA6Z+9CWpEpX\nVL5lN5d+8HO02npSx/ekR+4Y1JzlaDFJ4K6iorQQNA3ssRCR2KZ2jSq3kdPFErJixCGpZCXK2C2B\nH2ap6zqfX1B4f6+H2gadtAQjuVMlhvR3UFJSE+jw2sX1ggbWrC/gyOdVANw7IprlC1NJdoqNGoIQ\nrAwGA6tmZvLMXw+xdvdF7ukdhzNatHEIgiAIrSOSEkKntePo9Ua/d3M45Z00lQzY+3kBGAwsm9q3\n3dsnmlpJerekSleiqyo3Xvz/KPzDqxitJvo9OJi4+yajjFvo26RRUwgNFRiMRnRHGtgcrb8vHa5W\nWLhS4auw6BHjoUeMl2AYU1BRo/HubpnTV1QsZpgzzsqEIZYuO0OhosrLW+8XsuPjUjQd+mdEsHpx\nKhl9Wt+OIwhCx4mJlFg2LYOXNp7mlQ/P8MSyoaKNQxAEQWgVkZQQOiXZq3LiYlmj3x+UHtdolUFT\nyQBNh93H8jEZDe3ePtHUStKmkipdibeskovfe4rqjw9hiw8na8VQbDPnowycCJoKFVdAaQCTRHSv\nflRUK62+L7di4EyxRJXbhGTSyEqUibYHfpilpuscOOFl8wEPshfS00wszpGIjw6SwRZ+1uBW+eCj\nYj7Y6sIta6QmS6xalMqIIVFio4YgdDKj+ydy9KyL4xdK2fXZDaYO7xbokARBEIROSCQlhE6pqcQC\nwNTsxvtbm0oG3NQR7RNNrSTtiI0fgVZ34iwXHvsRnhtFxGYlkLFyJExbjpqaAZ5aqMoHXQUpChzJ\nmCU70LoWhpJaE+dKJBTNQHy4Qr8EmWB4eIvLNdbudHOlUMMuwZKpEiOyzF3y5FxVdXbsK+Wt9wup\nrFaIdph5aEkqU8fHYzJ1veMVhFBws43jwo1DrN9zkYG940iM7foVfoIgCIJ/tSgpcf78ea5du8bU\nqVOprq7G4Wh9GbUgtEVTiYU4h41Yh63Rn20qGXBTR7VPfHUlaUdt/AgGJW9v5MqPf4nu9dJ9Wjpp\nC8ehTF4GETFQV+L7DwNEJoEtptXzI1QN8kqtFNZYMBp0MhJkkiOVtoyj8AtF1dl11MuOIx5UDQan\nm1kw0YojvOtVR+i6zuHPq1izPp/8QhmbZGTp/GTmzXBitwVBZkgQhDaJCreyYnoGf/7gS/66+Qw/\nWTYMYxdtOxMEQRDaR7OTEq+++iqbNm3C4/EwdepU/vSnP+FwOPjud7/bnvEJIUr2qk1uwGhrlcGS\nnHRUVWPv5wVod5hv2FHtEyajkWVTM1g4sU+HbfwIJM3j5drPf4vrtfWY7BYyl2cTNXsayqh5vhWf\nVdd9VRJGC0Sl+bZstFKt7BtmWe81Em5V6Z8oE24N/DDLq4Uqa3fKFJVrOMINLJwkMaBP1yxaO3+x\njtfW5XP6fC1G8LN7SAAAIABJREFUI0yfFM+SecnERrd+a4ogCMFnZFYiR8+VcPSsi+1HrzNjZPdA\nhyQIgiB0Is1+J7xp0ybWrl3L6tWrAXjyySdZunSpSEoIftXYqs4lOem3DZ5sS5WByWhk5YxMMBjY\nfSz/tu93dPuEZDF1+aGWnkIXFx7/MXXHThKWHEnWqmwsMxah9BsFihvKr4LmBWs4OFLB2LoTdV2H\n/CozF8us6BhIjfLSO9aDKcBFCLJHZ8tBD5987kUHxgw0c99YCbvU9T5RLCx287d3CjhwtBKAkUOj\nWLEwhW4pYjq/IHRVK6ZncO5aBe9+fIlBfeJIjhNDawVBEITmafa7/vDwcIxfOSk0Go1f+1oQ/KGx\nVZ3AbYMnb1YZzB3bkxuuWtKcEUSGWVt0f74tG4aQa5/oaNUHj5H3rR+jlFaQMCSZ9BVj0KYuR0vo\nDu5KqCkCdAhPgLD4VrdreBQ4WyJRXm/GYtTJdLqJC1f9ezCtcPaKwvrdMhU1OgnRBhZPsdEntetV\nxFTXKKzdWMjW3aUoqk7fXmGszk3lnn6RgQ4tJGiazvFT1Wza7qK03MtvnslEksTfaaFjOMKsrJze\njz+9f4q/fniGn67IFm0cgiAIQrM0OynRvXt3/vCHP1BdXc22bdvYvHkzffr0ac/YhBDT1KrOOw2e\nbElVRWPtIKHWPtHRdF2n+C9vcu3532PQdXrPyyJpwQSUiUvBFg41BeCuAoPJVx0hRbT6vsrrTZxx\nWfGqRmLsCplOD5I5sO0atQ06H3wsc+ycgtEIU0dYmDrCisXctd6oyx6NTdtdvLu5iPoGjSSnxIqF\nKYwdHt0lh3YGG7essudAOZt2uMgv9M3ZGTbQgVG8lAkdbHimk1H9Ezl0upiPDl9j9ugegQ5JEARB\n6ASanZR45plneP3110lMTGTDhg1kZ2ezfPny9oxNCDFNbdS40+DJ5lRVNDdxEQrtEx1NrW/g8o9+\nQfn7W7FESmQtH0L4rPtQsmf8z7rPy6DIYLb55keYWlblcpOmw6UyKzeqLBjQ6RMnkxYV2GGWuq5z\n7JzCBx/L1Lmhm9NI7hSJlISudZaoajp7D5Tz9/cKKKvwEhlh4tEH05gxOR6LWXxC397KKjxs3lnC\ntr2l1NapmE0GJo2NZc40J316iNczITCWT8vg7NUK3t93icF94khNaH2yWRAEQQgNzU5KmEwmHn74\nYR5++OH2jEcIYU1t1Pjm4MnmVlW0pB2kOe42gFPwcV++zoVHn6DhbB6R3aPJXD0S08wlqL0Gg1wN\n1QWga2CPgYhEMLTuBLbeY+B0sUStx4TdotE/USZS0vx8NC1TXq3xzm6Zs1dVLGaYN87K+CGWLlXG\nrOs6n39Zw+tr87lyowGrxcADsxN5YHYS4WHi30V7u3C5jo3bXBw4WoGqgiPCzOK5ScycnCCGiAoB\nF2G3sGpmP/7znZP85cMzPLUyG3Ogh/oIgiAIQa3ZSYn+/ft/rQzXYDAQGRnJoUOH2iUwIfS0ZKNG\nSWXDXasqoiKkFrWDNKUlrSKhrnLHJ1z83s9Qa2pJHtOdXg+ORZ2yAi06EWqLob4MMIAjBWzRrboP\nXYeiGjMXSq1ouoGkSC/p8R4C+eG8punsP+Fl86cePF7I6GZiUY5EXFTX+v24dLWe19fl88XpGgwG\nyLk3lgfvTyE+tnWVLkLzqKrOoeOVbNzm4mxeHQDdUm3MneZkwuhYJGvX+j0TOrehfRMYOyCJA6eK\n2HLoGnPH9gx0SIIgCEIQa3ZS4uzZs7f+3+Px8Omnn3Lu3Ll2CUoIXXfbqKFqGi+9f5JPPr9BY9MC\nblZV3K0dpKSiHqvF1KyqB39XXHRFuqZR8O9/If+3/43RYiIjdyDx86agjFsIJgtUXgVvva9NIyrN\n17bRCl4VzpdKlNSaMRl1+jvdOCMCO8yyqMy35vNqkYZdgqXTJIZnmrvUPAVXqcyb7xWy92A5ug5D\nBzhYuSiFXt1Fm0B7qq1T+OCjYj7cWUJJmQeA7EEO5kxzMrh/ZJf6HRO6lgen9uX0lXI2fHKZIenx\ndHOKNg5BEAThzlq1c89qtTJx4kRefvllvvWtb/k7JiGE3W3w5DeTA3dys6qiqXYQq8XEf6w/0ayq\nh5YO4AxFSmU1F//vM1Tt+AQpxk7WymHYZy9AGTgRvA1QcQk0BaRIiEyhtRP4qhqMnHZJyIoRh00l\nyyljtwRumKWi6Ow86mHnUS+qBkP6mlkw0UpkWNf51Lq2TuGdD4v4cEcJXkWnV3c7qxanMuQeR6BD\n69IKXTIfbnex60A5DQ0qVquBGZPimTPNSVpy6xJ6gtCRwm0WHpqVxe/XfcFfN53mZ6uHizYOQRAE\n4Y6anZRYv379174uKiqiuLjY7wEJQmOaSg4AxH0luQBNt4O4PSpuj+/T9caqHm7Oj/B41RYN4Aw1\n9acvcOHRJ5Cv3iC6bzz9Vo/EMGMFakpfaCj3tWyAb3aEPbZV6z51HU7f0PmywHcy1iPGQ48YL4Ec\n03C5UGXdDjfFFTpREQYWTpK4p3er8rxByevV2LyrhPWbiqitU0mIs7LsgWQmjIrtUvMxgomu63x5\nrpaN210c+bwKXYeEOCsLZycyfWI8kRFd5/dLCA2D+sQxflAy+04UsunAFRaM7x3okARBEIQg1Ox3\nOJ999tnXvo6IiOD3v/+93wMSQltTsxuaascwAD9YNIg0Z+TXLv9mO0h0hES9rNxKSHzVzaoHs8lw\nWwyS1Yjbc/sAxW8O4Aw1pe9+xJUfvYDmluk2uQ/dloxDmbwcPTwKqm+AXANGs2/dpzW8Vffh9ho4\n45KocutIZp0sp0y0PXDDLN0enc0HPBw44UUH7h1kYfYYKzapa5yoa5rO/sMV/O3dAlylHsLsJlYt\nTuW+qQlYLeJTzvbg9Wp8criCjdtdXL7WAEB6rzDmTXMyb1Y3KirqAhyhILTekpy+fHmlnA8/vcrQ\nvgn0SIq8+w8JgiAIIaXZSYlf/epX7RmHIABNz25YOLFPo+0YsQ4bCXeoVvhmO4hH0fj5Xw/f8b5v\nVj3s+OzGbTE05psDOEOF5lW4/ov/oPilNzFJZrJWDSNmznSU0fMAzbfuU/WAJQwcaWBq3Se8rloT\n50skFM1AWiz0cDQQyIf79GWFd3bLVNbqOGMM5E6x0Sul6zz/p87W8NrafPKu1GM2GZg73cmiOUk4\nxCf07aKq2svWPaV8tLuEiioFowHGDI9m3nQn/fqEYzAYMIvVqkInF2Yz8/CsLH779uf89cPTPL16\nhFgZLAiCIHzNXd9pTpw4sclBWnv27PFnPEIIa87shuZu5/gmyWLCGROG7FWbXDtql8yNxmCzmgiT\nzFTWyrcN4AwlHlcpF7/zz9QcPI7dGUHWqmyssxej9BsFchVUFwI6hMVBuLNV7RqqBnmlVgprLBgN\nOhkJMoN62ygt9f/xNEdNvcYHH3s4fl7BaIRpIy1MGW7FYu4a1RHX8ht4fV0+n52oBmD8qBiWP5BC\nYkLoVgG1p6s3Gti03cXeT8vxKjphdiPzZziZPSUBZ7x4zG86f/483/3ud3nooYdYsWIFR44c4Xe/\n+x1ms5mwsDD+7d/+jaioKP7yl7/w0UcfYTAY+Id/+AcmTpwY6NCFb7inVyyThqSw5/MCNh64zAMT\n+gQ6JEEQBCGI3DUp8fe//73R71VXV/s1GCG03W1bRlWtzJKcdMLsVvZ/UXDH7Rx3c7e1ow2y0mgM\nHq/KT1dmYzUbm7WxoyuqOXqCvMefxFtcSvzAJNJXjkGfvgItoRvUFkFDBRiMvnYNqXWDEGtkI2eK\nJeq9RiKsKlmJMuFWPSBbBnRd57OzCh/sk6l3Q/dEI7lTJJLju8ZzX17h4c0PCtm1rwxNh3v6RbA6\nN5W+vVrXaiM0TtN0jp+qZuM2F1+crgEgySkxZ2oCOffGYbd3jd8pf6mvr+eFF15gzJgxty771a9+\nxW9+8xt69+7Nn//8Z95++21mzZrF5s2beeutt6itrWXZsmWMGzcOk0k8nsFm8eR0Tl0uZ/On1xja\nN4FeyWJYriAIguBz16REamrqrf/Py8ujoqIC8K0F/cUvfsGWLVvaLzqhxW4OZ+yMJ81Nbcu4ObvB\nZDTy+IKBzBrZrdXH2dTaUUXVm4whIdre6R5Xf9B1Hdfr73Dtmd+gKyq9ZvcjedEklAlLQZKg4goo\nbjBL4OgGZmsr7gNuVJm5VGZFx0BalJfecZ6ADbMsr9ZYt0vm/DUVqwXmT7AybpClSwx5rG9QeX9L\nMR9sK8bj0emWYmPV4lSyBznEikk/c8sqew6Us2m7i/wi3+vKgMwI5kxzMnxwFKYu8PvUHqxWKy+9\n9BIvvfTSrctiYmKorKwEoKqqit69e3Po0CHGjx+P1WolNjaW1NRU8vLy6NevX6BCFxphl8w8PDuL\nX795nL9sOs2zD4/AYg69v6eCIAjC7ZrdKPyLX/yC/fv3U1paSvfu3bl+/TqPPPJIo9dvaGjgJz/5\nCWVlZciyzHe/+10yMzN58sknUVWVhIQEfv3rX2O1WtmwYQOvvfYaRqOR3NxcFi9e7JeDCyVNDYi8\n05rLYHS3KoavJgNutmO0RlNrR01GWt0i0lVpDW6u/POLlK7diDncSuZDQ4mcMxcle4Zv3Wf5ZdBV\nsEVBZLKvUqKFPAqcLZEorzdjMepkOt3Ehd8+jLQjaJrOJ1942fKpB48C/bqbWJQjEevoHP+OmqIo\nOts/LuWtDwqprlGIibLw2LJkcu6Nw2QSJ8f+VFruYfPOErZ/XEptnYrZZGDyvbHMmeqkd4/Q3dbT\nXGazGbP5629RfvrTn7JixQocDgdRUVH88Ic/5C9/+QuxsbG3rhMbG0tJSYlISgSprB4xTBmWxs5j\nN3h/32UWTw69FkhBEAThds1OSpw8eZItW7awcuVK1qxZw6lTp9i+fXuj19+9ezcDBgzg8ccfJz8/\nn0ceeYRhw4axbNkyZs2axe9+9zvWr1/PggUL+OMf/8j69euxWCwsWrSIadOmER0d7ZcDDBVNDYj8\n6prLYNdUFYO/NZbY6MgYgp18vYALjz1J/cmzRKRFkbl6BObZD6L2HAR1JVBfChh8yQhbdKvmR5TX\nmzjjsuJVjcTYFTKdHiSz7v+DaYbCUpW1O2WuFWuE2WBRjsSwfuZOXz2g6zoHj1WyZn0BhcUyNsnI\nsvuTmTvdiU0KvURbezp/qY6N21wcOFqBpoEjwsziuUnMykkgJsoS6PA6tRdeeIE//OEPZGdn8+KL\nL96xvVTX7/7aERMThrmdPqFPSBCbJe7mO4sG8+XVcrYevkbOyB5k9oy9+w+1gHgOAk88B4EnnoPA\nE89ByzQ7KWG1+sqxvV4vuq4zYMAAXnzxxUavP3v27Fv/X1hYSGJiIocOHeK5554DYPLkybz88sv0\n6tWLgQMHEhnpe+KGDRvGsWPHyMnJadUBhaLmDIjsLJ/wN1XFEEoxBIOqPQfJ++5PUSurSRqRRu8V\n41CnrkCLioeqa+CpA6MFotLAYm/x7Ws6XCqzcqPKggGdPnEyaVFKa/IabeZVdHYc8bDrMy+aBkP7\nmVkwXiIirHMnIwDO5tXy2tp8zubVYTTCzMnxLJmfTLRDnCD7i6r6kj6btrs4m+db39k91cbcaU4m\njIkVq1T95Ny5c2RnZwMwduxYNm7cyOjRo7l8+fKt6xQXF+N0Opu8nYqK+naJLyEhkpKSmna57a7m\noZmZvPjGMX7zxmc89/AIrH76Gyueg8ATz0Hgiecg8MRzcGdNJWqanZTo1asXb7zxBsOHD+fhhx+m\nV69e1NTc/cFeunQpRUVF/PnPf+bhhx++ldyIi4ujpKSE0tLSO5ZeNuWrn3KEchbq5rEXltZRXtP4\ngEiT1UJCfOcbXJfWxPc66nlvKoZAae9j13Wdi//235x7+t8xmAykPzCAbktnYJ+1AkXTqL5xAc3r\nwRoRTWRqH4zmlq+LrGnQOXhBp7IeImwwuq+RmPC7Jzba49jPXfXw8vuVFJaqxEYZeXheFIMzbH6/\nn7Zq6bFfy6/nv167zN5PfStLJo6J59uretE9rXO2DgTja31NrcLGbYW8symf4hLfa/CY4bHkzk9j\n+OBov1XYBOOxB0J8fDx5eXmkp6dz8uRJevTowejRo3nllVf4/ve/T0VFBS6Xi/T00Ktq62wyukUz\ndXg3th+9zrsfX2LplL6BDkkQBEEIoGafTTz//PNUVlbicDjYtGkT5eXlfPvb377rz7311lucOXOG\nJ5544mtllY2VWDan9PLmpxyhnIX66rGrXpXYyMaHM6oeb5d6nL567J15sGdrtPfvvFpTy6UfPEvF\nR3uwRtnIWjmMsDn3UzdgAnXFJb4NGwDhCXjs8ZRVNLTo9nUdimrMXCi1oukGkiK9pMd7UOqh5C4f\nXvr72N2yzocHZA6cVDAA4wZbmDXGis3qpaTE67f78YeWHHtltZe1G4rYtrcEVYV+fcJZnZtKVt8I\nQO2UrwXB9lpfWOzmwx0l7PykDLesIVmNzJwcz5ypTlKTfQmt0tJav9xXsB07dEyS5NSpU7z44ovk\n5+djNpvZunUrzz33HD/72c+wWCxERUXxy1/+EofDQW5uLitWrMBgMPDss89i7CRzlELdAxN7c+JS\nGduPXGdYRgIZ3UTbriAIQqhqdlIiNzeX+fPnc9999zFv3ry7Xv/UqVPExcWRnJxMVlYWqqoSHh6O\n2+3GZrPdKrF0Op2Ulpbe+jmXy8WQIUNadzQhqiUDIruKrjDYM9g0nL/EhUefwH3xKlF9Yum3ejTG\nWStQU9KhuhDkKjCYICoVrBEtvn2vCudLJErqzJiMOv2dbpwRgRlm+eUlhXd2y1TV6STG+tZ89kzu\n3P9OZFljw7Zi3ttSTINbIzlRYuWiFEYP898n9qFM13VOna1l43YXR7+oQtchLsbC4rlJTJsQT2RE\nyyuGhMYNGDCANWvW3Hb5W2+9ddtlK1euZOXKlR0RluBHksXEo/dl8au/fcbLH57huUdGIlk79+uw\nIAiC0DrNfhf14x//mC1btnD//feTmZnJ/PnzycnJudWO8U1Hjx4lPz+fp556itLSUurr6xk/fjxb\nt25l/vz5bNu2jfHjxzN48GB+9rOfUV1djclk4tixY/z0pz/12wGGilAbzthVBnsGi/IPd3Lp/3kW\nra6B1Am96PHgeJScFWj2cN92DVUGs903P8LU8lkEVQ1GTrskZMWIw6bS3yljs3T8MMuaeo339nr4\n4oKCyQjTR1mZkm3BbO68J+2qprP7kzLefL+Q8kovjkgzKxamMn1ifKc+rmDh9WrsO1zBpu0uLl/z\nVQb17RXG3OlOxmTHiMdYENogPTWKGSO789Gha6zfe5Hl08Tfb0EQhFDU7KREdnY22dnZPPXUUxw+\nfJgNGzbw7LPPcvDgwTtef+nSpTz11FMsW7YMt9vNM888w4ABA/jxj3/M22+/TUpKCgsWLMBisfDD\nH/6QRx99FIPBwPe+971bQy+F5gul4Yxuj9JlBnsGmq4o3PjXP1H4p9cxWk1kLhtC7IKZKKPngeKG\nisuga2CPhYjEFm/X0HS4VmHhSoUvkdEjxkOPGC/GDj6P03WdI2cUNuyTaZChR5KvOiIprvP+nui6\nzmcnqnl9fT7X891YrQYWz0liwaxEwuyd97iCRWW1l617SvloVwmV1QpGA4wdHs3c6U769QkX1SeC\n4Cf3j+/FF3ml7PzsBtkZCWT2iAl0SIIgCEIHa1G9aXV1NTt27OCjjz7i+vXrLFmypNHr2mw2fvvb\n3952+SuvvHLbZTNnzmTmzJktCUVoRGNrLruSimqZ8jvMzwDfYM+qWvmuj0GozaK4E29ZBRf/z0+p\n/uQItvhwslZlI83JRckYCXUuaCj3JSEcqWCLavHtu70GzrgkqtwmJLNGllMm2q61w5E0raxKY90u\nmQvXVSQL3D/RytiBFowdnRnxo7zLdby2Lp9TZ2sxGmDq+DiWLkgmLubOlWtC81290cDGbS4+PliO\nV9EJs5uYP9PJ7JwEnPFSoMMThC7HYjbx6H39+Zc1R3l5s6+Nwy6JdihBEIRQ0uxX/UcffZQLFy4w\nbdo0vvOd7zBs2LD2jEsQGhXjkIh1ND7YMyqi8RMHMYvCp/aL0+Q9+gSegmJi+zvJWD0WfcZKtLgU\nqLoK3gYwWSGqG5hbfiLmqjVxvkRC0QwkhCtkJMh0dO5H1XT2fe7lo4MevApk9jCxKEciJrLzPs/F\nJTJvvFvAvkMVAGQPcrByUSo90lq+klX4X5qmc+xkNRu3uThxxjdUMtkpMWdaApPHxmEXlSeC0K56\npziYPboHH356lXV7LrJqRr9AhyQIgiB0oGYnJVatWsW4ceMwmW5/c/bSSy/x+OOP+zUwQWiMzWpu\n9WBPMYsCSt78gCv//K/oXi89ZvQlNTcHZeJSMBuh4hJoKkgOiEwGY8tOxlQNLpRaKaqxYDTo9EuQ\nSYpUWtr10WYFJSprd8pcd2mE2yB3isTQDHOnLbmvrvHyyls32LyrBEXR6d3DzurcNAZliVa3tnDL\nKrv3l7Npu4uCYl+Sc0BmBHOnOckeHIWpE1fTCEJnM+/eXnyeV8qe4/lkZyRwT6/Yu/+QIAiC0CU0\nOykxceLERr+3b98+kZQQOlRrBnvKXjWkZ1FosoerT/+akr+9h9luod+K4Tjmz0UZNgPclVDp8l0x\nItE3Q6KFJ/A1spHTxRINXiMRVpWsRJlwa8cOs/QqOtsPe9j9mRdNh+xMM/PGS0TYO+fJpcersXln\nCe98WExtnUJCnJUVC1MYNzKmU7efBFppuYfNO0vYtreUunoVs9lAzr2xzJnmpFf3rt3+JgjBymI2\n8th9/XnhtaO8suUMLzw6SrRxCIIghAi/vNrresdP0RdCW2sGe1bVtn0WRWflKSjmwmNPUvf5l4Sn\nRJK1eiTm+5ah9hwA1QXgqQGj2bddw9Kyx0DX4UaVmUtlVnQMpEV56R3n6fBhlhdvqKzb5aakUicm\n0sCiyRKZPTvnG1pN0/n4UDl/f7eQkjIPkRFmHlqSyuycBCyWztt+EmjnL9axcbuLA0cr0DRwRJrJ\nnZfEzMkJxES1fKuMIAj+1SMpkjlje7Bh/xXe3nWBh2ZlBTokQRAEoQP45R17Zy2JFvwjkEMjWzLY\nMyqi6VkUdsmMq6L+1nF0lWGY1QeOkvftn6CUVeIclkKflePQpq9Ci4j2tWuoXl8iIirNl5hoAY8C\nZ10S5Q1mLCadTKebuDC1nY7kzhpknU37ZQ6eUjAAE4ZYmDnaimTtnK9LJ05X89rafC5da8BsNjB/\nppNvr05HbnAHOrROSVV1Dn5WycbtLs5drAOgR5qNOdOcTBgdi1UkeQQhqMwZ25PPL5Ty8ReFDMtw\nMqhPXKBDEgRBENpZ5/wYUQgKnW1opGQxNTqLIsxm5vlXj9w6jjCbhboGDxU1nqA/rsbouk7Rf7/B\n9V/8vxh0nT7z++NcNBV13GLQZN+6T3QIi4fwhBa3a5TVmzjrkvCqBmLtCplOGWsHv6KcvKjw7h6Z\n6jqdpDjfms8eSZ0zgXTlej2vryvg+KlqACaOiWXZ/ck44yUcERZKRFKiRerqFbZ/XMbmnSWUlHkA\n32DQedOdDMyKFMl0QQhSZpORR+7L4oXXjvLqljO88Ngowm2ikkkQBKErE0kJodm+WTnQGYdG3mkW\nRZjNzHVX7a3rlFXLX6um6AzH9U1qXT2Xf/gC5Ru2Y4mUyFoxlPB5D6AOnAC1Lt8MCYMRHGkgtWxY\noqbDpTIrN6osGNDpEyeTFtWxwyyr6zTe2ytzIk/FZISZo61MzrZgNnW+E83Scg9vvlfA7gPl6DoM\nyopkVW4qfXp0zVai9lZQ7ObDHSXs+qQMt6whWY3MnBzPnGlOUpNsgQ5PEIRm6J4Yybx7e/Levsu8\nteMCj87pH+iQBEEQhHbkl6REz549/XEzQpD6ZkVEdITEoPQ4Tl4sveP1WzI0srEWiZa2TjT3+t+c\nRWGXfBUSzdFZhmG6L13jwiM/ouH8JRw9Y8h8aDTG+1aiJvWEymuguMFs87VrmKwtuu16j4HTxRK1\nHhN2i0b/RJlISWufA7kDXdc5fFph4ycyDTL0TDaSO8VGYmznqWC5qa5e5b0tRWzc5sLj1emRZmPV\n4lSGDnCIT/FbSNd1Tp2tZeN2F0e/qELXIS7GQu68JKaOjycyQuTfBaGzmTW6B8culLL/VBHZ/ZwM\n6Rsf6JAEQRCEdtLsd2r5+fm8+OKLVFRUsGbNGtauXcvIkSPp2bMnzz//fHvGKATYNysiKmpl9n5e\n0Oj1mzM0srHWj0WTerN+z6Vmt4S0toXk5iwKV0V9o8MvW3NcgVax7WMu/cPTqLV1pIztQY8VE1Cn\nrESzWqD8Euga2KIhMslXKdFMug6FNWbySq1ouoHkSC/p8R5MHZgLKC5T+K/33OTdUJEssHCSxOiB\nZoyd7ATeq2hs21PK2g1FVNcqxMVYeHBBCpPujRUrKFvI69XYd6iCjdtdXLneAEBG7zDmTncyelgM\nZrN4PAWhszKbjDx6XxbPv3qE1z46S3raKCLsoo1DEAShK2p2UuLpp59m+fLlvPLKKwD06tWLp59+\nmjVr1rRbcELgNbVGszExkTaiIqQmr9NY68e5a5W3tVI01TrR1haSpoZffpMj3Bq068l0VSX/ty9R\n8Pu/YLSY6LdkEHELZ6GMmgdyFVQVAQaITAF7dItu26vC+RKJkjozZqNvmKUzouOGWaqazsfHvWw9\nVItXgf49TTwwWSImsnNVR+i6zoGjlfztnQKKXDJ2m5EVC1OYM9WJJHWuYwm0ymovW3eXsmV3CVXV\nCkYj3DsimjnTnGSmRwQ6PEEQ/CQtIYL543rxzt5L/H37eb41755AhyQIgiC0g2afYXm9XqZMmcKr\nr74KwIgRI9orJiGINLVGszFDM+KbbHFoKtGRX1J7x8vv1DrR1O00t9VCspgYlB7P7mP5TV4PoLLW\nw/OvHmnVHl3dAAAgAElEQVS3oZet3fahVFRx8ftPU7XrAFKsnaxV2djmLUXpm+1b9+mtA6MForqB\npWU99ZUNRs78/+zdd3xTZ5ro8Z+6LFe5yNimGGyMTS+md7ApAQcSShICIWVmcjfZ2d3Z3Zm9uzuT\n2cxmdtrembl37+TulGQSmExCSaOGHkIH07sxHWMs2ZYty7aOpHPO/UPBQ3GRwUayeb9/5INVjh7Z\nkqL3Oe/zPHYTkl9LrFkmxyZhNjy6EcA37DIrt0mUOBSiI7U8k2dgcG99hytvOFPk5v2VNyi6VIdO\nB7OmJrGgoAuxMeKsX2tcuV7H2i0Ovtpfid+vYonQMXeGjSem2khKaF0pkiAIHcOMkd05eqGc/WfK\nGNYniWF9bKEOSRAEQWhjrTrt63K5GhYDFy5cQJJat1gVOp7YKBNxUSac7qb/1nFRRly1XqzRZoZk\nJTY0k2xKc4kOpYn1bmOlE80dx1njweGsw2jQtbjIzxvWNaikBLRP08uHmWJSd7qICy//I9L1m1iz\nEsl6aSzMfAHFmhSYrqH4wRgFMWmgDT7Roahw1WngqjOwaE63eulu9fGoqgt8fpVNB7zsPOJDUWF4\njp4X5ybgqa19NAG0kRulHpavLuHg0WoARufGsWReKinJouFisBRFZc/BCv60+ionz9YAkGIzMTs/\nicljE4gwh3ePF6FxV65cEf2ohKDotIEyjh++e4hlm87Tu1scMRaRhBQEQehMgk5KvP766yxcuBCH\nw0FBQQFOp5Nf/OIX7RmbEAZMBh2Ds5reSZAQY+aNF3Opl/xBn+FvrmRCq2k8MXFnSYjH68f+dcLB\nZNTi8d7faNFo0PG/V58IapEfH2MmIcgSjtvasunlg5aglH+8gSvf/TGKR6Lb1Ay6PTcF/8TnQOMD\n55XAjSJtYElo1bhPj0/DGbsJl0eHSa/Q1yYRG/HomlkWX/ezartEebVKfIyG+VNM9OmuJ9qixdNB\nchLOah8rPi9ly1flKArk9I5k6cKu9MmIDHVoHUa9R2bHnkrWbbVTWhZ4bw7IiaYgP4lhA2PRiv4b\nYe+ll15qKPkEePvtt3nttdcAeOONN1i2bFmoQhM6mJSESJ6e0IuVO4r5YHMRfzW3f6hDEgRBENpQ\n0EmJUaNG8dlnn1FUVITRaKRnz56YTM33DRA6h0V5vSm+UX1Xr4fbhmQlEm0xEt2KsxYmg44hWUl3\nLcRvS0uKavJx9DoNf95axImLFTic9U0mJAA8XhmPN9D3oKVFfnPxNKWtml4+SAmK4vNz/c1fUfbu\nCnRmPX2XDiX2qTn4h+RDnR0kF2h0gekaxtYtgu1uHecdJmRFQ1Kkn6wkiUc1bKTOo7Juj8SB04Hx\nohOHGJg+yojJ0HEWn/UemTWb7Hz2RRkeSSGti4klC9IYMTi2w5WchEp5pZf1W+1s+aqC2joZvV7D\nE1OTyRtvpWf38G0yK9zP7/ff9fP+/fsbkhKq+ujKwITOYdrwbhwpcnDonJ1hZ8sYkZMc6pAEQRCE\nNhJ0UuLUqVM4HA4mT57Mr371K44dO8a3v/1tcnNz2zM+IQzotFreeDGXP28p4uiFcqrdXuJjgivV\naMrt+x0tKsdZ42ko/fjL9I27L39mSuZ9OwqaSkg0pbndDbfjOXzO0Wypym3BNPMMRkslKPcmPjyl\nds4t+GvcB49jSY4i58URGAoWIXfPgeprIHvBEAExXUEXfL8CWYEL5UZu1RjQalT6JEl0ifa3ZoPF\nQzlR7OeTLyVq6lRSErUsnGqie3LH2ZYvyyrbdlXw0ec3cVb7iY3Rs3RhGvkTEtHpRDIiGOcv1rJu\ni529hU4UBWKi9TzzZBdmTE6id2Y8DkdNqEMUWuneRNydiQiRpBNaS6vVfF3GcZA/bS6iT3crsZGi\njEMQBKEzCDop8dZbb/HTn/6UwsJCTp48yQ9+8AN+9KMfie2XnURLTRZ1Wi1LpmezcMqDNWNs7HiL\n8rKYNzHjvuM1dnmd5GP3idIHfjxofnfD7XgKxqTzw3cPUuX2Nnuslpp5Bqu5UpZ7Ex81B49x/NX/\niVRWTuLAFHovHYcy/QUUiwWclwJzOyPiISq5VeUaNZKWM2Um6n1aoowyfZMlLMZHcxaz2q3w6U6J\nkxdl9DqYOdrI5KGGDrOQV1WVwuPVLFt1kxulHkxGLc882YU505OJiOg4SZVQkWWVfYedrN3ioOhi\noDanR1czBfnJjB9lxWgQU0k6E5GIEB5WcryFeZMy+HDrBZZvOs/rT/UXrytBEIROIOikhMlkIj09\nnRUrVrBw4UIyMzPRtvH0AeHRa22TRZNB99AlC8Ec797LP9hc1FCO0ZJg+lI0JdpiJDfb1mQpR8JD\n7hC5V3OlI7cTH6qqYv/jSq792y9RFYWes7Lp8uw05LHzwecCVwlotIFmluaYoB9bVeFGtZ5LFUZU\nNHSN9dErwftImlkqqsrB037W7pbweKFXqpYFU83YrB3nM6XoUi3vryzhTJEbrQamTUzkmTkpxMeJ\niRotcdf62fJVBRu22Smv9AGQOyiGgmnJDMiOEouMTqK6upp9+/Y1/Oxyudi/fz+qquJyuUIYmdCR\nTR3WlcPnHRwpcnDgTBmj+nUJdUiCIAjCQwo6KVFfX8/GjRvZunUrr7/+OlVVVeJLRSfwoE0WHyXJ\nJ3Okib4LjUlJjKTEcX9HxGB3NzRWWjIwI5683G7Ex5jbZIdES493O/Eh13m48j//g4rVGzBEGsl+\nfhhRT81H7jcukIzw14POFOgfoQ++nETyazhnN+Ks12PQKeTYJOItwSV9HpbDqbBqu4eLJQpmI8yf\nbGJkfz3aDrIQLbVL/PmTm+w+6ARg+OBYlsxLpVtaRIgjC38ltzys3+pgx54KPJKCyahl5pQkZuUl\nkdZFTCTpbGJiYnj77bcbfo6OjuY3v/lNw78F4UFoNRpenpXDD985yAdbisjuYSWuDcopBUEQhNAJ\nOinx93//9yxbtozvfOc7REVF8V//9V+8+OKL7Ria0N4epMliKDicdUi+4PtH/I85fdl5rLTRRX4w\nmistaQ9NPZ7n6g2KX/kudWcuEN0tluyXR2Nd9C2qTPGBcZ+qDKZYiEkJ7JQIUkWtjnMOEz5ZQ7zF\nT3aShLFVw4EfjCyrfHnUx+YDXvwy9OulY94kE7FRHWN3hMvtZ9WaUr7YUY5fVsnsaWHpwjT69xGL\nq+aoqsrJc27Wbi7j8AkXqgqJ8QYWPplC/oQEoiIfwYtPCInly5eHOgShk7LFRbBgcgZ/2lzEsi/O\n8+15A8QOK0EQhA4s6G+DI0aMYMSIEQAoisLrr7/ebkEJj0ZrmyyGTCu+aCTEmEmMtbRJUqGtS1Va\n83hVO/Zy8bV/Ra6uocvIbvRcMgk5bzHeaAPYrwXuENUFIqxB/34UFS5VGLlRbUCDSkaCRNfYR9PM\n8rpdZuVWiZvlCtEWDU9NNDEwU9chvkRKXoX1W+18vL6MunqZ5CQjS+alMWZ4XIeIP1S8PoVd+52s\n22Lnyo16ALIyInky38bIoXHo9eJ319m53W5Wr17dcALjo48+4sMPP6RHjx688cYbJCYmhjZAoUOb\nNCSNw+cdHCsuZ++pW4wdkBLqkARBEIQHFHRSom/fvnd9AddoNERHR3PgwIF2CUxof61pshhKSXER\nmI26oHpK3Fmi8aiTCm1BVRRu/p93KfnFb9HoNPSe15+khbPwj5wNdQ7q7G7Q6gPlGobgn1utV8PZ\nMhNur44Ig0LfZIloU+umlzwIr09l0wEvO4/6UFUY0VdPwTgTFnP4L0hlRWXnvkr+/MlNKpw+oiJ1\nvPxcV2ZMSsQgGjA2qaraxxc7HHzxZTnVLj9aLYwbYWV2vo0+Ga0bUSt0bG+88QZpaWkAXL58mV/+\n8pf8+te/5tq1a/z4xz/mV7/6VYgjFDoyrUbDS09k84N3DvLnrRfI6WElKUnsXBMEQeiIgk5KnDt3\nruHfPp+PvXv3cv78+XYJSng0gmmyGA5MBh1jB3Rh2+GS+64zG7V4fUqLJRotTRcJB36Xm0t/8wZV\nm7/CFGcme8kwLHOfxZ8xCFw3QPFhiIzFF5EcSEwEQVWhtEZPcbkRRdWQEu0jM9GL7hGsqYuu+1m9\nTaLCpZIQo2H+VBNZ3TrGVv1jp1y8v6qEK9frMeg1PDUzmXmzkom0dIz4Q+HytTrWbbHz1QEnfr9K\npEXHUzOTmTkliaQEMbbvcXT9+nV++ctfArBp0yZmzJjBmDFjGDNmDOvXrw9xdEJnkBgbwbNTMnn/\ni/O898U5/uM1sftGEAShI3qgb9gGg4GJEyfy7rvv8q1vfautYxIeoeaaLIaTZ6f2RqPRBKaE1EjE\nRwemhMwd3wt3nbfJZENrp4uESt35i1x4+R+RLl8nLjOBPi+NhVlLkaNjoOoqoIIlkdgevSgvdwd1\nTJ8MRQ4Tjlo9eq1Kts2DLar9m1nWeVTW7JY4dCZQGjJpqIHpI40YDeG/O+LytTreX1XC8dM1aDQw\neWw8z81NFYvqJiiKyuET1azZbOfUucDrMiXZxOw8G5PHxhNhDs8EoPBoWCx/2c118OBB5s+f3/Cz\nKH0S2sqEQakUnndw6lIlmw9cZWhGQqhDEgRBEFop6KTE6tWr7/r51q1blJWVtXlAwqP1qJs6Pqg7\n49QZDcjewBjBlmLuCNNFKtZs4fLfv4lS56HrxJ50X5yHf9KzINdCTSlodBCTCqbooL/IV9VrOWs3\nIfm1xJplcmwSZkMjc1LbkKqqnCiW+XSnRE2dSmqiloV5JrrZwu/1dC9HhZc/f3qTnfsqUVUY3C+a\nFxak0bN7xyr/eVTqPTI79lSwbouDUnug/GtATjQF+TaGDYxB+yjmygphT5ZlKioqqK2t5ejRow3l\nGrW1tdTX14c4OqGz0Gg0vDQzmzfeOcgfPj/FD18aTnIHK90UBEF43AWdlDh8+PBdP0dFRfHrX/+6\nzQMSQiPU/Rckn4zDWQcaDUlxEY0mGW6XYPTsZuH3W861uPuhuekiu0+UMnd8Lyym4N4C7VH+ofr9\nXP+P33Drv5ejM+nJfn4w8Qvm4h80FWpvgl8CvTnQP0IX3Jl6RYWrTgNXnQYA0q1eelh97d7Mstqt\n8PEOidOXZfQ6mDXGyMQhBnS68F6c1tb5+Xh9Geu22PH5VdK7RbB0QRqD+8eEOrSw5KjwsmGbnS1f\nVVBbJ6PXa5gyLoGC/CTSu4lFgHC3b37zmzzxxBN4PB7++q//mtjYWDweD4sWLWLhwoWhDk/oROJj\nzCyensXv1pzh92vP8M+Lh4bVbkhBEASheUEnJX7yk58AUFVVhUajITY2tt2Celx1hL4HbeHO56nX\nafhw2wX2nizF4w00XjQbAz0knp3aG51We18Jhtmkp17yNxyvqd0PlS5Po008ATxemQ+3FPHK7L7N\nxtpe5R++8kqK/8c/U7P3MBGJkeS8OALj3Ofxp2WA6yqoSmCyRlQyaLQNv7Po2Igmj1nv03DWbsLl\n0WHSK/S1ScRGtG8zS0VV2X/Kz/o9Eh4vZKTpWDDVRFJceH8Z9PkUvthRzsq1pbhrZRLjDSx6KpUJ\no+PRibP89zlX7GbdFjv7DlehKBAbo+fZOSlMn5RIXKwh1OEJYWrixIns3r0bSZKIiooCwGw2893v\nfpdx48aFODqhsxnVtwvnrlfz1dES1u+9ypPjeoY6JEEQBCFIQScljhw5wve+9z1qa2tRVZW4uDh+\n8YtfMGDAgPaM77EQzn0P2jJR0tjztJgNXLff3SPB45XZdrgEjUbDorys+0ow7kxI3OloUTnzJmY0\nxLm18Hqz8Zy75kTyBXosNPUc26P8w330FMXf+C7eUgcJ/ZLp/dIE1BkvoBi1UH0d0EB0KkTEBX5n\n24oafmdJ1ggGZiTc99qwu3Wcd5iQFQ1JUX6yEiXaO69ldyqs2ubh0k0FsxEWTDExop8ebRjXiiuK\nyt5CJ39afZOyci+WCC1L5qcyK8+GyRjeiZRHze9X2X/EydrNdoou1QGQ3jWCgmk2xo20YhQTSIQW\n3Lx5s+HfLper4d+9evXi5s2bpKamhiIsoRP7q6cHcrK4nDV7rtC/VwK9UsWuN0EQhI4g6KTE//pf\n/4u3336brKzAQuzMmTP8+Mc/5oMPPmi34B4X4dj3oD0SJY09z6Z2MgAcLXJQMCa9yRKMezlrPFS7\nJWxWC5JP5sTFihZuL7F803nOX3NS4ZKIizIypHcii/Kz0Gm1zZZ/3JsACZb9g0+5+i8/Q/X7SZ+R\nRcpz05HHPQ2eCqirC5RpxHYNlG1w/+/M7qy/67XhV6C43MitGgNajUqfJIku0f52LdeQZZUdR3xs\nPuBFVmBAho6nJpqIjQrvReqp8zW8v7KE4st16HUaCvJtzJ/dhZhoMVHjTu5aP1u+Kmf9VgcVzkDp\nz/DBsRTk2+ifHSUaFApBmzJlCj179iQpKQkI9J25TaPRsGzZslCFJnRSURYj35jdl//88Ci/X3ua\nf3tpBCZj5915KgiC0FkE/W1cq9U2JCQA+vbti04nPugfVnssfNtCWydKmnueTamskbhhd1PZTOLi\nTtZoM7FRJiCw86Gl+xkNOvaeutXwc5Xby46jNykucfHGi7nNHuPOBEgwFI/E1e//AsefP0NvMZD9\nQi7R8xcgZ4+CmhJQ/GCKDuyQ0Ab+3i29NqaP7k1xhYV6n5Yoo0zfZAmLsX2bWV4rk1m5VaK0QiHa\nouHpSSYGZob3ov56ST3LVpdQeDxwpnbcCCvPP51KF5spxJGFl5JbHtZtsbNjTyWSV8Fs0vLE1CRm\n5SWRmmwOdXhCB/Szn/2Mzz//nNraWmbNmsXs2bOJj48PdVhCJ5fTw8q0Ed3YdPA6K7Zf4IUZ2aEO\nSRAEQWhBq5ISmzdvZsyYMQB89dVXIinRBtpy4dtW2jpRIvlkLpVUB51cuC0+2kRXWxTxMaZmd1Tc\nNiQrsSGu2ChTEPdrfAF/3e7mz1svsHByZpPHuDMB0hKp5BbF3/getcfPEJkaQ87Lo9AXvICckATV\nVwM3ikqGiHju3OLQ3GujS5dUTt6KBDR0jfXRK8FLe7ZCkHwqX+zzsuu4D1WFUf30zB5nIsIUvmfN\nK6t8fPTZTbbtqkBRoW9WFEsXppHVKzLUoYUNVVU5ebaGNZvtHD4RSNokJRh5YmoSeeMTiIoM74ST\nEN7mzJnDnDlzKC0t5dNPP+X5558nLS2NOXPmkJ+fj9kskl1C+3h6QganL1fy5bGbDMxMZHBmYqhD\nEgRBEJoR9DfON998k3//93/nX//1X9FoNAwePJg333yzPWN7LDS3eG7NwrcttVWi5M4SkAqXhFYD\naitO5A/unUi0xciQrKS7dm3cZjbq8PpkrNFmhmQl8syUzLuu79PdetdOiDvvNywriT2NXHfb3hOl\nzJuY0eRj35kAaY5r9yGKX/2f+J3V2Ial0evFySh5i1CQwF0GWj3EpIHx/oVyY68Ns8nEuBGDSe1i\nw6BVyEmWiLfILcbxMM5f9bN6h0SlSyUxVsOCKSYyu4XvYrW+XuazTWV8/oUdyavQNcXMCwvSyB0U\nI0oPvub1KXy1v5J1W+xcveEBoE9GJAX5NkYNiwv7qSnt5XFpNvyopaSk8Nprr/Haa6+xatUq3nrr\nLd58800KCwtDHZrQSRn0Wr5V0I8fvX+I9zac5UevjCQmMrgpVoIgCMKjF/TKIj09nXfeeac9Y3ks\nmQy6h174trW2SpTcWwKiNJGQiDTrqPXcv7C+ffPbyYajReU4azwkxgWaPc4d3wt3nfeuBcR9kzq+\nriWVvDLWaBPZPawsyg9M9Th9pZIqt7fRmCS/wodbinjxiey7HrupBMh9sasqt/77T1z/8X+h0ahk\nzO2L7dnZyCNmQK0dZC8YLBDTFXSNvw3vfW2kdbExZvhgIswmPHXVjMnRY2zH3EBtvcqa3RKFZ/1o\nNTB5mIHpI40Y9OG5YPX7VbbuKuejz0updvmxxup5+bmuTB2X8Ngusu9VVe1j4w4HX+wox1XjR6sN\nlLMU5NvIynh8d5CEc7PhzsDlcrFmzRo++eQTZFnm1VdfZfbs2aEOS+jkutqimDcxgxXbi3lv4zm+\nPW+ASEwLgiCEqaCXNPv27WPZsmXU1NTc1axKNLp8MHeekbtz0V1Z4yEu0sTgIBa+7aUtEiWST+bI\neXuj12m+/k98tJmBmQkcv+BoNClx/EIFCybJmAw6FuVlMW9iBtVuiYz0BMrL3Y2e0bw3EeLxBo47\ntn8XFk/vc9dth/ROZMfRv3SHv9e5a078snrXYwdzBlV213L57/+dynVbMUabyF4ylMh5i5DTc8BV\nAqhgSYBIGy11pAy8BjRIWis9e/RAURSqK24wa1gs+nbKV6mqyrELfj7b6cVdr9I1ScuCqSa62sLz\nzLGqqhw8Ws3y1SWU3JIwm7Q8OzeFOdNtmE3hGfOjdvlaHWu32Nl1wInfrxJp0fHUzGSemJpEYrw4\nexiOzYYflM+vcOJMDbV1MuNHWkO6CNu9ezcff/wxp06dYtq0afz0pz+9qzeVILS3/OHdOHGxgmPF\n5Xx1/CYTB6eFOiRBEAShEa0q33jttdfo0qVLe8bT6TV1Rm7+pF7IssLRC+U43RInisvRaTUhO1N3\n7+6EYHcI3FbtlqisaXwXggp895nB9EqLpdot8eWRkkZvd2+piMmgIyHWzPINZ9lzvOS+M5p+WW2y\nF8a5a1X3XbYoP4tzV6soraxr4vGlhsc3GXRBlazUF1+h+JXvUn/hMjE9rWS/PA7N7BeQLWaouQka\nbaBcwxTcmDKPX0fvPgOo9eowav2Mytai9VmDuu+DcNYofLJD4swVGYMeZo8zMmGwAV17Nqx4COeK\n3by/soRzxbVotTBjciLPPJlCXKwh1KGFnKKoFB6vZu0WO6fOBcbupiabmJ1vY/LYeJGw+Vq4Nhtu\nDa9P4fhpF3sPVXHwWDV19TJaLQwbGEukJXSxf+Mb3yA9PZ2hQ4dSWVnJH//4x7uu/8lPfhKiyITH\nhVaj4ZVZObzxzkE+2lZMdg8ryY+4T5cgCILQsqCTEmlpaTz55JPtGctjoakzcuevVXHd7r7vcgjN\nmTqdVtvqHQJ3ijDp0WoaL9nQagLbKk0GXatLRZo7o5k3rGuremHotFr+dekw/uH/7kHyKUE9fnOc\nG7/k4t+8gVJbR+rYHvRYmo88cSGqrwrqnaAzfT3us+VjqiqU1ugpLjeiqBpSYnxkJnhJjovG0boh\nJkFRVJV9J/2s3yMh+SCzq44FU0wkxoXn1vWbZR7+tPom+w4Hkk0jh8SyeH4aXVNE47x6j8z23RWs\n3+qg1B54PwzMiaZgmo2hA2LQhmmCKVTCsdlwMCSvwtGTLvYddnLoWDX1nsBnWGK8ganjE5g0Oj6k\nCQmgYeSn0+nEar07mXrjxv078QShPcTHmFk8PYvfrTnD79ee4Z8XDxVlWYIgCGGmxaTE9evXAcjN\nzWXFihWMGDECvf4vd+vWrVv7RdfJNHdGrsThbvTyUJ+pC3aHwL3qJX+TPSQUNXB9tMXYqlKRls5o\nFoxJb3UvDIvJwPhBqQ9VqqLKMiX/+Vtu/u930Rp09Hl2EAnPPoW//3iovQWqDOZYiE4J7JRogU+G\n8w4T5bV69FqVHJuHpKj2a2ZZVqmwcpuHK6UKESZYONXEiL76sKy9rXb5WLn2Fpu+dCDLkJURydIF\nafTNigp1aCFnL5fYsN3Blp0V1NXLGPQapo5LoGCajR5dI0IdXtgKx2bDTfFIModPuNhX6OTwCRce\nKZCIsCUamTYpjjG5Vnr3tITNe1er1fKd73wHSZKIj4/nt7/9LT169OBPf/oTv/vd73j66adDHaLw\nmBjVtwsniivYf6aM9Xuv8uS4nqEOSRAEQbhDi0mJpUuXotFoGvpI/Pa3v224TqPRsG3btvaLrpNp\n7oxcUwv4cD5T15zYKBMJTXzRT4gx3fVFP9hSkZbOaNZL/gfqhfEwpSq+yiouvf59qnfux5xgIWfp\ncExPLcbfpSu4SwBNIBlhjmuxfwRAVb2Ws2UmJFlLrFkmJ1nCrG/FyJJW8Msq2wt9bD3kRVZgUKae\nuRONxESG3xkkSVJYtvIqy1ddo96jkGIzsXh+KqOHxYXNAiwUVFXl/MVa1m62s/9IFYoCcTF6npye\nwvRJicTFiDKWloRjs+E71dX52XWgkn2FVRw+WY3XG/g86GIzMSY3kIjo1SMiLN8Hv/rVr3jvvffI\nyMhg27ZtvPHGGyiKQmxsLKtWrQp1eMJjZvG0LIpuVLFmzxX69YonIzU21CEJgiAIX2sxKbF9+/YW\nD/LZZ58xd+7cNgmoM2vujFxTpQ7hdqYuWM1/0U+664t+sKUiwZzRbE2C4c5mow9SqlJ74hwXvvGP\neG/cwpqdRJ9XJqJOX4yil6HWAVpDoFzD0PJZakWFq04DV52BRWS61UsPqy+YPMYDuVoqs3KbxK1K\nhZhIDfMmmeifEX5jPmVFZceeCj78tJTKKh8xUXoWP59K/sREDPrwS548Kn6/yr7DTtZutnPhcqAn\nSnq3CAqm2Rg/worB8Pj+bh7Ew/bQaWu1dTKHjlexr7CKY6dceH2B/zmkJpsYM9zKmNw40ruFZyLi\nTlqtloyMDACmTp3KT37yE/7pn/6J/Pz8EEcmPI4sZgOvzOrLf354lD+sPcO/vTQCkzG8+8UIgiA8\nLtpkFfLJJ5+IpEQQmluopyVF3dVT4rZwOFP3oB40QdDU8w32jGZLCYbmxv8FuyPFsXIdV/7pP1Al\nL93zMklbMhN5dAF4KsDrA2NUoKGltuW/Xb1Pw9kyEy5Jh0mv0DdZItZ8f4+LtiB5VTbu97L7mA8V\nGN1fz6yxJiJM4bW4UVWVIyddLFtVwrUSD0aDhiULujN9ojXkdfKhVOP2s+WrcjZsc1DhDCSthg+O\n5clpNvr1iQr7RWq4etgeOm3BXevn4LFq9hU6OXa6Br8/kIhI72Zh5JAYRuda6Z5m7lB/43tjTUlJ\nEQVBwpkAACAASURBVAkJIaRyeliZNqIbmw5eZ8X2C7wwIzvUIQmCIAi0UVLizhGhQvOaWqjPn9SL\n1V9eCpszdW3h3i/6ESY99ZIfv6yi+/pEbnMJgsYaUT0zJRNLhJE9x282+3tqrhfGw4z/U7w+rv3w\nl9jfX4XOrKfPi8OIXbgQOWsIuMsAFSKTwJIYVLlGWY2OonITsqLBFuWnd6JEe62Fzl3xs3qHhLNG\nJSlOw4KpZjLSwm+Bf/FqHe+vLOHk2Ro0GpgyLoHn5qaQ0ycBh6Mm1OGFxLUbdSxbeY0deyqRvApm\nk5ZZU5N4Ii+J1GTR3LOtPGgPnQflcvs5eLSKvYeqOHHWhfx165j0rhGMzo1j9LA4hg62dZrXfUdK\nqAid19MTMjh9uZIvj91kYGYigzMTQx2SIAjCY69NkhLii0bwmjsj96jP1AWzO+FBj3PnZXqdhq2H\nbzSaeGgqQSArKkum9bnvsXRaLd+cO4CZI7rhqKoHVSXJagmqk7bkk3E46x54/J/3loPib34P9+GT\nWLpEk/PSKAxzX0COjQH3LdDoIDYtsEuiBX4FisuN3KoxoNWo9EmS6BLtb5dyDXe9yudfSRw570er\nhbzhBvKGGzHow+t9ay+X+OCTm3y13wnA0AExvLAg7bFt0qiqKifO1LB2i53DJ1wAJCUYmTU1ibwJ\nCURawq/cRmhZlcvHwSPV7D3s5OTZGpSvN0X16hHBmFwro4bFkdalcySajh49yqRJkxp+rqioYNKk\nSaiqikaj4csvvwxZbMLjy6DX8q2Cfvzo/UO8t+EsP3plJDGRxlCHJQiC8FgT32pDpKkzco/iTF1r\ndye05jiDeyeiAscvlDdcZjEbGh13KssKJy5WNHrsnUdLQFVZlJ91X0yyrPDxzovNxn9vUuR2nI31\no7ituaaiNQeOUvzN7+Erd5I0OIWMlyejTH0ORakDTzXoIwL9I3QtNxZ0ebSctZuo92mJMsn0tUlY\njG2/20hVVY4W+flsp0StB7rZtCycaiI1Kbx2R9S4/Xy8/hbrtznw+1V69Yhg6YI0BvaNCXVoIeH1\nKXy1r5K1W+xcK/EAMCAnhumTEhg1NA6dLrySSULLnNU+DhypYs8hJ2fOuxv6B2X2tDAmN45Rw6yk\n2Dpe76CWfPHFF6EOQRAa1dUWxbyJGazYXsx7G8/x7XkDxAk2QRCEEBJJicfQw5QvtHScbYdL7rpN\nhUtqMhFw9EI5VW5vo9cpKuw4ehOdTntfTO+uPd1k/Ld3X9yZsLg3KdKUxpqKqqpK2TsruP6jX6Eq\nCr1mZ5O8uAB56FSoLwdVgQgrRHVpsVxDVeF6lYHLlQZUNHSL89Iz3oe2Hb4HVboUPt4hce6qjEEP\nT44zMm6wAV17PNgD8voUNm5zsHr9Ldy1MkkJRp5/OpXxI61owyjOR8VZ7WPjdgebvizHVRPY1TJu\nhJWCaTbGjuzSabbwPy4qnF72H65ib2EVZy+4uV3l2CcjsqE0w5bY+RIRd0pLSwt1CILQpPzh3Thx\nsYJjxeV8dfwmEweL16sgCEKotElSIiqq5e3qQniQfPIDly8Ee5xgNZWQaC4mySez/1Rpk7eVFZUd\nR/6SGGkuKXKvgZkJdz13uc7Dle/+OxWfbsIQZST7+eFELVyEnNYT6uyAJtDM0tzyWDHJr+Gc3YSz\nXodRp5Bt8xBvaftmloqisueEjw37vHh9kNVNx/wpJhJiw2cag6Ko7Drg5INPbuKo8BJp0fHiwjRm\nTk3C+BhOjbh8rY61W+zsOuDE71eJitTx1MxknpiaRGK82FLckZRXetlXWMXeQifnimuBQK4yOzOS\n0blWRg+LE39TQQgTWo2GV2bl8MY7B/lw2wWyu1tJju9Y49cFQRA6i6CTEg6Hgw0bNlBdXX1XY8u/\n/du/5e23326X4IS2V+2WqGxikd5c+UJrjtOW7o2p2i0Fekk0otLl4VhReasf4/Y41uMXHOi0Gp6Z\nkonv2k0uvPKP1J8tJrp7HNmvjEM7ezGyWQ8eJ+iMgXINfcu13xW1Os7ZTfgUDfEWP9lJEsZ22KN0\nqyIw5vPqLYUIEzybbyI3Wx9WW1JPnK3h/ZU3uHS1Hr1ew5zpNubN6kJ01OO1aUtWVAqPV7Nui51T\n5wK7eFKTTRRMszFpTDxmU3iV2AhNK3NI7Dtcxb5CJ0WXAuNZtRronx3F6GFWRg2NJd4qEhGCEI7i\nY8wsmd6H3645ze/XneGfFw9tVRmrIAiC0DaCXgm8+uqr9OnTR2zH7OBio0zEx5ga3T3QWPnCgxyn\nLcVFme6KKTbKRFJcBHbn/YmJ2CgjTnfw8ZgMWiSf0lDfXVnjZWvhDXSHDpP5/m+RXW5SRnUn/aV8\n5AlPofqqwecFUwxEp7Q47lNW4FKlkZJqAxpUMhMk0mLbvpml36+yrdDLtkIfsgKDe+uZO9FItCV8\nvlhdvVHPslUlHDkZaNg4YZSV559O7fTb1+9VXy+zfU8F67Y6uGUPvFYH9Y2mYJqNIf1jHsuylY6o\ntMzD3sIq9hVWcfHqXxIRA3OiGZ0bx6ihccTFttxfRhCE0BvZN5njxeXsP1PGur1XmTOuZ6hDEgRB\neOwEnZSwWCz85Cc/ac9YhEfAZNAxJCvprp4Mtw3JSgx6Ckdzx2lMN1sU7jovziBKNu4UGWG4KyaT\nQceo/ims2XXpvtsO6Z3IvtO38HiDK4u4bweBqjDs4DbSD2xB0WvJWjCA+OeeQu43Euq/bsgZlQwR\n8S32j6j1ajhTZqLWq8NiUOibLBFlavtyjculMqu2eihzqsRGaZg3yUS/XuGz66DC6eXDT0vZsacC\nRQ2cPX5xYVcy0h+vLbL2cokN2xxs+aqCunoZg15D3vgEZufbHtvpIh1NSamHvYVO9h2u4vK1QFJU\np4Mh/WMYnRvHiMGxxMaIRIQgdESLp2VRdKOKtXuu0L9XPBmpLZdlCoIgCG0n6NXLoEGDuHjxIhkZ\nGe0Zj/AIPDMlEwj0YHDWeLBGmxmSldhw+cMcZ0BGPJJX5vy1Kqrc0l3HPn25kl+vOtGqx6jz+JB8\n8l2JiZcL+lFX770v/rnje7LvdFlQx02Jt3Crsq7hZ6NUz9RNH9HjyllM1gh6Pz+Mj2NHMCmhN93q\nK0Crh5iuYGx+Ma2qUFqjp7jciKJqSInxkZngRdfGmxY8XpUNe73sPeFDBcYMMDBrjBGzKTzOtNfV\ny3y6sYw1m8vwelW6pZlZuiCNoQNiwqqcpD2pqsr5i7Ws2WznwOEqFBXiYvTMmZ7CtEmJxIkFbNi7\nXlLP3sNV7D3kbJiEotdpGDYwhtHDrIwYEvvYlR4JQmdkMRt4ZVZf/vPDo/x+7Rn+7aXhmNujzlIQ\nBEFoVNCfuLt27eK9997DarWi1+vFnPEOTKcNTLSYNzGjYWxmsDsk7uSXVfKGdaVgTDrueh9bC69z\n4mJFw9SL0f26MG9SBl6fjF9W6ZkS09C/IVjOGum+Phe3J3LcG7/dWYfklYM6rtcvY402UlnjJb68\nlBnrlxFTXUFcZgIJC0fyvnEkT0/uRnKsiqK3oI3rGkhMNMMnw3mHifJaPXqtSo7NQ1JUcPG0xpnL\nfj7eIVHlVrFZNSyYaqZXanj0IPD5FbbsLGfF57dwuf3Exxl47vkUJo9NCKvJH+3J71fZV+hkzRY7\nxZcDia+e3SMoyLcxboQVw2PYzLOjUFWVqzfqG0ozbpR+nYjQaxg+OJYxuXEMHxxLpEUsVgShs8np\nYWX6iO58cfAaK7YXs3RGdqhDEgRBeGwE/c3q//2//3ffZS6Xq02DER4tk0EXVFPLe8mK0uLYzQqX\nxJ5TtzhcZEfyKsTHmBiSlURqUiQ37LVBP1ZzfS7ujb81fS6cNRKDMxOxHt7K5K2r0Pt9dJvci6oJ\nI9kQP4yXxyZh0mtYf9zN8GE9sLWQkKiq13K2zIQka4k1y+QkS5j1rci+BMFdp7JqpZP9Jz1otZA/\nwsDUXCMGfegX+6qqsv9wFctX36TULhFh1vL806kU5NswmR6PRXiN28/mneVs3O6gwulDo4ERQ2Ip\nyLfRr0/UY7NDpKNRVZXL1+rZW+hkb2EVpWWBzw+jQcPIobGMybWSOygWS0R4JP4EQWg/T03oxanL\nlew8dpNBGYkM7p0Y6pAEQRAeC0EnJdLS0iguLsbpdALg9Xp566232LhxY7sFJ4SnFduL7+ol0dzY\nzdv9HSpcElsLbzBpaCoaNJQ43ChqoDlcstVC7+4xfHXs1n33b68+F/EWA9MOb6LqixVojTr6LBnC\n7vSRRGQPYklOJHWSwv/eUcWNag15k5qesKGocNVp4KozsBU/Pd5LjzhfmzazVFWVw+f8fL5Los4D\n3ZO1LJxqIiUxPBZJZy+4eW9lCUUXa9Hp4ImpSSwo6PLYlCfcKPWwboudHXsr8HpVzCYts/KSmDU1\niZTklqezCI+eqqoUX6lrGN9Z5gj0ujEZtYzJjWNMrpWhA2OIMIfHe0wQhEfDoNfyrYK+/Oj9Q7y3\n8Sw/Sh1JTKSYniMIgtDegk5KvPXWW+zZs4fy8nK6d+/O9evXefnll9szNqGNSD75oco07j3W0SLH\nA9//ZHElb31zJF6fzA27m662KKItRmRFwajXt2mfiwqXp9HbRNTVMGvzKqrOnSMiKZKei4fzcfQo\nJk7oTXqigasVPt7eXoWjRiYvt2uTv7N6n4azZSZckg6zXiEnWSLW3LbNLCtdCqu2SxRdkzHq4fkn\nYhjcSw6LKQ0lpR6Wf1zCgSPVAIweFsfi+amkPgYLcVVVOX6mhrWb7Q0TRZISjMyamkTehASxvT8M\nKYrKhct17D0UaFbpqAgkIswmLeNGWBmTG8eQATFiHKsgPOa62qKYPzGDj7YX897Gc3x73gCx000Q\nBKGdBf3N+eTJk2zcuJElS5awfPlyTp06xZYtW9ozNuEhNVZmMSQriWemZD7wHO5qt0TlQ4wBddZ4\nGnpE5KTHN1zeVn0ubh+nYEw6P3z3IFX3TPuwlV5l5sblRLhdJPRPJvMbUzmQMo4FPS1YjFp2FdXx\np30uYiJN5OWmNJkUKavRUVRuQlY02KL8ZCVK6NtwLaMoKruP+9i4z4vXD32665g/xUSfjEgcjpq2\ne6AHUFXtY8WaUjbvLEdRIDszkqUL08jOjAppXI+C5FX4an8la7fYuf5148PszEgKptkYOSQOnU58\ncQ0niqJyrriWfV9Pzahw+gCwRGiZODqe0blxDO4Xg8n4eJQYCYIQnLzh3Th+sYJjxeXsPH6TSYPT\nQh2SIAhCpxZ0UsJoDGxf8/l8qKpK//79+dnPftZugQkPr7Eyi9s/L8rLeqBjtqZvQ2Oa6xEBD97n\n4l71kp/qOxMSqkrOqQOM3/kZWlUhfWYWKUvnIA8cxwhvNSoaXLp4Bg/NpE8/f5NJEb8CF8qNlNUY\n0GpUspMkkqP9bVquUVous3KbxLUyBYsZ5k8xMbSPPuRnajySzJpNdj7dWIZHUkhNNrFkfhojh8aG\nPLb2Vlnl44vtDjZ9WY7L7Ueng/EjrczOt5HVKzLU4Ql3kBWVsxfc7Pu6WaWzOpCIiLTomDw2ntHD\nrAzuFy0ajgqC0CStRsMrs3J4452DfLTtAjndrSTHP16jrAVBEB6loJMSPXv25IMPPiA3N5eXXnqJ\nnj17UlMT2jO2QtOaK7M4WlTOvIkZD7QTobm+Dd1sUdR5/DhrPBgNOjyNTMJoTY+Ih3Fn8kTn9zHu\ny0/JOVOI3mIg67lcIhc+h5zWDbzVoDWgie1KjCECgGhL4/WjLo+Ws3YT9T4t0SaZHJuExdh2zSx9\nfpWth7xsP+xDUWBIHz1zxhuJtoR28STLKtt2V/DRZ6U4q33ExuhZujCNvPGJ6MOgyWZ7unS1jrVb\n7Ow+4MQvq0RF6nj6iWRmTkkiMV7UGYcLWVY5fb6GvYVV7D9SRbXLD0BUpI688QmMzo1jQE40Br1I\nRAiCEJz4GDNLpvfht2tO8/t1Z/jnxUMfeJepIAiC0LygkxJvvvkm1dXVxMTEsH79eioqKnj11Vfb\nMzbhITRXZnFnCcWDuLNvw739H/yySrVbIspi4LNdlx+6R8SDup082b/9JDM2LCPRXkJUWgxpi0Zy\nduBMhqckg78OjFEQkwbaphMlqgrXqwxcrjSgoiE1WiJW70KnMQFtk2C5dFNm1TYPdqdKXJSG+VNM\n5KSHti+BqqoUHnexfHUJ1296MBm1LCjowlMzkonoxJMIZEWl8Fg1a7fYOX0+MFEmrYuJ2fk2Jo2J\nFz0HwoTfr3LqXA17C50cOFKNyx1IRMRE65k2MZHRuXH07xPd6RNngiC0n5F9kzl+sZz9p8tYt/cq\nc8b1DHVIgiAInVKLq54zZ87Qt29f9u/f33BZYmIiiYmJXL58mS5durRrgELzmmpi2VyZRUslFC1p\nrv+DTktDsqMtekQ8jJmGSnqt/j9o3bUk56ahLxjL1UF55KabQfFDpA0sCTRXeyH5NZyzm3DW6zDo\nFEpvXGT9pktt1qPDI6ms3yux96QfDTBukIGZo42YjaFdSF24XMv7K0s4fd6NVgP5ExJ4dk4K8dbO\nuzugvl5m2+4K1m9zcMseeN8M6hdNQb6NIf1jwqK56OPO51c4cSawI+Lg0SrctYHdWHExemZMTmRM\nrpW+WVGit4cgCG1mcX4WRderWLvnCv17xZORGhvqkARBEDqdFpMSn332GX379uXtt9++7zqNRsPo\n0aPbJTChebKs8OetRU02sWyuzKKtSiiC6f/Qmh4RbTUlRFVVSn/zPjd++ht0Gsh4qh9RC+eg6z+U\nNLkONDqI7QrG5nsBlNfqOG834VM0xFv8nDl7ls0HrzRc/7A9Ok5f8vPxDonqWpVkq4YFeWZ6poT2\nLPwtu8QHn9xk98HA6N/cQTEsmZ9G97SIkMbVnuzlEuu3Oti6q5y6egWDXkPehARm59no0bXzPu+O\nwutT2H2wnC+2lnLwWDV19YFERHycgVlTA80qs3tHoRNJI0EQ2oHFbOAbs/ryiw+P8vu1Z/i3l4Zj\nNooJS4IgCG2pxU/Vf/mXfwFg+fLlrT74z3/+cw4fPozf7+fVV19lwIABfO9730OWZZKSkvjFL36B\n0WhkzZo1vP/++2i1WhYuXMiCBQta/0weM++uPd1iE8vmyiwepZaSDW05JUSucXPpO2/i3LADY4yJ\nnKXDiZj/PEp8PMh1YIiAmK6gMzR9DAUuVRopqTag0ahkJkokRkgsP1fa6O1b26Ojpk7h051ejl/w\no9PCtJFGpg4zhHSbucvtZ/XaW2zc7sAvq2SmW1i6MI3+2dEhi6k9qWpgKsPazXYOHKlCUcEaq2fu\njGSmTUwkNqbp14fQ/iSvwtGTLvYddnLoWDX1nsCo3cR4A1PHJzAmN46sXpFi94ogCI9Edg8r00d0\n54uD11ixvZilM7JDHZIgCEKn0mJSYsmSJc121l+2bFmjl+/fv58LFy6wYsUKnE4nTz31FKNHj2bR\nokXMnDmTX/7yl6xevZq5c+fym9/8htWrV2MwGJg/fz75+fnExcU9+LPq5CSfzP5TLS+Q22rM5oPE\nF+grYeSzXZdaTDa01ZSQ+gtXuPDy3+O5eI3YXvEkPjOSbV0nkB8ViUGWICIeopKbLdeo9Wo4U2am\n1qvFYlDom+whyqRidz58jw5VVTl01s+aXRL1EvToomXhVBNdEkK3O0LyKmzYZmf1ujLq6mWSE408\nPy+VscOtnXLB5/er7C10snazneIrdQD06h5BwTQbY4dbxUSGEPJIMkdOuthXWEXh8Wo8UiARYUs0\nMnemjcF9I8nsaemUr0tBEMLfUxN6cepyJTuP3WRQRiKDeyeGOiRBEIROo8WkxGuvvQbA1q1b0Wg0\njBo1CkVR2Lt3LxERTW9tHj58OAMHDgQgJiaG+vp6Dhw4wJtvvgnA5MmTeffdd+nZsycDBgwgOjpw\nRnbo0KEcOXKEKVOmPPST66yq3RKOqvpGr2tsgRxsCcXDlk/cu+PBZNTi8SoN1zeWbGirKSGVG7Zz\n6W9+iFJXT9r4dFyTR3MicxRPDLTi8SkcuKFn3PCm+5+oKtx06blYYURRNaTG+MhI8KL7eo36sD06\nKqoVVm2XuHBdxmiAuRONjB1gCNkCS1FUvtpfyQef3KS80kdUpI6Xnk1j5uSkTrkwd7n9bNlZzoZt\nDiqrfGg0MHJILLOn2eiXFdXpR5qGq/p6mcIT1ewrrOLwyWq83sA0my42E2Ny4xiTa6VXjwhsthgc\nDjHtSRCE0DHotXzryb786L1C/rjxLD9KHUlsZOftsyQIgvAotZiUuN0z4p133uEPf/hDw+XTpk3j\nr/7qr5q8n06nw2IJLIRXr17NhAkT2L17N0Zj4AM8ISEBh8NBeXk58fHxDfeLj4/H4Wh8kXqb1WpB\nrw8sVJOSOuf28uZEx0aQFBeB3Xl/YiIxLoKM9IRW1TvKssK7a0+z/1Qpjqp6kuIiGNU/hZcL+qH7\nelXu8fpxuiSsMaYmj/37z07etePhzoTEnU5crODVeRGYjXpKy2uprGl6B4LOaCApMfKuGDxef8Pf\nXZVlzr/xay7+/HdoDTqyFw3mUNZouo8ayuQuJkqcPn6zvQpFa2RmXkSjsUs+lcJLKjedYNRDbi8N\nafEm4O5Ew9hBaazZdem++48dlErX1MZ39siyyub9tXy8rQ6vDwb2NvHik7Ekxj347oiHfc0fOlrJ\n2+9d5sIlN0aDhkXzurF4fjdiosK/ZKG1z/3q9TpWrrnBF9vLkLwKERE65heksaAgjbSUjtUvorN8\n1rlr/ew9VMGOPQ4OHHHi/fpzoltaBJPHJjF5bBKZPSPvSxR1luf/IB7n5y4I4aRrUhTzJ/bio+3F\nvLfhLH8zf6BIaguCILSBoFeut27d4vLly/TsGRiHdO3aNa5fv97i/bZu3crq1at59913mTZtWsPl\nqqo2evumLr+T0xnYdp2UFP3Ynj0b1T+l0QXywIwEaqrrac1v5c9bi+5KJtid9azZdYm6ei/PTMkM\nqt9DneRn84ErQT1eeVU9F69UYLNakH0y8dFN70CQvT5ulVU3xFDxdQyDMhJYOMzGxb/6F9x7CjEn\nWMh+aRTrE0YxZVJvYiN07L9Yz/t7XEh+FfjLY97JWa/lbJkJr6wl1iyTkyxhlFUay4sVjO5OXb33\nvh4dBaO7N/o6vOmQWblN4rpdIdIMC6aYGJKlR/XVNXr8YDzMa/7ytTqWrSrh2OkaNBqYNCaeRU+l\nkpRgRKr34Kj3PFhQj0iwz11VVY6frmHtFjtHTroC900wMisvibzxiURadIC/Q312dPTPOnetn4PH\nqtlX6OTY6Rr8/sDnfLdUM2Ny4xida6V7mvnrL/cq5eXuu+7f0Z//wwjH5y6SJMLjLG94N45frOD4\nxQp2Hr/JpMFpoQ5JEAShwws6KfF3f/d3vPjii0iShFarRavVNjTBbMquXbv47//+b/7whz8QHR2N\nxWLB4/FgNpspKyvDZrNhs9koLy9vuI/dbmfw4MEP/oweEy8X9Gt0gdzaJpYtlU/IisqOIyUNl90u\nwZBlhSXT/9Lo6cMtRU3ujLjX7XKH2+UiAzMS2HH05n23uz0l5N6kSaVL4uSmg3T722VYXFXE59iI\nmT+aC0OmMSc9CkWFP+1zsf1sXcN9tBqIMP3l5a6ocKXSwLWqwO6AnvFeusf5mms3EXSPDp9fZctB\nLzuO+FAUGNZHz5MTTERFhOZsSnmllz9/epMv91aiqjCobzQvLEijV4/gpqJ0FJJXYee+StZtsXP9\nZiDBkp0ZyZPTbIwYEifGRD5iLrefg0er2HuoihNnXciBoRmkd41gdG4co4fF0a0TT3URBKFz0mo0\nvDIrhzfeOchH2y6Q091Kcnzn+v+pIAjCoxZ0UiIvL4+8vDyqqqpQVRWr1drs7Wtqavj5z3/Oe++9\n19C0csyYMWzatIk5c+awefNmxo8fz6BBg/j+97+Py+VCp9Nx5MiRFpMdAuh0bdPEstrddAPHSpeH\nY0XljV6389hN0GhYlNcbv6xy7poz6McckGHl450X79p90c0WRW29jyq3dFeCpbGkSZ8zh5iw4xN0\nikyP/N6UjhlN7ZBRDEqPotIt8/aOKi45fHfdR1GhXvITbTFS79NwtsyES9Jh1ivkJEvEmoNLqEDz\nPTou3pBZtd2Do0olLlpD/nAY0seAyfDoF8S1dTIfr7/F+q12vD6V9K4RLF2YxuD+MY88lvZUWeXj\ni+0ONn1ZjsvtR6eDCaOszM630btn82NfhbZV5fJx8Eg1ew87OXm2BuXrt1Wv7hGMGW5l1LA40rqY\nQxukIAjCQ4qPMfPCjD789+en+d3aM/zz4qHodZ2vH5MgCMKjEnRSoqSkhJ/97Gc4nU6WL1/OqlWr\nGD58OOnp6Y3efsOGDTidTv7u7/6u4bKf/vSnfP/732fFihWkpqYyd+5cDAYD//AP/8Arr7yCRqPh\n9ddfb2h6KbQs2CaWTWmugWNslJEqd+MJC0WFHUdK8Hplpo/s3mRiozH7TpUh+e5ugFnhkpg8NI3p\nw7vdlWCpqK5riE3r9zN21xr6ndyPzqwn67lc9vcay+CJA0mKMXCqROIPO6twee4vAYqPNhEbZaKs\nRkeRw4SsarBF+clKlNAHkctpqQlovaSybo/E/lN+NIAt3o2j+jK/X1dP/FcPPuL0Qfj8Cl/sKGfV\n2lJq3DIJVgOLnk5l4uh4dJ1ocsHFq3Ws22xn90EnflklKlLHvFnJzJySRIJVNB97VJzVPg4cqWLP\nISdnzrtRvn77Zfa0MCY3jlHDrKTYmm8EKwiC0NGMyEnmWHE5+0+XsW7vFeaO7xXqkARBEDqsoJMS\nP/jBD3j++ef54x//CEB6ejo/+MEPWL58eaO3f+aZZ3jmmWfuu/z2/e80Y8YMZsyYEWwoQhvL7m5l\nz6lb910+pHciJy5WNJqwuG3PqVucuVKByajD45WDerw7ExJ3OlFcwcLJmXct+mOjTMRFGfHdxK3L\n1wAAIABJREFUcjB9wzJst64TmRJN2qKR7O42nrxx6Rj0GtYcdfP5MTdNtSQZlp3MpcoIytwGdBqV\nbJtEcpS/2XINuH+iSGM9NU5e9PPJlxKuWpUuCVriosvYd+ZywzEedMRpa6mqyt5DVSz/uIQyhxdL\nhJbF81KZnW/DZOwcZ3BkRaXwWDVrNts5UxToO5CWYqIg38ak0QmYTJ3jeYa7CqeX/Yer2FtYxdkL\nf3nf9cmIbCjNsCWKRIQgCJ3b4vwsiq5XsW7vVQZkJJCRGhvqkARBEDqkoJMSPp+PqVOn8t577wGB\nkZ9Cx3XnYrvCJWE2agENXp98V/mETld8Vz+HxjjdvmavD1ZT40zHyA5sH/0ac10tSUNS0c0eTVHO\nOGb2TcAtKfzf7U5O3vACgd4R4wZ24fTlqoZeGyP6d6dbj96UubVEmwLNLC2GwCqqpR0QK7bf/fzv\nTDDMHp3JpzslThTL6LQwY5SRMQO1/Nu79/fHgNaNOG2t0+dreH9lCRcu16HXaZidl8SCghRiooOf\nwhLO6uplVq65wYrPrlPmCPytB/eLpmCajcH9YkI2WvVxUl7pZV9hFXsLnZwrrgVAown07Rida2X0\nsDgS4/8/e+8d3uZ5nn3/HuxFAuCUuCRSnNoUqUFKsvawLTm2JcuxLSeuEydpk69527Q5knw90rR9\n+6VpkrZJV/K6b5Ydbye2JS9tWzZlSRSpLYqkBiVxiAsgCAJ4sJ7vD5AUBzg0KFLS/TsOH4dFAg9u\nPA8A4jrv6zwv0aEiEAjuHUwGLV9+cDo/frmS57ed5gd/Mv+6pp8JBAKBIMJ1fXK6XK7e0Uc1NTXI\n8uhb9gUTi4HFdk9IZenMSTy9Lq+3cH58ZTahUJiPjjb0tmUPhUGnxmzQ4OiUsZr1OIawfgxFTwBm\nD4qicPX5l8j4yc+QFIXMhwo4X7yY5JKFLEjUc7E1Mu6zzX2tQyOswAOLpvLEaj3OTpkuJYbLTj2+\nIKTb/GTGBVBJo+uAGC4EtKIqxKlaDz4/TJ2sYssqA8lxKpodniGtLNFEl5vlcoOXF95o4PDRDgAW\nz7fx1KbUu6Zd/mqLzLu7W9i9vxWPN4xOK7Hmvng2rEkiQ4QkjjlXW2QOHHFyoNxB9flIcKxKgpn5\nFkqK7CyaZyVOWGUEY0R1dTV/9md/xjPPPMPWrVsJBAJ85zvfoa6uDrPZzM9//nOsVivvvPMOv/3t\nb1GpVGzZsoXHHntsvJcuuIfIn2Jn3cIMPjh4iVd21/LM/fkj30kgEAgE/Ri1KPH1r3+dLVu20NLS\nwsaNG3E4HPz4xz8ey7UJhsHnD9Ls8NxQwOVwxfbZS85+/1arVJEpG5LUbwpHNPyBEN/bOg+dVo1R\nr+Hvf3N4WOvHQHqmbQCEPF4ufOsfaH97B9oYPflfKOLS/PXMmp6BUadib5WHlw+6CA5wjNgtuoiw\nIWlo9JlxetXo1GEKkmTspmu2keE6IHosFtFCQFWSHpNuKkrYSjgMjy7XUzJLg6pbrBsuo2Og6HIz\ntDsDvPp2I7s+biWswPRcC198LJXcaXd+sKOiKJyp6WLbzmYOVTgJK2C3anlqUwaLi2OwxmrHe4l3\nNY1Xfd1ChJPai9eEiNkFMZQU21g0z4bNKq6BYGzxeDz8wz/8AyUlJb0/e+2117Db7fz0pz/l1Vdf\npby8nJKSEv7zP/+TN954A61Wy+bNm1mzZk1vwLZAcDt4ZGkWpy608/GxBuZkx1OYkzjeSxIIBII7\nilGLEpmZmTzyyCMEAgGqqqpYtmwZR44c6feFQXDrGWgv6NnhP36ujRaHN+oO/0gMN3FjqN38J1fn\noFZJvXaPaNhjDCTaTb3CQmFu4rDWD4NOPcguAuC7cJmaZ7+F9+x5YqfYyHtuGaq1j5CnU6Eg8T8f\nOyir9UU9ZsHUODr9Oqqa9QTDEvGmIHlJMro+us1IY1B7LBYDBQa9ZhJGbRqSpALJxf96IpFke//i\nTK9VD/m8+4ouN4rHG+KVtxp4+8NmfHKY1Ml6vrA5lflzrb1dTHcqgWCYssNOtu9s7i2GszKMbFyb\nxOIFdlImW2lp6RznVd6d1Df6KCt3cOCIkwuXvACoVBGLTOl8OwvmWoUYJLit6HQ6nn/+eZ5//vne\nn+3du5c///M/B+jNrDpw4ACzZs3qDcieN28eFRUVrFy58vYvWnDPotWoeG7jdP7+N+X85v0qslKs\nWM2ii0wgEAhGy6hFieeee44ZM2aQnJxMdnakeAwGg2O2sHudoewFiqKw+8i1joUbCVG8kd38YEhh\ndVEaG0un8uqeWsqiBWMOKLp7RIaKsy20d8qopIi9Ir77uTy8NAu3x9/7eG0dPqSDh7n0ze8T6uxi\nckkGU597kFDhYhQpDGodAdNkatucgx4bwKTXUFo8m5NNeiRJITtBJsEo43T1z4wYrSjTIzDsPdKO\nSZ+JRmUmrAToks9z31wTyfaUqMfoed6V1a29uRZ9RZcbIRRS2PlxK69va6LdGcAWq+FPHk9j1dJ4\n1Oo7W4xwuYPs2NfK+3taaHcGkCRYOM/KxjVJTM+13PFiy0Tlcr2XsiNOyg47uFQfEfk0aomi2bGU\nFNmZX2gl1iK80YLxQaPRoNH0f/3V19fz8ccf8+Mf/5iEhAT+9m//ltbWVuLi4npvExcXR0tLdNFZ\nIBhL0hItbF4+jVd21/Cb987w55tni79fAoFAMEpG/Y3TZrPxwx/+cCzXIujDUPYCgy76Tvv1hChe\nz25+NHFkbk4CK4tSOVbTNmzRrVapeHJ1LpuWTaPDLWPUa/DKwX4CgV6rihz/7FUyd75L8aFdSBoV\nuVtmE//0Y4QyMkEJgy4GYlPQqdQsmjmZd/af7/dY1lgLy0qKae7SY9KGyE/ysf2T6qiZEaMVZQJB\nhRhDBrHGyYCEP9iCXt/Mshn2YQWGgc/7Riw2PSiKwqGjHbzwej31TTJGg4rPf24yD61Lwmi49YGZ\nt5PLDV6272xh34E2/H4Fg17FhtWJPLg6iUl3SSbGREJRFOqueCkrj1gzrjR2CxEaiflzrZQW25g/\n14rZJIQIwcREURQyMzP5xje+wX/913/xy1/+kunTpw+6zUjY7SY0o5kFfQMkJoqR5uPNeF6DJ9YX\ncOaSg2M1rRw51879JVPHbS3jiXgfjD/iGow/4hpcH6P+9rlmzRreeecdCgsLUauv/TFPSYm+Wyy4\ncYazFww1dvN6QxRHu5v/yu6aQZ0Zu4/Us6oolf/93MJRFd16rbp3XTGm/u2Mr+6p5eNPqlm942Uy\nLp5FbzeStbWYlsUPYktPiQgS5iQwxdMzv/PZjTPweP18crwRnz9EbtYUiufOQKNWc7b2IjEaJ7XV\nyrCZESOJMrWXg7y+R6a1QyEuVsXn7tOSZE/GaskYtcDQ93nfCNXnuvjt6/WcrnajUsHa5Ql8/dkc\nwsE7M2BWDoRwdvqou+Tngz1tVJ50AZCUoOPB1YmsWpKA2XRnCy0TDUVRuHDJG7FmlDtpuBp57ei0\nEgvnWSkttlM8x4rJKM67YOKTkJDQO/lryZIl/Pu//zvLly+ntbW19zbNzc3MnTt32OM4HJ4xWV9i\nYoywmI0zE+EaPL0ml5pLTv7n7ROkxRmZFHfrwq3vBCbCNbjXEddg/BHXIDrDCTWjFiXOnj3Ltm3b\n+oVHSZLEvn37bmpxE4mRxkPeLoazFwzF9YYojmY3Xw6E+PTEYJsGwKcnmti8PPuGiu6e82zUazi/\n/yhbXnseS4cDe24CsY+VcHH2cmblJaJIaiRrGuj6hzeq1So2LZvGifMOFuUXkJE6GVn2s/+zCi43\nNBEXM7SPs6ejZChRZmPpNF7b7ePgqSCSBMsKtaxbpEOvlYDb4w9tvOrjxTcbKCuP2FQWFFrZuimF\n9BQj8XYdLS13ligRCod5aUcN+w86aG9UE/JHXmf5OWYeWpvEgkIbajHS85ahKAq1Fz294zt7Rqjq\ndSpKi22UFtuZNzv2ju+0Edx73Hfffezfv59NmzZx6tQpMjMzmTNnDn/zN3+Dy+VCrVZTUVHB9773\nvfFequAeJi7WwBfW5/GLt0/x/LbTfHfrPDTq0WV+CQQCwb3KqEWJY8eOcfjwYXS6uy+4ZzTjIW8n\nw9kLDDp11G6JGw1RHG43v8XpHbIzw+cP0eL0kpZoGfVjDTzPs+tOsOrdl1EHg6SvnIZjxWKU0iXM\nijdQ3eQnLi2LBF30aRINjjBLS0swGY00NbfyyaFKPN5IO3p7p3/INfTtKBkoypytU/jpSz46PQqT\nE1RsWaUnI3nkc3qrxCxXZ5DXtjXy4d5WgiGFnEwTX9ySyoy8O7f9q93h5ye/OkvVGRklrAMUdDF+\n9HaZWfMjYyUFN084rFBzwcOBcgdl5U5a2iLvAYNexZIFdkqLbRTOisWgF0KE4M7g5MmT/OhHP6K+\nvh6NRsOHH37IT37yE/7xH/+RN954A5PJxI9+9CMMBgPf+ta3+NKXvoQkSXz961/vDb0UCMaLBQXJ\nHKtt5cCpq2wvu8jDS7PGe0kCgUAwoRm1KDFz5kxkWb4rRYnRjIe8nQyX+VA6axIqSeL4uTZand5b\nEqIIQxTWI3lzR+Hd7UvPeVaFQpR8up3ZRz9FrdeQ80QRZ+bcx9z7ZqPXqXn/RBf7qgP8/ZcHCxJh\nBU5cClPXacWgV6g4cYZTVbUMXInNrMHZNTiIdWBHiV6rRq818PIOmRPnQmjUcH+JjhXztCMGSN4q\nMUuWw2zf1cwf3mvC4w0zKUnP1k0plBbb7tiQrHMXPWzb2cwnhxyEQgqSCgxxPvQ2GZUmcrWuJwdF\nMJhwWKGqtosD3VMz2hwBAExGFctK4igptjF3Rix6ndihE9x5zJw5kxdeeGHQz3/+858P+tn69etZ\nv3797ViWQDBqnlqTR/VlJ9vL6piVFc+0VOt4L0kgEAgmLKMWJa5evcrKlSuZNm1av0yJ3//+92Oy\nsNvFaMdDjvUaBgoCg+0FevIz7Dx63zRMeg1f3WTk3MW23vvIgRBtHZ7r3q0frrBOtJsw6FT4/OFB\n9zPo1CReh3Wj5zwbuzpZ9/4LTGq4iCnJQtpTC6idtYKF86bg9Yf5j90OKupkVhenDXoe3oDE6at6\nOmXQqsK8vbuM1vbokziMel1UUaJvR0lYUTh0Ksi2T2R8fshKUfHYKgNJ9tEVcTcrZoXCCvs+befl\ntxpocwSIsaj58pNprF2egFZz5xWSobDC4coOtu1s5nS1G4DJyTo6FCe6WD/SgKd0vTkogsg5PlPj\n5kB3WKWjIyJEmE1qViyOo6TIztwZMWi1d97rRyAQCO4mTAYNX94wnX9+qZLnt53mB8/Ox6ATQcIC\ngUAQjVF/On7ta18by3WMG6MdDzkWjLTT/uTqXB5emslLO2uoqmun7GQTVZccFOYm8o0thSTZTRG/\n/q7oUyZGs1s/UmFdOmsye/oEXfZQOmtSP9FgJAtDh1tGe7aaLe/9DmNXJwmzJqF7pJSOBSuYl2al\n0RnkP3Y78CtaVhen8fjK7H7HdPp0VLfoCSkSGQmQbOjijwHvkM9LDgRZUZjC8XPtUYM8W5xhXt/t\n41x9GIMONq/Qs3CmBtUoOxOGE7OOVLWwsXQqMSZd1POiKAqVJ1387vV66q740GklNj2YzCP3T7oj\ngx493hC797fx7q5mrrZGbAOFM2PZsCaRglwz3/+/B2lzDb7f9eag3KuEQgrlxxy8v6uBzyqcdLgi\nYpvFrGb10nhKim3MKoi5I4UsgUAguJvJy7CzbmEGHxy8xCu7a3nm/vzxXpJAIBBMSEYtSixYsGAs\n1zFujHY85Fgwmp32t/ZfoOxk06DbmIw6Hl489aZ260fTJfLEqhxUkkTF2RYcnTL2GD3z8hJ7i/vR\nWBgURSHwx+089OZ/o1LCZD6QR9PS+0hctogYk5YjdX5yp+fzzc+HsVr0aNRS7zE7PSGWLJhDWmoK\nakkhP0lmVpaRlhb1sB0hTrefdQsy2LIyp58oEAop7C73s+Ogn2AIZmSq2bRCj9VyfQXdsGKWW+Z7\n/+cAMSY9/mAIR5/zMj87hRdfb+T4mU4kCVYujuOJR1JIiLvzbFFXW2Te3dXCrv2teH1hdFqJtcsS\n2LA6kfRUY+/tRjt+VnCNYFDhZFUnZeUODlZ04HJHhIhYi4a1yxIoKbYxMy8GjebOtPcIBALBvcIj\nS7M4daGdj481MCc7nsKcxPFekkAgEEw47vk+suHyG8ayaBqNIBD5/+i3+exkI6sKU27KejLaLpHh\npnSMJIqEvT4ufueHtL7+Ljqzluwn5nOucAVzSgsIheG3n3agjYmjyGxAp4t0FXx46BJ7KxuIt9t4\ncM08YixmWtochD0NLM2a2nv+fP7AkM/NHqPvXWtPp8vl5hCv7ZJpaA0TY5J4ZJme2dnqG8ptGE7M\nAujyhejyXRs719zm5+1t7bzeGbE1FM6M5QuPpTA1/c6yLiiKwpmaLt7ZcZXDlR2EFbBbtTxyfzLr\nlicSGzP4I2W042fvdQLBMMdPd1JW7uRQpRN3VyRk1har4ZEHUiicYWZ6rmXErBOBoMMVQPaHSUoQ\nnUgCwXij1aj4ysbp/N1vyvnN+1VkpVixmu+8jQiBQCAYS+55UQLGp2gajSAADHmbVqeXK83um7Ke\nWC167DG6qNMqbJZIUd/XfjDwWCMJKxsyjVz62rfxnKrBkmYl/6vLaC9eReFkO23uEL874CYhwc7m\n5dN6LSg9Rf7MvGzmzsxDkiROnKnh6KmzxMXoeXhxOhA5f0730KJEfoa9VzzxBxQ+POjno8oAigIL\npmvYuESPyXDjxd1wYlZfwiEJX7se2akHRUJnDPPXX82meLZt2PtNNALBMJ8edrB9Rwvn6iJiS9YU\nIxvXJrF4vn1Y68Boxs/eq/gDYY6dcnULER14vBEhIs6m5cFVkbDK/BwLk5JjxbxrQVQURaG+Saaq\nxs2Z2i6qatw0XJXRqCV++/PZmIzivSYQjDepiRY2L5/GK7tr+PV7Z/jm5tl3bJC1QCAQjAVClGB8\niqbR2kaGuk2CzUhakuWmrCd6rRqTQRtVlDAa1Lz50TkqzjbT3uknLkbHvLykfraM4YQV08njVP/8\ne4RdbiYtSCfzuQcIFS4iQaOm3gW/2NNJQ7uPuI4wtfUuLje7ux9Xz5IFhUxOTsTj9fHJoUqamluB\na0JL2gjnz6BT88SaiHWl+nKQN3bLtLkU4mMlNq/Sk5t+a172PaLVkaoWHO7+61DCIHfo8bXpUcIq\nVJowhgQPhtgAGel3zg6JqzPIh/taeH9PK46OAJIEC+dZeWhtMgU55uv6UjXc+Nl7CdkfpvKEiwNH\nHBw+2oHXFwmSjbdrWbUkntL5NnKzzKhU4gurYDCBQJjaix6qat2cqenibG1Xr70HItNXCmfGUjwn\nFqNB5IwIBBOF1cVpHKtt5fi5Nj462sDywtTxXpJAIBBMGIQo0YfbWTSN1jYy1G0WzZxMjEl3U9YT\nORCitSN6WGRjm4f6lmv2g/ZOP7vKrxBWFLauyQOGEAaUMIXl+1hw4AMUtYqcTTNJ+MJmQhmZIEkc\nb1Lxs/caekd4trnk3vunTU6mdP5cDHodlxuaKDt8DNl/TTDp6d6A4c/fktmTQVHzyi4fh08HkSRY\nPk/LuoU6dNpbV+j1iFkbS6fyN/9zkE5PpBMj0KnF22ogHFQjqRSMCV70NhlJBXGxd0a44+V6L9t3\ntbCvrA1/QMFoULFxTRIPrEpkUtLEX/9EwyeHqDjh4kC5k/JjHfjkiBCRlKBj7XIbpUV2sjNNQogQ\nDMLZEeBQpZOq2i7O1LipveghGLw2BDkxXsd9M+3kZ1soyDGTnmpELV5HAsGEQyVJfOnBAv72V4d4\nZU8N+VPsTIoTQr1AIBCAECXGldHYRoa6zbMbZ9De3nVT1pMWhyfquE+AcPQfU3aiiceWZ6PXqgcJ\nA1rZx6qdrzD1/Gl0VgM5T8/H/OgmQnFxIKnxmyfzwicnUAYcU61SUTRnOvnZmYRCIQ5WnODsuYuD\nHjt/ir2f0BLtuc/NSaAgYyr//KKHTo9CSoKKLav1pCeNXedLjElHcV4iOz5txttiICRrQFLQ230Y\n4mRU6mvPeCKHO/ZMBdm+s4XKk5FxGckJOh5cncSqpfGiDfw68XpDlB/v4EC5kyMnOvD7I6+DSUl6\nSopsLJ5vJ2uKUbTwCnpRFIWGJpkztW6qarqoqnVT33RN9FWpIDPdRH6OmYJsC/k5ZuLtd07nlUBw\nrxMXa+DpdXn84u1TPL/tFN/dWoRGLTqaBAKBQIgS48hobCND3Ubd/UfspqwnN1AM+fwhWhwe0pJi\ngGvCwIk9lax6+1fEOtqwTovD/ngpnUtWY46LA40BrOk4XYFBdg9bbAxLF83Dbo3F0eFi/2cVOF2D\nvfMGnZon1+T0+9nA5w46tn8a4MUP/GjU8GCpjmWF2jEPBrxU7+XiGQ3uKxYAtDF+jAk+1Npryo5B\np2bJ7MkTMtxRlsN8dKCdbTubudLoA2B6roWNa5KYX2gVu67XQZcnRPmxDg6UO6g86cIfiAgRKcl6\nSufbKS22MTVdCBGCCIFAmHN1Hs7URLogBloxjAYVCwrtZE0xUJBtJifLjNEgxEGB4E5mQUEyx2pb\nOXDqKtvLLvLw0qzxXpJAIBCMO0KUmACMxjYy0m1uxHqSaDNi0Knx+UPXdb++YoZapWKV+yKZv/83\n1IEAacsy8a2/D8uyJZhMespqZYqKc9CrtVgtqn52j7xpUyiaMwONWk1V7QWOHDtNaIgWjSWzJ2PS\nawf9XA6EcHb6OHtJw4ef+fD5YVqqisdWGUi0je3uQ7vDz8tvNbLnkzbCCszIs5CYEaCqwYUciDwP\nvVZFYV4iW9fkRl3/eNLm8PP+nhZ2fNRKpzuEWg3LSuLYuCaJaVNFS+locXcFOXQ0IkQcPdXZ21qf\nnmKgtNhGSbGdjFSDECIEuDqDVNW6e60Y5y56CAxhxcjPNpORZhQhpwLBXchTa/Kovuxke1kds7Li\nmZZqHe8lCQQCwbgiRInbTN9pFuPdxq/Xqlk8axK7j9QP+p1KFd3CYdCpSbQZAVCCQS7/8D9p+u8X\n0OrUZD9ZSPOSleSWzEYOKvyffU4OXvCRXRAgSafttXvsP95MafEc0lMnIct+9n92BIJd2Cw62l0+\n9LqeqRmhIe0ooXCYV/fUUnHWRcCfgkYdi1oVZtMKA4tmalGNYQHo8YZ46/2rvL3jKn6/QnqKgS88\nlkrR7FgkSUIOhGhxekFRSLSbxv06D+TcRQ/v7LjKp4cdhEIQY1GzecMk7l+RQJxoBR8VLneQQ5VO\nDpQ7OX66k2AoUlhOTTNSUmyjpMhGeqpxnFcpGE8URaHhqtxrwzhT66a+sY8VQ4KpGcZeG0Z+toWE\nOPH+EwjuBUwGDV/eMJ1/fqmS57ed5gfPzsegE1/JBQLBvYv4BLxN9BTRldUttLtk4mL1FOYm9ptm\nMR58flUOClB2orE3X8KgU5NgNXClpWvQ7RfPmoReqybQ5uDcV7+Dq+wIxgQzU55egKt0Lbk5qTR1\nBPnP3U7qnUFUEnx46BJPrslFrVKxriSP5PQZqDU6mppbOXn6NNOnxPD4ymKCIaVXsPEHQlxpdpOW\nZCHGNPiL+iu7a/n0WAiDNheNWoU/2I4nUMfFq8mUzsodk3MVDCrs/LiVV95uxNUZxG7V8tyTk1mx\nOL6fRUSvVZOWaBmTNdwoobDCoUon23Y0c6Ymcl3TUwxsWJPEskVx6PXC0zoSHa4ABys6KDvi4MSZ\nzl7RLivDSOl8O4uKbKROMozvIgXjRo8Vo6cLoqq2C1dnfyvGnBkxFHQHUgorhkBwb5OXYWf9wgze\nP3iJV3bX8Mz9BeO9JIFAIBg3hCgxRgzsiHh1T22/SRFtLrn330+uHpsiejSoVSpUktQv8NLnD3Gl\npYv0JAseX4D2Tpm4mGsiivvoKWq/9Ff4G1uIn55E9tfW4S1cTFqMicMXfPz6kw583V76sAJ7KxtQ\nq1UsKpzBJacWjQbSrT4K7AoPzplFh1umsc1Dos1IvNUwonhz6pyH8tM2jDoTYcVPl1xHIOQAIqGX\nm5ZNu6XdCYqi8FmFkxfeaKDxqoxBr+LJRyazcW0SBv3ELio83hC79rfy7q4Wmlsjk0wKZ8aycW0S\nc2fECEvBCDg6AhyscFJW7uRUVSfh7k777EwTpcU2FhXZmSymkdyTuNxBznaP5ayqdVN7YbAVY+nC\na1MxMtLEVAyBQNCfh5dmcfJCOx8fa2ROdgKFOYnjvSSBQCAYF4QocYuJ1hExe1o8x8+1Rb39WBTR\n14McCFFZ3RL1dx5fkO8/Mx+vHOwVV1peeouL3/0nlGCQKetySHn2YUI509Gr1Byul/jlPmdv4daD\nxWzCaM/iklOHQRNmerKMWRfk5d2XB3do2Axcab7WodFXvNm0LIcPDvj5+KgflWRCDjbj9V9G4Vom\nhqPTR4dbvmWjXatq3fz2tXqqartQqWD9igQe/9xkbLETKx9iIE3NMu/uamb3J214fWF0Oom1yxPY\nsCpR2ApGoM3h57MjESHiTI0bpfv1nDvNHMmIKLKRlCCEiHsJRVFobI5YMXomY/SEwkK3FSPdSH5O\nJAuiIEdYMQQCwchoNSq+snE6f/ebcn7zfhVZKVasZvHZIRAI7j2EKHGLidYRsbeyYcjb30gRLQdC\nNLZ2EQqEblrM6HDLgyZi9Ftblx+dRkVY9nPhe/9Cy+//iMaoJe+LC4h57FFCySmg0iDFpjFFC2Gl\nsd8xMjNSWThvFjqtFqvOx6zUEBoVvLSrlj0Dsix8/lA/QaIvFVU+zl/24OhUQPLT6T1PMDw4/M1m\n0WO13HzBWN/k48U3G/jsiBOARUU2tj6aQurkiduerygKp6vdbNvRzKGjHSgK2K1aHn1gEmuXJxBr\nEW/3oWht93Og3ElZuYOq2shrUJIgP9tMSbGdkiKbKDLvIQLBMOcuRqwYVTVuqs510eFekZnWAAAg\nAElEQVS6ZsUw6FXMmR5DQbcIkZtlxihG5goEghsgNdHCY8un8fLuGn793hn+fNNsVKKrSiAQ3GOI\nKuUWMlzXgUpiUAcBgD3GMOoiul8XxgBLxY3mUlgt+n4TMfqi06r5t9eO4m9o5sEPX8DecBlzSgwF\nX1mGevX9hC0xoDWBNQ1UGqxSiPjuY2k1GhbMm8W0KWn4AwGOHj/Bn26YgkalRg6EqDjbPKr1SWgw\n6tJRwok43QoLZ8CH5cdRlCgnE8ifYr8pocbpCvDq243s+KiVcBjyppl55vFU8rMnVkZEXwLBMJ8e\ncrBtZzPn67wATJtiYuPaJErn29BqRF5ENJpbZcrKnRwod1B93gNE3qcz8y2UFNlZNM8qgj/vETrd\nwYgA0T0Zo/ZCV+84V4CEOC1LFtgp6A6knJJmHPNRwwKB4N5hVXEax8+3cfxcGy/urObptbnCXikQ\nCO4phChxCxmu6yCaIAFQmJsw6iJ6LHIpeiZi9D1uDz5/iLhzZ/ncBy+i93pImpdC/NbVqJbch6LT\ngSkezEnQPXGiwy0zOzuBExe7WLpwHjEWMy1tDvYfrGBRQVzv8+xwy7R3+kdcm1Ydh0k3BZWkBTx8\nfZOdlEQVFbUGmh3eQbc36NQ8uSbnhs6DTw6xbUczf3jvKj45zORkPU9vTmHRPNuE/WLg6gzy4b4W\n3t/TgqMjEiq6qMjGxjVJFOSYJ+y6x5PGqz4OHIlMzai9eE2ImF0QQ0mxjUXzbNisE9uaI7g5FEWh\nqVnmTE8gZRQrxpR0Y28WhLBiCASCsUYlSfzp52bwo5cq2VdZj9mgYdOyaeO9LIFAILhtCFHiFjJc\n10FcjJ45OQkcr23D0ekbctTlUHR6/JRXRe8uuNlcip41VFa3dq9NT5fXT+7BfZR8+h4qCbI+Nx3P\nutXElMxDUWmQYlNBHxPp3thdQ2V1Cw6XTNHsPNavmIskSZw4U8Px02dJSTCzeXlW7+NZLXriYnRD\nChOSpMOkm4JObUdRwnj8l1gyR0NmShIAi2ZO5p395wfdb8nsyZj011dQhsIKez9p4+W3Gml3BoiN\n0fD05lTWLktAoxn7ov5GRsReqveyfWczHx1oxx9QMBpUbFybxIOrEklOFFkHA6lv8lF22MGBI04u\nXIqIWSoVzJ0RQ+l8OwvmWrFO8IwQwY0TCIY5X+elqiYylrOqNroVIz/bTH6OhdwsMyZhxRAIBLcZ\nk0HLXz4+lx++eIR3D9RhNmhZvzBjvJclEAgEtwUhStxChus6mJeXyJOrc5FXXF8R2mPZOFLVgtMd\nvYi/2XDHYEhhdVEaG0un4pWD+DrclH3xO2TVHEcXoyfzqSL8q+4nPWcKl9oCmJPTidfHANe6N4wG\nA6uWlTA5KQGP18snBytpaomEe15udvPGvvO93Rx6rZp5eUlRz5Nek4RJlw6oCYY60OoaWTojtp94\n8+zGGXi8/j4iyvUJPBDZLT1y3MXv3qjncr0PnU7isQ2TePj+5NtSkFzviNhwWOHoKRcf7rvAocrI\npJHkBB0Prkli1ZJ4UUQN4HK9l7IjEWtG3ZXILrhGLVE0O5aSIjvzC60iY+Muxd11zYpxpmawFSPe\nHrFi9IgQU4UVQyAQTBCsZh1/9fhc/r8Xj/Da3lrMRg1LZ6eM97IEAoFgzBHfym8xg7sO+hfMeq36\nusSDgZaNaFxPLgVc2523mLS8tf9Cv8J4QUyQ3Of/nazai8ROtZP0VCnaVeuxxlnZX+3hvZN+fvAl\nS+9xKqtbSE9JprR4Lnq9jsv1TZSVH0P29xdQero5IGLfeHhpFmFFoexEEz5/CJVkwGLIQi1ZMOrh\n/hIt2Wk2bDGTBok3arWKJ1fnsmnZtH4CjxwI0dbhGVHwOV3Tye9er+dsrQeVBKuXxvP5hycTfxvz\nA0ZrxZHlMPsOtLFtZzP1jZEOnOm5Fh5am0TxXKsYMdiNoijUXfF2Z0Q4e9vxNRqJ+XOtlBbbmD/X\nitkkPvLuJvpaMapqIl0Qlxv6WzEy0owU5Fgo6BYhEuOFFUMgEExcEmxGvvX5Qv7pxSP85v0qTHot\nRXliVKhAILi7Ed/QbzFqVfSC+UYYLjizL6PNpRi4O6/XqfH5r43TtBytIHXHK8h+mZTFU9A8uhLb\nfYsJSVp+vb+D/TVeVhen9T6Wo1Mme1oOedmZBEMhDlYc5+y5uqiP7ej08cKHZzl7ydGvM+CfvlbC\njs9kDp2WCIUhLwMeXWEgwaoBhhdaegSeUDjMS7uqR+w6aLjq5Z9+UcPlukjrtskaYsliC195NP2G\ng0JvhOGua49443aHeH9PCx/ua8XdFUKjllheEsfTW6YSZ71tS53QKIrChUteysodHCh30nA1Itro\ntBIL51kpLbZTPMcqukjuIgLBMBfqvL02jKoaN84BVozZBTHk55gpyLaQO01YMQQCwZ1HaoKZv9gy\nlx+/XMkv3znJ/3psDtOnxo33sgQCgWDMEKLEGHG9HRHRGC44s4f0JMuobQsDd+d7BAkpHKb44A6K\nDu9BpVUx7fE5xD31MEp6Fq1dYf5jdxuX2oIYdGoURSEUDuMNqKlzx5GXnYijw8X+zypwugaP6OxB\np1VTdrKp999tLpm9FQ5OnUvEJ2vRakKEucTBqhZqGq5vqshIXQed7iCvb2/i3V3NhMOg1gcxJvrQ\nmoIcru3Eukd9w0GhN8Jw17WlJcC//OICR467CIUgxqLmsQ2TWL8igTi7jsTEGFpahj7PdzuKonDu\nooey7vGdV1siHTl6nYrSYhulxXbmzY7FaBCF6N2AuyvI2XNd1NW3cOSYI6oVY/F8W3copYWp6cKK\nIRAI7g6yUmL5fzbN4t9eP8a/v3mCv36ikKyU2PFelkAgEIwJQpQYhhsJIbyVDBec2YPHF8TjC+KV\ng8Ouc6jdeb3Pw5oPXyKtrhpDnJEpWxegWvcASupk6l0SP3ynGY8/UgT4/CF2H6nHHJuIPTENRZHo\ncrXw3q5DhMLhEZ5N3/EjKozaNPSaZHyyRLzVTW3jWSAiklzPVJHhug6OVLWi88Xw1gfNdHlCaHRh\njHFetDEB+g6m6BsUejuu+cDrqigQcGvxOfSEfBoO1blITzGwYU0Sy0ri0Ovu7ZGe4bBCzQUPr77T\nzO79zbS0RYQIg17FkgV2SottFM6KxaAXQsSdjKIoNLX4e20YZ2rdXK6/ZsWQJJiSZiQ/OzIRIz/b\nTGK8TkyZEQgEdy3Tp8bx1Ydm8F9vneRfXzvKd7YWkZpgHu9lCQQCwS1HiBJRuN4QwrFiuODMHtpc\nPv72V4focPuJi9UzOzuB1UVpxMUa+hXV0Xbn41saeODd32J2ObDnJhD/1H1YVq9BMpmQdXH8bMe5\nXkECQK/TUTp/DraESailMPnJMvZMAx1tKb0ZGjaLHrNRi8cXwNEpY48xkJ9h49PuLgmNyopJNxW1\nSk8o7MXjv4jSKdMjSPRlNFNFoj0vRQF/p5aL53Wcr2jEYlaz+aEkdp+uhiiXz9Hpo93lY29l/W25\n5j3XdefBK8guPbJDRzgYeY6TJqv56hOZzJkRc08XW+GwwtlzXb1TM9ocAQCMBhX3LbJTOt/O3Bmx\n97xgcycTDCqcv+ShqjYylrOq1o2jo78VY1ZBZCrGouJEkuNVmE1CeBIIBPcWRXlJPLM+n1+/X8W/\nvHqU7z41jwSbcbyXJRAIBLcUIUpEYbQhhLeDx1dmEwqF+ehoA2El+m16pnJELBH17K2oJ35AUT1w\ndz6nqoIVe95AFQySvmoamkdXE1eyCJcMhy+omZUX269DY1JSAksWFGIyGmhsbuG+XBUJZgMwdOhk\nz78BztS58MmT0GsSUJQw3kADvkA9dosOx01MFbFa9P2yMQJdGrytBkKyBiSFjWsT2bJxMlqdxNGG\nuqhdJ/YYA7uOXGFvRX3vz8bymjc2y3RdNeCusxEMApJCbGKQkgWxPPdI7m0VviYSobDCmRo3B7rD\nKh0dESHCbFKzYnEc61emkJmmQau9N8/PnU6XJzIV40x3J0TNhS78fUTPOJuW0mJbJJRygBXjXrct\nCQSCe5ulc1Lo8gV5bW8tP3n1KN/dWoTVLEJ7BQLB3YMQJQYwmhDC22nlUKtUPL0uHySpX9E8EgOL\n6p7d+T0HL1K6fzszj5ehNmjIfrIYaeMDxOZkc7EtSGWznoeW5hAMKcTF6mnv9FM4M48ZedndYzRP\n09RYz6PFC/s93sAMjZ5/K4pCZXUQNQXoNWqCITce/wVCiheAWdlxnDrfPqRYMLqpIgpBWYW3xUjQ\nowVAF+PHkOBFazdjNKpQq1RDdp3MnhbH8drWqEe+VddcURROVbvZvqOZQ0c7UJRIEbZ2eTzz58WQ\nmmwaF4vQeBMKRc5L2WEHn1U46egOLbSY1axaEk9JsY3Z02PQalSiML2DUBSFqy3+yFjO7kDKyw0+\nlG4NQpJgSqqR/Bxzdx6EsGIIBALBcKxfmEGXL8C7B+r411eP8u0nCzEZtOO9LIFAILglCFFiAMOF\nEI5m536seHJ1DmqVdG3UaKyBtg7fiPfrW1Q/Mt1K+t//Cn1tLaZJFqY8XYrpgQdQ2+PwqGKYPG0y\nUwsiLwm1Coqnp6I2p5AQZ8fl7mL/ZxW0OZz9JnAMR7srzJt7ZarqQmg1atKSO7jScpGQLKOSIKzA\nqfPtmAzaqKLEaKaKXLzipu2SHr9LB0hoTAGMCT40hkjnxN7Kht4RokONa11RmMq+yoaox7/Zax4I\nhvnkoIPtO5s5fykixGRPNbFxbRKlxXY0mnuvCAsGFU5WdVJW7uBgRQcud0SIiLVoWLssgZJiGzPz\nYu7Jc3OnEgwqXLjsiXRBRLFi6HUqZuRZKMi2kJ9jJm+aRVgxBAKB4Dp59L4surwB9h1t4GdvHOcv\nH597T25oCASCuw8hSgxguHDJ0e/c33oGjhpNS7HxzZ/uHTYEE64V1cbqamqf+2v0rQ4S50xm6lfW\nIc1fDHoDxKRgMvSfM9nUqSElYzohReJKfQOfHD5KjFHLinmprChMRQ6EhvxDGA4rfHoiwHtlfvwB\nyElX89hKPfFWCy/scLO3or7XitLmkmlzyaQnWfD4gv3EguGminR5Qvzx/Sbe2dFMIKBHrQthTPSi\nMQUZuNnaV5gZympyq695hyvAjo9aeX9PC46OICoJSopsbFybRH62+Z7bEQ4Ewxw/3UlZuZNDlU7c\nXRHRyBarYf2KBEqL7UzPtYjJCXcIPVaMyH9uas57kP3Xwm57rBj5ORYKss1MTTcJkUkgEAhuEkmS\n2Lo2D48c5NCZZv77rZN849FZaNTC1igQCO5shCgxgOHCJUezcz/W9NgirBb9iCGYAHaLHv/rb1P3\nD/+GooTJ2pBP0jMPEZ42HTQGsKaD5lrRHQxDdYueZrcGtaRQkOSjJMPCqhnF7Cq/zPHaVvZV1PcG\nQT68NBO3J9Bb4De1hXhtt0xdUxijHj6/Rk9xvgZJkvDIAQ70GQvaF48vyPefKcYrBzHqNXjlIMGQ\nwsC/s4FgmNffucKvXr5IpztEvF1LVp6Kmrarg8SIHgZ2O0Szmtyqa153xcv2Xc18fKAdf0DBZFTx\n0NokHlydSFLC+Aha44U/EObYKVe3ENGBxxsRIuJsWh5cFUdJd9GqVt1YsTre03HuFRRFobnVz5k+\ngZSX6vtbMTJSDeR3d0EUZFtIShBWDIFAIBgLVCqJL2+YjkcOcvxcG7969wxf3jgdlfjMFQgEdzBC\nlIjCUG3+w+3c3ww3Wlz1XWeba7CVQxPws37v2zSUfYrWoiPv6UVYHtlIOCkF9LEQkwJ9QhU7fCrO\nXNXjC6qI0YeYnixj1CqAmr2V9eztY3Hoyaz45Hgjsj+EPcbAJHsmze0xhMIwN0fDw8t0xJiuHf+l\nnTW9gZQDcXT6cHsDQ07AUEkSZeVOXnyzgaZmGaNBxdZNKWxYnYRGCy/t0vBRZX3UMNDRdDvczDUP\nhxUqT7rYtrOZY6cimQfJiTo2rE5i1ZJ4jMZr1/RuL6Rlf5ijJ12UlTs4fLQDry+yex5v17JqSTyl\n823kZplR3aAQARNnOs7dSjCocPGyhzM1Xb1CRE/oKIBOJw2wYpgxm8SfEoFAILhdaNQqvv7wLH76\n6lE+O30Vk0HDU2tyhRgsEAjuWMQ3ySgMtEqMVQHZt7hqc8nYLDoKcxJ4cs3oJjD0XWe7yxfpZDjX\njqPTR1rQzertv0Z3+TIx6VbyvrYS9fJVhM2xYJkERjs9rQWKApecWi60RwKTMmx+psYF6Kkbhwv/\n9PlDqFUWgoGpNLaa0GpCfPEBMzOy+r+05ECIqrr2IZ+LPUbPrvLLUYWPluYQDeclqs97UKth88ZU\nNqyKwxp7LeDp6bV5oCj97t+DyaBBM4It4EauuU8Osa+sne27mqlvjFg/ZuRZ2Lg2ieI51n4dAHdz\nIe2TQ1SccHGg3En5sQ58ckSISErQsXa5jdIiO9mZppsSIvoykabj3A10eUKcPRcRH85EsWLYrVpK\nim29IkSmsGIIBALBuKPXqfnmY7P50e8r2FNRj8Wo5eGlWeO9LIFAILghhCgxDAPb/G81A4srp9vP\n3soGautdfP+Z4lEXq3qtmsnxZp5el48cCNH4/ke0ffunhFxdTFqYztSvPEB4zgIUnRGsaaC99pzk\noMSZq3qcPjU6dZiCZBm7Mdzv+EOHf6owatPRa5KQJAlf4CqSuoXs9PmDbtnhlnF0Rh/9CZCTZuX4\nubZ+Pwv5IxM19lVHAiJLi21s3ZTC7JmJUacwPLkml9p6F5eb3f1+frnZzat7akdVsI7mmrc5/Ly3\nu4UdH7Xi7gqhUUssL41jw5okpk2Jft+7rZD2+kIcOd5B2WEnR0509I52nJSkp6TIxuL5drKmGG/5\nrs1Em45zp6EoCi1t/kgXRI07qhUjPcXQmwVRkCOsGAKBQDBRMRu0/OXjc/nhi0d459OLmA1a1sxP\nH+9lCQQCwXUjRIlxYrji6nKzm5d21UR2/68DJRym9T9+TfNPfomklsh+bBaJWz9HKCMHdBawpoLq\n2iVv6VJztllPMCwRbwqSnyQTrZ6zmLTodep+1guNyopZNxWVSk8o7KVLvkAo7EYOEnVaxXABogad\nmnULp3Dw9GEAwkEJb5sBf0f3RA1jkG89N41Fc+OHff7BkILHF4j6u1tRsNZc6GLbjmbKyh2EQpFp\nEY9tnMT6FYnE2YYeyzXaQnqiWzu6PCHKj3VwoNxB5UkX/kCkkk1J1lM6305psY2p6bdeiOjLRJ2O\nM1EJhRQuXPL0juWsqu2i3TnYipGfbSE/20x+trBiCAQCwZ2EzaLnW58v5IcvHuHl3TWYDBoWz5o8\n3ssSCASC60J8+xwnOtzysJMzjla3smVF9qiL06DLzflv/A3OXZ+gtxnIf7YEw4YHCcUlgSkBzIm9\ndo1QGM616WhwaVFJCjkJMimxg6dW9PDW/gu9goSEBpNuCjpNPIoSxhuoxxdoACIF6lD5DcOFSS6Z\nPZlJcSZsZj0Nl8DXbgBFQqWNTNSYNFlD4QzboPsNLOLbXb4hz+mNFqyhkMLBSidvf3iV6nMeANJT\nDWxck8R9i+LQ60buZhmpkG53+YbM0hhva4e7K8ihoxEh4uipToLByHVOTzFQUmyjtNhORqrhtu2k\nT9TpOBOFLk+I6vM9XRBdVJ/rGmDF0FBSZCM/x0x+toWsDGHFEAgEgjudJJuRbz0+lx/9voJfv1eF\nyaChMCdxvJclEAgEo0aIEuOE1aLHZtHhdEe3NDi75FEX0Z6qWmqe/RbyxXps2fHk/ulqWLwCxWiB\n2FTQx/Te1i1LnL5qwBNQYdaFmZ7sw6yLkg7ZTd9dfp06HqMuA5WkJRhy0+W/QFjx9rv9cNMqhgqT\n3LxsGvs+ddBwxoTPpyCpwxjjveisfiQJ5uVN6nfMUCjMS7uqBxXxwVA46uPC9ResXZ4Quz5u5d3d\nzbS0RXaWteYAiSlhFhabWbkkbtSCwUiF9FBZGjA+1g6XO8ihSicHyp0cP91JMBR5fUxNM1JSbKOk\nyEZ6qvG2rwsm/nSc20lfK0ZVdyBlXb2314oBEQGtoNuKkZ9tITlRWDEEAoHgbiQt0cI3H5vDT16p\n5L/fOsVfbplD/hT7eC9LIBAIRoUQJcYJvVZNYU5C1GBGgLhRFtFt7+zkwl/8gLBXJm15FmlfepDw\njHmgM0fyI9Q6IBJmWe/ScK5Nh6JIpMYGyIr3Dxq5OZAOt4yzU8Giz0OrtqIoITz+OuTgVSAycrSj\nSx7VtIqBYZKxZh3HT7n5yx9UUd8oo9epmD5Tg0/bSYfHP+Qxf7XtVNR8BoNu6IJ09rS4URWsjc0y\n7+5sZvcnbfjkMGo16KwyBruMWhfGC+w+Uo8kSaMWDIYrpGdnx3O8tjXq/W5nRkKHK8DByg7Kyh2c\nONNJuFvfycowUjrfzqIiG6mTDGO+jtFwu6fjTBRCIYWLl729WRBVtV20OfpbMabnRmwYBTkW8qaZ\nsZjFR7xAIBDcK2SnWvnGo7P42evH+fmbx/n2k4VMnRQ73ssSCASCERHfWMcJORBidXE6NVc6uNLS\nNej3I+36hoNBLv3dv9L0y9+j1qnJ3ToP8+YNhKdmU9smkZmbgVodubz+EJxt1tPm0aBRKeQn+0gw\nRx/N2e8xwgonz6mJNc4C1ARCHXj8Fwgrke6O+FgD33+mGK8cvK4cBL1WjdOh8LNfnud0tRuVBGuX\nJfD45yYTZ9MOm60gB0J8drIx6nGHGjcKsLp46OAnRVE4ddbNtp3NHD7agaJERlg+8kASn124gNMz\nuMOhsrrlugSDoQrpFYWp7Kuoj3qfsc5IcHQEOFjhpKzcyamqzt5xqtmZJkqLbSwqsjM5aeLZIW7X\ndJzxxuMNUX0uMhHj3EUfp866eiebANhiNSwqsvWKEJkZRrSaO3uSi0AgEAhujpmZ8XzloRn84q2T\n/Murx/ju1nlMjjeP97IEAoFgWIQocZsZOBrSHqMjLdFMlzeIs0smbhS7voHWdg4+/j3a95djTDQz\n9YslxG7cgGy2838/7uDTWi+ri9U8uTqXdo+KqmY9/pAKmzFEQZKMXjO0XaOHxtYQr+2WuXQ1jFot\n4fKcwx/qPx2jMDeBGJOOGJNu1M+/sVnm92/W8+lhJwDz51p5enMK6SnX7ADDTcDocMu0OL1RfzcU\n8bEG4mIH7/IHAmE+OeRg285mLlyKHDM708RDa5IoKbbT3unlw1PRsyDaXDIvfHiWP3kg/7rHt/Yt\npOVA6LZmJLQ7/HzWLUScrnb3tvrnTjNTWmSjpNhGUsLEEyKiMdbTcW4nPVaMqtpreRCXrnh7hSLo\ntmL0BFLmWJgkrBgCgUAgiML8/CQ86/P47Qdn+ckrR/ne1iLirROj21EgEAiiIUSJ28zA0ZDtnX7a\nO/2sKExh3YKMEXd93RUnqf3yX+FvaiV+RjKpz67EsHQlTT41/7W9jcvtQQCO1rRRPFtDQ6cOCciK\n85NuCwwZZtlDIKiw67CfPUcChMNQmKdh42It735mpLLacMPt8q7OIK9va+SDva0EQwrZmSa+uCWV\nmXkxI9+5D0a9hrgYA20u36DfGQZMCOlhYNdJhyvAh/ta+WBvC46OICoJSoptPLQ2ibxp5t5Cb7gs\nCICyk02YDJpBNo7hOj0GFtK3IyOhtd3PgXInZeUOqmojXTmSBPnZZkqK7ZQU2UiIG72wJLh5QiGF\ni1e8vRMxztS4+1sxtFJkLGd3IOXihcnIvsGveYFAIBAIorFsbipdviBv7DvHT149ynefmkesWfyt\nFwgEExMhSlwHNzuycbjRkMfPtbNlZc6wx23+/R+p+96PUIJBpq7PJfnZh1ByZlJ5yc//7G/D649s\nq8aYTSwsLqKhU49eEybF1EGyRY0kDb/m8w0hXt/to9mhYLNIbFqhZ3pm5CVyo+3ysj/M9p3N/OG9\nJjzeMMmJOp7elErpfNt17fL27TAZSiSYl5OAXq/heG1bVPGk7oqX7Tub+ehAO4Gggsmo4nPrknhg\nVWLU7oDhBIMeKqtb2Vg6Fa8cxGLS8db+89c9RWMsMhKaW+VeIaL6fGRqiCTBjDxLxJoxz0acfWJ8\nOZnoo1BvBX2tGFU1XVSf7+pnxbDGalg4z9odSmkhc0p/K0ZsjJYWIUoIBAKB4Dp4YNEUurwB3j94\niX997RjffrIQo1589RcIBBMP8ck0CgZaLm50ZONIoyGHyg8I+2TqvvcjWl55B41JS96flBCzaSOh\n5DTeO+HhD4dd9HR5Z01JY2HhLLRaDV2uNj44dJRmhwebRUdhTgJPrskdtGafrPBumZ+yEwEkYPFs\nLQ+U6jDo+osG19MuHworfHSgnZf+0ECbI4DFrObZJ9JYvzwBrfb6fe8DO0z6Egm4VCg7dZX4WD2z\np8WzujiduFgDWrWKypMutu1o5tjpTgAmJenZsDqRlYvjMRqHL4IfX5mN1xfk05NNUX/f5vLxg18d\nxumOBHX6+oxfHO0UjVuVkdDYLHOg3MGBcie1FyNChEqC2QUxlBTbWDjPht2qve7jjhW36n01EWlp\n81NV4+ZMbWQyRt3lAVaMFEOvDaMg28ykJL2wYggEAoHglrN5+TS6fAE+PtbIz984zl9smYPuLt0A\nEAgEdy5ClBgFAwviGx3ZONJoyL75AT27x8YOB5e++m26TpzFkhpL3teWo1m5FsUaj2RJoUOpR8GF\nVqNhUdEsMjPS8AcCnDpziiMnz/cez+n2s7eygdp6F99/pri36Dt1Psibe2U6uhSS7RKPrTaQOfnm\n/lgdPenit6/Xc/GyF61G4pH7k9n0YDJm0/Avt6F2zIfrMNFpVf0sG20umb2VDSiKRJI+ju07m6lv\nipzvghwzRfPMrF6cOGJWQ9+1bF2Xx5m6dto7o49vdbgjx+8rSPRltFM0biQjob7J19sR0ZOLoVLB\n3BkxlM63s2CuFWvsxBEi+nKr3lfjTSikUHfFS1WtmzM1Q1sx+k7FiLGIj16BQJEw/WgAACAASURB\nVCAQjD2SJPGFdfl4fEHKz7bwi7dP8WePzEQz0vg1gUAguI2Ib8YjMFxBfL0jG0eTH9B399h46iTr\nPvw9Wo+H5KJUpn7tfpTCEhRjLHGZ+bQ7ZR5fmY1Wb8JsS8dkMuFwOvF2XOFCXfSJDpeb3by0q4aH\nl+Twx4/8HKsJolbB2gVaVhXr0GhufLf2wiUPv329nmOnOpEkWLE4jiceTiExfnibwEg75sN1mPgD\n/YWAcEDC59Tz9ptuwqEuNGqJZSV2GrwtNHvrebcS3j9aTWqihf/3C/PQafq/BYZaS2FuIruPRD+n\nI3Grp2hcrvdSdsTJgXIHdVciLf0atUTR7FhKiuzML7QSO8GL3lv5vrrdeL0hzp7v6s2DOHuuvxUj\nNqbbipFtIT/HQtYUMRVDIBAIBOOHSiXx3MYZeOVjHK1t5dfvVfGlDQWoRIeeQCCYIEzsymUCcKOW\ni6EYKT/g1T217Dp8mTkVH7Go7H1UKsh8ZAbxWzeiZBWAKR4syai1OhRF5kqHnsSUyK5ygqGLhbNU\ndHYls+vQhSHXcPRsiLMXPHhlmDJJxZZVeibF33gB2NLm56U/NPDRZ+0oChTOjOXpzSlkZozuvLyy\nu6Zfwd+zY64oCk+tyRsxcBIg6FXjc+oJdGoBCUkd5sE1CWx6IIV/e7OSVo+797ZhJSLO/OPvKvi7\nZxf0O85Qu/cri1JZXZzWe91izTqc7uidEwO52SkaiqJwqd5HWbmDQ5UuLl6OWDM0Gon5c62UFNlY\nUGgdsRNlInGr31djSWu7v3ciRlWNm4sDrBhpkw3k55i7RQgzk4UVQyAQCAQTDK1GxdcfncVPXjnK\ngVNNmA0anlidI/5eCQSCCcGdU8WME9djuRgNw+UHyIEQJ05cZt37L5BZexJdrJ5pTy8g9tGH8MYm\nobakojXbAPDICscaDDh9anTqMAXJMnYjgBqVpMdmGVw0qyQ9Jt1UUKwEQ/DwMh2LZ2lRqW7sD1KX\nJ8ib715l+85mAkGFqelGvrgllbkzYkd9DI8cZF9l9A6ET080sXl59pAdJooC+PR0tmgJ+SIvZZUu\nhMEuMylVxdP/P3v3Hd/Wfd/7/3UAnIMNAiBASiJFURKntihay/LQsiXb8kgsxXGcxFm/tk7TNHWb\nm6Zpe5O0zc0v4/YmTdsbt0kcx05iO47jFcuyonhI8tCwNSmS2qIGARAc2OOc+wdAkCBBiqQlUeP7\nfDz0kEgC4CFAUjhvfMa95SSSadp8oQK3Dm2+ED2RRG6l6XCv3r/fEuCfPrco97iZjQa+8bN3hw1K\neo1li4amaRw9EWVbdkbE6XOZz6MoOhY1FLG00UXj3CIs55mJcbm60D9XF0pa1Th+sq8Vo6k1hL+j\nrxVDNkjUVmU2YtRX26itsl72VSmCIAiCAGBSDPzl+rl8+/FdvLrzFDazzJ3Lpo73YQmCIIhQ4nwu\n1srGQvMD/HtbWPnf38XR4cMx1UXlZ2/GtPJWTkZl/uM5P1+8byolVvCF9Gw9ppFM6/FYU9R64/Q/\nDKOsZ361hy27T/e9zzABs1yW2cAhdfOl+7yUusc2ayCZVHl5i58nnz9DKJzG45b52IcmceNid8GA\nY7jtCr/YeIh04VEMxBJpfJ1Ryr22vAqTQGccXcxCtEMhEsm8ZG2wJjE54xgsKSQJFtSVY5T1HGnr\nyntVuz9Vg1PtIeor3cDIX73vfdyG+r4wKXoSyfSot2homsbhYxG2ZWdEnPNlQiVFkVjS6OT6Rhe3\nrCgjHIqM6PYuZ5diFepIRKNpmo+EM2s5W0M0Hw4TjQ1oxZhflJsJMX2KZUyDWgVBEAThcmAzy/zV\nR+bxrV/s5Nk3j2I1y6xcUD7ehyUIwjVOhBIjcDFWNg4U/P0fOfOFr+GIxJi0rJIJn16LYd5Cth1J\n8PNtHdgtRmwWI4d8Cme6ZXQS1HjiTHRkTsIHun91Da1t3Zz2pbEoUzHobahaknD8GDfOM1PqnjTq\nY1RVja3vBnn8N6c5509gMev5xPpJ3LayBKMy+ETtfLMi4sk0TSeCw39SLZMo6HU6ls+uoOeMiZN7\nO4jHVYyKxK03u5FsUVrPdhDsSQ16bMpLbOgkCgYTOinz8V6jffV+qO+Lu2+YSiiSHNEWDVXVaDka\nYfuOINt2dOILZIIIk1HHsoUuljY6mT/bgcmYuR2LWU+4cOHHFedS/FwN5O9I0JRdy3mwQCtG2URj\npg2jykZ9jWjFEARBEK4+LruRh++bx7d+sYvHNzVjMRlYMnPCeB+WIAjXsIsaSjQ3N/PQQw/x4IMP\n8sADD3DmzBm+/OUvk06n8Xq9fOc730FRFJ577jkeffRRdDodGzZsYP369RfzsEbtQq1sLERLpzn+\nrR/R/u8/RyfrqfnoPFwfu4vkxGn8/K1u/tiU2ahw3cxy9p2zEUnqsCoqy+r0xMOp3O0MrEZQVYmF\ntXP4QygJSCRSfozGc9w00zXsSd9QVQ37DvXw6JNttB6NYNBLrFtdwr3rJgxbun6+7QpdoThdw8xl\nUGQdHqeZfU09PPdKOzve70LTwFussGadh9U3enJbDIY6brtFocxr42T74DP5Mq8t17oBmVfv50wv\nzqsw6VXo1fvhvi8sxqGrUFRV49DhMNveDbJ9Z2duU4PZpOPGxS6WNrqYN8tRMOi5mlzMnyvItGKc\nOBXNtWE0tYZzoQ8MbMWwUltlE60YgiAIwjWh1GXh4Y/M49uP7+K/XziI2WhgXpVnvA9LEIRr1EV7\nBh6JRPjmN7/JkiVLcu/7wQ9+wP3338/atWv5/ve/z9NPP83dd9/Nj370I55++mlkWebee+9l9erV\nOJ3Oi3VoYzaWlY3DiQc6eOu+L2Hevx9TsYXqTy3Fsu4OesxufvLHHvaciFLsMLGssQ6np5xIUqKs\nKMk0dwKHxY4vDJF4kic2tdB0vINgTwK3w0hVWRkdXV78nRouu467bpQpdZdQZJuMUdYTT6YJdEXy\nTgKHqmpYWlfO4785zY73uwFYttDFxz40iQkl51+peb7tCsNVJmgqlFmL+eq/tORWXVZPtbDulhLu\nXDOZYDCcd/nhHpu/+0QD//zzXbT5QqhapkKid/tGb5hhs8g8+8ZR9hwOAOSqK9x2Iw213mGDnJF8\nX6RVjYMtIbbv6GT7jk6CXZkgwmrRs/x6N0sWuJg3035NtgZcqJ+raCxNy5EwB7MDKQ8NbMWwGVg4\nvygXQohWDEEQBOFaNrnExhfXz+F7v3qP/3h2H3+1YS61Fa7xPixBEK5BFy2UUBSFRx55hEceeST3\nvrfffpuvf/3rACxfvpyf/OQnTJ06ldmzZ2O32wFoaGhg165drFix4mId2mUhvKeJPR/7C8yBDtx1\nXqb8f6uQl61gbzscOqXnT+5tJNCdoD1WRGdMxiBp1JbG8FjTAKTTKk+82sybe84QS6Szt6onGp1I\n83EPoHLDPIW1ixWMigQopNXMdQq1UwysavB1JPjdiwGe+mUINJhRY+OTG8qomWYd0dc30vkMA+cK\nqCmJeJdCqtvErtYkOinJ0kYn624poXa6FUmSMIxyvaJiMPD1Ty+kJ5LgVHuI8hIbFpMhL4QxKvp+\n92Nfu8fcag/3r6opeLvDzcoASKc19jeH2L4jyFs7O+nszlS22Kx6Vi4rZkmjkzkz7GJd5BjltWK0\nZlsx+s0nKZtgzA2krKu2MqlUtGIIgiAIQn/V5U4+/6HZ/ODpPfzgN3v48kcbmDLBPt6HJQjCNeai\nhRIGgwGDIf/mo9EoipIply8uLsbn8+H3+3G73bnLuN1ufL7Cr7BfLXxPvsCxL/8z+mSSitVVTPjU\nOtS6Ofzu/SjPvRfCbY+ybEEtx3rcJNI6XOY0dSVxjIa+5vefPL8/72Re1juxyJXodAppNYJBbmPt\nkjkY5b6TsKHaKdKqxp5WP5CpUIh1mIgFjaBJyCaVv/zMdJY0OEd1QjfS+Qy9FQhvvRfgXBskuxU0\nTcJi1nH7Sg+3rfBS4hnbJoaBoYHdouSGWj7xanPefdE/kOhvT2uA+PLMx3pvy6CXhpyVoakS+5p6\n2LYjyNu7uugOZYIIh83ALTd5WNLoZFatHYNBnByPRlrVaDkaYvs7vtxmjP6tGAaDRM00ayaAyLZk\nOOyiFUMQBEEQzmf2tGI+t24G//d3+/n+k+/xtw8sYIL78ljLLQjCtWHcnrVrWuGVCEO9vz+Xy4LB\nkHll2uu9ctJcNZFg/5f+mRM//hUGs4Gqjy3Eed9ddBeV8eNNnexrS6CTJCorp3LQZ0WSYE6FRM1E\nA5LUN6Mglkjx1r4zAEjIWJQpKAY3mqYSTZwiljqDLq6hV2S8HmvuOr2tCQPtORzA3xUn0aUQDZjQ\n0jokvYq5OIrJmWBhYzElnpFVSPR3/dwynnvjSIH3T6J8khNV1XhrZwdHDxg4eSATPJRNMLHhrnLW\nrijFYhn623O4xz2dVvnJ8/t5a98ZfJ1RvE4zi2dN5NPrZqLX64a9LwYK9sR4+rUj7D3sz92WzSxz\n5HR37jL+rji/f+0su3ckaD+j0t2TCSLcTpm7105i+fUe5s5yYtBfmCDiSvqeH6toLM2BQ93sPdjN\nngNd7D/UTTjSFxwV2Q0sW1TM7HoHs+uLqK2yX/UzOK6Fx3041/LXfy1/7YIgXBoL60sJx1I8tvEQ\n3/vVbv72gQW4HabxPixBEK4RlzSUsFgsxGIxTCYT586do6SkhJKSEvx+f+4y7e3tzJs3b9jbCQYz\nKxG9Xjs+X89FPeYLJXGmndbP/g2h3fuxTLBT96c3Iq9eS2vExH/8zk8grGK3WblhUQMetxOTIc2M\n0gQOWaXf3QNAezCCrzOKovdgVirQSQZS6R7CiaOoWgzIVCOkE8nc/dMejOALRgcdl6bB2bY08YCD\nZFwHkoapOIrJFUfSZSY0pxNJTp3uHPUwwnVLKohEE4O2K6xuKOOxJ4/wwqZ22s5mKilqqzLzIhY3\nuNDrJMLhKOFw4ds93+M+sAqiPRjluTeOEIkmuH9VzZD3RSGKrGfzjpN5t9UejKKpkIwYSIYUkiEZ\nTZVoJYHLaeD2lV6WNDqpq7ahz65IDXZcmJUZV9L3/GgEgolcG0ZTS5ijJyODWjFuvt5LZblCfZWN\nSRPyWzG6u4b4ZrlKXK2P+0hdy1//5fi1i5BEEK5Oy+eXEY4meeb1I3zv1+/xlY815A0EFwRBuFgu\naSixdOlSNm7cyF133cUrr7zCDTfcwNy5c/na175Gd3c3er2eXbt28dWvfvVSHtZF1/3WLg5/7ssk\nA514501k2p+tRVtwPYc6Fb774hlSKkybUs6ihtnIBgORngDL5pgYatRAKi3jssxA02xoWppI4hjx\nVHveZQZuiyjUTpGK6on4zKRjBiQJjEVxTMUxdP3aRMLxJP/y2E7C0QTBngQuu0LdFDf3r64edsME\nDN6ukExIbH69gz/98gFC4TQGg0TlNANpUwhfqpNn3wlwvLNvZehQYokU7cFIwYDkgw7YHKzvvsgE\nETLJHplEWAY1c1IsGVSMjjhGe5J/+YtGJhSPvqrkWpJWNU62RWlqzazlbGoN0+4f3IpRV2WlrtpG\n3XQrRQ75sjw5EwRBEISrye1LphCOJdn4zkn+95Pv8zcfnY/ZKNohBUG4uC7ab5l9+/bx7W9/m7a2\nNgwGAxs3buS73/0uX/nKV/j1r3/NpEmTuPvuu5FlmYcffpjPfOYzSJLE5z//+dzQyyudpmmc+69f\ncuLr/wpoTF1XT+mn7kKdOgMck5g+wcHyMzKqsZSyiRNIJpME249x56Ji9AXOydOqxuu7k7z8VgJN\ns5FIB4kkjqNpfSd0JkXPsjkTB22LMMr63FDJdEJH1G8iGcqk3xPL9Hzlz6p588CpAYMzIZ5Q89Zp\ndvQk2LbvLLuafbnPM1yAAHD8ZIznX2ln244gqgoOu4EP315Kp9bJrtZzkN1sOnBl6OCvP7MhZM/h\nAL5gNG+WQ+8xjHXAZv/7L5FM47KbqKtw8uaesyTDMomQTDIkg5YJInSGNHJREsWWRG9KI0lQ7DDh\nEqWOg8TiaVqORHIBxKHDISLRvjIIu03PdfOKqK/OzIKYXmlBEVsxBEEQBOGSkySJDcurCEdTvLn3\nDP/2zF7+cv0cZMOFW9ktCIIw0EULJWbNmsVjjz026P0//elPB71vzZo1rFmz5mIdyrhIR6Ic++tv\nEnj2FWSbQt2Di7DccydqyWQoKgeDiVBMx9Sq2cRSOsz6JPMnxSiq8xa8vVPtaZ7cHKfNp2IzSzxw\nu4N39p/mvRYdwZ5Mm0VdhYuPrq7BMkSivea6SnbviNN6LAFIGEwpzN4o1lIDbx44xd03TGV3s2/I\noY/9xRLp4QOEtMZbuzp5/pV2Dh3OlNYrZhWDI4alOMXWYx3Ek+qg60FfRUPv+tLetpEn/9DClt2n\nc5frDTGisRQP3FqLUdaPesDmwNaSu2+Yhj8Y4/CRGG/v6qLrSBFatiJCJ6eRbUkUexK9MRNE9Dew\nOuVa1RFM5NZyNrWGOXIivxVjUqmRxQts1GcrIcomiK0YgiAIgnC5kCSJT66tJRJPsavZx3/+bj8P\n3TPrvC9CCYIgjJWox7oIYsdO0fLgl4g2H8Ve4aT2z1agu3k1mnMC2CehSXqOB2WOdWTaH6a4Ekxx\nJdFJg3/ZJ1MaG99O8NquJKoGjfUG7lxmpLLCQvWkGu69efp5Zz3E4yrPb2rnmZfOEo2pWG06sIeQ\nbUkkCQLdmYAhEksNWWUwlP4BAkA4kmLT6wFe2uzLbUeYOElPj64LgzmFJEE8NfxtBntidHTH2LK7\njd3NPgLdcYyybsgQY+u+sxw4FmBBXSkfWVE1ZBVE/9BgYGuJrDewZ3+IH/z4OLv3dZNIZto2bHYd\nKTmKbMsPIiaX2IjEUnmBxsDqlGuBqmqcPB3jYEuocCuGXqJ6qpW6aiv1VTZqq6w4HcO3/QiCIAiC\nML70Oh1/cucM/vWpPexu8fOz3zfxqdvq0YkXEQRBuAhEKHGBdW5+k8MP/R3pnjATl1Qw5U9vR529\nEByTwOwmltZx8JyRrpgeo16lvjSO01z4ZLv1ZIqn/hDH36Xhdkjcu8JIbUX+Q2aU9ZS4Cq9tSqsa\nW7YG+OVvz9DRmcRhM/CR+ybyRnMrHaHkoMs3HQ+OYtZCRm9LRDqh44VXffzhzQCxuIpR0bFmuYdb\nlnv49+d2E+s+TxLRj8tu4tWdp9iyqy33vqECidxxhJK5IGKoKoiBoUE4kuKd3V1s39nJ7n3dpFKZ\nIGLyJBNLGp0sbXRRNlHhyS2Hs7eVzrutVFob9fDPK11vK0bvWs5Dh8NEon2VNTZrphWjdy1n1VTR\niiEIgiAIVyLZoOfPPzSb7/5qN1v3nsVqkvnIiipR3SgIwgUnQokLRFNVTv/vR2j7/n8h6SWqN8yl\n+BN3o1bUgqMMFCu+kJ5DPiMpVcJjTVHrjVPoXDYa13j+zThv789UFtw0X+bWxQpGeWT/CWiaxq69\n3fz8qTZOtMVQFIl775jAPWtLCcXiPLercOjQGYqzsL6EwIH2gh8f/HnAiIUfP3qaXXu70TQodsls\nuHMCq27wYLcZaA9GRl19MXOqkz2t/vNfsIDeyo3+VRD9Q4PuUIp3dneyfUcnew70kEpngojKcjNL\nGp0sWeBkcpk57zaHui29jiEDoatFR2eSpuxGjIOtIY6eiJDu190zsdTI4oaizEDKKitlE0zodOLJ\niiAIgiBcDcxGA1/aMI9v/WInr7x7EptZ5o6lleN9WIIgXGVEKHEBpLp6OPLnf0fn5m0YXWbqP7MU\n47o7UD2TwVFOWjLQ6lM40y2jkzRqvHEm2lODZhIA7GlN8cwf4/RENCYW69iw0kjFhJG/Cn/4WIRH\nn2pj78EeJAlWLivmvrsn4nFnhlrqDcPPXLh10RTeOk8ooamQ6FGIdxrpjOs5TTc10/pWehoMfV/Y\n6DZdZDTWlfLG+2dHfPn++g+z7K0i6epO8tq2INt2BNl7sCc332BahZkljS6WNDopmzD8gMrhKlKu\nFv1bMZqyMyHODWjFmF5ppV60YgjCuNM0ja7uFL6OBL5A5o8/kMDXkcAfSGIy6fiHv6oSlUqCIHxg\nNrPMwx+Zx7d+sYtnXj+C1WRgeUP5eB+WIAhXERFKfECRg620PPgl4ifP4Kwupubzt8DSFWjOSWAt\nIZTQc+CckUhSh1VJM6M0jlXRBt1OV0jlt6/F2Xs4jUEPa5coLG+Q0etH9qpzuz/O48+c5vW3ggA0\nzHbwifVlTCnPf9W//xaOgebXeJjgtlA8RIigpiQSXQqxTiNaWockwdJGJ+tuKaGuylbwuIb7fIUU\nO0xMKbWPOsjo1TvMMtiV5O1dnWzb0cn+ph7U7F1eNdXC0kYnixe4mFhiHNFt9h+2eTW1acTjKi1H\nw/22YoQJR/JbMRrnOqirslFfndmKYVTECY4gXAqJpIq/I8GxthStRzqzgUMyFz74OxIkU4P/LwFQ\nZInplZaCwbcgCMJYuB0m/vq+TMXEL15pxmKSWTSjdLwPSxCEq4QIJT6AwG9f5ujD30CNJZi8fBpl\nf3Inal0DFJWjKQ7augwcDihoSJQVJZnmTgxa9alqGu/sT/H8m3FiCZg2Scf6lSZKXCM7+esJpfjN\ni2d5cbOPVEpj2hQzn1xfxpwZjiGvM9zMBb1ONyhESMd1xIJGEj0KaBJmk45VK4tZt7oUh0NPVyhO\nPJke8oS9/+fr6I5hVPQkUyppdfAT6jlVxUTjKeZML87btDESakrCrjn45vcPc6A5hJa9+ZrpVpYu\ncLKk0UmJZ2RBBPStIN3d7KOjO15wBelwLrcwI9iVpKklxMHWTBAxqBWjxMjC+UWZEKLKStlE0Yoh\nCBeDpml096QyFQ7ZyobeiofeaoeuYebwFDkMTJlsxutW8BQr2b9lSoqNeNwyDrtB9HwLgnDBlbot\n/NVH5vHtJ3bxXy8cwGw0MGd68XgfliAIVwFJ07TCL7Vcxny+HgC8Xnvu35eSmkxx8p/+D+ce+SV6\no57qjzbg/OjdqGVV4CgngZEmn5GOiAFZp1FXEqfYOnjNpq9T5anNcQ63pTHKcMcyI4tnGUY02dhR\nZOWxXx/h6RfPEgqn8RYrfOxDk7hhkWvEJ5JDnTSnVZVfvtrMH7b56fHLpCKZEn2rTeK+OyexcpkH\nRZFGfcLe//OlVZUnNrXQdDxIZyiOy27EYpIJRxMEexK4Hb1vJwn2xDEq+txtmBQDmqYSS6hoKYl4\nj4IWUYiFM5eRJKirsmZaMxY4c60ro/XEq80FKzxWNZYXXIPa//77IGHGcEb6Pd/bitF/HsQ5X34r\nxrQpZuqrbdRVZeZBOIsu71aM8fp5vxxcy187XHlffzJb5eDrSOZCBp8/U93gy1Y59G74GUg2SP2C\nBoUpk21YTeAtlvEUKxS7lHGvWPJ67eP6+T+oi/W9dKV9n16NxGNwaTSf7OR7v34PCXj4vnlUlztz\nHxOPwfgTj8H4E49BYcM9fxCVEqOU9AVo/dzf0PPOHsxeK3V/chPKmtsy8yPsE+mIyjS1KyTSOlzm\nNHUlcYyG/Cef6bTGH3cneeXtBKk0zJyq58PLjRTZzv9EU1U13ng7yK9+t5+z7XGsFj0Pbihj7Urv\nqHuHC81JiMXTbNnawfYtaYLnMh+rmW7mrltLWdzQF3gMPGEPdMdzbw91wp7/+fR89o4ZuaBi4zsn\n8iojAt1xAt1xljeUcet1kymyZSocukJxrBYrL28+zdZ3gxw9HgMyQcTMWlumNaPBids1tiCiVzyZ\nZnezr+DHdjf78tagDvTrP7SO+r75oOJxlZZjYZpawpkgonVwK8aCOY5sCGGlaqp13E9sBOFKpGka\nPaF0tsKhb55D79v+jgTBrqGrHBx2A5MnmfEUy3jdCl6Pklfx4LAb8oJl8cRGEITLTc1kJw/dPYt/\ne2Yv//rUHv7H/fOpKL2yw0pBEMaXCCVGIbRzLy2ffpikr4PiWaVUfX4t2nU3orkmoxqdHA0onOxS\nkNCYVhxnctHgYZYn29M8+Wqc034Vm1niQzcbmVOlH1Gp7Z6DPTz65CmOHI8iGyTuurWED98+Abvt\ngz+M/o4EL2328cprfsKRNAaDxIrr3dyxuoSpFfnBxfAn7P5hT9gHMsp6imxG9hwOFPz4ntYAG5ZX\n0RFMsX1HkO07Omk9FgFAJ8GcejtLGp0sanDiuoCv9HeF4kPOtAh0x3PDNAe6kPfNcDq7khzMruVs\naglxZEArxoQSI9fNK6K+WrRiCMJoJFMqgY5krqqhf+DQ22oRTxReUWwwSHjcCrPqTHiLlcyf/i0W\nbgWjUYSBgiBc+eZWefjM7fU88vwBvv/k+/ztAw2UXuUDwQVBuHhEKDECmqbh+/lvOP7330FLp6lc\nW8uEz92DOn0OOCcT0SwcOG0kFNdjllVmlMaxG/OftCaSGhvfTvDa7iSaBgtnGFi3zIjFdP4TxeOn\novz8qTZ27e0G4MbFLr7w2RoMuuQH/tqaD4d5flM723YEUdXMq3gfuXMCa5Z7hyzn7wrFh1zz2X/7\nxUgNdXvphI62Yxp/8/UmTp7OfFyng4XzXSyYY2fR/CKKBmx/GOsch4HXMxsN6CQoMPYCnZRZkTWa\nrwXGdt9Apjrm1JkYTS1hjp5q4719nZxt7/scej1Mn2LJtGFUW6mrsl3QgEYQrhaaphEKp/F3JGjP\n21aRHSLpT9DZnWSopka7TU/ZBGMmZBgYOBQrOB0GEf4JgnDNWDxzAuFYisc3NfO9X73H3z6w4Ipv\n7xIEYXyIUOI81GiMY3/7LfxPvojBIlP3icVY19+FOrEKzV7G2bCRFr+CqklMsCep8iQwDHghrPlk\niqc3xwl0axQ7JO5daaRm8vnv+kAwwS9/e4YtWwOoGsyut/PJ9WVMr7Tg9Zrw+cYWSqTTGm/t7OS5\nTe00Hw4DMKXcxLrVpdyw2HXeNpDh1nw6bcZcq8VI9b+9dFxHIiST7FFIpEm0AgAAIABJREFUJzKh\nwml9ggVzHCxZ4OK6+UVMn+oaVM481jkOQ11v+fyygoEEZIKKaDyF3TK4RWS4+6Z3M8j5xBMqrUfD\nNGUHUh46HCYU7iuDsFoyrRi9IUR1pVW8+ioIQCql0dHZL3AIJPBnN1b0znKIxQtXOej14HEpzKix\n5QcO2T8et4zJOP4DawVBEC4nKxeUE44lefaNo3zv1+/x/3/hhvE+JEEQrkAilBhG/NQZWj71V0T2\nt2Arc1D70Ar0K25F81SSNHpo9pvwhQzodRr13hil9vxhlpGYxnNvxnn3QKaN4+YGmVsXKSjy8K+k\nRaJpnnnpLM9vaieR0KgoM/GJ9WU0zHZ8oInq4UiKV14L8NLmdvwdmUCjca6DdbeUMrvONuLbHm7N\nZySe4sk/tLCqcTJuh+m81QqapnH2XAI55qDrWAw1G0QgacjWJHNnW/nLB+qwWob/Vh3rHIehrpdW\nNdx2hY6exKDruO1DBy/nW7la6P7obcXonQdx5HiUVLovESn1KjTOLaK+ysaShSVYTWnxaqxwzdE0\njUg0TXtuYGR+i4W/I0FH59BVDjarngklxn4hg4K3WMZbbMTrlikqktGLnytBEIRRW7e0klA0yas7\nTvEX39vC/atqaKjxjvdhCYJwBRGhxBC6XnuLw3/6FVJdIUqvK2fqQ3egzlsKrgq6VAcH2ozEUzoc\nxjT1pXHMct8zYU3T2NOa5revxemJaEzy6NiwysjkkuFP0JMplU2v+fn1787SHUrhdsp89GMTWX59\n8Qd6snz6XIwXNvnYsjVALK5iVHSsXeHl9lVeyiaYxnSbvWs+39xzhliiL4yJJdJs2X2aLbtPUzxE\ntYKmaRw9EWVbdkbE6XPZqgJJh2xLoNiSyNYkkh5KJ9kxnCfEGesch+Gut6c1wNwqT8G1pA213mHD\nluFWrqqqRtuZGAdbw7nNGGcGtGJMq7BQl50FUVed34rh9VrF0DvhqpROawSCfZUN/QOHYFeKs+0x\norHCVQ46HRS7FOqrbbmqhryZDm4Fs1lUOQiCIFwMkiRx38pq7BaF57ce49+e2UtjrZePra4ZdfWs\nIAjXJhFKDKBpGmf+7Wec+va/I0lQde9sPA9+CLVyFpqjnOPdFo4FMyeJU1wJpriS9M8LukIqv/lj\nnP1H0hj0cNtShZvny+j1Q59Ya1qmneKxp09zpj2O2aTjYx+axLrVJWMuy9c0jb1NIZ5/5Rw793Sj\naeBxy2y4cyKrbyzGZv1gD71ep+PDN01nd7MvL5Tor3/VwS2N5QQCKjve62b7zr6ZCIoisaihiGOd\nPuK6CNKAL3fbvrM0He+gobZkyFaMsc5xON/1VjVORq/XFQwXhqPX6bh/VQ0fvmk6vmAUvz/N4aNR\nvvWDIwVbMRpmO6irslJfYxOtGMJVKxxJ563EbB+wIrMjmByyZcpmNVDqMeIplrMVDkpexYPLKaoc\nBEEQxpNOkli3tJLViyv5/uM72XHIx8HjQT6yoprrZ0/4QJW+giBc/UQo0U+6J8SRv/gHghtfR3EY\nqf/MUkx334k6oZqYsZSD58x0xfQY9Sr1pXGc5r5X7VRN4619KV7cGieWgOllOtavNOF1Dn+CeaA5\nxKNPtdF8OIxeD7et9LJ+3QScjrENKkwkVd54K8gLm9o5dioKQM10K3euLmFRgxODYXT/KQw3OHK4\nk3oATYN0TM9LGwM8+3QPaipzX5iMOpYtdLG00cn82Q66I3H+9v8eZ6gj6+hJDNuKMdY5Due7ntth\nyoULIx2e2dmdzLVhHGwNc+RYZHArxpyi3EDKyZPEVgzhypdOawS7shUOgexMh36Bgy+QJBItHF72\nVjnUVln7tVUoef+eUuEUFUKCIAhXgMmldr7yQANbdrXx9GuH+clLB3n7wFk+saYOr9M83ocnCMJl\nSoQSWclAkIN3fYrYkVMUTXNT8+erkZatQvNMw5dyc6jNSEqV8FhT1Hrj9D83bQ+qPLU5xpHTKiYF\n1q8wsnCmAd0wqXDbmRiPPd3G27u7AFjS6OSBD09iUunY2ik6u5Js/KOf32/x0dWdQqeDZQtd3LG6\nhNrp1kGXP9+WivMNjown0ySS6UEn9b1BRKJHJhFS0LJBBDoNxZ5Atie5dVkJH18zNXcdSTd0ONBf\nbyvGQGOZ4zCa6xllfcFKC03LbsVozazlPFigFWNqhYX6flsx3E6xFUO48kSjaXwD5jf0HyIZCCZQ\nC3dWYDbpsiGDtWDg4HYOX0kmXLuam5t56KGHePDBB3nggQdy73/jjTf47Gc/y6FDhwB47rnnePTR\nR9HpdGzYsIH169eP1yELgkCmamLlgnLmVXn4+cZD7D0S4O//+20+dON0Vi0oFy/GCIIwiAglsuJ7\n3yd+vI2yGyqZ/NDdqDMXknZMobXTzpkeGZ2kUeONM9GeGVoJmVcHt+xKsumdBKk0zJ6u556bjBTZ\nhq6O6OxK8uvnzvDKa35UFeqqrHxyQxl1VbYxHfexkxGe3+Tj9bc6SKU0rBY996wtZe0KL97iwdsh\nRrqlYqgBkJqmIUlS7vpGRYemQSqqJxlSSPTIaOnM7Ug6FcWRQLYlkC2pXGvGniMB4sl0XlhQW+Fi\n276zw36tva0Y5QU+Ntwch+Gc73r9wxsJidajEQ62hDLzIFrzWzEs5n6tGNU2qqdeu60YY13NKlx6\naVWjsys5IHDIDpH0Z1ZmhiNDVDlI4HLK1EzLr3LoP0TSahGPvzB6kUiEb37zmyxZsiTv/fF4nB//\n+Md4vd7c5X70ox/x9NNPI8sy9957L6tXr8bpdI7HYQuC0E9xkYm/XD+Ht/af45ebW/jV5hbeOXiO\nT62to8w7tue9giBcnUQokWWfW8PiH96PNn0GasVMeoxlHDxrIZLUYVXSzCiNY1X6yvBPnEvz5Ktx\nzgRU7BaJD91sZE7V0HdnLJ7mdxvbefb354jFVSaVGvnE+jIWzi8adZ+dqmpsfSfAL54+zt6DmZLm\niaVG7lhVwvLr3ZhNQ58EjGRLxXADILfuPUsskc4GEQbC52QSoYFBRBzFnsRg6Qtw+usNF4qLTDyx\nqZndLX46QwlMih7QiCUKv+Q6XCtG/zkOozkZHup6aVXlpy8c4p33O+js0CAhE4/q0fodWqlHYcGc\nolwIIVoxxr6aVbh4orF+sxwCSXwd+S0WgWCCdOHMAZMxU+VQO92aWY/pVvAUy3hzVQ7KqFvCBGEk\nFEXhkUce4ZFHHsl7/3/+539y//33853vfAeA999/n9mzZ2O32wFoaGhg165drFix4pIfsyAIg0mS\nxJJZE5g51c0vN7fw9oFz/M+fvsvtS6Zw+5JKZIN4biAIggglcjSbi/SyO9DMbk4lSjjSZkRDoqwo\nyTR3An32d2Y8qfHy9gRvvJ9ZPbdopoF1y4yYjYWfmKfTGpvfDPCrZ08T7EpR5DDwyQ1lrLrBM+on\n89FYmi1bO3jh1XbOZDdWzK63s251CQvmOM57QjzSLRVDzYrQNOgJSiRCZpL9gwi9ilIUR7Flggiz\nUU88mUaCgoPrXHYTNovCN362g5Ptodz7ewdmTnRbONMRGXS94Voxeg3VanE+ikFHIqbj9b1BmlpC\nvLMnSKhHA3pDEA29McW0SjN3ryynbroVt2twJcq1bqyrWYWxUXurHDqS+AOJQYGDL5DIq+bpT5LA\nVSRTVWnN21jRv8XCatGL4WTCuDAYDBgM+U9Rjh49SlNTE1/84hdzoYTf78ftducu43a78fkK/z8n\nCML4cVgV/uTOmSyaUcpjGw/x3NZj7Djk41Nr65heVjTehycIwjgToUQv2UzCWU2Tz0hHxICs06gr\niVFs7XtCf+h4iqe3xOno1vAUSaxfYaRqcuG7UNM0drzfzWNPt3HydAyjomP9ugncs6Z01KvpfIEE\nL21uZ9PrAcKRNAaDxG2rJrD6BieVk0d2Ah5PpjnS1jWiLRX9B0BqGqQiBhI9ciaIUPuCCGNRHNme\nxGDOr4iwGA189eML2LLrVMGVmvNrPPzmtcN5gUR/iVSa5fMnsedwx6haMUYjkVRpPRrJtWE0tYbo\nCfU91jq9hsGSwmBOYTCnMZgy7SeaPcWCuQ7RklDAWFezCkOLx1V8HQmOnkzSerRr0EyHQEcyb5Bq\nf0YlU+VQPdWatyKzt+LB7ZLFK1TCFeVb3/oWX/va14a9jKYNscKlH5fLgsFwcX4Xeb32i3K7wsiJ\nx2D8DfcYrPbauX5+OT978QC/33aMf/nFTtYtm8YDa+sxG8VpyYUifg7Gn3gMRkf89GdFkxK72kwk\n0zpc5hR1JQmMhsyTm3BU47k34+w4mEInwfIFMrcuUpCHqHRoORrm0Sfb2H8ohE6C1TcWc99dE0f9\nyvqhw2Gef+Uc23d2oqpQ5DBw310TufVmD9VV7hFNo+9fTh/ojqOTMhUPA/VvjdAhUWpxcaK5OxtE\nZL5OSa9iccfRWRIYzOmCrRkAnaE4ikHH/atrCq7UvPuGqfz9I+8Mecwd3XFuXVjBhhXVF2wuga8j\nzu79nZxqS9B8OMLh4xFSqb47osSjMH+Wg/pqG6Wlen74u/cotA5kuBWj17qxrma9VqmqRldPqi9k\n8PdVOmT+TtIdSg15fVeRzLQp5vzhkbkWCwW7VVQ5CFePc+fOceTIEf76r/8agPb2dh544AG+8IUv\n4Pf7c5drb29n3rx5w95WMDi4Eu9C8HrtYkvMOBOPwfgb6WOw/sZpzKl08bOXD/HcG0fY+v5pPrm2\nlllTiy/BUV7dxM/B+BOPQWHDBTUilMhKqxJ6CSqK45QXZV751zSN91pSPPtaglBUo9yrY/1KI+Ul\nhU+Qz7bHefyZ07z5ThCAxrkOPn5vGRVlI1+BlE5rbN8Z5PlX2mk+knniVFFu4q5bSlm2yIUiF35l\nc6jBggPL6Qu1UwDMmVbMe3t72LYjyLvvdRGNqYCCzpCZEWG0J5lSYaZqsos/7hpc/dBfb8Ax1LyG\n9mCEztDQmzaKbErusmM5idU0jbazcZpaQhxoCfFurhUjQ5Jg2hRzdiuGjfqq/FaMeDJNcdHoV4xe\n68a6mvVqFU+o+HtDhkD/wCHTauHvSJBMFf6BVBQJr1th6hQzXrdCZYUds0nLBQ4el4w8xO8CQbga\nlZaW8uqrr+beXrFiBb/4xS+IxWJ87Wtfo7u7G71ez65du/jqV786jkcqCMJI1Va4+Manr+O5rcf4\n/Vsn+P6v3+f6WRP4yMpqbGaxrUwQriUilMiyGVUWT4nm3g72qDyzJc6BY2kMerjjeoUb58voC8xt\n6A6lePr5s/z+Dz5SaY2qSguf3FDGrLqRl+2Ewik2ve7npc0+/B1JACxFafT2KHJplLMxA3q9a9D1\nhhssmEprQ5bTSxJoKhjTFuSUhZd+F+WZ+BEgUzUwearGmVAHelNfRcQpX4jaiiJWNZazu9lPoDtW\n8LYHzn4YGC4Md/IKML/6/LMj+kskVQ4fy7RiHGwJc6g1nP8Ks25wK0bDQhv3r5pc8PbGumL0Wnct\n3W+alqlyyA8c8odIdvcMXeXgdBiYMtmcGxjZW+HQW/Fgt+VXOYjEXbjW7Nu3j29/+9u0tbVhMBjY\nuHEjP/zhDwdt1TCZTDz88MN85jOfQZIkPv/5z+eGXgqCcPmTDXo+fNN0rqsr4acvNbF131n2Hgnw\nsVtqaaz1ioo/QbhGiFBiAFXT2L43xYtb48STUFWuZ/0KIx7n4Fcl4wmVF19t5zcvniMSTVPqUXjg\n3kksbXSNeAtD29kYL2xqZ8vWDuIJFZNRR1WNTHsigF7JrHro6EkNOSxwuMGCqxaUDyqn11RIhmUS\nPTKpSG9rRopSr8LaRhdLG52Ulxn5+/96G0OBkfzvtQT4p88t4sM3TaejO8arO0+xpzUwqtkPw528\nTi6xcf/q4QcidnYleXt3J00tmXkQrcfyWzG8xQo3znJRNdXCpvcP05OMDWo1Od+Mg7GuGL3WXS33\nWyKpEsjObcitx8xWN7QHEgQ6EiSShascZIOEp1ihstzc11aRW5GpUOxWhqx4EgQhY9asWTz22GND\nfvwPf/hD7t9r1qxhzZo1l+KwBEG4SCpK7Xztkwt45Z2TPPvmUf7j2X3Mr/bwwC21uOzXVqWlIFyL\nRCjRz7kOlSc3xzh2RsVshA0rjSycYRiU0qqqxmvbO3jit6fxdySxWfV8+r5y1iz3jKikWtM09h7s\n4flN7ex4vxvInEjfttLLDYud/K8ndqDvHrwWc+CJ9PkGC65bWonbYcQfjJMIyyR7ZJIRGbTM16OT\n0xidSW5Y5OLP7q3LfZ3twciIZgNMLLby8VtqiS8v3DoynP4nrx09MZxWI/NqPNy/qjpvdaSmaZw+\nG+dga4imlsxAyrazfcem08HUyRbqqq3ZdgwrxdlWjPZghGd3Dg4kBn4dhYx1xeiFNlRbzuXqcrnf\nhqNpGj2hdG5opK9Ai0Vn99BVDg67gcmTzHg9g1dkeooViuyDf2cIgiAIgjA8vU7H2sVTaKjx8rPf\nN7G7xU/TiSDrl1dx49xJ6MT/rYJw1RKhRNZpX5p//XWUtApzqvTcc5MRh3VwwPDe/m4efbKNYyej\nyAaJe9aW8uHbS7Fazn9XJpIqr7/VwQub2jl+KtP6UDvdyrrVJSxe4ESvl0YcCMDwgwUDnXH+sDVA\n+IyNztOmviBCSaPYkij2BDpFRZLgqC9IIqXmTh7PNxvAbDTQHozkTjjHMvthqJPXZFKl5UimDeNg\nS2hQK4bZpGPhfBfTppior7JSPc2K2VT4pPdCzDgY61yLD2qotpw/3zD/kh/LWIzX/QaQTKr4g/kr\nMvNnOiRIJApXORgMmVkOk8vMeN1yXluFJ1vxYFRElYMgCIIgXCylbgt/c/98Xn//NE9taeXnLx/i\nnQPn+OTaOkrFwGxBuCqJUCLLZJSom6Lnuhkys6cPvluOnojw86faeG9/D5IENy91c/89k/AWn3+j\nRmdXkpe3+Hj5j366ulPodLBsoYt1q0uomW7Nu+xoTqQHXlZNSyRD2daMqIGftZ7JXM6pRzLHUJUY\neuPgCoyBYcdw7RUWk4Fv/OzdQfMr+lc3jEY8pnHsWIKm1iAHW0IcPhbJG/7X24pRV2WjrspKRbmZ\nCaWOEfXXX8kzDoZqy7GYFe6+vnL8DmycaZpGTzg9OHDIrclM0tmdLLhhBsBhM1A+0ZQbGOl1K3g9\nSm6DRZHdMOLWK0EQBEEQLg6dJHHzvDLmTvfw2MZDvNfq5x/++x3uXjaVWxZOHvPzTkEQLk8ilMhy\nO3R8et3gLRn+jgRP/PY0f9zWgabB3Bl2PrG+jGlTzp/UHj0R4YVN7bz+dpBUSsNq0XPP2lJuW+nF\n4y4cZozmRNoo65lR4eHVN30kQjKpiIHePZZOl47bl09gyQInZRNN9EQS/M+fvEuwwNaLQlUDhWYD\nWEwGTraHcpfpP79i4KyLQjRN4/S5eK4N42BriLYz/VoxJKisMOfaMOqqbEPeTyN1Jc44GK4t5619\nZ1i7cPJlHah8EMmUSkcwWSBwSBLsSnG2PUYsPjhYAzDoJYrdMjNrbXlrMnMbK9wyJuPVeb8JgiAI\nwtXIZTfyhQ/P5t2mdp7Y1MxTfzzMOwfb+dRtdVSUiqG2gnC1EKHEEMKRNL958SwvvtpOIqlRWW7m\nkxvKmDfLMez1VFVj554unnulnX1NmRP4SaVG7lhdwvLr3SM6KTrfiXRnV5I33z3NK388y/6mMKqW\nCUj0phTOYo2FDUV85q6avBTZblFYUDfyqoGB7RVmY6ZCopChhkYmkyqHj0c4mA0hmlrDeRsJzCYd\nc2faqa+yUV89fCvGWF0JMw4GGq4tx98ZHXYWxuVM0zTCkXS/qoa+wKH338GuYaoc7AYmlhoLBg5e\nt4yzSBZVDoIgCIJwlZEkiYX1pcyodPOrzS1s23eWb/xsB2sXV3Dn9ZXIhsv7eZ0gCOcnQokBkimV\nl7f4eer5M/SE0hS7ZO7/0CRuWuIuuA60VzSWZsvWAC9s8nGmPXNCOafezrpbSmiY7RjVyVKhE+lw\nKM3GLX627ejkQHMod+JWM93K0gVOGuY6MJq0YU+6x1I10DsbYLhZF4HuGB3dMaxGI4eyazmbWkO0\nHh3cinHDokwrRn11phVjuPv0QhrPGQejNVwLj8dpHtEsjPGQSml0dBZekdkbOgxV5aDXQ7FLob7a\nRkm/FZm9QyQ9xQoVk51iLaYgCIIgXKNsZpnP3jGDxTNKefTlQ7y4/Tg7Dvn41No6aiY7z38DgiBc\ntkQokaVpGtve7eSx37RxzpfAYtbx8XsncfuqkmEH2/kCCV7c3M6m1wJEomlkg8TKZcWsu6WEKeWD\n20FGo6cnzds7QmzbcZJDh8NoGkgS1FVZWX3zBGbXmkfV3vBBqgYGnihrGqhJHamogVRUz//4ZjM9\n3X0BhE6Cyslm6qozsyDqqz94K8a1YrgWnsWzJo5bpUc4ks6sxPQn8lZk5qocOpOoQ1Q5WC16JniN\n/eY3yHkVD84i+ZIFVIIgCIIgXLlmTSvmm59dyDOvH2HzjlP8r8d3sbyhjHtvmo7ZKE5tBOFKJH5y\ns/YfCvHd/zyKQS9xxyov69dNxGEf+u5pag3x/CvtvLWrE1UFp8PAnbdO5NabPTgd8piPo90fZ/uO\nTrbt7KT5cBjIBBEzamwsbXSyuMGJ26Xg9drH/KrxWKoGdJJEWZGTtmOdpKJ6UjEDWrovrEnqVGbX\n25lZY6euykrNNCtmsyinG6uhqlo+vW4mHR3hC/750mmNjs5kXtCQ32KRIBItXOWg02WqHOqqbXjc\ncmZTRb/AweNWsIjvBUEQBEEQLhCTYuD+VTUsrC/lZ79vYsuuNt5r8fOJW2uZW+UZ78MTBGGURCiR\nNX2KhQc/UsbC+U4mlhQuj0+lNLbvDPLCpnaaj0SATDXAultKuGGhC1ke2yTgM+1xtu8Isn1HJ63H\nMrerkzLtH0sanSxqcOIqGnvQMRY9oRRNrX2zIFqPhkkkNSBT/SEZVGR7AoMphcGcRjal+fPP1l8x\nLRKXu6GqWvT6sX2PRaLpYQKHJIFgArVw5oDFrMsLGjxupa/FoljBVSSj14sqB0EQBEEQLq2qsiL+\n8cHreHH7MV7cfpz/8/QeFs0o5aOrqnFYRIWuIFwpRCiRZTbruevW0oIfC4VTvPKan5c2+wgEk0gS\nXDeviDtvKWFmrQ1JGv0JWdvZGNt3dLJ9R5AjJ6JA5hXneTPtLGl0sWh+EUUfoOJiNDRN42x7nIOt\nYQ62hGhqCXPqTCz3cZ0EUyabqZ5m4f0TZ4hpUXRyfp2+2zF4g4fwwY2kqiWtagQ7k3lBQ2/w0DvX\nIRxJF7yuTgK3S6ZmmrUvcPDkBxBWi6hyEARBEATh8iQbdNx9wzQa60r46UtNvH3gHPuPdvDRVdUs\nnlE6pufpgiBcWiKUGEbbmRgvvNrOlq0dxBMqJqOO21d6uW2Vl0mlplHf3snTUbZlg4jjpzIn/Qa9\nRMNsB0sbXVw3vwiH7eI/JMmUypHjUZpaMms5m1rDdHX3bcUwGXXMnZFpw6irtlEzzZorv3/i1fiI\nN3gIF0Y0ls4Mi+xIEI33cPR4d25jhb8jQSCYIF04c8Bk1OH1KNROt+IpzlY45AIHGbdTwWAQ/1kL\ngiAIgnBlK/fa+LuPL+DVnad45vXDPPL8Ad7af45P3FpLcdHon7cLgnDpiFBiAE3T2HOgh+c3tbNz\nTzeQ2Rpx+0ovq24sxmoZ+V2maRon2mJsy7ZmnDydDSIMEtfNK2LJAifXzSvCZr24D0NPKMWhw5lW\njIMt/VsxMopdMssWunIhRGW5echy/LFs8BCGpqoanV1JfB1JfIE4vkByUItFKFw4cZAkcDtlqiqt\nefMbeodIlngysxzEKwSCIAiCIFwLdDqJW66bzPxqD4++3MTeIwG+9t9vc+9N01neUIZOPCcShMuS\nCCWyNE1jy9YOnnvlXK6Koa7Kyh2rS1jc4Bxxz7ymaRw9Ec0FEafPZbZVKLLEooYilja6aJxbdNEG\n//VvxWhqyVRB9IYh0NeKUVdloz4bQniLL80Gj2tRLJ7OVTX4AolcxYO/I4HPnyAQTJJKF15ZYVQy\nsxyqp1pzlQ3TKoswKmlKihVR5SAIgiAIglCA12nm4Y/MY+ves/xqcwuPb2rm7YPn+NTaOiYWW8f7\n8ARBGECEElnv7e/hhz85jk4Hyxa6WHdLCTXTRvZLS9M0Dh+LZFozdnZytj0bRCgSSxqdLG10smB2\n0UXZRpFMqRw9Hs21YTS1hOgc0Ioxp95OXbWV+iobNdOtFyQQGcsGj6uNqmp09aTw+bNBQzZw6B8+\n9ISG6KsAXEUy06aYM4FDsYLXreS1WNisg6scPsjWFUEQBEEQhGuFJEksmzOR2dPcPL6pmR2HfPzj\nT95h3fVTWbuoAsMYh4cLgnDhiVAia1atjS9+dgqz6ux43OevHNA0jZYjEbbtCLJtRye+QALIhADL\nFrpY2uhk/mwHJuOFDSJC4UwrxvE2HzvfDxZsxbj+Oif11bbztmIIw4vH1UxFw4DAoXdjhb8jQSpV\nuMpBUSS8xQrTp1gKBg7FLnnM21oEQRAEQRCEkSmyGXnontnsavbx2CuH+O3rR3j3YDufuq2OqRMd\n4314giAgQokcWdZx89LiYS+jqhqHDoczWzN2BvF3JAEwm3TcuNjF0kYX82Y5MCoX5mRT0zTO+hK5\nNoyDrSFOtvW1YkgSTCk3U1dlzYQQVZkyfzFD4Pw0TaOrO5UfOOQqHjIbK7p7UkNe31VkYOpk8+DA\nIfu23SZmOQiCIAiCIFwuGmq81FU4eXJLK6+/f4Z/+vkObr2ugrtumCpakQVhnIlQ4jzSqkZTSygb\nRHTS0ZkJIixmPTcvdWeCiJn2C/KqdyqlceREhKbWzFrOptYQwa78VozZ9ZmtGIsbvZQW68S6xiEk\nkmp2JWYCXyA7RLIj2TfTIZAgOVSVgyzhcSuZ0MGt4PX0BQ9et0xMEZBPAAAXRElEQVSxW0ERVQ6C\nIAiCIAhXFItJ5sG19SyaMYFHf9/Ey++cYFezj0+uqaW+0j3ehycI1ywRShSQTmvsbw6xfUeQt3Z2\n5mY02Kx6Vi4rZkmjkzkz7MiGD3Zi2tuKcTBbCdFyNEwi0Xei7HbKLG3MtGLUV9uonNzXinEtzxbI\nVDkk8wZIDmyx6L/idKAih4Ep5dkqh1ylg5wLHorsBlHlIAiCIAiCcJWqn+Li659ZyO/eOMrGd0/w\nnV+9x41zJ7JheRUWkzzehycI1xwRSvSz52APb77dwdu7uugOZU5qHTYDt9zkYUmjk1m19jFvO9A0\njXO+RGYtZ3Yg5cnTMbRsBiFJMKXMTF21NbMZo/rabcVIJlX8wWT+top+LRb+YJJEQi14XYNBwutW\nqCgzZwMHOa/FwuNWLlh7jSAIgiAIgnBlMsp6Nqyo4rr6En76UhOvv3+GHU0+6itd1FW4qK1wMslj\nFWtEBeESEKFE1p4D3fzjd1sBcDoMrFnuYUmji5k1tjENikylNI6ejGSqIAq0YhgVHTNrbbkqiJpp\n1muiFUPTNHrC6b7AIZBdj9nv3/3vp4EcNgOVky24ivR9LRXZsKGkWMFhN6DTif88BEEQBEEQhPOb\nOtHBPzzYyMZ3TrBldxs7D/nYecgHgM0sUzvZSW2Fk7oKF5O8IqQQhItBhBJZNdOtPLihjKqpFuqq\nbehHeWIbjqQyKzlbMwFEy5EI8X6v5ve2YtRV26ivslI52TLmqovLWTKlEshuphgYOPQOkYwPVeWg\nlyh2y8yqs+WCBm//Fgu3gtGou6ZbVwRBEARBEIQLy6DXcfuSSm5bPAV/V4ymE0EOneik6USQnc0+\ndjaLkEIQLiYRSmSZjHruWlM6ostqmka7P8HBfgMpT7Tlt2JUlJmoq7JRV22lvspGiefKb8XQNI1Q\nOD1E4JAZIhnsSubuh4FsVj1lE4x57RTefv92OkSVgyAIgiAIgjA+JEnC6zTjdZq5Yc4kNE0TIYUg\nXAIilBiB3laMppZwLogIdiVzH1cUKdOKkQ0haqdbsVquvLs2ldLo6OyravD5E7lhkr0BRCxeuMpB\nrwePS2FGjS0/cChW8LhlPG4Fs+nqb08RBEEQBEEQrg4ipBCES+PKO3O+BMKRNIcOh3IhxMBWDFeR\nzJJGZy6EmHoFtGJomkYkms5WNuQHDb1/BzuTqMNUOUwoMQ5oq5Bz/3YWyaNueREEQRAEQRCEK8X5\nQopDA0IKq8lAbXZoZl2FizIRUghCQSKUyApH0vzy2dPsa+oZ1IoxeZIpNwuivvrybMVIpzU6OpN5\nAyN7/27PDpWMxgpXOeh0UOxSqKu24XHL/Soc+torzGZR5SAIgiAIgiAIvQaGFAD+zihN2YCi6USQ\nXc0+domQQhCGJUKJrKMnI7z4qi/XilFXZaOuykpd1eXRitFX5ZAJGsJRHydOhWj3Z97uCA5d5WAx\n6ynxDA4aelssXE5R5SAIgiAIgiAIH5THaWaZ08yyORMBEVIIwkiM/9n2ZWJmjY1HvjsLp0O+5K0Y\naVUjmK1y8PfOc8ireEgSiaYLXlcngdslUzPdSomnL3To//e1sGpUEARBEARBEC43IqQQhPMToUSW\nJEl43MpFue1oNJ0LGvx5gUMmiAgEE6iFOyswm3TZdgprXtBQPd2JrE/hdsro9eKXlSAIgiAIgiBc\n7oYPKToHhRQ1kzMBRW2Fk/ISmwgphKuSCCU+oLSq0dmVzKtqGDjTIRQeusrB5ZSpmWYdVOHgLc7M\ndrCY9QXnV3i9dny+nov95QmCIAiCIAiCcJEUCikOnezMDc/c3eJnd4sfECGFcPUSocR5xOLpvqoG\nf6a1orfFwh9IEAgmSaULD3MwGTNVDtVTrX3DI4tlvNngwe1ULvutHYIgCIIgCIIgXBoepxmP08z1\ns8cWUgiXhqppqGr2T++/NVBVDdkUpyeSQJIkJAkkMn/ret+WBr99rROhRFY8obL5jQCnz8ZygUN7\nYOgqB0nKrAadVmnBW2BjhcetYLMWrnIQBEEQBEEQBEE4n9GGFMVOM2pa7TshliR0/U6EJUlCx4C3\ndf1Okil80lzo7cxt/7/27j0oqvr/4/hzAVdEUEBdyoxKNDK84mXy0tcsqrFmLE1jNddmapjMcaYa\ndSK8UJPDDE6lWZZmNRmarhqVTXkh07I0rGwQSTOJTMi4KF4IUdk9vz8QQgVDf7Jn6bwe/8jZPefs\n67O74+d93pxzuHj/l9z2ggP0mtf+5zkAw6g50Pd4zz/Yr98I8BgGhrf+evUaBQ2s56ndT/1mQv3t\nDeqtd2GzoWb/Hq+BcW79q63+e9PgZ9bAe1z7WV383AWPUbNME78Pbdu0YtK9sYS2aXXVx9kYNSXO\n2ftrBUtXHKpbbm0PoGOHVnS7MaTBhkOHyFa0CgowMbGIiIiIiFjJpZoUvx46TvmJ03i93pqDbMPA\nMGoP8v9Z9hpX/6C6pQiw2QgIqGmGBNhsBJ5rigQE1PwcYIOgQBsBQQE165xbr/76AeeaKRc+F3Du\nudbBraiqOlv33tf9S817f+Hj531WNPJ4vc/OaGR9jxcMw9vofr0G0Ni+671HwfZATlaeUVPCDL16\nhDH32e4EBwfSqYOdMJ3lICIiIiIifuzCJkVT7zvX2EGu94KD3YYPoi8+qG3KAXTN8sXPXXjwXNcs\nOK8RcO6gP4CLmgS2ABuB9ZoCFzYMarf31aUSLfHef7WNCcMwas6sCPDtcbCaEucEBtiIiw0zO4aI\niIiIiEizqrusAv0SVs59H2p+MOX1/aYpkZaWRk5ODjabjZSUFHr37m12JBERERERERFpRn7RlNi5\ncycHDx7E7XaTn59PSkoKbrfb7FgiIiIiIiIi0oz84k6NO3bsICEhAYCYmBiOHz9ORUWFyalERERE\nREREpDn5RVOirKyMiIiIuuXIyEhKS0tNTCQiIiIiIiIizc0vLt+4kPEvf6YmIiKEoKBAoObuplal\nsVuTxm5NVh47WHv8Vh67iIiI/Pf5RVPC4XBQVlZWt1xSUkKnTp0aXb+8vBJomX9u5WrR2DV2q9HY\nrTl2sPb4/XHsapKIiIjI1eQXl28MHTqUjRs3ApCXl4fD4SA0NNTkVCIiIiIiIiLSnPziTIn4+Hji\n4uJwOp3YbDZSU1PNjiQiIiIiIiIizcwvmhIA06dPNzuCiIiIiIiIiPiQX1y+ISIiIiIiIiLWo6aE\niIiIiIiIiJhCTQkRERERERERMYWaEiIiIiIiIiJiCjUlRERERERERMQUNsMwDLNDiIiIiIiIiIj1\n6EwJERERERERETGFmhIiIiIiIiIiYgo1JURERERERETEFGpKiIiIiIiIiIgp1JQQEREREREREVOo\nKSEiIiIiIiIipmixTYm0tDQSExNxOp3s3r3b7Dg+tX//fhISEli+fLnZUXxu3rx5JCYm8tBDD7Fp\n0yaz4/jMqVOneOqpp5g4cSLjxo1jy5YtZkfyuaqqKhISEsjMzDQ7is9kZ2dz22234XK5cLlcvPji\ni2ZH8ql169YxatQoxowZw9atW82O4zNr1qyp+8xdLhf9+vUzO5JcgpXrEX9h1drA31hxnvYnVp0z\n/cnff//N1KlTcblcOJ1Otm3bZnakFiPI7ABXYufOnRw8eBC3201+fj4pKSm43W6zY/lEZWUlL774\nIoMHDzY7is999913/Prrr7jdbsrLyxk9ejT33HOP2bF8YsuWLfTs2ZOkpCSKiop47LHHGDFihNmx\nfOrNN9+kffv2ZsfwuUGDBrFw4UKzY/hceXk5ixYt4sMPP6SyspLXXnuNO+64w+xYPjFu3DjGjRsH\n1Mx369evNzmRNMbK9Yi/sHJt4G+sOk/7AyvPmf7ko48+4qabbmLatGkUFxfz6KOPsmHDBrNjtQgt\nsimxY8cOEhISAIiJieH48eNUVFQQGhpqcrLmZ7fbWbp0KUuXLjU7is8NHDiQ3r17A9CuXTtOnTqF\nx+MhMDDQ5GTN77777qv7+fDhw0RFRZmYxvfy8/M5cOCAJlgL2bFjB4MHDyY0NJTQ0FDLnSVSa9Gi\nRbz00ktmx5BGWLke8RdWrg38ieZpc2nO9A8RERH88ssvAJw4cYKIiAiTE7UcLfLyjbKysvM+5MjI\nSEpLS01M5DtBQUEEBwebHcMUgYGBhISEALB27Vr+97//Wa7ocDqdTJ8+nZSUFLOj+FR6ejrJyclm\nxzDFgQMHmDx5MuPHj+fbb781O47PFBYWUlVVxeTJk5kwYQI7duwwO5LP7d69m2uvvZZOnTqZHUUa\nYeV6xF+oNvAPVp6n/YHmTP9w//338+eff3L33XczceJEnn32WbMjtRgt8kyJCxmGYXYE8aEvvviC\ntWvX8u6775odxedWrVrF3r17mTFjBuvWrcNms5kdqdl9/PHH9O3bl+uvv97sKD534403MnXqVEaO\nHMmhQ4eYNGkSmzZtwm63mx3NJ44dO8brr7/On3/+yaRJk9iyZYslvvO11q5dy+jRo82OIZdB9Yh5\nrFwbmM3K87Q/sfqc6Q8++eQTOnfuzDvvvMO+fftISUnRPVaaqEU2JRwOB2VlZXXLJSUl+k2SRWzb\nto3Fixfz9ttvExYWZnYcn9mzZw8dOnTg2muvpUePHng8Ho4ePUqHDh3Mjtbstm7dyqFDh9i6dSt/\n/fUXdruda665hiFDhpgdrdlFRUXVXboTHR1Nx44dKS4utkTh16FDB/r160dQUBDR0dG0bdvWMt/5\nWtnZ2cyaNcvsGHIJqkf8g1VrA39h5XnaX2jO9A+7du1i2LBhANxyyy2UlJTocrImapGXbwwdOpSN\nGzcCkJeXh8Ph0PWbFnDy5EnmzZvHkiVLCA8PNzuOT/3www91v/0pKyujsrLSMtepLViwgA8//JDV\nq1czbtw4pkyZYplCZ926dbzzzjsAlJaWcuTIEcvcT2TYsGF89913eL1eysvLLfWdByguLqZt27aW\nOSumpVI9Yj4r1wb+wsrztL+w+pzpL2644QZycnIAKCoqom3btmpINFGLPFMiPj6euLg4nE4nNpuN\n1NRUsyP5zJ49e0hPT6eoqIigoCA2btzIa6+9ZomJ+PPPP6e8vJynn3667rH09HQ6d+5sYirfcDqd\nzJw5kwkTJlBVVcWcOXMICGiRPUW5DHfeeSfTp09n8+bNnD17lueff94yB6lRUVHce++9PPzwwwDM\nmjXLUt/50tJSIiMjzY4h/8LK9Yi/sHJtIFLL6nOmv0hMTCQlJYWJEydSXV3N888/b3akFsNm6AJI\nERERERERETGBWmgiIiIiIiIiYgo1JURERERERETEFGpKiIiIiIiIiIgp1JQQEREREREREVOoKSEi\nIiIiIiIiplBTQkREREREmk1hYSE9e/bE5XLhcrlwOp1MmzaNEydONHkfLpcLj8fT5PXHjx9Pdnb2\nlcQVER9TU0JERERERJpVZGQkGRkZZGRksGrVKhwOB2+++WaTt8/IyCAwMLAZE4qIWYLMDiAiVy47\nO5s33niD1q1bM3z4cHbt2sVff/1FdXU1DzzwABMmTMDj8ZCWlkZeXh4At912G08//TTZ2dksXryY\na665htzcXPr06UNsbCxZWVkcO3aMpUuX0rFjR2bNmkVBQQE2m40ePXqQmpraaJ7MzEyysrKw2WwU\nFxfTtWtX0tLSaNWqFRkZGaxfvx6Px0PXrl1JTU2lrKyMJ598kptvvpnu3bszefLkRse5YMECOnfu\nTFFREWFhYcyfP5/Q0FA+//xzli9fjmEYREZGMnfuXCIiIoiPj2fs2LF4vV6SkpKYPn06AFVVVSQm\nJjJ27FgKCgpITU3FMAyqq6uZNm0aAwYMIDk5GYfDwf79+ykoKGDs2LEkJSVd/Q9QRETEogYOHIjb\n7Wbfvn2kp6dTXV3N2bNnmTNnDrfeeisul4tbbrmFvXv3smzZMm699Vby8vI4c+YMs2fPvqjeOXXq\nFM888wzl5eXccMMNnD59GoDi4uIGawAR8R9qSoi0cHv27GHz5s243W7atWvHyy+/TFVVFffddx+3\n3347OTk5FBYWsnLlSrxeL06nkyFDhgCwe/du5s+fT5s2bRg4cCADBw4kIyOD5ORkNmzYwKBBg8jJ\nyWH9+vUArF69mpMnTxIWFtZontzcXDZt2kSbNm2YOHEiX3/9NZ06dSIrK4sVK1Zgs9lIS0tjzZo1\njBgxgvz8fF599VW6du16yXHm5eWxYMECoqKimDFjBpmZmdx9990sXryYtWvXYrfbWbZsGUuWLCE5\nOZnKykqGDx/O0KFDee+99+jatSsvvPACp0+fZs2aNQDMnTuX8ePHM3LkSH755RemTJnC5s2bATh0\n6BCLFy+mqKiIUaNGqSkhIiJylXg8HrKysujfvz8zZsxg0aJFREdHs2/fPlJSUsjMzAQgJCSE5cuX\nn7dtRkZGg/XO9u3bCQ4Oxu12U1JSwl133QXA+vXrG6wBRMR/qCkh0sLddNNNhIeHk5OTw5gxYwAI\nDg6mZ8+e5OXlkZOTw+DBg7HZbAQGBjJgwAByc3Pp2bMnMTExhIeHAxAeHk6/fv0AiIqKoqKigpiY\nGCIiIkhKSmLEiBGMHDnykg0JgPj4eEJCQgDo168f+fn5/Pbbb/zxxx9MmjQJgMrKSoKCav77ad++\n/b82JAC6detGVFRU3Wvs3buXjh07UlpayuOPPw7AmTNn6NKlCwCGYRAfHw/A7bffzgcffEBycjLD\nhw8nMTERgJycHObPnw9AbGwsFRUVHD16FIBBgwYBcN1111FRUYHH49FpoyIiIlfo6NGjuFwuALxe\nLwMGDOChhx5i4cKFzJw5s269iooKvF4vQN08Xl9j9c7+/fvp378/AA6Ho662aKwGEBH/oaaESAvX\nqlUrAGw223mPG4aBzWZr9HHgooPs+suGYdC6dWs++OAD8vLy2LJlC2PHjmXlypU4HI5G89QWErX7\nALDb7dx5553MmTPnvHULCwvr8v+b2n3VH4Pdbqd3794sWbKkwW1q9x0TE8Nnn33G999/z4YNG1i2\nbBmrVq266L2Bf97H2qZJQ68vIiIil6f2nhL1nTx5su4Sz4Y0VCM0VtcYhkFAwD+3y6utRxqrAUTE\nf+hGlyL/EX369GHbtm1AzZkIeXl5xMXF0bdvX7Zv315334SdO3fSp0+fJu0zNzeXjz76iLi4OKZO\nnUpcXBy///77JbfJycnh1KlTGIbBrl27iI2NJT4+nq+//pq///4bgBUrVvDTTz9d1vh+++03SkpK\nAPjxxx+JjY2lV69e7N69m9LSUqDmFM0vvvjiom0//fRTcnNzGTJkCKmpqRw+fJjq6mr69OnDN998\nA8DPP/9MeHg4ERERl5VLRERErkxYWBhdunThq6++AqCgoIDXX3/9kts0Vu/ExMTU1RaHDx+moKAA\naLwGEBH/oTMlRP4jXC4Xs2fP5pFHHuHMmTNMmTKFLl260LlzZ3bt2sX48ePxer0kJCTQv3//Jv2Z\nrOjoaBYtWoTb7cZutxMdHd3gqZT13XzzzTz33HMUFhbSvXt3hg0bRmBgII888ggul4vWrVvjcDgY\nM2YMR44cafL4unXrxiuvvMLBgwdp3749Dz74ICEhIcycOZMnnniCNm3aEBwcTHp6eoPbpqamYrfb\nMQyDpKQkgoKCmD17NqmpqaxcuZLq6mrmzZvX5DwiIiLy/5eens7cuXN56623qK6uJjk5+ZLrN1bv\nPPDAA3z55ZdMmDCBLl260KtXL6DxGkBE/IfN0DnJInKVZGZmsn37dl566aWrut/av76xcuXKq7pf\nERERERExl9qEInJZsrKyeP/99xt8bvTo0Ve8359++olXXnmlweecTucV71dERERERPyXzpQQERER\nEREREVPoRpciIiIiIiIiYgo1JURERERERETEFGpKiIiIiIiIiIgp1JQQEREREREREVOoKSEiIiIi\nIiIiplBTQkRERERERERM8X/jzVFJlKlbKgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "ZjQrZ8mcHFiU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Identify Outliers\n", + "\n", + "We can visualize the performance of our model by creating a scatter plot of predictions vs. target values. Ideally, these would lie on a perfectly correlated diagonal line.\n", + "\n", + "Use Pyplot's [`scatter()`](https://matplotlib.org/gallery/shapes_and_collections/scatter.html) to create a scatter plot of predictions vs. targets, using the rooms-per-person model you trained in Task 1.\n", + "\n", + "Do you see any oddities? Trace these back to the source data by looking at the distribution of values in `rooms_per_person`." + ] + }, + { + "metadata": { + "id": "P0BDOec4HbG_", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 374 + }, + "outputId": "c04d1e7a-be58-4af5-bae5-6c8d856063b1" + }, + "cell_type": "code", + "source": [ + "# YOUR CODE HERE\n", + "plt.figure(figsize=(13, 6))\n", + "plt.subplot(1, 2, 1)\n", + "plt.scatter(calibration_data[\"predictions\"], calibration_data[\"targets\"])\n", + "plt.subplot(1, 2, 2)\n", + "_ = california_housing_dataframe[\"rooms_per_person\"].hist()" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvsAAAFlCAYAAAB1BSfgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xt4U9eZL/6v7sJYsiVbSsIlFzCG\ntIAxcUIwcQhgN4bpxR3AgAfaTGinnECamYfmUk6GJM2TIZSSp02HNp00TTjkOHHqzGRofv0BIRia\nFkPryCGQBoxppgEDtmTLlmVbW7Kk84cr4Yuu9pbkLb6ffwZv7b3WXhqnfvfa73qXzO/3+0FERERE\nRGlHnuobICIiIiKixGCwT0RERESUphjsExERERGlKQb7RERERERpisE+EREREVGaYrBPRERERJSm\nlKns3Grtjut8gyEDdntvgu4mPfA7iozfT3T8jqJL5ndkMumS0s94F+/fi8HS9Xea45KedB0bx5V6\nkf5WSGpmX6lUpPoWxj1+R5Hx+4mO31F0/I6kJV3//8VxSU+6jo3jGt8kFewTEREREVHsGOwTERER\nEaUpBvtERERERGmKwT4RERERUZpisE9ERERElKYY7BMRERERpSkG+0REREREaYrBPhERERFRmkrp\nDrpjJXi8aL7Yif97+BNc7eiP+/obslSYP/MGyOUKzLw5C7fcqIe1qw8dDhd0GWpM1Kpgyp4AjWro\npgqCx4sup4CsTA0ABP+tUSmGfDb8OrFE6l+sdmNtKxnjFZsU75mIiIhoNKIG+ydPnsQjjzyCGTNm\nAADy8/PxrW99C4899hi8Xi9MJhN27doFtVqN/fv3Y+/evZDL5aisrMTq1asTctNenw/7Dp3F7z66\nOqZ2Wrs8+P//eAkA8P+dCH2ORiXDPXMnYe2ygfHXHGlGY5MVHQ4BGrUCgB8utw9GnRoTJ6jR6/Kg\nwyHAqNegMN+ENUvzoJCL8wLF6/MF+293CNCq5QBkENzeYH9bKgvH1G6s9z6aa1LN6/Ph5XdO4w+n\nWiRzz0RERERjEdPM/l133YUXX3wx+PP3v/99VFVVYfny5XjhhRdQW1uLiooK7NmzB7W1tVCpVFi1\nahXKysqQnZ0t+k3XHGkec6AfK8Hjx/sftkAmkwEADjdcCn7mcnuD/+7odqOj2x38ud0hBM+tKs0X\n5V5qjjQP6983or+MCWpULLp1TO3Gcu+juSbVpHjPRERERGMxqunMkydPYtmyZQCAJUuWoL6+HqdO\nncKcOXOg0+mg1Woxf/58WCwWUW8WGEjB+NOnraK3G42lyQrLuba4r2tsskHweKOfGIXg8aKxyRr1\nvBNnrsTVX6R2w937aK5JNSneMxEREdFYxTSz39zcjE2bNqGrqwtbtmxBX18f1Go1ACAnJwdWqxU2\nmw1GozF4jdFohNUaOTg1GDKgVMaXM61Qq9DV44nrGjHYuwX4/aO5zgWFWgVT7sQx9X/F1oOObiHq\nebbOvrj6i9RuuHsfzTWpJsV7TiWTSZfqWxj3+B0REZEURA32b731VmzZsgXLly/HxYsX8Y1vfANe\n77VZUH+YCDjc8cHs9t44bnXgj6vX7YFKASR7Itag0wB+/5BUndiu08Lr9sBq7R5T/16PF0adBu2O\nyAF/bvaEuPqL1G64ex/NNakmxXtOFZNJx+8iimR+R3yoGLuvbP3vlPT7qyeWpqRfIqLBoqbx3HDD\nDVixYgVkMhluvvlm5ObmoqurCy6XCwDQ2toKs9kMs9kMm80WvK6trQ1mszkhN61QJL+Cyvx8E+bP\njH88hfm5olR80agUKMw3RT3v7tk3xdVfpHbD3ftorkk1Kd4zERER0VhFDfb379+PV155BQBgtVrR\n3t6Ov//7v8fBgwcBAIcOHUJJSQkKCgpw+vRpOBwO9PT0wGKxoKioSPQb7nIKENzJm9bXqGRYdsdk\nrFmahzVL81BaNAU5ei3kMkCrVkCrVkAGwKjTYKo5Ezl6DeQyIEevRWnRFKxZmifavQzuX4Zr/Q/u\n78GvfHFM7cZ676O5JtXWLM3DV0umSeqeiYiIiMZC5o+Sb+N0OvG9730PDocDHo8HW7Zswe23347H\nH38cgiBg0qRJ2LFjB1QqFQ4cOIBXXnkFMpkM69evx1e/+tWIncf7Gtxk0uHS5U48+fKJqOksYzU/\nPxcVJdMkV2d/LOkF10Od/cDvkJTuOdmYxhMd03iSbyzf94PPHxHxTmKX6DSedP1vNV3HBaTv2Diu\n1Iv0tyJqzn5mZiZeeumlEcdfffXVEcfKy8tRXl4e5+3FJ5COMbiEYiL89aozZKAfuAezISP48+B/\nD/8sESL1L2a7ibom1aR4z0RERESjIcmdhNYszcOi2TcmtA97twtdzsS+PSAiIiIiSiRJBvsKuRzr\n758JQ6YqYX0YdNpgmgwRERERkRRJMtgHBlIx7ph1Q8LanzvdyHxuIiIiIpI0yQb7wEA6z025ExLS\ndmnR1IS0S0RERESULJIO9vu9frR3ip9Xb9RpYNRrRW+XiIiIiCiZJB3sW+29cPf7RG83f2oWU3iI\niIiISPIkHexDJktIs/cvuDkh7RIRERERJZOkg/2BOvjiDkGrVuBG40RR2yQiIiIiSgXJBvtenw9v\nH7sAj1fcNJ7iOTcyhYeI6G+amppQWlqK119/HQDg8XiwdetWrFq1Ct/85jfR1dUFANi/fz9WrlyJ\n1atX49e//vWQc9etW4f169fj4sWLAICzZ89i7dq1WLt2LZ566qnUDIyI6Doh2WC/5kgzDjdcgk+k\nWF+jkmPpHZOxbtkMcRokIpK43t5ePPvss1i4cGHw2FtvvQWDwYDa2lqsWLECDQ0N6O3txZ49e/Da\na69h37592Lt3Lzo7O/Huu+9Cr9fjjTfewKZNm7B7924AwHPPPYdt27bhzTffhNPpxLFjx1I1RCKi\ntCfJYF/weNHYZBW5TR/kMhkUckl+JUREolOr1Xj55ZdhNpuDx+rq6vDVr34VALBmzRosW7YMp06d\nwpw5c6DT6aDVajF//nxYLBbU19ejrKwMAFBcXAyLxQK3242WlhbMnTsXALBkyRLU19cnf3BERNcJ\nSUa2XU4B7Q7xS242NtkgeLyit0tEJEVKpRJa7dAyxC0tLfjd736HDRs24F/+5V/Q2dkJm80Go9EY\nPMdoNMJqtQ45LpfLIZPJYLPZoNfrg+fm5OTAahV38oaIiK5RpvoGRiMrUwOtWg6XW9x8fXu3C11O\nAWZDhqjtEhGlC7/fj9tuuw1btmzBz372M/ziF7/AF77whRHnhLs2lmOhGAwZUCqltZ7KZNKlRR+p\nkK7jAtJ3bBzX+CXJYH+A+GU3DTotsjI1ordLRJQucnNzceeddwIA7rnnHvz0pz/FfffdB5vNFjyn\nra0N8+bNg9lshtVqxaxZs+DxeOD3+2EymdDZ2Rk8t7W1dUiaUDh2e6/4g0kwq7U7oe2bTLqE95EK\n6TouIH3HxnGlXqSHEsmm8Qhu8dNtCvNzWYmHiCiCe++9Fx988AEA4JNPPsFtt92GgoICnD59Gg6H\nAz09PbBYLCgqKsKiRYtw4MABAAO5/gsWLIBKpcK0adPQ0NAAADh06BBKSkpSNh4ionQnyZn9rEwN\njHqNaHn7WrUc98ydhDVL80Rpj4goHZw5cwY7d+5ES0sLlEolDh48iB/96Ed47rnnUFtbi4yMDOzc\nuRNarRZbt27Fxo0bIZPJsHnzZuh0OqxYsQLHjx/HunXroFar8fzzzwMAtm3bhu3bt8Pn86GgoADF\nxcUpHikRUfqSZLCvUSlQmG/C4YZLY26rYLoR3/7qF5GhUYlwZ0RE6WP27NnYt2/fiOMvvvjiiGPl\n5eUoLy8fckyhUGDHjh0jzs3Ly0N1dbV4N0pERGFJMtgHEJyF/+DUZQie0S/UnaBRMtAnIiIiorQk\nyZx9AFDI5agqzcd3vvLFMbXTdLGT5TaJiIiIKC1JNtgPmHpD5piu7+h2o8spfs1+IiIiIqJUk3Sw\n7/X58F8ffDbmdg7+8XN4feLW7CciIiIiSjVJB/vV7zXh+JmrY26nrvEyao40i3BHRERERETjhySD\nfa/Ph32HzuHYR5dFa7OxycbcfSIiIiJKK5IM9muONKPO0gJfbLusx8Te7WLuPhERERGlFckF+71C\nP37/sXgz+gEGnRZZmRrR2yUiIiIiShXJBftvvNcEl1v8xbSF+bnQqBSit0tERERElCqSCvZd7n6c\n/dwuersalRwVJbeJ3i4RERERUSpJKti3OwR0OMTPqxc8Pjh7PaK3S0RERESUSpIK9g16DYx68fPq\nZUAwX1/weNFm72VlHiIiIiKSPGWqbyAeWrUShfkmHG64JGq7fgB9ggdvH7uAxiYrOhwCjHoNCvNN\nWLM0Dwq5pJ6JiIiIiIgASCzYB4A1S/MAAA2ftqKzR7zUm9cPNsFy3hb8ud0hBB8qqkrzReuHiIiI\niChZJDdlrZDLUVWajwdW3C5amzIAn13pCvkZN9siIiIiIqmSXLAfMDl3omhtyeSA3Rn6LQE32yIi\nIiIiqZJssO8VcftcX4Sy/dxsi4iIiIikSrLBflamBoZMVcL74WZbRERERCRVkg32NSoFMjPEn3HP\nzlRDLgNy9FqUFk0JLggmIiIiIpIayVXjCRA8XvT0uUVt05CpwdMP3ok+oR9ZmRrO6BMRERGRpEk2\n2O9yCrB3ixvsF8zIgS5DDV2GWtR2iYiIiIhSQbJpPFmZ4u+mK5OJ2hwRERERUUpJNthXKmTQaMRN\ns6k/08qa+kRERESUNiQb7NccacZla6+obbrcXlg7+0Rtk4iIiIgoVSQZ7AseLxqbrIlp3C9e/X4i\nIiIiolSSZLDf4XCh3SH+rrZatQImQ4bo7RIRERERpYIkg/3DDRcT0u7C2Tew3CYRERERpQ3JBfuC\nx4uPL7QnpG0Zy/EQERERURqRXLDf5RTQkYAUHgA4db6d1XiIiAZpampCaWkpXn/99SHHP/jgA8yc\nOTP48/79+7Fy5UqsXr0av/71rwEAHo8HW7duxbp167B+/XpcvDjwVvbs2bNYu3Yt1q5di6eeeip5\ngyEiug5JLthPRH39gA6HC13OxDxIEBFJTW9vL5599lksXLhwyHFBEPAf//EfMJlMwfP27NmD1157\nDfv27cPevXvR2dmJd999F3q9Hm+88QY2bdqE3bt3AwCee+45bNu2DW+++SacTieOHTuW9LEREV0v\nJBfsa1QKFOabEtO2WoGszMQ8SBARSY1arcbLL78Ms9k85PhLL72EqqoqqNUDu42fOnUKc+bMgU6n\ng1arxfz582GxWFBfX4+ysjIAQHFxMSwWC9xuN1paWjB37lwAwJIlS1BfX5/cgRERXUeUqb6B0Viz\nNA/OPg9OfNKa6lshIkpbSqUSSuXQPxOfffYZzp49i0ceeQS7du0CANhsNhiNxuA5RqMRVqt1yHG5\nXA6ZTAabzQa9Xh88NycnB1Zr9FLKBkMGlEppFVAwmXRp0UcqpOu4gPQdG8c1fkky2FfI5Si9Y7Lo\nwb7b40WXU4CZ5TeJiELasWMHnnzyyYjn+MPsVxLqeLhzh7Pbxd1EMRms1u6Etm8y6RLeRyqk67iA\n9B0bx5V6kR5KJJfGE6BWif+cYtBpmcZDRBRGa2sr/vKXv+B73/seKisr0dbWhvXr18NsNsNmswXP\na2trg9lshtlsDs7aezwe+P1+mEwmdHZ2DmlzeJoQERGJR7LBfuYElehtFubnss4+EVEYN9xwAw4f\nPoy33noLb731FsxmM15//XUUFBTg9OnTcDgc6OnpgcViQVFRERYtWoQDBw4AAOrq6rBgwQKoVCpM\nmzYNDQ0NAIBDhw6hpKQklcMiIkprMU2Pu1wufPnLX8ZDDz2EhQsX4rHHHoPX64XJZMKuXbugVqux\nf/9+7N27F3K5HJWVlVi9enVCb7y2rlnU9opn34g1S/NEbTMdCH9LbcrK1PBBiOg6c+bMGezcuRMt\nLS1QKpU4ePAgfvrTnyI7O3vIeVqtFlu3bsXGjRshk8mwefNm6HQ6rFixAsePH8e6deugVqvx/PPP\nAwC2bduG7du3w+fzoaCgAMXFxakYHhHRdSGmYP/nP/85srKyAAAvvvgiqqqqsHz5crzwwguora1F\nRUUF9uzZg9raWqhUKqxatQplZWUj/iCIRfB48WFT9AVdsTJkarBmaR7au1wMav/G6/Oh5kgzGpus\n6HAIMOo1KMw3Yc3SPCjkkn0hRERxmD17Nvbt2xf28yNHjgT/XV5ejvLy8iGfKxQK7NixY8R1eXl5\nqK6uFu9GiYgorKhR24ULF9Dc3Iz77rsPAHDy5EksW7YMwLWSaeHKriWK1d4LweMTrT3B48UPXvsT\nvv+LE3jy5ROoPtwEr0+89qWo5kgzDjdcQrtDgB9Au0PA4YZLqDki7hsVIiIiIkqcqMH+zp078cQT\nTwR/7uvrC9ZWDpRMC1d2LWFkMlGb6xX6owa1gseLNnvvdbHDruDxojHMm5PGJtt18R0QERERpYOI\naTzvvPMO5s2bh6lTp4b8PJ7yaqGMpm6yyaSDLmsCNCq5qLP7w318oR3fWTkBKoUcv/rNJzhx5gqs\nnX0wZU/A3bNvwoNf+SIUivGZzjLWmrBXbD3o6A69k7C92wWFWgVT7sQx9ZFK6VAzN9H4HUXH74iI\niKQgYrB/9OhRXLx4EUePHsXVq1ehVquRkZEBl8sFrVYbLJkWquzavHnzonYeb93kwfVO5+Xl4uSn\nbXFdHw9bZx8u/E87Dn94CYcbLgWPt9n7sP+Dv6C3z42q0vyE9T9aYtSE9Xq8MOo0aHeMDPgNOi28\nbo9k6s4OJ6WauanC7yi6ZH5HfKggIqKxiDg1/eMf/xhvv/023nrrLaxevRoPPfQQiouLcfDgQQDX\nSqaFK7uWSF+/d1pC2zfotJigUV6X6SwalQKF+aaQn7E8KREREZF0xL0z1cMPP4zHH38cNTU1mDRp\nEioqKqBSqUKWXUukq+09CW2/MD8XfUI/OkLMbgMD6SzpvNtuoAxpY5MN9m4XDDotCvNzWZ6UiIiI\nSEJiDvYffvjh4L9fffXVEZ+HKruWSFq1+DvoAoBcBiwunIw1S/PQ7/XDqA+fzpLOu+0q5HJUleZj\n5eLprLNPREREJFHjc4VpDDK0iQn2VUoZFPKBaj9MZxn4DsyGjOtirERERETpJjERcxIkalZd8PiD\nC3KrSvOZzkJEREREkiXZYL+rx53Q9hubbFi5eDo0KgXTWYiIiIhIkiSbxoMYa/mPVmABbgDTWYiI\niIhIaiQb7Cd6cWy6L8AlIiIiovQn2WB/8Kx7IlwvC3CJiIiIKH1JNmff0+9LSLuGTA3umGUSZQGu\n4PEyz5+IiIiIUkaywb5cIRO9zayJKjz94J3QZajH1I7X50PNkWY0NlnR4RBg1GtQmD/wAKGQS/Zl\nChERERFJjGSD/aMfXRa9zTtvv2FMgX5gJv/gHz9HXeO1+2t3CEPKeRIRERERJYMkg33B40X9aXGD\n/Xvn3YglhZMheLxxp9wMn8mXhXnpMLicJxERERFRokky2Lfae+HuF7fN3398FR98dHVUKTc1R5qD\nM/dA+KqggXKeZkOGGLdMRERERBSRNBPIw02dj4HPB/hxLeWm5khzTNcJHi8am6wxnctynkRERESU\nTJIM9k3ZE6BVJzYVprHJBsHjjXpel1NAhyO2MqAs50lEREREySTJYF+jUmDRnBsT2sfwHXTDycrU\nwKgPPVsvlwEyADl6LUqLpohSzpOIiIiIKFaSzNkHgK/fOx3vf9iSsPZjSbnx+nx4+9gF9Lg8IT9f\nXDgZ9985lXX2iYiIiCglJBnse30+vH7wbEL7iCXlZvjC3ACtWoF75t7EuvpERERElFKSDPZrjjTj\nxJ/bEtK2Qg4smR895SbSwtwMjRIrF09noE9EREREKSW5aDSe6jejkZ2piSlQj7Qwt9MpxJTvT0RE\nRESUSJIL9uOpfjMa9u7YAvVIC3NZYpOIiIiIxgPJBfuRgmwxhAvUBY8XbfbeYDlOjUqBwnxTyDZY\nYpOIiIiIxgPJ5ewHguxQC2PFMDhQFzxedDhcOPzhJXzcbEOHQxiyw24gr7+xyQZ7twsGnRaF+bks\nsUlERERE44Lkgn0AWLM0D16fH3UWcUtvqhQy+Px+uPv7UXv0L2hssqJ9WMpQYIddAKgqzUdVaT5W\nLp6OLqfAEptElHaamprw0EMP4YEHHsD69etx5coVfP/730d/fz+USiV27doFk8mE/fv3Y+/evZDL\n5aisrMTq1avh8XjwxBNP4PLly1AoFNixYwemTp2Ks2fP4umnnwYAzJw5E88880xqB0lElMYkl8YD\nAAq5HEsKJ4versfrx5EPW/Dc/7HgcMOlEYH+YIN32NWoFDAbMhjoE1Fa6e3txbPPPouFCxcGj/34\nxz9GZWUlXn/9dZSVleHVV19Fb28v9uzZg9deew379u3D3r170dnZiXfffRd6vR5vvPEGNm3ahN27\ndwMAnnvuOWzbtg1vvvkmnE4njh07lqohEhGlPUkG+wAAvz9hTbdYnVHPiXWHXSIiqVKr1Xj55Zdh\nNpuDx5566incf//9AACDwYDOzk6cOnUKc+bMgU6ng1arxfz582GxWFBfX4+ysjIAQHFxMSwWC9xu\nN1paWjB37lwAwJIlS1BfX5/8wRERXSckmcYDAN297oS17YvhOYIVd4go3SmVSiiVQ/9MZGRkAAC8\nXi+qq6uxefNm2Gw2GI3G4DlGoxFWq3XIcblcDplMBpvNBr1eHzw3JycHVmv0csoGQwaUSmm9PTWZ\ndGnRRyqk67iA9B0bxzV+STLY9/p82HfoXMLal8mivzhgxR0iul55vV489thjuPvuu7Fw4UL85je/\nGfK5P8z/gIY6Hu7c4ez23vhvNMWs1u6Etm8y6RLeRyqk67iA9B0bx5V6kR5KJJnGU3OkGVc7XAlr\nf3LuxLCfyWXAkvmTWXGHiK5b3//+93HLLbdgy5YtAACz2QybzRb8vK2tDWazGWazOThr7/F44Pf7\nYTKZ0NnZGTy3tbV1SJoQERGJS3LBfiJ30NWqFSgtmoInv3kHppozQ56zeN4kbPjSzKg77BIRpaP9\n+/dDpVLhu9/9bvBYQUEBTp8+DYfDgZ6eHlgsFhQVFWHRokU4cOAAAKCurg4LFiyASqXCtGnT0NDQ\nAAA4dOgQSkpKUjIWIqLrgeTSeBK5g26GRomVi6dDrVRg+wNFqD58Hh812dDZI8DIGvpEdJ05c+YM\ndu7ciZaWFiiVShw8eBDt7e3QaDTYsGEDAGD69Ol4+umnsXXrVmzcuBEymQybN2+GTqfDihUrcPz4\ncaxbtw5qtRrPP/88AGDbtm3Yvn07fD4fCgoKUFxcnMphEhGlNckF+4EddCOVxRytTqeALqcAsyED\nCrkcG740E5VL8lhDn4iuS7Nnz8a+fftiOre8vBzl5eVDjgVq6w+Xl5eH6upqUe6RiIgik1wuikal\nwNzpOQlp26DTYoJGiTZ7L2voExEREZHkSW5mHwBKi6airvGy6O1maJX4wWt/QodDgFGvQWG+CWuW\n5gXz8wWPl7P8RERERCQZkgz2jXotsjLV6HKKV2tfo5ThYtu1zbTaHQION1wCAKxZmoeaI81obLKG\nfRAgIiIiIhpvJBnsa1QK5E3OwofnxKvKI/SHrvXc2GSD1+dHnaUleGzwg0BVab5o90BEREREJCbJ\nTksX5ecmpZ8OhwsfNdlCftbYZAvm9hMRERERjTeSDfZP/LktKf1kZarR6Qxd+cfe7UJXmM+IiIiI\niFJNksG+4PGi6WJHUvoqnJELo14T8jODTouszNCfERERERGlmiSD/S6ngD536Bz7sVArZMF/a9UK\nLLtjMqrK8lGYbwp5fmF+LqvyEBEREdG4JckFuuoEBdhu77UHCJfbC5lMBoVcjjVL8+Dz+3H89FW4\n3AM5+lq1An6/H16fjxV5iIiIiGhckmSUWnv0QlL6CSzAVcjlkMtkwUAfGHgYeP/DFlQfPj9kEy4i\nIiIiovFCcjP7gseLs39NTr5+YAFuVqYGjU2hy3wea2xBnaUFOay9T0RERETjjOSi0i6nAHu3eJtp\nRRJYgNvlFNDhCF11x/e3zJ9A7f2aI81JuTciIiIiomgkF+xnZWrCVscRW2ABbjx9svY+EREREY0X\nkgv2lQoZMrSqhPahVStQWjQFa5bmARjYsTdcRZ7hWHufiIiIiMYLyeXs1xxpxsU2Z0LaztFrMOtm\nA9aV5SNDM/SrCQT+jU02dHS7IMO1FJ7BWHufiIiIiMYLSQX7Lnd/2IWyYtj+wJ3QZahDfqaQy1FV\nmo+Vi6ejyyng4B8/R13j5RHnsfY+EREREY0Xkgr27Y7wC2XFYO3sDRvsB2hUCpgNGagqy4dCIUdj\nkw32bhcMOi0K83ODbwCIiIiIiFJNUsG+QT+wULY9QQG/o8cz5GfB4w2W3hw+Wz98pj/UOURERERE\nqSSpYF+rVqIw34TDDZcS0v5H522YN8MEr8+HmiPNaGyyosMhwBihhn5gpl+KIj3MEBEREZH0SSrY\nB64tlD3+8RX0usUtcXnybCvWleXj7WMXhjxQBGroA0BVaf6o2h5LYC12UB7PwwwRERERSZfkgv1A\n+sxds0z4t9cbRW1bcPtw2eoMuwi4scmGlYunxxVwjyWwTlRQXnOkWfSHGSIiIiIafyQ7jatSJeY5\npbvXE3YR8Ghq6AcC63aHAD/i22l3LNeGI3i8ER9muCEYERERUfqIGuz39fXhkUcewfr167F69WrU\n1dXhypUr2LBhA6qqqvDII4/A7XYDAPbv34+VK1di9erV+PWvf53QGz948nPR29SqFbhtkj7sbrnx\n1tAfS2CdqKC8yxm+otH1uCGY4PGizd7LhxwiIiJKS1Gnx+vq6jB79mx8+9vfRktLCx588EHMnz8f\nVVVVWL58OV544QXU1taioqICe/bsQW1tLVQqFVatWoWysjJkZ2eLftOCx4uzn9tFb9eoVyNDG34R\n8Ny8nLhSeDocrrCVgwKBdbjFvbEE5aNZGJyVGb6i0fW0IRjXLRAREdH1IGpUs2LFCnz7298GAFy5\ncgU33HADTp48iWXLlgEAliwxVMTvAAAgAElEQVRZgvr6epw6dQpz5syBTqeDVqvF/PnzYbFYEnLT\nXU4BnU636O1etvWh5kgz1izNw7I7JkOrHvr1HD99Ga+/dw5eny+m9g43XAz7WbTAOhCUj+baSDQq\nBQrzTSE/u542BEtEihQRERHReBPzFObatWvxve99D9u2bUNfXx/U6oHNp3JycmC1WmGz2WA0GoPn\nG41GWK2J2e02K1MDXUZicvYt59rQ7/VDJpPB5R4a1AseP4582BIyIByeDiJ4vPj4QnvYfga/JQiV\nSpLIoHzN0jyUFk1Bjl4LuQzI0WtRWjTlutkQjOsWiIiI6HoRc8T85ptv4tNPP8Wjjz4Kv98fPD74\n34OFOz6YwZABpTK+oNVk0gEAJmqV6O7tj+vaWHR0u9Evk+NUhED9VLMN31lZAK1aCa/Xh1/95hOc\nOHMF1s4+mLIn4O7ZN2F58a0RN/+qLJsJo3FiyGsf/MoXoVDIsaWyEBkT1Dhx5gpsnX3IHfZ5OIHv\nKJJH1t0Bl7sfdocAg14DrVpyhZlGTaFWoaM7fIqUQq2CKXdiku9qfInld+h6x++IiIikIGqEd+bM\nGeTk5OCmm27C7bffDq/Xi4kTJ8LlckGr1aK1tRVmsxlmsxk2my14XVtbG+bNmxexbbu9N66bNZl0\nsFq7IXi8aO9yxXVtrAw6Nez2HtjsfWHPsXW6cOF/2mE2ZKD6cNOQ/P42ex/2f/AXdHb3QS4DfCGe\neeQywN3nxr+/Ffra3j53sARmxaJbsfyuqUPq7Hd09IS9t8B3FCslgO6uPsR+hbSZTDp43R4YdeHX\nLXjdnri+w3QT7+/Q9SiZ31GqHyqamprw0EMP4YEHHsD69etx5coVPPbYY/B6vTCZTNi1axfUajX2\n79+PvXv3Qi6Xo7KyEqtXr4bH48ETTzyBy5cvQ6FQYMeOHZg6dSrOnj2Lp59+GgAwc+ZMPPPMMykd\nIxFROouaxtPQ0IBf/epXAACbzYbe3l4UFxfj4MGDAIBDhw6hpKQEBQUFOH36NBwOB3p6emCxWFBU\nVJSQm77a0YNEZVrMnGoAMBD0h2PQaZCVqYmYDnK6uSNkoA8MPAB0OYWYU0kCu/ReL/n0icZ1C0Sx\n6e3txbPPPouFCxcGj7344ouoqqpCdXU1brnlFtTW1qK3txd79uzBa6+9hn379mHv3r3o7OzEu+++\nC71ejzfeeAObNm3C7t27AQDPPfcctm3bhjfffBNOpxPHjh1L1RCJiNJe1GB/7dq16OjoQFVVFf7p\nn/4J27dvx8MPP4x33nkHVVVV6OzsREVFBbRaLbZu3YqNGzfiH//xH7F582bodImZkTqQgLKbAY3n\nrXjqlT+iVwj/NDF/pgkalSJixZzOHgH6MOsKjDoNIJOxBGYKXe/rFohioVar8fLLL8NsNgePxVOg\nob6+HmVlZQCA4uJiWCwWuN1utLS0YO7cuUPaICKixIiaxqPVaoOzMYO9+uqrI46Vl5ejvLxcnDsL\nQ/B48dF5W/QTR93+wKJcl3sg2FfIAe/f1ulq1QoUz7kxGBBGKmOpUSmCbQ03f6YJpuwJLIGZQoGd\nmFcunj4kRYqIrlEqlVAqh/6ZiKdAw+DjcrkcMpkMNpsNer0+eG6gDSIiSgzJrcq0dvaFDaITITtT\ng//19dlQK+QwDUulCaSDhKrJH3hYGEyrVuCeuTcFa7mHu5apJMkTSJEiovjFW6Ah1PFYijkAoyvo\nkGrJWG+R6jUdiZKu4wLSd2wc1/gluWAfMf5hEIu9W0CmVhU2IAzM8jc22WDvdiE7U4NeoT9ksD9R\nq8TKxdODmzYNv9ag06IwP5epJEQ0bmVkZMRcoMFsNsNqtWLWrFnweDzw+/0wmUzo7OwMnhtoI5p4\nCzqMB4lexJ2ui+nTdVxA+o6N40q9SA8lkgv2TYYMaNXyETXwE2XwYtxQ6R7D00Hc/T489cofQ7Zl\n7xaG7HzLVBIikppAgYavfe1rQwo0PPnkk3A4HFAoFLBYLNi2bRucTicOHDiAkpIS1NXVYcGCBVCp\nVJg2bRoaGhpQVFSEQ4cOYcOGDakeFhFR2pJcsK9RKXDXF27A7z66kpT+Zt5swNvHLqCxyYp2h4Ds\nTDUKZ+Siqiw/OEMfuC+zIQOCxxt3Lj5TSYhoPDpz5gx27tyJlpYWKJVKHDx4ED/60Y/wxBNPoKam\nBpMmTUJFRQVUKlWwQINMJgsWaFixYgWOHz+OdevWQa1W4/nnnwcAbNu2Ddu3b4fP50NBQQGKi4tT\nPFIiovQluWAfAPqTmLOvUGBIXn2n0426xstobnFg+wNFQwJ+IHIeP3PxiUhKZs+ejX379o04HmuB\nhkBt/eHy8vJQXV0t3o0SEVFYUUtvjjeCx4tzFzujnyiSMxfsIY9fbHPi/77XFPIzlnUkIiIiovFA\ncjP7kWrbiy1rogr2CPXu689cxZqlM0bM1ouZix9urUAqjKd7ISIiIqLoJBfsR6ptL7b5+SY0nreh\n0+kO+bng8cHa2YcppsyQn48lF9/r86HmSDMam6zocAgw6jUozDcFy3Ym03i6FyIiIiKKneQitUBO\nfCJp1QosvWMy1izLg1Yd5XkoQaVAa44043DDJbQ7BPgBtDsEHG64hJojzQnpTyr3QkRERESxk1yw\nDwAVJbdBpUzcrbvcXshlMtQe/QuudoSv7axVK2BKQBUdweNFY1PoHSUbm2wQPCNr+CfKeLoXIiIi\nIoqP5IJ9r8+H6vfOw9Of2Io8lnPWsEFuQPGcGxOSux5pXYK924WuMOsIBI8XV2w9ogbgo70XIiIi\nIko9yeXs1xxpxvEzVxPej707chBbPPtGrFs2IyF9R1qXEKpW/5Cc+m4BRp14OfXx3gsRERERjR+S\nmtl3ufujzraLJTtTDaM+dCCbo9dgw/0zE7Y4NdK6hFC1+ofk1PvFzamP916IiIiIaPyQVLBvdySv\n7ObttxojBLmmhAe5I2v1a7Bo9o2oKJk25Lxk5NRz3wAiIiIiaZJUGo9Bn5yym1q1AlVl1+rnNzbZ\nYO92waDTojA/NxjkJrLufKBWf0XJbah+7zzO/rUDx89cxdnP7UNSdGLJqR9t+c/h9yLGvgFERERE\nlDySCva1aiXm5uWiztKS0H4Wzr4RGRoVAIQMcr0+H6oPNyWl7vw7H3w2ZI1CIEUncG/JzKkfy74B\nRERERJR8kkrjAYDSO6YkvI/GpjZUH26C1zdQ8ScQ5AZms5NVdz6WFB3m1BMRERFROJIL9o16LfQZ\niX0h0en04HDDJbz5/vkRnyWz7nysZS+ZU09EREREoUgqjQcYmGW/Y6YZdY2XE97XH05fxar78obM\njicjRz4g1hSdwTn1CrUKXreHM/pEREREJL2ZfQCoKsuHUadKeD8utxfWzr7gz4LHC7fHG7YkZyJy\n5ONJ0dGoFLgpdyIDfSIiIiICIMGZfWBgJvsfl38Bu986lfjO/P6hm1Y5BKhVoZ+R5s3IET3QDqTi\nhKsIREREREQUjuSC/UDg/buPEp/Go1XLYTJkBBfkBggeX8jz/Qm4B5a9JCIiIqLRklwaTyDwdveH\nDrjFVDznJgCIedfeU+fbx7xAV/B40WbvHdHO8IpARERERETRSGpm3+XujznwHqsp5olYt2wGrth6\nYt7EaywLdIenCiWydj8RERERXR8kFezbHULCd88N6O3zoPrweXzcbIv5mrEs0B2eKjR88ywiIiIi\nonhJasrYoNcgO1OdlL46ut2os7TE9XAxmk2sBI8Xl6xOWM61hfxc7Nr9RERERHT9kNTMvlatROGM\n3KTU2JfJAH+YFbeGTDUyM9TodXlg7xYiVsgRPN6QC2uHp+2EW9wrdu3+aMLdLxERERFJj6SCfQBY\nsywPH5y6gn5fImrfXBMu0JfJgH9ZMw9TTJkRA+PhwXx2pgbz8nNRVToDCrl8RNpOOGLW7o/nfrlm\ngIiIiEj6JBfs17zfnPBAPxKjTgtT9gQA1yrkACMD6eHBvN0poM7SguZLXXj8HwpjXmg8mtSg4WIJ\n5LlmgIiIiCj9SCrYd7n70Xg+9gWziTA8+A4VSM+dnoOPL7SHvP5imxOvHzyHjghrAWQAjHrxNs+K\nFsgLHm/Yh4/GJhtWLp7OlB4iIiIiCZJUsG93COh0ulPSd86g2fDBQgXS0dYUfPpXO4x6TcjFvzl6\nDR5ZNRcmkWrqxxLIdzmFsA8fyV4zQERERETikVQydjKr8Qz3yKq5qCrNH5K/HimQlsvCt+Xo8WDW\nzYaQnxXmmzDFrBNtJj2WQD4rUwOjPvS6ADHXDBARERFRckkq2A9U40l+vwqYQsxsRwqkIy0rMOq1\nWFeWj9KiKcjRayGXATl6LUqLpowpbUfweHHF1jOkVGcsgbxGpUBhvinkOWKsGSAiIiKi1JBUGg8A\nVJXl409n2+Ds609an55+L7whovdAIB0qHceo0yBDq8Qla8+Izwrzc5GhUaKqND+YRjOWUpdD1g10\nCzDqrqUcBQL5UJV/BgfygYeMxiYb7N2uiOVEiej61tPTg8cffxxdXV3weDzYvHkzTCYTnn76aQDA\nzJkz8cwzzwAAfvnLX+LAgQOQyWTYsmULFi9ejO7ubmzduhXd3d3IyMjA7t27kZ2dncIRERGlL8kF\n+/1eP1SKCDkyCeD1AW+814SNX/7CkOORAun5MweC7er3mtB43oYupzvkotvBFX1GK9oC3FgCeYVc\nLtrDBxGlt//6r//Cbbfdhq1bt6K1tRXf/OY3YTKZsG3bNsydOxdbt27FsWPHMG3aNPz2t7/Fm2++\nCafTiaqqKtxzzz3Yu3cv7rrrLnzrW99CTU0NXn75ZTz66KOpHhYRUVqSXLDf5RRgd3qS3u/Zz+0Q\nPN5gABwotVlRchuA0IG0Qi7HhvtnoXJp+Pr2gXYmaJToE/rjDrJjraQTayAvxsMHEaU3g8GAc+fO\nAQAcDgeys7PR0tKCuXPnAgCWLFmC+vp6WK1WlJSUQK1Ww2g0YvLkyWhubkZ9fT3+7d/+LXjupk2b\nUjYWIqJ0J7lgf4JGCRkQdsfZRLF3C+hyCsjJ0oasWf/Mxrvg7HWHDKRDBdCB1BvLuTZ0dLshlw3k\n+efEuZlVPJV0GMgTkRj+7u/+Dv/5n/+JsrIyOBwO/PznP8cPfvCD4Oc5OTmwWq3Izs6G0WgMHjca\njbBarbDZbMHjOTk5aGtrS/oYiIiuF5IL9vuE/qQH+sC1xayj3Xxq+KZb1YfPo87SEvw8sCQg3s2s\nIq0bMOg0rKRDRKL77//+b0yaNAmvvPIKzp49i82bN0On0wU/94fZgjzU8XDnDmcwZECplFZqocmk\ni36SBPpIhXQdF5C+Y+O4xi/JBftZmRroMpTo7k3eAl0AmJuXAwBxbz4VatMtrUaJK7aRC3djaW+4\nSOsGelwevH3sQsxvCYiIYmGxWHDPPfcAAGbNmgVBENDff+1/k1tbW2E2m2E2m/HZZ5+FPG61WqHT\n6YLHorHbe8UfSIJZrd0Jbd9k0iW8j1RI13EB6Ts2jiv1Ij2USC4C1KgUuO0GfdL7Lb1jSkwpM8MF\n3gS0OwT4MTBz32LtiViaM1J7oaxZmofSoinQqoc+GLjcPhxuuISaI80xtUNEFItbbrkFp06dAgC0\ntLRg4sSJmD59OhoaGgAAhw4dQklJCe6++24cPXoUbrcbra2taGtrQ15eHhYtWoQDBw4MOZeIiBJD\ncjP7APDle27Fx591JK0/uQzInKCCWqWIkDIzcvOpSItno4knBUchl2Pl4umwnGuDy+0d8XmsbwmI\niGKxZs0abNu2DevXr0d/fz+efvppmEwmbN++HT6fDwUFBSguLgYAVFZWYv369ZDJZHj66achl8ux\nYcMGPProo6iqqoJer8euXbtSPCIiovQlyWA/N2tCUvvz+QfWCugy1DHVrA+I9CYgmgytKq7gvMsp\nwN7tDvnZ8IW64QxfV0BEFMrEiRPxk5/8ZMTx6urqEcc2bNiADRs2jLj+Zz/7WcLuj4iIrpFksP/2\n0QtJ7U8uG6gCBMS3+VSkxbPR9PR5hpT6jCbyQt2Rbx0GC7WuIJ6KQEREREQ0Pkku2Bc8Xvz5r/ak\n9jl4Zj+ezaciLZ6NptMpxDQbH0tfod46DDbaCkNERERENL5Jbtq2yymgs3t0qTGjZfxb/rzg8aLN\n3huccTcbMqLOvAcWz+botZDLBuroTzVnwqjTQIaBtwahRJuND9fXV0umDepLi9KiKSHfOgRE25RL\n8IxcA0BERERE0iC5mf2xpMaM1ty8HLx+8BzOfm6PO80l3JuAQH78wT9dHFJvPyDabHy4vr5dMQfL\n75oac+59PJtyEREREZG0SC7YH0tqTPx9yWA2TET9mSsQPNdqZY4mzWX47rWBn6tKZ0Ahl8W0BiD2\n+459p9yx5PoTERER0fgmuWAfGEhXae/sQ2Nze8L6uMmYgfxbsnCs8UrYc8QoaRnPGoBE0KgUmJuX\nK9rbBSIiIiIaPySXsx/wP1cTt6PZvDwj/vc3i3DmQuRa/vFsfBVNrGsAxOT1+VB9uAmnzg/k7AfW\nD+ToNVFz/YmIiIho/JPkzH71e02wO0PXlBfDP5TNhLPXHXVdQNZEtaTTXIZX4Qns6jt3eg6r8BAR\nERGlAcnN7PcK/fjD6asJ7cPr8yMrU4PsTHXE87RqpWTTXCJV4fn4Qger8BARERGlAckF+2+81wR3\nvy9h7auVMmRmDOxeO3e6MeK57n6vZIPiWKrwEBEREZG0xZTG88Mf/hAffvgh+vv78Z3vfAdz5szB\nY489Bq/XC5PJhF27dkGtVmP//v3Yu3cv5HI5KisrsXr1alFv1uXux9nPE7uhlrvfj1/XNUOlVOCT\nzyL3Ze+Ob+Or8YRVeIiIiIjSX9Rg/8SJEzh//jxqampgt9vx9a9/HQsXLkRVVRWWL1+OF154AbW1\ntaioqMCePXtQW1sLlUqFVatWoaysDNnZ2aLdrK2zLyn19Y99FL4Cz2BSDorHsuMuEREREUlD1DSe\nO++8Ez/5yU8AAHq9Hn19fTh58iSWLVsGAFiyZAnq6+tx6tQpzJkzBzqdDlqtFvPnz4fFYhH1Zn/z\nwV9EbW+spB4Uj9zdN/qOu0REREQkHVFn9hUKBTIyBtJUamtrce+99+L3v/891OqBxas5OTmwWq2w\n2WwwGq/luBuNRlitoReAjobg8aLh01bR2hsrrVqBipJpcV0T2DU32bX0w/Wd6hr/RERERJRYMZfe\nPHz4MGpra/GrX/0KX/rSl4LH/X5/yPPDHR/MYMiAUhlbcHnF1gNrZ19sN5sEbo8Xaq0aptyJwWMu\ndz/sDgEGvQZa9bWv1uv14Ve/+QQnzlyBtbMPpuwJuHv2TXjwK1+EQiH+GmmTSRd331NEv4vxa/D3\nQ6HxO4qO3xEREUlBTMH+Bx98gJdeegm//OUvodPpkJGRAZfLBa1Wi9bWVpjNZpjNZthstuA1bW1t\nmDdvXsR27fbemG/U6/HClD0BbfbxEfAbdFp43R5Yrd3w+nyoOdKMxiYrOhwCjHoNCvNNWLM0Dwq5\nHNWHm4bkxrfZ+7D/g7+gt88tej17k0kHq/XahmPJ7FsKhn8/NBK/o+iS+R3xoYKIiMYi6rRyd3c3\nfvjDH+IXv/hFcLFtcXExDh48CAA4dOgQSkpKUFBQgNOnT8PhcKCnpwcWiwVFRUWi3ahGpcDds28S\nrb2xGpyvH9icqt0hwA+g3SHgcMMl1BxpjljPvrHJltDSnansm4iIiIhSL+rM/m9/+1vY7Xb88z//\nc/DY888/jyeffBI1NTWYNGkSKioqoFKpsHXrVmzcuBEymQybN2+GTifujNQ/3D8Th07+FS538oNU\nuWxgh9mcQbP2QPSA+t6CSVHr2SeqdGcstfRH03cq1x4QERERUeyiBvtr1qzBmjVrRhx/9dVXRxwr\nLy9HeXm5OHcWQlePB0KKAv1nN94FhUI+IsCNFlDD709ZPXuxa+lHS1cK4MMAERER0fgQ8wLd8cCg\nDx+8JpLPD3Q63bj91pE76kYLqE2GjJTVsxe7ln4gXSkgkK4EAFWl+TE/DBARERFRckgqAtOqlZgx\nJSvp/cplwBRzZsjPAgF1KIGAOpX17MXqO5b8/0hrF4iIiIgo+SQ1sw8A9y+4BSf+3JbUPiebMqHL\nUIf9PBA4NzbZYO92waDTojA/N3g8lfXsxeo7WrqS1d4b8WFg5eLpTOkhIiIiSjLJBftGXeJy3EOR\ny4FH1xVEPCfWgFqjUiRsMW40Y+07WroSZLKULUQmIiIiotAklcYDAH1Cf1L78/mAN9+/AK/PF/Xc\nQECdjjPY0dKVTNkTYNSHfhBL9EJkIiIiIgpNcsF+VqYGamVyb/v4mavMO0fk/P9Y1i4QERERUXJJ\nLo3H6/PB3R99ll1szDuPnq4Ube0CERERESWX5IL91w+eS0m/w/POr+da8uHy/1O5EJmIiIiIRpJU\nsO9y9+PTv9pT0ncg73x4LXmDTo1Ztxix6r5pcHt8wdz06znYTeVCZCIiIiK6RlLBvt0hoKvHk5K+\nA3nn1Yebhmws1dHtxvEzV3H8zFUAgFopAyCDu9+HHG4qRURpav/+/fjlL38JpVKJ7373u5g5cyYe\ne+wxeL1emEwm7Nq1C2q1Gvv378fevXshl8tRWVmJ1atXw+Px4IknnsDly5ehUCiwY8cOTJ06NdVD\nIiJKS5KKQA16DbIzw9e7TwSjTh1chBppY6kAd78/uKaAm0oRUTqy2+3Ys2cPqqur8dJLL+H999/H\niy++iKqqKlRXV+OWW25BbW0tent7sWfPHrz22mvYt28f9u7di87OTrz77rvQ6/V44403sGnTJuze\nvTvVQyIiSluSCva1aiUKZ+Qmtc9/rpyHqtJ8KOTyiBtLRRLYYVYsgseLNnuvqG0SEcWqvr4eCxcu\nRGZmJsxmM5599lmcPHkSy5YtAwAsWbIE9fX1OHXqFObMmQOdTgetVov58+fDYrGgvr4eZWVlAIDi\n4mJYLJZUDoeIKK1JKo0HACrunY66xstJ6cuoU8OUPSH4c6SNpSLpcIizqdTw9QJGpgkRUQpcunQJ\nLpcLmzZtgsPhwMMPP4y+vj6o1QNvXnNycmC1WmGz2WA0GoPXGY3GEcflcjlkMhncbnfw+lAMhgwo\nldJaA2Uy6dKij1RI13EB6Ts2jmv8klyw/9b755PW1/yZ5iELbAO15Afn7MciK1MtyqZSNUeah/Qd\nSBMCgKrS/FG1eT1XFaLR4e8MAUBnZyf+/d//HZcvX8Y3vvEN+P3+4GeD/z1YvMcHs9t7R3ejKWS1\ndie0fZNJl/A+UiFdxwWk79g4rtSL9FAiqWDf5e7H2c+TU41nimliyPrwgWO///gKXO7Y0mgKZ4x9\nU6lI6wVGswcA3xJQvPg7QwE5OTkoLCyEUqnEzTffjIkTJ0KhUMDlckGr1aK1tRVmsxlmsxk2my14\nXVtbG+bNmwez2Qyr1YpZs2bB4/HA7/dHnNUnIqLRk9RfaLtjdDnzo3G5vReXrM4RefGBWvI/2rwI\ni2bfCIMu8h+oqeZMVJWNbtZ9sEjrBQJ7AMQj8Jag3SHADy4mpuj4O0MB99xzD06cOAGfzwe73Y7e\n3l4UFxfj4MGDAIBDhw6hpKQEBQUFOH36NBwOB3p6emCxWFBUVIRFixbhwIEDAIC6ujosWLAglcMh\nIkprkprZN+hHlzM/Gj6fH8+82hC2fKZGJccErRK9rv6Q12tUchTPuQlVpTNEmfWMtF4gsAdArMR+\nS0Dpj78zNNgNN9yA+++/H5WVlQCAJ598EnPmzMHjjz+OmpoaTJo0CRUVFVCpVNi6dSs2btwImUyG\nzZs3Q6fTYcWKFTh+/DjWrVsHtVqN559/PsUjIiJKX5IK9rVq5ahy5sciXF589eHzqLO0hL1uolaF\nyiXipDcEcqTn5uWG7DOwB0CsYnlLwE2xaDD+ztBwa9euxdq1a4cce/XVV0ecV15ejvLy8iHHArX1\niYgo8SQV7AMDOfOOHjf++GlbUvu1nLNi5eLpUCpkqH6vCcc+ilwRqNMpjDkACrVb71RzJnpdHti7\nBRh0WhTm54ZcWxCJmG8J6PrA3xkiIiJpklywr5DL8eWFtyQ92O/oFvD6wXPQaBQxlf4UIwAaXn2n\no9uNjm43lhROwv133TzqaiiRqgrF+5aArg/8nSEiIpImyQX7AFI2i/iHM1ehVceWljPWAChSjvTH\nFzpQuXTGmNoPvA1obLLB3u0a9VsCun7wd4aIiEh6JBns9wmhF8Umg8vti/i5Vq3APXNvGnMAlOgc\n6UBVoZWLp7NmOsWEvzNERETSI8lgfzzmB8tlwF23m7H+/lnI0Iz9a01WjrRGpeDCSooLf2eIiIik\nQ1J19gM6uvpS1rdWHXomc/G8Sfinr84WJdAHruVIh8IcaSIiIiKKhSRn9k81t6es70VzboRMJktK\n3jJzpImIiIhoLCQZ7N9+a3bS+9So5SiZOym4uVYy8paZI01EREREYyG5NB6vz4eDf0replqyv/3f\nDLUCXq8PbfY+CB5vMG85GcF3qL4Ejxdt9l4IHm/C+yciIiIiaZLczH7NkWac+KQ1af35//Z/7U4P\n6hovo67xMnL0GhTmm4Kz/Mk0fKMtYwrvhYiIiIjGN0lFhy53f9ja88nU7hBwuOESao40B4+NdqY9\n3usCG221OwT4w9wLEREREREgsZl9uyN87flUaGyyoaJkGt754C9xz7SPZoY+0kZbjU02rFw8XZRx\nEREREVF6kFSwb9CHrz2fCvZuF954rwl/OHM1eCww0w4AVaX5Ya+tfq8JdY2X47oulo22psQ9CiIi\nIiJKV5JK49GqlWFrz6dC1kQ1zn5uD/lZY5MtZGqO1+fDvkPncOyjyyGuCn8dcG2jrVDE3GiLiIiI\niNKDpIJ9YKD2vNmgTfVtAAAmmzOjzrQPV3OkGXWWFvj8IS6KcB3AjbaIiIiIKD6SSuMBgH6vH26P\nL9W3AQC4Z86NuGLrCd+J+MQAAByfSURBVJlWFGqmPVLOfajrBI93RH19brRFRERERLGSXLDf5RTQ\n5XQntA+NSg5Pvw9ZE9WwR+jr9luMKMx3BHPtBws10x4p537wdUqFDNWHm8Iu3uVGW0REREQUC8ml\n8WRlapCd4Nx0wePD3V+8Ec9+ewEmakMH0lNME6HLUGPN0jwsKZyE7Ew1ZABy9FqUFk0JOdMeKede\nLgOWFA7s0BtLec1kbupFRERERNIkuWBfqZAhQ5v4FxLnPu/E20cvoMc1crFs5gQlnvzmHcHymR9f\naEeX042sTDVmTMlCRcm0IeUzA7X0AYTNuV9cOBkb7p+Ffq8/YnlN7phLRERERLGSXBpPzZFmtNh6\nEt5Pu8OFP30aeqdelUIOwe3DW0eGlt3sdLpx4s+t+KjZinvmTsKq+6ah9ujQGvzzZuRi6R2Tcep8\ne8ic+1jKa5oNGeIPeJwKtW6BiIiIiGIjqWA/2TvoOkPM6gOA3enGo3v+ALc3dEkdl9uHww2XcO7z\nTlxscwaPtzsEvP9hC0qLpmD7A0W41ObEFHMmdBnq4DmBVJ9YF/2mq9FsOkZEREREQ0kq2B9PO+iG\nC/QHa7E6Qx7//cdXYDnXBnu3e0QQGyivGeui33Sd+Q6sWwiIdbMyovEmXf8bJSIiaZBUsD/edtCN\nJlwtfZfbC5d74K1BqCA2lvKa4Wa+t1QWJnBEyRGpRGljkw0rF09n0ETjHt9OERHReCCpYD+wg26o\nWe/xSC4LH/APNziIjaW8ZriZ74wJalQsulXEUSTfeF+3wJlaigXfThER0XggqWAfGJj17nX14/ig\nhbHj1WRT5pCc/UhCBbGB8prDRZr5PnHmCpbfNVXSQeh4XbfAmVqKFd9OERHReCG5CEUhl0OjHr9/\nJGWya7X2//c35qO0aApy9FrIZUCOXgOtOvRXHk8QG2nm29bZhy6nNNKcwgmsWwgl1LqFZIll/wMi\nILa3U0RERMkguZl9wePFqfPJq8gTDxmABbebsf7+mcjQqABgSDrOBI0SNUeaQ76ViCeIjTTznZs9\nIS0q9sSybiGZOFNL8Rivb6eIiOj6I7lgv8spoKPbnerbCMkP4MSf2yCXy7Hh/pnB4E+pkOHwh5eC\n6R/av72ZENxeGPXxB7GRKvbcPfumtAg6Y1m3kEzjfR0BjS/xVtUiIiJKFMkF+xM0yrgWvqbC8TNX\nce5zezCfe/hCvUAlnkWzb8T6QQ8F8Qg38/3gV76Ijo7EbzqWLOHWLSQbZ2opXuPt7ZTYXC4Xvvzl\nL+Ohhx7CwoUL8dhjj8Hr9cJkMmHXrl1Qq9XYv38/9u7dC7lcjsrKSqxevRoejwdPPPEELl++DIVC\ngR07dmDq1KmpHg4RUdqSXLDfJ/SP60A/IJDP7fb045PP7CHPOft556jbDzfzrVBIbhmGJHCmluI1\n3t5Oie3nP/85srKyAAAvvvgiqqqqsHz5crzwwguora1FRUUF9uzZg9raWqhUKqxatQplZWWoq6uD\nXq/H7t278fvf/x67d+/Gj3/84xSPhogofUkuMszK1CAzQ5Xq24jZB6euht0XQIyFeoGZ73QKIsar\nNUvzhi24HliInS4ztZQY6fjf6IULF9Dc3Iz77rsPAHDy5EksW7YMALBkyRLU19fj1KlTmDNnDnQ6\nHbRaLebPnw+LxYL6+nqUlZUBAIqLi2GxWFI1DCKi64LkZvY1KgUK8nLwh4/Hf+lNYCCPP5xkp3+w\nPvzYpPtMLVGsdu7ciX/913/FO++8AwDo6+uDWq0GAOTk5MBqtcJms8FoNAavMRqNI47L5XLIZDK4\n3e7g9eEYDBlQKqX135vJpEuLPlIhXccFpO/YOK7xS3LBPgAsnnuTZIL9SJKV/sH68OIaL+sIiFLh\nnXfewbx588Lm2fv9oac44j0+nN3eG9sNjiNWa3dC2zeZdAnvIxXSdVxA+o6N40q9SA8lkgz2ewVv\nqm9hVAyZGnT1CElfqMedPIlILEePHsXFixdx9OhRXL16FWq1GhkZGXC5XNBqtWhtbYXZbIbZbIbN\nZgte19bWhnnz5sFsNsNqtWLWrFnweDzw+/1RZ/WJiGj0JBnsm7K0qb6FkNRKGTz9/pCpOzl6LbY/\nUIQ+oT9k+keiUmxYH56IxDR4Me1Pf/pTTJ48GY2NjTh48CC+9rWv4dChQygpKUFBQQGefPJJOBwO\nKBQKWCwWbNu2DU6nEwcOHEBJSQnq6uqwYMGCFI6GiCj9xRTsNzU14aGHHsID/6+9uw+K8rr3AP7d\nd1xZ5MVdKmqrVamO4lswVowaFWw0TS9Noo1cppMbTdMxOulMbGQs9yZpm4pGM8lkOpOUhN6Mk07p\nYJuxU0dSR7zRiOTqEgNpWsS8XBUiu7CyLOwuy/LcP8huFt1ld2FfOA/fz1/ywD7nOUd4nt+e/Z3f\nefRRlJaWor29PeIya/HQ1jk+P85du3Q6vIMS6sw37vjestypMOi1MOiHz2DFO8WG9eGJKN727NmD\nffv2obq6Gjk5OSguLoZGo8HTTz+NHTt2QKFQ4Mknn4TBYMCWLVtw/vx5bN++HVqtFhUVFcm+fCIi\nWQsb7Pf19eFXv/oVVq1a5T8WTZm19PT0mF908Lnz5EnRqrByYTbWL5uOKak6qJSKiGpruz1eHK39\n17AddWOdYsP68EQUL3v27PH/+/e///0d37/vvvtw3333DTvmq61PRESJETbY12q1qKysRGVlpf9Y\nQ0MDnn/+eQBDZdaqqqowe/Zsf5k1AP4yaxs2bIj5Rc/+RlrMzxktpQLIn2/C9+6eiXMfteOjq514\nr7HNPzP//I4VcPR5gqblBM7mhyrLefGfHXigYNYdnwREi/XhiYiIiCausMG+Wq2GWj38x6IpszaS\n0ZRSMxoNGFAkv4LMoAR88EkHrN0ufNpm9x/3zczrJ2nxeHFe0NdWvtMUNPgOdMvRj1/+90WsXpKD\nxx5YGNVmWbevyN69bRn0k7S40NwO6y0npqZPwncXTYv6vHIhhzJa8cYxCo9jREREIhjzAt2xlFOL\ntpSarwSS1zN+qvF83m4Pevz9y23YfPfMoAtxz304cqDv02l34fjZT9Hn7I84pSdUmaji1bOw+e6Z\nwxYBd3X1RnROORGpjFaycIzCS+QY8U0FERGNxaimdX1l1gCMWGbNZDLF5ipv0z+Ogv3BEO9pQu2O\n2+1wo6unP6o2GluscMegz3LcyZOIiIiIQhtVsF9QUIDa2loAGFZmrampCXa7Hb29vTCbzcjPz4/p\nxfpc73DE5byjoVQEPx5q8esknTrka0IJ9caBiIiIiGgkYdN4mpubcfDgQdy4cQNqtRq1tbU4fPgw\nysrKIiqzFg8zTKlxOe9oTDem4lqQNx+hFr863QMhPw0IhVVziBIvXntfEBERJVLYYH/RokU4evTo\nHccjLbMWDwa9FhmpGtgcnri3FYpKqcC9y3Kwdf0c1Jz5FOZ/WWDrcSPDoMPy7xhD7o47JVWHrBCl\nMFO0Srj6B+84zqo5RIkT770viIiIEknYJ9f3Vn4r7m2kT9Zg3bIcBCtY4x2UoFAo/A9/xVepOYow\nKTq+UpjBFORNQ2H+DGSlpUCpGNp1tzB/Rsg3DkQUe9WnW3Hq4nV02t2Q8HWFrerTrcm+NCIioqiN\nuRpPsuRMnRz3NvIXZOOhdXPQ1GoNuqi2scV6x465kWyK5Qveg228pVIq8dC6OUwfIEoCt8eLxpbg\nJYMbW6x4aN0c/k0SEZFQhA32EUFpz7HQqhUoXjMb3Q43bCGq53TZXfiwxRr0eyMFBiqlEiWFuSGD\nel/VHCJKrG6HG10hNrrzLZTn3yYREYlE2DSeL7uccT1//4CEP/z9ClL1WmSmBV8cOyVVi1shquRE\nUkGHpTCJxpcpqbqQf+9cKE9ERCISNthvvtoZ9zbON3+Jd85+GjLHftm8qQwMiGRkpDU1XChPREQi\nEjLYd3u8+McXXQlpq7HFiuI1s4MunC0pyo1LYOD2eNFh64vJRlpEFJ0fbZjLhfJERCQbQubsW245\nMXBnhcq4sPW44OjzhMyx/9GGufB6B9F4xYpuRz8y075ebButSEr+sfY3UXyFW1NDREQkEiGD/Xgv\nzg3kS8cJFmT7gvOPrnbilqMfaXotFn47Y9T1uH0l/3wCK/v8aMNc1v4mSiAulCciIjkQMtg3Zuih\nAJCIkD9vbiaO/c/VoEH27cG5va8f733Yjs/aevBfj+ZHFYSHK/nn9Q6irrHNfyySEp9ERERENLEJ\nOSWs06gwWRdm96oYab3eHXSDnT/8vSVkcH6tw4E/nLoSVTsjlfzr6nGh8UroEp/M7Zcnrt0gIiKi\nsRJyZr/PPQCHOzGpPG2W3qDHG69YccsRvP4+AHzYYsW29XMjzvX1lfzrDBLwp0/WwRamxCfTDeQj\nkrUbRERERJEQMnI4WvvPhLU1GOI9RfdXOfqh3Op1h62zH2ikkn9Lc6ciiyU+JwxfetjtnyZVn25N\n9qURERGRYIQK9r3eQRyt/Sca/tGRsDaVIbKF0lN1WDw3M+TrMqMMwr2DgxiUJKRov/4vSdGqsPGu\n6SgpnMfa3xNEuLUbTOkhIiKiaAgV7Ff99eNhi1QTYboxNehxm8ONf3zWhdRJwTOhog3Cq0+34vSl\nG3D1f11T1NXvhUKhgEqpZO3vCWKktRuR7MpMREREFEiYnH23x4sLze0Ja0+pGAr0y0qX4S/vfYbG\nFis67a5hP9PVM5SzP8M4Gb3OAdzqdSPT8HWd/Uhr4oebzX1o3RzoNCrW/p4ARlq7wZQtIiIiipYw\nwX63ww3LLWfC2huUhqrq/OW9z1BSmIsHCmbh2aoPgi7Kdbq9eO6xFXC6BzAlVQe1ShHVAstIZnN9\nC3BZ+1vefGs3Aku6+jBli4iIiKIlTBrPlFQdjOmTEt6uL0/a6R5Ad4jqO7YeF5zuAZgy9NBpVFEv\nsPTN5gbD2dyJhylbREREFCvCzOzrNCrkL8jGifOfJ7TdLrvLnzYTSXpFpCk5gTibS4FUSiVTtoiI\niCgmhJnZB4AH1nw74W0qFEDt/16DWqWIqCLOaBdYcjaXbudL2WKgT0RERKMlzMw+AExNn4SsELPr\n8TIoAXXmG1ApFf7Au7HFCluPCxkBi3F9RrvAkrO5RERERBRrQgX7KVo15s2Ygs4E1tn38aXghAvI\nx5qSwwW4RERERBQrQgX7APC9ld/ChSQE+10BVXHCBeQjfQIQaTlOIqLx7NChQ7h06RIGBgbwxBNP\nIC8vD8888wy8Xi+MRiNefPFFaLVaHD9+HG+99RaUSiW2bduGrVu3wuPxoKysDG1tbVCpVDhw4ABm\nzpyZ7C4REcmScMH+NzL1UACQEtyuAkDtB/+HkqLcoOUzAwVLyYm2HCcR0Xh14cIFXLlyBdXV1bDZ\nbPjhD3+IVatWoaSkBJs3b8ZLL72EmpoaFBcX47e//S1qamqg0Wjw8MMPo6ioCHV1dUhLS8ORI0dw\n7tw5HDlyBC+//HKyu0VEJEtCRpkatSLhbQ5KQF1jW8jymcEELrCMthwnEdF4tWLFCrzyyisAgLS0\nNDidTjQ0NGDjxo0AgPXr16O+vh6XL19GXl4eDAYDUlJSsHz5cpjNZtTX16OoqAgAUFBQALPZnLS+\nEBHJnXAz+90ON/oH4juvn52RAsstFwaDNBOqfOZIRlOOk4hovFKpVNDrh1IZa2pqsHbtWpw7dw5a\nrRYAkJWVBYvFAqvViszMTP/rMjMz7ziuVCqhUCjQ39/vf30wGRl6qNVi3SeNRoMs2kgGufYLkG/f\n2K/xS7hgf0qqDump2qA72cbKTZsr5Pdu39E2EtHskEtEJIpTp06hpqYGVVVV2LRpk/+4JAWfkIn2\neCCbrW90F5lEFktPXM9vNBri3kYyyLVfgHz7xn4l30hvSoRL49FpVFg2b2rS2h/NjrbcIZeI5Obs\n2bN47bXXUFlZCYPBAL1eD5draKLk5s2bMJlMMJlMsFqt/td0dHT4j1ssQ592ejweSJI04qw+ERGN\nnnDBPgCUFOVihnFyUtoezY62vnKcsTofEVEy9fT04NChQ3j99deRnp4OYCj3vra2FgDw7rvvYs2a\nNViyZAmamppgt9vR29sLs9mM/Px8rF69GidPngQA1NXVYeXKlUnrCxGR3AmXxgMMVbt59j9W4D/f\naMCXXc6EtJmVducGWtGIZEMuIiIRnDhxAjabDT/72c/8xyoqKlBeXo7q6mrk5OSguLgYGo0GTz/9\nNHbs2AGFQoEnn3wSBoMBW7Zswfnz57F9+3ZotVpUVFQksTdERPKmkCJJloyTaPOgbs+d8g4Oorzy\nwog59rEwZbIWv9xxNwz6sX/MHO86+yLllyUDxyc8jlF4iRwjOSwOi4WxjPdjFadjeCWRqyrbENfz\ny/VvVa79AuTbN/Yr+WSVsx9IpVRi37/fFfd2evr64XQPxORcgeU4iYiIiIjiSehgH0DMgvCRcBEt\nEREREYlI+GD/1MVrcW9j8ZxMzsQTERERkXCEDvbdHi8ut1rD/+AYFebPjHsbRERERESxJnSw32V3\noasnfptrAUNVeDLTUuLaBhERERFRPAgd7J+6dD3ubbAOPhERERGJSsg6+8BQCs9HcUzhyTTosPw7\nRtbBJyIiIiJhCRvsdzvc6LK743b+JfOmoqQwN27nJyIiIiKKN2HTeKak6pCZNvZymFp18CH4qLUT\nbo93zOcnIiIiIkoWYYN9nUaFZbnGMZ+nf2Aw6HFbjwvdjvh9ckBEREREFG/CpvEA8OfTN7ZY0DnK\nlJ6MVA1sDs+dx7mRFhEREREJTtiZfQBQKZUoKczFrx//Ln65425kpGqiPseCWVlBj7MKDxERERGJ\nTuhgHxiqytPtcMOYPgl3zc+O6rVZaTqUFM1DYf4MZKWlQKkYqqtfmD+DVXiIiIiISHjCpvF4BwdR\nfboVjS0WdNndyEzTYfHcLMwwTcaNjl5IEZxjWa4Rep0GJYW5eGjdHHQ73JiSquOMPhERERHJgrDB\nfvXpVpy6+PWmWp12N+rMbRG9VqdR4p7F04bN3us0Kpgy9DG/TiIiIiKiZBEy2Hd7vGhssYz69b/e\nuRJZUybF8IqIiIiIiMYfIXP2x7qhlncwkiQfIiIiIiKxCRnsj2VDrYxULUtqEhEREdGEIGSwP5YN\nte6ab+ICXCIiIiKaEITM2QcCN9SywtbjQoYhBUvmZUHx1bGunuFpPilaFQryvsGSmkREREQ0YQgb\n7Ps21ApWMvPhe+ei2+HGJJ0a3b39gCTBmKHnjD4RERERTSjCBvs+wUpmBh4z6LXJuCwiIiIioqSL\nebD/m9/8BpcvX4ZCocD+/fuxePHiWDdBREREREQRiGmw/8EHH+CLL75AdXU1rl69iv3796O6ujqW\nTRARERERUYRiWo2nvr4ehYWFAIA5c+agu7sbDocjlk0QEREREVGEYjqzb7VasXDhQv/XmZmZsFgs\nSE1NDfrzGRl6qNXRLZo1Gg1jusaJgGM0Mo5PeByj8DhGREQkgrgu0JWkkXeqtdn6ojqf0WiAxdIz\nlkuSPY7RyDg+4XGMwkvkGPFNBRERjUVMg32TyQSr1er/uqOjA0bj6Da/IiIi+WIxByKixIhpzv7q\n1atRW1sLAPj4449hMplCpvAQEdHEFFjM4YUXXsALL7yQ7EsiIpKtmM7sL1++HAsXLsQjjzwChUKB\nZ599NpanJyIiGQhVzEFuk0OPVZxOSrtVZRuS0i4RjU8xz9nfu3dvrE9JREQyEm0xB4oO32QQUaCk\n7qA7moVnXKwWHsdoZByf8DhG4XGMYidcMQdgbOP91yP/NurXUnLI+e9Lrn1jv8avmObsExERhcNi\nDkREicNgn4iIEorFHIiIEiepaTxERDTxsJgDEVHiKKRIkiWJiIiIiEg4TOMhIiIiIpIpBvtERERE\nRDIlRM4+t1UHWlpasGvXLjz66KMoLS1Fe3s7nnnmGXi9XhiNRrz44ovQarU4fvw43nrrLSiVSmzb\ntg1bt26Fx+NBWVkZ2traoFKpcODAAcycOTPZXYq5Q4cO4dKlSxgYGMATTzyBvLw8jtFXnE4nysrK\n0NnZCbfbjV27dmH+/PkcnyBcLhe+//3vY9euXVi1ahXHSGBye3ZE+hwQTaT3bpFEc88VUST3SdE0\nNDTgqaeewrx58wAAubm52Llzpyz6Bmmca2hokH7yk59IkiRJra2t0rZt25J8RYnX29srlZaWSuXl\n5dLRo0clSZKksrIy6cSJE5IkSdKRI0ekt99+W+rt7ZU2bdok2e12yel0Svfff79ks9mkP//5z9Jz\nzz0nSZIknT17VnrqqaeS1pd4qa+vl3bu3ClJkiR1dXVJ69at4xgF+Nvf/ib97ne/kyRJkq5fvy5t\n2rSJ4xPCSy+9JD344IPSsWPHOEYCk9uzI9LngGgivXeLJtJ7rqjC3SdFdOHCBWnPnj3Djsmlb+M+\njSfUtuoTiVarRWVlJUwmk/9YQ0MDNm7cCABYv3496uvrcfnyZeTl5cFgMCAlJQXLly+H2WxGfX09\nioqKAAAFBQUwm81J6Uc8rVixAq+88goAIC0tDU6nk2MUYMuWLXj88ccBAO3t7cjOzub4BHH16lW0\ntrbi3nvvBcC/M5HJ7dkR6XNANJHeu0UT6T1XRJHcJ+VCLn0b98G+1WpFRkaG/2vftuoTiVqtRkpK\nyrBjTqfT/1FSVlYWLBYLrFYrMjMz/T/jG6vA40qlEgqFAv39/YnrQAKoVCro9XoAQE1NDdauXcsx\nCuKRRx7B3r17sX//fo5PEAcPHkRZWZn/a46RuOT27Ij0OSCaSO/dogp3zxVRJPdJUbW2tuKnP/0p\ntm/fjvfff182fRMiZz+QxEqhdwg1JtEel4NTp06hpqYGVVVV2LRpk/84x2jIH//4R3zyySf4+c9/\nPqyPHB/gnXfewdKlS0Pm2XOMxCb3/w/R+xftvVsU0d5zx7vR3idFMGvWLOzevRubN2/GtWvX8OMf\n/xher9f/fZH7Nu6DfW6rHpxer4fL5UJKSgpu3rwJk8kUdKyWLl0Kk8kEi8WC+fPnw+PxQJIkMReY\nhHH27Fm89tpreOONN2AwGDhGAZqbm5GVlYVp06ZhwYIF8Hq9mDx5MscnwJkzZ3Dt2jWcOXMGX375\nJbRaLX+HBDYRnh3Bfj9FFMm9WzSR3nNFE+l9UkTZ2dnYsmULAOCb3/wmpk6diqamJln0bdyn8XBb\n9eAKCgr84/Luu+9izZo1WLJkCZqammC329Hb2wuz2Yz8/HysXr0aJ0+eBADU1dVh5cqVybz0uOjp\n6cGhQ4fw+uuvIz09HQDHKNDFixdRVVUFYCi9oa+vj+Nzm5dffhnHjh3Dn/70J2zduhW7du3iGAls\nIjw7gv1+iibSe7doIr3niibS+6SIjh8/jjfffBMAYLFY0NnZiQcffFAWfRNiB93Dhw/j4sWL/m3V\n58+fn+xLSqjm5mYcPHgQN27cgFqtRnZ2Ng4fPoyysjK43W7k5OTgwIED0Gg0OHnyJN58800oFAqU\nlpbiBz/4AbxeL8rLy/H5559Dq9WioqIC06ZNS3a3Yqq6uhqvvvoqZs+e7T9WUVGB8vJyjhGGyqT9\n4he/QHt7O1wuF3bv3o1FixZh3759HJ8gXn31VUyfPh333HMPx0hgcnp2RPMcEEk0926RRHPPFVW4\n+6RoHA4H9u7dC7vdDo/Hg927d2PBggWy6JsQwT4REREREUVv3KfxEBERERHR6DDYJyIiIiKSKQb7\nREREREQyxWCfiIiIiEimGOwTEREREckUg30iIiIiIplisE9EREREJFMM9omIiIiIZOr/ARPtbp4v\nlZNNAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "9l0KYpBQu8ed", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 3: Clip Outliers\n", + "\n", + "See if you can further improve the model fit by setting the outlier values of `rooms_per_person` to some reasonable minimum or maximum.\n", + "\n", + "For reference, here's a quick example of how to apply a function to a Pandas `Series`:\n", + "\n", + " clipped_feature = my_dataframe[\"my_feature_name\"].apply(lambda x: max(x, 0))\n", + "\n", + "The above `clipped_feature` will have no values less than `0`." + ] + }, + { + "metadata": { + "id": "rGxjRoYlHbHC", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1285 + }, + "outputId": "04bc034a-e091-4956-d3e0-f463d92daabe" + }, + "cell_type": "code", + "source": [ + "# YOUR CODE HERE\n", + "california_housing_dataframe[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"rooms_per_person\"]).apply(lambda x: min(x, 3))\n", + "\n", + "_ = california_housing_dataframe[\"rooms_per_person\"].hist()\n", + "\n", + "calibration_data = train_model(\n", + " learning_rate=0.05,\n", + " steps=500,\n", + " batch_size=6,\n", + " input_feature=\"rooms_per_person\")\n", + "\n", + "_ = plt.scatter(calibration_data[\"predictions\"], calibration_data[\"targets\"])" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 213.03\n", + " period 01 : 189.39\n", + " period 02 : 167.02\n", + " period 03 : 146.50\n", + " period 04 : 128.65\n", + " period 05 : 115.07\n", + " period 06 : 110.18\n", + " period 07 : 107.40\n", + " period 08 : 107.24\n", + " period 09 : 105.83\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " predictions targets\n", + "count 17000.0 17000.0\n", + "mean 190.8 207.3\n", + "std 44.6 116.0\n", + "min 42.7 15.0\n", + "25% 160.3 119.4\n", + "50% 193.1 180.4\n", + "75% 221.0 265.0\n", + "max 275.9 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predictionstargets
count17000.017000.0
mean190.8207.3
std44.6116.0
min42.715.0
25%160.3119.4
50%193.1180.4
75%221.0265.0
max275.9500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Final RMSE (on training data): 105.83\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAFKCAYAAADScRzUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHEJJREFUeJzt3X9MneX9//HX4RzOjmwH6WHndDZ2\nblnqypTRMhwrpFWodCuJEbU0hVSzFZ2m6OzEH6z+TEwG1mKqk6S2G0psVOL5Yx90pjSuLLHhyKwn\nIeBMqvtjwbaWcyoK8kMoub9/+N2Zx7YcpIdzLs55Pv6C++d1vXud8+p93Yf72CzLsgQAAIyUkewG\nAACA8yOoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAAgzmS3YBzCYVG43KcJUuyNDw8HpdjpQLqEY16\nRKMe0ahHNOoRLd718Hrd512X0lfUDoc92U0wCvWIRj2iUY9o1CMa9YiWyHqkdFADALDYEdQAABiM\noAYAwGAENQAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAAgxHUAAAYjKAGAMBgBDUAAAYz8tuz\nAOBctjUfTnYTYmprLE92E5BiuKIGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAAAMRlADAGAwghoAAIMR\n1AAAGIygBgDAYAQ1AAAGi/kI0YmJCTU2Nur06dP64osvtH37dnV1dem9995TTk6OJKmurk7XXHON\nOjs71d7eroyMDG3evFnV1dWanp5WY2OjTpw4IbvdrqamJi1fvnzBOwYAQCqIGdTd3d268sorddtt\nt+n48ePatm2bVq9erXvuuUdlZWWR7cbHx9Xa2iq/36/MzExt2rRJFRUV6u7uVnZ2tlpaWnTkyBG1\ntLRoz549C9opAABSRcygrqysjPx88uRJLV269Jzb9fX1KT8/X263W5JUWFioYDCoQCCgqqoqSVJJ\nSYl27twZj3YDAJAW5nyPesuWLbr33nsjQXvgwAHdcsst+v3vf69PPvlE4XBYHo8nsr3H41EoFIpa\nnpGRIZvNpqmpqTh3AwCA1DTnr7l85ZVX9P777+u+++7Tzp07lZOTo7y8PO3bt0/PPvusVq9eHbW9\nZVnnPM75ln/VkiVZcjjsc23arLxed1yOkyqoRzTqEY16XLhUrmEq920+ElWPmEE9MDCg3NxcXXLJ\nJcrLy9PMzIwuv/xy5ebmSpLKy8v12GOP6Ze//KXC4XBkv6GhIa1atUo+n0+hUEgrV67U9PS0LMuS\n0+mc9ZzDw+MX2K0veb1uhUKjcTlWKqAe0ahHNOoRH6laQ8ZHtHjXY7bQjzn1ffToUbW1tUmSwuGw\nxsfH9cgjj2hwcFCS1NvbqxUrVqigoED9/f0aGRnR2NiYgsGgioqKVFpaqoMHD0r68oNpxcXF8egT\nAABpIeYV9ZYtW/Tggw+qtrZWk5OTeuSRR5SVlaUdO3booosuUlZWlpqamuRyudTQ0KC6ujrZbDbV\n19fL7XarsrJSPT09qqmpkdPpVHNzcyL6BQBASrBZc7lpnGDxmk5gqiYa9YhGPaIthnpsaz6c7CbE\n1NZYnuwmLIjFMD4SyaipbwAAkDwENQAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAAgxHUAAAY\njKAGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAAAMRlADAGAwghoAAIMR1AAAGIygBgDAYAQ1AAAGI6gB\nADCYI9kNAIBUsq35cLKbEFNbY3mym4BvgCtqAAAMRlADAGAwghoAAIMR1AAAGIygBgDAYAQ1AAAG\nI6gBADAYQQ0AgMEIagAADEZQAwBgsJiPEJ2YmFBjY6NOnz6tL774Qtu3b9fKlSt1//33a2ZmRl6v\nV08++aScTqc6OzvV3t6ujIwMbd68WdXV1ZqenlZjY6NOnDghu92upqYmLV++PBF9AwBg0Yt5Rd3d\n3a0rr7xSBw4c0J49e9Tc3KxnnnlGtbW1eumll3TZZZfJ7/drfHxcra2teuGFF/Tiiy+qvb1dn376\nqV5//XVlZ2fr5Zdf1h133KGWlpZE9AsAgJQQM6grKyt12223SZJOnjyppUuXqre3V+vXr5cklZWV\nKRAIqK+vT/n5+XK73XK5XCosLFQwGFQgEFBFRYUkqaSkRMFgcAG7AwBAapnzt2dt2bJFH3/8sfbu\n3avf/OY3cjqdkqTc3FyFQiGFw2F5PJ7I9h6P56zlGRkZstlsmpqaiuwPAADOb85B/corr+j999/X\nfffdJ8uyIsu/+vNXfdPlX7VkSZYcDvtcmzYrr9cdl+OkCuoRjXpEox7pYb7/zoyPaImqR8ygHhgY\nUG5uri655BLl5eVpZmZG3/72tzU5OSmXy6VTp07J5/PJ5/MpHA5H9hsaGtKqVavk8/kUCoW0cuVK\nTU9Py7KsmFfTw8PjF94zfVnEUGg0LsdKBdQjGvWIRj3Sx3z+nRkf0eJdj9lCP+Y96qNHj6qtrU2S\nFA6HNT4+rpKSEnV1dUmSDh06pLVr16qgoED9/f0aGRnR2NiYgsGgioqKVFpaqoMHD0r68oNpxcXF\n8egTAABpIeYV9ZYtW/Tggw+qtrZWk5OTeuSRR3TllVfqgQceUEdHh5YtW6aqqiplZmaqoaFBdXV1\nstlsqq+vl9vtVmVlpXp6elRTUyOn06nm5uZE9AsAgJRgs+Zy0zjB4jWdwFRNNOoRjXpEWwz12NZ8\nONlNSAltjeXfeJ/FMD4SyaipbwAAkDwENQAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAAgxHU\nAAAYjKAGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAAAMRlADAGAwghoAAIMR1AAAGIygBgDAYAQ1AAAG\ncyS7AQDMsa35cLKbAOBruKIGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAAAMRlADAGAwghoAAIMR1AAA\nGIygBgDAYAQ1AAAGI6gBADDYnJ71vWvXLr377rs6c+aMbr/9dh0+fFjvvfeecnJyJEl1dXW65ppr\n1NnZqfb2dmVkZGjz5s2qrq7W9PS0GhsbdeLECdntdjU1NWn58uUL2ikAAFJFzKB+++239cEHH6ij\no0PDw8O64YYb9Itf/EL33HOPysrKItuNj4+rtbVVfr9fmZmZ2rRpkyoqKtTd3a3s7Gy1tLToyJEj\namlp0Z49exa0UwAApIqYU99XXXWVnn76aUlSdna2JiYmNDMzc9Z2fX19ys/Pl9vtlsvlUmFhoYLB\noAKBgCoqKiRJJSUlCgaDce4CAACpK+YVtd1uV1ZWliTJ7/dr3bp1stvtOnDggJ5//nnl5ubq4Ycf\nVjgclsfjiezn8XgUCoWilmdkZMhms2lqakpOp/O851yyJEsOh/1C+yZJ8nrdcTlOqqAe0agH0tF8\nxz2vl2iJqsecv4/6zTfflN/vV1tbmwYGBpSTk6O8vDzt27dPzz77rFavXh21vWVZ5zzO+ZZ/1fDw\n+FybNSuv161QaDQux0oF1CMa9YjGm3D6mM+45/USLd71mO31N6dPfb/11lvau3ev9u/fL7fbrTVr\n1igvL0+SVF5ermPHjsnn8ykcDkf2GRoaks/nk8/nUygUkiRNT0/LsqxZr6YBAMD/xAzq0dFR7dq1\nS88991zkU9533XWXBgcHJUm9vb1asWKFCgoK1N/fr5GREY2NjSkYDKqoqEilpaU6ePCgJKm7u1vF\nxcUL2B0AAFJLzKnvN954Q8PDw9qxY0dk2Y033qgdO3booosuUlZWlpqamuRyudTQ0KC6ujrZbDbV\n19fL7XarsrJSPT09qqmpkdPpVHNz84J2CACAVGKz5nLTOMHiNe/PPZVo1CMa9Yjm9bp1XcP/JbsZ\nSIC2xvJvvA+vl2jG3aMGAADJQVADAGAwghoAAIMR1AAAGIygBgDAYAQ1AAAGI6gBADAYQQ0AgMEI\nagAADEZQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAA\ngxHUAAAYjKAGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAAAMRlADAGAwghoAAIMR1AAAGIygBgDAYI65\nbLRr1y69++67OnPmjG6//Xbl5+fr/vvv18zMjLxer5588kk5nU51dnaqvb1dGRkZ2rx5s6qrqzU9\nPa3GxkadOHFCdrtdTU1NWr58+UL3CwCAlBAzqN9++2198MEH6ujo0PDwsG644QatWbNGtbW12rhx\no5566in5/X5VVVWptbVVfr9fmZmZ2rRpkyoqKtTd3a3s7Gy1tLToyJEjamlp0Z49exLRNwAAFr2Y\nU99XXXWVnn76aUlSdna2JiYm1Nvbq/Xr10uSysrKFAgE1NfXp/z8fLndbrlcLhUWFioYDCoQCKii\nokKSVFJSomAwuIDdAQAgtcQMarvdrqysLEmS3+/XunXrNDExIafTKUnKzc1VKBRSOByWx+OJ7Ofx\neM5anpGRIZvNpqmpqYXoCwAAKWdO96gl6c0335Tf71dbW5s2bNgQWW5Z1jm3/6bLv2rJkiw5HPa5\nNm1WXq87LsdJFdQjGvVAOprvuOf1Ei1R9ZhTUL/11lvau3ev/vznP8vtdisrK0uTk5NyuVw6deqU\nfD6ffD6fwuFwZJ+hoSGtWrVKPp9PoVBIK1eu1PT0tCzLilyNn8/w8PiF9er/83rdCoVG43KsVEA9\nolGPaLwJp4/5jHteL9HiXY/ZXn8xp75HR0e1a9cuPffcc8rJyZH05b3mrq4uSdKhQ4e0du1aFRQU\nqL+/XyMjIxobG1MwGFRRUZFKS0t18OBBSVJ3d7eKi4vj0ScAANJCzCvqN954Q8PDw9qxY0dkWXNz\nsx566CF1dHRo2bJlqqqqUmZmphoaGlRXVyebzab6+nq53W5VVlaqp6dHNTU1cjqdam5uXtAOAQCQ\nSmzWXG4aJ1i8phOYqolGPaJRj2her1vXNfxfspuBBGhrLP/G+/B6iZbIqe85f5gMwIXZ1nw42U0A\nsAjxCFEAAAxGUAMAYDCCGgAAgxHUAAAYjKAGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAAAMRlADAGAw\nghoAAIPxrG8ASDOmP3d+Pl8aksq4ogYAwGAENQAABiOoAQAwGEENAIDBCGoAAAxGUAMAYDCCGgAA\ngxHUAAAYjKAGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAAAMRlADAGAwghoAAIMR1AAAGIygBgDAYHMK\n6mPHjunaa6/VgQMHJEmNjY267rrrdPPNN+vmm2/WP/7xD0lSZ2enbrrpJlVXV+vVV1+VJE1PT6uh\noUE1NTXaunWrBgcHF6YnAACkIEesDcbHx/X4449rzZo1UcvvuecelZWVRW3X2toqv9+vzMxMbdq0\nSRUVFeru7lZ2drZaWlp05MgRtbS0aM+ePfHvCQAAKSjmFbXT6dT+/fvl8/lm3a6vr0/5+flyu91y\nuVwqLCxUMBhUIBBQRUWFJKmkpETBYDA+LQcAIA3EvKJ2OBxyOM7e7MCBA3r++eeVm5urhx9+WOFw\nWB6PJ7Le4/EoFApFLc/IyJDNZtPU1JScTud5z7lkSZYcDvt8+nMWr9cdl+OkCuoRjXoA5tnWfDjZ\nTYjptZbrE/b+ETOoz+X6669XTk6O8vLytG/fPj377LNavXp11DaWZZ1z3/Mt/6rh4fH5NOssXq9b\nodBoXI6VCqhHNOoB4ELE8/1jttCf16e+16xZo7y8PElSeXm5jh07Jp/Pp3A4HNlmaGhIPp9PPp9P\noVBI0pcfLLMsa9araQAA8D/zCuq77ror8unt3t5erVixQgUFBerv79fIyIjGxsYUDAZVVFSk0tJS\nHTx4UJLU3d2t4uLi+LUeAIAUF3Pqe2BgQE888YSOHz8uh8Ohrq4ubd26VTt27NBFF12krKwsNTU1\nyeVyqaGhQXV1dbLZbKqvr5fb7VZlZaV6enpUU1Mjp9Op5ubmRPQLAICUYLPmctM4weI17889yGjU\nI1qi67EYPiADYG5ea7ne7HvUAAAgMQhqAAAMRlADAGCwef0dNWAi7gEDSEVcUQMAYDCCGgAAgxHU\nAAAYjKAGAMBgBDUAAAYjqAEAMBhBDQCAwQhqAAAMRlADAGAwghoAAIMR1AAAGIygBgDAYAQ1AAAG\nI6gBADAYQQ0AgMEIagAADEZQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABiOoAQAwGEENAIDBCGoA\nAAxGUAMAYLA5BfWxY8d07bXX6sCBA5KkkydP6uabb1Ztba3uvvtuTU1NSZI6Ozt10003qbq6Wq++\n+qokaXp6Wg0NDaqpqdHWrVs1ODi4QF0BACD1xAzq8fFxPf7441qzZk1k2TPPPKPa2lq99NJLuuyy\ny+T3+zU+Pq7W1la98MILevHFF9Xe3q5PP/1Ur7/+urKzs/Xyyy/rjjvuUEtLy4J2CACAVBIzqJ1O\np/bv3y+fzxdZ1tvbq/Xr10uSysrKFAgE1NfXp/z8fLndbrlcLhUWFioYDCoQCKiiokKSVFJSomAw\nuEBdAQAg9cQMaofDIZfLFbVsYmJCTqdTkpSbm6tQKKRwOCyPxxPZxuPxnLU8IyNDNpstMlUOAABm\n57jQA1iWFZflX7VkSZYcDvsFteu/vF53XI6TKqgHAMRHot5P5xXUWVlZmpyclMvl0qlTp+Tz+eTz\n+RQOhyPbDA0NadWqVfL5fAqFQlq5cqWmp6dlWVbkavx8hofH59Oss3i9boVCo3E5ViqgHgAQP/F8\nP50t9Of151klJSXq6uqSJB06dEhr165VQUGB+vv7NTIyorGxMQWDQRUVFam0tFQHDx6UJHV3d6u4\nuHg+pwQAIC3FvKIeGBjQE088oePHj8vhcKirq0u7d+9WY2OjOjo6tGzZMlVVVSkzM1MNDQ2qq6uT\nzWZTfX293G63Kisr1dPTo5qaGjmdTjU3NyeiXwAApASbNZebxgkWr+kEpnqjpXo9tjUfTnYTAKSJ\n11quN3vqGwAAJAZBDQCAwQhqAAAMRlADAGAwghoAAIMR1AAAGIygBgDAYAQ1AAAGI6gBADAYQQ0A\ngMEIagAADEZQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABnMkuwFYHLY1H052EwAgLXFFDQCAwQhq\nAAAMRlADAGAwghoAAIMR1AAAGIygBgDAYAQ1AAAGI6gBADAYQQ0AgMEIagAADEZQAwBgMIIaAACD\nEdQAABhsXt+e1dvbq7vvvlsrVqyQJF1++eW69dZbdf/992tmZkZer1dPPvmknE6nOjs71d7eroyM\nDG3evFnV1dVx7QAAAKls3l9z+fOf/1zPPPNM5Pc//OEPqq2t1caNG/XUU0/J7/erqqpKra2t8vv9\nyszM1KZNm1RRUaGcnJy4NB4AgFQXt6nv3t5erV+/XpJUVlamQCCgvr4+5efny+12y+VyqbCwUMFg\nMF6nBAAg5c37ivrDDz/UHXfcoc8++0x33nmnJiYm5HQ6JUm5ubkKhUIKh8PyeDyRfTwej0KhUMxj\nL1mSJYfDPt+mRfF63XE5TqqgHgAQH4l6P51XUP/gBz/QnXfeqY0bN2pwcFC33HKLZmZmIustyzrn\nfudb/nXDw+PzadZZvF63QqHRuBwrFVAPAIifeL6fzhb685r6Xrp0qSorK2Wz2fT9739f3/3ud/XZ\nZ59pcnJSknTq1Cn5fD75fD6Fw+HIfkNDQ/L5fPM5JQAAaWleQd3Z2am//OUvkqRQKKTTp0/rxhtv\nVFdXlyTp0KFDWrt2rQoKCtTf36+RkRGNjY0pGAyqqKgofq0HACDFzWvqu7y8XPfee6/+/ve/a3p6\nWo899pjy8vL0wAMPqKOjQ8uWLVNVVZUyMzPV0NCguro62Ww21dfXy+3mHikAAHNls+Z64ziB4jXv\nzz3ZaBdSj23Nh+PcGgBYvF5rud7se9QAACAxCGoAAAxGUAMAYDCCGgAAgxHUAAAYjKAGAMBgBDUA\nAAYjqAEAMBhBDQCAwQhqAAAMRlADAGAwghoAAIMR1AAAGIygBgDAYAQ1AAAGI6gBADAYQQ0AgMEI\nagAADEZQAwBgMIIaAACDEdQAABiMoAYAwGAENQAABiOoAQAwGEENAIDBCGoAAAzmSHYD8KVtzYeT\n3QQAgIG4ogYAwGAENQAABkvI1Pcf//hH9fX1yWazaefOnfrpT3+aiNMCALDoLXhQ//Of/9R//vMf\ndXR06N///rd27typjo6OhT4tAAApYcGnvgOBgK699lpJ0o9+9CN99tln+vzzzxf6tAAApIQFv6IO\nh8O64oorIr97PB6FQiF95zvfWehTR/CJagDAYpXwP8+yLCvmNl6vO27n83rdeq3l+rgdDwAAKb5Z\nNZsFn/r2+XwKh8OR34eGhuT1ehf6tAAApIQFD+rS0lJ1dXVJkt577z35fL6ETnsDALCYLfjUd2Fh\noa644gpt2bJFNptNjz766EKfEgCAlGGz5nLTGAAAJAVPJgMAwGAENQAABkuJb8+a7RGlPT09euqp\np2S327Vu3TrV19cnsaWJMVs9ysvL9b3vfU92u12StHv3bi1dujRZTU2IY8eOafv27fr1r3+trVu3\nRq1Lx/ExWz3ScXzs2rVL7777rs6cOaPbb79dGzZsiKxLx/ExWz3SbXxMTEyosbFRp0+f1hdffKHt\n27errKwssj5h48Na5Hp7e63f/va3lmVZ1ocffmht3rw5av3GjRutEydOWDMzM1ZNTY31wQcfJKOZ\nCROrHmVlZdbnn3+ejKYlxdjYmLV161broYcesl588cWz1qfb+IhVj3QbH4FAwLr11lsty7KsTz75\nxLr66quj1qfb+IhVj3QbH3/729+sffv2WZZlWR999JG1YcOGqPWJGh+Lfup7tkeUDg4O6uKLL9Yl\nl1yijIwMXX311QoEAsls7oLjka3RnE6n9u/fL5/Pd9a6dBwfs9UjHV111VV6+umnJUnZ2dmamJjQ\nzMyMpPQcH7PVIx1VVlbqtttukySdPHkyavYgkeNj0U99z/aI0lAoJI/HE7VucHAwGc1MmLk8svXR\nRx/V8ePH9bOf/UwNDQ2y2WzJaGpCOBwOORznHubpOD5mq8d/pdP4sNvtysrKkiT5/X6tW7cuMq2b\njuNjtnr8VzqNj//asmWLPv74Y+3duzeyLJHjY9EH9ddZ/LVZlK/X43e/+53Wrl2riy++WPX19erq\n6tKvfvWrJLUOpknX8fHmm2/K7/erra0t2U0xwvnqka7j45VXXtH777+v++67T52dnQn/z8min/qe\n7RGlX1936tSplJ/yi/XI1qqqKuXm5srhcGjdunU6duxYMppphHQcH7Gk4/h46623tHfvXu3fv19u\n9/+e3Zyu4+N89ZDSb3wMDAzo5MmTkqS8vDzNzMzok08+kZTY8bHog3q2R5Reeuml+vzzz/XRRx/p\nzJkz6u7uVmlpaTKbu+Bmq8fo6Kjq6uo0NTUlSXrnnXe0YsWKpLU12dJxfMwmHcfH6Oiodu3apeee\ne045OTlR69JxfMxWj3QcH0ePHo3MKoTDYY2Pj2vJkiWSEjs+UuLJZLt379bRo0cjjyj917/+Jbfb\nrYqKCr3zzjvavXu3JGnDhg2qq6tLcmsX3mz1aG9v11//+ld961vf0k9+8hM9/PDDKX2PaWBgQE88\n8YSOHz8uh8OhpUuXqry8XJdeemlajo9Y9Ui38dHR0aE//elP+uEPfxhZVlxcrB//+MdpOT5i1SPd\nxsfk5KQefPBBnTx5UpOTk7rzzjv16aefJjxfUiKoAQBIVYt+6hsAgFRGUAMAYDCCGgAAgxHUAAAY\njKAGAMBgBDUAAAYjqAEAMBhBDQCAwf4fMEdRWyGJmn4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCUAAAGkCAYAAAAG3J9IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXt8E2W+/z8zk0zSNOklvVBKUSyl\nBeVWbiKIXGsL6hEVQdGqqz997e5x1dXV1V0vy66ru6vrWXVXz65Hz3o5rLjo4noDQUARFYQWinIp\nBYHSFpo2aZM0zSSZzO+PmJCkM5NJ78D3/Xr5kiYzzzzzZC7P9/N8L4wkSRIIgiAIgiAIgiAIgiD6\nGXagO0AQBEEQBEEQBEEQxNkJiRIEQRAEQRAEQRAEQQwIJEoQBEEQBEEQBEEQBDEgkChBEARBEARB\nEARBEMSAQKIEQRAEQRAEQRAEQRADAokSBEEQBEEQBEEQBEEMCCRKEMQAUlJSghMnTgx0N1S55ZZb\n8M4773T5/Pnnn8cvf/nLLp+fPHkSl19+ea8dv7KyEu+++26393/++ecxZcoUVFRUoKKiAuXl5Xjs\nscfQ2dmZdFsVFRVoaWlJah+l8SMIgiBOD0pKSlBWVhZ5j5SVleEXv/gFPB5Pj9p96623ZD9/5513\nUFJSgk2bNsV87vV6MWnSJDz44IM9Oq5Wjh07hh/+8IcoLy9HeXk5Fi9ejA0bNvTLsZPhhRdekB2T\nbdu2YezYsZHfLfq/04Xjx4+jpKQkZg5zww03YO/evUm39cc//hH/+Mc/ktrn3XffRWVlZdLHIohk\n0Q10BwiCOLMYMmQI3n///YHuRgzl5eX47W9/CwDw+Xy455578Je//AU/+9nPkmpn7dq1fdE9giAI\nYpDz+uuvIy8vD0DoPfLTn/4Uf/3rX/HTn/60W+3ZbDb8z//8D5YuXSr7/dChQ/H+++9j7ty5kc82\nbdqEtLS0bh2vO/zsZz/DlVdeif/+7/8GAOzevRs333wzPvroIwwdOrTf+tEThg4detq/uzmOizmH\nDz/8EP/5n/+JdevWged5ze3cd999fdE9gugVyFOCIAYhPp8Pjz/+OMrLyzFv3rzIhAAAqqurcfXV\nV6OiogKLFi3CF198ASCkpl988cV44okncOONNwIIre6sWbMGixcvxsUXX4y///3vkXZWrVqFiooK\nzJs3D/feey+8Xi8AoL6+Htdeey0WLFiA++67D6IoJtX348eP4/zzzwcQWu2566678Itf/ALl5eVY\ntGgRDh48CABwOp24//77UV5ejvnz5+Ptt99WbLO2thZLlizB7Nmz8fDDD0MURdx11114+eWXY7aZ\nPn06AoGAav94nseyZcuwdevWhP0oKSnBX//6V5SXl0MUxRjPltdeew2LFi1CRUUFfvSjH8Fut/fK\n+BEEQRCDG57nMWvWLOzbtw8AIAgCHn30UZSXl2PhwoX43e9+F3n279+/H9dddx0qKipw5ZVXYsuW\nLQCA6667Do2NjaioqIDP5+tyjEmTJmHbtm0xXn0ffvghZs6cGfm7J3OF1157DVdccQVmzZqFDz/8\nUPY8a2trMWHChMjfEyZMwLp16yLizJ///GfMnj0bixcvxt/+9jfMmzcPAPDggw/ihRdeiOwX/Xcy\nc5idO3fimmuuQVlZGZYuXYr6+noAIY+Re+65B3PnzsWNN97YbY/Td955B3feeSduvvlm/OEPf8C2\nbdtw3XXX4e67744Y8B999BEuv/xyVFRU4KabbsKxY8cAhLwwH374YSxZsiRmbgUAd999N1555ZXI\n3/v27cPFF1+MYDCI//qv/4p4ntx00004efJk0v1etGgRvF4vDh8+DEB5Pvfggw/iySefxBVXXIGP\nPvoo5ndQui6DwSB+/etfY86cOViyZAn2798fOe727dtx1VVXYdGiRVi4cCE++uijpPtOEEqQKEEQ\ng5CXXnoJdXV1eO+99/D+++9j3bp1ETfORx99FLfddhvWrl2LO+64A4899lhkv7a2NowZMwZvvPFG\n5LO6ujqsWbMGL7zwAp555hmIoogdO3bg2WefxauvvoqNGzfCbDbj2WefBQA8/fTTuOiii7Bhwwbc\nfPPNqKqq6tG5fPbZZ1i+fDnWrVuHCy+8EK+++ioA4He/+x1YlsVHH32Ef/7zn3j++edRW1sr28a2\nbdvw+uuvY+3atfj666+xadMmXH755TEeGevXr8ell14KnS6xA5jf74+sLiTqhyRJWLduHTiOi3y2\na9cuvPzyy5E+5efn449//COA3h8/giAIYnDR3t6O999/H6WlpQCAV199FSdOnMAHH3yAf/3rX9ix\nYwfef/99BINB3Hvvvbjxxhuxdu1aPP7447jvvvvgdrvxxBNPRFbx5Va7eZ7HRRddhE8++QQA4Ha7\nsW/fvsgxge7PFRwOB1iWxXvvvYdf/OIX+NOf/iR7npdccgnuuusuvPbaazh06BCAkDckwzCora3F\nq6++itWrV2P16tXYtWuXprHTOodxu9340Y9+hHvvvRfr16/HTTfdhLvvvhsA8Pbbb6OlpQXr16/H\n888/j88//1zTseXYunUrVqxYgQceeAAAsHfvXlx33XX44x//iMbGRjzyyCP4y1/+grVr12LOnDl4\n9NFHI/t++umn+Nvf/oZbbrklps3y8nJs3Lgx8vf69etRUVGBQ4cOYe3atZHfqqysDF9++WW3+i2K\nInieV53PAcCXX36J1atXY+HChZHP1K7LLVu2YOvWrfjggw/wxhtvYMeOHZH9fv/73+Ohhx7Chx9+\niBdffHFQhvIQpy8kShDEIGTTpk1Yvnw5eJ6HyWTClVdeiY8//hgAsGbNmsjLZfLkyZGVAyBkbJeV\nlcW0deWVVwIALrjgAgiCgNbWVmzcuBGLFi3CkCFDAADXX399pP0dO3Zg0aJFAIDx48ejsLCwR+cy\ncuRIjB07FgBw/vnno6mpKXKON910E1iWhdVqRVlZWaQP8ZSXlyMlJQUpKSmYPXs2du3ahdmzZ+PY\nsWORlYINGzZE+q2G2+3GypUrI+OUqB9z5szp0sbmzZtRXl6OrKwsAMC1114b8bzo7fEjCIIgBp7K\nykpUVFRg/vz5mD9/PqZPn47bb78dQOidsHTpUuh0OhiNRlxxxRXYunUrjh8/jpaWFlx22WUAgHHj\nxiE/Px979uzRdMzLLrssIr5v2LABc+fOBcuemrp3d64QCARw9dVXAwjNDRobG2WP/9RTT+GGG27A\ne++9h8svvxzz5s2L5CTYuXMnpk6dipycHOh0Os25pLTOYXbu3IkhQ4ZEPEMuv/xyHDt2DI2Njdix\nYwfKysqg0+mQmZkZE+IST1NTU5d8Er/73e8i348YMQIjRoyI/G00GnHRRRcBCAkWF154Ic4991wA\noXf9tm3bIh6ZEyZMgNVq7XLMOXPmYO/evWhrawNwSpRIS0uD3W7He++9h/b2dlRWVmLx4sWaxi2M\nJElYtWoVhgwZghEjRqjO5wDgoosugsFgiGlD7br8+uuvMXv2bKSmpsJoNMaIGVlZWVizZg0OHTqE\nESNGRBZjCKI3oJwSBDEIcblcePLJJ/HMM88ACLlojh8/HgDw3nvv4bXXXkNHRweCwSAkSYrsx3Ec\nzGZzTFsWiyXyHRBSyF0uF9avXx9ZXZAkCX6/H0BoBSi6jZ7Gr4aPH+5D2KXV5XLhnnvuifRLEATF\n5FPRL32LxQKbzQaDwYCysjK8//77WLJkCWw2G6ZNmya7/7p167Bz504AgF6vR1lZWWRlI1E/MjIy\nurRnt9uRm5sb+TstLQ2tra0Aen/8CIIgiIEnnFPCbrdHQg/Cnnl2ux3p6emRbdPT09Ha2gq73Q6L\nxQKGYSLfhQ3T7OzshMecOXMmHn74YbS1teGDDz7Aj3/8Y3z33XeR73syVzCZTAAAlmURDAZlj28w\nGHDbbbfhtttug9PpxNq1a/HEE0+goKAA7e3tMe+3sEifCK1zGKfTifr6+pj3Mc/zsNvtaG9vj5lb\npKWloaOjQ/Z4iXJKRP9u8X87HI6Yc7RYLJAkCQ6HQ3bfMCaTCTNmzMDmzZsxefJkOJ1OTJ48GQzD\n4Pnnn8crr7yC3/zmN5g6dSpWrFiRMD+HKIqRcZAkCUVFRXjhhRfAsqzqfE6pj2rXZXt7e5f5TZgn\nnngCL774In7wgx/AaDTi3nvvPa2ShhKDGxIlCGIQkpubi1tvvbWL+n/y5Ek8/PDD+Oc//4kxY8bg\nyJEjKC8v71b7V111FX7+8593+S4tLQ1utzvydzhXQm+Tm5uLv/zlLyguLk64bXt7e8y/wy/Zyy67\nDE8++SQsFgvKy8tjVpCiiU502ZN+hMnOzo6sgAAhl9PwBLO/xo8gCILof6xWKyorK/HUU0/hxRdf\nBKD8TsjKykJ7ezskSYoYgG1tbZoNeL1ej7lz52LNmjU4evQoSktLY0SJvpwr2O127Nu3L+KpkJaW\nhqVLl2LLli2ora2FxWKBy+WK2T5MvNARfocn06/c3FwUFhbKVq9KS0tTPHZvkpWVherq6sjf7e3t\nYFkWmZmZCfctLy/H+vXr4XA4UF5eHvn9p0+fjunTp8Pj8eD3v/89nn766YQeB/GJLqNRm8+pnZfS\ndak2ttnZ2XjkkUfwyCOP4PPPP8dPfvITzJo1C6mpqZqPTRBKUPgGQQxC5s+fj3/+858QRRGSJOGF\nF17AZ599BrvdDpPJhMLCQgQCAaxatQoAFFcIlJg3bx4+/vjjyMtmw4YN+Nvf/gYAmDhxItavXw8A\nqKqqiiR16m3mzZuHN998E0DIlfSJJ57At99+K7vtxx9/DEEQ4PF4sGXLFkyZMgUAMGPGDLS1teH1\n11+PcTHsq36EmTNnTmSyAQBvvvkmZs+eDaD/xo8gCIIYGH7wgx+guroa27dvBxB6J6xevRqiKMLj\n8eDdd9/F7NmzUVBQgLy8vEgiyaqqKrS0tGD8+PHQ6XTweDwJkzNfdtlleOmll7BgwYIu3/XlXMHr\n9eKuu+6KJEAEgKNHj2L37t2YMmUKSktLsWPHDtjtdgQCAaxZsyayXU5OTiRBYn19fSS3UjL9mjBh\nAmw2G3bv3h1p5/7774ckSZg4cSI2btwIURRht9vx2WefaT6vZJg5cyZ27NgRCTF58803MXPmTE25\nq+bOnYvq6mps2LAhMj/5/PPPsWLFCgSDQZhMJowePTrGW6E7qM3nlFC7LktLS/H555+js7MTnZ2d\nETHE7/ejsrISzc3NAEJhPzqdTnExiCCShTwlCGKAqaysjEmi+Pjjj2P58uU4fvw4LrvsMkiShLFj\nx+Lmm2+GyWTCJZdcEsln8OCDD6KqqgqVlZV47rnnNB/zggsuwA9/+ENUVlYiGAwiKysLK1asAADc\nf//9uO+++/Duu+9iwoQJmDFjhmI70WERADBmzBjNJafuuecerFixIrJKMmvWLJSUlMhuO2PGjEiW\n6jlz5mDWrFkAQqsHFRUV+OSTTzB58mRNx+1JP8KMHz8ed9xxB2644QYEg0GMGTMGv/rVrwAkN34E\nQRDE6YfZbMYdd9yB3//+91i9ejUqKytRX1+Pyy67DAzDoKKiAgsXLgTDMHjmmWfw2GOP4c9//jNS\nUlLw7LPPwmQyoaSkBOnp6Zg5cyb+9a9/IT8/X/ZY06ZNA8MwsjmT+nKukJ+fjxdffBHPPfccHn/8\ncUiSBLPZjIceeihSkWPZsmW46qqrkJmZiUsvvTRSXWvp0qW48847cemll+L888+PvF9Hjx6tuV9G\noxHPPfccfvOb36CjowN6vR533303GIbB0qVLsWPHDixYsAD5+flYsGBBzOp+NOGcEvH84Q9/SDgG\neXl5ePzxx/HjH/8Yfr8fBQUF+M1vfqNp/MxmMy644AIcOHAAEydOBABMnToVH3zwAcrLy8HzPKxW\nK5544gkAwAMPPBCpoJEMavM5JdSuy7lz52Lz5s2oqKhAdnY2Zs+ejR07dkCv12PJkiWR0FeWZfHw\nww8jJSUlqf4ShBKMFB3MRRAEcZrx0ksvweFwRDJnEwRBEATRv+zYsQMPPPBATNUJgiAIrZDPDUEQ\npy12ux1vvfUWrr/++oHuCkEQBEEQBEEQ3YBECYIgTkvefPNNXHPNNbj99tsxfPjwge4OQRAEQRAE\nQRDdgMI3CIIgCIIgCIIgCIIYEMhTgiAIgiAIgiAIgiCIAYFECYIgCIIgCIIgCIIgBoTTsiSozSZf\n9ofoPpmZJjgcnoHuxlkFjXn/Q2Pe/9CY9z99PeY5OZY+a7s/6Ks5BF3r3YfGrvvQ2HUfGrvuQ2PX\nfc7msVObP5CnBAEA0Om4ge7CWQeNef9DY97/0Jj3PzTmAwONe/ehses+NHbdh8au+9DYdR8aO3lI\nlCAIgiAIgiAIgiAIYkAgUYIgCIIgCIIgCIIgiAGBRAmCIAiCIAiCIAiCIAYEEiUIgiAIgiAIgiAI\nghgQSJQgCIIgCIIgCIIgCGJAIFGCIAiCIAiCIAiCIIgBgUQJgiAIgiAIgiAIgiAGBBIlCIIgCIIg\nCIIgCIIYEEiUIAiCIAiCIAiCIAhiQCBRgiAIgiAIgiAIgiCIAYFECeKMRvCLaHZ4IPjFge4KQZy2\n9NV9FG7X5fEl3b5Sn6I/d3l82HfEDpfH16M2tX4/GGhqceOdTXVoanEPdFcIgiAIgiA0oeurhrdt\n24a7774bo0aNAgAUFxfj//2//4cHHngAoigiJycHTz31FHiex7///W+8+uqrYFkWS5cuxbXXXttX\n3SLOEsRgEKs21qG61ga7U4A1zYDS4hwsm1cEjiUtjiC00Ff3UXS7rU4BLAMEJcBq4TGpJFe1faU+\nLZlTiNWbD0fa5FhADIb2YRlgWI4Zv7xpEnhd19deovM8HZ4nbq8P9z6/FQFRinym4xg885OZMBv5\nAexZ8tD8gRhIBL+IdreAdLMBBj3XZ22GP+NYBs2OThTkmsHrOTTa3HB5/DgvPw28noOtrROQJKSb\nDegUAkg3G+Dzi/j2cCvsbgHDhqSBk4IISsB5Q9NgMfFweXyoPdYGh9sLt8ePC88fAgDYXdeKCUVZ\n4PUcvv2uFVlpKZAY4OgJJwSfCD3HwpLKQ8cy0Ok4WFL08PpEsCwDl0dAfnYqjp10waDXId3MQ/AH\nYbUYYOQ5fNfkQsk5GTCbeDTa3GiwdcDu6oSO4zA0y4SOzgCcHQIMPAeGYTDm3Ex4fSKOnnCh1elF\nYX46eB2L4y1upBr0yMk0gteFzv/bI63IMBswIi8dHMdgWHYqWpxeHGpoh1cIwGzkUXJuOppaPKi3\nuXDS7gUYCUOzTBh7XjZGDE0DAOz9rhV7DtsxNMuE9FQe7Z3HYeK50HMlIwV7j9jhDwThEfwQg8Dw\nnFRkZ6bivDwLmuwe7KptRluHgAyzAecNzYC9vROdgh9DssxosLnASAzyc1JRc7gFx044kWdNRWaa\nEZAkcCwLU4o+9G4SJXgEPzy+ILxeP4ZmmZFh1uOkoxPtHT6kGnWYOnoI6hracKjBCa8vAAQZTCi2\nor3Dj3aPHwYdAz2nA89JaO/0wy9K6PQGkGc1QZIkNNk8GDHUgoAkocUpoNXhRVY6D5Zl4AsEYdBx\nCIhBGHgOHAsY9Tq4vX4U5KSCYzn4RRE+XxAnHB1wdwaQYdYDDAsWgM8fxKhzs5Bh0uHoSSf8gSCs\nFiMkScL2/c1gpCCGZFsw7rwsCH4Rzo5OfNfYAV8ggGZHJwxGFqkGHoAEPcPCJwHnDEmFycChscUD\nt8ePc4eY4XD7EJQAvY4Bw3Jwub3wi6FrjmGAVCOPdLMBLo+AEXlp8PoCEEUGQiCA4Tlm7KqzocMb\nQE5aCiYWZ6Op1QOWYRAIiqH7CizaPQLanAKGZptgTtGDYVjoWIBhWZy0dyDLYsSI/HRwDJBu5rH/\nWBsEQYQpRQeP1w9RkoAgYOA5jByWgex0Iw4eb4e93QtruhGjCtJxotWDgw1tyM9KhSQBQbYZjSdd\nKMy3AAAabB04Z4gZ3zU5YdBzoflQuhFDrSlosHlw3lALOI4FxzJoaOmAQc9Cr+fASECH149mRyfM\nJh5uj4DcTBMyzAbkZJpg0HMQ/CJsDg/AMMjJSIHPL6K2vg2dgh86jsOQzBRkZ6SgUwiE2rd14J3P\nDuJYcydGD7PggcqpvfIM1AIjSZKUeLPk2bZtG/7v//4Pzz33XOSzhx56CJdccgkWLlyIZ555Bnl5\neVi8eDGuuuoqrF69Gnq9HkuWLMEbb7yBjIwMxbZtNldfdPmsJifHckaN68oNtdiw43iXzxdMKcDy\nBcUD0KOunGljfjpAY54cvXEfyY25Urta2lfad3iuGfXN6t4Bw3PNWHHrNM1thvtxOjxP7nhqU4wg\nEUbHMfjb/XN79Vg5OZZebS+evpw/AH03h6DnS/cZDGPXF+KjXJsTR2VDAlB9oBkOt191fwZAspP0\nsMhLEMTZC68DcjJMaHV64fUFe9TWslmFKJ85olf6pTZ/6Nclnm3btmH+/PkAgLlz5+LLL7/E7t27\nMW7cOFgsFhiNRkyaNAlVVVX92S3iDEPwi6iutcl+V13bMqhdrwlisNBX95Fau4naV9u3wZY4XKHB\n5u4SypHoPF0e36B/njS1uGUFCQAIiNIZEcpB8weir1m1sQ4bdhxHq1OABKDVKWDDjuNYtbGuV9v8\nZGcDNu5sSChIAMkLEgAJEgRBAL4A0NDi6bEgAQCrthzuhR4lps/CNwCgrq4OP/zhD9He3o4777wT\nnZ2d4PmQG2lWVhZsNhtaWlpgtVoj+1itVths6hPWzEwTdLrecakjTtHXq1/9RVNLB+wuQfY7h8sL\njtcjJzu1n3slz5ky5qcTNOba6M37KHrM1dpN1L7avlom4kEJcPmCKDxXW38cLi9cvuCgf55s+eak\n6vd1JzowfszQfupN79BX8weCkCOROHnN7JERV2itoR1aBFiCIIjTgT+8/nWfh3L0mSgxYsQI3Hnn\nnVi4cCHq6+tx0003QRRPrSgpRY1oiSZxODy91k8ixGBwnewtRL8Iq8WAVmdXQyLTYoTo8w+Kcz2T\nxvx0gcZcO711H8WPuVq7idpX21eLyzLLABae1dyfTIsRFp4d9M+Tojx1UaQoL7VX+9jXwl5fzh+A\nvl3YINGz+wzk2CUSJ6HjsGbrEXz1TRNsbZ3IyUjB9LFDcesVF4Dj5J2OtQiwBEEQpwP7G1x9/ozu\nM1FiyJAhWLRoEQDgnHPOQXZ2Nvbs2QOv1wuj0YiTJ08iNzcXubm5aGlpiezX3NyMiRMn9lW3iLMA\ng55DaXGObAx4aXF2ryWuIogzmb66j9TaTdS+2r7DchLnlBiWY4bFFJv0MdF5Wkz8oH+eDM02Q8cx\nijklhmabB6BX3aev5w99tbBBomf3GeixSyROvrX+ADZVNUQ+a3Z04t9bDsPT6VPMK6NFgCUIgjgd\nGD2sd57RA5JT4t///jdefvllAIDNZkNrayuuvvpqrFu3DgDw8ccfY9asWZgwYQL27NkDp9OJjo4O\nVFVVYcqUKX3VLeIsYdm8IiyYUoCsNCNYBshKM2LBlAIsm1c00F0jiNOGvrqPTrVrABDyYAAAq8WQ\nsH2lPv3ypkmRzwEgevGSZUJJLn9506Runefp8Dx55iczoeOYmM/C1TdON2j+QPQ3YXFSjvEjraip\na5H9Ti2vjFqbBEEQpxP9UYWjz6pvuN1u/OxnP4PT6YTf78edd96JMWPG4Oc//zkEQUB+fj6efPJJ\n6PV6rF27Fi+//DIYhsGNN96I//iP/1Btm1Yiep+BXqXoK/qitFdvcaaO+WCGxrx79OQ+UhvzcLsp\nBl2k1J3W9pX6FP25zy/ieLMbBbldPSSSaVPr94OBphY36k50oCgvtc88JPrahbMv5w8AVd8YjAyG\nsTtVKaMFDpcXmRYjSouzMbd0GB5+aZts0kmWAZ64YzpyM02a25w4Kuv76hs2ONw+2f3CdKf6BkEQ\nBK8LlQDtjeobo4Za8NDNvSNKqM0f+kyU6EsG+sV1JjIYJgRnGzTm/Q+Nef9DY97/9PWYn+55E0iU\nGHwMprGLFx8Fv4iHX/pKNgwjK82Ix2+/UFPSy3hBM/wZxzJodnSiINcMXs+h0eaGy+PHeflp4PUc\nbG2dgCQh3WyIiLc+v4hvD7fC7hYwbEgaNu88jt0y3hyF+RYcaXRBziRJNehw62VjoNezOHrCCcEn\nQs+xsKTy0LEMdDoOlhQ9vD4RLMvA5RFQc8SBqv1dk3dOvyAXY0dkoeScDJhNPBptbjTYOtDc3oHP\ndjfB2RGIbJth0qHiwnMxbmQWvD4RR0+40Or0ojA/Hbwu1JePth1Fh5CcIZWRqsfVlxSiyd6Boyfd\n2HukTXHbyy8ajoIcC9o7AzDxHERRRE5GCvYescMfCMIj+CEGgWFZJtQ2OFHf7IbD5QOvZ2Ax6eHy\n+OHzK5tPOek8RDGITIsBOdZU6BiAY1mYUvTgWEAUJXgEPzy+ILxeP/KsqTjc4MKRZifEYMiNXevZ\n6zmgeHg6OI6F4BORZzXhQH0bTti9sttbLXoMyUjBvnqn7Pc6BqiYfi6AIHy+IE44OuDuDCDDrAcY\nFiwAnz+IUedmwWJksXJ9LXwyzkIcA1w2Yzj+vbVe45l0JSzK6TkG6WYeLe3yoVAMAJOBQ4cgwmTQ\nIc+agvKpw1FzuAUd3gBy0lIwsTgbTa0esAyDQFAM3Vdg0e4R0OYUMDTbBHOKHgzDQscCDMvipL0D\nWRYjRuSng2OAdDOP/cfaIAgi9DyHf39+CIJMEZ1UI4dLpwxHTqYJowrScaLVg4MNbcjPSoUkAUGW\nReNJFwrzQ+/SBlsHzhlixndNThj0HIISYE03wqBj8fw73yie84+vGguDnkWzoxNmEw+3R0BupgkZ\nZgNyMk2R55fN4QGYkEjh84uorW9Dp+CHjuMwJDMF2RkpaHcLePy1HfAFul7XBj2LP901q1cWY9Tm\nD31afYMgCIIgCIIgThcMei7G86E38uvEtxn/WVZ6SuTz8/LTY7YryDnl8RT2+DLoOUwfG6qoY0lP\nwRsf7ZM9rv37UqRydPoCGJaTitxME8ael5XwHAS/iPe+OCr73cF6J26uGBMZi/Py0yPncfUlo+Dy\n+BS91uLP94LCLLR5/LLjbeRLqU4FAAAgAElEQVQ5eOUsYABTxgzBxROGQQwGsXLDQew/2iab/Dgr\nzYjLZhTCoOe6iGFjRpwah7BoNH/quQAQIyqt3FCrmhfJ1SnCZOBwuKkDbR0BlBbnYNm8InCsetR8\ntPfgiv/dDrtL3ZMGADiOw94j7bCmGVBanIPFswrx6P98pbg9w7C4vqwEj77ytez3AQm4ePxQRe+f\nMOGxO97ikR2LuZMLsHB6IbbuaVbMq2LQs/AHQuKNyahHR6cfDpcAvY6FLxCMXLt+UVIUJICQcNEh\nhK4LjxDA4SYXDjY6cdvlYyPbCH4RWekp3fZ0DP82c0oLYNBzaHZ4sHrTIdltO7wimtu8WDRjBDiW\nRVZ6Ci4oPHVtxV93pd+npRlfFBvuJfhFZKXJ56WxphkxtjAr4bkY9BwKci0xf08uye2yXXuHT1aQ\nCPUjCFtbZ8yzqC8gUYIgCIIgCIIgFAjnj4kP7RgMeWUcTgF2BaOv3e1DhtkAh1s+gWe62aD5OO1u\n5eM4XF60uwVZQ1bwi+gUAigclq7ZGFQa78WzCtHuFrBh53HU1LXK/harNtbFJCWNJ5GQdCrkxga7\nU4gY+9GiwrJ5RfB4A/jimxOybXh9YkQ8aXUKEaNdLilqvBdNeAwnleSqCh9GnoXXF+xynE5vQFXM\nsDsFeLwBxYpVLAOkGLSbh8q/1Xlodwu4oNCKz3Y1ye6batTjnqUTkJORAh3HYOWGg6g+YENbh3z/\ntVTZChMu5SsGg1i5/iD2H7XD4fLJ/p5qKF0Pi2cVwqogGADA1m9OIMWowzWzR3Y77LM/E/f7/IEe\nfd8bkChBEARBEARBEApwLIvlC4p7ZGD0FZlpBkXjyJpmxPiiLFkjPVmjJt2sfBw5gUOLca+E2nib\nDDpUXloCYa58SEx1bdfwEiBk0M6emB8jJHl9ATQ7PDFtrNpYF2MEyokKHMtieVkxqmqbNcfrh43k\n8HESjc+yeUUIShK+2HMiIjwY9CymjhkCwR/A1/vkz3P/MQcyzXo43DJxBQh5Fbz47jeKxn1QAjqF\nQBePFqWcSvG/ldnEY82Ww3js5e2wOwVYTHrFMWlzC+B1LAx6Dn9fu09RvIjum1YcLi9e/Wgfqg62\nwOc/9RvF/56JckWpXQ+JKol9XtOEqgPNXcSQZOiuIJpMDizBL8Ltkb9ewvD6vpcMSJQgCIIgCIIg\niATIhWEMNEZep7qaGjJymR57eSS7aqvFuNdyTKXxlvtOzZtDAlA+7RxwLBsRBGoOtcLm6IxZ/VYS\nNeJFhTVbDieVQNAe502SaHw4lsWNZSW4dk5RTE6Atz89hM9rlI13h0vA9AvyFL04AKC9Q9kAzUoz\nxAhMSuLJnUtLY/YL/x7xoS1OFWM302JEilGPR1/ehuO2DsXtovs2fmQWag7Z4XB5kWE2wCMEZEN6\nGIbBV3ubFduqOmCDGJRQU9cSOa/xRdlYMLkA1jRjJB+D2vWw4rap3fKYufv6yQnPNUyygmgyYmD0\ntolKF6enJk4W3lNIlCAIgiAIgiCI0xS11dTe9PKQW73n9SwCoggxGIwYPYmMuWjjvjdR8+awRnlz\nKAkCnd6AphAVtfNTggGwbvsxLC8rRkCUNI9PdE4ALcfV61gsLxsFo4GL+Z20UlqcE/PbKI2VKYXH\n4pkjYvZNdlxKi7Px9D+qNQkS4b7Feze8/ekhWaFMTOBWYXcJMR5Erc7Q35uqGpD1vSE/t3SY6vXg\n9vhRWV6CA8ccCY36MNW1LfD6kg+F0CqIJiMGxm+rhpz3TG9DogRBEARBEARBnKZoER56w8uDY1mw\nDBNj6Pr8QWyubsKhBhcevWUKOJbtdv6JnqLFm0PNcN5/zIFMCy+bkyE6REXt/JQISsCm6kZwHIsF\nkwsU97c7vTjc0B6TgyNshPsCwYTHlSTEeFkcOOrAn1bXKG7PMKF9WAYYlmPGkjmFke/Uxuqrb5qw\ncNrwmD4ebmhX7R/z/f+taSHRrGJagWaj2MizCEoSxGAw5lruKsgZ4Pb4IQTUvVjU8lOEDXlRDCYM\nWVK75uRwuLxwOIU+McCTEQOTFZCSyTPSXUiUIAiCIIjTnOiVI4Igzk76OrxEzZCpb3Zj5YaDqLy0\nJOn8E71Johj8dreguKrd6hQwY6x86EN0iIra+SWi6oANV8wYobg/wwBPv7kL1jQDJo7KhgRg98FQ\niEGmhQevZyH4lQ1uXyAYEX0Meg4l52YqVnAAQoIEEDLQ65vdWL35cGRFXU18aWnrhM3hAcex2LCj\nHjWHWtHqFMCE63jKHQvA/ddNjAguf35bWSyJx+sLYuPOBrAME7PiHy/I+fwiHlOoLBKNlvwUNYfs\nGF+UnTAni5ww0uH1y4b3pKfyEPwBiJLU695CyYiByQpr7R0+8pQgCKJnJJPshiCI0wu5+NGZE4bh\niovO0ZRZnCAIQitqBj0A7KptwdK5Rf1aNSCeaCPV1tYJSBJyMk2R5yGvV34usgywZE4hTEadag6O\nZFfHo7G7BLy1sQ4TRmVj486uxm7YWG51Cvgk7nstJUJZBlj3dT2WLxgFjmWT7mv0irqa+GLgOTy7\nuqbLd5KKsW/kOZw71BLxWPmuqV1Tn5T6F9Of7wU5wS+qCkYGPYsZY/MiIooaDpcXCyYXJMzJIuep\npBRW4nD78JOnN0dCRJIpFZtoHp+MGJi0sKb2w/YSJEoQxBlKTzJfEwRxeiAXP/rvLYfh6fRpTiZH\nEMTZRXcXK9LNBmSYebS55Y3jtg4hsho7kGVUxWAQb396SHb+s3rzYcX9glIoHCVRKIzgFzG3dBhE\nMRhJuphpMcJk1KG+2Z2wf1u/OYH5k4dhwZQCVNe2wO70gkmi3KVBzyIgSrJ5E4ISsKmqARx7yqPg\n1G+ROKFh9Iq6mqDRKYjoFJLLV+H1iXjns8O4sawE7W4BbQoVQrT2Tw61Pg+1mvDLm6fAZNB1Scgp\nR6bFCGuaUXNOlmhPpSVzCnHgWJvi9aAl8Wuy8/hkxMBkxCojzyGnHxL8kihBEGcovZH5miCIwctA\nJZMjCCIxg9FLMVkjJ/4cDHoOpaOysam6Ubb96GSSA1lGVWn+IwYl7DvSqrif1cJH+i8XCiM3ftEV\nG3Qc8/33LWh1elX7uOtgKx6//UJcM3skDje04+k3d2k+P38giEdumYIPvzyCr/e3yG4TDhPpFAJI\nNxuwfEExLhk/FI8mCG2IXlEXg0FIkgQjz0XyiLAsENRedKQLX+w5gWvnFCVcqVeKAtES/hMtiNld\nXmSkGjCxODviPRLeRhSD+HRXo6IYNH6kNSbhaDKhUas3H9YkUFUdsCm+q7szj09GDIzfVq+TDw2a\nMS6vX+5dEiUI4gyEjBWCOPMZqGRyBEEoM5i9FLUaOWrnsLysGHUNTlmDSy40o7/LqKrNf3bVtsCh\nsjo/5lyr6txIbvzivRLCQozd6cV7XxzBV9+elG0r+hldkGtGuooHSjyZFiPyrKm4ZnYRduxvkTXe\n7S4BD7zwBYRAEFlpBow+JxPXzBkJq0IizzAmow46jomcb3wISU8ECSDkLWFzeFCQa1FdqVdyGtES\n/qNFEBP8QbS7fareKQumDFc9jhLJJJG0uwTZd3V35/Ecy+Ka2SNxyfihkTKySuMVP05mE481Ww5j\n5/5mONw+ZJp5TB6d2y/eTQCJEgRxRkLGCkGc+QxkMjmCIOQZrF6KyRg5ic7h0VumYOWGg9hV24K2\nDgHWfgzNSITq/MctRKpNyMGxTExp02iSGT+DnsPQrFTcXDEatfVtsv3JtBhgNumxckMtqmttmgUJ\n4JRhnsjbIFyBotUpYOs3J7Czthk6Tl0Yq292Y9XGOlwze2TSZU81w4REj/D1UnXABrtLPazEajFg\nUklOUteYmrfL5zWNsokow2SlhUI3ukMySSRZRr6yRXfm8T3xhMrNNEH8XnFiWQbM9//vT0iUIIgz\nEDJWCOLMZyCTyREE0RWthutAhHZoNXK0nkPlpSVYOreoT86jJ+OTbjYolvVMT9WjvUPZU+Kzmibw\nPCcrHqmNX6vTC7vTi6FZqTGfG/QcUo162f1MRj3WbPlOcwJKBqdKaYYN82STWIaM8MSuDlt2NWLa\nmNyky55qwchzyMlIAXBqpf6SCfl49OXtqvtNGJXdK6JevOCmRE/eockkkQxKQKcQ6FLZojvz+J56\nQkmSFOMZ09+CKokSBHEGQsYKQZwdyMWPzpyQjysuOmeAe0YQZx+JDH+704tN1Q0DEtqh1chROwe7\n0xtxvQd6PzRDzlgafU4mri8rhklmNVkOg55Daoq8KGEx8dBxrKqxWHXAhksm5Hdxe08x6JBhNsDh\nlt93w87jqLy0JOYzwS+io1PeA8Lt8Wn2RMhKM+DuJeOR833yyWiWzSuCxxuQLWPaXYRAEE//oxqG\nqFwSvcXMcXkAgGaHJyI6pafyYBMk+qypa4UwV+zR/NXl8WHn/sRjPnNsXo+8fpIRi7LSDLICQ7Lz\n+N7whDLy8mPbX2HfJEoQxBnKQGa+Jgiif5CLnS3Iz4DN5hrorhHEWUciw3/DzuPYVDUwK5FajRy1\nc5AAPLu6pouQ0lueH3LGUjjs4OLx+ariTbgPKQYdPF55b4hOIYDxI7MUE3UCoRj/x17eHhGMlswp\nxOrNh1Fda1MUJICuRrPgF3G4oV0xf0Ny4Ro5ESEo3Hb0eC+bV4Svvj2huXqHFnwBCUDvCRJZaQZM\nHJUNCcDDL30VI8rNLR2WsO89CT0Oi1079jcnHHerxYAby0t6LBLGz8F5PSsbLlJanKN4zyQzj+8N\nTyglAaq/wr5JlCCIM5SBzHxNEET/0t/J5AiC6Iqa4T9+pBU1dfKVEvprJVKLkZNolTdaSFk2r6jX\nknqqG0tBRfHGI/ixcv1B7D9qh8PlU00Y6XAJkeSFalUXpKjzVCvrGI39e8MtK90YMyZKHgCZFgMY\nBgld/IfnmiO/j5LbvRajvrtwLJCeqp4cU40Lx+TiPy4+D9Y0I97aeDBGEIpURRFDyTjVxqInocda\nQzYAYFKJskjg8vhwvNmNglxzl3CLeJSSSCazUJjMPL43PKGU6K+wbxIlCOIMh4wVgiAIgugflAz/\nuaXDsFlhhb6/ViK1GjlaEhBW17ZAFIOyRiaQvOeHFmMpWrw5lbCwKWaFV20lPNMSSl5YWT4aYJgY\nrxUlGmyJBQkglPNh3fZjYFkmJi5fKanmpJIcAEhoLHu8AQRECRyrUupUg1EfzfBcMzo6fZqEBjEI\n5GelKm7LAIpCkEHPorKiBAY9h5UbDuLTXfLXf80h+/fJHpX7393QY62VMIw8h4vHD5UVCXyBAH77\nWhUabG4EpVByymE5ZvzypkngdeqmdPQcPHzvcbweos+v+Xy0zON7wxPKqBCu019h3yRKEARBEARB\nEEQvoGT4C35x0CSgTmTkRCcgfOzl7QolJ72oPqju+QGgi/ihFOqhJTlgtHiTzOp3mGjjavmCUbCk\nGrB1dyPsTq9iCUqtHghBCdhU3QiDXt5DhP2+6kd8skoA2LlfOTQkfM7pZoOicV1zyI7xRdkJRZaM\nVB6jR2SgvtmdVPjIN0ccit9Z04wYP9IqGxIj+INYs+U7AFDtm93pRXqqvOcBA2DWxKGYWzoMgj/5\nnBKJxK6MVB7nn2fF8rJRMBn0stv89rWqGG+ZoBSqUvLb16qw4tZpSfXHoOeQk53aJyGWPfWEmjEu\nDyzDDFjYN4kSBEEQBEEQBNGLxBv+p2MC6pyMFEWhICNVOemjw+XF6+sO4MAxRyTMIJxPYPfBFtlQ\nDy3JAcPijdbVb4OehT8QlDWuOJbF7YvHYeG04bA5PHh2dY3seTKAomAhh+CXr24hAfjZdRNROCw9\n5rdevqAYV8wYgcde2S4rFITPOVHOgAWTCwAAn1Y3yAopvI4FwzL46tvmJM4mMaXF2Vg8qxBffntC\nNmdC1QFbuAKoIulmHu0KIomEUL6OLbuauhUepF6NhceK26aphmK4PD5Fb5kGmxsujy9hKEeYsCBn\nSU+R/bynYdbJekLJiQ8cyw5Y2DeJEgRBEARBEATRx5xuCajVhIKJxdmoqWuRNeR5PRdTDaLVKcSE\nNIQ/iw/1CI9DfEhGmLB40+zwaIqLF/xBzBibh8ryEkXjyqDnUJBrUTxPlmUg9kLCBqvF2EWQCGMx\n8ZgyOldVsEqUM8CaZgxV/5AkWa8FXyAIn0IoTneZOTYPi2cV4miTU1aQAEKJQxNoEpg4Kgtffdus\nmGgxLNZ0JzxIrRpLWiqfUFA43uxW9JYJSsB3je3Iy0pVNeDjc4HkZKZg/MismCSqvVmNR6snlJL4\nMFBh3yRKEARBEARBEEQfczomoFZfVWUUPBu0G/HReSI4lsWyeUUIiEF8uecEhEDI0DXyHGaMO1Wm\nUUuoR5gDx9rg07ASHZ1Hw+ESwOtZCP5grwgSgLo3jOAXMbd0GEQxiJpDdlnBSounjeAXI4k8d9e1\nwu5STrQpRzLbGnkWPM/hsZe3qSb0BACGBSQZzYJhgFnj88CybFKlR5USw8p5HAh+UbEai63NA48Q\nUC03W5BrVj2319YdgMPlgzXNgPFF2VgwuQDWNGNM31aur40RipodnbJJVPuzGg8w+HLOkShBEARB\nEARBEP3EYDMG1FATUuQEi9HnZGBrlJdEIuKTfK7aWNclIajXJ4JlmMjqsZZQjzCtTi8ee2U72t2+\nyEr04lmFcHt8XdzogZChLAHwB+RX/pOBgXwOiTBy1TSUDFtAWSBaMqcQKzfUxrRjMupgdwlJVeVI\nZttAQIrJE6GU0BMAggpDKUnAt9850KEgGigRf80oVSVZNq8I7W5BUbzy+oL4x/pa3Hb5+YrHsph4\nDMsxK1ZgCXtgtDoFbKpqwKaqBmRFlZNdtfGQYoJPpbCQ/qrGM9ggUYIgCOIMordiEwmCIAgijJyQ\nIidYAMD+Yw7NlSCik3yq5YqIN9SiDXS7ywsGykZ1vPv/5zWNEHzBiBt9uLRptMjRUweJrDQD7l4y\nHjmZJsV3sVw1jU1VDfD5RNxYXtJl+4AoYcHkAlwxYwQ6hUDkPb9yQ22XdtQqWfQGgV7yINF6nUQT\nnxhWqSoJgO+vGQaCX76/+485EibQ/OVNk7pU32CYUGUSpXPSUk5WaQj7qxqPEgM1jyRRgiAIogcM\nFhFAbaWgJ7GJBEEQxODF6wug2eEZ0HdQvGCh1YshtO2psAa1ZI52lxe2tk4U5JgBdBVE1m4/is3V\nTZqOGc5/EHajD4VNtGraVyulxTkoyLUofq8mwGz95gT2HbVjUkluRHyJfr9nmA2YWJyN5QtGaU76\neSYxdmRmTHiGmpC1aPq58IvKAordJSQUAHidDitunQaXx4fjzW4YDBx+++rOhP1MVE5WKSykv6vx\nhBnoeSSJEgRBEN1goB/e8aitFPRHbCJBEMSZzGARoMOE30E1h1phc3T22TtI8IuwtXUCkqS66h9N\n1zADA0rOyYRez+IbhZwJgHquCEkC/vTWroihHh3KkZtpAtuDc64+2KJY/UErRj6U0yEjNSQYJEpe\nmqhUpd3lw4Ydx2Fv98KSyseEADjcIY+KuuPt+OGVF3TL26CnGHgWgkJyy77GK4gRIS5RVZI3Pj6g\nGD4ChKrIKAkA0fc8ALR3+GDgQ9eZlpwmiZxJlMJCooW6cB9SDLoY75i+YKDnkSRKEARBdIOBfnhH\nk4zL69nAYDMeCII4fRlsAnSYvn4HicEg3vzkILbuORFJQmjkWcwYNxTXzx+leu5hL4bFs87DyvUH\nsf+oHV9+cyKUM2FkFhZMGS6bM8Gg5zChKAsbq+Rj8MOGevw5egQ/vtijPY9FPG1uHzLMvGxJzkRw\nLHDJxHwEgxJ217XC4RZQU9cCjmVUrxGtyTqrDrYoflff7MYHXxxJus/xJFv2FECfChKZZh4eIaBY\nXnXb3mZs29uMrO+vJ6VxTDPpsatOefyAUBWZ+Osw+p5vdQqR0rLRIkNPbn2WBWZPyMey+UXfV9/o\nmkQ2vg9hrwqrhe8izPUGg2EeSaIEQRBEkgyGh3c0iVYKBjI2sT8ZrMYDQRCnL31p/HdXQO2Pd9Cq\njXVdynh6fUFs3NkAKSihfNo5Cfu9Zst3XUqDbqpuBMexsmMn+EXs/c6RsG/x57hy/cGkqjfIYU7R\nd0uUEIPAwfp2HLd1RD7Tco0Y9BzGF2XHJIvsDl/uPdmj/YHkBYm+ZmJxDnw+MWHC1PD1NDzXLCtK\n+AKSqpfEUKsJyxeM6vJ5/D0vJ46E2zXyXNLXXsX0EVhySSEAKCaRjc8TEhZElIS5njIY5pE0SyMI\ngkgSLQ/v/iS84iLHQMUmDgThiUSrU4CEUxPDVRvrBrprBEEkgeAPuWcL/p4Zmr3RDzXjv7v9E4NB\nrNxQi4df+goP/fUrPPzSV1i5oRaimgUVRU/eQVrGNlGegs3VjQn7nczYhcfjF3/9AiccnYrHDRN9\njoJfxP6jdsVtjTwLq4VP2KbH68fcScOQlWYEw4Ti/bUSLUhEk+gauWRCvvaDKKBW9WKwYNCdMje1\naGU1da24Zk4oQaUWOjr9uGTiUGSY+VDFE4sBU0fnwOsLKO7D6xj88ubJXRYsks3RYTJwmHZ+DngN\ny/yZZgMWTCnAHYvHxXweDkEKCxIujw8796v3oSfPH7lnwGCYR5KnBEEQRJKouV0OhAigpX75mc5g\n814hCCJ5Bpu3U1+tHvbU+6I776BkxjZRvoOwHazWb7VSjHJlQLUmxgRiz7HdLcDhUvZwmFyci/IL\nz8GjL29XbdPh9qF86nAsnVuEww3teOrNXZr7o0Sr04vDDe0oyDXH5AMI/xZVB5p7fIzTgftvKAWv\n4wBJQopBhyder4JDRThzuLzw+UVMLhkS42mjhN0lYE+dHe1uH3gdC4/gx9cJjPqx52XBZNB3+TzR\ntd/12D5s35tYxLCY9PjVrVNhMfHgOPlnWfi62LG/OaHXTneeP2rPgMEwjyRRgiAIIkkGw8M7HqX6\n5YmSbZ0pDAbXQ4IgesZgytUD9I0A3RsCanfeQcmMrdZ8B0r9FoNBrPu6XlN1ge5Uj4g+R7OJh4Fn\nIxU1ojHyHK4vKwbHMrBaeNhVxAurxRARDQqHpSfcXitPvbmrSz6AoCRh486ehW30FywL1RCIRBh5\nDsOyzdBxTMQgVhMkgFPXx/KyUaiqtWkKjwi3KQS0dVau5CqQ/LWvlSklObCY5D12wmFc67Yfw6Zq\n+Xwq8cQ/f7SEgiV6Bgz0PJJECYIgiG4w0A/veOTqxZ9NngGDzXuFIIjkGIzeTn0hQPeWgLpsXhFE\nMYjdh1rhcAqwpim/g9TGtuqArcvYqp23ln6v2linmitBaxnQeLJkznHNlsOyggQAXDx+KEyGkKkz\nqSRX9XxKi3MifTLouYTbJ0N8PgCFhfKEpBo56HUc2t2+yO/91Tcn4PYqhyn0FD3HQuiBKjHt/NC4\nxudIUOPU9cHhoguGaDbUtcKxQIpB3gRO9trXwvBcM5aXdRVV4z0XmCRChsJjpNUDKtEz4JIJ+UhP\n5bFgcgGumDGizyt9yEGiBEEQRDcYrCJAfL34s4XB6L1CEIR2Bqu3U28L0L0hoEaXA3W4BGSYDRhb\naMXc0mEIiFIXo1dtbO0uAW+sO4BbFo2OMWKWzSuCJEkx1TeUSMbzoSAnVXMZ0GimX5CLmyvGxDzL\n1Y5l0LOYOS4Pgl+EQc9h2bwiBCUJW2uaYhIXGnkWM8cN7fJ7LptXBE+nH1982/NEkvGI3bDxh+Wk\n4pGbJ0OSmJgylVUHmgGv+r5GnkVGqkFTvo54lCpgaKXqQAuun6/NG8bIc5gxLi/mt1gwZXivixJi\nEKrPk+h73u70gtez8PmDSScEzTDzKC3OwfIF8tVq4j0XtOQHsVoMmFSSE+mjVg+oRM+AR1/eLlvh\noz8hUYIgCKIHnK0iwGBksHmvEAShncHq7dTbAnRvCKjxhojDLeDTXY34dFcjsmRWSlMMOmSYDYpu\n81u/OYEUoy7GiOFYFjeUlWDJnCLY2joBScKmXY2yHhDxng9qAkNHZyBGONG6Mn2w3tnlMzVDS/AH\n8ev/3YFMC4/R51qxvGwUrp1ThDkT8uH7XhUYkmOBTpJkx5xjWVRWjMb+Yw7ZMA5ez8Dn790skwY9\nKysCzJ6Yj5srRkf+Ds85mh0e1XwaYbLSU/DQjZPx6P981SshKcng7gzgyAmnJm8Yr08EyzAxBrw1\nzYisXg6nYBlg3df1imKB3D1va+vEYy9v1yxMzBibh8ryEsX7uTthS/FtJuNdpkX8i/foEYMSKi+V\nD3PpC0iUIAiCIM4IBqv3CkEQiRns3k69KUD3REBNZMxEr5Qum1ekOY5fKUTGoOdQkGOGGAyCZWIN\nZ7mV7XSzARlmXjFRX1uH0GWVOry/WoI/u4y3TCJDS0LIwPrimxPYtvck9DoGXl8wItzcuTQfdnuo\ncoZcTL5aGEdvCxJASHxrcwsRz5Tw+F4/v2vZSkC7l0mDrQNvf3qoV0NSkuFka4fmPA3x12FfhFME\nJWBTVQM4llHNVRN9z+dkpCieA8cySE8NlZSNvpfVkvMmm1ATAA4ca9PcRrx3WXfG8dPqBkCSsLys\nuF8SDZMoQRAEcRajJTnS6QZ5rxDE6cnZ4u3UEwFVqzHzeU0T/KKIT6ubNLWbKETmH58c7JKcMWw8\nRxssBj2H0lHZii73Vhmvl/B4XDFjBH71yteyAgoDYN32YzEGUjKGlhiUIPpCQkJYuDGl8LjionNU\nY/Ljr0lezyUMZ+F1LHwaEy6eGgPghN0T85mc50A8JedkaqpQsau2Bb+5fRoCYhCbezkcIhEHG51w\nd2rz0Ahfh+lmQ+T/4fwpn+5qlE2cGg3HAjpO3uMkHi25aqLnSErXmhiUMKEoG+XTztF0L4tiEOu2\nHwPDJFfSNf4eTda7LD4sJdGhgxKwqboRHMf2S6JhEiUIgiDOQgZb6T2CIIizzdupOwKq1tVxr0/E\nlxqM1TBqITKCX8QXewUbnEMAACAASURBVOTFjS/2nMC1c4pifqflZcWoa3CivtndZXs1rxeLicfk\n0fKGn5KBlKyhFc1X3zTB5fbGCChhwUIUg6gsHx1zTdraOvGnt3apihIZZh4P3jAJj72yPal8DDqO\nhSiTUFLOcI5/fxt5DoCkmPATCHmouD1+6DRm2VSqnJIsHAtsrdF+HaanGvDhV0fw7XeOmLnJ8rJi\ngGFUE6gCoXwRsybkoWzKcGzYUY/qgy2K3jdqQpzcHGlsoRVGhUovNYfsWDpvlKbn1SvvfauaJ0Pp\nGPH3aLLeZTHXssODZ1fXdMt7pa+gmSdBEMRZSDgmudUpQMKpidiqjXUD3TWCIM5ywsb6mSxIdJew\nIaKFZEIM1MQCm8OjaPB6fSJsDk+Xz0cNT4dBf8rMMPIc5k8eltDrZdm8IsydNAysQiWC6toWCP5T\nokDY0Hr89gux4tapyErTnnukpa0T1QdbZL/7dFcjXv/4QIxQ4OrwJczJMKkkBxt2HgeTTCkFKCeU\nDBvO0azccDDm/e31iaqCBBC6bng9pzmPwbQLhmjaTo1UAwddkoscDreAz3af6DI3+d8P9+Oa2SOx\nYEoBstKMqpUqvvzmBKxpRiwvK8b4wizF7TLMBkUhTm6O9OmuJsVxlvud5BD8Ir76Rl7gYxlg7qRh\nmDFuqOz3cvfosnlFkTFhmVCFmgVTClTvM4OeQ0GuRfNzROu59RTylCAIgjjLGIyl9wiCIAhtRHsH\ntDoTlF5IQKbZgMmjc9TFgkQGdtz3qzbWyYZ6MAlCEYCQyFA+dbjiirjd6cXhhnYUDkvvUsY0bGhp\njZvPsBgUQ2HCeQdYBmAYBtW1NtVVZZYBpo0ZgoA/iM9quhqdRp6FPxBMuvJG9Oq4GAxi5fpafLor\n+fALr0/Eqk8OaloZN/Icls4ZCRYMvvr2RNIeEwY9gymjczF7Yj6eeL066b7K8cU3J3DgmAOlxTlY\ncdtU1B1vx5/+WSO7reAPwtbWic92N8r+FmFSU/Syc53uJKHUmoy33S2EEsfKIElA+dThMJv08Aoi\n9h91oM0tqIax9cS77NRzRP3aVhNvehMSJQiCIM5w4vNGDNbSewRBEERiog0RISjh53/eAkHGK8LI\nq+c/yDDz+NWtU2Ex8arHy8lIUWzLyHPIyUiJ/N0bone62aBYcYFhgKff3IUMswETi7O7VFAIG1qf\n7W6EL0H4hMXEJ8zPoaUkKgDoOAZf7VUuHypJ3SsFGr06vmpjXY/KY27b16xpO39AxG9f2wm7U0io\nR8kh+CVs3XMSXyc4XnoqjwlFVtQcsiuGWEQTncR1+vm5qtu+89khfNfYtWJLNB6vP1IyNpruJKEM\n/06J8nSlmw3IyUhBs0x51kyLAeu+rsfugzbYXT5YLTwuuiAP15cVw2RQN9nD3mWCX0Szw6NJnAg/\nRxbPOg8r1x9UFKBMKbp+WagiUYIgCOIMRSlvxOJZhYOy9B5BEAShnVBlDAtmTRgm6x2QnWFE8fAM\nfKFgWE8ZnZtQkAgfZ+a4PHyys6v3wsxxeTEGS2+I3mqx8mGjyeEWsKmqAfuPOPDLmyfDZNADOGVo\nLZp+Lh767y8hqCScbJYJO4lHiyABAL6AujuB1vwSmWYD2ju6ro4LfhFVB7SJCj1FDCIyP0gmEWM8\namNi0LP49W3T0CkEsGW39pwTQEjcuuh89fCSXQdbE7Zjd3WtBAOEhINMC68YqmPgWaQa9DFeDEvm\nFGLlhlpNebrGjczGJzvqu7RrMupiPITsLh+2fnMCBgOHG8vUS3P2JE/Ymi3fqSZLbWnrlBVvehsS\nJQiCIM5Q4mvZR68yDObSewRBEIR2ls0rwoFjbV0SSx5v7sDoczLx9H/OxD/W12L/MQccLnV3cCWu\nmz8qEsZgdwmwWk4ZPdEkWxFADsEvYm7pMIhBCTV1rbA7vWAUEi822T24789bMWtCfsQAE4NBfPjV\nUTAJ0hl0CtoEh/4iK82IR2+Zgk4h0GWlu90tJMxncTpx0dg8WEw8eD2nuVxomFanFyzLwMCzEBLk\n0lDDapEPSzDoOYw+16poqPv9QdxTOQG8jo38Tis31CrOt5YvKI4VDVzh5KSA4BNhTTNi/EgrvvxW\n/nhyyWTjUZvvhRPDynlxaAlV8fpC4TAFOWbV7XoKiRIEQRBnIIlcaFfcNjXy7zO59N5g40wswUoQ\nxMASECV4vH7Z78IhE7ddfr7i80fLc0lr7HqyFQGikVvtHT8yC6XFOfivVbsV9xP8wRgDLN5AO12Y\nOCoLFhMv672SYtD1WkWMwUCn14+m1g5Y04wYO9KquXRtmM9qmnDxuKGy3jtaGT8yS/FaXjKnEDv3\nN8t62mRaDIAkRfbTErL09qeHYq7JsAfOzLF5uLG8BDaHRzE0J5xMtiDXEvN5+L5NMegUj191wIbF\nswqxZsthWS8KzaEqPXGZ0QiJEgRBEGcgiVxo3R7/WVV6b6ChEqwEQfQVWkMm4kuQdue5pKWMaXQi\nzmREb7nV3rChlmE2wJGgAkB1bQsWTT8Xn9d0P+/CQNLpDSi6yXcKgaQFCSPPQfCJil4mycAyIbs0\nw8yjQ/AnVdlFjm37bNi2zxZJACpHXmYKTsjkXgCAXbUteOSWKQhKwKfVDUmdH69nkJtpQs2hVmyu\nboy57gFE7gml0J8Orx+PvfJ1ZL+5pcNU7z9bW6eiaLD/WFvoH0kkk42/b9XuDbtLwG9f3YEm+6lQ\npWgvimtmj0zoqWLQs8jphzxjJEoQBEGcgWh1odUywSR6jhbXSoIgzl564kWVYtApGiZqIRN99Vzq\nTkUAtdXmmkN2jC/KSlh1wuHy4o11BxKWx1TDyLM92j8eXgf4Atq2/eLbk9h/zIFJJbldhCG15J9Z\n33uU1Byyx4hAi2cVwu3xYd3X9YrVTLQya0I+Fl54DlIMOvzujaoYI7cnqI11p8rAOdwCfv33rzFl\ndC5mTRyalKdFboYJx5s7In9HX/cAFL1swslew30O7yeKQdX5FiQpoWiolkzWwLMxyWTj79tEYp3S\nbxX24khUsSY7w0iJLgmCIIju0RMXWqJ3oRKsBEEo0RMvKjEYxEtr9mDr7gZFw0Tped8fz6VkRO9E\n3h6XTh2OQ43tMcZkPJkWA46cUK+4kIjeFCQAgGFZANrbtLt8MavYYff8TiGA8UXZsuJCaXEOli8o\nhsvjw/FmNwpyzZEQEJNBh+ULRuHg8TbVsYsnLM6EQ0Zq6mw43OiEu9MHRz/ltmjvkA9JCtPmDo1V\nQW5qUmJSY4v8OFTX2iAphClkmHkwkGRFg5BopvTbZCMn05RwkUgtmSwk4O1PD2HZvCIERCnpcqVK\nhAWRZfOKIIpBxfCR1nYvJbokCIIguk93XWiJ3oVKsBIEoURPvBXUcidYLQZMKumaiDJMbz2XkvHw\nUNs2kXefNc2IkuEZqob1uXkWVNe2JOxzfxJOxBgOpQAALZEGn9c0oep7oSosDKSZdCjISUWnEIDd\nJSAjNVQWNVHlh4AooaXNm1S/w7b5qWonfjjc6iLBQJGM2AIoh7LYXYJi6oT2Dp/idw6XF5dMyIfP\nJ8omk+VYVtMiUTiZ7JbdjTHVWqJzpiyYXJB0uVIlwoIIx7KYO6lAJacFJbokCIIgekB3XGiJ3qc3\nstETBHHm0RNvhURZ88eNzFIVNXr6XErGw0PLtom8+8RgEFv3KJctNOhZVNW2RHIf9DbTzs9FioHD\nll1NikZtmkkHwR+ULf9pMnC4bt5I/H1trabjhcIEQiJG+HhOTwBOTwCp/5+9Mw9zo7zz/LeqVFVq\ntdTdUrfaR7eN7W4f+GifGAw4PrBjSMaDZwI2cUKGY5PMksnO7GRzDCRcm+xsnmyyzJFMstk4EDIO\nMOZZhuFJYjA+ABvjo9tuN9CnAdt9uA9JLaklVUml2j9kqSV1Val0S+338zw8uKVS1atS1Vvv+31/\nv+/PyKDKxMLpFdDeOzolCiIqbMmyjC9sX4wRl193adMoekuYTidsFh6yLCtWOeFYGiaOURRmKAr4\nx387B5c3CKuFwy3LZmLv9oWxMrWAvkUihqbxuU1NaO0ahhCc2oa27hHsvHWe6n1rs/CQATg9+kSL\nluZJo8+UNw0xuiQQCARCthDfiOJCUmkIhPIk39VysolWGPcKmuZ0bT0j+PNPLVCs5ABk3y+lE+Gh\nd1utiduvf9+pObGOTqLVBAOOpbIyZ+y7Mo4lc62q+6co4KHPLsU//Fu74vsOj4hn/9idkwoaEwEJ\nQORcjLkFQOU6eKd9EPdsbi7IhDKX8GxEqCq0MGIyshhxKfsvCGIY9TUmRVFCCiP2usMj4kTHEExG\nQ8K1Hb9IxHAsJDEYq9wxNu6L9THjXkE1PWbMLeDFw71YubAOhxXSPNYstgNQ9sSYU2+GLxC6dl/x\nMBlZnO8ZwdHWftiqeCybbwVnoCEqmHsaOYYYXRIIBAKBMB0gqTQEQvlQqGo5qaIVKngDhp0+1XSH\nGjMHl1d5AuOeCOKJfaewbslU08QomfZL6UR4aG37Tvsgdm2cH1tRDkkytq1txM5b58EvhBJKLnZ+\n4tBsUzLRyX/0/5RMQV/ihDJjbgHHO4ZUvQtsFiPmz6pKWcmgkCU9hWAYQw4fZtpMOTfwjKe6kkNL\nsw2n3lcuoZkMb6BRYTTA5RVh5CLXiRiUYLXwWDLXim03zcHTvz6dl7aqQdPA5WGv5jYTfhE8S+sS\nS9QinXiWgb2uEkNXxxVTbnZtXKB5DZ3oGMIdaxuwbV2j5n2r9F5IkjHuFXDw1KWEVI0xt4C3zqtH\nId26YiYxuiQQCAQCYTpAUmkIhPKhUNVytKIVTEYDnn72tHa6w8I61TxwYNIIUK3d8f3SiMsPyDLs\nVlNK4SVVhMeI0weOZVBt5jW3DYgS9r/Rgwc/s0RVBIoeL11zxXCSJ4KeybI+lEs3rl5UB4uJU13F\n1oKhAQNDQwyGYbXw8AmhtNMt1Pj9u5/gP+9ajg3LZ+JIa+5LpfIsjacfXg+/EMI7GhPbeCiagssr\nosbMYfXCOnxucxO8vmCCCJVK3Mk1YR2XRzrXYKpIJ60+JlU1jHM9Y/j+l29WHU+ojTUYOiJmtveN\n6foOFIDGejN2b2nStX22EFGCQCAQCIQCQVJpCITSptDVcpSiFUxGQ8KqrZoosnf7Inxy1YuLA9oV\nJ6LtBjBloiKFw3j5WF9aUSFaER4cy+AfDrTH9tXSXAerhVPM0weAzk+c2H+oJ6FyQXypxR3rI2Uo\ntfahRC7SJJQQgxJuXT4TXZdciqvUypKFMg99ZjHmzayKhcZHf5uXj/VpTkrTofOSEx6fmEWMiDa3\nt8yCxcSBYxndQkJUcHF5RRxpGwDD0AnXNc8yWDLXiuMd+kSOQsGxNCorWF1Gk1WVHCp45Wl2QAxp\n9jFPPXwT/IGQ6vePFzzUxhNqYw0tkTAZGZHokQNHLxakdDnz5JNPPpn3o+QYn68wpWiuJyoreXJe\nCww554Wn3M+5EJTgcAdgMNAwMLkLIc4n5X7Oy5F8n/PKyvI25szXuSHXeuaU0rlzuAN47cQniu8J\nYgi3r5iFygpW8f1MoCkKKxbUYtOq2bh9xSxsW9eIQ2cuwy9MXSkf9wrYtKoh1v/TFIWdn2rCifYB\neHzqlRECQghOj4CXjvTitROf4N33h3DV6Ud9TQX+/fjHOHy2P3Y8vyDh4oAbfiGEFQtqFfdnYGiM\njgcUxZCQJCfs6+NBD2rMPLx+5fYFRAkuj6gYGXDpqgdvnLmCo21X4BOktKwR8jUJt1UZ8V93r8TW\ntY24fcUsfGbDDVi90A6aouATgvjVax8iJOk7elvPGHr73fjUqlngWQMqK1gYGBpL51nh9QdxaciT\n9fcQg2GcfH8I3ZddObeWmGUz4St3Lwd7bUwyOObDJ0OetPcTf11HxznzZ1k0o4CKgRSWUVddAfdE\n6r4qIEo4/eFVjI4HsHSeFTQ1KVf5xDD+7c0elc+FcMvSmdiwfCbe7RiEX+G+sFUZ8ZkNN2Q0DjQY\naLz7/pBi/6LGuFfEplWzczLu1Bo/kEgJAoFAKHEKld9MIBAI1zvFqpYTXdkcdvpUV5vH3EJshTRq\nwnngrYu4MqJdEpHnmIRV1zG3gCOt/TjS2g9aZWlfKypECochyzKMHBMTE3iWBqjJEpjxiCEJPEtB\nUDCarDZzcHmVv2800iEdLwSbhcfyJhveOa9eJSMb4k1Ak1ei97/Rk3baxeVhL37wm1Y89dD62Gsh\nScaOm+ZADIZw/MLVrNus5juSLYMOH5741Xtoaa5Fz5Vx9KdZmjPKmFvAc3/4EJUVbGSc4xFVr8tU\nNNZXwucPXSvLyV1Lhcmdl8aEP4gtaxrQ3juGMbd2mVW1CCdrlXofI8vAMy+dw5rF9Vi9yI43FVKB\n1Ixo9RjzaqWMqeFwF6Z0ORElCAQCocQpVH6zGvl2oCcQCIRSodjVcip4g2rqAU1F0iPiDfKoLHVp\ntYl7ck58/HPg5WN9UyZLWuZ/To+AW5bNxAmFcPTVC+vQ3jeWE/+A25bPxBd3LMa4V8Bb5waz3h9D\nU2ANNARRgq1K2wQ0EzPOKP0jXnh8IkxGQ2wBYswtxCbmUYtOteoIxSQicGUf0XDyg+GEvzMVlPyB\nEJ548KaYUapaKswMWwWuOvxp79/lFbDjpjnYdft8PLnvNJwqglo8yQKfkTNoCgMOT8QLZqsOQ0sg\nIhLuf6MbbT2jcHlF1KZYuIpPGUslrAARUbMQpcuJKEEgEAglTKHzm+MhERoEAuF6pJjVcvxCSHVC\nFpaBl4/2JUQ9yBpzVKuZx43zrHg3g9z8aFRI8nMgsvqsHA2gJqZYLUbs3b4QJqNB8ZxSdE/a5pBA\npAwnEKl8Ed0XQ9Oo4A2ormQxPqGe0gJMTvatZhZmEw9fIAiHW0BVJYsbb7Bi99ZmeH1BgKJgr6lI\nqCiSLNRnYsYZJSwDV4a9aOsdTZioRs9l9JRuWDETLEPjnfZB1YiM7GqMlD9jbgF+IRQT09Tu5U2r\nZuF7/zf9Ch/R+2LcK6hG+CSjZHo52a4RVUHuXPcofvCVWzQNsqVwGE8/e0bRg0aSwrh/x5Ip+403\nuHW4Azh09grO94zC4SmcsagSRJQgEAiEEiabOvbZUuwIjXxBIj8IBIIWxayWU23mYVMxdbSaOXRe\ncuraT42Zw5MP3QSOZdB1yZl2JEI0KmT/oe6E54CW2aSamLJ6UR1MPKt6TjOM1IcsA9+8bxUWNFSD\nZxn4hCD2v9GJzk8cKQUJYHLy7vQG4fQG0WivRI0ZcHoFnOsdxbneMQREKVYlYs8dzThw9KKiUK+V\n9qMHk5FRXYCI0tHnwFMPr0dIknCi4yrEa9EpRo7BzUvrsW1dI/743iWc6Liac/+IcoECEgwm1e5l\nISihNoPfq6W5Fvy1yjJ6f2+ltK9ouz7VMguP71MWRxweAb892IUHPrNEdZy3/1CPainTY+cGAIrC\n3m0LFReSeJbBrNpK3P/pxdiyugFP/OqUoqAlXhszkfQNAoFAuI4pVn5zMSM08gWJ/CAQCOmQbrWc\nXAiePMtgzeJ6xdDuG+fZdEc9rF5YB78QAqczh5ymIpP0+KgDreeAEtFV+mjERG1Sac/o94s/p0JQ\nwrmeUd3HiKe2yogFDdUwMBT2H+rWjCDQQ7w3R7wPQbRKxOnOYXj9odjryUJ9urn68fz4hXZ4A9pC\nypg7gP1vdE9JgwmIElgDg2PnBtPyoGANNIIllg6SLTIi0UYWE5fwevJ1l4m3AgCc7xkBQ1PYs7VZ\n9+e10r7sVpOmOHK8Ywgcx2DHTXOm9CtCUMK5bvV7JywDR1r7wdBUyoUke01FUcaa8RBRgkAgEEqY\nYuU3FzNCI19M18gPAoFQXHIteKqFnO/aOD9l1APP0qi3mtDeN4ajbQOwVfFYubAOd6xtwLkedXO+\nTatmY8f6uQkTn7Fxn+7ygcBk5EE0YsLIG1Keg3RKFCajFs2RTK7Kg8YLEvG0dY9i18b5CIYyF0RS\nCRJRznYNK77e1j0COc3wiEwEiZnWCgw50/diKBQ8S+ueQCffZxzLpBS1on4P0c93XXKpRioYOQa3\nrpipmfalRxw51hYxpU32itCbQqJnIanYXjpAnkuCBgIB3HnnnTCbzaipqcEjjzyCAwcO4K233sId\nd9wBhmHw6quv4tFHH8WBAwdAURSWLVuWcr+lUjZqOlFK5biuF8g5Lzzles6XzrPCL4Qw7hUhiCHY\nqoy47dqDLr7MVC7RKhuVTjmqUjnnQlDC/je6Vcrs5a7cVSlASoJqQ0qClh7lfu5eeLMHh85cSaus\nZjLxJZ9ZA5NQJjRadpI1MKqlOKMYDBQcbiGhLR8NetDUUI2/+vMVuHX5TITlMIYc/ljpSiNHY+5M\nC9bfOAOsgYnbV/rlA+Px+ILw+kSsbK7TaG/qY1AUcMvSenj9QQhiJOx+zUI77t3SjLAsq/bt8dyy\ndAa8/mBWkRRqCGIITo+Id9q1o1hYA4VwloEJkoq6EhAlXb+TzcJDBnSXLU3mv97XAs7AwOsPwi9E\nxiO3LKtHQAipijYAcOvymRhx+TM+rl4MDIWtaxox4vTB7QuC55iEUqPxJdWTy/H+yW3z4PKKqiJD\nPE63gDWL7Pj9yU9Uv1NIktHUUI2VTYnXf3J/t3SeFWPjAdXjRvee3K/ovT+1ShnHn5eWplr4hRBc\nHgEBUYLNwuO2llk5HWsWrSTov/zLv6C6uhoA8I//+I/Yu3cv7rrrLvzkJz/BgQMHsGvXLvz0pz/F\ngQMHwLIs7rnnHmzfvh01NTX5bBaBQCCUFcXIby4F1TyXTMfIj+lOIBDAn/zJn+CRRx7Bhg0b8K1v\nfQuSJMFut+NHP/oROI7Dq6++iueeew40TWP37t249957i91swnVGtqluWlEWSukje7Y2wx8IJZhd\nJrRHpfxhtC2zaithYBJXhANiGIfP9oOmEsO8Mw1xTzhuzyh2b5WyKlFosxjxF3fdeK3KQA86P3Hg\nRMcQOi85sXiuNWWkRbWZw+e3LQTHMnjuYCdOdmRfZjMeq4VPWXmDpoANS2eCooG3zg9qej5kYlbJ\nMpFUDK3PURTQ1FCF0536U3KSCYoytq1txAM7l+PKgCvBo+HRX5xUrEZRW8Xj/h2LseeOZvzP51tx\n1enLS7lWIFIF5ls/OwHhWhQIz9KwWyvgD4RUo5ji77P7dyzGh5844Uxh+uj0Cvjer04iqK7DANDX\nBzA0jft3LNbt/RK/Tz33p1L6hVK/s3JhXezai/5XSPK2LNTX14fe3l5s3rwZAPDee+/hjjvuAABs\n2bIF7777Ls6fP48VK1bAYrHAaDRizZo1aG1tzVeTCAQCoayJPjgLJQjs2dqMbesaUVtlBE1F8ne3\nrWssiAN9rol6cyhRqHxJQnooLWzs378fN9xwAw4cOACfz4ef/vSnePbZZ/H888/jueeeg8vlKnKr\nCdcbegRPLaJpZWNuATIm08pePNyruD1D09i9tRk1lZzi+2pE25JKRBGCk2KFFA5DlmXwbObThXGv\nGDsHQlDCsNOXcAxg8llj5JSfbVEh/JW3P8KJjiE4PGLsXJ3oGAKv8rkoLq+Ip589jZeO9OLsh7kV\nJABgyVxrysobYRl4q30QAUFKaUIpA6gypff7iikECSBiDHq6cyRWajQT/uXfO/B3vziJv33mGA6d\nvQIDQ0EKh/HysT74ReUUlJbma7/fWxcx6MifIBFFiEtLEYJhXBme0HV/+YQgnj/YBZ/OVJpUggSg\nrw8AJsU5PcTvM9W9AygvJCn1O4fP9uPNs/0xQcbpiZyrF97s0dWubMlbpMQPf/hDfO9738Mrr7wC\nAPD7/eC4yA1WW1uLkZERjI6OwmazxT5js9kwMpJavbNaTTAYymuVrhyw2y3FbsJ1BznnhYec8/T4\n68+vRUAMwekWYK3iYeTSf2yUyjm/bWUDXn37osLrs9E4e3pF6JXKOc8UpYWNp556CkBkYWPfvn2Y\nP39+bGEDQGxhY+vWrcVqNuE6JBsz4nSjLOJXN10T6aW7RNvicAdUV2OTo8ZeeLMHb+oo1cnQgKSS\nlmCrMsJsYrH/ULeq50Y0GnDXxgX43Rvd6LwUWam2ZmG6mcyYW8CR1vTLjiYzp94MXyCU5PWxAJ06\nV7nf+1DZEyIZk9EAd55SmrIRBaJVTYad/kjZybAMhqY0V+uPt/ej+7ITg6O+zA+cY852jmDnrfNg\nMXGx+ypbo1Ql0ln0iPe4cHgCoKD8W9WYeYihMIRgJALpc5ua0No1rNh2I8dg18YFCa+ley8dvzCI\nezY3531BLC+ixCuvvIJVq1Zhzpw5iu+rGbHoNWhxOkvnop4u2O0WjIx4it2M6wpyzgsPOeeZYwDg\nGfcj3bNXSud854a58PnFKeZxOzfMzaiNpVpaNN/nvBCCR7kubJS7GFRMyvncZSp4Do5OwKESJu70\nBMBwLOx1lbHXfvnKhYxTKW5ePhONs2vwH++eV92mrqYCTfNqYeQMCIghnNCZ5hAOA431ZlxRyIm/\nbeVsvH6mX9Fk2FTB4cu7ViRs/50Hb1YUwrXOlSBK2LpuDjr6RjHq8qO2ugIen5jTCWaNmcOnVjfi\noZ3LEJTCU9qndg1kypDDh4j1AaXqI1EKHGvrB5fi+SeGgP6R/M7deI5WTV1SwukV8NSzp3H7ygaE\nZVnzvjJyNExGNiNDVrU+QKm/C4gh7N6+BA/sNMAXCOGVY734/YmPp2znFyU8se8U7DUVuGX5LNx1\n6zw4vcoCVkCUwHCGhONp3UvK+wgjRFFozHMfnRdR4ujRo7h8+TKOHj2KoaEhcBwHk8mEQCAAo9GI\nq1evor6+HvX19RgdnSxlMjw8jFWrVuWjSQQCgUC4zsmVNwcpLZpfynVho5QEuHKj3M9dpoKnFIyY\nyalFWUhiMPZ5ISjh+Hn9K/0UFQnXj1aeOHlhAP5AEOd71IW7ZfOsMfH5o4Fx+AUd8emIREN85wur\n8fLRPrT1jGLcrp/oPgAAIABJREFUK8JWFTkHn17XiCd+9Z7i546fH8Bd6+co9sPJQrjWueI5Bn++\ncR7u3bQA414B3kAQP3jurK6264EC8M37VmFWnRkOx4Ri+6LXQGvXSFoTPi0i0SelK0gAkWsrH+ah\n6fA397SgwV6Jb//83bSiQBxuAa++fVEz9QEAxGAY/+3zy/FPB9pjkSKpqK1S7wOS+7vomKK1axgO\nj4jqShZrFtmx545miGJoSnWQ6H057PTj1bcvwjMhqN4bAPDSG124/9OLJ4+ncS+pcXXYjUpD9uMb\nLfE5L6LEM888E/v3P/3TP6GhoQFtbW04ePAg7r77brz++uvYuHEjVq5cie9+97twu91gGAatra14\n9NFH89EkAoFAIBAATK1Xni6ktGh+IQsbhHIjU8FTy6jOZDTAwEwm/6dbOjOq0UUnaQ6PmDJ9Ydu6\nObEJ0uk0vBdWL6qDiWdx/44l2L01MYJs2KleVjQdk2GtcxUQJbzy9kfYs7UZh85eQWvXcE6n8jKA\nH794DmsW16cUn0tbQph+0BRw/uIY7NaKjNNSUokqVosRDXVmWCo5RVGCoSP3m9ViREuTDdvWzYGt\nyqh70eN3b/bgcFya1PhEEEfaBtDTP44nHrgJn9vUhBGnD/9woF2xre29o1g234q3ziub37b3jkHY\nMmk2m4mBLYX8VHqLJ6/VN+L5+te/jm9/+9t48cUXMXv2bOzatQssy+Ib3/gGHn74YVAUha997Wux\n3FACgUAgEEqNbJ32CakhCxuEciUTwXPP1mZ0XXJNKQd4ediLFw/3xoROLe+KdIhGTiRTW2WErco4\nRXRNRSRnfX7s7+RzkI3nRjK7Ni7AO+0DCCiE6bd1j0KSwjjSNqB7f+ng8IgRDwUpjB3r504RntI9\nb4TcEJYRE9tsVXxGKRapWL0oUtJzxOVXfN/A0Hjs/rWwZ2BELgQlnLgwqPjeleEJ7D/Ug/s/vRgM\nQ6ve+2NuAW6fegSHkviX7F+R2nw1/3Jb3kWJr3/967F///rXv57y/p133ok777wz380gEAgEAiFr\nSGnR4kAWNgjTlZAkq7r9xwuduSjPCaibHC6eWwMxAzNJMSjB6wvCxLOK72u1u6XJltYkzusTVX0D\nHJ4A2npGFd/LJcfODeBo20BC2l5IkrMy4SRkz/meEaxsrstIlDJyjKpJ5O0ts7BnazMGx3yq154Q\nDEOUwhktSIw4fYoiW5S27hHs3tKMQ2cua+7nXM+Y6vdQEv/io7ueP9iFEyolhqNwbP7jGAoWKUEg\nEAgEQrmTy1U/QmrIwgZhupOO0JmwuukOgFKJetCitopHS1Mt2vsccLgDsXKa73YM4YOPHXCpGOap\nkarf8wlBeANB8CwFIZjY2Pa+Mew/1K2YEqFkJFzBG1Bj5uFUKLFYU6n8eq6Jnu9o2p4UlrFukV33\nCr2RoxEMyXk1r6Rw/aWRODwi/GIIZqMB3oA+L5QoqxbVoYJl0N7nuOYJw2PJXCs+v30RTHxkqiym\nqP/5zy9fwLolqdN7pkBpp0WMe0WMOH1o7xvTv88klEqCxtN1yZlyH9VpliDOBCJKEAgEAoGgE61V\nv1QPfgKBQEim2szDauHg8EwVA2rMfMKEP9m74uDpy2mXuVy9yI692xZBCEr47cEuHI9bIdUSJDgD\nDTE0dUVXrd/TU2Yx3o8n+p3MJg6vvH0xwUh41cI6yADO94yqCg8tC2vx3vtDmqvOALBp9SwEhBDe\n+yA3kQ1HWvtxpLUfNIWUIfAAUrYvFxRCkFBLAyomJ9/XV26VM1AIhuSYIPdex1XYqni0NNdh29rG\nBD+IeGNrLVxeMSNvqepKDhxDQZSUT6atigcoSpfoJYgSbls+E52XXAmGu1ExUwm9XjV+IQSLKb/C\nBBElCAQCgUBIg/jVSr0PfgKBQFCCZxlUViiLEpUVrOKEP+rbsHfbQlgqeRw/P5Dgzq/GnHpzQj/V\nqWOFNMrtK2eBpqiIWOCJuP1H0xeUSMdj4Z32wZgIwXN0wsR9zC3gzbPqwku0yoEsy5oT/uh2e7Y2\n49e/79TVrnTQM0Ev1ESeZ2kEQ+G8HqvUBIl0kGVgps2EQcdkJaYxt4Ajrf1gaCpBVEjXK0Svt5QU\nDmP/oR6c6x5VFSSAiIhor6nQ5SdjqzJi99ZmjHsFgKJgr6lI2Q49XjU8SxckCpSIEgQCgUAgpEGu\nSosSCASCEJRUPSV8gSCEoKTavzA0jS/vWoG71s+5FmXA4uWjfTjaNqC4Wu4LBBGSZDC0/hVSm4XH\nmsV23LN5AQ4cvQhZliHL2iV4tQyBlQiIUkxMSSeSoMbM4fEH1oFjGXz3lycVt+E5Gt/5whrMtFWC\nZxkIQQmdnzh0HyOXpJrIMzSlmNYxp948xQhVCyGY/2iMVLAMECxupVBVgpKcIEjE8077ID5zy1yI\nwTAqeEPaXiF6vKUkKYynnz2T8jdtrK/EPZsXgDPo85MxGQ14+tnTaZUq1+NVU6jriYgSBAKBUASU\n8mUJ5UW2pUUJBAJB21NC0GWeG+2LpHAYYjCsGr4/5p7cn54VUooC/mb3SjTazdh/qDth4hKtRgFM\nDVdPt3xpprgnRPiFEPxCSPV4wWAYDE3HnrcOd0AxKiXf8CwFUJSqWSIARUGisb4Sj31pDf7tSB/e\nbh+EWAKCgx6CUu68LdQMHPNBQJTwdz8/CTEURpWZw3gWHitq47z/88oFXSLTleEJHDh6EXu3LZoS\nocld258gSrBVGWEyGhL2mU6p8j1bm+H2CjjVqS7A9I94sGB2Tco2ZwMRJQgEAqGAxOcnpqNmEwgE\nAmH6kUvz3BcP9yZ4RCRDUxGzyOhkqaWpVrNagc1ihL2mQncp5Oh+K3hDTsqXpiL+/Kgdj6IoPPPS\nOTg9ImxVPCr44kx9Iiaf6U/RR10ByDIFiqLKRpCIkq0gQVPAplWzQdOUZgpPrhGueaekK0gAEY8V\nA0Nh/6FuxXFeSJJxskO5BKgS8fdXcoRmpI2R++3pZ08rfv7t8wPYtXG+anUcIBJxddONMzRFCWcB\nhDwiShAIBEIBSc5PTEfNJhAIBML0IlfmuXpSJsIy8NLhXnRecsYmS3PqzRh2+hRDtKPHH3b6NCuE\nONwBHGnrT5iEmYysqijB0JG8ftZAZxUabuQZGBgKDE2rnkMpLMciIyLtyX8EhxY8S8NcwcLpEcCy\ntGbkBBBZuR8Y8V6XJUfDciR1YM8dzTh+YVAztcfIMbh5WT3EYBgffuSEayL/k2gjx6DSaIDTIyR4\nS+1/oztB7Iuv1LLjpjlpRRElp4MkR2jWW02a96cQDOMHz53F0/9pvebCl9WibWKZ6v1cQEQJAoFA\nKBB6V5sIBAKBcP2QC/NcPSkTPEsnRFKMuQWMuQVsXj0bYjCMzk+ccHmFKcdPFc1x6OyVhCog0f0y\nNCApzCOrKznct20RfvdGV1aiRP/IBJ5+9gwef2Addm1cgHfaBwpS3SIbhGAYN95gxlfvXoafv9IB\nQUw9efb4ggVJh8kUns1OXNLixLXrNZV4I8syOvoccLgF1Fh41Wox8ahdn3q5vWVWQuRCJEKiB8fO\nKUcfHWvrhyRJqLdWYNjp13UMtWip+NSQVKlYgw4f9h/qwf2fXqx6HHuNdopYqvdzARElCAQCoUCk\nU48+XYhHBYFAIBSGdPpbPduma54rBCWMOH0ARcFSXQEgkpZRbeY0y3qqcaHPge9/+WYASDi+EJQw\nNu6D2cSqRj7Mn12F9t5Rxf2qTfgcHhE/+38dmm3S60dwediL/Yd6sOOmOQUXJDL1TDjXO4YPPnFA\nDKb+NMfSaLBXFiQdJp6aNK4llqEgKHu15oT3P3Kols2NIgTDEIKR8+P0pD5PM60VWHxDDY6d059K\nEc/NS2fE0m6rzXykRO+pS5rpUGEZeOv8EBbMrtItSiRHS6mlADc3VmPsA/WSqOe6R7F7S7Nqv+IX\nQprtICVBCQQCYRqRy9zhKMSjgkAgEApDOv1tJn1zKvNcKRzG797swYm4UPYKnkFttRE+fzDlJFLN\nkyBeFI8aZsbnxPMaRoNnOtUnQpmSzoQYiEy4pHA4Z8aKesnmWHoEich2YfzPf23VTIfJFRxL4+al\n9bhz/Q0wV7B4+tnTuo7pDeTXhHJ8QgRvSH88Y+QYyLKsGMUx5PTD6RXQaK/E6Lg/bUGLAuATJPzH\n8cl7nKL0fdbjE7FlTQPae8fgcAdQbebQ0mzDxQEPBkYmEJYjfhoNdjPu2bwg4bNqKcCp1qJcE9qm\nudVmHlYzC6d3qrpkNXOkJCiBQCBMJ3KVOxxPMT0qyj06o9zbTyAQCks6/W0++uYXD/ficJLhn1+Q\ncGV4IuVnbRYeFAVdonhy2wtV+SBKS5MNHRcduqtkOL0C3spwxTuXxJf0pADQWaYHRJlMh1EuGZor\nxGAY7190ICwBn9++SFcZShqATEU8QvKJkCIVQ4mAKMFiYlVTS4RgGFdGUt87Spz84CpOd15N+H31\nnoNRVwA7bpqD3VuaY2OQlw73JNzHYTkSBRStvhFpr3oKcKryq9ZraR5q8CwDs4lXFCXMJq4gYyQi\nShAIBEIByUXucJRieVSUe3RGubefQCAUnnT623z0zUJQQmtX5lEJaxbbASClKK7HMDPf7Fh/Axia\n1gyFj6fQERJK1Jg5PPXQegDAlWEvTnUOq3oLZEo+BYkoDo+I4x1DONs9jNtWzMLWtQ1o6xqF06sc\nMREGin/yNfD48pdXkqngRFHAwdOXsXfbQtRWGzV9KOL7i2xK7fqEEF4+1qc6zhGCErw+5X17fQKE\noJR3YYKIEgQCgVBA0s0d1iKfHhValHsFkXJvP4FAKDzp9Lf56JvHvYLuyIEoFABbVaLwLUlhtPWM\nYtwrTnkvVdsLQW0VD1uVEVvXNugWJTKdE1M5XOF3T4jwCyHUW01Y0FCNfb//MDc7LhIBMYw3z/Zj\n27pGPPnQTXhi3ynFlBqbhQcolLQRZ6kRloEjrf1g6Ei+R7xJbDLx/UUFb0CNmVcViLQIiJLqOMfj\nE3Ghb0wxSgIAnN5g3saT8RBRgkAgEIpAqtxhPeTDoyIV5V5BpNzbTyAQikM6/W0++uZqMw9bCrO/\neGqrePz1PS2wW03gWSYWIdbeN4Zxr4gaM4+W5topK6epnPy1qKlkAYrKyGwzisnIgmcZvHH6sq7t\nOQMFMZSZspCJIGHkaEX/AavFiAregGGnD2JQyov/Q7bVIjKhtWsEn9vUhHVL6hWjbLQicLKBZSgE\npRIOwcgBbd0jkFNchFaLEWYTF/N4yUSQSDzm5DhHDIXwg9+0on/Ei1RBOFIBLjwSp0ogEAhlStSj\nQolMPSpSoWcFsJQp9/anQghKGBydgJAqwZRAIKRFOv1tPvpmnmWwZnG97u1XL7Kjsd4SO1Y0QmzM\nLUBGxIfhSGs/XjzcO+U4am1PxbobZ2DdEv1tVGLCH4THJ6K9z6Fr+3QEiXSy8xga+NTKmTByk7+V\nkWNQV1OhuD1roPH4r07hO784iR88f1b/gdJACkfaVUgcHgG/PdiFezYvwNa1DVPOhyzL2HnbfMy0\n5XYVnaJ1ukaWMQ5P6uinlQtr8crbF2P3brbEj3N+8JtWXB5OLUgAwEeDnqyPnQoSKUEgEAhlTC49\nKvRQjOiMXFLu7VcjwSfDI8BmIT4ZBEKuSae/zUffvGdrM8KyPKX6BkNRmAiEIEPZtT/dCLFoG99p\nH9RlcmnkaNy6YlbCd4t+b9ZAqxoNKuHyCrgy7M0q2kKJ6koWNEXrXmmWwpEKGfHfPyBGTEUb7ZXw\nXqt2wjIRk8Ehhy+2XTrfN10KHSkBAMc7hlBhNICmqCnn482z/Tgedz3mCjEYBm+gMzK41EtNJQfX\nRG6vs3SwWXjIsqwpTITDMs73KZfc1YJnle+76DjH4xPRP+LVvb96qzHtNqQLESUIBAKhjMmlR4Ue\n8lFBpJCUe/vVID4ZBEL+Sae/zWXfHK0UZDZxoCkKJt6AgCiiupKF1WLEx0OTq5hR1/7f/LEb9+9Y\nDJ5l4HAHVFdZkz0uosfaees8tHYN6xIlHv3iWjTWW2J/R7/3iMsPx3gA/3CgXbfvg9ViRGO9GbUZ\nppCoMT6RvuFh5yWn4usDoxOx1eXrJSjtbOdV+FWuhVwLEsC1qJRqY8bVMVJBAfjq3cvwv15oS0vo\noSnoiizQQzQiSSv15XzPWEohjTfQMFWwcHknFyTCsjylUk/kmJFxzsX+8bS+x8CoD82NVv0fyAAi\nShAIBMI0IBceFXopdHRGrin39idDfDIIhNyjVTI4nf42m745GgHV2jUMh0ecsvo5PhFUnWyf6BhC\n1yUnVi+yI6Qx67JaIqUCk6sSRQz1Uq8i11YZYU/6flI4jJeP9aGtewRjbgFUGuUxWpps8AshtDTV\n6ja6BCIrwxW8AS6vmBPvBY6lMa7y/QtQBKPkUDNBzBeyLGPCn78oBhnAz/5fe1rXScsCK9ovKgtV\neogKGvXWCrQ01cbGHL5ACCc6hhQ/45oQUGPmNCOHhFAYxnAYG5bNxN7tC2HiWUjhMGQZONc9CteE\nAFvSOKex3pyWwJLr9BwliChBIBAIhLTIdAVQa5BfSAodXZJvilWFhUCYjpRSyeDfvdmTsNqZblpA\nNGKK0cjPN/IG8CyD/Ye6E1Zs9aY5KEWYJUdu6TGUpAA02CvR3jeGo20DsFXxmFNvxoQ/CIdHR1tk\nXDPw5OAXQpDC2akSN91ox9nOkbxEARBSIwTDeU2DAQCPP70wlwsZChI0BTz6pbWwV1fAL4TQNK8W\nnnF/7P37dyxG1yWnYmSQzWJES5MtpUA3PhHEiY4hGJhISd1DZy6jvS8SZVFj5tDSZEvowywmDg12\nMy4P60vhmFVXmcY3zgwiShAIBAIhI/SuAJbSID+eQkaX5JPp6pNBIBSDUkmFEoISTlwYzMm+JI3l\nUK8vYiypFm2lRq1COVFAO3JLixm2ioRQ/TG3gDG3gE+tmoULvQ5VkYSmgXAYMe+BXHlRyGGKCBKE\nBLS0NQNDq0YkhWXAbGRhMXGwmDgYOQPibSNTpZXu2doMhqF1eby8dX4Ib51PjLpweUUcaRsAw9AJ\nfdhjX1qju/rGuFeAxcRpb5QlRJQgEAgEQl4p9iC/VCI08sV09ckgEApNKaVCjTh9BZkUuydEXBn2\nqkZbAUCNmYN7QoTVYkRLcy22rW2ErcqoeC7GvULaXhA0DYgqhobtvWOqaRRARJBIF5uFQ1CS4fEp\npyTUVLLoUvGTIBCU0EqRqq3iY+Viq808AmIo9u/oPXTP5gXouuSKCQTxhrUMTeNzm5pw24pZOPje\nJXRecmYkviX3YZzBgEfvX4uBES8+GnTjt2/0qH+Yyn81FCJKEAgEAiFvBMRQ0Qb5pRqhkQ+mm08G\ngVAMSioVKo1JQFppDklYLTx4nkG1St56bZURjz+wDn4hpCrsxgu/1WY+ZQ58MixDq573SEoGrxgp\nkYZVRQImI4sRl0/1fbcveF36RhDygxCU8PSzp+FwC+A5BhQF+AUJNWYOqxfWYe/2RXjxzd6EVIqo\nYe1LR/pAU1TCOGZlcx3O9Yykbd4a34clj4+qzepREAxNwa5SCjeXEFGCQCAQCHnD6S7eIL/YERqF\nJN4ng+FYSGKQREgQCGlSSqlQ9poKGDlGNVyboiL55retnI2dG+YiJMn47cEuHFcxzFPD6xfx/efO\nqr6/elEdLCYOHMtMiThTE35XLqzFsTb9qSdiKKwqZNiqItEZR1qnVhJIVzegqIi/RaqKDkSQIOQS\nrz8Erz8EAAn3czSt4vSHw5gIhBQ/e+LCUMJnxtwCjp0bwJx6c9qiRHwfljw+0hYRC3NDEFGCQCAQ\nkpju4f6FxFpVnEF+KYVhFxKeZWCvq8TIiCf1xgQCIYFip0IlP3tuWzETbyqU9du8ehbuXH8Dqs08\nGmfXYGTEA4YGHvjMElQYDbpyz6MVKsSQ8oSDoYEtaxpxz+YF2H+oWzHiTE34bayvBENTml4W8WiZ\n+bU012LvtoWALKOtZxTjXhE8xwCQ005v0WO4qQeKAio4Bj7hOqkHSsgrXhVBAoDqfTzhF3HTkjqc\n6RzVLRlE+7B0fV+kMDDi8qPRbtb9mUwgogSBQCBcI5tw/1IXMorVPiNnKMogv6TCsAkEQtlQjFQo\ntWfPvVuaQEVDtz0CbBbtZ1I097y1a1h1MmOr4rGosRrdl11weNRXR2UZ2HnrPBw4elFReJDCMtp7\nRxU/e2V4aiSCkWNgr6lQdPuPN/OLlhGNlis81z2M3ivj8AWCGPeK4Ax0SsEl3/AsAz8RJEqSTFN6\nyg2HR4SzcxRcUplgJZJNabXGR6rkStHTgIgSBAKBcI1Mwv1L3begFNpXiEF+suhSSmHYBAKhfChG\nyeBUz56dt87DlWEvGuvNsJg4CEEJY+MRo7xhhw/vXhjE4rk1qK2uwLhXgFNFbKAA/M09LeBYBn/3\ni5OabQrLQG+/C++0K6dhnOse1V02FABkyPhvn1+FV97+COe6R+GaiIgsS+ZasWvjgth5F4MhvHV+\nKJZC4fQG4fROhqkLKoaYhYBjaYjBcN5EEdZAIagSuULQx/V09mRMlgnmr4kTUTGvtopHS3Odoilt\nxPdF2adFjQo+/5IBESUIBAIBmYf7pytkFDpioRR8FfI5yNcSXUhFCgKBkCmFKhms9ew58+EwgqEw\nOi6OxczozBUsfIGgYpSDucKA//6f1qPGzCZM5KPUmDnYrSZIYRk8R6dMf3jxcK/qBNw1IaRlaCmI\nYfz982cRDIXh9ArgWAqeCREnOobQecmJlQvrIEnylHKGpQJniAgS+YKmQASJEocz0Ki3VqT0JIkn\nWrI235grWDx2fwuqzbymKS0Q6dtWLapT9GlRo390ArXV+TW7JKIEgUAgILNw/3SEjGJELJSar0I+\nBvlaogupSEEgELIl30Ky1rPHNSHi2LlJnwWXV9QUAbz+EL73f0+pLheLoTB4lsH+Q926/BiGnQHV\n92wWHi1NtYo+EGoMOfyTbQlONnLMLeCwgndGKaFWsjRXEHPN0kcMhTFvlgWDYz7dfilRQcLIMRCD\nEigq4tGQa5weARzLwGLiYDGpV9KIsnfbQvReGVdMp1Ii4uOSX4goQSAQCMjMdT0dIaMYEQvT3VdB\nj+hS6DBsAoEwPSiUkKz17MmEqMu/EhOBEH75H+/jg48dWR/nhhkWfG5zE8IyEoQTAmE68057ZpE8\nJt6AR+9fC3MFi0f/z8mMU4CiFWSSSTctNSTJ+Mu7l+Hg6Uto7x1LGfHEMvpLFGdK8ROeCQQCoQSI\nuq4roRbuHx1MKhH/gEg1eRaC+clP1W4fDzEo5e3YhUCP6AJMRmgQQYJAIOglKiSPuQXImBSSXzzc\nm9PjaD178sG7719Nu5SgEm09o3jiV6fg8elL3yAQygVTHqICXNfGI4OjE1l5kqj5TepNS5XCYew/\n1I3v/vIkvvvL93Dqg2H4hdT9AccSTwkCgVBGlHoFilSkG+6vt3xcsSIWtNo3EQjiiX2nS86YMx2I\nmSWBQMgHhU59iz5jznaOpGU+V0yiQk2uIjwIhFKBYShUmzmM6/RL0QNroPG/X2xT9HrJhuTKGqlI\njtrVI5BwLAV7TX79JAAiShAIRafcJ/JAaVR4yAWZGDLqETKKOXlObh/HMgiIUiyfuBjGl7lCryhE\nIBAI6ZBPIVnpmR999uy8dR6e2HdKt3lkqcDQlO4cewKh1PFopEBlihAMpyzdmS41Zg6PP7AuwUNC\na06hJbZqwRmYgoyniChBIBQJSYqEUBVjIp9rIaQUKjzkknQMGfUIGcWcPMe3b8TlxzMvnVNUxoth\nfJkLiJklgUDINfkQkvWI9xYTh3VL6hWfFYWGofUb8klhGSbeAJ8wOZkzMBTMRgbjEyGwBjonRpGN\n9ZVYNKcG53vGYiI7oG+1txThDBTEkBwr40i4frltxQywBgZH0zCOdU+I8AshWEycrv5FS2zVwusP\nweMTdRloZgMRJQiEIrHvP94v+EQ+HxENpVbhoVikEjKKPXnmWQaQZcUyckD5Gl/ms9wogUC4PsmH\nkKxXvE9+VtSYeVQYDZjwB+HyirEJbJXJgKpKHj4hBIc7Up7TYuJ0u+mnosbMw8gb0K+j/KGRYxIE\nCSBipLdyYT1WN9fhuT92QcxBWoo/EMK9m5tx7+bmWH8PAL892IXjHaVZSlQL8VoJUCJIlC+2Kh6+\nQFBXNRstTly4igZ7JTatmh0xnpwQYLMYsWyBFed7RhV9YOIFUj39SzamuleGvbhxni2Tr6YbIkoQ\nCEVACEo42TGo+F4+J/L5iGiY7hUeckUxJ8/xYpQa5e7BkI9yowQC4foll0JyOuK92rPi+YOdONI2\nEJvAun0huH2TQkC0XOgsmwkObwBClpMkh0dAVZa1C98+P5DTyhxjbgEX+8exoKE61t8LQQmdl5w5\nOwaBkBayDHuNKWsxUAZwZWQCg2MTkMKR1IyWJhv23NGMjwY8iqJEVCDV27/wLIOVC+syKr9bbyWe\nEgQVpoMPwfXMuFfAiMuv+F6+JvL5imggZoPpUYzJc7IYpQTxYCAQCIRJcikkZyLexz8rhKCE9r4x\nXccadPgyamMyFhObskoHb6Cxdkk93lWJUshHBMCPXjiH2rgoz0xD0gmEXODwiHB4RMypN2PCH4TD\nk921GNUBXV4RR9oG0NvvVhQ8aAoISRKkcDit/iXTwp6F8IwpHwc6AoDEUi5/94uT+O4vT2L/oW5I\n4dyapxDyS7WZV3WyzddEXm/5xHTJpJQmIT8IQQnDTl9Cmc9UxkY2C49t6xqJB0OZovSbEwiE3JGL\nksJ6y0erUYyJt6WCg9XMam6zflk97t+xWPW7pUsFp2/KFF+etYI3oIYsfhCKzIQ/iCcevAkbltbn\ndL/9I8oRGGEZONo2iKefPQOzidPsXyp4A4adPnh8Is71jGbUjkIsMJJIiTJjuhkKXq/wLINbls/C\nq29fnPId8eT5AAAgAElEQVReviby+YxoKLZfwvWOlleI1mCWooC/2b0SjXZzgVs8FRL9lR5avzmB\nQCgtsvWoqDbzsFo4VU+gfNA/OoE59WbNEoYffOQCALQ01+FIa/oh4cmkmy3yTvsgWruG4SyzaiWE\n8oGmAT3rvg6PgJcO98JozO3UOlWAwuVhL14+1qfav5iMBjz97Gk43AKqzVzGlX28PhF8dX5TOIgo\nUUYQQ8HpxUM7l8HnFws2kc9nBQhiNlhctMTKz21qUhWjbBZjQWpPazFdyskWGq3f/K8/v7ZYzSIQ\nCCpMFe95LJlrxa6NCzQ/J4XDePlYH3xCdtFQVjOHsCynTMmIxxcI4qal9Tj9wbDi+05PAL852Imz\nncrvp4sYklGTxsQpUt6aRIkR8kc6gejHO4Zg5Ao/bjnXPYpHv7QG71904KrTh7AcSe8wGQ0JqR/Z\nlBp+/6MxfGpVYy6aqwoRJcoIYig4vWCYwk/k8x3RQMwGC48esbJY5Uj1QKK/0ifVbx4Qc19jnUAg\nZEdUvN+1cT72v9GDzk8cONExhM5LTk0hVo8nkB7WLomElaezL6dHwM4N83DxyriisM2xDN7tuJp1\n2+JZMteKkx/kdp8EQibojZKIR6sKB0UBsgzUVRsxOh7IsnWTOL0CHvvlSYjBybCKsBwp5amXuioe\noxopYlUmkr5BiIMYCk5PCjmRT45oqOAN8AshhCQZDFmULkv0iJWlml5Dor8yI9Vv7nQL5OFOIJQo\nr7z9EU7EGUNqCbGpPIH0cuvymdiztRlSOIyuSy70j3hjq6kza03wBUKKq6jWa9F0asJ2pGZA7jBy\nDHZvbQZDU+i85MyodCGBkCtybdcnX7tdljfV4Whr9kJjPPGCRCak8qUKyfk3ukxr3NLd3Y1Lly5h\n27ZtcLvdqKqqyle7CArkM/yecH1hYCgcOnuFhMxPA/SIlaWaXkOivzIj1W9ureLhGVeu7kMgEIqH\nTwjhnXblEplKQmwuDC5pCuDZyHP9wNGLCeHcYRkYGPVhTr1ZUZSIji13bZwPXyCEzk+ccHkFWC1G\nLJlbg+MqVTcypcbM478/dwYuTyT/nWOprCdbBEIh4VkaQlBbzXj/or5KOoUkVVSFzcLlvQ26RYln\nn30Wr732GkRRxLZt2/Czn/0MVVVVeOSRR/LZPkISpbriSSgvSMj89CEdsbLU0mtI9FdmpPrNjZwB\nniK0i0AoRwppsvu7N7pVw7vjhdhomyp4g2ofqZewDBxpGwAoCu29ys77E/4gNq2ajfM9o3BNiLBZ\nONx4gw07b5uP/Ye6ExYwNiybic9vX5SXaIahuHKm2eS/lysN9kqMOHwQJSLE5BuepSDkQfDasHwm\nDAyNM53DqtfwaAkuGqTqZxrslry3Qbco8dprr+Gll17CX/zFXwAAvvWtb+G+++4jokSBKdUVT0L5\nQELmpx/lKlaS6K/MKdffnEAoFQptsisEJXRecqq+X2PmYTZxU0QAk5HNycT/XPconCqlvx0eASc7\nhiCEwtf+FnG8YwinO69CDE1O3MbcAo53DKHCaMDebYs00jrU4VkaRo6BeyIITseq8vVEQ60J/SMT\nxW7GdYHJyAJyKHbN54JGeyW+sH0RGJrGzlvn4cl9pxXvOZ6lNb0ncglDR/oWpycS4ZRsfhklVxV0\nskG3KFFZWQk6rpOmaTrhb0JhKbUVT0L5QELmpx/lLFaSyXVmlPNvTiCUAoWOGEyVirHkBiteefvi\nlDaNuQXMrjNhaMyXsjygFq4JAdWVrGr1DaXJWbwgEU90ASPqU/HWuYGEcp6N9ZVYMLsKb50bnPLZ\ndYvrsftauer//W/tEILENyLKqc7s/UMI+nDmsLwuhYi7ii8QxIuHe7FnazM4lsHSeVbFFCexgELc\nptUNuHdzc2ycYGCoa2Js4pjrthWzNEWJEZc/7+XjdYsSc+fOxT//8z/D7Xbj9ddfx+9//3s0NTXl\ns20EAiEPkJD56Us5ipVkcp0d5fibEwjFphgRg1rPXiPH4J7NC/CD35xV/Gy2ggQQWZ1NpxyoFvEL\nGAxNJwgSAHBleAKL59Rgy5oGnOsehWtCAGegQVGRsonvf+zAkrlWOD1EkCCUP9Fb0+ERcejMFXRd\ncsEXCGLMLYChMeX+yPZe1sssmwmfv2MhGJpOGCcojbm6Ljk09zXhz386le5Qh8cffxwVFRWYMWMG\nXn31VaxcuRJPPPFEPttGIBDyQDRkXgkSMl+eCEEJw05fSvfkUiY6uSbXH4FAyDd6IgZzjdaz9/aW\nWRCDYdU0DaVJTG2VEVvWNOBfvr0VW1bPTnn8XIaLWy08qs08fEIQ77RPjYYAgOMXhtDWdRVOrwBZ\nBoRgONYGl1fEyQ+ulm3Vr3VLlH/HmTYTrGa2wK0hlBqXh72xezlZkEiFkcvdTSGGJIR0+pOkSqMq\nRJqV7kgJhmHw4IMP4sEHH8xnewgEQgG4XkLmC2lgVgzykRM93c8ZgUAgFCtiUOvZ6wuEQFP6VlGr\nKzk8/sA6WEwc7HYL9m5fBIah0dY9Coc7AJ5jAMgIiOFYaHkumQgE8fKxPngDQQREZTE8IEoIpFhc\nTXfCViowDIU59eYpuflDDh8a7JVwenMTkUK4vmBo4KYldrzdfjUn+3N6hCkp2Wrjxs/cMldzX/Nn\n5b/ipm5RYunSpaAoKvY3RVGwWCx477338tIwAoGQP3IVMl+qE1i1Tvevdq8udtNySi5zogtt+kYg\nEAi5IJPnULFMdrWevX4hpDuse3xCxLhXgMUUKdMXkmRsW9uInbfOg18IodrM46XDPTjSNpBzQQKI\nRF0cOnMFPEul3lgHesWYUqGtcwSmCuWIiMHRCTTaKzHhD8J5HVYQIWSOLAM33TgzZ6KEksCqNm6U\nUiiEXAHG+LpFic7Ozti/RVHEu+++i66urrw0ikAgFIZM89FLfQKr1umaKjjsum1e8RqWQ3KdE03K\nxBIIhHIi2+dQMSMGlZ69ZhMLPo1qFD9+6TxWL6yDuZLHu+0DCedg18YFaO8b090ezkCpmlpqkauS\nimEZuHlpPcJh4GzXcIJAYeIY+FSiMYqFKMkQVQSHsAxcGZlAQ10lESUIaWG1GHHDDAtq0ygDvGH5\nDBhZJlL2N4lkgVVr3Hi6S9tktaSMLuPhOA6bNm3Cvn378JWvfCXXbSIQCCVOKU9gtTrdkx2DuGv9\nnJKK6siUXFZRIWViCQRCuZHtc6jUTHZfefujtPK2x70ijiZNRKLnwOEOaFb6SCZZkLh95UzIEtB5\nyQmHJ+IJkW96r7jR0mSbEjHhEyXQNBDWeWoyFVhyTf8oKe15PWKuMMDrD2X02RVNNlhMnGapXZ6l\nIYbCsFkmRVgAsfQtJYE1Gk0mhsKq/YLXlyLlqACdgG5R4sCBAwl/Dw0N4erV3ISXEAiE8qHUJ7Ba\nk/VRl3/alDzNZU40KRNLIBDKiVw+h0qhgo3W98mE1u5R6EmsUEub+OCiE3+ze2WkdOeEiB/85oyi\nYKJUWSBTHJ4A2npGFd/TK0g02isRksIYcvhz06giU25pLYWkVM8NzzJYs6gO53vH0q52I16LCNqz\ntRmyLOP4haGYZwvH0tiwfAbu3dwMry84RURVElilcBj7D3WjtWsYDo8Iq5kFzzGqPjBaMHRuUrW0\n0C1KnD2bWKbIbDbjmWeeyXmDCARCaVPqE1ityXpdTUVZlzxNzp3OVU40KRNLIBDKiVJ/DqWL1vfJ\nlFTztfVL6nG6c1jxPYdHwBO/OgVbFY+WplpQKvMR1kDjU8tmor3PgTF3IKv2cgYarizSHWbXmbB4\nbg3ePNufVTtKibAcOS80TWU0kZzOFFKQoBCpODMRCKaMZhpzC2jvc8A9EQRniEQ16KXzkhNCUALP\nMvjC9sX4s0814bcHu9B5yYlxr4iOPgdY5iPVFLVkgfV3b/bgcNz9kI0B60eDHsyqK5H0jb//+7/P\nZzsIBEKZoDWBrTHzRZ/Aak3Wb1k+qyzTENRyp+/ZvABA9jnRxTJ9IxAIhEyYbkKq1vfJF30D47Ba\nODg8ykKAjMgESylXPUpADGPbujnYtXEBntx3Gs4sSqkKwTCMGa7iAoAvEEJrl7LIUs5EJ7VR74DW\n7lGMTxCvikKyfukMfHbDDXjiV6d0bR8V16K/nZGjIQbDsFqM4Aw0Bh0+xc85PGJMUBWCEn73RjdO\nfjCZlRBNz/IHQvjijsWaYzMhKOHEBeVyvQwNWExcWiLg4rk1urfNlJSixKZNmxKqbiRz9OjRXLaH\nQCCUOFoTWJ8QwsvH+opueKlmYPbQzmVwOMovzzNV7nQucqKvlzKxBAKh/JluQqrW98kXTo+A9Utn\n4OT7qVOxtULlD525jB3r58KVhSARRZYzzwUZ94p5qTSSCemukOuh+9I4vv/lmyHJMt46pzzZJOSH\nnssuVG9bmLFwGJZl/JfPrUCD3QynN4D/8Xyb4nY0FUnTiE+5UOJ4xxA+/MSBNYvrVcfbI04fAqLy\nNSiFga/+6VL84tUPdAsT5muVfvJJSlFi//79qu+53e6cNoZAIJQH0YnqO+2DCasaAVEqCcNLNQMz\nhil+ZZB00Zs7nW2ocqmZvhEIBIIW001IvWfzAnRdcuHKsDenk2s1QcFqMWLH+jm6RAmtUPn2Pgd2\nbVyQk0iPbKp5WKt4ON1C0YUJ1kDhthUzNSNMMsHpCWDE5UdHGlVVCLnB4RHw3B86wbHqY0iWAYIq\nQT5iUMYzBy6k9MEIy8CBoxdxomNIR5tEHDpzBbIs4wvbF0/dQCOgAACMvAHrltTrFkILUX0j5Qi9\noaEh9p/f78fAwAAGBgbw8ccf42//9m/z2jgCgVCaMDSNz21qQqVRWdds6x6FoNY7F5DoZL1UJtdC\nUMKw05fWudGTO51LSu2cEQgEghJRIfX7X74Z/+Mrt+D7X74Ze7ctKomy1OkiBCX85o/duKxDkOAM\nlC4Tyyiz6yoVX1+9qA4zbZWorcou1cXpCcAvhNDSXKdre56lYcvymErcONdadEECAG5dMRN7ty/C\ntnWNsFlyt7rM0MDv3/1YdfWckF9ae0YxOKZuoKpnWJfKB6O2ikfnJ4602nX8wpDimNJeUwEjpz6O\ne+vcAPZsbcYdaxs0t4sy4c//dafbU+L73/8+jh8/jtHRUcydOxeXL1/GQw89lM+2EQiEEma6GY3l\nimQzSkDdE0JPmst0y50mEAiEXFIK1TMyJf7ZoDfKICjJuGlJPU6pmFTGM6fejMe+tAYHjl5UjChh\naFp32gjHUhAVIhmiz6FtaxtxpDW1yeTGlbMhSeGsIgloGqgycRifEGG79n12bVyAzkvOgvpyJDOn\n3owvKq1a54CgBJz8YPp5ZhAmWTLXqitKIp6AKClGMfAsg1uWzZhSNjhKe58Du7dGoizu2dyMY239\neOFwr+pxPBmWOU0H3aLEhQsX8Ic//AH3338/nn/+eXR0dOCNN95Q3d7v9+M73/kOxsbGIAgCHnnk\nESxZsgTf+ta3IEkS7HY7fvSjH4HjOLz66qt47rnnQNM0du/ejXvvvTcnX45AIOQPMllOREt4SOUJ\nocV0yp1WEmwIBALheiX52aAHWQZ6rjgxp94MXyAIp0eA1cLDZGQx4Y/8XW3msHphHfZuX5QyNW/P\n1mZIUhhH2wY0Iw2UBAlg8jlkqzKCZ2nV6gS1cc/EYac/K1EiHAZWL6zDjvVzE75Pur4cDfZK+Pyh\nrAw6AaDKxGL1Iju++OnI+d5/qLug/iCE8sZm4bFmsT1zYU1Wvje3r5ujKkrELx7yLIMGlYiqKBUF\nGLPpFiU4LhKCFAwGIcsyli9fjh/+8Ieq2x85cgTLly/Hl7/8ZfT39+Ohhx7CmjVrsHfvXtx11134\nyU9+ggMHDmDXrl346U9/igMHDoBlWdxzzz3Yvn07amry7/JJIJQbpTSpm06T5VygJjxIUhjtKjmg\n8Z4QWpR77nQ2kSKE6w+yqEG4HtDyC0qF0xuE0xvEltWz8fk7l0ISg+BZRnOMoBZRwtA0dqyfqzp5\n0cLIMdi1cX7s75CkLEjQNPD4AzfBcs0sz1ZlRG2WHhSRld6FUwQWYKrflRpiUMKKJiva+xxZlSN1\n+4J474OrMDAUPrthHs7oiGKJh2UoBKVSSD4hFIOVC+tiC1TpCmtGjoFdJVJM6z5LXjyUwtrGrKne\nzwW6RYn58+fjX//1X7Fu3To8+OCDmD9/Pjwej+r2n/nMZ2L/HhwcxIwZM/Dee+/hqaeeAgBs2bIF\n+/btw/z587FixQpYLBYAwJo1a9Da2oqtW7dm+p0IhGlHqU7qyn2ynCs0zSh7RjGuMtjRm+ZS7iaU\n2USKEK4/yKIG4XpAKwVSL+19DjxSxcMzHpkwqAkP8WJF9Njxz5FMS5KKQQleXxAmnsWI0wcVTQLh\ncOSYUVEiF9VGlJ6fDE1j563zcObDYV2ixIgrgBHXEObUm7MSJYBIGP2bZ/vxzvlBCGlW3iCCxPVN\ne+8YhC0SeJaJRS7pjSS6dcVM1fGg1n1mMhpgYCbdaebPrtY8Tqr3c4FuUeLpp5+Gy+VCVVUVXnvt\nNTgcDnz1q19N+bn77rsPQ0ND+PnPf44HH3wwFnFRW1uLkZERjI6Owmazxba32WwYGclMOSYQpiul\nOqkr98lyrtAaXI57RdSYecXw0HTTXKIDzqhhZjmc74AY0lU9hECIQhY1CNOVqDhQwRsgBqWsK1Y4\n3AE43YLqYD55QYPnGAAyAmIYNguHJTfYsHf7QjA0jcUq+ewN9koEhFDq1dYUbv/J7++8bT6OtF5R\nFTJSobTS++LhXpzpHIZrIj2BYcIfxJY1DWjvHYPDHYDFxMHty0ykSFeQIEw/GBppXdfxAhtD09i9\ndSFOdAyppkJFMXIM/mTDPM3x4J6tzei65MLlYW/C65eHvXjxcG9sDnHVMaF5rKuOiZiomC90ixK7\nd+/G3Xffjc9+9rP40z/9U90HeOGFF/Dhhx/im9/8JuS4nBdZJf9F7fV4rFYTDAYyiM01drul2E24\n7tBzzgNiSDX8v71vDF/9XAWMnO5bOW80Fvn4ATEEp1uAtYrXPB/5uM4t1RWwWysw7JzqzGy3VmDd\njTPw+xMfT3nvtpWz0Thb/6quJIWx7z/ex8mOQYy4/LDXVOCW5bPw0M5lJVvudHB0Ag6PuiEqw7Gw\np8hlzBa918Z0Yjr05/la1MjnGGI6nPdiMZ3PXXzfPez0g6Yj0QNGLrt+21rFa/Zrv3zlQsKCRnz0\ngMMj4kTHEE5+MASeZeAXEiMLOAOFlYvs+Po9q/DCoW7FZ9jNy2eirs4Mp1vAgrk2VPAG+IWphnhG\njsGCuZF79eNBN+bNqsK/H+rJWJCIHjv++Zn8XdPB5RWwe/tiVBgv4r2OITg8gdhvRCCkS43FiJuX\nzcSZD69i1OVHbbURy+bXouPiGEbHA1O2r6upQOPsGvgCIVireITcQkpBAojcz9//zRk4PYLqeDAg\nhlQrvsXPIZ47+KHmsY6/P4QNq+embFM26B6dffvb38Yf/vAH/Nmf/RmWLFmCu+++G1u3bo0NEpLp\n6OhAbW0tZs2ahRtvvBGSJKGyshKBQABGoxFXr15FfX096uvrMTo6Gvvc8PAwVq1apdkWp9Ont9kE\nndjtFoyMqKfjEHKP3nM+7PRhRGGyCwCjLj/6Ph4rW+fxXJBOaks+r/OWplrFAVFLUy3+7PZ5EMXQ\nlDSXnRvmptWeZPOsYacfr759ET6/WLJpENbqCtgs6jmNkhjM229SamlPhfKEyXd/XqjJYz4WNYD8\njSHIczRzpvu5S+67o5PdgBj5h5FjIAYl1Jh5VBgNGBydSFk+EABWNtXCyBkUz50QlHD8fOpqGOEw\npggSACCGZJz+YBhfevp1RLtLCoAMgKYi5Q3fPH0Jh05dghgKo7aKR201jyvDU0WJgCjhS0/+MeE7\nZdsF37ZsRux76/2uWvxg33u4MjK5WqyzOyEQpjA2HsCo04f/vGs5GAqwXzOTVDNA5Qw0/upHh+Hy\niqit4tHSVKvbcyUapas2Hrwy4tU1h0g1ImGAnPTRWuMH3aLE2rVrsXbtWjz22GM4deoUXn31VTz5\n5JM4efKk4vZnzpxBf38/HnvsMYyOjsLn82Hjxo04ePAg7r77brz++uvYuHEjVq5cie9+97twu91g\nGAatra149NFH0/+WBMI0hVS50KZUUlu0/DVykeai6VtRwmkQRs5QNEPUUrk2Sk0cKXXyuahBIGRC\nNoKiHkNLE2/Ao/evhb2mAuNeAX/3C+WxdTxz6s3Yu129H8uFZ0WUqIgSnadHxYX41dwxtwC4hVhV\nkOQxS7LIkk0UQm2VEbYqY+zvbL9rWEaCIBFPVIAhENLh1IfDOPXhMGrMHJbMrcEXdyzBnq3NkGUZ\nJzquJkQUxV97Y24BR9oG0GCvBJD+NR0dDxoYCi8e7kVr17BqVR2rhYcYlCAEJVRXas8lUr2fC9KK\nY3W73Th06BD++Mc/4vLly9izZ4/qtvfddx8ee+wx7N27F4FAAI8//jiWL1+Ob3/723jxxRcxe/Zs\n7Nq1CyzL4hvf+AYefvhhUBSFr33ta7H8UAKBQKpcaFFKE3U9woOaCZketAZdeg0zi0UxDFFL6doo\nFXGkXCCLGoRSIReCop4Js8srgDPQ4FkmpelkTSWH1Yvt2LttoWYbMjWvzBZfIIRvfn41Hv/VKYh5\n8ldoabIlPGfz+V1JxAQhG1xeESc/GMapzmHcfOMM8BytmOKUTP/IBBrslfAHQnB6on4wEXPZ6kpl\nnzJgcjx46OyVlOlMLq+Ax/edjkQ5VWmLDhXGEioJ+vDDD6Onpwfbt2/HX/7lX2LNmjWa2xuNRvz4\nxz+e8vqvf/3rKa/deeeduPPOO/U2hUC47iBVLpQpxYl6NsKDFuUcMZNJpEi2qQ6lcm2UkjhSLpBF\nDUKp8MKbPXjz7GRaQFRQlGUZX9i+WNc+9EyY4/twrYWI25bPxBd3LI71GUJQwuDoBKSgpCiCZ1vh\nIhMc7v/P3rtHx1Hfd//vmdm7drWry+ou62obfLeDHVtcbBkMJIHgJNQ0kKQhLeUU+pwm7WnyO0kg\nDyk8hHAa8pw+oU0bCLGbNCRuSkkDIQHLYFuSjS0Z2xjralt3aSXtVXufmd8fo716L7Ormd2V9X2d\n43Osnd3Z7+7OfC/v7+fz/njxq45BWQQJCoLx5rmhORztnYgRieT6rKXFagSCLBzu9AvJRIRSXsSQ\nqUEiYfnAcUDXh9MZvWbcsoD2bbW4a3t9TOUcrVqB777yftL5oFatEFVuOHStzTl8aQU9f0B+dU60\nKPGlL30Jt9xyCxjm2snTv/3bv+GRRx6RtGEEAiECqXKRmOW8UM+U6yFiRoxgI1WqQ6FcG4Uijiwn\nyKYGoRDwBVicOH9tNQoAOHF+CvfvaRXV74oRB+L78OiNiHmnF6YiNbasKQ9HR7Ach1+8PYCz/bOw\nLfhQakjcT8ZvaKiUgneFnOkIxUVKDE84ZDl3uUl9Taj726fH4PIGoFHSUCko+IPSfrhNreXweAPo\nvjiT1eszaQ0RJAjxnBucxYH2SF8Tmi8k61M2tZTC4wtKlroVojRNJIUUiBYldu/enfTYsWPHiChB\nIOQAuXbhlyv5Wqinq/kuF8slYib++8kEqVIdCkXEKRRxhEAgZIbF5ompVhGN18/CYvOgzqwXda5I\n323BnMMX9ikoNaixba35mj6coWk8sLcVLMuhd2AWVpcP5wZnwdAU7t/TjGcO9sSU+Av1kyzHh3dV\n1Uom4YYGy/F45menMTkvj+HrjQ0lWS/g02GxJV5odV/IbAdaLNWlOnwwYIHVmV15UAJhqcw7fBge\nt6O51phQuOzps2DeGelTPhicRf+YHRQlbepRuVGT/klLRJLaaGIdrwkEAkFqcrlQT1XzvSwH5oVy\nR8wsNWUiUZTDzZtrce+uVaK+E6lTHQpBxCkUcYRAIGRIurltiuPxfWl83x0qnZmqr331yCA6eifC\nf4eEh4+uWjGexJTx3d5xdPSMh8ej/bc2w+X2w6hXx2xofPcvduCJn5zE1HxiV/5kKBlh4ZNsR5+i\ngE/uXCWbKJFr5BJuCASxUBTw/C/PotSgwg0NpXhw32ro1Mpwn8JyPDp6xsPRT/NOPyCDiDY45kBr\nXYnk541GElGCoigpTkMgEFYIqRa/mS6Mc5naEr+LH72LlkvzQqkjZqRKmUgU5ZBJyVKpUx0KJe2p\nEMQRAoGQGeYSHTQqOly2MxqNioE5QV+Uri+N7rsNOlXS93a6/Th9KfHCfiKJIAFEqkSExqPj5ybg\n83PXtCPI8vAHEkeBpKJIq4LdlXzBw/PA4Lg94/OGIJ4KhOXMx9dV4O4dq/DS7z5KWs0lU6LFhs4L\nU+jpt+CWTdV4YG8rgiyPc4OzqU8gEQ1V4qLCloIkogSBQCCIIdWEDcCSFsZyp7aIKesGLE/zQilS\nJqSIcpAr1SHfaU+FIo4QCCuNpUR/qZUM2jZW40iU0WWIto1VCc+31L40NEaeuWSBLcniP5PY5JCg\nEmqH2xvEF+9aC7vLl1VKgt3lR3GRCvaF5K89OzCX8XlDMDQFJUPBGyDKBGH5UGpQYdvaivB89TsP\nb8fP/9iHzgvT8Et8LXv9bLhPueNjdRl5R9A0UKxTJe1bUmGxeXFjxq/KDCJKEAiEnJFqwgagoMsm\niq2DvtzMC6VKmZAiyuF6T3XIhTiSyo2fQFgpSBX99fnbV4OmKPT0WWB1+lCSxAMCkKYvjR8jExHK\nHc+GzgtT+OiqFVtWl6PEoBJCvTOgtFiD1XXFKdMzzg/PZ9c4YNGkkqSEE5YPagWNzatj+xaGpvGl\nu27EA3vXYGrejbdOjmBgzIZ5h0+yq7u3fxb3tjVmdB9zHNBaZ8LQmD1pSdFkGHTKbJqZEZKIEo2N\njVKchkAgXMekmrD19FmQLAusUCIPxNZBX27mhVKlTEgV5UBSHbIjZhHmTO7GTyCsBKQyzM0kymmp\nfXrEtocAACAASURBVKnYaLxasz7G5DJTrE4fOnrGUVdRlLEosXVNOfbf2oyzg7MJ01oAIikQVha+\nIIeOnnEwNBXuW6IjtBoqDfjLT6+H2xfEwTcv4VSStKxMsTq98PiCuKGhFJ0XElcJSsTwuA1b1pjR\n0XNtBFgquBwEL4kWJcbHx/Hcc8/BarXi0KFD+NWvfoUdO3agsbER3/3ud+VsY0GyVEM4AiHX5Pua\nTT1hS77QL5TIA7E135fbjr5UYoJUUQ4k1SE7pFqEEQjLHakNcwFxUU5L7UvTReOZ9CrcdEMF7t/T\njFffGcSJC1NLCg2ftXlw25ZqnB+cT7trqmSA3VvrwiLnLZtq0o6FBMJKoqdvBjdvrMJ7Zydwbmgu\nJkLr/j3NeO7nPUsSE+MJ9SkP7luNM30z8InsC+adfix4AmjbUIW+EetiBJgGDZVF6EmReqVWyb+5\nIVqUeOKJJ/DQQw+F64Q3NTXhiSeewKFDh2RrXCEiVUgggZArCuWaTT1hU4OikPCYsUgNrbowMs0S\n1XwHAJ+fRWmx9Dv6uRCSpEyZSBTlcPPmGty7a1VW7cq3ELVckGMRRiAsV6Q2zBXLUvpSX4CFP8gl\nDcUu0avxv7+yHTqNAq8eGcS5obmUgoRaSaddpHj9HM4OzMGx4IdRr4JWzWBqLnE1jgALsIs5IyzH\ngeP5pCagBMJKZN7px1M/PR3zmJiKOdkS6VMY3LS2AicyiJY49ZEQrVFqUGHn+io8uG81Pro8n1KU\n8CUpjywlomf6gUAAt99+O1555RUAwPbt2+VqU0FDdqMIy41CuWZTTdi2rTUDQMJjVpcP333l/YIQ\n/xLt4gOQXDjItZAkVcpEou+nrsYEi8UpeZsJEaIXYYqAHxTPIaASaooXSqQRgZAr5DLMFUOmfWl8\nX0/TifMY9TolDDoVfvF2f9oIBQrA//eFbThxfgqnP5qBLYUppWPxmN3lhz3NJm4oRB1AQvNPAoGQ\nmFQVc7Jh57rKmD7lc3ta8P6lGfiDmYmEoYoeFIAbG0wpn8tma2STARltPzocjnD5z4GBAfh8mZlk\nLHfIbhRhuVFo16yYCVtv/yzmHN6Y1xWa+Be/iy/1gi/XQpLUKRMkyiF38DwP9cQ4dn54AmX9H6J6\n/DLcRQb8/OFvAihcj5MrV64QPyqCLOTSMDc+mi3TvjS+r0828Z+xumFzeUV5TpQWa1BVWoQH71iD\ne9sa8dV/Og5eovVEb78FvFQnIxBWCFLeMWoljT/7xA1gaDpG1MxUkIjmxIUpnL6UOtJiYlZaYSUR\nokWJxx9/HAcOHIDFYsG9994Lq9WK559/Xs62FRz5CgkkrBykDtcvtGs23YQtNIn6zsunEpYsWgni\nXz6FJCImLA+CDhccx0/BfqQT9o4u+CensXnxmMVcg0vrdoSfm0+Pk4cffjic8gkAL774Ih577DEA\nwJNPPomDBw/mpV2E6x+5DXPTRbOJ6UvFGlsKz+Xw72/1i6oAFbrnWY7Da8cvSyZIAJC0egCBQMic\nWzZVQ61k4AuwOPRWX1KTS42KgTeDlAtfMPXx0mL5NzdEixI7d+7Ea6+9hv7+fqhUKjQ1NUGtLrzd\nFznJZ0gg4fpGrnD9Qr1mU03YPL4g7ElqKFudXlisbqiUzHVrgFhoQhIh//A8D/eFPtiPdsF+pBPO\n0+cAVphsMCVGlN53J4r37EQHU4nTMyysTi/KCqBqSTAYO8vp7u4OixJkt5WQLWLEe7kNc6WIZhNb\nZjrE5UlHygpQpXHlSn/5zkDGDvvpoCjAqFPAtpBmBUMgECRHr1Xgs7ub8Yu3+9Hbb0naF5iKVPD4\npb1Hp+bckp4vEaJFiQsXLsBisaC9vR0vvPACzp49i//1v/4XbrrpJjnbV1DkMiQwRL4rJhByg1zh\n+vm4ZpdKKiFFpWTwfw+fu65NZgtVSCLklqDVDvu73YIQcbQLgZlFAyqKQtGWdTDuaYNpbxuKtqwD\nxQj38QMA9gdYMColWH8g7/c3FVfnN1qIiD9GIKQjG/FejugvqaLZxJaZDmFz+bF1TXnC59+8oQpf\nuGtt+H2dbj+OfzAp6ryZwPFAIEgERUJhomQoBNjr9/p0eYJ49lAPxtJ4VKTykckWjUp+w3nR7/D0\n00/je9/7Hk6fPo3z58/jiSeewHe/+90VF34pd0hgiEKpmECQH7nD9XN1zUpFKiHF62fD4WiF5jMh\nFctRSCIsHZ7jsPDBRdg7umDr6MRC74fhwuCKshKU3f9JGPe0wbh7J5RlyQ2p1EoG5vKigjQXJUIE\nYSnkymsn3WaQVNFsYstMh6AooKd/FhoVDYCCP8CixKDBxzdU4eb1lQAic8f3P5qGbwk55qlY8Mnv\nwk8gZMP1LEiEEFPFg4K0PhYAUFUmf4SuaFFCrVajsbERr776Kg4cOIDW1lbQK3BxLHdIYIhCqZhA\nkB+5w/Vzdc1KSbyQYtKr4fYFE+bHFZLPhFSRTctNSCKII/76CMzOC5EQHV2wv9uN4LxNeCJNQ/+x\njTDtbYOxvQ26DWtBLcPx1m63o6urK/y3w+FAd3c3eJ6Hw+HIY8sIy41ceO2I3QzKJpot2dgQ6tN7\n+mYSlgKNJuSBGSrDuWtDJTRKBqc/msabnVdQWqyGSsFgcn5pYdZKRigBSiAQCg8xYoMc0oxtQf7i\nFqJFCY/HgzfffBNvv/02Hn/8cdhsthU9qZDTEK7QKiYQ5CVX4frLycQwXkjxBzl856VTCZ9bCD4L\nUkc2LUchiZCc0PVx9tIUFP2DWDM1iOaxAWiuXA4/R1llRvmffhqm9jYU37oDClNxFm8URHDyKqZn\nNQgYq/J+zRQXF+PFF18M/20wGPCjH/0o/H8CQSy58NoRuxmUSTSbnFGvPf0W+PyRaAixaSDpkCOg\nScFQoLAydrIJhHxSU67DnN0LX0DaSCkuB/euaFHib//2b3Hw4EF87Wtfg16vxz/90z/hy1/+soxN\nW7kQo7uVBQnXT05ISPEF2IL2WZDTE4Tc68sb/+QM3nrxNVDvduPe0QGofR4AAEvTcN+4Dms/ezuM\n7W3Q3tiaeXoDz4NyzIIa7wc93g9qZgRqLghWocI3rHvznvJ36NChvLwv4fpDbvE+082gB/a2guN5\ndJ6fCkfwaVQMeJ4Hy3Hhey7d2BB/PJqyYjXqK/Q4OziXuM1+edIzJPbHAwAEiRhBWEbQVCQyabkx\nNeeGUiH9mO8opEiJHTt2YMcOocwYx3F4/PHHZWvUSocY3a08SLh+agpZuCGRTYRoOH8ArtMfwH6k\nE7ajXfBcHEAlgEoAToMJg6s3YbThBozXt6C43IRdj3w8s+vD5wY9OQh6rA/01DAojyvy3kUGLBRX\n4qS3CnNX85/y53K5cPjw4fAGxi9/+Uv8x3/8BxoaGvDkk0+ivLw8L+0iLD/kHgMy3QxiaBo0RcWk\nFHr9LN45Mw6KovDgHWvSjg33tjUmPW7Sq7C+qQQXhueX8KkIBEKmqFW0bIJfLuB4SB4lAQClRq3k\n54xHtCixbt26mF0ciqJgMBhw8uRJWRq2kinkBRhBHki4fnqkFm6k8n8gkU0E39gk7B2dsB3phOP4\n++AWhJxuSq2Cpm07jjCVGGm4AbYSc0xstKjrgw2CsoyAHu8HPTkIyjqN0Bl4pQps1Sqw5lX445QW\nR68AE/2x25y9/Za8CWNPPvkkamtrAQCXL1/GD37wA/zwhz/EyMgInnnmGbzwwgs5bxNh+SKneJ/p\nZpAYMTrd2DA240p63Oby470PpjL8FAQCYaksZ0EihByRHgwtv1G1aFHi0qVL4f8HAgF0dnair69P\nlkYRyM75SiVduP5KLhErlXAjdY4viWxaeXBeH5wne2Hr6IS9owvegYg3hLqpHsY998C0tw2GXR9D\nUKnCoX/rhk3s9RGdkjHRD3pmBBQrCA08RYEvqQBrrgVX0wre3Aio9ZixefGL33cnbOucw5c3YWx0\ndBQ/+MEPAABvvfUW7r77brS1taGtrQ2/+93vct4ewvJGTvE+080gMWJ0urGhrkKf9PhyDh8nEAj5\nJZO+Q2xf4/IEsm+QSLIqOqpUKrF79268/PLL+Mu//Eup20QA2TknxEJKxEZYqs+C1P4PJLJpZeC9\nPCpEQ3R0wnniNDivsJCgNWoY77gFpj27YGxvg6apPuZ1DJD++kiTksGW14CvagZX3QroSgEmdujW\nqhVJJxY0JRzPBzpd5D49deoU7r///vDfpDwoIVvk8trJZDNIjBidbmww6FRJj0shSKgUNPwylQUF\ngMpSLabnPbKdn0BYSZhNGgRZHlanNN4NKgWFIMun7UuUCgq+QPoOJyhjXxJC9Ezl8OHDMX9PTU1h\nenpa8gYRYiFGdwSAlIiVCq8/mJH/g9jIFBLZdP3Bur1wdp4WoiGOdsF3eTR8TLO6SSjXuWcXDB/f\nClqTOhom/vooN6iwr4HDPtMQmP/5Q8KUDK6iAVxtK2CqARh1Skt8jy+YdOLB8cJxg06V0eeXApZl\nMTc3h4WFBfT29obTNRYWFuDxkMUMobDIZDNIrBidbmyIPj7v9MJUpMam1jKcH5pNWyI0HXIKEjQN\nrKk3wubyXRfh7gRCPqEowGLzQinh/oE/mF5oqC7ViS4hnIsNUNEf/8yZMzF/6/V6/PCHP5S8QQQC\nIRZipCgdVoc4/4dMI1NIZNPyh+d5eAevwHbkBOwdXXCe7AXvExYFdJEOJXfvgXFRiFDXVWd0boai\n8ND2Eny+chrU+GWo5sdAzQeBeYCn6MWUjDpw1S1CSoZGD1DiJwBGvRqlBlXCRUypQZ23FKJHHnkE\nn/zkJ+H1evHXf/3XMBqN8Hq9ePDBB3HgwIG8tIlQWISEX0MOTNTEInYzSIwYnW5sYGgaD+xtBcty\n6B2YhdXlw4XhORRpE9/PmSBnCgjHAceI5wWBIAn84n0akLDyjbFICac7kLQPuGVTFf709jX4zksn\nRZUTLi6Sf2NDtCjx7LPPAgBsNhsoioLRaJStUQQCIQIxUpSOkmJx/g/ZRqaQyKblBetagOPY+7Ad\nFbwh/GOT4WO6dWtgbN8FY/su6G/aDFqlzOzk3gXQk0OgxxOlZBSDLa+OSskoAZgMzx+FWslg29qK\nhLu229aa8yaQ7d69G8ePH4fP54NerwcAaDQa/P3f/z1uueWWvLSJUBjEC7/mEi02tZQtq5TETCMr\nko0Nrx4ZREfvRPjvOYcPcw4f6iv0cHsDohYMiSgUTwqNigHHcaJ2bgkEgjTc2FCC7oszSY/fs6sR\nOrUCm1rKYvqfZKhzkAYq+h16enrw9a9/HQsLC+B5HiaTCc8//zw2btwoZ/sIhBVPro0Ur2czTY1K\nkTbkdrlFplzPv5fU8DwPz0eDQjTE0S64Tp0FHxRK+jFGA0rvvQPGdiEaQlVlzuzkbBDUzAjoiT7Q\nk0PJUzJqVgOmakCROiUjUwoxhWhiIjLRcTgc4f83NzdjYmICNTU1+WgWoQCIF35nrJ6cpyRK1Xcu\nRYxONd64vUH81f71ePpgT1bnNhUp4fYFlyQGqBQ0vnr/Jnz/l2ezPsf2tWac/IikexMIuaLOXIQv\n3HUD+kdtSSMo9ToVfvF2P84NzYk6pyYH80vRosQ//uM/4sUXX8SaNcJgcfHiRTzzzDP4+c9/Llvj\nCARC5kaK2U60VoqZZrrF23KJTFkpv9dSCdoccBw7FfaGCExFFgBFm9cJ0RB7dkG/bQMoRQY7ATwP\nymEBPT4A6poqGUtPycgUmqKx/7a1uGXbDVCpaZSofHkXqfbu3YumpiaYzYLAw/ORxRFFUTh48GC+\nmkbII/kWfgup70w33qiUCpQl2ZRIh1athG1haY75/iAHhZKGRkXDm6V3xLHzJM2DQMgV1eU6fOfh\n7WBoOmUE5WvHhhMeS8a80ytlMxMiegZG03RYkACAdevWgWHIrhyBkAvE7IIudaIll5lmoe3kpwu5\nXS4lPon5aWJ4jsPC+UuwL5brdPVcAFghGkJRakLZZz8hCBG7d0JZXprZyUWlZDSBq1695JQMUc0J\nUrB5GFg9NGweBr6gcJ9rlEDVKgmTU7Pkueeew3//939jYWEBn/rUp3DPPfegtDTD75xw3ZFv4beQ\n+s50443ZpE26KZGOBV8AFIClJk384y/PwhcgZpYEQqFTa9bhfz+8IzznT7Z22H9rE77z0qmMzl1X\noZe8vfFkJEr84Q9/QFtbGwDgvffeI6IEgZAjxOSuLmWiJcfOVSHtRiUiWcjtcijxKdXvVWiCUbYE\n5mywv9sNe8cJ2I92IzhnFQ7QNPRbNwgixN42FG28AVQm41Z0SsbEICjbTIqUjCpAoZE0JSMePwvY\nPMyiEMHAE4jcRwqah7koCJOWxZp6DRYcKU6UI+677z7cd999mJycxH/913/hoYceQm1tLe677z7s\n27cPGo0m300k5IF8Cr/5jtKIhuU4/Oe7Q1jwJo5m2NRaBrWSCRthvnt2IiOfCMcSoyRCEEGCQMgP\nKgUQZJP7w6iUFPwBHia9UF74wTtWx8yvk60dZqzupMJwMpgcVPEWLUo89dRT+Id/+Ad861vfAkVR\n2LJlC5566ik520YgEOJItpBe6kRLjp2rQtqNypRCzM+PZqm/V6ELRungWRau3g9h7+iCveMEFj74\nKGxfrawoQ/mBewUh4raPQ1GSgSlzOCWjH9R4P2jLaOKUjJrFlAyVXqiNJxNBLlqEoLHgj3Ltp3iU\n6QQRokTLoUjFhfUQnZrCgmytypzq6mo89thjeOyxx/DrX/8aTz/9NJ566imcPn06300j5IF8Cr9L\n6TulEnFD53nr/VF09Iwnfd4HAxYwNIUH9rbirh2rcFSEGV0+USloWcuQEggrDX9UwKNKQYOiBJFQ\noxL6H5+fRYlejS1ryvG53S2Ys3sT9k/xa4dUwnAyTl2cRmtdydI+UBpEixKNjY146aWX5GwLgUDI\nkqUuUqXeuUonktzb1giPL1iwO/SFXuJzqb/XchSM/DOzsB/thv3ICdjfOwnWthgKwDAwfHyrYFDZ\nvgu6datBZSIUhFMyLoGeHAbljSznhZSMmsWUjBZAVyprSgbLAXYvHY6EcPpoYDE2g6b4RQGChUnL\nwqDmQOdg50IKHA4HXn/9dfzmN78By7J49NFHcc899+S7WYQ8Ei/8lpsi1TfikTKiK5u+MxMRN1Vb\no88z5/ClvX/nnf5wv/y53S0ZLyJyiVpJ46a1Zpy4QAwtCQQ5CAl+1aU6TM67w49bXT509Iyj68Ik\nfH7umv4pUZ+kYCho1AoA4vuTUqP8qcuiRYmuri4cPHgQTqczxqyKGF0SCPlnqYtUqXeuUokkcw4v\nvvPyKdhd/oLfoS/UEp9L+b0KKXw5FVwgCNeZc0I0xJETcH/YHz6mqq5E6aduh7F9F4pv2QFFcQa5\njmwQ1MxV0OP9oCeTpGRUNgilOk3VsqZkcDzg9NKwLkZD2L00+EhrUKzhwiJEsZoDU3i3SEqOHz+O\n//zP/8SFCxdw55134nvf+16MNxVh5RIv/LY0lsFp98Q8R46Irmz6znQiri/AYt7hxdtnxnBucDZp\nW+PPIzYVI9QvZ+stkQt2baiE3XWtyz+BQJCWaEEimpARbah/4nkeFEVd03/ev6cZzxzswbgls3hK\ng7aARImnnnoKjz32GKqqquRsD4FAyAIpRAUpUxbShYbZFicvy2GHvlDJ9vfKt8lcKnzjU7Af7YK9\noxOOY6fAOoVBk1IpUXzLDhj3CtEQ2jXNoMQKBTwPym4BPdEPanwAtCWuSkZpXJUMVRFAyyPK8Dzg\n8tNhY0qbhwHHR0QIvYqDSSsIEUYtC8UyEyHi+Yu/+As0NjZi27ZtmJ+fx09/+tOY488++2yeWkYo\nFELCr0algDPumFwRXZn0nb4Ai56+mYTn6embActyODc0d81YF70weGjf2pRicDpC/XJ8u1XK7Cti\nSIVaSaPcpEXX+Wn4Cjx1Q62kiT8GYcVw/NxkzPUe6pMuXbViLENBAgD8i+XT5US0KFFbW4tPf/rT\ncraFQCAsgaWKClKmLKQSSRJRSDv0ciG1qWS2v1chVRfhfH44T52F/Ugn7Ec74ekbDh9Tr6pF2Wc/\nCePeNhS3fQxMUQZCiXcB9MQg6Il+0JNDKVIyWgGdCWBUUn6sMDwPuANUOB3D5mEQ5CJiik7JwaQN\nhqMhrrfLP1Ty02q1oqQkNhd1bKwwd3wJhYGcEV2Z9J12lw/zzsQRAPNOPzrS+DycOD+F+/e0phSD\n0xHql6PbbbF58PTP3s/qfFJhLFKiSKvMeMc1XxBBgrCSSHa9ZyNIAMCcvQBKgo6OjgIAbrrpJrz6\n6qvYsWMHFFG13Ovr6+VrHYFAEI1UooJUKQshx/DegVnYXX6Y9GpYXYW5Qy8ncptKZvJ7hYSRTa3l\nCQ3WclFdxHt1bNGgshOOE6fBuYWQbUqjFiIh9gjREJrmVeKjIdggKMsI6LE+0JODoG2RnU1eqQZb\n1QCusl4o1SlzSoYnRoSg4Wcjv7FawaG8KCRCcFArYuO3r5dqKCFomsbXvvY1+Hw+lJaW4sc//jEa\nGhrw7//+7/jXf/1XfPazn813EwkFSi4iusT0nVq1AjQlPtUiHq+fhcXmgdmkTSoG05RQtpOmBF+Z\neOL75dD//cGlFvtcGvaFAOwSVfggEAiFjaUQRIk/+7M/A0VRYR+JH//4x+FjFEXhnXfeka91BAIh\nYwrBByG0ED83NBcWJDa1luH80GzCXadc79DnkkIwlYwXRkoMKtRX6OH2BmB1+mStLsJ6vLB1dArR\nEB2d8A6PhI9pWhoEg8q9bSj++FbQWpElInkelH0G9MRAwioZXGklOHNtTlIyfEEKNk/EF8IbjIgQ\nSoZDhT4YNqjUKPiEWshyr4aSjBdeeAGvvPIKWlpa8M477+DJJ58Ex3EwGo349a9/ne/mEQqYQono\n8viCWQsSYXg+ZfTg7i018AU4dF6YuuZYfYU+cb/M51eQAAQL3vy3gkAg5AJFDvZJ0ooSR44cSXuS\n1157Dfv375ekQQQCYfkTvxC3unx49+wE6iv0CUWJXOzQ54NCMZWM/z3mnX7MO/1o31qDu3asknRn\nnud5eIeuLnpDdMHZdQacV1hY0DotTHfeBmN7G0ztu6BeVSv+xOGUjL4UVTIahWgIGVMyAmx0mU4G\n7kBENFDQPMqLIiKETplYhIinEIQrOaBpGi0tLQCA22+/Hc8++yy+8Y1vYN++fXluGaHQyWfZ0GiM\nejXKUkQ4pBMsNCoG5sVNgmQplvtvbcJ3XjqV8PULngAm59wwm7Qxn9lcooNGlV9PCSJIEAgrB0am\n6NJoRHtKpOI3v/kNESUIBAKA1AtxtzeA9q01ODc0v2QzzWzw+oOYsbpzFh5fCKaSqX6Pc0PzOLB3\n9ZK/C3bBDcfx98NChG8kkhpiWL8GRbd9HKb2Nui3bwatFikWsEFQMyOCCDGRLCVjFbia1YCxElBo\nZUnJCHKA3cuEoyFccWU6S7RBlGg5lOhY6FVcxk0oFOFKDuLTb6qrq4kgQRCNlObL2ZJKHNFpFHB5\ngilf37axKnz/JkuxnLG6k44T804fvvPSqWuip1iOg16jhNdfmCVCCQTC9YU/UW6ZxEgiSvAFEEZG\nIBAKg9QLcR/u2rEKB/auzmnufHQ6icXqyVl4fCGEIMshjPA8D0/fUNgbwnmyF3xAmJwzhiKUfGov\njHuEaIjaza2wWOJ99ROeVEjJGB8QKmUkSskorwVX0wLe3ACo9LKkZHA84Fgs02n1MHBGlemkwMMY\nXaZTw4Feog4i9e/Dcjy4Jceby4NojxACAdKaLwPZe7Y8sLcVfSM2jM64Yh53eYKLaXDBxWoYDHie\nhy/AodSgxra15oQCSnSKpdPtx9S8Gya9ElZXYn8GHpHoKY7nQVMUjn0wQYwbCQRCznD7Cqj6RirI\nRINAWFmkmtyJWYjn2vdCyvD4TCa2hRCCLJUwEnS44Dh2clGI6IJ/cjp8TLdhLYx722Bqb0PRto2g\nlSKHFo8L9OQQ6PE+0FNxKRl6I9iyanBVTeCrWgBdCaCQPiWD4wGXL+IJYffSMWU6DeqICGHUcGAk\n1rCW+vsEgjyuTrG4PMFhaJzF1SkWJQYvvv4FrbQNzYLe3l7s2bMn/Pfc3Bz27NkTrp9+9OjRvLWN\nsHxY6nixVM+WIMvD7U0sGLi9QTz55Zvg8QXD96qY8cEfDOKZgz0Yt7gy8qx4t3c8oRnmUlEyAE1T\n8AUKU9AkEAj5paa0SPb3kESUIBAIKwMxk7tUC/FNrWU5ry4gVXh8thPbfIcgZyuM8BwH94f9QkrG\nkU44T58DWEEpZ0qMKL3vTpj2tqF4906oKsrFNYYNCCkZ432CGBGdkqFSg61uAGdeBa6mFTBWAUrp\nUzJ4HljwU2ERwuZlwEaV6SxSRcp0GjXyl+nM9Pfx+HhcmWQxNM7i8gSL0WkuZpFSWULhtm06FELG\n9+9///t8N4FAWLIonS6ayeMLxogm8QJKtJAdOt//+835rErzyRVB/bcPbEX3xSm8e3ZSnjcgEAjL\nGqNeHp+uaIgoQSAQRCN2cnftQlwNnUaJDwYsONozntPqAlKFx2c7sZU6BDkbxAojQasd9ne7w94Q\nAcuccICiULR1PYx7dgnREFvWgWJEfAaeBzs7CebDs6lTMqqbhSoZaulTMng+vkwng0CUCKFVcjDp\nF8t0alio8jAqpvp9HAscLk9wGJ5gMTzOYnKWC8sNNAXUmmk01zJoqhH+6bUUzGa9uJQZmamtzcDI\nlECQASlE6WyjmaKF7DmHDxqV4Efj9csfBp0pP379Qzjc15pQEwiE6wMlIxh1Z4vN4ZGuMUmQZPql\n1+ulOA2BkDOyzS2V6vXLkUwmd/EL8d+fuoqjvZEdmNCCnud5PLRvraztliJ9QYqJbT5LtSYTRniW\nhav3AuxHOmE72oWF3g8BTtiKU5SXouz+T8LU3obi23ZCWWYS92ZxKRkL3oXwQBNJyWgEX9UahFPe\n2wAAIABJREFUqZIhcTSENxgSIWjYPAx8UWU6VQyHSn0QJq2QlqFR5j+iIPT7fPa2ZoxM+TBnV2Bk\nmsf3/92DWVukfQoGaK6l0VTDoLmGQUM1A42KpE8SCMmQQpTONtosXsjOZ6WMdNhcRJAgEK5nnvjy\nDrzRfRXdH06nf3ICKJnKqkcjWpSwWCx44403YLfbY4wt/+Zv/gYvvviiLI0jEKRmqbmlS339ciab\nyZ1aycCoV6P7w5mErztxfgr372mVVdiRwtehEKpoSIFayaAk6MHsb97B/B9PwNv1PlirXTjIMNDf\ntAmm9l0wtt8M3YY1oMRc0+GUjH7QkwOgbRHxJpySUVEvlOo0VgJKneQihD+uTKcnrkynOapMp1Zk\nmc5cwPE8puc4DEdFQjgWeABC/rpGBdzQwKC5VhAh6itoKBQF0ngCYRkgladOpml4qYRsAoFAyCXF\nOiUYCri3rREj005MzLozPofTK79wKVqUePTRR7F27VoSjklY1iw1t1RKw0Q5kDOCI9vJncXmSRqu\n6vWzsNg8qDPLG20VmjieG5rDrM2Tsa9Dpp+9kCJp+GAQrjMXYD/aCVtHJ9znLoWPeQxG+HfvwdbP\n3wXT7p1QGA0iTsiDss2AnkhRJcNcC666BXx5A8pqKjFn9Ur6mYJctAhBY8Ef+Y4ZikeZLiRCcCjK\nokynXLAsjzELh+FxFsMTgieEJ+qS0mspbGoVBIimGgY15TTopZb3IBBWMFKZDWeahpdKyCYQCIRc\n4nAH8K2fnAIAmIoU0ChpeDOs3uPxpi5/LAWiRQmdTodnn31WzrYQCLKy1BB8qQwT5SAXERzZTu7Y\ndM5cOSgpHJpQPvo5LYauzGUsFoj97IUSSeOfnIH9aBdsHZ1wvHcSrEMoZcczDCbqWjDSsBajDWsx\nX1YFUBQsujo8mEqQ8LhATw4K0RCJqmSUV4OrTJySQSuUAJYmSrAcYPfS4UgIp0/IzQYAmuLDURAm\nLQuDeullOqXCHxAqYwxPCELEyBQLf9S4XlpMYX2TIEC01DIoN1GkmhWBIDHRUQ7zTi9MRWpsydJs\nWGwanlGvhlrFFKR/BIFAWLnYFoRJCE0DNIRNHjHoNPIbbol+h82bN2NoaAgtLS1ytodAkI2lhuAX\ncgh/riI4sqkk8d655G7eGhUDc4LvLFmkQaLHxUYl+AIsgo7soxfEfPZ8RdJw/gBc738Ae4fgDeG5\nOBA+pqqrRtn+u6C79eN4oZ/HtO/aRe81olp0lYyJQdD2RCkZq8BVtyxWyZA2JYPjAac3tkwnvyhC\nUOBRrImU6SxWS1+mM1vc3rjKGDNcyKIDAFBVSsd4QpgMBdJwAuE6hqFpPLC3FSzLoXdgFlaXD+cG\nZ8HQlMyCcf79aggEwspDQQubOal6II4DOAA6NQO3L714Ojbtkqx9yRAtShw7dgyvvPIKSkpKoFAo\nSJ1xwrJjqbmlUuWmSk0uIzgyDWH1BVicG5xNevzj6ytiXp8s0uD+Pc04fHQ45vEtq8vBA/hgYDZl\nVELMOZ0+lBqyi15I99lzHUnjG5sURIgjnXAcfx/cgpAjSKlVKN69E6a9bTDuaYOmtQEURWHG6sbM\n+e6E57I6PXBPjELnGgU9MQBqZgQUJwxSPE2DKwtVyWgBX75qsUqGdKo5zwMuPx02prR5GHB8SOTg\noVdxYWNKo5aFokDW8nYXt5iGIURCTM3FVsaoq1gUIGoZNFUzKNKSKAgCIR+8emQQHb0T4b/lFozt\nLl9BGltSIFIJgXC9Izb6AQDcPhZ6jQJefzDl60qKC6gk6D//8z9f85jD4ZC0MQSCnCw1t1Sq3FSp\nyUcEh9gQ1nR5tXfetCrm72SRBn0jNozOuGIef+fMeMxrk00ypY5eSPbZ5f4dOK8Pzu5e2I52wn6k\nE97BK5E2Na+Cac8uGNt3wbDrJjA6zTWvjxfVimk/NqnnsaPYhnUqK7TvHY28V0yVjBZAVyJplQye\nB9xxZTqDUWU6dUoOJm0wHA1RCAVueJ7HnJ0PG1IOT7CYs8dXxmDQXEsLlTGqGKhJZQwCIe/kI/XS\nqFejLMkmRgiNikGRRgGr04cSgxpatQLjlgVZRQMiSBAI1z9qBQ1fBsqEyxtEZakG0/PJU22NRVop\nmpYS0aJEbW0tBgcHYbVaAQB+vx9PP/003nzzTdkaRyBITTbpB1K+Xg4KNYIDSN22smINSosji+dU\nE8dxi/iwsehJZi4no3L8Dt7Lo7AdOQH70S44T5wG5xXOTWs1MN5xC0ztbTC2t0HTWJf2XGqawycb\ngmDGh7BVZ0U57wwf4xVqsGXxKRlagJIuJMETI0LQ8LORc6sVHMqLQiIEB7Ui/1NnjucxNbtYFWMx\nEsLpjrRLowJubBTSMJprGdRV0FAwRIQgEAqNfAn3yTYxQvgDLL75hW1QLVapUisZHPpDHzp6xpO+\nhkAgENKSxdRtzpba+0uTg8pfokWJp59+GidOnMDs7CxWrVqF0dFRfOUrX5GzbQSC5GSafiD16+Wg\nUCM4gMzalmriyGWwRo2eZOZyMirF78C6PXB2ngkLEb4rkXNp1zTD2L4LxvY2GHZsAa1JI3LwPCjb\ntFAlY1yoknE3xwLaSJUMd3EVZnQ1qF57A2htsaQpGb4gBZuHxlUHh0mrFt5gZJRUMhwq9JEynRpF\n/st0BlkeYzORyhhXJmMrYxh0FDa3KsKREFVlpDIGgbAcyJdwH/KxePfsRMIxrMSggblEFzM2PHjH\natAUcLR3AmwmAx+BQCAs4ssidSxdYIXTG8iyNeIRPQM9f/483nzzTXzxi1/EoUOHcOHCBfzxj3+U\ns22ELCikUoSFjNj0A7leLzWFGMERQmzbUk0caUq8MBE9ycz1ZDTG5d3hhVGvwtbVyX8HnufhHbwi\niBAdXXCe7AXvE2pB0/oilHyiXRAi9rRBXVeVvgEeJ+iJIdAT/aCnhkB5I7Woo6tkBCqaYee00Ov1\nqFVJI0QE2OgynQzcgYgIoaAplBdFRAidMv8ihC/A4+okG/aEuDrFIhBVGaPMSGFDc6QyRpmRVMYg\nEJYj+RLuGZrGF++6AaCohNEPid6boWk8tG8tPrWrAa+8eQnnhuZlaRuBQCBkghgzzKUiejaqUgkG\nF4FAADzPY8OGDXjuuedkaxghMwqlFCEhPxRiBEcIMW0LiWmbWssTTt5qzfoYT4lURE/0cj0ZDbu8\nczzO9s/C5vLh3NAcGGYwfC+yThccx0/D1iEIEf7xqfDrdevWwLi3Dcb2XdB/bBNolTL1GwYDoGau\nCiLENVUyNGCrG8FV1IOraQWKKxarZNBQAChb4mcNcoDdK6RiWD0MXHFlOku0QZRoOTTXqBFwL+Rd\nhHB7I34QlydYjFkilTEoAFVltGBIWSNEQhj1pN8kiIPneczYPCgv1+e7KYQk5FO4f/CO1WBoKuV7\nh8ZAlZLBfx4dwqURK+YdPqiVNHyBwjPMJBAIK4s6c5Hs7yFalGhqasLPf/5z3HTTTXj44YfR1NQE\np9OZ/oWEnJCvUoSEwqLQIjiiSdS2eDGtxKBCfYUebm9g0fxLmLxFqm9EJnVbVpctVt+YSznJzPVk\n9NUjgzHCypzdi943T8H0P6+jaWwArlNnwQcFxZkxGlB6777FaIhdUFWZw6/zBVjYre5YESdBSkZs\nlYwqcOU1i1Uy6gGVAWCkiYTgeMCxWKbT6mHgjCvTaYwu06nhEMpsKNFrYPFI0oSMsDlDlTFYDI9z\nmJqPTOxpGqiviJTmbKphoNOQKAhCdly4PI8XfvUBvv3wDjRXEmGiEJFCuM82EjXVe0ePgYki+qQU\nJEoNamg1gpkmgUBYmaiVFEwGDbzeIBzugGjz21SmvVIherb61FNPwW63o7i4GL/73e8wNzeHRx99\nVM62LWtymUaRD2dpAkEK4sW0eacf804/2rfW4K4dq2Lun2STuj/Zk/pei54QMiolWH9AtvshdC+q\nvG7UjwygfqQP9Vf7ULQgCLhOAEWb18HYvhgNsXU9KEVsNxwv1DQYgbtqfWgzOcBMD8elZJgWUzIa\nwFe3AFoTwKglqZLB8YDLR4erY9i9dEyZToM6IkIYNRyYPAYW8DyPWVtsZYx5R2SoVSqA1jrBkLK5\nhsaqKgZqJREhCNLALeaWjUw7iShR4GQj3EsViZrovePHQDnY1FKKT9/ciFqzAb8+OkhECQJhhXHb\npmq0b6vFm90j6B+zYXreA5NehZtuqMDA6DxsC8G057Da5d9dSitKXLx4EevWrUN3d6S+fXl5OcrL\ny3H58mVUVYnIc15B5CONIh/O0gTCUkklpp0bmseBvauvEQ8STerUi87l6URAtZKBubwIFov0EV48\nx2Hh/CVMvPEubj38NiqmRkDzwkLFoylC/9qtGGtciz/71udR3Vqb8lyH37mE6QsXcU+RFVvrrDDz\nTsAOwL6YklHTCM5cL1TJKK4EVDpJqmTwPLDgp8IihM3LgI0q01mkipTpNGryW6aT43hMzHJCFMSi\nJ0R0ZQytGljXFFUZw0yDIZUxCDJhWvSmmXekdi8nLE/kikRNNQZKQciL6dzQPC4Mz6OmvAgLOTCr\nIxBWAgoa0GkUcLjTL+jzzalL0xiedGAsSpC0ufx4/9KM6KphBr1KruaFSStKvPbaa1i3bh1efPHF\na45RFIVdu3bJ0rDlSj7SKAq5JKTUECPPwkfsbySFmJZPL5XAnBX2d7th7+iE/Wg3gnNCueRKisJ0\n1SqMNKzFaMNaWCpqAYoWSqA2JBBxeR6UdQr05CAw1oeHZkbBlAshuzzFgCutgru4AkN8BVq2bIBS\nVwwwabwmRMDz8WU6GQSiRAitkoNJv1imU8NCIj/MrAgGeYzOcOFIiCuTLLz+yPHiIgpbVivCkRCV\nZTTofJtYEFYMpsXJmjUH4a0rlXyN/XJForIch5+9dUnWkOhoc2iOR8yChEAgLI0gBzg9hS9IAIDX\nzyW9/4OsuASOhRyIL2mnmd/85jcBAIcOHZK9McudfKVRFHJJSKkgRp6FT6a/kRRiWrYiYDYTXJ5l\n4er9EPaOLtg7TmDhg4+ElT0AZUUZyg/cC+PeNvyRK8MfLtmueX3Mveh2gp4cFAwqJ4dB+WJTMvxl\nVRihynDKXoxzY0GMzQdBUSz+zwYtKpYgSHiDIRGChs3DwBdVplPFcKjUB2HSCmkZGmX+ytF5/dGV\nMVhcneIQjDJ+LjdR2NQaqYxRWkwqYxDyh0GnAk1RJFJCBvI99ssVifrqkUF0X5gW/fyQ11Iu8roJ\nBII4+BVUtbe6XP6I+7SixBe/+MWUk72DBw8mPfb9738fZ86cQTAYxKOPPoqNGzfi61//OliWhdls\nxvPPPw+VSoXXX38dP/vZz0DTNA4cOIA/+ZM/ye7T5Jl8plEUcklIKchm8UmiKnJLpr/RUsW0bERA\nluXwi7f7RU9w/dOzsB/tEqIh3jsJ1uYAAFAKBoadW2HcI3hD6NavCfeTf8Jx4PSDUfeiGuvrDbh/\nNQ/m9BuCSaV9Nvwe0SkZgcoW/PTELE6fcsMf5AFEFjmlGUY9+QIs5hx+QKGDy6+E1cPAE1Omk4c5\nqkynNo9lOl0eftGQUhAhxi1ceJePAlBdTocFiKYaGsVFRIgkFA40TaG4SElEiUWkHHvzbeItRySq\nL8Cip29G1HPVKho3ranA5/etActy+Pt/PgF/YAWthAgEQkFQZ5bfLymtKPHYY48BAN5++21QFIWd\nO3eC4zh0dnZCq9UmfV13dzcGBgbw6quvwmq14jOf+Qx27dqFBx98EJ/4xCfwgx/8AIcPH8b+/fvx\nox/9CIcPH4ZSqcT999+Pffv2wWQySfcpc0Q+0ygKuSTkUsl08ZnvnZWVSLZRQksR07IRAV/+7Ycp\nJ7hcIAjXmXOwH+mEvaMT7g/7w89V1VSi9J7bYWxvQ/HN26EoTtxBB1ked2yrxadvVKO/6zRqvGOo\ns82DeW8xJYNmoqpkNIMvWwWo9QCjBANAV8zCH7w2zE6MUBPkgHk3hVP9LnC0FsWG8vAxhuJRpguJ\nEByKVFzeRAirkwsLEMMTHKajKmMwNLCqKrYyhlZNoiBWGsttU8OkV2N8dgE8z6/YqB2px95CMPGW\nIxLV7vJh3ulP+ZxinQJFGhU8Pj9OXJjCR1fncUNDKREkCAQCaBrhkuZioADRVTaSoVUvPW04HWlF\niZBnxEsvvYSf/OQn4cfvvPNO/NVf/VXS123fvh2bNm0CABQXF8Pj8eDkyZN46qmnAADt7e14+eWX\n0dTUhI0bN8JgMAAAtm3bhp6eHuzduzf7T5UnCiGNopBLQmZLpovPfO+srESyjRJaipiWqQjoC7Do\nvjB5zXOLnDbYftmDvp9PwXniFDiXkEpBqZQovnUHjO1tMO1tg2Z1U8rFBrtgx+l3OlFiu4IWeg46\n3oeQ4w5nMMFfWoURuhzzRXXYvKEZUGgSVsnIRKhx+1hM2TmwlBYOnwJOHw2Agt6oQ5BlMTltweTM\nLKZmZrGlWY9b83D98zyP6fmIKeXwOAurMzI8qpTA6vqQKSWNVZUMVKQyxopmOW5qmPRqXJlywu0L\nokgj/+StEJF67C0UE2+pI1GNejVKDaqkwoRJr8KGllIc/2Aq/Ni804/OC1NQq2j4/NKVCSUQCMsP\nJUPDl4EqIYWUWaSV31hM9DtMTU3h8uXLaGpqAgCMjIxgdHQ06fMZhoFOJwwWhw8fxm233Ybjx49D\npRIMocrKymCxWDA7O4vS0tLw60pLS2GxyOdGLDfXexpFPshk8VkIOyvxrIQ0kqVGCWUjpmUqAtpd\nPlhsHtDBIKonL6P+Sh9WXe1D6byQ12sH4DKV4cqmLbDduB7Vd+zCgU9sSL7DF/SDmrkqpGNMDEBt\nn8VtAEABvFIDtrwRc9oKnHWb0DtFo2/QD1+QR1mxHTdsUEGdROBIJdRwPOD00ph30+if9EOh1ofb\nx/M8DGoWvR9dxfDoNCxzVnBRg1Zv0Cvb9R99jSsZGhOzXLg055UpN5wLkXboNMD65kURooZBLamM\nQYhjOW5qhMwubU7fihQl5Bh7C8XEW45IVLVSASCxKLF1jRldCQR0AAgGiSBBIKx0fAEON2+owsUr\nVlhdufGZsS2kju6SAtGixFe/+lV8+ctfhs/nA03ToGk6bIKZirfffhuHDx/Gyy+/jDvvvDP8OJ/E\nHSTZ49GUlOigUBTu4u5vPv8xeP1BWB0+lBSrocmnbX0GmM2GnL5fJt/RzZtr8fqx4QSP16CuJrIr\nNjm7gHln8p0VRqWEubxoaQ0XCctyePm3H6L7wiQsNg/MJi12bqjGV+5dD4YRFpK5/s7lROxvJCV/\nfWArdFoVui9MYtbmQXmC7xgA3MOjUP/hKD795msoH+6DMiiURQsyCow0rMVk640Yrl0Nu7E8HL1w\n4fwstKYRPLJ/IwCA5zlwlgkEr15CYPgiuMmrACe4L4ZSMjzGSlwKluJ9iwYfXvRjfoEDEFuCLZPr\nsJbnYXMDM3ZgxsHD4gDYxTmpSqPCvM2BqZlZTM7MYmZ2Dru31KC7dzSh+ZIc1z/LcvjJf3+I7gt2\nuNwq6FQm0FQRWC7y3ZcU09i5UYO1jSqsbVChxqwATRMRQm6Wc98i96aGHHOImorF71vBLOvvPluk\nGHsTfW/5GFdSUbeE14bmBF0XJmGxehI+R6Ni8Imbm9HRM574HBzw8fVVOPnhVMLj8TC08BqNikYg\nyIXHDwKBsHyhaeAr922EzeXFMy+fTJsOJgU+lpd9bBO9Wr7jjjtwxx13wGazged5lJSUpH3NsWPH\n8C//8i/4yU9+AoPBAJ1OB6/XC41Gg+npaVRUVKCiogKzsxHTt5mZGWzZsiXlea1Wd8rjhYICgNPu\ngTPfDRGB2WyAxZKblmaTd3rvrlVwe/zXRKDcu2tVTLvZAItSQ/KdFdYfyNnn/MXb/TG7+DNWD14/\nNgy3x48H71gj+jtfLpEWYn8jqdl/cyM+saM+5juaHZ+Do+vMYqWMTniHRwAA1QCsJRUYbVgjiBG1\nzWAVSmhUDLx+9ppznz83jOnyOaimB0FPxVXJMJgEb4jKRjiN9Xjht1dw5XxwURBIbniX6jrkecAd\nV6YzGFWmU6fkYNAF8caxixgcmYLPHyt49PbNyH79e/08rkwKaRgnL7rgXCgFRZVDqxTa72c9qCzl\nsG97KZpqGKxtKcbsrAsAB8CLubklvT1BBHL357ladMuxqQHIM4dQLg5dV8ZsqC1J7rd1vbLUsddg\n1GLoytw141y+xpWlkmjcjp8TJMIfYDExZU/5nH031aLv6jxsrvQLEYNOhdX1Jrz/kThjTQKBUPhw\nHPB3//dd2F1+qFW5WRfMz7sk6XNTzR9EixLj4+N47rnnYLVacejQIfz617/G9u3b0djYmPD5TqcT\n3//+9/HKK6+E8zvb2trw1ltv4b777sMf/vAH3Hrrrdi8eTO+/e1vw+FwgGEY9PT0iIrAIOQHKRbI\n2eSdig2fLARfD0BcKGs6lpthZz7NVlUKGoa5GVgPd8Le0QVHdw94rzA5pnVamO68Daa9bVh13+14\n+X0L+qImuGtXmdB1Qdh1UlEs1qps2KazYpvOinK4gFPCe0RXyeCqW4DiCkCpA2gGygALh38UPJ++\njnP8deiJESFo+NnIb6tWcCgvCqJEy8Kk5aBW8JixunFxcDRhjqDN5cOu9VU4ceHaXbRsr3+Xmw+X\n5hweZzE+y0VFYqjA8m4Eg04EOSeCrBM8glC6NNjYWg61kl6xpn+5JBDgcGXMg6ErbgxdcaOupgj3\n3VWe/oUFjFybGnIRSiWw5yDEtRDJduwNjXPnhuZgsXquGeeWm4l3snF7/63NSecE0ZQYNGiqLk4q\nlGtUDGrL9di6uhwdvRNpz2dz+YkgQSBch4REyUT9hDzIv+4QLUo88cQTeOihh/DTn/4UANDY2Ign\nnngChw4dSvj8N954A1arFV/96lfDj33ve9/Dt7/9bbz66quoqanB/v37oVQq8Xd/93f48z//c1AU\nhccffzycH0ooHKRaIC8171SM90AyX4/9tzZhxurOyaRGjEFXujDQXBp2ShmNsRSz1VA7tGoFPL5g\nyvawC244jr8P+9Eu2I50wj8amaBpb2yFcc8umPbeDP32zaBVQo63wWzAg8aSyAS3SAnaNo36qTNY\nr5xFI20Dg6gqGSVVYMtrwFc3gy+rX6ySoUr4mZNNyDUqBv4AG74OP3Pbakw7I5EQ3mDk/lEyHCr0\nkTKdGsW1ZTrT5Vl/ft8aaDWKrH1t5h1cWIAYnmAxY43IHwwNNFTRaKllUFIcxE/+5wx4XDsg5tKE\nbqURCHC4OubB0FU3Bq+4MXzFjavjHrBRP0NLo3dZixLLcVOjZFGUsCVJYVgJZOOpJXacy7WJd7Zj\nYrLP4/EGE/bZ8WxdUw6DToWbN1bhnTPXpnDsXF8Ju8uHz+1pxeC4A6MzLtFtIxAIhYVOzWDzmnJ0\nnZ/Od1PSUlEqf/8rWpQIBAK4/fbb8corrwAQjKhS8cADD+CBBx645vGQqBHN3XffjbvvvltsUwh5\nQKoFci7ctON3VvQ6FV47NozvvHQqZxEH6RaODE3hgwELDCoaBl3sItcXYGGxuiU1DUs2wSqUaIzo\ndsw5fKApwdSx1KDCtrUVeGBvK2iKgqdvSCjXebQLzpO94ANCZAJTrEfJPbfDtGcXjHt2QVVTmfzN\n3A5oJ4dQNN4PemoIlM+DTy/6pXEGEwJlVRilzTht10NjLMNd29ckrJIRT7IJ+T03t2DGwSMIoULG\nydHI96qgeZQXRUQInfJaESKedDuSOrVC9M6iUBmDR/9oAAOjAYxbKNhdERFCrQTWrApVxmCwqpKG\nUiE00BdQoPQ9BeYc14oSuTShu54JBDmMjHmFCIirbgxeWcDImBdBNrp6CYWWBh1aGovQ0qBDfZ0a\nDQ0G+ALBgt5RTsVy3NQwhowuV2ikBJB5tFwhGlPHj0UmvQpbV5fjwX1r0o6JqT7PpREr1EoavkBy\nUweNisH+WwUz+T+9fTUoihLGZqcPpQY1dBolzg3O4t3eCZQWq7F5dTlaaotxfngec/bkKYMEAqEw\ncftYDI2lTteSEwrA9hsrMDTuwJwjdR8yNSe/dUJGDowOhyMcijswMACfb+XuCKwkpJw45NJNO7Sz\nEp/HmYsSoakWjr5AEN/4ly5wPEBTQK1Zj299aRsYmo6ZDCUjE/EmneiQalfnC3etzdmEML4d3OKa\nyzVrx1DvGRx5aQzm/ovwT0bUZN3GG2Bs3wVT+80o2rYBtDJJdxb0g5q+CnqiH87pYaitkVBWXq0F\nW9ME1lyLId6M94aDOPP+AjQatSAo7GoVJUgAkQn5/ltbMGXjEKS0cPgV6JkQynQCAE3xKNEGUaLl\nUKJjoVdxYk8fg5gdyUQ7iyzHY8LChUtzXp5gsRAzDgVgMgRwy+ZitNYqUGOmwSQxpSyUVKnrhUCQ\nw8h4RIAYuixEQASDEQFCqaDQtEqLlkad8K9Bh/oaLRQKKnyv//7N5ZHulYrluKlRrFOBpoQUqpWO\n2KiGQin5GU38WGRz+dHRO4HBcQee/PJNKe+lVJ9n3uGDSpH6PvQHWMw7fHApAjDq1TECzxvdV/Be\nVInQOYcPR86Mo31rDb755R34t/86i0sjjgw/LYFAyDcz1vwJijyAwTEbNreWw+nx4/Sl2aTPDQbT\npycvFdGixOOPP44DBw7AYrHg3nvvhdVqxfPPPy9n2wgFgpQTh1wvZPK5E5No4egLBOHyRG5sjgdG\nZ1x45mAP1q4ypTXBAjITb1JFuHxud0vS7+bEhSl8dHU+HKUgdlGTTchrzG/Ecyi3TKD+aj/qr/ah\navIqaF7YWWJNxSjdfxdM7UI0hNJclviEPAfKOgV6YhD0xAAoywioxdKYHM2AL68GV14Nrio2JaMZ\nQO06Fp/MsP0cDzi8NKyLvhBOLw1+UYSgwMOo4RY9IVgUazhIUXhC7I5kIMhjZGpRhJjRtmhRAAAg\nAElEQVRgcXWShS/KG1OpCMIXtIX9IDjeC6sbaJmvQ/u29IIdKYGcHcEgj9EJDwYXPSCGrrhxZSxW\ngFAoKDTWa9HSoEProggREiAS8ct3BmLCvUP3Os/zeGjfWtk/00qHpimYDGrYiSghmkIp+Rki1Xxh\ndMaFX7w9gC/emfxeSvV5jHoV7GmMKVVKBj/81VlYnX6UFquxqaUMez9Wiz+eHsPxc4mrbXT0Tojy\nliAQCIREzDv9ovoQh7uARImmpiZ85jOfQSAQwKVLl7B7926cOXMGu3btkrN9hAJA6olDLhcy+dyJ\niV84MjSFb/xLV8LnjltccLnFTWbFijfpBJnbNtck/W4AoaMSG1GylDSQ+bEZlJw+iU1X+lA/0ged\nW8iR5UFhprIeI41rMda4Fl/91udQWZ4kNNvtAD05BDoqJSMEZygBW14FrqIBmuYb4OG1gEKbMAJC\nzA4fxwMuHx32hLB7aXB86Fw8DOqICGHUcGAy2KTOVNSJb6/HF6mMMTzBYnQ6tgRcRQmF5lohHaO2\nAvjHX34At//aa0CsYLfcTOjyQUiAiKRguHF11INAvABRp0Vz46IA0aBDfa0GyjQ7qyF8ARYnzide\ntJw4P4X797SS3yUHlBZrcHXKCZ7nicGrCAot2sru8qWMUjzbP4sD7cnvpZSfZ3U5zg3NpTy/18+G\nTevmHD4iOBAIhIJBq5W/PxYtSjzyyCNYv349Kisr0doqLB5zEcpByD9STxxyuZCRWlDJJhIgtHD8\n6Mp8OC0hHo4HrK5A4oMQ1s+lGYo36QQZ8HzS7yYaMQvUTDxHeJbFwgcfYe6dE7C+cwL+8x/hjsVy\nDm6tHn03fAyjDWswumoNfFqhrn1ZsQYmY5RYEPCDnrkCamJAiIhwRELOQikZnLkWXHUrYDADqiKA\nZqA3G+DJsKQRzwMLfiosQti8DNioMp1FKg4mrVAhw6hhkc2lnK2o43RzGB5fNKacYDERVRmDooBa\nM43mGgZNNQyaamgYdJFzzVjdkkZAEVNLgGVjIyCGr7pxeSROgGAoNNRFpWA06rAqAwEiERabJ6kD\nt9fPwmLzoM6sz/r8BHGUFmsxOGbHgjcIvVaZ7+YsC0Lj2bmhOczaPHmNtjLq1TDpVUlLbVpdPsw7\nvKguK0p6jlSbLgwzKCoakkAgEAqNkiL5I9dEixImkwnPPvusnG0hSIyUFRXkiG7IxUJGKkFFCkPI\nugp92MAxHpoCjEXKhMJEqUGNrx7YDLNJm9HvmE6QMZfokn430aRboIpJkaFtNtjf7YbtSCfs73aD\ntQrGPhxFY66uCXNrN+BCeSNmzTUAde33uXV1GTTOaUGAGO8HNTsaTsngaUZIxwilZJTWAWoDwChF\n+0FEw/PxZToZBKJECI2ChUHph1nPw6znocrImScxYkQdnucx7+BxeYLF0KIfhMUWvdgFmqppNNcK\nIkRjFQONOvHn9wVY+IMcSgwqzDuvnYATo8r0sCyPsUnBA2JwMQriyogb/kCsALGqTrNoRKlDa2OR\nIEAoJfZ44JOonWKPEyShzKgBIFTgIKKEOEKbFI9+TouhK3N5jbZSK5m0pTbfPjOWMoUj1abLA3tb\nwfM8jp+fhM+f3PCSQCAQCo2J2QIyuty3bx9ef/11bN26FQwTGTBqampkaRghe+SoqLCcw7SlEFSk\nqD5i0KlQa9YnLOFVa9Yn9ZTYttac1S6nGEEm8t0kN9dMt0BNFJFBcSwqp0awqqsPH/3m/8F/sT98\nLFhSioF12zHSeAPG61vhV2sBAPUVepR5A+HqG0bKh50mB24tc2GVtRvU7xKnZPCVTYDWBCgTp2SE\n8AVYTM4ugA2w11y73mBIhKBh8zDwRZXpVDEcKvVBGDVBHOsZwumPJiQ1Ekwl6vT0OVFb5sPoNI/h\ncRb2hdjKGDc0CAJEcy2D+opIZYxkxPcNalXie5gYVcYSFiCuRjwgLo+64fdHlUtlgFW12rABZWuj\nDg11WukFiASYS3TQqGh4Eyx0NCoGZhLFkhNCooTV5UNdBYlMyQSNSpH3aCuW40DRVNLNAwA4NzgH\nX/u1Y0g8iTZdgiwPj48lggSBQFh2UJT8mxuiRYm+vj789re/DdcMBwCKonD06FE52kVYAlKV70xE\noYdpJ4oOWaqgIqVZ5re+tA3PHOzBuMWVsPpG6JxSRaOkE2Siv5tDb/Wh88K1eenpFqihiAzvxAzq\nr/ah/mof6kYGoPYLjsIBpQLFt2yHcc8uaG/biWfencFcgt35oNeLf7i7HPTEAHSzl8E454QD7uiU\njDpw1c2AoSKckpGOmIX4Ymm1j91QjT3bW+HwKmD1MPAEYst0mqPKdGoXy3TKVcUlIupQYGgdFLRB\n+McYwLMKvH5MiJ7RaylsbGHCnhD/P3tvHiTHdd95fvOozLrv6q6+TwAEcRMQSICkCICkKNqihpIp\n0aLlWY9iHevwxq5jI3Yda69nbdnrjYnwrtbhWE+El2vO2LLlkUyNZcori0MaDR5oAMQNAiSOvtBH\nVXcdXfeVVZm5f2Tdd3VXdReA94lAgERVZWVdL9/7vt/v++2z107GqEX52JAr+VdzDIS0SIwqoSSU\nrGQrIHI+EPOLiZKFBE0rAsRkUQvGyKAG3BYIENXgVQyO7+vD6SKjyxzH9zmJwLRF5EWJCDG7fBD5\n4emZqr+hYjbiRVUeM0ogEAjbTT3xtRq9ltpta+2iaVHi+vXruHjxIjiO6+T5EDZJt+V+t7OFpB7N\nVIdsVFBpp1kmx7L47neOIhIXEBEkGDgaBm3hN9XuapRmBRlexeDf/MJj0KrZpkURSUgjevE6QlPT\n+OpPp8AvLeVvCxstmNl1CJbnj+OV3/wqGL0ymHkCcaxHlEUxBRkjqij2q9dxRBfAKBMCc7bQkiHa\n+yDb+yE5x7ItGUpKRqstGT88PYMPrq2ix2HF4TEHnD02WM0m3M4mgzKUDJs2J0JI0FWJ6ezE70pI\ny1hcFXF3mYZZtxuypAVFFY4hSimAjuBrX+zBzmEVHGZqU+Z59V6DTs3id7/9BBwW7SO1gBUlGa6i\nCoiZhRoCRH9pDOfIkAY8110xm996fgdoisLl2x4EogIseg6HH+t5pAWmrcZqUqq+gkSUaCtbMY+o\nNz4Ws5HWtnIxmEAgELabVgQJ5f5dVCmxd+9epFIpIkp0Od2S+92JFpJ6dLI6pBOxZQYth/ERA7xV\nTBc7UY3SzDGbETBSSy6EpqYRnDqH8McXIcWUHjM1zyG6bz/uOSdwp28C9NAQDu1y4JWyz9tMJ/Gy\n1YtdjBd7uAA0KFRMSEYLMjYnpJ5hyL0TgMYIqLQb8oUQJSCUpOGP0dBYxvD6vzoAOnseGVGEe82L\nUCiI157th1WHhjGd7fhdJVJy3pBybkXEsqc4GcMASY4jk4kiLUWQkSKQZQEvHBnEMwfa4+1Q/zWk\nwKmYh1qQkCQZrrUUZhZimFtIYGYhhvnFBJKpUgFiqD/nAaHDxKgWo10oQNSDpilQ2b8JW0tx+wZh\n83RiHlFL4Kg3PhZTq3Kw1nGbFTsIBAKhHk8+3gOWpnG2SkXzVmA2dJHR5draGk6dOoWJiYkST4m/\n/du/7ciJETZGt+R+d1IkKKfT1SHdFlvWaYoFDCmZQuT8VQSnziI0dQ7JmYXC/caHYT55HKaTx2B4\n6jAYrRrHyydmaQG0O5eScQ982I9fUTYTlZYM+xjCul5cT5gh6mx45vAkQLfuHCnJQCRZGtMpQ1mU\nmYwq+NaDWPX44Pb44PUHIEkSaAr4+lNm0FRjAWgjv6twTMpGcyrpGG6fhJzOTOeSMbKmlCNOCv90\nzoWrd31IRpLZpJXBtu5yd8vYsBVIkgz3WipvQJlLwigRIChgsF+dNaDUYnxEi7EhLXj+wREgitnK\nMZdQHVu2UoK0b7SHdn6nGwkc9cZHQBkvnjs0UDEmNzpus2IHgUAg1EOlolpu2W0nC+5wx5+j6dn/\nb/zGb3TyPAhtohsW0FvdQrIV1SGdSB9pB50oa03OLSI4NY3QmXOInL0EKam8t7RGDfMLz8J06jhM\nJ45BPTpY8ViepdArBUHfVkQIyrcMSlJ8C2SGgWjvh2RzYlXdh2k3g0t340hJKuW9PDypbFU3gSwD\nUYHOG1MGEwwkOTdYy9BzEiwaETougz/9u3PwBCpdg1tZiDf6XXEsDV9QUqogXCLmV0T4QqXJGOMD\nNIadNBxmEbtHeRh1pcNvp41ku2Fs6ASSJMPtSZV4QMzdjyORLBUgBrIVEDkfiNEhDdT8g/may+m2\ntr1HFZ2aBaeiSftGG2j3d7qRwMGrGDw2bKm5CynLwEtfGKqo0Gh03EZiR7NYDTzWyfeKQHhk+fj6\n2rY+fzTe+fGnaVHi6NGjnTwPQhvZ7gX0VreQbMUOcLelj7SzrFWMJxCZvozg6bMInTmH1EJhgqXZ\nNQ7TiWw1xJOHQPNV2rdiIdDuWdCuu6Ddc6CEopQMoxWirbcoJcMEqDTooWi8vFvE8SbfS1kG4tmY\nTn+MRjDJQJILr1OrkmDWZGDRiDBrRBQfbv+EFe9fqhQlWl2Il/+uzHozBh09yKRt+MO34ggXJWOo\nOSUZI2dK2e8AfvzBLD64Xv/z6rSR7HaPDZtFkmSseisFiHiiIEBQFDDYV4jhnBjVYmz44REgqtEt\nbXuPOhRFwaLnSftGG2jnd7pZgeNbL+7E5bueqik2VmPlXKKZ47IMBTXPAtjcd2I9koKaoyEDJL2D\nQCBsOcFYpUF9u2m9TprQ9WxmAd2OnfdOiQS1zm0rd4C7JX1kM2WtsiwjeW9eqYY4PY3IhauQBSXh\ngdbrYHn5pFIN8dwx8IPOygOkBdCeQksGHfYXjs1rIA6MQbIPQOqbBAz2bEpG5VDT6L1MpHMxnQyC\nCRqCWFi8R2NxBALr0HMZvHTYDi1Xu6StHQtxUZSx7JHRZxlFbGAQC24JSQFYWgWWVkUYtBT2TyoC\nxPgAgz4bXdLT36nkjlbpNnGtHrIsY9WTwux9xYAy14JRLkD0O3l84aAuL0KMDWugUXfna+oUj1Jr\nTrdjMfBYCySQzkhQsQ9mK1A30M7vdCOBwxtMgGOVFo5n9vc3PZdoRjh5//IyVryxps+1HtXEEgKB\nQNgK9OrOSwZElHiIaWUBLYoSfvD+3bbsvLdbJMhVBVy548F6RIDVwOGJXT0l59apHeCtSg9phY2U\ntYqRKEIfX0RoahqhqXMQVgolqto9O2HKekPojxwArSobFmQJ1LobtGtGacnwLoGSsykZ2ZYM2e6E\n5ByHbB0AeMOGUjJSGQrBRMEXIpkpfO9UjIR4dB3Xbi9h1eNDNFaofEjEBusu7IsX4gyngiikG36W\nQlrG/VUx7wmxuCpCyBRutxop7J3IihD9DOx1kjG6sbS+W8S1HLIsY9UrYG4hjpmFGGbvJzC7EEc8\nIebvQ1FAfy+PIwe0WR8IHcaGNNBouuN3uZ08rK05DyI5M7BQNAW7WbPNZ/NgUX69bdd3up7AwakY\n/OmPriEQEWA18jiww47nDw/g2j1/w7lEI+FEw7MtmVz+91/fi//nnz5rKD60GuVHIBAIm6XYk6tT\nEFGiy+jkIrjesd/66a227uRuViQoPte/P1OaHb4eEfD+pWVIsoxvv7gLQPt3gLc6PaQVmtmdcZg1\nSHx2D8HT0widmUb04nXIGWWBx5iNsH71RUWIOHEMXK+98kCxEGj3DOiVe6BXZ0EJSQCADEA2WiHa\nnJB6hyH3FFoyQLX2vqRF5P0gAgkG8XTh8Swtw67LxXSKYJDBv/3ZpaqTv49vuPHqs2PQ8qq6z8er\nGDjsuqqJJ/FkWTKGV4JUNP46bTTG+2mMZUUIs6H510pK60uRZRlrXiFvQDm7EMfcYhzRmFhyP0WA\nMGI86wMxPqwlAkQdcmPrlTteBCIpWAw8ntjleGBacx4WLNkd/AARJZpGlCS8+ZNPcfb6Ssn19rUT\n4wA2v9lQT+BICiKSgjL2+MMpnL68gheODOJ/+/Una6dQFc1P6gkniVSmaZNLs57DxKC5ZqVGMUSQ\nIBAIW81WbG4QUaJL6OQiuNGxU2kR52+6qz52ozu5GxUJqp1rsEZ/7vSnq/jGicmKVo52LPCaaY/Y\nriqKWrszXDKO3b4FhP7gQ6x8eB7pNZ9yA0VBd2C34g1x6jj0Bx8HxZb99NMp0GvZlgz3TGlLhloL\ncWAckmMAknMcMDhqtmTUIyMBoSSTr4aIpmggm5BBUzIsmgwsGgkWrQg9J5UUWngCtRf2SUHED967\nh//6K483fS6haNaUckVJxlj1lyZjDPYUkjHG+hjoNBt3PH6US+tlWYZrNYGLVwMlPhDlAkRfL49D\ne41FLRha6LREgNgIud/NBpJ0CW0gVylBEjiap9H1th2bDZUbJTxiyXTVqoTcvKd8LlFtflKvsiIj\nyk2bXAajAv7grYvYP2nFoEOH5TotHzYjj3AshbRY8y4EAoHQVtSkfePRoZNxbo2OHYqm4A0mqj52\nszu5rYoE1c61FklBhDcQx2CPYUPnVotG5favPjuOn3w0t21VFPldn4uLcHhWMHT/Dobv30HP6iJo\nWUYAAGuzwPZLLyvVEM89BZXNUnqQfEvGPdCumcqWDEc/ZJsTknMMsnUQ4PUAw7e00pFkIJyN6Qwk\nGESKYjopyDCppbwxpVGtRHTWopGD+e37AaTSYtUJqyzL8IVkzK2IcK8H8dlsEv5waTLGxCCDsX5F\niBhxMuBV7V3R7Rq2YLqKq/vDVFovyzK8fiEvPOR8ICoEiB4eB/cYFRPKESWKkwgQm4dEgnYHuUoJ\nksDRHM22t212s6F8o0RIi/j9ty5WvW+teU+131i9ygqGRs1KiqrPG03hg2vVN4iKeazG9YRAIDy4\ncCwFIdO9ZVC9ls5X/hFRogvoZM95M8c26Xk4zBp4ApXCxFbu5NY715p0YDuwUbn93713tyQ2bCsn\n/2l/AKEPzuPo6WmMvncWbETJDZYpCsnJHZh49STMp56Gbt9joMoFklxLhuseaHetlowhyD3jgMYI\nqLQttWRIMhBNFTwhQkm6JKbTwBdECJNaAtOCftMori0YTeUnkZIkY9VfqISYc4mIxAsDvYYHdo8W\nkjEGe2iwTPu/R+W7ampO+Q2nBBFW44OVelGOLMvwracV/4eiCohItFSAcPbwOHrIisE+LitCaKDT\nkstOu+lG35JHFYux0L5BaMxWt7flBI5UWmypgq2Z31i183z91CTuLAax5Ilu+tzNeg6HdjrwS89N\n4PZiYNMxowQCoXugaArIbt11ozShIZUSjwadvCg3e+yn9vbhnY/mKu6zlTu59c61GmqOgaMDPbv1\nduXNeh63FwNVH9eJyb8sioheuYnQ1DmEzkwjdv1zJR8TgKbXDv2XvwL2qSPoefFp6Oxl1RDFLRmu\ne6Aj64Xj5loy7P2QnBOFlAymvi9DybnJQEyg8iJEMMlAlAqLex1XFNOpFsFu8m2pHddGway34No9\nGourCcy7RCSLkouMOgoHdrAY76dxeK8RPJ0AvQW17eW7arm+5af3OvHtl3Y9MItEWZbhD6QxMx8v\n8YEIRzMl9+t1cNj3mAGTY4UKCL2OhcNhqOrjQWgfxLeke7Aa1ADQ0rXsUWa72ttaNdLcyG8slVaq\nOePJdFvOORgVcO2uBwCwa8iM6VtrFfd58vFe3FsKYD3S+fg+AoHQPnJRv90oSADA6nr1ivp2QkSJ\nLqCTF+Vmj/2dV/YgnhAaGkp10kehUYl+OU/vc3ZkYVdvsvLYiAXnauzWt2vyL6z5EDpzDqHT0wh9\ndAFiUKmGoFgGhqcOwXTyOMwnj0Pz+I7SxAdJAhXItWTcA+VdLmrJYLMtGX1KS4alX0nJYJtvyZDl\n8phOBukiEUKjkmDWF0QILju6ROIC7i1FMdijh0HLbfh90fJs1gTMBZbWg2UMYGkDWFoHWWTw7nll\nkWwzUdg3UaiEsJkKyRgOhwpeb3LD59As9XbVbi8GO/78GyUnQMzej2N2vtCGEY6UCRB2DnseM2Mi\nZ0I5ooVBTy4n28Wj7FvSbZh0HBiawnqk8+PMw8B2Jse0Ysjdym+suEqu3dUMgWgaU1cU4281p/gy\nCWmx5Nz/w89uk/YOAoHQVqRMpvGdNgmZRXYBnbwoN3tshqlvTLkVaRT1znWoR494Mo31SApWQ+G5\nO0Wtycqrz47hTo2yyY1O/qV0BtFL15VqiKlpxG/dzd/G9ffC+pXnYT75NIzPHAFj0Jc+OBYE7ZpV\nhIhqKRl2JyTHMOTeUUBtArjSloxGIlMykxMhaAQTDFJFMZ0cI6FXn4FZo7RlqFWl+q6QyeCP//oK\nVrxRSLJiIDng0ON/+ddPgCs32qxDLFFIxvD4B2HR9iFnkAnI0PAZHNrJ50UIk35701GAB2PnWpZl\nrAfTmF1QhIe5rAARCpdeeBw2DscOm5X2i6wAYSQCRFdBIkG7B5qmYNbzpFKiBV4/NQmthsPZ6662\nRno3ohVD7lZ+Y+VVcrVQc3TD+M965B77/JEhvPbceP4cXn9+Euc/Wy1JkCIQCITNsOCpbb7bLsjM\nskt47cQ47iwGKxZwuUiszdDKbkAtQ6mtMlGrd64ZUd6ytIt6k5V2TP5TK6tY/Md/xvI7pxH66BNI\nUeXHTnEqGL/4JEwnj8F88jjUO8ZKqyGaaskYgNQ3Duhrt2TUEpm+9twORFJsvhoiURbT6SiK6dSo\n5LpFFn/811dK+mglGVjyRPHHf30F3/3O0ZqPC0ayfhAuEbPLIjyBgthB08CIk8GIk4bDIuLxMTXM\nXbhA7sad6/WAUGJAOXc/jkCoUoB46nBpBYTR0H3vL6GSzcYwE9qHzcjj3koIGVEC24p5ziMKQ9P4\n9Vf34eWjQ9uSaNWskWYzv7FWvLGO7+vDrfl1rG2yLPrTWR9ee06ZK4qShP/j764RQYJAILSVjNj5\nQYXMNruEt8/MVV3AvX1mbtOL/o3Gc+bYShO1eufK0Njy3eVqk5WNTP6llIDIhav5aojE3YJ/Bz8y\nANNrvwDzqadhOH4YjLbIJ0OSQPlXQLsUg0rKV9mSIdn6IDtHIVsGlJQMVt2wJSMnMqlYFv19Pejr\ncUBtseHCYqESg6Fk2LQ5EUKCriymsx6RuIAVb3VjrxVvFJG4AIOWUwwTgzJmV8R8NcR6uLjiQkRa\njIJTJbBjiMW//vIQNHz37/pu9851rgJCqX6IYXYhgUCotK/ZblXhySdM+RjOiREtTMbmPUUI3UXx\n2MlwKohCmlRIbBNWoxrycgjBaAp2U+cdyx8W2hXp3SmamUs18saiKMV3JDdn+Jv37mxalPAEEvnq\nux+8d7ctppoEAoFQTO8WXMuIKNEFNLvo36yfw0Yv+NtRit7Nk5NmRZ7k/WXFF2LqHMJnL0JKKK0V\ntJqH6fmnMfCVk2CPHoZ6bKj0gbFgVoSYqdGS0QfJMZRtyTAq1RBNpmSIEuCLATHJhJdPjcJmMYHO\ntt9kRBHuNS9WPT7EY2GM9XI4vsH2nGWPUvFTDQpa/Px8HPGEiDmXhGiiNBnj8TEGodg6Pl9chijF\nlVeeAi58Dhh0QtMiXSf9T5phq3auA6F0Pv0iZ0K5HiwVIGwWFY4eMuWrHyZGtTATAeKhQZRkeLwp\nLLuTWHYnMTZiwsHHyWJ4u8glcKyHiSjxMFJvflK3Sk7P4X94/SAcZk1+Tndzdr3KUVqDpgENzyKe\nyuDszcaRogQCgdAq4haUXxFRogtotOhfDycxdXWlo34O9ejGUvRuoHxiIsaTiJy/jNDpaQTPnENq\nbrFw34lR8E8fhf3Fp2F9+ghoNV9IJUinQK/Og8rFdW6wJaMakgxEkqUxnTIo7JgYhyRJ8K0Hserx\nwe3xwesPQCoadGaXlL83Uqkz2KMHTQGSTIGhdVDRhqwxpR4UxeL8TQAQYdRROLiTxXAvBbspg/FB\nHjRF4ffeXIAoVX7fmqnMqed/spVstkKpGsFQOi8+5Hwg/IFKAeILBxUBIlcBYTYRAeJhIJ2W4FpL\nYdmVzAsQS64EXKsppIvyzW1WH978kz2lrV+ELcNmzCZwELPLR456VXIJQcSH1135a1GriWO1kCQg\nkcrgp2cXIKS71bufQCA8yGTkzs8niCjRBTRa9L9/aQlTV135f6vl59CpneHtLkXvVmRZRnL2PkJT\n2WqI81cgJ5XPkNZpYX7pORhPPIUPuX5cDCi7ZtY7wBPSPH75oA7J2WWo7t1sW0uGck5AVKDzxpTB\nBANJLphCCqkE7i244Pb44fH5kcmIdY/XantOUpBx3y1iziXDotsDUdSAKqriEKUkeFUEr510Zk0p\nZfxoahb/dK4gIOwatmyqMqee/8lvfetwU6+jnWy06icYLrRg5ESIcgHCalYEiJz4MDGqhYUIEA88\n8YSYFx3yAoQriTVvqqICSc3TGB7QYKhfjcF+NQb71Dh+tBdihhgtbhckFvTRRZQkZEQJPEsjlSnd\nWUwKYsnczaTnYTFwm47vVHMMOBVTM66cQCAQNgsld17wJKJEF1Bv0b9/0oYbM76qj8stGFmG6ngy\nBjFRUxBjcYQ/vojQ1DSCU+cgLBXEIs3uSZhPHofp5HHov3AANKfCD96/i/cvLcPOJPGcdh2HVAHs\nXQ1A/fM0BCgZEvmWjJ5ByD1jSkuGSqfUZDZAloF4WUxnpiimU6uSYNYoMZ0aNo3vvnWupYiyRiJA\nNC5j3i1iLusJseKV8osmCjowTBIJIYi0GIEkRdHv4EvSN3LvTw5/OIXpm6tQcwySQqVg0qgyp1Er\nVFLofKTRRghHMooJ5XwsXwnhWy8VICwmFkcOGLPigw4To1pYzUSAeFCRZRmhSKZCeFh2JyvEJwAw\n6Bk8tkOPwT5FeMgJEDaLCjRdKlhaLRy8XrIg3i6s+fYNUinxKCFKEv7wP15q6OlQLPbrNJsXJZKC\niL+fmml7/CiBQCDkCCc7P74QUWITtLMyodai/+ShAZzJZlKXk1swvn95uePJGDy51lwAACAASURB\nVJ0oRX8QkGUZiduzSjXEmXOIXLgKOa0sbBmjHpavPK8IESeOgevrKTwwnYK48Bkm7p/FK/0+2Kl4\n4ZhqLUTbMCRHPyTnOKC3AZy+6ZaMRIkIQUMQC+IFz0qw6xQRwqyRwLMFZdMTSLa8c1cuAgQiEuZW\nFEPK+RURa0XJGAwNDDtpjPUzmBhgMNrHQMPrEYkbseyJYrBHD4OWy9+/FZfyHI0qcxq1QgXCqW0f\n9MLRDOaylQ85AcLrL52Umo0sDu83YmJUScGYGNHCauFqHJHQzUiSDN+6UFL5sJQVH6KxSuHNblXh\n4B5DifAw2KcmJqQPEFYjqZR4mKk192vWZDI3dzPpeUQTlQLkRrjw2VpbjkMgEAjVGHIYOv4c2z0/\nfyCp17O+0cqEWov+VFqs29qh4dktS8YAutuAsl1kQhGEP7qA0NQ5BM+cQ9rtyd+m3b8b5pPHYDpx\nHPrDe0Fld/whSaB8y4onhOseKN8KKFnCF7lsS4Z1ABlrL+Zhx1WfCp/NC/ifTz0HFo3LoVIZCsFE\nwRcimSl8x1SMhB59IaZTzdaO6azXJsRzNFJV8tJ3jzhx5Y6E+ZU05lwiApHC+XIqYMeQIkCM9dMY\ncTJQsZVPbtBy2D1qrfj3egJCShDx9F4nbi8GS0S6V58dhycQrymKNWqFshh5REIbdzpvVYiMRDMl\nBpSz9+Pw+EoFCFNWgBjPxnDmKiCIH8CDRSYjY9Edx735KAIBEe41xXhyxZ2q+G3RFODs4fH4zrLK\nB6caGs3DL/Y+7OjULDgVTSolHjLqzf0yooyr96pXtZZjMaih16rw/XfvIBBpj3BVy1iaQCAQ2sGO\nwcp5fLshosQGqNezvtnKhPJFfyM/h0Qqs+H+++IFVrV/exQqIQBAliTEb95F6Mw0gqenEb38KSAq\nO5isxQTb174M08ljMD33FFQOW+GB0SDonDmlew5Uuiglw2SDaHPCr+3B5aAON10Z3LkpIJlJA0jD\nZlTDYlKXLJBz771WwyOR4fLVEPF0QYRgaRl2XUGE0KpqixDl1PsuOcwa+IJJpNM8WMYAnjWCVxlx\na5bBrVnl+6VVA3vGGYz3MxgfYDBgp8EwG1841xMQrEY1vv3SLgCKeKHXqvCTj+bx+395oa4Q2Oj3\nouZYRDZwrs0IkdFYJi88zCzEMbcQx1qZAGE0sHhin7EQwzmqhc3y8AsQD9O4kkpJWFktqnpwJ7Hs\nSmBlLQW5TNdTsRQGytotBvvU6O/loVJ13qSYsD1QFAWbUY31Ni04HyW6eayoN/d74fAggtHm2jC0\nahb/+cM5TN9crXs/XkVDp1EhEE6BohVDSwKBQNgO2C0Yjoko0SLNxne2k3p+DhlRbjkZI57K4O/e\nu4vbi4H8AuvY/n4kEgKu3fNtS8LHVpNeDyL8wXkEz5xD+Mx5pL1+5QaKgu6JvTCfOAbTqePQ7d8N\nisl+nkIS9NLnoF0zSlJGeUpG7wQke1+2JUNJyfjZ1ELDBbKQkfDTC2sIJhiYTRZYLYb8IpWmZFg0\nGVg0EixaEXpOalqEqEbpdykFs94CFWNEMMRBzRigKRp1KErEgR0Meq0Sdo9yGOxhQbdx8dysgWqP\nRVvVe6KW2evJQwMQJRk3Zvxt8z8pn4x6AwL++cNV3P5MgIHVYvZ+HGveMgFCz+LQXmPehHJy7NEQ\nIIoRJQlv/uRTnL2+8sCNK9FYqd9DruXC6xdQ7vekUgE0lwHDiWA4CXT27y891Ydf+dKu7XkBhG3F\nauDh9seRSotdt7juRkRRwg/ev7ttKWONaDT3e+X4KKxNmlYueaLwBuMN73d8Xx++eXIS3kAcogz8\n/JP7uHDL0/Bx7YahAJFUYhAIjzTpLRgEiCjRIo161hslA2yEen4ODI2mkzFyu70f33AhWVRO7A+n\n8E8fz5c8thO+FNuJLIqIXf88a1A5jdjVW8itLFQOG+zf/ApMJ47B+MUnobKalQdJEij/Cmj3bLYl\nozwlYwCSzZlNyejPpmRoSlIyqgtKDrx0bCduLUlY9qsRStCwOQ2wQfmM1nzrWF3zYtXjh5SJ4+AO\ne1smZsmUjAW3BLN2BEP2QVCSBFEEBBFQMYAoJZARI8ofKQJOJeLTeRYfXO/cBLEZA9VIXMDl2/WF\nwGpmr/snbHjhyBD0GhUSqQwyGxxQ10MCzl7yI7nOI5NkIKYYSGnld/XpsgBAgEHP4OAeQ776YXJU\nB7u1ewWIrdqN7GRVWTuQZRmBYLooXrNQAREMV5qiWkws9uxSWi6GspUPDgeH//NHl6vuil+b8eO1\nk2RR+iiS85Xwh5Lot+u2+Wy6n7d+equrx4p6c7/1cBI/Oj2DeKp+mlUxySrtkuVcu+vBzHIIsYSw\naTPMzUAECQKBsInC6KYhokSLNOpZr5cMsFlq+Tk0m4xRvkBohk5Vf2wFaa8foTPnEJw6h/AH55EJ\nhJQbGAaGowdhOqUYVGr37ASVW2hHA6DvXVJaMlbnQAm5lgwKsskK0ebMpmSMFqVk1H5vGJrGLz+/\nE196agc8YSAlqxFJMfh0NffrphEMhbHs9mDV44PHH4Aolk5sNjoxi8QlzLskzLlEzC5n4PbL+R1e\nigL67TScNgkfXr+HtBiBjNJFWFJAPgGjUxPEeoJbTkS7dNtTsyy2ntnr1FUXZlbCiCfTeaHi6QMD\neOXYcE1hJRYXlQjOIh8ItycFoPC7pmgJrDYNVi2CVYv4nX+zD7vHTV0rQBTTCT+cWmxHVVktREmG\nxycUpVwk8kJEPFG6OKAooMfG4fB+Y0XShV5Xecn0BOI1+8I7JVQTuh+HWQMA8IUSRJRoQCot4vxN\nd9XbumUOUt+TicHZKq0YKoba1O5iIJpGINoeI0wCgUDIQW+gHezucgjPH+nM+eQgokSLNFtyvpU0\nk4yxkaQD4MGaVMuZDKKXbyI4dRahqXOIf3o7f5uqrweON16F6eQxGJ99EqxRr9wgJEGv3Mm2ZNwD\nHSnkfMtqHcTBCUj2fkjOMSUlQ6UH2PopCLIMxAQqb0wZTDIQi2I6dZwS0znay8Hn8eH3/v5cQ7vL\nZiZm62EpH8056xLhDRQfVUJGjIFl45gcYvGrLw1Cr1GMVK/OxOGvsiu80fPYCNUEt2ZEtEZmr8VO\n6P5wCu98NId4QsAbL+xEPCFibjGO2fmCD4R7rXTCqdcx2Ldbj6VAAGlKAKMWQbOFFhqbUY2JYUNX\nChLlnjGhaArvXlzCVFGaTyd3I7ejqiydluDKGkwWx2y61pIQ0qW/Mpah0NfL48DjpcLDgFMNnm9e\noNlOoZrQveRECW+QmF02IhRNwRusbkDcLXOQenO/dKb67N6gVarlqgoZKhqpNDGJIBAIW89G/Gm2\nYnlLRIkN0GxlwlZTLxmj3gKhHt0+qRZca9lqiGmEP/oEYlhZhFIqFsZnvgDTyeMwnTwGza4JZeGY\na8m4cbEkJQMoasmwOyH3jkI29wFqQ0VLRjmyXB7TySBdJEJk0kmsrHpxf3kNqWQUe0ZNeP3UJJxW\nHlKSq7mgKaZ8YibLMtbW5bwAMb8iIhgtLLp4FbBzmEE0EcCdpRVkpCgAGUgBF28DJn0Kb7yws+5E\nqxrrkSS8wQQGHfqm7r9RmhXRGpm95pAlZFsvWPzzz0P4+F9uVQgQOi2D/bsLLRgTI1r0OjhQFFXh\naVH8/O0QaNrZTlFeDcFzDAAZSUECXeNrXC42teN8OrlYTyRELK+Wxmsuu5NY86YqLrZqnsZQv6bE\naHKwXw2ngwdbJS2mVbpRqCZsP3az0r5Ra7FNKGDS83CYNfAEKt+rds5BNjuuvX5qEncWgxWxn2KN\n6ItgVMCxPc6qVRRP7XHig2uuls+BQCAQtoPkFoioRJTYAM1UJnQb9RYI9ei2SbUkpBG9eB3B02cR\nOnMOic9n8rdxQ/3ZpIzjMD59BIwuK9CUt2SklfegpCXDUdSSwdVvyQCAZCYnQtAIJhikimI6OUZC\nr14xp/zg8j28e6HUr8PtU/Iffutbh5sWBcx6NSJxFT6fFzDnEjHnEhEv2oDTqYF9EwzGsskY/XYa\nGVHC7705j4xU+ZkXL0LLRTaznkc8lcm3bhQjy8Cf/ugantjV03TJ/0Ymgo1ENIuex+HHHFXNXosF\nCDHJIJNkIKVpAIUFqKhOY99uAyZGNJgc1WF8VAtnVoCoRqeEyE60U5RXmBR/jrVi43Kil82kbtv5\ntGOxHgqnS70espUP/kBlSbNBz2DXhK4i6cJu5UDXUmPaRLcK1YTto1ApQUSJRvAqBk/t7cM7H81V\n3NaOOUi7xtmMKCOebL6dwqzn8a0Xd0KjZivGhniCtGUQCIQHB+cWVKsRUWIT1KtM6DbqLRDUHIMX\njg5n0zfal1jQLlJLLsWg8vQ0wmcvQYoprtUUz8GUTckwnTgG9cSIsqgUkqDX5kHfrJaSoYPYO6i0\nZPSOA3orwOkBRlW3GkIQUVIJkSiL6XQUxXTSyCAcS0HDsrj0efWdkKt3fUgKSstE8YLGn8+1p8DS\nerC0ASxjACUb8O9/XFikWwwUHhtRBIjxfgY9FqpiQe0PNVc+X01k+/EHszWFkvWI0FTJ/2YmgvVE\nNLOewx985wswaDkkkiLmFxPQSyYsuqPIpBhIQqkAAVoGq8mAyXpA2Gws/t1/+wVo+OaHv04Jke02\ngtxom1ZuN7Ld5/P6qUloNRzOXnfVHFdkWYZvPSc+JEraLiKxSmHMZlHhwB5DSdXDUJ8aJqOq5fNr\nFw+iUE3oLAaNCjzHkPaNJvnOK3sQTwgdEfbaNa61WnEaT2Xwk4/m8PqpyZKxAQB+783zTR+HQCAQ\ntpvoFgipRJR4hKi2I/7YiAVvvLgDI4NWeL0RvHZi+zPCpWQK4fNXEJqaRmjqHJIzC/nb1OPDSkvG\nqeMwPPkEGK0akERQfhfoT88UpWQoW8Iyw0LsGYBk64PcO6K0ZPAGQFW/JSMjKSJErhoiJhTeC4aS\nYdPmRAgJumxMZ/ki3KTn6ho0BsIpsFAWNF97dgf2jo7i8wUBt+ZTiCVUAAoLd7uJygsQY/0MrMbG\nuzutls8Xi2yF74q3ZnVNI3+JzUwEq4losgSIKQYmgxlv/a0Ls/fjWHYni+IZOVBZAYLXyoAqrXhA\nqEpjVJ/c39uSIFF+Xu0SIjthBLnRNq1DO+3Z523v+TA0jV9/dR9ePjqE9VASyQTg8abxDz/z5IWH\nldUkkqmyskAKUHESVDoROgOwY1SPr58axvCAFlpN9y72HyShmtBZKIqCw6SBN5SALMtd6TvTTTBM\nZ4S9do6z9a6p6qI2uRxJQSy55uXGBk8gvqFxOgdNAYd2OHBvOYBwvDk/KAKBQNgMAmnfILSTZnbz\ntmNSLcsyUvNLCE5NIzQ1jcj0ZUhJ5YJNa9Qwv/hs3htCPTKoPCgSAL38KWjXDOjV2TotGSOA2tSw\nJUOUgFCSzldDRFKF3XaakvNVEGaNCANf2ZufSov4m3fvlPSO1hIkAMCs12NuGbg1k8Lcigi3T8qb\nXVIUjwEHhT67jF3DHHYOqaDXtj6h3Uz5fO678sX9ffhf37pY9T71DMg2OxFMpSQcGO7DvTsCZhcS\niEcAMVsBcW1JALAONU9j9w49JnMeEKNaWC0s/OEk/vRH17AeqVR1NTyDV58dr/m8W0knjCCbbdOi\nKUAGYC3ajfSHkm05n5QgwbWabblwJeFdz2B2IQr3WqoillXFUhhwqtHfxyOYjMMfiyIhJhUhqUh3\nm1mP4cqCCo9Nbn80IIHQLA6zGsveKCKJNIza+gbJBIV2z0HaOc7Wu6Ye29OLG7N+JIX67ZKptAgh\nLW6onTaHLAPfODlRkTpFIBAInWK4t7NecgARJR5JumE3T4wnED57KVsNMY3U/UIigGbXOEwnn4bp\n5DEYjh4EzXOFlowLPwXlugc6WpSSocm1ZPRlWzJsigjBcDWrISQZiCTpfDtGKElDzooQFGQY1VJe\nhFAzaURi1UWcXHXElTueujniNMWBpY1gGT1Y2ghZVOMvfhwGALAMMNZPY3xAqYIYdTJQ8+3ZVdts\nr7vDooVtA2aFrUwEUykJ80txzGUTMGYX4lh2JYv8DxjwPI0dkxrsGNdhYkSLyVEt+nr5ql4BHEsj\nUOOzSAkionEB2hYqJdppQllMJ4wgm/Uoee5gP146Olzymlo9n1g8kxceiv0ePH6hqHpFQauhMT6i\nKfV76Negx86BoRUj0c8veQAWYGp8NN0SDUggNEuxrwQRJbaHdo+zta6pJw8N4MzV6u2agUgS6+Ek\npq6uFBkQbzyC2WpUzvu1E+O4NbcO93p8w8ciEAiEZmCZzlf7EVGCsCXIsozkvXkET2erIS5chSwo\nO9mMQQfLL5xUqiFOHAM/4Cy0ZNw5W7clQ+odAcx9AK8HVNqaIoQsA1GBzhtTBhMMJDl3Xxl6LidC\nSDBpRLB0c54ItWIraUoDljFARRvA0gbQdGFCStMSdgzS2L9Thx5zBsM9dM0UgM0uiDfb677Raota\nE0FZAiCpMP1JGEsrXswuxLDkSpYkJqh5GrsmdVkDSg0mRrTod6rBNGlWWG8Sajdrmp6ExlNp/OC9\ne7h9fx2BiNAWE8piOpXaUD5p5nKJGoIIq7EgSpW/hqotMzIgixQGjGb8y4f+vOHkijuJQKiybNhs\nZLFnl77g99CnxsF9dkhiqmb5erM+GN0SDUggNEuxKDHRb9rms3k0KL9mtnucrXVNTdWpfrAY1Hj/\n0hKmikSL4jaPVsmd9/f/yx0iSBAIhC0hFCOeEoQHGDESRejji3lvCGGl0Nqg3bMTplNKNYT+8H7Q\nKlZpyXDPgD5zunpKhr0PkmMAsmOkKCWj+ldYloF4WUxnpiimU6uSYNZk8tUQ1eYljTwRCospCgyt\nVUwps8aUNFV8XhnsHqXQbwd2j3IYcbKgaQoOhx5eb6T6e9fmVIbNVMdspNqCVzHYP2HHe9OryKQY\niEkGYpLNt2D81ZwyOeM5GjvHdZgYVaofJka06O9rXoCo9dy1JqFP7e1rOAnNvfcf33CXJFds1vSx\nGp1Ibag2aQZQV5QSJRlen4AJmwN3tALml+JIxAApzUASKXwwl8QHKLyfPXYOT+wzViRdGPSVv0e7\njYfXW7uKqFkfjG6PJ+4WUmkRbl8MYlokVSXbTEGUIGaXnabeNbMT42z5NbXedWf/pA03ZnxNHVfN\nMRDSIiwGNQ7usEEGcL3MgPy1E+P4/ru3SaQogUDYMpxWkr5BeICQZRmJz+4p1RBnphG9eB1yRlnU\nMWYjrF99UREinnsKXK9daclYnQN95WegXTOgKloyhrItGWNFKRm1WzISWRHCH6MRTNDIyIUJOc9K\nsOsy+WoInq2RjZil3u7tlTt+HJwUcOd+GqnUKMwaPSiq8FyilEJKDCIjRpCRIjj5hB2/8mJri9h2\npyBshmaqLYS0hPvLCcxm2y9mFuJYWklAlAyFO1FyPgHDZKbwP/1X+zA2pN2UAFGLWpPQ77yyB+vr\nsbqPrVX9kqOdbQSdTG0onzT3WLRIZyQsriQKEZvZv12rSQjp4t8EC5oG+np5DPVr8qLDUL8aA041\neH7zlSI5mvXB6LZ44m6jZFEWScFqaG9lD6F1HGY1AMBHYkE7TqNr5lak49Rt7biy0uDRCjo1i9/9\n9hNwWLT5c/xGmQH5D96/W1J1sR3QNECBglgrZ5pAIDxUzK0E8fT+/o4+BxElCJsiEwgh9NEnCJ2e\nRuiDc0ivZXcDKAq6g4/DdEIxqNQf2gOKAij/CmjXDdBXZ0pbMlgVxJ5BSDZntiXDWZSSUX1CncpQ\nCCYKvhDJTOF+iWQS6wEPdGwaLxyyQt+iR0Px7i0FJlsBoUR0Shkd/vIdZedXxZggSnFkMhGkpSgy\nUgSyrNxmK9qpaYVOpDK0g9wiN52WMDMfU/wf7scxtxDH/ZUExKL0Rk5FYWRIg5VQEAyfAasWQXOF\nFAyRAoxGqiOCBFB7sc8w9RdnzbQSdKKNoN0+L4mEiOXVSr+HVW+qpFUGUKpViqsdBvvVGOrXwOng\na7YVtZNGPhg2Y/fEE3cz3SRkEhTsJjUoClglJfYdpdlrZqf9tDbS2lFOIJIClz3Xamw09rndKNeR\n7REkekw8PKGNp5cQCITWmV+rXtndTogoQWgJWZIQu/E5QlPnEDo9jejVm7mrE1ibBbZfelkxqXzu\nSahsFiCyrrRkfPTDypYMsy2bktFcS0ZaLI7pZBBPFxaYLC0jEQvi07tLcHt8CIWj+dvi0cGWJuXh\nmIT7qwzMunFkRC0YSpPvh1ei3RJ45oAROwZZXLm3gDPXFiuOcXyvE7/60q4NiQedSGXYKOmMhMXl\nZLb6IYbZ+3EsLidLUhQ4FYWJUcWAcmJEi8kxLQb71MhIEn7vzfPwhyv70LaqFL+VSWgqLWJuJdRw\n4tjMuXfKHLOccCSDJVeipOph2Z2Eb73yPdfrGIwNazAyqMHwgCZf+WC3clUNQ7eSajuM+ydteOHw\nIKxGNamQqEHue6bh2a4UMh91VKwy/rh8MRIL2kG66ZoJtNbaUY7FwOevL9VaUh4btjSd2sHQD2cl\nAxEkCIStZ6LP0PhOm4SIEoSGxFZ9WPsvHyNz/hKiH55HZj2o3EDT0B/eB9PJYzCfehravbtAZQSl\nJWPmI9AfVmnJcA4pBpXOUUCXS8ngq7ZkZCQglGTy1RDRsphOiyYDi0aCRStCRaXxb//fT6perOtN\nymVZhj8kY84lYs4lYn5FhC+Uu4jbwVASMpLShqG0Y0TxwpF+fO25HgDA7rFxsKxUtVe1uGS6lUVq\nJ1IZmkEp7U/mWzBmF+K4v5woESBULIWxYU0+gnNyVIvBPk3VHXWG6YyRY7spn/jRFFBvHlfv3Nvt\nBQJkv6OBdNWki3C00mzSZlHhwOOGfNVDv5PHpVkXPrvvRyCSApXkYWMcOLjX0TVl/Z1sY3kYKf+e\nmfU8AtHuWZQRCgw6dLh8J45gVIDFQDxROsF2XTNboVx4pSglirwcNc/mx8AffzBbUf109uZqw2sU\nADy1pxcvHunHH/3V1Xa+DAKB8IiyvNb5ij8iShAqkDMZRK/eQvD0NObfmQI/Pw8qW6aXsVjQ+/or\nsJx6GsZnj4I16kD5VpRqiHc/AuWv05Jh6VNECJW2akuGJAPhbExnIMEgUhbTaSqK6TSqJRRv7noC\nze2USLKMVb+EuRURcy4J8y4R4Vjh6q7mgN2j2WjOPgrnbs3j+owP8bzg0F9SRt5oMVVvkVqLTqUy\nFJPJyFhcSWA2G8M5txDHwnICmUzhvWBZCqPDmrwB5cSoFkP91QWIWnTCYKzdlJe9l8dZ5lBzDJ7Z\n31f33OuV0DdacIuijFVPqkR0yP13MlU6e6UpoNfBY9ekrqTtYrBPDa2m9Ng/eP8uPr5Z6D/u5rL+\nbogrfhAo/57VEiSA7lmUPaoM2HW4fMeLFW+UiBIdYrPXzK2obCueK3iDCfxfP7yKQLSyos3ti+F3\n/uI8rEYesWR1t/tGgoTFwEKrZvHv/vZaO06dQCAQABIJStgqkm4PvG+/p7RlfHQBYjAMAFDRNFwD\nY1ga2YXF0cewbnPi1UNmvDougr72T5tqyZBkIJoqeEKEknRJTKeBL4gQJrWEenYAtXdKKJj1Fly/\nR2NxNYF5t4hE0V0MWgoHJlmMDdAY72fQZ6NLStknBnbiGycb797WWkzVW6T+1rcO13w97VzMZzIy\nllxZE8qsCHF/KYF0uQAxWKiAmBjRYmhADRW7uZ30bt8Br9efS1OKQJErmf3Wizuh5WsPmfWO9fEN\nN67c8SAQEWDW85jotWLPYA9WVgsihHstVSIKAUplSr+TLzKa1GCwX42+Xh6cqvFn063+JA8DW9Wi\nU+15W+kp76aqpEeRQYceALDsjWHvuG2bz+bhZSPXzE5UtjWCVzHgWBrBKoIEUBAcmm3RqEYgksHp\ny80ZaxIIhIef33njEL7/3l24fLGGomYtjJrOSwZElHhEkdIZRC9dz3tDxD+7m7+NG3DC/IvP4x3B\nitvWEajUDB7ng/hX/DoOae/D5k0A2TmxrNE33ZIhy0BMoPIiRDDJQCyK6dRxRTGdahFsC/Powk6J\nCyytB8tk4zlpHWSRwc/PK2XuNiOFPeMMxvsZjA8wsJuohn2+G929bbQgTAqVpfc5NrqYF0VFgJgp\nasFYKBcgGAojgxpMjBUqIIbbIEDUo1t3wOv1IssA/sdfPojxAVNT7335sSSRgiTQEAUGcYGGT2Ag\nCjzW0zTmkMB7uJ+/L8sCDC+B1mZgMFB4bMKAX35pDH29m4tH7bZe64eB7VjIFNMoQtWs5xCOCV1Z\nlfQoMuDQAQBWvNEG9yRshkbXzGoi4naZwzabOEQgEAjt4N1LS1j21k+ea0Q4XjvavV0QUaIL2Kod\nt9TyKkJnprPVEJ9AiipfUIpTwf7C09A+cxSmk8ehHh9CaGEOO3/+Eb6h+QxjqhByU22ZVUG0DkKy\nOyH1DAOW/potGbJciOnMCRHpIhFCo5Jg1hdECG4D38Z4UvGDmHeJ8PoHYdH2Iec7AQBqPo1DO3lM\nDChChEm/dT30jRaEgXCq4Q+w3mJeFGUsu5OYmVcqIGYXYlhYSpREO7IMheFBtWJAOaorCBBN7LI/\nCtSbHFoN6oaChCzLCIQyWHYnsbAUhxjQIxaVIQoMZLHyPaYYCaxGBM2JMBpp/De/tAvXF1bx8S1X\nXsOTAHy2GsOHt1i80be5ifGD0Gv9oLHdKRfVPlNZBqQMBQOnxpf2TqCvT4fHxolBaDfQY9GAZWgs\n+zY3ISQ0R/k1s5aI+Oqz49tWRdaK8SWBQCBsljlXeNPHOLizpw1nUh8iSmwjnd5xk1ICIheuIjSl\nCBGJu3P52/ixIZi+8YswnzwOw/HD6DHRCNy8DnplGvTlOfSmBXzdCMgUBdlkR8bmRNjQgxthPRYC\nwNf37gfPVy5okpmcCEEjmGCQKorp5BgJvXrFnNKsEaFWtV5DFIpKiinlX0cO+gAAIABJREFUivL3\nqr/Qa0/TwHAvgxEnjR6LiN1jPCwGfcvP0S4aLQgtRh6RUHP59TkBorgFY2EpDkEovIcMA4wMaDCe\nNaCcGNFiZFDzyAsQxQkFGV8MYlrMTzab7UWWJBken1DV7yEWL8pCzQ6pNCuB0abBcCIYXgLDKZGo\nNFP4vGQKcDoZ/PBjfzWf17ZMjDvtT9KKoLpd7Q7tZLvaYVKCBJ9fgNcvwOMXoEoYEXPHIGVoSGka\nUoYCQCEM4C/uLMNsUuGt7+1t+3kQWoehafTblQQOSZK3PenmUaOWiJhIZjpaRdZovMtVMF2548V6\npLbBspqjoeVZrEc6v0tJIBAeToLRzY8ffAerqXMQUWIb6cSOW3JhOS9ChM9ehJRIAgBoNQ/TC8/A\nfOKYUg0xYFdSMlwzoN/994hGg1Blj6G0ZAwjY3XitmDGjVUZt24KWF7PQEYELxwZzAsSQjamM1cJ\nkSiL6XToMjBrRFg0IjQqueriqxayLMMXkrOmlEoyhj9cnAQBTA4yGO+nMTbAYMTJgFd1z4Sv0YJQ\nzbGolvorSjJW3EUpGPfjmFusFCCGBzT59ouJUUWAaMZn4FEhJ/pduePBekTIT/psZeJfcS/yejgJ\nnUqDQYsJdEyP7/3FPJbdSaysJkvef0D5DJw9PPY+ps/7PfQ7OZy7s4JP5/zZvmYesWQGSaHSZt1i\nUAMUVXNi7A8nsR5Oos+mq/s6m538ttNstBVBVRQl/OD9u9vW7tBOOtUOE4tn4PEpooO3SHzI/Xco\nXK3ViwMgg2ZlqHUyHHYVjjxuRY+dx9NP9oKiqlj7E7aFAbsei2tReIMJ9FpJu9RWUU9EvL0YgMXA\nVV3sb6aKrNXNJorK1nZSAKqIEixD4797bT+++x8ubeh8CAQCwWLgEYhsrl1sYbXzLYhElNgm2rXj\nJsaTiJy/jNDpaQTPnENqbjF/m3rHmBLXefI4DF/YDybqBe2eBX37Z6A+XsknauRTMux9SkuG2Qlw\neoisGlem5nB10YdAJAOrUY0ndvXg+Sd3YManQiBBIyYUzpGhZNi0ORFCgo6TWhIhJEmG2y9lBQjl\n70i8cJXW8MDjowzGBhhM9DMY6KHBboEb7GZotCAUJRkudzJf/TC7EMf8YgIpoawCpEyAGB0iAkQj\nykW/YgOx9z5ZxrpfxN6hnmzlA4O4y4SgV411CVhCEuewCgDgOAqDzkK6Re5vZw9f1Ydjx9iuEqGg\nPNYtx6GddjjMmrq9xe9fWsKvvvRYVeGh2clvJ8xGWxFU3/rprW1td2gnG2mHkSQZwXAGXr8AX4nY\nkMqLDvFEdQGBZSk4rByGBzRw2Dj02Dg4iv4YDDRiyXTFZ+pw6OD1VpM8CdvBcK8e524Bn875iSix\nhdQXEVN4ao8T0zdXK27bTBVZs2NjRepTDQ0xmsjgzFUXbMSDgkAgbBC9RrVpUUIUxcZ32iRElNgm\nNrrjJssykjP3ETozjeDpaUTOX4GcUpR+WqeF5csnYDp5DKYTx8Cb1UolhPse6HfeL6RkUIWUjJix\nF6usA3seH0cszQKMKv9cDIDXT+3E80/uhCdMISVxiAoMPltThACakvNVEGaNCANfGtPZiIwoY8kj\nYT5XCeESkSzatDDqKBzYwWK8n8b4AAOnjQbdisrRBRQvCNf8MXh8aQQDMv7jf1rBomsOd2ejJXGP\nNA0M9asxMarL+kBoMTKkAc91rwBRa6e+2XL9TpT150Q/SaQgpmhIAgMxazopCQykDI1/mUngX4rM\nJvU6BjvHdSXCw1C/GnYr13LJdXFfcz1hiqFp7J+0Y+pKdaf0G7N+fP/d27gx668QHlqttGqX2Wgr\ngmoqLeL8TXdT930QqFb9pPg50BgwmXH2k6AiNBRVPfjWhRKj2WI0arpEZOix5/6bh8PGwWxkG373\ndBpV3dsJ28+xPU78w4dz+PknizhxaABsvSgpQttoJCK+8eIOaNVs26rImh0bW03QuT7jw6Eddkxd\ndTW+M4FAIJQRjQvgVTRS6Y1XUG5FpDURJTbJRhdUrey4idEYwh9fROjMOQSnzkFYKlyYNI/vUFoy\nTh2Hfv9OsOtLihBx8e9AxYL5+0laPSTnEDLWPtxJm/Hpmoybt1JY8mcgYw3PL3N47blxqGggkiyN\n6ZSzxpEUZBjVhZhOI18/prPivRJkLKwq4sPcioT7qyIyRcKb3URh32Q2GaOfga2JZIxuRZJkuNZS\nmF2I4958DBeu++H3i5CLjD5pGhjsUyv+D6NaTIzqMDqoAc8/GBPWWjv1r50Yx9tn5hru4LfLU0WW\nZfgDaSy7kljK+jzML8Ywe5+HLGoq7k8xElhtGiwn4evPD2P3hBGDfWqYjGxHvm+NKhVOHhqoKUr4\nw6mSiWhOeBBFCTdm/VUf0+nFfiuCaiiagjdY3TflQUn/SKbEkraKTFALQ8oOj1+AkETez+GD+SQ+\nKBK5AMBoYDEyqCkRHhz2QsWDTss8sGMcoXmMOg5fPNiP9y8t49zNVTx7oH+7T+mRoFELpZZXta2K\nLJUWMbcSampsbJSgU04oKuCFI0NIpaWqlR0EAoFQj2BUqNYd1hKfzq3j6yfacTa1IaLEBtnsgqru\nxXKHDeLMPNynzyJ45hyin1yDnFZ6ihmTAdZXXoDpxDGYvngUvEoA7Z4B7boM6h/eqdGSMQSY+5Bm\nNPj979/EaqDQF0QBsJpNcIdV+MfLKdhtVtB07qIsQ8/lRAgJJo2IVnxOYglZESCyf1Y8Ur6EngLg\ntNNZAUKphDDqHozFeDmSJMO9lsomYChtGPOLcSSSxYqkDJqToFKLYPgMWLWIr54axmvPjXX8/Dpl\nMFhrp/7z+wGsFEUPNVu+2minXxRlrHpTFUaTy65kSbUJoPTpshwAdRo0J4LhFLNJhhNBZd8Cm1GN\nr37J2dnEm7L3vtoCfOpq7Tz5WuZnV+/5EKphXNTpxX4rgqpJz8Nh1sATqBQmuiH9Q5ZlRGJiaXXD\nulDy/+Fo9eheiqJhMbPosfHodfCwW1XosfFw5KodrNwDIzASOs+Xjw5j6soKfvLxPPZP2mHScdt9\nSo8EzXjqbKaKrHgu6A8rhpVylTG7eLxrNRLUauRhNarxqy/twu3768T0kkAgtITFwEMGNtXCIUmd\n96kiosQGaYdJZfHFMuYLYKd3AXt887D/6DPcXPXk76fdvxvmU8dhOnEM+sl+MN55pRrio7+s0pLR\nB8nRD9k+DKgNAKfPt2QEAnGsBVIwGfRw9tizf2zgucLkKBiOQIUkju4wwKwR0cp6LRCR8iLE/IqE\n1fWytoReRXwY72cw2sdAq37wdgglSVkYz84XUjDm7pcKEBSlVEBMjGgxMqzG+9fmERMT5YmpuHR7\nFa8cH+7YoriT6S71yk9XamQhN1u++tE1Nw6N9cHnS5cIEK61FDJlZfAsS6G/l8+3WuTaLvqdarz9\nwUzdyLV2pE/Uotn3PpUWcWPGV/M41QQJQNk5M+t5BKJbH/XZSqIHr2Lw1N4+vPPRXMP7dgJJkhEI\npfMiQ7F5ZO5PuaCVg1NRsFs5jI1U93OwWTgwXe5pQ+gerEY1vvrMGP7hwzn83z++gddP7YDDoiHi\nRIfphKdOMbW8i8opHu94FVO3ba/ysY78Y3cOW3D+1trmTrpJanhvEgiEB4wndjkgyzL+5XJzY041\njFtwrSKixAZoh0mlLElI3ryLE7fO4sDpacSu3ASyJiKyxQTb174M06njMD11EHwmoIgQy++DuhPK\nH0NpyRiGZHdC6hkFdBZFhGAVV/8cibQS0+lPmvGNr34J6qIoz2gsjsWVVax6fFj1+JBIpmAzqvHC\n3iehYmq/BlmW4Q0WJWO4RKwXJWNwLLBjiMlXQgw7GXBdlIzRDLIsY9WTUgwos1UQc/fjJaZ0FAUM\nONV5A8qJES3GhjXQqJX3zhOI46dXKwUJAPAFEx3d0e5EukuOVstPgcryVV8gBVFgsn8Kvg9Smsbv\nfnav5LFqnsbokKYgPmR9H3rtfM2FYa3IteL0jU7R7Hvf6H006VQIxdIV/241qrFn3IIPr1X6NWzF\nYr+VRI/vvLIH8YTQ1vSPHOmMBN96uqiyIVWSXOFfTyMjVp9WazUMnI6iyoZibwcb17F2HsKjy1eO\njWDVH8O5W2v43//mMhiawpefHMZXjo8+UN4qDyLt8tQppt5ckKaUBb1Zx+NglfHuhcODTYkSJw71\nlzz2hSODWyZKyAB6LGp4AskteT4CgbB5tDyLpJCBJCvj0IBDj9dOjOM/nZ7Z1HE5rvPXqI6KEnfv\n3sVv/uZv4td+7dfw7W9/G263G7/9278NURThcDjwJ3/yJ+A4Du+88w7+6q/+CjRN45vf/Ca+8Y1v\ndPK0Ns1GTSrT/iDCH55H8Mw5hM+cR9qb7QmnaegO7YH55HGYnnsS+n49mLV50O4ZUKfPl7Zk9A5B\nsjnzLRngdIBKC9BFBoMZCsFEwRcimSmsiFVMGvOLy3B7/Fhd8yIaryyrrvYaJEmGyyfloznnXBKi\nidJkjD1jSjLGeD+DQQf9QO0iyrKMVa+A2YVYNoYzgdmFOOKJgukFRQH9Th5HDmgxOarDxKgWY0Ma\naDS1f6j1yjTtZk3HdrTble5Si2bLT2UZkEUKosBAQ/P4zz/1wr0mYMmVQDBkrrg/xUhgNUqbBc2J\nsJgZHNpjwa/94g6wdUSyauR2yF45PoplTxQ9Fg1MZh1EId3xlo1m3/t676PNqMb+CWtVczOtmsWt\nuXUAhRYPq4HHE7s6K7bkaGX3kWE2vlOZSIh5gcG3LlTEZgZC6aql0gBgMbEYHyn2c+DhsKny/63T\nkkUgYWuhKAq/9vJu7Bg0wxtM4JPP1/D/nbsPmqLwtS+Ob/fpEVqk3lxQkgGjlkMgmsKNGR8YmspX\nyomShPcvLTU8/slD/fjVlx4r+bezN6obB3cKIkgQCA8ODA3EU4WWU0kGljxR/PD0LM5v0o9Greq8\nqXbHRIl4PI4/+qM/wrFjx/L/9md/9md444038PLLL+N73/se3n77bbz66qv48z//c7z99ttQqVR4\n7bXX8OKLL8JsrlywdAvN9lTLoojYtc8QnJpG6Mw5xK7eyjcbqhw22L/5FcUb4tBOcEmPUg1x9x9B\nfab0CyotGXaINmdZS4YOYAplNGkRCEYVASKQYBBPF0QIlpZh12XyKRk8I+JHS16s+7yIxqtfTC0G\nNXQarkiAELHgLk3GMOkoHNzJKpUQAzR6rVubjLEZnwRZlrHmFfLVD7PZSohYvDTuZsDJ48gBI8az\nKRjjw9q6AkQ16pW6P7W3ryvMCDdC+evKJRBIKTpf+aAkXdCQJeX7GAXw7qIixDlsHBw9NMJCXPF7\n4EXQnASaKV1hJgBMf5aAVku3XN1RrYXi6QMDeOXY8IZfdzO08t43aoV4/dQkGIYuqTLQqlkseQq+\nMLly4QM77FsesdnK7mP5fWVZRjiSyQsM1VororHqEVQMA9gsHB7fqS+pbsgZSdqtHInMfQh4GDc2\nVCyNE4cGAABffXoM0zfdeHzUus1nRdgIjcT5cFyZNJVXyv3w9EzDJI0vHnDijRdLx/NUWsT1Ou1+\nBALh0YZlaYhCZUvq2RtuCJnNeULQdOebuTomSnAchzfffBNvvvlm/t8uXLiA7373uwCAkydP4q23\n3sLY2Bj27dsHg8EAAHjiiSdw5coVnDp1qlOntmnqLSSO9KoQ+ck/Y+n0NEIfXoAYyLZbMAwMTx5S\n4jqfOQy9mQKzOgfafRPUhx/nHy9pDZD6Ruq2ZGQkIBRnlGqIOIOoQAMoxHRaNBlYNBIsWhF6TkKp\nVlDYtfybd+/gbF45o8HSBrCMHlrOjj/8y2RpMoaZwv5JJu8JYTVuLBljs6aLrfokyLIMj08RIGbm\nlfaL2fvxisVOXy+PJ/YZMTGixcSYIkBoWxQgalGr1P07r+zB/8/em0c5ctbn/k/t2tWtrdfZp2fx\n7IM3bMbL4J0Q+7IY27FzSAyBgMlyIMHXMcy5ucQEcBJywyUEH7bYcWxCCD/yw2SwsXHAHo+Xsccz\n42U2z9L7plZrLUlVdf/Q0lqqpFK3tu7+fs7p04vUUunVK6ne532+z3d6Wj9/YaHUEkZYC6m0itGx\nTNgkF3PAkfBieCxThgGtdD5oYAUVNpeCFX0WXHdpD1b22dDbLcFq4RCTU/jc/30eiWT13sfzcXfo\nlVD89NenEYsnKy7eFzpHax37ai1DC10GVonHX37/Jd37ff3kFOSrlbaxgSuqhuBMCsPjIZw4NVMk\nNoxPyZicSkHW+fAEAFFk4PeKGFhjLy+t8Ino7BDA1dimtZU0Kmx2KbOUNzZySCKHq3f3t/owiHmg\nqCr+/dlTiCbKy+uMePX4JN5/2WpT7UAv2dxd1q3qkf1vU8glQRBldDpEbF7twQEDN8RCBQkAEJtw\n7tIwUYLnefB88c3H43GI2VBFr9eLiYkJTE5OwuOZ2yXweDyYmDDfv7lV5BYSr701BvH4cQyMnMKa\nweOwnD2DXKSb2NMFz+/shfvKS+De3AsxPAJ2+ASYoz+qUJLRnREhCkoyVA2YzbbpDMY5hEvadLoL\n23RaVJg5V0+lWFy4cT0mZzwYn2ahada8yBCJAT0+Buv6Mk6INb2s6c4YRiff9QpdrFSrf/t7BzAx\nlcx3wMg5IcoEiICEnVtcWLc644BYs9LWUCu3kdWda2Cv+lrCCPVIyAqGRmScH4nPdboYTmB0Qs5F\nn+ThOB6cmAYnqkWdLvZe3I33vqsPYBj4O6xl92mTBLxne0/FMMoctbo75lO+Uq85WuvYmymFyLkM\nxoOxqi4Mt0MytQBe6EI5mVLLnA2FX1PBZNlcyeGwc+jrloraZGbcDpkuFi7n0shzaGTY7FJnKW9s\nEIuf0nORHKLAIpnSXwAEwwkMjkeq5jGxDNAfcACYe5/e/+K5gk0kgiCIOVb1OPE/9qzB2+eCprv6\n1Irf3fj27S0LutQMCoGN/l5IZ6cNPN+63ab44CgmfvFrvGf/r7Hpl88jHQoDABiBh2PPxei6YQ+6\n9uyA1SJDOXsc6fMvAM8XdsnwQfF1Q/P3ge9bDYvDA9HhAidaAACqpmEmCoyFgPFZDZOzxYnOHjsQ\ncAMBFwOvk8nW2leu9ZmcUfD2GRnHz6bw9tkkhidyNUcOcCzQ18UirYQxNj2B6fAUhLCI9XwPrr5k\ni6nFs6Ko+O5/HsMLR0cwMROHv8OKS7f24Pffn/n/h35yRFdMsFlFfPyWbabGPZFM4/VTGft/plyA\ngZLgocgcfvazWez/zyOYDRe37+vrseCS3R5sXO/EpvUODKx1wuloXb5r6Z6Y3+9s2H3dc+su2Kwi\nXjg6gsmZOHwlzwkAhGZTOHM+hrODMZw9H8WZ8zGcOR/D2ET5m5rDzmPzgAurV9iwaoUt873fBr9X\nxPd/9kb2fmT4Oqy4eEvmkX7jP47qzgejYwQD6HUd8nVYsW61FxbR3HM3MhnFtEHro2A4AU4U4PfZ\ni/5ejzmaw8zY61Ftz9TptsLfqd9i0+u24L+PjOLlN8fyY37h5i68f89a+Dqs+bGr9lrNEYmmMTqe\nwOhEAmPjcubncTn7ewLTM/o7hAyTKa3YPOBCV0BCt9+C7oAF3QEJXX4Luv0SbLblkbFczzlVK418\nb2kGS31jg1i8VBK9JZ6FVeJ1WzZ3Oi3oDziq5jH1+R2wWXg8+tTxvKC5BDRagiAaxGsnpvD6yQOm\nz5HnQ6wGV9h8aeqZoc1mQyKRgMViwdjYGAKBAAKBACYn52rkxsfHsXPnzoq3EwzGGn2oRajJFCIv\nvpbJhnjmecTfOpW/TFrZh85brscbHX0I2XisEoJYzb0D9sAbyH3kqDYntHyXjFWA3ZPJheCtSDIM\n5DQQHU8jGI9jJs5hJsFBUec+geyims+E6LAoyOsxKSA4XX68mqZhPKjh9LCC00OZzhjBcEFnDAHY\nsGKuFGNlN4ufHTxb1LZvPBg3ZXXP8ehTx4tOvgv//4NXrsNzh/VTpp87PIwbL15RcadW0zRMTqdw\n6FgQZ09oSCfsUGQOmlK8uPN5GVx2YQfWr8l0wVi7ygaHvXiKJ+JxJMrXcy3B73diYiLc0Pu45fLV\nuOGifpwdimJ2VsPYeBIPfP1NDI4kcH44USbiAECnW8C2zc65LhfZThcdut0I0piZSeOWy1fjxotX\n5Hfe//3ZU7rzIRxJlAV3Ff7v/hfP6dbabl/nRTgUh9nRUlIKPE7jEgolmSoaezmlLGiO6lE6JpLA\n1aVcZ/s6r+4OnUXk8cTzZ/K/jwfjeOL5M3ji+TNFHUcef/oknnxpEJrCQE1xGJxN44enhvDcr8Po\ntNnyrTMLQ14L4TkGXo+ArZscBW0y57pY+DwCBH7utVk8z1VEo3FEG1O11FY0Yk6ZpdHvLe0geLTr\nxkY7jM1iZbGMXSXROxwv/0zNcfmOXqxd5cXlO/p02yQDwNpeF772mT34wRNvFr3Pm5jWBEEsY1St\nOOSy3qShNvw9uqmixGWXXYb9+/fj5ptvxi9+8Qvs2bMHO3bswP3334/Z2VlwHIdDhw7hvvvua+Zh\n6SKfH8bM0xkRYvY3L0HNdqlgLBLcV18G91WXomPHatiEKEJvH8MtqePInYZrvADFmy3J8K8AOruz\nXTLsAMtB07JtOme5fIeMVIEIYRVUdDjSeRGimvAVk9M4eV7GxAyP82Mq3inpjGGzAFvWcljXm+mO\n0edni+qx5ZSCF47qJzqbqeWvZpW/Ykev6eA/TdMwFUzlAyhzZRhzi+eMm4QVFPDWJHiLAk5S4Pfz\n+PIf7ljW9dqKqmFsQp4rt8gKD0MjCcQTxfYDhgECPhEb1rqywoMV/b0W9PdIsGd3sWu19+dKDCrN\nh2dfGwYYBndcM1BkX8/97x3XbigLdpxP+8haSygaFQwqCZzpcgqz6GVQbF/nybuIgILg0RQDNc1i\ncAo4d3wKz/4yhuBMGqmkuywD5ORkCkAIFomF3ydis1cnz8ErosMtgF1EeQ6totFhs8uRdt/YaIbQ\nvFRZTGNXSfTWw+vKfI69/90rMTERxvvfvbKoTbLbLmJNjwt3Xr8BHQ4LxicjhoImQRBEK5ieidfl\nPbqSsNEwUeLo0aP4yle+gqGhIfA8j/379+PBBx/Evffei8cffxy9vb245ZZbIAgCPvvZz+Luu+8G\nwzD49Kc/na8NbTZqMoWhv/02gj97GolTZ/N/t6xbBfdV70bHpVvh7reBnzoHduwUmLffBAB4GQZa\npx9pbzdiri4cizpwdDiJ4REGf3rHdkgCh0SawUyUQzDOYibOQS5o0ylyKrocmXDKDqsCi1BZEk+l\nNZwbU3FqKI0DR8KYjQoAOAAZa43bwWDXxmxnjF4OAQ9TsTNGKCJjYkbfPmDm5LnayTc0TdeuqGmA\n02LBiZMJPDU4g9NnMyJEaLZY6Qv4RGzZ0IF1q204Nz2Nw+fGyro0XHhB97IRJJIpFcOjczkPOfFh\neExGOl08LjzHoKdbwoqs2yHnfOjttkAS9csIFloHX61N2jOHhsCxjG6GQi2tJquht3i/fEevbveN\nRgSDNipPgGNZfHDPely6sQ9nB6OIxYCh0TjOvc1BTTugpFhoaQa58NtCxmdVMBwyLVcFFSyvZr4L\nGnhBxb6P7cbqXseSyHNoNY0Km13OLKaNDWLpUkn0LsVtF/HFj14Ip22uY1q1z7lKn6EEQSwvBC7T\nZbHVzBi4w+pJw0SJrVu34uGHHy77+/e+972yv91www244YYbGnUopkmNjmPkGz8Aa5HQce0euK+4\nCJ2bu2FjwmBHToCZfg7IlkuoNifU3lVQvN04rXTi9VENx96U8c5ECooWgiSK6Al48daYgIQqIV7S\nptNf0KbTKmgV6wUTsoYzI5nWnKeHFZwbVaHkN74tUNQ40moYaSWMtBrG7s0B/M615lsDuh0S/B36\ndeouuwirVHmaVDv59nfasGuDH794YQjpBJfPgUgnOMwoLB58/Uz++n6viEvf1YF1uTacq2xwOefu\nX1EDePxpfsE76YuBWFwpcT3EMTgiY3xCLsoYAQCLxGJ1v3VOeMh+7/ZL4LjyySWnFIwHY7qL/kph\nomZKeaq1SQOA37w+UnGxXkuryVIKHR6lJ379vR26Su9Cg0H1mO84apqGaEyZa5M5mSzpXJHULbsB\nRAAaGF4DZ1HACWqx8MCr4EQVHU4RMzr1zl6XBb0BGwkSdaIRc2o5sRg3NojlQ+6c4+W3xnXfT3PM\nRpOIy+kiUSKH0eecmc9QgiCWByzLomDR1zLUJggjjGamALPNaKTFL/XG6xCjw+AnzoCZGsrvNWq8\nCNXbNVeS0dEFiA7IjAX3f+clzMYUdPm96A740B3wwtPhzt8mx2joyHbH6LSqsJe16SwmHMuUYOQy\nIYYn1Xw9IcMAfT4WK7sZHDh2CsHINDQUL1C8Lgu+9PFLajrp/clzZwxrHD1OEbs3Biru8JZmSqhp\nBukEh1WeTtg4K06eiWEmVHycNhuDrRtdWL/ahvVr7Fi70gq3q3JgZ46l0GLP73difHwWodl0XngY\nHM64HgZH9IMEXQ4+IzhkRYecA8LbKZhaTFbbvZdTCu5/6AXdk6Fa5lXpfDDDNRf2mxI9jDDjTKhk\nEZ77f/3WnLVQaRw9Tgs+e+tuhELpso4V41kBIiHrfwAJPANftoyiqLTCJ+LAm0N4/s3hiu8tXlem\n1EMvt2Oh42/EYrJl15t6zqlaWA6ZEguhUWOznOf6QlmsYxeOJbHvuy8aChMep4S/+oNLaz5Pmc9n\nKEEQRKO4YnsXPnrTlgXfTkvKNxYjTGgSjlf+DUC2S0anH4q3G6qvF5qvH5BcmWwIToSiMQglMqUY\n1155OXjRmlGzAKQVBSNjE7ALKVy5rRNOybhNp6ZpCIY1nB6ac0JMBOd0Io4FVvew+VKM1T0cLBKD\n8WAMTxwch56iNJ965d9//5Z8jePUbKLosulwEk+9PAhV03DntRsSM7trAAAgAElEQVTL7y+Uwnqf\nH8ekJM6ciyMeZaBly1PeGE4BSMHbKeCSXW6sWmFFVxePbRvd8Hvmb19eyE56K1BVDZPTybzgMDiS\nwNhECu+ci5a1LAUAn0fArq2uoqDJ/h5LkWtkPlTbva9XHfxH9q6Hoqh49rXhMleHEWbySyqxUIdH\nvUpHUmkVJ8+GMTaqQEmJUNMM1BSb+UqzCKZZfOqVN3T/l+U0MJwKmxvoCVhw2Q4/unxSXnhwO3nD\nPIfNAxtgd7C6r+Ec+QVxHXI7iOrUsxzJLHJKwchkFEpKWbSCLUEsFpw2ERduChgKCLs3+uf1OvzI\n3vWIJ9Km2oCyDEx/zhIEQejBALpryhy8juu63pAoUYBmcyJ1wYWAZIMaWAnYOrMBlTaoYBBOsAjO\nZoIpQwkWWtZHIVkEyIkozg6N48zgKNLJOHas9+B9e9eDY4t3PFVNw/i0itMFTohQZG4aSAKwceVc\nZ4wVXSwEvnwi1LtemeMyJ8/vv2w1/vybz0NOl+/UPn9kFNfuXoXBITkfQnn6bAxTwcIdfQ4dbh7r\nV9swsMaOdasznTA63OYcEIuddFrDyHhx3sPgcAJDozLkZPGYcizQ5ZewZYOjKO+hr8cCq6X+i4lq\ngaQfvHJd3eYVx7KZLhsMg2cOmQvsWkj4n5nHZvbEsJrglZCVfIeKUqfDxFQS0zOprLPJUfa/DKdC\nsmnYtaljTmzwinj55AhePD5alJUyjTASooTLLzbnXihcAE/PJvDUK4N4/eSU7g59sxfKy51miKhF\nTqGwDI+zPhkmBEFU5iN710PTNDx3ZBSJZGaTwSJyuGxb97zFXo5lcef1G3H0nSmEopVb8ZEgQRDE\nQhEFQK7wVmMRykvQ6g2JEoUIEtQd1wOsAI3hEEmyCMYyboiZOAc1n1avwSGqme4YVhVuqwKeZSBv\n8CEUcRad5CuqhqEJNe+EeGdYQaxgE9NuAbatywgQa/o49PqKO2MY0ah65VBEzgsSaprJZz8oCR4z\nModP/lnxDq+nQ8BFO9158WHdahs6l4EAkZAVDI3KBUGTcQyOJDA6LkMpMT6IAoO+HkuZ62H7Fh9m\nZprXG9GsC6Ke8yrTZYPJ78p3OCTE5HT+xK2QhYT/1cvhoWkawpFcnoOcERpymQ7Tme/hiH5hHcsC\n3k4RmwcyrTLHZsM4OxkqynRg2FyZxLr8/8kpBf924FhZeCswP/eIJHDo8dpx13UbIV9tXOa02NxG\nRGUW6hQiCGJ+cCyL37l2Iz501fpMaLimwd9pW7DYKwkcdg748Oxr+t3RCIIg6kUlQQIA2CYoBiRK\nFKBpwGjMgalYRoRIF7TptAkqOqzZNp1WBXqfNZLAodNpxdlRBe8MJ3F6SMGZUQXJgie608lg86qM\nALG2l0Ogk5l3sJxed4H52rCDoSQOHQnh1TdmEBmyIS3z+RKMHAynYutmO7ZucGFtVoDwdCxtASIc\n0c97mJgqrx+1WTmsX20vEh76eyzw+0RdoUkQmrt7adYFUc95pbcr/+/PnqooeswnL8TsY1OUTBlN\naXBkTniYnDbOcxBFBn6PiHWrbEVZDgFvxvHg6RCKQkUr5QkU0sjWkSQ8LA/q6RQiCGJ+SAKHfn+5\nQ24h8By5nAiCaD1MEyIoSZQoIJ5i8PZEZvEi8Sp89nTeDSHx+k9GPNsZ49RQxgVxfkwtCknt6mTy\nAsTaPg6dzvp9wMzXhj0bTuPU2RhOnYnlvxcvskUwnArBngInKeAsafAWBTYbi/s/s2vJndxqmobp\nmVRRe82cEFHanhQAOt0Ctm12ljkfOt18W3cuMOuuaYS9v3BxbCR6fOiqtXj0qePzaqGZe2xPvjgI\nNZ3JbsjlOKRSDnzp705hYjKJyWAKiqL/WnbYOfR0ScUBkgVfbmdtz6/ZcaTWkcRCCUVkw6T+6dmF\nCVsEQTSGagK8nFLw2onJFhwZQRBEMYUb9Y2CRIkCbKKGXX1xiJwGq6C/cJmNFnfGGJlU88EgDAP0\n+1msyQoQa3o4OGyNfxIr7YbORtI4XSA+nCwTIAC3i8e7L/RgRW9mF/j1cyN47o2RshT/y7d1L2pB\nQlE1jE/IBS02c3kPCcTixbvjDAMEfCLWb3cVuR5W9Fpgty3el00tLohG7bIbLdZL08b17OexuFLU\npWJiSsbkdCrrdpAxE+oou7+z02kAEXS6BWxa70Cnm9cVHWzWxsztauNY71KspdCZhqiNzHPNQE6V\nf26JAkvCFkG0AKP3YjOdooDKLjqCIIhmEos3/r1o8a6uGoTbMrc41TQN07NaXoA4PaxgcmbupI/n\ngDW9bD6UclUPB4vYup3ycCSN02czwkNOhBifLBYgXE4eu7e5MvkPazI5EN5OAYGAK9+O6107XLDZ\nOd3AtMVAKqVieKw872F4VEYqXXzSznMMerol7OgpbrHZ222BJC4922Q7hRwWLtbllIJDb09kOlUU\nuBzUNIsnngjhxf9+A5PTKURj+nkOHAf4OkVs3eSAp1OA08Giv8eK3oAFfq8In0eEILBt23auHiUz\nZk90iaVJ2sABlG6D/uYEsZyo9l5sNv/FKvHocEgIRkiYIAiixTCNP48kUaKEiRkVx88peSFiNlrc\nGWPTqrlQypUBFrxOZ4xmEIkWCBDZr7FSAcLBY9dWF9attmH96kwGhLdTqGpBb6eFayVicaUo7yH3\nfWxCLkujtkgsVvVby/IeugNSUQ7AcqEVWQOKkimTyYdITs7lOoyMyxibtACatez/ZADpmIyAT8KG\ntTaEEnGE4nEklCQ63Dx2bu7E7940AJFvvzlqlnq85ijocPkyEYwhrQCawkBTGDCcBjZbcqiomcv7\nA8a9wQmCqB+V3os/eOW6qvkvPMfkRY35ChK7B3w4RKUfBEHUCatEokRTmQqp+OrDsfyC1mFlsH3d\nXChlr48Fa6IzRr2JxtI4dTaOU2ei2RyIOEbHiz+onA4Ou7a6sHaVFetXZ1px+jzVBYhKmF24NtIu\nrmkaQuH0nPBQkPdQ3Io0g8vBY9OAoyzvYaFjQVRHTqqYLAyPLPmaCiahGmzaOu0cJKsGlU1lu1Vo\n+a4VPo+ABz55MSwiny3xmATsgAggpqXw/Btx2Gzsklh4z1csoqDDpUdCVjAbTmM2nEYonEY4kvk+\nG05jNpLOXzYbTmNmNoVYfK50ieFUuNfOzpXg0XsfQTSFau/FV+zorRps/NQrg7rlfADQ4RARjiVR\nzQBFggRBEPXEYW18GSiJEgV0OBnccKkIu5XB2j4O/o75d8aYL9GYgtNn58ovTp2JYaREgHDYOezc\n4ixqw+n3ik0/1nraxVU10xWhKGgy+z0SLbfs+zwCdm5xljkf3K6l3Q1kISxUPIrG0gVZDuXig14o\nKJBZD3k6BGxYay/LcQh4Rfi8IqyW8kyJHBde0AOLyNPCuwKN7OBBLBxV1RCJKQiHDYSFSE58SCEc\nURAKp5BMVk+6ZtmMEOvpFJFmI9AYFSyngbem8zqEReTg7yh3IBEEsTD0PlOrvRdD0yoGG1slHofe\nHtf9fwbATKS88xdBEESjWdfnavh9kChRAMcyeO9FYtPuLxbPChBn5nIgRsbKBYgdF2QFiGwZRisE\nCD3mYxdPpzWMTsjZ9prxvOthaESGnCyW/lkW6PZLuGBDifOh2wJrg0IJK2F2Ud+KoMFK92lGPFLV\njCMlV1IxJzbIedGhNAw0B89nWmWu6rPm22TmBAe/V4SnU4DAVxepquUq0MLbGOrg0VxSabXIqZAT\nFowEh3AkbegSKkQSWbicPFb0WOFy8nA7eTiz311OHi5H9nv2Z7uNy7v3/uXJt/HLV4bKbnOxBxQT\nRLtR6TO12nuxv9NmGGy8Y8CLHz59EtNhfeGh8Q35CIJYjog8iz+9dTu+8uhrhtfxuRu/uUGiRJOI\nxRWcPjfnfjh1JobhEgHCbuOwfXOxABHwtYcAUUq1XevfevcaTE6mypwPI+MJKCXGB1Fg0NtdXG6x\noteCnoAEQWh9QJ9ZR0grggbN3OfjT5/Eky9lW2WmeAyHVAy+M4GXDybgkqwYn0picipZFgKaw2ph\ni90NvtzPmfaZHS6+LmVN1XIVaOFtTL07eCwnNE1DPKEalEqkMBtRMt/D6fzPRgJdKQ47B7eTR09A\nmhMWnMXCgtsp5H+WFlCzedt7B8AwzKINKCaIxUK1DZlq78VGArymaXju6GhzHoRJLt/ejXg8hUMn\nplp9KARBNIhkWsWDjxkLEgDw5pkg3rOjscIEiRINIJ4TIM4WCxBawZrPZuWwbbMzE0C5yoa1q23o\n9renAKFHbtdaVRioSRZKkoOSZKHIHEIpFh/9oyNFjxfIPOZ1q+1zroes+OD3ieBakNVhFrOOkFYE\nDebuU1MBNcVidETBz86N48hrMgIuB8YmZJw6F0E65UbG/DnHO1NpAGG4XTxW9VuLSyt8c04Hu41r\n6rw0ylWghXdl6tHBYymgqBrCkXSmVKIke6G4VGJOfEgbCHKF8BwDl5NHwCflHQuVnAxOO9/UEN1C\nUY8TBSjJ1LJ/TRBEvci5Ea0SX7WMsNp7sZ4Ar6gaPvd/f9O0x2OWvbv68LV/fbXVh0EQRIOpllNz\ncjiI9+zobegxkCixQOIJBe+ci2cDKGM4eSaK4dFyAWLLRsdcF4xVNnQHpEUjQGiahuBMsevh3FAc\nodNuKOnyx8AJGjZvcGBFb0Z0yDggrOh084vmMefItKrUr+889PZEPsegkXkHmqYhElXKchzGJmQc\nfnsWSdkFTSneYX1rPIW3EATDAAwH8FYlHxyZ+86LKv73Jy5Ef8Ch+7hDERmC2PxclUrUsvBuRRlN\nK1ksXXNqRU6q5bkL4Uzugl6pRCSqlAmielgtmVKJNSvmSiXmHAxCkaPB7eRhtbBt9VowQhI4+H32\ntmx9SyxvFuN7cqkb0e0QDXMdCssIzbwXFwrw3/n/30Ai2X7te//p/zvalsdFEERzCYUb35qYRIka\nSMgZAeLkmRhOZ3MghkYTRSfAVgubESCyAZTrVtvQ7Zda0rWjVhRVw/hkMhswGS/qdKFnV+YEDbw9\nDU5UwIkqOFEBK6q47pK+JdEJAcg6QgzqO6fDcv4EZCF5B6qqIRjKtMqcmCzpXDGd+VtCNjgpYBiw\nvApOSs2JDoIKXlBx7+/uxKo+O/Z996BuyYPXZYG/s9iK1YoSlFows/Cu9BiWA61o92oWTdMQjSnl\n3SQqOBkM534BLAM4HDw6XAJW9FrLnAuljgang4fYBqVhBLEcaPfPlUo89ssTRVktlYImS8sIa+lg\n9ta54MIOtEGMzzR+IUIQRPuTSDVenCRRwgBZVvHO+RhOvpMtwzgbw9BwIt8uFAAsEosLNmQEiPWr\nMyUYPYH2FyBSKRXDY3KR6DAynsS5wVhZrgDPMejpkrDjgrnMh6Pnx/DSiREwJecSFpHDe7b3LanF\nn1XiwTIoet5zsEwmHHU8GINV4g3zDjrsFsTjwOuj4WyQZCY8ciasYmgkhqnpFNKK/tau3cahOyCV\nda3we0W43Ry+9tgrmNZRL70uC9audNRc8tCKEpT5UOlkr9Jj+OPb39WU41vq5HY87VYRckIrzmAI\nZ3IXcqJCXAYmpxIIRzKCQ2mmjB6ikCmV6O0uLJUQ4HRwcxkMBV+OgsBHgiDai8XyuVKKnFLw3BHz\nGQ/zLSOstKmhh8cpYtcGP144NoZoQr/rFUEQRD1xWBvf3ZBEiQLkpIp//rchHH0rjEEdAWLTgCPf\nhnP9aht6ulovQFSyQ8bjCgZHsyUXBQLE2Lhctsi2Wlis7LMWtddc0WtBl18CzzNF9/efh94sEyQA\nwG7hM/XMbb7zUQtxOa0rSAAZoeKvHn4FM7NJOEQJUHjIMxqUFJsNlcx8BRUWf3LoLd3b6HTzWLuq\nMM9BKgqTtFXpMrJ7Y3XBwWzJw1JouVntMSSSdAJnhKZpSMilpRLpojaWoUgK7wxGMBtOI50CNNXc\na91u4+By8ujyS3A6DLpJFDgZJHFxlEoQBFGZxfy5MjETRyJprKJ2OETMRpPzzu8pzKnocEgIRswJ\nE5/54HY8d3QUksAimqjpLgmCWMJcubMHAs/hN68P173sqquj8Q5cEiUKmA2nsf9XExD4rACxyoa1\nq61Yv9qO3jYQIAoptENOTidhFyzocrnQ7XJiaDTjgpgKpsr+z27jMLDOjpW9GdfDil4r+nss2LTB\ng6mpSNX7rVymIC+5towuu4gOq4TJYDojMhSIDWqawUyKhabaMGe8LFASGQ02G4vVfTYEfFJRm0y/\nT8SmDV7MhqILOj4zgoPZrIGl0HKz2mMIzspNedNrh9ppVc1kkYTCKYQjBRkMOm0rc66GZMpM0zkN\nDAewvAaGS4HhNKzsseOiC3zFgkP2a+3qDgSDC5vnBEEsTpr9uVLX994q4TT3fGArHFax5vsqLWfp\ndIqQRHOfTB6nhP9+fQTPHCpv/1sLIs8gldbgtguYiZafKxIEsbiwiCw4jsVNl67Ef79Wvlm5UEZm\n4nW/zVJIlCjA7xXxyDd2QBDYtusGoWkaJqdTOD8cx+BIAr96aQznhxNQZAmaasUMgCHIADIf/t5O\nATu2ONHfY0Fvt4QTo1M4OzGNUFyG4pLQ0e/H+/auyLsazAouS60tY1xO4+xQFLIMzMzMhUlmAiVl\nTE6lICcNWuAwGlhBBcenigIkOUHFxVt8uPvmjbBKxi8xSVy4o6SWcMNq9a21PrftsPAupdpj6HRJ\nCIfq88aq9/gbWTudSqlzGQylTgadLhORqLHLpxCLlAl8XNlvLc5gKBEYLBYW/+fHryIYlVFqYmBc\nKm656QLdecDzS8c5RRBEbTTrnKER773+ThssIqu742gROfT5naY/+wo/L/792VNFDsdMbpVxVkUh\nO9Z78frJSVPXNYJjGdgsPGYiqUwulUGJKkEQi4dEUsXTrwzhN4dHYMYUzADgWCBt0lCRquAaqxck\nSpRgkVq7uEqnNYxOFOc9DA4nMDSa0Al84zKhhtYUWFEBJyrweHj870++Cx1OMX+tR586jsPnRvK/\nL6Sec7G1ZUymVExmwyILO1eMT8o4MxRDLKYCmr4g47Bz6OuW4POKCMZiCEZjSKhJuF0cIikZDKuV\nLc5ynJ0MNdVZU49wQ7PPbTuHllV7DBaRx0J7ElR6/GZrpzVNQyyuZjIYIsUZDHrhj6GwucBHhsnM\nW5eTR3+vpTiDQSf00engTYtj48EYQrFyQQJYPE4agiCaS7POGeqVW1EqNl+2rQdPv1LuSrhsW7ep\nY9f7vIgmancmsAxw5c5eXHPhCvzq1eGa/7/4mLSMIIHKwZ0EQSw+kiZVBg3mBQkAWBGwz++AaoBE\niRYhyyqGRudEh3zg5JhcFnoo8Az6ui35vAeXm8Fjz74FVlDLsh1iagqRRDIvSjSinrOWtoyNJhpT\n8sGRedEhK0BMTicRDBnLhQyngpPm2mRygordmz348DVr4PeKsFqKx6Ww/vMvv/+S7s5PjsW6SDPz\n3NYztKwRbotGz0+9x//kS4OIxlQcOTGNVIyHpjBQFQaawkBTWPz85yG8eeg4IpG5zhNG4aaF8DwD\nt5NHT5dULizoZDM4HHzDXF5LzSVFEERzaPR7cj3Oc4zE5luvXgeWYXDo7QkEwzI6nRJ2bzTfzUnv\n82I+aACu3t0PRdXQ6RQNu4IVcsXObpwcnMXwZGxe90kQBJFjVbe74fdBokSDiUTTZcLD4HAC41PJ\nsnJFm5XF2lXWfJeL/p5M8GTAJxYtNOSUgqffOKX74aZpwNd/+Bp2bwzgI3vXN6Ses5aSgYWgaRpC\ns+niFpm5r2zrzFhc307Ecwx8XhHbNluLshx82a4V//DjVzGtEyo1Gp1BV0Cs2lPcaOcnx2JdpFV7\nbuslcjXSbVGP+SnL6lwGQ0GpRDCUwjMvzyAetxeIDgw0lcUTJ2IALPq3B+BoMAKbNeNi8PtsZcKC\nw87i8OkJnBmbQTiRhLdTwO5NPtz23oGWO1CAxeeSIgiiPWj0OUM9znOqie3zOfZKn5e1Igkcvv7D\n1xAMJyGJ1e9fEljcdMlqfO30q3W5f4IgljcTdSp9rgSJEnVA0zQEZ1J50eF8VoAYGkno7tR3uHhs\n2ego6nLR32NBZ4dgKnG+0uIAyNQn5i774JXrGra7udCSAUXRMBVMluQ4zIkOk9NJw+A9i8TC7xOx\n2WuHp1OAw8FiRY8VPQELAl4RHW7BsHxiPBgzTLk2ewKT2yX5zesjuunci32RZvTc1kvkakaLuNxj\nUNVMy8rZcBrD4yrOD86WZTMUhj+Gwikkk5VcDLm3TQ0Mp4HhNXDZwEeLhUFKVcBwKtjsZQynwusW\n8aVPXAR7hZZKjz51HMdGMu3nWBEIRmX88pUhMAzTNm3z2sklRRDE4qIeZYZ6LNTFJacUHHp7XPey\nQ29P5MX2Wo+91laflUgklfy5Ru67xLOQDfzXckrFXz38CsIxCrEkCGLhJJONfy8hUaIGFFXD+GSy\n2PWQdT7o7dgHfCJ2b3PNCQ9Z8cFhX/iwzy0OJgztgLmd62q7m3JKwchkFEpKqetCWpZVTEwXOhvk\nIgFiOpgyDFdyOXis6LXC7xPz7TLznSu8Ihx2DqqmZXfbBzE9IsMzlt1tX7u+Yp5DPWzouZ2fW/as\nxb8+eRxvnQtmrZ1Le5FWj7FbqNsilVbzbSqLMhgKHA2Fv4cjaagm6uYkMRP4uKLHWtamMudosFpZ\nfOfnRxGKl2eKeF0WbF/nwTM69b4XbfVVFCQWS9u8ZrmkCIIgzLJQF1coIhuWQ0yHZZweCmFtn7vm\n9zq3QzJdaqEHw2S6bUTiKcip8g8xu02ARVERMuieQYIEQRD1Qu89qN6QKKFDKqVieEwuEh0GRxIY\nHk2U7dxzHNATsGD7Bc4i10NftwWS1DjLdW5xcMX2Hnzxuy/pXie3c220u/mhq9bi0aeOZyz0YRke\np3kLvaZp2TyH4hyHQsfDbFg/z4FlAE+ngI3r7QWCg5QXIHwewVTg6OO/PDGv3fZ62tBtEo+7f+uC\ntuxE0QjqMXaFu0eaBkAD1DQLTWEwFk3j50+PQVO5AsEhFwaZ+TkWN/fG6LBzcDl49ASkfLhjT5cN\nPKcWZDMI+TBIs6/XS4Z8ho//I3vXg+PYmp0Ei60da6N2PAmCIObDQlxcVomv2IHia4+9Bu88Sgwl\ngcOmVR48f3TU9OPI4XFK+MyHtmP/wXN44Y0x3evMhGVcuqV7XrdPEARRC3pdiOoNiRIFhCNp/OXf\nnsTpc7GynVVJZPNOh4z4kMl76PZL4PnWtQ/1d9rgrbJzbbS7+ehTxw0X9bftHcDMbDorMsjZjhXF\nwkM8oT9BBT6T57BmhTUvOvi9Ivy+jNvB0yEueMwWurNcbxv6clqkVRo7RdUQyTkWIum8o6HQuTAz\nm0LkvAupFKApTFn3kx88Xn6CxXMMnA4eAa9U5GIwCn10OnhwXPkc8/udmJhYWP+NSo9/vk4CCpEk\nCIKYPwtxccXl6u2T51tieMe1Azh0fEK3zLMSO9Z7KwoSQOaz4Y5rB+DrtOHXrw4ZlqUCAMvClGPQ\nDDwHpBvfHZAglhU2iUMqrSDVpq+tgX4KumwqmgaomoYNa+3o751zPfT3WODziE1t8WiWWnauCxfO\n0XgKLx6ZRCrGQ02xUNNM5nuKxU/OzuI/fvga0mn9T2mblUUgX1YhFZdW+ES4nXzDx2qhO8tkQzeH\nnFR121SqYTtWWUU45CTiMxqefyaF//rpEUSiSlmAqx48z4JhFLBSNnuBy2QvbFjlwhW7urMCgwCX\ng4PLKcBmZU3lrTQDM3OnVpGKQiRbx3JxORHEcmA+GwRuh2S4uVNKreV0NknAe7b3VAzGLqXbY8Nz\nR0cMM7Vy7BzwwiYJ+Pgt23DVjh7c+60Dhu0AVRXwuiVMhSoIFxXcIoWQIEEQ9Scm1/eF5XGKiCbS\ndSu7cNrFutxOJUiUKMDl5PE3+za3+jBqRm/ndttaLy7b1I9XXg+Vd66YSmJ6JgVN0+8UwHAqVvVJ\n6A1Y8u6GOceDBLut9Sfu9dpZXk4OB03TEIsrZQKDUTbDbDiNhFz9zYxlAIcjUwqxoteaL5VwO/Qd\nDS4nD45DNg9E322wGKj33KEQyebSyA4wBEEsHqqFhxcyn3K6nIvw2VeHqi76LSKL0WlzLTwLb+qJ\nF84aChI5KgkSHpcEVVEwEzVuo04QRHsjCgwu3dKN6y9aCY/Lgu///C0crOC2qgW/W3/NWE9IlFiE\naJqGcFTJB0hOTCWRmLKhM92FZDSBscE0Tr4cxX/88K2y/2VZwNspYtN6OwanQ0hpabCCCpZX8999\nHRZ86eO72nrXkHaWgXRaQzhaICyESzMYUnnBISc2KCaEWFFg4HLy6O0qKJUozGBwZjIYcn+327mi\nlrVmIadKMeTeaS7N6ADTChoVXEwQS5lCUXg6nAADfdfAfMrpOJbF9RetwDOHhqpe14zTMMfhE1P4\n8FUKEsn0gluPbuh344U39DuQEATReixiJuA/WcH58D/vfBdWdbnyv99wyYq6iRLDUzH0+Bx1uS0j\nSJRoQxQ102K0rFVmVoCYnE4a7mCLIgO/V8S61baSLIdMmYWnQ8jX2pdmSuRYLIv6pbSzrGkaErJ+\nqYSRkyEaM2f1sts4uJw8Aj5JP4OhxMlgkZpXKrGcnCpmoTFpPIul20ktFDk/agwuJojlTqkovP/F\nc7qdlOZ7flStRMTrkrBxZScO1BBamXNtcKKw4Naj11+yCsfPz8y7U4jZ0g+CIAAGxU4nI3Kvqw6H\niF0DPlx/8Urc9+0XdF9rLAN4nMVuhtLfjbCIHNb3uXD0naDhdZJNqNsiUaIFpFIqJqcLxIbCr8kk\npoIppBX96eqwc+jpkooCJAvLK1xO3vSCcrEv6tt5Z1lVNUSiSkGbyhTCYQWhcCovLCRkYHIqkb9O\ntfpRINPtxeXg4e0UsGaltURgEOZKJ7JCg9POtzSIlSDakYD8R2kAACAASURBVMXW7cQMS9X5QRDN\nJCcK33Hthnl1Uqp0u0buzsu2duOu6zcCAN4+FzSVbQHMuTY6XcblrGbwOCV0e2zYvTFQU/ZFIX9+\n+y447SK++R9HMDRprvykXZEEdkF1+ALPIlWllIZY/LAM0OOzIyGnMT0rmxIZgMzrvcNlwRPPnzG8\njiSykJNqXnyYiSTxzKvDSKZUQ/FP1TKhvU7bXPZDXDZXjmWTeLzv3asrihLdTTgnIlGiAcTiim6O\nQ87tEAwZ947udAtYu9pWkuMwJz5YrfVbdBcu6jlRgJJMtc2ivhaasbOcSqkFAkOJk0Gny0QkUj3N\nGwAsEguXk8fKPqtOqUSxwOBy8LDbuLYJfCSIxcpS63ayFJ0fBNFKGrHpUa1zEwDT2RaZ62ZcGxaR\nr/h/XpcFNguP8+MR3ct3b/RDEjh8ZO96qJqG54+M5ruFcCwDxcTJjM3C45lXh3QFiX6/HR+6ah2+\n/m+vm3pczXJdiAKjuxm00HOsizb78fyR+ljmicqwTKalbzTR/CwUVQOGJqK4elcvrtjZiy8//AqS\nOg0CcrPJ45p7vft9TiSTafzm9RHdzjxGM/Ctc0F0OgQEI+XrSI9TKjt3MRviOxORIQiVHZW+DmvF\ny+sBiRI1omkaQuF0kbOh1PFgZKvnOQZej4Ctmxx50cFX4HTwecSqk6IRSAIHv8++4FaJi4VM4KNa\nEOiYwmxYwWwkVZLNMFcqYdT+tBCGyThZXE4efd3SXAaDoyCDoaBUYu3qDszOLu4dBYJYjCy1TJql\n6PwgiHagnpseZoSOj+xdD03T8FyBMCAJLPwdVsTlNIJhWde1oSd4bF/vxTXv6ofHZQHPMXjslyeK\nbtcicrhsW3f+fzmWxZ3XbsSHr1qPiWAMYBh4XBJ+8ut38OrxCcOFjUXk4HZIOPS2fiZFLJHGmh6X\n6Q4nfX6HoYAyH/r9dgxORMv+vmd7L+w2Cc8dHs6P2caVHTWV0Ojxxmnj3WY99uzshpIG3jobxExE\nRqdTQjSRQiJJbotqqBpaIkgU8vqpaYBhdAUJALhqdx+uv2hF0eud4zLvBbfsWYt/ffI43joXzL+2\nN63swHMGczAYlnHplm48r3N5TlwsxGyIb6fTApGrvP4sdWE0AhIlSlAUDdPZPIfxKTkvOuS/ppNI\nJvUnnkVi4feK2LjOXlxakW2f2eEW5hUISFRGUbRMmGPEIIOh8Ct7PaN2p4XwPAO3k0d3QMq7F3Sd\nDNnfHQ6+pudXkhbXwocglhKLvXytkKXm/CCIpUwloYNjWfzOtRvxoavWY2ImDmga/J02SAJXsX2x\nGcHD6Hb1jq8/4Mz/nrvdf/6vt3DgWLkD4LJt3YjLacM8iumwjLicNlwcWUQOyZSSfw/+0FVr8Vf/\nfKhuwsQf3rIVz7w6pPte393lxo0Xr8iPGVC9hMZtFxGKGmdvzESThpkBIs/AKvEIRVPwOCXs3ujH\nLXvWIBJL4SN71yMup5FMKdj33ZdMPbYOh4jZaBIdDgl2q4BYIjXvMh4ziDyQbIIG0OEQ8fs3bcJ3\nn3gLM5H55Zw0i6nZBF47Pql7mUXk8MEr18Em6S+3bRKPu3/rgqLXNpBxRBh9nt9x7QBsFt70uUvh\nuc7UbEL3Ors2+KqeJ1gNHkM9IVGigKlgEn/6xTcRjuo7HZwODv09lqzYIBUFSfq9Ipx2stbXA1lW\nMxkMkeIMhvIuE5m/R2OKqcRqm5WFyylg7cpcqYQAl4Oby2IoCH90O3lYLM0LfCQIorm0MpNG0zSk\n0xrkpIqErEJOqkgW/CwnVciy/vdEUkUy93PB/45N2xCNSdA0gJMUOPqiYJjF6fwgiOWOJHDo9zvK\n/lbNtVHtOnq3W0nsKPy/33/fZtitAg69PZHd1c0sqj+ydz1iibRh2UXOYm8kBOcW5bn7l1MKYgnj\nMmeJZyGbzGzwOCV4XJaK7/WlY2Yknly5sxc3XrISVonHX37/pYqLf6NT0it29uWPw2ET8ZNfn8a+\n77xY1Jb6lj1rTWWEeJwS9v3eRYjLabgdEniOwaNPncCrxycaspC3iBwe+INL8blvPge1wSaOXQM+\nBDptCNXhcVhETrdEYqHXzcEwQDCi/1wlUwoisaShKJHD7BzctcEHmyTUdO5SeK4zPZvAU68M4vWT\nU2WCxshUZed2KJokp0SzUFQVP3vhHWiSDJFVYbczWLPCgRsv70OXLyNAWGhnu2ZUVUM0phSUSqQN\nsxlyf5dNWNZYBnA6eXR2CFjVb9XvKuEo7irRitIYgiDaG72T+JxgkBEDlOzPWsHPGUEgmSwWB8qE\nhAp/q2fNtCgysIgsLCKQUhWwggqfe/E6PwiCaDxFHXsKFsVGHXsqCblx2ThHqzCAr/T/AZTdVqVy\nNAbAvXftxnNHRvPihigYLyQLLe1mS3Hqnf0BZM5Zr9zZm7+NQKetrANeYTixmdvftKoTTpuYXyg+\n+tRxU21nKyHxLHwdFt1skMu2daPDIeGqXX14+hX9+/G6JOwc8EFDpmXt9GwCzDwyQq65cEVFByDD\nmG+fe9m2brAMg0NvZzpTmblurlwpJ7R5nBknip57p9JxzNepaMbJWWtpmSRw6PHacdd1GyFfXS5E\nJlOVLTDVLq8HJEpkefzpk/jV4SEIPkDI/u2dUBTHxwVcuJ2Sy3Ok0irCpc6F0lKJyJyjYTaSNqWo\niiIDt1NAf4+lKHuhVFjICQ52GweWSmEIYtmhqFqZU8BQCCj5uVBIkGVj14FR96P5IPAMJImFJLKw\nWTl0dgiQRDb/N4vEQhTnfpbEzO+5nwuvW/qzReIgCEzRe6GcUhZ1cDFBEM1hvh179BZDlQL1vK7i\nAD5J4OB1WwwFkUqLUY/Lgm6PvUjccNhE/Md/n6qYl1EL883+EAUWSYOuHRqA6y9eibSiYSoUg1Xi\nK4YT/6+7L4KiqHj2tWHdBb1F5HDHtQP53yuFHQNAp0OEReQxMl15N1xOqxiajGFFwIFoPJV3xOwY\n8OG9u/shpxTc/t4BsAyDwycnMTGTQIddxI4BH667aAU8Lkt+rD58lYLTQyE8+NhrFe+z/FglOKxC\nxTyEK3b04ujpqYpuEm+JyPbBK9fhkf1v6+Y1WEQO79neU3TdUESGVeKLnShPHjd8TvSYr1Oxnk5O\nPSeU3ms4VaWsvdrl9YBECSzf5HJN05BIqJngzqCGs+dmy0slSgSHWNycrclh5+ByZPMYnPrCwpzg\nIECSyMVAEIsdVdWQTBW7A6ZmgNGxsK6zwLBkoYLDoJ4fjDzHFAkCbicPUWJhMRICDMWBcmFBElmI\nEtv0HKHlFlxMEETt1Pu8t3J4cHkAXzVBxEwQceHCymxeRi3Umv3hdkiGZR0ep4T9L57D66emMD0r\nw+0QDUssguEEIrEU7rp+E8Awuu6H92zvgU0S8r9XdJcwwJ9+ZCd6vLasEDSJ6XACbruIuJzWbX8a\nS6Sx7/cuQiSewlMvn8frJyfxq0NDReLRJz64A6fOTBkumCWBw9o+d83taoMRGX/5/Zewa4MfH7pq\nLQB9x0DpHMrR47Phnv+xrUggyR3PR2/aBGtRHoOETSs7cfu1G4pKLAqf+8KShesvXolfvTpseOy5\njI96ZVQtJGi3VieUXKVspdrl9YBECSyd5HJF1RCJlJdIFAkLkeKSCTMn+DzHwOngEfCKZS0q9QQH\np4MHx5GLgSDaCU3TkEprc+JA1ikgyybFgaSKhKwgmdTyP2eEBa3o53rBMiha+NtLHAZ6YoGx04CD\nJDIFP2f+zvP0PkUQxNLFKC+iEee9ZiznckrBRDBWVRCZTxCxXl5Goym9TyMxxWYR8EzBYrZS5kOh\n5f+OawbAsUzVcajoLnFa4O+wlu2+VwrUDIYTiMtpPPPqUNFxF4pHf3z7u0xlnFQqRbGImTlZWn5T\nKlLpOQYK58j0bAJuh4hdAz7cce0G3UU3sHAHQqVx9ros+OJHL8w7K1q9mV2rE6rPb694e9Uurwck\nSqB9k8uTKdUw3DHz9+IwyEjUXOBjbkdw9QprXlToDtjAc6qOo0GAzUqBjwTRSDRNQ1rRisWBCjkF\nNTkNCn42W4NZDYZBfvEviSw6XIJh2UFHhwVqOl3uNqjiNOB5ht53CIIg5kG1XdJGnPdWWvAVHk+l\nXfNCQaRVQcQLwag16+ETxqUVpRS6Qcwuomtpc53bfQ/HMl079EIaO52WqiUmCZNtOHTHZJ0H11yY\nKffIiCMv6go1ha6dUgFkIQLDfB0I1ca5MOOjEolkGuPBWMPm9XycUEqVmpRql9cDEiXQnJ71mqYh\nFlcMwx31SiUScvUwBoYBnPZMCcSK3jmRwe3gDV0Nok7go9/vJLsvQRigKFqRIFDdaWAuHLHw53qm\nWYvCXI6Bw8bB2ykYZhKIWQeBJesgECUGFpGrWLIgCuYFA3pvIQiCaC7Vdkkbed6rt+AzstqXUiqI\nLMS+3gr0FsqhiIxfVQig7HRICEXlim4QM+Ng1l1SKBAZdY3YtcGXafNawU0TnJVNLSKriQehiGzY\nZcOMa6fZc2Qh7cRjchr/+uRxHB8KYTIYr1pSMV/m44SqJRemUZAokaXWSZZOawhHiwWGYmEhhdmI\nkvmeFR8UE+U4As/A5eTR2yWVhT3OlUoIcDo4uJ0C7Hau6TXLBNFOqOqcYFCtrSIvzGB6Ol5zvkG6\nnjkGPJN3BFgsHNwuobaAw9KShezPuf8VBZZCYAmCIJYpZndJF7K4qtfxlNLOLYzNtE7NUbhQbpbl\n36xzoJJA5HXNzYG0olV003S6JIRDcdPHZyQetKtb3Yj5ODRyQtBvXh9GoqDDoNlw2VqZz5hKAoed\nAz78Uqezys6B5rwuSZTIkptkl23qx+lzEShpBrGYikd/PKLrZIjGzAV+2Kwc3E4eAZ9U3k1Cx8lg\nkahUglg6aJqGZEqrmFEgJ1UkZQ2JpFK5paJBJ4Vkqo45BizmRAGJg9PBVcgkYLJOgwp5BjpuA8pb\nIQiCIBqF2V3Seib8z/d4gIzj19MgQaQe1BoYWEq9LP9mqeQcqCQQdThEfPGjF+aPhWONMzJ2bfDB\nIvKohweyGW71RlCLQ6OaU6jeTRXmO6ZGZ9ONL9zIQKJEASPjMv70i28ZXs6ygMvBw9spYM1Ka5HA\nMOdkEOBycNnvPAWpEW2LpmlIpzVzboGS70atFPX+t17kcgxyC/x8a8Ua2ioG/HYk4nKRWFDoNBB4\n6gJDEARBLF5q3SVttP29cgijhD+5dQf8Hda2XXzOt3VqIc1ypVSjkkA0G00iLqeLBJKFHrdZd0kz\nXTvNyijJ3VelbI4cjWiqUOuYyikFh09M6l52+MQUPnyV0vAxI1GigIBPxEdv7UNa0XS7SthtHLkY\niKaREwxqySio1EpR72/1zK0RxbksAqeDg98jVm2lWBp2WMlpINQh+JDyDQiCIIilTLvtPFc6nt0b\n/U3vmFEL9Wqd2ixXSjVqFazme9y1uksaPT4Ldbss5L6MwkQLaUSZSq1j2g6dKEmUKIBjGdx8Q1er\nD4NYBCiqlncK1NwNIdcJASzC4aSh6yCt1E8xEPi54EOblZtzGUi1OQ2MwhIFgaEcA4IgCIJoA9pl\nZ75dj8cs9V6otTq4c76CVa3HPV93SaPGpx5ul/neVzVBAmisWGh2TNsh24NECWLJoaoakinjVop6\nAYeGwoKBwyBVz+BDjikSBNxOHmJBWYFh0KGJtoqZbgoshaESBEEQxDKhXXbm2/V4zNIOC7V6U0+B\nSK8col7uknrRzOOpJdQVACwih/ds72kLca4dHFYkShBNRdM0pNKaybaKxuGIyaSW/zkjJGhFP9cL\nlkHRwt9e4jDQ7YZg6DQoDkvs63UhPBuj3BGCIAiCIOpOq3fmS2m346lGOyzU6k09BCJFVfHQT47g\nucNDZeUQ7VAGUEgzj6daqGuHQ8RsNAmv24KB/g7cce0AbJJQl/uuB612NJEoQeTRNA1pRavsFJhv\nyUJh2UIdcwwKxQC3U9AvQ8i5Diq0VTRyGvB1yDEwwmHnEY+RIEEQBEEQi5lmBugRzSH3nN6yZw2A\nxVd6UomFzlejcoh4Io1b965vK3dJM90uZtu/rlvtramdarNotaOJRIlFhKJo5WUIFZ0G5sIRc20V\n4wkFav2aJUAU5nIMHDYO3s65bgmV3AYWkYMoMfm8AqPri0LjBAOCIAiCIIhKNDNAj2gORs/p/7r7\nYkRiyUUtPNVjvlYqUXju6CjePDsNu1XUXZi3W9BqvY/HbPvXerVTbRStcjSRKFEnVHVOMDDdVtEg\n38DIdZCuZ44Bz+QdARYLB6+HB8/BfMBhaclCQVtFi8RCFFgKPiQIgiAIYsnSzAA9ojks5ee0Ho+t\nWonCdDiJ6XASKwIOxBLptnCXNLMsodUlEIsZEiUKUFUNzx6YxuR00lQZQqnToF6wLApaInJwOjjd\nTIKMUMDAInGVOyfolCpwXLFgQK0SCYIgCIIgzNFugX7EwlnKz2m9HlulEoVCYol0vlyh1e6SZpYl\ntLoEYjFDokQBYxMy/s93zla8DsMU5xjkWysupK2iVOw0EHiy/BEEQRAEQbQr7RboRyycpfyc1uux\nVSpRKL3NuJxuq/FqZlnCYgt1bQdIlCigp8uCL9+3AYmEaug0EBoYfEgQBEEQBEG0P0uxXeRyZyk/\np/V8bB/Zux42q4jnDg8ZOiYW+3gRzYe25EvYtN6BnVtduGCDA2tX2dDXY4HPI8Lp4CEKLAkSBEEQ\nBEEQy5zcjrEei7Vd5HJnKT+n9XxsHMvi47dsw5c+fiku29pdl9skCHJKEARBEARBEESNUKjd0mMp\nP6f1fmySwOH3btoEm4VfkuNFNBdG07T6JTQ2CQpkrD8UdNl8aMybD41586Exbz6NHnO/39mw224G\njRobmuvzZ7GPnZxSWhZqt9jHrpVUGrtWPqeNph6PrXTslvJ41Zvl/JqtdP5ATgmCIAiCIAiCmCcU\narf0WMrPaSMe21IeL6I5tI0o8cADD+Dw4cNgGAb33Xcftm/f3upDIgiCIAiizaHzB4IgCIJY3LSF\nKPHiiy/i7NmzePzxx3Hq1Cncd999ePzxx1t9WARBEARBtDF0/kAQBEEQi5+26L5x4MABXHPNNQCA\ndevWIRQKIRKJtPioCIIgCIJoZ+j8gSAIgiAWP23hlJicnMSWLVvyv3s8HkxMTMDhcOhev7PTBp6n\nEJV6s9jDyxYjNObNh8a8+dCYN5/lMua1nj8QBEEQBNF+tIUoUUq1hiDBYKxJR7J8WM5JsK2Cxrz5\n0Jg3Hxrz5rOcu2+YaSjWyI2Ndh6bdofGbv7Q2M0fGrv5Q2M3f2jsymkLUSIQCGBycjL/+/j4OPx+\nfwuPiCAIgiCIdmc+5w+N2tggAW7+0NjNHxq7+UNjN39o7ObPch67SmJMW2RKXH755di/fz8A4Nix\nYwgEAmS9JAiCIAiiInT+QBAEQRCLn7ZwSuzevRtbtmzBbbfdBoZhsG/fvlYfEkEQBEEQbQ6dPxAE\nQRDE4qctRAkA+NznPtfqQyAIgiAIYpFB5w8EQRAEsbhpi/INgiAIgiAIgiAIgiCWHyRKEARBEARB\nEARBEATREhjNTP8sgiAIgiAIgiAIgiCIOkNOCYIgCIIgCIIgCIIgWgKJEgRBEARBEARBEARBtAQS\nJQiCIAiCIAiCIAiCaAkkShAEQRAEQRAEQRAE0RJIlCAIgiAIgiAIgiAIoiWQKEEQBEEQBEEQBEEQ\nREvgW30ARPM5fvw4PvWpT+GjH/0o7rzzzqLLnn/+efzt3/4tOI7DFVdcgU9/+tMtOsqlRaUx37t3\nL7q7u8FxHADgwQcfRFdXVysOc0nx1a9+Fa+88grS6TQ+8YlP4LrrrstfRvO8MVQac5rn9Scej+Pe\ne+/F1NQUZFnGpz71KVx99dX5y2meN4cHHngAhw8fBsMwuO+++7B9+/ZWH1LbcvDgQfzxH/8xBgYG\nAAAbNmzAxz72Mfz5n/85FEWB3+/H1772NYii2OIjbS9KzyFGRkZ0x+ynP/0pfvCDH4BlWdx66634\n8Ic/3OpDbzmlY3fvvffi2LFj6OjoAADcfffduOqqq2jsdCj9TN+2bRvNO5OUjt3TTz9N864aGrGs\niEaj2p133qndf//92sMPP1x2+Y033qgNDw9riqJot99+u3bixIkWHOXSotqYX3311VokEmnBkS1d\nDhw4oH3sYx/TNE3TpqentSuvvLLocprn9afamNM8rz8/+9nPtG9/+9uapmna4OCgdt111xVdTvO8\n8Rw8eFD7gz/4A03TNO3kyZParbfe2uIjam9eeOEF7TOf+UzR3+69917tiSee0DRN0/7mb/5G+5d/\n+ZdWHFrboncOoTdm0WhUu+6667TZ2VktHo9r73vf+7RgMNjKQ285emP3+c9/Xnv66afLrkdjV4ze\nZzrNO3PojR3Nu+pQ+cYyQxRFPPTQQwgEAmWXnT9/Hm63Gz09PWBZFldeeSUOHDjQgqNcWlQac6Ix\nXHTRRfj7v/97AIDL5UI8HoeiKABonjeKSmNONIabbroJH//4xwEAIyMjRc4TmufN4cCBA7jmmmsA\nAOvWrUMoFEIkEmnxUS0uDh48iPe+970AgKuvvprmaQl65xB6Y3b48GFs27YNTqcTFosFu3fvxqFD\nh1p12G2B2fMvGrty9D7Tad6Zw+z5EI1dMVS+sczgeR48r/+0T0xMwOPx5H/3eDw4f/58sw5tyVJp\nzHPs27cPQ0NDeNe73oXPfvazYBimSUe3NOE4DjabDQDwox/9CFdccUW+bIDmeWOoNOY5aJ43httu\nuw2jo6P41re+lf8bzfPmMDk5iS1btuR/93g8mJiYgMPhaOFRtTcnT57EJz/5SYRCIdxzzz2Ix+P5\ncg2v14uJiYkWH2F7oXcOoTdmk5OTZa/55T6WRudfjzzyCL73ve/B6/XiC1/4Ao2dDnqf6b/5zW9o\n3pnA6HyI5l1lSJQgiBbzR3/0R9izZw/cbjc+/elPY//+/bjhhhtafVhLgqeeego/+tGP8N3vfrfV\nh7JsMBpzmueN47HHHsObb76JP/uzP8NPf/pTEntaiKZprT6Etmb16tW45557cOONN+L8+fP43d/9\n3aIdRBq/2jEaMxpLfW6++WZ0dHRg8+bN+Pa3v41vfOMb2LVrV9F1aOzmKPxML8yJonlXncKxO3r0\nKM27KlD5BpEnEAhgcnIy//vY2BiVHDSBW265BV6vFzzP44orrsDx48dbfUhLgl//+tf41re+hYce\neghOpzP/d5rnjcNozAGa543g6NGjGBkZAQBs3rwZiqJgenoaAM3zZlE6zuPj4/D7/S08ovamq6sL\nN910ExiGwcqVK+Hz+RAKhZBIJADQPDWLzWYrGzO9uUhjWc673/1ubN68GUAmgPn48eM0dgaUfqbT\nvDNP6djRvKsOiRJEnv7+fkQiEQwODiKdTuOZZ57B5Zdf3urDWtKEw2HcfffdSCaTAICXXnopn0pO\nzJ9wOIyvfvWr+Kd/+qd80nEOmueNodKY0zxvDC+//HLekTI5OYlYLIbOzk4ANM+bxeWXX479+/cD\nAI4dO4ZAIEClGxX46U9/iu985zsAMiVGU1NT+MAHPpAfw1/84hfYs2dPKw9xUXDZZZeVjdmOHTtw\n5MgRzM7OIhqN4tChQ7jwwgtbfKTtx2c+85l8KdvBgwcxMDBAY6eD3mc6zTtz6I0dzbvqMNpy94os\nM44ePYqvfOUrGBoaAs/z6Orqwt69e9Hf349rr70WL730Eh588EEAwHXXXYe77767xUe8+Kk25j/4\nwQ/wk5/8BJIk4YILLsAXvvAFsl8vkMcffxz/8A//gDVr1uT/dskll2Djxo00zxtEtTGneV5/EokE\n/uIv/gIjIyNIJBK45557MDMzA6fTSfO8iTz44IN4+eWXwTAM9u3bh02bNrX6kNqWSCSCz33uc5id\nnUUqlcI999yDzZs34/Of/zxkWUZvby++/OUvQxCEVh9q26B3DvHggw/i3nvvLRuz//qv/8J3vvMd\nMAyDO++8E7/927/d6sNvKXpjd+edd+Lb3/42rFYrbDYbvvzlL8Pr9dLYlaD3mf7Xf/3XuP/++2ne\nVUFv7D7wgQ/gkUceoXlXARIlCIIgCIIgCIIgCIJoCVS+QRAEQRAEQRAEQRBESyBRgiAIgiAIgiAI\ngiCIlkCiBEEQBEEQBEEQBEEQLYFECYIgCIIgCIIgCIIgWgKJEgRBEARBEARBEARBtAQSJQiCIAiC\nIAiCaBiDg4PYunUr7rrrLtx111247bbb8NnPfhazs7Omb+Ouu+6Coiimr3/77bfj4MGD8zlcgiCa\nDIkSBEEQBEEQBEE0FI/Hg4cffhgPP/wwHnvsMQQCAfzjP/6j6f9/+OGHwXFcA4+QIIhWwbf6AAiC\nmD8HDx7EN7/5TUiShCuvvBKHDh3C6Ogo0uk0br75Ztxxxx1QFAUPPPAAjh07BgC49NJL8Sd/8ic4\nePAgvvWtb6G7uxtHjhzBjh07sHHjRjz55JOYmZnBQw89BJ/Ph/vvvx/vvPMOGIbB5s2bsW/fPsPj\n+fGPf4wnn3wSDMNgbGwMa9euxQMPPABBEPDwww/j5z//ORRFwdq1a7Fv3z5MTk7iD//wD7FhwwYM\nDAzgk5/8pOHj/PrXv47e3l4MDQ3B6XTi7/7u7+BwOPDEE0/gkUcegaZp8Hg8+NKXvoTOzk7s3r0b\nH/rQh6CqKj7+/9q7t5Co1j+M49/Z1ngAU6FGKDFSy/CQeYQsETtc2EUHE9TMbkIC6SZKmBKVQAKj\ntCJBu8pMbTLsIsLILLLwokgZbdIEtYMhKdmF5qnR2Rehu0jb1T/Q9v/53M1a633Xu9bAzDM/3nlX\nZiZHjx4FYGxsjJSUFJKTk+np6SE/Px+Hw4HdbufIkSNERUVhNpsxmUx0dnbS09NDcnIymZmZv/8N\nFBER+T8VHR2NxWKho6ODwsJC7HY7nz59Ii8vj6CgbEtwWgAABcVJREFUIDIyMli7di3t7e2Ul5cT\nFBSEzWZjYmKC3Nzcb/LO6Ogohw8f5sOHD6xcuZLx8XEA3r17N2sGEJGFQ0UJkT/cs2fPaGhowGKx\nsGTJEs6cOcPY2Bjbt28nLi4Oq9VKb28v1dXVTE1NkZqaSmxsLACtra0UFxfj6upKdHQ00dHRVFRU\nYDabuX37NjExMVitVurq6gC4du0aQ0NDuLu7zzmetrY27ty5g6urK/v27aOxsZFly5ZRX19PZWUl\nBoOBkydPUlNTQ0JCAl1dXZw7dw4/P7/vXqfNZuPs2bN4e3uTnZ1NbW0t27Zto7S0lOvXr2M0Gikv\nL6esrAyz2czIyAjx8fFs3LiRS5cu4efnx4kTJxgfH6empgaAgoIC0tLSSExM5MWLF2RlZdHQ0ADA\nmzdvKC0t5e3bt+zYsUNFCRERkd9kcnKS+vp6IiMjyc7OpqSkBF9fXzo6Ojh+/Di1tbUAuLm5ceXK\nla/aVlRUzJp3mpqacHFxwWKx0N/fz5YtWwCoq6ubNQOIyMKhooTIH27VqlV4enpitVpJSkoCwMXF\nhZCQEGw2G1arlQ0bNmAwGHByciIqKoq2tjZCQkLw9/fH09MTAE9PT8LDwwHw9vZmeHgYf39/vLy8\nyMzMJCEhgcTExO8WJAAiIiJwc3MDIDw8nK6uLrq7u3n9+jX79+8HYGRkhEWLPn/8eHh4/GtBAiAg\nIABvb++Zc7S3t7N06VIGBgY4cOAAABMTE/j4+ADgcDiIiIgAIC4ujqqqKsxmM/Hx8aSkpABgtVop\nLi4GIDAwkOHhYQYHBwGIiYkBYMWKFQwPDzM5OalpoyIiIr9ocHCQjIwMAKampoiKimLPnj2cP3+e\nnJycmeOGh4eZmpoCmPke/9Jceaezs5PIyEgATCbTTLaYKwOIyMKhooTIH27x4sUAGAyGr7Y7HA4M\nBsOc24FvfmR/+drhcODs7ExVVRU2m4379++TnJxMdXU1JpNpzvFMB4npPgCMRiObN28mLy/vq2N7\ne3tnxv9vpvv68hqMRiPr1q2jrKxs1jbTffv7+3Pr1i2ePHnC7du3KS8v5+rVq9/cG/jnPk4XTWY7\nv4iIiPyc6TUlvjQ0NDTzF8/ZzJYR5so1DoeDv/76Z7m86TwyVwYQkYVDC12K/EeEhYXx8OFD4PNM\nBJvNRnBwMOvXr6epqWlm3YTHjx8TFhb2Q322tbVx48YNgoODOXToEMHBwbx8+fK7baxWK6Ojozgc\nDpqbmwkMDCQiIoLGxkY+fvwIQGVlJS0tLT91fd3d3fT39wPw9OlTAgMDCQ0NpbW1lYGBAeDzFM27\nd+9+0/bmzZu0tbURGxtLfn4+fX192O12wsLCePToEQDPnz/H09MTLy+vnxqXiIiI/Bp3d3d8fHx4\n8OABAD09PVy4cOG7bebKO/7+/jPZoq+vj56eHmDuDCAiC4dmSoj8R2RkZJCbm0t6ejoTExNkZWXh\n4+PD8uXLaW5uJi0tjampKbZu3UpkZOQPPSbL19eXkpISLBYLRqMRX1/fWadSfmnNmjUcO3aM3t5e\nVq9ezaZNm3ByciI9PZ2MjAycnZ0xmUwkJSXx/v37H76+gIAAioqKePXqFR4eHuzatQs3NzdycnI4\nePAgrq6uuLi4UFhYOGvb/Px8jEYjDoeDzMxMFi1aRG5uLvn5+VRXV2O32zl16tQPj0dERET+d4WF\nhRQUFHDx4kXsdjtms/m7x8+Vd3bu3Mm9e/fYu3cvPj4+hIaGAnNnABFZOAwOzUkWkd+ktraWpqYm\nTp8+/Vv7nX76RnV19W/tV0RERERE5pfKhCLyU+rr67l8+fKs+3bv3v3L/ba0tFBUVDTrvtTU1F/u\nV0REREREFi7NlBARERERERGReaGFLkVERERERERkXqgoISIiIiIiIiLzQkUJEREREREREZkXKkqI\niIiIiIiIyLxQUUJERERERERE5oWKEiIiIiIiIiIyL/4GHynppDNZmpAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + } + ] +} \ No newline at end of file From 7e8a3324a26c9816117e358528f312f569a478b9 Mon Sep 17 00:00:00 2001 From: Amit Rai <42401957+ardev472@users.noreply.github.com> Date: Sun, 17 Feb 2019 20:53:29 +0530 Subject: [PATCH 04/11] Created using Colaboratory --- feature_sets.ipynb | 1435 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1435 insertions(+) create mode 100644 feature_sets.ipynb diff --git a/feature_sets.ipynb b/feature_sets.ipynb new file mode 100644 index 0000000..c522e12 --- /dev/null +++ b/feature_sets.ipynb @@ -0,0 +1,1435 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "feature_sets.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "IGINhMIJ5Wyt", + "pZa8miwu6_tQ" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "zbIgBK-oXHO7", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Feature Sets" + ] + }, + { + "metadata": { + "id": "bL04rAQwH3pH", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objective:** Create a minimal set of features that performs just as well as a more complex feature set" + ] + }, + { + "metadata": { + "id": "F8Hci6tAH3pH", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "So far, we've thrown all of our features into the model. Models with fewer features use fewer resources and are easier to maintain. Let's see if we can build a model on a minimal set of housing features that will perform equally as well as one that uses all the features in the data set." + ] + }, + { + "metadata": { + "id": "F5ZjVwK_qOyR", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "\n", + "As before, let's load and prepare the California housing data." + ] + }, + { + "metadata": { + "id": "SrOYRILAH3pJ", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "dGnXo7flH3pM", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Scale the target to be in units of thousands of dollars.\n", + " output_targets[\"median_house_value\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] / 1000.0)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "jLXC8y4AqsIy", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1205 + }, + "outputId": "83d354b6-2131-4694-cf3e-b0b65f2d81e4" + }, + "cell_type": "code", + "source": [ + "# Choose the first 12000 (out of 17000) examples for training.\n", + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "\n", + "# Choose the last 5000 (out of 17000) examples for validation.\n", + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "\n", + "# Double-check that we've done the right thing.\n", + "print(\"Training examples summary:\")\n", + "display.display(training_examples.describe())\n", + "print(\"Validation examples summary:\")\n", + "display.display(validation_examples.describe())\n", + "\n", + "print(\"Training targets summary:\")\n", + "display.display(training_targets.describe())\n", + "print(\"Validation targets summary:\")\n", + "display.display(validation_targets.describe())" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 35.6 -119.6 28.5 2665.5 543.4 \n", + "std 2.1 2.0 12.6 2219.0 429.3 \n", + "min 32.5 -124.3 1.0 8.0 1.0 \n", + "25% 33.9 -121.8 18.0 1467.0 297.0 \n", + "50% 34.2 -118.5 29.0 2131.0 436.0 \n", + "75% 37.7 -118.0 37.0 3157.0 647.0 \n", + "max 42.0 -114.6 52.0 37937.0 5471.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1437.3 504.5 3.9 2.0 \n", + "std 1161.3 392.6 1.9 1.2 \n", + "min 3.0 1.0 0.5 0.0 \n", + "25% 791.0 282.0 2.6 1.5 \n", + "50% 1171.0 410.0 3.6 1.9 \n", + "75% 1726.0 602.0 4.8 2.3 \n", + "max 35682.0 5189.0 15.0 55.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean35.6-119.628.52665.5543.41437.3504.53.92.0
std2.12.012.62219.0429.31161.3392.61.91.2
min32.5-124.31.08.01.03.01.00.50.0
25%33.9-121.818.01467.0297.0791.0282.02.61.5
50%34.2-118.529.02131.0436.01171.0410.03.61.9
75%37.7-118.037.03157.0647.01726.0602.04.82.3
max42.0-114.652.037937.05471.035682.05189.015.055.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 35.6 -119.6 28.8 2591.2 529.9 \n", + "std 2.2 2.0 12.6 2082.5 402.0 \n", + "min 32.5 -124.3 1.0 2.0 2.0 \n", + "25% 33.9 -121.8 18.0 1449.0 295.0 \n", + "50% 34.3 -118.5 29.0 2109.5 428.0 \n", + "75% 37.7 -118.0 37.0 3137.2 651.0 \n", + "max 42.0 -114.3 52.0 32627.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1411.0 493.3 3.9 2.0 \n", + "std 1114.9 364.4 1.9 1.1 \n", + "min 6.0 2.0 0.5 0.1 \n", + "25% 784.8 280.0 2.6 1.5 \n", + "50% 1159.0 407.0 3.5 1.9 \n", + "75% 1705.0 608.0 4.8 2.3 \n", + "max 28566.0 6082.0 15.0 41.3 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean35.6-119.628.82591.2529.91411.0493.33.92.0
std2.22.012.62082.5402.01114.9364.41.91.1
min32.5-124.31.02.02.06.02.00.50.1
25%33.9-121.818.01449.0295.0784.8280.02.61.5
50%34.3-118.529.02109.5428.01159.0407.03.51.9
75%37.7-118.037.03137.2651.01705.0608.04.82.3
max42.0-114.352.032627.06445.028566.06082.015.041.3
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Training targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 12000.0\n", + "mean 207.8\n", + "std 116.1\n", + "min 15.0\n", + "25% 120.0\n", + "50% 180.9\n", + "75% 265.7\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count12000.0
mean207.8
std116.1
min15.0
25%120.0
50%180.9
75%265.7
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 5000.0\n", + "mean 206.1\n", + "std 115.7\n", + "min 15.0\n", + "25% 118.8\n", + "50% 179.1\n", + "75% 262.5\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count5000.0
mean206.1
std115.7
min15.0
25%118.8
50%179.1
75%262.5
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "hLvmkugKLany", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Develop a Good Feature Set\n", + "\n", + "**What's the best performance you can get with just 2 or 3 features?**\n", + "\n", + "A **correlation matrix** shows pairwise correlations, both for each feature compared to the target and for each feature compared to other features.\n", + "\n", + "Here, correlation is defined as the [Pearson correlation coefficient](https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient). You don't have to understand the mathematical details for this exercise.\n", + "\n", + "Correlation values have the following meanings:\n", + "\n", + " * `-1.0`: perfect negative correlation\n", + " * `0.0`: no correlation\n", + " * `1.0`: perfect positive correlation" + ] + }, + { + "metadata": { + "id": "UzoZUSdLIolF", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 359 + }, + "outputId": "78c67b49-813c-44e7-d836-fefce3b16319" + }, + "cell_type": "code", + "source": [ + "correlation_dataframe = training_examples.copy()\n", + "correlation_dataframe[\"target\"] = training_targets[\"median_house_value\"]\n", + "\n", + "correlation_dataframe.corr()" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_persontarget
latitude1.0-0.90.0-0.0-0.1-0.1-0.1-0.10.1-0.1
longitude-0.91.0-0.10.00.10.10.1-0.0-0.1-0.0
housing_median_age0.0-0.11.0-0.4-0.3-0.3-0.3-0.1-0.10.1
total_rooms-0.00.0-0.41.00.90.90.90.20.10.1
total_bedrooms-0.10.1-0.30.91.00.91.0-0.00.00.0
population-0.10.1-0.30.90.91.00.90.0-0.1-0.0
households-0.10.1-0.30.91.00.91.00.0-0.00.1
median_income-0.1-0.0-0.10.2-0.00.00.01.00.20.7
rooms_per_person0.1-0.1-0.10.10.0-0.1-0.00.21.00.2
target-0.1-0.00.10.10.0-0.00.10.70.21.0
\n", + "
" + ], + "text/plain": [ + " latitude longitude housing_median_age total_rooms \\\n", + "latitude 1.0 -0.9 0.0 -0.0 \n", + "longitude -0.9 1.0 -0.1 0.0 \n", + "housing_median_age 0.0 -0.1 1.0 -0.4 \n", + "total_rooms -0.0 0.0 -0.4 1.0 \n", + "total_bedrooms -0.1 0.1 -0.3 0.9 \n", + "population -0.1 0.1 -0.3 0.9 \n", + "households -0.1 0.1 -0.3 0.9 \n", + "median_income -0.1 -0.0 -0.1 0.2 \n", + "rooms_per_person 0.1 -0.1 -0.1 0.1 \n", + "target -0.1 -0.0 0.1 0.1 \n", + "\n", + " total_bedrooms population households median_income \\\n", + "latitude -0.1 -0.1 -0.1 -0.1 \n", + "longitude 0.1 0.1 0.1 -0.0 \n", + "housing_median_age -0.3 -0.3 -0.3 -0.1 \n", + "total_rooms 0.9 0.9 0.9 0.2 \n", + "total_bedrooms 1.0 0.9 1.0 -0.0 \n", + "population 0.9 1.0 0.9 0.0 \n", + "households 1.0 0.9 1.0 0.0 \n", + "median_income -0.0 0.0 0.0 1.0 \n", + "rooms_per_person 0.0 -0.1 -0.0 0.2 \n", + "target 0.0 -0.0 0.1 0.7 \n", + "\n", + " rooms_per_person target \n", + "latitude 0.1 -0.1 \n", + "longitude -0.1 -0.0 \n", + "housing_median_age -0.1 0.1 \n", + "total_rooms 0.1 0.1 \n", + "total_bedrooms 0.0 0.0 \n", + "population -0.1 -0.0 \n", + "households -0.0 0.1 \n", + "median_income 0.2 0.7 \n", + "rooms_per_person 1.0 0.2 \n", + "target 0.2 1.0 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 4 + } + ] + }, + { + "metadata": { + "id": "RQpktkNpia2P", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Features that have strong positive or negative correlations with the target will add information to our model. We can use the correlation matrix to find such strongly correlated features.\n", + "\n", + "We'd also like to have features that aren't so strongly correlated with each other, so that they add independent information.\n", + "\n", + "Use this information to try removing features. You can also try developing additional synthetic features, such as ratios of two raw features.\n", + "\n", + "For convenience, we've included the training code from the previous exercise." + ] + }, + { + "metadata": { + "id": "bjR5jWpFr2xs", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns(input_features):\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Args:\n", + " input_features: The names of the numerical input features to use.\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " return set([tf.feature_column.numeric_column(my_feature)\n", + " for my_feature in input_features])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "jsvKHzRciH9T", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + "\n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "g3kjQV9WH3pb", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearRegressor` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + "\n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period,\n", + " )\n", + " # Take a break and compute predictions.\n", + " training_predictions = linear_regressor.predict(input_fn=predict_training_input_fn)\n", + " training_predictions = np.array([item['predictions'][0] for item in training_predictions])\n", + " \n", + " validation_predictions = linear_regressor.predict(input_fn=predict_validation_input_fn)\n", + " validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + "\n", + " \n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_regressor" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "varLu7RNH3pf", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Spend 5 minutes searching for a good set of features and training parameters. Then check the solution to see what we chose. Don't forget that different features may require different learning parameters." + ] + }, + { + "metadata": { + "id": "DSgUxRIlH3pg", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 758 + }, + "outputId": "7b1f021d-5511-49a3-9293-565aac923680" + }, + "cell_type": "code", + "source": [ + "#\n", + "# Your code here: add your features of choice as a list of quoted strings.\n", + "#\n", + "minimal_features = [\n", + " \"median_income\",\n", + " \"latitude\",\n", + "]\n", + "\n", + "assert minimal_features, \"You must select at least one feature!\"\n", + "\n", + "minimal_training_examples = training_examples[minimal_features]\n", + "minimal_validation_examples = validation_examples[minimal_features]\n", + "\n", + "#\n", + "# Don't forget to adjust these parameters.\n", + "#\n", + "train_model(\n", + " learning_rate=0.06,\n", + " steps=500,\n", + " batch_size=5,\n", + " training_examples=minimal_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=minimal_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 114.86\n", + " period 01 : 113.53\n", + " period 02 : 110.19\n", + " period 03 : 115.03\n", + " period 04 : 103.52\n", + " period 05 : 106.81\n", + " period 06 : 100.65\n", + " period 07 : 99.20\n", + " period 08 : 97.89\n", + " period 09 : 94.44\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 8 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8VFXawPHf1PSeTAoBEkIKSQiB\nEOm9haYIiCAga10L6tr1XfV9d3Wx7OquqLDqWlbsKKIoiCAgTWoChJBOSO+9l5n7/hEZRTokmZTn\n+/n4MXPvzL3PnTOTPJxz7nNUiqIoCCGEEEJ0IWpLByCEEEIIcbkkgRFCCCFElyMJjBBCCCG6HElg\nhBBCCNHlSAIjhBBCiC5HEhghhBBCdDlaSwcgRGcWHBxMnz590Gg0ABiNRqKjo3nqqaewtbW94uN+\n/vnnLFiw4Kzt69at48knn+Tf//43EyZMMG9vaGhg5MiRTJ06lRdeeOGKz3upsrKyWLFiBRkZGQDY\n2NiwfPlyJk+e3O7nvhyrVq0iKyvrrPdk//793Hbbbfj6+p71mu+//76jwrsqOTk5TJo0CX9/fwAU\nRcHd3Z0///nPhIaGXtaxXn75ZXx8fFi0aNElv+brr7/miy++YM2aNZd1LiE6iiQwQlzEmjVr8PLy\nAqCpqYkHH3yQN998kwcffPCKjldcXMx//vOfcyYwAN7e3nz77bdnJDDbt2/H0dHxis53JR555BGu\nu+46/v3vfwNw9OhRli1bxqZNm/D29u6wOK6Gt7d3l0lWzkej0ZxxDRs3buTee+9l8+bN6PX6Sz7O\nww8/3B7hCWFRMoQkxGXQ6/WMGTOGxMREABobG3nmmWeYNm0a06dP54UXXsBoNAKQlJTEwoULiYmJ\n4brrrmPXrl0ALFy4kLy8PGJiYmhqajrrHEOGDGH//v3U19ebt23cuJFRo0aZHzc1NfHcc88xbdo0\nJk6caE40AOLi4pg7dy4xMTHMmDGDvXv3Aq3/oh89ejQffPABs2fPZsyYMWzcuPGc15mSksKgQYPM\njwcNGsTmzZvNidzrr7/OuHHjmDNnDm+99RYTJ04E4IknnmDVqlXm1/328cXiWrFiBUuWLAHg8OHD\nzJs3jylTprBgwQKys7OB1p6oP/3pT0yYMIElS5ZQUFBwkRY7t3Xr1rF8+XKWLVvGSy+9xP79+1m4\ncCEPPPCA+Y/9pk2bmDVrFjExMdx8881kZWUB8Nprr/HUU08xf/583n///TOO+8ADD/Duu++aHycm\nJjJ69GhMJhP//Oc/mTZtGtOmTePmm2+msLDwsuOeMWMGDQ0NnDx5EoDPPvuMmJgYJk6cyEMPPURD\nQwPQ+r4///zzzJ49m02bNp3RDuf7XJpMJv76178yfvx45s+fT1JSkvm8Bw4c4Prrr2fGjBlMnz6d\nTZs2XXbsQrQ5RQhxXkFBQUp+fr75cUVFhbJ48WJl1apViqIoyptvvqnccccdSnNzs1JfX6/MmzdP\nWb9+vWI0GpXp06crGzZsUBRFUY4dO6ZER0cr1dXVyr59+5TJkyef83xffvml8vjjjyuPPPKI+bXV\n1dXKpEmTlLVr1yqPP/64oiiK8vrrryvLli1TGhsbldraWmXOnDnKtm3bFEVRlFmzZinffvutoiiK\n8tVXX5nPlZ2drYSGhipr1qxRFEVRNm7cqEyZMuWccdx3333KhAkTlP/+979KWlraGfuSk5OVoUOH\nKkVFRUpzc7Ny9913KxMmTFAURVEef/xx5Y033jA/97ePLxRXWFiYsm7dOvP1RkdHK7t371YURVE2\nbNigXH/99YqiKMqHH36oLF68WGlublbKysqUCRMmmN+T37rQe3z6fY6MjFQyMjLMzx84cKCyd+9e\nRVEUJTc3V4mKilJOnTqlKIqivPPOO8qyZcsURVGUlStXKqNHj1ZKS0vPOu53332nLF682Pz41Vdf\nVZ599lklJSVFmTp1qtLU1KQoiqJ88MEHyldffXXe+E6/LwMGDDhre3R0tJKenq4cPHhQGTFihFJQ\nUKAoiqI8/fTTygsvvKAoSuv7Pnv2bKWhocH8+I033rjg53LHjh3K1KlTlZqaGqW+vl6ZP3++smTJ\nEkVRFGXu3LnK/v37FUVRlIyMDOWhhx66YOxCdATpgRHiIpYuXUpMTAyTJk1i0qRJDB8+nDvuuAOA\nHTt2sGDBArRaLdbW1syePZs9e/aQk5NDSUkJM2fOBGDgwIH4+PgQHx9/SeecOXMm3377LQBbt25l\nwoQJqNW/fl23b9/OTTfdhF6vx9bWluuuu44ffvgBgPXr1zN9+nQAoqKizL0XAC0tLcydOxeAsLAw\n8vLyznn+v//97yxevJgNGzYwa9YsJk6cyCeffAK09o5ER0fj4eGBVqtl1qxZl3RNF4qrubmZKVOm\nmI/v6elp7nGaNWsWWVlZ5OXlcejQIaZMmYJWq8XFxeWMYbbfy8/PJyYm5oz/fjtXxs/PDz8/P/Nj\na2trRowYAcCePXsYNmwYffv2BeCGG25g//79tLS0AK09Uq6urmedc/z48Zw4cYKKigoAtmzZQkxM\nDI6OjpSVlbFhwwYqKytZunQpc+bMuaT37TRFUfjss8/w9PTEz8+Pbdu2MWPGDDw9PQFYtGiR+TMA\nMGLECKysrM44xoU+lwcPHmTcuHHY2dlhbW1tbisANzc31q9fT3p6On5+frz88suXFbsQ7UHmwAhx\nEafnwJSVlZmHP7Ta1q9OWVkZTk5O5uc6OTlRWlpKWVkZDg4OqFQq877Tf8Tc3d0ves5Ro0bx1FNP\nUVFRwXfffcc999xjnlALUF1dzfPPP88rr7wCtA4pRUREALBhwwY++OADamtrMZlMKL9Z7kyj0Zgn\nH6vVakwm0znPb2VlxW233cZtt91GVVUV33//PStWrMDX15fKysoz5uO4ubld9HouJS57e3sAqqqq\nyM7OJiYmxrxfr9dTVlZGZWUlDg4O5u2Ojo7U1tae83wXmwPz23b7/ePy8vIzrtHBwQFFUSgvLz/n\na0+ztbVl5MiR7Nixg6ioKKqqqoiKikKlUvHaa6/x7rvv8uyzzxIdHc1f/vKXi84nMhqN5vdBURT6\n9+/PqlWrUKvVVFdXs2XLFnbv3m3e39zcfN7rAy74uaysrMRgMJyx/bQVK1awevVqbrnlFqytrXno\noYfOaB8hLEESGCEukaurK0uXLuXvf/87q1evBsDd3d38r22AiooK3N3dcXNzo7KyEkVRzH8sKioq\nLvmPvU6nY8KECaxfv57MzEwGDx58RgJjMBi49dZbz+qBKCws5KmnnmLt2rUMGDCAU6dOMW3atMu6\nzrKyMhITE809II6OjixYsIBdu3aRkpKCg4MD1dXVZzz/tN8nRZWVlZcdl8FgoF+/fqxbt+6sfY6O\njuc9d1tyc3MjLi7O/LiyshK1Wo2Li8tFXztt2jS2bNlCeXk506ZNM7f/8OHDGT58OHV1dbz44ov8\n4x//uGhPxu8n8f6WwWDg+uuv5/HHH7+s6zrf5/JC7627uztPP/00Tz/9NLt37+a+++5jzJgx2NnZ\nXfK5hWhrMoQkxGW45ZZbiIuL48CBA0DrkMEXX3yB0Wikrq6Or7/+mnHjxuHr64uXl5d5kmxsbCwl\nJSVERESg1Wqpq6szD0ecz8yZM3n77bfPeevypEmTWLt2LUajEUVRWLVqFTt37qSsrAxbW1v69etH\nS0sLn332GcB5eynOpaGhgfvvv988uRMgMzOTo0ePMnToUAYPHsyhQ4coKyujpaWF9evXm5/n4eFh\nnvyZnZ1NbGwswGXFNWjQIIqLizl69Kj5OI8++iiKohAZGcm2bdswGo2UlZWxc+fOS76uyzFq1CgO\nHTpkHub69NNPGTVqlLnn7UImTJhAXFwcW7duNQ/D7N69m7/85S+YTCZsbW0JCQk5oxfkSkycOJEf\nfvjBnGhs3bqVt95664KvudDncvDgwezevZv6+nrq6+vNiVNzczNLly6lqKgIaB161Gq1ZwxpCmEJ\n0gMjxGWwt7fnzjvv5MUXX+SLL75g6dKlZGdnM3PmTFQqFTExMUyfPh2VSsUrr7zC//7v//L6669j\nY2PDq6++iq2tLcHBwTg5OTFq1Ci++uorfHx8znmua665BpVKxYwZM87ad9NNN5GTk8PMmTNRFIXw\n8HCWLVuGra0tY8eOZdq0abi5ufHEE08QGxvL0qVLWbly5SVdo4+PD6tXr2blypU899xzKIqCvb09\nTz75pPnOpBtvvJHrr78eFxcXpk6dSmpqKgALFixg+fLlTJ06ldDQUHMvS0hIyCXHZW1tzcqVK3n2\n2Wepra1Fp9PxwAMPoFKpWLBgAYcOHWLy5Mn4+PgwefLkM3oNfuv0HJjfe+mlly76Hnh5efHcc89x\nzz330NzcjK+vL88+++wlvX/29vaEhYWRnJxMZGQkANHR0Xz33XdMmzYNvV6Pq6srK1asAOCxxx4z\n30l0OcLCwrjrrrtYunQpJpMJNzc3/vKXv1zwNRf6XE6YMIEdO3YQExODu7s748aN49ChQ+h0OubP\nn88f/vAHoLWX7amnnsLGxuay4hWiramU3w5ECyHEZTp06BCPPfYY27Zts3QoQogeRPoAhRBCCNHl\nSAIjhBBCiC5HhpCEEEII0eVID4wQQgghuhxJYIQQQgjR5XTJ26iLi89922RbcHGxpby8rt2OL66c\ntE3nJO3SeUnbdF7SNpfGw8PhvPukB+Z3tFqNpUMQ5yFt0zlJu3Re0jadl7TN1ZMERgghhBBdjiQw\nQgghhOhyJIERQgghRJcjCYwQQgghuhxJYIQQQgjR5UgCI4QQQoguRxIYIYQQQnQ5ksAIIYQQ3cyO\nHT9e0vNeffVl8vJyz7v/iSceaquQ2pwkMEIIIUQ3kp+fx9atmy/puQ888DA+Pr3Ou/+FF15pq7Da\nXJdcSkAIIYQQ5/bKKy+SmJjAmDHRTJ06nfz8PP71r1U8//xfKS4uor6+nltvvZNRo8awfPmdPPTQ\nY2zf/iO1tTVkZWWSm5vD/fc/zIgRo5g5cxLfffcjy5ffSXT0MGJjD1FRUcGLL/4Td3d3/vrXpyko\nyGfgwAi2bdvKV19t7LDrlARGCCGEaCefb0vjYFLRWds1GhVGo3JFx4wOMbBgYv/z7l+0aCnr1n2O\nv38AWVmnWLXqP5SXl3HNNcOZPn0Wubk5PP30E4waNeaM1xUVFfKPf6xk3769fP31l4wYMeqM/XZ2\ndrz66mpWr36NnTu34ePjS1NTI2+99T579uzi888/uaLruVKSwAjRwYrqSqhqqqa/s7+lQxFCdHMD\nBoQB4ODgSGJiAt98sw6VSk1VVeVZz42IiATAYDBQU1Nz1v5Bgwab91dWVpKZmcHAgYMAGDFiFBpN\nx67vJAmMEB2ovqWeV+PepKqpmudHPY293s7SIQkh2tGCif3P2Vvi4eFAcXF1u59fp9MBsGXL91RV\nVfHGG/+hqqqK229fetZzf5uAKMrZvUO/368oCmp16zaVSoVKpWrr8C9IJvEK0YG+SvuOisZKTIqJ\n+NJES4cjhOiG1Go1RqPxjG0VFRV4e/ugVqv56adtNDc3X/V5evXyJTn5BAAHDuw765ztTRIYITpI\nUlkqe/IO4GrtAkB8cYKFIxJCdEd9+/qTnJxEbe2vw0Djx09k795dPPDA3djY2GAwGHjvvbev6jwj\nR46htraWu+++jaNH43B0dLra0C+LSjlXP1En157dbh3VrScuX1dum4aWRlYc+CfljRU8GrWc9098\nSnlDOS+O+T/0Gp2lw7sqXbldujtpm86rO7RNVVUlsbGHGD9+EsXFRTzwwN18/PGXbXoODw+H8+6T\nOTBCdIANJ7+ntKGMqX0n0MfRlwj3ULZk7SC5PJWB7qGWDk8IIS6bra0d27Zt5eOP16AoJu67r2OL\n3kkCI0Q7S684xU85e/G09WCG32QAIjzC2JK1g6PFCZLACCG6JK1Wy1//+rzFzi9zYIRoR03GZj5M\n+hyAJQNuQPfLcJGfY28c9PbEl5zApJgsGaIQQnRJ7ZrApKSkMHnyZD788EPztg8++ICwsDBqa2vN\n28LCwli6dKn5v46eySxEe9mYsYWiuhLG9x5FPyc/83a1Sk2Eeyg1zbVkVGZZLkAhhOii2m0Iqa6u\njmeffZYRI0aYt61fv57S0lIMBsMZz7W3t2fNmjXtFYoQFpFZlc3WrJ9wt3Zldr+Ys/ZHuIexJ+8A\nx0oSCHD26/gAhRCiC2u3Hhi9Xs/bb799RrIyefJkHnzwwQ4vdiNER2sxtfBh4loUFG4KmY+VRm/e\ndyy9hB8P5xDs0h+9Rs+x4oRzFo0SQghxfu2WwGi1Wqytrc/YZm9vf87nNjU18fDDD7Nw4ULee++9\n9gpJiA6zOXM7ebUFjPYZRrDrr1U4TxVU8fq6eD7akkJ5dQuhrkEU1ZdQWHf2WilCCNGe5s+fTV1d\nHWvWvM/x48fO2FdXV8f8+bMv+PodO34EYOPGDfz00/Z2i/N8OsVdSI899hjXXnstKpWKJUuWMHTo\nUAYOHHje57u42KLVtv2aC1W1TaRkldPf1xm1WnqJOqML1QToLDIrcth86kfcbFy4ffiN2OpsAKip\na+LNb07Q8ssCbsk5VYzuN5QjxcdJr09noN/5F2fr7LpCu/RU0jadl6XbRqNR4+5uz0MP3XfWvtpa\nNRqN+rwx5uTksGvXNm64YQ7Llt3U3qGeU6dIYBYtWmT+efjw4aSkpFwwgSkvr2uXON7bmMiuY/m4\nOFgxPMyTEWFe+Hqcu9dIdLyuUPjJaDLy2uH3MSombgy6ntqKFmqpxqQovP5lPIVldUwY3IsdR3LZ\nGZfNn4JDUavU/HwqllHuIy0d/hXpCu3SU0nbdF7t2Ta33rqYFStexsvLi4KCfJ588mE8PAzU19fT\n0NDAgw8+SmhoOEajiZKSGv7852cYP34SkZGD+fOfH6OpqYmIiEiMRhPFxdX88MMmvvjiMzQaNX5+\nATz++J956qlnSExM4KWXXsFkMuHs7My8eTeyatWrxMcfpaXFyLx5C4iJmcny5XcSHT2M2NhDVFRU\n8OKL/8TLy+uS36fzsXgCc/LkSd544w3+8Y9/YDQaiY2NJSbm7AmPHWHSNZ6YrGuIPVrHpn1ZbNqX\nRW+DPSPCvBgW6omLg5VF4hJdx4/ZO8mqzmWYVxRhbiHm7d/vz+JIWgkD+rqweEoQ+aW1JGVV0NSg\nIcDJj9SKk1Q2VuFk5WjB6IUQbW1d2rfEFcWftV2jVmE0Xdnct8GGgcztP+u8+8eOncCePTuZN28B\nu3b9xNixEwgICGTs2PEcPnyQjz76L3/729/Pet3mzZvo1y+A++9/mB9//IGtWzcDUF9fz8svv4aD\ngwP33nsH6elpLFq0lHXrPueWW+7gnXfeBODIkVhOnkxn9ep3qa+vZ9myhYwdOx4AOzs7Xn11NatX\nv8bOndtYsODqe23aLYE5fvw4L774Irm5uWi1WjZv3szIkSPZu3cvxcXF3HHHHURGRvLYY4/h5eXF\n/PnzUavVTJw4kYiIiPYK64J2FW8jlgP4jPSirzacklOuJKRX8/n2NNZuTyOkrwsjwryICvbAxsri\nuZ/oZApri/guYwsOenvmBf46dpyUWc6XP6XjbK/nj9eGoVariAo2kJRVQWxKMRGGMFIrThJfcoLR\nvYZb8AqEEN3B2LETeP31fzFv3gJ27/6J5csf5NNP1/DJJ2tobm4+a37qaadOnSQyMgqAwYOjzNsd\nHR158smHAcjMzKCysuKcr09KOkFk5BAAbGxs8PPrR3Z2NgCDBg0GwGAwUFlZ2SbX2W5/hcPDw895\na/Tdd9991rZHH320vcK4LJP7jMWkaeFA7hHylK1YuesZEzIIh7pAEpONJGaWk5hZzpofkhkc6M7w\nMC/C/V3RaqQeYE9nUkx8mLSWFlMLC4Oux05nC0BFTSP//iYBFSrunhOOo13r3UhDgjz4aEsKh5OL\nuDU0jC9TN3BMEhghup25/Weds7ekPYeQ+vULoLS0mMLCAqqrq9m1awfu7gaefvpZkpJO8Prr/zrn\n6xQF8/xP0y+9Q83Nzbzyyku8//7HuLm589hjfzrveVUqFb+9obKlpdl8PI3m13mrbXXXpfzl/Q1P\nOwMPjbqD50b+D7P7TcNWa8v+woNsrf4YXcjPLLzBhmtH98bV0ZoDiUWs/OIYD72+hw9/SCY9t1Ju\nhe3BfsrZy8nKTAYbIog0tM7fMppMvPl1AlW1TdwwIYBAX2fz810crAjwcSQ5uwIrxZ5e9t4kl6fR\n0NJgqUsQQnQjI0aM5q23VjFmzDgqKyvo1csXgJ9+2k5LS8s5X9OnT1+SkhIBiI09BEBdXS0ajQY3\nN3cKCwtISkqkpaUFtVp9VtHZkJAw4uIO//K6OnJzc/D17dNel2j5OTCdkZOVIzF+k5jadwIJpUns\nzt1HQmkyp6qysNHaMHx8FH76cFLSWjhwopBtsblsi83F4GLDiDAvhod54ulia+nLEB2kpL6Ub9I3\nYaezZUHQdebt63aeJDm7gqggD6ZG9z7rdVHBBtLzqohLLSHCPZRNp37kRFkKQwyWGUIVQnQf48ZN\n4K67buX99z+hoaGe5577X7Zv38q8eQvYuvUHvvvum7NeExMzk//5n0d44IG7iYiIRKVS4eTkTHT0\nMG6//Wb69w/kppuWsnLlK7z22pskJyexcuXL2Nm13uwyaFAkwcEh3HvvHbS0tHDXXcuxsbFpt2tU\nKV2w26A9Z9Wfr1uvtL6cPXn72Zt/gOqmGgCCnAMY6TMMXa0PB04UE5tSTFNz67o2AT6ODA/zInqA\nAUdb/VnHE5evM95RoSgKK4+8TUp5Gn8IXUS0V+s4b1xqMa99GY/BxYZnlkVja332vxWKKup54t8/\nExHgxtxpbrx4aCXRnkP4Q9jCjr6Mq9IZ20W0krbpvKRtLk2nvgupq3CzceHagBhm+E/mWMkJduXu\nI6U8jZSKdBx09owIjeaZcUPJzDLyc0IBCafKSM+r4tMfUwn3d2VEuBeD+rtjpWv7+jXCcvbmHSCl\nPI1wtwEM9YwEWhOTd75NRKdVc8+c8HMmLwAGZxv6GOxJyCjjDl0ozlZOJJQmYjQZ0ajlcyKEEBci\nCcxl0qq1DDFEMMQQQWFtEbvz9rMv/xA/ZG5nS+YOQt2CmTJpOLdYjeBgYjE/JxRyNL2Uo+mlWOs1\nRAV7MCLMi5A+LlIsr4srb6hgXdq3WGusWRQyF5VKRXOLkdVfHaeusYVbZoTQx/PChaqGBHuQVVRD\n/MlSItzD2Jm7l7SKjDOq9wohhDibJDBXwdPOwLzA2czuF0Nc0TF25f5MQmkSCaVJuFg5M8pnGH+6\nKZqaag37EgrYl1DInvgC9sQX4GyvZ3ho63yZi/2RE52Poih8kryOBmMji0Pm42zlBMDHW1PJLKxm\ndIQ3YyJ8LnqcqGAD63dlcDi5mInjQ9mZu5djJQmSwAghxEVIAtMG9Bodw7yjGOYdRXZ1Hrvz9nGw\nIJZvMzaz8dQWBrmHMXrgcK4bM4yTudX8nFDAwcQivj+QxfcHsvD1sDMXy3N1PPf9+aJzOVgYR0Jp\nEiEugYzwjgZgT3w+Px3Jo7fBniVTgi7pOD5utni52hJ/spQ/zByBjdaaYyUnmB94rSx6KoQQF6D5\nv//7v/+zdBCXq66uqd2ObWdndVXHd7JyYKD7AMb5jsTV2pmyhgpSKtI5UBBLbOFRnBy0TI0YwMxh\nAfT1dMBkUkjPq+R4RhlbDmaTnFWOyaTg4WyDTit3uf/W1bZNW6lsrObfx95DpVJz76DbsNXZklNU\nw+vr4tHr1DyyaDBOdpdWtVmlUlFR00hSVgX9vJ1QrKtIrzzFII9wHK26Rs9cZ2kXcTZpm85L2ubS\n2F3gd6kkML/TVh8qrVpLX8fejPYZzgC3YEyKiZNVmZwoTWZHzh5KGkoI9vFkamQQk6J8MTjbUNdo\nJDm7giNpJfxwMJvs4hq0GhUezjYyX4bO84Vfk/g52TW5zA2cRahbMPWNLfzjsyNU1Tbxx2vDz6j3\ncilsrbX8dCQPjUbF4EA34orjcbRyIMgloJ2uoG11lnYRZ5O26bykbS7NhRIYGUJqZyqVin5Ofenn\n1Jd5gbPZn3+IXXn7OFAQy4GCWHrZezPaZzjXhA9mXGQvSirr2ZdQyM8JBRxKKuJQUhF21lquGdC6\nuGRAL0cZWrCg2KJjHCmOJ8DJj7G9RqAoCu9tSqKwrI5p1/QmKtjjso/Z19MBN0drjqaVsGhKNBqV\nhvjiBGb6T2mHKxBCiO5BemB+pz2zYr1Gh79TX8b1Gkl/5340mZpJq8jgeGkiO3L2UNZQjo+TO9H9\nezNxSC8GB3pgpdOQV1pHclYFu47l83NCATV1zTjb63HoYfVlLP0vlprmWlYffQ8FE/dE3oaD3p6t\nh3P44UA2gb5O3D4r9Ip6ylQqFWVVDSRnVRDS240adSHplacY4T0UG237FYFqK5ZuF3F+0jadl7TN\npZEhpMvQER8qlUqFu40rQwwRjPIZhq3OhoLaIlIq0tmdt48Tpcmo1RqCDL4MCvBgSrQvgb5OgIpT\nBdWcyCxnW2wux9JLaGox4eFkg5W++9cNsfQX/uOkdWRUZXJtvxgiPMJIy63krW8ScLDR8cjCwdhZ\n66742FZ6DbuP5aPTqhng70hCaRLuNm74ObZfGe62Yul2EecnbdN5SdtcGhlC6sScrBzMyxacKE1m\nV+4+EkqTOFWVxZepGxjuHcVon+GE+xsI93ejsclIXGprfZmEjDIy8lP57Mc0wvxdGRHm2dpr0wOS\nmY52vCSRg4Wx9HXozcTeY6iua2L1+uOYFIU7rw3DxeHSJu2eT0AvJ5zs9MSllnDthHAAjhUnMN53\nVFuEL4QQ3Y4kMJ2EWqUm3H0A4e4DKK0vZ2/efvbkH2B79m62Z+8m0LkfY3qNYJBHGMPDvBge5kVl\nbRMHEgvZl1BA/MlS4k+WYqXTMCTIgxHhnoT2dZXJv22gvqWeT5LXoVFpWDLgBlSoeWtDPOXVjVw/\nth+hfq5XfQ61SsWQIA+2x+VSVAR9HHxJrThJXXM9trrOP4wkhBAdTYaQfqczdOvZ6mwIdu3PeN9R\n9LL3pra5jtSKdOKK49mTu59XweW0AAAgAElEQVTaljo8bNxwsbUnwMeJcZG9uGaAAVtrHcUV9aRk\nV/BzQiE7j+bRy90OQzdZWNJSbbM25WtSK04yw38yQzwH8c2eU+w6lk9EgBtLpwW32aRqrVbNz8cL\nsNFr8e9jRXJ5Gr3svell790mx28vneE7I85N2qbzkra5NDIH5jJ0pg+VWqXG286T4d5RDDUMQqPW\nkF2dS1J5Kjty9nCqKhtrrRUeNm442loxoK8Lk4f6EubvilajJi23in0nCvFwsqG3wd7Sl3PVLNE2\nSWWpfJG6gV723twceiMnTpXz301JuDla89CNkW26tpWrgxXbYnMoLK/juhHB7M7bh1ql7vSrU3em\n74w4k7RN5yVtc2lkDkw3cPayBfvOWrZgpE80TlaOBPo6E+jrzPBQT1Z+cYy3vz1BZW0T067pLbdg\nX4aGlkY+TvoCtUrNkpAbqKpp4a1vTqBWq7jn+nDsba580u65aDVqIgPd2RNfQEOlDe7WriSUJtFs\nakGnlq+qEEL8lvTA/E5nz4o1ag2+Dj6M9LmGQe5hoILMqiwSy1LYnrOb3Jp87HS2uFq74O5kQ0R/\nN46klXA4uZiGJiOh/q5dNonp6Lb5Ku07EstSmNJ3PFGGwfxr7VEKy+tZPCWIIUGXX+/lUqjVKvaf\nKMTORoe3t4q0igz6OflhsHVvl/O1hc7+nenJpG06L2mbS3OhHhipVd+F+Tr4sCh4LitGPcXC4Ll4\n23lypDie1468zbP7/sGPWTvxdLXif5ZE4e1myw8Hs3l7wwmaW0yWDr3TS6vI4KecvXjaGpjhN5nP\nt6eRnlfF8FBPJgzu1W7nDfNzwUqv4XByERHuoQAcK0lot/MJIURXJQlMN2CttWZMr+E8Gf0nHom6\nl2FeUZQ3VrAu7VtejXsLvU0LTy6Jon8vJ/afKORfa49S39hi6bA7rSZjMx8lrQVgyYD5HEktZ+uh\nHLzdbLk5pu0m7Z6LTqthUIAbxRUN6BrdsdPZEl98ApMiSacQQvyWJDDdiEqlwt+pLzeH3sjfRj3F\nUM9IMqoy+fuh16gylvLIwkgi+7uTmFnOix/HUlnTaOmQO6WNGVsoqithfO9R2LR48O7GRKx0Gu69\nfiDW+vafixIVbAAgLqWUcLcBVDZVkVWd0+7nFUKIrkQSmG7KTmfLH0IXMct/KqUN5bx8+A1Sq1K5\nd244Ywf5kFVYw9/WHKawrM7SoXYqmVXZbM36CXdrV6b6TmHV+uM0Nhn5w/QQfNztOiSGgf1c0WnV\nxKYUE+ERBsCx4hMdcm4hhOgqJIHpxlQqFdP9J3Nr2E0YFSOrj77HrtyfuXlaENeO8qOksoEVHx4m\nI7/K0qF2Ci2mFj5MXIuCwk0h8/lsawa5xbVMHNKLYaGeHRaHtV5LuL8ruSW1uCi90Km1Mg9GCCF+\nRxKYHiDKM5IHBt+Fvd6Otalfszb1a2aP6svSacHU1Dfz0sdxHD9ZaukwLW7zqW3k1RYw2mcYBVk2\n/JxQgL+3AzdODOzwWE6van08vZIQ10Dyawspqivp8DiEEKKzkgSmh/B36sNjQ++jl703O3N/ZvWx\n9xgW7so9cwZiNCm8+sUx9h7Pt3SYFpNbk8/3mdtwtnIiymEcH21Jxc5ay91zwtFpO/5rMqi/Oxq1\nikPJxUS4/zKMJL0wQghhJglMD+Jq7cJDQ+4m3G0AiWUpvHz4Dfr2UfPIwtaKsv/5NpFN+zNRFMXS\noXYoo8nIh4mfY1JMzO13Hf/5JoUWo4k7Zofh7mSZdYjsrHUM6OtCZkE1Pnp/VKhkHowQQvyGJDA9\njLXWmj9GLGNi7zEU1BXx0qHXUDuU88SSIbg4WLF2ezqfbUvD1IOSmB+zd5JVncs1XkPYs8dESWUD\ns0b6ERHgZtG4hvwyjJRysh5/p76crDxFTVOtRWMSQojOQhKYHkitUjMvcDY3Bc+jvqWBlXFvkduS\nzJ+X/lrw7q1vEnpEwbvC2iK+y9iCg94e58rBHEkrYUBfF+aM9rd0aAwJ9EAFHE4pJsI9FAWF+NJE\nS4clhBCdgiQwPdioXsNYPuh29Bo9HyR+xq7i7Ty+eDD9fZ04kFjU7QvemRQTHyatpcXUwljXqWzY\nmYezvZ4/XhuGWm355RYc7fQE9nYmLaeSfratE4mPFcs8GCGEAElgerxg1/48GnUvHjZu/JC5nc/S\nP+P++aE9ouDdTzl7OVmZSbhrGFt+bE3U7p4TjqOd3sKR/Soq2AMFyMoBT1sDiWUpNBll/RQhhJAE\nRuBpZ+CRocsJdO7HkeLjvBH/Fktm9mFcZPcteFdSX8o36Zuw09pSnhhIZW0TN0wIINDX2dKhnSHq\nl0UjDycXMcgjjGZTM0llqRaOSgghLE8SGAGAvc6O5ZG3M8I7mqzqXF6OfYMJI+3NBe/+tqb7FLxT\nFIWPkr6kydRMX+Nw0jIbGBLkwdTo3pYO7Syujtb4ezuQlFlBf4cgAI7K7dRCCCEJjPiVVq1lcch8\nru8/k8rGKv4Zuxr/kDpunhZMbUMzL34cS3w3KHi3N+8AKeVp9LEO4PB+HQYXG26dMaBdF2m8GlHB\nBkyKQlm+DY56B46XJMrijkKIHk8SGHEGlUrF5D7juGPgzQC8Hb+GZtdU7pkTjskEK7t4wbvyhtZV\nuq3UVmQd9kOn1XDPnHBsrdt/kcYrdXoYKS61hIHuA6hpruVkZaaFoxJCCMuSBEac0yCPMB6Kugcn\nK0fWp2/khGkHD9448NeCd/u6XsE7RVH4JHkdDcZG9MUDqa/VsWRqEH08HSwd2gV5utri62HH8Ywy\nQpwGAFKVVwghJIER59XboRePDl1OHwdf9uUf4vuSz3lgYUhrwbsd6Xz6Y9cqeHewMI6E0iQcTT4U\npbsxOsKbMRE+lg7rkgwJ8qDFaKKx3Bm9Rs+x4oQul0AKIURbkgRGXJCzlRMPDrmLwR4DSavI4MNT\n73Hn/D74uNux5VDXKXhX2VjN2pSv0ap0FB3rT2+DA0umBFk6rEs2NNgAQFxKOaGuwRTXl1JQV2Th\nqIQQwnIkgREXpdfouTV8MTF9J1JSX8rbyf9h/iynLlXw7vOU9dS11NOUFYi1yoF7rg9Hr9NYOqxL\n1svDDoOLDfHppYS5/jKMJEXthBA9mCQw4pKoVWpmB8Rw84AbaTY28U7i+4wc28jgwF8K3n3UeQve\nxRYd40hxPJp6Nxrze3PrjFA8XWwtHdZlUalURAV70NhsRFVtQK1Sc6xEFncUQvRcksCIyzLMO4r7\nBt+JrdaGtWnr8RqYwdhIL7KKWgveFXSygnc1zbV8nrwelaKhNjWUadf0IeqXRRK7mqig1mGkhLQa\n+jv5c6oqi4rGSgtHJYQQliEJjLhs/Z39eXTocrzsPNmRs4c6733MHNWLksoGVnSygndfpGygurmG\npuz+9Hf3Yd64AEuHdMX8vR1wcbDiSGoJYW6tw0jxJbK4oxCiZ5IERlwRdxs3Hom6hwGuQSSUJpGk\n/455k707VcG7+JITHCyMxVTrhE1Vf+66Lhytput+5FUqFVFBHtQ1tmDb6AvI7dRCiJ6r6/42FxZn\no7Xh7ohbGNtrJHm1BeyqX8sNM9xQlNaCd3viLVfwrr6lno+T1oGiojkjnD9eOxAXByuLxdNWTg9/\npZ5sope9NyllaTS0NFg4KiGE6HiSwIirolFruDF4DjcEXUdNcy2bSj9j1gwdVjoN73xnuYJ361K/\no6qpiubcAK4bOohQP9cOj6E9BPo642irIy6lmIFuobQoRk6UpVg6LCGE6HCSwIg2Md53FHcPuhWt\nSsv3BV8zeko1zg561u5I55MfUzu04F1SWSp78w9gqnNggE00M0f07bBztze1WsXgIA+q6ppxNvYB\n5HZqIUTPJAmMaDNhbsE8HHUPbtYu7Cr6iaBRGXh7WLP1UE6HFbxraGnk/eOfoygqbAujuGNWOOpO\nukjjlTq9NlJWlhoXK2eOlyZhNBktHJUQQnQsSWBEm/Kx9+LRoffRz6kv8WXxOA48TL8+Vh1W8G5t\n0rdUt1RiKvBn+YzR2Nvo2vV8lhDS1wVbKy1xKSUMdA+lvqWetIoMS4clhBAdShIY0eYc9PbcH3kn\n0Z5DyKrJpqHvTwwI1pgL3lW0U8G75LKT7Cvcj6nejnkhMfh7O7bLeSxNq1EzqL87ZVWNeGr8ADgq\ndyMJIXoYSWBEu9BpdCwLvZHZ/aZR3lhBvusWBg02klVUw4p2KHjXZGzm7bhPUIAgZSyTh3SfeS/n\nMvSXu5EKs22x0VrL4o5CiB5HEhjRblQqFTF+k7gtfAkmxUSqbiuDR1RTUlnPijWHOZnXdgXv3jm8\nnnpVJdaV/bl76hhU3Wzey++F+btipdMQl1JKmFsI5Y0V5NRY7rZ1IYToaJLAiHY3xBDBg0PuxkFv\nT5JxD2Fj8qhtbOSlT2I5ln71Be8OZ6cQX30QpdGW+0ffgLVe2wZRd256nYaBAW4Uldfjq2+tLixF\n7YQQPYkkMKJD9HXszWND76OXvTcnG+PpNyoZRd3Ma19eXcG72sZG/pvwOSoVTPWagZ/BpQ2j7txO\n341UVeCMRqWR26mFED2KJDCiw7hYO/PQkHsY6B5KXmMmHtGxWNk38M53iWy8goJ3iqLwyo4vMOqr\n8DSFMGfwNe0UeecUEeCGVqPiaEoFQS4B5NTkUVpfbumwhBCiQ0gCIzqUtdaKOwfezKQ+YylvKsU6\nbB9Ohmq+uIKCd98cPkq+5hjqFhseHL2wHaPunGystIT5uZJTXIu/bSDQuv6TEEL0BJLAiA6nVqmZ\n238Wi0Pm02hqxOi/D3e/YrYeyuHNry+t4F1GfiXf53+LSq1wU8g8HKxtOyDyzicq2ABAY0nrcJLM\ngxFC9BSSwAiLGelzDfdF3o6VRk+t4TCGAac4mFR40YJ3tQ3NvLrzK9R2VQTZhTGiT0QHRt25RAa6\no1apSEito69Db1IrTlLX3La3qAshRGckCYywqCCX/jw6dDkGG3eqHZLwiDxBYnYxL5yn4J2iKKza\nuI8mtyT02HD7kBssEHXnYW+jI6SvMxn5VfR3CMKkmDhemmTpsIQQot1JAiMszmDrwSNDlxPkHECN\nPhu3IXFkl5ecs+Ddpn2nSNfsQqU2cXPYfOx0PXPo6LdO342kVHoCcEzmwQghegBJYESnYKezZXnk\n7Yz0voY6dSnOgw9S2lzIijWHSc+rBCA+vYSvk3agcahgoGs4gz0HWjjqzmFwkAcqIDXNiLuNGydK\nk2g2te+aU0IIYWmSwIhOQ6PWcFPIPOb2n0UTddiFH6TeJpu/fxLHnvh8Xvz0JzS+KVirbVgcOtfS\n4XYazvZWBPg6kZpTSYhTCI3GJlLK0ywdlhBCtKt2TWBSUlKYPHkyH374oXnbBx98QFhYGLW1teZt\n33zzDfPmzeOGG25g7dq17RmS6ORUKhWT+ozljxHL0GjU6PsfAUM673x3gnpDLCqNkYUhc3DQ21s6\n1E5laJAHigK6Wm8AKWonhOj22i2Bqaur49lnn2XEiBHmbevXr6e0tBSDwXDG89544w3ef/991qxZ\nw3//+18qKiraKyzRRQx0D+XhIffgYuWMplcytgP3o3EsI9xtAEM9Iy0dXqcz5Jd5MJkntdjr7Igv\nOYFJufjt6EII0VW1WwKj1+t5++23z0hWJk+ezIMPPnjGQntHjx5l4MCBODg4YG1tzZAhQ4iNjW2v\nsEQX4uvgw6NDl9PXoTeKTQW2OhsWhczt9gs1Xgl3Zxv6ejmQlFlJiHMwlU3VZFblWDosIYRoN+2W\nwGi1Wqytrc/YZm9/drd/SUkJrq6u5seurq4UFxe3V1iii3GycuRPQ+5iut9kHhl1J85WTpYOqdOK\nCvLAaFKwbeoFSFE7IUT31umW7b2U9XBcXGzRajXtFoOHh0O7HVtcmVu85lk6hE5vygg/1u08SVm+\nIzoHHSfKk7jdY0GHnFu+M52XtE3nJW1zdSyewBgMBkpKSsyPi4qKiIy88ByH8vL2qzTq4eFAcXF1\nux1fXDlpmwuzUoGPux1HksoZNLk/CWWJJGSexGDr0a7nlXbpvKRtOi9pm0tzoSTP4rdRDxo0iPj4\neKqqqqitrSU2NpahQ4daOiwhuqQhQR40t5hwNvUBpKidEKL7arcemOPHj/Piiy+Sm5uLVqtl8+bN\njBw5kr1791JcXMwdd9xBZGQkjz32GA8//DC33XYbKpWKe++9FwcH6VYT4koMDfbg272nKMtxRGWv\n4lhxApP7jLN0WEII0eZUyqVMOulk2rPbTbr1Oi9pm4tTFIXH//0z1fXNBIw9zqmqLJ4f/XS71s2R\ndum8pG06L2mbS9Oph5CEEG1HpVIxNNhAY5MRg9ofBYXjJYmWDksIIdqcJDBCdDNDglsn7dYUtJYn\nOCq3UwshuiFJYIToZvr5OOJsrycxpQlPWwNJZak0GZssHZYQQrQpSWCE6GbUKhVDgjyobWihlz6A\nZlMziWWplg5LCCHalCQwQnRDUcGtS3g0lrgDUpVXCNH9SAIjRDcU1NsJexsdKcngqHfgeEmiLO4o\nhOhWJIERohvSqNUMDnSnqraZPjYB1DTXcrIy09JhCSFEm5EERohuKuqXu5GUCi8AjhXLMJIQovuQ\nBEaIbmpAX1dsrDScTNFhpdFztCThkhZLFUKIrkASGCG6KZ1WzaAAd8oqm/GzDaCkvpT82kJLhyWE\nEG1CEhghurHTw0iaml+GkWRxRyFENyEJjBDdWLi/G3qtmpyTdqhVarmdWgjRbUgCI0Q3ZqXXMLCf\nG4XFLfS260tmVTYVjZWWDksIIa6aJDBCdHOn10ayqfcBIF6GkYQQ3YAkMEJ0c4MC3NGoVRSdcgTg\nWLEkMEKIrk8SGCG6OVtrLaF+ruTmK3jZeJFSnkZ9S4OlwxJCiKsiCYwQPcDpu5EcW3rTohg5UZps\n4YiEEOLqSAIjRA8QGeiOSgXluc6ALO4ohOj6JIERogdwtNUT3NuZrFNqnPROJJQmYzQZLR2WEEJc\nMUlghOghooINgAp3/KhvqSe14qSlQxJCiCsmCYwQPcSQoNZ5MNUFLoAMIwkhujZJYIToIVwcrAjw\ncSTrpB5rjTXHik/I4o5CiC5LEhghepCoYAOKSY1B05fyxgpyavIsHZIQQlwRSWCE6EFOV+VtKm39\n/7FiGUYSQnRNksAI0YMYnG3oY7AnK9UGjUrDUZkHI4TooiSBEaKHGRLsgbFFg6euN7k1+ZTWl1k6\nJCGEuGySwAjRw7TeTg2mSk8AjsnijkKILkgSGCF6GB83W7xcbclNswMkgRFCdE2SwAjRw6hUKqKC\nPWiq1+Ou8yat4iS1zXWWDsviiupKePHgSn7M2mnpUIQQl0ASGCF6oNOLO2prvTApJhJKkywckWWV\n1JfyatybZFXn8HX6Jgrrii0dkhDiIiSBEaIH6uvpgJujNQUnHYCefTt1aX05/4p9k4rGSgZ5hGNU\njHyZusHSYQkhLkISGCF6oNPDSPVVNjhqXThRlkyzsdnSYXW48oYKXo17k/LGCmb3i+GO8KUEufQn\noTSJ4yWJlg5PCHEBksAI0UO1DiOpsGnwodHYRHJ5mqVD6lAVjZW8GvcmpQ1lzPCfQozfRFQqFTcE\nXotapebL1A00m1osHaYQ4jwkgRGihwro5YSTnZ7iTCegZ92NVNlYxatxb1JcX0pM34nM8Jts3udj\n78WYXiMoqi9hR/ZuC0YphLgQSWCE6KHUKhWDgzyoLXXAWm1DfMkJTIrJ0mG1u6qmalbGvUVRXQlT\n+oxnVr9pqFSqM54zy38KdjpbNp3aSmVjlYUiFUJciCQwQvRgp4eRHFt6U9VUTWZVjqVDalfVTTW8\nFvc2BXVFTOw9husCpp+VvADY6my5tl8MjcYmvk7fZIFIhRAXIwmMED1YcG9n7Ky1lOc6A3CsG6+N\nVNNcy2tH3iavtoDxvqOY23/WOZOX00b6XENvex/2FxwmozKzAyMVQlwKSWCE6MG0GjWRge5UFTqh\nVWm77e3Udc11vB73Nrk1+YzpNYL5gddeMHkBUKvUzA+6DoDPU77uEcNrQnQlksAI0cNFBRnApMFJ\n6UVBXRFF3ayIW31LPa8feYfsmjxG+VzDgqDrzpm8ZBVW8/Q7+9m479felv7O/gz1jCSrOod9+Yc7\nMmwhxEVIAiNEDxfm74KVXkNNgSvQve5Gqm9p4I0j75BZnc1w76EsDJ6LWnX2r72EU2W88FEsucW1\nrPvpJDnFNeZ9cwJmoFfr+CZ9E/Ut9R0ZvhDiAiSBEaKH02k1DApwoyLPBRUqjnaTYaSGlkZWHX2X\njKosrvEawuKQ+edMXn4+XsC/Pj9Ki9HE5KG+mBSFj35IQVEUAFysnZnmN4nq5ho2Zmzt6MsQQpyH\nJDBCCKKCDdCixwlPMiozqW6qufiLOrFGYxOrj73LycpTDPWMZOmABWclL4qisHFfJm9/ewIrnYaH\nb4zkpslBDA50Jzm7gv0nCs3PndR7DO7WruzI2UNBbeHvTyeEsABJYIQQDOznik6rprHUAwWF+C5c\nRr/J2MS/j75HWkUGgw0R3DzgxrOSF5NJ4eMtqXyxIx0XByueXDKE4D4uACyaFIhOq+azbWnUN7ZW\n4tVpdMwNnI1JMfFF6gZz74wQwnIkgRFCYK3XEu7vSnnO6dupj1s4oivTbGzmzWP/JaUinUEe4dwS\nugiNWnPGc5qajaxaf5wfY3Pw9bDjz0uj6OVhb97v7mzDrBF9qaxt4uvdGebtEe6hDHANIrEshfhu\nNE9IiK5KEhghBABDgjxQGu2wV7mQVJZKo7HJ0iFdlmZTC2/Ff0BSeSoD3Qdwa9hNZyUvNfXN/OOz\nI8SmFBPSx5knFkfh6mh91rFihvXB4GLD1kM55BS1DqepVCrmB87+dZ2kHrj4pRCdiSQwQggAIgPd\n0ahVmCo8aTa1kFSWYumQLlmLqYX/xK/hRFkyYW4h3Ba+FK1ae8ZzSirref7Dw6TlVHLNAAMPLojE\n1lp7zuPptBoWTwnCpCh8+EOyecjIy86T8b6jKGko48fsXe1+XUKI85MERggBgJ21jpC+LpSdHkYq\n7hrDJEaTkXePf8Tx0kQGuAZxR/hSdL9LXrIKq/nbmsPkl9YRc00f7rw2DJ32wr/+BvZzY0iQByk5\nlfycUGDePsN/Mg46ezaf+pHyhop2uSYhxMVJAiOEMIsK9kCpdcJKZUt86QmMJqOlQ7ogo8nIewkf\nc7QkgSCX/tw5cBk6je6M55yu8VJV08SiSYEsmNgf9UWq8J62aFIgeq2az7elUdfQOmRko7Xh2oDp\nNJmaWZ++sc2vSQhxaSSBEUKYDQ70QIUKbY03tc11nOzEawAZTUb+e+JT4orjCXTux90Rf0D/u+Tl\ntzVe7poTzpTo3pd1Djcna2aP8qOqrpn1u36d0DvcO4o+Dr4cKjxCWkXGBY4ghGgvV5zAnDp1qg3D\nEEJ0Bk52egJ7O//mbqTOWdTOpJhYk/g5h4uOEuDkx10Rt6DX6M37z1XjJTrEcEXnmhrdB09XW36M\nzSGrsBpoXSfphl/WSfpC1kkSwiIumMDccsstZzxetWqV+ednnnmmfSISQlhUVJAHxio3tOg4VnKi\n09U8MSkmPkr8goOFcfg79uGeQbdirbX6df8FarxcCZ1WzeIpgSgKfLglBdMv70c/p74M84oiuyaP\nvXkHrvq6hBCX54IJTEtLyxmP9+3bZ/65s/1SE0K0jahgD1DUWDV4UVJfSn4nqjxrUkx8krSOfQWH\n6OvQm3sjb8Na++tt0Ber8XKlwv3dGBrsQVpOJT8f/3VC73UB07HS6Pnm5PfUNddd9XmEEJfuggnM\n71ds/W3ScrGl6IUQXZOrozX+3g5U5Lb2WnSWYSRFUfgsZT178w/Q26EXyyNvx0ZrY95/qTVertTC\nSYHodWo+3/7rhF4nK0em+02mtrmO7zK2tNm5hBAXd1lzYCRpEaJniAo20FLROqG3M9xOrSgKa1O/\nZnfuPnrZe3Nf5B3Y6n5NXi6nxsuVcnW05tpR/lTXNfPVzl8n7o7vPRqDjTs7c38mr6bgAkcQQrSl\nCyYwlZWV/Pzzz+b/qqqq2Ldvn/lnIUT3FBXkAUYdNs2eZFZnU9FYabFYFEXhy7QN/JSzFx87L+6P\nvBM7na15/5XUeLlSU6N74+Vqy7a4HDILWif06tRa5v2yTtLa1G9keF2IDnLBf6I4OjqeMXHXwcGB\nN954w/yzEKJ78nS1xdfDjqJ8VzR9CjhWfIKxviM6PA5FUVifvpHt2bvxsvPk/sF3Yq+3M+9POFXG\nG+viaWwysmhS4GXfJn25tBo1i6cG8fKnR/hwSzJPLolCrVIR7j6AMLcQEkqTOFp8nEjDwHaNQwhx\nkQRmzZo1HRWHEKKTGRLkwYaDJWj6tM6D6egERlEUNpzczNasn/C09eD+yDtx0P86Iffn4wW8uzER\nlQrumhN+xbdJX64wP1eiQwwcTCpiT3w+YyJ8AJgXOJukslS+TPuWULeQs2rSCCHa1gX7WWtqanj/\n/ffNjz/99FOuu+467r//fkpKSto7NiGEBQ0NNqA02WBtdCGlPJ36loYOPf/GjC1sztyGwcad+wff\niZNVa69vW9Z4uVI3TuyPlU7D2u3p1P4yodfT1oMJvUdT1lDO1qwdHRqPED3RBROYZ555htLSUgAy\nMjJ45ZVXePzxxxk5ciR/+9vfOiRAIYRl9PKww+BiQ12RO0bFyInS5A4796aMH9l4aivu1q7cP/hO\nnK2cgLav8XKlXB2tuXa0HzX1zazbedK8PcZvEo56B37I3EFZQ3mHxyVET3LBBCY7O5uHH34YgM2b\nNxMTE8PIkSNZuHCh9MAI0c2pVCqigj1oKvUAOu526h8yt/NtxmZcrV24f/AfcbFurQrcXjVertSU\nob3xdrNlR2wupwpab2qw0VozJ2AGzaZmvvr/9u47Pqv6/v//4xq5svceBDIIIxAIQUW2DNtaFUUU\nZFg/WtT6qVVrh9o6+l/IqfcAACAASURBVGs/tfRnq7VarVarBS0oThyAIsiQJWGGEcIK2XtAdq7r\n+0cgioFIAsl1ruR5v9243YTr5OR1bq9z4jPnvM/7nfWR02oT6Q3aDTBeXl+P9N+yZQujRo1q/fv5\nvFKdmZnJlClTWLRoEQD5+fnMmzeP2bNnc++999LQ0ABAcnIy8+bNa/3T3GzsBeREeou0pDAcNb7Y\n7N5klO7v8sUdV2Wv5f1DnxDoHsC9qXcS7Nlyd6Wr53jpDKvFzNypSTiARSu/nqH3kohU+vnFkl60\ni8zyQ06tUaQnazfANDc3U1paSnZ2Ntu3b2fMmDEAnDx5ktra2nZ3XFNTw+9//3suv/zrgX/PPPMM\ns2fP5o033qBv374sXboUAB8fHxYuXNj6x2KxXOhxichFEBfpS6CvBw2lodQ21XGw4vB3f1EnrT6+\nnneyPiTA3Z+fpd5BiGcQ0D1zvHTWoH5BXDoojMN5VazflQ+0rJN00+l1kg5+YPgVvUVcVbsBZv78\n+Vx11VVcc8013H333fj7+1NXV8fs2bO57rrr2t2xzWbjpZdeIizs68F1mzdvZvLkyQBcccUVbNy4\n8SIcgoh0FZPJRFpSKPUlXfsYaW3Olyw9+AH+Nl9+lnoHYV4hQPfO8dJZMyf1x91mYemaQ5yobRnQ\n29evD6MiR5J7Ip8NeZudXKFIz9TuT4IJEyawfv16NmzYwPz58wHw8PDgl7/8JXPmzGl3x1arFQ+P\nM2/x1tbWYrO1rBgbHBxMcXExAA0NDTzwwAPMmjWLf//7350+GBG5+NIGhGI/EYjFYWNX8cVf3HF9\n7iaWZL6Hr5sPP0u9k3CvlrCUcbSMP72eTtWJBm6e3J+bJiViNuBs4IG+7kwbE9cyoPeLrx8ZTUv4\nAR4WD5YdXsGJxpNOrFCkZ2r3PmxeXl7rf39z5t34+Hjy8vKIiorq9Df+5g/BX/3qV1x77bWYTCbm\nzp3LyJEjGTr03BNBBQZ6YbV23WOm0FBN0mdU6k33Cwr2IeCDvTRWhlFuyuGEtYL4oNgztulsXz4/\n/CX/PfAOvu4+PH7F/fTxb/mZsnrbcf725k5MJhO/umUkY4dFX/BxdKWbfzCIjXsL+WJnHtdMSCQp\nNpBQfLlp6A/5z463WZW/mh+n3eyU2nTNGJd6c2HaDTCTJk0iLi6O0NCW34i+vZjjf/7znw59My8v\nL+rq6vDw8KCwsLD18dLNN399YY8aNYrMzMx2A0x5edet+hoa6ktxcXWX7V86T71xnmGJwaw7FoJ7\nQA5fHNyKb/zXry53ti+b87excN+beFu9uGfYfDwafCkqquKTzdksXXMIL3cr99wwlAFRfi7R95sn\nJfLn/27n70u289tbRmI2m0gLSGOF11o+zVpHWuAIYnw7/0tfZ+iaMS715vy0F/LafYS0YMECIiMj\nqa+vZ8qUKfztb39rHWjb0fACMHr0aFasWAHAypUrGTduHIcPH+aBBx7A4XDQ1NREeno6/fv37/C+\nRaTrpCWFYq8MweQwX5RxMFsLtrNw35t4WD24J3U+0T6RhpnjpbMG9g1k1OBwjhZUs3ZXy91rq9nK\nDf2vxUHLYpRaJ0nk4mn3Dsy0adOYNm0a+fn5vPvuu8yZM4fo6GimTZvG1KlT24xx+aY9e/awYMEC\ncnNzsVqtrFixgieffJIHH3yQJUuWEBUVxXXXXYebmxsRERHMmDEDs9nMpEmTSElJuegHKiKdN7Bv\nIF5uHphOhpBryqektqz1LaGO2la4k9f2LsbD6s49w39MH99oGhqbeXHZXtIzi4kJ9ea+G4c5/TXp\nzrhpUiI7skp4e80h0pJC8fWykRw8gKEhg9ldspf0ol2khQ9zdpkiPYLJ0cFfCd566y2efPJJmpub\n+eqrr7qqrnZ15W033dYzLvXGuV5atpctRVuwxe1lRv9ruaLPWKBjfdlRtJuXM17HZnbjp8PnE+cf\ny4naRp55exdZOZUMjA3gp9NTDPOadGes3HqcxasOMn5YFLf+YCAAxTWl/GHzk/jafHlk1C9wt9i6\npRZdM8al3pyfTj9COq2qqopFixYxffp0Fi1axJ133snHH3980QoUEeNLGxBKc0XLuLVdxR1/jLSr\nOIOXM17HzWzlf4ffTpx/rKHneOmsyWnRxIR6s25nHofyKgEI9QpmUux4yusr+PTYaidXKNIztBtg\n1q9fz/33388NN9xAfn4+f/rTn3j//fe57bbbzpjfRUR6viFxQdjwwlIbSFblEU42nv9g+j0l+/jX\nnkVYTRbuHnY78f79XGKOl86wmM3MvXLA1zP02ltucn+v7yT8bX58mv0FJbVlzi1SpAewPP7444+f\n68Mrr7ySpqYmUlNTqaurY8eOHaxatar1z5QpU7qx1K/V1DR02b69vd27dP/SeeqNc1ksZrILq8kp\nL8PsV0qkdzgxvlHf2Ze9pQd4cfdrmE1m7h52G/0D48k4WsZTb+6kpraJmyf359qxcee1PImrCPb3\noKi8lj1HyvD3cScu0g+r2YqvzYftRbuoqK/olrEwumaMS705P97e7uf8rN17taffNCovLycw8My3\nAXJyci5CaSLiStIGhLFtZThufQ6yq2Qvl0Wmtbv9/rKDvLj7NUwmE3el3EpSYAIb9xTwysf7MJng\nruuGcMnAnnk396YrEtiRVcw7XxwibUAofl42LglPZV3uRnYU72F/2UEGBumNS5HOavd+rdls5oEH\nHuCRRx7h0UcfJTw8nEsvvZTMzEyefvrp7qpRRAwiJSEYS6MP5kYf9pYdoLG58ZzbZpYf4oVdr+Jw\nOLhj6I8YEJjIx5uO8dKHe3F3s/DAzOE9NrwA+Pu4c924eE7WNfH2mpYZek0mEzcmTcOESeskiVyg\ndu/APPXUU7z66qskJCSwatUqHn30Uex2O/7+/rz11lvdVaOIGISnu5XkfsFklIRgjzzKgfIsoiIu\nbbNdVsURnt/5CnaHnTuG3sLAwCTe+PQgq9JzCPR15+c3DSM61McJR9C9Jo2IZt3OfNbtymf8sCgS\nov2J9Y1hdNQlbMjbwtrcja1vc4lIx3znHZiEhAQAJk+eTG5uLrfccgvPPvss4eHh3VKgiBjLiAGh\n2Mtbrv+zTWp3uPIo/9j5Mk2OZn48ZC5J/kn84709rErPISbUm9/MS+sV4QVOD+hNAmDhygOtA3qv\nif8+nlYPPjqykuqGE84sUcRltRtgvj2oLjIykqlTp3ZpQSJibKn9Q+FkIOZmd3aX7MPusLd+drQq\nm+d2vEyjvYnbkucQ75PEk0t2kJ5ZzMDYAB6ck+aSE9RdiKQ+AYwZEkF24QnW7MgFwNfmww/jrqS2\nqY5lh1c4uUIR19ShdxZ70lsCItI5Pp5uDIgNpKEshKqGarJKjwKQXZXDszv+RX1zA7cOnkUf98Qe\nN8dLZ824IhFPdyvvfHGYqpMtb56Mj76cCO9wvszbQna1XooQ6ah2A8z27duZOHFi65/Tf58wYQIT\nJ07sphJFxGhGDgil+dRjpK25Ozlencvfd7xEXVM9Pxo8i1ASeuQcL53l721j+vh4auqbWHpqQK/F\nbOHG0+skZX6gdZJEOqjdX4eWL1/eXXWIiAtJTQpl0WfBmBwW1h/bymdN66ltqmPeoJvwquvLn95J\np76hmZsn92fqJX2cXa4hTEyNYt3OPNbvbhnQmxjjz8Cg/gwPHcKO4j18VbiDSyJSnV2miMto91ei\n6Ojodv+ISO8U4ONOQlQQTRXBlNaWc7KxhtkDZ2AvjebpN3fS1GznruuGKLx8w+kZeqFlQG+zvWXs\n0PWJV2M1W3k36yPqmuqdWaKIS+m993RF5IKkJYXSVByNGTOzkq6nIjus18zx0lmJMf6MHRrJ8aIT\nrE5vGdAb4hnE1NgJVDZUseLY506uUMR1KMCISKekJYVirwgnsWIW2XuDWbrmEIG+7jw0dwQDYgO/\newe91IyJCXi5W3l33WEqTw3ovbLvFQS6B/B59lqKa0qdXKGIa1CAEZFOCQnwpG+4Lzszy3rlHC+d\n5edtY/qEeGrrm3lrdRYANouN6xOvosnRzNtZy5xcoYhrUIARkU67dFDLY6LeOsdLZ00cHk1suA9f\n7ikg83gFACPChpEYEMfukr3sLT3g5ApFjE8BRkQ67cpL+/C7+Zf36jleOsNsNjHv1IDeRacG9JpM\nJm7s//U6SU32JidXKWJsCjAi0mkWs5kRA8N69RwvnZUQ7c+4lEhyik/y+baWAb0xvlGMjR5FYU0x\nX+R86eQKRYxNP3VERJzkhokJeHtYeW/9YSpOtLxCfXX8lXhZPfn4yGdUNVQ7uUIR41KAERFxEj8v\nG9MnJJwxoNfHzZtr4r9HXXMdHxzSZKIi56IAIyLiRBOGRdEvwpeNGYUcyC4HYEzUZUR5R7AxfytH\nq7KdXKGIMSnAiIg4kdlsYt73BmACFn2aSVOzvWWdpKRpALyV+cEZK36LSAsFGBERJ4uL9GP88Chy\ni0/y+baWlamTAhMYEZbC0apsthZsd3KFIsajACMiYgA3TDg9oPcI5dUtA3qvT/whbmY33jv0MbVN\ndU6uUMRYFGBERAzAx9ONGRMTqGv4ekBvkEcgV/adSFVDNcuPrnJyhSLGogAjImIQ44ZFERfpx6a9\nhew/1jKgd0rsRII8All9fD2FNcVOrlDEOBRgREQMwmwyMffKpDMG9NosbkxPvJpmRzNvH9Q6SSKn\nKcCIiBhIXKQfE1KjySs5yWdftQzoHR46hKTARDJK97OnZJ+TKxQxBgUYERGDmT4+Hh9PN97f0DKg\nt2WdpGsxm8y8fXAZjVonSUQBRkTEaE4P6K1vaGbJ5wcBiPKJYFz05RTVlrDm+HonVyjifAowIiIG\nNDYlkvgoP7bsK2Lv0TIAro6birebF58c/YzK+ionVyjiXAowIiIGZDaZmHdlywy9r58a0Ovl5sW1\n8d+nvrmB9w994uwSRZxKAUZExKD6RvgycUQ0+aU1fLr1OACjoy6lj08Umwu2cbjymJMrFHEeBRgR\nEQM7PaD3gw1HKauqw2wyM6N1naT3tU6S9FoKMCIiBubt4caNVyRQ39jM4s9bZuhNDIhjZPhwsqtz\n2JS/zckVijiHAoyIiMGNGRpJQrQfX+0vIuNIy4De6xKuwmZ24/1DH1PTWOvkCkW6nwKMiIjBmU0m\n5k4dgMnUMkNvY5OdQI8AvtdvMicaT/LJ0c+cXaJIt1OAERFxAX0jfJmUGkNhWQ0rt2YDMLnPOEI8\ngliTs4GCk4VOrlCkeynAiIi4iOvHx+Hr5cayL49SWlmHm8WN6f2vwe6ws/TgMhwOh7NLFOk2CjAi\nIi7Cy8ONm65IpKHRzuJTM/SmhAxmUFAS+8oy2VWy18kVinQfBRgRERdy+ZAIEmP82XagmD2HSzGZ\nTMzofw1mk5l3Di6jsbnR2SWKdAsFGBERF3J6hl6zycTrpwb0RniHMzFmDCV1Zaw6vs7ZJYp0CwUY\nEREX0yfMh0lp0RSW17JiS8uA3qvipuDr5sOKo6sor6twcoUiXU8BRkTEBV03Nh4/bxsffnmUkspa\nPK2eXJvwfRrsjbx36GNnlyfS5RRgRERckJeHlZlXJNLQZGfxqpYZekdFjiTWN4avCneQVXHEyRWK\ndC0FGBERFzUqOZykGH/SM4vZdagUs8nMjafWSVqa+T52u9ZJkp5LAUZExEWZTCbmnhrQ+8anmTQ2\nNRPv35dLI0Zw/EQenx/Z4OwSRbqMAoyIiAuLCfNhysgYiipq+WRzy4DeaQk/wN1i45X0N1m07y3y\nNUuv9EAKMCIiLm7a2Dj8vW18tPEYxRW1BLj7c1vyHEK9gtiYv5U/bP4L/9j5CpnlWZqtV3oMy+OP\nP/64s4voqJqahi7bt7e3e5fuXzpPvTEm9cX53KxmAnxsbN1fRElFHZcNDifMK5TrU6YSZAmhvL6S\nzPIsNhdsY3fpPjws7oR7hWE26XdYZ9F1c368vd3P+ZkCzLfopDIu9caY1BdjiA715kB2BRlHy+gb\n4UtEkBc+Ph74EsDoqEsYFJREbVMdB8sPsb14N5vytwEOIr3DsZqtzi6/19F1c37aCzCK3yIiPUDL\ngN6k1gG9DY3NZ3we79+X+UPn8dioXzE+ejQnGk/ydtaH/PbLP/Je1sdU1Fc6qXKRztEdmG9RKjYu\n9caY1Bfj8PO2UdvQxO7DZVgsZkYMCm/TG283L4aEDGRs9Cg8LB4cr85lX3kma3I2UFJbSohnMH42\nXycdQe+h6+b8tHcHxuRwwRFdxcXVXbbv0FDfLt2/dJ56Y0zqi7HU1jfxm5c2caK2ied/PQnLd8wF\n09jcyJbCdFZlr6OwpgiAQUFJTI4dz8DA/phMpu4ou9fRdXN+QkPPHaZ1B+ZblIqNS70xJvXFWFoG\n9LqzdX8Rh3IqiAz2IsDHds4gYjFbiPWNYVz0KPr59aGyvooD5VlsKUhnZ0kGNrONCG8N+L3YdN2c\nH92B6QClYuNSb4xJfTEeh8PB35buYtehUqBl8cfxw6IYlRyOt4fbd379sarjrMpey/bi3dgddgLc\n/ZkYM4ax0ZfhafXs6vJ7BV0356e9OzAKMN+ik8q41BtjUl+MyW53cLyslmVrD7Ezq4RmuwOrxczI\ngaGMS4liQGwA5u94PFRaW8bqnPVsyNtCQ3MDHhZ3RkddyhV9xhLkEdhNR9Iz6bo5PwowHaCTyrjU\nG2NSX4zrdG8qTzbw5Z581u7Mp7CsBoCwAE/GDYtk9JBIAn3PfZseoKaxhvV5m1lzfD2VDdWYTWZG\nhKUwOXY8sb4x3XEoPY6um/OjANMBOqmMS70xJvXFuL7dG4fDwcGcStbuzOOr/UU0NNkxm0ykJAQz\nflgUQxOCsJjPPdalyd7EV4U7WJW9lryTBQAkBSYyJXY8g4MGaMBvB+i6OT8KMB2gk8q41BtjUl+M\nq73e1NQ1sXlfIWt35nGsoGUbfx8bY4dGMjYlkvBAr3Pu1+FwsK8sk1XZa9lffhCASO9wJvcZz8iI\nVNw0Md530nVzfhRgOkAnlXGpN8akvhjX+fbmWEE163blsTGjkNr6JgAGxgYwflgUaQNCcbNazvm1\nx6vzWJW9lm1FO7A77PjZfJkYM4Zx0aPwcjt3COrtdN2cH6e9Rp2ZmcnMmTMxm82kpKSQn5/P3Xff\nzdKlS1m7di2TJ0/GYrHwwQcf8PDDD7N06VJMJhPJycnt7levUfdO6o0xqS/Gdb69CfBxJyUhhKkj\nY4gM9qamrpH92RVsyyxmdXou5VX1BPjY8PdpO1bG392X4WFDuDxyJCaTiaOV2WSUHeCL3C+pbqgm\n3CsMLze9ufRtum7Oj1Neo66pqeHOO++kX79+DBgwgLlz5/LQQw8xfvx4fvCDH/DXv/6ViIgIrrvu\nOq6//nqWLl2Km5sbM2bMYNGiRQQEBJxz37oD0zupN8akvhjXhfSmsKyGdbvy2bA7n8qTLf+j7Rfh\ny/hhUVw2OBxP97M/JqptqmVD3hZWH19PRX0lJkykhg1lSuwE+vr16fSx9DS6bs6PU+7AmEwmrr76\nag4cOICnpycpKSn88Y9/5NFHH8ViseDh4cGyZcsICwujtLSUa665BqvVyv79+3F3dycuLu6c+9Yd\nmN5JvTEm9cW4LqQ3Pp5uDO4XxJSRMfSL8KWh0c6B4xXszCrls23HKSyrwcfTjSA/9zMG77qZ3Yj3\n78fEmDGEeYVSUlvGgfIsNuRtIbM8Cx83b0I9g3v9gF9dN+envTswXTbSymq1YrWeufva2lpsNhsA\nwcHBFBcXU1JSQlBQUOs2QUFBFBcXt7vvwEAvrO08k71Q7SU+cS71xpjUF+O6GL2JjPDnyjHxlFbW\nsmrrcT7dcowNewrYsKeA6FAfrrysL5NG9iHgW69j/zB8AlcNGc+eogMs2/8pOwr2klVxhCjfcK4e\nMIXx/S7DZvnuifV6Kl03F8ZpQ8XP9eTqfJ5olZfXXOxyWum2nnGpN8akvhhXV/TmimGRTEiJ4MCx\nctbtyuerA8X8+8MM/vPxXob3D2FcShRD4oIwm7++wxJhjmb+4FvJjc3n8+x1bC3czotfvc5/d77P\nhJjRjIu+HB+b90Wt0+h03Zyf9kJetwYYLy8v6urq8PDwoLCwkLCwMMLCwigpKWndpqioiOHDh3dn\nWSIi0gFmk4lB/YIY1C+I2bWNbMooYO3OPLYdKGbbgWICfd0ZlxLJ2KGRhAR8PYA32ieSeYNv4pqE\n7/FFzpesy93Ih0dWsuLYai6PHMkVfcYR5hXixCMTV9Ktq3ONHj2aFStWALBy5UrGjRvHsGHD2L17\nN1VVVZw8eZL09HRGjhzZnWWJiEgn+Xi6MWVkH35326U88qORTBgeRW19Ex9sOMqvX9jIX5bsYMu+\nQhqbvl4VO8Ddn2kJP+APox9mRv9r8bX5sDZ3I//fpv+fl3b/h8OVx5x4ROIquuwtpD179rBgwQJy\nc3OxWq2Eh4fz5JNP8uCDD1JfX09UVBRPPPEEbm5uLF++nJdffhmTycTcuXO59tpr29233kLqndQb\nY1JfjMtZvalvaGbr/iLW7sojK6cSaAk6o4dEMC4lkuhQnzO2b7Y3s6N4N59lf0F2dS4A8f59mRw7\ngZSQwT1yJWxdN+dHE9l1gE4q41JvjEl9MS4j9Cav5CTrduXx5Z4CqmsaAUiI9mN8ShSXDArDw/b1\nSAaHw0FWxWE+y17LntJ9AIR6BjOpz3hGRaZhs9iccgxdwQi9cQUKMB2gk8q41BtjUl+My0i9aWq2\ns+NgCWt35ZFxuAwH4G6zcNmgMMYNiyI+0u+MV6sLThayKnsdWwq20eRoxsvqSVJgIv0D4kkMiCPK\nJ8Kl78wYqTdGpgDTATqpjEu9MSb1xbiM2pvSyjrW785n/a48SqvqAYgO9WZ8ShSXD4nAx/PrV6sr\n66tZm/slm/K/oqK+svXfvayeJATEtQaaGJ8oLOaum17jYjNqb4xGAaYDdFIZl3pjTOqLcRm9N3a7\ng73Hyli7M5/tmcU02x1YLSZGJIUyblgUg/oGYj51V8bhcFBaV8bB8sNkVRzhYMVhSuvKWvflYXEn\nPqDfqUATT1/fGEMHGqP3xigUYDpAJ5VxqTfGpL4Ylyv1pqqmgY17Wl7Hzi9tmesrxN+DcSmRjBka\nSZCfR5uvKa+r4GDFYbIqDnOw4jBFNV9PyWE7NSNw4qk7NP38+uBmoEnzXKk3zqQA0wE6qYxLvTEm\n9cW4XLE3DoeDQ3lVrN2Zx5Z9hTQ02jGZYGh8MJcnRzC8fwjubme/s1JZX0VWxdd3aPJPFrZ+ZjVb\nifOLbQ008f59nToo2BV74wwKMB2gk8q41BtjUl+My9V7U1vfxJZ9hazdmc+R/CoA3N0sjEgK4bLB\nESTHBWIxn3sgb3XDCQ5VHGkNNLkn8nHQ8r88i8lCX7+YU4EmngT/vnhY297l6Squ3pvuogDTATqp\njEu9MSb1xbh6Um/ySk6yaW8BmzIKKamsA8DXy41LB4ZzWXI4CVF+37lAZE1jDYcqj7Y8dio/wvET\nudgdLRPsmU1m+vhEkxjYMjA4wT8OLzfPdvd3IXpSb7qSAkwH6KQyLvXGmNQX4+qJvTn9iGlzRiFb\n9he2zi0T4u/BqORwRg2OICrk/NZVqmuq41DlsVOPnQ5zrCqHZkczACZMRPtEtr7llBgQf1HXa+qJ\nvekKCjAdoJPKuNQbY1JfjKun96ap2c6+Y+VsyiggPbOE+saW8BEb5sOo5AguHRR21sG/59LQ3MDh\nymNkVRwhq+IwR6qyabI3tX4e6R1OYkA8/QPiSAxIwN+986tJ9/TeXCwKMB2gk8q41BtjUl+Mqzf1\npr6xmR0HS9iUUcCeI2U02x2YgAGxAYxKjiBtQCjeHh17C6mxuZGjVcdbA83hyqM02BtbPw/zCiHR\nP57+gfH0D4gn0CPgvPfdm3pzIRRgOkAnlXGpN8akvhhXb+3NidpGtu4vYnNGAZmn1mKyWkwMjQ9m\nVHIEwxKCsZ3jTab2NNmbyK7ObX1t+3DFUeqa61s/D/YIIvHU5Hr9A+MJ9gg657ic3tqbjlKA6QCd\nVMal3hiT+mJc6g2UVNayZV8RmzIKyCk+CYCHzUJaUiijkiMY2Deg3TeZ2tNsbybnRF7rW06HKo5Q\n01Tb+nmAu//XgSYgnjCv0NZAo96cHwWYDtBJZVzqjTGpL8al3pwpp+gEm/YWsnlvQesSBn7eNi4d\nFMblyRH0i/D9zjeZ2mN32Mk/WcjB8sOtE+ydaDzZ+rmvzefUGJp4vp88ltpK+wUfU0+nANMBuuCN\nS70xJvXFuNSbs7M7HGTlVLJpbyFb9xVysq5loG54oCeXDQ5nVHIEEUFeF/x9HA4HBTVFLY+cylsC\nTWVDSz8ifcP436E/7tC4md5IAaYDdMEbl3pjTOqLcak3362p2c6eI2Vs3lvI9sxiGppa7or0i/Bl\n1OBwLh0cToCP+0X5Xg6Hg+LaUtbmfMnqnPUEewTxs9Q7CPEMuij774kUYDpAF7xxqTfGpL4Yl3rT\nMXUNTWw/WMKmjEIyjpRhdzgwmWBgbCCjksNJSwrDy8N6wd/H4XCwrng9S/YsI8Ddn58Nn0+4d9hF\nOIKeRwGmA3TBG5d6Y0zqi3GpN51XVdPA1n1FbN5bSFbu6TeZzAxLDGbU4AhSEoJws3Z+tevQUF8W\nb/uId7I+xNfNh3tS5xPtE3mxyu8xFGA6QBe8cak3xqS+GJd6c3EUV9SyaW8hmzIKWlfK9nS3MnJA\nKKMGhzMgNhCzuWODf0/3Zm3ORpZkvouX1ZOfDv8xff36dMUhuCwFmA7QBW9c6o0xqS/Gpd5cXA6H\ng+OtbzIVUl7d8iZTgI+NSweFc3lyBLHhPuf1JtM3e7Mp/ysW7XsLd4s7dw+7jYSAfl15GC5FAaYD\ndMEbl3pjTOqLcak3XcfucHDweAUbMwr5an8RNfUtbzJFBHmdWpMpnLDAc7/J9O3ebCvcyat7/4vV\nZOHOlFsZGNS/irTJJwAAElVJREFUy4/BFSjAdIAueONSb4xJfTEu9aZ7NDbZ2XO4lE17C9mRVULj\nqTeZ4qP8GDU4nEsGhePvbTvja87Wm90le/nX7oVgMjF/yDyGhAzqtmMwKgWYDtAFb1zqjTGpL8al\n3nS/2vom0jOL2bS3kL1Hy3A4wGwyMbhfIJcNDmdEUiie7tZz9mZfWSb/3PUadoed/0meTWrYUCcc\nhXEowHSALnjjUm+MSX0xLvXGuSpP1LNlfxGbMgo5kl8FgJvVzPDEEG65Ohlv69nHyhwsP8zzu16h\nobmRWwbP5NKIEd1ZtqEowHSALnjjUm+MSX0xLvXGOArLa9icUcjGvYUUltXg5WHlnulDGRAbeNbt\nj1Zl8+yOl6lrqmPWgOsZGz2qmys2hvYCTOdWsBIREZHzFh7oxbVj4/jj/Mu445rB1Dc089c3d7Iz\nq+Ss2/fzi+Xe1DvxdvPivwfeYfXx9d1csfEpwIiIiHQTk8nEqOQIHrn9MkzAs+/sZlNGwVm37eMb\nxf0j7sLf5svSgx+w/Ojn3VuswSnAiIiIdLO0geE8MGs4NjcLLy3by+fpOWfdLsI7nPtG/IRA9wCW\nHV7OskPLccGRH11CAUZERMQJ+scE8OvZqfh621i0MpNlG46cNZyEeYXw87SfEOoZzPJjn/N21jKF\nGBRgREREnCY23JeH5owg2M+Dd9cdYcnnWdjPEk6CPAK5f8RPiPAOZ/Xx9Sw+8A52h90JFRuHAoyI\niIgThQd58fC8NCKDvVi59Tj//ngfzfa24cTf3Y/7Uu8kxieK9XmbWbjvTZrtzU6o2BgUYERERJws\n0NedB+eMIC7Slw27C/jHu3tobGobTnxtPtybegf9/GLZUpDOvzPeoMne5ISKnU8BRkRExAB8vWz8\nYlYqg/oGsv1gCU+/tYva+rbhxMvNi3uG/5j+AfFsL97NS7v/Q2NzoxMqdi4FGBEREYPwdLdy340p\npPYPYd+xcp5cvJ0TtW3DiYfVg7uH3cagoCT2lO7nhV2vUt/c4ISKnUcBRkRExEDcrBbuvn4IY4ZG\ncCS/mj+9nk55dX2b7WwWG3em3EpKSDL7yw/y3I5/UdtU54SKnUMBRkRExGAsZjP/c9Ugpo7sQ17J\nSf64cBuF5TVttnMzW/nxkLmkhQ3jUOVRntn+Iicb227XEynAiIiIGJDZZGLW5ESuHxdHaVUdTyxK\nJ7uw7dpWFrOFW5NvZlTkSLKrc/jb9n9S3XDCCRV3LwUYERERgzKZTFwzJo45U5OoOtnAgje2czCn\nos12ZpOZOQNnMD56NLkn8nkq/Xkq6iudUHH3UYARERExuMlpMcw/tQjkXxbvYPfh0jbbmE1mbkqa\nxpTYCRTWFPPUtucprS1zQrXdQwFGRETEBVyeHMFPbxiKA3hm6S627Ctss43JZOK6hKu4Km4qJXVl\n/DX9eQpriru/2G6gACMiIuIihieG8PObhmFzM/PP9zNYsz23zTYmk4kfxk3luoSrqKiv5Kn058k7\ncfYVr12ZAoyIiIgLGRAbyK9uHoGPlxv/WXGAjzYePet2U/tO5Kak66huOMHT218gu/rsK167KgUY\nERERF9M3wpcH54wgyM+dt784zJurs866QvWEmNHMGXgjNY21PLP9RQ5XHnNCtV1DAUZERMQFRQZ7\n8/DcNCKCvFi+OZtXP9mP3d42xIyOuoRbB8+ivrmBv+94iczyLCdUe/EpwIiIiLioID8PHpw7gr7h\nvqzblc8L7++hsantStYjI1K5fchcmu3N/GPnK2SUHnBCtReXAoyIiIgL8/Oy8avZqQzoE8BXB4p5\nZulO6hraLgI5PHQId6bcCsA/d73KjuI93VzpxaUAIyIi4uI83a3cf9MwhieGkHG0nL8s3nHWRSCT\ngwdw97DbsZgtvLxnEVsLtjuh2otDAUZERKQHsLm1LAJ5eXI4h/KqWPBGOhUn2i4CmRSYwD3D5+Nu\nsfHa3sV8mbfFCdVeOAUYERGRHsJqMXP71YOZnBZDbvFJnli0jaKK2jbbxfv35Wepd+Dl5snr+5ey\n5vgGJ1R7YRRgREREehCzycTsKf25dkw/iivqeGLRNnKK2y7uGOsbw32pd+Fr8+Gtg++z8thqJ1Tb\neQowIiIiPYzJZOK6cfHcPLk/lScaWPB6Oody2y7uGOUTwf0jfkKAuz/vH/qEDw+vPOt8MkakACMi\nItJDTb2kD7f/cBC19c08uXgHGUfaLu4Y7hXKz0f8hBCPID45+hnvZn3kEiFGAUZERKQHGzM0kv+9\nfgjNdgdPv7WTr/YXtdkm2DOI+9N+QrhXGKuOr2VJ5nvYHW3nkzESBRgREZEeLjUplPtvGobVaub5\n9/ewbmdem20C3P25f8RdRPtEsi53I6/vW2roEKMAIyIi0gsM6hvIr25OxdvDjX9/sp/lm7PbbONr\n8+He1Dvp69uHTQVf8WrGf2m2Nzuh2u+mACMiItJLxEX68eCcEQT6uvPm6ize/uJQm/Eu3m5e3JM6\nnwT/fmwr2slLexbS2Nx2UjxnU4ARERHpRaJCvHlo7gjCAj35aOMxFq7MbLMIpKfVg/8d/mMGBvZn\nd8leXtj1Kg3NDU6q+OwUYERERHqZEH9PHpqbRmyYD2u25/Lisgyams8c7+JusXFXyq0MCR7E/vKD\nPLfzZeqa6pxUcVsKMCIiIr2Qv3fLIpD9Y/zZsq+Iv7+9m/rGM8e7uFncmD90HqlhKWRVHOGZHS9R\n01jjpIrPpAAjIiLSS3l5uPHzmcMZGh/M7sOl/GXJDmrqzhzvYjVb+Z/BN3NpxAiOVR3nb9tfpLqh\n7cy+3U0BRkREpBdzd7Nwzw1DuXRQGFk5lSx4YzuVJ88c72IxW5g36CbGRl1Gzok8nk5/gYr6tjP7\ndidrd34zu93OY489xsGDB3Fzc+Pxxx/npZdeIiMjg4CAAABuv/12Jk6c2J1liYiI9GpWi5k7rknG\ny8ONNdtzeWLRNn4xczghAZ6t25hNZmYNmI7NYuPz4+t4Kv0Ffjb8DoI9A51Tc3d+s1WrVlFdXc3i\nxYvJzs7m//7v/wgMDOTnP/85V1xxRXeWIiIiIt9gNpuYd2USPp5WPvzyGE+8ns7PZw4nOsS7dRuT\nycT0xKuxWWwsP7qKp9Kf52epdxDmFdL99XbnNzt69CgpKSkAxMbGkpeXR3OzMSfIERER6W1MJhPT\nxydw0xWJlFfXs+D1dI7kV7XZ5pr473Ft/Pcpr6/glYzXnVOroxtXbPriiy947bXXeOmllzh27BjT\np09n5MiROBwOGhsbCQ4O5pFHHiEoKKjd/TQ1NWO1WrqpahERkd7n083HePatHbjbLPz2tstISQxt\ns836Y1tpbG7kivjR3V5ftwYYgKeeeorNmzczYMAAdu/eza233kr//v0ZNGgQL774IgUFBTz66KPt\n7qO4uLrL6gsN9e3S/UvnqTfGpL4Yl3pjXK7Sm20HivjnBxmAiZ9MSyY1qW2I6Uqhob7n/Kzb30K6\n//77Wbx4Mb/73e+oqqri6quvZtCgQQBMmjSJzMzM7i5JREREziJtQBj33jgMi9nEc+/uYcPufGeX\n1KpbA8z+/ft56KGHAFi7di2DBw/m3nvv5fjx4wBs3ryZ/v37d2dJIiIi0o7kfkH84ubheLpbePmj\nfXy69bizSwK6+S2kpKQkHA4HM2bMwN3dnSeffJJjx45x33334enpiZeXF0888UR3liQiIiLfISHK\nn1/PGcFfluzgv6sOcrKukWlj4zCZTE6rqdvHwFwMGgPTO6k3xqS+GJd6Y1yu2pviilqeXLyd4oo6\nJo+I4eap/TF3YYgx1BgYERERcU2hAS2LQMaEerMqPYd/fbi3zSKQ3UUBRkRERM5bgI87v54zgoRo\nPzZlFPLvj/c7pQ4FGBEREekQbw83fjEzlZEDw5x2B6ZbB/GKiIhIz+Bus3D3dUOc9v11B0ZERERc\njgKMiIiIuBwFGBEREXE5CjAiIiLichRgRERExOUowIiIiIjLUYARERERl6MAIyIiIi5HAUZERERc\njgKMiIiIuBwFGBEREXE5CjAiIiLichRgRERExOWYHA6Hw9lFiIiIiHSE7sCIiIiIy1GAEREREZej\nACMiIiIuRwFGREREXI4CjIiIiLgcBRgRERFxOQow3/DHP/6RmTNnMmvWLHbt2uXscuQb/vznPzNz\n5kxuuOEGVq5c6exy5Bvq6uqYMmUK77zzjrNLkW/44IMPuPbaa5k+fTpr1qxxdjkCnDx5kp/+9KfM\nmzePWbNmsW7dOmeX5NKszi7AKLZs2cKxY8dYsmQJhw4d4uGHH2bJkiXOLkuATZs2cfDgQZYsWUJ5\neTnXX389V155pbPLklOef/55/P39nV2GfEN5eTnPPfccb7/9NjU1Nfz9739n4sSJzi6r13v33XeJ\ni4vjgQceoLCwkB/96EcsX77c2WW5LAWYUzZu3MiUKVMASEhIoLKykhMnTuDj4+PkyuSSSy4hJSUF\nAD8/P2pra2lubsZisTi5Mjl06BBZWVn6n6PBbNy4kcsvvxwfHx98fHz4/e9/7+ySBAgMDOTAgQMA\nVFVVERgY6OSKXJseIZ1SUlJyxskUFBREcXGxEyuS0ywWC15eXgAsXbqU8ePHK7wYxIIFC3jwwQed\nXYZ8S05ODnV1ddx1113Mnj2bjRs3OrskAX74wx+Sl5fH1KlTmTt3Lr/+9a+dXZJL0x2Yc9AKC8bz\n2WefsXTpUl555RVnlyLAe++9x/Dhw+nTp4+zS5GzqKio4NlnnyUvL49bbrmF1atXYzKZnF1Wr/b+\n++8TFRXFyy+/zP79+3n44Yc1duwCKMCcEhYWRklJSevfi4qKCA0NdWJF8k3r1q3jhRde4F//+he+\nvr7OLkeANWvWcPz4cdasWUNBQQE2m42IiAhGjx7t7NJ6veDgYFJTU7FarcTGxuLt7U1ZWRnBwcHO\nLq1XS09PZ+zYsQAMHDiQoqIiPQ6/AHqEdMqYMWNYsWIFABkZGYSFhWn8i0FUV1fz5z//mX/+858E\nBAQ4uxw55emnn+btt9/mzTff5MYbb+Tuu+9WeDGIsWPHsmnTJux2O+Xl5dTU1Gi8hQH07duXnTt3\nApCbm4u3t7fCywXQHZhTRowYQXJyMrNmzcJkMvHYY485uyQ55eOPP6a8vJz77ruv9d8WLFhAVFSU\nE6sSMa7w8HC+973vcdNNNwHw29/+FrNZv68628yZM3n44YeZO3cuTU1NPP74484uyaWZHBrsISIi\nIi5GkVxERERcjgKMiIiIuBwFGBEREXE5CjAiIiLichRgRERExOUowIhIl8rJyWHIkCHMmzevdRXe\nBx54gKqqqvPex7x582hubj7v7W+++WY2b97cmXJFxEUowIhIlwsKCmLhwoUsXLiQxYsXExYWxvPP\nP3/eX79w4UJN+CUiZ9BEdiLS7S655BKWLFnC/v37WbBgAU1NTTQ2NvLoo48yePBg5s2bx8CBA9m3\nbx+vvfYagwcPJiMjg4aGBh555BEKCgpoampi2rRpzJ49m9raWu6//37Ky8vp27cv9fX1ABQWFvKL\nX/wCgLq6OmbOnMmMGTOceegicpEowIhIt2pububTTz8lLS2NX/7ylzz33HPExsa2WdzOy8uLRYsW\nnfG1CxcuxM/Pj7/85S/U1dVx1VVXMW7cOL788ks8PDxYsmQJRUVFTJ48GYBPPvmE+Ph4fve731Ff\nX89bb73V7ccrIl1DAUZEulxZWRnz5s0DwG63M3LkSG644QaeeeYZfvOb37Rud+LECex2O9CyvMe3\n7dy5k+nTpwPg4eHBkCFDyMjIIDMzk7S0NKBlYdb4+HgAxo0bxxtvvMGDDz7IhAkTmDlzZpcep4h0\nHwUYEelyp8fAfFN1dTVubm5t/v00Nze3Nv9mMpnO+LvD4cBkMuFwOM5Y6+d0CEpISOCjjz5i69at\nLF++nNdee43Fixdf6OGIiAFoEK+IOIWvry8xMTF88cUXABw5coRnn3223a8ZNmwY69atA6CmpoaM\njAySk5NJSEhg+/btAOTn53PkyBEAli1bxu7duxk9ejSPPfYY+fn5NDU1deFRiUh30R0YEXGaBQsW\n8Ic//IEXX3yRpqYmHnzwwXa3nzdvHo888ghz5syhoaGBu+++m5iYGKZNm8bnn3/O7NmziYmJYejQ\noQAkJiby2GOPYbPZcDgczJ8/H6tVP/ZEegKtRi0iIiIuR4+QRERExOUowIiIiIjLUYARERERl6MA\nIyIiIi5HAUZERERcjgKMiIiIuBwFGBEREXE5CjAiIiLicv4f6XRfTxjSDG8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "RidI9YhKOiY2", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Make Better Use of Latitude\n", + "\n", + "Plotting `latitude` vs. `median_house_value` shows that there really isn't a linear relationship there.\n", + "\n", + "Instead, there are a couple of peaks, which roughly correspond to Los Angeles and San Francisco." + ] + }, + { + "metadata": { + "id": "hfGUKj2IR_F1", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 364 + }, + "outputId": "35842a5f-40ab-4795-c56c-ee053798a621" + }, + "cell_type": "code", + "source": [ + "plt.scatter(training_examples[\"latitude\"], training_targets[\"median_house_value\"])" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 9 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFKCAYAAADMuCxnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXl8G/d55/+ZGWAGBAGSAAnqIHXy\nkGRLpETJl2zZuhwfrVslPuSotuM4ddNN4k12kziHXTvJJm1at9k03TRNXDtxDsXKT2687mvbyqZ1\n+JRkiaQo2ZZISo4kUqJ4ACQAghgAA/z+gIYCwTmBwTX8vv+xTA5mBsOZeb7P9XmoRCKRAIFAIBAI\nhIJCF/oECAQCgUAgEINMIBAIBEJRQAwygUAgEAhFADHIBAKBQCAUAcQgEwgEAoFQBBCDTCAQCARC\nEWAp5MGHhwOFPLypcLns8PlChT4N00Gua+4g1zY3kOuaG4y6rh6PU/Z3xEM2CRYLU+hTMCXkuuYO\ncm1zA7muuSEf15UYZAKBQCAQigBikAkEAoFAKAKIQSYQCAQCoQggBplAIBAIhCKAGGQCgUAgEIoA\nYpAJBAKBQCgCiEEmEAgEAqEIKKgwSL7gowIGRoIITkRQ53FAiCcgCHEcOTWE/qEJVDms2LimHu7K\nMhzrG8GxvmG0NtRgxWI3JvkYKh0cIlEB/UNB1Nc64LSzmo45HuRRxlkwHuQBikJlOYtzgwF0nx4B\nEkDDgiocev8Cuvp84CxA2/JaXH/VXEyGBbz63lmcGwrCxlJw2lmU2zjUVHLwT0Rx5uIY3BVluO2a\nhTg9MI6zl/wIRGIY9UVkz6eijIKnyoG6mjIkKBpXL3aj0smB52Oo8zgwHopg2DuJ4bEQ/nAxgDnV\ndrQ21GDRvApwVmbad6p0cIo/M5p8HCOfTLs3JiKIRGNgrRZ4qspy/v3ODo7jPw6excjYJIQEMBGO\n4tplNfjgIx/ODk/CxgDl5TR8/jjiAJrmO7BhdT2qKzi0HzmPId8k2pZ5sHXdQrBWZurvEokKeP+M\nF92nh3Dww5Gp461udMNhs4AXEghORGDnGDTUV8JTVY4bytSfo0JgtvuNUDpQiUQiobTBoUOH8MUv\nfhFNTU0AgObmZvz5n/85Hn/8cQiCAI/Hg2eeeQYsy+KVV17BCy+8AJqmcd999+Hee+9VPHiulbqE\neBw723vwRtcFCPHM98PQmPo8TQF1HgeeeKgNrGXmekaIx7Frbx86e4Yx6uczP2gRcfPqubAyDLp6\nR+D183BXcFjdVIMEgGMpP1vT7MH2zY1gaGMCL6nXMlfHUMPjcRp2n4rfp+PUELyBmYsnjqVx06p5\nuH9Lk+HfbzzE43/86G1D92kEdR47/upT6ySfpXxTDPebERh5zxKuYNR1VVLq0mSQf/Ob3+BHP/rR\n1M++8Y1v4Oabb8Ydd9yBH/zgB5g7dy62bduGj3/849i9ezesVivuuece/PrXv0ZVVZXsvnN90+xs\n70H7kf6c7HtBrQPffuTavB6zFNi6rh47tjYbsi+5a2nkMdQw8uWm9d7Ixff7zPf3QvFBLyByz1K+\nKYb7zQiIQc4N+TDIGS37Dh06hC1btgAANm3ahHfffRfHjh3DqlWr4HQ6YbPZ0NbWho6OjszO2AD4\nqICOU0M52//AcBCB0HQvh48K6OwZztkxS4HOnhHwUSHr/ShdS6OOkU/03BudPcOGfr+zg+NFa4wB\noH9o5rOUb8x2vxFKE01xor6+PvzlX/4lxsfH8YUvfAGTk5Ng2WT+p7q6GsPDwxgZGYHb7Z76jNvt\nxvCw8gvI5bLnTB/04siEZFjQKOIJIBCJY+miK6ud5DHNEabOFF8gDIa1wlNTntV+lK6lUcfQitKK\nVit67g1vgDf0+/2/Q+cN2U+uSGDms5Rviul+MwIj7lnCTHJ9XVUN8uLFi/GFL3wBd9xxB86fP4+H\nHnoIgnBltSgX8VaJhANATieSCFEBLocVvmA0J/unKcDJ0tNCGEJUgNvJmSZ3nAkupw1CJJp1aEfp\nWhp1DC0YFabSc2+4nZyh32/logq8ZMiecgOFmc9SvimW+80ISMg6NxRFyHrOnDm48847QVEUFi5c\niJqaGoyPjyMcDgMALl26hNraWtTW1mJk5Ep15dDQEGpra7M++UzhrAxWLK7O2f7rPDOrrTkrgzXN\nnpwdsxRY01xjSGWq0rU06hj5RM+9sabZY+j3WzS3EpRhezMerZ0LucRs9xuhNFE1yK+88gqee+45\nAMDw8DBGR0fxiU98Anv27AEAvPrqq9iwYQNaW1tx/Phx+P1+TExMoKOjA+vWrcvt2auw49YmcFZj\nqyNpKlmE8sRDbZK/3765EVvXJdtEzMLNq+diy9o6VFfYQFNAdYUNW9bWYXPaz7auq8f2zY2GHffK\ntczdMfKJ+H3cTul7w8bS2LK2Liff72/+23rD92kEdR677LOUb8x2vxFKD9Uq62AwiK985Svw+/2I\nRqP4whe+gBUrVuBrX/saeJ7H/Pnz8Td/8zewWq34r//6Lzz33HOgKAoPPPAA/uRP/kTx4PkIq8hV\nTl5/1Rxc8k7g3KUghARQVW5BS2MNjp4cwgQ/s0fKXcHhoY8tw5L5Fbr6kIPhKL73wtGiKqq54epa\ntDbUkD5kDeQi/FeoPmS5Z6HeYweDBM4OT6rugwZw23X1uP26xVN9yC++3oOuPq/m86CpZA1GTZUN\nqxtriq6tqNT7kEnIOjcURdtTLsnHTXOlt3AEvkAYLqcNa5prEE8ksPfogOb90BTw139xPWpddl3H\n56MCnnz2YNHklTe0zsWn77iq0KdRMpjp5Sb3LKQaRLXWrPTngI8KeOJn72ZVQFlqbUXFjpnu2WIi\nHwa58N34OYahaezY2oy7b2mYWvUCwJPPHpTcXly9p+Ny2qY+qwcxN1Usvcm+AI8hX6hkV/+EzJF6\nFtLvge2bGyHEEzjQOSDzHHDTngOvP5x1N0NnzwjuvqWB3I+EWU/xxIlyDGdlUOuyg7scZvPKeKxS\nLyEgu8KO1NwURQEuB4ebV8+Djc3/5T9xxoev//Qgnnz2IHa290CIZyFhRihJUp+FdBiaxoMfW4Zb\nVs+X/OxEOIqXDpyeum/aj2a/0PQFwkl5WQJhlmNag8xHBQz5QpIN/ZUODm6Zoiu3k8OmNmOLlRia\nxvbNjWhpcKOynIUvyOPE6VFEY4XLLI/6ebQf6ceuvX0FOwdC8bLj1mZsWVsHhp5enx2OxKfuGz4q\noLtvRGYP2sk0+kQgmA3Thay16NEqhZFbG6vx4MeWgd9kbGHHrr192Nd5Yer/cylaogcSLiRIwdA0\n4glAkAkZdfaM4ObW+bKRJj2QtiICIYnpPORde/vQfqQfo34eCch7guktKKIj0H16FDvbe2BhKNmw\nnl6KWVKThAtnF0qRI/H3/UMBfHRhHJ2n5O9Zrz8MJBKykaZUbCwDt5MDTSX/bWMZUABqXWWkrYhA\nSMFUHrKaHm2qJygWuAjxBPZ1XClgEQ04AMMqP5Vy1oWGhAtnByE+ht++1oOT53wzIkcxIQGvP4xX\nj5zHofcHEY6o1xVUOlh4XHZNBYttl48jjjIFks9Ew+JqBMbVW60IhNmCqQyykuETPcHUtiWlHJiR\noVwxZ10srU+pkHChuRFTOG91X5hmaMWF56lzYwiFo7rvzTVNyftG9G7f6r6IcETa637nxCBOnfNN\nSx3VuuywsRaQ5hwC4QqmClkrFWtJeYJaDLgRFKOkZi5VoQj6UAsjZ4OYwpHzes8PBXUb4wW1Duy4\nNRk9Ymgad9/SgDKVjgFxAbDztZ6cfVcCodQxlYesVKwl5Qkqea5Gh3JFwyeKMrBWRtajAJKC+xtW\nz8P7Z3zwBcKoLDd2UEY4EgdFUUWlkDTbUAojG/F3Mbp2weXgsLq5Bju2Nk07v/Egr/ne3N95Afs6\nL6C6gsONrXW464aF5B4kEC5jKoMMzDR8ohrRtg1LZwhiKBnwlsZqQ0O5qaIMw74Q/nF3t6JBrq91\n4OHbV0zJ+O157zz2dWhXFtMCqbAuDGphZMCY+gUjaxfWLa/FZ/5oBQBgdDw87Tkq4yygAE3ysOI2\no34er7x5BqHJCFHpIhAuYzqDnK5G5LBb8fKbH+Hp5w5JeiFXDPgwRv38lFLXsd5hMDRluM4uZ2XA\nWhnFMCFNAQ/fsQx8VABnZVDp4Azp90xHKq9OyD1iGFkOoxZKRtYunDzrxW9f78H7Z7wznqNJPpax\nVjtZFBIIVzBtrEhUI3r5zY8U26BEA97SkBzVKFZbewORnAlnVDo4VDnkB1TEE8D/euHolJqW1x/O\nSUEYqbDOP3xUQMepIcVtjKpfUKpdsLEMFtQ6NO8rOBnDG10XJZ+jSgcHl8Oa0Tl6/aTtjkAQMa1B\nBtTboMTCEj4qoPv0qOp2RsFZGaxpqlHdTnzp7Tl8FnQOBtqSCuv8Mx7kVUVhjFwopY8UdDs5rF85\nF3//+fV46uF1qPOUZ7X/zp5k5CbT2eOVDpYsCgmEy5guZJ2K1jYove1SRrDj1mb0Dfhxfiiouu2x\nvlFZje1MoJDMUd+zcalxOyVoooyzyA4wETFyoZSewinjLJjkY2BoGjEhgTAfy2r/vkAYXn8YVmtm\nK0axfYpAIJjcIGutos5ntbUIQ9N46uF12Nnei86eYYwHI7J5uPEJ46qrgWRhzfmhIHbvPzOjoKbU\nZ8EWO5N8TNEY37hybk5a0SwMhfaj/dMkZZctdGVd9OVycmg/ch4HOi/q/uzS+RVT7VMEAsHkBllr\nG5TedikjYWgKNKWtQtVoUgtqtGiAE7Kn0sGhWmbx53ayeOC2ZTm53umFZKN+Hu+cGARnpcFHM5/4\nVcZZZNM9Ssx1l+EHX7oFXu9ExscmEMyGqQ0yIN8Gle6FaN0uU1I9TyAZTt9z+Ny0gRP5JjUcL/XC\nNlpClKC8+GtbVpuTxZ9SLUU2xhgAgqEoxib0D0qJROOICmT0J4GQiukNsqgkdHPrfCCRgEdhDqza\n8PZMSPU8R/385RnIFPiIUBCvOBUxHK9HA5yQPamtdt4AD7fzSjQiF+RSS308FEGVg8VYUJ9R9gV4\n+Py8+V9ABIIOTP08yIVht21YimAoIml0xXYpIPN8aiAUQf9QEPW1Dvz7O3+Y5g1pEe7PF8sXVgHQ\nrwE+2zEqz55IJJBIJP+bS3Kppe522tDS4NYd6al0sHBVcGS4BIGQgqkNslwY9q3uC+Ajcdk8aab5\n1Egshu/9sgMDw0HEE0mBDyoH7UpGYGNpvH1iECfP+bCqwQ2WpcFLLBZYKwOHPbMeU7NhVJ49/b4U\ne96B3KQHlMLk2bKmuQYfv3kJDr4/iEkdi801TTVkuASBkIZpq3WUwrDhSFxxVrLWmcrpfO+XHTg/\nFJyqok0OeDfgy+QA0VMf9fPY33lR0hgntxPw8psf5fPUipZM74tUtPbGG016P7JLQZhGK44yC7Zv\nbsT3f92pyxjTFHD3xtwPNcnl0A4CIReY1kPWkzdLzZNmmk8NhCIYGFbvKS5FSB5Z36xtJQqVHhBr\nJO5avxj9Q0HQNIW/3dmZ1T5D4RiGvCH0a+ilTyWeAIIh/YVgWiEdA4RSxbQGWU/ezAiRkP4Uz9hs\nkDyycYa0ED3vwEwjVVmevYccTyRFa/Te9i4Hi0gsjnAkO1ESOUjHAKFUMe1yUc8MYimRELXt0qmv\ndSjKW1aVl24elmheZ35fpKN0X+ay5z093J5Jq1I6NAW0NlZDb5nEZETA088dxuf/bi92tvdAiBuX\n1ylUSoBAMALTGmRgZt7Mxkq/7KREQtS2S8dpZ1HnkRbrX1DrwBfuacngG8iTz2Kx1O89W/NyRhrS\n9PuyusKGrevqc9b2ZPRcZJE6jwPzahyY69YXOQlfbvkb8k0aPsBFSySDQChWTBuyBuRHMSqJfwjx\nOOKJBGwsPVX4ZGMZ3LhKXdLwiYfaZlRZ13kceOKhNgz5woZ+NyM7ZdavnAsbx6CrZwTewJURlNUp\nuTeSlzNOPCZXPe9yGN2HLGqhP/FQGwDgf97fiq/+87sZ78/IGoVcpASInCwhX5jaIIuk9hbLvQjF\nh27Pe+exr2Ng2ufDEQEURakaHtZiwbcfuXZaH7LTnszVearKYGMZhCPF5Vm6nRwevG0ZOCuDezc2\nThtAkHp9drb3zPq8nNGGNPW+zCVG9iFbLTRuuGoOHrz9isTnZDi7XLDXH8aZgXEsravM2uAZKYNL\nFqGEfDMrDHI6qS/CdCUtuTywnlW8085ixWL3jGPeuGouXj86IPOpwtC2zDMtXF/rsoOPCphMmQJE\nlLymky9DahRG9iFHY3G80X0RLMtcWYhlmT+hKODvX+wyzOAZFckgxWGEfDMrDLJSyCn9oZOrlM62\n0liIJ3ufU0PhNA0YWM+iC9ZK4+bW+TPC9VIewaY1dUTJq8TZvrkRghDHga4LhnQDvHnsArZtWALO\nymBfZ3aLTPF8jDJ4RkQyyCKUUAhMbZDVQk56il2yrTTetbcPe9O844IZY4bCdx65FgAQExJgLjsj\nch6BIMQL0qpDMA6GpvHgbcsBipqRkskEPhrHs//+PqocHA506R+9qIRRBi+bSAaRkyUUAlMbZLWQ\nk55il2xaUnJV5ZopsUQCTz93GJFYfJq+t9w5dp/2oqWxRvJFnuvxlARj2bG1CQxN4cjJId0DIdI5\n1uc16KymUwwGr1D94oTZjWkrE7T0Iyr1lqZiY2nEE4mM+yX1Vrkq9TMbQTwO8LHp8qG/fa1H0SPY\nurY+r606hNwghnOfeHCtYv9wISXYi8HgFapfnDC7Ma2HrDXkpKXYJRyJY+/RAdAUlVFuS2+VayEU\nv06e86HKYYUvGJ3xuyoHB3eFLa+tOoTcIcTj+P2bHykqbBVSdK5YDF6uZ6QTCOmY1iBrDTmlzqYV\nq6zlDGKmuS2tVa5uJ4vWxhp0nx7Nyag8JbwBHnNddgAzDXJ5mXVGJTahdNm1tw/vnBgs9GlMQVPJ\nBYC7yAxevvvFCQTTGmSt/YjiQycIcezrVK5AzSa3tX1zI94/48VFb0h2my/d24r6WueMnt98UGln\nwceke6RD4Sj4qEBeRkWKHuGKYqtnAIBbVs/HbdcuLFqDRxahhHxhWoMMAPdsXIpT58ZmKGfds3Hp\ntO34qIDu06Oq+8smtxUTEojIGDwgKbjvcdkllcLywfLFLhx6/5Lk73wBvuBFNoQkqcbXwlC6hSvG\ng3zeoy+pzHWVgY8KGAtGUFNlQ2tjDRHaIBAuY2qDvHv/GZxPGQ0XTwDnh4LYvf/MtFyw1qKrbHJb\nai/CFYvd4KwMdrb3zGiPyjULah144GPN6D0/RqpKixSpFj67zTrt/tbSx1vGWRTTMrlmbCKCMu7y\nayefguwEQglg2mWp1qkvfFRAJBaHyyk/js7t5LKuKK50cLCx0peboYEdtzYVJJy4oXUunnp4HTgr\nA7tNeiJVsRTZmBUtAzvSpzWN+vlpxjgVpalGk3zMUGM8z12ma/twRIAvkPwOwzkYLkEglDKm9ZDV\nqqy9/jD2dQ5MeRyczCSoG1fOxQOXtZ61Ip/Tk/YIrBYGDE0bPgRAC5zVAoamsbO9R/IFv6DWUTRF\nNmZDq1ay3oWaUq1DpYOD28nCG8h+/CIAjIxnPzSFKF8RCElMa5DVqqzbj/ZPE7oQhz7YWAaRqDCt\nxUFrfkvpBTse5MHLDJaIpBhwo4YAaKWzZwR3rV8s+8IPhWPT1LwIxqFVK1nvQk0pxcBZGbQ21mBf\n54UMz3o6USF7d7sYhEAIhGLAtK9Zpcb+lgY3uvtGJH9XbrPgW5++Bt999Drs2Nqsq9hEKqwohuS0\nDLjnrAyWL3RpPp4R+AJhnBsMyC4CyAzZ3KA1pQJAs4CNiN1mgYWZGY0R4nHsbO/RVMCYT0iNAoGQ\nxLQGGZAfBL913QKFcDYP1soYLkYPQH6B0Fid9KCjAu7e2KDruNlSWc7h0IfS1dUAeVnmCi3CNSJK\ni0tH2cwg1/mhoGReNnXBWEyQGgUCIYlpQ9bAzMZ+cc4va2XAybQVZWqAtLxgZyr/JCtlj/UOY3/H\nANwVHJoWVuk+djb4gryiSERLg5u8LHOAXq1kKdWolgY3uk+PIjg5cx5xel62GPuPa11laGmoJjUK\nBMJlTG2QRSwMhfaj/dMKuOR6fDNdrWt5waYvEPYcPjctlzfq5zF6Qt5bzRVKVbdb1y3I34nMIpSE\na6RCzlKqUeNBHvtlcsHpedlcFAxm0z5148q5+NKfrUVgfNLQcyIQShlTh6xF0nO7YZniKhvLYNuG\nJTN+rqUtRY8YPWdlUOngcEwmj10sVFfY4K6wFfo0TMv2zY1YUOuY8XO5kDNwRTVKvIfU6hJEHHar\nbCdBpsQTQIU9szX90Z5hCEKB5o8SCEWK6Q2ynlBdJCogGLqi5SwWwTz57EF846cH8eSzB7GzvUd2\n6pNUznrTmvnYtKZuhjEfD/KGtZ7kCpLbyy0xIYFQeKZ2OKDcSyyitggEMLWQ/P0bZ2QXopniclix\nfJE7o8+GIwJ+9vIJQ8+HQCh1TB+y1hOqczm5aV6F1rYUkdSwotcfRvvRfnT3jWB/54UZPaaFVkyS\nIhuRfz16yoQkWieSKSGVW17dVI14IoEnnz2IUT+PynIrApPShj8bbKwV1iz64U6cHgF/y1JyvxAI\nl9FkkMPhMP74j/8Yn/vc53DDDTfg8ccfhyAI8Hg8eOaZZ8CyLF555RW88MILoGka9913H+69995c\nn7sm9PT2Ll/omno5hPgo3uq+KLmdmpABZ2Wwr3NgWp9zujE3WjHJCDIR+dcqbkGYid7CLimkcssv\nHTiN11MWkuMTxhtjAAhHBRxWqNBXY2RskvQfEwgpaHpj/uQnP0FlZSUA4Ec/+hF27NiBnTt3YtGi\nRdi9ezdCoRB+/OMf4xe/+AV+9atf4YUXXsDY2FhOT1wrSmG9VGwsg0/eesXr3flar2yIT603V0uP\naaWDQ7WO3tJcUuVgsXVdPXbc2jyVn9SKUu81QRk9dQda9iUatnxVU/sCfFbCIBzLwGGXlmslEGYj\nqgb59OnT6Ovrw8aNGwEAhw4dwpYtWwAAmzZtwrvvvotjx45h1apVcDqdsNlsaGtrQ0dHR05PXCup\n05OUuKllHuyXRe/5qICTZ72y26aHttPREorUulDINVXlLL79yLW6RVAAfeIWBGnkeuUzbQXK5zQn\nOsvZEJO8gJff/MiYkyEQTIBqyPpv//Zv8Vd/9Vd4+eWXAQCTk5Ng2eQghurqagwPD2NkZARu95Xi\nDrfbjeFh9VW6y2WHxZLb/NGzLx+XnJ5kY2nwkThqqmy4YdV8PHLX1WAu58MujkzAF5QvuGptrkX9\nfPl+YWdlGTyuMgz5ZrZ01FSVoWFxNWysBV+4bw1Y1oL/eOcP+r+YQVQ6OSxdVA0ACEdi8Pl5uCo4\n2Fj1bMbFkQl4A/ILD4a1wlNTbuj5FgKPx5nT/X/xk2t1X3s5nJVl4C7f27nGiJRL9+lRfPbuMtXv\nbNT1ydX+io1c37OzlVxfV8U78eWXX8bq1auxYIF0L2oiIf1Eyv08HZ8vpGm7TOGjAt4+Jj3KkI/E\nkQAQjycQmoxgeCQw5SFG+Bg4q7RwiI1l8IkNSzA8HFA8dktDtWSPaUtDNUZGglP5vrtuWITX3zsH\nPlqYFpCzgwH8/a8Pw0LT6Ood0ZUHFqIC3E75HKgQiapep2LH43Hm7TtYAATGJ5HN0UJ8FNFY7u8l\nmkq2UvmzzE+PjE3i9B9GZfPIRtcozIaah3zes7MJo66rklFXNMj79+/H+fPnsX//fgwODoJlWdjt\ndoTDYdhsNly6dAm1tbWora3FyMiVntqhoSGsXr066xPPFqXQsbhkkKqcfvnNM7LCIamhbSWkql9b\nm6qRuFz9Kr4MmhdWFcwYixzonF68JldNnl5JrSRuQVqmlMlVVfrO13oh05VnKPEEYGMtWRtkteI1\nvZ0Oaux8rWeGGE82+yMQjETRsvzwhz+c+vc//dM/oa6uDp2dndizZw/+9E//FK+++io2bNiA1tZW\nPPnkk/D7/WAYBh0dHfjmN7+Z85NXQ0+FtVg5nfy3dLhdTjhECrnq1/SXy7sFUObSinhNLAwl61VI\nLTz0tkzNJoz00NKNeoiP4eip/N1PwxIpGb0oSbOq1SjoGdmY1BToxYEuaWUzMgKSUAzoTp489thj\n+NrXvoZdu3Zh/vz52LZtG6xWK7785S/jM5/5DCiKwuc//3k4nYXPYSh5cOl4/cliKyGekDXgonCI\nndNeGSpWvwZCERw9aWz1q8NGIxjOnTskFqC1H+1X9FLSFx7kpSaPnMc3GY5pnrstZ9RD4Rj4aP56\n6Yw4kpI0qxF92iK79vZNa0PMdn8EQi7QbJAfe+yxqX///Oc/n/H722+/HbfffrsxZ2Ugoqd25OQQ\nxhQKtSodLCodHH63t1d2m0wGT4gvT7XjZ0IujTGQrCYv4yyavJTUthuCNEoe39snBvHhWS/altWq\nestyRr3UUqCeKmVpViP6tAFtan1kqhmhGCixR1g/Yuj4iQfXokKh53FNU1JqUGlWbEtjtW7vT3x5\nGm2M80FwMoJde/s0jwkkKKOmGucNRFR7uJWMSz5yx0bS0uhRfJ6M6tPWotZHah4IxYDpDbKoR/39\n33TAH5IuQFlQ68COW5tVezi3rq3XdexiHHknRb2nHFvW1oGzTr8d+GgC75wYBGuVvk2IV6EPpWEQ\nqSj1cOdialOh+NSdK1S30dKnrTb8xWFnwcnoENAUsGnNfFLzQCgKzNeAl0Z6eC8Vl4PD6uYa7Nja\nBIamUengYJOZk2xjGd2Tj0rl5TnJC/iTG5fISoXGZKby5MqrMKsuttaaBqV8pp5CRS1QFKCxS9Fw\nwtG46gtIqjhSvCe0FsgpdU3csqYOD35smVFfiUDIClMbZCUPlQKwqsE1ZYyn/8YYjH555gqvP4yP\nLvhl26+EOHD9VXPQ2z+e00rq2dAjun1zI+KJBN45flHWSChFHvQUKmrBzlkwEY4Zsi89VFdwcFVw\nmuchS9UoaGmJUnoH2FgGd9+yNJPTJxBygqkNslof8hvHBsFaLVMP73iQBy+jXy16bXoKl4x+eeYK\nq4VCVGU27Z03LIKnqiynnqs0DHU2AAAgAElEQVTRPafFCEPToClK1hgD6pEHqVYzu82C80NBXecy\nr8aOYW924jy1lRyGxvUvONc0e2BjLRmLoGhtiVJ6B2TSNUEg5BJTG2QtHmrqw1vp4MCxjORQCfH3\nekl9eY76w7o/nw8isQR+/Hv52bQMTcFdweW0ktrIntNiRul70lRy4pZa5EEqjGthKLz4ei/ePj44\ndf+yFgo1VWUI8zF4A5GpcZ+V5VY47SyGfZPIVtRrfm25LoPM0BQ2GpCz1doSZVSlNoGQD8wRB5RB\nywCHmZXCxibUxJfnUw+vQ2WJTrYR4omcDwHQ8oI1A2pRm9uuXag5PC8ukDgrA4amcc/GRnztz9pw\nzfJaVDlYRGMJ8BEBrU0efO/R6/C/H7sJ3//s9WhbVov+4QnwBkhsnr2ozysX4gnEhARGx8MIRzIP\nlSsVyKUaWiMnahEIucbUHjKQ9FCFeAIHOgckxfBTH97xIC8bSuQj+kPWqcVJk3wM4zJV3qVArr3U\n2eLJKH1Pd4bfMzX3nr7fUT+PfR0DYGgKO7Y2g7Uy6O4bkdmTfsYmIqCgbxn75rELONB1AbWuMrQ0\nVGdUI6BHtpWoyRFKBdMbZIamk1WUicQ0DVsR8eEV4nHsOXxuKqyXjtVCg9Uh05denLRisSvbr1JQ\ncq1kNFt0sXPxPZU6CUTEBZXRlf+V5azuHnvx+RryTaL9SD+EeAK3XbNAd22CVkOrVKlNIBQTpjfI\nIjtubQbD0LIP7669fZIGWyQSi+ObP3sXN7XMz0hJ6a3uQeO+TAEQvdRctiTNFk9m++ZGJBKJafle\nG0sjnkhAiMd1eYtae93FBZXRlf+NdZU4emo4q0TPgc4B7OsYQLXOqnq9hpaoyRGKnVljkJUeXq0v\ntXAkjvYj/UgkEvizW6V7F0tFDEQvrU3VeOnA6Zy2JM0WT4ahaVAUNa14MByJY+/RAdAUpaui3OsP\nazKu4oLK6Mr/c5f8WVddiB5zplX1xNASzIKpi7qUCIYi6O4bwUcXxjHsC+kK4719fLDklZQqHSw2\nrpmPzWvrpqkgbVlbN+NnW9fVgwLQfqQfo34eCVx5eSrJPGZKarGSGVGrKJe7t6RoP3Je03ap4fBt\nG5bOUGXLlKEx4+91vdeAQDALs8ZDFuJx7HytB0dPDcEfml7dydAAa6E1V52GIwKGxyZR73HM+F2p\niIE8+eBaVFeWAQDu3TgzDJ36MwB48tmDkvsxU0tSvlCSaBWnjmnx+PiooKi9DmBaGBgARscncfiD\nSwWfwa2E1nqFfCq6mVU9jlBczAqDLMTj+M4vjsgKJwjx5Da6kNAbFB/aloZqxXx0MfD9Xx/F9z57\nPViLRTLkJ/Zdjwd5RGJxw8bgEaAo0cqx2vvdtYSrWxqqsWNrMyYjUXztJ28hOJl/VS69qFXV51PR\nTcuxiLEmGMWsMMg723s1qRixFgqOMha+AA9O5oUJJCX3PCkGSOqhrfeUY2B4wuCuZuMYDUTwlf/z\nDv73f79p2kuMjwrw+sNoP9qP7r4ReP08XE5WVjDFTC1J+SV7iVYt4eru017wUQFf+8m7JWGMAfVq\n83wquikda/vmRtNLvRLyi+kNcoiP4R2ZoQnpRGIJfOm+VrCW5KCJ375+Cm90zayOvmHlnGkvDKmH\nFijukDUABMMxPP38YXz7kWsBQLaX1RuQb2sxU0tSvlCSaI1olGjVEq4GkhGMPwz6c2KM6zzlCE1G\n4TNotKjbyaFtmUexqj6fim5qxxLiCezrGJj6mRmlXgn5xfQG+bev9WjODdNUsq/SaWcBABZG+sGO\np4Sr1aQQpXqai4kLIyHsfK0HDEOrVt7aWAblNgt8Ad60LUn5wAgRFK3Fgy6nDZdGJzI6TzWCoSgW\neMoNMcgUBXzpvlbJuoxUtEpmGoHSsbz+MLp6pAVWSF0FIVNMbZD5qICT53yat48ngEk+BqedBR8V\ncKxX+oF7s+siaIrGjq1Nig9tsRtjkY6eEVgY9RBqJCrgmw+0gRV1v8kLJyOMEAfRWjy4prkGVy+p\nzvhclRifiCASM6Ya2u20wVNVprpdPhXdlI5V6WAxJiPnSuoqCJli6kSH3hak6gpumoymkqHd1zGA\nXXv7FDV1qys4bFozH9U65yjnm/GJiOZeVo/LXpCWJLUh9KXG9s2N2LqufkZ7mdaIgxaddtZKISoI\nqHJycJTlZu09yRvz91i+sErTdvnUplY8VlONJi1tAkEPpvaQ9bYgrWn2TD3QeiZFyXs7nsvzb3vw\n5rELResxu50cxiZ4qBWaFyJfbNYZyUaIoGzf3AhBiKOzdwTjwciMwrtINIEDnRdxZiCAv/7s9fjm\nTw8WbWHX2ycGcfKcT9PfVkrRraXBjU1r6sBHBUPvUSX1OIaRliwldRWETGG+9a1vfatQBw+FjCkG\nkcPC0BgZD+PMBf+M3y2odcDK0OAjMbgrbLhx1Vxs39wImqJUPyvCR2K4adU8XLOiNjk8IhiZsb9d\ne/uwr2OgaKutAeCaFR78YVC+Cp2zUrhlTR3u39I0dX3yxYuv96L9SP+UJzbJCzhzwY9JPoZVS3MT\nik2lvJzL6X0qxJMTmWysBRZG+wJDXKgc6xvBWCCCSgeLaCwOQWLV55+IIBwRsHCOU/F+LjRa/7Y0\nRWHV0mrcsno+brh6Lib4GLpPj+L/vXsW774/iJHxMK5a7DLkXk091k2r5uHOGxZhTZMHNEXhqsUu\n2ec+389JKrm+Z2crRl3X8nL56ImpPWQgdYWbrB522q1Y01yDBz+2DDEhoeidbN/ciKgg4ECndJW2\nGJqS83aKXUazuiK52m9pqMYbx+S1tvloAjRF5cUjTe3pBGDaGcnZev7plf1qAx46Tw2D0VAnUAxo\n/dtyVgb7Lutgi+Sq0lmqV3+2SL0S8ofpDTIAxOJx+C4XYARCUbzRdRFnLvjx5ENrFQsvGJoGrdAv\nmh6aSn9oi1lG87FPrITHZYe7gsOLe3tVt8+1AZQyUMsXumRTBqVeOJNNL20mCz1xTGIpoEWtjI8K\nGBgJ4sjJIcnfd/aM4K71izHJx3JuKImWNsEoTG+Qd+3tw/6OmapZ/UMT+N4vO6Z6cNMR4nH8+tVk\n7lcKG8tg24aliseudHCyghqF5p/+7QQAwMoAWuqkMjGAehSMpAzU2ycGZRWtSrlwJtte2kwWem4n\nhwQAX6A4F4ipKKmVCfE4Xny9d9qkLClG/WE8/fxhjAcjpqk7IJgfUxtkPirg6MlLsr8fGA4iEIpM\n9R2LqEltAgAfERAMRWDn1C5hMWePtRljQJ8B1BuOVfb4pP26Ui6cybaXVqngkKEpyTxy2zIPJsMx\nvH2ieMaAyp2rErv29uH1owPqG+JKGJ8IdhBKBVMvF8eDPHzBqOzv4wnghf88OUPHeudrPapSm1o0\nh8eDvKz8ZqmhxwCK3q7WyVBKBioSFbB+5dyM24OKEaVWOS0LH6V2nHk1dtjYK4+1jWWwZW0dtm9u\nxCdvbYalSOLWc9xl0wR2UhHVytLJtiaDTJEiFDum9pArHRxcDquiUe7oHcGuvX1TK2c+KqBTRhAk\nk+NXl8DkJzU2rZmv2QBmEo5VE3t48LZliEQF9A8FUV/rmBHRKDWUhEHsNss0kRa5sL9UO47dZpmx\nkAxHBFCXC/LsHI0adxkGRydz9M20QVPAikVVSCSAId/Mc5FblGgJ1VfYrfCHpJ/3Uq87IJgfUxtk\nzspg7fI5qpKQoqGwMBR+teeUasUqoE1z2Ohh8IViU1u95txbJuFYzsqgtakGeyVCkS2Nbrx04LTp\n+pC3b27EqXNjMwzo+aEgdu3tUx1cwNA07r6lATe3zAMoCpXlLL7zi/ckj9XZM4y7b2mAEE9grAhy\nyPEEsL/zIpbOr5A0yHIiIWraAJXlLFY1uPFWt3RYvpTrDgizA1MbZCD54ovF43ijU16YQzQU7Uf7\n8Y7GHJvLyWl6uOVevKXEiG8SnqqyrCUdlV6IcpHU3v5x9A9d0WI2Sz4wJiQQCkt7cp09IxCE+LQR\nnmpThpYtdMkuhEb9PH75XydBUVRRpVACoQg2tdWhu28UvkAYrJUBkJAVCYlEBSya65Q1yG3NNYoD\nN1oa3CVbd0CYHZjeIDM0jYc+thwfv2kp/upfD8IfmqlU5HLaUMZZdOWnWAuj6eFWevGWCj/6t+PT\nBt0reaaZ6DTzUQFdMmmCC8PSgxFKvQ9ZcXBBICybNpGbMvTOiUFwVhp8VNrgvvv+JXDW4ooojI6H\ncds1C3Dfpkb8as+paYvh1AXIPRuX4nu/7MDAcHBqUU3hSrmkjaWxftU8bGiZj/0Kc8i3rluQo29C\nIBiD6Q2yiNPOom15rWQL1KpGNyb5mK5WknAkpkmmr5h7kfWgxzNVkhtMRcyPRmJx3QM6Sj0fqBRJ\nqCrnpvrm01GaMiRnjLX+Pt/UVJVNRUxOyQyB6ewZwYdnfRhIW5glkJwQlUgAds6C3vPj6Dw1JNvT\nUF1hg7vINeUJhFljkAGgr39c9ufsegZWC42IxlGN4xMRTQZBr552saPFM1VTMEpvi3I5Wd392qyV\ngaOEi7uUIgmrm2vQ3Teie8pQqWEvs8LCUBgdDytGCxIyap9ikbY3EFGc2Q2UdpscYfZQXDGsHDI6\nPomBIenwZ//QBL7+L+9oNsaAcj40dTKRlqk8pYTomWpBVDBKfxGmt0V5AxHd4inhiICX3zyj6zPF\nhtzEpx1bmzKaMlRq/OGCX3VimlWHvrcUFIB5bjv+5MZFWe2HQMgHpveQRW/s8AeXFCU6IjF9AgVS\nK245QYx7NiYVvUQ97VIm20pVpbYoG8ug3GaB97KhVqPU88hKkYRMpgyVIkdODuGu9YtlowXZzmhI\nALjoDeHxnxzETS3zSr46n2BuTG+Q0yUZs4UCsFGmL1dNnzi9crYUyTb0pyYC8s0H2uD1h/HD3cdV\n91XqeWQRvYMLtm9uxMmzPvTLFLzJISdDWkjGghE89dwhrF1eiy1r69DVOzq1AFm+sMowZbFwRDBF\ndT7B3JjaIOdi2tJ1V8/Bg7ct13Wszp4R3HbNAsMER/IJZ6URicbhrpAuzNKLWluUx2WHx2XXZDzk\nvHU9GtrFjpSxjgkJTPL65xqvXzUPYV7Q3NqXL8Ynoth7dABb19Xju49eN23a18lzPkOjSqUeVSGY\nG1MbZK8/bHiImGNpCPH4jLCXkuc36g/jOy8cQUBGQaiY+foDa1F2WSbUiJeY1rao9avmSQqFyG0P\nZD/SsFTQW7lfXWFDS4MbW9rq4Siz4uRZr2oRVCEQjWXqAsRoYR2zRFUI5sTUBrn9yHnD93mg8yKs\nDDMj7KVWTV2KxhgA9ncO4FO3z4wIZIOWtqhPbmkCTVHoODUMb4AHZ6VBURQiUUG2jSqbkYalhJ7K\n/cpyK1YudaP79Cj2d16Au4KD3WYtSoMsZSy3b25EJBpTnNetB6LWRShmTGuQ+aigqNojB2el0dbs\ngZWh8dbxi5J9sFJhL7PIZKbzVvdF3L+lydAQn1J+NDXcnL4NANlQdLYjDUsJPffa+EQUB7qmK34B\nxVlYKGUsGZrGw3dchTMXAqo5c5uG1jnS/kQoZkxrkDMV5Lj+6jn41O0rMOQL4Y3ui5LbeANhDI9N\not7jmPbzdM+vUkHgoVQQ4glcGA5iyfxKw/edmh9VCjenekxyocZsRxoWA3py39s3N0IQ4jjQJS8J\nW2ooGcsnP7V2hlpXOutXzUUiAXT1jMAX5MFZaIAGotG4bFRFC2aqSSAUN6Y1yJkKcpw44wMfFRQn\nNSUSwA9/14W2ZbXT8pPpnl8ZZ8G3f364KMODeshHuD3bcHOmGtrFQCa5b4am8eBty5Na3zqrrYuR\nm1rnKhpL1mLBtx+5FoFQBGcvBXDk1BDeP+ObSnmsbqpGAkB3X9IYVzlYrGmqwd0bGxAMRTMyprOl\nJoFQPJjWIGcaQvb6r3hTSp/3BiKyBiPV8+PY0l9RL5lfASB3noIR4eZMNLSLhUwXI3xUKHmddBHW\nwkgaufR7zmlnsXJJNVYuqZ72u5cOnMbrKddwLBjBvs4LYBg64/qB2VKTQCgeTGuQgekh5FF/WNNn\nKAr4z0Pn8MDHmlM+Ly/o0XFqGDe3zp8xDSkSi+G7LxzFxQLPns2Wuho77DYLdrb3zPAUtm1YimAo\nkrWBNircrFVDu5jIZjEyHuThK/Hoi8iBzgF84uYG2LnkKyndO61ycFjdXIMdW5umDLe48M1F/cBs\nqkkgFA+mNsjpIeR/euk4BkaUw3vxBHCg6wLOXPDjqYfXYcfWZtzcMg9PPS89a9Yb4PH0c4dnhLO+\n98sOU4QSP/unK2U9hbe6L4CPxLMO5RkVblbT0C5GMl2MCPE4/uPQHzQpmokKaMWsEifEgX/99w/w\n2T+9GpyVmXHP+YI89nUMoK9/HE89vA4xITH1N85F/YAZahIIpYepDXJqSKu60oYFteWqBlnk/FAQ\nO1/rwYO3LYfHZZfNJwNJeb7UcNZd6xdjYLh05x+LVFfYUFnOynoKonBHtqE8o8PNUmIaxUqmi5Fd\ne/vwRpe2VqCbWubh7lsa0Ns/hh/sOpbV+eaSrr4RPPGzd9HaKD/X+PxQEE8/fxhhPgZvIAK3k8Wq\nhhpUlrMYm5gZLci0fqCUaxIIpYspDbJUMYbdZsX5IX1GsrN3BPdtFnTlozt7RrBysbukKl/num0Y\n9M4M6a9prtE1ljKbUF4phpuNINP50UdPXlLdN00BdR4H7tm4FKyFQVN9leLM5GLAG4ioysteGAlN\n2z61rSudTOsHSrkmgVC6mNIgS4VYMwnXjQcjGB6bBGuhsW3DEgBJg+H1h2VDhd5AGBFBAE3Jz/It\nNgQB2NAyB119XgRC0akK1e2bGxETEpqr1bMJ5amFm83cerJtwxKEwjGcPOvDWJBXXYyMB3n4gurF\nXPFE0qPcvf/MVOQi22ENpUJ1mtRrJvfPbF0kEgqHqkGenJzE17/+dYyOjoLneXzuc5/D8uXL8fjj\nj0MQBHg8HjzzzDNgWRavvPIKXnjhBdA0jfvuuw/33ntvPr7DNIzUr+ZYBj/8XRd8gQhcThbLF7nx\nxENrEQxF8I+7uyWNFAXgn3//Phga0JTgKwKGx8PwfxgBH42DppIVqsf6RsAwNLZvbtQcHTAilJce\nbjZz64nUd7vh6rn45K3NU8VNUlQ6OLgcVk1GGbgSuRgP8kU3XCIXVDlYPPXwOjjtLIR4XLIgUcv9\nU4o1CYTSRtUg79u3DytXrsSjjz6KgYEBPPLII2hra8OOHTtwxx134Ac/+AF2796Nbdu24cc//jF2\n794Nq9WKe+65B7feeiuqqqry8T2myFQQRIpwRJhS/vEGInjnxCA6eoZxU8s8rG6qwesSWsuiVyyU\n2HtPDGPGU4a+i0Y43VNgrdKKSLkI5Zm59UTqu719YhBlNovid+OsDNYun6O5pc8XCMPrD6P9aD8o\nlMw6MWP8ExFM8jE47awh908p1SQQShtVF+POO+/Eo48+CgC4ePEi5syZg0OHDmHLli0AgE2bNuHd\nd9/FsWPHsGrVKjidTthsNrS1taGjoyO3Zy+B0rBzNZx2KygA1RUcbKz0pRHHuAmJBBbUOkCbPATY\n2TOCmJDAjq3N+O6j1+Gv/+J6/P3n12PrunpUV9hAU8nw4NZ19YaH8tRaT/ioskxiMZPtd9u+uREb\n2+ZrOpbLaUP7kfPY1zGg2Rhbmdzf2KwFSTUtCZgsHiwxUqN8jYdL+v4hmBPNOeT7778fg4OD+Jd/\n+Rd8+tOfBsuyAIDq6moMDw9jZGQEbrd7anu3243hYeXQsctlh8VifAjoxtY6vPLmGV2fcVdw+NGX\nN8EX4HHJO4HvPn9YcftD71/CJG/+B9oXCINhrfDUlAMA6i///IufdCMcicHn5+Gq4GBjjS9HuDgy\nAW9AvvUk9bxyicfjNHyf2Xy3cCSGwdEQ7rxxCQ6+fwlhlftw3YpaXWkcmgKiQu796CpnGYZ90n36\niUQCW9YtwDvHL+h+zm5snY/6+VWK13jUz2P3gTN47L7VYJjSTn1IkYt7lpD766r5Lfriiy/iww8/\nxFe/+lUkElce1tR/pyL381R8vpDqNplw53X16Dh5SVcf8Kqlbvzi308oioCkMhuMMZAMb0bCPIaH\npWPwFgCB8UkEcnBsISrA7ZRrPeEgRKIYHs7Fka/g8Thzcgzl72aT/G5CPI7fvt6Ld45f1JULvnqx\nC68eOqd5e5qm4Cpnc963PDI2Keuxu5w23H5NPY6e1Lfwvf7qObjrhoUYHg4oXmMAeP3IeVBIlHzq\nI51c3bOzHaOuq5JRV10anjhxAhcvJocsrFixAoIgoLy8HOFwsk3m0qVLqK2tRW1tLUZGRqY+NzQ0\nhNra2mzPPSN27z+jW5QjEQfaj/QXtXhCIUgkgJcOSEcb+KiAIV8oZ6E/zsrAbrNK/s5us5Z0gQ1n\nZdDaVCP5u9amasnvtmtvH/YeHdBljKsrbFg0xwmXk9X8mZiQwLKFxg8TSUepC8Fus+Cvf9WBsaA+\nJbKta+umKXmtafYobl/qqQ+CuVA1yEeOHMHzzz8PABgZGUEoFML69euxZ88eAMCrr76KDRs2oLW1\nFcePH4ff78fExAQ6Ojqwbt263J69BFp7NNPp7DWmMrsUU8pq6bqOtHybWLn65LMH8Y2fHsSTzx7E\nzvYeCHFjK9n4qICJSekX8sRktKRfpEI8jp7zY5K/6zk/NuNa8lEBHaeGdB9nTXMNWCsD1qovpfDe\nh8NQKPTOKQydbNfKZFIalfYEbt/ciOuvmiO7vdiqRyAUA6oG+f7774fX68WOHTvwF3/xF3jqqafw\n2GOP4eWXX8aOHTswNjaGbdu2wWaz4ctf/jI+85nP4NOf/jQ+//nPw+nMfx5Da49mOoHJmCHHv+7q\nOfjOZ66FW4dHUmiaFyhXwvuDkWkvLbFyddTPT1Mp27W3z9DzUtJqHgvyJf0i3dnei/4h6ShO/9AE\ndr7WM+1nw76Q7qlhm9rmI55I4ImfvYtBr770UFRIgDfmkdBNNh0KP/798anFodhW1nPeJ7s9Ud0i\nFBOqa2CbzYZ/+Id/mPHzn//85zN+dvvtt+P222835swypIyzFKy1w8YyeOBjzbBzVrQtq9U9aaoQ\nUAC23bQY39/ZJbtNlZOdemnlU3TfrPKFfFRAV8+I4jaiSpyFoaZ6lfXSe94coxn1kNquB0D1GSSq\nW4RiwnTlhZN8rGB9lje1zIOdS+Y8t21YAtZS/AHsBID/8/sTitusWOSeemlpEd03CqUc4JrmZP41\nlznsXDEe5DGmcp3GL0clUqMRermgUbfdjHT2DCuG+KsrOMNa9XJdS0GYPZhOOrPSwSkOgsgFFXYW\na5d7pj3cwVAUkVhpSDAEFcL1rIXCjlubpv4/316rlHxha1M1EokEnnz2YEmqdyldQxF3hQ1lnCUr\n1blSkW7NBd4AD7lGDwrAF+9pQX1tdik1M6vIEQqD6e4azspgtUz1aq7whyLo7hvBrr19U8U4rEnC\nYPEEpoX01LxWPeE/LZ6FKF8oipJ899HrQFMUXj86kPMcdi4QNZVbGpXvUS2DPb50bwvm1pTJ/r5U\nRGtyYbtYKy1bYOmusMFjgPJWvmopCLMH03nIQGHyx+mSfC/tP12AszCemJDAr/acxMN3XDX1s2xF\n95NV2r3o6hnBWFCbZyHKF4b4KN7qvii5TTEPjk/3pqocVjA0BUHGjY3EYnDYWVlPurrChiXzKjAq\nI6wBAHOr7dMmIxUr86rtGB3np+RYbSyDmkpbVvlvXqE1zIi8sZZaCgBEA5ugC9MZZD4q4FivcsFM\nLunsGcFd6xfj5Dn5ys5So6NnFJ/cKky9VLSK7ktN2BHicXznF0emjcLUoy+887VeSR1toLgHx6dr\nKqt1ArzRNQjWYlEcATg+EYFS2rK+przoDTJDAwPD088xHBGwbGEVli9yqQr1uBwsHHYWoXAU3gCP\nCrsVk5EYItGZCx2aAq5dMQfbNizNenqYUi2F1x/Gr/ecwslzPhLKJujCdAbZyOESmeALhNE/FCzo\nORhNcDIqaejkRPeVcms7X+uRnUvdcWoYN7fOh6cqGYZNf2HyUQEnz3plz9Pl5Iqy8jrTCWQdp4bx\nnT+/FoB0NKKvX7qPWaQUFoVyLU5dvSP47qPX4+aWeXjq+fckt6Eo4H9sX4151Xb8+tVTePfEJYxP\nyC904gng4AeX0NU3DIACHxGm7s1tG5YiGIpoNtBKdQAcy+DtE4NT/2+mgSiE3GI6g6ylYCaXuJw2\n1Nc6CnoORlNht+oydHITdoR4Ap0K0QtvgMfTzx0GxzIAEghH4qhOMeZKfckAsHyhqyhDg5kuEn0B\nHsFQVDYaIU7oksMfKlAjsQGM+pN95h6XXbZI0+20wVNVhl17+3CgSzqNIUWq0pl4b77VfQF8JK7Z\nmxVrKfS0NhZzSoVQHJgufqJFLi9bKsvlRT9WN1XDaWdzfg75pGlBpeaXiJI3mMwZK4tbJCCOvUy+\nNFMLZZQmedlYBp+8tbkoW1AynUCW6vGL0YjUv8OSeRXKxy2Xlh0tBWgqqSlgYShZ+VSx9S0TBbN0\nwpG47sKs7ZsbZ0w9W79yLniVlAqBIIfpPGRgetGR1x8GRelrAbn+6locfF/6IbexDL7zmWvx4uu9\nePf9mRKd4mG2b26EIMRxoOtCybefrGnQvrhQ8gbHJnhUOVjd+sTAFe9CzitZv2ouXn7zTFG2oHBW\nBi2NNdjXMXN+thJtyzyKCyHWyiiK4CiFb4udeCKpKfDK2x9Jpjjqa8uxfXPj5YlO+u8nNbR4s1K1\nFABw6pzPdGI2hPxgOg8ZmN4q85X7V8v2I8rxwUfyecr1K+eAtTKyOsTHekfBRwUwNI0Hb1uOW9bU\n6Tt4EcJx2kNslQ7ucshZYj9WBi0NbsnfqSF6F1JeydZ19aCAom5B2bq2Xn2jyzA0sLFtvmrV+rDC\ntKRSx+3kwNAU3jwmHWqMcEEAACAASURBVIoe9k3iZ6+8j3/YdUxxP5YM5zrr8WZToxdGtgUSZh+m\n9JBFOCuDpXWVcFVwunJ4Srm3BIBf7Tklmx9Or/TdsbXp8ovlgmrOr1hZPPeKgIK26lR5M7GprR5v\nHBuU/b0conch55U8+exByc8VS97OXWHTLFgjxAELTat69uFI6XrAathtFnzvV0cRiUk/M3w0jvdO\nqhfKxTKc65yNN5ttWyBh9mJqgyzCGKiQ8Hb3RUUFLtbKwGFnpxmuu29pQMepIfBR40Nr+UCIJzSr\nEo0HednxgHwkGTnIREkt3btIrfC+ODqheYFUKPQWASktJIR4HC++3qs7BF5KFFqDOxtvVmtbIIGQ\njmkNsmhAOk4NGZpjUpPDDEcE/O1vOpJ9kZcN17KFLsXq4GKGtVBw2K2yldPA9FYOJenSSgeLynJW\nl2GqrpD2LlIXPO1Hzst+vpjydumeU0W5fD5daSGxa28fXj9qXmNM66z5MALOSiMaixvqzcq1BRII\ncpjWIKcbkHySLnrxzolB2FhGVtCimInEEnhp/2kc65NuV+o4NTzNk1PyBMeCEXznF+9hdVMNNq+t\nQ8epYVmDRFHAV7avxtK66RXeUp76RFg+dNvSWF003km651TGWfCdX7ynqwAo057mG1fNxdvH9acK\nCkEhiiBtrAVPPLQanqqyorlfCLMPUxV1iS0vgVAkK1F+wnQ6ekZkowzewMy5xKmFV+mM+nm8fnQA\nNEXh249cC5eM9+p22mYYY0BaP1guRA7oK6bKF6LnZLdZFFt6pAxDpj3N0VjpLQbzyfhEBEgkiDEm\nFBRTGOSkNnIPnnz2IL7x04P41vPSXkch4SMCrr9qTskI/qcyPiEfbhf7RVMRPcGnHl4na3A7e0bA\nWhmsXa69IlWvd+h2chDiiaLqSU5l194+yZaeBbUO2ZBpGWeB066/v7ird1T3Z8yG2rP3j7u7sbO9\nZ2pADIGQb0wRsp6pE1xcxhhIVtneecMiHPpgZu9yKSP2izrtM8VSJvmY7Nzf1DYmQLkiVcwXR2Jx\nXd5hiI/h6ecOF1VPsojS4iIUjiEmJMCknGpqqN4f0l9dLVetXMxUOVj4JyKwWGhEDOhQUAuFE4lL\nQqEpeYOcaU7NSMQiFKVilJYGNzxVZaaS1AQAl0NeP1rL7GSlitT0fLHLyYKTycXbWAZ2zoKxIA/W\nylxW+0puV4wvWqXQ86g/jIGRIJbOq5z6WSFrIgoBZ6HxxINrMR6K4Ef/3zFDDPLUvq00OCsju7Ap\nllY5wuyjONyFLFDLqbEZCgPo4ZY1dfjq/asVV+CTUQEWhipJSU0lCcbVCu0hekQSpKQh0/PF3kBE\ntjDuppZ5ePrT1+C/370Kdhkhk86ekaIJX6vJaf7Nr45OhU+LYdGZb/hYHE/+60E885tOwzW5o7E4\nHvmjFbLzkonEJaFQlLyHrOSFVVfY8MgfLcMzv1VW88mG66+agx1bmxATEor9tQdPXAJnpcFH47Ba\ngGgJ6f7LSTAuqHVgx9Ymxc9mKpKgNPfYxjIot1ngC/BwOW1obapGIpHAd37xHryXjbcU3kAYw2OT\nqPc4FI+dDzgrg6uXuvGGzFAEIY4pj3jr2vqsp4cVopUoW/hoArmYbs5aGSycIz8Appha5Qizi5I3\nyEptNi0NblgtmYedlHSCk8em8Kk7loOhaTA0VPtrD3Rqn0hTzFSWW7FikQsP3LZMNSebqUiC0tzj\nSFTANx9oA2tlUOng8NKB05rCuYkE8MPfdaFtWW1R5JPXLauVNcgi4nztTFMdLgeLZYtc6Dg1pNpD\nXwjUnrFcEI4I+Pe3/4BlC11458TMVjAicUkoFCVvkIGZXliVg0N5mRXdp0exr/NCxvsVXxTlNgsm\nwjNdWk9aiHX75kaEJqN4R2LohFngrDQYmsKhD4bQ2z+uuVhKj0iC2tzjKgc7de31hnO9gUjR5JMX\nzXGqbiOGT+WMhxIsQwEUhUPvXypazetCndeBrgtIJJLRFgCXZyMTiUtCYTGFQU73wva8d95QWUEp\nYwwAE6Eo+KgwZZQZmobV5CtrPhqfkgDNVbGU2tzjickYXjpwempGcibh3GIo3GGtDBiagqAQS6ao\nZDuO18+rbptOREggEiC5UCnEyyhGYW5cORcP3LYso/tBm747gaCOKQyyCHc5hNktoyplNL5gBL/e\ncwoP37kcALDztR68eSxzj7xUMdq4KdUFAMmCH3EhcPctDbLbKo16LAaN6/Egj7iKgRXimPpueoxx\nKUJR0D2ZzShOnpOe3qaEVn13AkErprtrxoN8XtuK3j4xiF/8x0nsbO/Fvs7Sn32cCUZXpSpVZ6fS\n2ZNceMlXcntQLVPJXAyFO0qjKmcjhTLGQGb3sJRqXDGN/CSUHqYzyJUODlWOmSIVueTtE4PYb+LJ\nOwDgdrKwsdK3Sy6Mmyi/qfS3VJuRvGNrU8Fm04oyruptVrNwBVeE6L2HlWoXiqm9jlBamCpkDVz2\nrppqsirmygSzv1YpioKnyi4p9WiEcUvPw4l1AXetX4xvPf+epPqay8khEhUQExKyldz5nk2rJ4yp\nNKqSkF9aGty68sBKtQvFkA4hlCamM8gAsOPWZvQN+CWNByEzRv3JVMCCWgdC4Zhhxk3NgDntLNYu\nl24nmwhH8fTz7037TPpLMN+zabWOqQQAh52d6k1PhwJQ5ykv+Fxgs8NaKdS67Og+PYr9nRc054G1\nqNARCHoxpUEGgKYFlbjkDZWkhm8xEwrH8NTD6zDJxwwxbkoGTDSid16/CJPhGE6e88EXSJXGjM/4\njFy1dz5m06qFMdML315+84ykMQaAudU2PP3pa7CzvRcHOgdmZW1CPohEE+gfurLo0do5oKR/QPqY\nCZliSoP829d7sTeHA9y1qB5VlltlFa5KGV8gjEk+NmXcsmn5UDJgb3VfxNGTl+ALRqeut9vJ4toV\nteg5PyYpGlLoVialMKY3EMaZgfGpkZJq/dMXR8OICQncds0CQ1r4nGUWBCZLSB6uwGi5l/KdDiGY\nH9MZZD4q4J3juVXEuqllLg5+MKQoeL+6yYNDH1ySVZsqVcRwnBEtH0oGLHU4hLj48QYiOPjBkOz+\nCp27UwpjUgCeebEL1Zev06Y1dardAH8Y9GPx3ApFSVatmL1lymi03Ev5TocQzI/pqqyHfaGcFcpw\nVhpb19XjtmsXIaoyfebEGS+uv7o2J+dRSFoaqzEe5LGzvTfrlg+1AQtyyA0FKHTuTqldS7SH4nVq\nP3Ie5Tbl9fCl0QlwVgZXLXFldD4UkhXnt6yejxBfWgtDzlrYV5PLKT/FLB2pwSgEQiaYziCDyt10\npxtWzsWOrc1wV9hUDYkvEMat6xZiU1ud6mD0UqC6gsOCWgeO9Q7j6z89iAOd0mHU9JaP1Paf9FYg\nrf3G6cj5esWQu0ttwaIoyP7tu0970dJYrbivpgUuPP38Ybx5TJ9kpkhroxvf/sw1uHZ5aS0M57rL\nVBcr6VCAarujHhu/fKGr4PcSYfZhupC1p6oMHEuDz4GXfPy0FyE+ipf2n0ZgUl7aEUh6a+4Km2E5\nwEKydlkNKuzstFYyuQioGOqrrrRNC2knBTASCEfiU2Hb7ZsbJfJwHCbCUV1RjuocahCHIzEM+UKa\nw5GpYcwzA+N45sUuye18gTDuuK4FB09I60w7yiz4l//7fladAl19Xrz85ke4a/3ikpr2NOSb1H2u\n7goOgqAcBdA6UtnGMvjkrcpSsGq1E0ROk5AJpjPInJWBp6psWuWkUXj9YXz3haMY9IZUtxW9tUoH\nZ0gOsJD0nBsDq/GlIob60qunU3Pp6ZWs6Xm43+3t1dxHTgH4+p+tQXVlmfYvpAExR959ehTDvknd\nOXLOymBpXaXs397ltOH1jn5JY8zQwOM71uBbz7+X9fcQi5PqPI6SaQOMJwCn3YpASHtRZF1NOY6f\nkR9IooebWubBzkm/GtVqJ4icJiEbTHeH8FEBocncVDdzLK1ojKkUlSjRW+OsDFoalEOTxU5gMqZ5\nQWG3WQFA0wSm1PB2ah5u67oFms8tgaRHZTTigmLIN5lxjlwpJN/S4Mah96VD0UIc+LudnYZ4tGLE\n4qufbC2Z1AlNAWua9D0z3We8WYvzVDlYbGqrmxFpSU21qMllEjlNQjaYzkNWmxSUDXFB+ZH/4j0t\nWJaSe0r1soDSHBIPAOUcDSEBTWHkickohscmNU1gkqtkdVfYNEcVKAD1tQ7V7fSgt59YCbnWmBtX\nzVWMAgQNalESIxbjQb5k7r35nnI8eNtysFYLOk4Nw5uHiVWslcZYMILuvhEwNDX1d0v1dl1OVrY4\nTpxbbdR9Q5idmM4gq00KyoaIikF2lFmmPXDpYdtSeSGmkzxtbe7VWJAHEglNfwOxKjo938ZZGbQ0\n1mjKvc9128FaGV15XjWMlEWUa43pH85P+Nhus06lTkqlN76xvnLqut3cOh9PP3c459K0YgtjajoF\nwLR/exUW+r5AGP1DQSKnScgK0xlkJQWdbFEbD8dar1xONeGHUmKS115g5XLa4HHZNf0NWpuq8dKB\n05L5tq1r6zUZ5IZ6J5589qCh+bpcyCKmK4VVludnAMrEZHJmt4WhUMZZSsIgH+/zgt8kTNWDVDk5\n+PI817mzZxgJHeOnXE4b6msdRE6TkBWmyyEDyTDhprY6VJRbDd2v2vPpqbpSWKTkZZUaCQAWRpuH\nLBazbduwVHY6FE0Bm9rqQAGy+TYxbK3GW92XDM/XKeV+jWqt0jrqz+3kUGHP/D72BXiMB3ns2tuH\nQa/xufZcIHqTQjyOlw6czllNiBLeAK/oEaezprkGTjtbsOliBHNgOoM8lbftG4E/z95AqhpSpqIX\nxUpUJVxf5WCnFbMFQxHZ1rNEAti0ej66ekckf68251hErkjJiPF3Yj9xrats2khHw1qrNPbLtzZW\nY20WfcQUBfzHobMlFa0RvUkx5cMXQI++wm6FnP20sQyqKzjJ+0JuFCiR0yRowXQh6/S8bT554T9P\n4r9tWwkgt6HzfMPQlKL0osvB4VuPXAOn/UoYVins666wARSlmm/bvrkRghDH2ycGJWVK1Xqhs8nX\niTnMz95dhtN/GDW0n/RKZbn0pKdUtq5bgFpXGd778FJGhV7xBPBGV26lZI1mTXMNAG2V+rlCKbR/\nU8s8WblMIqdJyAZTGeRC520/POsFHxWmHsBtG5YgFI7h5FkfxoJXphSVEnPdZbikEuq8arFrRp+y\n2jQcT1WZYr7NYWexa28fuvpGEYnGwVpoUDTAXxYWaWmswbHeYcmwopH5OhtrMawQJ71HlZMJ6YtU\nVyTFZWJCAlaNKQM5SqXCf0GtA/dsXIqxQHGmfGwsg20blqhOD8vHdDGC+TBVyLrQedvgZGwq97Wz\nvQdPP3cY754YBEUB166YgzKVF3Ax8rltKxVD75yVxtsnBvHkswexs70HQvyKx6cUvlPL0/7bgWSk\nQyzmicTiUyHwRCIBhqawWuHzAKbJdOaTdIlQkfQeVbGNjJG5LcS8o9cfhi+YXfqlFIwxAJwfCmL3\n/jNFm/IJRwQEdQiWEAh6MJWH7LCz4Fg6Z8Ml1HA5rJIqVaN+HqMfXCrIOWWL43KhilzonZdoFxHn\nyKqF7+R6dLdtWIIv/uNbsufkDUTQfqQfG9fMw/qVc6ciEC6nDa1N1UgkEoZXXmtBSaUpJiRkozdV\nDg5N9VXo7R+DL8DPGOO35/DZrM+NAjCvxo6LoyHV4sRCI/bs5iPlw1poRGNxVDpYjAW1FXH91+Fz\n+LNbm4nyFsFwTGWQX37zTNbGOJteTX8oht/t7Z0SAkmnVMKGqezefxqfvnM5AG1601ICCHLhOzmD\n/dGFcU3jAt/ouohEIqljfMPVc/HJW5vx8ptnZiyGtAycNwKphZj4/1vX1ivkzHls27BkSsAjdeHC\nRwV0n85eEjIB4MJICPNr7Lgwoi79WkhG/VdqCADgvQ8v5aRdi7XQuPbqWly7fA7mue34/m86NOkX\n7O+8AAtD5/x+Isw+TGOQjcofty2rxTvHL4CP6recQjyhqL5UasYYAE6e9SEmJKYZzkhUwNMyOsup\nBVVaBfbTDbZWDePUkYZvnxgEyzLo7pOv3M6lUpKautdd6xer9qimXgfx2kWigmbPTdN5RoSiN8qs\nhZ6qAYjG4ojn6MGJxOJ469gg3jo2iOoKDnabVbOgUEfPMFHeIhiOJoP8d3/3dzh69ChisRg++9nP\nYtWqVXj88cchCAI8Hg+eeeYZsCyLV155BS+88AJomsZ9992He++9N9fnP4UR+eN1yz3YsbUJFAXs\nPZr5hCY5T7i6gkNLQzW6T3vhC4RhtahX2RaasSA/ZWBFg8FHBZWCLCt2tveg49QQvIEI3E4Wbctq\nNYeNl8yvyOhcu3pG4JPp79VTeZ26kNCKmrrXJB9TLHJLl1tNDXvbDEzD+AI8/tefX4d/eLED3kBx\n5kIpCojGYvjqPx8yTEJUjVE/j1E/jwW1jsv5f+Xr7fXzePaV9/HIH6+AnZPvE8926lMxT40q5nMr\nVVQN8sGDB9Hb24tdu3bB5/Ph4x//OG644Qbs2LEDd/z/7b15fBv1nf//mhlpRtZhW5Kl+MptO4Ek\nTpw4QC5CUqfZsmQ3jwYIZAlloWx/Lex299EWKGQ52kIL9NsvpdsulJZybUr4hl0eZbfdQA5CIIRc\nTpyEOI4dcthO4kuWJcsaSSP9/lCkSPLMaEYaXfY8/4HY8mg0mvm8P+/r9f7a1/CLX/wCW7duxdq1\na/HrX/8aW7duhVarxa233opVq1ahtLQ0G59DEcnMRbMmgCJJ3PmVWgDAJ0e74QvI350Lbegb6mzY\n0FQH1s+hd3AEL7xzBKw/M7rbSlFioEcZpmQV1P/58Zm4DU0k5xsMhXDXqhmj/ibxwTbpaVTbDOjs\nlTexa3CYRalALlBK5TWfMVwytwprFk1KupGQou4llDOP7VHlC3srSamRwfZDnbxtZPkC6w/i6TcP\nZ80Yx+Lx+hEKSbs2h0/34Ytf78Wi2eVoWlANS7FOdGMlp5Yhn6dG5fO5FTrUk08++aTYCyoqKrBq\n1SpotVrQNI2XX34ZPT09ePzxx0FRFHQ6Hd5//33Y7Xb09/djzZo10Gg0aG1tBcMwmDp1quCxPR7l\njJGGItHn9OJM91DKx+joGsSMSaXQ67SYO92Kg629GEqhotJiYnDD7HK4hv1gfQFYinVYMqcc61fW\ngCQIaCgSXl8A7+9Nv1gn0wS4IP5myRSQCUIW104xY4QNwOn2xX3Gtcum4ff//QUCPEIiF/s9aGqc\nCM2VsmIuGMTbO05j84dt+O+95/DZiUvoc3px7RQzls2twNH2friGpd8j1mId5tVYcfaSa9Tvlswp\nR0OtuNDI2ztOY/vBToxcGSAwwnI4dd6BETaAOdPEpw+J3X+R9yYJAnOmWbF8XiWWzqnAzYsmo6HW\nBn8giIEhL4KhELbsOB19/1h0NIViPQ2vj0OpkcbcmjJ0ydywAEBZaRGOtventNHMFiSh3HANuYyw\nHDgZe5UAF8LZiy7sPNyFfTH3b2RjFXsvnekeknQvAfz3otS/NxgYRddWJc+tkFHquhoMwo5BUg+Z\noijo9eEw39atW3HjjTfik08+AU2HRSCsVit6e3vR19cHi8US/TuLxYLe3uz1BHPBIEKhEHR06r2+\n/UM+PPWHg9DRJCzFupTzbPNnXPGEVwiHdEqMDEgSCOavowIgvOC8+cEp3PNX18T9XHBoQo9LMLzq\n9XHodXhQbTcBEC+C2tBUh6fuvQ4ujw9fdg/h9W2nkuoZR7xNgiSw99il6H2goymEQiFwwaDgDl6J\nCU9SPGDgas480h4X8TRKjYxgyN3n5/DoxgVAKAQuBOxq7gQBSB66QJHAsrkVOKZAgVimyWWtRTqF\nl5H7l+OCgoWdUu4lJaeNKU0+n9tYQHJR1/bt27F161a8+uqr+OpXvxr9uZAAuxRhdrNZD41GmS/v\nlfeOYUcaed9YvL5gysZYR1P45to5MBSFNyzVAq9zutm8N8YRWtr7YSopgo7mv11iP+NwEplDs8UA\nm80Ery8guGi1dPTjW+vC72fyBeDyBUWNsbVEhyX1lbh3zSxQFAmjnonblHl9HHYc6oJBz+D+tXN4\nj3Gxb1hwzJ/D5QVFa2ErM4h+NgD47p0L4PUF4BhiYS5mBK8ZEL5nYzckQsYYCH/GfSd7cODkZfSm\nMP+ZCwIUpcnKKMN0sZi0OctvK7EZONrRL3i/SrmXlLgXbTaT9BOWgVLPSaGSqesaQZJB3rNnD156\n6SX87ne/g8lkgl6vh9frhU6nw+XLl2G322G329HXd7XCtaenB/PmzRM9rsOhTKUn6+fw6VFljHG6\nsH4ObWf6QF8ZeZe4W4zkSy/1yw835opBtw8dZ/slFUQFfeKhxsu9LmhCITjdrKBh6RscQduZPuxq\n7op6j0KUGmk8/o1GmPQ0BgaGRe+FT49242vXTeTdwXN+DhaTcA6Y8/nR2zs6FC6EBoDLOQKhv5B7\nzzI0hT/vPSv59Xw0n+oR/Iz5RN0kC/adKMy+fSBc8MVoSF4Nbin3Urr3os1mknWvykHp56SQUOq6\nihn1pBl4l8uF5557Di+//HK0QGvx4sXYtm0bAOCDDz7AsmXLMHfuXBw7dgxDQ0MYHh7G4cOH0djY\nmPbJSyHXCl2xMFoSv9zagh++vC9OvSoSntz0yj788OV9eH3bqVyfqmSsxYzkiuPuJBuNn7x+CJte\n2YdtBy7AbOIfQWg26bD9UGecqpUQjTPtcRraUmYZ85GNCU+xON2sJMNIEkCVzZCSV5zIoJvFzEnm\ntI+TSapsBiyZXZ7r00gboYEYUu6lbN+LcsjncxsLJPWQ//znP8PhcOCf//mfoz/72c9+hk2bNmHL\nli2orKzE2rVrodVq8b3vfQ/33XcfCILAAw88AJMps+59BCUqrJXC6wvC6wufRzSnFAyB9XHYe/xS\n9HUOGaPdcs3MSWbJD9plCZ5//xCLXYe7MNFu5NWirp9uEewnTsQf4OJyw+nMMubLAS+ZW4k1iyZJ\nOhc5FDEaSfnKYAgpFW/xYTbpsO6m6dh74lLeqnV19Q7jgwMXcn0aisBoSRiLtLzqa8mQWo+QC/L5\n3AodIiRnCrfCKBna2Ly9LW8nKxWiQlcEigR++d0boWdG791cHh86e9yothujXmq/cwQ/+PfPJB07\nsS878mCvaKjCplc+l1ywtKKhEquvmxRNEQjdC02N1ZLUlWLbsKorSzMSgutxePDIy/sUP64YKxoq\nsWJ+NR7//f6svq9c5BSr5ZJ5tVZoKQoHWnsEX/OjexcKpq+kkEqvbyZD1rGMtz7kbISsx4xS1/qV\nNfB4A3FeaL5QqMYYALQaElTC4GFfIICn3ziMrl43gqFIWNWIx+6eD2tJEYxFGkltKw4Xi9XXTcLt\nK2vjHmwx4RE+PmruxkfN3dF+yFtvmgYg9R18Nib1hD8rkZIiXKq0dPRj2JubdiI5FMLjQhLA0dP9\nKDWJp3JKjExcSkUu+Tw1Kp/PrVAZMwaZIklsXD0DJ885krbHqEjH6wuOUrj6yeuH4kQ7gqHwlJ6n\n3ziMp+69Ds9+exEe/s1ncCdZ/PkkIwH5s6QjC3hs28nG1TPzfiYtQZAAsjeNKqxGJezNqUgnsslO\nttb0Okcwwgby9h5UyS/GjEEGwgv5NZPNeeklFyokEc53AuFe79f/t1VQQaur1w2XxweTnsambzQm\nDcmKFYFEvNkdBztle0y7j3QDBIENTbV5u4N3ulmwBTYbW0U+v9ragqFhv6pmpSKJMXdnaDXpDXJX\niScYAkbYALhgED967SA+aRHe7ARDQGePG0A4VGcVmWdbbTNEjS7f/GCKJLFm8ZSUz3nX4S5s2dme\n0t9ng2TzfskUb+N5062wmBioT0F+4Bz2I4Sr0Zt8vidVcs+YMsisn8PxM7lVIkp1Ic1XSgzhGc+b\nP2zDhSvGVgiSAKrtRgDhaEV9TZnga0dYDqw/vhUstk0MCBv3dPKJzW19cUY+n2C0FPQ6/qEEFRY9\n/u8/LsWP7rsOZqPw4AI+jnT0gyCA66+dIGrwVXJDPt+TKrlnTBlkqb2dmaSQC7j4mH+l57D5dPI2\npCqbMa6ApWmBkE5ZuCf4jx+2xfUaJ3oR1XZjWhscsb7jXMP6OQyP8Le+xS7YMyZZeF8jRv8Qi31f\nXIZBwOCrjIbRZGcpzOd7UiX3jJkcMhcMYtuBCzltMSq3FsExxOb9SEWpTLQbsWFVHfqd3qQzeatt\nBjx29/y4n1mKdbAKVEuXGhm0nnfwHqu5rQ9rl03F+3vPghDpgaFIApzIly1lwlOucLpZwV70AReL\nh36zNyoukeo9PTzix4r5VWhp74fD5QWtTV3nfawTudaRUZeRax57+ynRjpXP96RK7hkzBnnLznbs\nOpxb+cwBJwuCGBsuMkOTuPfmmQhwoXC+00TzingAQIVVjyf+fuGoYhWxaumZk834TKD4zuHyYvOH\np5MW5yUbXJ/PykHJxGxilZ5S3WAOulmsXjgRt6+ogdPNwqjX4o2/nMJ+kb7Z8U5EliFyzWMvvRJP\ndj7fkyq5Z0yErMUmkGQTXyAoq680n59L1hfEU68dxKZX9uHd3R3QFwmHPy/2e+KKVVg/h85eNzp7\nXFi7bCqaGqthLdaBJMIjEpsaq7FhVa1gjtNsYtB6LnktgNiVXjK7PK+Vg8QkCJUisa1Mz2hxy+LJ\nGX3PQidTfeGR+z6f70mV3DMmPOR80rKWQyHUdkTyugwtvncLh5mn4b8+7sCncaMPSSyeU4Gn7rsO\nbo8vrh9T0HuelF7rmsXE4K7VM/K+vWT9yhoEQ6G4UZFKwueN2cx6aCkCfp551SqZwWxk8Pg9jWkJ\nhKiMD/J7xZJIshYSlfRhBWYcR+gfChdp7TjUlTD6MIidh7rw3p4zsJv1cQZi/coaNDVWR9t0LCYG\nTY3VuHNVnaTvc6xdsgAAIABJREFUM1FBLML8GbaCCAtSJAmSIBQzxiQBEET4Oi6eXY61y6aOeg2j\npdAwI7OeuUo8zmEWI2xYJIevxU9FJcKY8JDlKjupKA9JAMe+FA4zHz7VizWLp/CqFhFE/H8ZLYl5\ntWVJ51sHQyEsnl2OU+cHJUtkKq2/m87xlE61LJtbgUAghNbzDnx2/BJOnXfwilH83ao67P9CzSPz\noSUBpWsyzSYdjHotNm9vi44TVYVCVPgYEwYZCHtbXDCE3c1dBdd6VGrQgqLInLdspUMwBAwNC1di\nD7hYPPnqAQy6ry5GoVAozuhGwuOAtAIai0mHjatnAACvUYw1lhqKwJad7YotiFwwmPLxIuflCwQV\nSbWYjTQWzLQjFAph9xH+6xk7VOO9PV+m/Z5jlUw0SNRPt+C9PV/GOQxC343K+GbMGGSKJLHxqzPA\nBYP4+MjFXJ/OKG6YNQGhEPD5F6MHr7tG/ODGRqeUKA53/FhKHc3vUTa39ULKELLYHGmsRCafsdTr\ntHHCJukuiFt2tsteYBPPy2yiQWvJtNvkBt0+nDzngJfl1w5vbuvDuuXTo4M7Dp1SveNscrSjHx6v\nn/d3sd+NisqYiZVwwbDq0zGJc3QzhbFIg5ULqkZVFd/319fgm7dcE1dxHDFI48EY8yGUOx1wsYIt\nVgBQbNBixfwqwdB0xFjGCo4IqYylopwkFmoWO17ieQ24fIr0rIcQniMsFGGJFaNwulkMDfMbB5XM\nMDDEwitQg8EnFKLmmccvY8ZDTvRYcgWtoXDbTTW47aYa3jDqhqY6rFs+Hb0OD365tUUVauDBYmIQ\nCoV4jTIBYGjYj5b2PlAkMSpELDcvG1kQ5QyhEKvqFzpeLlvzYsUoSowMig1a1SjnCbHfTTppEJWx\nwZj4llk/h8N5EoZzuFg43Wy095MvFMVoKdBaqiBbtbLB3Bor5s+w8/4ucdRioli/3BY4WkvBqJcn\nMSlW1R+7wMZ6OrlszYsN7TNaCgsErq1K9on9bvgiO+pAivHFmDDITrd4iDNVimgKxTIXa1pLSpLG\nU1u1hGm74Iy2RFmLdSAgPLQjMURcYmRgNknv9/T6ONlFTmKiHg11ZdBQxKihGdv2n8/a962jqbh0\nSWJof0NTLeyl6r2XbXQ0BYuJ4f1uxCIoh0/1orPXrYawFSDf0wFjImRNZ6AggiSB5x9YDIok0dzW\ng9++f1LS3/klJoQj05ByLfepFBSpXC68u28YHm8gGt4/0+XEz98+wvvaxBAxo6Uwc7JFlrBIKoU1\nkYW0ua1vVMsVX8HXruZuTLQbs1JJr2c0eHTjAthKi3g/E0WSeOwb1+G7v9yT8XNRuYqlmMGjGxsx\n4BwBCAK20qJoKFosgjLgYvHE7/erIew0KJR0wJgwyO9+1KH4Ma+7xg6KJOF0szCbpHsTwSDQ6/Cg\n2m5K+tqmBdVjxiBzQeC6a2xo73SmHa2IzFW+ZooFjJbCtKoSQd1ns4kZFZHYsKoWh9t6JefnU8kj\nUyQZ3TDE1gp4WD8+aeGv8o8d9jDg8kJCIXlKDLpZIBQS7Y9+/1O19SmRhTNtIEmStxNCCbr7PHjo\nN3vBaAkMuv1xRiGZtnlsCBvIXatUKn33Svf+p0IqXRG5oOANMuvncPzLfsWPe+GyG5te2Yf+IRZG\nER1nXghC9CaM/I7WkDmdTqU0LR0DWDS7XJFNht1cFP1/MeGXYa8f7+7uiNvp6hktltZXSC7yS2UC\nT+z3G2vIN394WnAjEDvsoXdwBC+8cyQjqRZaS+GXW1sEPYF80X7PJxpn2vHttbPB+jmcvuDIyPcC\nAB42AM8Vm5toFKSKG+WiVSoVDzNfvNJkXRH51HZW8AbZ6WbhzEDFaFefJ/r/7hHpxydJYNfhTrR0\n9I+6CQHE3aAlRnrMGGMgnI9dNMsOiiSw52h3Wi09iWMVI9cv8bheX5B3pxt5/eFTvXC4wlEOQ5GW\nt/1JzgQesUUmwIVEh2KUGunoBq3aZoShSHiCVjp4fVx0U8DnCRSq9nsmae8cxObtbVi/sgbzZ9iz\n2rERMQqxaZCBIa+gOE4qER0+5Hiumz9sw67m7ui/pXiY+eKVptIVkSsK3iCXGBnQGsDHr4mQfYIQ\nvHEBxP1/shnDhchv/usEGmrLYCjSgvWntuhbTDSvx8oFQ/AJGHmhnW6sLGftxBLUTSzBkdP9kqU2\nExFbZJoWVAvOOAbCmwcNFT4h1s9heCR73/8nLRexdtlU6Blt0vDoeGTQ7Yt+j2uXTYXHG0DrOQcc\nLlaRsYtixBqFxLZI/jRNejOVuWAQmz9sQ/PpPgy6fbCKeK5hfYfT2H2km/dYQs+dHK800yFtsfs9\n3+ZTF7xBBgCCIAHkh7qG0FlIVZ8qdAbdvrgNSSo01I0eDpFs3nVkUSsxMnC6WWzbf37UxmjnoS40\nNVbjJ/dfn9ICkGyRWbN4Cswic6M9bACbP2zDxtUz4XSzosZbabw+Dps/PI1v3nKtqv0uwictF3H4\nVA8cLh9KjDQWzrThdOcgHO7M9W0nGgVGS6HabhL8jtKZqcwFg/jRawclq9Yle+4GXF6c6XJiWlVJ\n3DkNDHmTCtVYS3RZCWmL3e/5Np+64A2y080qonaUaQZcbMaKeAoVDQkEeL46LuFCedgAPmkRN/Kl\nRgbbDlxAS3sfBobYqGecSGR3nkqIKlnoa4QNJK3wbj7dh9tXcqK79nQq1hkRKc7Wcw6wfg6MlooL\n6Q+4VE85Qmy4f9Dtw/7WXuiZzC7YQkZBrJI/VTZvPy2qWpfouSarNSAAPP/2kVFe9vZDwpu9yAYk\nmyHtTFzLTFDwBrmIUf4jEJA23EAOYupT+UAuZuTyGWMA2Hf8MtavqI0uDH/8sE1QejCCoUgbt5MX\n2vykkzMSM6ImvRZFjAYbVtXiUGsPWIEPN+j2YWDIiwqrQXDXvryhCqEQsLflouBxEtHRFG6YPQGn\nzg7i4oCH9zWDbjb62SNV4muWTMVP3zyESwJ/owJ42Mz0rFIkcFODsARsgAuhaUG14JQ0ubB+Dkfa\nhKWFB4binw0ptQaRUo9YY7pu+XS0iEgY6xgKXDCY1UIroa6IfCN/GrBSxCkyYSgVCAA3zqtQ9JhA\nOAw7t6ZM8eMqRbEhf4ane30ceh1hA8H6ObSedwi+lgBw49xyQfH+RNLJGYkJgjiH/Xj4pb34z4/P\nYNGcctHjbD94AQDixE8iYhErGirxlfnVuH1FDf7PPy5F/TRr0vN6+O8a8H//cSk0JClojIHRn50L\nBvHYbz9TjXGO4IIAQRACedurwjJPvnoA2w5ciNYfpIrTzYZb4gQoMcbXbqQiXtTc1ofewRFRQ97V\nO4zNH55OWmiVCcQUFPOBgjfISseBaS2JdcunodpmSOnvSww0bqyvAKO5emkZLYHW8w60dCjfnqUU\nvjxTrvnzvvPggsGku/TrZ03AzTdMkVw1XF9jTethjBhRvklVXl8QOw91gSQJ0funpWMArJ+L7tp/\ncv/1+PE3r0d9jRUtHf3Y9Mrn2PTKPvznxx0gyOT39/4vLot6HBESQ6Ov/28r3CP5Ug05PuEbRpIo\noelws9h1uAs/eu0guKC0iEmiIhUXDGLb/vOCqRwAaKiNvz/ENqBCOFxeIBRKashbzzkkyc+ONwo+\nZK30F+cLBPH2jg509g6n9PeGIg0+PX4xLgfI+kPo7EnteNnClWcL874vLsOo12Ld8umCYWIdTeKu\nr9aBIknJVcNNC6rTOi+KJLFu+XQcOiUsPHKkrQ//eGs9nvrDAd7f86mLfXjwAj7iKUKTwq7mcCuY\n2KZk8ezyuNAo6+ewT4aa2XiHIBTf+wMYfS+I5W0v9LijRYFCcMEgXnnvGD492hVXKBUMhUSLLSfa\njdiwanTe9mrutVfS82U26WAz65OqEA66WSyaVY5Pee7BfCu0yiYF7yGPCMyATRWSIER7ScXQMxS6\n+zzjdpwigLjIQLo0X8l36XX8wixmow4USUreyVuLdbAU69I+L6ebxaBIIZTDxYLjOJQa+dMAiRN+\n3tzWGmeMU0HM47AWM9i4egYCXAg9Dg88bACv/+WkYA5fZTSZKshM9AaTRYSaT4uPC92ysx1/2nNm\n1ICKvcf41eNIAlg+rxKP39PIW9kcieJ899Z6SZ9nbq0V7+7uwNHT4tEas0mHO1fVjUrZ8GmvjycK\n3kNWuqiLC6ZeeJWp4o9CwscFsXh2ebSHU6sl4POntpo5XF70Do4I9uteHPBg0yv70FBnw603TQMQ\nNuL9Q17e1yu1807Wx0trSfz7eycE+8zrp1uihSXv7u5Iu00MEPc45tWW4d3dHdH2EoYmkxbJqYwm\nE8WeifdkiZFBqZGBQyCHOuj2CRYlinnXQt93KAR87fpJSduMbGY9LCItfYyWxJL6ChCApHa6hroy\n6BlNQRRaZZOCN8hKe8hAuGLW5VHnxaaCxcRAoyEQDIUQAhAIpL6EmU06IBQS7ddNbJVYt3w6Boa8\n2H7wAlo6BjLS4pCsj5f1B3lFUQiEUxotHf34qLkblmIGwxKL0ZIR8TiKdJpRrR3BUAg7Ys5VNcap\noYQx1tEUfH5O8J5ktBTm1QmHe3U0JZimS0WBzVI8Wgs+ES4YxLu7O0QdDtYfRCgYwlGBOpmIRHCp\nkUZDbfznjhRaqYwBg1xiZMBQgJLOaf10Cz49lhmB+Vh0NCV5AEKhwPo5fHzkangsHWnQhroy2Mx6\nMBKuU2yrRIXVgI2rZ2ZUAWj9yhqEQiF8euxS9NwYbUQrWsAbAeAeCUQLqZRUyhLyOABg0yv7FHuf\n8UyqeWSCACxXDPDaZdPg9vhE78l1y6fh4yPdo+RjASCEEHodnvBzkfD34r3tBO/x9Dpt0mcjsV9Y\niObTfXAKRIWCIaBYr4XT7UNLRz8oqj3vJi3lAwVvkBkthQq7EWcv8je7p8LNN0xBEaNNqikrB6NO\ng0AwGPVOdDSJ62dNwI31lXj2Pw7mj/RnGhh0GtlVu6YiDYa9gegITdbHwVJ81XsIcCFI8U0Slboi\nC16mdt4USeLvVs3ArTeFB0UgFAIXgmAhV6YwG2ksmGkX9Dg6e92qbrVCpGKMG2fa8bXrJkKrIaNG\nVB+TZuPbNLo9fgQFdrKsL4jHXz3AK3cpFrnRUPwGeXjEHxWL4X0/GYNInG6faLh96ErUMV8nLeUD\nBW+QAWDDV2rwzFv883LlUmqkYSnWRT2Nrj43fvL6oZSPx2hJLJpdDooksCOmatbrC2J3czdIgsD8\nmROw73jmPfJMM+yVv6u4bUUN6iaWRr25xMWp3+mRFGJNVOrK1mSZyKAIAHhzW2vG3keI+toy3kUt\nMgTjUOtl2RtKPUOp9RAKQBLAwdYeHD7Vg2AIcUYUgKBspBStcSGjtn5lDfRFND492h1NW8ycVMpb\nWwDEi8VEiN0kyAmDm00M5tZKn/Geb5OW8oExYZB3H1GufSNRR/lSn3zRhBuutePmGyZHh5ADwmHD\nj5q7YLekX/mbSSbajXB7/II733SoKjPELQaJHm2JkREtJomQqNSV7V046+dwVESdKFPsbbmIry+b\nBpM+vqJbapiRD9UYX0VPa+BJMXwVcUj51KwAiMpGzppmiUv9CJFo1CiSxP1r5+Br102MS1u0nnck\nHa7AN8msfrpVckth7cTScFthKBSt3yg20ILFjfk2aSkfKPgAPuvncOJsam1KiYRzcLVxSjm/+5+T\nso7BaEnctXoGqu0mVNuMYLSU6C4zFAIu9/NXBecarQZYOrcct62Yju/fMRclBplzoZNAkkDlFe9S\nCEZLoXaiWfQ1C2faBJW6+IQXlIYLBvHWtlM5kUX1cyE88fv92Ly9LSoaoc47Vo5UjbEYh0/1ispG\nsn4OjTPsko4VkbtMFAKJVaQSawuMrfJOFCTpH2Kxq7lbsO0wFooETncOYtMrn6Olox/1NVb8+JvX\n46l7r4NVpgBI4mcZTxS8hxyWg1NmIQyGgmD9Qby350zK3sWsKZZRIdJCHXfnDwCfHL2ET45eAkmE\ne7SVpNwiTcLuqwur8fkXwiH9xhl2HGjlX+CysQvfsrNdMCQohlJtNIPDvjjvSp13nN8MuFgIPUmR\n+7XCIv1+/bf/PIYRNhD1apfMrcKaRfGtTMmGK4ht4nocnqQDT7ggovdc/1BYWYwiCWxoqpM8aUls\n1ng2i78yPQ5SjII3yOG+PeGwiBy8viDe+N9WdHQ5Uz7G4dN90d7YyI2Ur+Puqm0GXB4YhpSNaDAE\nBBVWR3AN+6IFJWIPwSfHxI3dq38WjmKYTQx8fk60cCWR2HOR8tpUvVGle1oj4ctC3QCOJ4QqtiNe\n44BAL30iISBOVbB/iMWf9pyBZ8QXl6pJNlxBbBOXbJqekLGO3I9SJy1lc/oTH/mwISh4g8xoKVw7\nRXzknRwOtPakrcrDdyOtX1kDX4CTlBfKFp29w7Cbdehx5CZk7hoJYGDIi13NXYIPAevnRCfHAOIL\nxrDXjydePSDp4eJ7IPm8jViD3dXnzhvDFxsNyMcNoMpVhNoBI16j2PhCKQgVTAl1HqSziRPynPuH\nvNHJZskEQJLNGs9G8VeuNwTAGDDIAKDVKBdKVdIJjNxIGorAlp3tOHFGmVy3kgzmeBzkBwcuYPeR\neA1nJcKvkbnAkQptKQ8X3wP5pz1n4HJ7saKhClwI+PhIF1o6+jEwxIIU6O1MhCTD91Wm52Gb9Npw\nG4uRU+cdFwgkEfZyLTFeI+vnkkpPJkNuqiZTUbztBy9EtbdjNwOJEbFks8YznXaSsiHIBgVvkFk/\nh+N5aOiAqzfS9kOdeeut+ALBjAnnS6GlnV/ZJ53wK4Gw6Aqf5yy02xZ7IHc1d/PKW0oxxgAgcUBP\n2jiH/fjxG4fA0CSWzqnAHV+pxbrl0/HWtlMp5bhVMk8wBPzgjnmYVlUCRkspViCYysSkxNByqZGB\nhw2kJV4UmWwWed6EwsJrl00VfM7Fir+UyvVK2RCkN5ZGGgVvkDNZwJKuhKbZpEMRo8n7itdcGWMA\ngq1U6YRfxcQJEoewRxhLhVCsL4gdh7pAEATWLZ8uOk9aJfdUlBniKp2V2DylotvOl2d+d3dHWs7E\nwJAXZ7qc0Q2HWFg4l8VfYhv/bI6DLPi2pxIjA7OJf6pOOhAAXB4/ivWpH7uhrixa/Zjv6GgKtIKh\nf6kIXd/Yh2D9yhpUyZhPPbfWCkrgzmYEtIBTGcae7xxs7UG3qtSV97z7UQeA1AoELSYaE+1GWIuZ\n6MSkv1k2LSXd9ki7EYBoy9T6lTVYMrtc9rEiEATw87ePYNMr+/DbP53AwZP8m43mtj6sXTZN0vQn\nvvas7Qc7sWVnu+zzi/3MUlrDMk3Be8iMloKhKLlwhFwiTuOQR95xY3VrI9KPhVDxyvo5GIu08AWy\nO1Rj1rRSfHa8Z9TP59ZaoyG8zR+24WJf8nnS1iuSm36Okz0CM18r4dNh0O3Di++2SNICV8kdrecd\n0fCrnM1TuUWPJ/5+4aguherKUvT2uiQfJ5nHedfqGTjx5QAGh+WvsbGiKP0irYsOlxdujy9rxV98\nn3lubRm+sqAKR073Z2QojRQK3iCzfk5wPF+2oTUkNn2jEbbSohjlnLCAe74bZAA5mXD1ZbfAwnEl\njr5lZ7uk8YSlRhqP39MIWkvhhy9/Jvi6yMLFVyASm0OLtJ3kMJqvCM5hdWpZvjMwxEYNkJzNuz9w\ndZMVWzDl9QXQ4/BIzq0mqy5mtBQaZtgkSWJGpjrJ7bGPjYiJadArVfzF95l3HurCioZK/OT+63PW\nh1zwIWunm82aQpI5SR7BFwhi1+FOaKirod982jCIoWQeWUdTIACUGLRYOLMMYvf0pYER3p/vPX4Z\ng24vPmmR1iY2NOzDCBtIKhRTYqAF80GRHNpP7r8eP/3WDbhpfpWk9y4EGC0ZF9acV1OW61NSuQKt\nJaOLv1DYlI8BV9iQR4goDD7w3E488vI+/PDlz/DmttaoghsfyTxOl8eHHocHaxZPkSRWEvGI5S4n\nUsPCYqklqblesc+8+0g33tnVDmuJLica25I85La2NnznO9/BPffcg7vuugsXL17EQw89BI7jYLPZ\n8Pzzz4OmafzpT3/C66+/DpIkcfvtt+O2227L9PlL1jpOF2uxDo/f04j2rkH86t3jgq/b1dwNiiKj\nrTVONys6z3csUsRoMK+mDKc7B3GwtS8lL9Pr4/DG/7ZKDrWWGq/OdRW7H7y+AN7d3SFaABLZoW9o\nqoVBT2P7/nPR9ilGc2XEYqCwZgqz/iAe21gPWhvOoXf3unEkB9rb4xGzSJFhIpEozcHWnqRiR7SG\njDNAiV7foNuHXc3daO8awuP3NPLe72IeZ/+QF4//7nM4PX7FVOX4WDy7XHJYWCy1JNWoi33mYAhx\nKmPZJqmH7PF48OMf/xiLFi2K/uzFF1/Ehg0bsHnzZkyePBlbt26Fx+PBr3/9a7z22mt488038frr\nr2NwcDCjJw+Ev6D5EnVf02FurRXv7z2L//jwdNLXftJyER42rIE7FouFkuFwsdj3xeVo0UWqnOke\nkvxaQ9HVua6MVnif6fUFZRWAkASBIjp8XAJhQ5wvxlivo/Czb92AX/7TUvzzbfWiryUQvhcjE3yK\nDcoXQqrE882/vgY/+9YNePLehSg1Cl9vXyAY9XQjUZo7V9bKei+Xx4eDraNrMQDgQo8bm7fzr1vJ\n1ifnlTRWpoyxtZjBxtUzJFdHs34OKxqqsGJ+VdLiLyGkrMnZ0MDng3ryySefFHsBQRC45ZZbcOrU\nKRQVFaG+vh7PPPMMHn/8cVAUBZ1Oh/fffx92ux39/f1Ys2YNNBoNWltbwTAMpk6dKnhsj8yCKSGu\nnWKGy8Pi7CXlZiJH0NEkbmoIhy53HOrCiIRJOAEuBKebxfw6GzQUiT6nV5ZxyRa0hpBd/CSFiNiB\npNeS/OFyRkPKmjqkpQhcHvDgj9tPo2cwufKY0+3D8nmV0AiVYwN4e8dp/GXfOUnjH5WGJAGEhK8P\nEL7Oa5dNB0WRCAVDaD7dJxpRGHSx2LLzNP77s3P4/IvLSSURVdLjksODNUumgtFS6HF4cPaScKGV\nn+MwZ5o1qhf//qdn0ZWkkJELhnD9tRPw35+dxR8/PC3qUTtdPtzUUDXqfs/1+rRkTgUaapOH6blg\nEG/vOI3NH7bhfz47h6FhH+qnW/HNW67FXy+egoZam2StfSmfmfUFsHROBQxFVwdrGAyMIjbLYBDe\nDCQNWWs0Gmg08S8bGRkBTYd3fFarFb29vejr64PFYom+xmKxoLc3O/23FEni9IXU9adjiRQlRP5b\nRFPguCBaOvgFLISIVE5GWge4YAi7m7sEJfNygS+QmZOR+hkn2o2YVmXC7ubReeLrZ09AS3u/ZI3y\nyGQaqSQrAMnFxKT6aVYsn1eBmupS0FoKlwaG8cwbhxAU2N6w/hBe+0sr2jsHMTDEgtaIexn7Yqpc\nh3JQwDfeuNjngcvjg0lPY8OqOrR3DeFCD7/TsPvIRYx4A7hlyVSUGGi0d0tbz17+03F09SYfETs4\nPHrucYTI+iR1jrGS+AMcuGAwqYfMV4SVmB6Uw/qVNeC4IHYf6eZdr7LZexxL2lXWIYHtu9DPYzGb\n9dBo0k+cO90sulKYW8zHpAkmnL3kin5JDrdf1kIfweFiQdFa2MrC/bN3rr4mJzd8MjKh0mUtYdDv\nHJ2jIa+8l6VEh+tnleMf1s7B7/7En48vNuqwuL4Sf957VtJ7RjZQUrEUM5g+xQodzf8IXOwbzrrk\nZMuZfkypKsFXl0yHZ8SHH/3hAPyc+IeKnYKVL6F0lTAhAC5fENMmm8BxQcycYhY0yACwv7UX+1t7\nQWtJ+CRGL6QYYyD8nH987BL+Ye0cUDxRoa+vrMvJ+rT7yEWUmIpw/9o5gq/x+gKCDlFLRz++ta5I\n8DkWguOCMBl1oGkKXp5I3JK5laiuLB31c5vNJOt95JKSQdbr9fB6vdDpdLh8+TLsdjvsdjv6+q4W\nifT09GDevHmix3E4lDGihwRyJ3JZUl+Ok1/yy3DKXfDNJh04nz/aD8j5OVjzsB85EypdMyea8alz\ntACARkNgfq0dd62eAT2jwcXLQ/ishX+z81nLRTx130Ica+8TXcQiyI089DlZ/MsvPsKmbywArRn9\nGHB+DhZT9r+vv+w9g8sDbhw51aca2AKHAGCiSVy67MSPXjso6T4GINkYyyEYBP689yx8vkCcR+lh\nA/jjh2344mzu1Nw+PdqNr103UbAgq8fhQa+Dvxujb3AEHWf7Zetcb97exlsYpqMpLK2vwJpFk0b1\ncttsJln93UKIGfWU2p4WL16Mbdu2AQA++OADLFu2DHPnzsWxY8cwNDSE4eFhHD58GI2NjamdsUwC\nCiVCR0YCgtW5chf8xIo/uS0N2cJiopOGOuWy7qbpaGqsBkPHH9fnD2HfF5fxs7cOgQsGk/YUuj1+\nPH5PI5Y3VIKmxPNDqWiMdfYO4/u/3svbFpKr78vPAZ+f6FGN8Rig2m6ESU/jrQ/aJBvjTHOotRcu\njy/aIvX9X3+CT49fklwFngki6SPgqnJWbEGVEq1OsYilo/SMBuuWT8/q/OVYknrIx48fx7PPPouu\nri5oNBps27YNP//5z/HII49gy5YtqKysxNq1a6HVavG9730P9913HwiCwAMPPACTKbPufQSbpUiR\n4xw+3QcdTfIW8ZiNNGZMMuN052BSr2lFQyVvxV+s8ES/xHmnmeaayRbFBw+MsAFwXBA+gWKozt5h\nPPHqfty/5lpBIQRaS8Go14IiSXxj9UzcOKcCP37jkOB7purou0cCeHNbK+752rWjfrd+ZQ30RTT2\nNHfCEZPLJonwTlpO0ZnK+KLaZsAjdzXgzW2t+Pio/JRXpnC4WTz++89RbGDyZpNgNulg1NPYvL2N\nVy1MiVanWMQcgUG3cK49GxAhKcneDKGE+w+Edzzf/j+7FTmWTkBmMPJzRkuA40IQc2D+9e4FmFpZ\nIvh71s/pBQ5XAAAgAElEQVShd3AET79xMGeVrpZiBvPrbFi7bBqe+P3nioVmzUYa9TVW7JY491lo\nAwQATY3V2NBUB18ggCd/fwCXBMJWEcrNRUlfw4dJr8Vz317M+2BbLAY8+PzOuCHwKipCEAB++q0b\nYDfr8ea21pTqT9KBJIBJ5SY4XV443MoU7mWyBxkIP+cAeA1uZA24KnXZN0rWUq43y/o5bHplH++a\nZy3W4Sf3X8+7FuRtyDofYbTKDEbw+rio+AOA6JCCiJFm/eLGGEguQcloKVTbjFhSX5HWuaZD8EoM\nntGSioZm59XZ4gqNkiHWUhTpBfzxawclGdpLjhEwWvm3tMvjj1M8iuW37x1TjbGKZBiaglFP480P\nTsXN+c4WwRBw9qILhiLl+swzaYxpDYGbb5gkqhbG+rk4Fb1n/uEG/OT+67GhqS6l0LJYOkqv08Qp\nLWabMWGQnW4WrF+52yY2f5dKetpo0CZtKueCQRBATiYsAWEVn4hAxvqVNWhqrIaOTr3inSSBlQuq\nsGROuWJ9uw6XF129LlkV9ITEXsRYSgxaFDGjszesn8PnY2iOcFEa36+KNFgfhz9+2IZdh3Pb4jg8\nEsjdm8vAHwjhYp8nqT51hIiKXrqylutX1mCi3Tjq5xd63ClNjVKKMWGQS4wMrHmihkUQwNOvH8Km\nV/Zh8/Y2QR3ZzdvbsONQV8Z6gaXS3NaHABfChqY6/PyBxVg8uzylTUKxnsZtN9Vg+4ELip1biYHG\nv717TNbfeH0cbKU6WX/jHPbjR68dGPV9hXXSlcv1K1w7JxsxTWMVZaC1JE7mwfzpweHkfen5AENT\nqCjTp1W0FVsIxlcUxkeAC8Hj5Y9k5kqlCxgD056A/BqdF8nIJ05MiYX1c/g4B+EsPiI70BIjA7fH\nj42rZ2DVwol46g8HZB3HOexD7+AI2i4oJ5fqGvEjkKQPN5FSI41AQP7DlPh9ccEgtu0/r2ifdq4L\np3O9+ct3lMiVhkKhvJg/bTbSGPaKe8kVZXpcVEi/IVW8Pg5/3nc+paKt2BGK/UMsdDQJgADr40aN\nkExEqalRSjMmDDKQfgWzhgCCkN/elAy+GZ1dfe6MSFamQqmRwbYDF9DS3hetbqyvKUOJQStrdF+p\ngQFCIUUHacg1xgCgozW4NJD6IhP5vt7d3ZH1ghyV3FJRpkd3mgbKFwhlRGxHLpMmmHC0XVxd0F6i\nU8wgp/OZm9v68NR910X/X+os4kT1rthUmZhDBEB01GWuVLqAMWSQI0n/dcuno9fhwdNvHJLVy5kp\n54Fvt5UPO+gIhiJtnEJP/xCLXYe7YNDJy9HMqyuDzayXNc81E1wa8IDREinXFDhcXvQ6PFmXzVTh\nx2Ki4XD7YNJrYSqik+o7p0N3nwe2Uh16JWihi5FrYwwAqxqrcaHHLfgskiRwtINfBCkV0vnMYc0B\nX3T9ljKLWKq0LZ9DBCgzNSoT5H+SQSaMlkK13QSzSd4Ox2ykYTFJq0xc3lCJJbPLYSlmQBDhFiId\nzX8p+XZbUt8n0zBaEr2D/DvkYa/0sO9EuxEbmmrzRvwklJJMSBizSQcQRF5tmsYr1XYD5taUocRA\nY2jYjxHWjxRq9mSRrjFWghK9FhPMurRqDn73P62gRWSJ86mcIHaNlFq05XSzkjb+iUVhsaxdNhWL\nZ5fDYmJSmhqVCcaMhxwL6+cw7JUXOjUUaTFzsllQTs3n56JhlFtvmoatH50BQqHwzjAUgq1Uz9to\nz7fbqsqwHqpU0u2BLjXSaKgtw4ZVV9sPIjfzzsOdSR96i4nGsNevaIU8IC49SBDhXKFQaqKmugQl\nBjrnnn6mYLQkLMU6XOzPbe4wGdU2A2qqS7Dr8NW0QaZnnucDN1w7AXc21WKEDYDWkti8vR3HTvcg\nVoNGSnjYcUWHPR/C58mYW2uV7ZEWMRpJcsZ8DlFELrT1vCOapls0qxx3rqqDnqfbIpuMSYPsdLNw\njcgr7HGN+LBmyRScOj+Irl43gqHwwl1pM+ChDQ0Y8QaiYZREHdQBlw8DLh8m2o3weAOCORDWz8Hp\nZkGRuetzUwqzkcGT9y6ESR/v7VMkiXXLp2PP0W6wSSzyNZMt0GgIXhGRarsBnT3KhydDIfHCnc+/\nuIyj7b0oKy0CxqBBnltThqOn+5K/MIcwWhK1E0tx9HRhpw20VFgKVSpVNgP0RRr86LUD6B9iQZL8\nnqwcA5vvxhi4qokghxE2IKneJ9YhihSBfdLSPSrf/OnxSyjSaVKaHKUkY9Igp2LwnG4/tuxoj/Ny\nQwC6eofx8z8eweP3NIIiSdHchccbwOP3NGKEDaCI0WCEDVwpTLpaDTgwxMKgK/zL7nCzcI/4Rxlk\nAOjudYt637SGAEkS+PT4JehoEhRJgIsIlWhILJlbgb9dOhXv7GhXXNZTCl5fEJ09w6hUoMgnn9DR\nFJoaq7H/pDLDWDIF6w/m5WQ0uTBaCn5OmkUmCaCmuhg7D1393PkUVs4kR0/3g13JyfKSS4wMLCZa\nMGpijamyjpBYBJbI4VO9vPnmbFL4liGGyBDrT45Kk22MhdaQOHmWvyrxQo8bm7efxsavzkg+EGHE\nj13NXXGarHqdNs7Qu5O0I2QbRkumFL7efvACNq6eGf13ZAe6/wtxIxpuvwkb4EQRETYQxP4vLuNI\nW2/OQ5SFIq4glaX1FdDlcLHJRzIZ0nXLqMMIIWyY5FKspzHkKexQvtisZiEYLYX5M+y8Bnbx7HJs\nXD0jalgjUsWHT4lvRAdcudWxBsaYQd6ysx07DqW2s/YHgnC4hY3SkbY+3L6iJmm5/PaDF+LaZfqH\npBUf5JLFcyrQ0t4n+zxbOvrB+q/ubJPtQKXizhND6Bz2ocRIw+kuvAVPqyFgKtJi0O2LS5948mwz\nmC5GvRbuJFK1YmQypFus12JI4rmFQmH1PDlYixk88nfz8cybh3M6rSldSg2MJPGP2Opr1s9hRUMV\nuGAILe39vPrWsX3KA0Ns0h5zkgCvYl82GTMGWWoZvBDJvqzYXZxQufyc6RZ8dkK6jnOuIQlgeUMV\nNjTVgiIJ2cY0dkfp8vhwUKG51PmCxcTAoNcUpEHmuBD++ba5oLVUXAvJCFtYBvn6ayegvdMpqC2w\ncKYdh05exNBIevFdHU1BpyUxKKP3Phm0Qvr6QsycZIa1pAgLZuZWFElLAjMmmnH8XGoKZfMkin/E\nRhyHR3xwuHxh3YTpVjQ1ToSlWBd3HLkOQjAUfj740nDZYswYZLFQshKEQsC2/eexYVVdnAhJ7M5s\neMTPOykqXwmFgNULJ4IiSaxfWQMuGMLuZukavBYTEx2bdqi1V/YOP98pYih0FehgCVpLwcbTPlLE\naDI+vUcpdDSFe74WTokMDHmx/VAnrzfUM+DBibPpyVX6/Bz+v7+dhRf+X4sSpw4A6HNm7nnQ0RTu\nXFUX9RT9gSD2HO3OiX62PwhcO9WSkkGushmwoak2+m+Xx4fOHnd0lnSiUU2MOPYPsdjV3A2KIuMK\nslJx0KzFyT31TDNmDLJYKFkpYr/4xCZ2AHjst59l7L0zgaX4aksARZJYvXCirGKahjob3ttzJi8k\nSzOBnKEW+UbiVNWIp3H4VE9BGGMAWDynPLqhqLAasPGrM8Cu4EYJR8ytsaRtkM0mHaZWFKclKpNN\nrrsm/OxFZCNLjTTsliJc6pc/fjRdCADvfNSR0t9+Z+1sUCQJXyCAp984HO1wIQmgoswAr8SITqIA\nSCoOWn1N7gRBIowZYZBsiVLECo/HNrE73ayispHZILFHWuqQDooksHJ+JdYum6oqWuUprD94ZQpa\nWGx/84fhVr1cF8qJwWhJEAhHXpoaq3HnV2p5XjNaOGLWFGva791QVwZaS6UlKpNNPj12CdsPdkYd\nkEG3D5f6R3Jy9qluX6zFDCzF4UEwT79xGBd63FEPPxgKd7hIdbASBUAiDpocmhZUy3p9JhgzHjKA\naNHK3gy2yggJjxcxGpQYaAwO5++CF8FazK8TK3VIBxcMgSRJDDi9eV+wNp75y+fncfxMPwaG2Iwr\nXPFhNjEIBDi4JBTprVxQha/fOA1ujz+pbGIiFCXfrzAbGTiH2bjQd7/TKyoqk08IaeHnv29/lZmT\nzGC0FFweH7p6R4sqySFRAETuwCGthsQI648rUs0FY8ogUySJjatnoPXcQMY8AbOJge/KmC9GS4EL\nBvHHHafxaUt33oe6NCTw2DcaUW4xCN50ESP9SctF0Xz4Jy0XceiU6h3nM7tjJopJrSYu0gKzpttx\nptuZdk2G081i1hQzjn0pHk62FtO4a9UMAICe0cp+nxIjg1KjFoNu6QVZj26cDy4YijP+Rr0WWjKc\nE80VxUVk2gVqmYTWEPAHQjDqtXClUd0OAOtumg4A6IzxjFOlfrpl1Jompy7GHwjiJ28cho4msXhO\nBe78Sm1UdyI2LZlpxpRBBsT705Rg2OvHE68egKWYwcxJZkGlKTFyVVQTAjB5QrHoayiSxJrFU3Dg\n5GVRg+z1cQVVwDbekCIryMeIHzjY2oOJdmPaBjkYQlJjDAD9Qz64PL6Uq1sZLYWp5cVoTjLdKJYR\nNoBqe7yE7Xt7vsypMQaAifYSnEixWjkdpPRjMzSJn/7DDfD5g6BIAg+/9FlahtR3JfVXbTcK3q8E\ngIUzbdjfKr75b+nox+btbXHjFimSxMavzgBCIcmT27y+YFSchSSIuOruJXOrsGbRJN5xjkoxZnLI\nsaxfWYOmxmpYi3VR0fAl9eWif0NrCIhFvhht+JdeXxAhXJVbk2uMgdyFlbgg0O8ULvrggkFs3t6G\nJ189IGv0YiylhvwYnDHeSdfjGB7xY8X8KliLdVH970zSyaMDL4cpFTL14RNi+Om2TSrFxr+qw4qG\nyqy/r9lIo9pmEH1NQ40tmlLggqG07rHYimaTnkaVzcj7umq7EX//19cmHcgTGbe4ZWf7qN9tWFWH\npsZqmI3S16ZPWy5Gc/SR9f5Pe87wHl9JqCeffPLJjL6DCJ4MKcyQBIE506xYPq8SS+dU4OZFk1Fh\nNWBXs3AF8Q83LgBFkfjyomvU766/xg6Xx4eRLHiEFElkVKzAbGQwcYIJGp7dx9s7TmP7wc6UPV8C\nwJwaCy71e3g3HQxNorhIM0qdSyX/YP0cvvU3s3DzoslYOqcC7hEfOjPYArZ+ZU1auTsdTUreHFMk\ngdtW1MQ9AwNDXvz33nOif2fQaeCXMdJVLkadBreuqEWFVY8dh7LbucD6OTy0YT6CoRC6E+a1k2Q4\n4nKhZxi7mrux49AFjPg5DLm9SZ/lKpuBN7S9ZE4FGmptMf+egKPt/XB7fAgh/H7VdiMeu3s+GK0G\nfUNenOkeSvo5nG4fls+rjPtu/YEgqsoMWLVwIlzDPt4hQIlwArsNvuPLxWAQDn+PuZB1LJGKTABJ\n4zE0ReLOr9SCJAgcPtULh4uF2cRg/gwbbpxbicd/vz/D50qCIEZLSSrNOx91YMfhzqjOayT8IsdD\niNWejoWhKRw4KXyMZfWVGPEGcqJPrXIVKVKpkSKZyDN01+oZaG7vA8tzfwoNQZCKrZRJW4yhSEbu\nWasZ7e8na5s06DSYP7MMe46I37tmIw3nsA+0lpK9sf3R/TdIOpdkpJISiwjI3L16Jm69qQZvbTuF\nk+cG4Bz2j/puvb4gdjd3Y6LdCIdA3j5SOBqZjJeo2ZBYUEprNHjq3utG9SFHiNV+GBjyCn6+2KJb\nPlGRebVlWLmgCkfa+jDgkn99hYp6lWJMG+RYwiIJ/D2GOjosokCRJO+Q7Dc/OKXIOdAa4oqOc8LP\nU9SSTpVIeAdAtJleTt+eVkOC411s+B8TkgCWz6vE+pU1YP1BHGrrUb3kHFFi0OKJe6/H47/bJypR\nmtgSp2e0WFZfyVubsaKhCm0XnJI8Dz6qJ6Q/jrTEyKBET8HpSW4EWV9w1KLKaCnUT7cK5hq5YCip\nMZ5oN+LRjQvgdLMw6mn818cd+PTYJcmG2ecLAAY6aYVwiUEL18hoQwmEDWHjtROwbZ+4t5+I18fh\nvT1nsKGpDu/tOYN9XyRXHBwe8WFFQyVaOgaixrZ+umWUahbfmiqESU/jmimWUT+PXZt7HR78cmuL\noHxxJBTOJyqy41AXmhqr8fQ/3IC3tp0SdA4okr+SnW+co5KMC4PsCwTwzJuHBaugYwUIgHjPmvVz\naGlXZlxdolhDBCWnMZqNDObWWnHg5GUMJxG3j22ml7MrZ30clswuR+v5weiDOHNSqeDNHQwBq68L\nF0PoGRJLBRZ2lcwzv86GUgONF797I/qdIzh53oFT5x1oPecU9WAACCrURX7+Hx+ewt7jl6OtQzqa\nwvWzJmB3koKaM51DabebMFoKC6+tkHRfxQrixNLUOFHQICczqtU2Ax67ez5ozdW14+9WzcCtN9Wg\nd3AECIVQpNPiB7/Zy/v3OpqKOye+ax1r7N7d3cH7WRvqyvDtr9eDC3Bhb9LlFZ3/HUtzWx/WLJ4i\nOVLmcPmw+rpJuH1lbVJjGxetTANGS6HabhLcsEQ2kmIRv8i6d+uKaYJrVtjpGG2R+ebbK8m4MMiR\npvNESBJYOb+ad/GJIFfxRWwGauLPdTSFBXU22SFcoYrEUiONJ+9dCL1OAw1F4lBrr6jofGz4RU7f\nnqVYh7tWh9tUYlsChDxfscVmYMgLhqYQCoXSihJQRNg/LzbQghKeBACNzBm1Y4mJdiM2rLoqL2gt\nKcLSOUVYOqdylHg/H0IRpAh3r74G61fWRQ2QzayH080mNchDwz5FwoCJ95VWQ8LHk/MVWlQtxTpY\nUwwVP/j1OaA1o5dTRkuh+krBkocNCHpeiSS71mKbo4iaYORvt+0/L6nK2OHyorPHLXm9M5uYuLRG\nNkm2OUw2lc/pZvFLEZlUnz+IxbPLcSrG6VgytxJrFk1S/sPEMOYNsmjTeQhYs3iKaBm73HwORUmf\ngWrQaXD7yhq0nnfIWgSEdruzplhAaynJouqJ4ZfEm1woDxa7oMVGEqTW4vItNsBVveKjp/uiOXy9\nTiOpmOjZb9+A//z4rOAITSCc4140a4LkFohsoKUAa3ER2EAQDhk5LbE8IUEAy+ZW4MQZBwZcXpQa\nGMyrK7syRIT/XpezqIq9NtYAAeHnJ5kREvJY5ZJ4Xxn19BV5SfH8Zey5C21KxSQ1pWog//HDNsHr\n4LuyIUq8rkLXOpnBjv3bDavqQFFkdKNCCGzozSYdqu1Gyevd/Bm2nIloJPv8yabyUSSByw5hadxS\nI42NCU5HdWUpentHF/0qyZg3yGJN58FQ+Pd8OYsIchVfYsO5Yjc/AAwMsRhhA7KOD4SlBefWlkWF\n9mktBYIAPj1+CSfPDcDDStsQJHoKoxc0Ld7b86WkBc3pZsEKhPWkLjYVVgNuX1GDFfMqAYKArbQI\nGorAo7/9DL2DwgvE/For/nd/pySFtnU3TY8uTmKbjmzh5wA/F8S82jJcO9mMX//X8aR/s+nu+fj0\n+GVB3fFqmxH3/NU1krzeTOPzc0k9QqXDgLH3lZz8JSDseQVDoWh/6ujzT26YWD+H1vPC/cUlBjql\nTYmUjVTic73twAXee6ehrgwmPZ10PdLRFBbPKReNLGaSxPua7/OLrdsNdWXocYyIhvGnlBePcjqy\nwZg3yGJN55HS+mRcfUh7k+4cY8O5Z7qc+PnbRwRfW2IMP4SJi0CJgYYvwAnmgOfPsGFDUx3YFRze\n3HYqzhBJVSjT0RTWLpvG+zuhBa2I0WCEDSDAhUb1bCfbkSZbbPgqIiOV4JVWg6hBvv7acryzK3l/\nIOvj4Pb4Rb2oUiMDD+vPatFZ/xAbXSCTVUBXWIswrbIUk8uLAYTw8ZHuOINXbQ/nMsPHyn4oMZFk\n/cXza4U9VqWQcx2EPC/uSgXV3pgiLR1NYYlEw5Qs9aWjNRnfNEU95ivjVoU22rz56xorbpxbCYoA\n7xSxbCC2RvBFfsTC2h5vQFQ8J7KGZ5sxb5AjTed8OeQqW3xpvZBHEXlIb6yvwOOvHhB9v9jd/rSq\nEtHwT0Pt1dfyLQKDbhZvfXAKZy+5MOhieT3UUyK7bjF8fg5ujw96CQO5NRSB7Yc6RR+EZDvSZA8w\nX0Xk9oOd4LggzveIh6ytJYykvFdsaFTMixIqmEmVG+dW4MSXA0k3cy3t/aifXoYDInOlv712DoCI\nCtFM3L6iFl19briHfZhaWZLTWa58iG6ISeAbX5uZEeUj1s/F5bLlGpBEI06RJO5aNQO33VSDXocn\nGsGRetwSIwOziRbcMPsCXNZ0lJOFe6WEw3OB0BoBIG70YgSxzyFmFybajSjN0RjGMW+QAeCxu+eP\nGu1VZTNGPQmpOy+bWS9Y9BHb2hNBzEglFthEXh+7CJQaGTz49XrBjUI6M6DllO9LfRCSFVoIIVoR\neboPTpE5y+XmIlTZTJLyXmIbg9hrz/c59DoN78Oroyn4/Jxg6Hui3YiNq2dIyus7XF4QpLC0qbVY\nB1tp0ajznlZRInrcXCK28E0pL1Z8A8EFg3h7x+m4dqNEfeJ0iFT5pvJ3MydbBNMqDheb0f5WoXMS\ne798iLBEkFI1LbfCO5ldyAXjwiAnazqXanDEDOzyhqqwbiriPe24yk+JBTaJCN1QYmFiHU3BoNMI\ne+cS83ZyHoRUd9ZiGwun24dSI8NbLU6RBB69e37SPL/QdCshYj8HRWvB+fzQUMSVTVv8ZmPtsmlw\ne3xx+faBIS9KjDQaasvCBTUkGX3vw6d6BQUJzCYG7RcGBc+LT0C/EBBa+J7/x2Vwiki5psKWne3Y\nkZDrjegTkwTB60lliw2ranG4rZd345bp/tZCR0rVtNzNQzK7kAvGhUGOwNd0LnfnJeYFinnaSod/\nIkZfSMxgaX0F1i2fHq5cPnghrnlfjnESexAGXF6c6XJiWlWJYB+3FMQ2FpbicP6KrwhlxfwqGIvC\ni5hQ3qtpQXWcSIEcGC0FW5khWlkptNmIhP2lhgGFBAlmTjKLFqY1NU6U/RnyAaGFj6aVXX6Sqc0d\nPtUr6kllGj2jxdJ6/l7pTPe3Fjrp1qiIISRGkgvGlUHmQ+7OS8wL3Ly9TdTTViL8w2f0J9qN8PoC\n6Hcm9COSJCqsBmxcPTPliluxB4EA8PzbR2BNUlyRDEZLYdY0Cz7m0SK++lmEi1CA7OW90g3zMVoK\n99w8E0U6Da+3LdQCZy3WRYe5FyqZXviSpXByERZOJNW0zngn3RqVQmHcG+RUd16JC286OQ458IXX\n+4dY3Lx4Cm6cUy5oiFLNB4k9CJFCnWTFFWL4AoFoODMWi4nG/Bn2qJGXamzzKe8lhNjnGQ+LTqZI\nphkQEbLIJflaMFUIjIfNzLg3yErtvDKR40hEzOgfPHkZaxZNzsjDnZgHF5LiS2XjIaSiptdpRxn3\nQjC2cuD7PGN50cl0X3SyWoJcClkkMtbu5WwwHjYz494gA8osgpnMcUQQM/p9gyMZC8fFPghnupx4\nXqC3Wu7GQ0xFrbtvOK2h9YXKWFx0hGorHry9QfH3Wr+yBqFQKKHKOrdCFirKMpY3M6pBhjKLYDZy\nHGJGv6y0KOPhOEZLYVpViWDrl9yNR7oqamOZsbToCHUx6ItorF0yRdH3okhy1FCHXAlZqKjIRfmO\n/AImsgim+vCuX1mDpsZqWIt1IIlwIU5To/jwCrnn11Bn4/3dDbMrsrLoiJ2D3I1HRDSCD6kqair5\njViaZd/xi1c00JUnoqldbTepxlilYFA9ZAXJRrhRKLx+75pZGBhIPoRBiTyeUnlOOSpqhUw+aErn\nilylWVRUChEiJDSkNwtkenLGWCZxkbfZTKLXU64ObCrnkAqxVdaJajl84+yyTbLrKkYmrnmhwfo5\nbHplH2+Kw24uwlP3XjfuNimZJp17VkUYpa6rzSas9Jb7FU8lJeTmGOXqwGbiHPjIR7UcpcjENS80\nxGorspVmUVEpFMbHNn2ck6xHOlN5PDlERCPGijEuhGueLYRqK+5dMyvXp6aikleoHvI4IBs90irx\nqNf8KkK1FVTiDE8VlXGO+kSMAyLtUnyoovaZQb3mo0m3i0FFZayjGuRxgJKtSirSUK+5ioqKXNSQ\n9ThhLEsy5ivqNVdRUZGD2vY0RpBakj+ee2JTQYlWB/Wa86O252QG9bpmhoJse3rmmWdw9OhREASB\nRx99FPX19Uq/hUoajCVJxkJBveYqKipSUNQg79+/H+fOncOWLVvQ0dGBRx99FFu2bFHyLVRUVFRU\nVMYkihZ1ffbZZ2hqagIATJ8+HU6nE243/zQfFRUVFRUVlasoapD7+vpgNpuj/7ZYLOjt5RdHUFFR\nUVFRUblKRqusk9WLmc16aDRqkYtSiBULqKSOel0zh3ptM4N6XTNDpq+rogbZbrejr68v+u+enh7Y\nbPy9mADgcHiUfPtxjVpZmRnU65o51GubGdTrmhmyUWWtaMh6yZIl2LZtGwDgxIkTsNvtMBrVmbYq\nKioqKirJUNRDnj9/PmbNmoU77rgDBEHgiSeeUPLwKioqKioqYxbFc8jf//73lT6kioqKiorKmCen\nSl0qKioqKioqYdThEioqKioqKnmAapBVVFRUVFTyANUgq6ioqKio5AGqQVZRUVFRUckDVIOsoqKi\noqKSB6gGWUVFRUVFJQ/IqJa1SmYYGRnBI488gv7+frAsi+985ztYsWIFAGDPnj345je/iVOnTuX4\nLAsPvuu6dOlSPPLIIzh37hwMBgNefPFFlJSU5PpUCwq+62o0GvGLX/wCGo0Ger0ezz33nHpdU8Tr\n9eKWW27Bd77zHSxatAgPPfQQOI6DzWbD888/D5qmc32KBUvitf3hD3+IQCAAjUaD559/XlQaOhVU\nD7kA2bVrF2bPno233noLL7zwAn72s58BAFiWxW9/+1vFb5LxAt91feedd2A2m7F161bcfPPNOHjw\nYK5Ps+Dgu64//elP8fTTT+PNN99EQ0ODOjc9Df793/89upl58cUXsWHDBmzevBmTJ0/G1q1bc3x2\nhdLr+3IAAAPESURBVE3stX3hhRdw++2346233sKqVavwhz/8QfH3Uz3kAuTmm2+O/v/FixcxYcIE\nAMBLL72EDRs24Pnnn8/VqRU0fNd1165d+Kd/+icAwPr163N1agUN33XVarUYHBwEADidTkybNi1X\np1fQdHR0oL29HTfddBMA4PPPP8dTTz0FAFixYgVeffVVbNiwIYdnWLgkXtsnnngCDMMAAMxmM06c\nOKH4e6oGuYC54447cOnSJbz00kv48ssv0draiu9+97uqQU6T2Ov6L//yL/j444/x/PPPo6ysDE88\n8QRKS0tzfYoFSex11Wq1uOuuu1BcXIySkhJ873vfy/XpFSTPPvss/vVf/xXvvfcegHB6IBKitlqt\n6jz6NEi8tnq9HgDAcRw2b96MBx54QPH3VA1yAfP222/j5MmT+MEPfoCKigps2rQp16c0Joi9rsFg\nEFOnTsWDDz6I3/zmN3j55Zfx8MMP5/oUC5LY62qxWPBv//ZvWLBgAZ599lls3rwZd999d65PsaB4\n7733MG/ePEycOJH396oqcuoIXVuO4/DQQw/hhhtuwKJFixR/X9UgFyDHjx+H1WpFRUUFrrnmGgwP\nD6O9vT062KOnpwd33XUX3nrrrRyfaWGReF05jgNJkli4cCEAYOnSpfjVr36V47MsPPiu6+eff44F\nCxYAABYvXoz3338/x2dZeHz00Ue4cOECPvroI1y6dAk0TUOv18Pr9UKn0+Hy5cuw2+25Ps2ChO/a\nlpeX47333sPkyZPx4IMPZuR9VYNcgBw8eBBdXV147LHH0NfXh2AwiJ07d4IkwzV6K1euVI1xCiRe\nV4/HgzvuuAN79uzBunXrcOLECUydOjXXp1lw8F3X2tpatLe3o6amBseOHcPkyZNzfZoFxwsvvBD9\n/1/96leoqqpCc3Mztm3bhr/927/FBx98gGXLluXwDAsXvmvb19cHrVYbrSnJBOq0pwLE6/Xiscce\nw8WLF+H1evHggw9i5cqV0d+vXLkSO3fuzOEZFiZ813XRokV4+OGH0dvbC71ej2effRZlZWW5PtWC\ngu+6lpaW4rnnnoNWq0VJSQmeeeYZFBcX5/pUC5aI0Vi6dCkefvhhsCyLyspK/PSnP4VWq8316RU0\nkWv7zjvvgGVZGI1GAMD06dPx5JNPKvpeqkFWUVFRUVHJA9Q+ZBUVFRUVlTxANcgqKioqKip5gGqQ\nVVRUVFRU8gDVIKuoqKioqOQBqkFWUVFRUVHJA1SDrKKioqKikgeoBllFRUVFRSUPUA2yioqKiopK\nHvD/A/5OUuutKuqyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "6N0p91k2iFCP", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Try creating some synthetic features that do a better job with latitude.**\n", + "\n", + "For example, you could have a feature that maps `latitude` to a value of `|latitude - 38|`, and call this `distance_from_san_francisco`.\n", + "\n", + "Or you could break the space into 10 different buckets. `latitude_32_to_33`, `latitude_33_to_34`, etc., each showing a value of `1.0` if `latitude` is within that bucket range and a value of `0.0` otherwise.\n", + "\n", + "Use the correlation matrix to help guide development, and then add them to your model if you find something that looks good.\n", + "\n", + "What's the best validation performance you can get?" + ] + }, + { + "metadata": { + "id": "wduJ2B28yMFl", + "colab_type": "code", + "cellView": "form", + "colab": {} + }, + "cell_type": "code", + "source": [ + "#\n", + "# YOUR CODE HERE: Train on a new data set that includes synthetic features based on latitude.\n", + "#\n", + "def select_and_transform_features(source_df):\n", + " LATITUDE_RANGES = zip(range(32, 44), range(33, 45))\n", + " selected_examples = pd.DataFrame()\n", + " selected_examples[\"median_income\"] = source_df[\"median_income\"]\n", + " for r in LATITUDE_RANGES:\n", + " selected_examples[\"latitude_%d_to_%d\" % r] = source_df[\"latitude\"].apply(\n", + " lambda l: 1.0 if l >= r[0] and l < r[1] else 0.0)\n", + " return selected_examples\n", + "\n", + "selected_training_examples = select_and_transform_features(training_examples)\n", + "selected_validation_examples = select_and_transform_features(validation_examples)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "U4iAdY6t7Pkh", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 622 + }, + "outputId": "4e57fe6b-5d1d-4268-de22-3e6cac1dada8" + }, + "cell_type": "code", + "source": [ + "_ = train_model(\n", + " learning_rate=0.05,\n", + " steps=500,\n", + " batch_size=5,\n", + " training_examples=selected_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=selected_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 187.34\n", + " period 01 : 140.32\n", + " period 02 : 101.75\n", + " period 03 : 86.88\n", + " period 04 : 84.17\n", + " period 05 : 84.04\n", + " period 06 : 83.88\n", + " period 07 : 83.87\n", + " period 08 : 83.57\n", + " period 09 : 83.46\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8FHXi//HX7G5CElJIhQSkK9Jr\ngFCkQyieBeUsIN5x3u97yunX485yX/UKNjz1FAXPcieK5x2CqKAgioCAFQxCQpUOSUghpPfd+f0R\nWBJKSCCb2YT300dkd+p78wHyZmZ2xzBN00RERESkAbFZHUBERESktlRgREREpMFRgREREZEGRwVG\nREREGhwVGBEREWlwVGBERESkwXFYHUDEm3Xq1InWrVtjt9sBcDqdxMbG8sgjjxAQEHDR233vvfeY\nMmXKWdOXLl3Kww8/zD/+8Q9GjBjhnl5cXMygQYMYO3YsTz/99EXvt6YOHz7Mk08+yYEDBwDw9/dn\n5syZjB492uP7ro358+dz+PDhs74n3333HTNmzKBVq1ZnrfPpp5/WV7xLcvToUUaNGkW7du0AME2T\niIgI/u///o8uXbrUalvPPfccMTEx3HrrrTVe56OPPmLJkiUsXLiwVvsSqS8qMCIXsHDhQlq0aAFA\naWkp999/P6+++ir333//RW0vIyODN95445wFBiA6OpqPP/64SoFZu3YtwcHBF7W/i/H73/+e6667\njn/84x8AbN26lenTp7Ny5Uqio6PrLceliI6ObjBl5XzsdnuV17BixQruueceVq1aha+vb423M2vW\nLE/EE7GUTiGJ1IKvry9Dhw5l586dAJSUlPDYY48xbtw4xo8fz9NPP43T6QRg165d3HLLLcTHx3Pd\nddexYcMGAG655RZSUlKIj4+ntLT0rH306dOH7777jqKiIve0FStWMHjwYPfz0tJSHn/8ccaNG8fI\nkSPdRQNgy5Yt3HjjjcTHxzNhwgS+/vproOJf9EOGDOHtt9/m2muvZejQoaxYseKcr3PPnj307NnT\n/bxnz56sWrXKXeRefvllhg0bxvXXX89rr73GyJEjAXjooYeYP3++e73Kzy+U68knn2Tq1KkA/PDD\nD0yePJkxY8YwZcoUjhw5AlQcifrf//1fRowYwdSpUzl27NgFRuzcli5dysyZM5k+fTrPPPMM3333\nHbfccgv33Xef+4f9ypUrmTRpEvHx8dxxxx0cPnwYgJdeeolHHnmEm266iQULFlTZ7n333ce//vUv\n9/OdO3cyZMgQXC4Xf//73xk3bhzjxo3jjjvuIC0trda5J0yYQHFxMfv37wdg0aJFxMfHM3LkSH73\nu99RXFwMVHzfn3rqKa699lpWrlxZZRzO9/vS5XLx17/+leHDh3PTTTexa9cu936///57brjhBiZM\nmMD48eNZuXJlrbOL1DlTRM7rqquuMlNTU93Ps7Ozzdtvv92cP3++aZqm+eqrr5p33XWXWVZWZhYV\nFZmTJ082P/zwQ9PpdJrjx483ly9fbpqmaW7bts2MjY018/LyzG+//dYcPXr0Off3/vvvmw8++KD5\n+9//3r1uXl6eOWrUKHPx4sXmgw8+aJqmab788svm9OnTzZKSErOgoMC8/vrrzTVr1pimaZqTJk0y\nP/74Y9M0TfODDz5w7+vIkSNmly5dzIULF5qmaZorVqwwx4wZc84cv/3tb80RI0aYb731lrl3794q\n83bv3m3269fPTE9PN8vKyszf/OY35ogRI0zTNM0HH3zQnDdvnnvZys+ry9W1a1dz6dKl7tcbGxtr\nbty40TRN01y+fLl5ww03mKZpmu+88455++23m2VlZWZWVpY5YsQI9/eksuq+x6e+z7169TIPHDjg\nXr579+7m119/bZqmaSYnJ5t9+/Y1Dx48aJqmaf7zn/80p0+fbpqmac6dO9ccMmSIefz48bO2+8kn\nn5i33367+/mLL75ozp4929yzZ485duxYs7S01DRN03z77bfNDz744Lz5Tn1fOnfufNb02NhYc9++\nfeamTZvMuLg489ixY6Zpmuajjz5qPv3006ZpVnzfr732WrO4uNj9fN68edX+vly3bp05duxYMz8/\n3ywqKjJvuukmc+rUqaZpmuaNN95ofvfdd6ZpmuaBAwfM3/3ud9VmF6kPOgIjcgHTpk0jPj6eUaNG\nMWrUKAYOHMhdd90FwLp165gyZQoOhwM/Pz+uvfZavvrqK44ePUpmZiYTJ04EoHv37sTExJCYmFij\nfU6cOJGPP/4YgNWrVzNixAhsttN/XNeuXcttt92Gr68vAQEBXHfddXz22WcAfPjhh4wfPx6Avn37\nuo9eAJSXl3PjjTcC0LVrV1JSUs65/7/97W/cfvvtLF++nEmTJjFy5Ej+85//ABVHR2JjY4mMjMTh\ncDBp0qQavabqcpWVlTFmzBj39ps3b+4+4jRp0iQOHz5MSkoKmzdvZsyYMTgcDkJDQ6ucZjtTamoq\n8fHxVb4qXyvTtm1b2rZt637u5+dHXFwcAF999RUDBgygTZs2ANx888189913lJeXAxVHpMLCws7a\n5/Dhw9mxYwfZ2dkAfP7558THxxMcHExWVhbLly8nJyeHadOmcf3119fo+3aKaZosWrSI5s2b07Zt\nW9asWcOECRNo3rw5ALfeeqv79wBAXFwcTZo0qbKN6n5fbtq0iWHDhtG0aVP8/PzcYwUQHh7Ohx9+\nyL59+2jbti3PPfdcrbKLeIKugRG5gFPXwGRlZblPfzgcFX90srKyCAkJcS8bEhLC8ePHycrKIigo\nCMMw3PNO/RCLiIi44D4HDx7MI488QnZ2Np988gl33323+4JagLy8PJ566imef/55oOKUUo8ePQBY\nvnw5b7/9NgUFBbhcLsxKtzuz2+3ui49tNhsul+uc+2/SpAkzZsxgxowZ5Obm8umnn/Lkk0/SqlUr\ncnJyqlyPEx4efsHXU5NcgYGBAOTm5nLkyBHi4+Pd8319fcnKyiInJ4egoCD39ODgYAoKCs65vwtd\nA1N53M58fuLEiSqvMSgoCNM0OXHixDnXPSUgIIBBgwaxbt06+vbtS25uLn379sUwDF566SX+9a9/\nMXv2bGJjY/nLX/5yweuJnE6n+/tgmiYdO3Zk/vz52Gw28vLy+Pzzz9m4caN7fllZ2XlfH1Dt78uc\nnByioqKqTD/lySef5JVXXuEXv/gFfn5+/O53v6syPiJWUIERqaGwsDCmTZvG3/72N1555RUAIiIi\n3P/aBsjOziYiIoLw8HBycnIwTdP9wyI7O7vGP+x9fHwYMWIEH374IYcOHaJ3795VCkxUVBS//OUv\nzzoCkZaWxiOPPMLixYvp3LkzBw8eZNy4cbV6nVlZWezcudN9BCQ4OJgpU6awYcMG9uzZQ1BQEHl5\neVWWP+XMUpSTk1PrXFFRUbRv356lS5eeNS84OPi8+65L4eHhbNmyxf08JycHm81GaGjoBdcdN24c\nn3/+OSdOnGDcuHHu8R84cCADBw6ksLCQOXPm8Oyzz17wSMaZF/FWFhUVxQ033MCDDz5Yq9d1vt+X\n1X1vIyIiePTRR3n00UfZuHEjv/3tbxk6dChNmzat8b5F6ppOIYnUwi9+8Qu2bNnC999/D1ScMliy\nZAlOp5PCwkI++ugjhg0bRqtWrWjRooX7ItmEhAQyMzPp0aMHDoeDwsJC9+mI85k4cSKvv/76Od+6\nPGrUKBYvXozT6cQ0TebPn8/69evJysoiICCA9u3bU15ezqJFiwDOe5TiXIqLi7n33nvdF3cCHDp0\niK1bt9KvXz969+7N5s2bycrKory8nA8//NC9XGRkpPvizyNHjpCQkABQq1w9e/YkIyODrVu3urfz\nhz/8AdM06dWrF2vWrMHpdJKVlcX69etr/LpqY/DgwWzevNl9muu///0vgwcPdh95q86IESPYsmUL\nq1evdp+G2bhxI3/5y19wuVwEBARw9dVXVzkKcjFGjhzJZ5995i4aq1ev5rXXXqt2nep+X/bu3ZuN\nGzdSVFREUVGRuziVlZUxbdo00tPTgYpTjw6Ho8opTREr6AiMSC0EBgby61//mjlz5rBkyRKmTZvG\nkSNHmDhxIoZhEB8fz/jx4zEMg+eff54//elPvPzyy/j7+/Piiy8SEBBAp06dCAkJYfDgwXzwwQfE\nxMScc1/9+/fHMAwmTJhw1rzbbruNo0ePMnHiREzTpFu3bkyfPp2AgACuueYaxo0bR3h4OA899BAJ\nCQlMmzaNuXPn1ug1xsTE8MorrzB37lwef/xxTNMkMDCQhx9+2P3OpJ///OfccMMNhIaGMnbsWH76\n6ScApkyZwsyZMxk7dixdunRxH2W5+uqra5zLz8+PuXPnMnv2bAoKCvDx8eG+++7DMAymTJnC5s2b\nGT16NDExMYwePbrKUYPKTl0Dc6Znnnnmgt+DFi1a8Pjjj3P33XdTVlZGq1atmD17do2+f4GBgXTt\n2pXdu3fTq1cvAGJjY/nkk08YN24cvr6+hIWF8eSTTwLwwAMPuN9JVBtdu3blf/7nf5g2bRoul4vw\n8HD+8pe/VLtOdb8vR4wYwbp164iPjyciIoJhw4axefNmfHx8uOmmm7jzzjuBiqNsjzzyCP7+/rXK\nK1LXDLPyiWgRkVravHkzDzzwAGvWrLE6iohcRnQMUERERBocFRgRERFpcHQKSURERBocHYERERGR\nBkcFRkRERBqcBvk26oyMc79tsi6EhgZw4kShx7YvF09j4500Lt5LY+O9NDY1ExkZdN55OgJzBofD\nbnUEOQ+NjXfSuHgvjY330thcOhUYERERaXBUYERERKTBUYERERGRBkcFRkRERBocFRgRERFpcFRg\nREREpMFRgREREZEGRwVGRESkkVm37osaLffii8+RkpJ83vkPPfS7uopU51RgREREGpHU1BRWr15V\no2Xvu28WMTEtzzv/6aefr6tYda5B3kpAREREzu355+ewc+d2hg6NZezY8aSmpvDCC/N56qm/kpGR\nTlFREb/85a8ZPHgoM2f+mt/97gHWrv2CgoJ8Dh8+RHLyUe69dxZxcYOZOHEUn3zyBTNn/prY2AEk\nJGwmOzubOXP+TkREBH/966McO5ZK9+49WLNmNR98sKLeXqcKjIiIiIe8t2Yvm3alnzXdbjdwOs2L\n2mbs1VFMGdnxvPNvvXUaS5e+R7t2HTh8+CDz57/BiRNZ9O8/kPHjJ5GcfJRHH32IwYOHVlkvPT2N\nZ5+dy7fffs1HH71PXNzgKvObNm3Kiy++wiuvvMT69WuIiWlFaWkJr722gK++2sB77/3nol7PxVKB\nqSQzu4hjuSW0CG5idRQREZFL1rlzVwCCgoLZuXM7y5YtxTBs5ObmnLVsjx69AIiKiiI/P/+s+T17\n9nbPz8nJ4dChA3Tv3hOAuLjB2O31e38nFZhKPtp4gK+3H+Op/xdHVDN/q+OIiEgDN2Vkx3MeLYmM\nDCIjI8/j+/fx8QHg888/JTc3l3nz3iA3N5df/WraWctWLiCmefbRoTPnm6aJzVYxzTAMDMOo6/jV\n0kW8lVzVOgQTF19tS7U6ioiIyEWx2Ww4nc4q07Kzs4mOjsFms/Hll2soKyu75P20bNmK3bt3APD9\n99+etU9PU4Gp5FiTBPx7fcmG7YdxuS7u3KSIiIiV2rRpx+7duygoOH0aaPjwkXz99Qbuu+83+Pv7\nExUVxZtvvn5J+xk0aCgFBQX85jcz2Lp1C8HBIZcavVYM81zHibycpw67rTzwBR8fWEXpga7cN2IS\n3dqHe2Q/cnHq65Cr1I7GxXtpbLxXYxib3NwcEhI2M3z4KDIy0rnvvt/w7rvv1+k+IiODzjtP18BU\nMjC6L58c+AxH5FHWb0tVgRERETmPgICmrFmzmnffXYhpuvjtb+v3Q+9UYCoJ9WtG7+iuJKQm8eP2\nfeQVXkVQgK/VsURERLyOw+Hgr399yrL96xqYM4xsX/G+dyP8CN9uT7M4jYiIiJyLCswZ+sR0J8gn\nEHtECusTj5zzrWQiIiJiLRWYMzhsduJiYjEc5Rxz7ufgsYZ9kZWIiEhjpAJzDnHR/QCwRx5loz4T\nRkRExOuowJxDVEAkHZu1xx6cxbd791NaVr8fziMiIuJpN910LYWFhSxcuICkpG1V5hUWFnLTTddW\nu/66dV8AsGLFcr78cq3Hcp6PCsx5DI7pD0BZyEF+2JNhcRoRERHPmDbtTrp161GrdVJTU1i9ehUA\nEyZcy7BhIzwRrVp6G/V59IrsziL7h5gRKazfepS4ri2sjiQiInJBv/zl7Tz55HO0aNGCY8dSefjh\nWURGRlFUVERxcTH33/8HunTp5l7+iSf+zPDho+jVqzf/938PUFpa6r6xI8Bnn61kyZJF2O022rbt\nwIMP/h/PPz+HnTu38+abr+NyuWjWrBmTJ/+c+fNfJDFxK+XlTiZPnkJ8/ERmzvw1sbEDSEjYTHZ2\nNnPm/J0WLS79Z6oKzHn42n0YEN2XL49+xU+5P5Ge3VU3eBQRkVpZuvdjtqQnnjXdbjNwXuQta3pH\ndefGjpPOO/+aa0bw1VfrmTx5Chs2fMk114ygQ4crueaa4fzwwyb+/e+3eOKJv5213qpVK2nfvgP3\n3juLL774zH2EpaioiOeee4mgoCDuuecu9u3by623TmPp0vf4xS/u4p//fBWAH39MYP/+fbzyyr8o\nKipi+vRbuOaa4QA0bdqUF198hVdeeYn169cwZcptF/XaK9MppGqcOo3k0MW8IiLSQFQUmA0AbNz4\nJUOGDOPLL7/gN7+ZwSuvvEROTs451zt4cD/duvUEoHfvvu7pwcHBPPzwLGbO/DWHDh0gJyf7nOvv\n2rWDXr36AODv70/btu05cuQIAD179gYgKiqK/Pz8c65fWzoCU42WgdFcEdiKw+ZRNu7cz/VD2mGz\n1e/twkVEpOG6seOkcx4t8eS9kNq378Dx4xmkpR0jLy+PDRvWERERxaOPzmbXrh28/PIL51zPNHH/\njDt1Q+OysjKef/4ZFix4l/DwCB544H/Pu1/DMKj80Wnl5WXu7dnt9kr7qZvPV9MRmAsY0rI/hgH5\nfgfYfjDL6jgiIiIXFBc3hNdem8/QocPIycmmZctWAHz55VrKy8vPuU7r1m3YtWsnAAkJmwEoLCzA\nbrcTHh5BWtoxdu3aSXl5OTabDaez6jt0r766K1u2/HByvUKSk4/SqlVrT71EFZgL6du8Fw7DB3vk\nUdZvTbY6joiIyAUNGzaC1atXMXz4KOLjJ7Jo0b+5//576Nq1G8ePH+eTT5adtU58/ES2b0/kvvt+\nw5EjhzAMg5CQZsTGDuBXv7qDN998ndtum8bcuc/Tpk07du/exdy5z7nX79mzF506Xc0999zF/fff\nw//8z0z8/T137ahhevCz8vfs2cPdd9/NnXfeydSpU9m0aRPPP/88DoeDgIAAnnnmGUJCQnjjjTf4\n9NNPMQyDmTNnMmzYsGq368lbkJ/rsN47O9/jm9TNlO2O5bnp1+kGjxZpDLefb4w0Lt5LY+O9NDY1\nExkZdN55HjsCU1hYyOzZs4mLi3NPe+qpp3jiiSdYuHAhvXv3ZtGiRRw5coQVK1bw7rvv8uqrr/LU\nU0+ddVjKaoNiBgBgRBzhG93gUURExHIeKzC+vr68/vrrREVFuaeFhoaSnV1x9XJOTg6hoaF89913\nDB06FF9fX8LCwmjZsiV79+71VKyL0i64NVH+UdhD01ifdEA3eBQREbGYx96F5HA4cDiqbv6Pf/wj\nU6dOJTg4mJCQEGbNmsUbb7xBWFiYe5mwsDAyMjLo1KnTebcdGhqAw2E/7/xLda5DVvGdruHtH5eQ\nxl6yiwdxVetQj+1fzq+6w4liHY2L99LYeC+NzaWp17dRz549m5dffpm+ffsyZ84c3n333bOWqcnR\njRMnCj0RDzj/ecmugV2xsRRH5FGWrd/L9HFXeyyDnJvOGXsnjYv30th4L41NzVhyDcy57N69m759\nKz4cZ9CgQSQlJREVFUVmZqZ7mbS0tCqnnbxFoG9TekZ2wxaQz/cHd1GiGzyKiIhYpl4LTEREhPv6\nlsTERNq0acPAgQNZt24dpaWlpKWlkZ6eTseOHeszVo0NaVlxMW95s0Mk7NYNHkVERKzisVNISUlJ\nzJkzh+TkZBwOB6tWreIvf/kLjzzyCD4+PoSEhPDkk08SHBzMlClTmDp1KoZh8Oc//xmbzTs/nuaq\n0A40823GibBjfJl4iLhuusGjiIiIFTz6OTCeUt+fA1PZygNf8PGBVZQe6MoTN95MVGiAx7JIVTpn\n7J00Lt5LY+O9NDY14zXXwDQGA6P7YmBU3OAxUTd4FBERsYIKTC2F+jWjc9hV2AJz2LBnt/uGVyIi\nIlJ/VGAuwqmLeQsD9pN0QDd4FBERqW8qMBehW3hnmtoDsUeksH7bYavjiIiIXHZUYC6C3WZnUMt+\nGI5yEo/vILew1OpIIiIilxUVmIs0KCYWqLjB47dJxyxOIyIicnlRgblIUQGRtA9uhz04i3U7ftIN\nHkVEROqRCswlGNqq4mLeTMceDqTq/fwiIiL1RQXmEvSO7E4Tmx+OiBTWbztqdRwREZHLhgrMJfCx\n+zAwug+GbwmbkhN1g0cREZF6ogJziQaf/EwYZ7PD/LA73eI0IiIilwcVmEvUMjCamIAYbM0yWJu4\nz+o4IiIilwUVmDow7IqBGAYcKt1J2olCq+OIiIg0eiowdaBv817YcWCPPMqGrSlWxxEREWn0VGDq\ngL/Dj37Ne2HzK2LjgUTd4FFERMTDVGDqyJCTnwlTFHiApAPHLU4jIiLSuKnA1JF2wa0J943AHprG\n2sQDVscRERFp1FRg6ohhGAxrPRDDZrIjO1E3eBQREfEgFZg6NKBFXwxs2CKO8k1iqtVxREREGi0V\nmDoU6NuU7mFdsAXks3bPdt3gUURExENUYOrYsNZxAJzw/Uk3eBQREfEQFZg6dlVoB4IcIdjDjrFu\n20Gr44iIiDRKKjB1zGbYuKbVAAy7k83HtlJSqhs8ioiI1DUVGA+Ii+kHGJhhh9msGzyKiIjUORUY\nDwj1a8aVwVdiC8zhix07rY4jIiLS6KjAeMiINgMBSHbuIC1LN3gUERGpSyowHtItvDN+tqbYI1L4\nctsRq+OIiIg0KiowHmK32Rkc0w/DUc5Xh7fgdLmsjiQiItJoqMB40JBW/QEoCT5I0v4si9OIiIg0\nHiowHhQVEMkVAW2wB2exJmm31XFEREQaDRUYDxvZpuKTeXcXJJJboBs8ioiI1AUVGA/rHdUdH5pg\nC0/mq6Rkq+OIiIg0CiowHuZj9yG2RR8M3xLW7vtRN3gUERGpAyow9WB464rPhMltspf9qbkWpxER\nEWn4VGDqQcvAaKJ8o7E1y+CLrXutjiMiItLgqcDUk5Ft4zAM+DFri27wKCIicolUYOpJvxa9sOHA\nDD3Cpl1pVscRERFp0FRg6om/w4+e4d2x+RWxevePVscRERFp0FRg6tHItoMASGWXbvAoIiJyCVRg\n6lG74NaE2MOxh6bxxdb9VscRERFpsFRg6pFhGAxvMxDDZvJt6g+6waOIiMhFUoGpZ4Ni+mGYNsqC\nD7Ft33Gr44iIiDRIKjD1LNC3KVeFXI0tIJ/PdyRaHUdERKRBUoGxwJh2FRfz7i9OIkc3eBQREak1\nFRgLdArrSIARjC0slfWJh62OIyIi0uCowFjAZtgY0qo/ht3Jlwc36QaPIiIitaQCY5FrrugPpkFB\nwH72p+gGjyIiIrXh0QKzZ88eRo8ezTvvvANAWVkZs2bN4qabbmL69Onk5OQAsGzZMiZPnszNN9/M\n4sWLPRnJa4T6NaNNQHtsgTmsSkyyOo6IiEiD4rECU1hYyOzZs4mLi3NPe++99wgNDWXJkiVMmDCB\nzZs3U1hYyLx581iwYAELFy7krbfeIjs721OxvMrYDoMBSMrZqhs8ioiI1ILHCoyvry+vv/46UVFR\n7mlr167lZz/7GQA///nPGTVqFFu3bqV79+4EBQXh5+dHnz59SEhI8FQsr9I9ojO+BEDoUb7ZmWJ1\nHBERkQbDYwXG4XDg5+dXZVpycjLr169n2rRp3H///WRnZ5OZmUlYWJh7mbCwMDIyMjwVy6vYbXb6\nN++D4Sjni72brI4jIiLSYDjqc2emadKuXTtmzpzJ/PnzefXVV+nSpctZy1xIaGgADofdUzGJjAzy\n2LbPdHPfMWxcsZEM+x5KMWgZGVhv+26I6nNspOY0Lt5LY+O9NDaXpl4LTEREBLGxsQAMGTKEl156\nieHDh5OZmeleJj09nV69elW7nRMnPHcn58jIIDIy8jy2/TM58Ke5TyvSgo/y37U/cMeIPvW274am\nvsdGakbj4r00Nt5LY1Mz1ZW8en0b9TXXXMOGDRsA2L59O+3ataNnz54kJiaSm5tLQUEBCQkJ9OvX\nrz5jWW5M+4pP5t2UoRs8ioiI1ITHjsAkJSUxZ84ckpOTcTgcrFq1imeffZYnnniCJUuWEBAQwJw5\nc/Dz82PWrFnMmDEDwzC45557CAq6vA6r9WvRk//s+pDy4MNs3ZdBnyubWx1JRETEqxlmA/wYWE8e\ndrPqsN4/f1xMQtYmWuYP448/m1jv+28IdMjVO2lcvJfGxntpbGrGa04hyfnFdxwCwJHyHbrBo4iI\nyAWowHiJloHRhNqiMEIyWLNtr9VxREREvJoKjBcZ0TYOw4CNR7/XDR5FRESqoQLjRQa16othOihs\neoC9yTlWxxEREfFaKjBexN/hR6egLtj8iliR9IPVcURERLyWCoyXmXBVxcW8uwu2UVxabnEaERER\n76QC42Xah7ShKaEQcoyNOw5ZHUdERMQrqcB4GcMwGNKyP4bNZM2B76yOIyIi4pVUYLzQyHYDwbRx\nwmcvKZn5VscRERHxOiowXijQtylt/K/EFpDPisStVscRERHxOiowXmrClRUX827N2qIbPIqIiJxB\nBcZLdYm4kiZmIM7gZH74KdXqOCIiIl5FBcZL2QwbsVH9MOxOVu351uo4IiIiXkUFxovFXzkITEgx\nd5GTX2J1HBEREa+hAuPFQv2a0cKnLbbAHD5NTLI6joiIiNdQgfFyYzsMBuDb1M26waOIiMhJKjBe\nrl90Nxwuf0oCD7H7yHGr44jfu7U9AAAgAElEQVSIiHgFFRgvZ7fZ6R7aE8NRzsc7dDGviIgIqMA0\nCJOuHgrA/pLtusGjiIgIKjANQoumkYQaMRhBx1mTtMfqOCIiIpZTgWkgRraJA+DLI7rBo4iIiApM\nAzG0TR9sLl/ymuznaGau1XFEREQspQLTQPjYfbgqsCuGbwnLt31vdRwRERFLqcA0ID87eTHv9ryt\nlDt1g0cREbl8qcA0IG2atSLQjMQVmMa3ew5aHUdERMQyKjANzOCY/hgGfL7vG6ujiIiIWEYFpoEZ\ne+UAcNnJsO3hRF6R1XFEREQsoQLTwPg5/GjTpBOGXxHLt/1gdRwRERFLqMA0QKc+mTchM0E3eBQR\nkcuSCkwD1DmiPU2cIZQ2TSbxcKrVcUREROqdCkwDZBgG/SL7YthMPtn1tdVxRERE6p0KTAM1qfMQ\ncNk4Ur6DwuIyq+OIiIjUKxWYBiq4SSAtHO0x/PNZlbTN6jgiIiL1SgWmARvbYRAAX6fq1gIiInJ5\nUYFpwGJbdcHhbEqB32EOpGVZHUdERKTeqMA0YDbDRreQXhh2J8u2f2V1HBERkXqjAtPAXd91KJjw\nU2GibvAoIiKXDRWYBi6yaRihXIEZkM26nTutjiMiIlIvVGAagRGt4wBYe/hbi5OIiIjUDxWYRmB4\nh97Yyv044dhPRm6+1XFEREQ8TgWmEbDb7HRs2hXDUcaH276xOo6IiIjHqcA0Etd1uQaAxOwfdYNH\nERFp9FRgGom2odE0LW+BMyCDTfsPWB1HRETEo1RgGpG46FgAVu3VDR5FRKRxU4FpRCZ0HgBOH1LZ\nTX5RidVxREREPEYFphFp4vCltc/VGD4lLE/S/ZFERKTxUoFpZCZ1GgrApvTNFicRERHxHBWYRqZr\ndFualIVR7JfKrtRUq+OIiIh4hEcLzJ49exg9ejTvvPNOlekbNmygU6dO7ufLli1j8uTJ3HzzzSxe\nvNiTkS4LfSL6YhiwfOcGq6OIiIh4hMcKTGFhIbNnzyYuLq7K9JKSEl577TUiIyPdy82bN48FCxaw\ncOFC3nrrLbKzsz0V67JwXdch4LRzsHQHpeXlVscRERGpcx4rML6+vrz++utERUVVmf6Pf/yD2267\nDV9fXwC2bt1K9+7dCQoKws/Pjz59+pCQkOCpWJeFID9/oowO4FvIyiR9L0VEpPG56AJz8ODBauc7\nHA78/PyqTDtw4AC7du1i/Pjx7mmZmZmEhYW5n4eFhZGRkXGxseSkiVcNA2Bdynp9Mq+IiDQ6jupm\n/uIXv+DNN990P58/fz533303AI899hhvv/12rXb21FNP8cgjj1S7TE1+2IaGBuBw2Gu179qIjAzy\n2Lbry/jIPizeHUO+Xwo/pO5jfM/eVkeqE41hbBojjYv30th4L43Npam2wJSfcf3Et99+6y4wtf1X\nfVpaGvv37+f3v/89AOnp6UydOpXf/va3ZGZmupdLT0+nV69e1W7rxInCWu27NiIjg8jIyPPY9utT\nfNsRLDnybxZtXUG/mI5Wx7lkjWlsGhONi/fS2HgvjU3NVFfyqj2FZBhGleeVS8uZ8y6kefPmrF69\nmvfee4/33nuPqKgo3nnnHXr27EliYiK5ubkUFBSQkJBAv379arVtObfhHXvgWxpOYZOj/HBwn9Vx\nRERE6ky1R2DOVJvSkpSUxJw5c0hOTsbhcLBq1SpeeuklmjVrVmU5Pz8/Zs2axYwZMzAMg3vuuYeg\nIB1WqwuGYTCq1XBWpr/P+7s+p2/bDlZHEhERqRPVFpicnBy++eYb9/Pc3Fy+/fZbTNMkNze32g13\n69aNhQsXnnf+mjVr3I/j4+OJj4+vaWaphfFd+vHZ0dVk+xxgV2oyV0e3tDqSiIjIJau2wAQHBzN/\n/nz386CgIObNm+d+LN7PbrMzKGowG7JXsChpFX+K/qXVkURERC5ZtQWmuiMo0nBM7jGEjau/JM2x\nh8NZmbQOi7A6koiIyCWp9iLe/Px8FixY4H7+3//+l+uuu4577723yjuHxLv5OBz0aTYAw+bi3R8/\ntTqOiIjIJau2wDz22GMcP34cqPgQuueff54HH3yQQYMG8cQTT9RLQKkbt/YZAWVNOOzcTmZejtVx\nRERELkm1BebIkSPMmjULgFWrVhEfH8+gQYO45ZZbdASmgfH3bUKXgH4YdicLt3xmdRwREZFLUm2B\nCQgIcD/+/vvvGThwoPt5bT8HRqx3e9/RUO7D3uIfySv23IcBioiIeFq1BcbpdHL8+HEOHz7Mli1b\nGDx4MAAFBQUUFRXVS0CpO80CmtLOpwc4yng34Qur44iIiFy0agvMXXfdxYQJE7j22mu5++67CQkJ\nobi4mNtuu43rr7++vjJKHbq9zzhMp53EvE0Ul5daHUdEROSiVPs26mHDhrFx40ZKSkoIDAwEKj45\n9w9/+ANDhgypl4BSt6JDmhFDF1J9Elm8ZR3TYsdaHUlERKTWqj0Ck5KSQkZGBrm5uaSkpLi/2rdv\nT0pKSn1llDp2a69xmC6D77O+odxZfuEVREREvEy1R2BGjhxJu3btiIyMBM6+mePbb7/t2XTiER0i\nowh3XkmWzx6Wbf+GG3sMtTqSiIhIrVRbYObMmcNHH31EQUEBEydOZNKkSYSFhdVXNvGgKV3H8cru\nPaxPXc8N3YfoXWUiItKgVHsK6brrruNf//oXL7zwAvn5+dx+++386le/Yvny5RQXF9dXRvGA7q2u\nILi0LWU+OXy2e7PVcURERGql2gJzSnR0NHfffTcrV65k3LhxPP7447qItxH42ZWjAfjs0NoqpwdF\nRES8XbWnkE7Jzc1l2bJlLF26FKfTyf/7f/+PSZMmeTqbeFhchyt5f3cMxf4pfHNwO4PadbM6koiI\nSI1UW2A2btzI+++/T1JSEmPHjuXpp5/mqquuqq9s4mGGYTC2zUiWpb/Dsp9Wq8CIiEiDUW2B+dWv\nfkXbtm3p06cPWVlZvPnmm1XmP/XUUx4NJ543pmt3VhyKJM8/ha0pe+kZ09HqSCIiIhdUbYE59Tbp\nEydOEBoaWmXe0aNHPZdK6o3NMBgWfQ1fZL/Pkp2fqcCIiEiDUO1FvDabjVmzZvHoo4/y2GOP0bx5\nc/r378+ePXt44YUX6iujeNi1PfphK2pGlnGQvcdVTEVExPtVewTm73//OwsWLKBDhw588cUXPPbY\nY7hcLkJCQli8eHF9ZRQP83HYiQ0bxHdFK/jvtk95ZMSvrI4kIiJSrQsegenQoQMAo0aNIjk5mTvu\nuIOXX36Z5s2b10tAqR839x0MxYGkun4iOSfD6jgiIiLVqrbAnPnprNHR0YwZM8ajgcQa/r4+dA8c\nAIbJu1s/tTqOiIhItWr0QXan6OPmG7db+w3DLPHnYOl2sgpzrI4jIiJyXtVeA7NlyxaGDx/ufn78\n+HGGDx+OaZoYhsG6des8HE/qU0iAH1c26cNevuLdH1cxc9AUqyOJiIicU7UF5tNPdSrhcnN731H8\n+dtN7HT9SH7JJAKbBFgdSURE5CzVFpiWLVvWVw7xElEhgVxBD47aNrNo22pmxP7M6kgiIiJnqdU1\nMHJ5uLX3aMxyB1uyv6e4vMTqOCIiImdRgZGztI0KI7K8M6a9lA+2r7M6joiIyFlUYOScpnQfg+m0\n8036N5S7yq2OIyIiUoUKjJxT1ytaEFLcEae9kBW7v7Y6joiISBUqMHJe13cejekyWHv0S1ymy+o4\nIiIibiowcl79O7TGv7AtpfY81u7fbHUcERERNxUYOS/DMJjYfiSmCSsPrME0TasjiYiIACowcgHD\nu1yFT34rimxZfH80yeo4IiIigAqMXIDNZjCq1TAAPvzpM4vTiIiIVFCBkQsa37M7trzm5JJGYtpP\nVscRERFRgZEL83HYiIscAsCSHbo/loiIWE8FRmrkhr59IT+MTPMI+04csTqOiIhc5lRgpEb8mzjo\nFRwHwKKklRanERGRy50KjNTYlNiBmAXBJJfuJTkvzeo4IiJyGVOBkRoLadqEq/1iwYBFiboWRkRE\nrKMCI7VyS78huIqasq9oB5lFWVbHERGRy5QKjNRKVGhT2tp6gWHyXuLnVscREZHLlAqM1NotfYbj\nKvFjR+6P5JXmWx1HREQuQyowUmttmofQoqwbps3J+9tXWx1HREQuQyowclGm9BqBWebLD8c3UVRe\nZHUcERG5zKjAyEXp3DqSkKKrcdnKWL77S6vjiIjIZUYFRi7ajV1HYJY7+Cr1a0qdpVbHERGRy4hH\nC8yePXsYPXo077zzDgCpqanceeedTJ06lTvvvJOMjAwAli1bxuTJk7n55ptZvHixJyNJHerXMYaA\n/I6U24r5bN/XVscREZHLiMcKTGFhIbNnzyYuLs497YUXXmDKlCm88847jBkzhjfffJPCwkLmzZvH\nggULWLhwIW+99RbZ2dmeiiV1yDAMJl05HNNp44sjX+J0Oa2OJCIilwmPFRhfX19ef/11oqKi3NP+\n9Kc/MW7cOABCQ0PJzs5m69atdO/enaCgIPz8/OjTpw8JCQmeiiV1bGjXtvjktqXUKGD94U1WxxER\nkcuEw2MbdjhwOKpuPiAgAACn08m7777LPffcQ2ZmJmFhYe5lwsLC3KeWzic0NACHw173oU+KjAzy\n2LYbo+s7j2VxyqusPLiGm/qOwmbz3JlJjY130rh4L42N99LYXBqPFZjzcTqdPPDAAwwcOJC4uDiW\nL19eZb5pmhfcxokThZ6KR2RkEBkZeR7bfmM0+Mo2vL+zFQWhR1ix7SsGtOzlkf1obLyTxsV7aWy8\nl8amZqorefX+LqSHH36YNm3aMHPmTACioqLIzMx0z09PT69y2km8n6+PnaHNh2Ka8NFPn9eohIqI\niFyKei0wy5Ytw8fHh3vvvdc9rWfPniQmJpKbm0tBQQEJCQn069evPmNJHbi2X1fIjibHlUFixi6r\n44iISCPnsVNISUlJzJkzh+TkZBwOB6tWreL48eM0adKEadOmAdChQwf+/Oc/M2vWLGbMmIFhGNxz\nzz0EBem8YEMT4OdD39A4EljK0l2f0SOqs9WRRESkETPMBni835PnDXVe8uKdyCvhj6vnYgvJ4P7e\nv6FjaLs63b7GxjtpXLyXxsZ7aWxqxquugZHGKzSoCV38YwFYvGOVxWlERKQxU4GROjWlf39ceaEc\nLdnPkbxkq+OIiEgjpQIjdap5WADt7H0AWLLjM4vTiIhIY6UCI3VuSt84XAVB7M3fRXph9R9KKCIi\ncjFUYKTOtY0OpkV5TzBM3t/5udVxRESkEVKBEY+4qfdgXEUBJGVv40Sxbs4pIiJ1SwVGPKJLmzCa\nFXUBw8WyPV9YHUdERBoZFRjxCMMwuKHbNbhK/Nic8QP5pQVWRxIRkUZEBUY8pl+n5gTkXoXLKGfl\nvnVWxxERkUZEBUY8xmYYTLp6KGaZDxtTvqGovNjqSCIi0kiowIhHDe12BT4nOlBulPLFwa+sjiMi\nIo2ECox4lMNuY2y7oZhOO18cXk+Zs8zqSCIi0giowIjHjerdDuN4W0opYsPR762OIyIijYAKjHic\nn6+Da2IGY7psrNy/FqfLaXUkERFp4FRgpF5M6HcV5vErKDRz+f7YFqvjiIhIA6cCI/UiKMCX2PCB\nmC6DZT+txmW6rI4kIiINmAqM1JvrYrviyooh15nF1owdVscREZEGTAVG6k14iB/dmsZimvDR7s8w\nTdPqSCIi0kCpwEi9umFAT1wnmpNRdoxdWT9ZHUdERBooFRipVy0jmtLB0QeAD/d8bnEaERFpqFRg\npN7dGNsHZ044R4sOcSDnkNVxRESkAVKBkXrXoWUI0eU9AR2FERGRi6MCI5a4oU8/nHnN2Ju3h+T8\nVKvjiIhIA6MCI5bo3j6c0MIuACz/abXFaUREpKFRgRFLGIbBdT0G4ioMIjEriYzC41ZHEhGRBkQF\nRiwT2zkK/5xOYJis2LfG6jgiItKAqMCIZew2G5M6x+EqDmBTxg9kl+RYHUlERBoIFRix1NAeMfgc\nvxITF6sOfGl1HBERaSBUYMRSPg47YzrGYZY24auUb8kvK7A6koiINAAqMGK5Ub1bY2S0x0k5aw5t\ntDqOiIg0ACowYrkAPwdDW8Vhlvmw5shGisuLrY4kIiJeTgVGvML42Ha40ttSZpawIflbq+OIiIiX\nU4ERrxAS2IT+UQMwnXZWHfiSMmeZ1ZFERMSLqcCI15jUvyPO9NYUuQr4NnWz1XFERMSLqcCI14gK\nDaBbUF9Ml40V+9fidDmtjiQiIl5KBUa8ynUDOuPMaElueTYJ6dusjiMiIl5KBUa8SuvmQbT36Y1p\nGizfuxqX6bI6koiIeCEVGPE61/fvivN4NMdLM0jK3Gl1HBER8UIqMOJ1rrqiGdHl3QFYvm81pmla\nnEhERLyNCox4HcMwuC62B86sKFIKk/kpe5/VkURExMuowIhX6tkxgmZFXQFYvne1xWlERMTbqMCI\nV7IZBtf26oUzJ5z9efs5mHvY6kgiIuJFVGDEaw3o0hz/nE4AfLLvC4vTiIiIN1GBEa/lsNsY37UP\nrvwQdpzYydGcVKsjiYiIl1CBEa82rGdLHJlXAfDK9++QX1ZgcSIREfEGKjDi1Zr42hl9ZV+cWc35\nKWs/f9v0EqkFaVbHEhERi6nAiNcb1e8KfJJjKUvuQGZxFs9ufpnEzB1WxxIREQupwIjXC/T34Y9T\n+xJV0ovSvT0pKS/n1W1v8fmhdfqQOxGRy5RHC8yePXsYPXo077zzDgCpqalMmzaN2267jfvuu4/S\n0lIAli1bxuTJk7n55ptZvHixJyNJAxUd3pTn7ruGq0O6UrSjP5Q34cN9K3h75yLKnGVWxxMRkXrm\nsQJTWFjI7NmziYuLc0+bO3cut912G++++y5t2rRhyZIlFBYWMm/ePBYsWMDChQt56623yM7O9lQs\nacACA3z535t7MKZLNwoTB0JhM74/lsALW14lpyTX6ngiIlKPPFZgfH19ef3114mKinJP++677xg1\nahQAI0aM4JtvvmHr1q10796doKAg/Pz86NOnDwkJCZ6KJQ2c3WbjllFX8osxvSjb1R9nZgwHcw/z\nzOa5HM49anU8ERGpJw6PbdjhwOGouvmioiJ8fX0BCA8PJyMjg8zMTMLCwtzLhIWFkZGRUe22Q0MD\ncDjsdR/6pMjIII9tWy7NqbG5cVQnOreP5Im3/Cgo3EV26z38fcsr3N3/Dga17mdxysuP/sx4L42N\n99LYXBqPFZgLOd/FlzW5KPPEicK6juMWGRlERkaex7YvF+/MsYkI9OHRaf2Y+74vR/cEYnTcxgvf\n/JNdqQeZ2G4MNkPXqNcH/ZnxXhob76WxqZnqSl69/g0fEBBAcXExAGlpaURFRREVFUVmZqZ7mfT0\n9CqnnUSqExbsx8NT+9K3RTeKtg/AKA3g04Nf8EbSOxSXl1gdT0REPKReC8ygQYNYtWoVAJ999hlD\nhw6lZ8+eJCYmkpubS0FBAQkJCfTrp1MAUnNNfOz8z3VduT62J4VJAzHzwtmakcTzCfM5XpRldTwR\nEfEAj51CSkpKYs6cOSQnJ+NwOFi1ahXPPvssDz30EIsWLSImJobrr78eHx8fZs2axYwZMzAMg3vu\nuYegIJ0XlNoxDINrB7WlZURTXl/eBGfMdpI5zDObX+Ku7nfQsVk7qyOKiEgdMswG+ElgnjxvqPOS\n3qumY3M0PZ+572/jRJM9+LbZWfHOpU43MCimfz2kvPzoz4z30th4L41NzXjNNTAi9aFVVCCPTO9H\nhyY9KNnVD1e5nX/vWsKSPctwupxWxxMRkTqgAiONUnCAL7+/pRfXdOhOUdJAKA5k7dGNzN/6LwrL\nPPcuNhERqR8qMNJoOew27oi/mqnDelGyfSCu7Eh2nfiJv/3wMmkF6VbHExGRS6ACI43eiD6tmDUl\nFvvh/pSltCO9MJO/bX6ZHcd3Wx1NREQukgqMXBY6twnlsTv707y4D6X7elBcXsr8rf9izZENuqO1\niEgDpAIjl42oZv78cVpfuof2OHlHa1/e/2k5/961hDJXudXxRESkFlRg5LLi38TBzMndmdCjJ4WJ\ncZiFIXyTuom5W14jrzTf6ngiIlJDKjBy2bEZBpOHdeDX4/vg3D0Q5/EW7M85yJxNczmal2J1PBER\nqQEVGLlsDezSgoduiyUgvT9lR67kREk2z/0wjx/TE62OJiIiF6ACI5e1dtHBPDY9ltZGb0r29Kas\n3OT1pIWsPLBaF/eKiHgxFRi57DULbMKDt/VmYKueFG0fAKX+fHzgM/65/d+UOkutjiciIuegAiMC\n+DjszJjYmZsH9qZ4exyuvFC2pG/j+R/mc6I42+p4IiJyBhUYkZMMwyB+QGvuuz4W24GBlKe34kh+\nCnM2zeVAziGr44mISCUqMCJn6NEhnEem9Sc0px+lh64mr7SAvyf8g+9Sf7A6moiInKQCI3IO0eFN\neXR6LFf796Zkd19c5Tbe3rmIpXs/xmW6rI4nInLZU4EROY+mfj7875SejO7Um6LtA6G4KV8cXs8/\nti2gqLzI6ngiIpc1FRiRathtNm4ZdSV3juhL6c44XNkRbD++i2c3zyO9MNPqeCIily0VGJEaGNoz\nhgd+3h/fowMpS23LscJ0/rb5JXZn7bU6mojIZUkFRqSGrmzVjMem9yemtB+l+7tRWFbCyz++wZdH\nv9aH3omI1DMVGJFaCA/x4+Hb+9I7og8lO2Nxlfvw3p4P+e/upThdTqvjiYhcNlRgRGqpia+d31zX\nlet696E4aSBmYTAbU77jpR9fJ7+0wOp4IiKXBRUYkYtgGAbXDm7H3RP7Y/4UhzOrOT9l7+eZzS+R\nkn/M6ngiIo2eCozIJejbKZI/3j6AwPSBlCV34HhxFs/+8DLbMrZbHU1EpFFTgRG5RFdEBfLYnbG0\nt8VS8lMvSsqcvJb4Np8dXKuLe0VEPEQFRqQOBAf48vtbenFNmz4U7xiAWdqEj/avZMGO/1DqLLM6\nnohIo+OwOoBIY+Gw25g2rhOtogJ5d60fPlcmsJkfySg8zq973EGzJiFWRxQRaTR0BEakDhmGwcg+\nrZg1uT/2A3GUZ7TkUN4Rntn0Eodyj1gdT0Sk0VCBEfGAzm3DeOyOAUTkDaDscCdySvJ4/odX2Hxs\ni9XRREQaBRUYEQ+JCg3gkWn96BYYS8mePpSXw5s7/sOyfZ/qjtYiIpdI18CIeJB/EwczJ3fng/VN\nWbHFnyadElh1aA0/Ze+jY7P2RDdtTnTTFrQIiMTH7mN1XBGRBkMFRsTDbIbB5GEdaBnZlDdX+WG0\n+ZH9HGJ/ziH3MgYGkf7hRAe2OFlqKr6iAiLxsemPqYjImfQ3o0g9GdilBc1DA3h5aVNO7M/D5p+H\n4Z+PLSCfJoGFZLpySS/KZGtGknsdm2Ej0j/CXWhiThacKP8I7Da7ha9GRMRaKjAi9ahddDCzZ/Rn\n1+Fs0rIKOXbyK21/IbmFpeBTis0/H8M/D5t/PvaAAtLLT5BWmM6PGYnu7dgNO1EBEZWO1lQUm0j/\ncBUbEbksqMCI1LMAPx/6XBV51vTC4jLSThRx7PjJUnOikGOZhRw7UUApRSeLTT42/3xcAXmklh8n\ntSCtyjbshp3mAZHuIzWnviL8w7EZumZfRBoPFRgRLxHg50O7aB/aRQdXmW6aJtn5paeP1pz8NTW1\ngOOF2eCX5y43Lv98ksszSCmoekNJu+Eg0i+CVsHRxFQ6FRXmF6piIyINkgqMiJczDIPQoCaEBjWh\nc5vQKvPKnS4ysotIyypyF5xj6QUcyztOvplVUWwCKopNank6x4rOKDY4CG9SUWxaB0e7T0eF+TXD\nMIz6fJkiIrWiAiPSgDnsNqLDmxId3vSseUUl5RWnoU6ekjp2ooDk3EwyizNw+uS4j9ikudJJLzlG\nQsbpD9mz40OoTzgxTVvQNjTGfeSmWZMQFRsR8QoqMCKNlH8TB21bBNO2xdmnpHIKSknLKiQ1q5Bj\nWfkczc4grSiNXFcW+OXh8s8nwy+NzLJjbMv+0b2u3fQh2BFOC/8oWjeLoWNYS7oEtCOnpIRTvcbA\nqPIrRsXj07XH4HQHOr00VBxtqvK8YqJ7XaPScpW3oFIlcvkxTNM0rQ5RWxkZeR7bdmRkkEe3LxdP\nY+N55U4Xx3OKOZZVSMrxfA6fOEZKQRrZ5ccptmVXnJLyK8CwefFfGyacbE2cfOT+f8WjymWn6rNT\nVcvAhs04/dgwKk+3VTwyTs+zYcMwbO5ptjOm2QwbNk4/PjXdbthPz6+87Mkv+6nHNht2w8Bm2LHb\nTs2rWNZuq9iGw2avtGzFMs1CAsjNLcYA92sAMAxbxbRK5e/UY/ezU6/ZOPVdOv3YOPn9PfX4XNuo\nWObUY9vJ0lp1m2evV7nIGu7cp9azGQbGye9LQy+u+vusZiIjg847T0dgRMTNYbfRPCyA5mEB9OwY\nAbR1zysuLSctq4iUrDwOZKZyNP8YmSUZFJo5mFTcGqHin0MV5ebU/83TMyr1iEoFqMrPoDOKkXGu\nolTNtqqZbtRoWyenGZW+cLpzGFWmn/Grcb59iMecKqvm6ZJT8dhGpQp0uohW+a9qMT1dRCuV0JPF\n0zhvyTyzcBrYbHbsp8pnpTJpt538Ovk4MMWP4sKySiX3dEmrKLlnPj69nHtZ2+kifLpwnv7Vdo5p\nVcr5Gb9e7PIOm8OSMqkCIyI14ufroE2LINq0CCKOGPf02vxL0jRNTBNcJ3896zlVp5umievM5xUb\nquF2zpx35naq7sNVsbJ7O66T09zruE5uD3C5zDPWBZfLhWmaOE0XLtOF0zRxuZw4zVPTnSe358JJ\npWkuExen1zVNFyZVH7tMFy4q1nVhYrpcnHx0epmT2zj1zGYzcLpcnC5zlQvWyYppnJ5nnrlcpUJW\nZZ5RaRmz4nnl2spZy3LWts0zt3PGeqZR9fmpLZgnX+OpV2kap+ad/u9UqTTdJdOFYZSfUTgrxto9\nDZMqP4NNqkaT8wqlJbTeDfcAAAjxSURBVI+PvK/e96sCIyL1xjAqTh/YaLiH/huSy/00xalS6nKZ\nOCt9uVznnuZ0uih3uShzluN0uSh3OU9Oc1Lucp2e5nJR5nLiOjnN/WVWzHedfOw0T89znXzuMl24\nXC7sDhulZeUnC2il8nXyscusVMzMytWsosBVKW3mycJnVi1xp+Zxar2TjyrPPzWl8nQqbZ1zreMu\nlxXz/397dxoS1f7Hcfw9aRJupaKFWFIGiZatPsi0hTYoKFrHzKlHQWQPCltkyjSKwCBopYUKwoim\nfaGyhTKEbKOwkGyRiNLSoil3c9T/g2tdu91/f/l3nTPn9nk9m+OMfA4/0Y/n/DhfH5+enb+Yf0MF\nRkRE/pUsFgteFgteXcDTRqX+7uXyn6AnWImIiIjpqMCIiIiI6ajAiIiIiOmowIiIiIjpuHUTb21t\nLatXr+bz5880NTWRlpZGaGgo2dnZAAwYMID169e7M5KIiIiYkFsLzOnTp+nbty/p6elUVFSwcOFC\nQkNDsdvtxMXFkZ6ezs2bNxkzZow7Y4mIiIjJuPUWUlBQEJ8+fQKgqqqKHj16UFZWRlxcHADjxo2j\nsLDQnZFERETEhNxaYKZOnUp5eTkTJ04kNTWVVatWERj456C5kJAQ3r9/785IIiIiYkJuvYV09uxZ\nwsPDOXDgACUlJaSlpREQ8Oegpo7OlQwK8sXb26uzYv50eJQYS2vjmbQunktr47m0Nr/GrQXmwYMH\nJCYmAhAdHU1jYyMul+vb1ysqKggLC/uf38fprOu0jHo6oufS2ngmrYvn0tp4Lq1Nx/ys5Ln1FlJk\nZCRFRUUAlJWV4efnR1RUFPfv3wfgypUrJCUluTOSiIiImJBbr8BYrVbsdjupqam4XC6ys7MJDQ1l\n3bp1tLS0MHjwYBISEtwZSUREREzIrQXGz8+Pbdu2/XD8yJEj7owhIiIiJmdp7ejOWREREREPoVEC\nIiIiYjoqMCIiImI6KjAiIiJiOiowIiIiYjoqMCIiImI6KjAiIiJiOiow7WzatAmr1UpycjKPHj0y\nOo60s3nzZqxWK7NmzeLKlStGx5F2GhoamDBhAqdOnTI6irRz7tw5pk2bxsyZM8nPzzc6jgC1tbUs\nXboUm81GcnIyBQUFRkcyNbc+yM6T3b17l1evXuFwOCgtLcVut+NwOIyOJcDt27d5/vw5DocDp9PJ\njBkzmDRpktGxpM3u3bvp3r270TGkHafTya5duzh58iR1dXXs2LGDsWPHGh3rt3f69Gn69u1Leno6\nFRUVLFy4kLy8PKNjmZYKTJvCwkImTJgAQFRUFJ8/f6ampgZ/f3+Dk0l8fDxxcXEABAYGUl9fT3Nz\nM15enTeRXDqmtLSUFy9e6I+jhyksLGTkyJH4+/vj7+/Phg0bjI4kQFBQEE+fPgWgqqqKoKAggxOZ\nm24htfnw4cN3P0zBwcG8f//ewETylZeXF76+vgCcOHGC0aNHq7x4iJycHDIyMoyOIX/x5s0bGhoa\nWLx4MSkpKRQWFhodSYCpU6dSXl7OxIkTSU1NZfXq1UZHMjVdgfkvNGHB81y7do0TJ05w8OBBo6MI\ncObMGYYMGULv3r2NjiJ/49OnT+zcuZPy8nIWLFjAjRs3sFgsRsf6rZ09e5bw8HAOHDhASUkJdrtd\ne8d+gQpMm7CwMD58+PDtdWVlJaGhoQYmkvYKCgrYs2cP+/fvJyAgwOg4AuTn5/P69Wvy8/N59+4d\nPj4+9OrVSxPlPUBISAhDhw7F29ubPn364Ofnx8ePHwkJCTE62m/twYMHJCYmAhAdHU1lZaVuh/8C\n3UJqM2rUKC5fvgxAcXExYWFh2v/iIaqrq9m8eTN79+6lR48eRseRNlu3buXkyZMcO3aMOXPmsGTJ\nEpUXD5GYmMjt27dpaWnB6XRSV1en/RYeIDIykqKiIgDKysrw8/NTefkFugLTZtiwYcTGxpKcnIzF\nYiErK8voSNLm4sWLOJ1Oli1b9u1YTk4O4eHhBqYS8Vw9e/Zk8uTJzJ07F4C1a9fSpYv+XzWa1WrF\nbreTmpqKy+UiOzvb6EimZmnVZg8RERExGVVyERERMR0VGBERETEdFRgRERExHRUYERERMR0VGBER\nETEdFRgR6VRv3rxh4MCB2Gy2b1N409PTqaqq6vD3sNlsNDc3d/j98+bN486dO/9PXBExCRUYEel0\nwcHB5Obmkpuby9GjRwkLC2P37t0d/nxubq4e+CUi39GD7ETE7eLj43E4HJSUlJCTk4PL5aKpqYl1\n69YRExODzWYjOjqaJ0+ecOjQIWJiYiguLubLly9kZmby7t07XC4X06dPJyUlhfr6epYvX47T6SQy\nMpLGxkYAKioqWLFiBQANDQ1YrVZmz55t5KmLyD9EBUZE3Kq5uZmrV68yfPhwVq5cya5du+jTp88P\nw+18fX05fPjwd5/Nzc0lMDCQLVu20NDQwJQpU0hKSuLWrVt069YNh8NBZWUl48ePB+DSpUv069eP\n9evX09jYyPHjx91+viLSOVRgRKTTffz4EZvNBkBLSwsjRoxg1qxZbN++nTVr1nx7X01NDS0tLcAf\n4z3+qqioiJkzZwLQrVs3Bg4cSHFxMc+ePWP48OHAH4NZ+/XrB0BSUhJHjhwhIyODMWPGYLVaO/U8\nRcR9VGBEpNN93QPTXnV1NV27dv3h+Fddu3b94ZjFYvnudWtrKxaLhdbW1u9m/XwtQVFRUVy4cIF7\n9+6Rl5fHoUOHOHr06K+ejoh4AG3iFRFDBAQEEBERwc2bNwF4+fIlO3fu/OlnBg8eTEFBAQB1dXUU\nFxcTGxtLVFQUDx8+BODt27e8fPkSgPPnz/P48WMSEhLIysri7du3uFyuTjwrEXEXXYEREcPk5OSw\nceNG9u3bh8vlIiMj46fvt9lsZGZmMn/+fL58+cKSJUuIiIhg+vTpXL9+nZSUFCIiIhg0aBAA/fv3\nJysrCx8fH1pbW1m0aBHe3vq1J/JvoGnUIiIiYjq6hSQiIiKmowIjIiIipqMCIyIiIqajAiMiIiKm\nowIjIiIipqMCIyIiIqajAiMiIiKmowIjIiIipvMfovxlIuVMcd8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + } + ] +} \ No newline at end of file From 380947ccac9d72209dede811550adb0525ca3707 Mon Sep 17 00:00:00 2001 From: Amit Rai <42401957+ardev472@users.noreply.github.com> Date: Sun, 17 Feb 2019 20:58:09 +0530 Subject: [PATCH 05/11] Created using Colaboratory --- validation.ipynb | 1316 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1316 insertions(+) create mode 100644 validation.ipynb diff --git a/validation.ipynb b/validation.ipynb new file mode 100644 index 0000000..4df2e39 --- /dev/null +++ b/validation.ipynb @@ -0,0 +1,1316 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "validation.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "4Xp9NhOCYSuz", + "pECTKgw5ZvFK", + "dER2_43pWj1T", + "I-La4N9ObC1x", + "yTghc_5HkJDW" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "zbIgBK-oXHO7", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Validation" + ] + }, + { + "metadata": { + "id": "WNX0VyBpHpCX", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Use multiple features, instead of a single feature, to further improve the effectiveness of a model\n", + " * Debug issues in model input data\n", + " * Use a test data set to check if a model is overfitting the validation data" + ] + }, + { + "metadata": { + "id": "za0m1T8CHpCY", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "As in the prior exercises, we're working with the [California housing data set](https://developers.google.com/machine-learning/crash-course/california-housing-data-description), to try and predict `median_house_value` at the city block level from 1990 census data." + ] + }, + { + "metadata": { + "id": "r2zgMfWDWF12", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup" + ] + }, + { + "metadata": { + "id": "8jErhkLzWI1B", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "First off, let's load up and prepare our data. This time, we're going to work with multiple features, so we'll modularize the logic for preprocessing the features a bit:" + ] + }, + { + "metadata": { + "id": "PwS5Bhm6HpCZ", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + "np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "J2ZyTzX0HpCc", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Scale the target to be in units of thousands of dollars.\n", + " output_targets[\"median_house_value\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] / 1000.0)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "sZSIaDiaHpCf", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "For the **training set**, we'll choose the first 12000 examples, out of the total of 17000." + ] + }, + { + "metadata": { + "id": "P9wejvw7HpCf", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "outputId": "1247712b-3cc4-4c24-d88f-5371b2c59cc6" + }, + "cell_type": "code", + "source": [ + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_examples.describe()" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean35.6-119.528.62644.8538.81426.9500.73.92.0
std2.12.012.62181.0422.21129.5385.21.91.3
min32.5-124.31.02.01.06.01.00.50.0
25%33.9-121.818.01463.0296.0792.0282.02.61.5
50%34.2-118.529.02127.0433.51167.0409.03.61.9
75%37.7-118.037.03154.0648.01713.2605.04.82.3
max41.9-114.352.032627.06445.028566.06082.015.055.2
\n", + "
" + ], + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 35.6 -119.5 28.6 2644.8 538.8 \n", + "std 2.1 2.0 12.6 2181.0 422.2 \n", + "min 32.5 -124.3 1.0 2.0 1.0 \n", + "25% 33.9 -121.8 18.0 1463.0 296.0 \n", + "50% 34.2 -118.5 29.0 2127.0 433.5 \n", + "75% 37.7 -118.0 37.0 3154.0 648.0 \n", + "max 41.9 -114.3 52.0 32627.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1426.9 500.7 3.9 2.0 \n", + "std 1129.5 385.2 1.9 1.3 \n", + "min 6.0 1.0 0.5 0.0 \n", + "25% 792.0 282.0 2.6 1.5 \n", + "50% 1167.0 409.0 3.6 1.9 \n", + "75% 1713.2 605.0 4.8 2.3 \n", + "max 28566.0 6082.0 15.0 55.2 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 10 + } + ] + }, + { + "metadata": { + "id": "JlkgPR-SHpCh", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "outputId": "ad197989-1847-4564-f0d9-39a43287417b" + }, + "cell_type": "code", + "source": [ + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "training_targets.describe()" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count12000.0
mean208.4
std116.8
min15.0
25%120.5
50%180.9
75%266.4
max500.0
\n", + "
" + ], + "text/plain": [ + " median_house_value\n", + "count 12000.0\n", + "mean 208.4\n", + "std 116.8\n", + "min 15.0\n", + "25% 120.5\n", + "50% 180.9\n", + "75% 266.4\n", + "max 500.0" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 11 + } + ] + }, + { + "metadata": { + "id": "5l1aA2xOHpCj", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "For the **validation set**, we'll choose the last 5000 examples, out of the total of 17000." + ] + }, + { + "metadata": { + "id": "fLYXLWAiHpCk", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "outputId": "739186aa-946a-4585-d135-d11c03738b84" + }, + "cell_type": "code", + "source": [ + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_examples.describe()" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean35.7-119.628.72640.9540.81436.1502.53.82.0
std2.22.012.52177.5419.81190.8383.01.90.9
min32.5-124.22.011.03.03.04.00.50.1
25%33.9-121.818.01459.8297.8782.8280.02.61.5
50%34.3-118.629.02129.5434.51164.0408.53.51.9
75%37.7-118.037.03146.2651.01742.2607.04.72.3
max42.0-114.652.037937.05471.035682.05189.015.017.6
\n", + "
" + ], + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 35.7 -119.6 28.7 2640.9 540.8 \n", + "std 2.2 2.0 12.5 2177.5 419.8 \n", + "min 32.5 -124.2 2.0 11.0 3.0 \n", + "25% 33.9 -121.8 18.0 1459.8 297.8 \n", + "50% 34.3 -118.6 29.0 2129.5 434.5 \n", + "75% 37.7 -118.0 37.0 3146.2 651.0 \n", + "max 42.0 -114.6 52.0 37937.0 5471.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1436.1 502.5 3.8 2.0 \n", + "std 1190.8 383.0 1.9 0.9 \n", + "min 3.0 4.0 0.5 0.1 \n", + "25% 782.8 280.0 2.6 1.5 \n", + "50% 1164.0 408.5 3.5 1.9 \n", + "75% 1742.2 607.0 4.7 2.3 \n", + "max 35682.0 5189.0 15.0 17.6 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 12 + } + ] + }, + { + "metadata": { + "id": "oVPcIT3BHpCm", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "outputId": "e3209467-dbb1-4b96-9a30-4ffdfc7cc252" + }, + "cell_type": "code", + "source": [ + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "validation_targets.describe()" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count5000.0
mean204.8
std114.0
min15.0
25%118.4
50%179.2
75%261.6
max500.0
\n", + "
" + ], + "text/plain": [ + " median_house_value\n", + "count 5000.0\n", + "mean 204.8\n", + "std 114.0\n", + "min 15.0\n", + "25% 118.4\n", + "50% 179.2\n", + "75% 261.6\n", + "max 500.0" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 13 + } + ] + }, + { + "metadata": { + "id": "z3TZV1pgfZ1n", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Examine the Data\n", + "Okay, let's look at the data above. We have `9` input features that we can use.\n", + "\n", + "Take a quick skim over the table of values. Everything look okay? See how many issues you can spot. Don't worry if you don't have a background in statistics; common sense will get you far.\n", + "\n", + "After you've had a chance to look over the data yourself, check the solution for some additional thoughts on how to verify data." + ] + }, + { + "metadata": { + "id": "4Xp9NhOCYSuz", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution." + ] + }, + { + "metadata": { + "id": "gqeRmK57YWpy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's check our data against some baseline expectations:\n", + "\n", + "* For some values, like `median_house_value`, we can check to see if these values fall within reasonable ranges (keeping in mind this was 1990 data — not today!).\n", + "\n", + "* For other values, like `latitude` and `longitude`, we can do a quick check to see if these line up with expected values from a quick Google search.\n", + "\n", + "If you look closely, you may see some oddities:\n", + "\n", + "* `median_income` is on a scale from about 3 to 15. It's not at all clear what this scale refers to—looks like maybe some log scale? It's not documented anywhere; all we can assume is that higher values correspond to higher income.\n", + "\n", + "* The maximum `median_house_value` is 500,001. This looks like an artificial cap of some kind.\n", + "\n", + "* Our `rooms_per_person` feature is generally on a sane scale, with a 75th percentile value of about 2. But there are some very large values, like 18 or 55, which may show some amount of corruption in the data.\n", + "\n", + "We'll use these features as given for now. But hopefully these kinds of examples can help to build a little intuition about how to check data that comes to you from an unknown source." + ] + }, + { + "metadata": { + "id": "fXliy7FYZZRm", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Plot Latitude/Longitude vs. Median House Value" + ] + }, + { + "metadata": { + "id": "aJIWKBdfsDjg", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's take a close look at two features in particular: **`latitude`** and **`longitude`**. These are geographical coordinates of the city block in question.\n", + "\n", + "This might make a nice visualization — let's plot `latitude` and `longitude`, and use color to show the `median_house_value`." + ] + }, + { + "metadata": { + "id": "5_LD23bJ06TW", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 498 + }, + "outputId": "7a0ee1be-de89-4737-a45e-f84a3d36e03b" + }, + "cell_type": "code", + "source": [ + "plt.figure(figsize=(13, 8))\n", + "\n", + "ax = plt.subplot(1, 2, 1)\n", + "ax.set_title(\"Validation Data\")\n", + "\n", + "ax.set_autoscaley_on(False)\n", + "ax.set_ylim([32, 43])\n", + "ax.set_autoscalex_on(False)\n", + "ax.set_xlim([-126, -112])\n", + "plt.scatter(validation_examples[\"longitude\"],\n", + " validation_examples[\"latitude\"],\n", + " cmap=\"coolwarm\",\n", + " c=validation_targets[\"median_house_value\"] / validation_targets[\"median_house_value\"].max())\n", + "\n", + "ax = plt.subplot(1,2,2)\n", + "ax.set_title(\"Training Data\")\n", + "\n", + "ax.set_autoscaley_on(False)\n", + "ax.set_ylim([32, 43])\n", + "ax.set_autoscalex_on(False)\n", + "ax.set_xlim([-126, -112])\n", + "plt.scatter(training_examples[\"longitude\"],\n", + " training_examples[\"latitude\"],\n", + " cmap=\"coolwarm\",\n", + " c=training_targets[\"median_house_value\"] / training_targets[\"median_house_value\"].max())\n", + "_ = plt.plot()" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwEAAAHhCAYAAAA2xLK+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl4XVd56P/v2nufSTqaLcnyGM92\nPI/xbMexYztxCCQpJECAwr2XAmUohZa25EfpbQuFm4dceIByb2+T0JA0UIdMOHFIHGdwHM/zPMrW\nPI9n3Huv3x/H1uBzJEu2bNnW+3mePJHOsPc6krXWetfwLqW11gghhBBCCCEGDKO/CyCEEEIIIYS4\nviQIEEIIIYQQYoCRIEAIIYQQQogBRoIAIYQQQgghBhgJAoQQQgghhBhgJAgQQgghhBBigJEgQFwT\njzzyCL/5zW+SHn/++ed55JFHun3vz372M/7u7/4OgM9+9rMcOnQo6TU7d+5kxYoVly3Hvn37OHr0\nKADPPPMMTzzxRE+K3yMrVqzgzjvvZM2aNSxdupTPfOYzvPPOOz167+nTp9mxY0eflUUIIW4V3/ve\n91izZg1r1qxh8uTJbfXsmjVraGlp6dW11qxZQ01NTbevefzxx3nuueeupsidTJgwgVWrVrF69WqW\nLl3KF7/4Rfbs2dOj93Zss4S41qz+LoC4NT3wwAOsX7+eT33qU50ef+mll3jggQd6fJ2nn376qsqx\nfv16Zs+ezcSJE/n0pz99VddK5cc//jFz5swBYOvWrfzN3/wN3/rWt1i3bl2373vzzTexbZu5c+f2\neZmEEOJm9v3vf7/t6xUrVvCjH/2orZ7trddff/2yr/nLv/zLK7p2d/7jP/6DwYMHo7Xm9ddf58tf\n/jI//elPL1vnd2yzhLjWZCZAXBNr167l6NGjnD9/vu2xkpISjhw5wtq1awH43e9+x9q1a7n77rv5\n1Kc+RWlpadJ1VqxYwc6dOwH4xS9+wbJly/joRz/KBx980PaacDjMN77xDVavXs2KFSv4l3/5FwCe\ne+45XnrpJX784x/z5JNPdpphKCsr4wtf+AKrV69m3bp1vPjii21lXLx4Mb/+9a+57777WLJkCRs2\nbOjRZ16wYAH//M//zI9+9CO01riuy/e///22cn37298mHo+zadMmfvWrX/HrX/+aH/7whwD8/Oc/\nZ/Xq1axcuZIvfvGLNDU19fZHLoQQA8Kjjz7KT37yE9auXcvu3bupqanhC1/4AmvWrGHFihU8+eST\nba+dMGECFRUVbNu2jU984hM8/vjjrF27lhUrVrB9+3YAvvOd7/CLX/wCSLQ5//mf/8lDDz3E4sWL\n2+pogH/9139lwYIFPPjgg/zmN7/p0Wy0Uoq1a9fyzW9+k8cffxzoeZvVVRsiRF+RIEBcE8FgkJUr\nV/LSSy+1PfbKK69w1113EQwGqa2t5R/+4R948skneeONNxgxYkRbJZzKyZMneeqpp1i/fj3r16/n\n2LFjbc8999xztLa28vrrr/P73/+eF154gZ07d/LII48wbdo0vv3tb/Onf/qnna732GOPMW/ePDZu\n3MivfvUr/vEf/5GSkhIA6uvrMQyDV155hb/927/t1RKi+fPn09zczJkzZ/jjH//Izp07efXVV3nt\ntdc4dOgQGzZsYMWKFaxatYrPfOYzfOc73+HgwYP85je/Yf369bzxxhvEYjGeeeaZHt9TCCEGmoMH\nD/KHP/yBWbNm8ctf/pJhw4bx+uuv8/TTT/P4449TXl6e9J7Dhw8zffp0XnvtNT75yU/yy1/+MuW1\nd+zYwfPPP8/69et55plnqKio4MSJE/zbv/0bL730Es8++2yPZhg6WrFiBfv27SMSifS4zeqqDRGi\nr0gQIK6ZBx54gFdeeaXt+5dffrltKVBeXh67du1i8ODBAMyZM6fTrMGlduzYwdy5cxk0aBCmafKR\nj3yk7bnPf/7z/OIXv0ApRVZWFuPGjWvr0KcSj8f54IMP+OQnPwnA0KFDueOOO/jwww8BsG27rZyT\nJ0+mrKysx5/ZMAzS0tJoaWlh9erVrF+/Ho/Hg8/nY+rUqSk/45QpU9i8eTPBYBDDMJg5c2a3Pwsh\nhBjoli1bhmEkujDf/e53eeyxxwAYPnw4+fn5KduA9PR0Vq5cCXRft993332YpklhYSF5eXmUl5ez\nY8cO5s2bR0FBAT6fjwcffLBX5Q0Gg7iuS2tra4/brJ62IUJcKdkTIK6Z+fPnE41G2bdvH4ZhEA6H\nmT9/PgCO4/DTn/6UTZs24TgOra2tjBo1qstrNTY2kpGR0fZ9ZmZm29dnz57lhz/8IadPn8YwDCoq\nKrrdd9DQ0IDWOul6dXV1AJimSVpaGpDo1Luu2+PPHIlEqK2tJTc3l7q6Ov7n//yfHD58GKUUNTU1\nfPazn016Tzgc5gc/+AHbtm1r+6zLly/v8T2FEGKgycrKavv6wIEDbaP/hmFQXV2dst7uWOd3V7cH\ng8G2r03TxHEcmpqaOt2zsLCwV+UtKSnB4/GQkZHR4zarp22IEFdKggBxzRiGwf3338+rr76KaZrc\nf//9bSM3GzZsYNOmTTzzzDPk5uby29/+ttOswaUyMzNpbm5u+76+vr7t63/4h39g8uTJ/PznP8c0\nTR5++OFuy5WTk4NhGDQ2NrZV6g0NDeTl5V3NxwVg48aNjBw5kmHDhvHYY49hWRavvPIKXq+3y81n\nTz/9NGfPnuWFF14gPT2dn/zkJ1RWVl51WYQQYiD49re/zWc/+1keeeQRlFIsWbKkz+8RDAYJhUJt\n31dVVfXq/Rs3bmTevHl4vd4et1k/+clPetSGCHGlZDmQuKYeeOABNm3axFtvvdVppKO2tpahQ4eS\nm5tLfX09r732Gq2trV1eZ+bMmezatYu6ujocx+Hll1/udK1JkyZhmiZbtmyhuLi4rbK2LKtT8HDx\nscWLF/P8888DcO7cOXbu3MnChQuv6rNu27aNH//4x/zVX/1VW7nGjx+P1+vl6NGj7NmzJ2W5amtr\nGT16NOnp6ZSWlvLOO+90amyEEEJ0rba2lilTpqCU4ve//z3hcLjP69Bp06axbds26urqiMVibckk\nLudidqCnn36av/iLv2grb0/arO7aECH6gswEiGtq5MiRFBQUtH190bp16/jDH/7AqlWrGD58ON/4\nxjf40pe+xA9/+EPS09OTrjNp0iQefvhhPvaxj5Gdnc29997L8ePHAfjSl77ED37wA37xi19w1113\n8ed//uf89Kc/ZdKkSaxcuZIf//jHnD9/vtMU7/e//32++93v8sILL+DxePjHf/xHioqKut1LkMq3\nv/1tfD4fra2tFBUV8U//9E8sW7YMSOxV+Ou//mteeOEF5syZw1//9V/zd3/3d0ybNo0777yTb33r\nW5SWlvL1r3+dr33ta6xevZoJEybwne98h69+9as89dRTfO5zn+vtj1wIIQaUr3/963zlK18hOzub\nhx9+mE984hM89thjPPvss312j2nTpvGxj32Mj33sYxQVFXHPPffw1FNPdfn6Rx99FNM0aWlpYcyY\nMfyf//N/mDp1KtDzNqu7NuRilj0hrobSWuv+LoQQQgghxI1Ma41SCoDNmzfzxBNP9HhGQIgbkSwH\nEkIIIYToRl1dHfPnz6e0tBStNa+99hozZszo72IJcVVkJkAIIYQQ4jKee+45/v3f/x2lFKNHj+af\n/umf+iShhBD9RYIAIYQQQgghBhhZDiSEEEIIIcQAI0GAEEIIIYQQA8x1SRFq2w719TdvbtucnLSb\ntvxS9v4hZe8fN3PZ8/MzLv+iAeBmbi9u5n9/Uvb+czOXX8reP/qqvbguMwGWZV6P21wzN3P5pez9\nQ8reP27msouEm/l3KGXvHzdz2eHmLr+U/eYmy4GEEEIIIYQYYCQIEEIIIYQQYoCRIEAIIYQQQogB\nRoIAIYQQQgghBhgJAoQQQgghhBhgJAgQQgghhBBigJEgQAghhBBCiAFGggAhhBBCCCEGGAkChBBC\nCCGEGGAkCBBCCCGEEGKAkSBACCGEEEKIAUaCACGEEEIIIQYYCQKEEEIIIYQYYCQIEEIIIYQQYoCR\nIEAIIYQQQogBRoIAIYQQQgghBhgJAoQQQgghhBhgJAgQQgghhBBigJEgQAghhBBCiAFGggAhhBBC\nCCEGGAkChBBCCCGEGGAkCBBCCCGEEGKAkSBACCGEEEKIAUaCACGEEEIIIQYYCQKEEEIIIYQYYCQI\nEEIIIYQQYoCRIEAIIYQQQogBRoIAIYQQQgghBhgJAoQQQgghhBhgJAgQQgghhBBigJEgQAghhBBC\niAFGggAhhBBCCCEGGAkChBBCCCGEGGAkCBBCCCGEEGKA6VEQEIlEWLlyJS+88ALl5eV87nOf49Of\n/jSf+9znqK6uvtZlFEIIcZOQ9kIIIW4OPQoCfvnLX5KVlQXAE088wcc//nGeeeYZVq1axZNPPnlN\nC3i9NbYqyusVttPfJYFQxOV4cYz65hugMEII0QMDqb0QQoibmXW5F5w6dYqTJ0+yfPlyAL73ve/h\n8/kAyMnJ4dChQ9e0gNdLUxjeO+KlvMHAdhWZAZeJQxxmjbKve1lcV/O7P7aw50iMxhaXND9MGu3j\nU/cGCfhkBZcQ4sY0UNoLIYS4FVw2CPiXf/kXHnvsMV588UUA0tLSAHAch2effZavfOUrPbpRfn7G\nVRTz2tJa8+qbDiV17Y81hQ12njYoyPORn399y//My7Vs3hFp+z4UgV2Ho/i8Ft/808JeX+9G/tlf\njpS9f0jZxZUYCO3F5UjZ+8fNXHa4ucsvZb95dRsEvPjii8yYMYPhw4d3etxxHP7qr/6K+fPns2DB\ngh7dqLq6+cpLeY2dqTIoqfECqtPjroY9J+PMHOOjqqqZUxWK2haDzIBmwhAX4xoMyruu5sO9LSmf\n23u0lWMn68nNumzs1iY/P+OG/tl3R8reP6Ts/eNmb4wGSnvRnZv935+UvX/czOWXsvePvmovuu1N\nbt68mfPnz7N582YqKirwer0MHjyYF198kZEjR/Lnf/7nfVKI/tYQMrg0ALgoHIWWsMvvt3koq29/\n3YFil5XT4+QGdZ+WJRrXNLe6KZ8LRaCixulVECCEENfDQGkvrpVQ2OWdPTGq613S/Ir5U70MKzCv\n+rqNzQ6bd0Wpb3IJpiuWzPRRmNu5DXFdzVsfNLB9XwMoxZQxPu6YnoZSqdtFIcStodve5BNPPNH2\n9c9+9jOGDh1KTU0NHo+Hr33ta9e8cNdLQaaDoSxcnVzhZQQ0r+1wKavvXBlXNRm8d9ji/nnxPi2L\nz6vIzTJpjSTvRchMVwwffHMGAI6jicQ0AZ/CMKRhEeJWcyu3F44LHx5VnKtWOA4MytLcMUGTE+yb\n61fVOTz5apjymvYBoN1H49y/zM8dU7xXfN2zZXGeeqWVmob26+45GuPh1WlMHZvYq+G6ml/9to4d\nB8Ntr/lgT4iDJ6N84cEcCQSEuIX1ukf57LPPEo1GefTRRwEYM2YMf//3f9/X5bquhuZqhubYnC43\nsO3EyL5pKdLSFGMHO3xwLPVoTHm9QUOrIju982yAqzVHz8RoDWmmjvfh9/a8EjWUYu4UH6VVNu4l\nkwxer8EH+6PcOSeA13NzVMyuq3lxUzN7jkRobHHJzTKZO8XPPUuC0rgIcYu7FdoLreHV7QbHS9vX\nf5bXQ1mt5sFFDlnpV3+P1z+MdgoAAEJReHNHjNkTPVjWldWVG94PdwoAABpbNK9/EGHKGC9KKT7Y\n29opALho674QMyb6mTMl7YruLYS48fU4CPjqV78KwAMPPHDNCtNftIaWFpvWVoVhGCilsG1NbprL\n0ByXeBcJgmxXEblkIuBYcYzfv9lCcXkirWdeVitLZvtZvbDnLcXK+QEAth+MUFHr4LiJBqC20eWl\nt0McPBHjyx/PJOC/PpmC4nHNOztbqG9yGDzIYuGMdEyzZ43Sbzc28daHobbvSyM2ZVUtaA3rlt3c\na6CFEKndSu1FcRWcKE2u72qbFTtOKFbOuPoloefKU6eBrq532X8yzqyJvZ8NCEc1xeWpG69z5Q6l\nVQ7DCi2OnIqmfI3WcOBEhDlT0mgNOWze0Uoo4jJmhI+ZE/39Ooiz73iUrfui1DU6ZAYNVsyH22/r\nt+IIcdO6OdeW9CGtNT/7ryil1S627WKYBj6/RWZWgPI6g5NlmoJsOFeV/N6cdJf8zPYGIBrTPLeh\nmcra9pGX2kaXP7wbIj/HZNYk/2XLU1EPu08qWuNpTJzoo35nI6Fw55GcUyU2G7eG+OidfTQX3Y3i\nshj/b30dJZXtjck7O1v58sN5l92bEIm67DkSSXpca9hxIMLaxcEeBxNCCNEfzlQodBd7xg6eVQR8\nMHuMxn/lq3a6daV9bdX25hRBiur5dXcfDvHchkZqGxKBiqFamDLOz5cfyeuXGelt+yM8/0YLkdiF\nB6ocTpyr4b6laaycL7MWQvTGgE86/9K7UYrLbWw70dF2HZdwa4ym+sTo9flquGOiid/qXJFahmbK\nCBuzw0/wvd3hTgHARXEbdhxKPdrS0ZHz8Owm2H0CjpXAkfMmwbwsvP7kzvaZsutzfsHzrzV2CgAA\nTp+P8/yGxsu+t6LGpq4x9Sbn2kab1nDq54QQ4kZR1dD1SH/cMdh61OTpTQatl6/iu3RbUeolpwU5\nBlPHerp9r+tq1m+O8K0nGvjaj+r45uN1/NsLTdiuy6ghqQdqRhaZDMlP3PP2sakHpwwFk8f6+a83\nmtoCAEhkzdt/PMLv37x8G9DXtNa8szvSHgBcELfhg30R4nbfJuoQ4lY3oIMArTUfHkrdmY5E4ti2\nAwqm3GawemaMsYNtCrMcRhU4rJwWZ/ptnTuxXWX1AZJG85PLAlsPJdaBdmRZJsGs5NGN6/GLK6+O\nc/J86pbteHGUaKz7zzQoxyIjPfVIUWbQvG7LmYQQ4kpl+F0cp/u6rjls8OIHV94BXbvQx5D8znVl\nuh9W3eHF6jBbWlnn8O7uCEfOxNA6cb/Hnw3x1gcthEKJwaxI1GX30Rj/+5km7l7goyCncz2bnaFY\nszDQtpxnwfQ07pgW6DTXoRQsmplGNOZSUZO6jTx25iqinivUEtJdlqei1qW06vof7inEzWxALweK\n2/rCyEFyR1VriMdtRhUkfkTDB2mGD+q+gukuc8+g7O5/1LVNUF6X+jmvz8Kf7sN1NI5t49guo4d1\nPzrUF8IRjd3FR47bGtsBXzfvD6YZTB7r58N9yZvOpo/34bnCzW5CCHG9jCiAHccdfD6NaV4yYt+h\nCiuvVbRGNEfKvcRsyApoRuTF6UkytLxsk699Ish7e6JU1bkE/AYLpnooGpS4n+Nqnns9xIGTMcLR\nRCd91BCTeVO8nD2fXL8ClFY7FJc5/MWnM9i8M5EiNCPdYOlMH3nZ7Z/DMBT//aFcls7TbN3TgAKm\njfcz6/YAf9ya+swaoF9G3X1ehd9rEEkxAOXz0OWgkxAitQEdBHRbXSgI+lwmjeh5RTfrdh/v7Q5z\nvLhzzzkn02D53O73AxhG4r+uBpxM08AwwLQMcoMOqxemcb7S5v29URqaXTLTDRZO8zJqaN8FByOH\neBhaYKUcXRk+2EN64PIj+Z9elwUaDp6I0BLWZAYNZkz08eDdmX1WTiGEuFZuv02x45jLseIIwaAf\nnz9Rx6pLqj8XxQvbIBRtHxo5W2exYFQYXw+qZb9XseqO1O3EhvfDbD/UvgZGazhd6nC+Kozupokq\nqbK5c26A+5Z2v1beMBRL52Yy6bbOH2ru5AB/2NxMcyi5YRpRdI02QXTD61GMG2mx41As6bmxIzzk\nyRk6QvTKgP6L8XgMMtMVjS06KdOBAj53t9GrTVmGUnzxoUxeeKuVE+fixOMwbLDFqvkBhg/uvhXI\nCcLQPDhXnfycbbttFb1SirQ0D8eK4/znGyGaW9tbgIMnYzy0Mo3Zk7obn+8501TcNT/I7zY2EO4w\n85uZbrB6Uc8y+/i8ii88mE1Ds01VrcOQfItg+tUfgCOEENeDoRQP36n44W8ULS0RPF4D00quwzIy\nLELRzg1GXavFwTIfs0de3dKZw2dSn0cTi3U/SBXoRXrqVHKyLBbPTmPjlhbcDnFAQZ7J2iXXPjFF\nKn9ydzrNIc2J4jiOm2irJ4zy8Ym7ZVOwEL01oIMAgDV3ePjd2zFcNxEIaK3RGubdbpCb1fvOalrA\n5NPrEqPcWicHF11RCpZPg5c/hIbW9scd2yHS2nnUo6pO88cPI50CAIDWCGzaEWXmRC9GH6VvWz4v\nSG62yZY9IZpaHPKyLZbPTWfsiMsHGk0tDhu3tFBSaeP1KKaN9zFu5PUfPRJCiKsR8BksmWby1m6H\nluYYwUwfZoesEI7tMCgvdSe0trXrdiQW1+w8EiMah1njLbIyUr82nJxkDaBtX0BXFky/fEa6y/mT\n1dkMKfCw+3CYcMSlKN/D3QuDFA669ktSUwkGTL76cCZHTsc5X2FTOMjkroV51NZ2vXRJCJHagA8C\n7pjiwzQVWw/EqG5InMo7fayHlfOuvrPa2zzKIwrh86thx3Gob9HsORajtdVOyvDm82rKalLnlS6p\ndKisdSga1He/2mnjA0wbH+jVe+qbHH72TB3nO2QW2ncsyrnyOJ9al91nZRNCiOthxSyLE6Was+U2\ndVVxAulelKGIRW3GDvd0Cgo6uvTQx4v2HI3xhw+i1FzIPvTW9ijzp3pZtzi5416Qa1DXlLwkJy0A\nsbgiFk2+yfI5PoYW9E07sGhmOotm9sGpaH1EKcXtY7zcPibRTssp9EJcmQEfBADMmeRlzqQbY4Q6\nzQ/LpgEoGuo1B08nv2b0UJMjJ+PEUswQmxZ4+2HD7aWzHq+919IpAEi8Bj7cF2bJ7HRGFPXPKJIQ\nQlwJw1D8j/s8vL/f4HS5S1NLnIBXsWSGxbhhBm8ecQjFk0fys9OSO+9NrQ4vvhOlscNsbksY3t4Z\no2iQyeyJnevHxdN9FFfYSTMCsyf6mTnBw3MbW6m8MDDk8yoevCuNxTN7N3AjhBh4JAi4gT2w3Es0\nHuV0qYvjgmVC0SCTiG1gpQUIWBrbdoh3OLZ49BCzU+aHaylua57/Qy0HjocIR1yGFHi5e1Ems6YE\nOV+Reg1rJAZ7j0YkCBBC3HRMQ7FshsWyGcnPjcmPc6TCxO7Q50/zOkwoTN4P8MH+eKcA4CLHhf0n\n4klBwLTxXpSC9/dFqa53SfcrJo/xcPcCP4ZS/H//3UNdo4urNYOyzX49zVcIcfOQIOAGlplu8D/u\n93OqxKWs1sHVinf3ayobAQxMC0zLxDAU0VCMwjyD+5Zev9GfXz5byfb97RsY6hrDnC2N8iVLdcpt\nfSlJDSqEuNWMK4wztNDPoTNxYk4iu9yY/DhBf3JnP9zNPuFIF5t9p47zMnVc6hlrpVSfD/7UNcbZ\nsrsFBSyenUF2pnQXhLjVyF91P4rbmg8PO1TUgtcLs8YaDC/svK5UKcXY4SZjh5s8/Xo86aREAJ/P\nYuEUk3sW+PBdZTaInjp9PsLeI61Jj7eEXN7a2sSE0UGOnkkubHaGweJZMk0thLj1jMyHNLrYxdvB\nqCKTd7p4rjC3/7OnvfhmHRvfa2w7APO1dxq5Z3kW9y7P6eeSCSH6kgQB/aQ14vIfGx3OVbWP+uw9\n4bJytsGiqal/LbVNqUeIXK0oyDWvWwAAcORUOOWeBIDKmjhf+0yQ8+U2e49F2lLLZaQb3HdnkAxJ\nESqEGMCmjbeYeNDkaHHnBA+FuQbLZ6deKuk4mj9uj3DinI1ta4YVmqya5yc7s2/r00MnQrz8Vn2n\n+r2xxeH3f6xn/KgA40ZefcYhIcSNQYKAfrJpt9spAACIxuHd/S4zxropD+JK8ytoTA4EFJCXdX2X\n2BTkdb2mPyPdxDIVf/aJbA6eiHL0TAyvB5bMTiNXDnMRQgxwhlJ8/iNpbNgS5XSZjW3DsAKDu+b5\nyE3Rqdda89Srrew73t4zP1PmcKrE5ksPBckKtr8nbmu2HnQorXGJx13CrVGUdsnPMVk5P52MYPdB\nw9Y9LSkHeCJRzZZdzRIECHELkR5ZPzlflfpo4OYQ7DnhsnhachAwaaTiXGVyEDAsHyYMv/zpvX1p\n9uR0xozwcepc58WtSiWeS3ytmDrez9Tx0mgIIURHXo/io8t7VjcePhPnwMnknnlZtcumHVE+dmfi\njIJw1OWpDXGKO7YTyofraA6fj7HzSB1f/ngWQwu7zoYXjXVxbP1lnrteXK3ZcyRKSWWcrKDBoply\nSJgQV+r69hxFm+7OeOnqqTnjwUsMx3EvXEMTj9qEmsJd5qK+VgxD8d/+JJ8Jo/xcTI+dnWmwdmkW\na5ZmXd/CCCHELezEObvTib0dlVW3Lyl6a5fTHgAoMEwDwzCwPCZpGQG0P4vn34VzNV3PHI8Y0vVB\nkLcN65vT6K9Uc8jhJ/9Rz/9d38iG90M893oL//xvdRw/G+7Xcglxs5KZgH4yvMCgtCa5Vg8GYOa4\n1LHZ29ujVFaGUUpheU1c18WJu5xsgA/3RVh0nfNCDy/y8d0vD+H42Qg1dXGmTkgjMyj/pIQQtz6t\nNe/tjbH/ZJxQWDMo2+C+Oz3kZ/T9vbo7+8XXYWVmxxnmrtKEtsYsXt5uMX+8w5yxyW3Q3Yuz2HWo\nlZPFnWd5J4z2s2J+/w7wrH+zhePFnWdEyqptnnqxhm98MktSowrRS9Jj6ycrZhmUVGtKqtuH8D0W\nLJ5qEEyxHwCgtDpx+NbFGYCOzpbbLJqZGBU6U2YzYrDJ8MJr/+tVSjFhVIAJoyTjjxBi4Hj53Qhv\n74y1zdyWVrucKavjU2v8FOUp9hwOkZtlMXVC4Ko7pwune9myL0pzqPOUrwImje46bWgqtu1iO4o9\np00mD3cJXDK47/Ma/OXnB/PSm/WcPBdFAeNG+vnoqpx+Te/supoTxSnS4wEnzkY5U2ozepicPyNE\nb0gQ0E+CAYP/dq9i6yGHijrwemDGWINRRV2v0PJ5uq6ALVPz76+0cvSMTTSeCCjGDbf4+qevbr1k\nQ5PDhg/CFJfZKAWjhlrcuyRAMCAZfoQQA1NTyGHnkVjS0s3GFoenXqiltTlGY4uDUjB6uI+P3Z1N\naY0iGk+c+D51rKdXgUF2hsmeo7o7AAAgAElEQVS6JQE2bAnT2JK4q88Dcyd7WTitPQgYWWhQXOF0\ndRkAtAuO49IaNThSajBrdPJsQEa6xafvz+9x+a4HV0PMTv2c4ybSUwshekeCgH7k9SROn+ypWZN8\n7Docxb6kjg/4oDlicOBkew0Zt+HwGZt/f7GBT97d9Saw7kSimn9d38z5yvYbnq90KKm0+dojWXLo\nlxBiQDp0yqEp+ZgUoqEoDc3t69O1hnNVLv/v1SgXt+Bt3g23j4rz+fvSsHpRhy6Y5mPqWIsPD8SJ\n25pp4zwMLejcfqyYZXK+0uVMhUZrnTLQMCxFNOrg84FxE1XhlqkYVmBxuCV5NmBwvsXEUVfWzgkx\nkMnG4JvItPE+Vi0IkBZor7kz0xVrF6dRUpl6FOTgycgVj5C8tSPcKQC46HSpw/t7Ln8gjhBC3Ipy\nMhSpBvLj0Us6qAoCwTQ6NrVaw6HTNq9v7b4Orax1eGZDiB881cyPft3Mf70VxjIVK+/ws3ZRICkA\nAPD7DL5wn5f7FlmMLFQYRue5Cstj4PEkZnFt22HSsJtr9Hzl/DQyg51/8F4L7l6YhbebmXIhRGoy\nE3CT+cjyIItm+NlxKIphKOZP86G14o3tzSlf3xrWNDS7BNN6H+9V1HQ9rVxS1cW8rBBC3OImjLQY\nOdjkbHnnOtK9JIWPz+/DtFIvnTxZ0nX9Wt/k8G8vh6iqa79eaXWMilqHLz+UjtHNEL5lKhZNtVg0\nFZ55y+FkaSLwsDwGptneDriO7rSp+GYweYyPP3som3d3halpsAmmGcydHGDt8hyqq1O3gUKIrkkQ\ncBPKy7ZYs6j9V+e6mvwcg9Lq5FGdwjyTgis8ht7fTTa4gE8mkYQQA5NSigdX+Hn+j2FKLmTk8ViQ\nn+ulsirS8YVdXsN2us7rvHlXrFMAcNGJ8w67jsaZe3vPlr4MzYeDJ6JEQnFc18XymKRn+gmk+fBY\nmsTW4pvLmOFexgyXpT9C9AXpyd0CDENxx2QPlw44KQWLZqRd8TTp3Mk+vClGigK+xPpUIYQYqEYM\ntvjmp4I8ek+AdYt9fOWhdP7y80PIDLY3q7FIDNdJveRmWEHXgzOVKQKAi1It0exKWUmY5oYw8ZiN\nY7tEw3Hqq5sJh6JMGHKdD5cRQtxwZCbgFrFsth/LUuw8Eqe+ySUrqJg+3sODKzOpqWm5omuOH+Hl\nnkUB3t4ZactIkZNpcPf81OtRhRBiIDENxZxJ7aPS+flBvvhwPn/c0kRJRRy/T5GRralqpNOBjoPz\nDFbN63og5dK0nR35LxkEr29x2XkcIlEozIFZ4xSWqahpcNh7PJr0fu2CGwmzrp9z/gsh+p/05C7h\najhQbFJSa+JoGJThsjJ4c2yeWjTdx6LpnVuPq81PvWp+Ggun+9h+KIahYN4UnywFEkKILkydkMbU\nCe2pmbXWbD8U4+Apm0hMUzTIZMUcL9kZXc8EzBjvYf9JOykTXFZQsWhGexRw4LTLxl3Q2mEF0oEz\nmk8s1xw+HSfUxd5jS7ndrVS6rOpGl2PnwOeFGWPUZTPFVdba7D+RCIrumOKTTbxC3CAkCLjEpoMe\nTpS3/1hK60wqm11WT4O0AboMMT1gcuccOQxMCCF6y3HBdRzCEYeqOpeqOpvmFpuPLEsjJzN1IDB9\nvJdVtS5b9sVoak1MIRTkGNyzyEdW+oXsPo7mnf2dAwCAkhrYtBfGDjZQKrEp+FJpvivrhGut2bDN\n5cBpiFw4uHfrIc2qOYpJI5IHh7TW/O7NEDsORQlfmJTYtCPC/csCzJggS0qF6G8SBHRQUqs4VZFc\nKVfUwd4zFgsn3FgZcRxHYxhXP9ovhBCi91yd2FrbVRW8aVsrb20PUd+iMIz2TnJtg0tlXQvf+GRm\nl6Piaxb4WTzdy+6jcXxemDXR22nE/dBZTW0XCXFKquG++R5GDTE5XZq8h+D2MVeWFmjbUc2OY50f\nq2uGjTs0o4t00oGW7+2J8t7uaKdD1arrXV7YFGbCbV4CVxiMCCH6hgQBHZyvMXF16kqppvnGWQKz\n7WCMbQdjVDe4pAcMJt1msW6xD9OUClUIIa612hbF4TIvda0mjqvJ8rvMGxOj4xm7u49EeOGtZmzX\nwPIkDy6dq3B4f2+EFXO7nmUNphksnZV6xNzuZpWqqxODQ4+sCfLc6y2cKXPQGtJ8MH2Cj3sXX9lJ\n8idLUm8mbmiBXcc1Cyd3boMOnUo+VRmgrslly94IK++QGWYh+pMEAR2Y3WTStG6QGGDH4Rj/9XaE\n+IWp2OaQS0VtjNaI5pOrpUIVQohrqSWi+OCUn9Zoe4NR3Wryym6De5RD9oU++5Y9YTyBAAGvBUrh\nxB1iF9fQXFBZ2/NMP5eacpvivf2axlDyc0PyLvw/3+Kbn87i8Ok4NQ0Ok0Z7KMi58mY/Gu/6uUg0\nubsfST7ct004xeuFENfXDdK1vTFMGmrj93SRzi3vyivrvvThwXhbANDRwVNx6hpvjDIKIcStat85\nq1MAcJFhmby41SYWh5aQS2Wrn0AwgMfrweOx8Kf5CKR3HtVP8195E+zzKOZPSpxP0FF+Fiyd2v69\nUorJY7wsmx24qgAAYFAXCYW01rRGkjv1g/NSfz7LhHEjZQxSiP4mf4UdZARgzhibXactwrFE5WUq\nzZTbDKaOuDE62LWNqYOUUCRxkMwdWVd2MNj1UF4d47V3mympiOHxKCaP9XPvsixZxiSEuGmcqQSr\niz2tUVux+xTUNbi4JNfFltfCjNo4tkNWULGki6U+PTX/doPCXJf9Fzbq5mXAgkmQHriy4KKkMs7u\nI1EMAxZO95Ob1bmLMDg3cSpyx/0NkNifVlbtcmmXYsW8ACfO2VTVd263poz1MHHkAM20IcQNRIKA\nDhxXEw7F8NpRIlFFXrbJwskwY0IG1dX9XbqEYEDR0Jw84uIxux51uRFU1MT437+upqKmfXP1sTNR\nyqri/NnD+d28Uwghbgz1zS5NzS65XfTdHUdzokxhpxgVh8SovOUxKMzR3Ls4QG4X2YF6Y9Rgg1GD\ne/++lrDL+/tsqhtcAj5FOBJi5/7mtiU8b28PsXZxOivnp7e9Jx7TxGMOpqlRRmLwxnU1ju3SEk6+\nR2GuyX//WJA3t0coq3LweBTjR1qsXShLV4W4EUgQcIHjav5jY5wjZ120ToxanCk1KK00aIlGGVNA\n0om8/WHKGIuSquSFlqOHmYws6vmvMxrXbN0fozmkGTLIYOZED8Y1zDL0+nvNnQKAi3YdCnG8OML4\nkf5rdm8hhOgL4YimpjpCZraPaNShsTGOaRkYhkKhqaoIQVGAxgYFKbfEwtQxFo+uDWIaV56mc8tB\nzckyiNqJ5T/zJ8GQXgwC1TS4PP1alIq69jJqV+NgAYl6uiWsefXdFiaN9jK0IJFNaORghWVCPMWu\n5NyM1Pcvyrd49N5gLz6hEOJ6kSDggg8PORw+Y3fKqawdl7Iql+c3RRiab7JurqYwp//KCHD3fB8t\nYc2+43GaQ4n1oGOGmTy8qued6JPn4zz3pk3YNhIb1g46bNkf5wsfCVzxNPLllFSm3iEWt+HQcQkC\nhBA3voJcg3g8TllZK4ZpkpHhxTQTdabrarJy/cSjcUyvB1qTT+tN98P9S31XHAAAvLxVs/dU+/cV\ndXCuCj6+zO0yELAdzaGzLq4LU0YZvLkz3ikAAFCGwhvwEo+1D9aEo7Blb5hxI1yiMc2MiT7GDTM4\nfLZzEOD3wNxJN+5MtBAiNQkCLth+xE55qIrWEA3HqW60eGOP5tEV179sHRlK8dCKAHfP93Km1CE/\n22RIfs+nKLTW/Hazi2N68V3MOe2DqhabF9+J8qk112aa1u/tuoHw+2VPgBDixlffrDAsi1DIYXCR\nn2jUxbYTnWbLMkhP91BbbZOZAWG/RTTS3qHOSIMVswz2nnA4WhwnEtXk5ygWTrUYPaRndXhlvcvh\n4uTHG1th62F4cEnyc3tO2Ly926G6MfH9m7sgHEq9x800TSyvhX0xEFCJZBTv7rFRCp7/Y5hJo0zu\nuN3PyRKXSAzysxV33G4yZbR0J4S42chf7QXhLtZwArhO4rnSWkVFvcvgnOvfaXU17D+jOFejcF0Y\nkmswa4zZ6yVKWw84xFyrbT3nRR6vxalyF611l4ePVdW7fHjYpaFFEwwo5kwwGFHYs9GfqeMDHDyR\nfIb9oGyT5XMzevchhBCiHygFXp+Jz28SibjYdnu7EYu52Dbk5PkoOdtEVm46/oBFNOqQn6n5zErY\nuN1m26H2DnhFneZseYxHVnkZM7S9Mm8OuWw5qKlp1Pg9iimjFRNHGJwsg1gXZ1ZWN6R6zOUPW51O\npwrXNYHTw3MvTdMkbiuMC+2F48LBUzZzvDH+8uF0bCcxGy0HVgpxc5Ig4IKcDEV9ig23QFuHWWvY\ncdTlvgXXd3OA1rBhp8mx0vYO96kKOFet+Oh8p1eBwJkqjTJSd9xdDLYddalvUWQEYO4E1XYC5KlS\nl9+9Y9PU2lYqDhe7rFtgMmPs5QuwamEGZVVxtu1rJRJL/Jzzcy0+vjabwFWkyRNCiOslLxNMbBxb\nkSrDtuuC4yj8AYtwa4yM7ACWZTJqiEM4ZrP/ZPIIfHMItuy324KA2kaXZ99yqWrr1GsOF2uWzdBk\npXfd2falOAR4+5HOAcDlOI7TNgugjMQpx8kdfMX+E3Fshy5POxZC3BwkCLhg9BA4XZb6uUB6onZ1\nXU0ofP0PODlZrjhWmlzZFlcb7D2jmTO2m6MjLzEo2+RkeernXBQbd7bfZ+8pzUcXaoblG7yz1+kQ\nACSEIvDefodpY4zLbio2DMWfPpDHXQuC7D0SJuAzWDo3iK+bZUJCCHEj2bovxLkzLeQVZJGVl7r5\ndB1NMOiloTGxD8o0NOOHao6edQgnbxMAoLLD+vx39usOAUBC3IFthzVf+gjkZ6m2pT0djRmS/FhX\n91OGImBpQh2eDwYUBZnQmu3BMhSRGJTWpG7vYjYUV9iMG54i8hBC3DQkCACq62O8vRcMU7Ut/bko\nkJY46EVrjR1z8fv6fuTDcaG+GdL8iWPdL3W2SgGp71tW17t7zRoHO45pHPfyn6O2Cd7cAw8v15TW\npm4MymuhrFozrKBnP5cRRT5GFF1dbmwhhLjeDhyP8PzrTVgeH9alJ3R1YJiKaNjFsgwCXs3M0S6j\nB2taW7se8GgJa8JRl4DP6LLj3RyGn70Mhkqcbu9cmFTwWjBpBCyeklwHD8pOXS8bhsEdUxXpXqis\n1wS8irVLsiAe4oMDMarqXKrr45SmyOgGiTJkB2UWQIibnQQBwP/6TwfLY6KUwjVdXLe9EnZdTSwa\nx+MxMZTLtDF9O3K99SgcLDaoawa/F0bma1bN0nQ8WLK7RBK9TTKRn2WwZKrLewc6BgIahcZMsa6o\npDqRG7ur+xgKLPlXJIS4xW3ZGyYaVwR8BnXVzTQ2tOL1WWTlpuHpEBRYJrS2xFkx18fscTbBC4nP\nJo8yGJqvKK1O7uRH4vDyFptPrPB2W6fH4grLMrBth1gkjs/S5GXAiHwLlMUHB+IcP+9iOzB0kMH8\nKQYHTinKLhnEKcyBZdMt0jssxTQ88L+eaeVcZWJmObE/LHU5Rg01yb/K04eFEP1vwP8Vv783gmG2\nr3s0DIOLS+a11jiuBhfS/Cazb3cZNbjvgoA9p+D9QwauTtw7EoNjpYqY7fLxJe2V9oShLgeLDexL\nRu+11uQGNa7uXTCwbJrBmCEuB84kRpOG5Cne2KWIxpNf67gAipGFisPFyY3X8AJFYT9slBZCiOup\nodnB8ljEoonRcdt2iIbjhFtjFA7NxrIM/AGTcDjO0BGZ5GXbBP3tI+mGobh7nsVTG+KdM9GpxPKc\nU2WaaFwzslAlpe+8yDQVju0Qao5eGKCC5lY4VRpj806byg7LiE6cdzlZqnhwucWWA5pzVS6uhuEF\nBnfNMjsFAADPv97UFgBAYrOvRmGoRGKKi4YVGHxqbTpCiJvfgA8C3tlro1TqdY1KKUylGFSYzpzR\nMeaN69tZgCMlqi0A6OhctaKkRjNsUOL7YYNg5hiXPacNbEehL7QgWrt8cNTgRLlmzhiXySO7vte5\nKpfiSshKg8mjFMMGGW3XBzhwxuVsZfL7BudAYY5i9TyTumabig7Lj3IzYNVcUzJDCCFueekBlfL4\nLzvuUFPRRDDDjzID+LxeDFNhpmgusjOMxIhNhyjAuDDqFI5BJAp3zVJU1mvOVnR+r2klBqsiYbvT\nbDUkBmvKal2Uar8ewPlKlxc3R9Cu5rZBinVL0vF5k+trrTUnipPPcjHMxOzwR5d40RoKcw0mj/FI\nnS/ELWLABwFej6Il1vVmX9NM5EGeOarnm297qqFJ49gOGlAoDFOhlMJxFZUNdOqkL53sMrbIZe9p\n2LKrldZWG601Xq9FuDWNplYPGWkOI/I73yNua55/2+FEKdgX1pBuPaxZt0AxdFB7Y7FocmIPQHOH\no9/9Xph/e2IEKz9b8Wf3e9h+2KG2KZHzev7tBmmS2UcIcYvTWtMSNYHU+fXjMRuPz0osGzUSKTiH\n5yavpx+UpSjIVlQ3Jnei87MUGWmJTvzn1ij2nNCU12oOFUPMUW2de8dOXYZLOY6LHbc5UaJwHZdj\n5zTv7K5n4Uw/9y9JI9BhyakGbLfrdnBQtsm0cbIJWIhbzYAPAlbf4eGZN+wuUqFp0tMtHlhoYPas\n3u2xPSehoaV9mlWjcbXGNBVeS1GU4mTiohzNk/ubaWzocKKjHSMWtTGMTA4Wm4zI71yRv/RumCPn\nOl+nvA5e26b5wj3tZwKMHWrwyRUuO45DUysEAzBzDJ3OAfBaisXTUv+TqWxQHDxv0hRS+D0wtshh\nXFHXgdPFgTAZUBJC3Oh2H3eobbHoKghQhiIj239hCU2iXj9VZTJ9ZOfXW6Zi9gSTP+50Liy1TPCY\nMHei0ZaP3zQUcyZcqBwV7DvT8WYKUs5JdHwN+NM8KDzYjot2E4GM67jsOWZT2QqTbzNZMdXBMBKH\nUI4a6qWuMTmfaH6Owe2jBnxXQYhb0oD/y546xoPPGycWd7AsE2UklttorQmkefgfaw0G5xpUV/fd\nPWNxeP9Q53WWAGjQrmZkAQzJa3+4sh5awlBSEaW8uvMa06Ejs8nI8mFZBjUhOFcTZ8Sg9obn2LnU\n2R1KauBUmWbs0PZe+OBcg/vm9/7zlNQq3tzvIRRrDxjO1Ro0h21mjW4vi9ZQ1WLQEDaIuwqPockK\nuBQGXQkGhBA3rCPFGstrYYRjSUtxAIKZ/qRBJLeLMZBlMywCPth30qUprMlOV8wcZzBrfOrmeNEU\nKKnR1DYnrm95DGJO8sWVaj+0y5fmAQ2xDicWK6UwLRPHAa/f4kCxgcfULJuSuNb9yzMoLo1S09j+\n+fxeWDrTS1mtJm673FZkYPY2G4UQ4oY14IMApRR///kAP3k+Rk2jg3IVpmXgC3jweuBQsWbsbX17\nNsCBs4lj3lPxWrBuXuJ+1Y2wcSecr06s+XQdD+kZflqbE6M1t43NJScvre29DvD+ccUyI8rQ3ETF\nHulmqVNXZeitvWetTgEAgOMqDpWYTB3hcDFxRmWLQUWzycV0p7arCDcrtIaizL5fbiWEEH0hGk/M\nmvoCXqKXBAKW18Ln9+I6LoaZ6CQHvC7jh3Q9fTxvksW8SV3fT2tN3E5kXsvNUDy6UrHtKJyr1tjZ\nHhobXCpr3bb5gKx0GD/S4shZl5hrYFkm0XC87VrqwjYEpVTiuahDerrF6UqDxbe7mAaMGe7lSw+l\n8c7uOLWNLukBGFZocfCs4vUdNhooyHZYNNVg7sQB33UQ4pYgf8mAaRg4ykS7NsoEr8+DaRrYLmw+\noClviLBubmJUpC90NUIEkBlI3Md14eWtiaU7FxmmSSDdh9aJWYDa2gihkM2ggjR8vsSvMmobHCu3\nGJqb2ORVlGdS15Q8G5DuhwnDr/6zaE3bCNWlmsMGxTUGYwe7aA31YYPk8w4U9WGDwoyu05AKIUR/\nys9WnCzVpGX48aV5iYZiaK2xPBZevwfHhXDIxuNVRMOaQWngsxK7vXpDa83mPXH2nnBobNFkpCkm\njza5e56Hu2ZePC9G4Wo/B07aFFe4BHyK+VMsMtIMahpdfv++S3kDuI6LUvrCzLZi6LAgwQxvYs+C\nkzjHoLXVIBanbX9AXpbJA3cmNgOHoy4//71NXXN7wFPVAK996JKb6TJmiOwHE+JmJ0EAsPOoQ119\noqPsT/NiWh0rN8Wx8w4BD9w7r2/uN+U2+OBI4rj4Sw25sBn48LnOAQAkKu5oJI5hXtwgpmlpjhOL\ntTByVFbbetLmSHv5l8/2cbbcTjo6ftpoRTDQN5W41cVlFJo0b6IBiTsQtVM3iDFHEbUhIPvOhBA3\noNtHmuw9fTGbm0laRiDpNZGIje0kKsOj5+A3UXhkucZr9TwQeGtXnI3b2gdtWiOaijqb5haXP7nL\n3/a4oRTTx3mYPq7z+wdlGUwYDmX1GtfVbTMWo8dmkpnZvhPY4zHblr3+7n0Dw9CMHxFj5m2J/QkA\nHx52qWtOLmMkDruPSxAgxK1gwAcB+84oNuxwQSdOejS76NEWV12cTu39PVxXc+R0jJaQy/QJPgI+\ngzsmwDsHIN5hkL4wB5ZMSXzd0JJ8nXjc6Zxf+oJY1KG+LkzeoMTSIJ+n/UW33+bhoaWKHcc0tU2J\nE4knDFfcMalvht2VgiG5Lo2lyT+3gixNUU6iLKYBHgPiKWZBTKO94RFCiBvJ2/th+zET02Oibbf7\nqdwOiivh/YOwYkbP7tPYbPPm9iiQXBluP2ITDIRYuzAt6TnHhXP1HpqjBqYBvnQH1wm3BQC5eX4y\nMpKnsZVSeLwm5fUuoCipibPjsGLIICjM1jR1s1y0NdLzJbJltS4VtZpRRYqcDAkchLiRDOggoCkE\nW46YxKKJCs0wVJf5j+POlQUBx89G+d0bTRSX2WgNedkGS2encc/SDIpyE/sDojEYlAXzJrRPyxbl\nknRIi+4mhVskfHH9qea2QZ2X/4wqMhhV1Lty98aC8TbNYUVJnYHjaFpb4ri2gxvWbNgGK2YmTtnM\n8LnUhZMbuEyf2+VsghBC9JdT5bDtKG2ZfAyjq/xAieU32urchpTUgONqwtHEMk/L7LoBeX5jC7bj\nQaWqC5XBpu0xJo/yMqKovdmO2bC3zE9TpP0xrS2GFtqcdzT+NC9ZOb4u27WL5bl49kxzRHGsBI6V\nKPzdlDUnePmGsCXk8l/v2Jwq19h2om2bNNLggaWWbC4W4gYxoIOAA8UG4ZjC8hjEYw523MVxXMwU\np7wUZIHRy45qNKb59cuNVNa2Nxu1DS6vvtNCfq7F3CkBRhamfu/oIrhtMJwub3+suwDEtl1cV6Nd\nl0EZ13eTrd8L982Jc6wU/vChSyiUaFAiscQa0vI6zWfv1gzLdnBJLFdytMJQmgyfy7CsPs6/KoQQ\nfeDo+USSg4sMw8A0NY5zyWFdjkssEse2HQLp3kSqUK2prnP46X+51DdpgmkwcYTJvQsszEs62I6r\nOV0aw1UmZoqZAO1qYnHNjsPRTkHAmTpvpwAAEiP8Wdk+6poMlKFw7K4Hj1y3PQC4VNi2yEhzkpat\nZqXD/MmXbwxfeNfm2Pn2a4ejiWVEAa/NuoWy9lOIG8GAHn+9eOZKWrB9rWQ8aidVij5PYpS+t97d\n1dopAGi7hw07DoZTvKOdUvDAIpgxGnxeAN22FyDptQZ4fBahkEMkCofOXf9fq1JQVefS2JLcoJyr\ngp3HNIaC23IcJuTHuS0nzoT8OKNynZQnawohRH+Lp8iwbHlMHMchHrex4w6xSDyxUdjV2DGHSCiR\nlCEec6iuc6is08RsqGuCDw46vPhePOmarguxqE7Z/iSed1OWpymSeh1lU4uLujDaHgo7xGLJA0Ou\nqwmFUqeQhkQwUTDIw7TRisx0CPph/HDFnyy3KMzpvtKuaXQ5VZY6uDh23k2ZZhWgJaxpDvVtNj4h\nRNcG9EzAyHzN7lMaTIO0oJdQS4xYxEa7GstrJk7vtV2GZ9mMKfJf/oKXaG7pekS+tQcVnd8L6+ZD\n2lE/2/eFiGrw+S3icQf3wkiUaRkEAp5E2reIjT/gIRrvn6nWyvquP1N5h+e8FngtqeiFEDe2olw4\ndC75cdd2sW035RLNeNRBqRheU5Oqi334rMvdIZeMtERHurnV4bdvhohj4dgO4ZYIHq+Fx+dpO+DL\njiWuNGropU126nr00kOF6+pjZGd58PkSh2KGQjEa6qO0hFwC3WRk8HkMHl7hwXE1rgueHm5yrmtK\nBD6phKKJ5bW+C3FEKOLy9s44R4od6i8MIo0oMFg1z8voobJZTIhraWAHAQWacUWaY2WK9AwfoZYY\nrusSjSSy8FwckDlxzgV6HwQML+q6cs3P6XnlVpDhUlSUxomTzXgDHgLpXuy4A0phWe0nHTc3RfD5\nLbLS+qeD7e1mhreu3kFrg8ZWsEwIBmRNqBDixjZ7HBwr1ZyvTj5NvqtlNAB+w0GnXNwPrREor9Vk\npCWW4vz7yy0cL070mC/W5fGYjeM4ie8v3GbSKIu5tyc2+GoNh0pMTpdCa8zFY0FGGgTTE/f0+6Cp\nQ2Yf29bU1MawLEVzXTPl5xsxPRbZ+Zl4vWbKJbAAQwddTOygejVjOyxfkZEOzSk2F+dlKLwXeh5v\n7Yzx3t44LZdMjJ8ocalpjPKVB/1ky2ZiIa6ZAR0EKAX3zHEoOKnZeiiOk+IURkiktozbusejIBfN\nvt3PxFFejp6JdXo8J9NgxfzkLA9dmVgUo7Y1QEOjj+YW90JWh+RfXTRi44RbmX5b//xap4xKLPtJ\nPjlTc+R0hF+9YlDZoLBMGFEAd89Rl51WFkKI/mKZ8PBS2HJYU1qbeGzYICiv0Ow61vX7mkKawrzE\nOvhLBbxQkJOoIw+djnOyi1PdLaUZlGPw/7P33kFyXfe95+fc2GlyAgYY5EwQIAUSJEiBQcyUZCVb\ntiVb67Tv+fmVtjaVQ3GsD/AAACAASURBVNVW7Zar3ta+512t1q59rq19a+1zkKW1IimRIikxEyRI\nECBI5EiEQZg80+nGc/aP2xN6unswSBQgnk8VJczt7ttnGo3fOb/0/bU0maxYZPHIXakpGejdJy12\nn7RRk4MXIyh7oJSktUlwxyrJTy7KmhLS/LhH/+kxUCCDEBlLlnXFOC6cHTTwZyxlSZfi3g3z/KBm\nkUkZbFpu8Ma+6j3VMmHL2iRwte94yAtvhzVZi0lG84rX94Z85pNu/SdoNJqr5mPtBEDS7Lt1jSRj\nxvy/Z+s/xxSCKGZq8u387y34499s5fvP5zlyKiAIFUsW2jx6T5YlC+c/ecwyYPvqMn1tFvtPCfaf\nrD1oB35IcaJM70pFqo6D8FGQMhV+2cdxnanNR041zCkOHS/R1JohloKj/ZAvKf7VZ9ScihkajUbz\ny8Sx4cHN1dfkxhT9g2UujNR/TdqFdUsN3vigNrC0eomBawuef8vjg6M+jUTfujtM/uL3W2uuRzEc\nuWBNOQAz8TzJ7et9WlKSnyKI46R0VCmFVwwYujA+XUGkkkxEcwY+uw08leK190rJpGJD4vmS59+G\nNUsEqxcZDRWGGvHwHSYHjxY5cyEgiiCXM7l3S4a7NrhIBc++LRs6AJOMFXXZqEZzPfnYOwGTrF9u\nk0vXpiUBVvbZpN0rO6hm0yZf+1wrvi95accQQRjS2Xr59zIErOiKWNEFp0/7DJdsHNdCKQi8kLGR\nIkpBX/cvL7JuWYLAiwj9GKviiIRBNLXpyCjGK/mks0lp1YXRJHNw9wbtBGg0mpsHwzD477+a5W9/\nWOL42dqD6spFJp++x0aIiA9OxIwXIJOCNYsNtqwVfOPbRQZH5VRvVz1asvVt+eCEQb5c/zE/EKQr\nk4pNC1QsuHB6CL8cgoBMUxrLtgBFHElMy5wK2PR1mzxyOzzzVsQbH0jCygF950G4fZXkC/dZczoC\ncQz7TyU1/6t6Fd/+yRhHP5zOgo+NSd7YlWfzapMzIy6jdQaRzaY5o/cGjeZ6op2ACqYheHybw1Ov\nBlUNTU0ZeHJ7FqhVdJgvr7w5wj//6BwXBxOD+INnLvLYA5389ud7r+h+D2wWfOupMSKVTH2MoyTa\n1NdjsnXjLy912t1mkHYFZT9RWaqiUj87udZJdKRHo9HcTEwUJRNFRXebwe8+nuLbz/scPyuJZTL4\ncHmvwefvtxkYldy5zuDhLSZD44q2JoNsWvB//kviAACJgo+kpr/Xtmhoy7MphWUqorj2gOzYCsuE\nXYclUWQiDEFrR47BC2M0teVw3OoMtGEK0jMuHe+XvLVfMtNMxxJ2HVGs6JXctrp+L9vJC/CzXYrh\niWRNT7/mM3g+qHne8LjkF2+VsFtSWJZBUKdcapKmDHxykz6iaDTXE/0vbAZ332LT3mTwzsGQQlnR\nmjO4Z5PF5tUpBgevzAkYGg34z//fWUbHpw/F4xMRP3zmAksXp7nnjrbLvuctKx2++FCGV9/1OTsg\ncW1Yudjiiw9lavSnP0qEEDx0p81PXguqhhpMjqevR2tWR3o0Gs2NT9GT/PDViONnJeUA2pvhtlUm\nf/RZl+P9irODMetW5BgdK/FPz0WcGZAIYHG3wcN3WCzuFoyMx5w8N10DI4TANM1k0FjFRvZ2Gdyz\nOcUdG+o7Ac1pxcLWmDPDtdv3orbEo9h5UBLHAsswybVmQBh1y45krGhJSyanFO87We0AzOTIWcVt\nq2uvRzH8eIfk4lCYCFYAQb1miAp7DwesWh+TaXKSPrY6vXiGZWC6FqeHDNpbpq9/2B9w4ERAS87g\nrlvTWJfZp6fRaKrRTsAs1iwxWbPk0so9B08EvHfIJ1awdqnNlltcjDqp0udfGqpyACYJI3hz19gV\nOQEA92xKcfdGl8HRGNcxrquCglRQ9AW2qUhdYsbLw1vToBRPv+YnNauzDv+2M/3ZLmiDO9ZqI67R\naG58/uXFkEOnp+3ZyAS8tCcm5Qru22yxus9EmSZ/9+OQiYoqjgJOX5R8/+WAP/6CSxRPTx+exDAM\nDMPAthT/+gtpli+yLzlR95NrA145COdHTRQCy1Asao+5Z23AuSHFxVEQRoxhJMMwDctAhvVP9+eG\nFFsqc3DmGEpP3ODBPcck/ee9KQcAkuGVjSgHcK6/SGt3C60dGYp5j8CPUUph2ia2a2JZJlIIXt0H\nG5YqTAHf+tEY7x308CvxuBd2FPntJ5tZu1w3Dms0V4p2Aq6A7/+8wMvvlKeamt7Y47H7kM8ffbG5\nxniXvMadT3M9Nh8MQ9DTkfQFSJX0DVxrzo2bDJdM/NjAQJFzJUvaQlJzfHMevitp/v3F2x5eJSNs\nCGhqsjFTDrY1rQ6km4I1Gs2NTv9gzPH+2kOwUvDB8RhTSA6cjBkcL085ADMZLyaDwj69zWJJj8Gp\nCzMOyRUT2NZssKpvfoIRTWn49O0B/aMGIwVBT4ukpyVZn+skZUmxBMNMHIy5enrNGTGvlb2Cdw7V\nf96ynvo32XM4qHIAAGzXJgqjunMUTMukUIzJlj2cTJrWjizlcjg7XgTAWAE+OAlnzxTY+b5X9Vj/\nQMR3fjbB//CvOhv/chqNZk60E3CZHD8T8Mquco2qwXuHAl7dVebBrdXSn6uWNZYCXXwFA8hmEsbw\n9nGHM4MwOhbR2SrYuhaWdl6dczHJQMHgXN5icpeSCCZ8k/f7DVKmZP3CELtB0uSxbWluXWXzzv6A\nWCrWL7dZu9RivCiwLT0nQKPR3DycHVCEDczqxRHFD1+Z1PlPIvv1KJQSeecH73D57vNlyiFVjbbD\n4/DcTp/H7ppfZFsIWNwuWdxefb271aCvW9I/amJZyVps2ySsMzUYFIaYvr5xhcHGk5J9J6tP5KsX\nC+5cX9/Y15tGLITASTlE/rT0thBgWlalMRmWdUZkWiQjecHFoP50Zkgajg8cr19edPZCxDv7ynx2\nQXP9F2s0mjnRTsBlsvug39BYHTkV8uDW6mvb727n+VeGOX4uUckJyz5KKfp6U3zuse6rWstz75m8\n/MYgxUKQpFINgz370nzl8Qwbl179IXu0bEIdGTphCI4N2JwetnhgrUcuVT9N3Ntl8bkHqr9ibU1X\nvSyNRqP5SFm20MC1mSpFmUkwo/RljvlhtOaSA/lta2xeey/gxLnqw7NU8Na+kPtvc0hdoRrdJI/e\nYfAvrwsm38FNWQRBTBjEU47H5DTiF99V9HQIHu0CQwh+61MWOw/GnDinUAqWLhBsu8VsmLXtbBEc\nryOvbdkWTa1pHMck9ENiBZZlEccSrxSwZonJHeuTFf74Tdh7ovYepqHY8X7A+aHGga18sXHpkUaj\nmRs9qelymcPI1yuZ/N7PxhgNUqRzWdJNWVq6W9m4sZ2/+K9W0N46/1kBszkzJHjhpQHy417SVCYV\nURQzMljk+z8vzTnNcr400nAWItHOHi2a7D1z5b+DRqPR3Az0tBus6avdLgUQR9W2tp7ttUzYtGr6\nED2ar2+fx/KKD45fuRLdJH3dBnesmX4/IQRKJXtEXPkvCmOkTA76P397OrJlGIJtt1h89RGb33nU\nZvsma86yzc2rrYalqE3NKdy0g5NOkc6ksB2LVNqhrSNDT4dF2ZccPCVZv1jRPXskglIUCxH9g5JQ\n1j+qZFKCTWuvLqOu0Xyc0ZmAeTIwKnn9A8npcZfO3hQoSbkQUMxP1ymu7Kvumt35fpHn35ioagRT\nGAwXBFJduvl4Ll7aVcIr16YklFIMDHgc+tBh/fJLdPFeAtuCOm+BlOBVsrNDee1HajSaX32+/Cmb\ntBNy9Kyk6CUR8LYmxd6js55Y50AcxfDSbslXH01+TqbP13cEculrY1O3rFIcPKvIl5MFxZFMJgXX\ncVKGxhUHPwzozF7++6xfZvPAFsnr703LawsDWtvSNLc4jAx7Na9RGPzgNYnEYKKU9DD0dig+sRJK\ngeDsQMzAcDjlYLkZhziKa3oM7tiYoqdDH2M0mitF/+uZBxeGI/7p5zEjeUE645JrTox0tjlNUznD\nQP8o65ZZPHhnuup1ew6UapQgAEplxWvv5vmtJ9trH5wnY2ONo0VSSS6OSNYvv+LbA9CViSl4BnLW\nrlb0oBwkn8F4PmTXwZA1fSbNOe0QaDSaX01sS/DFBxzCSOEFkE1DGMKZi2VGJqYPp0KIqcj75M8A\nJ89L/EDhOoJViw0GRms3h74eg7XLri5ANEk2BQ9vjvnxWxArE2MO5QjDMHjqVY8/eOLKypA++0mX\nLess3j4QcW7cJN2UIZN1GB72kA2qdYbzaqopOZZwZjDxn37vMfjfvhNWZVhsxybTLAjKPrmUoqvN\nZNNql0fuuQKvRaPRTKGdgFkoBaeGTYYLSQ3o2p6Qn+/xGJ6AdMbCtKYPukIIUhmH2za38/uP1Srd\n+EHjkpwgvLpynfamxq83BKxYdPUbSVtGEquQgYJJ3jOJJZR8wcVRge9FnDk1TrEQsldBLp2khT9/\nf32pVI1Go/lVwLYScQNIlHg+fY/D06/7jBWqnzd7um4QQhAlr/nsJ10GxxRnBo1kTxHgWIpPbTGv\nqf1cuRA+ubrMd34eJE6AYdasSwjI5Fz6R+DAKcWGOfrJxgsxb+6LiCLF2mUWqxdPHyF6O00+f1+y\n7wznI/afh3NnageGTSKlqlImgsQRONavcOpkSmzHwnYsfvNhmy1rry7LrdFoErQTMIMggpcPpbgw\nPt0Qe/S8xflzxWSoi1U/0h1IC6Vqwx2LFzjsOViu+5pVS69O23jrxjQ79nrEder2u9otmq7RuPXO\nrKQjIzlyUfHeaZsgSqYUn/lwnEJhOhtRKMMb70fk0oJH56luodFoNDc7m1dbrO4z2Lk/AtPm7f0+\no/na5y1oF+QqyWLXETS3uLgzHAcJvHEQViySNGevXVZ168Y0//mpIlIqLMfCTlmYM07fSkGp4OOm\nbXYdNdiwtP593vwg4JkdPoXKlvbK7pDNayy+8miqJsvQ0SS5rylAFQJe2GNgO7VHjSiIsO3q6woY\nysOqxQZnBmr31J52wW2r9LFFo7lW6PqNGew+5XBhfFoSEyDvmxQDgRC1kZ1JwjoDYACe2N7EskW1\njbOb1qS4e9PVpTHXLHX49PYss6bAY5gGg6OS/+Vb43zn+QJyrukv80QIWLsg4uENHmt6AnJGiWKx\nfjnS/pPXRp5Uo9FobhYyKYMHtzh8+ZFm7r/NwpkVqE47cM+t01H4A6cUx/pr7zM4Bjv2X73Nns2v\nPZAGkRy8Q6/WdkeRpJj3OTsQT812mcl4IebZN6cdAIBIwruHIl7Zk9wvjBSv7Q35yRsBO/aFRLHi\nro0uRuQRztBXVUrhlQPCoHavsC1Y1g2PbrW5dYWJOeOE0tki+Oy9NqaeLaPRXDPm5VJ7nsdnPvMZ\n/uRP/oRt27bxp3/6p8RxTFdXF3/1V3+F4/xqKMRcHK9fQmO7NnIiGW9umrV+U3NakarzEWTSJv/t\n73Xx9MsTfHjWxzAEa5al+OyDLXPWZ86XT2/PcfetKd56v8xr7/mMF9SURnWhrHhtt09vzzj3bb42\nNaYdOUVHLmBHMWgohVcqX/sNTKPR3Dx8XPaLRtx9i0UuI9hzJCZfUrRkBXesM1k7YxL9mcHGdnJw\n/Nqv6bF7sry9z+PckMS0G2/7Y2NBRbSien/auT8iX6r/miOnI9YsMfnuL0Iujkz/XrsOxPz2ow53\nbXT42RsTuCkXYULox4CitaM2ELZ6ESzsSPawrz3hcvxszLH+mGxasHW9hWNrB0CjuZbMywn427/9\nW1paWgD467/+a77yla/wxBNP8I1vfIPvfe97fOUrX7mui/yoqBfNB2hrdykWfAI/IpW2azIC3a2N\nDXpzzuKrn7nyBuBL0dFqsbTX5dkdQV3HYveBEvdtvrbi/KuXmKRdKFcUggxTJBkHBR2t2khrNB9n\nPi77xVxsXG6ycXnj4Is7hzpQncqZa4Jtm4i5NK6BOJbsOxax9ZbqVEaj2TgAQaR45s1qBwCgf0jx\nzI6Qjs40PYtcQGKZBgqFYdqApC0Tky8lfRIrF8IjW6r3j5WLTVYuvjZBLI1GU8sly4GOHz/OsWPH\neOCBBwDYuXMnDz30EAAPPvggb7755nVd4EdJe7a+F9CUFixfZCVDT4KYOJYztKAV6/s+ujXW4+S5\nsKFpL1yHQSpdrSa3LLdIZx1aOzK0dmRp7cjQ1OJy5wbdsKXRfFz5OO0XV8MdayBXR95eCFi35DoF\nUozKYXquGTIKzg7UlumsX25iNTiLj4wrTp6rv8+cuiA5PwLNrS5tHRlsx8K0TBxXYJomm1aa/Ndf\nEvzbXxM8sdWYcx6BRqO59lzSCfj3//7f8+d//udTP5fL5al0bkdHB4ODg9dvdR8xtywOyLrVBtAQ\nik3LYOMShWMbOK6FaRpT2YC+TsWKBdd3XRMFyYWhiLhOff/p8yE7P6g/Uh1gQdf1OZQv6HHJ5BxM\nK6lzNU0TJ+VwfvzK3m/vEZ+//V6ev/y/x/nGP07w/Jvla9LPoNFoPjo+TvvF1dCUNXjkTkFrbvpa\n2oFtGwSbV177Vr1zw5JCkKjbBV6IrOh2zkxqTwa2XKf2IL6i16K9pf66JspJX1w9wggKvkkcSQYH\nSoyOekyMB4wMlfG9kDiOGS9oO6/R/LKYM/H4ox/9iNtuu42+vvqh7suZStvVdW1LUq4HXV3Q3anY\nfRzGiiQSoYsE6xYLoAlhB7xzMGZwXOHasLLX4AvbU7Q1XZ/+6oGRkG/9cJgDxzxKnmLJQpuHtzXx\nxPaWqef8/U8HGk6fzKbh0W1NdHVlrum6Yqk4cbFEvXT2iQuCdC5zWQNv3nq/yLefK1P2kvsNjcGH\n52NCNcrvfe76lVJdb26G73wj9No1l8vHbb9oxOy1l33JG++ViWLFPZvSNOeSkPrDXfDJ2xU79wf4\noWLLWpuOlutT+vL87hJSRCipECKZCjyzv01JRRQnqkSfvr+VrjaLKFbsPhJRLCs2rjBZ0BkyNOYn\nw8ZUMhBMCIFhGDRnDQqlOpOSbQPTEowMeUTRdLZAKSiXI17YJXhxt2DpQoMnt6VYv+zKg1Y383cG\nbu7167XfvMzpBLz88sucOXOGl19+mQsXLuA4DplMBs/zSKVSXLx4ke7u7nm90eBgHc20G5TbF8++\n0sTgYJ5bF8P6hTA0ARkXmjMxkRcyWDsQ8aqRSvG//8M4x89OF2OePh/yj0+PgAy5Y0Miw3n0dOM3\n33qLy5ZbMtf8sy/5MFqAeqMxC2U4fKLIkvl9LQB49tX8lAMwk7f2lti+yZjaNG8murqabqrv/Ez0\n2n853Oyb0cd1v5jJ7O/fzv0BL7wdTgVqnn4lz/bNNg/dOS2jvKGy38gg5HolSgZGYoJSQBxJMs3p\nKolQAGEIUimTJ7dZEJXZ+QG8sBuGJhIb/7O3FWFZYphG3fKBJd1w8vx0nxiAaUIkDbxyXOUAzCSO\nFSA40R/z988W+f3HBW1XMHTyZv53Dzf3+vXafzlcq/1iTifgm9/85tSf/+Zv/oZFixaxZ88ennvu\nOT73uc/x/PPPs3379muykJsFy4QFbdf/ffYeDjhxtrYbKwjh7Q+8KSegwegCAFYvmY6qKFWd+oXE\nYL+0N8l6rFsMt6+qfU49UjY0p2GojkpoxlV0NNdeHy9I3jsmMQ24Y61JyhWVdSkujtTPJY8XJIc+\njNi68eZzAjSajxt6v5jGC2HfGZM3j9pMlKcNZb4EL7wTsqjbYN3Sj65/KpeGwA8r827q21PLFKxd\nahHF8Py7MJyf3gxM20YqAePF5LmVAWdxJGnJwq8/6HBhWPH6BxEn+hWhnJyrI6rkQWczMzk0UYS3\nD8Jjd9Y+R8+f1GiuD5etQ/D1r3+dP/uzP+O73/0uvb29fP7zn78e6/rYc3E4atjsO16Yjqqs7LMZ\nGK3tCchmDLrabU4NwvsnUxR8A8uErlzEup6AXUfgxb1MDRs7cR5e3w+/+zC05WpuV4VhwNrFMHQg\nieLMZFVvMq5+Ji+8E/Lm/phSJWnx2vsRn/qExV0bLIQQZFKCiVKSWpYzJJosE7ratAOg0dysfBz3\ni0PnbY5cdPAig97F0Nmd5Xx/gQvnE43NMIL3jsR1nYCjpwN2HwqIIsXKPputt7jXRE46ZavkwC0a\nH6hjmfy398S0A+A4gvY2B8cxUcpGSonvxShVuYmrWLEYsmmDlYth11EQNkyKwEqpiMLG4hSz11Ko\nSExHkeInb0acHRbEyqI5A7csha3rruJD0Gg0NczbCfj6178+9edvfetb12Uxmml6uy2EqC/k0Nac\nHIyHxhLN53QqpOxNG1rDNLAzGZ7ZY9G3WBHGlc2m0qQ1UTZ4aY/H7L7biRJ8/3X4o8cvvb77NoKU\ncOiMYqyYRJpWLYRHPjH9HKUUP3o1YOfB6jcaL8BzOyNW9BoIwHRT5FoEQgjiOCb0QwIvYs1Sl+WL\n9HRIjeZm4+O6X5wbgQPnXSI5fbp1HJNFfU3k8yHFypR1L6g17E+9WuTFt70pOc4d7wfsORzwX36h\n6apVc4bHFaZlEAURURjXneDr2AY/2iEJoiSCb9uC7q4Utm1QKkWUPUlzSxrZpAiDmPxEgJRwtB/2\nnZSsXSI4M6ucSYjkQN9oL6txAnyTf3wh4ujpAD+AYsHDNAya27OcG7EJY7j3lqv6KDQazQz0CesG\n5dZVDqv6bI6erq65cR24e5PL4GjMt54JGBxTYDnYboySEtMyaGrLYJomqYxDEMHQsM/wSIhSAtc1\nGG4SxFLVnYB8cTTJ+LZcYqCxEPDgZti+EfJlyLrUTMn8yY4kAzA5wGwmJR/ePhBzZggmysbUZmCa\nJkbaoKtV8EdfagMaKx9pNBrNjcSRc1Q5AJNYlkFnV3rKCehpr7aJZy9GvDTDAZhk37GQl94p88jd\nVyfuoBSkMi5RGOOXA0zTwJg1+DJUgtMDAtNMsr2mYVAux/hBTBAoyuWIKJIIIUinLZpbXcZGkmDS\nwdOKtX2i5qCf7DGy6rphTJf4TO4NlmVgOSbnxwAc0s0OaaCpNUMx7zE2VKCrt5UPPhTcvR7qzOzU\naDRXgP6ndIMihOAPPp/jE+sdmrIC24KlCyx+4+Est611eWl3xOCYQimFjBMLKwwDlKBU8BgbyrNv\n7yC7d49y7nyAEAa2YxFLwdCIos65HEiMc/EyGp0tMykfmu0AjOYluw5F1GsenuT8iOJsnUY4IQQL\nu10Wdv1qTxbVaDS/Wsw1VMusRPN7OwX3315tMHcd8AmixPbN/u8X74RcGG5cVz8f+rqTA7qTtjEM\ngVfyCf1EohPASVnYtoltQRhKPC9ifNznwvkSI8MeoyMehXyIV44plyJGhj0CP8Z2ko3ED8G2BL0d\n1e8r5bQDYAjo64Lb1rl0L8iSTtsIkTQlW079sk/TMmhqTeOkLEp5j9F8Ij6h0WiuDToTcIPxwcE8\nr789QtmTLOtL87tPdiMBP1A05wyMSsj8/HBS/hNHEjWjrkcqhfQq6VdMDMsknbGn6kqTxjBBKm1T\nLtXZsZSi5xpM/f3g+GQPQG3fwCSpOnrUk2hDr9FobjY6moHz9R+ziLhrg8UjW20yqeooTMlvXDdf\n9CTf+qnP7z3psrDzynqkejtAxhGGMGhqy1X1GUwGkuy0oFyOmWmvpYJSqf7aCpWshiFgYBQOnpLc\nt0kwOK4YKyQOgJzxUqngzCAM5wM6elw6uzNT8woMQ1AsRnherbMjhCCddfFKIWk3maeg0WiuDToT\ncAPx/Z9e4N/9H8d4/pVhXts5yj987xz/4/96hCiMaW0yMYRAKcWBkyH5kkLG1Q5AFQKyTS6Oa9Vt\nLDNNA9uuvq6UIpYS8xr04qZnNAfX0wdfuUiwZZ1Bo5631pyWg9BoNDcXty6F9mxtcKU9G/GHjwu+\n/HBqqqdrJs1Zo255JiQa/kNjkpf3zJFmuAS7j8TEEmyndj8QlX2lXI7nHCY8FxMleOpNhR/B1x5N\nSnaaGlQwlTxFuZJutiwD2zYrAzgb398wBJZtsKhdVolHaDSaq0M7ATcII2MBT78wgD+rYezw8RLf\nfeoCAGGk+E9Plfl/nvIYmYgbOwAkRjOVtqYyB42QsUTKxKGIY4kpqu85OBbz9v6Ac4OXl46+fbVF\nT1vy3lKqSlo4KV/q7YT/4nGHdX0Gy3tr15d24I61+qup0WhuLmwTtq8qs6rbpy0T05aNWN3ts31V\nGVPAwTPw9E740VuCd45AVDGrm1e7DQ/BQiQH9QtDV374LXoKUDV9AJMYhpEMALsKLc6yD+8eVrQ3\nGTy+1aSrpfG9unMxri2r3s+2G0ef4lgS+hGv78rzF/8xz1/+pwkujl65U6TRaBJ0OdANwitvjjI+\nUd+oHTmRaDM/s8PnwMnKrqGm/qcuHV0ZslmLQiEC6hvXOFZIqabuo5Tino2JUQ4jxT8/V+bAyZCy\nD44Fq5dYfPXxNNl5TAO2TMGn77H50WsBIxOVRjAU65cZ/M5j7pTaxZcfMHh2p+TkeUUQQncb3LXe\nZE2fdgI0Gs3Nh2vDJ5YEQFB1/fndsOe4QFXKbQ6dERw7r/j1Tyr6FlisW2Zx8GTtHmBUUrP2VYwV\naMsZCCYlemoP55PZ2qtxAgDGCtN/bp1DanrVIsWor+gfm77mugaOYxAE1c5OGIQUJ/zKXpWUFQ2P\nK7757RL/7t/k6gpPaDSa+aGdgBuEuUzvpF0+drY6Gq/mCAwZQEuLQ6kUJRH+WRGgKJIE/vT9lFLY\npqS12eEHb8CRE2XOD0wrEwUR7D8R8d0XyvzBr11COqjC+mUWK3pN3tofUvJhxUKTNUuq097ZlMGv\n328QxYowgpRz9RuRRqPR3EicGYL3T047AJOcGhC8fVhx7wb4nSez/OMzxSpHwDQNrEqEfE3flddp\n3rvJZP+HgkJl6u9sEqUegVS1qnFKqcoeJGZeBKgpLcqmp/989waDo2fjyfliUyzuhC1rDF4/XB3E\nEkLQ0uJQLEaUZveXIgAAIABJREFUShFhRc40P1aecgBmUvIUP3vT58l70zWPaTSa+aFd6BuE++9p\no7W5vk+2dkVy6A5mBYlEg4J6IWBkxCMMJQsXZnAdgYzjqWiPjCMsEbBhfQbHgSiMWNQuWb/C4dld\nggOn4WIDNYojpyLGC/MvDXIdwf23Ozxxt8PapWbDA75lCtKu0A6ARqP5leNof33pUID+4eR6S87k\n3365mS8/mqWt1cZJ2diujW0JNq82eejOK08FdLeZfPWRFFlXEkVxVZ+Wqhz829tNUNQ8FvohoCrS\nngolk8FjSlF1ODcN2Lhs+ndc0G7wpftM1iwWZFOJ7PStKwS//bCJaQhW9UTYZq0jYNuCkYEC4yNl\nivmAOG6c8T557upUkzSajzs6E3CD0Nbi8GuP9fAvT5+vGvy1fnWW3/zcQgAWdRoMjFSH/4WRNHXZ\nTmW4GIBUSAmDF0ss7M3S1uYCiQEv5AN8L2bFihYAPnWXYOuyMgdOC378VnJPVanhr0c5gJFxRcsl\npgrPhxPnYd+HyT3bcnDXukvPJ9BoNJqbjbliG7Mfu+92l7s2Ory9P6TsK1b3WSzvvXq1huW9Jreu\ncXn3sKwc4pMIv2kmwZdSSeCmLKIwnhokKeMYN2XR2p5hbMSrqUCddAQ6mgW3rxZsXik4eV5ycRSW\nL4AVvQYreg3CSFVmD0z/sovaJXeuCDjQbzFWMgFFqRhy8XyhyrloNGgMoLtdxzE1mqtBOwE3EF94\noocNa7K8smOEsi9ZsSTDYw924tiJoXtwi8OpCzEjE9MW0RDQ02lQ9ASRhJ4Oky1rTDqaFa1Nkq5u\ngzf2h/SPmEihWNDjYhguw0Mew8Meo00x7ZbB4TMmk4khYQgs0yCKah2BtmZBb9fVb0hvH4KX3q/W\n1T52Dr74SVjQdtW312g0mhuG9X2w+7gijGq9gb6u2hOuawu233ZttTCVSgY7zjxQJ2INSdnRpOiO\nNbNB1zFBQKkYEseSKIgwbRNhkPQYIFjcBb/3uEHJU3zrZzGnL0Iskz6yNX2KL243sK36XtC63ojV\nCyIujhuMTcT807Ml/Or5mBiGQVxHEcix4Qv3p2quazSa+aOdgBuMtStzrF1ZP8ze12PyR59L88ru\ngMFRScqBkQlF/8WIOAoqkX6DzpzLvbcm+mxdbYL71vrsO+fy4bCNVHBg/ygXzpcRpqAfeHe/BKkw\nbZNccwo37ZDKOhTGa6eGfWKtjTuHvv98CCN450jtYJ2RPLyxH770yau6vUaj0dxQLGiDO1apRBFo\nqixIsWqh4s7VMFaEI2chl4Z1i2k4zHE+TBQke4/HZFzYvNrCMpNBYT/bY3Dow2BWyaUgjhWOO8cN\nFQR+ROAFpLIOpUIZGSlyrRmEEAyPKxxL8J03Yk7OmJEQRLDvpCLjSj57T+PAkWlAb5ukt03wyc0W\nr74XVe0Nt6y0icKYw6eiKUclmxZ89fEUlqUzARrN1aCdgMvECwVBBLmUaqhxfz1Z2GHyW48kjVC/\n2OXx/otlojCaStMGkeSNPZLbVltsWDEdSdrY69PdFPHS7pAL58tJj5eU+P60tY2imDCIaOtuIpNL\nIixeOcQ1Je3Ngk2rbR7ZOtduMT8OnYHRQv3Hzg9f9e01Go3mhuP+W2FZj+LwWUUkYUlXkiH4xR7Y\ndxq8QACK7lZ45HZY2n357/HsWwFvH4imhi2+tDviyW02wnHZuder23MlhMAyoE7id4pS0UeqmHMn\nLhJW9oyxgXGa2nO0drfwzR/EjI5LokhNS1dX3uq9owZ3rU/6Ei7FE9tc1iyx2Hs0IoqTcqJPrE1m\nG3ie5J3DIZ0tgvXL9MQwjeZaoJ2AeXLgjODQQApFkh7NOpJlHSGGUEglWN4Z4l6FhNuVsGNvQDS7\nWxiQkeQ7z5f4yz+uNpTdTTHFSnTfNASeF9a+NpYURku4C1rI5Fy23ery5J2q7sCxK8We41vXQMZa\no9FobnqWdlcf7p95Bz44lZTVmCbEMQyMwXPvKv7wUS5rcOOuQyEv746YKaRzcVTxo9cC1q1JEYTx\nlNzobDw/xrIbG98wjMgPTxCF0424cSwZG5zAtA2UzBLMnnpcWUfRk/xfTyke26rYuv7SR46Vi0xW\nLqpdZyplsH3z1QehNBrNNNoJmAcv7on44GyaMFSUvIg4Vpim4MKIRXPOxA/hwDmbdQsCNiz66AaY\njE80VkbI5+s/FlWUFiIpG44ZCIOYOIpZ2CFY3wc/2wWgWNULqxddvYTnmkXQ1QKD47WPLe68qltr\nNBrNL518GX78jkO+DLEUpGzJHSsjbls+bXTfOSo4cNbANKftqRCKKIoZmhB88KHitpW19y6UFKMF\nSU+bgTNj6vu+EzH15keO5mFgTKGkbOhVlAoBqQzYtjUlNpGsR1AqeHhFr8oBqHrthEc622A8MICC\nkg8v7o7ZtNIkdZXlpBqN5tqhnYBL4AWw57gkxmCiMB3piKUiCJNhW10dFvmiwb5+l44mSU+zZHg8\nZu/RCMcW3LnBxrWvveFzHSgW6z9mNfibXdxlcuBkjGisuoaUksJ4iXIuy3deYaoO891jsHk5fPbu\nai1ppeb+eTaGAQ9sSpyLfHn6+qIOePC2xuvSaDSaG53DF2zeO+2Qzhm4GUUQKMbzMa8fMkjbAWsX\nK4II9pwwAIFXDgm8CKkUlmlguyYKRdGvtqFlX/K9l0OOnokp+9DWBLettnjibhshBF5Qfz0AMopw\nUxZlL8KelYqNo5goiikVAiw7wk05KBRxJJFSEoVxQwdg8vXxXLVEFcaL8O7hmHtvvfpjRywVHxxX\nTJRg+ULo6rrqW2o0H0u0E3AJjp4TeCGEddQJAEplhWUmUyL9UHBywOK1d/O8czAirtjNZ94MeegO\nm4fuuLZ1jI9tc/nnZ+pnHtYvr/9X+9BdLq/sCSh5EtMSyLhaFxoqm0IsGSuoamk2Q/DeCVjYrmjL\nSQ6cVHx4UVLyoaNJkEkbjBWTqE9nM9yxRnDrivop5rV90NsB7x5NJEK7WpIMwXhJYFvqIy+t0mg0\nmqvlyDnYd87FqqjhGIYglRIIA0ZGY946arJ2ccTx84KJkqCY9ymXpssyo1ASBDF2yiSMTGYO6Pru\nLwL2n5zeh0bzSc1/yoFPbXHoajU43l+7TwkBm5eG7IwcSmfz+JHEtEyEmBwaGU45BkoypcQjpcQ0\nTUzTxEk5hI28jMsoFY2ugaz/mQHJUzskF0aSn20T3j1W4DN3qalJ9BqNZn5oJ+ASuDaUvRhE/TRq\nLBOVG9MEQjhwwufA4eqDeRDCcztD1vQZ9PVcu498++1pdrznc+pc9fu15ASP3lNfcP/5t8pYrk1z\nJp3IwsUxgRdSynuJXFysiKMY17VrtJmVVCDguV0K31dT8nJKQcGrVrTIl+DcsEIIycbl9R2Bpgw8\nsBn8EF7aZ7F7h0kQCbKuZOUCyRe2z5Gu0Gg0mhuMo+eg3vx3xxa4jqAcJrbQtRVxHOOV6/RlSUXo\nS84MTO85F0dijp6pH4h6/3jMp7bAfZtNjp2NGRqvtptr+wzu2Wjj+QFeOUWxGBOUQ2KpiGOFZU2/\nTxxLTJnMNTZnlA5lcimCsl8ZHDaNYRikMilMWxCHc9vrjAubV11Z01ck4f2zDhOeYKxk0L5AYOdi\nCoWI0RGfdw+FpG3BY3devXy1RvNxQrdhXoJVCxVpc/aw95koTJOp4Sunz9UadQAp4cevRxR9wdkR\noybVeyUIIfjvvtbKw3enWNRl0t1usGWDw7/5cguLu2udjVd3l3ljv8B0HMxKB65pmqSzKVIZlyiM\niMIIIQSm3cCYKpjMDAshMAwDIer3Cfgh7Dpy6YP8ix9YHLtgEVQ0tIu+wfunLF5879IpZo1Go7lR\nKDUIlgshsCyBaRoMTJgs74HIDxsOwTIMCA17ytb2D8qaifGT5IsKqRRdbSa/+7jD7atNutsEi7oE\n2zdZfO0JFyEED93h8IePGdy+QmHbBqZlkUo7NaIPUsqqafRCCNK5FAuWddPUlsNyLAzTwEnZdC9u\np7u3lXR6ek+p+d0NgWnA1g0GrbnLP3LEEl454hJIwdCESb5kEkmDdMamqzvN4iWJpPbxczpopNFc\nLjoTcAkMAz5/n8U//jzGtGoPxllXsqDZ4/gFB9tQNKgaAqAQmPxkb5ogMnBMSW9bzLaVPnVuO29s\nS/Clh5vg4Us/d9eBENup38DlpCxUpWnYMIw51YDErI5iIUTDHoCRibnXNFGCM0P1P4BDZySbFs89\nbVOj0WhuFHIpGM5Dyo7oafZJ2ZJICsZKFsMjJum0wYcjFt3NMS0ZST5f/z62Jcg1p3l6r2RRW8SC\nNknaDSn7tc9tbTIwKkayt9PkNz5l8PaBkEJJsWyhUbW/9LSb/Pqn0ty2JuLvn/Xx6wwvmzVGYKpR\nWAhBe2WSYxzFNDWnsJ3pmzuuRTHvE4aShe2KlYsEg2MC14GNywxuWW5yZsSiEBg0uTGLWuN52faX\nD6doyimGRg3KQa0TkU6bLOjN4OdLl76ZRqOpQjsB82BpboTPrB3l2aNLUcJEiMQourbkrg0xji1Y\nv8hjIm9yxDEpF+tnA3ItiQMAEMQGHw4ZmEJxz+o5OrquIROeQjSY3GiYJsIQybRg15qzsXf9mgyZ\ntMn4RMSxE2WiqHEzcPoSAx3PjRoEcf33KnpJDelckqIajUZzo7BuEYzkA5Z2lHHt6WBJczrCUDaD\nxSx+mESKvnyfwTe+V1+lLdeUNEVF0uDMiMO4Z7JyUci+E9VF9aYBn1gzfRA/djbiBy/5XBytBHRE\nyLplJl97IlU1tXdsImZsLAAB6YxDc1sGrxwRBlFlEnBCFEYE5ZAoihFC4LgWTW0ZTNOqCRSZpkE6\n45COA35tu8nS7uTxvCcYyFu8dMRiwpvsc1AcHojZtswj4yZrDSI4OyzIutDdohAiyaAXfUV7C4w0\nmC0jhCCdtshYNg0l7zQaTV308WoexIHPyi6PP+k4zMvnljGUd+jrUXS1JvrOkNR4tmYlbZ1pSsWQ\nIKg21tmcTXNLrcZx/5hFEAU4H8HfRC5lMh7WP6wrqZI0r2GASmpDjTpjK21b0NZqY1mQyzp0dlgc\nPFRkeCyue9+1fY2diYsTBvvPOwhBw7R4/6jJsq5r0E2m0Wg015nlPTA06jFbfs0QsLAtZLQck3WS\nx7o7LFb1Rhzrr75HU7PNokXTU+OlgqJvsn5dE7l0nsOnY0oetDcLtqy1uHdT4jBIqXjqtWDKAZh8\n7YGTMT/d4fP5+6YjMv2DFZuqoKOnCTdlk2uG8bEyXilCoZCRpJz3pmxzR3eOppY0tmOipJrqKZhJ\nKmWwfHGGYyMmh4eSXrEoNjFNqqRQQZD3LF46muGuZR4nLsChfpOCZyBQLGyVfHJ9RMEXCAF+AGEk\nGqreKaVoa7aA+gE4jUZTH+0EzANRaZASApb1CpYkP1U9RyFY3BGzqNNCymZGh8t4XoQhIJW2WLMm\nRzadGKuyT0XOTeCFgp+/JwhCaEortqyG1vo9vfOm6MGJ89CSg87OaSO97Vabn+yMsJ1q6R2lFDKK\n2bQ2zfBoyPkhiV8KsZvNqtywENDT7XB+IMK2BO2tgnTK4NaNWY4fKzGRjyn5glhCNgUblsIDmxs7\nAfvOOviRhWPH+EGtF+C4Bm+dSOHHPmsXfHTzFzQajeZKsUxZd/qubUFXU8CKGUGNJ7dnePWQw8XB\ngDhSZHMWra1u3YBKMbT40gMuYaTwA8ikqIrG7zsR0T9Yvx71+Kym4uZsEuDJtaRwU9X7gZQSGUni\nSGKYJnEU09qRoa0zO7UuYQgsQ2AYkrDSENzVDkt7LdzKHAApwTBhvNh42GQYG7xzyuVUf4xUyXMU\ngnNjJi/uE6zpjRkeT8qswlBhmrVBLCkVaUdxYTimf1iyqEO3Omo080U7AfMg09ZJaWwYgcRWET61\n+pWmUGQceGSjz5vHHC40ZSkHSdnQ4oUGaXfacGVSUCjDeCGJuL9/cvIxwZF+xae3KpZcge6xUvDz\nPbDnmKo02Sq++9IE22+JufsWm623OHzv56NErovt2hiGIJaSoByQsmL+9RdakBL2nwiJY8VEIDhw\nKpGisx2DVMah5CVrzWUFg2PQnFG0NBncvjHFnX0+Z4ckw+OwYuH0RlMPLxQMFxPnqjUnCULIlxPJ\n0iTLYNDWYlL2Fccu2qzuiS5HiU6j0Wh+Kcxlp5Z2RLRW2rKkhPfPugjTZMGCZCuud/g3RBKAMSvZ\nBdsSdUsk5yqJD6LqIMu9m1127PUpSsHghTxRpURJqWT2DVR6wxwDw0yacOutLekHU5gGLO01pxyA\n5PVJMChWUJ5DCCOSJrksVXN4AIbygpUSglAQSYlrRSxt83EdGC05DBVcpEym3Hd2mqRTKX68s8Tv\nP6xI64FkGs280E7APLCcFCLbjSqP0CwnGMRltrBS1lHYZqJZ/PDGgCiGN465TPgW6VlVQEIkxrFY\nVoyOhuTHE3lO0zKQsc2OA4Il919+beNbB2HnIcV0lkLgR4Ln35U4ZkhTFoJQEYQeFLyp3gYAIwWe\nr0inDDatTuYZjBYEF0su2XYDrxzjB0k0q73dwnWmf/9CSSJTJpGEvi6Dvnk6MAJYkh2iK1vihLeE\nNpWkr40ZakO2BWMFg4myoDWj6z01Gs2NTcoWBHGtrbIN6G1RxFJwpB9Giibj5VmiCErN6sydtudd\nTTFlT/KznQFSwuPbHLKpaTu8aZXJ8zuTANNsFnZW71eOLfiNR1J865l4Srt/pgMwE8M08P2Yrkog\nK44VYSUxmzgB0NMpqhyASYQA15KU/UYBoeT3q1N5CgiUgqVdMaVCyIMbiqSdygwDVWSs7HDoQgux\nMhBCkM0AhsUbB0Ie1kMnNZp5oZ2AeWK4OZSTpTUsge+Tj1IEMVgCsq6ia1YJj2XCwpaY8kj9j9gw\nQMiQMx9Oy+eEQUwYRJy1UpR9UeM8XIpDZ2Y6ANMI0+SVvT6/9SkD04Q4hua2NOmci5KJ1n8YhHz/\nxTKfvS9FS85kwhO8fDSD6QgyCvITyU7R1lrtAADEysALJKcGTVb2zE/xIWUrurIBsbQ5NL4YxxWV\naNestZN8lq7+pmo0mpuAtrQgjBUzRwBYBrRlBYfPCl4/YDCcFzTlTDo6Zr24MsDLMBRmRVozisGI\nQvZ+MMHfHY4qZTaCtw6U+MQak99+JA1AU8bgzvU2r+wJmXmWb8nB/bcngR0p4eBZwdCEwaETAqnE\nlL2ePTRyJkEQUyyEFIpJltg0kybhVMoirgwVa0Sj/UApRRyD6SjCqI7zIRQ9LZLNSyMujpVwbTnj\nMWjPBKxeUGSg1EwcKySCpqzJeEn3BWg080UfrS4DIQTCydLuQJtSUzGaRkZuRVfE4Yt2zaF5Et+r\nrXOPI0WhECLE5U8XnmiQDhZCMJIX/PTNGBC0tKdQGORHPaRUGKaBm7I4cBbO/EuB/+Yrzbx7Ko3C\nqDTtJkPCTAOcBmnWKBa8ftTl+EDMQ7fMT/bUNiP6S60AmDK5f819JfQ0xaQdnQXQaDQ3PkIIeppM\nyoHEi5LARi4lyJcEP99rUKyUVBZLMS0tEsuaNHyK4ZGI9laTbMaYyoZasaJQMjmXz5Jr9nHTDpZl\nIKXk2EDMm+8HbNuU7Befvtehs1XwwfGYsq/obDXYvtmmr8ek6MHT71icH03eb+C8nFMFbtZvxdCQ\nN/VTCHjlmCAd09xsIgyzNolRIYoFUiYHfkjKPZMsdOLgOLHE9yWzA1iLOySLOxReEFY5ADPJ2gFC\nJEG1OFIEgaKrbZ6/kkaj0U7AlSJEvZh7NXs/NCiUFLk6jb5RrOg/X0f0GUBKUpfvA9CWU+TL9ZV/\ngjDm4IeS9s4mvCAi9KcdEBlLysUAN2NzYVjxnZdCmnumT/GmKUi5gjCiYYOXIslk949avPuh5K6V\nc0djwhiGSumpn6MIDLt6EzFQuCLijuUNPieNRqO5QUk7BukZdnzPcaYcAEii8oViTEtzMmcln4/I\nZQ1y2eoIimkKsmmBaRlkm1JTB3fTNMlkTV45KNi2KXmuEIK7NzrcvXH69WGkeOP9kHePwnhZksm5\njI8UicLq2Tczy0Nn0yjSH4URfYuz2JaBH8a4tqqy4WEEI3kIZqhgRxHYzvQAztG8IooFhlAYArIp\nxaJ2yb1ro+kgVAMm72EYk3uy5K419TPiGo2mFt1Gfx05eM5meFQxUZBVhiyWipGxmNHR+gflWMLB\nM5f/fnevN+oazDCMkTIx8qZjEAX1JTdVJHFci4vjBrONaFd7YqSDoH5ERkqFqqg7XBi/dBqg4Av8\nePrr5wWS8XxMuSzxfIlXjih7EQ9v8MildBZAo9Hc3Hhh7cF0bCxieDikXI7JF+MqAYmZTMpr1m0c\ntkz+538oUSjV2ubBMcl//IHPU69H9F+MKEz4DF3Ik5/wCMO4ar8QInE0Zp+fZw4Em42U0/LORd+g\n5BsEIQRh4vAMjAqCWQO+pILAZ6qvYLJ0SSpBJOG2ZREP3BJNNT87cwyK8eLkscksxNqlBm1XMJVY\no/m4ojMB1xE/TCLkp89JWpoE2XRi8MbzCsuMyaUhUha5Zpts1kEqRRxJSmXJz3YJcik17yZbgDWL\nockJGC2ZFb1/RRhKfG/a2QiDuKEmfxxL4jhmeLDM6lUtTHZrKQXZjGDdcoPBMYlSsycEKwozSpHk\nHFOTJykGAseaVDGCcjlpNstPDXtJZjAcOmdx6xItD6rRaG5uOpvrG95CMUaqpFerkbTQHMFwTNNg\npCD4D98u8z/9QaYqW/vsmyHnhqpfLKXCskzCICYOY0zbnLLn2VySuvC9JArvuDbprM34iFd1D8tO\npsoLkWSaExLJay80UCoJZgX1tFJJ9sUkMKWmJEYn7/HhoMktfdOvs0yTtGNT9MOqj8eLTIbKuanP\nRylozugMgEZzOWiX+Toys6RnPK84N6C4MKgoe9DbBmtX5VjU10TPghwtrS5tbSk6uzIsXJjBsG1+\nssuqzBOYP+v6BKVCQGHCY2K8TCnvEQYRURghY0kYNG7ctWwT17WSaNFQdYOBUkk0akGHoCUjcSyJ\nZSb/n3MjwhlJjY7cpb0AqQTN6RhQRLGcigrN5sTFeTQXaDQazQ3ObStgYVutbTRNSKdNojAm8Ouf\n9pVSDaVHpZRIJfEDwTeftnh6R4RSCj9UnLpQ3xZPqvpEkcQvh0RhhDDAtExMyySTc2lqTdPcmsK2\nzalsgBCQyli4KQvbMbFsk5OnfQrF2uyyISSW0dh7UUpRLsdEs2y/XydBnk25nBjIcnbIYsK3GS5n\nOJNvI5RW4nDEAIKWtB4sqdFcDtoJuA4c7jf44U6LQqm+AcykYFlnzGjZxk2ZCAGjox4DF0sMD5YB\nRSZjUiwrnnknkfUseoqzg/WHas3k/tstli4QSCmJQ5lIvilQMokAeaWQTLZ2zgFArskhjiUylhw4\nMM6pDycoFgKiKMaYMdXXsZP5AK1ZRXNGkprRtNuSjtnUd2l1hpStaG+SdDdHGHOMei/MoS+t0Wg0\nNwuWCV+8R7FxqaQtV7GfWUFLi4NpGliWYnAoqDTJTqNUouAmZVy33DMIYpQS+F6EUoLjwxn+7plE\nRjRucCaOY0kcxcRRPBUckrNkTaNQEsfJWnLNDpZt4LgW5iwFhzBUXBjwq9ZmmZIlnR65OQ7lY+MB\nA4MBhUJY9dp6UtBCCGzT4t1jLicG0pzLZ/FCiyhOyooUgjaryOJWnTXWaC4HXQ50jTnUb/DyPosw\nrj68CgG2LTANSU9zyLvHks5iKSUXzpWrDP/4uA+VKMnQwP/P3nvFSpad936/tdYOlatOjn06p5nu\nSeQMhzQpiqJ0JVLSjYAg4Mq+tmzpQa+CAT3aD34RZAF+MEDA8NOFbUjXkG4ypasrmSIpiWE4M5zc\nOZ6cKlfttNbyw64Tqk+dnmEY0uzeP4DoZlXtvVdVD761vvT/4PX30+sTDbWy4OppyZdedZAjQvp5\nX/Lf/prP//p/91jeOLo+KVJ5UCkl3W6E0RbXlZSrOUoVnwe3thBCgoX7d9vcv9tmfMzhC5+fYE+3\n+UBSLv1TCYvvpinel05H1IofXsM/WTQs1y21UppNeL+r9idGHqbkZ/0AGRkZTwalPPzqyxYGgY+/\nv+FwYz09VI+PF7h/t0kYamZmfHKeIE4sW1t9Ti0VcaSl3YnI+Q7KUejB4b3TToUThBxE+KWgERfZ\naQTMT0lurww7FXGUEB0Kt1ubBorCIMIaHyEPsq9hkAwO/oJy1SMMRx/q+31LPzAU8gowzFQCXAVT\nVU27p4j1o/FGS6dj9lWCgiAhn3cp5QxXT45+hq80Lz3j4rkCaxO6oSXUkn5o2Fzp8MoH/yP2d/4A\niqUf4F8kI+PpJnMCfsy8/1AecQAAHGlROmJ7FzY2ASy5XEK3Y49EfoJAH6qzPIjmGGtodhR/947B\ncRJ++eXREf28L49NHWsDJdnHny4zJUsYbXBchTGWjdUWOjF4+eH/LDpdPfLwf3BPyXhN0A/Bdz9a\n5F4KaLYhtoJSwVLMW9q94WtdR6N1zM0Vw/mFLGmVkZHxZPH8UsxWW1LvpnX5S6cqrK20uXk9wFrw\nPMnJpTzdnmZm2md9o0m/G6OUGIgxDIZ8JQYpBesP6yhHUqoW+Prbhp9/0WGrHu3LR1trSeIRmVoL\nJrF02jHFstzvK7AWgn5CkiQoJZFSIo4xxTs7EXUJz55V+IOtqeBbTs1EbDUdeqEcDA/TbDUObiIE\nGA1nZzTPn0yYOqZ3ws1JBGL/mlJOU0ITe4bxgsfDq/8TpmFRLbg4zUeSqc7IeNrJnIAfA42+5MGu\nSzcSbLZGG7BYC5o9gT50uO/3NfaRLlqtzZADcBhrLEYYpJR8cM/wS5+0I7MBkE4uPo6LC+DkI771\ngcVxXbrdkFa9x/ZaA8d1cB5RY0jT0cfLrnWCVCM67xtmKh+9JrPgwdsP1OAZ+09DCMPpOUu1CK7j\nsN2XrF0+uo1aAAAgAElEQVQzfO6i+UiDyDIyMjJ+FijlLP/oasB7yy7bbUkrUFy6VCXnD5+0r9/s\ncvKEz4nFPMsrffSh0h0daxKdNvnu0W4GbK9L/uUv1fjtX/P41ruaetvS7sbc6oxei7GGoBdhEk21\n6iGloNvX5IseJrHsbrSYmCnh+UeDT1ob1tdjwHL51PCUy1LeUsqnjkeUSJpdybU7EY4rUUrsS5NK\noZmqPkYOVEp4pMWhG1gKPhRyextD+uc7K5YXTthsv8jI+BAyJ+CHQBt46w4sb4PjKdxCDm1TeU4h\nRtfDHzeS/fBrQvCY6niQUqYRH0/S7qd6y97oZABnFh1urxztKh4rCz591SPnw6cvCd662eP//XaH\nAoaZ6Tzt4GiYJ5930MbuD2U5+E7Qj8T+ULGgb7i/JTkz8/jG4CiB792Atd2YoGdQroM78FqMgXML\nMF45/HxJPi/5YC3mmfmsPCgjI+PJoeDBy2fSfaPRF9zZ8mkFFiVBSUOj7zIx4XPjdp/JcZelpSKN\nekSzFadNscmwA7BHFGr+3bcMl5Yc/tnn096zr33PcOv+MQsZmNYo0mxv9bGA5yumZ0soJUiSXJqF\ncNRQX4AdqNpBqhq0visZr4wO2Fhj2GoIpJKHhqSlZUzvLzs4Er5wdXQgSUlLbA5uutuy9HoJtYWj\nEa98TrC8YzgxmXkBGRmPI3MCfkASDX/6Tbi7nhqXc6dcqvnUmAkhKOQlUXz0EJwk9oh05p4smxCp\nFrOQAkcb2sfp+B9yJKpFwWPkkzl/0uPb72nanYN75Xz40md8uqHl29fS+7x0zuETl8YBWNvW/Ouv\n9vYl5WpVxdKiz8KMRBtJMpjqK2XaaBxrgbHpdzfG0uxK/uY9n3fvJ3zhakw5zxHavfT3W6/vGWeD\nkhHlkoPjKXwvbToeRTtUWJtk0Z2MjIwnklre8tLSgRynNvCde4IdJZmbzbO21k/fEJJKLU8cRLR2\n02ZY5aQH/b1sshCCb3ynzb3dKe5sGn7lhYRPPuPxn78d0OqOaL49VEO6926hmDYtu66iXM0T9GM6\nzQA/76YzBQCTpLX9+YKL5zs8XLc0u4KTsxLPE3huOjVZSU2zK6k302z2KO5tSa49iFnbTfsnXjwn\ncAYzEsq+JRj0/Vpr+cb3Yj734uj7CAH364oTkx9Brzoj4ykmcwJ+QL71wYEDAKm022EmxxXaWLpd\ni7EghSVJLEEwWrVAqjQlumcUlZPKscUjHIE4TJBKIoDnzx6MlX+Ubt/yF98TOIU8JZUQxxohBJWK\nw/Ku4K/fsvvSo99+Hz571fDZK5LZCcXzz9Vov97nykWfE/MerptqP/ei9HtG+19j+NlhZEl06tis\ntRy+9q7g1z8ZHTmwf/3dww5AijZgkgThO+Q9i+Okw2YaHch7UB5MXFZKYGy6oWRkZGQ86SgJn1jq\ns1HP0eopfF/h+QpnUPDeSBKEFHi+ixxE5x1r0YkmDhPixACCG6uSU1OCy4uKz38ix19+q8+jrQHy\nUHRfSsul+YgYg9aFQdkO5PIuSaTpd6NUsceTVMcKg5kBqWHO5RTVssD3BUqls3GMhSCW7LTSPSKX\nE0QjlO5afcG/+Qb75U7fvWb59VcFSzOS6ZKl9f4N+pVJ1sIKUWRH3mOPREuO1A9lZGQMkTkBPyDL\n28P/3zzSJSuEYHbKJappZvIhJ8YNX33N0hmhfANpiY98pIu3UPLodaN9iU+pBHGYDKIzls89L/m5\n59NNYLMpeHfZodGV+A4sTWq2dmOa3XQtXs7Fy6U1Q1Fi+P7t4ef3Qvj69y2nZgzbYZ7b64ZzZ3Kc\nXnL3jXoq4Zn2BEi5NwxssBoLnZ6h3jAYe1Dbv7IrWa0LFsaHf5+VR36/PSKj8ElrPK/fh+1G6ggI\nAbUSXDgJOdcc2/CckZGR8STiO/Cp0xHfvOHj+4o4MftOQLmax93sDR3ghRA4roMxFj+nBmWqgvtb\nisuLCb/86TwnZhSvfxDRCwyrO+k+YKygkJNcXgz44jMtJsqGv709w7sbqe33fQdjDJWxHL1uRNBL\nyBe8/dIgKaFcSlXexivp/IPDKCWolaHZUbiDUqd+8MggM22H+h22GvCXr1n+u19N+9/cf/unNP7y\nm9z5r/9nqJ7n3pplftriOMMbQ7cPWy0FZJKhGRmPI3MCfkAejTtEoSXnH/3cVMXyysl0MNezS7DZ\ntNhHHIHUSB491QohKJZ84jih34noNntIV+G4klNThi99Kj3UrzcFf/OOTzc82ABW6pJ0DMDR3gR7\nTFAkTOBb1wSFcRdtQibH1KEsg6XkJ5RyEcZCP3Joh+7+d+n0NDt1e0QxyAKrdcnC+EdrFB4MOKYf\nCJqHmquthXobPrhr+dWXs8bgjIyMp4dWINhsOjzYEfiuZXpCslM3+wf7bic6otu/R6niMzldwhqw\nYthAP3PG45kzHl97GxpGkLOp8MTluTa/crmBq+BhI89rdwqEUYAAPN8hl3fwPAdIsw9KHZS0Tk+6\nhLHFEeB7R9cD6euOSstqpZT4nhmafbOXcTi8n6zuwK0Vy4VFgTNew25sYPoBVOHhuuWdguHcSUm5\nkCom7bYsG3VFrZQpymVkfBiZE/ADsjABd9fTv5+YdxirCgx7h+DUIBY8zaXpcP/A+url9M/3Hlh2\n2wIrBIWColZ12dwKHxmbfoBSEi/n4HglklhTdC3//IsHhfbvPHCHHIAUQZA4SJkcaUR+XEttOxAU\nEHiuRClDEAu6gSWOIdEermOYLMdMlwPyrmaz49MPoN446gDsUe8IemGa0t4TlJifgO3W0c9K0ghQ\ncsyY+VYXgj5QGfl2RkZGxhNDmMA7qzm22opWF8LwwH5XKpKcSNhsK8yjjWaHECIdRNbva6LIHqmP\n7wbw7j2BJT14CyW4PNPBVZAY+LPXxmi1DoJJQZAQRQ6Vam5fIELr1CGplhW+LwkjnZb/mKOZAEhf\nP7xk15WpspE+yCznix79bjS0r3QGrRDT/81vsPzGPRY/e5XWsqAfWN6/Y7hx3zA/LYjiNGh08lSO\nq5NZFiAj48PInIAfkM9chuUty1pDMjft4rpi0LCblgYJYLYSM1Y4sHRCwKefSZ2Br77lUe85+5H2\n6SmfjY2Q5JFpjXuSnHtybE4p7QH4/l3D/MCY73ZGh8W1lUyPKdZ3ho1g3od+MPISJiqpVR+rSlCK\nRkfS6VnswLHpR4p2zyFOQubGIoSJud8rpJvBMcH+O+uCt26mcqWLU/DFF+DnrsBGw7JxqC8g51rO\nz2lubaojzdMHCOodwamZTB0oIyPjyebd1RxbHYd2zxKEw+8lWhApxSfPRHz7fag/Ejnfw8+l+4zr\nSqIoYXZs2LjeXIHuIxPZ825qzL9zq8h262gkPegn5HLJflOwK9P+gz1ZaaUgjNLyonLh6JqCEDwP\npBzIgkooFVzCSLNb1+RykmJRYWourWZEpx1TLsDlpfR6b3Ic/d//Dzh+jTNuwr37Pbo9Q6LhwVp6\nv/n5PC8sGc5Nffjk+oyMp53MCfgBcR34zc/Dt29L4kOpUKVgL/DRCRWjynEAwkQNNfRKKZma8gcZ\nAbOfCjXGoJMDNaBESTxPcWNV8MkGTNfAe8wsgFcuWm4uw9quIEksc+PwqUuCv3nD0jcerieJQsNu\nPeL0LLx8Ed5csVRKEq2h2zdYJDkVc3F8m/FcDykMzTCPsEXGSornTwR877bitdujdUqDCKJEECVw\nfRlaPcu/+iL8l78A371u2WmlGYLnzsD8OPxvf2PpB2KkI+Aqy8JE1uSVkZHxZNOPBDs9B4ElPKry\nDECkJbNjhqLooxMz1BMAaYR9YjLNGqc9Z4I4FhzOB5fysNfrtUczcFkg5MHOiBrXAUGQMD0uqOYM\nE1XL6q4gCjUUHXJ+OuV4YyfNAOf9gfS1tQSRoN0H79DGFSeGIDTkfcn4+LDYhe8rHEdwdTHGWEk/\nSkuJuoUJ0FAqOTz7TJlORxMnhkrZYWMr4eqJmCsL2V6RkfFRyJyAHwKlYHES7tZHv39c3boQadS7\n/4h/4DiSxTmfjfUurd5gKNhAl3/vXlob+n2DEC531gXTNcvCuGarfdQTGC9pnjtpeOG0YGy8xNZW\nG0cJmj3JyVM52uHBP/vSgsfPXexjdcLt2x3CWGCswHEks5OS6UnNhp5mu2eouj3OllbQdNlKZllu\nuJyaTnh/2RwpS7LWEj8ilbq2K3jrruWlc/C5K8Nr3mgIEArlWMwIxYfTM4bp2ujfNSMjI+NnCdGr\nI4J6Whvj5jClGax0ubWhuLPpsN2zeIrHZEbhH647XLuvMQakgkLBwVrwfYfxqTy5XGrnrbVMlA3T\njwziOjsHc2OwsnPw+psPq5yo9R/be6WEodXz0Eay3TAEkUbJgCTWTE3nKRehH1qWN6GS1yzoB/j0\nWFZXkI+MG3YdCVYTxTYdBnYIKQUTEz71QPKvvyFRAmbHDF7x0O8oBOXywffs9RK++bZhY1dwZl4y\nXjQsTGRDwzIyjiNzAn5IZisJyy2XWB9NmVZyxzfDnphIqPcEk8WQiVKIsYLVRoFaUfCJJfhPr8NO\nY88BOLBcQqRa/HFsyHvp6584k9DsSx5sK/RgiEqtoPn0+Wi/ZtNRBzrL76wcOABKGqbKIY6y/MMH\n8OZ1sNakGQhtkQKqRY9ekme3Cb1AYm2Ja95ZPrvwgERE3GhWEXjMTyesbRk6+4PGLGGoiaKjO9hu\ne/TvstGUA+dDAHtZkPR753345Rc/+iTijIyMjP+/IpsryM76Qfw9bCKCFt9uXubddZ+9yHwEx6qh\nOcogkg7xoOIziTVjE2WqtdzwB60ljjXPLGn+8nVY3U3r/xcmLJ++aGl1DEHfYC1IIbgX+/yHtyfZ\nDnIcW+cpHYyFeGDfpRRYYGMrptnWnD9bYKwiUb0mz67/FWea3+PW3BdQ1asj+9JcV2E5prdMSHZ6\nDom2JMD9LcWisrgjGo+7PU2vbygUXJYbktWWQGCZGzP8wpWYyojypIyMp53MCfgh8R1Yqsbcq3vo\nQ6o/tVzCqbHjaxGfnY+o+C0KXrRv4E+Odyj4PuVCjrlxw//yZ+wf6g8jBAgMz54czBSQ8EtXIzYa\ngpW6Iu9aLsxrHhWL6ISC29uKjUHWoJyLWZrokXNTq/vX/yCwFpLEkAwmT2rg9t2AXiTxDkk9NBKH\nv763xEuLuwBYBNJ1uXo2RumYKIF7a4brx2RJjjPE42WDIO1BcByJ4+z1RaTRH+cxpU8ZGRkZPxMk\nIbK7dUQTTiZ9askqcGHo9XTWzKM3sczUIoquy9YZyb0HIUlieXivycyVAO0Wia1LUQWcLmyQyzf4\n25tn6YYHRnSrKXjjekI/MIeeZTGRZiuo4PqKYjGgWki4cFKQ9wWtruXuiqWbKPQxKYogMKxtxExM\neFxK7qFmZnn72d8n9quc0hH9WNLqKcJYDO1xw4VKj2djx3BqHhJ78H3CSLOxGZPLqaFyI4tgta74\n2/fhH38y6xHIyHiUzAn4ETgxllDNazY6LtpAxdfMVvRjtezDOKTkDxd6OgqiJGS96bPdVVg7OgIj\nhGCyYo8ciGdqlpnaaCWE1d2E27vOoXHrloWx/r4DsLnLQN/f7jsAe/g5heMerfcPYod7O2WKYwev\nNQLFZ0+HuAominBvHcJk+IeYqlpePDtymSyMWebHDCv1gy8nRBrJOTebZQEyMjJ+9pG9OuIY+z7p\nd0ZfI9OAjzYWT1nGKxrX94jwef6q5dJ5zbWbXcKdOr9x6n00Lq0kz6TfwZOpWs9Kt8r3w5n9expj\nhhyAw+gExsZcLp60nJmGw1vA6QX4+hsJq5sJrjf6+NAPNL0+tBcuw6Ggj+ukGQwpoRs49AJLrNPM\nhJRgRvwsWtsj6nlxDL6NOD0lubUmWNu17OwkJNpSLo/uT1urS7Zb6f6ZkZFxQOYE/IhUcpZK7pju\nrRHE+vgD7U7XsNEp4vudY1R8LK8+89GLG62F+9saEDgKfMfgOZqCd2D8r614aB0RRUediFzOOTLI\nbI964HOoNBNjBe+tO6xvCbY7ilxBo3uaJElLi05MWX7xhXQjGIUQ8AvPRnzzmstqXRFpwXgZzk0n\nPLuYOQEZGRk/+9jHFKebYwZKjhUSEqs4M90ltC6twCcZBHUSY1Ge4OozJfIb99FugSY1fDfEHZTz\nSAFnaw2+v33ICdDHH4ZLZQfHgcXJmEdjQL2+5u7dPvlKIZ1eP1iytXb/nkIIHGXIjyjZESLdh/rS\n4nuCuD8YAuYM5EOHlpWWlY6inLdcmI6wEbx1jX0Vu1FzdyDNrDd7mROQkfEomRPwE+Y4TX0AgQUh\nmZzweLhy1LGYmZCEbp7vPARfGs5NxJRyx9+wGwm6A2cinbybDmbZM9yJhp0mxLEmCTXKHU4x6Mds\nFL5nmat0ibWkFbgYK1ASerGg3QPHVVSrCmPSzMVnriTMfsjgsGIOfuWFmE4Q04sEF08Vqe/2H3tN\nRkZGxs8KtjiJ7WwgzNHSlK1o9BCUU9UWrukQ2hrtwMMMlYqmamqzxT7+qQXesyWMcMBaVmlzxt6k\nRBclLZ4nqJQdpBC0OhFhMGyPK0XBiQWXSlXgquFg0R7fv67x8h6e7z7Ss5b2chltKeQd8h44x5wu\n9uJKjkrlo+3g+pxvSRKIEounDC+dDPn6uy7xIwf7saLhuaV07RcW4OIJuPYwfc8YgxoxoKDoGxbG\nM8WgjIxHyZyAjxlt4GHdJdaCmUqMoyTJiLOwsdCK8iiR8MnzIQWVqit0A4mrDNOTDs9cyO1HPEKj\neGdD8dxsn4I3WpFIyuFDfMENqLoaaWOkENzfEHTaMR4RzW46eVIAju+QL3p0OxHlqj9UY5lima5q\nXGVxlcZTmk7o8O4dSX0wu2DP2ZFSIKTk1rrlzPRHi+iXclDK2f2G5oyMjIwnAqnQlTlUc2W/LMgC\n1isTFedw6pZEH5RunprUXJpscGdT0uw7aDtqCq5gs1eiVswfBMKFoEuFu5zjin2LRlJicSG/b1Or\nVYd+V9PrpWs4s+Rw8ayP5x6WC/Wp5sJD0X6oTFRRm90hB2B/FULg+wI/59CPUoEJNcKGH0T77UA/\n9OB6IQ3TpYRPnY2oFS2YmDfvKbaaMp0BMGZ49UKyn1EWAv7pq/DBksd7d0N6kaafyEOZgfQ552Y1\nuUcyE9Yer+SXkfG0kDkBHyMbbcV7qz7dKD1E39ryWKgqlmoN9KECSGtho13AEwFjRQsCXn0mJv9s\nh37fEMsCu2Z66N7WppMR/9NOASWgkjecm445cSjannegWhA0exZXBNTyIQdlnJZTM/Adz2VnN8Zq\ni1twcQfZgChIyOVd6js95hfK6EEQxVWGubGYxUPTJx0Fwmo262J/ZsLeJpEq/JgjQ2mOQxu4teFQ\n7ykqG5bZomC8lKVwMzIyngxscYrEKyN722A11i1iCxM8Jyzz433ubDpoK5ivafKu4as3F1neFoxX\nJRNjo++pjUCGHYxXHJxsLZ5MiGyeTTvN4ukcud4ud3aqRCYdInbyZJHlh23C0HLhzLADAJBYh25s\nKHlp1mKn45HLu/uDwh5FCEEul+4fc2KTknDoUx3+7hbCRAICz9HInKUfSYII8h584XyfsUP2/vy8\n4dycodEVuMoOZhsMIyX8/Isezy6GgOHWWswHK4pmT5D3LKdnDC+eOtgX374Lb92BehcKPpyfh889\nC3L018rIeKLJnICPicTAu6s+vUgdek1wv54j51bRSYAQmiQRbHU8kA6VoqSVDD4fQ04VmCtt0wol\nPJLJ3GoIusGB1erHkt2uQoqAhbHU4AkB52YV79wPcIl5tI/Lc9N603ttTXmsONTopVDEsaHoSuam\nFTqOKXkBs+MGzz2abtXa0umkfQVKCfJ5te9QWAvFx5Qt7REl8PXrObbag3VsgasKXF0MuTSXjYDP\nyMh4QnBzmOrikZcny5bJcnroNhb+4u08D7c07XaCNYpen8EsAMF4NZ0GDOkBPOrFfML+PVveCUyx\njK9SmxnbcZS0zFZ65N2E769OY0kP7M9cKqC1wB9Rvw8Q64PBl7tdDyHlsRlaay3zuQZXCxtcLd5m\n23+Wt7d9igUX6Si0SR2AfqRwpKZWiPEcy+pGwrde7/PClQpv35e8dFoPTRsWgiHH4MM4N5c6DqN4\n6w781RsQD7ItnT5sNtK5Br/yyY/8iIyMJ4bM9/2YeFh3hxyAAwTvr+V4/V6Fb3wwxlvLNbQqUClK\nDMOf7yU+6/0xpBg2gEYn9IKjhjjWglubwyf9sZKi4ll8Z7RR3N4J8PPuSKUHKSVWKASWestwf12M\ndAAgnQ68h9bp0Bat93SkYa6qH9sPAfDOsnfgABz6Tu+vegSZultGRsZTxPKuYqcj6PUSPE9hrCQI\nLZVcgDIBy+ua6NBAxoYu4kjDiegmRd3cHza5JxltgWo+YrZyoEK023q89rK2giBxCLUk0qmU9Nx8\nbl+++TBRlFBsP+Dlwgd0nRpffWeCP/nzHWxjlaX8CmXZoNPV5J2IqUqEIw07Dcv7d9IM8MoWvLfs\n8n/8XY4//67Hnc0f//Hk7bsHDsBhri1DN2s/y3gKyTIBHxNxcny0pNEy++o/7S6ApeApfJkw17uO\n1THL7ll6skqsi/SVizAhSklmCi02Wx6W0WPdO8Gw4exHhocNj4Vyb+TnjRGox4jw68TiNFeoNyY5\nOSfQxh6ZQ6ANrGw+el/SwWZ5ByHgu3c83ls2fPFKxNQxCg3bI6YfAwSx5O6Wy+X5zBPIyMh4Olht\nSJLB0MRcTnJupsfl+S61YoIxsNNxub5ZQasCrrRI3+P9wsuMmTp+t4H1iodq3g+U+IvugR1NNHS7\nGjsBQh61v1JAZNJJxGbQjzAx7iOEYGsrIk5SdZ8oSug0+tzUNd7onOE/rjzL7RvbLM1YLp00CGFY\nLDX5f74eE9ocFy8UibVDsyvJlQRLp/P7SnQWWG8oGu9KnOdCliZ/POWgxkB9tAorvVBwf8vyzNKP\n5VEZGT8zZE7Ax8RUKeHmlndE9q3VMUPyn9ZCqyOI15b5rPcPbIsp3vFfpW/KYCBMLKHKUfA0FadD\nwQkZyyXMFSVbveLQwBQAz7FESYIFPKW4swmhcUiswBkxjmVs3KfVP/5wbYH3tyaYHrdcPmlJTKrd\nvxdlimK4tQx3V0dfn2YE0s/2HcF/eMPlX/1cdMSR2HvWsevI2gIyMjKeEqIErj8AIQXFomKmEvLS\nqRb+YL6LlDBVicn7db6/6pEISSkv6MV5IulT9guoGMreUZU5J+6yJNqsmWku1po8P7VOgwnWzTTD\nxQF2PwttzMAGD7az8TGPsZqbSkBLwfUPGmlvW1TjL7dOcWYxwI8tX3pFDzXfztQ0G1GB7dZB/ZEx\ndt8B0IkmCDSOIyHn8J/fclisRrx8AWoleP2G5s6KQQi4uKR47qwc2aQ8ir3p850R8tuOskyUP9Jt\nMjKeKDIn4GNirGiYq8SsNIeLLfvB0dOsxPApvo2jA94pvkpfHbZGglgPaikdD9/2mM0b5haaxAm0\ne5LXNk/RNz5gmSj0aPXSqL+Skl7iAy7rnTLzpTaec/D8fiQYH3fZaUmiyIw8aOd8h3LR8omLGkeB\ntJZQKySCnKNZWYN3bx8z3VgI9sYiWAtxbOkYwXdvKT594ahS0ERJs9s9Go3yHcPpqawnICMj4+ng\nnfuSRk9SKkK5pDgzfeAAHKbkG6YKPW7vVGn1LLWiYX4spiMKFJIADm0/MomobV9nLmjiqoS+9CFX\nIHFmKIoNCrpHw9TQVhJYF6Ny+wf4tR2JNqnowx5CCFxXEEeaZjMEwMu5nJjRXDjp8uypMaa94RTx\npZPQXD4YPmBMuu9YC43dPp1OtD9vwM8pqtUcK+vw3n1LQcXcWz/4Dd68Ybj5UPIvfn70gLBHEQLO\nzcFW8+h7S1Mwc0zTdUbGk0zmBHyMvHAipORbtjqKxAik0KQ2bDgMftG5zZSq84H34iMOwB6CWAu0\nlahDHcKuA+NlzZfkm1zfnSCODCfGy/Rjl+1ejg/ugFAh09MCHI97rTGm8j1cmRBpRSdSVGs++XyE\ncgxBP8GYg0iT57n4ecXz5+L9KcVKgCsssVVIaXnprOH6sqXVG3YEPC9VgHgUrS131uVIJ+DKQsRO\nRw05AkpYLs3G5L0sFZCRkfF0sKem5ihLrarIe8fLK3vO3nuCVhde8d9jwu/R0yWC/DQIibUwvn2N\nYri7b5bzIoQwZLdZ4KZ3lcQqCk7EkrfMeq/CtdbJQWZZ0OjJNAgk7ZHI+85OSBgaXF/xi/+Fy8RA\nECjGpZ5UGXfTU7cx0Ahz+1H/fM7Q76ciGq1GQGvgSOwRBpq6DnB8Rb2l2QyH9wALvH7D8Mwpw/Sw\neN6xfP5q2gR8fSUNgjnKsjQFX375o12fkfGkkTkBHyNSwIWZiAszaS/AVidmZbNAvTPsBBREmp9M\nxPH/HNqAL0aU7QiB9D1eqN5nWZyg0c/z+h2Pesffe5vdOwYlAi6fz7HVL6XPdDXTpZAHG4ZiUWG7\nEsdJFYHA4roKIVJZOpwc3UhTcONBZMgO7gGTZXjurOC71+Xg2lQdaNTAlv3vokc3Kec9+OIzfa6v\nudR7kkrRZbrYZ66WDXnJyMh4etiTRc65Gkc5x05aB+hGhyLrKFaCKRb96+RtwPquYNU/TV63WQxH\nhMABJ+ywZsaJkrTx954zztnyDs2eYs9jsNak821ikMIghCDRhvpuyP37HYplny+86jNRHd7buiZP\nUbcxRvDOcol312r4nqVcFMSxIBlE/Xu90SWpcawRShw74dhauP5Q8/lXjv99DiMlfPkV+GwX7m9Z\nJiswN/7Rrs3IeBLJ1IF+QgSxIdKWE5PREbWf68lpQlxm44dIe1x9vmXcG23EjZQ4wlBwEra7Hu2e\nt59iTXX6JUiX5dVUkWG2FHN1NuT0pOXsZEQcpaU2Qgg8T+F5qY6078GlUwIQRNqhn6Q7UZRIip5h\nqmNQxtoAACAASURBVGh4647g7rbH2JjP2JhHuexRLHqPHcKy04T/6+uCO+tH33MVXFmM+dyFkF98\nQWQOQEZGxlPH5UXDbE1zdXoDawztMAf2qC2s91yWG6Wh1w5/alJss9NQ9DsJDqOzCa4N6fQhiCRh\nLGn3Xd7ZmmaydNBPYAY3TRKIYkE/sNTrCXEiKJY8fumzOeamRh0nFNeaC7y+Ps/bK2OkE44tuZwk\nPlThedwhH8CavfIgBz/vHEkw/zD9YpUiXD2VOQAZGVkm4CdENDByJ6djrO3zcNslCAS+k3Cy1IJc\nmYnOOovxXR54F4au1dqSd0IikeNhVEYJTVF0qTqp1IE0yeBz8GDTGSmBZgw0OgJPGZZqMblBfelL\nZ6FWNPz53yck1kUKgeMIamXBhZNiP3ULEGtJLKEbOVyaifjqa5Jry4JKVaIUOI7EGIu1acRFj5qM\nbNLR8A+2JOt1y/n5NB175aTNhrVkZGRkkMp6/urzbXJbt1jp51gTk5yo7OC7BoMkNpKtTp4P1seO\niE/0nRraCpSwOMIy624T+hNELR/Phkee1TYlzJDAhEBbRS8yWGsJQ4PjGDwliHT6OSkF5bLL5kaP\nZj1kexumxg43+w7O6hLC2CGyLuM1zW4j3RQcJYbsveNKkmR0wMf1JPmChzOoSU0STa8T0+9FSAGX\nTz1e5jQjI+N4MifgJ4Rz6DB9aibi5HREKdmmRJ9c3MLYGToyz3zrGtKEbKsFOqJMaBy01pyYgL4t\nAhBbCGwOnSjG5S5e1MVYWA4n6QSCqVo6dXinwdAG4bqSbmCPRFJOTcPPX4742rsJ5bLPC8/6yBGh\nfGMFzcAn1A43VmOuLadZAmssKIEQAsexxPFgxoA1+xEkay3WWpIkVRaqlBUCwbVlzQcP4Z17hn/y\nqhk5ETIjIyPjaSPnxuS37/NLzbf5d8l/xQ1nkuem1/GlwQXWG2OE+vAB2JL3BX23xj29xFnnPsZC\nzxvH8X3q/gIzwZ2hZyRIbtmzI58fJZJuV1MpGk7OaN59P6CT+Pg5hU4szUbIzk5aynp72bKwkPYN\nJAaaPQclYLIc0wnTY0YxL6g30+CQ1pZcTuwLZZTKPmGQHInqCykolnzkIY/BcRSlikRrzQtnLJeW\nfrToURTDjTWJoyznZy2PqWTNyHjiyJyAnxAFT9KJBPEgIyAEOBKEBSPShl+3WqVSkry3O009ygER\n3chydl6PkNQUdEyR+fAOrg5ZSabZ0uNcPgn5XPqJhSlY3bJs1veazNLzf+6QQtD1exH/5q9aPNxI\nIzSzczmevTDNzXshuw2DNpZKSXL+pEuhoAgSRcHVrG6la4B0HoByUidAKYkQZiALmvYJxLHedwaq\nVcXEmDtoHIbxyLC7m7C6C3/7DvzaK1n5T0ZGRoZ08sioT4k+v9H933mz+yLvbU+yeH4ci2BxvE8k\nC4QxeFKDoygObP+2meIs99nVFbRfwMFwr/wiiXSphWu4JiRURR7I09zqXRj5fGMFJ+cNc7UEieX+\nuqbbbY/8bJzAaj03vH5hMMZjb59wXYnnQBhZNrdCksSmjXMoCkUXawt02xFxrCmUfDxf4bgSKcT+\n/rF/byl45qzPP/uc/sgSoaN447bkrftqf77O924ZPnU+4fx8JkSR8XSQOQE/IYQQjBUcmr2EcOAI\nBNYnLwK09JA6QACeMnx+6hqRUbwVPUuoPJRSBLHFkRb30OTfBI+NeIJ2vMBdvUS1oHGdA4OY92Fp\nFjp9Sz8UKAcuTsf79fpxYvk/v9pifeegbmd8ssRr74TUGwevdbqaRsvwwpUcvi+ZLiU0dw6+WxCk\nuV/PUyiVZgfAEsdpOnnPgOc8wdSEh3NojZ4nmZx0CULD8nZq7LOyoIyMjKcdqVysV4ReE5eEV3gN\n+hAsz7O88Fl2bZWZagAWOnEuDfIMTGvfVrhuzrMWlPD8wYFWCJZLV1kuXkFgsUKy2xYYa0dmfq21\nlPMWsHS6Bm0VHNNXUCwePUoYK+nHB/Y8SSxxYul2Ihr1Qyp3rmB83GdqyqdS9QjCVDbUUWlQScq9\n/ra0NGmPvC9+JAfg/pbgO7cckkPls/Wu5BsfuMzWIsqFH/rWGRk/M2THrZ8gnpJMlT1myi55x+PN\nzRPUowLG8YlVDi0UkVFshyXejJ5De6WBNKfADupAD08iNgbeDi5yMz6Dq8yQA7CH68D0GPg+jJUE\ns9UDI/r3b/aGHAAAK+SQA7BHr2+5+yDtPdjpOixMpavaI+gbWs2YVjPCRBFhmKC1IYoMSZI6A5Wq\nM+QA7OE4gkpFoQ1sNAXfve3yndsed9ZHzy7IyMjIeBpIFp/FiOH6FH93lbnwHqe5Q6OfoxnmhxwA\nAIRkVS6B8ggjO2xHhcAOZEPrbUWSpAf+w2htyXsGx0ZMFQ2tpsXzJcXS0cN+qeQwNz/6xHx4Tb3A\n0Osl+ypye8SxZWMjYGMjpNVMS4KUEriuRA3KTKUUOI7E9w+OLLXSj7Y53FhVQw7A/jpDwbsPs5qg\njKeDLBPwU8BVkkoelJK82TjDqcImi4UdHMfQNT7vBqfJ+XKEyn46K8AdRGOCRJKY1Fg9mi49jBQG\npTzOzw43hbW6R41ovz/6Rr6viBJBr28BRdd6aBPvDwWDdCORWLbrGmPTlO3ee1rb/VkDo1BKkPMF\nf/NeHj3oY7ixBmemPD5zIXqs2lBGRkbGk4iZu0i93aS0cR0/aKKlIijP0vSnqJomi+4a63ZupH0U\nQiA9j4d1lzN+jHvIUbAWIi1ohxJjwFhQMu3XsgaixHL7dpeJK5ao6NAJJScWPCbGHZaXe9TrMdoY\n8nmH+fk8rns0nigHU+WNsXR6ht26JomP36iSxJDLpxOAHTU6yq8GDcWVvOGlMz9a6Wh4nBDfh7yX\nkfEkkTkBPyVcBdPlhOWGx+3uPM2kxIXaGl1bppgblnk7TCr9aQkTydqOw4OVHs1Wwql5xVh59OTE\nfpiW53ho/uP3XHY6AldZlPVRssth2X6dxIA7eFa6KYxP5vH9dG7Aw410yMv0mGRqQrG2Ee8rCKXp\nWrufHzDGDpwEqBV5bMOVji1IZ98BgHRjurXpMFPTnJs5flhORkZGxpNKf+EqzalLuL1djJsD30cJ\ni21s048U0tHAaOPqiZBCvkAntOTctKTUYjE2LdfJe9AN9pp1D64zxiKN5uGuy2t3JP0QkiSi3kg4\nsZhnaSmVJQ2CmHMTDa5vlukGgjgCIaFaVviewhjY3I4JjooSjcQa0k1OjC5SSB0E+PInEso/oohE\nrXh8JmGikqWgM54OsnKgnyLPzoUs1iJ8x7AdVrjRmiMdxLX3v6MoocmLHtcfSt673mdjMyIIDDfv\nx9SbRw/Kra5luyXwleHr77nc21K0+5LdjmKzX2Jy8qCZa242x8vPl3Ad0FqTRJpazSeXc4aiMv0A\nthuCuVmfpUUfrS1apynnR6M3aU+A5dSMpZIzRCMiQUFoGC8lON6ojUywUs9SsxkZGU8nec9FSElc\nmkT7ReRgb7DS4bS/Qi86xj5ay0nukxMhsZZoK0m0xRWaspdQ9SPOTAd4ajjsrbXBlZYzp4u4xSLn\nzxZ55kKB0ydzhJFheTXcLx/K+4LbO2UWxhJePB3wyfMBZ2YTtndi1jdCNrci2h2dBpSASsWlXHZH\n9n0pJfBd0qjRMXWg1lqSWPPBPXOkhOkH5YVTmrHi0f1ormZ4ZjETqMh4OsgyAT9FpIArcwFBv4OO\nAwRpV6wRdTbDiRFXWHKiB1KxUzf0egeHfq3h298PuXzWZXxMIaWg3bEsbwlcB2p+wnZj+J9bCMHM\niSmWZnZ451bE5UsVSiWXXC6h246RSqTDWUYQDCL+kxMurbam3kj7BY4zzMbAM3MJ37gmyeUtnpPu\nAlFiKDoJUxVJY8TwsPSej/8dMzIyMp5UfNehUsjRj2ISfTBhq5+boNZ+wJn8Mn0qdKgMXTdhN6my\nw5RZ4bWVJeYmDEtTyVBZZsG3nJ2JeOMWg+i7xXEsY+MKi78f1HEcwVjVQYkct+4FdHuGUlFhkoRL\nc33K+YND82Q5oeh7fPt9gRBpNsBRkMsplEr3k2rVo9WKaLVSB6RUclLpUS0QQKItUtojQaUkMdTr\nEV9vpMIXn7r8w9eJlvLwpU/EvH7LYaMpkALmxgyfvjhKjS8j48kkcwJ+ykT9FibuHdT/G8O418aV\nCav9KewgWSNIU7mOFCSxodM5GvUPQnjz/RgpY8bHXXxX8c9/TjKVD/jTvx9dKmSF5PkrNT73Cc1y\n12erbun20siN40jUMdbQ2DR1K5WgWnX2nYDjODUD52YNYRzz/opipy7xXJgf03zmfMxOR3Fz3eHI\nEANgupxFZTIyMp5efNfBdx2stbRb2ygTgRL085OcEpu44R3W9AwtUQOgZndZ4CEWwRvbiyRGUC2a\nkX1ZlSKcW9BsNw2JVVQrHhZG9hmUSopCQRLFBmsFE+V4yAFgcN1sLeLi6RL1pmFzV5DPO0ODJx1H\nUqv5WAuup7AWms2YctlDSoG1qbrcnjoQQBxrup0Y15PEkeF7NwSfvMiPdGCfKME/euHxe1dGxpNM\n5gT8FDFGkyTBkdcFUHRCZvINmkkFv7OOF7bpjp0kknl00AdSxYRSyUUpiTaGTjvGDEasf/Y5zfOL\nhkj67HTTA/dx9GPBi2cgWIfdjkAP5rlHoSaONO6IMh3XOZB+E6SGeGk6lQO9uzH82UuLcOVU+vdn\nT2jOzWq+e0uxuiNY25H8+3aOckFQKxgaveFnzdUSLs5nRjojIyPDRD08099XZhPb64jZeRwTcpJ7\nI6pILY7uY5wyrjo+pRonmgerAmM0D1dCinnB7IxPsTB8RJBSUC4qyiVFHEOpNrpXS0mYKmuMyON6\nhl5w1KOQUjA2nkNrw+Zmug+mmeRhQQmtB6ITUlAb8zHG0mpGNHuG7z3I8/LJ/kf67X5Y6m3DZh3m\nJqFSyFIEGU8WmRPwU6QfxoNOqKMIDLneDtPv/Rml5kOkTQhyY+zMvci9uc9TKAjGxwpDDVSFgsPu\nbsh4TbFc97mzZUk0WJvHWIvn6QP1hzg1ssW8oVq1vL/hkFeaOHFwXEU00GpuN0NqE/mhKI4AykW5\nb6hPjGs+dx6WpgXaWL57HR5upZ89OQ0vX4BOJNloO3QjyXYT1nZgp7HfQkwvlPi+YraW4Km01Oj0\nnMtSNcxSsxkZGU891lp01Np3AGyvg7LpIdwKQarwMKQFikUMBjmmE4CPk5zYbUCiD65rdw16LaJc\nNpRKknJBAQI9mHEThmARo9MFA9KPCnI5ST+wx3S5Qa+n90s+k8SMzD4rJSgdkifN5RStZsh2V7HS\ncJiZPnYZPzRRbPnzb2purliCCAo5uLRk+MefUTgqk6vLeDL4UCeg3+/zB3/wB+zs7BCGIb/3e79H\nqVTij//4j3Ech0KhwB/+4R9SrVZ/Eut9YuhHsNz2mfNglD2xVjDxzl+Qbx2E1XNBnbm7X6cjq9Qq\nnyKIhq9xHMXkhM/pJYXrCASCRFvaPdjaNoRhGqkXEjwX8nnLxUWN66QbzFsPPMIIamM5ep20VrNZ\nD/BzimLJRQiBwDI9Kcn56aKnSjEvLsbs+QhKCj59GT59+WBdjZ7g5o5PYlLjXizCmbzF9wyrm6n1\n7/cNvq9oB4pff6GH78LUlM/W1o/pB8/IyPhYyfaKjxlrsMlBE6+zfAtnZoYEMMJBET1STGnRSITn\nkQSWrZZDtZDgPrLrNzqw2ZQ4CsoVh2JB4TjDEp29wJL3QVqNoyTNtmWyZmn1XWqFo5nabgA3H0rG\nxtOIv+tZoujIx/bXuUcQpBOAHUceKgvSeI4hpxJC42NtOkSsVPawFjbbH49wxL/9O807dw/W1gvg\njRsWV2l+/TNZ/DTjyeBD/0v+2te+xpUrV/id3/kdVlZW+O3f/m2KxSJ/9Ed/xJkzZ/jKV77Cn/zJ\nn/C7v/u7P4n1PjFsdhX9RNFXOUrOiJKgTovcwAGw2pAECU7eRUpNYf06UfFTI+8rlSLRYDQg0uap\ndlvTO6T/b81eY6/YLxMSAoJYorXBIimUPHqdiNmFEpWqh9yXc7DEiWC2mjBX1ZwYO3AAjmOt7e47\nAPvrlIKpccn6tk51qg2EoUEIxW5XMlfL+gAyMn6WyPaKj5k9veVB2NyrlHBthE4iEKO6qUChueDd\n57aZox8WuLflM1OLKXgGY6HVk9zfdJiZcjDWjozCWwvaSGKt8RzJq+cCbmxIInzWmnkKvma8EO2X\nh4ax4I0bkq2GZmwcGPSzHXFRBufrfN6h1Yr3nY5+P0mvcSRxrPdn4DTbmmfOJHSTAsZKHEcSxWkJ\n64+bbmC5tTI6d3Fj2ZJom2UDMp4IPtQJ+PKXv7z/97W1NWZmZnBdl0ajAUCz2eTMmTMf3wqfUIJB\nOc5GOIFgh7wKkAISI4msS3HjAzCWu3/xAdvvrhO1Avxanqnn5/H+yRlyvmG8kqouhDFs7qaGulwS\nhJFgb0sII0sYjTZmUWS5vuJxdi6hnDeDg3gq6el6imLZo9WM6PcSiiWXStUHBJ0exBXLYu3DHQBr\n01KgUeQ8Qa0s2G0erM9RlnIukwPKyPhZI9srPl6EkAjHx8ZpDbwoFhE6wu/Xj78GcOI+d9Y8pEwo\nlx12Wx4TlZiKlxBYl/GawthUHcdYQ6s72l73+pJAGFakx7m5Lu+vpfvB7c0ym7mIaj7GWMHDLcm3\nvrvO7HzapKykZXbCUm+mwyQFMFEyGGO5veWAI1EyLSXdcwSMsYSBHvJstIYb9y2vXI14uJNKW7fa\nESVl2ZttcxzdQPDBWlqOmnct52dixh4zJ6DRsfSOmW3Q7UMQpepCGRk/63zknNZv/uZvsr6+zle+\n8hVc1+W3fuu3qFQqVKtVfv/3f//jXOMTiZCpATI4rIYzeCLElzE941N2AmqO4fa/f4/Vb9zZv6bX\nb3N//TrFV/4p515gSOmhVoLlLfC9YQNurKBSduj2jo5AtBashtVdjwvzAZA6AP1uTBwfNHxFkSHa\nDUH8f+y9d5Rdx33n+am68eXO3Wg00I1EEABBgAQYJZFUsCQqWZYsW/ZK9nhm7fV4HWZ2x3N2xx6N\n5uysHHY8nuOjtb3rcZRHy7FHTpItycpiEHMEARI5dDc6d79+8Yaq2j9up4d+DVISRADU/ZwDsvHe\nDfVeX1TVL31/gmLRBeD8nE143GJnb8hw9+ULd9UGTn1tDFGUfA9SgudJCq4inxoBKSnXLela8b3D\nznQR62mMCtHSARUiMTTHpsls6mp7jipXgCTaWi7HlMtg64jiZp8oWN08a5M0lSxmNYv11nVkWfp5\nsQpGG27oCXFkTKST8ytNl0ozWRtmZquEzZi56QpSlsh5GseGvk7D/sEmc3VBqATluqC7qJkuCwYG\nMoyPVYkiljb+ZiX6LNaUHgQh1BvLwhWaufkYT1oovfGaMbUoePiETzVYXTDPzdjcviNguLt9YXNP\nSVDKQbm2/r3OQhJhT0l5PfCqjYAHHniAY8eO8cu//Mt0dXXxyU9+kkOHDvEbv/EbfPrTn+YnfuIn\nLnt+b2/hux7s1eRKj39RxZyeXLPRNh6h8si4sNc+TjR+gpnnxhBS0L2vm9ymHEYbKhMBCwfvxbYM\nroyxpAYDtm9R9CWBWZ8f6bqSbFZQr7dOlEKA60ukJZgpW1gmRCvRYgCspVYJV4wAgGpocXQyw9ZN\n0HeZNN+uWcVsm8m0Vk/qFSAxAJpNxcGbZMt3fT0/N+nYrw7X89hfD3y3awVc37/D7/XYjemgvlgm\nqmTQ519E2hYzDx1l8/vvRF6S8B8uVLn49yfgnttaXp+rOnQG7bznokUEYi3LRcG1hiBSGhPWiUwB\nx1k1GKrVgNMnZpPjqgEuAY5tE8VQ9AXjFYvl5cX3YGt/jOsYxmYcenozzMyExLFCLBkAlpWMZzlC\nYIxhbMpg+5pyOcTopJ7hy08r3nG4/ff+4ElD9RKvfjOWvDyZ4dDu9Q0ul7l9b50vPdGaqisE3LU/\nw0D/lQ8DpM/81eF6HvuV4BWNgCNHjtDd3c2mTZvYs2cPSikee+wxDh06BMDdd9/NZz/72Ve80fR0\n5bsf7VWit7dwxcdfkNDhW5SbywFScC3NQE4RVTWN2SpRJWTknSOURlZ32OJth1nYPETOCVok3zyj\nsKQP7ffvSxN7qxGQ8QWukzSIWahbuKpKFPltz4dEuWHZI+TayZjDGJ4/HXJgaOO+8Du64NyUTzaz\nusDU6ppTF2KUMliWIAgMxYxiU0GvFAN3dOYZm6iRcUzbDpPXMt+LZ+a1Ih371eF6X4yu1FoB1+96\n8do9fxZ100FmbILM5j5mH3oRtGbgXbfhFJINajBT5tyffBnxYgT3wMAjf0XfU1/AqcwS3PcuzD/7\n+bZXNmZ5rVjdHGvNSlqpNoK5qkOzUuHUhErWEdeiUY85f3aBaKkrvDEwPRujpUscQ3e2QaRaN9xS\nQE9RMTGXqA+5roVlrzqi1hoAkGzYFyqgFhooZXCXIt/HxzS3Dq//3sMYLs5lgfULyOSC4eWzDbrz\n7UPVb9pviCLJsbOaShNKObh5u+TQzojp6SsrW329z1vp2F97rtR68YpGwJNPPsnY2Bi/8iu/wszM\nDPV6nV27dnHy5El27tzJCy+8wPDw8BUZzPcTQsBIl6ISaKqBwJLQndVYEmIxiDsyQs/NvS0GAIA0\nGt9W6zWfhcB1od5GMlmiUXGykdY6uXfGF/T0LP/6BTnPsG+n5OhXGmz0WFhLXX6bzYh81qXZTMYw\ntSgxZmO1OEvC4S1NPv+cSzYr8TxJPbDwPbAsje9Jcjmbkh9jySZKwxOnXSYqUGtmKfia4Z6Ym4ei\nyynSpaSkXEXSteK1wxhDEEUUfQd7epSo2uT0Jz/Lxc8+Su99B9BRzMQ/PEG8UMPaspctX/xD9ox+\nha6PvhWru4NwscnZcJ6G27nu2kKYlXsYkyjMhYFhbcbNRDXPQrWJjiNOHq+h2+R8Oq6kqzsLCGwb\npqoeXbkI+5K1y3WgI6+JYgspIYr0irOonZdeG4E2GilZ6WFTbyYNLC8NYogNCqYheX35s7ZDCsHb\nDlm85VZJrMCxNo4apKRcr7yiEfDhD3+YX/mVX+HHf/zHaTabfOxjH6Ojo4Nf/dVfxXEcSqUSn/jE\nJ16Lsb4uKXiGgtc6EcWRYOYfnyA/lG95vTZdY/HxL2C9/Z+3vVZPMaQZQFOvTVjUWKrBrmGPWtNQ\nbUhcR7SEcMGwpStmZ79NWG8i3UR54VIsKZiabFAoWMRrPDrTi5JvnfK4a0ew4Sa9swA7NkvOTku0\nsBACSqXWezhL0YVHT7mcnl5OOxKUGxbPX5BIAfuH1tc2pKSkXH3SteK1RWlNnO9ELNbI9/nUj0Pj\n3DTn//TLrcd5GfYUxtnyR/8noduBQpJBcViPMT9+giPWbaseHKPpO/N1ok23M7MgiXC5dBvtOhDj\nsvvGLo59bhrXd2nWmmwZLrBpcwHft2g0YiqVCLFmVx4pi4WGYTBfpUMu4IoAg6ShfY7H/Ugp6CoK\nxqcMlm2tNL5shyUlrm8hl9SMugqirUiFY0FPQTE6v349684rOrOXaaCmIFSCjANuqgia8jrlFR9t\n3/f5rd/6rXWvP/DAA9+TAaXA1Kf+gonPPMiWe7asvHbxsYtMH5mmdEMvhSNfJtxzF8bPtZyXdQ0H\nOs4yU/VZVHkcEZGP55g5cYZ7N1/k2d77uSAGV9KPlnEdw8hSce/N+0s880IVgY20klCsMUlwuN5Q\nOI6gpzuLECw1IjNEseHoBcnEnMumTs2B4Zis23ILwhjKgYXvyQ0LhX3H0AgFY/PtHkvBuRmbmzan\n0YCUlGuRdK14bZFSsti1nUxtms1v2cfUwydbMj51Jkf13vdiDfbS9TPvpGx3ofTq3NrAp7d/lDtP\nf5ZHS+/DqU7RffphRh77Qw7c/w5Off4Exz/6CSYWfbReSll1IJ9Lfq4ELr29LvOLmt17exnZXsRa\nks3MFzx6eg1RrClkNBhBM5ZEkaRbTpO1VpsG+DLkjVsi5vUAO/o0v/0ZTWjkhrUJAK5nrciZ2tJw\naNfGvQIObA2pNCXlxuoxWVdxYGv7tSSK4flxj8mKjTaCnKvZ0hmxszd1QKW8/kjt22uQ8OIkRhm0\nUhhjqE3UCGshN/7oburTdRq/99vY2d+n74d+gExXHluFNDOdzPXuY8CdZ0d2NT9/bBq2FkcpNGY4\nMP531Hp/hIrdSaySLpKOrXF0xNzUDJ1+g26/j56+HDNTNSzbwrJXOwM7jmDzYHZ18sVQrRvCaDkt\nyGJq0WJ01uL+gwH5NeUF2gi0FlhWkpJ0qf/FEoatXRFzVUEQbyBRFwpinXh3UlJSUr5fEULg2Tb1\nXA9Tmw9T8jvo3vcIs0eSgqrye3+CxR/8J6i+QbJWk8ivoy9Z7mMc5qwBdmae56bP/Wvc0WOIeo1I\nQPD0U2QaTfZ4Z4lKewiVQEqw1/QR0Ah27elmbLTG4GBuxQBYO0ZjIO9phAA/jnnxRMjR5/M0moKO\nnOLWkSq3bKnRKZp0eU3CRi9C+kRNvdIw7FIcR+A4Sd9ky4IbBw237rI2bCzZlTO8c3+DYxcdJuc0\njlTctouW9Wktj5zOUAlXv6taaPHSpMSShm2voISXknK9kRoB1yBOXw8Aow+Okf1QicXzi2y6Y4BG\n7JP5wP2oof10lk/RXTkN9URexwsWyFfGYHArFBJ9ZtNssLV5AZnTGONRVIscPvJJzpTuoLxpH4tu\nP/Wq4dbBs0RK8qUTm2mKDDtHoLurxPR0SBQrMhmbfM6hs9NtmZS1NgShXpcnOVuVPHna5r69qxOm\nZxsKvmKhYWPby1GE5D1LavYPBmwqKWqBwLU0oVpvCGRcQ5sspZSUlJTvO7K+i8EQFAeYyvey86df\nIPs3jzJub2fho/+STIeP7xoc22O06uDbipIfsLYfWIiLdrPkpk/QnC+vvD5/9DSlPTtYOPo0uxKw\nDAAAIABJREFUxf07WAzaq+Hksja7dpXYKHMn1pKOh/8r+dkzfMO6l5f0zSxr+s/VbC7MOhhlODxS\ng7iBCcbpKWylUpOEsU7UgaxEI9SyBIWCQ6HgLBkYSV+BXGZ9s81LOTsW8tUHFzgzFmMMPDVo8467\nMuzf1ar1OVEWLAZWmwiB4My0mxoBKa87UiPgGqT3Ix9i7rNfJDw/SpAfoeNGQ3HfNvo68wgmUKPT\nCNbn1ARWlkrVw84X6WABGQXIpXaLQgiMZVEs2ex49k8wTxtmOvcw85afIuvEfGF0J309koyXpIcO\n9goW+jzOjAmKBWtFhcGYxPOvFDSaMUK035Wfm7GYrWm6c8v3h+09IUfGJSESd6lI2Zaa/YNNhjoV\nShseOaKp1WIc/5J8Igxbu+Orlgq0WId6AD3F1v4MKSkpKVcDIQT5jE/ON7AwTmbfPoY8h4uDP0oh\n65LxVxV+DJJGLNENQU9uddNsDDReOkFzYrb14gYqx06R7R2hy6lQC11Ui/y0wZJibQPj9mhN57Gv\nY6KAEwP/A9itE3ikJE+cyXNouJZEC6yYQ0PzTNcHaTYiVKxRClxH0tnpkc2ublmEEIm6XJu1cC3l\nmuJTn6syW1497vRozKc/X+VfdFn0d69e88Skt2Hxbz1O81BTXn+kRsA1iNPZwciv/Vum/vBPyO8a\nJD8EVnc3taEbiXMduNPnyU6dWTm+4g9wavDNLOaGMMLGAJ1qiv2ZJ9DSQupEbk0Iga43qYzPgYHs\n9GMMduZ4/sBH6euWZNeER20LejoSWbiFmsEFtNZU6wZbxNgW5HyoNEzbSTOKDWfnHYpewLJ09aai\nwrcbnJ93aEYCz066Dp84G/CPD8VMLVo0YwshGvT0QjZnY9sSz1LsHEjUgV5rFuvwlecsRmeSBjed\nOc1Nw4bbb7j8wpOSkpLyWiCEQDqJ98bbvh3Pz9HhKAK1vg9AoCyCOJl7AUSzQf34yfYXNjBZ9aiL\nApuLZcpBFq2h0nSwbOtVyTYLDEZajLrbKdvdbY+ZqTiEscBzkjF1+AGua+G6rd4WY1jx/kPSt6DZ\njBnouHxzyW882WwxAJYpVw3feKrJj7x9VYBDmKRhZrs0JHFZaycl5fokNQKuUfKHDlDa/NPYkydg\nMmBx7z2ofCLnJlSMmTqDAJSweWnre6lnelfOFcC81ce4GWbInYBmfeU93WyuJOTrWCG/9VVs50ac\nu9/RfhwZzYmzMUObM9TqmiBQLK7WdGFZGssWK90dVzCaSDtM1myGSqsh1M6spnNNzcJffyPgkedj\nEIJsXq54lqanGkgJliUZ6dfcOvzau9+Ngc8/ZTE6u/rZ5muSR44ZMp5h/3C6KKSkpFx9dK6b2HKR\nQtLRIVioCiwR0+XXsaUhUpK5IIs2FpGy8OyYOFJsa75MTV1mHtOG0HgEsUsxU8OXmrmag7MmUCvW\nt6BZIb9wDre5QIfl4OgGkVyfVuS7ukU2NIgTZaAoVFi2wLYtHCvpLl+rg20ltQbNQLOlWzHUffl5\nuFzZoHkOsFhrNQ76SzGTYzaet2oEWFIhBVhi4+ukpFyvpBnW1zIqBG1oDu1ZMQAAoq5B4nzSIn68\n+5YWA2AZIQRjcgTC1iZewdxC64Fa0X3qwQ3TbBwHBvsEhayi3lAEYev7SoGKVydhYwyNekTf0nA3\nUgICmJxTPPVSjAHsNQXIK0PTiWb0/OLG1/h2iWLDV57W/OkXFX/yRcWXn9IEUftF5MykYGx2/Rej\njOCl0fSfTkpKyjWCEDS7tlPODmA5FgWnybbSHL3ZOp1+g75cjW3FOTwZEgcR4WKVoebLxNki+c09\nbS9pgMbIrUuXF1SiHLaliePW+VKIRJ9fXGIJWCpg6PQ/AoZpusmF823vs6uvsVKnoDS8OJ5haqLK\n7Eyd6cla0pcmA515cKSm0VAYpdg5oHjnwVdOEe0sbuxA6si3zuM7+hWeHdNoaoRRdBdCOvOaUk6T\nz8Kj523UZaRLU1KuN9JIwLWMgLijn1hckh8vBNUdh8ifforA2bhrnEaspAIBNCZmWDxxft1x3uIk\ncQx2m6fBtQXbttjEcVIHsBG9JcXFGSgvBGQ9Q293Fq0Nvr2xFfDCKUVzyajQRreEeteSaa3dYr4u\nGS87xFpQ9BVbO6OWYreNUNrw6a9qzlxcfe3shOHCtOEjPyBxLlG3mK2IdXKqy9RfuRYtJSUl5TVD\n9mxDnXkOMPRk6jhW69zr2YpN+UWyThKZbehBdKXG9Bt+ieyFGP/4Ey3HV/bcQ2X/W9a8IqhGDo5Q\nNJqSjL866UoJCwshxgg83yKKDDvHv073qa/zXzI/yyl7Fya08aw46UEjJI6l2dEX8K6bE+OgGtq8\ncLHII8ezLIcWurqz5PIulTXzbV+H5h0HAzpbFbI35L7DPk8eDZiaa/0+OguS+25rlQiSAt6+N+Cp\nsxrhyqUwx/IakPz85AW4fWuUNg5LeV2QGgHXMMp2kQJ0uN7zoPKdlPe/lebs+rzPZWxhaBZ6ERiC\nZsz8I1+hnYxDtjFNY6FCvrvQ4lVRCszSC2vVfNaNRUF3QTM1J1FKs3ObixCCqZmIi+dCPnhv+8fM\nW2PbqNiglMG210+sNwwlXSsBLsy7nJj2UCY5brzsMLFoc2hL4xUbujx9wrQYAMucm4THjxm2bHZo\nhJKCp9hUUvR3aCwhV+61lkIm9QalpKRcO4RBDXSMVPFKE61LydgR9chBG4lVq3PR2gU+1D7yH8g/\n+jd4Z59H6pjytjsoH34fyFYvujaCA0MLfOPlToLAwrGhVg2ZnW0yeqGGMVDsyjIwkOXi4F08fUpw\nwuxOTjbQrIdIKejvNvzkvYvMWoMcC3fiNGocne4miC127dJMTwc0mppsbv36Nl+THBu1uXv3q1Pq\nyWct/sn7Cnzum3XOjEZoYGTQ5v67s/R0rF80XAe29cecXfBY329YYLBZqDXozG+89qakXC+kRsA1\nTJztwZk5S/PEedzb1qf8RJU6jf/t1+E3/xjcS0WPDbZvc2r4fvrEBEIYzPCzcOrldddxfJtb//YX\nOfq2jxEPjCReda1RWmO7iRs+2bBr2mWQ5TKwWFXEsWDXjjzSNpw6G3D8dOLmHx5QHN69PiR72x6H\nbz4TM19JNtRBMyLXl8NzrSUvi6ErGzM+b/idv006Fu/c4SaScWtYaNicnHHZOxCuu8daRqc33rg/\nd85inuV8VUPXnOLQlgZbeg1np1rv51iGfWk9QEpKyjWEN3YEK+NT0yFG+uv3r0vMBkWUlgixJj/f\ndqi+8UNU3/ghRFinTr7tuR4BhbzLm/YFjM9JpucFQSNgcb6x4iSKGw2ymQKhU+CktxearSFkrQ3T\nswajDTkvZCzsA/K4GYljkvWlWHQYvxhs6G2frXx76Zgjgw4//+ES1brGGCjkLn/+XP0y7wuYrSXp\nSSkp1ztpYvM1jPQ7KH/t68R/8wD23ASsSe2JpmbRjz/JyE+9k73nP8tI/BI2AYkYnCLnBPhWBEIw\nRT91MvDjPwsH74J8kkIkbYmb97A9B1c1OfjFf8Oh8DF2liY5cabJ9EKrHBsqwlwSDpACcr5hYk7i\newKlBZ5nU2smOf1aw2PHNLpNGMF3Bfff5VBaCut29WTJZt1EecKSSMtioelyalJSbYCftTf0cC3U\nX7lw+HJNxpRZe13BXN3mxQmPdx9W7BnS5H2DaxkGOjRv3q/YvTk1AlJSUq4NTBziL1wgsHO4Voyk\nfe6mOXGc2878KTdPfg7PXJrTaACDcByEWJ/GaQnFns46/UWbzqxhqEdzcKfivsMOtx/Mkcl5ZHIe\ne3Zn8X2B1hq1QdFxrAULNUlVZUmsFclaVWjbluRyG/so1xYSfzvks/IVDQCAjH2ZKIMB10rV4VJe\nH6SRgGsYabuos+fAGLLHHkX1DHL+sYtE5Rq9twzTdfeelWOLzNFBgwv2DoQlcGTMssqZMdCkgJNp\nYt73EezP/D/4E6dAiHWeFsd2eP5cnvE5ly6l6OuRWEsX6iwIzl1s4vk2GU9i25DL2eSKHrlicr7W\nhlgZOjscRsdCtDZMzMJ8BbqL6z/jrbsdbthi8dVnNGcWLu0NAAiB61rE0Xc/6e7fLnjutCFqM793\nda4P7c7WknD3uw4rohgiBRmXq9arICUlJaUd9sJF7KhJ7ORQ0scyIXHstBR6hefHmfnY71AvaG76\ntx/iQO1Bns29iYZVRGKQcjl4IClZAdXQRetkw2xJxbAzjlNMZD77CoLePCiTdHsfHQPXT+bQkxdg\nz84AbWfI5R0W5gMupaeo6O7xORGuutMdO1HrMdowORkQBDFBCPm8h+u19ijY2pOsB/UAnjohqEcB\nGMH+YcOmLrgwJwgiwUiPXpGo/nbYVDJM1lf7LKxFCMVAmzSilJTrkfRJvoYxxkCzBkAwPUc8VmH8\n1z9D73vvovRTb1l3vE+DLjNNVXazVuY42bRKFA7RA39EoSNLO5Fn0b8Fa/teZh5KJty5smH0omKw\nz8JxBDu2+ZwdrVKeDygDu3YV6Oho3bhLKag1zJKMW+KtcV3wLpM+mc9KtmyyObNwqTqQQYjEK+Rn\nbObmYwb69ErjsrV0ZF5Zvm24X/KGfZpHj5mVgmTXhq4ej1Jp/QCVFmgDFskC9Z0sJikpKSnfa4yX\nWfbjgxAYHBZ+748RHd1YPZ3EFydZ/LPPoCZnmLYlc0+dovvwToaDlzmePYwl1zo3krz3gt3Ei8pI\nYLDXJ59v1fkXYrX3V39H63iOn4np7Arp7c9RrYQtikK2NOzbLjkdDrF2ky2FoVpRjI7WCYJVp0/Q\njCl2+ORyLrY07Nqk2DukmKvA3z4qmVmUJKmqFkfPGxxHoIzAsiQdecO+LZpbRr69Tr++IxnMVxmv\n5llNmDAIDAPZGq7dxmGVknIdkm5rrmGE0biFDM1KhfKzRykePICV9Sjs24bYoFOLZ+rU6Gr7nkZi\nf/RncKNFwr/8XZhZUyWbK2Dd85511z0zqpicVvT2SDDQ12czOZVEGYrF9o+PlIIwSJp91aoxIwOC\nfOby7vPOfDLBGgRRpAgChYqThcC2Jb5vY1uC8cmQoUEPe01dQMmP2dl7+XqAZe47KNm/XfPC6SRC\nsm8EXpx2qbU5vehr7DRhLiUl5RpH53vRXgF1cQKGRkAIGv/4NZon2yghxJr5Z8/RfXgnhWAKmW8X\n3RQYaZP9dz/L9g/eSfyDv3jZ++/bJnj8ZcO5SchkbXzfAgRYLn2DJRbnGwRBjJRww84cfbtK6xKW\nmqHh4kSzxQCApbTSIOCWfbC9X9NXSgyKR46JJQNgzUdTglgBaJRWVKqGi9OCiVnB228xr0pFbpkt\nnTYlv8b4okWoJI5UbCkpCtnUAEh5/ZAaAdcw9txZijuGiBYqqHqD8lPPkN9aQjU23vBq5GXSVRLJ\nS5HxcH/qf0c99iXM/DQim8c6dB+yfwiAzd2GM5OrF6kHcG5MIyXsGMnS32eSO1ntbyQE1BqJF39L\nL7z7jleeeYd7DZs6DRdmkj4Da0sI4lhTr0fkCy6VaszohRq37XWwbUnRVwx3vTqJ0GW6i5L7Dq7+\nvaoiXpqU6DUqQI6lGekK09SflJSUax8hiEqbmP93/zed/+k/gOsh7I2LoKzMUuSzUUeQqL9Vm4Iw\nEmRcTT4DCMlEuAnrwTE2v3/jifDUhODIBRvpGro6DdK2V9JMhYBCKYOXcVY295ZvoZTBWrN+xLFh\nZi6muhhitEFYrQ0oF2uG3nxEX2n1tYm5jSf9WGn0ki0RKsPTJ6BSgx9+Y9sgeFuEEJSyNqUsJPUS\nkrSMMuX1RmoEXMOIOMDr76bn/rdRefEl4vIiPbkiU197jL733Y1TapUnUM2QmSefx3rb4AYTnSEU\nDvUTT5DfdRPyrR9se987b4QTF2Hykt4u3Z2Jh6deV7i2RGmw2qwzcQyNpsGWhv/x3RbWq9ihCwFv\nPxDx518VVNvUfGltCAJF1pfcd1PEnq2vzvP/atjeE5FxNKMLDkEsyDiG4a6Invyqr6oWCMbmLTKu\nYahTpcZBSkrKNUW0eT/h2TH43F/j3H8/uTceovHS6LrjvJ4Cm999CGMMF8QwlaZgbEpQrmjCKKkN\nyGUEe0YMhd/+v5j8pV9g8wb3fGlM8rUjNmGcTIiez5InvhXLkjRqTXIFh2LRIYwFDmC0oVZXXBgN\nuHChsXqCNhhpsNaoOazzOV1mDm4nZ31iXPDMKcOhXRufl5Ly/UZqBFzD6EwHeD5evoT3ztUagIV/\n+VuUv/RVSm+9F6ezBEC0UGXiv3+did//O0ofDyl84F2INUVhSkO5mSPGQm49ROdLXyQ8/AGwHIzW\nGDRCJNKctgXvuxM+/6xDta4Tj0jRppBPJuQw0hw/0WTnDh/h2cg1BQhaG+pNxdxcAxUZ/v0fRxSy\nmhu2ONx/p4PrbDxzl3LQU9TMbtAhWGvN9gGLPVuv/A58UynpDXApxsCTZ13OzdiESgKG7pzm8LYm\n3flUISglJeUawc3gDQ8x/nt/xS39go4fOoh67DEWjk1ilnLyvb4SO37qLVgZl8nHTyNe/AaTHzrM\n9BqvutZQqRmOnhEc2u3j/+Zvoqo1rHxrdy5j4PlzcsUAEIIV7/ulWJbEGIMjNYWcjTEQhIYgNExP\nxa0GwMo4DEJppCUZ7IatA63z/uYuzXx1vRfKGLNiBPi+hedZSJn0s3nwpZipRcMdN2i6Nu6z+aox\nBs7NOUxUbCIlyDiazaWIoq+XBCgMhQzfVqQ6JeW1JDUCrmFUcRNqYAfWzHnwMitxTKd/M42nnyZ4\n6Rhi642Ei4rZLzxOMDEHQPaxL1LYlSXcsguVLdF0CtRNjob20AamdTfNgXewe+4s9Ww3Kg4Bg5A2\ntpvB9fJ05zV7tgomKq39B+YWIkbHAoyAE6ebdHbYdHW52LZAaygvRkyMN1ak4Yy0mF4wTM5GTM1r\n/tl7PeRl3Oi5S9sdrMGSgu19itOTkmpTsLVH05H73m7Ej120OTHpIJakUAHmapLHz/i846ZGSwF2\nSkpKytWk5xd+jlM/+Yu8/AdfZeSDt3PwV3+Y53/tAYxwkIUMmf5uRj/3JCf/4B/p2jvA7C/+2pK8\n8vp5tFqHyQs1ek4/w0Jxhu773wtydcsQKZivtu5upQW6TQ2uijVRpCiXTdInYCZgajqkXk+sBsez\niYL1J2pt6CjAm2+x1q0bb7zJML2omVxoHYNaskQyGZtcbjU1ybZBa8nxi4qJBcWH7lZJ2tN3wYlp\nl9OzLsthibma5LnjiouTAY5tI6TAceC2G+DuGw2nJgSVhmCk78oYISkp3y3Wxz/+8Y+/Fjeq169c\n+sZrTS7nXZ3xC0Fc3IQQBlGZSbr9CkFuz3Zmv/4Elq1pnrnAxN8/j6oknpQbfuY+Ru7dSj6YpjT1\nMrnJ41Qjj1FrG/XII4wtwtiiKbL0mFG0s6bIyWh0HCKkjWU59Bdighgm5wXaGBYWIi6MhRiT5EsK\nIWgGhvmFiEolZm4uYH42TOoOlt6XUiItSSZjY+ezvHDeZn4RnjkleOio5MXzgko9iQB88QnNqXFD\nsha0TvhSws3bBeNll+fP21yYtTk2avHShEMlspms29RDQYevr+jG/NnzLtKSdJeSpmgZP/nTCBKv\nT0e2vRFy1Z6ZK0A69qtDLudd7SFcM1zPv8OrOXZv8wDFXpvKky9w4bPPMP/iBYRl4Q1vJlB5pv7+\ncYKpRVQjonp+nlrvdiY33byhB7+3EOL09bPwH3+Xmd/6JN0/9n4sb/U5PXJeEsSrE27GF20lmBv1\nkHo1QmtDJmtzYbRJs6lQSqO1QcpEzUeppYEIkJbA8yT33OpxeNf6Sd1zYO9Wg+cY+jodokhRD5Jz\ntYZCwVmXipqsS0l9AMBI/3fuRIoVvDjhES/JqMbKMD7WZHo6oNSZw/UdHNfGsm3OTxmeP2txdNTi\n3LTFsVHJQlWwbSCpnbvaz813Qzr2q8OVWi/SSMC1ju0SbrkVtty6kugYL1aZeuLXGHzjALneDE5H\nhmiuQW6wRP+BPgSGIN/D+V3voub1ooRDr25QDqEaemgkzVhwhH3sZb16RBzVcdwMloSbN4d866kK\nF+dtLEe2FGutIiiXQ7TSuO76R8qyJI4rCZqKMBAcCy0cW1KpKco1wcSc4bGjikp9+QyDkCCkQEDi\nCToAL190mV6jBqGMYLEGJ8clAz2CemjRiCT7B4IrlrMfa0Ep31pM5thQysNiU8IGTXlSUlJSrgb5\nd7+bg0OamW89w+JLZwCYHVuk8uTxdQ5/94E/wrnjx4hoV0Rs2O2eQhUHmHrbewh+4+O8/OH/mZv+\n4c+AJMVlS4/mxQurk2MzMGR8qFQUtmMRx5qgETE3m0zunieZnw8JAtWSt78sB23ZEq11EhWQAmk7\nPPoSPHfW4oa+iDfcBPnM6v0cG27fbejtdZmaCnjujODRl6BcF9gbSLstp6+Oz0MthNx3KPYz35A0\n49XvrRnAxMUqXX2ldf13XM+hHqqV18NY8OIFi0LGcNeNaeOxlKtHmql2PSGWNKCjCINg7JsXmX5u\nHmupe2LPwc1YwqCKnZzd+8MsZjajZNLdylguRT+iz5pdvhgN7WFUmzz4S9xCbz9s4xK2LbZaRsr1\njcfWEgSKWjWmshgyMVbl2HMXOfPyBOdOTDI9UaZSb7240QYda/Zu1fz8eyHrW0wttr9+GBpqTYEx\nMN+wmH0V3YNfLfmMaVtkbVm0qFukpKSkXAuYfBfNwiDVs+MAyO5uvB1bk0jyJVhz03SPHWl7ncFM\nmRvy02wyF6CnDww0XzqJbqx2Gr5nr2Jbn8KSybWVMqA15XKTi6OLTIwtMjtTX1k7Ojs96g3ddi0x\nBoIgpFELiWNNHCqqC02mL1ZpNOHZcxaf+pJhsd5+0ywEHNxuGO4DS0r0ms+rlF6Rno4ijWWBkDBZ\nSdKavhMyjkGKtfcwSKu1Rq7l82m90jtnmTNT6RYs5eqSPoHXIU5PF+7QJjBQOVuhOZ1MymYplLq4\n5VaqVmn9iUJScJpIszTraUPH9Mk2h7U+FtsGLT5wn9Myqa47R5h1E1zr+2Ll/45r4y8l/2ttqC02\nqczX2p7XaCbnVJuCjeQgtAGtxVIDMEEluHKPdT6z8Wey0zhaSkrKNUg1yKCbSade/643Yhc3TkC/\nr/84N2+aI+MqwGBJzXBxgfcNH0UIyFJHzE0BYGcdVHV1rnZteN9tMR+4I+KNN0a851BEIWPo6Mpe\n0uUXpCVphoY43tjz3S7SHAYxlYUGnmcxOQ8PvXD5FJ4tvUlx8HKDMq01cWxaUp4sSxJEFpESLCzV\nJNcDzbde1Dx0RFPZwNBYS94zdGVXLYjEKXT5sV3qKAujV7xNSsr3lHQbc52y9d//L5gnv0ZmoIOj\nn/hLvLzFxUdOM/TegzSyvYmbow2x47Oleppz9i5yVHDDRWQcoO3V/DLbya47b6bqEEchliXXeTq0\n0pS8mMm6RtsbpQy14vp2sqdfmjObjZB8R3bdJOkvhWqHezVPnDSEar0hsCyHvWyD2PLKFQt3ZRXV\nsP0/k5ybhnFTUlKuPay+QXAciCJkoUDP+3cz/d++hFqotByX2b2V0oFtvNk5zz2bodz08B1F1omJ\nTZ55U0IEDfKbGtQAu6uE3ZFfd7/BLsNgVzLvPnYy2ewWOzOEYYyJTJKLD5Tnw1eQjG7v6KnXQzpU\nhkq5zlMvCu7em6GjsGpk1Jqab7wAizXIeobhXsPM0uZ+WaTiUioNweyioOgbHjum+eYLZiUl9eEj\ncOcezb0HLr+W7R1o8sK4z3zDwvcArYljhX1JjwZjTNu+Ol2FVGEu5eqSRgKuUwb2d7L1h++m9417\nuenffZj81g76b+1n8uGTZNQiwrSPcVpSM9A4gS0VXdkmQmuESiq5pLRx/AKOu14ywXMEUiReGRWr\nJRk2g4oVUajAdXnTLR5Zt/X9jVguHF7GGNZFGhwL9o0kx5Syhu0D6z+TEOD7EikMngO+rRgsfnst\n4i/HYDEm56y/b95TbCpcufukpKSkXCmc4e04u/YCoBfLeEP9bPrp92MV18h8Cuh/z21YTuLksCR0\nZQOyztK8JiT1TC/V4hCFNx3Gvfdu5va+AfTl82eWO/ouLjTRKvHur53rV4p/27DRe0YbjDYEjYjJ\n6ZD/9OcVXj6XuNEn5uE//0WDB1+A507Dt47BVFmspGtuvAwJXjwtODWm+cozZk1NGtSa8M3nDSfG\nLu/oybqG24cbHN7S4KbBgPfd61Mr14nXNEvQ2mBUhDGtRkDWMxzYljqSUq4uqTrQq+BaqyAXzQre\nzAnEkhs9O9RD6Y596KmLFLolTmeJZucQobhEb9NoOqxFcpUxVGc/+YxCNuo4ro/TPYTj5bHt9hXn\nGReePglxpFEqCenGsUbFJinmwmaqLLl5h8PPvEdSDQVzZU0Q6raRgTiKadRav9OOjgxmyRNUyMLb\nbve4eZuhGcLXj1iMTicqRZYlQSRFYfmsxHMFGV/Tldfs7A7JuVfOu2JJ6MwolE4WE9cylLwYV4Uo\nzYYSc9faM/PtkI796pCqA61yPf8Or5WxOzv3osvT2N0dyJ4+Cof2UnrLYayMj2oEODJg4J4d2Dfs\nblvPpYRNYCXRWUdquPctTO97M0+NFplalHRm9Uqkdi29RcOFGcnUdLBhCqlokzcfx6qtTChAJusg\nMNQqyXfbCAwz84o793v8w2OCC9Ot95GOheclxs1GkQCASk1xfjIpaL4UbZL5f8/Wy/tKhUiMgY6M\nZqAT7t4rmV9oUq8pfDvm3n0x9x9OrqU0uLZhsEvzpr2K4d7kvtfSc/Ptko796pCqA30fYzXm1nn6\nvVKOvh/7QU78H39AKXqYga07kdZWaqKAwsIlICerFOwGdmWOQu88Ng4XMjey+4W/JBrYyeUkdfK+\noVh0iJVBKY3RScaRZUvsla6OgqMXDLfuFLz3DsFN2x1+97+VsfJ+yyKjtaF+iQHguBZciHv7AAAg\nAElEQVRYFjcOGnYOwr4R2DqUYWqqwuefdhhd08xGCk2pINnUZcj6ioKv6CtqenPfm06+vmO4oTcZ\n7yNH4VsnYb6aTOqbe+Dth2Cg88rfNyUlJeU7xc57lD7wfoRRaARaKzIjg/T/Tx/A3z3M+Y/9Pkc+\n/jfs33srmV0jLecaIJSrTiQhBR318+zqGeShsxnOzjgs1CXvPtjkUkG4QgY+cGfEb56GeIOc93wW\nDu2SPH9WEsTg+TYTo/NtjxVSIC3B/GxrQ7FzFxUXJhWjs+u3MXGcRKITmWrR1hBIioUNILBsSRyt\n98p/Jzn7ti14913rraM7d2vu3J16/lOuLdJ0oOsQ7WTblh9Jxyazeycn/vRR4kqTXnuGEXGKYXmG\nTc4UJaeBqC0iJy7g+BZGCKJAYZcnsS68eNl7PnPOQdo2jmvj+Q5+xsFb0kFeu8GPYsHJRJSCbb2K\nf/1Rj1qlQRBEiTpDM6K6WCdYY30LKejqX5ZVkxzeLcl4yaN5ekIwOndJDYKB+UWNCmPu2t7kpsGI\nvvz3xgBYy5Ez8I3nEwMAEq/O+Sn43KPJzykpKSnXBMZAfXrFWSQx2DrCUgGmGTL2yb9ABxHZHo9z\nn/hjqi8cX1GKU0iaMkfTau0QnJs7x/YnP8VPlP6WQ9mXWKhbHB1r70fMuLB1YOPtxVsP2ezf6dDR\nk6N/IE9Hh88Ne/vXlQRICZmci5/1yBa8FYeTZUuMECsR2ksJl1SAAGy7tY7NGIPWmmZzNeqwUQPL\n/i7B9AJ84Un464fha88mqUIpKa8XUiPgOkTnelB+x7rXDaB/5CfZ/ZFbWPjUZ2B+FmV5CMdJNPcb\nVbxjjxN3b8J1oRJmyZYvJCc32qvzLDO5IHFdC9e1knz+y0iCrvUM9ZYc/uMvFPjR+6DkBWwfhLsP\nZvAyLpmCT66Ywc95VBbqGGPWKe5MLUo2KhZbXHIMnZkwfPVZw8MvGhptwrpXiqPn22/2J+bhhTPf\ns9umpKSkfHuEVYiDdS8LwCv6bP/P/4rcGw4QLEZ0dAWoz32a2l/8VxrVkLLTQ90ptUSGRdAgM3oM\nuzyDP3Gau/RDHLafZrGx8Rbig2+yKOTWv7+53+b23ZJa2Dq3SynZe/MAXX05+jZ30Le5g55NHeQK\nPtVyg/JcjbCZdLfHgJ/z+Nqzmu5Cm0lZwOJiSLMZo5ReqQ+IIkW9HlOtxqxVx7ZswchIlqGhDNls\nYmgMdkNnQfCpr8CTx+HFc/DwUfizLyVzfkrK64E0Heh6RAjC/n0wdRTZWEBiCPC4KDdzPLufnXdd\nYPPoQ/DI54i33ogulBBhiD16krhrgPot91GPXBarFjdf/BZYFraMUEkr4MveOpu1cJwkJ98YwJjE\nyx8aEFDKwoHt669x8Aafgzck4eVP/HEV13dWjAiLRMatslBn152XeJ/8jTf1vgP//UHDy6Orm/Mn\njsPbbzXsHb7yYYHLeYAWL29DpaSkpLyGmA1cJ6AQeLtGKP+vv44/N8H5j/0biu4U3oky+mtHyf/2\n72B3rXEyxRHZM89g18sA6Hodp1TikP08j8odbLSNKOYEP/dDLn/3LcXYrAAhsST4vuHhFzW37jLk\nPCdZf6ykk2+sDEHTp1Jd3aHPTy9SmV9TtRsphEy8+CdGLTb3xnQVPeYWV9cKow1GCCqVJJ9HiMsV\nCCcpPNlsEtXO520yps5bbtb8xTdE0oV4DbMVePAF+NA9G18vJeV6ITUCrlMCK8eT4k1knTl8U2Oa\nfqKlHM6TOz9AbGcYnHkad/IsTBpqm/cye8cPE+T7aIYu1vhpbjn9ebyoirFtxNjLWH3bQSmcmTPI\nqI52s0Td21Ddw/SWNKOzglitLeoyVKsRUbja/bFsBN86pnnzgfYNu8amIhbqYp1cmpQSoxQ3bUty\nNJfZO6R54ZxmrtrqUbKkIVaKo+dbr68QvDzjUpMSR0JHNma4I74iqUKlPIzNrn9dAP1pTUBKSsq1\nglvAWB5CrY8GhHiMB710bisgt/eh/9/fJf//fRKnNk1t9DzVf/XP6fkXv5gYAnFEZuw4/tSaUOeS\n0INHyMHq14G3bTiMnAehslacS0rDbFXw8Evw7Dno7xXINZ19XSno7/MIwwZBaIijmNpiY911jTZE\nUWIIjE0bDu6OmZw1iCW5DBVrvIyzkga01gCQorVvmhCJ4NH8fExXl4NlSTqKPnOVJpML7T/X2Cwo\nlTSNTEm5nkmNgOuUs/MOlcCiJrrx7E5inUykwmhunPoSA1MPI9VqVVPhwgtIYH73PeSnXqL35Jex\nlt+PY5i8iP3o32J39yBJ3OpWo4y9OEUzDrl1ZBcvnJWsrZOq1yPCoLVAOYoMjxyVjGwybOtbv/M+\nckohN5o5peCRIzFb+iyG+5NzbQveenPMQ8dsJuYFBkExo7lpq+KFU61h4FxGsO8Gn0zGor400HJg\n0Ygke/q+ewWAQzvh7ATrPEPD/XDD0Hd9+ZSUlJQrgxCQ68VULraISGgkc6KT2C5gSbCjGtvVc+Te\nvhVd76Ux2U/l/DTBA39K963bkJdq+kuJVVptRJmdO0UzehM47ZVKnjwJ0+WliK8lWjrLN0MoVw2d\nl2S22rako8NlciqgXm2iN1D30WtkOJ87HnNp2mgYxDiutdKXQEpwHAuESSLXS1+TXJKrrtcVHR1J\nx99yQ2La9NtcRqz8JyXl+iY1Aq5TKkGykdZGYkcVXMuiYXwOho/SNfk4qFZZAwG4M+dp3pglvzi5\nagCsZWEWfA9yqyk5wijcmZPEfTvIuJpGuLoo6A06PwaB5vNPOfzc/evf377F4mvPxm3TjoyBzz+m\ncWwY7hf80/clk/xAh+GDd0ZcnBc0Qtjaa3AsePp4cp6UAseVbN3ikMmsNzBmqjaVYkThMqlFr4bh\nfnj3HfDEyzC1kEiUDvfBD9z6illUKSkpKa8tmQ6wfUxjLnF1Wy5yYYqmX2A5mLtl6jHkzAWeNDfT\n7Oilp2eBHbuPEZ8/T21yjlzP6rFYFlZPD9JPIs6xcBAmwjryddQt72g7hIUlEQUhaDEAlimXYzIZ\niedKwjDJ3bdtieckTR8t+zKu9jYyo2tRsU4iAr5NoeghreT+xpgkkhy1rgdaQxhqfN/CFobhXujv\noG00YHN3og6XknK9kxoBrwOGzAW2xadpKJdMvEiEJNq6B4PBCIldmceZu4jbKJOZO4dXm2l7HQGo\nMETmWvPyZb2MCOvkPJe56urrl8uxjFWSOlQPNEdOKQpZwb5tFruGHPKZiGqz/QQeBTFh03Aicvjz\nL9T4yNuS44RgpSPlMv0dMFez8PwklzOXaT8rawSzDYuC/90399o9lPyJ4mQReBXNkVNSUlKuDo4P\nzuDKX+2FcZbbtAsdM78oebD0s9QpLB1hOJ49wA/c8hD5yizhwA68lx7HSBs37yEdBwAtLKrdIyzk\ndzN09kEa0X1towG5JZXRdgYASyMZH69TLQfU6hGWFBRLLvm8w8JcFSEtbMcijtY3KJNS0qg0UFrj\nODaZvJ/0cnETwyEMk3OyeQdrTcqREAJhCWx0iyEgZVIbANBfVFgWvHE/fPEJqK6pB+spwj03X/Zb\nT0m5bkiNgOuUkq9WogGCZLLzTY1qaYjgzhvB9ZKOvUKA1oiFaZp1Q6N7mIlCL9m583Sdegi3UW69\nsOtfeiuM5WAslxs2acbmJHqp86HjCKI2AQUhIJOx+cLjAc+8FFFdSukc7Il5990O//Q9Hv/lsyG1\nJqueGUtiOzZCClSsadYCnnkx5LbdWQa6LIrZpY9iDOVq4oUf6pecm7dXxrNBX5rkY8krqxrkpP9y\nUlJSrjN0cYDCwhgLmW2gNQ9l3kY9Wrt5F4xHvTxhHeQNxSc4ah9E7D/A1uwkufIYdrOKsWyaxX7i\nTAkiG3myiX32WeJdd6y73+FdcOSsoRq0d/o0mxHl2Rp6KWgca8PcbMDCfEAUahCaYneO8kwNtSb9\nx7KTLsRhGGOMIY4UjXrAlu29OEuTs68UYahwNogmJLVtq+uC70tsWzBQjDmwJUkf3bMF+ktJWlOj\nCR0FuP0GyHwbfZrqzaThZUeeFqnSlJRrgXQrc50y3BlRCSTlps083QxzjoXCFnS2uJKbsux5MVIy\nVdxD2c+jAokUBbJ9XQTFfjY/8QB2tKS84HqoTcPI2nxLupAq9oPtctOw5syUZnTOQhvI5x2CQLVI\nrQHkcjaFLDz8bNSyMR+fMfzNNyN+6Uc8brvJ45EjCq2Thi7OkvQogOOC69sYpfmrRxLliFJekHU1\n5YqmqSz6+nwyGZtN/RCGhoXFmMWqIZ816zxOGVvRX7h8q/uUlJSU1zuq0MfW43/NVN9masqlFrXf\nzV6MupFFj0I8R5wtIS2LRtfWdcf5ckl9J1xfvAtJJOBdt8HfP2FotgnENqrBigHQMk6VqM0ZbfA8\nl4Fhn+piA73UGKBZj5Z+bj1v7PQMI7sHALAsi3xeIjaI1gqRKBJ5jqGnBHu3afqKDQaKuiW9s6sI\nb7+1/TUuR7mm+ewjijMXDUEI/V1w242SO/em266Ua4f0abxOcSw4MBhwcTGm0uxjPhgkcvPYbUKu\n1chnqtmBMqsekUbsEHubyY7cRu+Jb4Dnw5btGD/HXPcImfIEubkLqEIvwdZDABwfl4wvWBiSyVPa\nyWa8XI4JQ4WUglzOprfXo7FYbeuZn14wPH4sZnIhaTwGoJRat3GXUiIsCUKgjGCuArNaoLVkx/bs\nSsgXwPcF3ZbN5EyM5xo6imAvqQ9lHMXO7jDN30xJSfm+x547jxPVWDg/g7Vp84bHxSaZm8Pg/2fv\nvYPsuO473885HW7fPBnAIGcCIAmACQSTqGCJlmzJcljJdq3tXXuTt55euWrXUpXr7eq9t94q28+1\nVbJLq623DrXe9dqytJIsS6IeJVEkJTGDBAkSOQ7C5HRTp3PO+6Nn5s7FvYNAAiQA9qcKBU5P3+4z\nw8bv9C99f4aTQRfVrGRDebytDF+g0LaLsWycA08i0MQD69H96xeCUeuXwz9/zPBn39PU/FZDfLGw\nxMJ1hYA5gYowiMk6GYrlHMYYZidqSZa7w/6itUFHIRs35shlBVobhsc0kWqf/lvwNB+4OybrJj0C\nPSWBdY0i9cYY/vYHilPDzUVemEh63vKe4o4NqaxQyo1B6gTcxEgBK8sKyorAX42qVbFpD7eMRd0t\nDsDcp6lFGcK+NRBugv4VYFkINMbOUO9Zjc7ksPI9GCcpETp83kLpxZMXQQiL5cttHMcghaArZ7hn\nnc+Xn2hV49FaJ5EbYKZqtWwm1hJqQRf3HAgpGOjLtDgA8ziOpJCXnB3WjE3C7o2GNX1JBiDNwKak\npKSACGoIoCcX4pQihiYVYdxuT8tuncC4nFErCXEYqvYSKIcdvReaJxmD1BHazeIefwmhk73HPrWf\neNV2wp0fWXAEXAf+6Yc0z7xpODGSZJJrsw2CRoiTcTovds7+N+ohlmPhZmwwyT5gLlH7qSOf3u4i\nWieSpCsHLQQQhIapGc1MxQCGNb0xP3495uRw4iAs604i9Xu2vf2I0cEzmtPD7WuMYnjliE6dgJQb\nhtQJuEWQ0iIyNpmLnABtoBF3TvnG2qJqd8Pypr5lJF1iLdHYhJl+uutjCCExXas7DssyBuoNw/2r\nI+5a34zq9HVJzowkX4dh1CLz9v3nGmxcqwBv7hrtJTzzZETE3tIhuqwaU6HLae++JX8H89H/ZSXF\nPeviNPqfkpKSsoi4PIiR+9mqDnBKrmZFV8iZca9ltFjGUezMHuKEWkuD3MLx8UaB2SBDKROA0Vg6\nZqZhMyvWsZwjZOf2HmE09tABVO9q1Oodi64LH9ppYO68C2PwH/5rjJBJyY6UcmEf0FojbQuMxst5\nCARRoIjjGNu5tGGPI82x0zH5nCCXlWS95HwvI1jWJyh6IWt6Yl45GDE01vzcyBR890VNIQs71r29\nzWNk0nRKVAAwU79+U+1TUq6W1Am4RbAdj4YO8XSILZtFlgt6xh3tjmEiKhJqG1fGRNgcN1sIohIZ\nWyOFYkQuY1P9CLKkyXsw2WEyrsDQd9Ho9ofutDh+VjExo9p0nmMNR06GbNlkM15d+hEsWAH/asUT\nDDjN5uUfmH6G2Nb5fE9z27KIuzbo1AFISUlJuQhT6CHqWU1p8gxGG1b3hmQzmvFZh1gJPFezslDh\nbHUtQ7q1B0AjOV/votsaQinDyXAVs7qA2LyVo6EiM32eh8//FRKNAKzRky1OQDuCnpJkYqY51dey\nLaQlF/4GiTF67m+DXwtxXAs34xD6HVQpAK+YJwgMSgtmq4Y4Clm5wiKXtZBS0NNto1XQ4gDME8Xw\n6jH9tp2AZT1iyW23nEtT0yk3Dumr0i2CEIJ+WWMiLFKJs0RaokxST5+TnZu2BJqZuMhRNjEh+jhs\n3cGUHMCPXIxJZOCkY3GaNaAjtg4q7A4qO4M9mtW9rcdX9lv8ykdcsk7nWQIGGBkN+PkH4Y71Akfq\npM6TJAqE1vzCwHMtDsBIUKQ/OIUT19uul3cVH9vpc99mjW0lxvzZN+Gbz8ET+2Bi9kp/kykpKSm3\nLsGmh6iv2cUg54gUdOcUW1Y02L6qzrp+n3O1EkOmvQkYDMJyGDXLmFFFqia/MD3edS1U32p+vPxT\ni07vbPshafz9y29WmJhp7hvGkEiBClqGlKk42RtUrFCxwq+HOBmr4wyB/sEiQagZOjXF0YNjnDg2\nzvhYjeOnQoK5yfaNUPD66aWDT5X27QVjDOcnNKdHFOpSMnRzbFsjWbu8/WXfsWH3lvS1K+XGIc0E\n3EJk+wbZ+IO/YjK3gtlVOylSoU+PktfneY6HkItE7bU2yTh3BOfFWqbsptHXSIJY4tkxQkgiKweW\nYMugxo8jDg5ZTFaTgS6DPYpHtsUdh2WtW27h2EumIWhEsGMt3L5OYB6Q/PFf1xieMIRBRDETs37D\nKD+ZWM8PJzYzFpZAWkhbMlCoke8W5AoZjEmmCt+71me+tHSmBn/3NAxPNe/1+kn48N1w+7q3/3tO\nSUlJuWmRElVeTsafYb05xbQu0TA5sjTokjPUnOWcC5Zx8UjcjK0oZ2NikQEHNpiTHFcbF18WtWwd\nJ6z3s/7ck+iepRuPnz/gMzTcuSlYRQrHTYy5MQZjkr8XZ5RDP05KiKwkU5DL2fQM5KnVFOOjtYUt\nR8WKyG/g+4pGPWLb1gJSgJY20HmKfKl1TA6nhhWPP68YGjVok6j8PHSHxT1bl359EkLw6Q9YC+pA\n/pw60J5tMu0HSLmhSJ2AWwx1/yfoe/Zr9M8oKHWBEHiWpj+6wAW9MnlZNxBryaXmni+bPcyqxhEa\nbpmR/EYQiUG/c43m9tWaakPgOgZviZ6ueXJZyeRs54iQ1lCpa0p5izCC0dGAeiOx3tkel8dHt/HU\n+GbMfMJKG4RSjEuX8VpAozqDMYKVK7N0727+LE+91uoAANQD+NGBRPd5iT7klJSUlPcEwvEw/gxC\nQLc1SzfNVOn64iRD9T4Q1pyuvcGzFStKjYVgTywyCFtQ0BWqprjowpLh5XuwMx69625b8v4T00tn\nCeZf+kM/QoUKbTR+VeJ6DsnbfVMC27IFILlnzzJOnQ6oV3200sRRjJmTn7YcC9GIcDMOF4Z9eno8\nsp7Ey1r4jVZHJOPAXZubwTI/NHzlqZiJReN0Ribh288qeoqCDYNLbyalvORXf0qmcwJSbmjSvNSt\nRq5E9MFfR3WtaDlcryuiWBAreZEDYHCt1ki9q+qsrB/G0QElf5R1U/uQ1WYBpRRQyi3tAMzU4Pkj\nkheOSn724WRc+8VorfFrIb//ZzMYY3jxDZ/qnAMgLcl0w+H5qXVNB2B+tQbiUCOlxHIcokgTRZra\nomE0ZzsPRGZ8Fg6d7fy9lJSUlPcKwsmDk2v/hlYMzZaYmJZMV6A/X2d1V531vTWy7sUv7hYFUW05\nkvSgSSYG7kQLiwOn4ZkDcPBMq9rb8r6lX56FEIR+SORHSWmoSUqCGtWApQJXUaSZnm4Qx4qgERCH\nMSpWxFFMUA8IgyjpKQgMZ05XOHchIOPZ5PMWeS/JJq/sg4/dL7ltTXPPee5N1eIAzNMI4eUjSzsy\ni8l5gp6SSB2AlBuSNBNwi6KW3YYYP4KMasyYIjPeKizmFQsSY6QU+KGg3rDoLyukBKkjVjYO4Zpm\nqtTRAYydwC/0X/a+zx2RvHrKJoiSe3iOTW+vYmI8QMWJ0UxSvMlKqnXDj1/1OXA8QiwaLa9iTUN1\nVjVSWiOkjZSJYc3mLL77mstHd/lkXdEmLbqYToNpUlJSUt5LCCGwisvQ9SlM1ACjcCyBVg4Hx3vn\nAjeGnlyA1UllwWg8XWXSLF98EDnXMxbEgr/6geDCJMwrU7x0DD5xv6GUg7u3ZXj6ZZ/jZ1vV7CwL\nbEcSNDo3/eo4Jl/OEQYxRoO0BE7G4dz5OrWKTxyqjvKhUZg4FJVKRMYVjJ2doVDM0N1X4MFtEdtX\nGYq55gT7M6OGRgAz1aU3k/mgVUrKzUzqBNyq2C5x/20U1CRHh/vxYwulJQaQwmDLJLE63wTlh5Kd\nfaOsqbxKbzTcdjkRdpAFuojTY4KXjtstswT8SFDoLjA60kiiOhdfVwheeCPgwkSrTKi5RFOZmHNi\ntElk5QYGcszWBP/rOZtffUQx2AtT1fbPdRdg21zrQ6wMUQyey5LypCkpKSm3KkJIrHzvwtd9/UXG\nxirJ3BadZHwRBmlitGh9VcibCtrApOmGOYFRKc2CKlulDhcmF9tVwbkJ+P5+wyf3JmUxv/nJIl/5\nXo3jQxFBaFg5YPP+e7O8cSLkJ690fsFWCtyMjZNxF44ZYxgdCzA6GTzZCaMNcRCjhMBoh3zBo14P\ncSoN9p3wWNuvKOUNZ0Y1T7wM58aT/bHDSJoFuvLpvpFy85M6Abcylk0tv57hE4ZINUuAlBEobXBt\nQ9aFyVkILcGBI3V297U7AADGdjseX8zR87LFAZhHCIm5RAh+eFLTuGgGQRwmShCdFCAsW6CVIY4U\nWmleemGEgeUl8sUMJy+EPHK7xegUjC1SBPIc2LsdoljztWeao9z7uwR7tkt2b04bBVJSUlIGyprZ\nUU0cG04OZ1g34JOTdQwCiSZramRMjRcm1lPq0guCE81YiuH0+c72fmhMEESGjANdRYvf+mSJIDRE\nsSGfTTLBG1bZPPuq3zGjm3HnhlTKZnmRMQYpk9p/gqV/rlgrjDI4GQdpSTIZh5nJOoVilm/tc/jQ\nHSHfei4pG50niCVC6La1lPKwd8fb2zPOjipGpwwbV0r6L59kT0m5LqROwC2MUorh4Rki1UV7LaUg\nVmDbZu5cmHLXUrfK5FRrEaRBEHWtvuz9og4OwDy5nE2t1j7N2BhDvdH5c349xMu7LROFLUsgLcHE\nyAyO66BiRa0SUp0dZ+2mHvYfVdx7m6bHC0A55PM23SWLXRuSms+//I7iyNmmRT8zahiZUmQc2L7u\n6oz6qVHYf1IyXYOsC1sGDTvXm45KSSkpKSk3LHHI+f3PMuUsozeb5azThzaSs1MZTo/arOqL2LGy\njksDX2Q5Gw5wrpqnu1dhC4UUBqUlrg2OmJ+W224Iozj5s3hIcMYVZNzmuV1Fi01rbI6ebt8vbt/k\ncmxU47gSIeabiJNhmVIapCXRcbsDIm2JjnRLUMmyJUZDFMWcPFHjL4cEWA5CNMufhBA4rkXW0Wht\nUAoG+wTv22WxvPettVROVTRffTLk5AVDrCDnwb3bZ3nsvrRxOOWdJ3UCblH8IGSqETFZy7JUM5U2\nyVj1BYTgB7W7eax3P1ZtEoFBOTmivvWo3rWXvedASXPkfOcX6Z//qSJ/950p/EWRGoNBSIGUEq3a\nDbeKFbOTVRzXIZN1EFLg12Nqs8ncA2MEcRSDAKUNJ49OMnwhw49fh8pUHWMMnguP3JNjZV+R4+c0\nx8+3h5eCCF46rK/KCTh2AR7fZ+GHzd/t0Jih4mse3p7WiqakpNwkqIiJ0yfwezYwNQ2nRnMUi02J\nTt+XnBwROJZhwwoHpSWWtMi6mjCCQh429Gi00ci5F/P+smCsQ0Ntfxny3uWX9K8/1cVffGOWN46F\nxCrJAKwbdDh6VlGt10GA69pk8xmkFBgjUErhei5BPWjrC7BtizhSeBfdXBtDdbpOqTtLNufOOQWK\nRkOh564hpWR5n+RXPyDQmhaH5a3w1SdDji4KRNV9eGqfj8TmsfsvI7eXknKNSZ2AW5TpRgRIMiJi\nsazaxVQXl/obWL66m8bKR5G1SUTso4rLwLqyx2TnOs3xEc2FqdYIyaoezT2bBXdt7ObJF32+94JP\n3TeJws9clN8Y02a45yPqQSMgaLTmeYWccwBoremPQoWUknw5S3W6jh/C95+rs3WNw0TdpoOvAcD0\nJRrAOvHKcdniAECSMXnztOS+zZ3rUlNSUlJuNKLv/TX+vb/I7H//X5zd8CHEumUL3xNCkM0KukoW\nI9MOq5clNs+2oJhNgkh5N8l+zovACQF3bTT84DWI4qaNzNiGuzdfWaY04wr+5S+VGZ+KOTMck8/C\nF/+uRjxvWg2EQUwca7L55OXdsi2MNnh5jyiIFiRCpS1xXBuESGRHbYWbcYgjhW0LBgZL2IsyBI5r\nYTuKmenmntOVZ27mzdvj7GhSitqJQ6dV6gSkvOOkTsAtSKyTGsbeoRdYPXmSyeLPMeG1l/OEkSFY\nJMKglWbrqrmm20Jv2/mXw7bg4/dEvHjMYng6uc5gj+G+TQpLgiUFH96b5dSw4c2TF6tCWGg0PWUo\neIK+bouffX83f/mNSY6caB/huHjw2WJUrJCuRCvI5FyCRojSsO9QwD13OEuOcs9nr9zAawPjs53P\nr/iCUyOCVYNXfLmUlJSUdwUThUxvfRj/uX2MP3sY9ei/6Hie5wmqM5o+OQII6jqDNgP0FRQDhfbI\nyu6NkPMMb5yGagNKObhznWHDivZrL+boqQZPv1hjtqbo7bL5qQeK3LXN4z/9j2n4BPQAACAASURB\nVJmmA7AIrTR+PcJxbaQQRCrGGHBceyH0JYQgbEQL2WbLlsS5GBVp+pcXqFVCatUAYyDj2XT35nBd\nC8+z8H1FMQv3bb263+tSjE6Zjj8HQM1PVPNSoYqUd5LUCbgV0YaeoZfoPv8qArhLPc6LPT/DtDtn\ngY0hCA3TleZHLKHZsTZcqG/PvMWAhOfCw9svHQnfsFLy5sn241lP8s8+mWdlfxKVeWp/RC20yJdz\nREGE1kkDWBypJQ2l0U1DajTYto3WmpmKYttayZplmtMjrW6AJeHODVdueAXgOlDr0IQmhaGYS8uB\nUlJSbnzU6aOofC/1b34XncknY387IBB0ez55mZRi5mWdHV0R+UwPSglkhzeJrSth68ort4U/ernC\nX39zktoi6c1XD9b55/+oj+HJSw0XM3N/z0lQa4OayypbjiSot04GVrHGr4ZIWzIxWm9p+q1VQurV\nkME15USCWhjWDggG+67NSKWNKyU5LykBupjeskwdgJR3nNQJuAWROiI7eXKhAKgnGuGnRv6Coxs/\nTs0p0+XUiCLDy/EqAmXTk6lT9iJeOdnNjw+BLQW9Jc3P3RvhXV4U6Kp59O4MJ88r3jjRdBYcGx65\ny11wAF58M+LbP47QJskSWLlmujaOQkL/8iU3tmMjXNDacH4qxgC/9KjF3/9YcXI4kQjtKcHdWyT3\n3nbl/xSEgDX9hqlqu8Ee7DGs6L7iS6WkpKS8awjLJnv2TfTUDO5LP0L+2v+GHmgP10ex5vaB6ZZj\nfV6VF0/lOD5WZP0yw8Pb1FI+xGVRyvD407MtDgDAxLTiH56awZJZoLMjMP/erGKNVq2f11Hnzxht\nwNBRgchvxEyNN3CzDlEMb5wy5POCNcsEW1ZoOgjWXTHlguT2DRYvvNk+qfi+balCXco7T+oE3IKI\n8fM4fqX1GJpBdwyd9ZEmRtiGlWunMQgC4/Jnr9xGPKfuE2sYmZb8jx9l+PX3BW/L6HXCtgS/+fEc\nLx+KOHY2xrEEu7Y6bFrVfBxfP6noMPMFgGzBIwpqHQ344oFjUkpsO9mVoljy3H6fB3Zl+Y2flozP\naCp1WNUv3lKt56N3aKo+nBoRc7KohuVdhg/u1Kk6UEpKyk2BXLMJ+Wd/hNU1gFWv4n3rb6j/8r8C\nr9lAa6oVVpYjVne1lmUKAbetqCOzed44aWGAR3d0Ds74kaYWJgY76wiyjmiJeh8fChga7jwg7NTZ\nkB078szWoNP4mETxxywMo1yMXmoToZlB6ES9FqKMIJe3yecdToxLTozDvhOaezfGbF351qdOfvIR\nh0JWcPCUou4besuSD+7Js2lFuxpSSsr1JnUCbkFMoRsTBknNyhzBwDp0toBtQi5uZ51tSGLd/ihU\nG/DSCZv7N1974ySl4N7tLvdu75xqaCyh9ywtgYoMtmsTBRetS9AqAWc1f1LLtnjlGDywK/m6ryzp\nK7/19TsWfPJ+zdlxODchKOdhy0pDqvCWkpJysyAsi7ED5+m/t4eh3m7yf/0lrLOnCd73GLrYhd2o\nMPDAZjYPdJi+mFyBnhJsW6s5dlbywFaFe9FWMlnXzPrNF+5KYCi4ht58s/zFsZNKpE7jZKQF45MR\n2WyGMIyJo8TRsG2JsCRSyqVf6C9hjy9VehM0QgrlLIWC2yLbOduQ/OSIw/LugHJu6WtfCikFH9nj\n8JE9zkLpan9/lrGxyuU/nJJyjbk2hW4pNxSy1E1QaY3axF0DSKM62sRer0GP1zzfGINSmjhUPH8I\nnj7wzj8m/V3tK7XmDT5JrX8m62LbFtKScwoQDlIm+tG23V5fGV0H0Z5VfbBnq+G2VakDkJKScvNR\n+vQ/pvHSK3SvF7jrV+C98iNK/+U/MvDNL3FX1yHuHP57RIcQvDFQM8mbcFfBoDR8/XmboxeahrAR\ntToA81RDqIbN4+tWZtiwqnNAaKAvw4UxTa3q43o2xa4cpe482UKGfHZ+UJlAdNimjElmB1y8Fwgh\nOg6inCcKFcNnJjh2cISJ0dmW7zVCwYGha5MeT3sAUt5tUifgFqW+95epB6DjJFquLRfRURcHHGlY\nW0oMnTGGONKoyKA1hCE8f1jydz96Zx+V+3dYSNFcr5BJqQ+A40iETMp9nIxDxnPJZBKHwLIkjmN3\nVA+KjUXYOeOckpKS8p6k79O/TBzb2C50rwhYdofD8k0RO+4yrIhO4Y6cxhk6DKqZedUGZnSRhskC\nYNuJlv/IjMUPXnc4ej6x1fVw6ZIbP1pk34XgFx/rpr+nNY2wZtBh28bkHhiozfjMTtaYmagyO1kn\na8X8/PtcugoSy279rO3Y5ApZCuUcha4c2YKHEALbsbBde8kXcBWrRLLaQOjHXBia5fihkZZzjo04\nHDh748p5Hj9V50///BT/xx8c4Q+/eILnXp6+/IdS3pNYn//85z//TtyoflGH/s1EPp+56dY/7vRy\netleGiZDFMSI5YNICbKDI2AMHBjvY9LPopTBdIiYT9cE65dpim8xBXq17DsUsP+wn0yFhIWhYpDI\nvyUqQa3RKSFFIgG6hMxatuAxHWXYMJBIll5PbsZnZp507e8O+Xzm3V7CDcPN/P/wplx71yBT3/oe\nQhhMDMFsxPSxacrrenFyLs7YWaypEUwc0yDHmL2GiikzX29T9+H4eSsZ2qUFfgTbVmkaoSFcIgPr\nSMhnmoa4v8fhgd05Mq5gcMBl7648v/7JXrqKNi8c8DvOeNm81uHnHs3xgxd9fF/hZp2FKL/rNoNB\nQggsS1IoefQPloki1dJD4LiSnp4MK9cUWLEyT2U2JAqb348jjevZeNnkxd+yJBM1G88x9HaQSL1a\nruVz8/rBWf6fL53kjSM1RidCzp73eXH/NK4tuW1T4ZrcYzE37TPPzb/2a0GaCbhFaYQChGRq9b2c\n2flpqnY3RnRyAcBUpgkjiZS0DexazBtn3rnU5YWxGKMNoR8R1APisBmFEgK8rEu+mEkGu9gSN2NT\nKGZY0WdhW6atRjRfcOntzzFesXljKG2FSUlJSZmn+6ffT3bbvUy+VmHi1RlmD9eYOTzFwa8dYrJr\nC9W+DTQy/Yzm1nMuvwOf7MJntYbhCYkxglJB0l2WVIPk1cK7xHTdTAdBhkLe5uc+1M2vf7KXjzxc\nxnUkq5fb7NzSXio0sMxj5aoSh88JYmVwMjY9/UVWrO4hl88sBIKMMWit0VoTBDFxFOO6STOxFAbP\nE3R1u+TyDuVyhnJXlk23tc/JGRtOsuWWBa4rMAhOT9x4e8nXHx9lYqo15R2GhsefHCMI377DknJr\nceM9wSnXBHNR9f8Yy/BokMUgUQtDs0yjjnzxaX5e/IQT7/9dvvacw1Kl86dGwA/NJQ37tSLnNf1T\n17PJeG5S3ymSaZJezkHFNr7fdA4CP+JCRdE3UMBxbeJYMTvZQGvD4OrCwqYwXk1935SUlJR5hBDc\n/bdf4NV/84fMPvcyxg/J7thC7y98gIldD7JY8iyjI2JtoY1gclYyMiWZqkrWr25G3o2x+PFxyd71\nDXKu4eJgq2dDybvyfeTXfrZIX1edgycigsjQtbwHbTkcGRUcGTUI26ZU8BYm/87HgPTc4MzFTI3X\nqc0k8w4sx0JpaDQaQIOh07P09edYv6lMseRSmW0uXEpBIZ/0nM3vJY3oxqrpV9pwcqh9uCbA8FjI\nqwdm2XNX1zu8qpQbmdQJuEXJ2gZ/0ch2hcMZ1rPx5N9j5fMIx0aMnEe++TKQJHXXV16hu3Af4zPt\n1zPGMDxp+Moz8KsfuP5TDR/e7fHSwZBIZJBSJlJvBrQQzEyHSEtSKmdxMxaV2WDO0GvWbuxeNALe\noVjMcOHsNK+8cBbLkvQvL7C27x2qaUpJSUm5SbCyHms+/zstx4wxBJWYaJH+viM1jtSUPMmbJ7KM\nzsL6VQ56UWGBEILZwOHVs5rdqwMqtsGPDIYkA1D2xFXtIXXf0NWT5b5ylsmGzdDk4np8gXRcXC95\nnfGyFjVbEoVxRxlpY5KXf8tKsuWL0RpGR+pESlPo8ggiQ9hIourLVhTwPAutDWouUpZzb6zBkFKA\n63QOckkJhXw6iyClldQJuEXpyxsacasjoLGQx97Erox3/pDW/MIDMf/t+zaNRZEbQ6IWZIzh1Agc\nOw+bV17f9fd2WbxvTxfff9GnXvGJ55q1LEviZhxmpgSFoofjSDIZyfRknd5lhUUOQMLRN0eIYo3j\nJrWiE2MNvvVEnd2rC/SUUoOYkpKSshRCCHpyFlN1RTjnCEggmxGUPIsP3BHx4ukM8RKVxaMVGyFC\nSp6g5HU85bI896bmmdcNNX9+TRFuxpArJCVCWjeDUtls8nKfK7g0lqj1nm8OlpbsOFsAYGYqxM3Y\neNkMlmUhMKxdn2hKSymSrDSGjf03ltKEEILtmwuMjE22fW/Tuhzbt1z7noCUm5u0LuIWxbFgTVmz\ntt+m6GrKGc2qksZavqbj+abUCxt3UsrBv/xoTMZWKK2JlSIKFdGcsdQGzk+8Mz9DbCS1ip9EdOYy\nASrWNGoBgR9RqyTDBKQQGCPIZFp92rELs0ShxrabShBCCAyS//zVzinTlJSUlPcsKsY99hzZF/8X\n2Re+gnvwKTJxjYGiTX/eoitrsaxk05NLgipd+cQhWAojYN9xeOp1OHim84TeSzE6pXlyf9MBgOQa\ngR8TzJWCGm3QyqCVxnEkxkA275Lxlo5xCiEuPdTRNAeNOa5FV1+2JXNhW3DX2oB1/ddBd/pt8huf\nWsmOLfmWguCVKzL8+j9alUqSprSRZgJuYWwLVvS75MWiyVv3fBgzfg4x1ZQ8M66H2fUo2M7C5/pL\nmqPnO183/xYjOlfL6HiIWkLcPwoWRWBEMkTsYsaHZ7HszjJu49OGum/IXUVdakpKSsqtijEG77XH\ncSbOLByzZ0exZ4ap3/WzeG6OTqY/l4mpBDadJnM1aorvHpgv/THsOw4/94DhSoVNXj0OQYeAvjGG\n6qxPFNpk8y6WLTEkGQEpk9r4QtnDb3QecqZ1kh2+WGFuHiETqdCgHmDZFo5jtajOZWzDhoEbc8Jv\nqejwf/3uFn70whSnzjboLtl8+H39ZDJpzDelndQJeK/R1Y/5xG9jXnsGMT2G8XKw9V5YvrbltO1r\n4MQwKJ30hA0uz1AsWFhScL4B+05H3LX2+qZCXWtpJQOtDdl80ixcrwbo0Kde8ygUm7uLMSwZ7THA\nD/Ybertstg4qeorXePEpKSkpNxH6zCHsRQ7APFZ1Avf0fsLNezt+bllBUfEV9dBisSNQr8e88WYF\nPzC4WRvPcxgahx+8avjZPZdfT6SgHrSnDqIgptGI0HOaoVIK8sUMruuitca2JUoZvKxDNufQqF+8\nTxmiIKJYyhJHCqVa72FZEmlJQj8ijtTcOQoVd2E7SQlpb+HyMtNHhxRHzsS4jmDPdptS4Z17CZdS\n8Mj9PTzyjt0x5WYldQLei2QLsOenlxgdlrBzo2CmYXjlGPQPZOnuao2on5+VFIcNm5dfXTQkVobX\njkYoDTs3O7jO0pH43VszPPNi51HqrmtRqyXGPQhipNaMjVRwXQt3rizIy7n4vuo4GVJrzQ9fqLF2\nYx+vnbbYtS5mz5ZUPi0lJeW9iRo/23GiPICstdeYA9RCQd23yNkRtmWoB4LpWUOlEjN0tk6jkdhU\nvxbNDXK0GBoTKG2WfIkOY/j+fsnpMcHMrAGadlkpTb0esHiAsdaGyowPEnJ5J5GMdgWxEvSvKDAz\n2aBRj4hjDcZghKC7v0S+5CFtSaMeLvQGWJYEIYijuEWWOg4VQ6dnWL+ph2JGsX1wUXb9IrQ2/PUT\nAa8fUwuzDX78esRP3++yZ8eNO2As5b1J6gSkLMkjtwscz2UqaH9MLEtwatK9KifglUMh3342YHza\nAIJvPOXz2N4MD+3qnBt+YHeB//ntKcYm20uCssVmYjpfyjJ2IcQYzdlT03T1ZrFti3JPjurpKaSU\nC9OGIakhLZWzzE7VMcYQxoJ9J2zW9EWs6Lmx1B5SUlJS3gmE1a7FP48KIurf+jLGr2Ov24yzay+v\nnM0yNGkTKgkYylnFxGiN1w53bsiN/BjHsYhVosKzlBPw7Zckxy5IfD8iDBJBCgEgBKEftTgAi6lM\n1fE8ByGSIJFtCSwpKZZcarUQS0KumEMpjWVLvKyD41p4nkMcK+JY4zciGrWgYxnqyLkKH30oz+qu\nAJRBG4HskGp+6pWIV4+0fr5ah8efC9m+3qKYu7KMgDGG6YrGdQT5bFrKk3J9SJ2AlCWZqglGKjaZ\nJRq/YnPl9fTj04ovfz8AxyVfthBArBRffyairyy5bX17hMSSgn/xC0W++Hc1JqeTqL9lSwqlLMVy\ndtGZAqOTicFKGSZGm02/maxL4IeJwsNcM1jfQJ5COcvsdB2lNLZtEWvBkfOSFT03XqNXSkpKyvXG\n2rST6NiryMhvOV49O8rkwZfQlXntaMHpDxmOr3mMZvmPYKZhY2dzQGcnQM91Bfd3gbPEm8fwFJwa\nFUShIvDVnM1uDv0Sl6jBUcpw5tgoy1Z1ky9mSPYFg1KGQrG5XxhMonBBEvnP5pvOz9iFmSX70Hw/\n4uVXp/nboRg/ghW9kod2uuy5vdV5Onq28+crdXj+jZgP3bu0szXPiwcafO/ZKkPDEY4t2LzW5VOP\nlenvSV/ZUq4t6ROVsiT7TmWItGSpHi5bXnnU/Acvh8hMpqU0x5HJcJmvPhXwex2cAIDBfpv/+1+V\neXp/zKEhzUQ9g5TtzoeQicEXF31PSkk2l2Hdpr6W41prLEtQmWnQ3ZvIpqmrcGpSUlJSbiVkoYtg\n4/1kTr6IDGoAKGEzdeTsIgcAwDDqraVTIzC2TankMDvb3i8mLUkuY7h3y9L7xrmJpIyn0YjalGzm\npT3nbX0bOqmFHzk7BUDPQIlsPpkz06j5zEzWFj5nuxa5vIu8yKkolj2mJ2qL7pncV2uDtCxePdLM\nfA+NaL72pE/OE9yxqbl/xZdIjkfx5ffMQyd9/sc3p6k2knPDyPDqoYCZyhSf+62+ZL5BSso1Is0x\npXSkEQpGKxZ+QFvjFCRRmdU9zYhPrAyvHtM896Zmttaerz1+QXSszbcsOddQtjRCwPt22fz6Yy7F\nJeZ8FUoecQfra7QhX2iPvASNiCjU1CvzP4NheVfaE5CSkvLeJV61ndqeT+Fv3kuwcQ9TchA1PdV2\nXpQpLXEFwUBve2zRdWDnJsnPP2DYtGLp+w+UDVIkc2k6IaXEsttfW7TWGAyD6/rIzUkPTY7OMnpu\nivHhaaYna1i2jZNxcTIuxghGL8wsyIA2r2OIwsSBKXTlKPUWKfYUKPbksb2k8XgxfgTPv9Hq8Kzo\n6/xa5diwff3l467PvFRfcAAWc/JcxLP7G5f9fErK1ZBmAlI6onTyxxioNSCXNdhzEQitDX35iK1z\nEmmHhzTfe9kwNhcseuZ12L1J86G7m8ZQXsLdvFLtYs+BTSsM+0+2n2/mdJ0DP0yiRYjEYBtNT39P\ny7lxpJiZDZBSMDVRJZOzuXtHnttWpU5ASkrKexzXI1q7GwB96lsdT8nNnKVRXtV23LY0j92t+bEt\nOT2i0QZW90s+cLfNit7LxxxX98Ngj2FiiXmWxhjiMEbFeiHra4xBxYpc3sVxbbr6i9RrSeNuHClU\nrMlkW/PZUkrqtZCJ0WmK5fxc2ZFBCOjuzSOd1iyBZVlkc5LaTAOlFJbVDFzNVFv3jQ/c7XDyvOb8\neOvxXZst1i6//IDKqcrS+9DIxI01nCzl5id1AlI6ks8YevKa8apFEEEQgecmRjLvKO5bFyAE+KHh\nO88bppsZVGo+/OQNQ19Zs2tTYkh3rLd54XDne5XzMFtVvPB6A0sK9u7K4i3SNG5EmmpgUBp2b4Z9\nh2OwbCxLolRSO1qrBGQ8F78RUJ9tRkuKecnkeJ1cwcWWglhp6rUIFRkyuaRfYHhomq2PwmTV4/y0\nRSFjWNev6FB1lJKSkvKewb1rL43Hv4ppKQeCVYe+ycyKO4md1tTsyq6YVX2CT30wkW+GKw/yzPOz\n92leO6SA9hdmFSlCv1OpEXT1JTrPGc8hX/Ro1IK5GTKdnQ/Lsgh9TW5lq4PgB4oobH8RF0Lg5TPM\njM+SLTR7DEr51uuXC5Lf/HiGp16OOD+hcWzYusbigTuvTBmofAkp0b6u9JUt5dpy2Seq0Wjwuc99\njomJCYIg4Ld/+7d56KGH+NznPsfp06fJ5/N84QtfoFwuvxPrTXmHEAK2D4Y8fyJDECdGyQ8hY2u2\nrw0X9PdfOtzqAMyjDRw8Y9i1Kfn60V2SV4+pOSWJRRhNfzHk//zizEIZ0Xd/UuVn3lfgkx8pUgk0\nkzXTImca+3Uq9UTLWSvdMoXSkhKRsRemRt673WH/Cc30RHsa1bISOdEojHnmsIebyxLrZKhN75Dm\nwS0BfcVULSgl5UpI94pbD6vcQ+bBD+E/8Q1QzXLLgeg8uWXjnIxXUPEljgXLyzG3r2yWiL7V6bR5\nD37jMYv/+g8+rucipUyi/ZGiOlMnCiO0SppvpSXJFbL0Li8taPgDrF2Z4fSQxvdjxJLCp7T1kAHE\nkVly7VKKuT0nOcd14J5t7S/35bzk449c4US0i3hwd44DxwIafuves2aFzYO7l6iHvU4YY/jOU9M8\nt7/KzKyit8vmwXuKfHBv+m/4VsH6/Oc///lLnfDEE0+QzWb5/d//fR588EH+7b/9t9i2je/7/Omf\n/ilhGDI9Pc2GDRsueaN6vbNiwM1APp+5adf/dtbelTf0FxUY8BzDspLirnUhq3qaUZLDZw1Do50/\nX8jC7rlMgOsI1i4TnBnRNOaWk3M1t6+J+dGLFeqLDF7DNxwfCrl/Z56peszFLQkNX3NuxLSNoNdK\nk807rN28jN5lJco9eU6e9RMhiCXe5UM/YnB1mVJvCW2aSheNUDJZlWxZHl96vPwSvFefmXebm33t\nNzPXaq+Am3e/uNmfv05rd7fegTWwHBCIrl7c2+8m/+nfomtlH2t7Y7Ysi9g4EDFQvHbZ096yxUBJ\n8fqhBg1fEdRDlN+gVgtRcVN9x2iDVppidw57rufMKMWvfECwa6vL8j6bgyfDjv1oxhiWryy3OA8A\nfj1E686OgNYavx7gOA7losVPP5BpUwd6Kyz+3Q/02pQLkslpxWxNk3Fh2/oM//jjZcrFdzYT8NXH\nJ/nK45NMTivqvmZiOub1w3W8jGTzOq9t7TcbN/varwWXfaI++tGPLvz3hQsXWLZsGU8++SSf+cxn\nAPjUpz51TRaScmOyrKxZVm4djDIyLTh0ThIpgSZGoDq+Y/ddFCxYu1zyv/+CZLpqUNrQU7T4i6/V\nCDuUOVbrhm8/PcPOO9sf9L27PY6drjI5IxZSvUopMIb+FT0XnS1QYYy02x/1OFJEYUy5u3N0Zawi\nOTslWd2T9gqkpFyOdK+4dcnc8zCZex5uO24MXKhIZn1JrAUZW9Ob0/Tk3n4GdefWLHdu8RifUkhL\n8D+/Pcu+N/y28+JIMTVWZfnqHrTSTI5W+dZTMf/sF7vZtNohigK+82zr0EhjDNmcQybX/gKfL2WY\nmWy/jzGGMIiQUtC7vMCDOyQP77o+NaMP7s6zd2eOkYmYbEbSVbp8L8G1Jgw1P9lX4WIhpljBMy/O\n8pGHyx2V+lJuLq7Yrfz0pz/N8PAwX/rSl/id3/kdnn76af7oj/6Ivr4+/v2///d0dXVdz3Wm3CDs\nOy554bhNFM83ZUkKeZ9KrdVS9BRg7/bOBqKrIJiXl2t0GAsvZKIkdPKCYvt2g2O3X+fXPpHn0GGf\nfYdjaj5oz6VvWanF0GutqU7XqVdDyn3Flu8ppWjUkhIh112qBlNQ81Mjl5JyNaR7xXuHoWmLyUbT\nrsahRSOUQHxNHAEhxII2vm0tfT2/EVCZrlOZrtOoBhyPZSLrKQUffbgLx5rl2z8OCJXEsgT9/VlW\nDmYZnw3amoazWZcpVUNI2ZINiMKY+myDYneOXNZmy+rrWyoqpWBF/7s3Yfj8WMjIRGe90+HxiNmq\noquU9ijc7AhjLi6qWJqDBw/yu7/7u4RhyGc+8xk+9rGP8cUvfpFKpcJnP/vZ67nOlBuA2ZrmP/9D\n8tK9GGMMXV5MFCoiBav7LT50X4ZVA5c3EH/1jTG++t2mBJ3ruViOtWB8e8qSR+51Wb+69VrlvM2W\nVYm+fxgb/tsTMadGmo+yMYap8SrnT04kBwR4eQ/LkhijCRoRtmNRLrmsWNu9ICu3mKwL/+SnoJhO\na0xJuSrSveLWpx5qnj8SEXeYjdVdENyz8e2XySzmb789xn//RmfZICnlQu8AQG+Xzf/7H9a3RKq1\nNoxNRmQ9SamQ7CcvH6jx9WdjYuFi2RbGGBq1gInRGnGsECTDykI/QMUGx3MYXNPNnh02/+hRr+Na\nbhWmZiJ+67MHqdTa/wcP9Dr82R9uJ7NkAC3lZuGyb2kHDhygt7eXFStWsG3bNpRSSCm59957AXjo\noYf4kz/5k8veaGys8vZX+y7R31+8add/Ldf+0jFJzW+PTAghyOUkv/jB+bIZDTQYG7v8NR/c6fCT\nVxymalZHFYfJGc3TLwasXmFhz2UEHAvytmr5uT62G77+E8XBUwZtoDrTYHq82ryQgdBPav/u3Jql\nv8dj3xFNEMPYSJ2Vq+2LakMN6/oj/GqEv+gyV0r6zLw73Oxrv5m5VnsF3Lz7xc3+/F3N2idqglh1\njlRX6+qa/x7uv8Ply98RhGGH7LHVOkBszXKLiYl2wy2BoAFjczoRthVx/OA4gZIUy1n8RkijFmA7\nDsWuPMISxKHCy3tIW+IIzcfuM9y+NmJs7NrJdd6oz822jR4vvNau/LF9k8fsTHL8Rl37lXCzr/1a\ncFk37qWXXuLP//zPARgfH6der/OJT3yCZ555BoA33niD9evXX5PFpNzYXCpndOX5pFYmK2Bns2Sy\nbscBlACTM4bTZ2KKGejJCgZLEvcih8G24OcflPhTU5w9PtbqAMyhtcaSJLRUhAAAIABJREFU8Ojd\nGUamWIhg1aoRZ8/MMjPtEwYRfYWYezeE3L8x1WROSblS0r3ivUXGhqUUFzrM83rb5DzJL324vBAM\nmseyrRYFoIFei4+9r3BF1/zS30xRqSWyoxMjs9RmfbRKBobVZhv4tSRwpJSmNt1gTZ/mjnW8JbGI\nm5F/+kv97N6ew53z9byMYM/OPL/2yf53d2Ep14zLZgI+/elP83u/93v8yq/8Cr7v8+/+3b9j7969\nfPazn+UrX/kKuVyOP/iDP3gn1pryLrNlpeaVU4YgareAy7remhfw1L6I2flAwyUuoRX05i/dHDU6\npamHl9h9DNyx2WXLWoe/+2GrZGi9FuH7CssS1KYs6jOCvCXZMJimO1NSroR0r3hvUcgYCq6hGrbv\nByXv+ogpfPD+Aju3evzt47NMzmrWDLpsXGlzfhzGJ3z6eyw+eH+envLlS1G1MQyPdw70zKsOxWFM\nHCZ18ULAh+6/tUuALqaYt/k3vzXIiSGfU0MBWzZ4rFp+c6uYpbRy2X8pnufxx3/8x23Hv/CFL1yX\nBaXcuJRzcOfamH0nbJRuGv7lXZr7NnUoDL0CLkw0NwshW1O683gu7Nhw+QapA8cj/CC5nhBiobfA\naE0cK7qLkn/2C11YEvKeoFpv3suyZTJpWAimqjBVNZy8oPjkw3DbmtQRSEm5HOle8d5jdVfM0LQ9\n5wgILGno8jTLi9dPUa2v2+Zf/3KrCtxbKevQ2qAX7TdCJnuGjjRaa+I4xiLZE2xb8uAuj42rrm2f\nw83ChtUeG1a/txyg9wppa3fKVXH/Fs2KroijFywiDX1Fza51yVTEt4LrJMO5IFFDUB2cgF1bHAb7\nLy+Rls0kjom0JE7GWdQUZmHZFl0lsK3k2PZ1FiOTTeUDy5ZtutA1H557Q6dOQEpKSkoHMjZs6oup\nBYIgTrID7lXsBRcmNG+eSSpBd26E3tI7Z2ttS5LzJNW6xst5IEgagR2BNpowCDHaIKXhw3tzfPwK\nS4wAwggiBbnMe6d0KOXmJHUCUq6atQOGtQOdpcOuls2rJOfGkqiRlBLsJELjSMOmNS6bVgref++V\npR/v2+HyxPMOY5Nxm36xtCSTtSQFLIXgp/e6NALDgROKeiCSe3dgZMosSM1dLWFsOHgm6Ve4bTVY\nqaZySkrKLUg+Y7ia2UXGGL77kmHfMYjmtpIXDsPe7Zo7NtqcnXYIlSDnaNb3RWSd6yPHee+dHs++\nNpe1MGAwicKQgIyXIQoilIaXDzT46EP5hSDSUszW4YlXYGgs+bkKniGXgWwG+stw/23NYNWl8APN\nK4dDPFdw5xY33TtSrhupE5DyrvLYXpexGcOhUwqlE0dgWY/gk+9zefDu7qtK8Tq24OHdGb7xw84b\nRhjDK0c1d2+xkFLwix/w+PAezUuHFE/u79zc7DpvLZLzw1cCvv8yTM/1J/eX4dE7DNvWpsY8JSXl\nvc2bpw0vHG61uUEEPzoA44GDt2iI12jVZveqBuXstXcEDp1Zwh6bpDxICIExhgvjiteP+uy+Ldt2\n6tFzmpePwuQsjE9rwihxJIQQVGoSe65L+tAQHD0Hv/yooZhbeh/43nN1fviyz+RM4pwM9lt8/H05\n7tyS1uKnXHtSJyDlXcW2BP/kYx5HhxQnz8fkspI92+2OA8KuhM2rHaB92uM858YMd29pfl3KS95/\nl+D4hZjTI+3nr18hOo6PvxQnLxj+4ScBwaKes7EZePxlWNlnKOVTRyAlJeW9RRCFRFGExvDm6QzG\ntJd4xgpGJhRrFw1xr4UWx8Yz3L16abv+VpmZXbqXzRiT9KmpxPnoFI0/NKT5+2ehEUAca1SsWz6v\nw2SS/bz89PAUPHMAPny3Yf/RGD807NpsM6+18/rRgG8+UydatHecH1P87f9XY91Km9JlxDFSUq6W\n1AlIuS5oA41Q4NoG5wrs1ubVFptXX/rEasMQRtBVBLnEi/nqZRaFXFLneTFSSnJe++eEEHzsfouv\n/0hxfm62mCVh46Dgo3uu3ui+dooWB0BrjVaGWSP50Rtw2yrN8h5Bzkt7DVJSUm596n4DPwwWvg4j\nB+hsWzvNL52pS4y5DvX1l7ieMYlCEEB/r82OTRkqDdAaSrlkLS8eThwAY0yLA7AYpXRLz9mx85rX\nD/sMz4liPPF8wIf2Sh66HV56M2hxAOaZmtU8s8/nYw/n397Pm5JyEakTkHLNOTbmcHbKoRJIXMvQ\nV1DcMehfVcPYYsZnNN9+TnFqOHECVvTC3h0Wd21p30SEEHiuplJNojjNbwBo7trcOaU82Cf5Fx8X\n7D+umanCqgHBpsGrzwJAsilAYvxnJ2qEjRCkoNyd4/k3HV44KJDS0FOM+ecfs+aao1NSUlJuPZRS\nLQ4AQH+X4tiFzopvxUKHjeI6mcjt6yQHji+hZDS3VXie5JF7CvzNU4Jz40kJ04oeeGCbYWxm7tQO\nghYLl9Fz15r7GaZnDVOTzXvO1ODvf1ih4HrUG0tfp1K7fopLKe9dUicg5ZpyasLm0HAGM2fxQiU4\nPyOJNexZd/XpXKUNX35ScXasaRzPjcM//ERRyAq2rO4wZXgqRsUCr5BBkDQFZ7xkGNnXnlb85s90\nfuwtKbhr89tPt/aWgHMwM14hqCdhnd5lJWy7eW2tYXxG8KVvaT7zc2mKNyUl5dZCaQgVaNUe2t61\nMeTUiE0o8uRyNkJAEGhUHNLT3e4cdOfUVWcB3jju8+Tzdc6PxWQzgh2bMnz8/cWW5t7f+HiJf/Of\npljKy+gfyPHhR8q8cdIwVW2eMzQO33oJbJnsS+JyjbuLvt3w20U1ohj2H42pBktf5+XjgkfHI5b3\nXV4uOyXlSknrEVKuDGOwZoexJ04g6tNLnnZ+2llwABYzVrEZr1z947b/mG5xAObxI3j5cGtkRGvD\nf/lqlSCEbCFDvpglV8zi5TILTV6nRiVnx65vRGXPVihl1IIDkC1kWhyAxUzMGI6eTScTp6Sk3BoY\nA+dnBcfGLY5P2IzX2u2+FNAzUKK7O0MmY+G6FsWiQ3d3bi503qTkxdy2LLyqNRw6EfDnX51h/+GA\nsUnFmQsx33mmxl98rbl3vXE84D/+2SxGJ5H8+T+L2bHRQehWB2CeakPgzSn9CCGWdFKk1cwox1GM\nX+9s72u+oaYzHZXobMfCy3n86devjSpfSso8aSYg5bKIoEpm+ACyMU2i6i9RhT6CwZ0gW19uG3Fn\nS2gQnJm26StenTEfn1k6PTpbb/3en3y5yvGhGC/fqi7RiuDgacOq6zj1vJQX7NogOHwo+Tp7Ce08\no+E7Lwg2r7p+60lJSUl5pxiuCKbqAlcESByqkUfW8rFl8+X+1GSBIG5//TAIVBzTXwgp5CwKGc3K\ncsSJMYeKL8k4ms3LYnLupZWCnnyhzmyH8pn9h33OXAhxXcl//vIsqkNfsNFJKakl/3/23jtYruvO\n8/ucc27o/HLEQwYIgJkEcxIVKCpSVJiRRhpN8MzOjD2esXddtfaut7xVdtVWeXe8W6611+WdnbEn\najQrjaUZiQqUKFEQxUwwACAAIoeXY8fb995zjv/olxqv3yNAPFAAdT8sFN/re/ve0/26zzm/9P3B\nbTsUxydXv09HXtCRtRw+C44riSPTpHgklcD1JEJAFMZUivVVryWkxFpJriNDUAmJIw0CXNchU0g1\nlIqkw8R0TE/n1bN1m56LOTMaM9Ct3rGgR8LPj6vnk5Rw1eKNHkLVljwoAoNTHseOHybsv2Hx8SAS\nxGa1ScAiMAQxpC7hU9fdtvqkUlgmszZX1swEHjv2dJBKu1gLQS1mdjYgjpoXjFWc8uvKXTem+Ycf\nK/xcBtd3FvNLL8RaS239RS8SEhIS3nW0sTjhDJvdCp6Mia2kYjKUojx5L0CJxkQ4VVkptblAGEvC\nWokbtntUQ8GPDqeZrS1N2qcnXe7YWmewfXVln7Gp1h7zegiHT4S8fCRuaQAs5/ptLru3ukxUVj+n\nkIFH90oOndb8zY8sflo1Igu2YQAsjwBH87KjPQWYmG1eEPo6FVs2uAzPGhxXUehs3ZhMSskrRyMe\nvcfBWsu+lyrsf7NKrW4Y7HV59IECfV3vTrrQXNnwtacCjp8vUatDT7vgjj0uH747kTK9lkiMgIQ1\nEbU5VG2m5TFZmWJBssFaODjqY+18rEA09r2N3yHjaTyvYSiknIvXe75lh+S5QytTglIe7N21FGZ+\n+nXoH2xDOZLJ0SIjZ6aplutIJfHSHl19HRgLmRTctvPKeytiHLo3tGNRWGuJ6itXHGst1oKTfAsT\nEhLeA+jaLAU5t5ga4whDmyojNEwE3WzIVxs5yGvk0EthOTyaZtuA4eyc12QAAFQjyRvnPAbaaqum\n4GTSq1+/vaAYm1rd8yIEfPCuFI89nEUIwR3XwcHTlukLUoJyacsdOxs/X79ZEdcDhPDxUys34dZa\n4tjQkRf8V59J8YMXI06c18TaMtSr+NyH2xmbqvPSUSiV6qTSqygnGbtYOP0335nhyZ+WWMhgOnyi\nzqFjAX/45R4Ge1eLhK8P1lr+6nsBb51dWtcmZi3fez4kmxbcf/OVvX/C+pHUBCSsiYxriNXc2Dpk\nwcU9VZHM1BSO09igp/zG/z3X4ipDTz5CYi+586OSgi98QLFnkyDlNdaODT3wiXtVU1FwHR/lSKbG\nSrz1xnlmpyqE9ZigGlKcKjMzPkN7h8+N2xzac1f+Y//U/hA7L4EnhEC5AmPs/Ma/0YVYz+tPb+hK\nQqgJCQnXNtZaiCstN+YZWcUVhmwqg6MkW7pKSGkBS3s2prctIp/SgCWlYsKosZZMllvP1TNVycQa\nNWY3X5dq+fimAYc7bkixltyQBe673VtMbcn48Ml7YEufxVUWR1o2dls+cde8CASNTvSdeUG9FqH1\nyjSkKNToep3+dkM9tHzuAyn+6Zez/PPfyPFrH0uzecBjSy/s2apQUmBM67q1OI65badkYibipy9X\nuFCUaHQy5omni6u+tvXirbOa4+dXOraMgf1Hkhq3a4nEB5mwJjrThZYuyqz8YsdOCmMsUkE5VCxM\nrHJ+bhZiPvVGNR7L+Rb/HXziOguSLz8qqQQNidC23Mo+Ab6vIIDRc9PELfSai9MVglrEuRmf5w+H\n7Nxg6cxfGWPA2kaDl+UopTCOJQqbx9ZVgPfdmtjiCQkJ1zq2sQtsgSMMbW6IFD71qI7veHTlI9oz\nlrRvEQKM1ZSqgvOTiv4OQ1/BwqrppWLFBng5j96fZXpO8+IbNcq1xvW3DLp88eMFpBTs2ORw8K3W\n9WlSSf71/1vh3/2Thje7GoJw4d6bIQjBV7CpE1wHKkFDvvrkiKEcKKw1VIp1UhkXpRoR8no9ojpX\nIYpg/2E4fDLk7pt8PvuBTJMEtRDw+D0wOulx6kyAl3ZRSi52LdaxpqfbI+1Lfvx8iUqLXjgAp0cu\nre7unTA8qVf7U1OqXpqjL+HnS2IEJKyJlQ5BpoNMebzJd2KEIsh0gg6RKk1bSjciBqvEZ5UQbGi7\nPFWebEqQbe3gIZcyjM0papXWE6AxlvJclWw+xY9eF/zwJc22DZbH7hNk/PXfhDtOIy1qOa7nIKWm\nPa1py0J3m+S+G8W7EplISEhIuLIIkA6YlXOwtdApRmHW4hlJPe6nM29JLYsMSwFtWUs1MMSRQCno\nyGlqsyvnx7aUprew+noihOCLH2/jI/dnee1oQEdBcfN1qUXlnY8/kOH4mYig3jxHCyVwXAdj4c+/\nU+bUmMJ1YbDPZdcOl1xKEGIZLVsGC5a//kHMieFlr0FJrLGUiwHYRo8EE8UsDw7U6vD0y3WGeh3u\nuak5f95R8IE7fL6jFRNjNaIgnm80Bl09aR641QEiUmusWd4lFufWAs0P9k1TrRluuSHH7u1v35Bs\nS7/CVRC1qKtov0LOtYQrQ2IEJLwttcIGjFT4QRFhYozyqWU6iVIFfNn4CHVkDFJajG01AQnS7ppp\noJfNnsGY81MK13WosYonRMDY8Bz1eow1MDMnGZ/1+ZUPOfTk1082VAjYNqiYnFtZnDbUI/mNR+T6\nd75MSEhI+DkihEB6GUywcv6VNkbqCAv4QD9j1J3Wm832nOXQycZG8obBkGJNUq4v5ch7jmH3QHRR\n60lnu8P771pZZLtl0OXevRleOGgIKiEWi5QS5Uj23pKlp8th/4GAYqmxy52arnNuOOLh+7Lkc4pS\n3fDi0ajJAFh8H6Qgl5G0pS06hlPDK8dlLbxxLFxhBABc1x9zemeamcEsUaQBgetKsr5l10ANgPtv\nz/LdfcWWBdC7t63iKWvBc6/M8edfG2F8qhHp/+b3J7j7tgL/9W9uRK3xBm8ZdNi5SXHoZLMV4Llw\n156kj8G1RGKyJaxJI589RZDtYa5rO7M9uyh2biFKFZDKRzlLX/j2dGu5BYGlkHobKYbLZKDD8sDu\nkM6e1qoT6axPPbQEtZiUY+gsGIZ6YEO/5GdvORw6v76SQY/d77Gpp5HzukBXzvKBW1cNliQkJCRc\n06hUGzLVDtKlkR4qkTpCmgiLBKGIraJss6tu4pVsNBmztjFnvn9XwK6+kA3tEdt6Qt53XY2tPe9c\nL//UGPzljyVn5vL0D7WzYWsn7V1ZlKO4544cN+3J8OqhkKmZpTXLWsv0rOY7PyqhNdTjtfvN9Hcr\n/vGvZNg6uPq6Uo9ap804Cu7bHjDUqclnJbmMYKBdc/e2Om3pxnM8V/JLH2mnq33p+lLCrbvTPP6h\n9ot6H2qB5i++vmQAAISRZd8Lc3zzuxNv+/wvfyTFnXscOgsS34WNfZLHH/LZmxgB1xRJJCDhbXFT\nBaw16ChgYVMrlY+XbgMaE2QltPTlQoo1RWybbcvOjKYzc+Vbnm/tNTz+UIr/NJYiqIXEUeOeuUKa\nXGeWet0Q1gIqy3oPHHmrzIMPdPFm5DM9rXngpvUxBrIpyZfeD4fOwNisJevDbTvAS75xCQkJ71GE\nEDjpdmyqrdEEpTyKjWNAYoXgbDxE2eaIrURhm3LiF6gE4Cmz6CzJpiy3bV6fPPdqHb6/X1GsLd3X\n9RzaOjJILJs2eIxOGqZnlowMHZvFQt1SBN/4ziyPf7Qd4TiwStQ5m2pcf/tGlx+/XG/qHbDAYPfq\ni0FbxvLQdQGRBmNpWUt3x41Zdm9L8ePnS1Trhp2bU9y6O93yPW3Fj342w9hk6yLe1w6X+MzHetd8\nfsqXfPHRNG3tOc4NF8mmxYpavYSrn2RLkvC2CCHwMx0YHaN1HSldlNMomioGhtkaNPbbmr5cidEZ\nh8D4GGPJOBE39F95A2CB23d7/MZnunhjOMXMTIBB4aZ8RodLBJXiio6QcWz5yb5JfvlzQzzzmsBz\nDXftXp8AmRBww+bGv4SEhIRfFIQQIBQI1eggP28AzJoCutEDC4vAcZojo1EE5ycEW7srwPrLTL56\nQjQZAAtIJdmwIUUmrXjzlMbMrxPLDYAFZuc0P3m2RKErS28HjF+goO0quGV7Yw25ZafLDdsdDhxr\njlwM9kg+eNfb6+m7b+OTymUUn3j/xXn+L6QarB6dr9cvvrjXcwX5TJJUcq2SGAEJF41UDlItfWSC\n2DBVgeVTpOsKOrJ1/vrrI0xORTgK4o+086F78+/aOO+6wSNwPcY7s1hrOXuuRlSPVhgAC2gNh48U\n6evO8vrxmLt2v2tDTUhISHjvkm6HYI4YScnkCLVEWoMWEoVGhDWGqofImgo1r505m8PkcuzZAtC1\n7sOprRFQiI0kjAzjExHWNqIUxrZ2YJ05H9JDhi8+5PLt52LOjVuMhc483LVHcfP2JXno3/pUnu89\nW+PYmZhIWzb2OXz43hRtuXeha+Ua3H5jgW98d2JFcTTA5qGLrytIuLZJjICEd0wpaDYAFshlHX71\n03kcQqZnYo6ermJMblGZ4d2gK2cYL0GsLVEMupWMwTJGRwMGN6YoVRpKQu/mWBMSEhLekzgprPKI\njEOgFdYKtGjkjMcoYukxmt3FbVPfpSMcodvLs6XQRmC3XZHhdK7hi/J8j8mZiFpgCYMQ13dX7fQe\nxxDWIoR0+L3HXE6PGaoB7BiSTeo8sbZUAnj03jSfePDqWlO2bUpz3x3tPPVMcyhjsM/jsUe6f06j\nSni3SYyAhHeMXiNi6GfSRLZAdyZmaGON02NVtg68vfTYerG7P2SqrBieWQhTikW95VakU4KRcUMu\nQ2IAJCQkJKwTItODLE/Md5dfmTZSFnlGCnvYWDyAF5YYzWykrTSCzq+dk/5OuGmz5eAZw+hM8zhc\nB/IFxVy5DoDRhjAMUXL1LZLjOpyeEGzsaUhmLsdYy/dfiDlw0jBXhnwWrt8s+eg9zpqqO+82v/er\nG9g44PPqwTK1umbTYIpPPtLNhv4kEvCLQmIEJLxj3DXSAA0SEMTWpawVObeEMQYp353cQSXhgZ01\n/vbZRt6lciVCikZKUAs7ILYuFiiWDS8ejrlzd/LVSEhISLhcZCpHVI9XVUXTuFSdRutdAaTiElN+\nLx1RgHXXdzPqKHjsLsO+Q3B+SmAM9LVbUlmXCEU60zgnlfWZHp0lW8ig3JVrgTWGehDiu63z+r//\nYszTry3FyWdK8MwBg7Exj93/9uo51uhGYbV0LrrQ950gpeCTj/TwyUd6rtg9Eq5ukp1OwjumLQWV\ncKEoeAljQNvlnhFJZFPUY0PauzgjwFrL60cDjp4K2Tqg2NR/6fmTUsAtWzWnhy3pjEc83603jmKM\nNo3eNlJirSbQLlrHCCF59ZjlzqQuICEhIWFdyBfaUEWNZuUGWBKTteXF34WAotNH58xZbO/OdR9L\nIQMfv8Ng5/1BUkC1HvLGiOTMmEtftyWK0wSVOpViFT/j43hOo+u7MY1osrVMj5fY91xAd3snSgkG\n2+Zr4LTl4MnWtQSHThkevdPie6039pOzMaY2RV5VUdJghIeXbUOmCuv+PiQkQGIEJFwGjpL05Q2z\nxRr1GOr4GJx5idDmSU5biTURol7GOj6o1b0h03OarzxZ59RoBWMaodrdmxVfejSFewndEK2FI2cF\n6bSiPCeRqmGAeOoC1QkBpbkAKSTpnM9cOWl7npCQkLBeCCGQRoO0XLg2tDFHT3AWAIOg7udJ1yaJ\n0/KKNDKaLWu+8aOA0VnAwlCv4oN3uty9pUZQErRnoFQRaJ3Hz/gElYCwFiIdiZ/yFqWnN23KsWlH\nG4cnGmvZiUmXrd0h7X7EbKX1vecqMFOy9HetXMdOTUrSwThd6driY5KQuDKJIxTSf/fSaRN+cUiM\ngITLIlMZpfPcSwgdciy/l6n8Di6c5LGWgfoxOqoTqLiGUS4m3UnYs6ulMfC1H4WcGF7ypEQxvHFc\n882f1PncBy4+PHx6QjAyI3EcgV1F5QFYUg2aX3EK2asnZzMhISHhvcCe/CTHKgVCUtRJo4hoZ5Yt\n8WG82gwGQaltI05cZ8v4fqKOjYQ929a1u+I3fzDDU/sNWi+UKAhGpxTnxjW/93iKXUOKv/ihoL3N\nx0QhU6FE5jMAmPkUIIC2do/dezpwvaUIdS1WHBpNIbTCcyLieKUzKZ+B9nzj9RQrhmcOWiZmIZct\nM9hRY29vbcVzJBZTLyVGQMIVITECEi4Ld/IEUjcmxu2ll5nNb0Yv6jtbBJbu8DR94ZlF00DqCFke\nA2sIB25uut7YtObEcGsln7fOarSxKwqr4tjy1LMznDoXkEkpPnhfOwN9PtNl2dCoBlx39cYuC0gl\nkQJu3rZ0/YNnJIfOKaZKDdOmPRPxiTsM2XRrH9VMyfDCmxZkmXxac+cueUnRC2MsLxyoc+JchOvA\nXTel2DyQdGBMSEi4tvE6e7nBGWViNiTGIS0DUjIgrmr+evgOzlXbSKUVD2+fIt3WR2rmLHr6DLpr\nfRqt/OCZOZ54po5Uy1JLNehYM2rg6VcjPvWQYnMfHBvWQJpChyUONdVqndrc0voxtDHXZAAsIajG\nLqmsTzUIVhzdvUmS8gQzJcNXnrKMTBkcT+J5sCEfrGrvGP3OOyQnJKxFYgQkXBYyKC39DOwY38eJ\n3vvROAhAKSim+jntuAxVD+OwtMFXlSlMeRyR7VksfpopNSQ9W1GrW2LdKPpdoFSO+Tf/8RxHTy55\nUJ5+YY4vfaqHrds7EVgsgvbOFHOzNcwFkkYLakFKSQb7HPbulNxzQ+Nr8fppyU/fdDF2aWYeL0n+\n+Hshn71Ps7G32RB444ThW89qKgEsGByvHzd88UOKwkU0U4liy//9n+c4eHypi+PPXg34yAMZHr0v\n8QIlJCRc29hCP93z6e3qua9zqOsB/vqpPiZmLKABzaFjbXzwvvv40NAxMrMj62YEPLu/0tTnZmlQ\nEEUxE7MN59Un74LvvWw5MQZBKCmXK1RL9aanuM7q87kA+vozYGGuWEfHlnwG9mySfPL+xv1/+Irm\n9HBEoSODP98OeLzoYgdXCXysoVKUkHA5JG3eEi4L6zTn13fEE/SVj6JkwwAAsNJlzuvnbOb6pnMF\nBlEaIyoOY6KG12TLgKIj39od0tMp8S6YC//22xNNBgBAqaz5u+9O0pvXDHY20oBcz6G3P4ezrDDZ\ncxv3+8IjKf77X8vw33zW4+HbGjewFt48p5oMAJjvhCkdvvdic7Qi1pbvvdgwAIQQi0bNuQn4/osX\n1zH5u89UmwwAgCCEJ5+tMTWXeIISEhLeO5S6r+M7L/nzBsAS1arhZ69EjKjN1NO5dbvf8KRmRarq\nPEYb/PmAa9qHx++D3/sY3LMHMmkPEzfP4aXy6lHlWDfWgP7BLDt2tJPJutywET79kIujGvd/7WhI\nJusvGgAARycKjBZXprtGRuKk3r1mmwm/WCTmZcJloQv9ONXmZiPj2R2L3oxcME5X7RSeDoikR4jE\nk40J1SCInRSYiLg2hesMkvIEt+9yeOrliOWS/r4L993orpBLu9AAWBzDVMwzL8/xob0d7HvTMjyj\nEO0pNg26+KZGb5th7y6XzCppPUEEs5XWxxxXMTIpKFYthUxjPIclG1tJAAAgAElEQVROambLNI1v\n4ecjZy+u0Pj42ajl45Wa5bnX6nz8oeTrmpCQ8N6gVNjAudHWDpKp6Yg3zrXTtzVHaxHOSyeKLY6y\nrSU3Lezd3Zzek/FhtiIodGbJ5FOcOTa+6KY/daLEQH+W9o7m0UWxJVhmHwgpcD2HIyMNJ87ZMc0z\nr4VUa5bOrCAKl1JcHVfyncMDPLR9nKH2AFdqSlEKP5snndQDJFwhkl1FwmUR9l+PCAOcuXNIHTUC\nusJFAe21swzNvYZrl7zYBgGuB45H7GWwzrz7RUeYqIrysnz0Xo98RvDmaZgpRnQWJHff4HDzjpW5\n8casvsHWsSWbgo/cFhNEMWEkyKUtUrx9jr2nwHcskV65YGht0LHFLFu/zk+tfq3wIp34a72WNQ4l\nJCQkXHMYpTB29U7uUSyoGcn5CYdtPZcfCU15lnqscVro/htjGJuMuX5rc2R7wRHluIqh7d2MnZ0l\nijRaW15/bYLb7ugjlWpcL9ZQvaAMoF5vnGs0/Ok/VDl0Ui/Wqc1MV/F8d3E8MhQY4/CtQ0PsGYpJ\ni4Bzow2LYuemgLtv9JNGlgnrTmIEJFweQlDfvJcw2IUojnJkrgOJBqvorRxvMgCgoXQQR5oR0Uc2\nl2k6Zo2ev6TgwVs9PvNInomJEmuxbVOasyMrQ7Od7Q7337GkrZxyIeVe/E5aShjqNhw+vzIaENY1\nA13Qtsw505EXqxZ1XWyHyM2DLm+dWbnYpXzYu2e9/GEJCQkJP3/SjqWzw2V4pL7iWHu7w0C3JCtC\njkxUgOxlGwK37Mnx9LMzZNvzi00rFzvIC3j6pSoP3Z5GqaX5ur8DTo03fvY8l43bG021HGnZu0tw\ncsqhPt/ioF7X+P5SNCEMDTMzIcZYPCIOnmyWR7UGwnqEchRCCIy2BLWYvm6XuckK33m1tuj8ee71\nkNffCvntT+evqo7DCdc+SU1AwrpgUzlM7w5S7Tk61SxK10hFxZbnShvzenAd8QUNxaSbvuT7fvYj\n3WwabN4g+57gIw91ksteuo1rLbx03OE/P+txZtLBkWZxoTDGEtQi4qDGw7eqprDyDVsF3ioBhg1d\nF3fvj9yfZtuG5jErCQ/clmawN7HXExIS3jtkHMvdtzhks81pOL4v2LWrQL8/hRRwXfs4Jycuf6ty\n4zYXrQ3GLv2z8/8BjExqTg03p2TetdMw1N2csiSw3LjZkLtguapWIyYnAorFkOnpOmNjNaLIgImp\n11o7oKyBeFmoWGtLby7kuddrCKVwPRfXc1Gu4rWjIT95ZaXi0MVQqmr+/icV/vSbJb76/TLnx5Ma\ns4QGyc4iYV0ZbLdMjdU4MdnObuWgWshyRtZheNbjVK7Ajs45AISfRa7RQGw1ers9/sUfbOKJp6Y5\nPx6SSUkeuKPATbvfWUHZC8ccXjnpsOixEQopLSkVoXRIZ5/lnusdejuaF6V8WnLnLsszB5on+4wP\nD916cQtYNq34wy+189QLVc6OxriO4JZdHrfvufjeCAkJCQnXAk4qz11bJghsP0eP1QkCje9LNm/O\ncl1vlYH0HJH0SKcsBTXLTClDx2XUx+7ekSafkRjbekPuOJDNNHvZXQc+c69m/3HL6GzDKbOtz7J7\nyDJXs7w54hHPp4x2dKSYnq4xO1NHGwBL3jf89qck/+ufr2yStsCFw5mbqYFyUHJp3VA0nE4HjkW8\n/47VnWXGWH7ymuat85YwsvR1SnYMGL75dIXxqSVj5uU36/zSh3LceUMSYf5FJzECEtYV6fgcGu/k\ntTNpdvV1syc3vOKcc2Evc1Gan51JM9AWkM9lUP47b4teyDl84bHeyxk20MjpPD6quHCyllKQTjt8\n/j7dJE96IY/eKWnLWd48bYi1pJC13L1bsHXg4r1Yvif46ANJEVhCQsJ7G6kcnnyjk870NB+91aCd\nDEpq+lJncTxBTeUW59udfSWOj0n25t+5Q6SjzWXvTVmeOxij1EqN/+1DLv1dKx1RroK7rltZwNye\nsezqCzk07C3m+Xd2prluU8Q92wJyKYHrOFhr8T1BbRVBIeUurQ897TBbMovpSsuRUjKzdnYsX3s6\n5tVjS1bF6IzljZMSo3IUOjTVUkAcayo1+N6zVW7f7TWlPyX84pEYAQnrihACLRueiu9N3kLBqzPo\nTi3my4/rTp6Pb0dKMAaeObeJD91Qx1nHrpDvlEpdUKy1HkexKqgEgkJm9boCIQT3Xi+493pJT8/b\n1zNcCqdHNc+8oRmfMXiu4IYtkodudVorXSQkJCRc5QxPGt4841CPCvhK87vvG6Err5mIO3CcmOV7\nU0fCju45jo8ptve98+aJv/X5ftTXxnnpaIyxSymdQ32KX37k0sMMt2+J6CkYzk45xAa6coZd/dGi\nFOiZccuTr0CsfIQMl7rTz6NctWiQuAruvE7w+hEJtFZN8tzV5/vj5zSvvaUbghUCrDYEVY0QkM76\n+CkX5Uhmp8pYYxmdsrxxLOLWXd6q11wPjp0OePJnJUYmIjIpyS270zz6QOGyi5xjbakGlmxaJHUS\nl0FiBCSsOxt7FK+esszpHH858X7u6jxPp1eiZPOcsNuwvqTNsRSLmnLNIYgCUldBU9y0Z8n4lkp9\n5YSS8S1pb6UBEISWQ6ctaQ92bRRXRL3h5LDmr56MKC+qoVrOjMW8dkzzh7+UpAolJCRce4zPQqQB\nC/VY8RfP9vGl+6eJ0h45sTJnXUkI6wHwzhcLRwl++/N9/HpseO61GpNzhq52xX23pBc37pfKxk7N\nxs6VKkdRbPnW8zBZBOU4ZPOCei1u1CVoje/Chn6FcqC73WH3kObGrZLpWYdDJ1uHDTYNtOpSDEdO\na77yZEg8/7ZZazFm4Z+hPlUik02RyaXI5tMgQCnFEy/CifGYT9yj1jQw3ilHTwX8X1+ZZKa49P4c\nPllnYjrm1x6/yGK5C9DG8g8/rXPopKZUsXTkBbde5/DIXV7iFHsHJEZAwrqzc9Cyrd9yYlSglOS0\n2s4Z0/zldJQgnRb4rr5qvrieAxu7DIeHV4ZiN3UbLlSWe+L5mJePLEmA5tLwqfsEuze3nqjfKT99\nXS8zABYQnJ+0/M2TAV94JDEEEhISri229IOvDDXdyJefqbq8Mr2RGzesHkH1iBDVGWym47Lu7TqS\nB/de2bTLH7wqmSwuefSVo8jkG2uD58KH75Dcvq3hWOrpyS1Gjh+81eOlQxHTxWanUzrVUIk7MuYR\nG+hMa/rbNMZanng2ako3EkLMp/lYtBZIIamWA1xP4bhLEZBqHV45aqkGMTsHLcMThnwGHrjFJ+Vf\n/rr8vZ+WmgyABZ57vcJHHirQ23npBt3/9+M6zx5YMhLHZizffz4CAR++K6lxuFQSdaCEdUcIeOwu\nze3bNUqx6ibfcQQ97YZ86uowAgAe3BNx3UCMPy8nmnIt1w3EPLC7WTXi+Tdjnj3Y3AOgXIOvPm2p\n1S+uQ/DFcma89fWEELx6TBPFSROBhISEa4v2nKQzb4ijpfnNCsVEi665i8+JJ0if+NnKatp1YrYq\nODDi8/JZn0OjHqVAcPic5OvPufw/P/L4xgsOtZWKpis4POxwtIUzaYFYC5494nB2cuXal89IfvlD\nKTb1y8XqtIEuycN3ZjhTKXB03OfEpM9LZ9O8cDrFG8c1o9Ot34+FtVdIgZSKWjVcsR4bY9j/ZsBX\nvhfw9Csh3/ppyB/9ZZmjZ1o3r7wUhsdbRzSqNcv+Q60bfa5FNbAcPNlYdKMoolqqUZ6rUJ6r8u2n\ni8Tx6n0nElqTRAISrghKwk2bLadnVveK+54gNC5SXP5ks144Cj54U0Q5iJgqSbryhlyLNelnB1s/\nP47hiecNvze0fmNabb2z1qJjeON4zO27roJ8qoSEhIRL4L4bFaeGI6wxCCmZqyjKQYGOdJXeXPMm\ncbrmUxSb2Fx7BVmawBQuXwxiOSNFxZtjPpFe2ryfmVacPGtY2FuWa4o/eUrxsdtCtvWvIvtp4ciI\ng+MZoLUUp5SCKG4YGBu7V25cd29x2bXZ4fSIJoph06Bi37EstWi5YSEYL7nEJQWstoYu2/BLoMWQ\n60GMvsCRNDln+Yd9df7xFx3kZUTq0/7qhlB74dIj5qPTmmIFonpEUK031VhUy/A//O+T/NF/1/eO\nxvqLShIJSLhidOYtGUcjWs088I5zMN8NcinY3NPaAACorSHXPDG7vmPZ0L2atJzFWrsiTSkhISHh\nWuCmbYoNPYI4MkRhTC0AbSUvnu3nyEQ7E+UUE+UURyfaeelsP0a4CEAGrXvQLKceWp55NWDf/oBa\nfe3IgbVwasprMgAAJqbhQueytfDd11Yvpq2FgtmqJJVympqHLSAEi48Ha/i/hBBsGXTYuclhZM6j\nFrXeNBfafVYrJLbLPUimkZJ04XGjW3vPz44Z3jpzeZ71G3a2ljPdNOBy542ZlsfWoqddkvIgDKIV\nRdYAxbLl2OmLCNUkLJJsHxKuGFLATZs0p+c01bpalFGDhsfdUZDxrs3wXcpjVcm3y9GybsWXPuzy\nL/8kwFixGMo1xqC1oSMnuH5r8jVOSEi49pBS8NgDLt/4ScTIlKVS0aQzDtpKjkw0F46mPEOqPoOx\nYN56DVEsYbffAmKlL/NnrwU8+Vydqfmc/CefD/jAnSke3tvaq1OqC4r1ldep1lpvrrWGQ+ck1w+t\nPO46Fk9ZtJH0dPukPEsqJcFCuaqZnIqR89qnhfTFpTXFa2SYSuVgtEZI0ZTqY4xFNxoWzDuMDEI2\n6gSaOhevMYTLTW19/INtTExH7D9UpT5v8Az1ufzqY53vSEQjn5Hk05YJs4rRYyzff7bCjs1JbcDF\nkuweEq4oe4Y0mpCJqkc5aBgCSoGSFk8Zbh5sttqDM8PMPPFDnLYCnb/zSz+nUb89d+yGJ19a+biS\n8LF71jfC4bmS/+LjLn/y7To6FljbmNRTHjz2kJfIoyUkJFyzbBlQ/MHnJK++pTkxEVKLPRxn5ZyW\n9gz9nKdeLCNPHcO++QL22KuYR77cdN7wRMzfP12jumxpmS1Zvr2vxsY+xfahlamTSjS2xcv3w9ba\n+aZfrZkotpbydBUMdGhOTki62hXuMtWddFqRyzqcH2kUsh4dUYDlMw+vbQwMtsUcmzArIhUAbakY\n3wU77+WPQ43WhjhebgBY0jmf6bFZdu0o4KR8poqQ8gWulcyWVr6O7nbB9VsvL81UKcHvfaGHk+fq\nHDoW0JaX3HNr7rKyAB64xeHEqdWPe8mu9pJI3q6EK87Wbs3kaUN71hKbxiTmOzHX90Zk5qOq1lrO\n/Mt/y+TXvo2ebYR6x//4rxj8Z39AxyMP/ryGvioP3ewwMhVzZtrDcRVKCaQA37VMl2K2rfP9dm50\n+V9+2+EHL9YZn7Z0tgvuv8ml8x3kVSYkJCRcTdRDw5nTc4yOh2zaXmPXRknOi9FWMFP1ODOTY6gj\nYC5zPaX8Rgr+83QceRpx7jD21afgI59dvNazb9SbDIDFe0Tw4sGwpRGQ8Sztac1MbWlLJITAc6G2\nSrD6pqHW+f4A1w3EzNUdLJJYM9/0zDIzZ6gFBj8l0dpiheXgeY/jX9N05Xy29sRMzFrOTjZqBrrb\nDHfsMGzstmzqiDgx6TVF1HOe5rr+iN7eNFW95P3WWlOrhIRhjJISrQ2zEyWsMTx0i+D26x3GZiyF\nDEzNpvjz79SYWaZG5LrwwC3eusmGbh3y2Tq0Pt75+25J8dffLhGFK/8wUgo+8fA6h+Lf4yRGQMIV\n5eyUZN9bafQyiVApLLdttrRnlyad8T//OmN/+tVGB7F5KodPcPp/+iMK996Oyl1dXXS1gbrMsGFQ\nEsWWSsVSCxqdgn/0ZgrrGba0X/p1Z8uaJ5+tcX48xnMFe7Z6vO+OFFIIXEfw0XsTOdCEhIT3DqfO\nBfwffzbC+bGQhx9s5549Ma5aWhvyqZgNhTK5aIZp049J55nd/RDe3AjZ0aOI0VNN1wvWSAlfrTZA\nCNjZE3JgRFBdlnufzQhqwcrn5NOWzlWa3B8c8Tg25qGtANvQtbfKMjsTYaVCKoUEHKeRsiOtJtaC\nsTnF2JwkCAzRvGJSsaYYn5V86u6Y6wdCCinDSNEh1pBPGbZ1R2Q8Sz7vUl1Wi6aUIldIY4xl5NQk\ncWRwXId02uHUiOHOG2GoZz4lKSv53ccz/GR/yOScIZsW7N3tcuP2q1NsQgrBr3w0z19+aw6jl/42\nQsDe6336u6/OcV+tJEZAwhXDWnj+ZIpsWlCtxlRrFkvDK/LqaZdd/dFiW/jZJ/c1GQALhKfPM/5X\n32Dgd7/07g5+Fay1lEJ46VSKQpuiVhe4rqC9HfLaMDMbUSzHPH/EY8NeLqlod7ao+T//tsj58SUP\nx4FjEefGYr78icS7kZCQ8N7jb781yfmxRoHV++7OYK3hleMZioGL78bctLFGNgUytvTEw4y5m8Dx\nqAzdSHb0KJhmj/xg9+rR0f6u1Y91ZAz3bKlxZsalHgvSrkF0GX5YdanVG+uZENCWsXzpwdYFYbM1\nwfHxeQNgEUGsBemsQ6nS7FmXstFLZykvv7GeRMsKhsuB4OXjEmUi3jofU6tDTxvcsVuS8RoLqFol\nvWZmvIjWdr4WAKIYnn65jusIPvPB3NL70q345UdaF/FejTx4e5obtrv8h78tMjWryaQEX/xYlhu2\nXzuv4WohMQISrhilmsDzBJPTEVI5uMuaj1RqMUfOK67f2NjwmqnxVa8Tz769EsTFoHWMjmqAwPHS\nSHlpqTTWWiZKlpGiJIgdqgEsL7BSStLe5jI+USfScHzCYffA6iHjC/n+s7UmA2CBl96s8+BtPls2\nXNn27gkJCQnvJuWq5uiphhSo4whCLfnBwS4cz8XxJGVt+clbeXb3TrOpLY8jBdmzb5A79TJucQId\nGyzNKjj33+rzypGQ0yPNc+mGXsnDe9dOSXEVbO9uluz5jYfrnBhT1GPY2qvJrnGJs9MusVkthab1\n40pJokgj5gucpRQI0Vywe2IExieWHihVYXjSIIEbtkr6OyzDU83Xj2NNUG1trLz+VsinHrarGg/X\nAp1tDv/iH3X+vIdxzZNIhCZcMUINYagRUq1QAvB9h+feanz8zMRp3MHu1hfxXAr33n7ZY6nXigTl\nSaJ6maheolaeJKxXLukalSDE1xOEWs2HnFdOoI4jyWQcwtBg7aVNsOfGlwwGRwkGBlK0tTlEEbx+\n7OrppZCQkJCwHhhjFwPAcWw5cL6DVMbHcZY83Km0y9HJDs5V2xHHDtL76jfIzZ7FNwFu2keOneXA\n//ZvMFHDmPBcwe98Ost9t3gM9kgGuiX33OTxO5/OkU5d+pZHSdg5oLlxY2sDwFqYq0kmy7JVMHvp\nvDXuUa3GVCrR4vUuVOxZLkltrUVrzVyxzhP7ypQqMffvhv725ieZWKN167sWy+ZtZVMTfjFIIgEJ\nV4wgFhRLFsdrPfFqJPV6SJkU6d//XZwDp4nPDjed03nP9RQevOuyxhGFVeLwgg2/NURBCeX4KPX2\nXwNrLTacw5Wa2EpaSBQvIkWj7mFLd0Ss4aUTDqOzjZBvb8Gwd1tMaplTf3Qy5gcvBJybjwLceEOe\nHdtz5PMucWyYmKjji0vvrpiQkJBwNVPIOWzblOLg0WpjnVhlLlaOy/4jLrdP/HSF59JxFd2lkxz9\nwYvs/uhDAOSzii98+MrXkc3WBEfHfWZqChA4otEXx7ZwECmxJM2pVCO1yBqwRhMEGmsbTqSVykiW\noN5YG7Q2BNUAMx/kOBdY/tm/n6GvTfPZR7uYrLicnZREFrqyDs9MC4qVlYtVR0GRTl27UYCE9SMx\nAhKuGJ5a29MgENQqRYyXwdu+md5//z8z9ydfJTxyHOVC70afDX/wefRldCwE0NFqlWKWOKyi0qtU\neDVdI0DOd3/MqDqu4xG2cM5ba/F9RbEUUazAC8c9zk0vpR2NzipG5ySP7Q1xHTg/EfMfv15ictZg\njeW6XQW2bstRrlk8z+D7koGBNL5ysTbkMt+KhISEhKuKxx/pZHQiJNNeWDU9RSlBrxnBM63ncj8l\nmD14FPPhe5Hq3SkM1QYOjqQoh0vze2wVjrJEGpZHiqXQtBcgqDfy8xci49ZaXMli+k8UxWSzPlpb\n6nWDFLBjQPPCAY21lqBaXzQAoKFg5Hg+04Hlz75TY/NWH4ODtoK5GqRyKYqVZgeSAPbuufqlpYsV\nzQ+fqzA5Y8hnJQ/uTbOhNyn6XW8SIyDhitGTt2QyjYYjSq2MBiipieTSl9rftZ3ef/3PARBRwNAL\nXyHquPzW8HaVbooLR9dCa00Yhdg4WJzS+9KzzGXS1EOHWDdPpBaB4wrSGYcnXrEEemXdwfic4vXT\nDnu3x/zw+RqTs4ZU1iOTSxFbxfP7axgDngv9vS7X7/QJYsVzxxT37rw2m6slJCQktOLGXVn+x98f\n4pv7AuLYolqUasWxIessFedeiDW2UUxbK0HuyueJG2sZmdX0ZYv05aAaOYyXM2jb6AvQnonxpaFW\ni5gJU8SRQceWdMoljJdegBCC2Dp0d8H4RB1sI5Ls+4I4hu48DHXEvCSgHukL1HAEjqeQSiCA/oE0\n7R0+pYrF1BsiHO19HUgpqBQDqoGhkJXcd4vPRx+49G697yZnx0L++GtzjE4urXcvHqjxhY8WuPPG\npPh3PUlqAhKuGELApo4IE2vMBfkzcRjxvj1za2zPBaKzD73ppsseh5Srew+kWr3YNqgHFCtFouIE\n/pnXIW4UWRXcgOs6hvHdCGMs1oKxDc/QQi6n50nKa0jVTZYaC8HwhMZxFfm2DEJKiuWlHNlIw7mR\nmOf215idMxwfgTfPXNprT0hISLjaGej1+d3PtBHGuqnId4FaYNhy0wZqtnVVblipM5PbjKxdWp1X\nS4IK6uxBxPT5loettcyU6ygZkfVjsl5MTzZga8ccUhiEgH6GeTj4ez4RfY2H7VNIIVA2JFxFJ8L3\nG1sxx5UIIVBSopRkqFuz7w2LsQ1DZwEhBF7axfUclGrIjo6PhwwP1+jqcMhlxeJ5bb0dpDsKZNqy\naDfDmWmXYvXqrgf41o8rTQYAQKlqeeKnlRV7iYTLI4kEJFxR7rvOIGXMyEzIXKXxccunIu68qYLv\ngjC0FE3wajOk3/dpavVmt9Dcvhco/uR5RNqn94uP4/X3YmoBulzB6epAyJV2retn0XEde4GUnHI8\nHLe17v5k2XB60sOth+yefJX2cISSElT7toGQFNw6tVIdI92Wmg9CQNqDaBUrR0k4Ma7IdRYYyAjq\nkYFlw5NqKWRcrlr2HwrwXfhJGfZsurrDuAkJCQmXihDw/j0hPzoEnqtwHIkxliDQbOyKUApGb/4U\nG17+Cr7fWBestUSVGq+XN9K1VeDNnqb4rb9j+NsvUhsvofoH6PzEI/T+2mff5u5gSnO4R3+GN3Ec\nGdawQqG7Bglv/jB2WXShGmrCFgW3GU/TnalSDDyuq72M0g2DZKMcZm/7Kd4sb2A1hSApG0p6+fzC\nlsyyuVvTk4uZmF04Z2ltczzVMro+MxPS06PJ5xzqYbSYsqqUXHz+mTHLt5+N+eKHrk61OW0sJ8+3\nFsI4PxZz+FTI9dvWp/FYQmIEJLwL3L09ZqJYbZl4Y4VC6BCW5XEqHZDNZVCFLhifg7OH4PV9nPhP\nP2TqlTPY+XboY3/yVVLbNxMOj6HnSqS2b6bnVz5F369/DmMttcgggLQrSWU6iMIKJg5BCKTy8FJ5\nRIvY8oHzHienXLSVSJFnpOPzdDHOfePfQIVV6m39aD/Dxs46RyazTW3hF4hjw42bahw45xDFzcel\nsBQDyQ8POPh5Hz8PUaSZnakTBBohWaGmpA1U6w2dZ2tty3EnJCQkXMts6bH86gN1njnmMzGnyafg\nU7fVSXswUTLM9uzgjTt/n85nvkounKYcOhwVt6KHNvKR/KuMfDfk1H/4DnqujHAdOrcNUP7JUxS/\n/jfoVCfexo10f/4x8nfeDDTm0vEXX6BSV8hCnlzbVrp0nXRURpTncCbPwqvfo37/FxbzkCLd2rNj\njKU7W6MjE3BG30db9RwbZg8AsHF2P6KgeS7YgWFlvlMcG7q6UiglsKbReX77kCSqCXxfkk47VKsR\n9VodY1auDwtYC8ViSDabIZNR1GdijLUEQbMD7NSoJYwt3nwR8vRczA9fqDE5E5PLSO69Jc2OjT9H\nI2GN5S1Z+daXxAhIuOKsGbwTgjw1TL2EQSCxpD2FaNuAMRpz4Gn88jjnn3yNyRdONT1Vz8xReen1\nxd+rr7/JmaMnqGdz2A98AGsFUhg8ZcmnHLLptqbnx8VZ3LNv4NgY3bsF07OF4aLD8UkPC+TSGt8x\n+E4MdPBs/tfZOb6PDcefxwrF/Xd/gfOlkFrsN03Kxlg6M3V2DsSkvIj9Jx2CqOGF8R1Le84yVW5e\nCFxX0dbuE4xWV53gAWLdMAS8pD4qISHhPYir4OFdK3MpewuSjrTPjHLI3HQdtfFpKmGGB/xRvC5B\nbccHGfuzf4eeK9P96F0M/fbHyWwdAKB2bgKZ8znwm/+K4r5n6f9v/xG9n3+M0/teojx0I0OFIsoF\nISWVnrupx3Uy5VGcuSnU6SPIidPE3VvQlsUFLYwF5+eylOuNybjNqzKUm6NKnog0RX83Z/t2kTYl\nesNzdE4eReohtMgsNu+C+a7BSiIR86kulkJBcXrGoRq4bNna2PRrbenuSXHs8PSai+pCcfW8yipR\nGDfVEkBjDYlj8Bw4Mxrxx1+fZXx6ybh5+c2Az34wz4O3v/u1A0oKtm1weaW48jOwsc9h15arM4Jx\nrZIYAQlXHCkEjpItPShKCvzCYMO6twaEXPS4TB54HT8uoqXD7MHW+ZkX4rz/Ieq33om0jY+2tpI4\ntphqjO9IHBOhR08yfX6KgclX8E1DgNmceAW9YTcj3Y9jEXRnA1AOvtLUtcuC/+FA5weopLvZObEP\nIQWfvL3G/pN1TkxkiK3ElYbdgxU2ddWRUnLrFs2Ofs2RYSAz1S8AACAASURBVAdrG3rTPzzQehJz\nHEl3T5pSKVxV3znlXVoX4oSEhIT3Cq6r6N3Qjx38BFlr6dERPPUVwt17scqjevg0qY29bPknv4zX\ntaT6lh7qQUea3X/3bwm9AoQhpdeeR/RtYEd2mNhfphAnJLGbppbrI6cUVTxeDbZihl2EAIFD3qlx\nYjpHNfRQxNyp9tMfjpKaDQllhpnUIBOZrQCEJs85dzc9bo4vFZ/gidoHGA7aWfRpzzcJs9aChUy6\nsV6Wa5YoEixkASklaGvz2X5dJ+fOlQCLlJK2Nh/Hk1hjqQcxXV2NFNd4IaW+xVLS3ylIz2fUfHtf\npckAgEZfgiefq3LPzWncFZKlV57H3p9nZFIzMrEUwSjkJB97KNvSSTZbNjzzhmGqaEl7gpt3CHZt\nvLRmoL+oJNuJhHeFjO9SrNZXzEcZz1lKbRHLvrQ6IjVzjHrHAM6JA0TuRWg+p1Nk/+C/RHZ0LHtQ\nYBGEVlIrl+kdfp6Xo+u5eeoHiwYAgMQgzx9iwAwxk70D3zUoalR1syfEoDiVvom+9rNIP0vKWnYN\n1tjeH3Ahqfndei4Fe7ctTWZxi2jyQtMc11W4rkLr1hVkt2wjSQVKSEj4hUYI0XAWnT+Fbm+HVKaR\nCxPH9H32fU0GwALKVUjlEHk58CUi205XvYhZpS6srjLMuFuY7ciD8hZVVKxVnC3mqYaNCMC9zots\nVucWn5c2ZfzqUQySqcxmHGmJtKDo9ZIvbOLR9oNMVjy+M3knsVGLYhICQToN6ZTAWEu8Sn/IXMGl\noytLrRLR0ZXC95e2cbm8RxhafB+q1YYVIC+oHfBduP8mhRCN+5wZbn2jsSnNgWN1btvd+v25kgz2\nOPzT3+zgqReqTExrchnJw3dm6O1cuWUdmzb81Q9iJucWHrEcOAUf2mt58OZki/t2JO9QwrtCynWQ\nGUEtioiNRQlBynMWN8oX4kyfwkFT89JYC/71O6i8dmzFeSLloQb6iE+exX/s46iNQy2vZ6wkM3GE\n0bCNQvksvm7dfKu3doJS3zZEGBJan6qzMhyqcTjV9yDbmFdfyPgUa+FipENJQXdHFuLW3vy2jGGu\n2uylWC6Ikck4xLEmjperQcDmXvjQbS0vmZCQkPALhyhOgdtwaQshkGkfp7C6hKQEpIkwysdKB+Om\nMdKukEkcLec5X26jHPkoYXEdQyFtcOabfEVx4xl5igzI0Zb36QhHmcpsbvwuLFY6BOWQTDqk162x\nuzDGmXiQetSICXhuw9vfiIqvnvGjpMBxBB1d6cUC6WXvCLW6pRZo6mHjCuaCCHxbDm7YIufPbkiS\nroazSt+Gd4NsWvHJ9+Xf9rwf7TfLDIAGUQzPHjTctdvie4nTbC0SIyDhXcNzFZ57cSE6GS141i1k\n83T91mep7D9K/fCJpvMKH3+Y6NwY8cmziPTa+sGqNkdJbUbayVXPycVT3Fh9HqVDJtQAJdWJFiu/\nJlqmWJimHaXozKWJtcZYcJWkpyPHxP/P3nuHWXaV95rvWjueXFWncldXV3dXR7XUUrcCiiAhIxDR\nmIwJxuDx4LFxwo89MDbXnuf6zsWesT32HS4YG2My2AZshAAlECi3QrfU6pwrp1Mnn7332mv+2NUV\nuk6VJCOJbrHf51HoHc5etfvUWutLv2+i1PQZvS0hJyeWFvcuNgIMQ9LS4lKr+QSBxjSgI614783x\nZBYTExNzlrB3EJ68Z/7PyW3rqR1fvik/SyAt9KKIc2A4GKo+L5YuSjMUqg5HvAEUZ1NKBWum97Kh\n9BhpVcC3UpxKbmNv4jo6jElssTRqWw8tjuhBKipFpWzRmvLnextY5WnMkRPQv4FdxuM0sJk08kQD\niBaBs0EOKZmXi16MUhq0WLGxGjBvAOgmRcFTs1AoQ2smMpw2rLWZnF0eye7rMrlo4/mffz802bxQ\nu1CGvcdCrtgapwWtRmwExJyXhGbk3TEbFfy1m3GVZO1n/pTpv/8G9YPHEa5D+rpdpF5xFcff8hEA\n1FNPoes1hLvcGNBa4ymDtJzlRGqQ9dMPYLI85cYwJUbYAAHd4TBm4yfscW5Y0qFGEBIS9QZY7EUx\nm3W5acJAp+KBIxqlmje+gWhyTiajCbhc9hhcs/KE7wXw9BmJCmHrmpBkrJ4WExPz80BLOzRq4Htg\n2eRuuZqh//pZ2n/hctLbB5Zc6mtJ3Uiil8hIazztkh49gv34jzEmhkiGmmR2PYcHXstE+04GZvdw\n2eRtWMylzXgzbK+OYAykEKkMJ92dJIIi7dWTjId5HlaXUyEdXVuC2ZpFT7aGXRqldWwfUgWI0gzJ\nZJobxb2cSu8iaB2gWq1zZsamFhiAwLE0tWW1sRrPjwqHm3WsP0u97pNKGqRTknxLknpdMTJao14P\nMSSYi5aqN92UYnQy4NTownrYkpG8foX8+/ONJqrg89jxDvcZiV9RzHlJ0DaAWxnBrU1Ts2xspQha\nW+n6o1+bv0ZrCIVk3bc/jRqfwt40QM0QNLRmqZBYiBSKRrKNvvIhjiW2UWjdQH7m0FK5MceFlvyS\nceT1OF3qDBPWGrSOnmnIkHo94PhEyPp2Y4l+87Mh40JPTnF6ylwSAWgm/en7CqkVV2xu/llPnZI8\neEhSrEVjeOSwZud6xVWbV+uSHBMTE3PhI4QkuPLViLETWCmXttddT/3QSQ7/6edZ8+6byVy8Hmyb\nwHTx+zfNRQEW5muhFH7Rw/zRbZi1SJBfAG3Fo1xy4J94YOfvs6G0Z8EAAELg9CVvgUwvGqgAFToo\nul0cG0ssGABzNAKTsZJD19FHkMpHAMrzoa2FINtDR0uejg6YmAhY2xJwasZmomwABoLIyRPJgoJt\nich5ZdpUKhq/aelYSDYFXV3OkmhBS6vNwYNFeltDMsmF4/mcyUff38YP91QZm1KkE4KXX56gNXth\nbA/XdQkmCsuTpzpa4KL1cT/cZ8L4xCc+8YkX40HVqvdiPOYFIZVyLtjxX7Bjlwbprm4axVns8iRm\no4TZqKAsN2qtrhpIv0FguhjpFGZnHgwDLSTVYC6EObdpD7VAIAmSOVyvQJc9g9HbB5aNFpLQSUIq\njWzvAnPpxCeAwHSpuh1YhsYyQoJQ4JOgHhhMlUKcsf24uTYQct6zv9p7L9fg4UOSur/Q1REgDEO0\nXogO+H6I1wi4eoekFphRZpQTTXZeoHn0lM2xSQfbMTBNqNWjArTRGUFHTtOabvr4Z+SC/c5w4Y89\nJuJC/juMx/7iIk2bRq1BrjZMol6g87J+8lcNUthzkNmajbx8N0YmTSDNJUXAQvmM1zLIJx4kP/nU\nss+1VAPX8uhkHENHu20tBGOXvoFSpp9zFeuVtCnrxHzB8GJCLamv3cZQz9XYYRVr8DL8nu2EbiRb\nnUo5HDlW5K4fT1KcLnPZFovxioU0BI4NhjHn8RaQTgiElDi2ptGIOtYv9thblqA9by9LF7JMie1I\nJgohI9Oa9d1gmQKtNYaEjWttLtnssHW9Q8J59pvnn/X3Zm2n4NSYZnZRs+hMEl5zpUF3fvWf42c9\n9p+G52u9uDBMvZifS4xcB42BqxF+DevME6QKZ0hXJkBrtBAEqRz1ZDv1uYm0FiYoyhyhNpBiaWGV\n0uChOdVxJV1qCEtq/J4N+D0bAJCFSVLeTNNxJGyf/uQIShuU/ASTYRZfaZAWVW0x7qzDv+3fOLD+\nzaRaUmzqaNCxys/16DFJoXo2B1RjGOA4kSpQraao11UUcTAEfWtcjoyHFA756FDTkRPcsjvgqbEU\nVc/ibBlEKmWQcBVDowFBKDg4JFnfpVYZxU/H6RGPe/dUqDc0fd0WN16Zbto0LSYmJuaFRBo2fZfs\nZPixgKw/hkWA291G9y+9HHv0BM7T34VUhsB0KLasx7MyVLTLbMlgUuTYtGje1wimk/2U+y7G6B8g\nyHVyMqiRnTpIrjFGpWcztXQvK7WsSlorR2AtAxAWBzLX0frVrzLwq2/Hcly01vzVp4/w3TtHqcwp\n+nz7e2PcfEs/6Z4eGr5AqYXneaGJUiHDoz5aCxJJc5ERoHGclesFkkmTuifYfwqODIV0pRucGY+c\nT/3dBq+6yqa3fXlaa6EYsP9og6NnPJQSdLeb3HhlEsf+2Xva0wnJB18n2HNAMToDCRuu2i7Jpn72\nY7sQiI2AmPMebSXw1r+McOII9vghpFdFGxaYKUTbepKqgTZMhNVGOBlimM1z8wNtYtLAMpaHDqft\nHhJeAXmOJoNv2ATZPKYIGa/lKDRS+NoCdNTWACiJHL3bNrLmL3+TQ7/1OUr1BD1dK/88hco5HiQV\nybkZxtmwbzR59XSbzMz4TIzXUXP7+UIBRiYEmzcLOrINDBlSaVjUA5NUUpJJC0pljddcYfRZs+9w\njXsfLjNTDGjJmtywO8XFWyKlpLsfKvMv3ytQqS28q4f3Vfmt97STScVFWDExMS8upmmSGNhOubqe\noDCBWZ2iVRxDdndAox7JRLcOUnjwFJP/djvl+/ZQ//4D1IwsJStPF3C69TKe6n0tM6l+EIKUp1gT\nNGhNpRlPtDMWBuSsSJ9/JYQ4e06TchSG1DT8yOFzNsJrtOSYuOKNTH/uLgZu3szjJ9P8638MEeqF\ndWF0wuP2757kN34jx7H6gjy2ZUY1aeMTPp4H2Zx5Tt5+1HF4JRaf85Tk0LCkPmd4zJQCRiYVv3Sj\nw6NPB4wXFJYhmJ6ucHrYmy82thM2lhNy556Aiwdt3v26RJMeyC8uhhRcuX1hOxuGmkcP+EwUQno7\nJTvWm7G09grERkDMBUPQMUjQvhHhVcEw0XPFw2enXQeQqgZWFI7VGvxQ4CkDNFhGiGFYBEhMsXSm\nLLrdSBXQUT+FrSOlhIaZpNKyBuUFnPzc96gcOIVOphGveRN6+8VowBo7wQ79KOm8Q8vvvZMN/m2o\n00PsP7aW3it3YrUu7VIM4J4TLXZt6O2SpBMwORMwOuajtGBmJmRyojFvAJwlm9JsaC+TnosCqFSD\nUsNiZDZJ0pWUyoq2zKp9mlflzvtm+NSXJ6jOb/I9njpS492va2PXRUm+c/fsEgMA4Mgpj2/eUeQ9\nb2xd/oExMTExLwJOMoGT7Ae9lkahA6M8CYaBn9+AdlJ0Du6m9ZaXc+g9v43n1SHZwun+V5ItnuKR\nde+i7izMX5WGyfEJQcaeJedUsUSAFCGWrtMILTQLE7l/5Ci1b3yLYKZMbvtVJN/8BmznbBMwhQqj\ntNSZomC2KghFD/ZVbyHrneRVbXt41e9YHB9SfOJbrZTq0ZZ6csrn2GkP0lFepwAcQ1HzoFINcRPn\nGgARng9+oJs2+SpXlnqHDHOpt3x8RvPZb9fnN/zVUhW/sVAP4aZd3KRDKuNiWQbHpwX/7QslXn2F\nYPfmn7UpEDE2o/jy9+qcHI3WeCFg4xqD973WJZ2IowPnEhsBMRcWQqCdlRuHWa5NY061p+qbNFSk\ntADghRpPSdodlwzVJfclqDOc2sqYu542bwQlDNysiZ4pcPrDf0T9iQPz3g63eJrshz9AODCIN5An\n8AawghE0CtOQ1PvWMfj4vRQONTiZu4R8p02LqFKdKVI082zoSJFJJ6n5UK0JnKRLwpUcOFTl5Bkf\nFSqkiDbz53p1DAlXXsS8AXD2WEvCxwvqTBcs2rMhuzc0dwdprfH8yKMkpWC6qPjGXXVODCvCEDIp\nQblQXmQARFRrmjvuK1FvhEzNNv/so6eXt3mPiYmJedERAtXah2pd3jfGam9j81f+jifveBI2WVSs\nHI9t/QD1sGXZtb4ymCpJupOL8sYF5ChTCLOAQe3fv0vpv/81eiYqLM6+5e3IRTn1QkRqPMVKyGTJ\nmd+464kxGkd+jLddktrUyWCr4B8Hyox96wfMztSZ3fUqdq3bjymBUDFddxmhl6dKvSi1ur5/taZJ\nJ5lPC9JaUyorhkeXztG6ia+o4WvCMEQFCmlInISDUgodapyEQyaXxF7UoEwj+f6ekO42WNO+8phe\nLL55T2PeAIDoZzxyRvFv9zR4z2tWlxH/eSQ2AmJeUqxPVzgwDZ7hLDEAIgR+aDIU9LLOPI1NA0OA\nH0pQHqEIwXCYSAwAmm49zuTffYn6EwfmP8F9w61k/+i3kdkMEjBRTFvrqAc5AukSSAszbODszJHf\nfweVwV00hMEplSdI55FCMVXKUFEOWgpSGYWUkqMnqhw+WiMIFtz+jYYkkbaRYqHAYUMftKzQPyVl\nB7Sn4OpNwXxL+MX85PEa9z3eYHxGkXIFG9eaHBliSUFVpRZQmm5eKHVqxKNUWXkSDcP/fPQhJiYm\n5sXCymXY+aYrOPHvt3M0fw3VzBpYoT7UV8u9x1KEtIoCNc9g6jP/OG8AiCuuRGy/qOnnpKbP0PnQ\nU6Qu2ciM3UOptZsjG19N5eMfxNy+jYlf+wRKGDivuoGB9CRXZ0YW3W2QtwI6q/uY0YrpVA9yFcd7\noKBUgURCQ6gZHaszXVieI1qaLked6p2FqIbWGtM2sRyTUIV4dZ9ExsU0DaQUWPbyBysteeTwz94I\nmCwojg41r4U7OqTwAo3dJELy80xsBMS8tLBTmIf3UR28kpWKt+rKoeS24VIjCKCqXTomHqN7+vuM\n5S+lMO0j6xX0rk3UFhkACEHy3W9BZs/ZhUuDqtU2L+vjSRuvfTPKOIQ/U6GW6yPEAKGp+YJK4OKH\n0UQahAY6VBw8vNQAgKjTY73ikUyfbdgSKUWshGspbtnZ/NyD++p8/QeVeW3pSk0zPuMhpMCyFxaA\n1fImbVvwsp1JfvhwhUJpeTRgw9pY3SYmJubCQEjB2tM/xHn6fp547SepLesbHJG0mhRYCUGApHLX\nTwiOnVo43NmJsJarAwEI06D3a59kq7EL0dPJSGIz97e+kdlfeDttf//nWBfdQPWa19AIbR4ZT/DE\ncCuzDYfw7Lh0CEEDL7QxLUkQgGHoZSlB1aqPDhWd7Q6GlCgtMS0D0wxQigUFOq0ozVSQhsS0F3Lm\nHddaUldnWgaWZRKoEMOQK64RhfJKb/rFo1JfSTY1aqDm+3HvgHOJX0fMSwvDwipOE65gAJylplxM\nI8BwYO1TPyA1dgSAgcIwhx8awhg5Ac7/siReavR0YW3e2PwDz50YpaR0+S14Zgoxv7gIbAs6MnXO\nzCQ5a6QIaaBX8KKrICQMNFpExU+nR+GSwajF/LlkF9TvqNZDnj6hyKUFG9cY3L+33rS5jA6j0O/Z\nYmQpJaZlEjSZSbcMuHR32NxyXYZv3jHLolRR+nst3nBTtvm7iYmJiTkvEdjlKbKWR9UzCcKl83jS\n8hloLTa9s6xSNPRSr0z4wx8Sjo0huyJliEBBwzcINVAT1Kwu9ne8CnPXFYSGzfb6BLPveTPuB95E\nyhB06QblmmT/CYEfJJBSLGy6hUSbBuaipaLRCDFNgZSCMAwpFz2mpmqEoca2BJ15i3IpwLRMOjuT\naA1KhZQLVfY/HkUaQhXi1TwSaRchxTJhDdMyI0NBrB7tPR+aVK7pMOhslYzPLHdSdeclSbfJTT/n\nxEZAzEuO7msuY6YWEHBuOlCEKQKsseO4h+/DybokiqcYuf8E44+cwivWEa6Fk1Gk/vXLOAPdNPYf\nBaDzlt2cmHKphxaZhCLlhEyWbQTQ3dogaS+dIKXrINTy5zumJuP6lOrRAqKbJWYuQs31jm9P1Lm1\n/xT9MyVsW1CzWphIrkcLA0NC1o2e9d37Gzy832e2Etkm/V2S8emVJSN0qBf3zyGRTlItVVCLIhPr\n+2ze+dqoaO7V12cZWGNz/+MVag3Nmk6LV12bIeHGRVcxMTEXBkJIRO96rGN3kx4/SHvvpRQqzDtL\nXDtkIDWFIZfPnb4P5vhJ8q+4hNr6tQTHT0cnyiXUt7+FeP+v4GFTaZjos2tQ5zrE334BLyeZ38lb\nibnWYnL+3y2pkM4cjMwsV7QRUqDV0vUiCCKpad9XjI6U5zbxgpHROVUkX5BInO1JA6ZpYNoWQoj5\ntactB7UQrCZu8rND0KGmXvFwXAvLWmooaK3Z2KNhhWjKi4VpCK652OI79zWWRAQSDlx/qR0rBDUh\nNgJiXnI47Xmyp4rUOZuguLR7sGP4ZEefIn1mH1ba5cxDwxz/jyfRwcLkWrUNkBbpXIFGRwLV1sXx\nI1WK//NzjL/yPZBrwTTF/GcPzTisa6/T375QeLVairwpF04KIUilTbwmufhCAlKQknXet2Ufvem5\ngmYFKVUkEZaZbNtJLiGxTckDT3rc9Yg//2yt4eRoiCFMVkp6PXdiNEyDnTty7BoUjE36dLZbXHNp\naon29NYNLls3xG6VmJiYCxd5wxsw9z5C/r4v4t/ajdPaPT932sVxuu/8NPqGm2h0rcUxQ3QYYhTG\nad17L/bkGWprttJ4602M/c9/IZyN8mHU//d36IkRah/4KDq9tNhY2y4VT2GbK2s4CwGGuXJqppDQ\nqEcOGstamp4TKo2QUWRXa8HUdPQczwvJZq35a9NZl66+FkZOzZB0BaZlIVbQddB6zlE195jKbI1U\n1sW0DIQQqEAReD5b+s6DUADw8l02mZRgzwGfUkXTmpVctcNk+0DzNK2fd57RCKjVavzhH/4hU1NT\nNBoNPvzhD3PjjTcCcO+99/LBD36QgwcPvuADjYl5LmzozzB7OsTTS5X/dajZ0GEwNGHS6LyUtsYZ\nRu47vsQAAAg9RXWoivZswiCAkTOkR86QfuJeWp76Ead+828I2tfMX69CyclJl7a0T9qNPEdKz7V4\nPAetoREseEzCMKS7J01xdgZ1jpfHNE3CQHPTxjMLBsAikt403UyizG4A9h5RTY0PpSWGIVFqqVcr\nl5HU/aXvqKPN4G03u3Tnzw/Jt5gLg3itiLnQkB29JH/9Dwg/+zeYX/4DCrtej0q3Y9Rm6Xr6NlKq\nCF97ijCVxnv5m8H3yR35EUIFICAxcogN7Sbt77uMw986SP3MJGZawPHHUSuo2PlKzvWDWXlczYQd\nAOr1gHotYC44jJRRo0nHManX5roah4BcKv/ZaChqNYFpSmq1ADQ4iWhTPDCQZapiIiTzaaninDoD\nFSgM00AakiAImZ2uYlgSKSV+I2DrgEEqcf542Xdtsdi1Jd70Pxue0Qi4++672bFjBx/60IcYGhri\nAx/4ADfeeCONRoNPf/rTdHSs1hs1JuZnx2VrfWoeHBq3UCG0pxX9bSEgqH/r+4z/8H5OmGKZAXCW\nxnSVUAfLwq/JMwfp/M6nGX7ff1lyXIWS0YJNf3udmh+1fDfF8nIBL4CqZwAalGJiWuMmTDZvbQU0\njbpiYryGHwrCuWd3p5YbABCZGLJWQGUiI6BaXzn8sLHfZnzSo1AKcSwYXGfx7lenKdU0dz7sUa1r\nLh40eeNNeaanz4Mqr5gLinitiLkQkd2baPv13yZx9GmMY2PUazVSQSEyAM5eUynj3vZ57NYMOpVE\nKU3pTIHj33oa5QVYGRt/VuHk0yTXpahoWLVr1zPsl7tbFEeGzCUX+r6ieo7OfxhCraYIlWJmamGN\nMK3I6bOYaiWg0VgkPiFNNm3vYqocdb00Fvl8dKjnDYHAD6iV6yRSLumUpFYN8QNQfogipKvN4NVX\nnx9RgJjnzjMaAbfeeuv8/4+MjNA1V/DyqU99ine961188pOffOFGFxPzU5KwYWff8opYHcx5TYK5\nMGeTvbNMGKh687CteWgvY2M1HEeSyy3kGk4UbWaqNq5r0JVtkLAVEk2oolzTqZJgfDrEMqvMVG1q\ndchmJJYpSLQuTKRteZfh4Srlioo8P8bKskBjJZO2zuj/8znJqTGF3/AJVYgwJLYThYFvusJhU1+S\nY0M+7S0GXfno178lC+9/3cJUsFLL+ZiY1YjXipgLEiEI8huxE610b5wiBFShSHB6H1RKSy4tn57i\n8LceJCgvXReCekDYUKx/z6tBVal/7yHMY/sItl6+7HGWEa6q8Q+QsAJakgaF6oI3e8kG/hwKBY/A\nj4wO2zFwE8u94EFwrlEi8EIDaWgCX0UiFGG0HpqGJNviUJptkGtxSLgml2+VvOFai5mS4t7HfEqV\nkFxG8uabW/HqtdV/oJjzlmddE/COd7yD0dFRPvWpT3H8+HEOHDjARz7ykXhij7kgSV60mdJPHo7+\nsILzPJFPUZtq7hEPhYHvh/h+iNaavl4X0wCtDaKMG0G1YZCwNXUfDp4UjM0s1BCcRUpIOFGYdjG2\nbZDPuxBWMEyLY7UetubGMcXSwRY9m7+6M42dnKWn0yRhaWql6pK0oqDh4yQcvvBdeP/rE1y0Mfba\nxLxwxGtFzAWHEOhUHp3KA2C0A6+TqHv/g3DoBGhNdaLK2J7xZQYAIkofBUj1ttC2exfK86nd9s+E\nrd2EXX2LLtW4lpqX6VQhCMI5mU/B2Zq1pNng4nWKx45nqDbm0jVXqTGTCAwD8h0JgrB5GmczAQoh\nImUh31tkYOjIYJgtNGhvd7l4QHPVNov2XLRGtWYM3nDDwjNyGZOJ+spje77x/JDb7p7m0PEaQsD2\nwSS3vLwNM3Ze/ad41kbAV77yFZ5++mk++tGP0tPTw8c//vHn9KCOjhU6HF0gXMjjj8e+nOyf/Aa1\nhx+j+Nj+5ScNCWHIlnddxlP/+CB+eXlBbaH/YgBsS9Dfa8+rL0A02YYafCUwaVCqGWRyGQwnYKag\n8QMNOgq/CskyA+AsqZRJtSyxkzaHamvpKpS4OHOKpBlFNgp+gh9ODFIVGSbHa4xNh/ieP59CdJYw\n1Hh1D8M0+Oa9AZfvyJJ6hvbpq733MNSMTQU4tqQtd/7VDVzI3/eXAj/tWgEX9t9hPPafDc/72Dte\njr72eg7/H/+V05/9OvWp5jtdK2nhV6I5Oah6CClZ/45X8uiRrRx54BRdV2bJd6cxTTAlKG1S9UOE\ngFALXDPAJAQ0UiiSZgMhIJ8OuH5rgRMTLnVPcswTeCs0NEulDbZubSORMDl8rIbvL10DlArn6wiW\nsYJxoYKQYilg6/oM2wZXdxy9WN8bPwj52P91iD37bHw7hwAAIABJREFUFlK19uwrc+y0x5/87iaM\nZwqxNOFC/s4/Hwj9DPqETz75JPl8np6eHgBuuukmANrbI+WV/fv3c+mll/KFL3xh1QdNTJRWPX8+\n09GRuWDHH499ZfzJaUb+7p+oPHUIYdtYnW246/tJ7dzG9A9+zMaBApOPneTMvcdQi0KxU+su49F3\n/gUqkWbtGoeO/PLQq9Zgijo3ZPdSsVuZDTOU/ARj5RTVhkGxFDA5HWIY0Nu9snSZ1iGerynMRjN4\n2qiyNT1MoA2eKq2lVNNMjFaYnSojpcRrrLBKAJl8Bts2STpwyUbJ664xMaSg4WseO6TwA9i5SbJx\nXW7F977ngM+PHg8YnggxDVjfK3n9dTY97eeHMXChf98vZJ6vtQIu3PXiQv/+xWNfTlhvcPhXf5/Z\nu+9fOGhbWO1t+KMTCBFJLItsC+07etj2+2/AsE2+ePpKnir10pYTbBywyaaaO15c08c1F3botmzg\nGv6CNKeO5EIfOpJmdjZYJh4hBOzYlkJKQcMLGR0PGB0uIw2JEJFX3/cVrms1XWdq1QaNWvO0V9sx\nGey3+dBrV57fX8zvzXfvmeKf/mW86bn/7b29XHdF7jl93oX+nX8+eMZIwCOPPMLQ0BAf+9jHmJyc\nJAxD7rrrrvnmQjfddNOzmtRjYs43rPY2+v/kd5qea7nhZRS//g907hak17Yw/uhpDoptDK+9iqHL\nXo82ol+dZLL5xC4EKBwe9S6mP1XGBvKOR9pu8OOn0kyVoklVKdBKIczmv4pSSlxHI6UiDAVlleSR\n2cH5815jQddNL3LpdPRkGNiQw3Uj1YjjRwsk0w6VqqLagAf2h0gZ0JsX3PFIwMzcPHjPY3DzVRWu\n3rZ8LIfPKL75I4/a3CN9BYdOh3zp+w0+8vZEHI79OSdeK2JeikjXYfPn/4rJf72d8iNPYCRc8m99\nHcntm5i9535GP/0lxMgRZg9P4el1DH9/L13Xb6UzWSXZF3BoyKVU1mSbiAWFocY+pw+BFzqEoaZN\nT1KSLew7keD4hIPrmuRykkrFx5/L/7csA8cW+IHGtqKeAQlbUK/6yxz8ygwxz9H39/0Av7G6XGn5\nPEr3P3R85cE8dbjynI2AmGdhBLzjHe/gYx/7GO9617uo1+v88R//8fykHhPzUibz1g9Q/tuPExQD\n8tv7KG79EGc4p2PwKgIQIJitu5QbddJONNE6tmBzX4P7n07OXzU2pVjTBeGKv46CTMpgphAg5xQf\ntNbU6wHlkkfgR1EKIQXSkPRvyLFlSyszBZ+hoRqBH+IkHLxGSBgloSKE4MmjiscPQ2XRvFqpw20/\nrpJ1LS5av3TBeHi/P28ALGZkSvPgUz7XXrJy8XLMS594rYh5qSIMg463vpaOt752yfGWG6+h5cZr\nKD20h9r7P0Jm5wbyH3g9gfJZe3KWp7/4RdpUhqFr3kgykaQls9ABOAig5gk67QqBXOggD4qsLpLy\nZ3hkqodDww6OE50zTUkutzQ1x/cVo+MK04T2HGzdAD35DE8f9SiWNEEQUq8F1Gs+VhjiOBaWJSjO\n1Nm8TnHwmMJrUkdgWVFxcMrV3PFwg7QruHybNdcf54VlZErx4ycCJgshCUdwySaDXZutVR1NsRPq\nP8czGgGu6/KXf/mXK56/6667ntcBxcScT5z65kNoXSf9ll9m3U++wvitH2e2pDkrt19vKFKp1VJh\nBKWGPW8EALSml6o8+D6cGQno6xGELHzW4shtqDU6VJQrPgiB5wXUawrDEHj1KAVISsnWngbdG1s4\neapKsaiilvCNgCVJfxq00BSrgmbJgL6CfUfVMiOgWFk5c3CmuHrX45iXPvFaEfPzSubK3WRe82rG\nvvw90pduZur7jzD5nfvIlavkgK13f5rGO3+Fw1f9Mr3tmqStsPAIjQStTIGepaByGELRYpdxpI8y\n07TZZcBZOZ9/EUEAo1NgmpqpggFGgmxL5DDyPUWpVJ/v9muagmyLzeUX+Rw94ZNqtSmXg/kIg+sa\nrF2XwU2YHD4ww9NHojXrnsd83vQKm639L5wG/8lRxT/fXqewKEvn6ROKqYJm144MP3mkuKwXjmXC\nVZdd2OmUPyvijsExMatQPlkkvTGB7ZfR//HvDKYHKLzm3WhTkkwIbEcggiqBmWAl8edzj6pw+XWB\nElTrkEgsv18pzfR0g3w+gVX28DyN7djkWgTplMF01uTUiVnQcO1ghUMqpFiMJu0gCJtu9NFgGho/\naD7m+nJVVXJpyUqhj3wu9vjGxMT8/JJY181UocrTv/5JCNSSglt/ZJLEFz/DdbdeSao3Py8RqsIa\nE9UOirUUnraRBJSCBOsSo1gGbAgP8VBxHfVsL6YZLhORCEON1kvn8DOjmoYXbf4rpQZKaVzXoKU1\nOS8TGgQaaVo8dlTS2eHT1tuC1jA9WaPFLHFF+xkC6XJQb+KWXQ2++ZPIITQ2HfLNezx+/13mCxYR\nuHuPv8QAiN4TPPiUz+++M80rr23hngcL+HNrlGMLbrmhlR2b0y/IeF7qxEZATMwKBDOzqGpAoj3H\n5LfuJaz7ZD/3f5N5+A6sz/wDRthgzff/hsalL+dQ/hVzXYCXToyCkLbkUlWJSvncjbTGtgSer5AG\nOPaCBz4MNTMzHoVCgGl51Osh9frC/bWaorXVYfeudrKyxGB7g3sPeYvuX9mFlE0bTBWan+9sWT7B\nv+wikwMnAirniGT0dQqu2B5PJTExMT+/zP7oflAa6QjCJk6UxlgBdfsPkB98x/yxQiPJpJfh7LoR\nYjIbZDhRE2xKD+H2dPCyJ/8H91z9Z9TrIbat5/u4NDMAtNYEPtTrPoWpynzvgNIsuAmTTMtSZ9Xo\nlKS/K0koJaaheXvvwximZDS9BW3Y7FBj7DkQghYIKdE6ZGxa8+B+j2sveWGkpocnm69JhXIUof7V\nt/dw7e4cD+8tIoTgmt1ZNvQ38Z7FPCvilTsmZgVUqTznMbeonR6ePy7b2hC2Q+edn6GnSzKbCskl\nAop1k7q/YAgINNmEhz2n/KA1aBVyqXgcP9fDKdYjTIOevKY7H7mNbvuJxnEt3IRBqEKKRZ9iKfLq\nzxZ89Nxnd+YFqYSk1tDMzPrk8wlSbTkyiYXW79EYxJKC4cUkUg5Z1aBYWjrpruk0uGHn8hSn9b0G\nv3Sjw72P+5wZD7EsWN9j8LrrVs/VjImJiXmpU37iUCT97NqEKzSZVOXK0ns8l2YR5FKQpBI4JGWN\n5PG9rBt8gKGeq/E9jZ3UtGRhfLp59FVrzex0dd4AOEu9FiBkg3TWXbgWQS2wMUTIbuNxZpL9FDPr\nMOem/4Asg5doPLfBqeGAIFDUqz737PFfMCPAWiW7NuVG72rrYJKtg8mVL4x51sRGQEzMCthruhGu\nQ+HAJKq8SIVnz0Nw+gQtpRPYGzbRWT3KcHorItmF64d4gQQ0abNBOhEQKIkXSkItCLVB1Wpn3fc+\nS8fv/On8pv4slhkyPjH3rLOn5joaByok4RpcvMWiJSsRQqC1pljWDE8qRgoGle4+tq7TPPxkdKs0\nRNQF8hwcR7KmL0mqYDJ7oIhlQEerpK9D8Es3ZyForsJwyaDJxRsNSlUddTl24s1/TExMjPYi97+q\nryDTbJskXnbZkkOBXmEjj6SmHOygQjg+zkB4gq7t1xLqKP9dCEGtrihVl95vSEHd95c2/1qE10QJ\nyLE1pVqInYSR1DqcczbhlikYHLAZmwYrNDENg8nZKkMTijUdz7809IY1krGZ5ePvbZdsX1anFvLA\n0zBb0aQTcMUWMd/ULObZEb+tmJgVEIaBOzhAZficrsHVKvo738ZJu0jTRKDZNnk37ZWjdJ38EYN7\n/5nNB75Kb+MwlhF55meLgrLngJCcdLZi/sIr6QlOkDBqgEZrGJ4QlOtzdvmcgs/8P3MdJbesN2nN\nGfMKE0IIchlJb0dUazAr2tne75NvjT7GtIxlhcu2LVk3kMI0JcmkRabFRUvJ668R/NIrbDpaV/cN\nCCHIpmRsAMTExMTMYXV2ABDWA9zu5VKVLddcTPJlu5beI5tv1iUBlvSonBwGy2JgU4KLE4fYnDhN\nQtZQnoeFv0Q8wpQhXfmQpLtyCqg+xyHkOoJ1PYKkrZg18xgr7AhTSUnP3Ibfckxs2+Qfb2sQNB/+\nT8Wt19hsWiuXuMfac4LXXWvNdVaOOD0e8tnbNT9+UrPvONy/H/7hds2BU8+iijpmnjgSEBOzCpnd\nF1N78uCy48Hff4baH/wC2TBESIlVL9B7+/9DMD2zcM2R+8hvvYi0o9isQmadTqZ7LqWabKe66XLW\n1h/DChtMWH3ce7CF0RkD04w6SbJC8zBpNE/tSScECSckxCTtBrz6anjoacnpUchmHAaSBoVZD8OQ\ndHe72HN1B4HSmKZBKuPwtTur/OF7f7Yyn6VayL2PB0zNhiRcwRVbTdZ1nx+NyGJiYmJWIv/aGxn9\n9JcAsLIuuR3rqJ4YRzoWmZ0bUL/4NoamTNbkF7zxWbtGPTDRLJ3jTKEYrraTu+2vadnYTV9imkbl\nJOlcF8naBLePbKPkpzDNKP0HwPPgoYcLq9aBmYvqzSxLsKbHoRYIBjhMQz97dR3TMpiYqPLgwSRv\n6n7Wtz0rEo7kQ2902Xck4PR4SDohuHqHhWMvXRPveUIzXdSR7LUGaUrKNcEP92q2rNUrNuCMWUps\nBMTErELHL/8iU/9+B2q6gNWZwR9fkC04/bUHad3Ug9PeRvXgkSUGAIBZGEc8WcG6ZCtCCDrrp8id\nnmJ88HrqqQ5OBjvpqBzDoMzoTB6I6gZWMgAASmVNR9vy41JCOgmtqQBTe3gmvGy7SX9fhiA0qNQF\nrW1LczjDUDNbDObul9RCi4mCoqPjP/myfkpGpxSf/57H+HS0iAkheOKI4nVXW1x10QsnSRcTExPz\n09L3h7/B1O334J8apnRoDPf3fo+NGxycsMysznFvfTeFoQSz9QZdmSpt3hiDepw2L8OQtYGqzGDp\nBlk1xZjZj5g4RW3Xq6hs2cmkkGTrE3S7DVJZk+3+FPcNRd3Hzm52HccklXEoTNehSR2YYQjy7UlM\nS5JKGuTbTBxb4gUQtqxF+DPIkPl6gMVUayGjEwtuf62j6PXtP6nw+uuef1UeKQQ7N1ns3NT8fN3T\nHB1ShCr6+bXQBL5CCBieNBmd1vTkYyPg2RCnA8XErELqoi2s+8Tv4m7diN2ZxW615nP1y0Mljn7h\nHqrD4/jnGABnUeUK/uyC4eAEFVKTxwkxMCwYTW5kzel7aQ+jVuiLw53NMFaIBFSqITY+OVcjBCSM\nBi1WhbxTRGtNwtZIoTm7OPi+YnzSmy86BkAInjy6cvfIF5K9x+FzPxA0cMm2JHATFkEjoFoNuefx\nAD+I+xDExMScv0jXYcf3vohMRoW3s1+/jTPpizi+5mam+67gokHBtdvrdB6+j8INryH/6O2kq2P0\nB0d4We373FD5NtdVv8OljfvpCU4Sdq+jsPPVFN0eik4XZ1I7ONjYgNKSNqfedAyLleUAEGBaknTW\nobsvSzJlk8lYJJMGjr2w/QvMJEWVxBT+shQf39ccPxPM98YJQ029GtU91Oqae59o0kHyBebxwwql\nJYZpIA2JYRhRN2QNSoWr+dFiziGOBMTEPAPtb7mV/JteReGe+6nd+TXqTx4gqCrsnAm6xokf7KWj\nz12hSwDoYOnG2vIqKEy0BssOKCb6eCV38FXehRACy5LzTVsWk01Bf4fG9zWWtfA0P9CcGg7Y2BHN\n3o5lU/caCAHdmSqGDDkzm0VgUK2GTM0oSuXl/QOUCkklXny/wKEzcPseUBhICUhImAZSCgpTZSZm\nBE8dD7h0UxwNiImJOX+xchm6/9f3MvzXn8W74x5Kjk3ibW/G2DCA6VrYZkDhLz9J+hVXYqQWZC0F\nYLGgK5oQFbzQXraZLclWRvwawi80ff66fodswqdeV2jDwnIctJBIKTEMgW0JXFdgnuNM0lozE2TY\nYBVAmJR9FwSUKyH7DgcUy9FAlAqplevzXeqlYXD4dMBFa5+Hl/cc+P6eECGWGjxCCKQpkaGi6xnq\n2mIWiN9UTMyzQJgmrTdfT+76K5j9xpeoH3oSQg1ulsk795HOJ0k2+W2Sjo3durRILLCiyT/EQOuA\nAIO1nCKtS5RFBscxyWc9JmaY9760ZeGanZByNY8dapBImjiOwGtoRsYVE9MhV26MrjUMg4TjUGtE\nHpqOVJ2OVJ2ZismPp1qiRmLnrC6+r0hbPru3vPiya08cp2nTMtu1sG0T5at5beyYmJiY85m+3/s1\nnO42Cl//F4ITB5Bf+Sda3vkaclt6sA48SfqqFLMf+i0UQ1AfX3a/L0woFljj3cdEfge+nV1yvqoc\niqPLnUS5lKavS7K2O7o+VDBRFNQaC3Pn2dQhzw9pSfkIKVFKMzyhqXua4xMptq8p0ZaaizTkIKxr\n7nzIIAyhXm3Mq80ZpsR2zJ/K665CzQ8fqXHklI8GNvZZ3HhFYtX5XoVRk0vRxF8lpSTw/bge4DkQ\nGwExMc8B6bi0vvsDS471fAzqex9A3/4lRG2pkpDT3Y4wDDSgUxl0IkPSlfRNP0YhsYa66aK/82W8\nVgurx5tXBbryIollaiYKmpR7tltvROBr9h1Y2o1mTR629y/8OeEkMA2Thu+D1piGSWvGZkN3wKOH\nNXc+EXUp1kSycY5osGOD5Fs/atDWWuTSjSEtmRenIHe22vy4EALTNrFCj+3r4uLgmJiYC4OOd7+F\njusuwjr2IMIyQY0T3r8Xle3Ak0lyd/wDY6/+AK4sYocLqT2qVEKNj7Ou8jACWH/6B4x0XM6xgVvn\nHTfB6SEm736K9Mt6qdktGFLQ1wVJN7rkbIRXGpBJQN1r0qE+EHhewKbeBmcmBOVqFGU9OW5QKOfo\nzlYwpaJcE+w7biItRaPcQKMRUmCaBk7SQQjYts4CVpBFXYUw1HzmG0WeWNTc8vEDHgdP+Pz627IY\nK6TGShFFLpqd1VoTvBCSRS9hYiMgJuZ5wL3kZZysuFj/489wkgZBPaBR0fTm+0j4Clrz6GxLlO6j\nPSxvmoQ3y1SQoTF8htlRSZf/Y2YG3gjAbEXQk4fe9qVTnSk0G7thtgQzZTAkrO2A11y+vJ7YMi0s\nc3kKze7Ngt2b4fhQwKHTioQD+44K7nzkbNqSz10PwRuvd9m97YVPwcm4MNbkuNYaFSi29ZtxJCAm\nJubCYt02/DWDiIMPQ6OK3vZK6FxL5so34v3Dn9M6vJfTh0/TNtCGY0E4PY3plTHqCw3FHL9M//CP\nqCXaGem+ChpVGt+7neAXP8q19/03hq77EGEmj7HIR3J2HdAaHFNxbumnUho/gGojOt7ZonlaapSC\nSiWkXIKhsQRKKQIVorXGsgx8y8BNOvOy1VprEq5k9zaLR/dVefhAQKUW0pqRXLfToju/uuPmwX31\nJQbAWZ484nH/43Wu29W8C/BMUREqhTSWf36owoXwecyzIjYCYmKeJ9ZdfSmP/k5AcOrk/LHR+06T\n2djFxX/+XpxzdukGimzxJBMAYcjFT3yOnjVp7GwC9k4Tbt2B6F5DoKLQp/QbiP2P03bx1XT1mNil\nqDlMIg0TFZ987rkV9a5fY7J+jck3f1jnyJml3pNSFb77QIMdgyaO9cJuwC9aB8dHNUqfk6LUCEiY\nAW+7+dlL18XExMScN5gW+qJrlhyy29qRH/44xtf/X3ozCc78y/3oYoHs2nby2/qXfYQkpGPqScbS\nm+lSZ7A3tTBiSJL1aSyvhC/zKz4+IWsMOBNMelnCUDAbJDBNyLeAYwpqdcHELAQqijDrRftnwzAw\nDANUgGrMQiqF0qD8EK/h4zUCTCvJ528r88i+Ogs90kL2nwh416tcBvtW3mIePumvfO6U39QIGJ30\n+dsvTjFR0LR1tc6lI0UGiVIhldkqazrjbe1zIVYHiol5Hun+5V9cdszKZ3Hy2SZXg5VKIOY8Gsm0\nYNvlWTbtzrPp5k04qsL4UI3xssvYrMX4/hGm//1OHjtlU/NNXNfEsg2qnsHjpx0mS/+5X+djw83D\np1Ozmj0HVp6ony92DMCNl0LaiVagMAxp1DyyTp33vDZFOhmnAsXExFwA6BCqM1CZgKC5gg+AmWxF\nv+13KQ6XyPTkmdo7jVda2YOdCaa51n2IdBpSG3vZkPcIkq3khveueI8QkBVlrss9ydv4Ctv9h2nJ\nCjpaBdm0xHFNRssJhqZtoHlneQAMk0LdYmKkyPRokdmpMtVSncALCHzFvoM1zm2SPFuGu/esvnas\npoTXxMkPwHd+WGJkSiEQlAsVSjNlKqUqldkqpekKINg2EBsBz4X4bcXEPI/0fPi9NE6cYfo7d6Lm\npEFDHW1spWyySXdstIo24SKVQjhz8nJ+kjOZtQTMpeMIE7VhG6W3/hqBWj55+kpwdNykPfPcczPV\nKimUnv/iSHNetQUuHxSMz4aUKopcUtDZlooLvGJiYi4MGiUojyKCSJBBlycgkYNMb9PeLzKRJvWb\nf8rB9/0OtbEG5ZEyYRAizeXrhOMKpAjIUUK1uGzuqBJedTnZ736JwuaXo5LLOxRLrRhkP0VydAUe\nE6nNJN1z0ktNQWe7QbG8ehS52TwspcCr+9RWWD/OjCv8QGOZzefwnVtsHthbX5a9IwRcvGl508pq\nPeTJYyFu0p33/gd+iFIawzCwbYOdm01uvcZZdm/MysSRgJiY5xEhJev/4uNc+5OvYfd1ATD4x+8D\nq3knXi0Xcu6N9RsRto3WcKTYwWzdxJIBuYRHS8Ij7fjQu4Zk81RJvCbGwbOhr7P5NGCbcNnmF89P\nYBjQ0ybYvNakK2/GBkBMTMyFgQ6hNDJvAAAIQqjNQGVy1Vs3/u2f0fvO1zP6wGnKw7PLL7Ad6O4D\nIEuBRDpBZeQE9mXXYd74ZvAqSH3uJl7TLsYZtzYQ1hpM1yzGVWvT59uWIJcVrOSYt4yQoLG0F4A0\nJEJKalUf3w8I/GBZp2LTWLXvJTsGba7f7S5pTmYacP0ul0u3LN/If+OOKn4o59eFs/9VvqJWqXH9\nTnjvrcm4fuw5EkcCYmJeADJbNnDxPV/nwCvfjPYDlJ2FRhkRKgRRyy5tWHjCASExNm3Bee2baAQG\nD4/3M1FP0Zf3aUktuFkcogm5XLOosDxe2pJYOZysNUyUDaZrBgLIpxT5ZNRh8ZWXW+w54KFCueh6\nTb0WcPSUz67tcTpOTExMzIrUCgi1PAorAFUcR00WMPs3IppEg81Mmss+/xdk3/5Ghv/sf6c83EXP\ny7ci0JBKQc9aZDoz93kaYZrYXpRq9L3krVzZcgxljTKtWvBCC5sG7WKKvJiiWDMJzxzhcwc30bJ7\n5eFHGvuC0NdLmg1Lodk1qHnFtgR3PtJgZDKcl3MOwxAdavRcGpEKQqQReej9eoAZwt5DBpdtdZs6\ndIQQvP2WDJdtdXjiQAMN7NzisGVgucPM8zWHVqghEFKQsUNec+3z37n454HYCIiJeZZopeDhH8Dw\nkSiHprMPrrgFkWw++RjJJJf88/+J9/gD0N2GSmQRyocwauSCNCg8fBBn/UbkW9+DdCyeGOtlop4h\n5SqyyeVxVtvU5NMBM6WlG/O2lGJrb/NJUmt4etxmvGxytt3xSMmkJ+uzud3n+JmAWjXASUSTr+8F\nqEChlebBJxvs2u7+FG8tJiYm5iVOuHI6TTh2huJnPo3ItpB8y6/gXn5d0+uyV15KcU0Hs8enSV3f\nSuvuTcs/S5pREzDD4+SEoK+1jplLYQpJD5E8tR1UaamNILRmqJrlq8Ov4sBwiasG6rS1Lw8j+4Fm\nthSlq3a0KDozilpDYJmazWs0W9cCOFy6xeHYUMDffKWCmjMAgHlZa4jWjsALEEIwMwuf+lqBzf0m\nv/f+9hUju5vX2Wxe1zxSfhbP19S85qmpQghecUVqSQfkmGdPbATExDwLtNbwnc/CsX0LB4eOwPAx\n9C/+BsJt3mRLDV6OZVgUn95PZls/GBaYNjoMKZ2YZPivvsoV//2dHJgKSbdbTNZSALSZRVpLo1Td\nNnx7qTpOW6rBQFtIoR5NnO1pxc5+H2sFh/1oyVhiAEQIRooW+UTAfU9rsq1pxFw82LJNaqUavlIU\nK7HcWkxMTMyq2Gl0ZSLy3p+DmojSgXSxQOWf/gazdx1mb/MWu+7Lb8W+62v4/397dx5dV3Ufevy7\nz3hnTdZkSzaWbTxgsE3MYMBAIQVikoYwJ6FJQ1fahkDaZKU80vSt5L3mNc0jK68r7csDEqAZIElJ\nyQAZCWUIBMI82MYjtmzLGqxZV3c85+z3x5FkybqyJTxIqn+ftbyWde69Rz9p6Zx9fnv47aJPYSCH\nkzzYAROg8JwkKIVZGGRLn8WquX0cumtWwYqRdipIFbrZo+ZTMz9JXsXo7fVQgYc2Dj72aa3RfsDK\nBo9UVHP6ggDbAkr8HBD2fWkYSQCUocasdXNcB9M0KYysFFZsa/Z4/Pk07173zqu8xaOKuiqT5tbx\nHWNVZQaXny8V5N4pSQKEmIwdr8HbG8cfb98Dr/wnnPfeCT8aLFyFWbaAN//qM9RfcyFmLMrOf/we\nRiHD0r+8lAPM4Zm+lcRzAZ6G9blfsiC9E1fn8AyX3kQju+b9EcHQ+gHT0Cyr78WxTMriR97htydr\nQsmtVRRPva450G+MJAAApmUSTUYpdqcpsUZNCCHEaE4MIinIjZ3T7/f2kH3+uVEHfAZ/cBdln/lf\nJU9TdeP1bP/5U7jbXqf3vAspN9MY2kcrE8+OoS0nLDThlFFt5LDN0g/rRWz2PLeVU9p/R5P2ORA5\nhZdr3sfbLVA3J8B2DLSGwFf42qSh1mBxzZErwTU1mNRVKfbuDxcwlyp2YVompmXiD2/apRRPvjB4\nVEmAUooLVru0dWbIjwrTMuH81e6Ei4/FkUkSIMRk7NvJRL0jHGg54sftynKWfv+btP7bd/Gee4H6\nS1ZQu2EtzWohLwbvokCEQh4u9n/Lqf6mkc+cXxVxAAAgAElEQVRZQZ45/TvQyuTthksBjaPCu2DB\n8yl6PrZ1hDn7hynws6/Do1SCYFombsSmo9tjMOMTlzKdQggxsVQD2nCgkMZv3YPX1kr2uefw21rH\nvC3oLLU1YkgpxeJvfo0DX72Txo2/oX/tBkzLwCIckfU1mD0dsPg8nNaAogctXTZRN6CmLFzjReBj\n/+aH1LTsGDlvfWYHddntPHLKZ+m0UlRVjL3nd6TNSSUBpqFoqFbsadGokh1LIcM0DiYBQNE7+hHl\ndWdEiDiK59/M090fUBY3OHOFw3lnyHTVoyFJgBCTUWLn3Um9NooyTepv/ii57CBFL0eXVry0bS6D\nhfDzRlCg0d9FgIFv2FhBfuQ2W5ZuxvSzWLZBxCyObA1f8IpHTALKoj4dg+Nj1FozmD1MhmAo+gc1\nT76U48oL45P6GYUQ4qSkFCRrgVoG/u//GffwP/K2yOEfWo1ohNr//t9p/d//SFnLA0TXrMCf04D2\nPAa37kWfspaINnlxu0tff5Ti0HKEeBTWLM5yev9T2KMSgGE12WZWd/6aVyPXwCGFJbxg8j3prq1A\ngz5M75LWB18LggClNP/0zXYKBU1Dnc2GC5PUVR9+HUApa5a5rFkmJUCPJUkChJiM086Bjb+HfGbs\ncaWgaeWkT6OUIhpLENFxtNY01QS8sU8Tj2j623ppblhLd2w+RSNKrNjLvPQmFgy8gePnmJfbRja2\nAF8rAgw0iv4c5P0CZVELs9Q+BICLT0+vR0X52Lmgnd0+QTBcq2gsHWiK+bB1GcjIugAhhJis6KUb\nSD9w74SvTUblZ++g9RvfJv31p/B60rhNp1D78Q8RW7mcf3vSobsnvC/btiKVNDFNxVv7LcoyLksn\nOGdVbm/J4yl38vf4ZGyoOlAxXEx86IJfrfXIKIDWGss06E5De2e4TmBXS5Htewp8+k/nUDNnch1o\n4viRJECISVCVdehz3wMv/BqyYRUGbBdWnAPLzpr6+ZRCKcWq+UWKgebp1wLWnBqnJb5q5D39Zh0D\nThWG9qnI7CVbMNG+h29EGJ7CEwDZYoAfFJmTcEpWYMgVYevbRWqqApJJAzT0DgR0dftEIiYRO6C7\nf+xnCvkiwdAQbm1l6ZGGbbtz/Pb3A7R2FolHDFYvj3H5BUmp7y+EOKm5512B99Zr5F57FYbr5xsG\n7qrVuOddMalzKMNg7q0fg1s/Nub4T18wmVOuaZpnUPQUA3mb0VM6N8YuZ07qBar6x48GFA0H1x3b\nWRRzfJqqD5Y37c/A79+Ctp5w74B5czTrTwv3jQG4eG2Unz+dwQ/Ch33TMkfu+TrQ5DI5ivkCdsQm\nnophO+GDvlf0yKZz5DN52g54/PKZAT56VeWkfhfi+JEkQIhJUmsuRi9eDZufB9+DJWtQ1fOO7pwK\ntu6DM+f3EY1XcWjtA23YtCRW0OdF2KnPINmTo7a8OG5b9YKvyRUDos74B/a6CqhMajq6fDq6xn6H\n+iqDd6+2eOxFj81vexQ9TbHgkc+EjcL8OpMLzhxfVm7zzix3/7CTvlFb3W/Zlaez1+Om98mNXQhx\nElMG8Y/dTvTt18i/+AwA7lkXYDStHlfNZyo6+6C21sK1w9LPLV2HVn0L13M9t+ozrHzr2zR2vYw5\ntJGYj0F37WretcijN6MZLCoMIOkGFP1wRDibhx89o+joO3jO/d2Kjl7NDes1hgE79haHpgIpAi8g\n8AMMM/yZfM9HBxrLsUmUJzBHNVSWbREvi+EXfbyiR0v7kdcgiONPkgAhpkAly+GcyfXkTEbRh+5e\nj3MXBLQHpS/HfqeaXYn5eDlNe6/Jnj6DeWVZGquyh5wrIFpiEzHLhDVNmqc3MnSzD0UczdolmtoK\ng5suc9ixB379+yx72z2iKYNFDRYfuCResvLCY88OjEkAhj3/2iAb1qeoLJdbixDiJGZaGEvWEl2y\n9pid8vUtOSoaHEBR8MJ/pXhukm3n3MrW/CALtvyURW1P0N5wHmdduYbBYpH2AYu8F7YV2X6TA2mT\n0+rzNO/3xiQAw5o7YGMznLEQ/vPFDJ6vUQztD6AZGTUeLh3qxtwxCcAwwzBw4y5er0dE6vrPCNJS\nCzGNCp6iLplhTmSQjoyPLvEQX8AFpbAshe+H03h836U8XiAZOdizb5kT31TPOhUSUc3mPTCYg1RM\ns7oJTqk9+J7F8x0Wz3cor0jQ1Tlw2O3XWzpK9+KkMwGvvJXh3etSk/jphRBCTFYkaY9MvQmCwxR1\nAEwTVDzOvjUfxOcClle0YxV72Noxl8HCoQuDDXYecOjpG1+HP6Ro7dacfoqmtSMcWdBotD5YJUij\nCYamPhmHmRI6/Nrpp0pVn5lAkgAhplHE1mhl4ag8KXOQPv/Qh2c9prfHdcOdGNNpzc7OBKsbwrrU\ntqmI2ofvWVneCMsbwxt3b5qhTWHG36xtSx02AQCIuhN/r4qU3FaEEOJYi3m9QAytIe+ZGMbBJQej\nmWY41RTAMBRtQSNNfi/2YAeD2Vpg/ILcdMEkOEzZT9sKe/4jroKBg8eHqwQpBauXRsgEEdJ5RSZb\nerGxPzR9qOgfPokRJ4a01kJMI9OAiiqX/X1Rllgb2V1opMeqwTdcbHLYyqenmDj4gaH7ZiYH+Jrd\n3UnKI0WW1ARjFuQO5hX7ey1cW9NQ4TG8F9jrOwOe2xTQ2hXe1BfUwnvONphTPrWh2dMWR2jeXxh3\nfGGDzZrl49cQCCGEODorytvYrGspehZeoHBtTa1qY67TjWn49HlxtmUaMO2x5TeVoWgpVLHM2ss8\nt5MtxYbwuNI4ZrhMQQdQU6tobg/wDykZGnU0q5rC/y9b6NDaOXYqKkBTg42VSDHYDRgapYpjSoVC\nuGbAL/g4rsPjL+TZcOGx+92Id0aSACGm2folAW0bO6lIv8wc/QJZM0HWSpH0ukiXzYeKS2ntjxJo\ng2xeE3GhvsbCMBX9OUV/zqV1QPOuxgzlUc1re132dlsU/PDBfmubz6qGPAPpIo8+FzC8o3u+CNv2\nQTob8BfvU5jG4Xv/39ie5+H/zNGbDvuLqqoTDPSmKQzNDJpfb/Ph91ViHOE8Qgghpi6eiGO8+gbB\nwlWAxemxHZxit4x08sxzu5kb6ebl7OnkGVtPvxBYDHgRYnbYQ28amqgbLvAND0DecDlreZ43tgdk\nCuHxVFRz3gpN1dCGv9e8O0lPv8+mnYWRPQoW1FssX5Lk5aGCREopIlGLwf4ceuj0gRdQyBVHdqcf\n/qyYXpIECDHNonbAkvwmTB3Ox4z6aaJ+WIa0fKCZJfE38VOr6O72qbHTeGXVmGPm/yuKvuLVfTEa\nUgV2HhhbMq4va/LqXpfejsJIAjDa/i54ZZvmrGUTP7w3txa4/2cZ/FEjvD4GyYoUF54Bcypszl0V\nP+I0IiGEEO+Ml5rLuxa+xN5dv2JXwyU02m0c2udSbg7S5OzhrcKSgwcDn458OW1eLeCTjBQBA83Y\nEWA/MIjHHf7sj7O8tVdjGnD6KeCOmj1kW4pPXF/Bzj0Ftu8rcEpDglMbND9+duz0H8MwUIYi0zd+\n1AAgGpW2YiaQ5dlCTDOjr5Vooa/0i16RVL6VpF3g8uSzrKloPSQBOCjvKfb2ji8ZBzCQM+ksUfVh\nWPfA4edn/vtvsmMSgGFFD7a2GJwjCYAQQhxflkNQ3URj76ssYie2Kr2Qt8wcGPN1sbcXVcgNfWXi\nBSa+BkMFKDX2xj5YMLBtxTlLYe2SsQnAaIvmO1xxXoL170piGIpIiffFkxHMEjvaK0Mxf2EFL+0w\n0LI0YFpJEiDEdDPtiTdgVwoz8MC0aGUebdQf5kTqsNu/u+7Er1UlD/8A35OeeEfJPa0+//Rv/Qzm\nZGdhIYQ4npQGMx6lvvfNw70LywiwjADX8rHLkvjWwad0x9IkIwEJNyDpBsQdD2NUMvBOZnSuXjw+\nESjmwz0FlKHCvikVJgDKUPRlTZ7eaPDcFnkMnU7y2xdimgXJanI9mdIvmjY5O4Xva7aynC6jZsLz\nKDRJp3TPkKE07zpVEXHGvza3Ctacevi7vnuEykNtnT4PPTbBzyCEEOLY0AFG7VzMfdshV3qqTV9Q\nRiISkIgERB1NedLAccJ7vGUExNwAa6iCkFLhXjLhWgGNawW41uS757t6i/zw5108+tsDVEQypGIH\nP5vuz6KUwjANTMvEtEwM00ApRVdbHxrFW/sUxYkqk4rjTtYECDHdlKL91b00Xrh4zNCpNi2KiXI6\nogsZLIbz/E0jfKAPS0SPfXCfkyiyqKpAT8YkWxw7BDu3zGPNIjAweG5TQFt3WB1ofi285yzjiIuC\nz1lp84tn8+OOj67+sHW3rPQSQojjyU/WUHSSZA+kie3aAk0rwA0XAQca9mYqeaJ9PtGIorZSj3T8\n2JZJoRiOAhx6u9c6rBAUtX0qY1749SRGAzZtz3DfQ820dQ7vGzNAXbXNH19cy+u7rZLlS4cVCuGT\nf++gQfeAT235FH8R4piQJECIGcBoXMTO7z3Nwg9egE6UE7gRBuP1tEYW0c58ssXwUvX84VFVDQRo\nDExDU58ssnJuAaXg3KYc29sd+nIGlqGpSfqcNi9cEbxqkcEZTYq+QbBNiE9ycdYV58XY3eqz+e2D\nD/pa6zHzOb0jbF4jhBDiKBkWnS/uovDGPhJxTdDTQc/8s2lJLKM1V0VzpgpQDOZgf6dmYX0QPtAb\n4WiuocbepwM9XHlaYZrQl7fY0qlYUlmkxHT+EVprHv5196gEINR2oMjrb3ZjVNRO8MlhYdvj2pqk\nVJWeNpIECDEDlN/8F2y+/2HK/rCJVxqvoevM90NR4RAQc8EPYDALhWKYAig0thmgdUAkUqQ8EVDw\noStt0p62MCzF3AqfxooC5dGxN32lFOWJ0nEczl9dk+Tff5vhmVfzGCYow6SYPziOW5E6TIshhBDi\nmGh97A0Kr2+nvDFBsgFe6mmiubB03PtyBehLQ3ky7DhKuMVRPfwKPSoBOEjRn7No7oNFlaV3hgfo\n6CqyozlX8rUdzTnWnWLQfPCUoVFNkWkZGAbMn6OJuYhpImsChJgBlGkx78tfYtOPtxCpr2ZZy89p\nGNxMKteBDnzSGSgUDRjZol1R8C18TPrzLm/scdl6wGZLh0PnoE1fzqRtwOb1lihdg8fm4TxX0PTm\nbGzXAq0IfI3jhvsVWBacs9KhuS0Yt0GMEEKIYyfSUI9yFVse3szuTVm6+yYo4YOibzCgvTMgkwfP\nVwTB8DROPXFBCmAgd/jKPb4/PC211LdVdHT5WHa4BsA0TUwz/P9QWMQTLr7vj+wjIKaHjAQIMUPY\n1RXMv3E9Ob+V5kUbCOwIAL4PRa/0nTIIwLQUvjYYyBpEHU22EODrcMSg4Bs0d1tUxd/5yquCB6/u\ngFe2a7btzOIXfbTWKAWma2HaBkrDL5/3UH/wKU8Z3HSZw4I6GRkQQohjrezSC5jjtLDvtW72fudJ\noss/wpy6Iq6t8QPoHjBo7zHIDPrksnDaIohHYbgr3g8UpvIItAmUvk8PTxOa6Bm9vsahaX6EHbvH\njwbMa6ygqys/tLZAjekYMiwD01Tkcz5t+/rp2K/oG4jz/nVQFpv878D3NdlcQCxqyAaVR0GSACFm\niL5v/T8qT02y85RLRhIAYKg+/0Q3ufA2rZRiIGvSUJllQSpNMTDpyUY4kImTLpiTXuh1qF1t8KsX\noWsAMgMFvKKH7TgYZvg9QaODgz1CWmu6e32+9bMcX/jzGJbsHSCEEMdU5/d+RGUiw8DL2zHXr2fe\nusWYqYOrcBMRn31tGs+HUxeMX/sVdsgbVMfSdGYSBCUSgag9fgHxaEoprrq0nPv+o5Pu3oNrxcqT\nJtqw8LyAIBgaGR41YqAMBYY5st+N1ppNWzM4dpwbLzzyKHIQaB78aTsvvZGmd8BjTqXN+e9KcdVl\nc4baJDEVkgQIMUNErCwdDZdRiJQRswtELA+tNf3aJq1cdIlxUz00tKtUWIfZNDSWqbFMD9cKdx0e\nLEZRKqwAkSmAY4aVgUoZzAZEM+GoQRDAb18NEwCAYqGIE3EwhhaYpcocCnmPzOD4qkCZnObXfyhy\n5XklapJOwPM1g9mAeMTAsuRmLoQQpejWZgYiQyU/P/ghzLLUyGtBoNnfCZlcgFIGqfhEZzEItEnU\nLjI4aqophO1IXeLI1d7WnJbgzlMr+OGjLfQN+ERck52tioHBAN8P0CXmC+lA4/sew4+fSikCP6C5\nLaClUzFvzuG/5/0PtfGb3/ViRxxMK8KBPnj4sX48X3PdholLaIvSJAkQYoYwKxIooC6RJu4UcVUW\nlwJG3OeF/Dx68zEibriVOzqcpjOYBVMFGI5FebSIAoqBiW34GArKozkc22Zjs8GbzQbdaYVrQUN1\nwMWn+SPl47buzvHokwPs2lfANBUL5zmsXpmivScsTQrhiIRpGSgFCxeVUVbmsGVz14Q/T3Pb5KYg\naa358eP9vLwxS3e/R3nSZM3yKNdeVibDvEIIcYjM/l6cpnKwLIxFi4DwPrplt6a1M2wXDAMsK6wg\nV1q4LiBuF3D9LL6TwvPBtTQ1CY+yyOTWdjXOjfDRD4QP3w89lmZgZ46yCoV/uG1jDjm1MhQFDw70\nc9gkYDDj8/zrA0QSsTHltE3b4rHns3zgsgDLkqWuUyFJgBAzxelriJXZKLeIQ44YWZSCl3ZGeOXt\nAM8fIOIqaufY1Nc5OHY4rKsLRfADyuMehlJkPBdXZQkChWN5ZL0iT22yKfrhA3XRhy37THJ5xVXn\nenT2eNz7ox46e4cf2jVvbMuxp80jVVeNdUiduPp5cSoqwnIOw0O6pVSVTe4B/se/7efRpw5uc9/e\n5fOrZ9J4PnzoSikeLYQQowVunERTNQdebkFnww3D3tql2bkvnPYZi9lYVjhlM50JiJaovmOqANvw\nyRVNlkY60FWR8W+aou6+cEpSqswlm8sBE2wUYCicqEUx540sPo66cMoROvL37M+TyZu40fHTl4q+\nwe9eHuSPzkkexU9w8pEkQIgZQp97GV46vKE7hDX/f/N6glffjgHhA3o2C719PkVPM7/BJepCzgs4\nL/kmHSyn6Cm27HHpHohQ9BTJqAdajSQAo+3tVOzrUjz7QnpUAnBQb78HTprKmjKAkfmWycTBShSp\ncof+vsK4z1oW/MkFR54K5HmalzaV3vXylc0Zrn53iogrPTtCCDFs3t9+HLt/J4ULq7FffBEa5rOv\nI3wtGrWwR+3wvu8AxCLDC4NDJh5xM0O+AAsKW9HV48uLvhOpePh9MwMFLNvAG980AGBZBpGog+NY\n5DJFvKLP8sYjl66ur7FxndILmZVS7GuXDSunSlpXIWYI5br4yUoADAKKHrzZPH4XFa2htb1IEIQV\nehwbqp1+nCDLm7ssWrtN8kWDQCv6MjZ9WbPkouCCp9nREtBVIgEY5he9kcoOsbhDEAThwq4hdXVx\n5tREh/ehAcB14Lo/cohO4uG9f9Cnq7f0jbu7L6CzR27qQggxWs2G9cRPX8rAp/8HOweq6N7eSr4A\nhqGwhqZs2lY4KpAvGGzepdjTBulBj3Krn3nRdmpVK8uCt3DrFoIR9gd39Cme32Hz/A6b1p6pT8U8\nf02EREzR1ZXDdS3MCabmROPh0IRhGrgxm1MXR7li7ZHPX56yKU9N3Hcdjcj00amSkQAhZghDKdRQ\nNZ0AxZt7onglevABMtmAwaxPMm5h6SIa6MmYdPeXuumqoYXB4cO8V/Tp6hggmymwZ7vG1BM/aJcn\nDQI/QCmFG3XI5zwymSLxeDgaoJRiYVMZNbUxuruyuDrHX14VxbUndzNOxkzKkyYHesYnIuVJg8py\nuUUJIcRohhvBzw4ypybDvrMvZ2fHIKAxTUXtHIN4NNy7pejBwGBAV49if6difipNdaQ/PIkZxZuz\nYGSE94WdNpv3WXhB+PXmfRZL6jwuWFqcdGW5+XUW11+W4LHnMnT0ZXBjEQrZsKcfwjVl0YRLLHFw\n6pFpGiysCxcjT8a1V5Tzrf/oHXc8GTe46Kx3sAvmSU5GAoSYIRw3ilnIYARFijgEwcR3XtMExzbw\nfU3U6yOjknRmogQT7LwyfBPXWtPR2sfgQJ7ADzeLyQelRwqqyg3ed3GcmBtWnNBak6qIkU77ZLNj\nE4do1MJQCt/Tk04AAGxbsXp56T3jTz81QiwityghhBgjksDbvpPV7hbmxDL4HvieZl6dTXnKwLbD\n9QCOragsM6gqD9ePNc05uPbKVMZIArC/R7Fp78EEACDQiq2tFm+3T22/l7UrXP7bzeV86oYktvaJ\nxiPEU1HK5ySonltOssRmAK45+Q0mz1uT4MqLEmPKnlaVG1x7eRnVFdJpNFXyGxNihnBtm7iXo/9A\nJ52JuSyqL/L05nAh76EqykxcR9Hd63NO5X7azQWkYhqldMlSoqloWK95f3uRXGbsVvCmaeJEXSyK\nZLMByoCF8xyuuiTFisUOtZUBL27VbN8fxuL7ira2PBUVAY4TJiId7Wk6WjOsWDT5kqDDrr+8DM/T\nvPpWlt6BgFTc4IylEW56X8WUzyWEECeD2A1/TvEn93LlOR69lWezaz+UpcY/YCulSMQNHLMw0tuu\nAg/HOPj4t6vDGtpgctyn2dttsKhuaptNGkqxcJ7N8iaPt/YZWLaJZRsl6/i7tmZ545ROzzV/XM7F\nZyV44c0MtqU4/8z4pKafivEkCRBiBonPnY8xuIO+O/+RJz/4derrc+xt8TFNhT20IMpUASuaDGrj\naSpyXeyLrMBXFvEYVCQ03QNjb7QKzbuafJY1BDzyTJ62feO/r21b1FfZ/OmGGHOqE7hGfuSG3Vhj\n0FgDz26GJ14LNyfzfU1nZ7jqK5ctMNAbLu79wEUTbV8/MdNU/OmfVHDNZWV0dHpUV1nEo3JDF0KI\nieiKOgrnfgAevptLz8rwSO1lOHbp+6ZtQTxlQuBj+QUcL4tR1TTyeoly/iNKJweTc9k5Dpv3eoCJ\nVwzXk42tKKdZtRAqUxOdYWJV5RbvWf8OPijGkJZWiBkmumQxTV/5nyQSJvV1cZoabZIpl0jEJhKx\nsV2H/kENgU9lhY1vOISXssGyBQE15QGuHdaArogHnHuqx8oFAZYJS+cbYxbxjlaRMmmoc2isc0v2\n2Jy3HC44TWEZYa+Q7wfkMgUG+sIEYO0Kh5qjGI6NRQxOaXAkARBCiEmILV/Br87/J14u20A0FsHz\nSz/N+wEUfEhlO4gXejHdOFgH64bOLQ8YV7x/SG1qaqMAo9VUmCQjemQ9WjHvUyz6+J5P4Pm872x4\n95p3fHpxDMhIgBAzUFshjmUaDKR9utMmo3dzBEVzu4VXDFg0vwJ31JRNx4Y1SzwaUgHZvKIsPrS5\n2JDlp9gsarDYvmfsnH7HCh/iD0cpuHgVrFth8LPf5dmyu4iX11RXWFyxzmbtsqlPBRJCCPHOLWhM\nsKs3SqB9MllNKjG2A0drTTan8X3NYDJK4JQTLxtbkL+p1mdXp8/uA2MfCedWeCyf986TAIA7bnL5\nxo/z7O9SoBRBLqA8ofn0DTayr9f0kyRAiBnIVmHvSTobMDYBGKZo77dZWuIKTjqaqANRZ3zPjlKK\nP3tvjB89nmVbc5FsAeqrDM5b5bJ2RYkdZUpwbcV1l7jA5N4vhBDi+KipUOzqDTtpunoBAqIRhWWC\n58FgVpPJQS6v+WmwmlWNPsvV2AL+SsElKwpsbvFp7TXRGmrKAlY2eBxmP8hJUUrxyauPfiMycXxI\nEiDEDFST9DGVP9EILRCWVovZHnlfAQoDTTKiqU0evtJCMm7ysT9JkMkFZHOaipSBYUh9ZSGEmG3m\nVXjEWnzSQw/9Xb2gVDgC7PuACvduUcrAsS1cq3RJaMOAlY0+KxuPrudfzC6SBAgxA5mm4tTqPnr6\nUgykS7/HVj6L5wSkC1DwFHFXE5nCFR2LGMSkg0YIIWYtQ8Ga+XmeHHQJ/HCRr9bgDT3LOzZoHeA6\nilTEZ0FV8fAnFCcVmZElxAy1qMbmolM7ScaDca8ZKuCSlT5KQdKFqvjUEgAhhBD/NdSX+bx/TYZo\nBBwn3EfGsiDiMjIiMCcFqxtzRz29R/zXIo8NQsxQSikaqhN89KIcL2zTbG1xyXsGqWjAZasDqsun\nO0IhhBAzQcyFG87O8Mpuk21tFgEG+bxPkMtxxkLF2UvVpHf+FScPSQKEmOFsy+L8FXD+igAYPyog\nhBBCGAasbfJZ2+STL2g8Hym5LA5LkgAhhBBCiP9CXEdJ/TZxRJIiCiGEEEIIcZKRJEAIIYQQQoiT\njCQBQgghhBBCnGQkCRBCCCGEEOIkI0mAEEIIIYQQJxlJAoQQQgghhDjJSBIghBBCCCHESUaSACGE\nEEIIIU4ykgQIIYQQQghxkpEkQAghhBBCiJOMJAFCCCGEEEKcZCQJEEIIIYQQ4iRjHekN2WyWO+64\ng66uLvL5PLfccgvLli3jc5/7HJ7nYVkWd955J9XV1SciXiGEEDOQtBVCCDG7HDEJeOKJJ1i5ciUf\n//jHaWlp4eabb2b16tVcf/31bNiwgQceeID777+f22+//UTEK4QQYgaStkIIIWaXIyYBGzZsGPl/\na2srtbW1fOELX8B1XQAqKirYtGnT8YtQCCHEjCdthRBCzC5HTAKG3XjjjbS1tXHXXXcRi8UA8H2f\nBx98kE9+8pPHLUAhhBCzh7QVQggxOyittZ7sm9966y1uv/12fvaznxEEAbfffjsLFy7k1ltvPZ4x\nCiGEmEWkrRBCiJnviNWBNm7cSGtrKwDLly/H9326u7v53Oc+x4IFC+SmLoQQQtoKIYSYZY6YBLz0\n0kvcd999AHR2dpLJZHj22WexbZtPfepTxz1AIYQQM5+0FUIIMbsccTpQLpfj85//PK2treRyOW69\n9Vbuuece8vk8iUQCgEWLFvHFL37xRMQrhBBiBpK2QgghZpcprQkQQgghhBBCzH6yY7AQQgghhBAn\nGUkChBBCCCGEOMkclyTghRdeYN26dbsRLoMAAAZrSURBVDzxxBMjx7Zs2cKHPvQhbrrpJm655Ray\n2SwAzz33HO9///u5+uqreeihh45HOFMyldgBtNbceOON/Mu//Mt0hDvGVGL/9re/zbXXXss111zD\nAw88MF0hj5hK7N/61re49tprue6663jqqaemK+QRpWIPgoCvfvWrnHvuuSPHfN/n85//PB/+8Ie5\n/vrr+clPfjId4Y4x2dhhdlyrE8UOM/9anSj2mXatHkvSVkyP2dxWgLQX00Xai+lxPNuLY54E7Nmz\nh/vvv58zzzxzzPEvfelL3HHHHXzve99jwYIFPPzww3iexxe+8AXuvvtuHnjgAZ599tljHc6UTCX2\nYQ899BDFYvFEhzrOVGLfu3cvDz/8MD/4wQ/4/ve/z7333svAwMA0RT712H/xi1/w4IMPcvfdd/Pl\nL38Z3/enKfKJY7/nnnuor69n9JKbp59+mmw2ywMPPMB3vvMdvvrVrxIEwYkOecRUYp8t12qp2IfN\n9Gu1VOwz7Vo9lqStmB6zua0AaS+mi7QX0+N4txfHPAmorq7mX//1X0kmk2OO33XXXZxxxhkAVFZW\n0tvby6ZNm1iwYAF1dXVEo1H++Z//+ViHMyVTiR2gu7ubRx55hBtvvPGEx3qoqcQ+b948HnzwQSzL\nwnEcIpEI6XR6OsIGphb7H/7wB9avX4/jOFRWVjJv3jx27NgxHWEDE8d+00038eEPf3jMsYqKCvr7\n+wmCgEwmQzwexzCmb0beVGKfLddqqdhhdlyrpWKfadfqsSRtxfSYzW0FSHsxXaS9mB7Hu7045n9R\n0WgU0zTHHR8uEZfJZPjpT3/KFVdcQUtLC7Zt89d//dfceOONPProo8c6nCmZSuwAd955J5/+9KdL\nfuZEm0rshmEQj8cBeOaZZ6ioqKC+vv6ExjvaVGLv7OyksrJy5D2VlZUcOHDghMV6qCPFPtrq1auZ\nO3cul156KZdffjmf/exnT0SIE5pK7LPtWj3UbLpWR5tp1+qxJG3F9JjNbQVIezFdpL2YHse7vbCO\nJriHHnpo3Fyv2267jfXr15d8fyaT4ROf+AQ333wzixYtYsuWLbS2tvLggw+Sy+W4+uqrOf/886mo\nqDiasE5I7C+++CKmaXLmmWeye/fu4x7vaEcb+7DXXnuNr3zlK9xzzz3HNd7Rjjb2xx57bMzrJ7LC\n7VRjP9RLL71Ea2srjz32GF1dXXzkIx/hoosuwnGc4xHuGEcbu9Z61lyrh5pN1+pEpuNaPZakrZgd\nf38zqa0AaS+kvZg6aS+mdr0eVRJw3XXXcd11103qvZ7nccstt/De976Xq6++GoCqqipOP/10otEo\n0WiUJUuWsHfv3hPyh3K0sT/++ONs3LiR66+/nu7ubgqFAo2NjVx11VXHM2zg6GOHcBHV3//933PX\nXXed0J6do429pqaGXbt2jbynvb2dmpqa4xLroaYSeymvvPIK69atw7IsamtrKS8vp729ncbGxmMY\nZWlHG/tsuVZLmS3X6kSm61o9lqStmPl/fzOtrQBpL6S9mDppL6Z2vR5VEjAV3/zmNzn77LPH/IBr\n1qzha1/7Gvl8HqUUzc3NNDQ0nKiQJq1U7HfcccfI/x9++GFaWlpOyB/JVJWK3fd9/u7v/o6vf/3r\nM/L3PaxU7Oeeey73338/t912Gz09PXR0dLB48eJpjHLyFixYwC9/+UsA0uk07e3tVFdXT3NUkzNb\nrtVSZsu1WspsuVaPJWkrpsdsbitA2ouZZLZcr6XMluu1lHdyvR7zHYOffPJJ7r33Xt5++20qKyup\nrq7mvvvu44ILLqChoQHbtgE455xzuPXWW3n88cf5xje+gVKK6667jhtuuOFYhnNcYx82/Idy2223\nTVfoU4p99erVfOYzn2Hp0qUjn//bv/3bkUVVMzn2W2+9le9+97s88sgjKKX4m7/5G9atWzctcR8u\n9n/4h39g27ZtvPLKK5x55plccsklfPSjH+WLX/wi27dvJwgCPvKRj3DllVfOitg/9rGPzYprdaLY\nh83ka7VU7EuWLJlR1+qxJG3F9JjNbQVIezEbYpf2YnpifyftxTFPAoQQQgghhBAzm+wYLIQQQggh\nxElGkgAhhBBCCCFOMpIECCGEEEIIcZKRJEAIIYQQQoiTjCQBQgghhBBCnGQkCRBCCCGEEOIkI0mA\nEEIIIYQQJxlJAoQQQgghhDjJ/H9/4RzLTyB6FAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "32_DbjnfXJlC", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Wait a second...this should have given us a nice map of the state of California, with red showing up in expensive areas like the San Francisco and Los Angeles.\n", + "\n", + "The training set sort of does, compared to a [real map](https://www.google.com/maps/place/California/@37.1870174,-123.7642688,6z/data=!3m1!4b1!4m2!3m1!1s0x808fb9fe5f285e3d:0x8b5109a227086f55), but the validation set clearly doesn't.\n", + "\n", + "**Go back up and look at the data from Task 1 again.**\n", + "\n", + "Do you see any other differences in the distributions of features or targets between the training and validation data?" + ] + }, + { + "metadata": { + "id": "49NC4_KIZxk_", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Looking at the tables of summary stats above, it's easy to wonder how anyone would do a useful data check. What's the right 75th percentile value for total_rooms per city block?\n", + "\n", + "The key thing to notice is that for any given feature or column, the distribution of values between the train and validation splits should be roughly equal.\n", + "\n", + "The fact that this is not the case is a real worry, and shows that we likely have a fault in the way that our train and validation split was created." + ] + }, + { + "metadata": { + "id": "025Ky0Dq9ig0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 3: Return to the Data Importing and Pre-Processing Code, and See if You Spot Any Bugs\n", + "If you do, go ahead and fix the bug. Don't spend more than a minute or two looking. If you can't find the bug, check the solution." + ] + }, + { + "metadata": { + "id": "JFsd2eWHAMdy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "When you've found and fixed the issue, re-run `latitude` / `longitude` plotting cell above and confirm that our sanity checks look better.\n", + "\n", + "By the way, there's an important lesson here.\n", + "\n", + "**Debugging in ML is often *data debugging* rather than code debugging.**\n", + "\n", + "If the data is wrong, even the most advanced ML code can't save things." + ] + }, + { + "metadata": { + "id": "BnEVbYJvW2wu", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The code that randomizes the data (`np.random.permutation`) is commented out, so we're not doing any randomization prior to splitting the data.\n", + "\n", + "If we don't randomize the data properly before creating training and validation splits, then we may be in trouble if the data is given to us in some sorted order, which appears to be the case here." + ] + }, + { + "metadata": { + "id": "xCdqLpQyAos2", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 4: Train and Evaluate a Model\n", + "\n", + "**Spend 5 minutes or so trying different hyperparameter settings. Try to get the best validation performance you can.**\n", + "\n", + "Next, we'll train a linear regressor using all the features in the data set, and see how well we do.\n", + "\n", + "Let's define the same input function we've used previously for loading the data into a TensorFlow model.\n" + ] + }, + { + "metadata": { + "id": "rzcIPGxxgG0t", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model of multiple features.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "CvrKoBmNgRCO", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Because we're now working with multiple input features, let's modularize our code for configuring feature columns into a separate function. (For now, this code is fairly simple, as all our features are numeric, but we'll build on this code as we use other types of features in future exercises.)" + ] + }, + { + "metadata": { + "id": "wEW5_XYtgZ-H", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns(input_features):\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Args:\n", + " input_features: The names of the numerical input features to use.\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " return set([tf.feature_column.numeric_column(my_feature)\n", + " for my_feature in input_features])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "D0o2wnnzf8BD", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, go ahead and complete the `train_model()` code below to set up the input functions and calculate predictions.\n", + "\n", + "**NOTE:** It's okay to reference the code from the previous exercises, but make sure to call `predict()` on the appropriate data sets.\n", + "\n", + "Compare the losses on training data and validation data. With a single raw feature, our best root mean squared error (RMSE) was of about 180.\n", + "\n", + "See how much better you can do now that we can use multiple features.\n", + "\n", + "Check the data using some of the methods we've looked at before. These might include:\n", + "\n", + " * Comparing distributions of predictions and actual target values\n", + "\n", + " * Creating a scatter plot of predictions vs. target values\n", + "\n", + " * Creating two scatter plots of validation data using `latitude` and `longitude`:\n", + " * One plot mapping color to actual target `median_house_value`\n", + " * A second plot mapping color to predicted `median_house_value` for side-by-side comparison." + ] + }, + { + "metadata": { + "id": "UXt0_4ZTEf4V", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear regression model of multiple features.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearRegressor` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + " \n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # 1. Create input functions.\n", + " training_input_fn =lambda : my_input_fn(features=training_examples, targets=training_targets, batch_size=batch_size)\n", + " predict_training_input_fn =lambda : my_input_fn(features=training_examples, targets=training_targets, shuffle=False, num_epochs=1)\n", + " predict_validation_input_fn =lambda : my_input_fn(features=validation_examples, targets=validation_targets, shuffle=False, num_epochs=1)\n", + " \n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period,\n", + " )\n", + " # 2. Take a break and compute predictions.\n", + " training_predictions = linear_regressor.predict(input_fn=predict_training_input_fn)\n", + " training_predictions = np.array([item['predictions'][0] for item in training_predictions])\n", + " validation_predictions = linear_regressor.predict(input_fn=predict_validation_input_fn)\n", + " validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_regressor" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "zFFRmvUGh8wd", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 622 + }, + "outputId": "a37e3089-2a3c-4900-fa7c-b2473b60d083" + }, + "cell_type": "code", + "source": [ + "linear_regressor = train_model(\n", + " # TWEAK THESE VALUES TO SEE HOW MUCH YOU CAN IMPROVE THE RMSE\n", + " learning_rate=0.00006,\n", + " steps=1000,\n", + " batch_size=6,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 27, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 177.00\n", + " period 01 : 167.71\n", + " period 02 : 170.89\n", + " period 03 : 172.27\n", + " period 04 : 172.92\n", + " period 05 : 177.32\n", + " period 06 : 177.28\n", + " period 07 : 173.22\n", + " period 08 : 173.59\n", + " period 09 : 173.71\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8VOW5wPHfLJns+0ISksnCkgBh\nB9mXEJaERRSUApJqa21vrcWrvVZtxdrS2tpe7RW3ql0sWFsVAUU22fcdZA+B7Dsh+57MzLl/JBnC\nFrbMnCzP9/PJJ5ntnGfmJJNn3vM876tRFEVBCCGEEKID0aodgBBCCCHEnZIERgghhBAdjiQwQggh\nhOhwJIERQgghRIcjCYwQQgghOhxJYIQQQgjR4ejVDkCI9iwqKgqj0YhOpwPAbDYzfPhwXnrpJVxc\nXO56u5999hnz5s277vpVq1bx4osv8pe//IXY2Fjr9bW1tYwePZqpU6fyhz/84a73e7syMzN59dVX\nSUtLA8DZ2ZmnnnqKyZMn23zfd+Ldd98lMzPzutfk4MGDPP7444SEhFz3mI0bN9orvHuSnZ1NXFwc\nERERACiKgp+fH7/85S/p27fvHW3r9ddfJzg4mAULFtz2Y7788ktWrlzJihUr7mhfQtiLJDBC3MKK\nFSsIDAwEoL6+nmeeeYb333+fZ5555q62V1hYyF//+tcbJjAAQUFBfP3111clMNu3b8fDw+Ou9nc3\n/ud//ofZs2fzl7/8BYATJ07w6KOPsmHDBoKCguwWx70ICgrqMMnKzeh0uquew/r16/nJT37Cpk2b\nMBgMt72dn/3sZ7YITwhVySkkIe6AwWBg3LhxnDt3DoC6ujpefvllpk2bRkJCAn/4wx8wm80AJCUl\nMX/+fOLj45k9eza7d+8GYP78+eTm5hIfH099ff11+xgyZAgHDx6kpqbGet369esZM2aM9XJ9fT2/\n/e1vmTZtGpMmTbImGgDHjx9nzpw5xMfHM336dPbt2wc0fqIfO3Ysy5cvZ9asWYwbN47169ff8Hkm\nJyczcOBA6+WBAweyadMmayL39ttvM2HCBB544AE++OADJk2aBMALL7zAu+++a31cy8u3iuvVV19l\n0aJFABw9epS5c+cyZcoU5s2bR1ZWFtA4EvXf//3fxMbGsmjRIvLz829xxG5s1apVPPXUUzz66KP8\n8Y9/5ODBg8yfP5+nn37a+s9+w4YNzJw5k/j4eL773e+SmZkJwFtvvcVLL73EQw89xEcffXTVdp9+\n+mn+/ve/Wy+fO3eOsWPHYrFY+POf/8y0adOYNm0a3/3udykoKLjjuKdPn05tbS2pqakAfPrpp8TH\nxzNp0iSeffZZamtrgcbX/fe//z2zZs1iw4YNVx2Hm/1eWiwWfvOb3zBx4kQeeughkpKSrPs9dOgQ\nDz74INOnTychIYENGzbccexCtDlFCHFTvXv3VvLy8qyXS0tLlUceeUR59913FUVRlPfff1954okn\nlIaGBqWmpkaZO3eusmbNGsVsNisJCQnK2rVrFUVRlJMnTyrDhw9XKioqlAMHDiiTJ0++4f6++OIL\n5fnnn1f+53/+x/rYiooKJS4uTvn888+V559/XlEURXn77beVRx99VKmrq1OqqqqUBx54QNm2bZui\nKIoyc+ZM5euvv1YURVFWr15t3VdWVpbSt29fZcWKFYqiKMr69euVKVOm3DCOn/70p0psbKzyz3/+\nU7l48eJVt50/f14ZNmyYcunSJaWhoUH58Y9/rMTGxiqKoijPP/+88s4771jv2/Jya3H169dPWbVq\nlfX5Dh8+XNmzZ4+iKIqydu1a5cEHH1QURVE+/vhj5ZFHHlEaGhqU4uJiJTY21vqatNTaa9z8Og8a\nNEhJS0uz3r9///7Kvn37FEVRlJycHGXo0KFKenq6oiiK8re//U159NFHFUVRlGXLliljx45VioqK\nrtvuunXrlEceecR6+c0331SWLl2qJCcnK1OnTlXq6+sVRVGU5cuXK6tXr75pfM2vS58+fa67fvjw\n4UpKSopy+PBhZdSoUUp+fr6iKIqyZMkS5Q9/+IOiKI2v+6xZs5Ta2lrr5XfeeafV38sdO3YoU6dO\nVSorK5WamhrloYceUhYtWqQoiqLMmTNHOXjwoKIoipKWlqY8++yzrcYuhD3ICIwQt5CYmEh8fDxx\ncXHExcUxcuRInnjiCQB27NjBvHnz0Ov1ODk5MWvWLPbu3Ut2djaXL19mxowZAPTv35/g4GBOnTp1\nW/ucMWMGX3/9NQBbtmwhNjYWrfbKn+v27dtZuHAhBoMBFxcXZs+ezTfffAPAmjVrSEhIAGDo0KHW\n0QsAk8nEnDlzAOjXrx+5ubk33P+f/vQnHnnkEdauXcvMmTOZNGkS//73v4HG0ZHhw4fj7++PXq9n\n5syZt/WcWouroaGBKVOmWLffrVs364jTzJkzyczMJDc3lyNHjjBlyhT0ej3e3t5XnWa7Vl5eHvHx\n8Vd9tayVCQ8PJzw83HrZycmJUaNGAbB3715GjBhBWFgYAA8//DAHDx7EZDIBjSNSPj4+1+1z4sSJ\nnD17ltLSUgA2b95MfHw8Hh4eFBcXs3btWsrKykhMTOSBBx64rdetmaIofPrpp3Tr1o3w8HC2bdvG\n9OnT6datGwALFiyw/g4AjBo1CkdHx6u20drv5eHDh5kwYQKurq44OTlZjxWAr68va9asISUlhfDw\ncF5//fU7il0IW5AaGCFuobkGpri42Hr6Q69v/NMpLi7G09PTel9PT0+KioooLi7G3d0djUZjva35\nn5ifn98t9zlmzBheeuklSktLWbduHU8++aS1oBagoqKC3//+97zxxhtA4ymlAQMGALB27VqWL19O\nVVUVFosFpcVyZzqdzlp8rNVqsVgsN9y/o6Mjjz/+OI8//jjl5eVs3LiRV199lZCQEMrKyq6qx/H1\n9b3l87mduNzc3AAoLy8nKyuL+Ph46+0Gg4Hi4mLKyspwd3e3Xu/h4UFVVdUN93erGpiWx+3ayyUl\nJVc9R3d3dxRFoaSk5IaPbebi4sLo0aPZsWMHQ4cOpby8nKFDh6LRaHjrrbf4+9//ztKlSxk+fDi/\n/vWvb1lPZDabra+Doij07NmTd999F61WS0VFBZs3b2bPnj3W2xsaGm76/IBWfy/LysoICAi46vpm\nr776Ku+99x7f+973cHJy4tlnn73q+AihBklghLhNPj4+JCYm8qc//Yn33nsPAD8/P+unbYDS0lL8\n/Pzw9fWlrKwMRVGs/yxKS0tv+5+9g4MDsbGxrFmzhoyMDAYPHnxVAhMQEMD3v//960YgCgoKeOml\nl/j888/p06cP6enpTJs27Y6eZ3FxMefOnbOOgHh4eDBv3jx2795NcnIy7u7uVFRUXHX/ZtcmRWVl\nZXccV0BAAJGRkaxateq62zw8PG6677bk6+vL8ePHrZfLysrQarV4e3vf8rHTpk1j8+bNlJSUMG3a\nNOvxHzlyJCNHjqS6uprXXnuN//3f/73lSMa1RbwtBQQE8OCDD/L888/f0fO62e9la6+tn58fS5Ys\nYcmSJezZs4ef/vSnjBs3DldX19vetxBtTU4hCXEHvve973H8+HEOHToENJ4yWLlyJWazmerqar78\n8ksmTJhASEgIgYGB1iLZY8eOcfnyZQYMGIBer6e6utp6OuJmZsyYwYcffnjD1uW4uDg+//xzzGYz\niqLw7rvvsmvXLoqLi3FxcSEyMhKTycSnn34KcNNRihupra1l8eLF1uJOgIyMDE6cOMGwYcMYPHgw\nR44cobi4GJPJxJo1a6z38/f3txZ/ZmVlcezYMYA7imvgwIEUFhZy4sQJ63aee+45FEVh0KBBbNu2\nDbPZTHFxMbt27brt53UnxowZw5EjR6ynuf7zn/8wZswY68hba2JjYzl+/DhbtmyxnobZs2cPv/71\nr7FYLLi4uBAdHX3VKMjdmDRpEt9884010diyZQsffPBBq49p7fdy8ODB7Nmzh5qaGmpqaqyJU0ND\nA4mJiVy6dAloPPWo1+uvOqUphBpkBEaIO+Dm5sYPf/hDXnvtNVauXEliYiJZWVnMmDEDjUZDfHw8\nCQkJaDQa3njjDX71q1/x9ttv4+zszJtvvomLiwtRUVF4enoyZswYVq9eTXBw8A33dd9996HRaJg+\nffp1ty1cuJDs7GxmzJiBoijExMTw6KOP4uLiwvjx45k2bRq+vr688MILHDt2jMTERJYtW3ZbzzE4\nOJj33nuPZcuW8dvf/hZFUXBzc+PFF1+0diZ95zvf4cEHH8Tb25upU6dy4cIFAObNm8dTTz3F1KlT\n6du3r3WUJTo6+rbjcnJyYtmyZSxdupSqqiocHBx4+umn0Wg0zJs3jyNHjjB58mSCg4OZPHnyVaMG\nLTXXwFzrj3/84y1fg8DAQH7729/y5JNP0tDQQEhICEuXLr2t18/NzY1+/fpx/vx5Bg0aBMDw4cNZ\nt24d06ZNw2Aw4OPjw6uvvgrAz3/+c2sn0Z3o168f//Vf/0ViYiIWiwVfX19+/etft/qY1n4vY2Nj\n2bFjB/Hx8fj5+TFhwgSOHDmCg4MDDz30EI899hjQOMr20ksv4ezsfEfxCtHWNErLE9FCCHGHjhw5\nws9//nO2bdumdihCiC5ExgCFEEII0eHY9BRScnIyTz75JI899hiLFi1i8eLF1ir+0tJSBg0axCuv\nvMLLL79Meno6DQ0NLFy48I7bC4UQQgjRtdjsFFJ1dTU/+tGPCA8PJyoqyjrDZrMXX3yRBQsWUFRU\nxNq1a3njjTeora1l8uTJ7Nq1SwrEhBBCCHFTNssSDAYDH3744VXzCjRLTU2loqKCAQMG4O3tTXl5\nORaLherqalxdXSV5EUIIIUSrbHYKSa/X37TlcPny5dYRmUGDBhEcHExcXByVlZXWynwhhBBCiJux\next1fX09R48e5ZVXXgEaOxjy8vLYvHkzRUVFfPe732XChAmtrrRaWHjjtsm24O3tQklJtc22L+6e\nHJv2SY5L+yXHpv2SY3N7/P3db3qb3c/VHD582DrlOTROpDRq1Cj0ej3dunXDy8vrrlZpbSt6vU61\nfYvWybFpn+S4tF9ybNovOTb3zu4JzKlTp4iOjrZeDgsL4+TJkwBUVlZSUFCAv7+/vcMSQgghRAdi\ns1NIp0+f5rXXXiMnJwe9Xs+mTZt46623KCwsxGg0Wu83ZcoU9u7dy4IFC7BYLDz33HM4OTnZKiwh\nhBBCdAIdciZeW9bA+Pu723T74u7JsWmf5Li0X3Js2i85NrenXdXACCGEEELcK0lghBBCCNHhSAIj\nhBBCiA5HEhghhBBCdDiSwAghhBCdzI4dW2/rfm+++Tq5uTk3vf2FF55tq5DanCQwQgghRCeSl5fL\nli2bbuu+Tz/9M4KDu9/09j/84Y22CqvN2X0pASGEEELYzhtvvMa5c2cYN244U6cmkJeXy//937v8\n/ve/obDwEjU1NXz/+z9kzJhxPPXUD3n22Z+zfftWqqoqyczMICcnm8WLf8aoUWOYMSOOdeu28tRT\nP2T48BEcO3aE0tJSXnvtz/j5+fGb3ywhPz+P/v0HsG3bFlavXm+35ykJjBBCCGEjn227yOGkS9dd\nr9NpMJvvbhq24dEBzJvU86a3L1iQyKpVnxER0YPMzHTeffevlJQUc999I0lImElOTjZLlrzAmDHj\nrnrcpUsF/O//LuPAgX18+eUXjBo15qrbXV1defPN93jvvbfYtWsbwcEh1NfX8cEHH7F3724+++zf\nd/V87pYkMEII0eTbC5cpKq9Fp9Og02jQajXotM3ftS1+vvK99eu0N72fVqNR++mKLqBPn34AuLt7\ncO7cGb76ahUajZby8rLr7jtgwCAAAgICqKysvO72gQMHW28vKysjIyON/v0HAjBq1Bh0Ovuu7yQJ\njBBCAOczS1j2xUm77U9D46dwa1KjuZtk6cr9rtqOrvHn/r38GdLD127PSVxv3qSeNxwtsddMvA4O\nDgBs3ryR8vJy3nnnr5SXl/ODHyRed9+WCciNJum/9nZFUdBqG6/TaDRo7JyUSwIjhOjyFEXhi52p\nACyc3AtXZwcsFgWzRbnuu9liuXKd0uI2s4JZufr+FouCqcXPjddbrtle088tHms2KzSYLZgbrt1/\n42NvdwGYnd/m8otFQ+kZ4mnDV0+0N1qtFrPZfNV1paWlBAUFo9Vq2blzGw0NDfe8n+7dQ6zdTocO\nHbhun7YmCYwQoss7kVLExZwyBvfyY/KwULXDuSWLck1SpDQlUC2SodzCKpZ9cZJPtiTz0qPD5JRV\nFxIWFsH580kEBQXj5eUFwMSJk3jhhWc5e/Y0M2bcT0BAAP/4x4f3tJ/Ro8exbt1X/PjHjzN48FA8\nPOybKMtijteQBbbaLzk27VNHPy4WReGVvx8mp7CSXz9+HyH+bmqH1GY+2nSeXcdzeHxGH8b0D1I7\nHNFCR/+7ASgvL+PYsSNMnBhHYeElnn76x3zyyRdtuo/WFnOUERghRJd26GwB2YWVjOoX2KmSF4DH\nZvTjwKk8vtiZwtAof5wM8pYv2o6Liyvbtm3hk09WoCgWfvpT+056J7/NQoguy2S2sGZ3Gjqthtnj\nItQOp835ezsTP8LIV3vT2XAgkwfHR6odkuhE9Ho9v/nN71Xbv8zE20JNnYm8y1VqhyGEsJM9J/O4\nVFrD+EHBBHg5qx2OTSSMCMPLzcDGQ5kUldWqHY4QbUYSmBb+veUCi1/fTnXtvVdnCyHat/oGM1/t\nTcOg1zJrdLja4diMo0HHQxN70GCy8PmOi2qHI0SbkQSmBW93R2rrzSRnXz/BjxCic9l6LJvSynom\nDwvFy81R7XBsamS/QCKCPDh07hIX5f1NdBKSwLQQbWxsNzufWaJyJEIIW6quNbF+fwbOjnoSRhrV\nDsfmtBoNCyb3AuDfW5OxdLzmUyGuIwlMC5HdPdHrtCRllqodihDChjYdyqSq1kTCCCOuTg5qh2MX\nPbt7MqJvN9LyKjhwJl/tcEQ78NBDs6iurmbFio84ffrqWairq6t56KFZrT6+eRK79evXsnPndpvF\neTOSwLTg6KCjt9GLzIIKqmtNaocjhLCB8qp6vjmchYergSkdYNK6tvTQhB446LWs3JFCbb28x4lG\niYmPERMz4I4ek5eXy5YtmwCYPn0WEybE2iK0Vkkb9TX69/DjbFoxF7JLGdjTT+1whBBt7Ov96dQ1\nmHloYg8cDfZdfE5tvp5OxN9nZO0+aavuzL7//Ud49dXXCQwMJD8/jxdf/Bn+/gHU1NRQW1vLM888\nR9++Mdb7/+53rzBxYhyDBg3ml7/8OfX19daFHQG++WYDK1d+ik6nJTy8B88//0veeOM1zp07wz/+\n8SEWiwUvLy/mzv0O7777JqdOncBkMjN37jzi42fw1FM/ZPjwERw7doTS0lJee+3PBAYG3vPzlATm\nGv17+PHplmTOZ0oCI0RnU1RWy47jOfh6ODF+YLDa4ahi+sgwdp/MZeOhTMYPDMbX00ntkDq1VRe/\n5vilU9ddr9NqMFvurhZpcEB/5vScedPbx4+PZe/eXcydO4/du3cyfnwsPXr0Yvz4iRw9eph//euf\n/O53f7rucZs2bSAysgeLF/+MrVu/sY6w1NTU8Prrb+Hu7s5PfvIEKSkXWbAgkVWrPuN733uCv/3t\nfQC+/fYYqakpvPfe36mpqeHRR+czfvxEAFxdXXnzzfd477232LVrG/PmLbyr596SnEK6RlS4Nzqt\nhiQp5BWi0/lybxoms8ID4yJw0HfNt7+WbdUrd6aoHY6wgcYEZjcAe/bsZOzYCezcuZUf//hx3nvv\nLcrKbtyJlp6eSkzMQAAGDx5qvd7Dw4MXX/wZTz31QzIy0igru3GdaFLSWQYNGgKAs7Mz4eGRZGVl\nATBw4GAAAgICqKysbJPnKSMw13Ay6IkM9uBiThnVtSZcnOQlEqIzyCuqYu+pPIL9XBnV796Hrzuy\nkf0C2Xo0m4NnC4gbEiKrVdvQnJ4zbzhaYsu1kCIje1BUVEhBQT4VFRXs3r0DP78AlixZSlLSWd5+\n+/9u+DhFAa22cdFPS9PoUENDA2+88Uc++ugTfH39+PnP//um+9VoNFetlG4yNVi3p9NdOV3bVksw\nds2PILcQZfRGUeBCtnQjCdFZrN6ViqLAg+MirW+qXZVWo2FBXG9A2qo7q1GjxvLBB+8ybtwEyspK\n6d49BICdO7djMt24gNtoDCMp6RwAx44dAaC6ugqdToevrx8FBfkkJZ3DZDKh1Woxm81XPT46uh/H\njx9telw1OTnZhITYbpoCSWBu4Mp8MJLACNEZpOeXc+R8IRFB7gzpLbVtAD1DPLmvT4C0VXdSEybE\nsmXLJiZOjCM+fgaffvovnnnmJ/TrF0NRURHr1n113WPi42dw5swpnn76x2RlZaDRaPD09GL48BH8\n4Aff5R//+JCFCxNZtuwNwsIiOH8+iWXLXrc+fuDAQURFRfOTnzzBM8/8hP/6r6dwdrbdEh0apa3G\ncuzIlkuQ+/u7k51bylN/3kVogBsvPzbcZvsSd6YzLD/fGXWE4/LGp99yOq2Yn80fRL9wH7XDsZtb\nHZuislp+8eEBXJ30/P6Ho7pcV5aaOsLfTXvg7+9+09tkBOYGHB10RAR7kFFQQU2dzJUgREd2PrOE\n02nF9Anz7lLJy+1obqsuraxnw8EMtcMR4o5IAnMT0UYvqYMRooNTFMXaaTNngsx5ciMJI414uRnY\ncFBWqxYdiyQwNxFl9AaQZQWE6MBOXCwiJaecwb386BEsnTY34mTQM3eCtFWLjkcSmJvoGeyJTquR\nhR2F6KAsisKqXSloQGacvYVRMYFEBLlz8GyBrFYtOgxJYG7C0dBYB5OeL3UwQnREh84WkF1Yxch+\ngYT4u6kdTrt2dVv1BWmrFh2CJDCtkDoYITomk9nCmt1p6LQaHhgXoXY4HcKVtupyDp4pUDscIW5J\nEphWSB2MEB3T7pN5XCqtYcKgYPy9bDcPRWfz0MSm1ap3plBXb771A4RQkU0TmOTkZCZPnszHH38M\nwOLFi0lMTCQxMZFZs2axZMkSAPbv38/s2bOZM2cOn3/+uS1DuiNX6mAkgRGio6hvMPPV3jQMei2z\nRoerHU6H4ufpzLT7jJRU1ElbtWj3bJbAVFdXs3TpUkaNGmW9btmyZaxYsYIVK1YQExPDww8/jMlk\n4le/+hXvv/8+//rXv9i7d6+tQrpjjgYdEUEeZEgdjBAdxtZj2ZRV1jN5WCiebo5qh9PhTB9pxFPa\nqkUHYLMExmAw8OGHHxIQEHDdbampqVRUVDBgwADOnDlDWFgYgYGBODs783//d+NFptQSZfTCoihc\nkMp8Idq96loT6/dn4OKoJ2Gk7dZg6cycDHoeamqr/kLaqkU7ZrMERq/X4+TkdMPbli9fzqJFiwDI\nycnBwcGBp59+mvnz5/P111/bKqS7Et1UByPt1EK0fxsPZVJVayJhpBFXJwe1w+mwRsUEEh7ozoGz\nBVzMkQ9von3S23uH9fX1HD16lFdeeQVonCkzLy+PTz75hNraWubMmcOYMWPw9va+6Ta8vV3Q6223\nZkfLtRdGejij+/wEKXnlra7JIOxDjkH71B6OS0lFLVuOZOHl7sj8aX1wcrT721u7dLfH5scPDeT5\nt/ewcmcKf/rp+C6/grcttIe/m47M7n/hhw8fZsCAAdbLvr6+9O/fH2dnZ5ydnenVqxdZWVmtJjAl\nJdU2i+9GC2xFBHlwMauMzOwSnOVNUTWy+Fn71F6OyydbkqmtNzN3Qg8qymtQPyL13cux8XczcF+f\nAA6du8TXOy8yKiawjaPr2trL3017164Wczx16hTR0dHWy4MHDyYpKYm6ujrq6+vJyMggJCTE3mG1\nSupghGjfLpfVsON4Dn6eTkwYFKx2OJ2GtFWL9sxmCczp06dJTExk9erVLF++nMTEREpLSyksLMTX\n19d6P0dHR370ox+xcOFCFi5cyPe//318fNrXirFRRi8AzmdJHYwQ7dFXe9IxmRVmj41Ar5PprdqK\ntFWL9sxm50NiYmJYsWLFddc3z/3SUlxcHHFxcbYK5Z717C7zwQjRXuVermLv6TyC/VwZ1U9Oc7S1\n6SON7D6Zy8aDmYwfGIyPx42bM4SwN/mochucDHrCg9xJz5P5YIRob9bsTkVR4MFxkVJoagPNbdX1\nJgsrd0hbtWg/JIG5TdFGbyyKIi2FQrQj6fnlHDlfSESQB0N6+6kdTqclbdWiPZIE5jY118EkyXww\nQrQbX+xMBWDuhEg0Ghl9sRWtRsOCyb0A+I+sVi3aCUlgbpPUwQjRviRllHAmrZg+Yd70DW9fhf+d\nUa8QL+7rE0BqbjkHz8pq1UJ9ksDcJqmDEaL9UBSFL3Y11mPMndBD5Wi6jocm9kCv07Jyh7RVC/VJ\nAnMHokKlDkaI9uDExSJScsoZ3MuPyGAPtcPpMvw8nYkfESpt1aJdkATmDkQ3zwcjp5GEUI1FUVi1\nKwUNMGd8pNrhdDnTR4bh6WZg48FMistltWqhHklg7kDPEE+0Go0s7CiEig6eLSC7sIpRMYF093dT\nO5wu56q2almtWqhIEpg74GTQExHkTlpeBbX1UgcjhL2ZzBbW7E5Fp9Uwe2yE2uF0WaNiAgkLdOfA\nmQJS5JS6UIkkMHcoqnk+GFkXSQi7230yj8LSWiYMCsbfy1ntcLosrUbDgrjGtup/S1u1UIkkMHco\n2jofjNTBCGFPdQ1mvtqbhsFBy6zR4WqH0+X1DvVieLS0VQv1SAJzh6QORgh1bDuaTVllPVOGheLp\n5qh2OAJ4WNqqhYokgblDzfPBSB2MEPZTXdvA+gMZuDjqiR9hVDsc0cTP60pb9cZDmWqHI7oYSWDu\nQpTRS+aDEcKONh7KoqrWRMJII65ODmqHI1qYPjIMT1cDGw5kSFu1sCtJYO5CtNEbkPlghLCHsqp6\nNh/OwsPVwOShoWqHI67hZNAzV9qqhQokgbkLPbs31sHIwo5C2N66fenUNZiZNTocR4NO7XDEDYzu\nL23Vwv4kgbkLzo5X1kWSOhghbOdyWQ07vs3Bz9OJCYOC1Q5H3MS1bdWKtFULO5AE5i5FGb0wW6QO\nRghb+mpPOiazwgPjItDr5O1RKomiAAAgAElEQVSqPZO2amFv8o5wl6QORgjbyr1cxd7TeXT3c2Vk\n30C1wxG3obmt+vMdKdQ1SFu1sC1JYO6S1MEIYVurd6eiKPDg+Ei0Wo3a4Yjb4OflzLT7mtqqD0pb\ntbAtSWDukrOjnrDAxjoYmcBJiLaVllfO0fOFRAZ7MLiXn9rhiDsgbdXCXiSBuQfRUgcjhE2s2pUK\nwNzxkWg0MvrSkTg7Xmmr/kLaqoUNSQJzD6Ka6mDkNJIQbScpo4QzacX0CfOmT7iP2uGIuzC6fyBh\n3dzZf6aAlFz5gCdsQxKYe9DLui6SFPIK0RYURbF+ap87oYfK0Yi7pdVoWDC5sa36P1ukrVrYhl7t\nADqy5jqYtLxy6urNMsmWEPfo24uXScktZ0hvfyKDPey+/7SyTMrry3HQOuCgdcCgc0Cv1Vt/brxe\nj16rR6uRz3+t6R3qxbDoAI4kXeLg2QJG9pNOMtG2JIG5R9FGL9LyyrmYU0a/CBnuFuJuWSwKq3al\notE0dh7ZW3ZFLq8ffQeF2xstaE5sHJq/6xwwWK9zwEHX4metHoemBMigbUqKdI0/Nz/WocVjmxOn\na2/vaEnTvIk9+PbCZT7fkcLg3v44OsiHPNF2JIG5R1FGbzYczCQps0QSGCHuwcFzBeQUVjEmJpDu\nfq523/+G9C0oKMQZx+Oid6HB0kCDuaHxu8VkvVxvacBkMVF/ze219bVNl023nQTdKZ1GZ02OGhOh\npqSpxejQlYTHgf4Vvenv3t8msdyO5rbqdfsz2HQwk/vHRqgWi+h8JIG5R71CPNFoZEI7Ie6FyWxh\nze5UdFoNs1X4J5dTmce3hacJ9zDyYI8Z99T5pCgKZsVMg6WBenNj4mOyNDQlPE2JUHNS1CIhav7Z\nenuL+9ZbGjA1Xa5vcXtVQxWlTduyKJbrYtmbe5Dnhy3G6BFyLy/PPZk+Mow9J/NYfzCDsQOC8PFw\nUi0W0blIAnOPnB31hEsdjBD3ZPeJXApLa4kbEoKfl7Pd978xfSsACeFx99y2rdFo0Gsa62Sc7fgO\na7aYrYlRvbmBjIos/nb6Y75K3chTg35gv0Cu4eyoZ86ESP6xPokvdqbwxKx+qsUiOpeOdUK1nYoy\nejfOByPtgkLcsboGM1/tS8fgoGXmmHC77z+vqoDjl05hdA+hn2+03fffVnRaHU56J9wNbvg6ezMk\nYAADuvXhXHEy54svqhrbmP5BGLu5SVu1aFOSwLSBaKMXAOdlPhgh7ti2o9mUVdYzZVgonq4Gu+9/\nY/pWFBSmR0zudJPmLRgwG4AvUzeo2sqs1WhYOLk3IG3Vou1IAtMGeoV4odFAktTBCHFHqmsbWH8g\nAxdHPfEjjHbff37VJY4WnCDULZgY3z5237+t9fAJY3DAADLKszhx+YyqsTS3VafklnPwnKxWLe6d\nJDBtwFoHk1su6yIJcQc2HsqkqtZEwkgjrk4O9t9/+jYUFBI64ehLs1kRU9FqtKxN2YjZou77U/Nq\n1StltWrRBiSBaSNSByPEnSmrqmfz4Ww8XQ1MHhZq9/1fqi7kSMFxursF0d+vr933by/dXAMYFTSM\n/OpLHMo/pmos/k1t1cXldWyS1arFPZIEpo1EhUodjBB3Yt2+dOoazMwaE67KBGfNoy/x4XEdboK4\nO5UQPhm9Vs+6tM00mBtUjaV5ter1B2W1anFvbPpXm5yczOTJk/n4448BWLx4MYmJiSQmJjJr1iyW\nLFliva+iKMyfP5+33nrLliHZTHMdjMwHI8StXS6rYce3Ofh5OjF+YLDd919YXcThguMEuXZjkH+M\n3fdvb95OXkwIGU1JXSm7cw+oGktzW3V9g4UvdqaqGovo2GyWwFRXV7N06VJGjRplvW7ZsmWsWLGC\nFStWEBMTw8MPP2y97fPPP6ehQd1PBvfCxUlPWDd3UnPL5dyuELfw5Z40TGaFB8ZFoNfZf/Tjm4xt\nWBQLCV1g9KXZ1LBYnHRObErfRo1J3ZGPK23V+aTmlqsai+i4bPaXazAY+PDDDwkICLjuttTUVCoq\nKhgwYAAAxcXFrF27lvnz59sqHLuIbqqDScmROhghbibnchX7TufT3c+VkX3tv8BfUU0xB/KP0s0l\ngMEBA+y+f7W4ObgyJWwClQ1VbMvcpWosWo2GBXGNq1X/e2uytFWLu2KzBEav1+PkdOMpo5cvX86i\nRYusl//0pz/xzDPPoNN17Flso5rmg5F2aiFubs2uVBQF5oyPRKu1f+fPpoztXW70pdnEkLG4G9zY\nmrWLivpKVWOJMnozLMqflBxpqxZ3x+5LCdTX13P06FFeeeUVAA4fPoxOp2PIkCGkp6ff1ja8vV3Q\n622X7Pj7u9/V40a5OfHWFydJzSu/622I1snr2j7d7nFJzizhaHIhUUZvpoyOsHvr8uWqYg7kHyHI\nPYD4fmPRajt/AnP1sXHn4ZgZ/P3Yp+wq2M1jQ+apFhfAj+YO5MQft7FqVxpTRkXgZOhaq9vI+9m9\nsftvy+HDh62njgC2bt3K6dOnmTdvHsXFxdTX1xMaGsoDDzxw022UlFTbLD5/f3cKCyvu+vHGbu6c\nzyghO7dUlo5vY/d6bIRt3Mlx+fuXpwC4f3QYly/bfwTgP+e/xmwxMyUklqKiKrvv395udGwGegzE\n12kz31zcxUi/Efg6+6gUHeiAqcMbV6v+1/qz3D+m66xWLe9nt6e1JM/uHz9OnTpFdPSV9UZeeOEF\n1qxZw2effcaTTz7Jww8/3Gry0t5FGb2kDkaIGziXUcKZ9BL6hnvTJ9z+/zRLakvZn3sIP2dfhnUb\nZPf9txd6rZ6ZkVMxKWbWpW1WOxymjwzDw9XA+gMZlFTUqR2O6EBslsCcPn2axMREVq9ezfLly0lM\nTKS0tJTCwkJ8fX1ttVvVRRm9AWmnFqIlRVH4YmcKAHMn9FAlhs2ZOzApZuLDJqHTdu3R0WHdBtHd\nLYhD+cfIrcxXNRZnRz1zxze2Va/ckaJqLKJjsdkppJiYGFasWHHd9S3nfrnWnDlzbBWO3fQO8Wya\nD0YmtBOi2bcXL5OaW87Q3v5EBHnYff+ldWXszT2Er5MP9wUOsfv+2xutRsusyGn85eRHrE3dxI8G\nPKpqPGP6B7H1WDb7z+QTNzSEyGD7/46IjqdrVUzZgYuTA8Zu7qTmNc4HI3UwoquzWBRW7UpFo4EH\nxkeqEsOWjJ2YLCamhcd2+dGXZjG+fYj0DOfk5TOklmUQ6RmmWixabWNb9WufHOffW5P5xaKhnXZt\nqo7CoijU1ZupqTNRW2+mpt5Ebd21l03U1JvpEezB0Kjrp0yxNUlgbCDa6EVGfgWpOWWqnOsXoj05\neLaAnMIqxsQE0t3P1e77L6urYE/uAXycvBkRONTu+2+vNBoNs3sk8Odj7/FVygaeHvwjVZOG5rbq\nI+cLOXTuEiP6dlMtlo5KURRMZgs1dVcSjtp6U4vLV5KPmjrz9ZfrTdYEpfYOFiYODXCTBKaziDJ6\ns+lQFkmZpZLAiC7NZLawencqOq2G2WPV6TDZmrmTBouJqWGx6LXyltdST68IYnyjOV2UxLniZPr6\nRqkaz8OxPfn24mU+33GRwb38MHSREWyzxdKYSDQnD3XNSUXz5caRjivJhekGSUrjbWbL3U0KqNdp\ncTLocHbU4eFiwMlR33RZj7NBd+WyQY+T49Xfg3zt/8EEJIGxCamDEaLR7hO5XC6rJW5oCH5eznbf\nf0V9Jbty9uPl6MnIoGF2339HcH+PBM4UneerlA1E+/RSdXI/fy9npg43sv5ABhsPZXaKtmqzxcKl\nkhryi6rJK64mr6iK/OJqaurMVNY0UFtvor7Bclfb1gBOjnqcHXV4uTni1JRoXJtwODs2JhtXXW55\nX4MeB33HmxNJEhgbaFkHU99g7jKfIoRoqa7BzFf70jE4aJk5OlyVGLZm7qLB0sC0sFgcZPTlhrq7\nBTGs2yAOFxzn+KWTDFW5xXzGqDD2nMpj/YEMxg0IxtvdUdV4bldNnYn8pgQlr6i66auKSyU1142K\n6LQaPFwNOBt0eLs74tw00nElqWhMSpwMNxkFabqPwUHbpWuF5C/aRqJCG+tgUnLL6RPmrXY4Qtjd\n1qPZlFXWM2NUGJ6uBrvvv7K+ip05+/A0eDAqaLjd99+RzIycytFLJ1ibuolB/v1VLXR2dtQzZ3wk\nH21I4oudKfxgZl/VYrmWoiiUVta3SFIav+cXV99wDhtnRz3hge4E+roQ5OtKUNN3P08nggI9ZSK7\neyQJjI1EG7355nAW5zNLJIERXU51bQMbDmTg6qQnYYRRlRi2Zu2i3lzP7MgEHHQOqsTQUfg5+zI2\neCS7cvaxL+8w47qPVDWesf2D2HYsm32nG9uq7d16bzI3nvZpOZqSX9z4842KW309HOkX4UOQjwtB\nfq6N331d8HA1dOkREluTBMZGeod6okEWdhRd04aDmVTVmnhoYg9cnOyfPFQ1VLMzey8eBndGB99n\n9/13RPHhcRzIO8yGtM2MCByCQWf/UbNmV7VVb7nAi4uG2CQRqK5tuHK6p7iK/KJqcouqKSypwXLN\nCtl6nYZuPi5NycmV0ZRAHxccDVImoAZJYGzEWgeTWyZ1MKJLKauqZ/ORLDxdDcQNDVElhm1Zu6kz\n1zMzYioGGX25LZ6O7sSGjmNTxjZ2ZO9lalisqvFEGb0ZGuXP0Xtsq1YUheLyOvKaRlDyW5z6Kauq\nv+7+rk56Irt7WBOVQF8Xgn1d8PN0VmX1dHFzksDYUJTRi4wCqYMRXcvX+9Kpb7AwLzZclYkcqxuq\n2ZG1F3cHN8aqfCqko5lsnMDunP18k7GDscEjcHFwUTWeh2N7cuI226obTBYKSq5OUJrrU+oarj7t\nowF8PZ3oH+lLkK9LU5LSmKy4OzvIaZ8OQhIYG5I6GNHVXC6tYcfxHPw8nRg/MFiVGLZn7aHWXEtC\nxAxVT4N0RC4OzkwNi2VNyno2Z+5kdo8EVeMJaNFWvelQJrPGRFBZ09B0qqfqSrJSXE1haQ3XnPXB\nQa8lsKkepfm0T6CPC918XGSW9E5AEhgbkjoY0dV8uScNs0XhwXGR6HX2n1eixlTD9uw9uDm4Mq77\nKLvvvzOYEDKG7Vl72J61h4khY/B0VHddoua26rX7MthyNJuK6obr7uPu4kCv7p7WAtrApmTF19MJ\nrYymdFqSwNiQi5MDod3cpA5GdAk5l6vYdyaf7v6uqk0DvyNrHzWmWmb3SMBRRl/uikHnwIyIKXxy\n/gs2pG9lftSDqsbj7KhnflxP/r4uCWdHPZFBHi1qUxq/uzlLnVNXJAmMjUUbvcksqCQ1t5xoOY0k\nOrE1u1JRFJgzPlKVYscaUy3bsnbhqndhvIy+3JORQcPYkrWTvbkHmRQ6jgAXP3Xj6RvIiD7dpDZF\nXKXjzR3cwUQZvQBIkmUFRCeWllfO0eRCegR7MKinOv/sdmXvo9pUwyTjeJz0TqrE0FnotDpmRcZj\nUSysS/tG7XAAJHkR15EExsZ6h3qhAc5LHYzoxL7YmQLAnAk9VPlHU2uqY2vWLpz1zkwIGW33/XdG\ng/xjMLp350jBt2RV5KodjhDXkQTGxlyb6mBScstpMN3+8uRCdBQnLhRyNr2EfuHeqnXb7c7ZT1VD\nNZNCx+Isoy9tQqvRcn9TF9JXqRtUjkaI60kCYwfRRm9MZgspOeVqhyJEm1IUhRXrzwGNoy9qqDPX\nsyVzJ856JyaGjFUlhs4q2rsXvb16cLboPBdKUtQOR4irSAJjB1IHIzoTRVHIL65m85Es3vjsBOcz\nSxja29/u69U0252zn8qGKiaGjMXFwVmVGDorjUZjHYX5MmUjyrUTrQihIulCsgOpgxEdXU2diaSM\nEk6lFXM6tYjLZbXW2yKDPXl4Uk9V4qpvGn1x0jkyKVRGX2whwtPIQP8YThSe5nTROfr7tZ/VoUXX\nJgmMHbg6ORAacKUOxkEv88GI9k1RFLIuVXIqtYjTqcVczCnDbGn89O3sqGdYlD8xkb7ERPgQ1cOf\nwsIKVeLcm3uIivpK4sMmqT7tfWc2K3IaJwvP8FXKRvr5RqPVyOC9UJ8kMHYSZfQm81LjfDBRRpkP\nRrQ/FdX1nEkv5nRqMafTiilvWuhOA4QHuRMT4Uv/SF8igt3RadX/B9ZgbmBzxnYcdQZijePUDqdT\nC3LtxoigoRzIO8Lh/OOMCBqqdkhCSAJjL9FGLzYfySIps1QSGNEumC0WUnPLmxKWItLzKmiucPBw\nNTA6JpCYSB/6hfvg7tL+ZrXdm3eIsvoKpobF4ubgqnY4nd6MiCkcyT/OurRvGNJtIA5a+fch1CW/\ngXbSy1oHUwJEqB2O6KKKy2s53VTHcia9hJo6EwA6rYbeoV7ERPrQP9KXkAC3dr2GTIPFxOaMHRi0\nDkwKldEXe/Bx8mZ8yGi2Ze1mb85BJoaOUTsk0cVJAmMnbs6NdTAXc6QORthPg8lMclYZp1KLOJNW\nTM7lKuttfp5OjOzbjZgIH6LDvHF27DhvB/tzD1NaV8Zk4wTcDW5qh9NlTA2LZV/uITakb2Fk0FCZ\n8VioquO8Y3UCUgcjbE1RFApKaqzFt+czS6g3WQAw6LUM6NFYeBsT6Us3b+cOOT27yWLim4ztOGgd\niDOOVzucLsXd4EaccTzr0jazPWsPCRGT1Q5JdGGSwNiR1MEIW2itxbm7nysxkT7ERPjSO9SzU4z8\nHcg7QkldKZNCx+FhcFc7nC5nUug4dmbvY0vmTsZ1H4WbQeqPhDokgWlhd84BUs+nkth7vk3aBKUO\nRrQFi6KQVVDJ6bTrW5xdrmlx9vHoXEP8ZouZTRnbcdDqmWycoHY4XZKT3on48DhWXviKTRnbmNtr\nltohiS5KEpgWsityOJT7LROCxhLuYWzz7bs5OxAi88GIu1BeXc/ZtMb25o7Q4mwrB/OPUlxbwsSQ\nMXg6qjPzr4Cx3UeyNXMXu3L2Myl0HN5OXmqHJLogSWBaiPLpxZ7cg5wrumCTBAYalxXIkjoYcQvN\nLc6nUos50wFbnG3BbDGzMX0beq2eKWET1Q6nS3PQ6pkZOZUV5z5jfdpmHunzsNohiS5IEpgWorx7\nokHDueJkEiLibLKPaKM3W45kc17qYMQ1mlucT6UWcfaaFucooxf9IjpGi7OtHC44TlFtMeO7j8bL\n0VPtcLq8+wKHsDlzJ/vzjhBnnECga4DaIYkuRhKYFlwdXOjhE0ZqSQY1plqcbdAi2LwuUlJmCfdL\nHUyX1rLF+XRaMbmdpMXZFhpHX7ai0+iYKqMv7YJWo+X+yHg+OPVP1qZu4on+iWqHJLqYrv2ueAMD\nAqO5WJzOhZIUBvj3a/PtSx1M16YoCkfOF7LnZN5NW5z7R/oS0EFbnG3l6KUTFNYUMbb7SKm3aEcG\n+PUlwsPIt4WnyCjPIswjVO2QRBciCcw1BnTry6qzGzlXfMEmCQxIHUxXlV1YySebk0lqWpW8u7+r\ndU6W3iGdo8XZFiyK5croizFW7XBECxqNhtk9Evi/4+/zZcoGFg/+odohiS5EEphr9PaNwFFnIKkk\n2Wb7iAptqoPJkjqYrqC61sRXe9PYciQbi6IwqKcf8yb1JNBHVk++HccKTlBQXciY4PvwdZa/l/am\nl3cP+vpEcbb4PEnFF4j26aV2SKKLkATmGnqdnt7ePTh1+RxFNcX4Ovu0+T6ijI1D4OczS0GWE+m0\nFEVh/5l8PtueQnlVPQFeziyY3IuBPf3UDq3DsCgWNqRvRavRMjVsktrhiJu4v0c8Z4vP82XKeqK8\nF8vpT2EXNk1gkpOTefLJJ3nsscdYtGgRixcvpqSkBIDS0lIGDRrE0qVL+ec//8natWtRFIU5c+bw\nyCOP2DKsW4r26c2py+dIKr7AmO4j2nz7bs4OhPi7cTGnjAaTBQd95523o6vKLKjg483JXMwuw6DX\n8uC4COJHGOU00R06fukU+dWXGBk0DD8bfJgQbSPUvTtDAwZy9NIJjheeYkjAALVDEl2AzRKY6upq\nli5dyqhRo6zXLVu2zPrziy++yMMPP0xWVharVq3iiy++wGKxEB8fz/3334+7u3pThPfx6Q3AueJk\nmyQw0LisQHZhJWl55fQOlaLEzqKqtoHVu1LZfjwHRYGhvf35TlxP/Dyd1Q6tw2mufdFqtMSH2WZa\nA9F2ZkZO5XjhKb5O3cRAv37otJKsC9uy2Ud/g8HAhx9+SEDA9XMDpKamUlFRwYABA+jevTuffPIJ\ner0eg8GAk5MTlZWVtgrrtgQ4++Hj5E1SyUUsisUm+2iufUnKLLHJ9oV9WRSF3Sdy+cUHB9h2LIcA\nbxee/c5AfjKnvyQvd+lE4Rlyq/IZ3m0w/i6+aocjbiHAxZ/RQcMpqC7kYP5RtcMRXYDNRmD0ej16\n/Y03v3z5chYtWgSAVqvF1bVxMbA9e/bg7e1NUFBQq9v29nZBb8Oh+IAADwYF92Vb6l7KdcX08m37\n+VpGuzjyzupTpOZV4O8vC9Ldrvb4Wl3IKuH9Vac4n1mCk0HHozP6Mnt8jy51arCtj4tFsbD56DY0\nGg0LhszCX8UR2Y7Onn8zi9we4OC6Y2zM2EpCv3EY9F1jlui71R7fzzoSuxfx1tfXc/ToUV555ZWr\nrv/222957bXX+OCDD265jZKSahtF1/gLVVhYQYRLBLCX/Snf4mWxTdFliL8b59KLyc0r61L/7O5W\n87FpLyprGvhiZwq7vs1FAe7rE8C82J74eDhRWlJ1y8d3FrY4LicKz5BRlsPwboNxqHWhsLb9HPeO\nxP5/Mzomdh/D5swdfHHiG1lwsxXt7f2svWotybP7f83Dhw8zYMDVBV5JSUm89NJLvPfee7ccfbGX\nK8sKXLDdPoxeNJgspOWV22wfou1ZLArbj+fw4vv72fltLkF+rjw3fxD/NTum063+rAZFUdiQthkN\nGuLDpfOoo5kaNhFnvTPfpG+nxlSjdjiiE7N7AnPq1Cmio6Otl81mM7/4xS9YtmwZISEh9g7nplwd\nXDB6hJBW3risgC1EW9uppQ6mo0jJKWPp8iOs2HQes0XhO5N68sr3htMnXDpk2srponNkVeYyJGAA\nga7d1A5H3CEXBxemGidSZapmS+YutcMRnZjNTiGdPn2a1157jZycHPR6PZs2beKtt96isLAQo/HK\nSs/79+8nOzubX/3qV9brnnvuuetGadTQx6c3GeVZNltWoLn7KCmzlFkyH0y7Vl5Vz8odKew5lQfA\nqH7deDi2J15ujipH1rkoisL6tC0AxIdL51FHNTF0DNuz97AtcxcTQkbjYZBaD9H2bJbAxMTEsGLF\niuuuX7JkyVWXx44dy6FDh2wVxj3p49ObjelbbbasgLuLgRB/V1JkPph2y2yxsON4Lqt3pVJdZyLE\n341FU3tL67uNnC0+T2ZFNoP9+xPsFqh2OOIuGXQGEsIn82nyajamb2Ve7wfUDkl0QjITbysiPIyN\nywoU23BZAaM32YVVMh9MO5ScVcrH3ySTXViJs6OehZN7ETukOzqtJJq20HL0JSFissrRiHs1Jvg+\ntmbtYk/OQSaFjpeJCEWbk3fiVui0Onp79+RSzWUu1xTbZB9SB9P+lFbW8eHaM/zhX8fILqxkbP8g\nfv/DkUweFirJiw0lFV8gvTyTgf4xdHdrH8X84u7ptDpmRUzFrJhZl/aN2uGITkjejW+heWEyW43C\ntKyDEeoymS1sOpTJLz44wP4zBYR1c+eXiUP5/ow+eLjKfBa2pCgK69M3A5AQLqMvncWQbgPp7hbE\n4fzj5FTmqR2O6GQkgbmFK8sK2Kad2t3FQPemOhiT2Taz/opbO5dRwiv/OMyn2y6i02pInBbFkkeH\n0aO7p9qhdQnJJSmklmXQ368voe7Baocj2ohWo2V2jwQUFNamblQ7HNHJSA3MLTQvK3C+aVkBrabt\nc77oUG9ymupgeoVIHYw9FZfX8tn2ixw6dwkNMGFQMHPGR+LuIiMu9tQ8+jJdRl86nb4+UfT0iuDU\n5XOklKbTwytc7ZBEJyEjMLeg0Wjo49OLGlMNGeXZNtlHlFFOI9mbyWxh/YEMfvnhQQ6du0REkAcv\nPTqMR+OjJXmxswslKVwsTSPGNxqjR/uZC0q0DY1Gw+weCQB8mbIeRVFUjkh0FpLA3IboptNINquD\nkUJeuzqdVsSSvx1i5Y4UHPRaHkuI5pffHUpEkIfaoXVJ0nnU+UV6htPfry8pZemcKUpSOxzRScgp\npNtwZVmBZJu8yXo01cFczG6sg9HrJK+0hctlNXy69SJHkwvRaGDSkO48OD4SVycHtUPrsi6WppFc\nmkJfnyjCPYy3foDosO6PjOf05XN8lbqRvr5RNjkdL7oWSWBug6uDC2EeoaSVZ1JjqsVZ3/br3Ugd\njO00mMxsPJjJuv0Z1Jss9AzxZNGU3hi7yeygatsgoy9dRrBbIMMDB3Mo/xhHC04wPHCw2iGJDk5S\n4NsU7dMLi2IhuSTFJtuXOhjbOHHxMkv+eojVu9NwctTz+Iw+vPjIEEle2oHUsgySSi4Q7d2LSM8w\ntcMRdjAjYio6jY6vUzdhspjUDkd0cHedwKSnp7dhGO1fH6mD6VAuldawbOVJ3lx5kstltUwZFsqr\nT4xkTP8gNBqN2uEJZPSlK/Jz9mFs95Fcri1mX+5htcMRHVyrCcz3vve9qy6/++671p9ffvll20TU\nTl1ZVsA288F4uBjo7ufKRZkP5p7UNZhZszuVlz48yLcXLxMV6sUr3x/Ogsm9cHGSM6btRXp5JmeL\nz9Pbqwc9vSLUDkfYUXz4JAw6AxvSt1Bnrlc7HNGBtZrAmExXD/EdOHDA+nNXa4Wzx7ICUUYv6hss\npOdV2GT7nZmiKBxLLuSlDw/y1d503Jz1/Oj+fvx84WBC/N3UDk9cQ0Zfui4PgztxoeMor69gR9Ye\ntcMRHVirCcy1Q+0tk5auOAxv69NI0Ubvxu3LaaQ7kl9czZ8/P8Hbq05RWllH/Agjv3tiJCP6duuS\nv6ftXWZ5NqeLkujpFecp2U8AACAASURBVEFv7x5qhyNUEGccj6uDC5szd1DVUK12OKKDuqMamK7+\nz6BP07pItlpWoHldJKmDuT119WZW7khhyV8Pcjq1mL7h3vzm8fuYF9sTZ0c5XdRerU9vGn2RWXe7\nLGe9M9PCJlFjqmVzxg61wxEdVKvv8mVlZezfv996uby8nAMHDqAoCuXl5TYPrr3xd/bDt2lZAbPF\njE6ra9Pte7g21sFcyJH5YFqjKApHzhfyn60XKKmow8fDkfmTejE0yr/LJ9ntXVZFDqcunyXSM5wo\n755qhyNUNL77KLZl7WZH9h4mho7By1HWHRN3ptUExsPD46rCXXd3d9555x3rz12NRqMh2qcXe3MP\nkVmRTYQNWj+jjF7kHKsiPa+CniHyB32t3MtV/GtzMucyStDrNMwcHcaMkeE4Gto2mRS2sSF9K9C4\n5pEkm12bg86BGRFT+FfSStanbWFh9Fy1QxIdTKsJzIoVK+wVR4cR7dObvbmHOFecbJMEJtrozbZj\nOSRllkgC00JNnYm/rz3DV7tSMFsU+kf6snByL7r5uKgdmrhNOZV5nCg8TbiHkeim07GiaxsROJQt\nmTvZn3eYOON4urn4qx2S6EBaPUdRWVnJRx99ZL38n//8h9mzZ7N48WIuX75s69japeZlBWzVTi11\nMNcrr6rn5b8dYvWOi3i7O/LTuf3574cHSPLSwVhHXyJk9EU00ml1zIqMx6JY+Dp1k9rhiA6m1QTm\n5ZdfpqioCIC0tDTeeOMNnn/+eUaPHs3vfvc7uwTY3ly7rEBb83A1ENyiDqarsygKf113lqLyWu4f\nF8lvfzCCwb2k1qWjya3M59tLpzC6h9DXJ0rtcEQ7Msg/BqN7CMcunSSzIlvtcEQH0moCk5WVxc9+\n9jMANm3aRHx8PKNHj2b+/PlddgQGGruRbL2sQH2DhfR8mQ9m8+EsTqcWExPhw+P3x2BwkFqXjmhj\n+lYUFBl9EdfRaDTM7pEAwFcpG1WORnQkrSYwLi5XhugPHTrEyJEjrZe78ptQtJ3mg+nqp5HS88tZ\nuSMFD1cDj8/si1bbdX/nOrL8qgKOXTpJqFswMb591A5HtEPRPr2I9u7FueJkkksuqh2O6CBaTWDM\nZjNFRUVkZmZy/PhxxowZA0BVVRU1NTV2CbA9ivAw4qRz5JyNEpioUFnYsabOxF++PIPZovCDmX3w\ndDWoHZK4SxvTt6GgkCCjL6IV9/eIB+DLlI1dbqZ3cXda7UJ64oknmD59OrW1tTz11FN4enpSW1vL\nwoULmTdvnr1ibHealxU4efkMl2uK8HP2bdPtW+tgsku77HwwH3+TzKWSGhJGGImJaNvXV9hPQXUh\nRwq+pbtbEAP8+qkdjmjHwjxCGezfn+OFpzh5+QwD/WPUDqnLURSFBksDteY6ak21Td/rqGv6Xmuu\nbfpeR13T91pTLT28IogNHWv3eFtNYCZMmMCePXuoq6vDza1xPRknJyeee+45xo61f7DtSbRPL05e\nPsO54guM6972/2CjjF7kHqsiPb+Cnt27Vjv1vtN57D+TT0SQBw+Oj1Q7HHEPNjWPvsi8L+I2zIqc\nxonLZ/gqZSP9/fqi1XS9D293SlEU6i0NLRKO2hYJx5XEo+6qyy3u1+K6OnMdFuXOm0cqG6raXwKT\nm5tr/bnlzLuRkZHk5uYSHBxsu8jauf9v787jo6rP/YF/ZkkymawzySQhZCEJSSYQAUGUXZBVQFBA\nAgiVe6+2ltK+2tr7K7XXoi/q7U3Vti93pL3W4lWWsCoKghLBhSiLSGKSSULIvmeyTraZOb8/srAp\nspwzZ87k8/4HMglnnnAC85nzfc736R8rkNdYgKlDJ/zAV9+45OhgHD1dgfxS66AKMDWNNmz90AKd\ntwY/WTxyUF598hS1tnp8VXMGkX4RGG3i1Rf6YeF+YZgQMQ6fV32FrOrTmDjkDrlLkoRTcKKjpxNN\nXc1XBIvOK654fM9jV1wdEXBzS24alQY6rQ90Gh8YdcHw0fT+vv8xnVbX+1j/xxof+Gh9oNPo+h7r\n/dXPS54tLa4ZYO655x7ExcXBZOrdXOjKYY7/+te/pK3OjUk9ViB5oJG3CQsminpot2V3OPHa/hx0\ndTvw40UjEBbsK3dJdAsOlXwMp+DEvGEz+U6artv8uNn4suYMDpz/EHeEjYaXxkvukm5al6MbtbY6\nVLfXosZW2/drHWptdbALjps6platHQgTIb6GgaDRHzwuhpArHrvkY51GBx+tD7zUyp4Zd83q09PT\nsW/fPrS3t2PBggVYuHAhjEajq2pza71jBZLwWWWWJGMFgvy8MSREj4LywTMXadcnRSipbsXk2yIw\nYUSE3OXQLajvaMSX1acRoQ/D7WG3yV0OKYhBF4y7h07CR2XHcLzyBO6Jnip3SdckCALaetpR3V6D\nalsdatprUW3rDSqNnVffSarT+CDSfwhC/YOhdmp/4KqHbuBxn75ftQoPHWK65t/E4sWLsXjxYlRV\nVWHPnj146KGHMHToUCxevBizZ8+GTqdzVZ1uKaUvwEg5VuDomQqUVLciwcOXkb4pasChL8sQbtTj\nodlJcpdDt+jDvqsv9/LqC92EOcNm4LPKL3HowseYNGQ8dFr5X2ucghMNHVZU22pQc8VVFZv96rty\ng7wDkWQYjgi9CeF+YYjQhyHCLwxB3oFQqVQwmQJQV8e9vm7FdUW5IUOGYN26dVi3bh127tyJP/7x\nj3j66adx8uRJqetza8mGBKigQm5jAebHzRb/+DHBOHqmdy6SJweY5rYu/OPAt9BqVHhs0UjovPkO\nQ8kaOqz4ouokwvUmjA0fLXc5pED+Xn6YFXM33is+hI/KjmOBBP+/fp9uRzdqbPWo6buiUm2rRU17\nLWo76mF32i/7WrVKDZNvCIYHxyPCLwzhetPAr75aLoFL7bpeKVpaWrB//37s3r0bDocDP/nJT7Bw\n4UKpa3N7ei89hgVG40JLKTrsHaL/wA6GPhinIGDLe9+i1daDlTMTERsx+Kace5oPS4+y94Vu2Yzo\nKfik/DN8VPoJpg2diABvf9GOfXHZp+8qiq0WNe29YeW7ln18NN6I9ItAeN9VlIi+oBLqG8IlHRld\n82/+008/xa5du5CdnY05c+bgf/7nf5CUxMv7lzIbE1HcUgqLtUj0fQsGQx/MoaxSfHvBilEJIZh1\nR5Tc5dAtsnY24YvKr2DyDcG4MF59oZun0/pgXtxM7LTsw6GSj7EscdENH8MpONHYaUV1f19Ke+1A\nn0q73XbV1wd6ByApOGFgySfcz4QIfRiCfYK4DYAbumaAeeSRRzBs2DCMHTsWjY2NeOONNy77/J/+\n9CdJi1MCszEJH1z4CHmNBZJsvOTJfTBFlc3Yfew8gvy98e8LUvgfhAf4sCQTDsGBucNmin5nHg0+\nUyLvwselx3C8/AvMiJqKEF/Dd35dt6MHNbY61AyElIt3+/Rcseyjggom3xDEBw/rCym9V1TC9WHQ\ne3HZR0muGWD6b5O2Wq0wGC7/wSkv59RQwAVjBfr6YPLLmjwqwNg67di8LwdOp4AfLxyBQD1HBShd\nU1czPq/MQqjOiDvDb5e7HPIAWrUWC+Pn4s1vt+H94sN4YPiCS66kXLyq0tjZdNVeKN5qL0T4hfeG\nlL6ln3C9CSZ9qOJvH6Ze1zyLarUav/rVr9DV1QWj0YjNmzcjNjYWb731Fl5//XUsWbLEVXW6LanH\nClyci2TF/Ani3+kkB0EQsPXDfNQ3d2LBxFikDOOt+Z7gcEkm7IIDc4fdw6svJJo7wsfgcEkmTlSf\nxInqq28cCfD2x/DguIt3+vTf7eMTyB4sD3fNAPPXv/4V//znP5GQkICPPvoIf/jDH+B0OhEUFISd\nO3f+4MEtFgvWrVuHtWvXYvXq1fjFL34Bq7W3QaqpqQljxozBpk2b8Pe//x0HDx6ESqXC+vXrcffd\nd4vz3blIioRjBYL8fTyuD+azc9XI+rYGCUMDsXhKnNzlkAiau1rwWWUWjDoD7owYK3c55EHUKjWW\nJ92PjIL9MOiCeq+mXLL0o5dpF1iS3w9egUlISAAAzJw5E3/605/w29/+FrNn//AtbTabDZs2bcLE\niRdvn3nhhRcGfv+73/0ODz74IMrKyvD+++9j27ZtaGtrw6pVqzBlyhRoNMp5B2c29jY25zVapBkr\nEGNA5pkKlNS0IiFS2ctIVQ3teOtwPnx9tPjJfRwV4CmOlH6CHqcdc2Nn8K4MEl2iIR6/u/OXcpdB\nbuaarx5XNlUOGTLkusILAHh7e2PLli0ICwu76nPnz59Ha2srRo0ahaysLEydOhXe3t4wGo0YOnQo\nCgsLb+BbkJ/JNwQhOuPAWAGxmWN6l5HyS5tEP7Yr9did2LwvB909Tqy914xQjgrwCE2dLThecQIG\nn2BM8NDZNUTkfm7o7e+N3CWi1Wq/d6fef/3rX1i9ejUAoL6+/rLxBEajEXV1dTdSlux6xwokosPe\niZJW8ZubL+2DUbKdmYUorW3DtNFDMN58dbAlZXov/wh6nD2Yw6svRORC1/zf5syZM5g+ffrAxw0N\nDZg+fToEQYBKpUJmZuYNP2F3dzdOnTqFp5566js/f+nAyO9jMOih1Uq3xGQy3fhmand1jsJnlVko\n6yrBXSLfTm0yBSAqzB9FFc0wGv2gUeCyy5ffVuPIyXJEh/vj5yvG3vRuuzdzbkg65c1VOFTwCYy+\nwVg0aoaiB+95Kv6bcV88N7fmmq8iBw8eFP0Jv/rqK4waNWrg47CwMBQXFw98XFNT853LTpeyWq/e\ngEgsNzufYohmKFRQ4WRZNu4OmyZ6XcMjA1Fe24aT2VWIjwwU/fhSsrZ24a9vn4ZWo8YjC0agtbkD\nNzMBhLND5OdwOlDUXIzs+jxkN+SixtZ7tXRR9L1oauwE0ClvgXQZ/ptxXzw31+daIe+aAWbo0KGi\nF3Pu3DmYzeaBjydMmIA33ngDP//5z2G1WlFbW4vhw4eL/rxSc8VYgcyvK5FfalVUgHE6BWx5Nwdt\nHT14aHYSosPE2w6cXKOtux05Db2BJbfRgg57b0jxVnthVOhITI2/Ayl+I2SukogGG8kWrLOzs5Ge\nno6KigpotVocOnQIL774Iurq6hATEzPwdZGRkVi+fDlWr14NlUqFp556Cmq18pZIgN67kaQaK5Ac\n098H04R7FbQfzPsnSpBX2oTbE0Nxz1jxAzGJTxAEVLZX41x9LnIaclHcXDqwSVhI323SqSEpSAyO\nh5fGi+8kiUgWkgWY1NRUbN269arHn3zyyaseW7NmDdasWSNVKS6TYkzCBxeOIFeCsQLB/j6IMOph\nKW+Cw+mERgEhr7C8GXuPF8MQ4IN/m89RAe6s29EDi7UQ2Q15yK7PhbWr9443FVSIDxqG20JTMDLE\njCF+4TyPROQWeMuAiIYFRkOn0Uk2VsAcE4zMrytRUt3m9stIts4ebN6fAwECfnzfCPj7srnT3Vg7\nmwYCS761ED3OHgCAXuuLO8LHIDUkBSNCkuHHjcKIyA0xwIhIo9Yg2ZCAs1KNFVBIH4wgCPjnwXw0\ntHRi0eRhSI757gFs5FpOwYmSljJk1+ciuyEP5W2VA5+L8AvHbSEpSA1NQVxgDEcBEJHbY4ARmdmY\niLMSjRVQSh/MsbOVOJlXi8SoINw3eZjc5QxqHfZO5DZakF2fi5yGPLT1tAMAtCoNUoxJSA1NQWpI\nCkJ9OY+KiJSFAUZkUo4VCPb3Qbib98FU1LfjnSMF8NNp8eP7RrpljZ6u1laH7PpcnGvIQ2HTeTgF\nJwAg0DsAk4aMR2poCpINidBpfWSulIjo5jHAiOzKsQJiX4o3xwTjk68rUVrThrgh7rWM1N3jwOZ9\n2ei2O/HofSMQEvTdOzGTuOxOO4qaLiC7IRfZDbmotdUPfC4mIAqpoSm4LSQFUQGRnM5LRB6DAUZk\nKpUKKcZEfFqZhZLWcsQHibvUk9wXYPJKrW4XYHYcLUR5XTum3z4U45I5KkBKrd1t+LYhH+cacpHb\nYEGno29vFo03RptSkRqSgpEhyQjyca+fESIisTDASCDFmIRPK7OQ22gRP8BE9zbE5pc24d673KcP\n5rSlDh+frsDQUD+suEd5GxG6O0EQUNFW1XuVpT4XF1rKLtmbxYi7hozDbSEpGG6IhxfnERHRIMD/\n6SSQZBgOFVTIa7RgQdz1Te++XoaAvj6YMvfpg2ls6cQb7+fCS6vGY4tHwtuLd7CIodvRjfxL9mZp\n6moGAKhVaiQED0NqSApuC01BuD6Me7MQ0aDDACMBvZcvhgXG4EJLmSRjBdypD8bpFPD6u9+ivdOO\nH81NxlATRwXcit69WXIv2ZvFDgDw0+oxPvx2pIamYIQxCXruzUJEgxwDjETMxkQUt5RINlbAXfpg\n3vv8AixlTRiXbMLdYyJlrUWJnIITFwb2ZslFRVvVwOci/SKQ2rcDLvdmISK6HAOMRKQcK+AufTCW\nsibs+6wYIYE+WHuvmcsY16nL0d07HPHKvVnUWowwJvftzWJGCPdmISL6XgwwEpFyrIAhwAfhBl8U\nyLgfTFtHD15/NwcA8ONFI+Gn46iA6/FNXQ62W/YO9LMEeQdgcuSdSA1JQbIxET4ab5krJCJSBgYY\niVw6VqDO1gCTXvyxAsfOytMHIwgC/vlBHhpbunD/1DgkRgW79PmVqLmrFTsL9uFM7TfQqjSYHTMd\nY8NHIdp/KK9cERHdBAYYCZmNSThbn4M8qwUm/URxjx0TjGNnK5Ff2uTyAJN5pgKnLXVIjg7GwonD\nXPrcSiMIAr6oOondhe+hw96B+KBYrDIvwxC/cLlLIyJSNAYYCaX0jRXonYskboDpH5CYV2rFvLti\nRD32tZTXtuGdjwrhp9Pi0ftGQK3m1YPvU2drwNv5u2CxFsJH4420pPsxZegE7oZLRCQCBhgJmfQh\nCNUZkd8o/lgBOfpgunoceG1/DuwOJ356/0gYAzkq4Ls4nA58XHYcB4oPo8fZg9SQFKxIfgAGHZfa\niIjEwreCEjMbE9Hp6ERJa7nox06OMaCjy4HSmjbRj/1dtn9UgMr6dswcG4XbE00ueU6lKWutxLOn\nXsLeovfho/HGv49chcdGrWV4ISISGQOMxC4uI4l/N5I5pvdFMb+0SfRjX+lkXi0yv65ElMkfy+9J\nkPz5lKbb0YN9RR/gzydfQFlrBe6KGIcnJ/wG48LHsEmXiEgCXEKSmJRjBfr7YPIl7oOpb+7APz/I\ng7dX76gALy03VLuUxVqEt/MyUNfRgBCdASvNSweCKxERSYMBRmKXjhWw9XRA7yXeWAFDgA/CDL6w\nlDfB6RQkaah1OJ14/d1vYeuyY+29ZkSG+on+HEpl6+nAnsID+LzqS6igwj3RU7Ewfi73ciEicgEG\nGBdI6R8r0FSEMSLvytt7O3UVSmtbMSxC/Nup9396AYXlzbgzJQxTRw0R/fhK9XXtOWy37EVLdyuG\n+g/BQ+ZliA2MlrssIqJBgz0wLpASIl0fzMDt1CXi98HklVjx3ucXEBqkw4/mclQAADR1NWPLuX9h\nS/ZW2OwduC9+Hn57xy8YXoiIXIxXYFwgNqB3rEBegwQBJrq/kVfcPphWWzdefzcHKpUKP1k0Enrd\n4P5REQQBn1d+iT1FB9Bh78Tw4DisSl6KcL8wuUsjIhqUBverkoto1BokG4fjbF226GMFjIE60ftg\nBEHAG+/noamtG0vvjkfC0CARKlWuWlsd3s7bhYKm89BpdFiZvASTIu/khnRERDJigHERsyERZ+uy\nJRwrIF4fzEenyvF1YT1SYg24d4J8067l5nA68FHpMRy4cBh2px2jQkciLfl+BPsM7kBHROQOGGBc\nRNKxAtEGHDtbhbySplsOMKU1rdhxtBD+vl54ZOEIqAdp30tpSzn+Ly8D5W2VCPD2x/Kk+3G76Tb2\nARERuQkGGBeRcqxAct+Gdpayplvqg+nqduC1fTmwOwQ8sjAFhgAfsUpUjG5HN94r/hAflx6HAAGT\nhozHA8MXQO+ll7s0IiK6BAOMC5lDkvBpxQmUtJYhPmiYaMc1BuoQFuyL/LJb64N5+4gF1Y02zL4j\nGqMSQkWrTynyGgvwTt4u1Hc2ItQ3BKuSlyLZOFzusoiI6DuwC9GFBpaRpLgbKSYYHV12lNXe3Fyk\nL3NrcPybKsSE+2PZ9ME1KqC9x4atuTvw4tdb0NjVhNkx0/H7O3/F8EJE5MZ4BcaFkoIToFapkdtY\ngAXxc0Q9tjnGgOPfVCGv1IrYiIAb+rN1TR1482AefLw0eGxxKry0gyPXCoKAM3XnsMOyF63dbYj2\nj8SqlGWICYiSuzQiIvoBDDAu1DtWIFqSsQLJlwx2nHvn9ffB2B1ObN6fg44uB/5jQQoijIOj18Pa\n2YTtlr04V/8tvNRa3J8wH/dETxW1N4mIiKTDAONiZkMizjeLP1bgZvtg9h4vxvnKFkwYGY5JqRGi\n1eOunIITn1ZkYV/R++h0dCEpOAErzUsRph98PT9EREo2ONYK3IiUYwWSbrAPJudCIz44UYKwYF+s\nmZPs8bcIV7fX4m+nX8N2yx6oVCo8ZF6GX9z+Y4YXIiIF4hUYF5NyrIA5JhifflOF/Ovog2lp78bf\n3/0WarUKP1k8Er4+nvujYHfacaT0E3xQfAR2wYExptuwPGkxgnzEH35JRESu4bmvWm5KyrECydF9\ngx1LmzDnGn0wTkHAPw7korm9Gw/OSEDcEM99Ib/QUor/y81AZXs1grwDsDz5AdEnghMRketJGmAs\nFgvWrVuHtWvXYvXq1ejp6cGGDRtQUlICPz8/vPDCCwgKCsJf//pXZGVlQRAEzJo1C48++qiUZcku\nxdg7ViC3UdyxAiFBOpiCdbD8QB/Mka/KcO58A0bGGW+o4VdJuhzdeO/8IRwt+xQCBEyJvAuLE+aL\n2jhNRETykSzA2Gw2bNq0CRMnXnyB3rFjBwwGA55//nls374dJ0+eRHR0NLKysrBt2zY4nU4sWLAA\n999/P0wmk1Slya5/P5i8RgumRYk8ViDGgE+/qUJZbdt3LiOVVLdiZ2YRAvVeeGRBikeOCvi2IR/b\n8nejodOKMN9QrDIvRaJhcO1tQ0Tk6SQLMN7e3tiyZQu2bNky8NjRo0fxi1/8AgCQlpYGAKiqqkJX\nVxe6u7vhcDigVqvh6+vZ75JDfUMQ6huCfGuR6GMFrtUH09Flx2v7suFwCnhk4QgE+XvWqIC2nnbs\nKngXX1afhlqlxtzYe3DvsJnw0njJXRoREYlMsgCj1Wqh1V5++IqKChw7dgzPPvssQkNDsXHjRgwZ\nMgTz5s3DjBkz4HA48LOf/Qz+/v5SleU2zMZEScYKXKsP5u3DFtRYOzDvzhikxovXeyM3QRBwquZr\n7CzYj7aedsQEDMVD5gcRFRApd2lERCQRlzbxCoKAuLg4rF+/Hq+88go2b96MVatW4fDhwzhy5Ajs\ndjtWrFiB+fPnIyTk+19gDQY9tFrpNhwzmW5sJ9ubMaFrdG+A6SzBXcNvE+24JlMAIkL0KKhohjHE\nH5q+PpjMU2X4LLsaidHB+PHS0YrdbffKc1Pf3oh/nHoHp6uy4a3xwo/GLMW9iTO4IZ2LueLfDN0c\nnhv3xXNza1waYEJDQzF+/HgAwJQpU/Diiy/i3LlzGD169MCyUXJyMiwWy2W9M1eyWm2S1WgyBaCu\nrlWy4/cLV0dCrVLjVFk2ZoTfLeqxh0cG4dNzVfj62yrEhAeg1mrDSxlnofPW4D/mm9FkbRf1+Vzl\n0nPjFJw4VvEF9hd9gC5HN8yGRKw0L0GobwgaG6T7+aCruerfDN04nhv3xXNzfa4V8lz6NnzatGk4\nfvw4ACAnJwdxcXGIiYlBdnY2nE4nenp6YLFYEB0d7cqyZHFxrEApbD0doh67f6xAXmkT7A4nXtuX\ng65uB9bMTUaYQfmjAqraa/CXU69ip2UfNCoN1qQsx/oxjyDU13OWxYiI6NokuwKTnZ2N9PR0VFRU\nQKvV4tChQ3juuefwzDPPICMjA3q9Hunp6QgNDcXkyZOxatUqAMCyZcsQFTU4humZjUm9YwWshRgT\nJt4y0sW5SFY0tXbhQnUrJqdGYOJIZY8K6HH04EDxYRy68DEcggPjwkZjWdIiBHrzMiwR0WCjEgRB\nkLuIGyXlZTdXXtY731yC50+9jCmRd2Gleamox/5/r36OprZu2B1OhBt8sfHfxkPnrdx9C4ubS7Ct\nYDfKW6oQ7BOEFckP4LbQEXKXReClcHfGc+O+eG6uz7WWkJT7iuYBYgOi4KvVIa+xQPRjm2MM+PRc\nFTRqFR5bnKro8FLVXoO/nX4NdsGBaUMnYVHCPPhqdXKXRUREMlLmrSgeQqPWINkwHPWdjaizNYh6\n7NHDewcULp8x/AfnIrkzp+DEO3m7YRcc+PWkR5GWfD/DCxERMcDIzWxMBCD+dOqxSaF4/meTMXu8\nshuiT1SdQlFzMcaYUjEheqzc5RARkZtggJHZpWMFxKRSqWAIUPZOu63dbdhbeAA+Gm8sS1wkdzlE\nRORGGGBkduVYAbpoT+EBtNttuC9+Hgy6YLnLISIiN8IA4wZSjEnodHTiQkuZ3KW4jfzGQmRVn0JM\nwFDcHTVJ7nKIiMjNMMC4gRSJ+mCUqsdpxzbLbqigwsrkpVCr+GNKRESX4yuDG0gyJECtUoveB6NU\nH5YcRa2tHtOjJiMmcHBsakhERDeGAcYN+Gp9MSwwBhdaykQfK6A0Ne21+PDCxwj2CcLC+Dlyl0NE\nRG6KAcZNmI2JECDAYi2UuxTZCIKAbZa9sAsOPJi0GDru90JERN+DAcZN9N9OPZj7YL6sPg2LtRC3\nhaZgdOhIucshIiI3xgDjJvrHCuQ2WqDA8VS3rK2nHbsL34O32gsPJt4PlUold0lEROTGGGDcRP9Y\ngYZOK+o6xB0roAT7Ct9HW087FsTPQYivQe5yiIjIzTHAuBGzRLvyurvCpmJ8XvUVhvoPwYyoKXKX\nQ0RECsAA40Yusnh08QAAEvdJREFU9sGIP53aXdmddryTt2tgzxeNWiN3SUREpAAMMG4k1NcIk28I\nLINorMCR0mOottVi6tAJiAuKkbscIiJSCAYYN2MeRGMF6mwNOHjhCAK9A7AoYZ7c5RARkYIwwLiZ\nwTJWQBAEbLfsQY/TjmWJi+Cr9ZW7JCIiUhAGGDczWMYKnKo9i9xGC0YYkzE2bJTc5RARkcIwwLiZ\ny8cK2OQuRxK2ng5kFOyHl1qLtGTu+UJERDeOAcYNpfSNFci3FsldiiT2nf8Ard1tmD9sNkJ9Q+Qu\nh4iIFIgBxg158liB880l+KwiC0P8wjEzZprc5RARkUIxwLihmIAo+Gp9kedhYwUcTgfeydsFAQL3\nfCEiolvCAOOGPHWswMdlx1HZXo3JkXciIXiY3OUQEZGCMcC4KXPf7dSecjdSQ0cjDhQfhr+XHxYn\nzJe7HCIiUjgGGDflSWMFBEHADste9Dh7sDTxPvh56eUuiYiIFI4Bxk1dHCtQqPixAl/XZSO7IQ/J\nhuEYH3673OUQEZEHYIBxYynGJHQ6ulDcUip3KTetw96JnZZ90Kq1WJH8APd8ISIiUTDAuDFz3zKS\nkvtg3j1/CM3dLZgbOwNhepPc5RARkYdggHFjF8cKKLMPpqSlDMfKP0e43oTZsTPkLoeIiDwIA4wb\n89XqEKfQsQKX7vmyInkJvNRauUsiIiIPwgDj5swKHSvwScXnKGurxISIO5BkSJC7HCIi8jAMMG5O\niWMFrJ1NeO/8Ifh56fHA8AVyl0NERB6IAcbN9Y8VyFXQWIGdln3ocnTjgYQF8Pf2k7scIiLyQAww\nbq5/rEBjpxV1HfVyl/ODztbl4Gx9DoYHx2HCkDvkLoeIiDwUA4wCpPSNFXD3XXk77V3YadkHjUqD\nlclLuecLERFJRtIAY7FYMGvWLLz11lsAgJ6eHjz++ONYtmwZHn74YTQ3NwMA8vLysGTJEixZsgQv\nv/yylCUp0sX9YNw7wBwo/hDWribMjp2OCL8wucshIiIPJlmAsdls2LRpEyZOnDjw2I4dO2AwGJCR\nkYH58+fj5MmTAIAnn3wSmzZtQkZGBoqKitDR0SFVWYoU6mtEmG+oW48VKGutQGb5ZzD5hmBu7D1y\nl0NERB5OsgDj7e2NLVu2ICzs4jvxo0ePYtGiRQCAtLQ0zJw5E/X19bDZbBg5ciTUajX+8pe/wNfX\nV6qyFMtsTHTbsQJOwYl38nbDKTixInkJvDVecpdEREQeTrLdxbRaLbTayw9fUVGBY8eO4dlnn0Vo\naCg2btyIiooKBAUFYcOGDbhw4QLmzZuHtWvXXvPYBoMeWq1GqtJhMgVIduybdVf3aByr+AKlnSWY\naBoldzmXOViQiZLWMkyJGY+pyWMlfS53PDfE8+LOeG7cF8/NrXHp9qiCICAuLg7r16/HK6+8gs2b\nN2Pu3LkoLy/Hyy+/DJ1Oh7S0NEyePBmJiYnfexyrVbpdaU2mANTVtUp2/JsVro6EWqXGqfJs3BMx\nXe5yBjR1NePts/vgq/XFgph5kv7dueu5Gex4XtwXz4374rm5PtcKeS69Cyk0NBTjx48HAEyZMgWF\nhYUICQlBYmIiDAYDfH19MW7cOBQUuHezqhz6xwqUtJSh3Y3GCmQUvItORyfuT7gXgd58N0FERK7h\n0gAzbdo0HD9+HACQk5ODuLg4REdHo729HU1NTXA6ncjNzUV8fLwry1KMFGNS31iBQrlLAQBk1+fi\nTO03iA+KxaTIO+Uuh4iIBhHJlpCys7ORnp6OiooKaLVaHDp0CM899xyeeeYZZGRkQK/XIz09HQDw\nu9/9Do8++ihUKhWmTp0Ks9ksVVmKZjYm4b3iD5HXWICxYfL2wXQ7urHDshdqlRorkpdAreKWQkRE\n5DqSBZjU1FRs3br1qsdfeOGFqx4bPXo0du7cKVUpHiM28PKxAnJuFPd+8RE0dFoxO2Y6hvoPka0O\nIiIanPi2WUHUKjXMbjBWoKKtCh+VHUOIzoD5cbNkq4OIiAYvBhiFMcs8VuDSPV/Skh+At8ZbljqI\niGhwY4BRmP6xArmNFlme//PKL1HcUoLbw0ZhZAh7lYiISB4MMAoj51iBlu5W7C36ADqNDssS73Pp\ncxMREV2KAUaBzMYkdDm6XT5WYFfBu+iwd2BRwjwE+wS59LmJiIguxQCjQCl9fTB5LlxGym204GTN\n14gNiMbUoRNc9rxERETfhQFGgRINCVCr1C5r5O129GB7/h6oVWqsNC/lni9ERCQ7vhIpUO9YgViX\njRU4VPIx6joaMD1qMqIDIiV/PiIioh/CAKNQKcZEl4wVqG6vweGSTBh8grEgbo6kz0VERHS9GGAU\nqv92ain7YARBwDv5u+EQHFietBg6rY9kz0VERHQjGGAU6uJYgQIIgiDJc5yoOonCpmKMDh2JUaaR\nkjwHERHRzWCAUahLxwrUSjBWoK27HXuKDsBH440HkxaLfnwiIqJbwQCjYCkDy0ji3420u/A9tPfY\nsDB+Lgy6YNGPT0REdCsYYBTs4lwkcftgLNYiZFWfQrR/JO4eOknUYxMREYmBAUbBQnyNCNOLO1ag\nx2nHtvzdUEGFleal0Kg1ohyXiIhITAwwCmc2iDtW4HDJUdTY6jAtahJiA6NFOSYREZHYGGAULkXE\nZaRaWx0OlRxFkHcg7oufe8vHIyIikgoDjMJdHCtwawFGEARsy98Du9OOB5MWw1erE6lCIiIi8THA\nKFz/WIHSlvJbGivwVc0Z5FsLkRpixhhTqogVEhERiY8BxgOkGJNuaaxAe48NuwrehZfaC8uT7odK\npRK5QiIiInExwHiAlJDePpibHSuwt/B9tPW0Y0HcbIT4GsUsjYiISBIMMB4gJiAK+pscK1DYVIzP\nq75EpF8E7omeKlGFRERE4mKA8QBqlRrJxsQbHitg554vRESkUAwwHiLFcOO3U39UegxV7TWYPPQu\nxAfFSlUaERGR6BhgPET/WIHr7YOp72jABxeOIMDbH4vj75WyNCIiItExwHiIi2MFin5wrED/ni89\nTjuWJS6C3svXRVUSERGJgwHGg6QYr2+swOnas8httCDFmIRxYaNdVB0REZF4GGA8SIoxCcC1+2Bs\nPR3IKHgXXmot0pIe4J4vRESkSAwwHiQxOP4HxwrsP38QLd2tmDdsFkz6EBdWR0REJB4GGA+i0+oQ\nH/T9YwWKm0vxacUJRPiFY1bMNBkqJCIiEgcDjIcxG757rIDD6cA7+bsgQMDK5CXQqrUyVUhERHTr\nGGA8TP9YgdyGy5eRjpZ/ioq2KkwaMh7Dg+PkKI2IiEg0DDAe5uJYAcvAWIGGDisOnP8Q/l5+WDx8\nvswVEhER3ToGGA/TP1bA2tWE2o56CIKAHZa96Hb2YMnwhfD38pO7RCIiolvGAOOBUowXxwqcrctG\ndkMukoITcGfEWJkrIyIiEoekAcZisWDWrFl46623AAA9PT14/PHHsWzZMjz88MNobm6+7Ot//etf\nY8OGDVKWNCiYDb37wXxdew47C/ZDq9JgRTL3fCEiIs8hWYCx2WzYtGkTJk6cOPDYjh07YDAYkJGR\ngfnz5+PkyZMDn/vss89QWnrtHWTp+oT4GhCuN6Gg6TyaupoxJ3YGwv3C5C6LiIhINJIFGG9vb2zZ\nsgVhYRdfOI8ePYpFixYBANLS0jBz5kwAQHd3N1599VX89Kc/laqcQad/uGOYPhRzYmfIXA0REZG4\nJNsMRKvVQqu9/PAVFRU4duwYnn32WYSGhmLjxo0IDg7G5s2bsXLlSvj7+1/XsQ0GPbRajRRlAwBM\npgDJju0q8zTTYGkqxE/vXINIk1HuckTjCefGE/G8uC+eG/fFc3NrXLqbmSAIiIuLw/r16/HKK69g\n8+bNSEtLQ3Z2Nn7+858jKyvruo5jtV69y6xYTKYA1NW1SnZ8VwmEEf91528AwCO+H8Bzzo2n4Xlx\nXzw37ovn5vpcK+S59C6k0NBQjB8/HgAwZcoUFBYWIjMzE5WVlVi+fDmefvppZGZmYsuWLa4si4iI\niBTGpVdgpk2bhuPHj2Pp0qXIyclBXFwc1q5di7Vr1wIAsrKysGfPHjz66KOuLIuIiIgURrIAk52d\njfT0dFRUVECr1eLQoUN47rnn8MwzzyAjIwN6vR7p6elSPT0RERF5MJXQv9+8gki5bsh1SffFc+Oe\neF7cF8+N++K5uT5u0wNDREREJAYGGCIiIlIcBhgiIiJSHAYYIiIiUhwGGCIiIlIcBhgiIiJSHAYY\nIiIiUhwGGCIiIlIcBhgiIiJSHEXuxEtERESDG6/AEBERkeIwwBAREZHiMMAQERGR4jDAEBERkeIw\nwBAREZHiMMAQERGR4jDAXOK///u/kZaWhhUrVuCbb76Ruxy6xJ///GekpaVh6dKl+PDDD+Uuhy7R\n2dmJWbNmYffu3XKXQpfYv38/Fi1ahCVLliAzM1PucghAe3s71q9fjzVr1mDFihU4fvy43CUpmlbu\nAtzFl19+iZKSEmzfvh1FRUV44oknsH37drnLIgAnTpxAQUEBtm/fDqvVigceeABz5syRuyzq8+qr\nryIoKEjuMugSVqsVL7/8Mnbt2gWbzYYXX3wR06dPl7usQW/Pnj2Ii4vD448/jpqaGjz88MM4ePCg\n3GUpFgNMny+++AKzZs0CACQkJKC5uRltbW3w9/eXuTIaP348Ro0aBQAIDAxER0cHHA4HNBqNzJVR\nUVERCgsL+eLoZr744gtMnDgR/v7+8Pf3x6ZNm+QuiQAYDAbk5+cDAFpaWmAwGGSuSNm4hNSnvr7+\nsh8mo9GIuro6GSuifhqNBnq9HgCQkZGBadOmMby4ifT0dGzYsEHuMugK5eXl6OzsxGOPPYZVq1bh\niy++kLskArBgwQJUVlZi9uzZWL16NX7729/KXZKi8QrM9+CEBfdz5MgRZGRk4H//93/lLoUA7N27\nF2PGjEF0dLTcpdB3aGpqwksvvYTKykr86Ec/wtGjR6FSqeQua1Dbt28fIiMj8Y9//AN5eXl44okn\n2Dt2Cxhg+oSFhaG+vn7g49raWphMJhkroksdP34cr732Gv7+978jICBA7nIIQGZmJsrKypCZmYnq\n6mp4e3sjIiICkyZNkru0QS8kJAS33347tFotYmJi4Ofnh8bGRoSEhMhd2qB2+vRpTJkyBQBgNptR\nW1vL5fBbwCWkPpMnT8ahQ4cAADk5OQgLC2P/i5tobW3Fn//8Z2zevBnBwcFyl0N9/va3v2HXrl3Y\nsWMHHnzwQaxbt47hxU1MmTIFJ06cgNPphNVqhc1mY7+FG4iNjcXZs2cBABUVFfDz82N4uQW8AtNn\n7NixGDlyJFasWAGVSoWNGzfKXRL1ef/992G1WvHLX/5y4LH09HRERkbKWBWR+woPD8fcuXOxfPly\nAMB//dd/Qa3m+1W5paWl4YknnsDq1atht9vx1FNPyV2SoqkENnsQERGRwjCSExERkeIwwBAREZHi\nMMAQERGR4jDAEBERkeIwwBAREZHiMMAQkaTKy8uRmpqKNWvWDEzhffzxx9HS0nLdx1izZg0cDsd1\nf/3KlSuRlZV1M+USkUIwwBCR5IxGI7Zu3YqtW7di27ZtCAsLw6uvvnrdf37r1q3c8IuILsON7IjI\n5caPH4/t27cjLy8P6enpsNvt6OnpwR/+8AeMGDECa9asgdlsRm5uLt58802MGDECOTk56O7uxpNP\nPonq6mrY7XYsXrwYq1atQkdHB371q1/BarUiNjYWXV1dAICamhr85je/AQB0dnYiLS0Ny5Ytk/Nb\nJyKRMMAQkUs5HA4cPnwY48aNw3/+53/i5ZdfRkxMzFXD7fR6Pd56663L/uzWrVsRGBiI559/Hp2d\nnZg/fz6mTp2Kzz//HDqdDtu3b0dtbS1mzpwJAPjggw8QHx+Pp59+Gl1dXdi5c6fLv18ikgYDDBFJ\nrrGxEWvWrAEAOJ1O3HHHHVi6dCleeOEF/P73vx/4ura2NjidTgC94z2udPbsWSxZsgQAoNPpkJqa\nipycHFgsFowbNw5A72DW+Ph4AMDUqVPx9ttvY8OGDbj77ruRlpYm6fdJRK7DAENEkuvvgblUa2sr\nvLy8rnq8n5eX11WPqVSqyz4WBAEqlQqCIFw266c/BCUkJODAgQP46quvcPDgQbz55pvYtm3brX47\nROQG2MRLRLIICAhAVFQUPvnkEwBAcXExXnrppWv+mdGjR+P48eMAAJvNhpycHIwcORIJCQk4c+YM\nAKCqqgrFxcUAgHfffRfnzp3DpEmTsHHjRlRVVcFut0v4XRGRq/AKDBHJJj09HX/84x/x+uuvw263\nY8OGDdf8+jVr1uDJJ5/EQw89hO7ubqxbtw5RUVFYvHgxPv74Y6xatQpRUVG47bbbAADDhw/Hxo0b\n4e3tDUEQ8Oijj0Kr5X97RJ6A06iJiIhIcbiERERERIrDAENERESKwwBDREREisMAQ0RERIrDAENE\nRESKwwBDREREisMAQ0RERIrDAENERESK8/8BF5eI/wp1N7EAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "65sin-E5NmHN", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 5: Evaluate on Test Data\n", + "\n", + "**In the cell below, load in the test data set and evaluate your model on it.**\n", + "\n", + "We've done a lot of iteration on our validation data. Let's make sure we haven't overfit to the pecularities of that particular sample.\n", + "\n", + "Test data set is located [here](https://download.mlcc.google.com/mledu-datasets/california_housing_test.csv).\n", + "\n", + "How does your test performance compare to the validation performance? What does this say about the generalization performance of your model?" + ] + }, + { + "metadata": { + "id": "icEJIl5Vp51r", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "d41935a7-a9fd-46ab-c836-58025e980c4a" + }, + "cell_type": "code", + "source": [ + "california_housing_test_data = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_test.csv\", sep=\",\")\n", + "#\n", + "# YOUR CODE HERE\n", + "#\n", + "test_examples = preprocess_features(california_housing_test_data)\n", + "test_targets = preprocess_targets(california_housing_test_data)\n", + "\n", + "predict_test_input_fn = lambda: my_input_fn(\n", + " test_examples, \n", + " test_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + "test_predictions = linear_regressor.predict(input_fn=predict_test_input_fn)\n", + "test_predictions = np.array([item['predictions'][0] for item in test_predictions])\n", + "\n", + "root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(test_predictions, test_targets))\n", + "\n", + "print(\"Final RMSE (on test data): %0.2f\" % root_mean_squared_error)" + ], + "execution_count": 28, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Final RMSE (on test data): 166.49\n" + ], + "name": "stdout" + } + ] + } + ] +} \ No newline at end of file From 11081467abecfaab4223d0501624e9638d931988 Mon Sep 17 00:00:00 2001 From: Amit Rai <42401957+ardev472@users.noreply.github.com> Date: Sun, 17 Feb 2019 21:35:22 +0530 Subject: [PATCH 06/11] Created using Colaboratory --- logistic_regression.ipynb | 1412 +++++++++++++++++++++++++++++++++++++ 1 file changed, 1412 insertions(+) create mode 100644 logistic_regression.ipynb diff --git a/logistic_regression.ipynb b/logistic_regression.ipynb new file mode 100644 index 0000000..1c6fe33 --- /dev/null +++ b/logistic_regression.ipynb @@ -0,0 +1,1412 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "logistic_regression.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "dPpJUV862FYI", + "i2e3TlyL57Qs", + "wCugvl0JdWYL" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "g4T-_IsVbweU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Logistic Regression" + ] + }, + { + "metadata": { + "id": "LEAHZv4rIYHX", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Reframe the median house value predictor (from the preceding exercises) as a binary classification model\n", + " * Compare the effectiveness of logisitic regression vs linear regression for a binary classification problem" + ] + }, + { + "metadata": { + "id": "CnkCZqdIIYHY", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "As in the prior exercises, we're working with the [California housing data set](https://developers.google.com/machine-learning/crash-course/california-housing-data-description), but this time we will turn it into a binary classification problem by predicting whether a city block is a high-cost city block. We'll also revert to the default features, for now." + ] + }, + { + "metadata": { + "id": "9pltCyy2K3dd", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Frame the Problem as Binary Classification\n", + "\n", + "The target of our dataset is `median_house_value` which is a numeric (continuous-valued) feature. We can create a boolean label by applying a threshold to this continuous value.\n", + "\n", + "Given features describing a city block, we wish to predict if it is a high-cost city block. To prepare the targets for train and eval data, we define a classification threshold of the 75%-ile for median house value (a value of approximately 265000). All house values above the threshold are labeled `1`, and all others are labeled `0`." + ] + }, + { + "metadata": { + "id": "67IJwZX1Vvjt", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "\n", + "Run the cells below to load the data and prepare the input features and targets." + ] + }, + { + "metadata": { + "id": "fOlbcJ4EIYHd", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "lTB73MNeIYHf", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Note how the code below is slightly different from the previous exercises. Instead of using `median_house_value` as target, we create a new binary target, `median_house_value_is_high`." + ] + }, + { + "metadata": { + "id": "kPSqspaqIYHg", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Create a boolean categorical feature representing whether the\n", + " # median_house_value is above a set threshold.\n", + " output_targets[\"median_house_value_is_high\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] > 265000).astype(float)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "FwOYWmXqWA6D", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1205 + }, + "outputId": "a7b33b0c-ef9f-4f78-ce7e-51ffd6b614ea" + }, + "cell_type": "code", + "source": [ + "# Choose the first 12000 (out of 17000) examples for training.\n", + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "\n", + "# Choose the last 5000 (out of 17000) examples for validation.\n", + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "\n", + "# Double-check that we've done the right thing.\n", + "print(\"Training examples summary:\")\n", + "display.display(training_examples.describe())\n", + "print(\"Validation examples summary:\")\n", + "display.display(validation_examples.describe())\n", + "\n", + "print(\"Training targets summary:\")\n", + "display.display(training_targets.describe())\n", + "print(\"Validation targets summary:\")\n", + "display.display(validation_targets.describe())" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 35.6 -119.6 28.6 2644.2 540.8 \n", + "std 2.1 2.0 12.6 2155.4 419.2 \n", + "min 32.5 -124.3 1.0 2.0 1.0 \n", + "25% 33.9 -121.8 18.0 1463.0 296.0 \n", + "50% 34.2 -118.5 29.0 2139.5 436.0 \n", + "75% 37.7 -118.0 37.0 3161.2 653.0 \n", + "max 42.0 -114.5 52.0 37937.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1428.5 502.5 3.9 2.0 \n", + "std 1114.8 382.9 1.9 1.1 \n", + "min 3.0 1.0 0.5 0.1 \n", + "25% 788.0 282.0 2.6 1.5 \n", + "50% 1168.0 410.0 3.5 1.9 \n", + "75% 1731.0 608.0 4.8 2.3 \n", + "max 28566.0 6082.0 15.0 52.0 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean35.6-119.628.62644.2540.81428.5502.53.92.0
std2.12.012.62155.4419.21114.8382.91.91.1
min32.5-124.31.02.01.03.01.00.50.1
25%33.9-121.818.01463.0296.0788.0282.02.61.5
50%34.2-118.529.02139.5436.01168.0410.03.51.9
75%37.7-118.037.03161.2653.01731.0608.04.82.3
max42.0-114.552.037937.06445.028566.06082.015.052.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 35.6 -119.5 28.6 2642.3 536.2 \n", + "std 2.1 2.0 12.5 2238.1 427.0 \n", + "min 32.5 -124.3 1.0 15.0 3.0 \n", + "25% 33.9 -121.8 18.0 1459.8 297.0 \n", + "50% 34.2 -118.5 29.0 2108.0 427.0 \n", + "75% 37.7 -118.0 37.0 3118.5 637.0 \n", + "max 42.0 -114.3 52.0 28258.0 4819.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1432.1 498.2 3.9 2.0 \n", + "std 1223.6 388.4 1.9 1.2 \n", + "min 8.0 3.0 0.5 0.0 \n", + "25% 792.0 281.0 2.6 1.5 \n", + "50% 1164.0 406.0 3.6 1.9 \n", + "75% 1693.0 596.0 4.8 2.3 \n", + "max 35682.0 4769.0 15.0 55.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean35.6-119.528.62642.3536.21432.1498.23.92.0
std2.12.012.52238.1427.01223.6388.41.91.2
min32.5-124.31.015.03.08.03.00.50.0
25%33.9-121.818.01459.8297.0792.0281.02.61.5
50%34.2-118.529.02108.0427.01164.0406.03.61.9
75%37.7-118.037.03118.5637.01693.0596.04.82.3
max42.0-114.352.028258.04819.035682.04769.015.055.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Training targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value_is_high\n", + "count 12000.0\n", + "mean 0.2\n", + "std 0.4\n", + "min 0.0\n", + "25% 0.0\n", + "50% 0.0\n", + "75% 0.0\n", + "max 1.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value_is_high
count12000.0
mean0.2
std0.4
min0.0
25%0.0
50%0.0
75%0.0
max1.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value_is_high\n", + "count 5000.0\n", + "mean 0.3\n", + "std 0.4\n", + "min 0.0\n", + "25% 0.0\n", + "50% 0.0\n", + "75% 1.0\n", + "max 1.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value_is_high
count5000.0
mean0.3
std0.4
min0.0
25%0.0
50%0.0
75%1.0
max1.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "uon1LB3A31VN", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## How Would Linear Regression Fare?\n", + "To see why logistic regression is effective, let us first train a naive model that uses linear regression. This model will use labels with values in the set `{0, 1}` and will try to predict a continuous value that is as close as possible to `0` or `1`. Furthermore, we wish to interpret the output as a probability, so it would be ideal if the output will be within the range `(0, 1)`. We would then apply a threshold of `0.5` to determine the label.\n", + "\n", + "Run the cells below to train the linear regression model using [LinearRegressor](https://www.tensorflow.org/api_docs/python/tf/estimator/LinearRegressor)." + ] + }, + { + "metadata": { + "id": "smmUYRDtWOV_", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns(input_features):\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Args:\n", + " input_features: The names of the numerical input features to use.\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\"\n", + " return set([tf.feature_column.numeric_column(my_feature)\n", + " for my_feature in input_features])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "B5OwSrr1yIKD", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "SE2-hq8PIYHz", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_linear_regressor_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearRegressor` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + "\n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " \n", + " # Take a break and compute predictions.\n", + " training_predictions = linear_regressor.predict(input_fn=predict_training_input_fn)\n", + " training_predictions = np.array([item['predictions'][0] for item in training_predictions])\n", + " \n", + " validation_predictions = linear_regressor.predict(input_fn=predict_validation_input_fn)\n", + " validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + " \n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_regressor" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "TDBD8xeeIYH2", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 741 + }, + "outputId": "96c6a011-4527-424e-8708-4c7b1ff463b7" + }, + "cell_type": "code", + "source": [ + "linear_regressor = train_linear_regressor_model(\n", + " learning_rate=0.000001,\n", + " steps=200,\n", + " batch_size=30,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 0.45\n", + " period 01 : 0.44\n", + " period 02 : 0.44\n", + " period 03 : 0.44\n", + " period 04 : 0.45\n", + " period 05 : 0.44\n", + " period 06 : 0.44\n", + " period 07 : 0.44\n", + " period 08 : 0.44\n", + " period 09 : 0.44\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAGACAYAAACtGmg0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XdYFOf2wPHv7gICUqRLFXvBggWl\n2MCG3ViIDY3JTW6K0RjzM9GbdpNcY+69phijuaaYRGOCGmJJNPZeEMVeg4WiSO9FYJnfH8SNRMXG\nsgucz/P4PMzOzDtn9t3Fw5l33lEpiqIghBBCCFEHqA0dgBBCCCFEdZHERwghhBB1hiQ+QgghhKgz\nJPERQgghRJ0hiY8QQggh6gxJfIQQQghRZ5gYOgAhaqOWLVvi5eWFRqMBQKvV4ufnx+uvv46lpeVD\nt7ty5UrCwsJuez0yMpLZs2fz+eefExwcrHu9qKiIwMBA+vfvz7x58x76uPcrPj6euXPncvnyZQAs\nLCyYOnUqffv21fuxH8SiRYuIj4+/7T2JioriqaeewsPD47Z9fvvtt+oK75EkJibSp08fGjduDICi\nKDg6OvKPf/yDNm3aPFBb8+fPx83NjXHjxt33PmvXrmX16tUsW7bsgY4lRHWRxEcIPVm2bBkNGzYE\noLi4mBkzZvC///2PGTNmPFR7qampfPnll3dMfABcXV355ZdfKiQ+O3bswMbG5qGO9zBeeeUVhg8f\nzueffw7A8ePHmTx5Mhs3bsTV1bXa4ngUrq6uNSbJuRuNRlPhHDZs2MALL7zApk2bMDMzu+92Zs6c\nqY/whDAoudQlRDUwMzOjR48enD17FoAbN27w5ptvMmDAAAYOHMi8efPQarUAnDt3jrFjxxIaGsrw\n4cPZs2cPAGPHjuXatWuEhoZSXFx82zE6depEVFQUhYWFutc2bNhAUFCQbrm4uJj33nuPAQMGEBIS\noktQAI4ePcrIkSMJDQ1l0KBB7N+/HyivIHTv3p3vvvuOoUOH0qNHDzZs2HDH87xw4QIdOnTQLXfo\n0IFNmzbpEsCFCxfSq1cvRowYwZIlSwgJCQHgtddeY9GiRbr9bl2+V1xz585l4sSJABw5coRRo0bR\nr18/wsLCSEhIAMorXy+99BLBwcFMnDiR69ev36PH7iwyMpKpU6cyefJk/v3vfxMVFcXYsWOZPn26\nLknYuHEjQ4YMITQ0lEmTJhEfHw/Ap59+yuuvv87o0aP55ptvKrQ7ffp0vv76a93y2bNn6d69O2Vl\nZXz00UcMGDCAAQMGMGnSJJKTkx847kGDBlFUVMSlS5cAiIiIIDQ0lJCQEF5++WWKioqA8vf9/fff\nZ+jQoWzcuLFCP9ztc1lWVsY777xD7969GT16NOfOndMd99ChQzz22GMMGjSIgQMHsnHjxgeOXYgq\npwghqlyLFi2UpKQk3XJWVpYyYcIEZdGiRYqiKMr//vc/5emnn1ZKSkqUwsJCZdSoUcqaNWsUrVar\nDBw4UFm/fr2iKIpy4sQJxc/PT8nNzVUOHjyo9O3b947H++mnn5RXX31VeeWVV3T75ubmKn369FFW\nrVqlvPrqq4qiKMrChQuVyZMnKzdu3FDy8/OVESNGKNu3b1cURVGGDBmi/PLLL4qiKMrPP/+sO1ZC\nQoLSpk0bZdmyZYqiKMqGDRuUfv363TGOF198UQkODla+/fZbJTY2tsK68+fPK126dFFSUlKUkpIS\n5bnnnlOCg4MVRVGUV199Vfnss8902966XFlcPj4+SmRkpO58/fz8lL179yqKoijr169XHnvsMUVR\nFGX58uXKhAkTlJKSEiUjI0MJDg7WvSe3quw9vvk++/r6KpcvX9Zt365dO2X//v2KoijK1atXlc6d\nOytXrlxRFEVRvvrqK2Xy5MmKoijKggULlO7duyvp6em3tfvrr78qEyZM0C1/8sknyrvvvqtcuHBB\n6d+/v1JcXKwoiqJ89913ys8//3zX+G6+L61bt77tdT8/P+XixYtKdHS0EhAQoFy/fl1RFEV54403\nlHnz5imKUv6+Dx06VCkqKtItf/bZZ5V+Lnfu3Kn0799fycvLUwoLC5XRo0crEydOVBRFUUaOHKlE\nRUUpiqIoly9fVl5++eVKYxeiOkjFRwg9CQ8PJzQ0lD59+tCnTx/8/f15+umnAdi5cydhYWGYmJhg\nbm7O0KFD2bdvH4mJiaSlpTF48GAA2rVrh5ubGydPnryvYw4ePJhffvkFgK1btxIcHIxa/efXfMeO\nHYwfPx4zMzMsLS0ZPnw4mzdvBmDNmjUMHDgQgM6dO+uqJQClpaWMHDkSAB8fH65du3bH4//nP/9h\nwoQJrF+/niFDhhASEsIPP/wAlFdj/Pz8cHJywsTEhCFDhtzXOVUWV0lJCf369dO17+LioqtwDRky\nhPj4eK5du8bhw4fp168fJiYm2NnZVbgc+FdJSUmEhoZW+HfrWCBvb2+8vb11y+bm5gQEBACwb98+\nunXrRqNGjQAYM2YMUVFRlJaWAuUVMHt7+9uO2bt3b86cOUNWVhYAW7ZsITQ0FBsbGzIyMli/fj3Z\n2dmEh4czYsSI+3rfblIUhYiICFxcXPD29mb79u0MGjQIFxcXAMaNG6f7DAAEBARQr169Cm1U9rmM\njo6mV69e1K9fH3Nzc11fATg4OLBmzRouXryIt7c38+fPf6DYhdAHGeMjhJ7cHOOTkZGhu0xjYlL+\nlcvIyMDW1la3ra2tLenp6WRkZGBtbY1KpdKtu/mfn6Oj4z2PGRQUxOuvv05WVha//vorzz//vG6g\nMUBubi7vv/8+H374IVB+6at9+/YArF+/nu+++478/HzKyspQbnmMn0aj0Q3KVqvVlJWV3fH49erV\n46mnnuKpp54iJyeH3377jblz5+Lh4UF2dnaF8UYODg73PJ/7icvKygqAnJwcEhISCA0N1a03MzMj\nIyOD7OxsrK2tda/b2NiQn59/x+Pda4zPrf321+XMzMwK52htbY2iKGRmZt5x35ssLS0JDAxk586d\ndO7cmZycHDp37oxKpeLTTz/l66+/5t1338XPz49//vOf9xwvpdVqde+Doig0a9aMRYsWoVaryc3N\nZcuWLezdu1e3vqSk5K7nB1T6uczOzsbZ2bnC6zfNnTuXxYsXM2XKFMzNzXn55Zcr9I8QhiCJjxB6\nZm9vT3h4OP/5z39YvHgxAI6Ojrq/7gGysrJwdHTEwcGB7OxsFEXR/SeTlZV130mCqakpwcHBrFmz\nhri4ODp27Fgh8XF2dubJJ5+8reKRnJzM66+/zqpVq2jdujVXrlxhwIABD3SeGRkZnD17VldxsbGx\nISwsjD179nDhwgWsra3Jzc2tsP1Nf02msrOzHzguZ2dnmjRpQmRk5G3rbGxs7nrsquTg4MDRo0d1\ny9nZ2ajVauzs7O6574ABA9iyZQuZmZkMGDBA1//+/v74+/tTUFDABx98wH//+997Vk7+Orj5Vs7O\nzjz22GO8+uqrD3Red/tcVvbeOjo68sYbb/DGG2+wd+9eXnzxRXr06EH9+vXv+9hCVDW51CVENZgy\nZQpHjx7l0KFDQPmljdWrV6PVaikoKGDt2rX06tULDw8PGjZsqBs8HBMTQ1paGu3bt8fExISCggLd\nZZO7GTx4MF988cUdbyHv06cPq1atQqvVoigKixYtYvfu3WRkZGBpaUmTJk0oLS0lIiIC4K5VkTsp\nKipi2rRpukGvAHFxcRw/fpwuXbrQsWNHDh8+TEZGBqWlpaxZs0a3nZOTk25QbEJCAjExMQAPFFeH\nDh1ITU3l+PHjunb+7//+D0VR8PX1Zfv27Wi1WjIyMti9e/d9n9eDCAoK4vDhw7rLcT/++CNBQUG6\nSl9lgoODOXr0KFu3btVdLtq7dy///Oc/KSsrw9LSklatWlWoujyMkJAQNm/erEtQtm7dypIlSyrd\np7LPZceOHdm7dy+FhYUUFhbqEq6SkhLCw8NJSUkByi+RmpiYVLj0KoQhSMVHiGpgZWXFM888wwcf\nfMDq1asJDw8nISGBwYMHo1KpCA0NZeDAgahUKj788EPeeustFi5ciIWFBZ988gmWlpa0bNkSW1tb\ngoKC+Pnnn3Fzc7vjsbp27YpKpWLQoEG3rRs/fjyJiYkMHjwYRVFo27YtkydPxtLSkp49ezJgwAAc\nHBx47bXXiImJITw8nAULFtzXObq5ubF48WIWLFjAe++9h6IoWFlZMXv2bN2dXo8//jiPPfYYdnZ2\n9O/fn99//x2AsLAwpk6dSv/+/WnTpo2uqtOqVav7jsvc3JwFCxbw7rvvkp+fj6mpKdOnT0elUhEW\nFsbhw4fp27cvbm5u9O3bt0KV4lY3x/j81b///e97vgcNGzbkvffe4/nnn6ekpAQPDw/efffd+3r/\nrKys8PHx4fz58/j6+gLg5+fHr7/+yoABAzAzM8Pe3p65c+cCMGvWLN2dWQ/Cx8eHZ599lvDwcMrK\nynBwcOCf//xnpftU9rkMDg5m586dhIaG4ujoSK9evTh8+DCmpqaMHj2aJ554Aiiv6r3++utYWFg8\nULxCVDWVcusFcyGEqCaHDx9m1qxZbN++3dChCCHqEKk5CiGEEKLOkMRHCCGEEHWGXOoSQgghRJ0h\nFR8hhBBC1BmS+AghhBCizqhTt7Onpt759tWqYGdnSWZmgd7aFw9P+sY4Sb8YL+kb4yV9c3+cnKzv\nuk4qPlXExERj6BDEXUjfGCfpF+MlfWO8pG8enSQ+QgghhKgzJPERQgghRJ0hiY8QQggh6gxJfIQQ\nQghRZ0jiI4QQQog6QxIfIYQQQtQZkvgIIYQQos6QxEcIIYQQAOzcue2+tvvkk/lcu3b1rutfe+3l\nqgqpykniI4QQQgiSkq6xdeum+9p2+vSZuLm533X9vHkfVlVYVa5OPbJCCCGEEHf24YcfcPbsaXr0\n8KN//4EkJV3j448X8f7775CamkJhYSFPPvkMQUE9mDr1GV5+eRY7dmwjPz+P+Pg4rl5NZNq0mQQE\nBDF4cB9+/XUbU6c+g59fN2JiDpOVlcUHH3yEo6Mj77zzBtevJ9GuXXu2b9/Kzz9vqLbzlMRHCCGE\nMDIrt8cSfS7lttc1GhVarfJQbfq1ciYspNld148bF05k5EoaN25KfPwVFi36kszMDLp29WfgwCFc\nvZrIG2+8RlBQjwr7paQk89//LuDgwf2sXfsTAQFBFdbXr1+fTz5ZzOLFn7J793bc3DwoLr7BkiXf\nsG/fHlau/OGhzudhSeIjhKh2N7TF7I8/TJN6zdCo5dlDQhib1q19ALC2tuHs2dOsWxeJSqUmJyf7\ntm3bt/cFwNnZmby8vNvWd+jQUbc+OzubuLjLtGvXAYCAgCA0mur9HSCJjxCiWimKwndnIjiWepIR\nTQfRr1FvQ4ckhNEJC2l2x+qMk5M1qam5ej++qakpAFu2/EZOTg6fffYlOTk5/O1v4bdte2vioii3\nV6P+ul5RFNR//MGjUqlQqVRVHX6lZHCzEKJa7bsWxbHUkwBsjd/FDW2xgSMSQgCo1Wq0Wm2F17Ky\nsnB1dUOtVrNr13ZKSkoe+Tju7h6cP38GgEOHDt52TH2TxEcIUW2u5V1n9e/rsDSxoE+T7uSV5LM7\ncb+hwxJCAI0aNeb8+XPk5/95uap37xD279/D9OnPYWFhgbOzM0uXfvFIxwkM7EF+fj7PPfcUx48f\nxcbG9lFDfyAq5U51qVpKn+XB6io/igcnfWMcirUl/PvwApLyk3mm3SQCmnXg+fX/QKPS8M+A1zA3\nqWfoEMUf5DtjvGpD3+TkZBMTc5jevfuQmprC9OnPsWLFT1V6DCcn67uukzE+Qohq8VPsepLyk+np\nHkAHp7bUN7Mk2LMHGy5vYc/VAzLWR4g6wtKyPtu3b2XFimUoShkvvli9kx1K4lMFFEVBW1a91yiF\nqEmOpZxk79WDuNVvyGPNhuheD/bozo6EPWyN30UP9wCp+ghRB5iYmPDOO+8b7PgyxqcKrL24kefX\n/4OE3LtP3y1EXZVRlMnyc6sxVZvyZNsJmGlMdessTS0I9uxRPtbnqoz1EULon14Tn7lz5/L4448z\nduxYTpw4ccdt5s+fT3h4+e1xUVFR+Pv7Ex4eTnh4OO+++y4Ar732GkOHDtW9vnPnTgDWrVvHqFGj\nGDNmDKtWrdLnqVSqkY0nWUU5fHJ0CZez4w0WhxDGRlumZenpHygsLWRM82G41ne5bZtgj+5YmFiw\nNX4XRaU3DBClEKIu0dulrkOHDhEXF0dERAQXL15kzpw5REREVNgmNjaW6Oho3XwBAF27dmXBggW3\ntffyyy8THBysWy4oKOCzzz5j9erVmJqaMnr0aPr160eDBg30dUp31dG5HVO7PcFnh75l4bEveK7D\nkzRr0Lja4xDC2Gy8spVL2Vfo6NyeQLeud9zG0tSCEM/u/Hp5C7uv7qd/o+A7bieEEFVBbxWfAwcO\n0LdvXwCaNm1Kdnb2bTM6zps3jxkzZjxU+8ePH6ddu3ZYW1tjbm5Op06diImJeeS4H1YP765M8RlP\ncVkJnx37kvMZsQaLRQhjcCHzIr9d2Y69uR3jW46qdJKy3lL1EUJUE70lPmlpadjZ2emW7e3tSU1N\n1S1HRkbStWtX3N0rPt01NjaWZ599lnHjxrFv3z7d68uXL2fSpEnMmDGDjIwM0tLSsLe3v2v7htDJ\nuT3PtJtEmVLG4hNfczr9vEHjEcJQ8kry+fbMj6hUKqb4jMfS1KLS7W9WffJLCmReHyGM3OjRQyko\nKGDZsm84dariMJaCggJGjx5a6f47d24DYMOG9ezatUNvcd5Ntd3Vdet0QVlZWURGRrJ06VKSk5N1\nr3t7ezN16lQGDhxIQkICkyZNYvPmzQwfPpwGDRrQunVrlixZwsKFC+nYseNd278bOztLTEz090wQ\nJydrQpy6Yd/Amv/s+5wlJ7/l5cC/0cW9g96OKe5PZXM6iKqlKApf711G1o1sxrYbRrdmbe+67a39\nMsZ2IDsT97I9cTcjfftjYWpeHeGKu5DvjPEydN9oNGocHa14+eUXb1uXn69Go1HfNcbExET27NnO\nmDEjmDx5vL5DvSO9JT7Ozs6kpaXpllNSUnBycgLg4MGDZGRkMGHCBIqLi4mPj2fu3LnMmTOHQYMG\nAeDl5YWjoyPJyckEBATo2gkJCeHtt99mwIABt7Xv6+tbaUyZmQVVeYoV3DqplLuJJ8+3n8Li40v5\n774lTPEZTyfn9no7tqhcbZjwqybZmbCPI9dO0sKuGUGOgXd97+/UL8EePfjl8mYij22mv7eM9TEU\n+c4YL332zZNPTmDu3Pk0bNiQ69eTmD17Jk5OzhQWFlJUVMSMGf9HmzZt0WrLSEvL4x//eJPevfvg\n69uRf/xjFsXFxbRv74tWW0Zqai6bN29k9eoINBo13t5NefXVf/D6629y9uxp/v3vDykrK6NBgwaM\nGvU4ixZ9wsmTxykt1TJqVBihoYOZOvUZ/Py6ERNzmKysLD744CMaNmx43+/T3egt8QkKCuLTTz9l\n7NixnD59GmdnZ6ysrAAIDQ0lNDQUKM/+Zs+ezZw5c1i3bh2pqak89dRTpKamkp6ejouLCy+++CKz\nZs3C09OTqKgomjdvTocOHXj99dfJyclBo9EQExPDnDlz9HU6D6yFXTOm+j7NouNf8fWp7yltU0rX\nhp0MHZYQepWYe42fY3/ByrQ+k9s8jlr1YFfTe3sGsS1hD1sTdtHTIwBzE6n6iLopMvYXjqacvO11\njVqFtuzhHrjQ0bkdI2+ZR+uvevYMZt++3YwaFcaePbvo2TOYpk2b07Nnb44cieb777/lX//6z237\nbdq0kSZNmjJt2ky2bdvM1q2bACgsLGT+/E+xtrbmhRee5uLFWMaNCycyciVTpjzNV1/9D4Bjx2K4\ndOkiixd/TWFhIZMnj6Vnz94A1K9fn08+WczixZ+ye/d2wsIevUqkt8SnU6dO+Pj4MHbsWFQqFW+9\n9RaRkZFYW1vTr1+/O+4TEhLCK6+8wrZt2ygpKeHtt9/GzMyMCRMm8NJLL2FhYYGlpSXvv/8+5ubm\nzJw5k6eeegqVSsULL7yAtbVxlWabNvDmxY5Ps/DYV3x3JoLSstK73tkiRE13Q1vM16e/p1TREt46\njAb1Hvz5OxYmFvTxLK/67ErczwDvED1EKoS4k549g1m48GNGjQpj795dTJ06gx9/XMYPPyyjpKQE\nc/M7/yFy5colfH07A9CxY2fd6zY2NsyePROAuLjLZGdn3XH/c+fO4OtbXhiwsLDA27sJCQkJAHTo\nUD6sxdnZmezs7Co5T72O8XnllVcqLLdq1eq2bTw8PFi2bBkAVlZWfP7557dt4+/vz08/3f4cj1sr\nR8bK28aL6R2f4dNjX/D9udWUlpXS0yPQ0GEJUeVWXVhLckEqwZ7daevY+qHbuVn12Ra/m14egVL1\nEXXSyGZD7lid0eelriZNmpKenkpy8nVyc3PZs2cnjo7OvPHGu5w7d4aFCz++436KAmp1+V2bZX9U\no0pKSvjww3/zzTcrcHBwZNasl+56XJVKxa3DdEtLS3TtaTR/jsutqkeLyszN1cDT2p2XOj6LtZkV\nERfWsD1+t6FDEqJKHU4+xoGkaDyt3BjedNAjtVVe9elJfmkBu+QOLyGqVUBAd5YsWUSPHr3Izs7C\n3d0DgF27dlBaWnrHfby8GnHu3FkAYmIOA1BQkI9Go8HBwZHk5OucO3eW0tJS1Go1Wm3FRzy1auXD\n0aNH/tivgKtXE/Hw8NLXKUriU13crBoyo+Oz2JrZ8FPsL/x2ZbuhQxKiSqQVpvPDuUjMNGZMaTsB\nU/WjF5J7ewZiaWLBtvjdFJUWVUGUQoj70atXMFu3bqJ37z6Ehg4mIuJ7Zsx4AR+ftqSnp/Prr+tu\n2yc0dDCnT59k+vTnSEiIQ6VSYWvbAD+/bvztb5NYuvQLxo8PZ8GCD2nUqDHnz59jwYL5uv07dPCl\nZctWvPDC08yY8QLPPjsVC4vKp8B4FCqlqmpHNYA+71K43/JjakE6nxz9H5k3shjo3YfBjftXOrGb\neHRyh4r+aMu0fBizmCs58YS3DsPftct973uvftl4eRu/XN7E0CahhMpYn2ol3xnjJX1zfyq7q0sq\nPtXMydKBGZ2ew9HCgY1XtrHm4oYqu24pRHVbf2kTV3Li8XPpSLeGne+9wwPo7RmEpYkF2+N3UyhV\nHyFEFZHExwAcLOyY0elZXCyd2Bq/i1W/r5PkR9Q4ZzMusCV+J44WDoxt+ViVVy4tTMzp4yVjfYQQ\nVUsSHwNpUM+Wlzo9i1v9huxK3McP5yMpU8oMHZYQ9yW3OI9vz/yIWqXmSZ/xervzqpeHVH2EEFVL\nEh8DsjGzZnrHv+Np5ca+a1EsP7tKkh9h9MqUMr47E0FucR7Dmw6kkY2n3o4lVR8hRFWTxMfArMzq\nM63jM3jbeBF1/QjfnP4BbZn23jsKYSDbE/ZwJuM8re1bEOLZQ+/H6+URRH0TS7bF75KqjxDikUni\nYwQsTS2Z6vs3mtp6cyTlOF+d/p6SsjvPlyCEIcXlJLDu4m9Ym1kx6SEeSfEwLEzMCfHqSUFpIbsS\n9+n9eEKI2k0SHyNhYWLOC75/o4VdM46nnuKLk99Roi0xdFhC6BSVFrH09Aq0ipbJbcZiY1Z9j4jp\n5RH4R9VHxvoIIR6NJD5GpJ7GjOfaT6GNfUtOp5/j8xPfUKwtNnRYQgDw4/k1pBam08+rN63tW1Tr\nsaXqI4SoKpL4GBkzjSnPtJ9MO8c2nMv8nc+OfyUz1wqDi0o6QnRyDI1sPBnaZIBBYqhY9Sk0SAxC\niJpPEh8jZKo24em24XR0bk9s1mUWHvuSghL5RS8MI7kglR8v/Iy5xpwnfcajUWvuvZMe3LzDq6C0\nkJ0JcoeXEOLhSOJjpDRqDVPajMPPpROXc+L59NgS8kryDR2WqGNKykpZenoFxdpixrV8DEcLB4PG\nc7Pqsz1Bqj5CiIcjiY8R06g1TGoTRqCrH/G5V1lwdAm5xXmGDkvUIesubiQh9yr+rl3o0rCjocPB\nXKo+QohHJImPkVOr1IxrNYqe7gFczUvi45jPyb6RY+iwRB1wKu0s2xP24GLpRFiLEYYOR0c31keq\nPkKIhyCJTw2gVqkJazGCEM8eXC9I4aOYxWQWZRk6LFGLZd/IYdnZlZioNEzxmUA9jZmhQ9K5WfUp\nLC1kZ4Lc4SWEeDCS+NQQKpWKkc2GMKBRCKmF6XwUs5i0wgxDhyVqoTKljG/P/EheST6PNRuCp7Wb\noUO6TS+PQOqbWrItYY9UfYQQD0QSnxpEpVIxrGkoQxoPIL0ok49iFpNckGrosEQtsyVuJ+czY2nn\n2JpeHoGGDueOzE3M6evZS6o+QogHJolPDTSwcR9GNB1E1o1sPo75nKT8ZEOHJGqJS9lx/HJ5M7Zm\nNkxsFYZKpTJ0SHfV0yNAV/WR6R6EEPdLEp8aql+j3oxpPpyc4lw+jvmcxNxrhg5J1HAFJYUsPb0C\nRVF4wmccVmb1DR1SpSpUfRL3GjocIUQNIYlPDdbbM4hxLUeSX1LAJ0f/R1xOgqFDEjWUoij8cP4n\nMooyCfUOoYVdU0OHdF96/jHWZ3vCXqn6CCHuiyQ+NVx3d38mth5DYWkRC45+waXsOEOHJGqg/UmH\niEk5QRNbbwZ69zV0OPfN3KQefb2k6iOEuH+S+NQC/q5dmOIzjuKyYj499gW/Z140dEiiBknKT2bV\nhXVYmFjwRJtxBnskxcPq6X6z6iNjfYQQ9yaJTy3R2cWXp9pORFum5bPjX3M244KhQxI1QIm2hK9P\nfU9JWQkTW43GwcLO0CE9sD+rPkXskKqPEOIeJPGpRXyd2vJMu0koKHx+4htOpZ01dEjCyEXG/sq1\n/Ot0d/fH17mdocN5aD3dA7Eyrc8OqfoIIe5BEp9apq1ja55rPwUVKpac/I5jqacMHZIwUsdTT7H7\n6n5c67swqtlQQ4fzSKTqI4S4X5L41EKt7JvzQoenMFFr+OrUcg4nHzN0SMLIZBZlsfzsKkzVJjzp\nMwEzjamhQ3pkPdwDpOojhLgnvSY+c+fO5fHHH2fs2LGcOHHijtvMnz+f8PBwAKKiovD39yc8PJzw\n8HDeffddAJKSknjiiSeYOHG+oALJAAAgAElEQVQiTzzxBKmp5bMV+/j46LYNDw9Hq9Xq83RqlOZ2\nTZjq+zRmajO+Of0DB5MOGzokYSTKlDKWnv6BgtJCRjUfhptVQ0OHVCUqVH0S9hg6HCGEkTLRV8OH\nDh0iLi6OiIgILl68yJw5c4iIiKiwTWxsLNHR0Zia/vnXZteuXVmwYEGF7T7++GPCwsIYNGgQ33//\nPUuXLmXWrFlYWVmxbNkyfZ1CjdfEthHTOz7Dp8e+YNnZlZSWldLd3d/QYQkD23hlGxezL+Pr1I7u\nbt0MHU6V6uEewNb4XexI3EuwZw8sTS0MHZIQwsjoreJz4MAB+vYtnw+kadOmZGdnk5eXV2GbefPm\nMWPGjHu29dZbbzFgwAAA7OzsyMqSJ5PfLy8bD17q9CxWpvX54XwkOxJk/ENd9nvmJTZe3opdvQZM\naDXKqB9J8TCk6iOEuBe9JT5paWnY2f15a6y9vb3uEhVAZGQkXbt2xd3dvcJ+sbGxPPvss4wbN459\n+8ofPmhpaYlGo0Gr1bJixQqGDi0fiFlcXMzMmTMZO3YsS5cu1dep1HjuVq7M6PQstmbWrP59HVvi\ndho6JGEAeSX5fHPmB1QqFVN8xmNpamnokPSip8cfd3glymzOQojb6e1S118piqL7OSsri8jISJYu\nXUpy8p8P2PT29mbq1KkMHDiQhIQEJk2axObNmzEzM0Or1TJr1iz8/f0JCAgAYNasWQwbNgyVSsXE\niRPp0qUL7drd/ZZcOztLTEz0Nzmbk5O13tp+VE5O1rzj8Arv7PiYNRc3YGahZlSbQbXuL/67Mea+\nqQ6KovDNvu/JupHN422H4t/cOG5d11e/jGjTn+XHfyYqI4qwtjX7jjVDqevfGWMmffNo9Jb4ODs7\nk5aWpltOSUnByckJgIMHD5KRkcGECRMoLi4mPj6euXPnMmfOHAYNGgSAl5cXjo6OJCcn4+npyezZ\ns2nUqBFTp07VtTlu3Djdz/7+/ly4cKHSxCczs6CqT1PHycma1NRcvbVfFUywYJrv31lwdAkrT/1C\nVm4+w5qE1vrkpyb0jb7tTtxP9NXjNG/QhO5OQUbxfuizXzo16Mwa0838cm473ey71trqlr7Id8Z4\nSd/cn8qSQ71d6goKCmLTpk0AnD59GmdnZ6ysrAAIDQ1lw4YNrFy5koULF+Lj48OcOXNYt24dX331\nFQCpqamkp6fj4uLCunXrMDU1Zdq0abr2L126xMyZM1EUhdLSUmJiYmjevLm+TqfWcLSwZ0anZ3G2\ncGRz3A4iY3+pUI0Ttc/VvCR+iv2F+qaWPOEzDrWq9s9iUU9jRr9GvSnSFrFdxrUJIW6ht4pPp06d\n8PHxYezYsahUKt566y0iIyOxtramX79+d9wnJCSEV155hW3btlFSUsLbb7+NmZkZK1as4MaNG7rb\n3ps2bcrbb79Nw4YNGT16NGq1mpCQENq3b6+v06lV7Mwb8FKnZ1lwdAnbE/ZQUlZKWIvhdeI/xLrm\nhraYr099T2lZKX9rO5EG9WwNHVK16eEewJa4nexI2EuIZ3ep+gghAFApdejPfX2WB2ti+TG3OI9P\nj33B1bwkAlz9GN9qVK1Mfmpi31SVFedWs+/aIXp7BDGmxXBDh1NBdfTL1vhd/Bz7KwO9+zCkyQC9\nHqs2qcvfGWMnfXN/DHKpSxg/azMrpnf8O17W7hxIiua7MxFoy2QSyNoiJuUE+64dwsPKjRHNBhs6\nHIPo4R6AtakVOxL2kV+ivzF+QoiaQxKfOq6+qSXTOj5DY5tGRCcfZenpFZSWlRo6LPGI0gszWHFu\nNWZqU570GY+putpu4DQq9TRm9G3UiyKtzOsjhCgniY/AwsSCqb5P0bxBE46mnuTLU8so1hYbOizx\nkLRlWpaeXkFhaRFhLUbgUt/Z0CEZlFR9hBC3ksRHAGBuYs7zHZ6klV1zTqad5f1DH3Mx64qhwxIP\n4dfLW7icE08XF1/8XbsYOhyDu7Xqs12qPkLUeZL4CB0zjRnPtn+CEM8epBam81HMYlb/vk6qPzXI\n+YxYNsftwNHcnrEtR9b6OZru182qz86EvVL1EaKOk8RHVGCqMWVU86G83Pk5nCwd2JGwl7mHPiI2\n67KhQxP3kFucx7c3H0nRdjwWJuaGDslo/Fn1uSFVHyHqOEl8xB01sfVmtt8M+nj2JK0wg49jPmfV\nhbXckOqPUVIUhWVnV5JdnMuwJqF423gZOiSj01OqPkIIJPERlTDTmDKy+RBe7vw8zpaO7Ezcx9xD\nH/F75iVDhyb+YkfiXk6nn6O1fQv6ePU0dDhGyUw3m/MNtsfvNnQ4QggDkcRH3FMT20a85vcSfb16\nkV6YwcdHP2flhTUUld4wdGgCiM9NZE3sBqxNrQhv/XitnISyqvRw9y+v+iTuI68k39DhCCEMQH5D\nivtipjHlsWaDmdn5BVwsndmVuJ+5hz7iQmasoUOr04pKi1h6agVaRcukNo9jW0+e2lyZW6s+O+Jl\nrI8QdZEkPuKBNLb1YrbfdPp59SajKJNPji4h4vzPUv0xkJUX1pJSmEYfr560cWhp6HBqhB7u/lib\nSdVHiLpKEh/xwEw1poxoNohXurxAw/ou7L56gLmHPuR8hlR/qtOh6zFEXT9CI2tPhjUJNXQ4NYaZ\nxoz+XjfH+kjVR4i6RhIf8dC8bbx4rcs0+jcKJvNGNguOLeGH85EUlRYZOrRaL6UgjR/PR2KuqccU\nn/GY1NFHUjys7rqqz16p+ghRx0jiIx6JqcaU4U0H8krnF3Ct78Leqwf516GPOJfxu6FDq7VKy0pZ\nenoFN7TFjG05EidLB0OHVOPcrPrc0BZL1UeIOkYSH1ElGtl48qrfdEIbhZB1I5tPj33BinM/USjV\nnyq37tJvxOcm0q1hZ/wadjR0ODVWd/cAbMyspeojRB0jiY+oMqZqE4Y2DeX/Ok/FrX5D9l2L4l9R\nH3I2/YKhQ6s1TqefZ1v8bpwtHQlrMcLQ4dRoZhpT+jUqr/psk3l9hKgzJPERVc7LxoNX/aYx0LsP\n2cU5LDz+Jd+fXU1haaGhQ6vRsm/ksuxMBCYqDU/6TMDcpJ6hQ6rxurv5Y2Nmza7EfeQVS9VHiLpA\nEh+hFyZqE4Y0GcCsLi/ibuXK/qRDvBf1IafTzxs6tBonrTCd9Zc28e/DC8gtyWNEs8F4WrsbOqxa\noULVJ0GqPkLUBZL4CL3ytHZnVpcXGdS4HznFuSw6/hXLz66ioESqP5Up1pZw6HoMnxxdwlsHPuC3\nK9soKi2in1dvensEGTq8WkWqPkLULXIPrNA7E7UJgxv3o72jD8vPruRAUjRnMy4wruVI2jq2NnR4\nRkNRFBJyr7I/KZrDyUd1A8ObNWhMoGtXOjq3w0xjZuAoax8zjSn9GwWz+vd1bEvYzfCmAw0dkhBC\njyTxEdXG09qNWV1eZHPcDjZe2cbiE0vxb9iFUc2HYmlqYejwDCavJJ/o60c5kBTN1bwkAGzNrOnR\nKIAA1y44WzoZOMLaL8itG5vjdrArcR99PHtiZVbf0CEJIfREEh9RrTRqDQMb96W9kw/Lzq7k4PXD\nnM24wPhWo+pU9adMKeN8Riz7kw5xIvU0pYoWtUpNB6e2BLr60dq+BRq1xtBh1hlS9RGi7pDERxiE\nu5Ur/9d5Klvid7Lh8lYWn1hKt4adGd18KJamloYOT2/SCzM4kHSYg0mHybyRBUBDS2cC3Pzo1rAz\n1mZWBo6w7gpy68aWuB3slKqPELWaJD7CYDRqDaHefWjn2IblZ1cSdf0I5zIuMK7VKNo5tjF0eFWm\nRFvC8dRTHEg6zPnMWBQU6mnMCHTtSqCbH942XqhUKkOHWeeV3+ElVR8hajtJfITBuVu58krnqWyN\n38WGy1v4/MQ3+Ll0YkyLYdSvwdWfhNyrHEiKJvr6UQr+mMOoqa03AW5d6eTcnnoyUNno3Fr1CfHs\nIRU4IWohSXyEUdCoNQzwDvmj+rOK6OQYzmVeYFzLUXRw8jF0ePetoKSAQ8lHOXgtmoS8awDYmFnT\nz6s3AW5+uMhAZaNWoeoTv5sRzQYZOiQhRBWTxEcYFTerhszs/DzbEnbz66XNLDn5LV1cfBnTYjhW\npsY55qJMKeNC5kUOJEVzLPUUpWWlqFVq2jv6EOjmRxv7ljJQuQa5WfXZdXU/fbx6StVHiFpGEh9h\ndDRqDf0bBdPOsQ3Lzq7kcPIxzmfEMrbVSHyd2ho6PJ2MokzdQOWMokwAXCydCHD1o2vDztjWszZw\nhOJhlN/hFcKq39dK1UeIWkivic/cuXM5fvw4KpWKOXPm0L59+9u2mT9/PseOHWPZsmVERUUxffp0\nmjdvDkCLFi144403SEpKYtasWWi1WpycnPjPf/6DmZkZ69at49tvv0WtVhMWFsaYMWP0eTqimrnW\nd2Fmp+fZnrCHXy5v5ouT39HZuQNhLUYY7I6bkrJSTqSeYv+1aN1AZTONGQGufgS6+dHYppEMVK4F\ngty6sjluu1R9hKiF9Jb4HDp0iLi4OCIiIrh48SJz5swhIiKiwjaxsbFER0djamqqe61r164sWLCg\nwnYLFixg/PjxDBw4kA8//JDVq1czYsQIPvvsM1avXo2pqSmjR4+mX79+NGjQQF+nJAxAo9bQr1Fv\n3Z1fR1KOcz4zlrEtR9LRuV21xZGYe618RuXrR8kvLQCgiW0jAlzLByrLA0NrF1Op+ghRa+ntWV0H\nDhygb9++ADRt2pTs7Gzy8vIqbDNv3jxmzJhxz7aioqLo06cPAMHBwRw4cIDjx4/Trl07rK2tMTc3\np1OnTsTExFT9iQij0LC+My93fp7Hmg3mhvYGX55axlenlpNbnHfvnR9SQUkhuxP380H0J7wf/TG7\nEvehVqnp69WLN7q9wszOLxDo5idJTy0V5NYVWzMbdiXu0+vnTAhRvfRW8UlLS8PH58+7cezt7UlN\nTcXKqrxkHBkZSdeuXXF3r/iU6djYWJ599lmys7OZOnUqQUFBFBYWYmZWfuuvg4MDqamppKWlYW9v\nf1v7ova6mXS0c2jN8nOriEk5wYXMizze8jE6Od9+GfVhlCll/J556Y+Byicp+WOgcjvH1gS4dqWt\nQysZqFxHmGpM6e8dzKoLUvURojaptsHNiqLofs7KyiIyMpKlS5eSnJyse93b25upU6cycOBAEhIS\nmDRpEps3b75rO/fz+q3s7CwxMdHff1pOTjKYtTo4OVkz12sWG37fwQ8n1/LVqeWc9ujEU50fx9bc\n5q77VCatIIOdlw+y8/J+UvLTAXC1dia4cSC9vP2xs7Ct8vMQxv+dGW7fh60JO9l9dT9hHQfe9fNV\nGxl739Rl0jePRm+Jj7OzM2lpabrllJQUnJzK5zA5ePAgGRkZTJgwgeLiYuLj45k7dy5z5sxh0KDy\nv6q8vLxwdHQkOTkZS0tLioqKMDc3Jzk5GWdn5zu27+vrW2lMmZkFejjTck5O1qSm5uqtfXG7bvZd\n8fZrzPKzqziYGMPJ5HM83mIEnZw7VBhgfLe+KSkr5WTaGQ5cK39avIKCmdoU/4ZdCHDzo6mtNyqV\nitI8SM2Tvq1qNeU709ezN6surCXi6AYeazbY0OFUi5rSN3WR9M39qSw51NsYn6CgIDZt2gTA6dOn\ncXZ21l3mCg0NZcOGDaxcuZKFCxfi4+PDnDlzWLduHV999RUAqamppKen4+LiQmBgoK6tzZs306NH\nDzp06MDJkyfJyckhPz+fmJgYunTpoq/TEUbKxdKJGZ2eZXTzYRRrS/j69Aq+PLWMnOK7/2K4mpfE\n6t/X8Y997/HVqeWcyTiPt40n41uNYm73NwhvE0azBo3l7iwBQJBr+Vif3Yn7ZayPELWA3io+nTp1\nwsfHh7Fjx6JSqXjrrbeIjIzE2tqafv363XGfkJAQXnnlFbZt20ZJSQlvv/02ZmZmvPjii7z66qtE\nRETg5ubGiBEjMDU1ZebMmTz11FOoVCpeeOEFrK2l/FcXqVVqgj274+PQiuVnV3Es9RS/Z14irMVw\nOruUVwELSws5nHyMA9cOE5ebAICVaX36ePYkwM0P1/ouhjwFYcRuHeuzNX5Xnan6CFFbqZT7GRxT\nS+izPCjlR+NQppSxO/EAay9uoLishPaOPjSob8WBhBhKykpQocLHoSUBrn60dWyNiVrm8DSUmvSd\nKdGW8PbBf1NQUsA7gbNr/bw+Nalv6hrpm/tT2aUu+a0vahW1Sk1vzyB8HFrx/blVnEg7DWngZOFA\ngKsf3Vw706CeDFQWD6Z8Xp9gVl5Yw5b4nYxsNsTQIQkhHpIkPqJWcrJ0YFrHZziTfh4XBzsccZEx\nO+KRBLr6sTluB7sTD9DPq3etr/oIUVvpbXCzEIamVqlp69iaNs7NJekRj+xm1aekrIQt8TsNHY4Q\n4iFJ4iOEEPcp0K0rDerZsjvxQKV3DgohjJckPkIIcZ9M1SYM+KPqszVul6HDEUI8BEl8hBDiAQTc\nrPpclaqPEDWRJD5CCPEApOojRM0miY8QQjwgqfoIUXNJ4iOEEA+ovOoTUn6HV9xOQ4cjhHgAkvgI\nIcRDCHDzo0E9W/ZcPUj2Dan6CFFTSOIjhBAP4daqz1aZ10eIGkMSHyGEeEgBbn7Y1WsgVR8hahBJ\nfIQQ4iGZqk0Y4F1+h9fXp5eTkHvN0CEJIe5BEh8hhHgE/q5+tLFvSWzWZeZFf8zS0ytIKUgzdFhC\niLuQh5QKIcQjMFWb8HyHJzmbcYF1l37jcPIxYlJOEOjWlYHefWhQz9bQIQohbiGJjxBCPCKVSkUb\nh5a0sm/O0ZST/HJpE3uvHiQq6Qi9PYLo36g3lqaWhg5TCIEkPkIIUWXUKjWdXTrg69SWg0mH2XBl\nK1vid7L32kH6efWmt2d36mnMDB2mEHWaJD5CCFHFNGoNQe7d8GvYid1X97P5yg7WXfqNnYn7GOjd\nh0C3rpio5devEIYg3zwhhNATM40pfb16EeTWla3xu9kev5uIC2vYFr+bwU3608XFF7VK7jERojrJ\nN04IIfTMwsSCoU0G8M/A1+jlEUTmjWy+PfMj86I/4WTaGRRFMXSIQtQZUvERQohqYmNmTViL4YR4\n9mDD5S0cuh7D5ye+oYmtN8ObDqRZg8aGDlGIWk8qPkIIUc0cLeyZ1OZx5nSdQXtHHy5lX+GjmMUs\nOv41iTIJohB6JRUfIYQwEDerhvy9/WQuZcex7uJGTqef43T6Obq4+DK4cX+cLR0NHaIQtY4kPkII\nYWBNbBsxvePfyydBvLhRJkEUQo8k8RFCCCMgkyAKUT0k8RFCCCPy10kQf7285Y9JEKPo79Wb3p5B\nmMkkiEI8NEl8hBDCCP11EsRNV7az9tJGdiTulUkQhXgE8q0RQggjdnMSxEDXrmyL38X2hD26SRCH\nNBlAZ5cOMgmiEA9Ar4nP3LlzOX78OCqVijlz5tC+ffvbtpk/fz7Hjh1j2bJluteKiooYMmQIzz//\nPCNHjmTatGlkZmYCkJWVha+vL3//+98ZOnQobdu2BcDOzo4FCxbo83SEEMJgLE0tGNo0lJ4eQWyK\n28beq1F8c+YHtsTvZFiTUHwcWqFSqQwdphBGT2+Jz6FDh4iLiyMiIoKLFy8yZ84cIiIiKmwTGxtL\ndHQ0pqamFV5fvHgxtrZ/3sVwa0Ize/ZsxowZA0Djxo0rJExCCFHb2dazJqzFCEI8e/Lr5c1EXz/K\n4hNLZRLEWkhRFDJvZHElJ4G4nASS8pPp7NkWP7suUuV7BHpLfA4cOEDfvn0BaNq0KdnZ2eTl5WFl\nZaXbZt68ecyYMYOFCxfqXrt48SKxsbH07t37tjYvXbpEbm4u7du3JzExUV+hCyGE0XO0sGdym7H0\n9erF+kubOJl2ho9iFuPj0IphTULxsHYzdIjiAeWXFBCfk1ie6OTGcyUngdzivArbnE4/x26bQ0xs\nPQbX+i4GirRm01vik5aWho+Pj27Z3t6e1NRUXeITGRlJ165dcXd3r7DfBx98wBtvvMGaNWtua/O7\n775j4sSJFY4xbdo0UlJSGD9+PMOGDas0Jjs7S0xMNI9yWpVycrLWW9vi0UjfGCfpl0fn5GSNb+MW\nXEi7xPcn1nA6tXwSxO5efoS1G0pDK6eHblfoT3FpMVeyEonNuEJs+hUuZsSRlJdSYRsHCzu6evjS\nzN6bZvbeONd34IeTa9kXf5h50Z8wxmcww1r1Q6PW3/9rtVG1DW6+9SF8WVlZREZGsnTpUpKTk3Wv\nr1mzBl9fXzw9PW/bv7i4mCNHjvD2228D0KBBA6ZPn86wYcPIzc1lzJgx+Pv74+zsfNcYMjMLqu6E\n/sLJyZrU1Fy9tS8envSNcZJ+qVp2OPFC279xJuMC6y9uZG98NPsTjhDk1o2B3n2wrWdz321J31St\nMqWM6/kpxOUkcCW3/LLV1bwkypQy3TYWJua0smuOt40njf74d1ufFcL0gKfwsfXhx/OR/HByLXuv\nHCa8dRjuVq7VfFbGrbLEXW+Jj7OzM2lpabrllJQUnJzK//I4ePAgGRkZTJgwgeLiYuLj45k7dy4p\nKSkkJCSwc+dOrl+/jpmZGQ0bNiQwMJDo6OgKg6OtrKwYNWoUUF5Natu2LZcuXao08RFCiNpMpVLh\n49CS1vbNOZpygl8ubWbP1QMcTDpMsGd3+nn1kkkQ9eyv43LichKIz03khrZYt42J2gQvaw8a2Xjq\nEh0nC4f7HrfTwcmH5g0as/r39URdP8K86E8IbRTCAO8QmeLgPujtHQoKCuLTTz9l7NixnD59Gmdn\nZ91lrtDQUEJDQwFITExk9uzZzJkzp8L+n376Ke7u7gQGBgJw8uRJWrVqpVt/8OBBduzYwezZsyko\nKODcuXM0biyD+oQQonwSRF98ndpxICmaDZe3sjluB3uuHpRJEKvYvcblqFDhUt8Zb2tPXaLjZtXw\nkRMUS1NLJrV5nM4uHVhx7ic2XNnKsdRThLcOw8vG41FPq1bTW+LTqVMnfHx8GDt2LCqVirfeeovI\nyEisra3p16/fA7eXmpqKl5eXbrlLly6sWbOGxx9/HK1WyzPPPIOLiwz0EkKImzRqDd3d/enasDO7\nEvexOW4Hay9tZGfiXkK9+xLk1lXGhzyAYm0JiXnXyi9Z5cQTn5NISmFahW0a1LPF16mtLsnxtPbA\nwsRcbzH5OLTi9W4v83PsBvZdi+I/RxbS16sXg7z7YqoxvXcDdZBKuXXwTS2nz2vWck3ceEnfGCfp\nl+pXUFKomwSxuKwERwsHhjTuf9skiNI39z8up5G1Z+XjcqpYZX1zLuN3VpxbTXpRJg0tnZnYegyN\nbRvpNR5jVdkYH0l8qoj8ojBe0jfGSfrFcLJv5OomQdQqWtytXCtMgljX+ubmuJy4nMQ/qzl3GJfj\nYeX20ONyqsq9+qao9AbrLv3GrsR9qFAR7NmdoU0G1LlLm5L4/EESn7pJ+sY4Sb8YXlphhm4SRAWF\nprbeDGs6kIDm7Wt13xSUFBBngHE5VeF+vzexWZdZfnYlqYXpOFk4MKHVGJrbNamGCI2DJD5/kMSn\nbpK+MU7SL8bjal4S6y/9xsm0swB42rqhUUxQq9RoVGo0Kg1qlVq3rPtZrbnlNc3t61Wavyzfsp26\n/Ofb1/95vDu1W/GYFbf/6zFVKlWFcTk3/91pXM7NKk51jMt5FA/yvSnWFvPLpc1sT9iDgkIvj0CG\nNRmIuUk9PUdpeJL4/EESn7pJ+sY4Sb8Yn0vZV1h/aTNXcuIoKytDq5ShUHP/i1BR/uyyW8/h1nE5\nXjaeNLLxoEE927s1YXQe5ntzOTuOZWdXkVyQgoO5HeNbjaaVfXM9RWgcJPH5gyQ+dZP0jXGSfjFe\nt/ZNmVKm+6et8LMWbdnNZe1f1pWvr7iftkIb2rK/rq/YjvYv299p31vbrbD+ln3VKhXuVm4GHZdT\nlR72e1OiLWHDla1sjd9FmVJGkFs3Hms2CAsTCz1EaXgGmcBQCCFEzXfzEpKo2Uw1pgxvOpCOTu1Y\ndnYl+65FcTr9HONbjcLHodW9G6hF5NMshBBC1BFeNh686jeNQY37kVOcy6LjX/PdmQgKSvT3SCdj\n89CJz5UrV6owDCGEEEJUBxO1CYMb9+M1v+l4WrsTdf0I70bN53jqaUOHVi0qTXymTJlSYXnRokW6\nn9988039RCSEEEIIvXO3cuX/Ok9lWJNQCkoKWHLyW74+9T15xfmGDk2vKk18SktLKywfPHhQ93Md\nGhMthBBC1EoatYYB3iHM7voSjW28OJJynHej/suR5OO19v/5ShMflUpVYfnWN+Gv64QQQghRMzWs\n78LLnZ9nZLMh3NDe4OvT3/PlqWVk36h9d14+0F1dkuwIIYQQtZNapaaPV0/aObZm+dnVHEs9xe+Z\nlxjdYhh+Lh1rTQ5QaeKTnZ3NgQMHdMs5OTkcPHgQRVHIycnRe3BCCCGEqF7Olk681Onv7L56gLUX\nN/LtmR85knycca1G1qjJHu+m0gkMw8PDK9152bJlVR6QPskEhnWT9I1xkn4xXtI3xqu6+yatMIPv\nz63mQmYs5hpzRjUfQoCrn9FXf2Tm5j9I4lM3Sd8YJ+kX4yV9Y7wM0TeKorDvWhQ/x/5KkfYGre1b\nMK7lKBws7Ko1jgdRWeJT6eDmvLw8vvnmG93yjz/+yPDhw5k2bRppaWl337GOiTqTzH+XHyE5s+5M\nACWEEKJuUKlUdHf35/VuM2lj35KzGRf416H57E48QJlSZujwHlilic+bb75Jeno6AJcvX+bDDz/k\n1VdfJTAwkH/961/VEmBNkJxZwK6jibz51SF+PXCFUm3N+yAIIYQQlbEzb8DzHZ4kvHUYapWGiAs/\ns+DoElIL0g0d2gOpNPFJSEhg5syZAGzatInQ0FACAwMZO3asVHxuMTTQm1kTu2BhpuGnXZd455vD\nXLomg7+FEELULiqVCn/XLrze7WXaObbh96xLzD30ITsS9taY6k+liY+lpaXu50OHDuHv769bNvaB\nTdVJpVLRo6M77z3tT7pySWgAACAASURBVI/2riSm5vGv7w6zYusFCm+U3rsBIYQQogZpUM+Wv7eb\nzJQ24zDVmLL693V8FLOY5PwUQ4d2T5UmPlqtlvT0dOLj4zl69ChBQUEA5OfnU1hYWC0B1iRWFqZM\nGdSaWeM64mxvydbDibzxVRTHY6U6JoQQonZRqVR0adiRN7q9Qkfn9lzKjmNu9MdsiduJtkxr6PDu\nqtLE5+mnn2bQoEEMHTqU559/HltbW4qKihg/fjwjRoyorhhrnFaN7HjnST+GBHqTnVfMJ6tPsHjN\nKbLzbhg6NCGEEKJKWZtZ8be2E/lb23AsNOasubiB+UcWcS3vuqFDu6N73s5eUlLCjRs3sLKy0r22\nd+9eunfvrvfgqpohbmdPTM3j243nuHgtB8t6JoSFNKN7e1fUcqmw2situcZJ+sV4Sd8YL2Pvm7yS\nfFZfWE90cgwalYaB3n3p36g3GrWmWuN46Hl8rl27VmnDbm5uDx+VARhqHp+yMoUdR6/y066LFBVr\naeHZgMmhLXF1qK+3eMSfjP0XRV0l/WK8pG+MV03pm5NpZ/jhXCTZxTl4WLkxsfUYPK3dq+34D534\ntGrVisaNG+Pk5ATc/pDS7777rgrD1D9DT2CYkVPE91sucPT3NEw0KoYEejPIvxEmmkqvOIpHVFN+\nUdQ10i/GS/rGeNWkvikoKSQy9hcOJEWjVqnp3yiYUO8+mKof6DGhD+WhE5+1a9eydu1a8vPzGTx4\nMEOGDMHe3l4vQVYHQyc+UJ48xlxIZfmWC2TnFf9/e3ceF+V97v//NcO+78MOKrgii4i4xSgKSmyi\niYoQl9O0aXp6zNIYTxolx5ieNkb7i22a6Nc0XYzHNBEXakyaaDSKS1xQUVBcQWXfRvYdBn5/oERi\nNCoMM8Ncz8fDR5jxnnuuOx8Y3t6fz31feLna8EzsEAJ9DL//ib4ypA8KYyLjor9kbPSXIY7NhRuX\n+efFbVQ0VeJp487CoXPxt/fV6nt2u2VFUVER//rXv/j888/x9vZm5syZxMTEYGlp2aOFaps+BJ9b\n6htb2XYgm5TTBSiASeHezH40AGtL7SdhY2OIHxTGQMZFf8nY6C9DHZuG1kY+y/6KQwVHUaAg2m8i\n0/vHYG5ippX369FeXVu3buWdd95Bo9Fw8uTJbhfXm/Qp+NxyOa+SjbsuUnSjHkdbcxZMHUz4IDct\nVGi8DPWDoi/LKqjiQEYRM8f64+popetyxPfIz4z+MvSxuVyRxT8vbEPdWM5gp0BeGvFLrbxPt4NP\ndXU1O3fuJDk5GY1Gw8yZM3n88cdRqVQ9Wqi26WPwAWhpbeOrYzl8cfQ6rZp2wge5MT9mEE52Fj1b\npJEy9A+Kvia/tJa3/5lGQ1MrYYGuvDQnRNclie+Rnxn91RfGpknTzO7r+zBTmvJY/2itvMe9gs89\n51UOHz7M9u3bOXfuHFOnTmXVqlUMGjTovt945cqVpKeno1AoSExMJCTkzg+4NWvWcObMGTZt2tT5\nXGNjI48//jiLFi1i1qxZLF26lMzMTBwdHQF49tlnmTRpEjt37mTjxo0olUrmzp1LXFzcfdemT8xM\nlcx4pD8RQ1Rs3HWRtMtlXMgpZ87EACaO8JZL30Wfoa5sYM2WMzQ0taJytuZMlpoL18sZ2s9w1w4K\nIR6MhYk5MwJidfb+9ww+v/jFL+jXrx/h4eGUl5ezYcOGLn//9ttv3/W1qamp5OTkkJSURHZ2NomJ\niSQlJXXZJisrixMnTmBm1nWOb/369Tg4dF3s+8orrxAVFdX5uL6+nnXr1rFt2zbMzMyYM2cOMTEx\nneHIEHm52vDa/HAOpheydX82m76+zNHMEn4aOxhvN9sf34EQeqy6vpk1W9Kpqm0mYXIgkSFevPLu\nQZL2ZfHGM6NQKiXgCyG0757B59bl6hUVFTg5OXX5u/z8/Hvu+OjRo0RHd5zCCggIoKqqitra2i43\nQly1ahWLFy9m7dq1nc9lZ2eTlZXFpEmT7rn/9PR0goODsbPrOJ0VHh5OWloakydPvufr9J1SoWBS\nmDdhga58sucyJy+V8eaGE0wf48/j4/wxM+3dm0AJ0RMam1v589Z0SsrreWyMH1Mj/XBzs2NskAdH\nM4s5cq6YR0I8dV2mEMII3DP4KJVKFi9eTFNTE87OzvzlL3/B39+fjz/+mA8//JBZs2bd9bVqtZqg\noKDOx87OzpSVlXUGn+TkZCIjI/H27npDo9WrV7N8+XJ27NjR5fmPP/6YDRs24OLiwvLly1Gr1V0u\nrb+1/3txcrLGVIvB4V5zig+zrxW/dOX4uSI+SM7g8yPXSbui5oW4UIYHuPbY+xiLnhwb8WBaWtv4\n3d+Pca2ohimjfPmvOWGdTY6feyqEU5fL2HH4Ko89MgBLC7mqUV/Iz4z+krHpnnt+yvzpT3/io48+\nIiAggG+++YY33niDtrY2HBwc2Lp16wO90e1rqCsrK0lOTmbDhg2UlJR0Pr9jxw7CwsLw9e16ff/M\nmTNxdHRk6NChfPjhh6xdu5YRI0bcdf93U1FR/0A1PwhtLTgb4G7Lb38eSfLBq+w7lc+y//ctj4Z6\nEhcViI2ldi4D7Gv6wmJAQ9XW3s7fPj/P6ctlhAa4kBAVgFpdC9z88G5tZeooX744cp1N/87kyQkD\ndFyxAPmZ0WcyNvfnoRc3K5VKAgICAJgyZQpvv/02r732GjExMT/6piqVCrX6u67kpaWlnXeAPnbs\nGOXl5cyfP5/m5mZyc3NZuXIlpaWl5OXlkZKSQnFxMebm5nh4eDBu3LjO/UyePJk333yTadOm3bH/\nsLCwH63LEFlZmDI/ZhBjhrnz0a6LHEwv4kzWDebHDCJisFvnv56F0Cft7e0kfZPFsfMlBHo78Ksn\nh2OivPMu5dPH+HEovZBdx3OZGOYtVzMKIbTqnr0Svv8L1dPT875CD8D48ePZvXs3AJmZmahUqs5p\nrtjYWL788ku2bNnC2rVrCQoKIjExkXfffZft27ezZcsW4uLiWLRoEePGjePFF18kLy8PgOPHjzNw\n4EBCQ0M5e/Ys1dXV1NXVkZaWRkRExAP/DzAkAd4OrHhmFLMnDqC+sZX1O87x3rYMyqsbdV2aEHf4\n6ngue07m4eVqw0tzQrAw++FpZktzU556dADNrW0kH8zu5SqFEMbmgSbUH+TMQnh4OEFBQSQkJKBQ\nKFixYgXJycnY2dndd3i6Zf78+bz88stYWVlhbW3N22+/jaWlJUuWLOHZZ59FoVDw/PPPdy507stM\nTZT8ZGw/IgZ3XPqenn2Di387zqxHBzAl3EeujBF64VBGIdtSsnG2t+CVuaHYWt17WvaRYE/2nszn\nyNliokf64u/R93+WhRC6cc8bGAYHB+Pi4tL5+MaNG7i4uNDe3o5CoSAlJaU3auwx+noDw4fV3t7O\n4bNFbNmXRV1jK/097XnmsSH4quTS99vJnHjvOnNFzdrks1hZmLBswUi8XG1+cLvvj0vm9XLWbD7D\nED9HXn16hEzh6pD8zOgvGZv789BrfHbt2tXjxYieo1AomBDiRWiAK59+c4Xj50v4349OMC3Sjxnj\n+2F+l6kFIbTlSn4l6z87h6mpgpfjQu8aen5IUD9nQgJcyMi+wZkrakZI6xYhhBbcM/h8/1JzoZ/s\nbcz5zxlBjA3yYNPuS3x5LIeTF0v5j9jBDJM74opeUlBWy5+3ZqDRtPPSnBACvB1+/EXfMzcqkHNX\ny9myP4vgABdMTe65DFEIIR6YfKr0ISEBLvzuF5FMHeVLWVUD72w+w9//fZ7ahhZdlyb6uBtVjfxx\nSzr1Ta38bPoQQgJcfvxFP8DL1YZJI7woqWhg/+mCHq5SCCEk+PQ5luamJEwZyPKfRuDnbsu3Z4t5\n/a/HOJZZfF/3OhLiQdXUN7Mm6QwVNU3MjQpkfHD37sA845H+WFmYsvPwNQntQogeJ8Gnj+rnYc/y\nn0YwNyqQpmYNH35+nj9tSaesskHXpYk+pKlZw5+3ZVBcXk9spB+xo/26vU97a3MeH+dPXWMrXxy5\n3v0ihRDiNhJ8+jATpZLY0X787y9GE9TPiXPXyln+9+PsOp6Lpq1N1+UJA9eqaWPdjrNcLaxmbJAH\nc6ICemzf0SN9cHWw5JtT+ZSUa++O60II4yPBxwioHK14JT6M5x4fhrmpCVv2Z/H7jafIKZZLIsXD\naWtvZ8OXFzh3tZzgAS78bPoQlD14+bmZqQlxUYFo2trZmiI3NRRC9BwJPkZCoVAwdrgHbz03mnHD\nPcgpqeF3G0+yZV8WTc0aXZcnDMzW/VkczSwhwMueRU8O18rVVxGD3Qj0diDtchmXcit6fP9CCOMk\nwcfI2Fmb84vHh7EkIQwXBwt2peay/O/HOXf1hq5LEwbiq+M57E7Nw9PFml/HhWJhrp37RSkUCuKn\nBAKweV8WbbI4XwjRAyT4GKmgfs7877OjeWyMH+XVTfxxSzoffp5JdV2zrksTeuzbs0Vs3Z+Nk50F\nr8wN+9FWFN0V4OXA6GHu5BTXcCyzWKvvJYQwDhJ8jJiFmQlxkwJ545kI+nvacSyzhNf/eozDGUVy\n6bu4Q3qWmg1fXsTG0pRX5obi4mDZK+87e+IATE2UbD9wlaYWmZYVQnSPBB+Bn7sdry+M4OkpA2nV\ntPOPLy+wcdcl2tok/IgOWQVVrN9xDlMTBb+eE4q3W+/1g3N1sGJapC8VNU18nZrba+8rhOibJPgI\nAJRKBTGjfPndLyLxc7flYHoh63eco6VV/oVt7ArUdfx5azqtmnZ+9eRwAn0evBVFd00f44+9tRlf\nHsulsrap199fCNF3SPARXbg6WPGbp8MZ4ufIqctl/GlLOg1NrbouS+hIeXUjf0w6Q11jK888NoSw\nQFed1GFlYcqTjw6gqUXDvw5e1UkNQoi+QYKPuIO1pSmL54YSPsiNi7mV/OGT07Lo2QjVNrR0tqKI\nmxTAIyHda0XRXRNCPPF2teFwRhG5JXIPKiHEw5HgI36QmakJ//VkEBNCPMkpqeHtj0+hlnYXRqOp\nRcOft6VTdKOeqaN8e6QVRXeZKJXETw6kHUjalyUL8IUQD0WCj7grE6WSZx4bwvQx/pRUNLDy41Pk\nl9XquiyhZa2aNtbvOEd2QTVjgtyZOzkQRQ/elbk7hg9wYfgAZy7kVJCRLfeeEkI8OAk+4p4UCgVz\nJgUQPzmQytpmVn2cRlZ+la7LElrS3t7Oxq8ukpF9g+H9nfn59KE92oqiJ8RHBaJQwJb9WbRqpOec\nEOLBSPAR92VapB/P/mQojc0a3tl8moxsta5LElqwLSWbb88V09/TnkVPaacVRXd5u9kyMdSLohv1\nHDhTqOtyhBAGRv8+1YTeGh/syQuzg2kH3t9+lqNyJ90+ZXdqLl8dz8XD2ZqX40KwNDfVdUl3NXPC\nACzNTfjs8DXqG1t0XY4QwoBI8BEPJCzQlSXxYViYmfDXz8+z50SerksSPeDouWKS9mXhaGvOK/Gh\n2Fmb67qke3KwMecnY/2pbWjhiyM5ui5HCGFAJPiIBzbI15HX5ofjYGvOp99cIflgtlxhY8Aysm/w\njy8vYG1hyivxYbg6WOm6pPsydZQvLvaW7D2VR6lccSiEuE8SfMRD8VXZkrhgJCpHK744ksP/7ZYW\nF4You7CK/7fjLEqlgpfmhODTi60ousvM1IQ5kwJo1bSzLSVb1+UIIQyEBB/x0NwcrVi2cCR+KlsO\nnClk/WfnaGmVq2wMRdGNOv68NYOW1jZ+NTOIQb6Oui7pgUUOVTHAy56TF0u5kl+p63KEEAZAgo/o\nFgcbc34zL5zBvo6culTGu1ulxYUhKK9uZE3SGWobWvhp7BBGDHTTdUkPRaFQkDB5IACbv8miTaZc\nhRA/QoKP6DZrS1NeiQ9lxEBXLuRU8IdPpcWFPqttaOFPW9Ipr25i9sQBPBrqpeuSuiXQx4FRQ1Rc\nK6om9UKJrssRQug5CT6iR5iZmrDoqeEdLS6KpcWFvmpq0fDe9gwK1HVEj/Rh+hh/XZfUI+ZMCsDU\nRMH2lGyaWzS6LkcIocck+IgeIy0u9JumrY0PdpwjK7+K0cPcSYgeqDetKLrLzdGK6AhfblQ3seek\n3GJBCHF3Wg0+K1euJD4+noSEBDIyMn5wmzVr1rBw4cIuzzU2NhIdHU1ycjIARUVFPPPMMyxYsIBn\nnnmGsrIyAIKCgli4cGHnH41G/qWna99vcbH6n9LiQh90tKK4RHr2DYL6OfHsT/SvFUV3PT7WH1sr\nM744mkOVTLUKIe5Ca8EnNTWVnJwckpKSeOutt3jrrbfu2CYrK4sTJ07c8fz69etxcHDofPzuu+8y\nd+5cPv74Y2JiYtiwYQMAtra2bNq0qfOPiYmJtg5HPKBbLS4amm61uJCGkrqUfPAqh88W0c/DjkVP\nBetlK4rusrY048kJ/Wlq1rDj0FVdlyOE0FNa+/Q7evQo0dHRAAQEBFBVVUVtbddpj1WrVrF48eIu\nz2VnZ5OVlcWkSZM6n1uxYgXTpk0DwMnJicpKuWzVEIwP9uSFWbdaXGRIiwsd2XMij38fzcHdyYqX\n40KxstDfVhTdNTHMC08Xaw6mF8o0qxDiB2ntE1CtVhMUFNT52NnZmbKyMmxtO26QlpycTGRkJN7e\n3l1et3r1apYvX86OHTs6n7O2tgZAo9HwySef8PzzzwPQ3NzMkiVLKCgoYNq0afzsZz+7Z01OTtaY\nmmrvrJCbm53W9m2oYtzs8PKw53d/P8ZfPz8PSiUzHg3o9TqMdWwOpOXz6TdXcLKz4Pf/NR4PFxtd\nl9SFNsbll0+F8Nu/HWPH4ev89pdje3z/xsJYf2YMgYxN9/TaP/1ub2lQWVlJcnIyGzZsoKTku8tP\nd+zYQVhYGL6+vne8XqPR8Jvf/IYxY8YwdmzHh9lvfvMbZsyYgUKhYMGCBURERBAcHHzXGioq6nvw\niLpyc7OjrKxGa/s3ZCq7jnv9/DHpDH/97BxFZTU8NWFAry2sNdaxOXftBn/emoGVhQkvx4Vi0tam\nV/8ftDUufi5WDOvnRNqlUvYdv07wAJcef4++zlh/ZgyBjM39uVc41FrwUalUqNXqzselpaW4uXXc\nJO3YsWOUl5czf/58mpubyc3NZeXKlZSWlpKXl0dKSgrFxcWYm5vj4eHBuHHjWLZsGf7+/rzwwgud\n+3z66ac7vx4zZgyXL1++Z/ARuuOrsiVx4UjWbD7DF0dyqKlvYeHUwSiVfWuBrb64VlTNuuRzKBQK\nXpodgq/KcFpRdJdCoSB+8kDe/EcqSfuyGNbPCRNl31vTJIR4OFoLPuPHj+f9998nISGBzMxMVCpV\n5zRXbGwssbGxAOTn57Ns2TISExO7vP7999/H29ubcePGsXPnTszMzHjppZc6//7q1ausW7eOd955\nB41GQ1paWuc+hX661eLiT0lnOHCmkNqGFn75RBBmpvJLqScV3ajjT1vSaW7V8PxTwQz2c9J1Sb3O\nV2XLhFBPDqYXcTC9iKgR3j/+IiGEUdBa8AkPDycoKIiEhAQUCgUrVqwgOTkZOzs7YmJiHmhfn3zy\nCU1NTZ2XvQcEBPDmm2/i4eHBnDlzUCqVTJ48mZCQEG0ciuhBt1pcvL89o6PFRWM6L8wK7tMLbntT\nRU0Tf0xKv9mKYjDhgwyzFUVPeGrCAI6fL2XHoauMGeYu32NCCAAU7e3G09xGm/OiMu/6YFpaNXzw\nWSanr6jx97BjcVwo9jbmWnkvYxmb+sYWVv0zjfyyOp6a0J8nxvfXdUn31Bvj8vmR6/zr4FWmj/Fn\nzqTeX1RvqIzlZ8YQydjcn3ut8ZE5BqETt1pcPHKrxcU/06TFRTc0t2h4b1sG+WV1TA735vFx/XRd\nkl6YOsoXJzsLvj6RJ99fQghAgo/QIROlkp89NoTHxvhRUl4vLS4ekqatjb/szORyfhWjhqiYFz2o\nz7Si6C4LMxPmTAygVdPGtgPZui5HCKEHJPgInVIoFMRNCmRulLS4eBjt7e1s2n2J01fUDPV34heP\nD5Mr5b5ndJA7/TzsSL1QSnaBfG8JYewk+Ai9EDtaWlw8jH8dusrB9CL83e14YVawXCH3A5QKBQlT\nBgKwed8VjGhZoxDiB8inpNAb0uLiwew9mccXR3JQOVrx8ty+3Yqiuwb5OjJykBvZBdWcuFiq63KE\nEDokwUfolbCBriyJD8PczIS/fn6ePSfzdF2SXkq9UMKne69gb2POKwlhOGjpiri+ZE5UACZKBdtS\nsmlp1ei6HCGEjkjwEXpnkK8jS+eH42Bjzqd7r5B8MFumJ26Teb2cv35+HksLE16ZG4rK0UrXJRkE\ndydrpoz0QV3VyN6T+bouRwihIxJ8hF7yVdmybOFIVI5WfHEkh027L9HWJuHnWlE1a5PPolDAi7NC\n8HOXZoUP4onx/bCxNOWLo9eprm/WdTlCCB2Q4CP0lsrRimULwvFV2ZJyppAPPjtHS2ubrsvSifb2\ndq4VVfPu1nSamzX88okghvgbXyuK7rKxNGPmI/1paNLw2eFrui5HCKEDshpS6DUHWwtemxfOe9sz\nOHmpjDojaXHRqmkjt6SWK/mVXM6r5Ep+FbUNLQAsnDaYiCEqHVdouCaN8OabtAIOnC5kcrgP3q42\nui5JCNGL+vZvD9EnWFuasiQ+tLPFxR8+Pa3VFhe60NjcSnZhNVduhpzswiqaW747u+Vsb8GY/u6E\nD3KT0NNNpiZK5kYF8P72s2zdn8XLcaG6LkkI0Ysk+AiDcKvFxcZdlzicUcTb/0xjSXworg6GubC3\nqq65M+Rcya8kt6SWttsWcHu72TDQx5FBPg4M9HHExcFSh9X2PWGBrgzxcyQj+waZ18oJ6u+s65KE\nEL1Ego8wGLdaXNhZmfHV8VxWbjrFkvgwvN1sdV3aPbW3t1Na2dA5ZXUlr5KSiu/6RpkoFQzwsmeg\njwMDfR0J9HbA1spMhxX3fQqFgvjJA/nfj06QtO8Kb/4sUu54LYSRkOAjDIpCoSAuKhA7a3O27M9i\n1T/T+HVcKIHeDrourZOmrY280lqu5FVxOb8j7FTXfXcFkZWFCcMHODPIx5GBPg7097TH3MxEhxUb\nJ38PO8YHe3L4bBGHzxbxaKiXrksSQvQCCT7CIMWO9sPWyoyPvrrIO5+eZtFTwYQEuOiklqYWDVcL\nq7mSX8mVvEqyCqtpav7uBnkOtuaMGqJikG9H0PFxs5WzC3riqUcHkHqxhOSDVxk1RNXnF80LIST4\nCAP2SIgntlZmrP/sHO9vz+DnPxnK2CAPrb9vTX0zWfnfnc3JKa5Bc9s9hjxdrBl482zOQF9H3Bws\npVu6nnKys+Cx0f58dvgaXx3PYdajAbouSQihZRJ8hEG71eLiz9sy+Ovn56ltaCEmwrfH9t/e3o66\nqvG79Tn5lRTdqO/8exOlAn8Pu46Q4+NIoI8D9tZ952ozYxAb6ceBMwXsTs1jUpg3zvaykFyIvkyC\njzB4g3wdeW3eCP60JZ1P916hpr6Fpyb0f6izLG1t7eSX1XaGnMt5lVTWfrc+x8LMhKB+Th1ndHwd\nGeBpj4W5rM8xZBbmJsyeGMDf/32B7Qeyee6JIF2XJITQIgk+ok/wc7dj2cKR/HHzGb44cp3a+mYW\nTB38o2tpWlpvrc/pmLrKLqiioem79Tn21maMHOzWcWm5rwO+KltMlHLD875m7HAP9pzM42hmCdER\nvvT3tNd1SUIILZHgI/qMWy0u/rglnZQzhdQ2tNzxr/fahhayCqpuLkSu4npxNa2a79bnuDtZMXKQ\nIwN9HRjk44jKyUrW5xgB5c3L2/+/T0+z+ZsrLJ0fLuMuRB8lwUf0KT/U4mL6+P6culDClfxKCsrq\nOrdVKDrOFA30cei8tNzB1kKH1QtdGurvxIiBrpy+oubUpTK5Q7YQfZQEH9HnWFua8srcjhYXZ7LU\nXMipAMDcVMkQP8ebl5U7MsDLXi5fFl3ERQWSkX2DbSnZhAa6YmYq05pC9DXyqS/6JHMzE56fNZyU\n04WYW5jh5WyJv7sdpibyi0zcnYezNVHh3uw9mc++tHymRfrpuiQhRA+T3wKizzJRKpky0odZUYEE\neDlI6BH3Zcb4/lhbmLLz2+vU1Df/+AuEEAZFfhMIIcRtbK3MmDG+Hw1Nrez89rquyxFC9DAJPkII\n8T2TR/qgcrIi5XQBRTfqfvwFQgiDIcFHCCG+x9RESdykQDRt7Wzdn63rcoQQPUirwWflypXEx8eT\nkJBARkbGD26zZs0aFi5c2OW5xsZGoqOjSU5OBqCoqIiFCxcyb948fv3rX9Pc3DHvvnPnTmbPnk1c\nXBxbt27V5qEIIYxM+CBXBvk4dFwZeL1c1+UIIXqI1oJPamoqOTk5JCUl8dZbb/HWW2/dsU1WVhYn\nTpy44/n169fj4ODQ+fi9995j3rx5fPLJJ/j7+7Nt2zbq6+tZt24dH330EZs2bWLjxo1UVlZq63CE\nEEZGoVAQP2UgAEn7smi7rRGtEMJwaS34HD16lOjoaAACAgKoqqqitra2yzarVq1i8eLFXZ7Lzs4m\nKyuLSZMmdT53/PhxpkyZAkBUVBRHjx4lPT2d4OBg7OzssLS0JDw8nLS0NG0djhDCCPX3tGdskAe5\npbV8e65I1+UIIXqA1oKPWq3Gycmp87GzszNlZWWdj5OTk4mMjMTb27vL61avXs3SpUu7PNfQ0IC5\neUfHaxcXF8rKylCr1Tg7O991/0II0RNmTxyAuamS5INXaWxu1XU5Qohu6rUbGLa3f3eauLKykuTk\nZDZs2EBJSUnn8zt27CAsLAxfX9/72s/9PH87JydrTE2110nbzc1Oa/sW3SNjo58MYVzc3Ox4KiqQ\npD2XOXSuhHnThui6pF5hCGNjrGRsukdrwUelUqFWqzsfl5aW4ubmBsCxY8coLy9n/vz5NDc3k5ub\ny8qVKyktLSUvL4+UlBSKi4sxNzfHw8MDa2trGhsbsbS0pKSkBJVK9YP7DwsLu2dNFRX12jlYOr4R\ny8pqtLZ/8fBkOunPfwAAGctJREFUbPSTIY3LxGAPdh25zvZ9V4gY6IqTXd/u6WZIY2NsZGzuz73C\nodamusaPH8/u3bsByMzMRKVSYWtrC0BsbCxffvklW7ZsYe3atQQFBZGYmMi7777L9u3b2bJlC3Fx\ncSxatIhx48Yxbty4zn19/fXXTJgwgdDQUM6ePUt1dTV1dXWkpaURERGhrcMRQhgxS3NTnnp0AM2t\nbSQfkMvbhTBkWjvjEx4eTlBQEAkJCSgUClasWEFycjJ2dnbExMQ80L5efPFFXnvtNZKSkvDy8uLJ\nJ5/EzMyMJUuW8Oyzz6JQKHj++eexs5PTf0II7Xgk2JO9J/P59lwx0RG++HvI540QhkjRfj+LY/oI\nbZ4elNOP+kvGRj8Z4rhkXi9nzeYzDPFz5NWnR6BQKHRdklYY4tgYCxmb+6OTqS4hhOhrgvo5Exrg\nwsXcSs5cUf/4C4QQekeCjxBCPIC5kwNRKhRs2Z9Fq6ZN1+UIIR6QBB8hhHgAni42TBrhRUlFA/vT\nCnRdjhDiAUnwEUKIBzTjkf5YWZiy89tr1Da06LocIcQDkOAjhBAPyN7anCfG9aOusZUvjlzXdTlC\niAcgwUcIIR7ClJE+uDpY8s2pfErKtXdzVCFEz5LgI4QQD8HMVElcVCCatna2pshNDYUwFBJ8hBDi\nIUUMdiPQ24G0y2VkZMvl7UIYAgk+QgjxkBQKBQlTBqIA3t2awTubT5ORfYM247kvrBAGp9e6swsh\nRF80wMueVxLC+PeR65y/XsH56xV4ulgzdZQvY4M8MDcz0XWJQojbSPARQohuCurnTFA/Z3KKa/j6\nRB6pF0rYuOsS2w9cZXK4N1HhPjjYmOu6TCEE0qurx0j/FP0lY6Of+vK4VNQ0sS8tn5TTBdQ1tmJq\nomRskDtTR/ni7War6/J+VF8eG0MnY3N/7tWrS874CCFED3Oys2D2xAAeH9uPw2eL2HMyj0MZRRzK\nKGJ4f2emRvoS1M+5zzY5FUKfSfARQggtsTA3YcpIH6JGeJOepWb3iTzOXSvn3LVyvN1smDrKlzHD\nPDAzletMhOgtEnyEEELLlEoFIwa5MWKQG9eKqtlzIo/UC6Vs+PLid+uARnhjZy3rgITQNlnj00Nk\n3lV/ydjoJ2Mfl/LqRvaeyufAmUIamloxM1UyfrgHMaN88XSx0Wltxj42+kzG5v7IGh8hhNAzzvaW\nzI0K5IlxN9cBncgj5UwhKWcKCQlwYdooX4b4O8k6ICF6mAQfIYTQISsLU2IifJkS7kPa5TK+PpFH\nRvYNMrJv4KeyZWqkL5FD3TE1kXVAQvQECT5CCKEHlEoFEUNURAxRkV1Qxdcn8jh5qZS/fXGBrSnZ\nRI/0YWKYN7ZWZrouVQiDJsFHCCH0TIC3A//l7YC6soG9p/I5mF7I9gNX+fzIdcYHezI1whd3Z2td\nlymEQZLgI4QQesrV0YqEKQOZMb4/hzIK2Xsyj/1pBaSkFRA20JWpo3wZ5Oso64CEeAASfIQQQs9Z\nW5oyLdKP6AgfTl0qY3dqLqevqDl9RU0/DzumRvoSMVgl64CEuA8SfIQQwkCYKJVEDnVn1BAVWQVV\nfJ2aR9rlMj7ceZ6tdtlER/gwMdQLa0tZByTE3UjwEUIIA6NQKBjo48hAH0dKK+rZezKfQxlFbN2f\nzc7D15kQ4kn0KF9Ujla6LlUIvSPBRwghDJjKyZp5MYOYOaE/B88UsvdUPntP5fNNWj7hg9yYNsqP\nAG97WQckxE0SfIQQog+wsTTjsTH+xIzy5eTFUnan5nHqUhmnLpUxwMueqaN8GTnYDROlrAMSxk2C\njxBC9CGmJkrGBHkwepg7l/Mq2Z2aR3qWmg8+y8TF3pKYCB8mhHphZSEf/8I4yXe+EEL0QQqFgsF+\nTgz2c6K4vJ49J/P4NqOIzfuy2HH4Go+GehEd4YOrg6wDEsZFq01KV65cSXp6OgqFgsTEREJCQu7Y\nZs2aNZw5c4ZNmzbR0NDA0qVLuXHjBk1NTSxatIioqCheeuklKioqAKisrCQsLIz//M//5IknnmD4\n8OEAODk58d57792zHmlSapxkbPSTjEvvq21oIeV0Ad+cyqeqrhmlQkHEEDemjvJjgJd953YyNvpL\nxub+6KRJaWpqKjk5OSQlJZGdnU1iYiJJSUldtsnKyuLEiROYmXVcerl//36GDx/Oc889R0FBAT//\n+c+JiorqEmiWLVtGXFwcAP3792fTpk3aOgQhhOhTbK3MeHxcP6ZF+pF6oYTdqXmkXigl9UIpgT4O\nTBvly4iBbrouUwit0lrwOXr0KNHR0QAEBARQVVVFbW0ttra2ndusWrWKxYsXs3btWgCmT5/e+XdF\nRUW4u7t32efVq1epqakhJCSE/Px8bZUuhBB9mpmpkvHBnowb7sHFnAp232yMmpVfhZujJVPH9MPF\nxhxvNxtcHCxRyhVhog/RWvBRq9UEBQV1PnZ2dqasrKwz+CQnJxMZGYm3t/cdr01ISKC4uJgPPvig\ny/P/93//x4IFC7q8x0svvURpaSnz5s1jxowZWjoaIYToexQKBUP7OTO0nzOF6jr2nMzjyLli/rnr\nYuc2FmYmeLla4+Vqg7erLd5uNni72uBkZyGXyAuD1GuLm29fSlRZWUlycjIbNmygpKTkjm03b97M\nhQsXePXVV9m5cycKhYLm5mZOnTrFm2++CYCjoyO//vWvmTFjBjU1NcTFxTFmzBhUKtVda3ByssbU\n1KTHj+2We80pCt2SsdFPMi76w83NjtChHlTVNnHhejm5xTXkFFeTW1xDXmkt14q6riuxsTTFz8Me\nPw87/Dzs8He3x8/TDkdbCUTaJj833aO14KNSqVCr1Z2PS0tLcXPrmDs+duwY5eXlzJ8/n+bmZnJz\nc1m5ciUzZszAxcUFT09Phg4dikajoby8HBcXF06cONFlcbStrS2zZ88GOs4mDR8+nKtXr94z+FRU\n1GvpaGXBmT6TsdFPMi76a8xwTwLcbSHUEwBNWxulFQ0UlNVRoK6joKyWAnUdl3IquHC9vMtrba3M\n8Ha1wcvNBh9Xm44zRW622FpJG42H1d7eTl1jK9V1zQwb6EalFn+X9RU6Wdw8fvx43n//fRISEsjM\nzESlUnVOc8XGxhIbGwtAfn4+y5YtIzExkY8++oiCggJef/111Go19fX1ODk5AXD27FmGDBnSuf9j\nx46xf/9+li1bRn19PRcvXqR///7aOhwhhDBaJkolni42eLrYEHHb8y2tbZSU15OvrqVQXdcZjC7n\nVXIpr7LLPhxurhnycrXBx8325tSZjdHfT6hV00ZlTRMVtU1U1DTd8XVlbTMVtU20tLYB4GhnweQR\n3kwa4S1h8iFp7TsuPDycoKAgEhISUCgUrFixguTkZOzs7IiJifnB1yQkJPD6668zb948GhsbeeON\nN1DevMtoWVkZfn5+ndtGRESwY8cO4uPj0Wg0/PKXv7xjMbQQQgjtMTNV4qOyxUdl2+X5phYNxTfq\nyS+7GYhuhqLz1ys4f72iy7bO9hYdYcj1Zhhys8HLxQYLc+0tS+gN7e3t1Da0dASXmiYqb4aZ27+u\nrG2ipr7lrvtQAPY25ni52uBka4GVhSnp2WqSD17l30dzmBDiScwoX9ykJ9sD0ep9fPSN3MfHOMnY\n6CcZF/2lrbFpaGql8EZHCCq8bcqssra5y3YKwNXRsnMx9a2zQ54u1phpcZ3m/Wpp1VBR23zzjMyd\ngabi5pmaVk3bXfdhYWaCo50FTrbmONlZ3PzaAkdbC5zsOv7Y25hjatK1xYiNnSXb915mz8k8Kmqa\nUChg1BAVsaP96Odhf5d3Mz73muqS4NND5ENcf8nY6CcZF/3V22NT19jSOU1WWFZHgbojEH3/bIhC\nAe5O1njfOjN0c/2Qu5PVHQHhYbS3t1PT0NIx3XRzyum7cPPdmZvahnucpVF0nKVxuhlgbgWaW187\n2lrcPHtj8lCLwG+NTaumjRMXStmVmkteaS0AQ/wciR3tR/AAF6NfYC7B5yYJPsZJxkY/ybjoL30Z\nm+q65o4wdNvZoYKyOuqbWrtsZ6JU4OFyMxC52uDlaouPmw1ujlYolR0BoLlF890ZmdomKm8LMrcH\nnFbN3X8lWpqbdJ6Ruf3MTNezNGZabQT7/bFpb2/n/PUKdh3PIfPmNKK3qw3TIv0YPcwdM1PjbEor\nwecmCT7GScZGP8m46C99Hpv29nYqa5spUNdSWFZH/q1gpK6jqVnTZVszUyXO9pbU1jdT19h6lz12\nnKVxvDnN5Hhz6umHwo0+LMS+19jkltSwOzWX1AulaNracbA1JybCl0lhXlhbGtdCaAk+N0nwMU4y\nNvpJxkV/GeLYtLW3U17d2Ll+KP/mf29UN2JnbdYlyHw/0DjYmHeeGdJ39zM25dWN7DmZx4EzhTQ2\na7AwN2FiqBcxEb64OFj2UqW6JcHnJgk+xknGRj/JuOgvGRv99SBjU9/YwoEzhew5mUdlbUdT2sih\nHQuh/dz79k0QdXIfHyGEEELojrWlGY+N8SdmlC/Hz5ewKzWXY+dLOHa+hGH9nIgd7UdQP2ejWwgt\nwUcIIYTow0xNvmtKe+5aObuO53beU8nHzZbY0b5EDnXvkSvjDIEEHyGEEMIIKBQKgge4EDzAhZzi\nGnal5nLiQil/++IC2w9cJSbCl4lhXnqxiFubZI1PD5E5cf0lY6OfZFz0l4yN/urpsVFXNvD1yTwO\npRfR1KLBysKEiaHeREf44GxvuAuhZY2PEEIIIe7g6mjFvOhBzHykPymnC9h7Mp9dqbnsOZnH6GHu\nTIv0w/d7LUkMnQQfIYQQwsjZWJrxk7H9mDrKj2OZxexKzeXIuWKOnCtmeH9nYkf7MdTfqU8shJbg\nI4QQQgig46aPE0K9GB/iSUb2DXYfz+XctXLOXSvHz92W2Eg/IoaoDHohtAQfIYQQQnShVCgIC3Ql\nLNCVq4XV7ErN5dSlUj78/DzbD2QTE+HLhFDDXAhteBULIYQQotcM8LJn0ZPDKa1sYE9qHofOFrJ5\nXxY7v73OpBHeTBnpg5Odha7LvG9yVVcPkasg9JeMjX6ScdFfMjb6Sx/Gprahhf1p+XxzKp/q+hZM\nlArGBnkwbbQf3q42Oq3tFrmqSwghhBA9wtbKjCfG9yd2tB9HzhWzKzWPw2eLOHy2iJAAF2Ij/Rjs\n56i3C6El+AghhBDigZmZmjAxzJsJoV6kX1HzVWouGdk3yMi+QT8PO2JH+zFysBsmSv1aCC3BRwgh\nhBAPTalQMGKQGyMGuZFVUMXu47mkXS7jg88ycXWwJGaUL4+GeGFhbqLrUgEJPkIIIYToIYHeDgTO\nCqakvJ6vT3RMgX269wo7D18jKtybKSN9cbAx12mNsri5h+jDgjPxw2Rs9JOMi/6SsdFfhjY21fXN\n7E8r4JtT+dQ2tGBqomTc8I47Qnu6aG8htCxuFkIIIUSvs7c2Z+YjNxdCny1id2oeB9OLOJhexJSR\nPsyPGdTrNUnwEUIIIYRWWZiZEBXuw8Qwb05fKWPPiTxqG1p0UosEHyGEEEL0CqVSwcjBKkYOVumu\nBp29sxBCCCFEL5PgI4QQQgijIcFHCCGEEEZDgo8QQgghjIYEHyGEEEIYDa1e1bVy5UrS09NRKBQk\nJiYSEhJyxzZr1qzhzJkzbNq0iYaGBpYuXcqNGzdoampi0aJFREVFsXTpUjIzM3F0dATg2WefZdKk\nSezcuZONGzeiVCqZO3cucXFx2jwcIYQQQhg4rQWf1NRUcnJySEpKIjs7m8TERJKSkrpsk5WVxYkT\nJzAzMwNg//79DB8+nOeee46CggJ+/vOfExUVBcArr7zS+TVAfX0969atY9u2bZiZmTFnzhxiYmI6\nw5EQQgghxPdpbarr6NGjREdHAxAQEEBVVRW1tbVdtlm1ahWLFy/ufDx9+nSee+45AIqKinB3d7/r\n/tPT0wkODsbOzg5LS0vCw8NJS0vTwpEIIYQQoq/Q2hkftVpNUFBQ52NnZ2fKysqwtbUFIDk5mcjI\nSLy9ve94bUJCAsXFxXzwwQedz3388cds2LABFxcXli9fjlqtxtnZ+Y79CyGEEELcTa/dufn2XqiV\nlZUkJyezYcMGSkpK7th28+bNXLhwgVdffZWdO3cyc+ZMHB0dGTp0KB9++CFr165lxIgRd93/3Tg5\nWWNqatL9g7mLezVFE7olY6OfZFz0l4yN/pKx6R6tBR+VSoVare58XFpaipubGwDHjh2jvLyc+fPn\n09zcTG5uLitXrmTGjBm4uLjg6enJ0KFD0Wg0lJeXM3bs2M79TJ48mTfffJNp06bdsf+wsLB71lRR\nUd/DR/kdQ+uYa0xkbPSTjIv+krHRXzI29+de4VBra3zGjx/P7t27AcjMzESlUnVOc8XGxvLll1+y\nZcsW1q5dS1BQEImJiZw8eZJ//OMfQMdUWX19PU5OTrz44ovk5eUBcPz4cQYOHEhoaChnz56lurqa\nuro60tLSiIiI0NbhCCGEEKIP0NoZn/DwcIKCgkhISEChULBixQqSk5Oxs7MjJibmB1+TkJDA66+/\nzrx582hsbOSNN95AqVQyf/58Xn75ZaysrLC2tubtt9/G0tKSJUuW8Oyzz6JQKHj++eexs5PTf0II\nIYS4O0X7/SyOEUIIIYToA+TOzUIIIYQwGhJ8hBBCCGE0JPgIIYQQwmhI8BFCCCGE0ZDgI4QQQgij\nIcFHCCGEEEZDgk8PWLlyJfHx8SQkJJCRkaHrcsRt/vCHPxAfH8/s2bP5+uuvdV2OuE1jYyPR0dEk\nJyfruhRxm507dzJjxgxmzZpFSkqKrssRQF1dHS+88AILFy4kISGBQ4cO6bokg9Zrvbr6qtTUVHJy\nckhKSiI7O5vExESSkpJ0XZagozXKlStXSEpKoqKigqeeeoqpU6fquixx0/r163FwcNB1GeI2FRUV\nrFu3ju3bt1NfX8/777/PpEmTdF2W0fvXv/5F//79WbJkCSUlJfz0pz9l165dui7LYEnw6aajR48S\nHR0NQEBAAFVVVdTW1na25xC6M2rUKEJCQgCwt7enoaEBjUaDiYn2GtWK+5OdnU1WVpb8UtUzR48e\nZezYsdja2mJra8vvfvc7XZckACcnJy5dugRAdXU1Tk5OOq7IsMlUVzep1eou34TOzs6UlZXpsCJx\ni4mJCdbW1gBs27aNRx99VEKPnli9ejVLly7VdRnie/Lz82lsbORXv/oV8+bN4+jRo7ouSQA/+clP\nKCwsJCYmhgULFvDaa6/puiSDJmd8eph0ANE/e/fuZdu2bZ0NcIVu7dixg7CwMHx9fXVdivgBlZWV\nrF27lsLCQv7jP/6D/fv3o1AodF2WUfvss8/w8vLi73//OxcvXiQxMVHWxnWDBJ9uUqlUqNXqzsel\npaW4ubnpsCJxu0OHDvHBBx/wt7/9TZrY6omUlBTy8vJISUmhuLgYc3NzPDw8GDdunK5LM3ouLi6M\nGDECU1NT/Pz8sLGxoby8HBcXF12XZtTS0tJ45JFHABgyZAilpaUybd8NMtXVTePHj2f37t0AZGZm\nolKpZH2PnqipqeEPf/gDf/nLX3B0dNR1OeKmd999l+3bt7Nlyxbi4uJYtGiRhB498cgjj3Ds2DHa\n2tqoqKigvr5e1pPoAX9/f9LT0wEoKCjAxsZGQk83yBmfbgoPDycoKIiEhAQUCgUrVqzQdUnipi+/\n/JKKigpefvnlzudWr16Nl5eXDqsSQn+5u7szbdo05s6dC8D//M//oFTKv491LT4+nsTERBYsWEBr\naytvvvmmrksyaIp2WZQihBBCCCMhUV4IIYQQRkOCjxBCCCGMhgQfIYQQQhgNCT5CCCGEMBoSfIQQ\nQghhNCT4CCH0Un5+PsOHD2fhwoWdXamXLFlCdXX1fe9j4cKFaDSa+97+6aef5vjx4w9TrhDCQEjw\nEULoLWdnZzZt2sSmTZvYvHkzKpWK9evX3/frN23aJDd6E0J0ITcwFEIYjFGjRpGUlMTFixdZvXo1\nra2ttLS08MYbbzBs2DAWLlzIkCFDuHDhAhs3bmTYsGFkZmbS3NzM8uXLKS4uprW1lZkzZzJv3jwa\nGhpYvHgxFRUV+Pv709TUBEBJSQn//d//DUBjYyPx8fHMmTNHl4cuhOghEnyEEAZBo9GwZ88eRo4c\nyauvvsq6devw8/O7o2mjtbU1H3/8cZfXbtq0CXt7e9asWUNjYyPTp09nwoQJHDlyBEtLS5KSkigt\nLWXKlCkAfPXVVwwYMIDf/va3NDU1sXXr1l4/XiGEdkjwEULorfLychYuXAhAW1sbERERzJ49m/fe\ne4/XX3+9c7va2lra2tqAjjYy35eens6sWbMAsLS0ZPjw4WRmZnL58mVGjhwJdDQcHjBgAAATJkzg\nk08+YenSpUycOJH4+HitHqcQovdI8BFC6K1ba3xuV1NTg5mZ2R3P32JmZnbHcwqFosvj9vZ2FAoF\n7e3tXXpR3QpPAQEB/Pvf/+bEiRPs2rWLjRs3snnz5u4ejhBCD8jiZiGEQbGzs8PHx4cDBw4AcO3a\nNdauXXvP14SGhnLo0CEA6uvryczMJCgoiICAAE6fPg1AUVER165dA+Dzzz/n7NmzjBs3jhUrVlBU\nVERra6sWj0oI0VvkjI8QwuCsXr2a3//+93z44Ye0traydOnSe26/cOFCli9fzvz582lubmbRokX4\n+Pgwc+ZM9u3bx7x58/Dx8SE4OBiAwMBAVqxYgbm5Oe3t7Tz33HOYmsrHpRB9gXRnF0IIIYTRkKku\nIYQQQhgNCT5CCCGEMBoSfIQQQghhNCT4CCGEEMJoSPARQgghhNGQ4COEEEIIoyHBRwghhBBGQ4KP\nEEIIIYzG/w+HQLPwxf1HnwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "JjBZ_q7aD9gh", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Can We Calculate LogLoss for These Predictions?\n", + "\n", + "**Examine the predictions and decide whether or not we can use them to calculate LogLoss.**\n", + "\n", + "`LinearRegressor` uses the L2 loss, which doesn't do a great job at penalizing misclassifications when the output is interpreted as a probability. For example, there should be a huge difference whether a negative example is classified as positive with a probability of 0.9 vs 0.9999, but L2 loss doesn't strongly differentiate these cases.\n", + "\n", + "In contrast, `LogLoss` penalizes these \"confidence errors\" much more heavily. Remember, `LogLoss` is defined as:\n", + "\n", + "$$Log Loss = \\sum_{(x,y)\\in D} -y \\cdot log(y_{pred}) - (1 - y) \\cdot log(1 - y_{pred})$$\n", + "\n", + "\n", + "But first, we'll need to obtain the prediction values. We could use `LinearRegressor.predict` to obtain these.\n", + "\n", + "Given the predictions and the targets, can we calculate `LogLoss`?" + ] + }, + { + "metadata": { + "id": "kXFQ5uig2RoP", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 347 + }, + "outputId": "324a40c5-d49e-4d46-97aa-ab32503969e8" + }, + "cell_type": "code", + "source": [ + "predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + "validation_predictions = linear_regressor.predict(input_fn=predict_validation_input_fn)\n", + "validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + "\n", + "_ = plt.hist(validation_predictions)" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAFKCAYAAADScRzUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAH/dJREFUeJzt3X1slfX9//HX6c3ZofPUcrpzCETm\nd1lwMO0KTbHSBrSFOumiq0KRNmAyq5NRGcyj2OFtYjLKTQ0ymiHMYgNROzqj/RnTEmdJIK315iRd\ncSZ4k5kOkJ6j1WJvbGmu3x+LZzKgp4Oenk/P9XwkJu11rnPO+5WPuV5c13U4OCzLsgQAAIyUEOsB\nAADAxVHUAAAYjKIGAMBgFDUAAAajqAEAMBhFDQCAwZJiPcCFBINnYj1CVE2dmqKenv5YjxETds1u\n19ySfbPbNbdk3+yXk9vrdV/0Mc6oYyApKTHWI8SMXbPbNbdk3+x2zS3ZN3u0clPUAAAYjKIGAMBg\nFDUAAAajqAEAMBhFDQCAwShqAAAMRlEDAGAwihoAAINR1AAAGIyiBgDAYBQ1AAAGo6gBADCYkf96\nFhCP7q56M9YjRFRbWRDrEQD8F86oAQAwGEUNAIDBKGoAAAxGUQMAYDCKGgAAg1HUAAAYjKIGAMBg\nFDUAAAajqAEAMNiYinpwcFBLlizRyy+/rFOnTmn16tUqKyvT+vXrNTQ0JElqbGzUsmXLVFJSooMH\nD0qShoeH5ff7VVpaqlWrVqmrqyt6SQAAiENjKuo//elPuvLKKyVJO3fuVFlZmV544QVdffXVamho\nUH9/v2pqavT8889r//79qqur05dffqnXXntNqampevHFF7VmzRpVV1dHNQwAAPEmYlF//PHH+uij\nj3TTTTdJktrb27V48WJJUn5+vtra2tTR0aGMjAy53W65XC5lZWUpEAiora1NhYWFkqTc3FwFAoHo\nJQEAIA5FLOotW7aosrIy/PvAwICcTqckKT09XcFgUKFQSB6PJ7yPx+M5b3tCQoIcDkf4UjkAAIhs\n1H8965VXXtHcuXM1c+bMCz5uWda4bP9vU6emKCkpcUz7TlZerzvWI8SMnbObLlprY9c1t2tuyb7Z\no5F71KI+fPiwurq6dPjwYX322WdyOp1KSUnR4OCgXC6XTp8+LZ/PJ5/Pp1AoFH5ed3e35s6dK5/P\np2AwqNmzZ2t4eFiWZYXPxkfT09N/+ckM5vW6FQyeifUYMWHX7JPloBWNtbHzmtsxt2Tf7JeTe7Rj\nxKiXvnfs2KG//vWv+stf/qKSkhKtXbtWubm5am5uliQdOnRICxcuVGZmpjo7O9Xb26u+vj4FAgFl\nZ2crLy9PTU1NkqSWlhbl5ORcUgAAAOxq1DPqC1m3bp0efvhh1dfXa8aMGSouLlZycrL8fr/Ky8vl\ncDhUUVEht9utoqIitba2qrS0VE6nU1VVVdHIAABA3HJYY71xPIHi/ZKJXS8LSfbN7vW6dav/1ViP\nEVFtZcG4v6ad19yOuSX7Zo/JpW8AABBbFDUAAAajqAEAMBhFDQCAwShqAAAMRlEDAGAwihoAAINR\n1AAAGIyiBgDAYBQ1AAAGo6gBADAYRQ0AgMEoagAADEZRAwBgMIoaAACDUdQAABiMogYAwGAUNQAA\nBqOoAQAwGEUNAIDBKGoAAAxGUQMAYDCKGgAAg1HUAAAYjKIGAMBgSZF2GBgYUGVlpT7//HN98803\nWrt2rZqbm/X+++8rLS1NklReXq6bbrpJjY2NqqurU0JCglasWKGSkhINDw+rsrJSJ0+eVGJiojZv\n3qyZM2dGPRgAAPEgYlG3tLTouuuu07333qsTJ07o7rvv1rx58/TAAw8oPz8/vF9/f79qamrU0NCg\n5ORkLV++XIWFhWppaVFqaqqqq6t19OhRVVdXa8eOHVENBQBAvIhY1EVFReGfT506pWnTpl1wv46O\nDmVkZMjtdkuSsrKyFAgE1NbWpuLiYklSbm6uNm3aNB5zAwBgC2O+R71y5Uo9+OCD4aI9cOCA7rrr\nLv3ud7/TF198oVAoJI/HE97f4/EoGAyesz0hIUEOh0NDQ0PjHAMAgPgU8Yz6Wy+99JI++OADPfTQ\nQ9q0aZPS0tI0Z84c7dmzR7t27dK8efPO2d+yrAu+zsW2f9fUqSlKSkoc62iTktfrjvUIMWPn7KaL\n1trYdc3tmluyb/Zo5I5Y1MeOHVN6erqmT5+uOXPmaGRkRNdcc43S09MlSQUFBXryySf185//XKFQ\nKPy87u5uzZ07Vz6fT8FgULNnz9bw8LAsy5LT6Rz1PXt6+i8zltm8XreCwTOxHiMm7Jp9shy0orE2\ndl5zO+aW7Jv9cnKPdoyIeOn73XffVW1trSQpFAqpv79fjz/+uLq6uiRJ7e3tmjVrljIzM9XZ2ane\n3l719fUpEAgoOztbeXl5ampqkvTvD6bl5ORcUggAAOwo4hn1ypUr9cgjj6isrEyDg4N6/PHHlZKS\nog0bNmjKlClKSUnR5s2b5XK55Pf7VV5eLofDoYqKCrndbhUVFam1tVWlpaVyOp2qqqqaiFwAAMQF\nhzWWm8YTLN4vmdj1spBk3+xer1u3+l+N9RgR1VYWjPtr2nnN7Zhbsm/2mF36BgAAsUNRAwBgMIoa\nAACDUdQAABiMogYAwGAUNQAABqOoAQAwGEUNAIDBKGoAAAxGUQMAYDCKGgAAg1HUAAAYjKIGAMBg\nFDUAAAajqAEAMBhFDQCAwShqAAAMRlEDAGAwihoAAINR1AAAGIyiBgDAYBQ1AAAGo6gBADAYRQ0A\ngMEoagAADJYUaYeBgQFVVlbq888/1zfffKO1a9dq9uzZ2rhxo0ZGRuT1erVt2zY5nU41Njaqrq5O\nCQkJWrFihUpKSjQ8PKzKykqdPHlSiYmJ2rx5s2bOnDkR2QAAmPQinlG3tLTouuuu04EDB7Rjxw5V\nVVVp586dKisr0wsvvKCrr75aDQ0N6u/vV01NjZ5//nnt379fdXV1+vLLL/Xaa68pNTVVL774otas\nWaPq6uqJyAUAQFyIWNRFRUW69957JUmnTp3StGnT1N7ersWLF0uS8vPz1dbWpo6ODmVkZMjtdsvl\ncikrK0uBQEBtbW0qLCyUJOXm5ioQCEQxDgAA8SXipe9vrVy5Up999pl2796tX/3qV3I6nZKk9PR0\nBYNBhUIheTye8P4ej+e87QkJCXI4HBoaGgo/HwAAXNyYi/qll17SBx98oIceekiWZYW3f/fn7/pf\nt3/X1KkpSkpKHOtok5LX6471CDFj5+ymi9ba2HXN7Zpbsm/2aOSOWNTHjh1Tenq6pk+frjlz5mhk\nZETf//73NTg4KJfLpdOnT8vn88nn8ykUCoWf193drblz58rn8ykYDGr27NkaHh6WZVkRz6Z7evov\nP5nBvF63gsEzsR4jJuyafbIctKKxNnZeczvmluyb/XJyj3aMiHiP+t1331Vtba0kKRQKqb+/X7m5\nuWpubpYkHTp0SAsXLlRmZqY6OzvV29urvr4+BQIBZWdnKy8vT01NTZL+/cG0nJycSwoBAIAdRTyj\nXrlypR555BGVlZVpcHBQjz/+uK677jo9/PDDqq+v14wZM1RcXKzk5GT5/X6Vl5fL4XCooqJCbrdb\nRUVFam1tVWlpqZxOp6qqqiYiFwAAccFhjeWm8QSL90smdr0sJNk3u9fr1q3+V2M9RkS1lQXj/pp2\nXnM75pbsmz1ml74BAEDsUNQAABiMogYAwGAUNQAABqOoAQAwGEUNAIDBKGoAAAxGUQMAYDCKGgAA\ng1HUAAAYjKIGAMBgFDUAAAajqAEAMBhFDQCAwShqAAAMRlEDAGAwihoAAINR1AAAGIyiBgDAYBQ1\nAAAGo6gBADAYRQ0AgMEoagAADEZRAwBgMIoaAACDJY1lp61bt+q9997T2bNndd999+nNN9/U+++/\nr7S0NElSeXm5brrpJjU2Nqqurk4JCQlasWKFSkpKNDw8rMrKSp08eVKJiYnavHmzZs6cGdVQAADE\ni4hF/dZbb+nDDz9UfX29enp6dPvtt+uGG27QAw88oPz8/PB+/f39qqmpUUNDg5KTk7V8+XIVFhaq\npaVFqampqq6u1tGjR1VdXa0dO3ZENRQAAPEi4qXv+fPn65lnnpEkpaamamBgQCMjI+ft19HRoYyM\nDLndbrlcLmVlZSkQCKitrU2FhYWSpNzcXAUCgXGOAABA/Ip4Rp2YmKiUlBRJUkNDgxYtWqTExEQd\nOHBA+/btU3p6uh577DGFQiF5PJ7w8zwej4LB4DnbExIS5HA4NDQ0JKfTedH3nDo1RUlJiZebzWhe\nrzvWI8SMnbObLlprY9c1t2tuyb7Zo5F7TPeoJemNN95QQ0ODamtrdezYMaWlpWnOnDnas2ePdu3a\npXnz5p2zv2VZF3ydi23/rp6e/rGONSl5vW4Fg2diPUZM2DX7ZDloRWNt7Lzmdswt2Tf75eQe7Rgx\npk99HzlyRLt379bevXvldru1YMECzZkzR5JUUFCg48ePy+fzKRQKhZ/T3d0tn88nn8+nYDAoSRoe\nHpZlWaOeTQMAgP+IWNRnzpzR1q1b9eyzz4Y/5b1u3Tp1dXVJktrb2zVr1ixlZmaqs7NTvb296uvr\nUyAQUHZ2tvLy8tTU1CRJamlpUU5OThTjAAAQXyJe+n799dfV09OjDRs2hLfdcccd2rBhg6ZMmaKU\nlBRt3rxZLpdLfr9f5eXlcjgcqqiokNvtVlFRkVpbW1VaWiqn06mqqqqoBgIAIJ44rLHcNJ5g8X5v\nw673byT7Zvd63brV/2qsx4iotrJg3F/Tzmtux9ySfbPH9B41AACIDYoaAACDUdQAABiMogYAwGAU\nNQAABqOoAQAwGEUNAIDBKGoAAAxGUQMAYDCKGgAAg1HUAAAYjKIGAMBgFDUAAAajqAEAMBhFDQCA\nwShqAAAMRlEDAGAwihoAAINR1AAAGIyiBgDAYBQ1AAAGo6gBADAYRQ0AgMEoagAADEZRAwBgsKSx\n7LR161a99957Onv2rO677z5lZGRo48aNGhkZkdfr1bZt2+R0OtXY2Ki6ujolJCRoxYoVKikp0fDw\nsCorK3Xy5EklJiZq8+bNmjlzZrRzAQAQFyIW9VtvvaUPP/xQ9fX16unp0e23364FCxaorKxMS5cu\n1dNPP62GhgYVFxerpqZGDQ0NSk5O1vLly1VYWKiWlhalpqaqurpaR48eVXV1tXbs2DER2QAAmPQi\nXvqeP3++nnnmGUlSamqqBgYG1N7ersWLF0uS8vPz1dbWpo6ODmVkZMjtdsvlcikrK0uBQEBtbW0q\nLCyUJOXm5ioQCEQxDgAA8SXiGXViYqJSUlIkSQ0NDVq0aJGOHj0qp9MpSUpPT1cwGFQoFJLH4wk/\nz+PxnLc9ISFBDodDQ0ND4edfyNSpKUpKSrysYKbzet2xHiFm7JzddNFaG7uuuV1zS/bNHo3cY7pH\nLUlvvPGGGhoaVFtbq5tvvjm83bKsC+7/v27/rp6e/rGONSl5vW4Fg2diPUZM2DX7ZDloRWNt7Lzm\ndswt2Tf75eQe7Rgxpk99HzlyRLt379bevXvldruVkpKiwcFBSdLp06fl8/nk8/kUCoXCz+nu7g5v\nDwaDkqTh4WFZljXq2TQAAPiPiEV95swZbd26Vc8++6zS0tIk/ftec3NzsyTp0KFDWrhwoTIzM9XZ\n2ane3l719fUpEAgoOztbeXl5ampqkiS1tLQoJycninEAAIgvES99v/766+rp6dGGDRvC26qqqvTo\no4+qvr5eM2bMUHFxsZKTk+X3+1VeXi6Hw6GKigq53W4VFRWptbVVpaWlcjqdqqqqimogAADiicMa\ny03jCRbv9zbsev9Gsm92r9etW/2vxnqMiGorC8b9Ne285nbMLdk3e0zvUQMAgNigqAEAMBhFDQCA\nwShqAAAMRlEDAGAwihoAAINR1AAAGIyiBgDAYBQ1AAAGo6gBADAYRQ0AgMEoagAADEZRAwBgMIoa\nAACDUdQAABiMogYAwGAUNQAABqOoAQAwGEUNAIDBKGoAAAxGUQMAYDCKGgAAg1HUAAAYjKIGAMBg\nFDUAAAYbU1EfP35cS5Ys0YEDByRJlZWVuvXWW7V69WqtXr1ahw8fliQ1NjZq2bJlKikp0cGDByVJ\nw8PD8vv9Ki0t1apVq9TV1RWdJAAAxKGkSDv09/frqaee0oIFC87Z/sADDyg/P/+c/WpqatTQ0KDk\n5GQtX75chYWFamlpUWpqqqqrq3X06FFVV1drx44d458EAIA4FPGM2ul0au/evfL5fKPu19HRoYyM\nDLndbrlcLmVlZSkQCKitrU2FhYWSpNzcXAUCgfGZHAAAG4h4Rp2UlKSkpPN3O3DggPbt26f09HQ9\n9thjCoVC8ng84cc9Ho+CweA52xMSEuRwODQ0NCSn03nR95w6NUVJSYmXkmfS8HrdsR4hZuyc3XTR\nWhu7rrldc0v2zR6N3BGL+kJ++ctfKi0tTXPmzNGePXu0a9cuzZs375x9LMu64HMvtv27enr6L2Ws\nScPrdSsYPBPrMWLCrtkny0ErGmtj5zW3Y27JvtkvJ/dox4hL+tT3ggULNGfOHElSQUGBjh8/Lp/P\np1AoFN6nu7tbPp9PPp9PwWBQ0r8/WGZZ1qhn0wAA4D8uqajXrVsX/vR2e3u7Zs2apczMTHV2dqq3\nt1d9fX0KBALKzs5WXl6empqaJEktLS3KyckZv+kBAIhzES99Hzt2TFu2bNGJEyeUlJSk5uZmrVq1\nShs2bNCUKVOUkpKizZs3y+Vyye/3q7y8XA6HQxUVFXK73SoqKlJra6tKS0vldDpVVVU1EbkAAIgL\nDmssN40nWLzf27Dr/RvJvtm9Xrdu9b8a6zEiqq0sGPfXtPOa2zG3ZN/sRt2jBgAAE4OiBgDAYBQ1\nAAAGo6gBADAYRQ0AgMEoagAADEZRAwBgMIoaAACDUdQAABiMogYAwGAUNQAABqOoAQAwGEUNAIDB\nKGoAAAxGUQMAYDCKGgAAg1HUAAAYjKIGAMBgFDUAAAajqAEAMBhFDQCAwShqAAAMRlEDAGAwihoA\nAIONqaiPHz+uJUuW6MCBA5KkU6dOafXq1SorK9P69es1NDQkSWpsbNSyZctUUlKigwcPSpKGh4fl\n9/tVWlqqVatWqaurK0pRAACIPxGLur+/X0899ZQWLFgQ3rZz506VlZXphRde0NVXX62Ghgb19/er\npqZGzz//vPbv36+6ujp9+eWXeu2115SamqoXX3xRa9asUXV1dVQDAQAQTyIWtdPp1N69e+Xz+cLb\n2tvbtXjxYklSfn6+2tra1NHRoYyMDLndbrlcLmVlZSkQCKitrU2FhYWSpNzcXAUCgShFAQAg/kQs\n6qSkJLlcrnO2DQwMyOl0SpLS09MVDAYVCoXk8XjC+3g8nvO2JyQkyOFwhC+VAwCA0SVd7gtYljUu\n279r6tQUJSUlXtZcpvN63bEeIWbsnN100Vobu665XXNL9s0ejdyXVNQpKSkaHByUy+XS6dOn5fP5\n5PP5FAqFwvt0d3dr7ty58vl8CgaDmj17toaHh2VZVvhs/GJ6evovZaxJw+t1Kxg8E+sxYsKu2SfL\nQSsaa2PnNbdjbsm+2S8n92jHiEv661m5ublqbm6WJB06dEgLFy5UZmamOjs71dvbq76+PgUCAWVn\nZysvL09NTU2SpJaWFuXk5FzKWwIAYEsRz6iPHTumLVu26MSJE0pKSlJzc7O2b9+uyspK1dfXa8aM\nGSouLlZycrL8fr/Ky8vlcDhUUVEht9utoqIitba2qrS0VE6nU1VVVRORCwCAuOCwxnLTeILF+yUT\nu14Wkuyb3et161b/q7EeI6LayoJxf007r7kdc0v2zW7UpW8AADAxKGoAAAxGUQMAYDCKGgAAg1HU\nAAAYjKIGAMBgFDUAAAajqAEAMBhFDQCAwShqAAAMRlEDAGAwihoAAINR1AAAGIyiBgDAYBQ1AAAG\no6gBADAYRQ0AgMEoagAADEZRAwBgMIoaAACDUdQAABiMogYAwGAUNQAABqOoAQAwGEUNAIDBki7l\nSe3t7Vq/fr1mzZolSbrmmmt0zz33aOPGjRoZGZHX69W2bdvkdDrV2Niouro6JSQkaMWKFSopKRnX\nAAAAxLNLKmpJuv7667Vz587w77///e9VVlampUuX6umnn1ZDQ4OKi4tVU1OjhoYGJScna/ny5Sos\nLFRaWtq4DA8AQLwbt0vf7e3tWrx4sSQpPz9fbW1t6ujoUEZGhtxut1wul7KyshQIBMbrLQEAiHuX\nfEb90Ucfac2aNfrqq690//33a2BgQE6nU5KUnp6uYDCoUCgkj8cTfo7H41EwGLz8qQEAsIlLKur/\n+7//0/3336+lS5eqq6tLd911l0ZGRsKPW5Z1weddbPt/mzo1RUlJiZcy2qTh9bpjPULM2Dm76aK1\nNnZdc7vmluybPRq5L6mop02bpqKiIknSD3/4Q/3gBz9QZ2enBgcH5XK5dPr0afl8Pvl8PoVCofDz\nuru7NXfu3Iiv39PTfyljTRper1vB4JlYjxETds0+WQ5a0VgbO6+5HXNL9s1+OblHO0Zc0j3qxsZG\nPffcc5KkYDCozz//XHfccYeam5slSYcOHdLChQuVmZmpzs5O9fb2qq+vT4FAQNnZ2ZfylgAA2NIl\nnVEXFBTowQcf1N/+9jcNDw/rySef1Jw5c/Twww+rvr5eM2bMUHFxsZKTk+X3+1VeXi6Hw6GKigq5\n3ZPjzAIAABNcUlFfccUV2r1793nb9+3bd962W265RbfccsulvA0AALbHN5MBAGAwihoAAINd8t+j\nBkxzd9WbsR4BAMYdZ9QAABiMogYAwGAUNQAABqOoAQAwGEUNAIDB+NQ3gDDTPzlfW1kQ6xGACccZ\nNQAABqOoAQAwGEUNAIDBKGoAAAxGUQMAYDCKGgAAg1HUAAAYjKIGAMBgFDUAAAajqAEAMBhFDQCA\nwShqAAAMRlEDAGAwihoAAINR1AAAGIyiBgDAYEkT8SZ/+MMf1NHRIYfDoU2bNulnP/vZRLwtAACT\nXtSL+u2339ann36q+vp6ffzxx9q0aZPq6+uj/bYA4tDdVW/GeoSIaisLYj0C4kzUi7qtrU1LliyR\nJP34xz/WV199pa+//lpXXHFFtN8aACYcf5jAeIt6UYdCIV177bXh3z0ej4LBIEUNADFi+h8m+IPE\nuSbkHvV3WZYVcR+v1z0Bk8SWHTJeTLSy/7/qX0bldQFgrKJxfIv6p759Pp9CoVD49+7ubnm93mi/\nLQAAcSHqRZ2Xl6fm5mZJ0vvvvy+fz8dlbwAAxijql76zsrJ07bXXauXKlXI4HHriiSei/ZYAAMQN\nhzWWm8YAACAm+GYyAAAMRlEDAGAwinqCvP3221qwYIFaWlou+HhjY6OWLVumkpISHTx4cIKni47h\n4WH5/X6VlpZq1apV6urqOm+fa6+9VqtXrw7/NzIyEoNJx88f/vAH3XnnnVq5cqX+/ve/n/NYa2ur\nli9frjvvvFM1NTUxmjB6RsteUFCgsrKy8DqfPn06RlNGx/Hjx7VkyRIdOHDgvMfied1Hyx3va751\n61bdeeedWrZsmQ4dOnTOY+O+5hai7tNPP7XWrFljrV271nrzzTfPe7yvr8+6+eabrd7eXmtgYMD6\nxS9+YfX09MRg0vH18ssvW08++aRlWZZ15MgRa/369eftc/3110/0WFHT3t5u/frXv7Ysy7I++ugj\na8WKFec8vnTpUuvkyZPWyMiIVVpaan344YexGDMqImXPz8+3vv7661iMFnV9fX3WqlWrrEcffdTa\nv3//eY/H67pHyh3Pa97W1mbdc889lmVZ1hdffGHdeOON5zw+3mvOGfUE8Hq92rVrl9zuC/9F+I6O\nDmVkZMjtdsvlcikrK0uBQGCCpxx/bW1tKiwslCTl5ubGRabRXOzrciWpq6tLV155paZPn66EhATd\neOONamtri+W442q07PHO6XRq79698vl85z0Wz+s+Wu54N3/+fD3zzDOSpNTUVA0MDISvBkZjzSnq\nCTBlyhQlJiZe9PFQKCSPxxP+/duvWZ3svpsrISFBDodDQ0ND5+wzNDQkv9+vlStXat++fbEYc9yE\nQiFNnTo1/Pt31zEYDMblGn9rtOzfeuKJJ1RaWqrt27eP6RsKJ4ukpCS5XK4LPhbP6z5a7m/F65on\nJiYqJSVFktTQ0KBFixaFj/HRWPMJ/wrReHfw4MHz7jGvW7dOCxcuHPNrTMb/oS+Uu6Oj45zfL5Rr\n48aNuu222+RwOLRq1SplZ2crIyMjqrNOlMm4juPlv7P/9re/1cKFC3XllVeqoqJCzc3NuuWWW2I0\nHSaCHdb8jTfeUENDg2pra6P6PhT1OCspKVFJScn/9JwLfc3q3Llzx3u0qLpQ7srKSgWDQc2ePVvD\nw8OyLEtOp/OcfUpLS8M/33DDDTp+/PikLerRvi73vx87ffp0XF0yjPRVwcXFxeGfFy1apOPHj8fd\nQftC4n3dRxPva37kyBHt3r1bf/7zn8+5rRmNNefStwEyMzPV2dmp3t5e9fX1KRAIKDs7O9ZjXba8\nvDw1NTVJklpaWpSTk3PO45988on8fr8sy9LZs2cVCAQ0a9asWIw6Lkb7utyrrrpKX3/9tf71r3/p\n7NmzamlpUV5eXizHHVejZT9z5ozKy8vDtz3eeeedSb3O/4t4X/eLifc1P3PmjLZu3apnn31WaWlp\n5zwWjTXnm8kmwOHDh/Xcc8/pk08+kcfjkdfrVW1trfbs2aP58+dr3rx5ampq0nPPPRe+BHzbbbfF\neuzLNjIyokcffVT//Oc/5XQ6VVVVpenTp5+Te9u2bXrrrbeUkJCggoIC/eY3v4n12Jdl+/btevfd\nd8Nfl/uPf/xDbrdbhYWFeuedd7R9+3ZJ0s0336zy8vIYTzu+RsteV1enV155Rd/73vf005/+VI89\n9pgcDkesRx4Xx44d05YtW3TixAklJSVp2rRpKigo0FVXXRXX6x4pdzyveX19vf74xz/qRz/6UXhb\nTk6OfvKTn0RlzSlqAAAMxqVvAAAMRlEDAGAwihoAAINR1AAAGIyiBgDAYBQ1AAAGo6gBADAYRQ0A\ngMH+P81Qbp8w8X17AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "rYpy336F9wBg", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Train a Logistic Regression Model and Calculate LogLoss on the Validation Set\n", + "\n", + "To use logistic regression, simply use [LinearClassifier](https://www.tensorflow.org/api_docs/python/tf/estimator/LinearClassifier) instead of `LinearRegressor`. Complete the code below.\n", + "\n", + "**NOTE**: When running `train()` and `predict()` on a `LinearClassifier` model, you can access the real-valued predicted probabilities via the `\"probabilities\"` key in the returned dict—e.g., `predictions[\"probabilities\"]`. Sklearn's [log_loss](http://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html) function is handy for calculating LogLoss using these probabilities.\n" + ] + }, + { + "metadata": { + "id": "JElcb--E9wBm", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_linear_classifier_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear classification model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearClassifier` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + " \n", + " # Create a linear classifier object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_classifier = tf.estimator.LinearClassifier(feature_columns=construct_feature_columns(training_examples),optimizer=my_optimizer)\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " \n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"LogLoss (on training data):\")\n", + " training_log_losses = []\n", + " validation_log_losses = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_classifier.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions. \n", + " training_probabilities = linear_classifier.predict(input_fn=predict_training_input_fn)\n", + " training_probabilities = np.array([item['probabilities'] for item in training_probabilities])\n", + " \n", + " validation_probabilities = linear_classifier.predict(input_fn=predict_validation_input_fn)\n", + " validation_probabilities = np.array([item['probabilities'] for item in validation_probabilities])\n", + " \n", + " training_log_loss = metrics.log_loss(training_targets, training_probabilities)\n", + " validation_log_loss = metrics.log_loss(validation_targets, validation_probabilities)\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_log_loss))\n", + " # Add the loss metrics from this period to our list.\n", + " training_log_losses.append(training_log_loss)\n", + " validation_log_losses.append(validation_log_loss)\n", + " print(\"Model training finished.\")\n", + " \n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"LogLoss\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"LogLoss vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_log_losses, label=\"training\")\n", + " plt.plot(validation_log_losses, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_classifier" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "VM0wmnFUIYH9", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 622 + }, + "outputId": "c7841017-2227-42f6-f19c-b7abe9d1841e" + }, + "cell_type": "code", + "source": [ + "linear_classifier = train_linear_classifier_model(\n", + " learning_rate=0.000005,\n", + " steps=500,\n", + " batch_size=20,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "LogLoss (on training data):\n", + " period 00 : 0.60\n", + " period 01 : 0.58\n", + " period 02 : 0.57\n", + " period 03 : 0.55\n", + " period 04 : 0.55\n", + " period 05 : 0.55\n", + " period 06 : 0.54\n", + " period 07 : 0.54\n", + " period 08 : 0.53\n", + " period 09 : 0.53\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGACAYAAABY5OOEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8VfX9x/HXHdmLJGSQQCCEmUCA\nMGRvJIBUFIVojbPSKhYr/toKakFbsYM6q1TRVksdUURxAFGGgIiMsAOBEJKQAdl7r98f6K2oQIBc\n7g15Px8PHw/vveec+7n3Q+Cd7/l+zzE0NTU1ISIiItJKGW1dgIiIiMjlUJgRERGRVk1hRkRERFo1\nhRkRERFp1RRmREREpFVTmBEREZFWTWFG5CrXs2dPTp8+3SLHyszMJDw8vEWOZQuxsbGMHDmS6Oho\nJk+ezNSpU3nzzTcv+jgHDhzgnnvuuej9wsPDyczMvOj9ROT8zLYuQETkSvrtb3/L9ddfD0BeXh6z\nZ88mNDSU0aNHN/sYkZGRvP7669YqUUQukkZmRNqompoa/vCHPzB58mSmTJnCn//8ZxoaGgDYunUr\nY8aMYcqUKcTFxREVFXXBEYXi4mIefPBBy4jHq6++annt2WefZfLkyUyePJnbb7+dnJyc8z7/nc2b\nNzN9+vSznrv++uvZsmULO3fu5IYbbmDq1KlMmTKFtWvXXvR34OfnR3R0NNu2bQPg+PHj3HbbbUye\nPJnp06dz8OBBAHbs2EFMTAwPPvggDz/8MDt27GDSpEkX/B43b97MpEmTmDJlCq+99prlfSsqKpg7\ndy5TpkxhwoQJPPbYY9TV1V10/SJyhsKMSBv15ptvcvr0aT777DM+/PBDdu/ezaeffkpDQwOPPPII\nTz75JGvXriUtLY2qqqoLHu+ZZ57By8uL+Ph43n77bd555x12795NcnIy69at49NPPyU+Pp5Jkyax\nffv2cz7/fcOGDeP06dNkZGQAkJGRwenTpxk+fDh/+ctfWLBgAWvWrGHZsmWsX7/+kr6H+vp6HB0d\naWxsZO7cuVx//fXEx8ezePFi7r//furr6wE4fPgwMTEx/P3vf2/29/joo4+yaNEi1q5di9FotISc\njz76CE9PT9auXUt8fDwmk4njx49fUv0iojAj0mZ9+eWXzJo1C7PZjLOzM9OnT2fbtm2kpaVRW1vL\nmDFjgDPzTBobGy94vM2bN3PrrbcC0K5dOyZNmsS2bdvw9PSksLCQTz75hJKSEmJjY5kxY8Y5n/8+\nR0dHxo0bx8aNGwFYv349EydOxGw24+vry0cffURKSgpdunT5UchojoyMDNatW8ekSZM4ceIEBQUF\n3HTTTQAMHDgQHx8f9u7dC4CzszPDhg276O9x5MiRANxwww2Wfb477ldffUVjYyNPPPEEvXv3vuj6\nReQMhRmRNqqwsBAvLy/LYy8vLwoKCigpKcHT09PyvL+/f7OP9/39PD09KSgoICAggBdffJF169Yx\nduxY5syZw6lTp875/A9Nnjz5rDAzdepUAJYsWYKLiwt33XUX1157LevWrWtWnX/7298sE4Dnz5/P\nI488QmRkJKWlpVRXVzNlyhSio6OJjo6moKCA4uJiy/dzrs99ru/R3d39rOe/M2XKFO68806ef/55\nhg0bxhNPPEFtbW2z6heRH1OYEWmj2rdvb/mHGs7MeWnfvj3u7u5UVlZans/Pz7+s4wEMHTqUV199\nlW3bttGhQweWLl163ue/b9SoUSQlJZGWlkZaWhpDhw61vN/jjz/Oli1b+MMf/sCCBQuoqKi4YJ2/\n/e1vWbduHfHx8bz//vuWcOTv74+bmxvr1q2z/PfVV19Z5sZc7Of28vKivLzc8nxhYeFZ+8XExPD+\n+++zZs0aEhMT+eijjy5Yu4j8NIUZkTZq7NixrFy5koaGBiorK1m9ejVjxoyhS5cu1NfXs2PHDgDe\neecdDAZDs44XFxcHnPmH+4svvmDs2LF89dVXPPHEEzQ2NuLq6kqvXr0wGAznfP6HHB0dGTlyJH/7\n29+YMGECJpOJuro6YmNjyc3NBSAiIgKz2YzReOl/pQUHBxMYGGgZ4SksLGT+/PlnBbtzfe6f+h5D\nQkIwmUyW73HVqlWWz/fSSy+xcuVKAAICAujYsWOzvmMR+Wlami3SBsTGxmIymSyP//SnPxEbG0tG\nRgbTpk3DYDAQHR3NlClTMBgMLF68mAULFuDh4cFdd92F0WjEYDDQ1NREQ0MD0dHRZx1/+fLl/OY3\nv2Hx4sVER0djNBqZM2cOkZGR1NTU8NlnnzF58mQcHR3x8fFhyZIl+Pv7/+TzP2Xy5Mn8+te/5o03\n3gDAwcGBm266iTvvvBMAo9HIY489houLC1988QUbN27k6aefvqjvyGAw8Mwzz7B48WKee+45jEYj\nd911F66urhf8bs/1Pf7xj39k4cKFODo6cuONN1qOdf3117NgwQKWL1+OwWCgX79+luXiInLxDE1N\nTU22LkJE7FdlZSUDBgxg9+7deHh42LocEZEf0WkmEfmRmTNnsmbNGgDWrFlDWFiYgoyI2C2NzIjI\nj+zevZsnn3ySmpoa3NzcWLx4MZGRkbYuS0TkJynMiIiISKum00wiIiLSqinMiIiISKvW6pdm5+WV\nWe3Y3t6uFBWd/xoTYhvqjX1SX+yXemOf1Jfm8/M79yIEjcych9lsuvBGYhPqjX1SX+yXemOf1JeW\noTAjIiIirZrCjIiIiLRqCjMiIiLSqinMiIiISKumMCMiIiKtmlWXZi9ZsoT9+/djMBhYuHDhWZdD\nP3XqFPPnz6euro7w8HCefPLJC+4jIiIi8kNWG5nZuXMn6enpxMXF8dRTT/HUU0+d9fqf//xn7r77\nblauXInJZCI7O/uC+4iIiIj8kNXCzPbt25k4cSIAYWFhlJSUUF5eDkBjYyMJCQmMHz8egEWLFhEU\nFHTefUREROTiffnlhmZt9/zzfyc7O+ucrz/yyPyWKqnFWe00U35+PhEREZbHPj4+5OXl4e7uTmFh\nIW5ubjz99NMkJiYyaNAgHn744fPucy7e3q5WvejQ+a44KLal3tgn9cV+qTf2yZp9yczMZOvWjdx8\n84wLbvunPy0+7+uvv768RWqyhit2O4Pv35y7qamJnJwcbr/9doKDg5kzZw5ffvnlefc5F2teBtrP\nz8Oqt0uQS6fe2Cf1xX6pN/bJ2n157LE/cORIIr169eLaa6dw6lQ2zz33Mk8//SR5eblUVVVx991z\nGDFiFA88MIf583/Hpk0bqKgo5+TJdLKyMpk372GGDRvBtGkT+OyzDTzwwBwGD76GPXt2U1xczF/+\n8izt27fnyScf5/TpU/TtG8nGjev58MM1LfpZzhf6rBZm/P39yc/PtzzOzc3Fz88PAG9vb4KCgggJ\nCQFg2LBhJCcnn3cfERGR1uy9jcfZlZR71nMmk4GGhgv/4n4ug3v5M2t8t3O+fsstsaxa9R6hoWGc\nPJnGyy+/RlFRIUOGDGXKlOvIysrk8ccfYcSIUWftl5ubw9KlL/DNN1+zevUHDBs24qzX3dzceP75\nZSxb9iJbtmwkKKgjtbU1vPrqG2zbtpX33nvnkj/TpbDanJkRI0YQHx8PQGJiIv7+/pbTRWazmU6d\nOpGWlmZ5PTQ09Lz7XGkp2SVk5Oi3GBERuTr07n1mGoeHhydHjiRy331389RTiyktLfnRtpGR/YEz\nAxM/NXe1X78BZ72enp5K3779ABg2bAQm05W955TVRmaioqKIiIggJiYGg8HAokWLWLVqFR4eHkya\nNImFCxfyyCOP0NTURI8ePRg/fjxGo/FH+9jKK6sTqW9s4qlfXIOLU6u/ubiIiNjYrPHdfjSKciVP\n/zk4OADwxRfrKC0t5aWXXqO0tJRf/CL2R9t+P4z81JSPH77e1NSE0XjmOYPBgMFgaOnyz8uq/0r/\n3//931mPe/XqZfn/zp078847Px6G+uE+tjK8TyAfb0tjzTfpzBwTZutyRERELprRaKShoeGs54qL\ni+nQIQij0cjmzRupq6u77PcJDu5oWTW1c+c3P3pPa9MVgM9hyjWd8fF0Jn5nBvklVbYuR0RE5KJ1\n7hzK0aNJVFT871TR2LHj+frrrTz44H24uLjg7+/Pv/99eSuVhg8fRUVFBffddw/79+/F09Prcku/\nKIam5iwZsmPWHJ47mF7Es+/s5ZrwAH75s4gL7yBXjFZm2Cf1xX6pN/bpaulLaWkJe/bsZuzYCeTl\n5fLgg/fx9tsftOh72GQ1U2uXXJRCl64+dAn0YMfhHCYO7EhY8JVNmiIiIq2Bq6sbGzeu5+23V9DU\n1Mivf31lL7CnMHMOK468T21TLT8fO4dn3z3MuxuSWRg78IpPahIREbF3ZrOZJ5982mbvrzkz5zAy\n6BrKaso5VreLQT39SMkuZceRHFuXJSIiIj+gMHMO4zqNxN/Nly8ztzFuWDvMJgMrv0yhtu7KztAW\nERGR81OYOQcHkwOx/WfS2NTIlznrmTSoE4WlNcTvyrB1aSIiIvI9CjPnMSS4P93bdeVQwRG6967D\nw9WBNdvTKS6vsXVpIiIi8i2FmfMwGAzM7P4zDBj4NH0N14/sQk1dA6u2nLB1aSIiIi3mppumU1lZ\nyYoVb3Do0IGzXqusrOSmm6afd//vLpi3Zs0nbN68yWp1novCzAV08ghieNBgTlXkYPA7SbCfG9sO\nnCL9dOu/LoCIiMj3xcbeSZ8+kRe1z6lT2axff+a+ilOnTmfMmHHWKO28tDS7GaZ3jSYhZz9rU79g\n9pg5vLQyibiNyfz2lgFaqi0iInbr7rt/zpIlfycwMJDTp0+xYMHD+Pn5U1VVRXV1NQ899FvCw/tY\ntn/qqcWMHTuB/v0H8Oijv6O2ttZy00mAzz9fy8qVcZhMRrp0CeP3v3+UZ575C0eOJPLvfy+nsbGR\ndu3aMXPmbF5++XkOHtxPfX0DM2fOIjp6Gg88MIfBg69hz57dFBcX85e/PEtgYOBlf06FmWbwcHQn\nussEPkpZQ2rjbiLDOnMgpYC9yflE9fCzdXkiItIKrDr+KXtzD571nMlooKHx0i/EP8C/Lzd2u+6c\nr48ePY5t27Ywc+Ystm7dzOjR4wgL687o0WNJSNjFW2+9yVNP/e1H+8XHr6Vr1zDmzXuYDRs+t4y8\nVFVV8fe/v4iHhwdz595LSspxbrklllWr3uOuu+7l9ddfAWDfvj2cOJHCsmX/oqqqijvuiGH06LEA\nuLm58fzzy1i27EW2bNnIrFm3XvLn/45OMzXT2E4jae/iy+asr5kwvB0mo4H3Nh2nvqHR1qWJiIj8\npDNhZisAX321mZEjx7B58wbuu+8eli17kZKSkp/cLy3tBH369ANgwICBluc9PT1ZsOBhHnhgDunp\nqZSUFP/k/klJh+nfPwoAFxcXunTpSkbGmdXA/foNAMDf35/y8vKf3P9iaWSmmRyMZm7sdh2vHnyT\nLfnrGTtgFBsSMtmQkMnkISG2Lk9EROzcjd2u+9EoirXvzdS1axgFBXnk5JymrKyMrVu/pH17fx5/\n/I8kJR3mH/947if3a2oCo/HMNIrGb0eO6urqeOaZv/LGG2/j69ue3/3uN+d8X4PBwPfv/FhfX2c5\nnslk+t77tMztITUycxEi24fTw7sbhwuO0jOiFjdnMx9vS6OsstbWpYmIiPykYcNG8uqrLzNq1BhK\nSooJDu4IwObNm6ivr//JfUJCOpOUdASAPXt2A1BZWYHJZMLXtz05OadJSjpCfX09RqORhoazLyjb\nq1cEe/cmfLtfJVlZmXTsaL1f/BVmLoLBYOCm7tMxYGDNyXVMGx5CVU09q79KtXVpIiIiP2nMmHGs\nXx/P2LETiI6eRlzcWzz00FwiIvpQUFDAZ599/KN9oqOnkZh4kAcfvI+MjHQMBgNeXu0YPPgafvGL\n2/n3v5dz662xvPDCM3TuHMrRo0m88MLfLfv369efnj17MXfuvTz00Fx+9asHcHFxsdpnNDS11BiP\njVhzeO5cw3/vHF3FV1nfcGPYdNavM5NXXM0T9wwhuL2b1WqRs1l7aFYujfpiv9Qb+6S+NJ+fn8c5\nX9PIzCW4LvRaXMzOrEtfz8/GBNPY1MR7G4/buiwREZE2SWHmEng4ujOly0Qq66s4adhD787eHDxR\nwKETBbYuTUREpM1RmLlEYzoOx9+lPV9lf8P44Z4YgHc3HqehUUu1RUREriSFmUtkNpq5sft1NDY1\nsr1oEyP7BZKdX8GWfdm2Lk1ERKRNUZi5DH18e9PLuztHCo8R3rceJ0cTH25NpbK6ztaliYiItBkK\nM5fhzF21p2M0GFmXuY6pQztSXlXHp1+n27o0ERGRNkNh5jIFuQcyMmgouZX5OAdl4uvpzPqEDHKL\nKm1dmoiISJugMNMCpoVOwsXsQvzJjUwf04H6hibe/zLF1mWJiIi0CQozLcDd0Y1poZOoqq8i27SX\nsGBPEo7mcfRkka1LExERueopzLSQ0cHDCHD146vsHUwc6QWcWard2LovsCwiImL3FGZaiMlo4sZu\n19FEEzuLv+SacH/ST5ex/dBpW5cmIiJyVVOYaUF92vcm3KcnSUXJ9OlXj4PZyAebU6ipbbjwziIi\nInJJFGZa2Mzu12E0GPkiO55Jg4MpLq9l7Q4t1RYREbEWhZkWFugWwKjgYeRVFeDeKRMvd0fW7ThJ\nYWm1rUsTERG5KinMWMG00Em4mV35ImMTU0cGUlvfyAebtVRbRETEGhRmrMDNwZWpXSdR3VBNnvM+\nQgLc2Z6Yw4nsUluXJiIictWxaphZsmQJs2fPJiYmhgMHDpz12vjx47n11luJjY0lNjaWnJwcGhsb\nefzxx4mJiSE2NpaUlNY7mjEqaCiBrv58nb2LiSM9AXh3YzJNWqotIiLSoszWOvDOnTtJT08nLi6O\nlJQUFi5cSFxc3FnbLF++HDc3N8vjL774grKyMt59911OnjzJU089xSuvvGKtEq3KZDQxs/t0Xtr/\nOgllmxnQYxh7j+WzKymXIb0DbF2eiIjIVcNqIzPbt29n4sSJAISFhVFSUkJ5efl590lLSyMyMhKA\nkJAQsrOzaWhovcuaw3170se3F8eKU4gcUIfJaGDllynU1bfezyQiImJvrBZm8vPz8fb2tjz28fEh\nLy/vrG0WLVrELbfcwtKlS2lqaqJHjx589dVXNDQ0cOLECTIyMigqat23BLix25ml2htPfcH4QR3I\nL6nm810Zti5LRETkqmG100w/9MO5IvPmzWPUqFF4eXkxd+5c4uPjiY6OZs+ePfz85z+nZ8+edO3a\n9YJzTLy9XTGbTVar28/P47L3jy4ay5pjG+nQOx/PREfWfHOS68d1x9vDuYWqbJsutzdiHeqL/VJv\n7JP6cvmsFmb8/f3Jz8+3PM7NzcXPz8/yeMaMGZb/Hz16NMeOHSM6OpqHHnrI8vzEiRPx9fU97/sU\nFVW2YNVn8/PzIC+v7LKPMy5gNJtTv+GTY/FcOyyWleszee3Dg9w5pVcLVNk2tVRvpGWpL/ZLvbFP\n6kvznS/0We0004gRI4iPjwcgMTERf39/3N3dASgrK+Oee+6htrYWgF27dtG9e3eSkpJYsGABAFu2\nbCE8PByjsfWvHnd1cOW60MlUN9RQ6LafoPZubD2QTUbu+ecQiYiIyIVZbWQmKiqKiIgIYmJiMBgM\nLFq0iFWrVuHh4cGkSZMYPXo0s2fPxsnJifDwcKKjo2lqaqKpqYmbbroJJycnli5daq3yrrgRQUPY\nmrWdb07tZuaICFasruDdDcn8X0x/DAaDrcsTERFptQxNrfzCJ9Ycnmvp4b+kwmRe3Lecbu1CaTw+\nlMQTRcybGUn/7u1b7D3aCg3N2if1xX6pN/ZJfWk+m5xmkh/r5dOdvu3DOV6cSv+B9RgNBuI2Hae+\nodHWpYmIiLRaCjNX2I3dpmEymNics55RA/zJKaxk054sW5clIiLSainMXGH+rn6M7TiCguoivEOz\ncXEy8/G2VMqr6mxdmoiISKukMGMDU0In4O7gxqbszUwa6kdFdT0fb0u1dVkiIiKtksKMDbiYXbiu\n62RqG2op8TyAfzsXNu3J4lRBha1LExERaXUUZmxkRNAQgt07sCtnD+NGuNPQ2MT7m1rvXcJFRERs\nRWHGRowGIzd1n04TTRyq3UqPTl7sO57P4bRCW5cmIiLSqijM2FAP72708+vDiZI0BgyqwwC8u+E4\njY2t+tI/IiIiV5TCjI3dEDYNs8HE1vyNDOvrR2ZeOVsPZNu6LBERkVZDYcbG/Fx9GddpFEU1xfh2\ny8bJwcSHW05QVVNv69JERERaBYUZOzC5y3g8HNzZcmoL46/xpbSyjs+2p9u6LBERkVZBYcYOuJid\nmR42mdrGOsrbHcTH04nPd2WQX1xl69JERETsnsKMnRjWYTAd3YPYnbuXMcNdqW9o5P0vtVRbRETk\nQhRm7MR3S7UBjtZvo0sHD3Yl5ZKcWWzjykREROybwowd6e4dRn+/vqSWniRq8Jl7Nb27IZnGJi3V\nFhEROReFGTtzQ7dpmI1mthdtYlBvH1JPlbEjMcfWZYmIiNgthRk7097Fh/GdRlFcU4J/j1OYTUZW\nbk6hpq7B1qWJiIjYJYUZOzS58zg8HT3YlvMVYwZ7U1RWQ/yOk7YuS0RExC4pzNghZ7MzP+saTW1j\nHdW+iXi6ObJmRzpFZTW2Lk1ERMTuKMzYqWs6DKSTRzB78vYxepgLtXWNrNqspdoiIiI/pDBjp84s\n1f4ZAClNX9PR341th06TdrrUxpWJiIjYF4UZO9atXShR/pGklWUQNfjMKaZ31yfTpKXaIiIiFgoz\ndm5G2DQcjGZ2lW4lsls7jmWWkHA0z9ZliYiI2A2FGTvn6+LNhJAxFNeUENj7FCajgfe/PE5dfaOt\nSxMREbELCjOtwKSQsXg5evBN3jaGR7Ujr7iaDQmZti5LRETELijMtALOZieuD5tKXWM9df6JuDmb\n+eTrVEora21dmoiIiM0pzLQSgwMH0NmjE/vzDzByqDNVNQ2s3ppq67JERERsTmGmlTAajNzU48xd\ntVNN3xDo68KX+7LIyiu3cWUiIiK2pTDTinT16sKggP5klGUyYHANTU0Qt/G4rcsSERGxKYWZVmZG\n2FQcjA7sKd9K71B3DqUWciClwNZliYiI2IzCTCvj7dyOiSFjKK0tIyj8NAYDxG1Mpr5BS7VFRKRt\nUphphSZ1Hks7Jy92FnzD0H4enCqoZPO+bFuXJSIiYhMKM62Qk8mR68OmUN9YT0PgEVycTKz+KpWK\n6jpblyYiInLFKcy0UoMC+tPFM4SDhYcYNsSR8qo6PtmWZuuyRERErjizNQ++ZMkS9u/fj8FgYOHC\nhURGRlpeGz9+PIGBgZhMJgCWLl2Ku7s7v//97ykpKaGuro65c+cyatQoa5bYan13V+2lCf8gw2En\nvl6D2JCQybgBwQT4uNq6PBERkSvGamFm586dpKenExcXR0pKCgsXLiQuLu6sbZYvX46bm5vl8X//\n+19CQ0N5+OGHycnJ4Y477mDdunXWKrHVC/UKYXBAFLty9jDimj6s/9zAe5uO8+uZkRfeWURE5Cph\ntdNM27dvZ+LEiQCEhYVRUlJCefn5L/Dm7e1NcXExAKWlpXh7e1urvKvG9WHROBodOFC5jW6dXNmb\nnM+R9CJblyUiInLFWG1kJj8/n4iICMtjHx8f8vLycHd3tzy3aNEisrKyGDhwIA8//DDTpk1j1apV\nTJo0idLSUl555ZULvo+3tytms8kqnwHAz8/DasduCX54MKN0Mu8d+pQBgwo4nuHCB5tP8MxDYzAZ\nDbYuz6rsvTdtlfpiv9Qb+6S+XD6rzpn5vqamprMez5s3j1GjRuHl5cXcuXOJj4+npqaGoKAgXn/9\ndZKSkli4cCGrVq0673GLiiqtVrOfnwd5eWVWO35LGeY7lC+cvuLr7K8Y2HcGCQdLWL3xGKP6Bdm6\nNKtpLb1pa9QX+6Xe2Cf1pfnOF/qsdprJ39+f/Px8y+Pc3Fz8/Pwsj2fMmIGvry9ms5nRo0dz7Ngx\n9uzZw8iRIwHo1asXubm5NDQ0WKvEq4ajyZEZ3aZS39QAQUdwNBtZteUEVTX1ti5NRETE6qwWZkaM\nGEF8fDwAiYmJ+Pv7W04xlZWVcc8991BbWwvArl276N69O507d2b//v0AZGVl4ebmZlntJOc30L8f\nXb06c7joMEMGmympqGXtjnRblyUiImJ1VjvNFBUVRUREBDExMRgMBhYtWsSqVavw8PBg0qRJjB49\nmtmzZ+Pk5ER4eDjR0dFUVlaycOFCbrvtNurr61m8eLG1yrvqGAwGbur+M/66+0VOOe/Cy30Q8Tsz\nGNMvGF8vZ1uXJyIiYjWGph9OZmllrHmusTWey/zP4Th2nE5giPtENm80c014AL/8WcSFd2xlWmNv\n2gL1xX6pN/ZJfWk+m8yZEdv4WVg0jiZHjtR8Q0gHZ3YcziElq8TWZYmIiFiNwsxVpp2TF5M7j6Os\nrpyQyNMAvLsh+UeryURERK4WCjNXofGdRuPj7M2+4l307e1ESnYpO4/k2rosERERq1CYuQo5mhyY\nETaVhqYGzB2PYjYZeP/L45SU19i6NBERkRanMHOVivKPJMwrlKSSJIZeY6awtIanViRwqqDC1qWJ\niIi0KIWZq5TBYOCmHtMxYOCU0y5+NqIz+SXVLFmRQHJmsa3LExERaTEKM1exEI+ODO0wiOyK0/h2\nzeOuqb2oqmlg6bv7SDiaZ+vyREREWoTCzFVuetdonEyOfHoinh7dHHjw5kiMBgMvf3iQDQmZti5P\nRETksinMXOW8nDyYETaN8roKnkl4Gc/2lfz+5wPwcHPkrS+O8f6m4zRq2baIiLRiCjNtwOiOw7i1\n50wq6ip5bu8rVDmc5tHYgQT4uLJ2x0le++QwdfWNti5TRETkkijMtBEjgq/h3r6xNDY18vKBf5FW\nncTC26IIC/bkm8M5PPvePiqrdZdtERFpfRRm2pB+fn14oN8vcDI58sbhd9hdsJPfxgxgQPf2JJ0s\n5s9vJVBYWm3rMkVERC6Kwkwb0927Kw9F3YeXowcrkz9m7cnPuX9GH8ZHBZOZV8FTKxLIzCu3dZki\nIiLNpjDTBgW7d+DhgXPxd20FzF92AAAgAElEQVTP5+mbePvYSmImhHHz2DCKymp4+r97SEovsnWZ\nIiIizaIw00b5uvgwP+p+Qjw68s2p3Sw/tIIJgzswZ3o4tXUNPPPePnYczrF1mSIiIhekMNOGeTi6\n8+CAX9LbpweHCo7w4r7X6NvDk/mz+uFgNvLKx4ms23FSd9wWERG7pjDTxjmbnfhV5J0MCujPiZI0\nnt2zjMBAI4/8fCDeHk68t+k476xPprFRgUZEROyTwoxgNpq5IzyGcR1Hcqoih78nvIyDWwWPxg4k\nuL0b6xMyWbb6ELV1DbYuVURE5EcUZgQAo8HIzO7Tub7rFIpqinkmYRklTbksuC2Knp3akXA0j6Vx\n+yivqrN1qSIiImdRmBELg8HAtV3GcVuvm6lqqOaFva+QWpHC/Nn9GdLbn+OZJTz93wTyi6tsXaqI\niIiFwoz8yLCgwczpeztNNPHPA2+wJ28vc34WweQhnThVUMlTKxJIP11m6zJFREQAhRk5h77tw/l1\n/zk4mZz4z5E4NmZsYfb47twyoTulFbX8+e09HEotsHWZIiIiCjNybmHtujA/6j7aOXnx4fHPWJX8\nKRMGBXPfjD40NDTx/PsH2HbwlK3LFBGRNk5hRs4ryD2QhwfeT4CrHxsytrDiyHsM6OHL/8X0x9nR\nxOufHeGTr9N0LRoREbEZhRm5IB9nb+ZH3U8XzxB2nt7DPw++QecgVxbcNhBfTyc+3HKCFfFHaWhs\ntHWpIiLSBinMSLO4O7oxb8Acwn17crjgKC/sfRVPL1gYO4hO/u58uS+bl1YdoqZW16IREZErS2FG\nms3J5Miv+t7JkMAo0kpP8kzCMpocKnnk51FEdPFm3/F8/vrOXkora21dqoiItCEKM3JRTEYTsb1n\nMSFkNDmVufw94WWK6vJ58OZ+DO8TSOqpUpasSCC3qNLWpYqISBuhMCMXzWgwcmO367ih2zSKa0p4\nZs8y0stOcs+03lw3vDO5RVU8tSKBE9mlti5VRETaAIUZuWQTQ8Zwe+/Z1DTU8OK+VzlUcIQbR4dx\n++SelFfV8dd39rDveL6tyxQRkaucwoxclms6DORXkXdiwMCrB//D9uxdjB0QzK9vjIQmePGDA2ze\nl2XrMkVE5CqmMCOXLcK3F/MGzMHF5Mx/k97n87RN9Ovmy29vHYCbswNvrjvKh1tO6Fo0IiJiFQoz\n0iJCvTozf+B9eDu1Y/WJtXyQ/AmhHTx4NHYg/u1c+OTrNP615gj1DboWjYiItCyzNQ++ZMkS9u/f\nj8FgYOHChURGRlpeGz9+PIGBgZhMJgCWLl3Kli1b+Pjjjy3bHDp0iL1791qzRGlBgW4BPDzwfv6x\n/3U2ZX5FWV05sb1nsTB2IM+v3M+2g6cpKa/lvhl9cHGy6h89ERFpQ6z2L8rOnTtJT08nLi6OlJQU\nFi5cSFxc3FnbLF++HDc3N8vjm2++mZtvvtmy/9q1a61VnliJt3M75kfdxz8P/JvdOfsor63g3r6x\n/O6WKJatPsSBlAL+8vYefnNzP9q5O9m6XBERuQpY7TTT9u3bmThxIgBhYWGUlJRQXl7e7P1feukl\n7r//fmuVJ1bk5uDKr/vfSx/f3iQVJfP83leppYpfz+zL6H5BnMwp56n/JHCqoMLWpYqIyFXAamEm\nPz8fb29vy2MfHx/y8vLO2mbRokXccsstLF269KzJoQcOHKBDhw74+flZqzyxMkeTI3P63s7QDoM4\nWZbJMwkvU1xTzB3RPZkxKpSC0mqWrEggObPY1qWKiEgrd8UmLvxwJcu8efMYNWoUXl5ezJ07l/j4\neKKjowFYuXIlN9xwQ7OO6+3titlsavF6v+Pn52G1Y7cFD/nfzTsHffnoSDzP7l3GwjEPcM+MSDoH\nefHi+/tZ+u4+/u/nAxkeGXTRx1Zv7JP6Yr/UG/ukvlw+Q5OV1su++OKL+Pn5ERMTA8CECRNYvXo1\n7u7uP9r2rbfeoqCggHnz5gEwefJkPvnkExwdHS/4Pnl5ZS1b+Pf4+XlY9fhtycaMrXyQ/AkuZmd+\n2fdOunt35dCJAl768BC1dQ3cMrE7Ewd1avbx1Bv7pL7YL/XGPqkvzXe+0Ge100wjRowgPj4egMTE\nRPz9/S1BpqysjHvuuYfa2jM3JNy1axfdu3cHICcnBzc3t2YFGWk9xncaxZ3ht1DbUMc/9r/G/rxD\n9OnqyyM/j8LDzZG31yfz3qbjNOpaNCIicpGsdpopKiqKiIgIYmJiMBgMLFq0iFWrVuHh4cGkSZMY\nPXo0s2fPxsnJifDwcMsppry8PHx8fKxVltjQ4MABuDu48eqh/7D84Apu6XkjI4Kv4dHYgTz73n7W\n7ThJUVkNd0/tjYNZl0ASEZHmsdpppitFp5lan/TSDF7e/y/K6yq4LnQy0V3GU1FdzwsrD3A8q4Re\nIe144Ma+uDo7nPMY6o19Ul/sl3pjn9SX5muR00zfLavOz89n9+7dNDbqSq5yaTp7dmL+wPvxcfbm\n09R43ju2GldnE/8X05+oHn4knSzm6bf2UFhabetSRUSkFTAtXrx48YU2+uMf/0hxcTHBwcHMmjWL\nU6dO8c033zBu3LgrUOL5VVbWWu3Ybm5OVj1+W+bu4EaUfyRJhckcKjhCTmUu/QP6cE2vQCqq69l/\nvIBdSblEhPrg6fbj+VPqjX1SX+yXemOf1Jfmc3M794VWmzUyc/jwYW6++WbWrl3LDTfcwPPPP096\nenqLFShtUzsnLx6Kuo8wr1D25B7g5f3/oqaxhlsndufmcWEUldXw9H/3cCS9yNalioiIHWtWmPlu\nWs2XX37J+PHjASwrkUQuh6uDCw/0/wX92kdwrOg4z+99hbK6cqZc05k508OprWvg2ff2seNwjq1L\nFRERO9WsMBMaGsrUqVOpqKigd+/efPTRR3h5eVm7NmkjHE0O3NPnNkYEDSGjLIu/J7xMXmUBQyMC\nmT+7Pw5mI698nMi6HSd/dPFFERGRZq1mamho4NixY4SFheHo6EhiYiKdOnXC09PzStR4XlrNdPVo\namris9TPWZu2AQ9Hd+b2u4dOHsFk5pbz7Pv7KSqrYeLAjsRM6E5AgKd6Y4f0M2O/1Bv7pL4032Wv\nZjpy5AinT5/G0dGRZ599lr/+9a8cO3asxQoUATAYDFzXdTI397ie8toKntvzT44VHaejvzuPxg4k\nuL0b6xMyWbb6zFWDRUREoJlh5k9/+hOhoaHs3r2bgwcP8vjjj/PCCy9YuzZpo8Z2HMFdEbdS11jP\nS/teZ0/uAXw8nVlwWxS9QtqRcDSPf646YOsyRUTETjQrzDg5OdGlSxc2bNjArFmz6NatG0ajrtAq\n1jMwoB/397sbk9HEvw69xZbM7bg6O/DQrH50DvDgi50nNSlYRESAZoaZqqoq1q5dy/r16xk5ciTF\nxcWUlpZauzZp43r5dOc3Ub/C3cGNuGMf8umJzzGbjPzy+gicHU38Jz6JvOIqW5cpIiI21qwwM3/+\nfD755BPmz5+Pu7s7K1as4M4777RyaSIQ4tGR+QPvp72zD2vT1vPu0VX4eztz38xIqmoaeOXjROob\ndDVqEZG2rNn3ZqqsrCQ1NRWDwUBoaCguLi7Wrq1ZtJqpbSipKePl/a+TWZ5Nf78+PDz6Xpb+Zw/f\nJOYwdWhnbhobZusSBf3M2DP1xj6pL8132auZ1q9fz7XXXsuiRYt47LHHmDx5Mps3b26xAkUuxMvJ\ng99E/Yoe7cLYl3eI5bvf5rZJPfBv58Lab9JJTCu0dYkiImIjzQozr732Gh9//DErV65k1apVvP/+\n+yxbtszatYmcxcXszP397qazZye2pO9gd/5ufnl9BEajgdc+OUxpha5KLSLSFjUrzDg4OODj42N5\nHBAQgIODg9WKEjkXB5MDv+hzGx6ObqxM/hhci7lxTFdKKmp5/bMjNOoKwSIibU6zwoybmxv/+te/\nSEpKIikpiddeew03Nzdr1ybyk3ycvXlw2D00NjXy2qEVDO/vQ0SoDwdPFLB+d6atyxMRkSusWWHm\nqaeeIi0tjUceeYQFCxaQlZXFkiVLrF2byDlFBvbmuq7XUlxTwn8Ov8vdU3vi6erA+5uOk35ak+lE\nRNqSZq9m+qGUlBTCwmy/gkSrmdomPz8PcnJLePXgmxzMP8LkzuPpahjMM+/tJ8DbhUV3DcbZ0Wzr\nMtsc/czYL/XGPqkvzXfZq5l+yhNPPHGpu4q0CKPByO29Y2jv7EN8+kYaPU4TPSSEnKIq3vpc9w4T\nEWkrLjnMXOKAjkiLcnVw4Rd9b8fBaOY/R+IYNcSTLoEebDt0mu2Jp21dnoiIXAGXHGYMBkNL1iFy\nyTp5BDG7541U1Vfz78Nvcff07jg5mlgRf5TcokpblyciIlZ23kkFK1euPOdreXl5LV6MyKUa1mEQ\nqSXpbMvewcaceGKvHc1rnx7hlY8TWXDbQMwm3RhVRORqdd4wk5CQcM7X+vfv3+LFiFyOm7v/jIyy\nLHacTiC0Z2eG9wnk60OnWbXlBLPGdbN1eSIiYiXnDTNPP/30lapD5LKduaBeLH/Z9Twrj63m/qG/\n5HiWC+t2nCS8izd9Qn1tXaKIiFhBs9au3nrrrT+aI2MymQgNDeX+++8nICDAKsWJXCxfF2/uiriV\nl/a/zoqjb3P7tLt59u0jvPbpEZ64ewhebo62LlFERFpYsyYSDB8+nMDAQO644w7uuusuOnXqxMCB\nAwkNDWXBggXWrlHkovT27cG00EkU1RSzIe8TZo4JpbSiltc/PazbHYiIXIWaNTKTkJDAv//9b8vj\niRMnMmfOHF599VU2bNhgteJELtXkLuNJKz3JoYIkOnfuRN+uHTh4ooDPd2YQfU2IrcsTEZEW1KyR\nmYKCAgoLCy2Py8rKyM7OprS0lLIyXblQ7I/RYOSO8Bh8v72g3vDhBrzcHPlgcwqpp0ptXZ6IiLSg\nZoWZ22+/nSlTpnDjjTcyc+ZMJk6cyI033simTZuYPXu2tWsUuSSuDq7c2zcWB6OZ9098wM3RQTQ2\nNvHK6kSqauptXZ6IiLSQZt+bqby8nLS0NBobGwkJCaFdu3bWrq1ZdG+mtulierM9exf/TXqfju5B\nhFZE8/mObIZFBHDv9AgrV9n26GfGfqk39kl9ab7z3ZupWXNmKioqePPNNzl48CAGg4H+/ftzxx13\n4Ozs3GJFiljLsKDBpJamsy17J0EB++nSoSvbE3OICPVheJ8Oti5PREQuU7NOMz3++OOUl5cTExPD\nrFmzyM/P57HHHrN2bSIt5ubu1xPiEczOnAQGj6jG2dHEivhj5BTqdgciIq1ds8JMfn4+v//97xk7\ndizjxo3j0UcfJScnx9q1ibSY7y6o52Z2ZV3GGqZO8KKmroF/rk6kvqHR1uWJiMhlaFaYqaqqoqqq\nyvK4srKSmpoaqxUlYg2+Lj7cEXELDU2NfFO+hqF9vUnPKWPllym2Lk1ERC5Ds+bMzJ49mylTptCn\nTx8AEhMTefDBBy+435IlS9i/fz8Gg4GFCxcSGRlpeW38+PEEBgZiMpkAWLp0KQEBAXz88ce89tpr\nmM1m5s2bx9ixYy/hY4n8tAjfnkwJncia1C/w67CbgKw+fL4rg/AuPkSG6XYHIiKtUbPCzE033cSI\nESNITEzEYDDw+OOPs2LFivPus3PnTtLT04mLiyMlJYWFCxcSFxd31jbLly/Hzc3N8rioqIiXXnqJ\nDz74gMrKSl588UWFGWlxU7pMIK30JIcLjjJ8aCAF8e68/tlhnrx7CF7uTrYuT0RELlKzTjMBdOjQ\ngYkTJzJhwgQCAgI4cODAebffvn07EydOBCAsLIySkhLKy8svuM+wYcNwd3fH39+fP/7xj80tT6TZ\njAYjd4bfgq+zN1/nb2XUSDNllXUs1+0ORERapWaNzPyUC12eJj8/n4iI/13Hw8fHh7y8PNzd3S3P\nLVq0iKysLAYOHMjDDz9MZmYm1dXV/OpXv6K0tJRf//rXDBs27Lzv4+3titlsutSPcUHnW9cutnU5\nvfHDg9+O+hWPb/gbBxs2EBkezYHDRXx1KIeZ47u3YJVtj35m7Jd6Y5/Ul8t3yWHmh3fRvpAfhp95\n8+YxatQovLy8mDt3LvHx8QAUFxfzj3/8g+zsbG6//XY2bdp03vcqKrLe0lpdzMh+tURvPPBmVo8Z\nvJW0kgr/7XhmRLFi7RGCfV0IC/JqoUrbFv3M2C/1xj6pL813yRfNGzNmzE8GiaamJoqKis77pv7+\n/uTn51se5+bm4ufnZ3k8Y8YMy/+PHj2aY8eOERwczIABAzCbzYSEhODm5kZhYSG+vpqYKdYxPGgI\nqSXpfH1qF72HZLB3QxCvrE5k8V1DcHW+5KwvIiJX0Hn/tn777bcv+cAjRozgxRdfJCYmhsTERPz9\n/S2nmMrKyvjNb37DsmXLcHR0ZNeuXUyePJmoqCgeeeQR7r33XkpKSqisrMTb2/uSaxBpjlk9ZpBR\nns2RsgP0v6Yde3fAis+PMmd6+EWPQIqIyJV33jATHBx8yQeOiooiIiKCmJgYDAYDixYtYtWqVXh4\neDBp0iRGjx7N7NmzcXJyIjw8nOjoaAwGA5MnT2bWrFkAPPbYYxiNzZ6jLHJJvrug3l92Pc/xhq/p\n1HksOw7nENHFh5GRut2BiIi9a/aNJu2VbjTZNlmjN4kFSSzb/2+8HL0o3jOYhjoHFt05mA6+bhfe\nWQD9zNgz9cY+qS/Nd745Mxr2EPlWhG8vpnSZQHFtMcEDk6mta+CV1YnU1et2ByIi9kxhRuR7poRO\nJNynJ1k1aYRF5XAyt1y3OxARsXMKMyLfYzQYuSMiBh9nb06Z99O+Uylf7M5g//H8C+8sIiI2oTAj\n8gPuDm7c2ycWk8FIQ8c9mF2qef2zIxSV6eaqIiL2SGFG5CeEeHZkVo8ZVDdU49cvkfLqal779DCN\nja16vryIyFVJYUbkHIYHDWFoh0EUN+YR2DeVI+lFrN2RbuuyRETkBxRmRM7BYDAwu8cNdHIPosT5\nOB4dT/PhllSOZ5XYujQREfkehRmR83A0OfCLvrG4mF1oCj4ILsW8sjqRyuo6W5cmIiLfUpgRuYD2\nLr7cGR5DQ1MDXn0OUVBRypvrjl7wzvEiInJlKMyINEOf9r2Z0mUC1ZTRLuIIu5Jy2HrglK3LEhER\nFGZEmm1q6CR6+/SgxvkULiGpvP3FMbLzK2xdlohIm6cwI9JMRoOROyNuwdupHQQeo94th3+uTqSu\nvsHWpYmItGkKMyIXwd3BjXv7xmI2mHDrcYisklze26TbHYiI2JLCjMhF6uzZiZt7XE+9oQa33gfY\nsCedvcl5ti5LRKTNUpgRuQQjgq5haOAgGpyKcQpN4l+63YGIiM0ozIhcAoPBwOyeN9DRPQhj+wyq\n3dN49eNE3e5ARMQGFGZELpGjyYF7v72gnlPoEY4VnOSz7Wm2LktEpM0x27oAkdasvYsvd4TP5p8H\n3sClxz5Wb3elV2dvundsZ+vSrpjGpiZSskrYnZRHeU09Ae2c6drBky4dPHF3cbB1eSLSBijMiFym\nvu3Die48nnXpGzF33c8rH7vyxN3X4OZ89f5D3tjYRHJmMbuT8th9LJeS8tqf3C7A24XQIE9CO3jS\nNciTEH93HMymK1ytiFztFGZEWsC0rteSVppBEsmUlh/hjbVe3D+jDwaDwdaltZiGxkaOnSxm99E8\nEo7lUVpxJsC4OZsZFdmBQb386dcrgD2HT3Miu5TUU6WkZpfyTWIO3yTmAGAyGujk707X7wWcAB9X\njFfR9yQiV57CjEgLMBqM3BVxK3/e9RxFwcnsPerF5v0+jO0fbOvSLkt9QyNJJ4vYnZTHnmN5lFed\nucGmh6sDY/oHMaiXP907epJTlcORggOkHa/C17U9QwZ05PqRnTEajOQUVZGaXcqJU6WcyC4lI7eM\ntNNlQBYALk5mQjt4WMJN1w6eeLk72fBTi0hrY2hq5XfLy8srs9qx/fw8rHp8uXT22pu00pM8k7CM\nhjoj9Ukj+cMtowj2c7d1WRelvqGRw2lF7E7KZW9yHhXV9QB4ujkysKcfg3r60yHARHJxCocLj3Kk\n8BhlteU/Oo6D0UxH9yBCPDsS4nHmv0A3fxoaIDOvnBPZpZYRnNOFlWft6+PpdFa46RzogbOjfve6\nHPb6M9PWqS/N5+fncc7XFGbOQ3/I7Jc992Zr1nbePfohjeVe+OaN4w+3X4Ojg33PE6mrbyAxtYjd\nR3PZm5xPVc2ZANPO3ZFBPf2J6tkek3sxScXJHC44SkZZFk2c+avDw9GdcJ+e9PbpQY+gEA5mJHOy\nLJOTpZlkVZymsanR8j6ORgc6eQRbAk5nj474ubanqqaBtFNlnPj21NSJ7BJKK+ss+xkMENzejdAO\nnoR+G3CC/dwwGbUgs7ns+WemLVNfmu98YUa/6oi0sJFBQ0ktOcmO0wnkVSYQt8mX2Gt72rqsH6mt\na+BQaiG7j+ayLzmf6toz95jy8XRiVGQHenR1osIxm6TCHbyWlkxVfTVw5pRat3ahZwKMb0+C3QMx\nGs6ECj9fD7wafS3vUddQR1bFKU6WZpL+bcA5UZJOSkmaZRtnk5Ml4HQO68jQ/p3wde5DUVnt/8LN\nqVLSTpeSmVdhuVu5o9lI58CzT0/5ejlfVfOURKR5FGZEWpjBYCCm5w1klGWR7Z/BlhM7CT/qw8Ce\nfrYujZraBg6eKGD30Vz2Hy+gpu5MgGnv5cyo/gEEdKyikAyOFG5na2quZT9fZx8GBQygt08PenqH\n4Wx2btb7OZgc6OIZQhfPEMtztQ21ZJZnk16aaRnBOV6cSnLxCcs2LmYXOnt0JMSzI937dGTCsFC8\nHD05VVBF6rdzb05kl3I8q4TkzBLLfp6uDmeN3oQGeV7Vq8pE5AydZjoPDf/Zr9bQm7zKAp7e+RzV\n9XUYj4/gyVsn4ePZvBDQkqpr6zmQUsDupFwOnCigtu7MaR+/ds6E93TEzb+InLp0kotPUNd45vSS\no9GBHt5h9PbpSbhvD/xc2jdrxONS+1JdX01GWfaZcPNtwMmtyj9rG3cHtzNzbyxzcIJxMbhzMvfb\n+TffjuIUlFaftd93y8O/CzdtdXl4a/iZaYvUl+bTnJlLpD9k9qu19OZg/mH+eeANGqtd6FQUze9v\nueaKzPOoqqln3/F8diflcii1kLr6MwHGv70DXbrVYPTK52TlCYpqii37BLkF0tu3B+E+PQlrF4qD\n8eIHbluyL5V1VWSUZXGy7H+nqAqqC8/axsPR/dsRnE509uhIJ4+OUOdIqmX+TQknTpVZ5gBB210e\n3lp+Ztoa9aX5FGYukf6Q2a/W1JvVKWv5PH0TDUV+RPvPZMaorlZ5n8rqOvYm55NwNI9DqQXUNzQB\nTfgH1eEfUkatcw5ZVZmWCbmuZhd6+XSnt09Pevt0x9v58q9abO2+lNdVkFGadSbcfBtwvh/IANo5\neVlWT4V4dqSTezCVFUZOZJeQmn0m5GTkln37/ZzRFpaHt6afmbZEfWk+TQAWsaHpXSeTWnySZFJY\nk7qB3p296Rni3SLHLq+qY++xPHYfzeNwWiENjU1grsGvUzkegcWUGLIoa6ikrBEMlQY6e3Yi3KcH\n4b496ezZyTJxt7Vwd3Cjt28Pevv2sDxXWlvGye/m35Rlkl6ayYH8RA7kJ1q28XH2PrN6qkdHBg7q\nSAeXXhQUNX47/+bM6M3htCIOpxVZ9mnv5cwdU3oR0cXnin5GEbl4Gpk5DyVm+9XaelNWW85T3zxH\naV0pjhnD+NPs6y75vkWllbWWAJOUXkRDUwNG92K8g0oxtyugtCnPsq2Xowe9fXsS7tODnj7dcXdw\na6mP9JPspS/FNSWWgPPdKaryuoqztmnv4muZZBzi0RFfB39O59WdGcE5Vcah1AIMBgMP3dyPXp1b\nJnzakr30Rs6mvjSfTjNdIv0hs1+tsTepJSf5e8LLNNaZ6FZxHQ/dMLTZy4hLKmrZczT3TIA5WQQO\nlRi98vEIKKbBNY96zlyTxWww0bVdqGX0Jcgt8IouVbbXvjQ1NVFUU2xZIp5RlsXJ0kwq6s++WF+A\nq5/l9FRDmRfvfZqP2WRi/ux+rf7mofbam7ZOfWk+hZlLpD9k9qu19ubLjK95P/kjGsu9mBn8cyYO\n7HLObYvKathzLI/dSbkcyyrA4FGIySsfZ99C6h3+99n9XHwJ9z1z0bru7cJwNtturkdr6ktTUxMF\n1UWWuTffjeBUN/xvNVQP174c2hKMg9nEwzH9CQvysmHFl6c19aYtUV+aT3NmROzEmI7DOFaYyn72\nszL5U3p1upOO/v+73UFhaTW7j+ax62gOqQVZGL3yMXrl4zywCAxnJu4aTY709e797VV3e+Ln6nuu\nt5PzMBgMtHfxob2LD1H+kQA0NjWSX1XAydJM1p/czLHyg/QaVc/hrZ14Jm4/v7tlAJ0Dz/0XqojY\nhlVHZpYsWcL+/fsxGAwsXLiQyMhIy2vjx48nMDAQk+nM9R6WLl1KWloaDz74IN27dwegR48ePP74\n4+d9D43MtE2tuTe1DbU8+fVzFNXl45o7iIcmTuNASgG7jmWSXpmGySsfU7t8DI7/GyEIdu9A+LfX\nfOnq1QXzJSybvhJac19+qLKuipf3/4vU0nQ6OXUj+auuuDo58rtbo+jk37rutwVXV2+uJupL89lk\nZGbnzp2kp6cTFxdHSkoKCxcuJC4u7qxtli9fjpvb/yYkpqWlMWTIEF544QVrlSVic44mR+YNvIs/\nbX+OCt89LF5XgNGjCGNQCU6GM79buJpd6e3Tz3L6yMvJ08ZVtz2uDi480P8XvHLgDY4VHyd0eD0n\nvu7O0nf38rtbowhub93J1CLSfFYLM9u3b2fixIkAhIWFUVJSQnl5Oe7ure83GpGW5u/qx50RMbx+\neAUOQakYMBDi3om+fr3o7duDEI+OrW7Z9NXI2ezEff3uZvnB/3C48Cghw+o5+U0vlr6zl9//PIpA\nH1dblygiWDHM5OfnE4Cul6YAAB2QSURBVBERYXns4+NDXl7eWWFm0aJFZGVlMXDg/7d379FR1ffe\nx997ZjK538mFEIgQtUgQSQJegAREEKQXEWsTqdhz2mOr6OGxRSsLq7GrXa6Dxz5PV9GFrbXPY7FK\nFFHxiIAiYMQgoIIauYYQQsg9IZnJPZl5/kgYuQiGwGT2wOf1z8zemdn5Dt8d+PD7/bJ3JgsXLgTg\nwIED3HvvvTQ2NvLAAw8wceJEb5Uo4lMZiVdjt/07Ha5ORkZfTkiA/mE0I7s1gF+O+Rn/t+hldtV8\nxZDruinfNor/fuVzHpmbTny0+ibiawM28X7q0pwFCxaQlZVFZGQk999/P+vWrSM9PZ0HHniAW265\nhbKyMu6++27Wr1+P3W4/43Gjo0OwefE+K2eboxPfuhh6c2Pctb4u4YK7GPrybR6Ju5dnP/l/bDm8\ng6TrXBzdlsafXt3Ff82fRLyfjNBcrL3xd+rL+fNamImPj6e29psbxVVXVxMX981dg2fPnu15np2d\nzb59+5g5cyazZs0CYNiwYQwaNIiqqiqGDh16xu/T0NByxq+dLy3MMi/1xpwu9r7kpv4YV6dBYcV2\n4jI7qfn0GhY9W8AjczN8chPRc3Gx98ZfqS99d7bQ57VJ+YkTJ7Ju3ToAioqKiI+P90wxORwOfvGL\nX9DR0QHA9u3bueKKK1i9ejUvvPACADU1NdTV1ZGQkOCtEkVEzonFsDB35O1MTp6A011PbMZn1DQf\n479X7OSYs93X5Ylcsrw2MpORkUFaWhq5ubkYhkFeXh6rVq0iPDyc6dOnk52dTU5ODoGBgYwaNYqZ\nM2fS3NzMQw89xIYNG+js7OSJJ5446xSTiMhAsxgW7rjiVuwWO+8d3kR0+qdU70zn6RU7+e3cdCJC\n9HeWyEDTFYDPQsN/5qXemNOl1Be32827h97nnZL3sLtDafoygyHhCfx2bnq/77vlTZdSb/yJ+tJ3\nPplmEhG5mBmGwazh05mdOosOo5nwq3dQ7qzgTyt20tLW6evyRC4pCjMiIudhesoUfnLlbDqNVkJH\n7+Cw4wj/+9VdtLZ3+bo0kUuGwoyIyHmanDyBn468A5fRQUjaDg41lfLn13bR1qFAIzIQFGZERC6A\nCUnj+bdRuWB0E3zVpxQ3HuQvK7+gvbPb16WJXPQUZkRELpBxien84uq7MCxugkZ+xr7G/Tyz6ks6\nuxRoRLxJYUZE5AIaGzeaX435N2xWg8ArP2d3w26efeMrurpdvi5N5KKlMCMicoGlxX6P+df8ArvV\nRuAVOylq+JLn3ipSoBHxEoUZEREvuDI6lf9Mv4cgmx176hfsqv+cv//P13S7FGhELjSFGRERLxkR\nmcL/Sv8VIQHB2Ed8xad12/nHO3twufz6WqUipqMwIyLiRcMikvl1xn2EB4Rhv2w32+sKeXHtHlz+\nffF1EVNRmBER8bKksER+nXkfkfZIAobtpbC2gJfW78XP7yYjYhoKMyIiAyAhJI7fZN5HTGA0AckH\n+KhmI69s2K9AI3IBKMyIiAyQQcEx/CbzPgYFDSIgqYTNNet5bdMBBRqR86QwIyIygKKDolg47j4S\nghOwJRxmQ/Ua3iwo9nVZIn5NYUZEZIBF2MP5zbh7SQpJwhZXztqqt1m9RYFGpL8UZkREfCAsIJTf\njPsVQ0OHYoutYE3Fm7yztcTXZYn4JYUZEREfCbYF82DmLxkeNhxrTBVvH32NddsVaETOlcKMiIgP\nBdkCWZD5H6SGX441qpY3yvN5/3MFGpFzoTAjIuJjdmsA/5n5c66MGIk1op6Vh1/hg52HfF2WiN9Q\nmBERMYEAi40HMn7GqMjRWMOP8VrZS2z+UiM0In2hMCMiYhJWi5X7Mu5iTNRYLKFNrChdTkGRAo3I\nd1GYERExEYth4Z70XMZGjcMS4uSV0n/y0dcHfV2WiKkpzIiImIzFsPAf6XeQGX0DRlAzL5e+yEd7\ndB0akTNRmBERMSHDMPj3sbO5LjoLI7CVlw+9yEf79vu6LBFTUpgRETEpwzC4O/2H3BA9BcPexssl\nL7Jl/15flyViOgozIiImd1f6LCZGT8cI6OBfJf9ky4E9vi5JxFQUZkRE/MDc9OlMipoJ1k5eLvkn\nHxUX+bokEdNQmBER8RN3ZkxlcvT3cVu6eeXgS3xY/KWvSxIxBYUZERE/kpMxmclRP8RtuMgv+Reb\ni3f6uiQRn1OYERHxMzmZk5gceStu4NWSV9h4cIevSxLxKYUZERE/lDN+ApPDZ+N2W1hZ8hobij/x\ndUkiPqMwIyLip3Kuu57s8Dm4u62sOvQ66w5s8XVJIj6hMCMi4sdyrx9PVtgc3F0BrD78Fmv2b/Z1\nSSIDTmFGRMTP3TlhHBODb8PdYeedsndYve99X5ckMqBs3jz4k08+ya5duzAMg8WLFzNmzBjP16ZO\nnUpiYiJWqxWAp59+moSEBADa2tr4wQ9+wPz585kzZ443SxQRuSjMzcrEtdng49a3WHdkPZ3uTuZc\nORPDMHxdmojXeS3MbNu2jdLSUvLz8ykuLmbx4sXk5+ef9Jrnn3+e0NDQ0967bNkyIiMjvVWaiMhF\nxzAM7pqcgWujwda2t/igfCNdrk5+MvKHCjRy0fPaNFNhYSHTpk0DIDU1lcbGRpxO53e+r7i4mAMH\nDjBlyhRvlSYiclEyDIO7b0xnfMBsXK2hfFjxEf/6ehUut8vXpYl4lddGZmpra0lLS/Nsx8TEUFNT\nQ1hYmGdfXl4e5eXlZGZmsnDhQgzDYMmSJTz22GO8+eabffo+0dEh2GzWC17/cXFx4V47tpwf9cac\n1Bff++2dWfyf12x83PwGhVWfYAs0uH/QPPXGpNSX8+fVNTMncrvdJ20vWLCArKwsIiMjuf/++1m3\nbh1tbW2MHTuWoUOH9vm4DQ0tF7pUj7i4cGpqHF47vvSfemNO6ot5/HTKaFrWdLHT+Q4Fh7eyp3Y/\nSaGDSQpNJCkskaTQBOKCB2G1eO8/g/Ld9DPTd2cLfV4LM/Hx8dTW1nq2q6uriYuL82zPnj3b8zw7\nO5t9+/Zx8OBBysrK2LRpE5WVldjtdhITE5kwYYK3yhQRuShZDIN7bhnLX/8HdtZtpLqrjpqWOnbV\nfOV5jdWwkhga3xNwQhMZHJZAUuhgYoKitM5G/IrXwszEiRNZunQpubm5FBUVER8f75licjgcPPjg\ngyxbtgy73c727duZMWMGCxYs8Lx/6dKlDBkyREFGRKSfLBaDX/7gGt4siGBPWQOlNTW4Ah1YQhwY\nwU5cwU7Ku6spd1ac9L4gayCDQxMY7BnF6XkMt4ed4TuJ+JbXwkxGRgZpaWnk5uZiGAZ5eXmsWrWK\n8PBwpk+fTnZ2Njk5OQQGBjJq1ChmzpzprVJERC5ZVouF2yenEhcXTkVlI5V1LRyudnC4ysnhKgeH\nDzpodTswgh1Ygp0YIQ7aQpsp6SqjpOnwSccKCwglKWwwSaEJvSM5iQwOTSDYFuSjTyfSw3CfupjF\nz3hzrlFzmeal3piT+mJeZ+qN2+2mvqm9J9hU9wScsmontU0tGEHNnoBjC3FiC2um29Z82jFigqJJ\nOmUkJyE0ngDLgC3L9Fv6mek7n6yZERER8zMMg9jIIGIjg0i/8pt1jc1tnZRVOT0B53CVk4oDzXTT\niRHsxBLsxBLiICiilSaXg/q2PXxVt8fzfothIS54UM8oTliiZyQnLjgWi6GLz8uFpTAjIiKnCQ0K\nYGRKNCNToj37OrtcHK1t9ozilFU5OLzPSVtHN9g6ekZxgh0ERbRgD2+hzn2MqpZqPq/50nOMAIuN\nxOPTVCcEnajASC06ln5TmBERkT4JsFlISQwnJfGb4X6X203tsdaeNTjHp6mqnDQcaAfcENCOJcSB\nPayZ0Og2jGAHRx2VlDnKTzp2sC2oZ5oqNMGzLmdwWCJhAadfJV7kVAozIiLSbxbDID46hPjoEMaN\njPfsb2rp6J2mcnimqyqKmulZpenGCGrBGuIkIradwPBmuowmShpLOdh46KTjR9jDPb9N1bMmp2dU\nx261D+jnFHNTmBERkQsuIsRO2vAY0obHePa1d3ZTXtPs+W2qsioHZYec1Hf23m7B6MYIaiYitp2w\nmDYswU7auhvY07CfPQ37PccJsgYyOXkiU4dlaeRGAIUZEREZIIEBVkYkRTAiKcKzz+VyU9XQ0jtN\n1TuKU+Wg/EjnN2+0dBES1Up0XAdBES00uEtYV/oBm458xOTkidw0NJswu0LNpUxhRkREfMZiMRgc\nG8rg2FCuG5UA9Py6eGNzxzfXwuldbFy+txWIBUsSg0ZU4447wPrSjWw+skWh5hKnMCMiIqZiGAZR\nYYFEhQUyJjXWs7+1vYuyaiebdx5la5EVd3E8SVfW0RGzj/WlG9l0ZAuTh0zgpmHZulrxJUZhRkRE\n/EJwoI0rh0Zx5dAobrluGKs+PMjOvVYwYklJa6AlYi/vHd7E5iNbyE6ewLRhkxVqLhEKMyIi4neS\n48NY8OMx7Cs7xsrNxRz4yophiebyMU00he7m/cOb+fDIx2Ql38D0YVMUai5yup3BWegy0+al3piT\n+mJeF3Nv3G43u4rreH1zMeU1zdhsLr431klt0Fc0dTQRYAkge8gNTEuZTIT9zJfE94WLuS8Xmm5n\nICIiFy3DMBh7+SDGjIjlk6+reKPgIEU7LAQFTmBURjNHrV+woexDPiwvJGvI9UwbNoXIQHOFGjk/\nCjMiInJRsFgMbhidyLiR8WzeWc7bHx/is8JQwkInck1mC6Xuz/mgrICC8kImDbme6cOmEBkY8d0H\nFtPTNNNZaPjPvNQbc1JfzOtS7E1rexfv7Shj7SeHaevoJjYqgNGZLezv+JSG9mMEWGxMSrqe6Sm+\nCzWXYl/662zTTAozZ6GTzLzUG3NSX8zrUu6No6WDdwpL+eCzI3R1u0mKCyYts5mvW7ZT39aAzWJj\nUtJ1TE+ZQlRg5IDWdin35VwpzPSTTjLzUm/MSX0xL/UG6hrbeOujErZ8VYHbDanJYVw1tpmdTVup\n6w01E5Ou5eaUGwcs1Kgvfacw0086ycxLvTEn9cW81JtvlNc2s2pzMZ/vrwVgTGo0l1/tZFv9Rz2h\nxrAyIek6bk6ZQnRQlFdrUV/6TmGmn3SSmZd6Y07qi3mpN6crLm9k5aZi9pYdwwCuS4sj5aomtlQX\nUNdW3xtqekZqvBVq1Je+U5jpJ51k5qXemJP6Yl7qzbdzu90UldSzclMxh6udWC0G2emDGXJFA5uP\nbqa2N9TckHQtM7wQatSXvtN1ZkRERL6FYRiMHhHLqOExbN9dzRsfHmTjp0cJ/MLKtHG3E3d5PRvK\nN1FQXsjHR7dxQ9J4ZqTcSExQtK9LlxNoZOYslJjNS70xJ/XFvNSbvunqdlGw6yirtxyisbmDsOAA\nZl0/lPAh1bxXtpGa1jqshpXrB49jRspUYoPPL9SoL32naaZ+0klmXuqNOakv5qXenJv2jm7e21HG\nu5+U0treTUxEID+cmII9rpL1pR9Q3VrbG2oye0NNTL++j/rSdwoz/aSTzLzUG3NSX8xLvekfZ2sn\na7aWsuHTI3R2uRgcG8Jt2cPpjjjC2tINVLfUYjEsXJ84jhmXTWXQOYYa9aXvFGb6SSeZeak35qS+\nmJd6c37qm9pYvaWEgi96rlEzIimCOdnDcQaVsvbQBqpaanpDTWZvqInt03HVl75TmOknnWTmpd6Y\nk/piXurNhVFR18wbHx5kx94aAEYPj+G27OHUGgd599AGqlqqsRgWrk3MYGbKTcSFnD3UqC99pzDT\nTzrJzEu9MSf1xbzUmwurpKKJlZuK2V3aAMC1V8Vza9ZllHce4N2S96k8HmoSMphx2VTiQwZ963HU\nl75TmOknnWTmpd6Yk/piXuqNdxQd6rlGTWmlA6vFIOuaJH4wYRglLXtZc2gDlc1VWAwL4xPSmXnZ\nTaeFGvWl7xRm+kknmXmpN+akvpiXeuM9brebT/fW8PqHB6mqb8FuszB9/FBmXJvM3qY9vHvofSqa\nqzAweqafLptKfEgcoL6cC4WZftJJZl7qjTmpL+al3nhft8vFR19U8NZHJRxzdhAaZGPW9SncmJHE\n18d2827J+xxtrsTAYFxCOrdcNpXRl6WqL32kMNNP+uE3L/XGnNQX81JvBk57ZzcffHqEdwpLaWnv\nIirMzq2ThjPh6gS+rPv6pFBz/dAMoq3R2K12Aq12Aq2B2K32E7a/eW639DxaLVZff0SfUJjpJ/3w\nm5d6Y07qi3mpNwOvua2TtZ8c5r3tZXR0uUiICeH27BGkXxnLl7Vfs+bQ+5Q7K875uDbD+q2Bx261\nE2g5vj+wd3/AKdsnvub0R4th8cKfxIWhMNNP+uE3L/XGnNQX81JvfKfB0c7bHx/iw51HcbndXJYY\nzu1TUrkqJYrWgCbKa2pp7+6go7uD9u5O2rvb6Ti+7eqgvauDDlfHCa859bGdDlfnBak1wGLrCUYW\nO4G2wN7gE3BC4Ak8eaTI9k04CrIFcnnUCIJtQRekllMpzPSTfvjNS70xJ/XFvNQb36uqb+GNgoNs\n210NwKjLovn5j0YTGWTFajm/ERGX20Wnq8sTbk4MPMefnykcnfyezt7XtNPh6vlap6urz3VkD7mB\nnO/ddl6f5Ux8FmaefPJJdu3ahWEYLF68mDFjxni+NnXqVBITE7Fae+b+nn76aSIiIli0aBF1dXW0\nt7czf/58brzxxrN+D4WZS5N6Y07qi3mpN+ZRWung9c3FfFVS79kXGmQjPMROeEgAEb2P4Sc8Rpyw\nHRYScN7h51y43K4zjwq5vglDnd2dXD0o7TsvFNhfZwszNq98R2Dbtm2UlpaSn59PcXExixcvJj8/\n/6TXPP/884SGhnq216xZw+jRo7nnnnsoLy/n5z//+XeGGREREX+SkhjOb3LGsru0gU/2VFNV24yj\ntZOm5g6q6lvoywjD8fATcUro8Ub4sRgWgm1BXps+uhC8FmYKCwuZNm0aAKmpqTQ2NuJ0OgkLCzvj\ne2bNmuV5XlFRQUJCgrfKExER8amrUqLJHjfspBEzl8uNs60TR3MHjpZOT8hxtPRu9z429T6eS/iJ\nCLUTHtwbcjzPA07bHxZsG9CRnwvBa2GmtraWtLQ0z3ZMTAw1NTUnhZm8vDzKy8vJzMxk4cKFGIYB\nQG5uLpWVlTz33HPeKk9ERMR0LBaDiBA7ESH2Pr3e5XLjbD095JwYfppO2K6s++7wYwAhJ4afUHtP\n0AnuDT4hASftN0P48VqYOdWpS3MWLFhAVlYWkZGR3H///axbt46ZM2cCsGLFCnbv3s3DDz/M6tWr\nPSHn20RHh2Czee937s82Rye+pd6Yk/piXuqNOZ1vX85lDqPb5cbR3EFjczuNznYanR00Ods55uzZ\n1+Ts4Jiznabmnq9V1rfwXStrDQPCgu1Ehdu58+aRZI0dcl6fpz+8Fmbi4+Opra31bFdXVxMXF+fZ\nnj17tud5dnY2+/btIzk5mdjYWAYPHsxVV11Fd3c39fX1xMaeeTFRQ0OLdz4AWjBnZuqNOakv5qXe\nmJOv+hJiNQiJDGJw5NnXwXS7XDS3dn3riM+pI0GNjnbKjjZSMyTCKzX7ZAHwxIkTWbp0Kbm5uRQV\nFREfH++ZYnI4HDz44IMsW7YMu93O9u3bmTFjBjt27KC8vJxHH32U2tpaWlpaiI6O9laJIiIichZW\ni4WIUDsRoX2b9vIVr4WZjIwM0tLSyM3NxTAM8vLyWLVqFeHh4UyfPp3s7GxycnIIDAxk1KhRzJw5\nk/b2dh599FHmzp1LW1sbjz/+OBY/W4QkIiIiA0sXzTsLDcual3pjTuqLeak35qS+9N3Zppk07CEi\nIiJ+TWFGRERE/JrCjIiIiPg1hRkRERHxawozIiIi4tcUZkRERMSvKcyIiIiIX1OYEREREb+mMCMi\nIiJ+TWFGRERE/JrCjIiIiPg1v783k4iIiFzaNDIjIiIifk1hRkRERPyawoyIiIj4NYUZERER8WsK\nMyIiIuLXFGZERETErynMfIsnn3ySnJwccnNz+eKLL3xdjpzgqaeeIicnh9tvv53169f7uhw5RVtb\nG9OmTWPVqlW+LkVOsHr1an70ox8xZ84cNm3a5OtyBGhubuaBBx5g3rx55ObmUlBQ4OuS/JrN1wWY\nzbZt2ygtLSU/P5/i4mIWL15Mfn6+r8sSYOvWrezfv5/8/HwaGhq47bbbuPnmm31dlpxg2bJlREZG\n+roMOUFDQwPPPvssr7/+Oi0tLSxdupQpU6b4uqxL3htvvMHw4cNZuHAhVVVV/OxnP2Pt2rW+Lstv\nKcycorCwkGnTpgGQmppKY2MjTqeTsLAwH1cm48ePZ8yYMQBERETQ2tpKd3c3VqvVx5UJQHFxMQcO\nHNA/lCZTWFjIDTfcQFhYGGFhYfzhD3/wdUkCREdHs3fvXgCampqIjo72cUX+TdNMp6itrT3ppIqJ\niaGmpsaHFclxVquVkJAQAFauXEl2draCjIksWbKERYsW+boMOcWRI0doa2vj3nvvZe7cuRQWFvq6\nJAG+//3vc/ToUaZPn85dd93FI4884uuS/JpGZr6D7vZgPu+//z4rV67kH//4h69LkV5vvvkmY8eO\nZejQob4uRb7FsWPHeOaZZzh69Ch33303GzduxDAMX5d1SXvrrbdISkrihRdeYM+ePSxevFhrzc6D\nwswp4uPjqa2t9WxXV1cTFxfnw4rkRAUFBTz33HP8/e9/Jzw83NflSK9NmzZRVlbGpk2bqKysxG63\nk5iYyIQJE3xd2iUvNjaW9PR0bDYbw4YNIzQ0lPr6emJjY31d2iXts88+Y9KkSQCMHDmS6upqTZuf\nB00znWLixImsW7cOgKKiIuLj47VexiQcDgdPPfUUf/3rX4mKivJ1OXKCP//5z7z++uu8+uqr3HHH\nHcyfP19BxiQmTZrE1q1bcblcNDQ00NLSovUZJpCSksKuXbsAKC8vJzQ0VEHmPGhk5hQZGRmkpaWR\nm5uLYRjk5eX5uiTptWbNGhoaGnjwwQc9+5YsWUJSUpIPqxIxt4SEBGbMmMFPfvITAH73u99hsej/\nsb6Wk5PD4sWLueuuu+jq6uKJJ57wdUl+zXBrUYiIiIj4McVzERER8WsKMyIiIuLXFGZERETErynM\niIiIiF9TmBERERG/pjAjIgPmyJEjjB49mnnz5nnuFrxw4UKampr6fIx58+bR3d3d59ffeeedfPLJ\nJ/0pV0T8hMKMiAyomJgYli9fzvLly1mxYgXx8fEsW7asz+9fvny5Li4mIifRRfNExKfGjx9Pfn4+\ne/bsYcmSJXR1ddHZ2cnjjz/OqFGjmDdvHiNHjmT37t28+OKLjBo1iqKiIjo6OnjssceorKykq6uL\nW2+9lblz59La2sqvf/1rGhoaSElJob29HYCqqioeeughANra2sjJyeHHP/6xLz+6iFwgCjMi4jPd\n3d289957ZGZm8vDDD/Pss88ybNiw0268FxISwksvvXTSe5cvX05ERAR/+tOfaGtrY9asWWRlZfHx\nxx8TFBREfn4+1dXV3HTTTQC8++67jBgxgt///ve0t7fz2muvDfjnFRHvUJgRkQFVX1/PvHnzAHC5\nXIwbN47bb7+dv/zlLzz66KOe1zmdTlwuF9Bzm5FT7dq1izlz5gAQFBTE6NGjKSoqYt++fWRmZgI9\nN44dMWIEAFlZWbz88sssWrSIyZMnk5OT49XPKSIDR2FGRAbU8TUzJ3I4HAQEBJy2/7iAgIDT9hmG\ncdK22+3GMAzcbvdJ9x46HohSU1N555132L59O2vXruXFF19kxYoV5/txRMQEtABYRHwuPDyc5ORk\nNm/eDEBJSQnPPPPMWd9zzTXXUFBQAEBLSwtFRUWkpaWRmprK559/DkBFRQUlJSUAvP3223z55ZdM\nmDCBvLw8Kioq6Orq8uKnEpGBopEZETGFJUuW8Mc//pG//e1vdHV1sWjRorO+ft68eTz22GP89Kc/\npaOjg/nz55OcnMytt97KBx98wNy5c0lOTubqq68G4PLLLycvLw+73Y7b7eaee+7BZtNfgSIXA901\nW0RERPyapplERETErynMiIiIiF9TmBERERG/pjAjIiIifk1hRkRERPyawoyIiIj4NYUZERER8WsK\nMyIiIuLX/j+MJLBNCu2GOgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "i-Xo83_aR6s_", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 3: Calculate Accuracy and plot a ROC Curve for the Validation Set\n", + "\n", + "A few of the metrics useful for classification are the model [accuracy](https://en.wikipedia.org/wiki/Accuracy_and_precision#In_binary_classification), the [ROC curve](https://en.wikipedia.org/wiki/Receiver_operating_characteristic) and the area under the ROC curve (AUC). We'll examine these metrics.\n", + "\n", + "`LinearClassifier.evaluate` calculates useful metrics like accuracy and AUC." + ] + }, + { + "metadata": { + "id": "DKSQ87VVIYIA", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + }, + "outputId": "1d731cb9-52c7-4cfe-d5d5-eeec4b08919e" + }, + "cell_type": "code", + "source": [ + "evaluation_metrics = linear_classifier.evaluate(input_fn=predict_validation_input_fn)\n", + "\n", + "print(\"AUC on the validation set: %0.2f\" % evaluation_metrics['auc'])\n", + "print(\"Accuracy on the validation set: %0.2f\" % evaluation_metrics['accuracy'])" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "stream", + "text": [ + "AUC on the validation set: 0.76\n", + "Accuracy on the validation set: 0.77\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "47xGS2uNIYIE", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "You may use class probabilities, such as those calculated by `LinearClassifier.predict`,\n", + "and Sklearn's [roc_curve](http://scikit-learn.org/stable/modules/model_evaluation.html#roc-metrics) to\n", + "obtain the true positive and false positive rates needed to plot a ROC curve." + ] + }, + { + "metadata": { + "id": "xaU7ttj8IYIF", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 347 + }, + "outputId": "b34ff334-61be-44dc-8b15-8e49deda5aaf" + }, + "cell_type": "code", + "source": [ + "validation_probabilities = linear_classifier.predict(input_fn=predict_validation_input_fn)\n", + "# Get just the probabilities for the positive class.\n", + "validation_probabilities = np.array([item['probabilities'][1] for item in validation_probabilities])\n", + "\n", + "false_positive_rate, true_positive_rate, thresholds = metrics.roc_curve(\n", + " validation_targets, validation_probabilities)\n", + "plt.plot(false_positive_rate, true_positive_rate, label=\"our model\")\n", + "plt.plot([0, 1], [0, 1], label=\"random classifier\")\n", + "_ = plt.legend(loc=2)" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAFKCAYAAAAqkecjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xdg1fW9//HnOTkne5O9SEhIcgiC\nbJApggsQWQFk2Kq19lq7a1t6q7/eWu2w3t7WtrbW1hZQCHuIKKKo7L2zCCGD7J2T5OSs7+8P9GjK\nCJDxPSfn/fin5/s9JydvPj2eV97f8floFEVREEIIIUSv06pdgBBCCOGuJISFEEIIlUgICyGEECqR\nEBZCCCFUIiEshBBCqERCWAghhFCJrrd/YXV1c7e+X0iIL/X1rd36nu5IxrHrZAy7Tsaw62QMu64n\nxjA8POCa+12+E9bpPNQuoU+Qcew6GcOukzHsOhnDruvNMXT5EBZCCCFclYSwEEIIoRIJYSGEEEIl\nEsJCCCGESiSEhRBCCJVICAshhBAqkRAWQgghVCIh7ET27fuUX/7y/133+Tfe+CsbNqztvYKEEEL0\nqJsK4by8PKZNm8aqVauuem7//v3Mnz+fhQsX8qc//anbCxRCCCH6qk6nrWxtbeUXv/gF48aNu+bz\nL7zwAm+88QaRkZEsXbqU++67j5SUlG4vtCdZrVZ+85tfUlZ2GbPZzBNPPMXo0WOZP38W//73Wnx9\nfXn11d8zYEAyAAcP7qemppqf//xFwsMjANixYxsnTx6noaGBwsKLPPnkN/jgg/e4dKmQ5557gYyM\nwWRlvc3u3e8DMHHiZJYu/QoFBRd44YXnCAwMIiYmzlHThg1ZfPDBTjQaLRMnTmHx4qW9PzBCCCF6\nVKch7Onpyeuvv87rr79+1XMlJSUEBQURHR0NwOTJkzlw4ECXQjjrwwscyam66dd7eGiw2ZQbvmZU\negSZU69f065dO/H09OTVV/9GTU013/zm11mzZuN1X19ZWcFrr/0DjUbTYX9JSTF//vPf2bZtM6tW\nvck//rGad9/dxgcfvEdISAjvvruN11//NwBPPvkod989jTff/DuPPfYkEydO4eWXX8JqhbKyy+zZ\ns5s///kNAL7xjce5++5pNzskQgghbkNVQxsH8gqw+zUx2zAWrbbnz9h2GsI6nQ6d7tovq66uJjQ0\n1LEdGhpKSUnJDd8vJMT3hvNy+vh64uGhue7z19LZ6318Pa87eTZAcXEBkydPIDw8gPDwAHx9vdHr\nbXh4aAkL88fPzw9fX08CArwBGD78TiIiAju8R0CAN8OGDSUiIpABA+IZNMhAVFQwiYlx5OWdp7Ky\nmBEjhhMdHQLA6NGjqKoqobS0iClTxhMaGsDkyRP45JNPuHz5ImVlpXz/+08DYDabMJka8PPzwt/f\n+4b/lq7oqfd1JzKGXSdj2HUyhp0rr2nBZLYCYLcr/HP7Oc42HUUflwfNdh64YwTx/cJ6vI5eX0Wp\ns5UpZo1NYNbYhJt+v/DwgJtamelGr2lrs9DY2Op4TVubibq6Vux2hZoaI62tdpqaWmluNgFgsShX\nvV9zswmz2U51dTONjW1YrYrjcVubmaYmE21tZsfPNTW10NzcjsVio66uBZtNT0NDCyaThdZWK2PG\n3MWzz/60w+/Yvftj9HpTt69EBTc/juL6ZAy7Tsaw69xlDKsb2thz8jJc40CoXVF473AJet21O1mL\n1d5hW+PVgj7pLJ7968Hqyd1hD+Bt9+rWcbzeH0ZdCuGIiAhqamoc25WVlURERHTlLVVhMAzi+PGj\nTJt2H5WVFWi1WgICAvD19aO2tgYvr1jOnTtDamrabf+O1NQ0/vGPv2G1XvnL6/z5cyxf/hgJCf3J\nyclmzJhxHD9+DIC0NAN/+csfMZlMeHl58X//9zu+8Y1vdsu/VQghnF1zq5nL1S2YrTZ2HS3FU6fl\nRH4Nwf6eaDQa6pvbb+p9LFY7SdGB13yuudVMQpQ/poACijSHsWtsJPmk8vURixgQG91rf8h0KYTj\n4uIwGo2UlpYSFRXFRx99xMsvv9xdtfWae+65lxMnjvHMM1/HarXwwx+uAGDevEx+9KPvkpDQn6Sk\nAV36HdHRMTz00ByeeeZJ7HaFWbNmExUVzaOPPs6LL/6cdeveJiYmFqvVQlRUFJmZi3n66a+h1WqZ\nNGkKXl7e3fFPFUIIp2Fss9DwWaCW1bbw2pZzN3x9g9FMRLAPEcE+mMxW/Hz0LL8vDd01Ol6tRkN8\nhD86j2t3wzVttazKXkdhw0X8dL5kpj3MiIihV13r09M0iqLc8Kqms2fP8utf/5rLly+j0+mIjIxk\n6tSpxMXFMX36dI4cOeII3nvvvZfHH3/8hr+wu/+6cJdDLz1NxrHrZAy7Tsaw69QeQ0VRaGwx8+Vk\n2XumHJPZSnGlEVO7FaPJSmXdjU9NxoT5MTItHIAxgyIJ9PPEz1vf5frsip1PLx9kc8EOzDYzQ8My\nWJg2lyCvLw4X98QYXu9wdKch3N0khJ2TjGPXyRh2nYxh1/XWGCqKgtV25dxqg9HMG+9kk1fScMvv\nExvuR3p8CAoKNrvCwxOSCPL36u5yAahpq2NVdhb5DRfx1fmQmfowIyPvvKr77c0Q7vULs4QQQrim\n3OJ6Vu/Kx2S2UtNouuFrRxsiHOGmKApDkvsRGeJLgJ8n4UFXTq/11qFfu2Jn7+VDbCp4B7PNzB1h\ng1icNpcgr2ufL+5NEsJCCCE6MLZZKKkycupCDZerjZy7VH/d1w5OCkUB2tqtzBjbn6EDw9D28nnV\nG6ltq2d1zjpy6y/go/Ph0UGLGBU5rNfP/V6PhLAQQvRRNQ1t7D9bgaf++nMzACgonMi7cvXx0dzq\n674uLtyfyBAfHhzX/7pXHTsLRVHYV3aIjRe2024zM7ifgcXpcwn2ClK7tA4khIUQwoW1miwcy6sG\nBRpazHx0/DJ+PjqsVjuV9W23/b7pCcEE+XsxOCmUgfHBhAd5O0332Jk6Uz2rs9eTU5+Pj86bZYZM\nxkSNcMr6JYSFEMLJNbWYeXt3PofOV+Kp16LhSpjYFeWqiScAGozteOq1eOk98NJreXjiAIIDbnyx\nk6IoxIb74+3pgZ+3Do9emLKxuymKwv7yw2zM347J1s6gfmksSZ/vdN3vl0kId6PHH1/GCy/8mujo\nmG5/7/LyMv77v3/EG2+s7NL7HDy4n/LyMubMmc8rr/yas2dP861vfZ/s7FMsXvzVbqpWCNEVTa1m\nKmqv3MLTYrLwxw1nHM+ZLXb6R31xpa2iKLSarIzNiCQyxBd/f29Sov275XYeV1JvamB1znqy6/Lw\n9vBmafoCxkaPdMru98skhN3M2LF3OR4fOLCff/xjFQEBAUyfPlluDRGiF9kVhbKaFjZ9cpEgP08A\njuZW4++jp+I699A+NTuDkekRN7zwyd1u81IUhYPlR1mfvw2TzYQhNJUl6fMJ8Q5Wu7SbIiHMlWUI\nv7w84Zo1qzh//hxms5mHH57HrFkP88tf/j/CwsLJzc2msrKC5557gbS0dH7/+99y9uwZEhL6Y7Va\nAKiqquSll/4Hi8WCVqvlxz/+GRqNhl/84jliY+M4c+Y0c+bMo6DgAufPn2XOnAXMm5fZoabVq//F\nnj270Wi0PPXUNzt01++//y7r16/Fw0NLYmIyP/rRT6moqOAXv/gZWq0Wm83Gc8/9AtBcte/48aNc\nvFhAaGgotbXV/OhH32Xx4qXs2bOLn/3sl3z88YesWbMKDw8daWkGnnnmu1eNz+fLNwohrk9RFEqq\njBw6X4lW2zE0Pz1VRlOr5Zo/Z2yz4KnTYrbamXlXIgCeOi13D491u+62Mw3tjbyVs4FztTl4e3jx\nSPo87ooe7fTd75c5XQhvvLCdE1VnOn/hZzy0Gmz2G883MiziDuamzLzhaz5fntBsNhMVFcMzz3yP\n9nYTmZkPM2vWwwCYzWZeeeVVNm9ez86d7+Dp6cmZM6d5/fV/UV1dxaJFcwD4+99fY+bM2dxzz718\n9NEH/OMff+Pxx79Ofn4eL730Mk1NTSxblsm6dVsxm8389KfPdgjhkpJi9uzZzV//+iZlZZdZtepN\nHn30i5nI2tra+N3v/khAQABPP/01CgoucOTIQUaNGsNXvvIEubk51NTUcPbsqav2fe6RR5azceM6\nXn75D+TknAeurB39r3+9wWuv/RNPT09+9rMfc/r0yQ7j40ofbiF6S12TiZpGE0dzqxzTMN7oKuMv\nG5kWzriMKKL6+QIQHuxz3akWxRWKonCo4hjr87fSZjWRHjKQJYb5hHqHqF3aLXO6EFaLwTAIjUaD\nl5cXTU2NPPXUY+h0Ohoavrg/bujQYQCEh0dy/vw5Ll26yKBBg9FqtURGRhETEwtAbm42Tz11ZcGF\n4cNH8uabfwcgNjaOoKBg9HpPQkJCCQ+PoLW1lZYWY4da8vJyHe8bFxfPj3/8M8rLyxzPBwYG8pOf\nfB+AoqJCGhsbGD16LCtW/JDm5mbuvvseBg8egq+vz1X7iosvXXcMCgsvUllZwfe+d6X2lhYjFRUV\nHcZHCAFWm52sDy9w7lId5bU3nn4xIymUUekRRH8Wsp8L9vciPNinJ8vskxraG3k7ZwNna3Pw8vBk\ncdpcxseMcdnvJ6cL4bkpMzvtWr+su85/6HRXDvOcOHGM48eP8uqrf0On0zF9+kTHazw8vrjXTlEU\nFIUOh5ns9s+vUtTw+WygFosVjUZ71c//53t9mYeHFvt1unuLxcIrr/yGN998i379wnj22e8AMGBA\nCm+++TaHDx/ktddeZcaMh3jggZlX7bsRvf7KIehXXnm1w/4dO7Y5xkcId1JaZWTPycvklTRSWm3E\ny9MDDWAy2656bXJMIIbEEGL6+TEoMRQ0EOCjd9lwcDaKonC44jjr8rfSZm0jLSSFJekL6Ofjet3v\nlzldCKutsbGBiIhIdDode/d+jM1mx2K59rmbhIT+ZGW9haIoVFZWOLrVz5dGnD79fk6ePEZ6uuGW\nakhLM/Dmm29gtVppamrkt799iW9963sAtLa24OHhQb9+YVRWVpCTk43VauWDD94jJiaWSZOmEBQU\nzEcf7UKv11+1LzU1/bq/NyEhkUuXCqmvryMkJJQ33vgrDz0055ZqF6IvMLZZ+Nb/fXrV/nazjYRI\nfwBqGkw89XAGiVGB+PvIH6k9qbG9mbdzN3Cm5jyeHp4sSpvDhJixfeIPHAnh/zBy5BhWr/4X3/zm\nk0ycOJm77prAyy+/dM3XpqQMZMCAZL7+9a8SH5/AwIGpADzxxFO89NIv2LZtMzqdnp/85GeOdYRv\nRnR0DPfd9yDf/OaTKIrC17/+tOO5oKBgRo0awxNPLCclZSCPPLKMP/zhFX7yk+f43//9DT4+vmi1\nWr7znR/S3t7Oyy+/2GHf+fNnr/t7vb29+fa3v88PfvBtPD31DByYRlhY+E3XLYQrazS2s+NgMUdz\nqzqsVxsX7s/CqSnERfg7rmIWvUNRFI5UnmBd3hZarW2kBiezxLCAMJ9QtUvrNrKKkgBkHLuDjGHX\n9eQYGtss2O0KZquNkiojJrONrI8uEBvmx/lrzI3sodXw66fGERroWmt595XPYZO5mTU5GzlVcw5P\nrZ6HU2YwMXYsWk3PX7QmqygJIUQ3sCsKh85X8vq289d9TaPR7HicEOnP3EnJpCUE49XJfMuiZyiK\nwrGqU2TlbabF0srA4AEsNSwgzKef2qX1CAlhIUSfYrcrVNa38rO/H8b+Hwf67kwJQ6fTUt9sYvjA\ncKw2O5OHxeLrpUOr1TjV6j/uqNlsZE3uJk5Wn0Gv1bNg4GwmxY3rle5XLRLCQog+42JZEy/8+2iH\nfWFB3twxoB+L7hmIXtd3v8xd3bHKK92v0dJCclAiSw2ZRPiGqV1Wj5MQFkK4tItlTeSW1LPuo4IO\n+6fcGcPYjChS411j+kJ31Ww2sjZvMyeqTqPX6pk3cBZT4sb36e73yySEhRAup7C8iYPnKjl4voLm\n/5j+sV+gF796apxLrgLkbk5UnWFN7kaMlhYGBCWyzLCACF/3uiNDQlgI4TLsisIzv/+UtvaOt/x5\n6rQ8+VAGA+OCCPCV24icndHcQlbeZo5VnUKv1TE3ZSZ3x09wm+73yySEhRBOzWyx8YcNpymqaKbF\n9EX4+njpWHpvKsMHhuPlKVcyu4qT1WdZk7ORZouRpMAElhkyifRz30VhJISFEKppMVlobrVwqbwJ\nu6IQEFBP1q487IqCl96Dqvo2Wtuvnujm2/OHMDSl71+005cYLS2sy9vC0cqT6LQ65qTMYGr8RLfs\nfr9MQlgIoYqaxjae/cuBG77G80tXMz8z7w4GJ4Wi10nX62pOVZ/j7dwNNJuNJAYmsMywgCi/SLXL\ncgoSwkKIXqEoCifza/jgWCn5pQ1YbV/cw3vX4CgC/TwZ2D+UhsY2kmMCSYi89gxDwnW0WFpZl7eV\nI5XH0Wk8eDj5QabGT8RDK39IfU5CWAjRI6w2Oyfza8gtbmD38dJrvsbHy4OXvj6OwM8upuorUy4K\nOFNznrdzNtBobqZ/QDzLBmUSLd3vVSSEhRBdYrbYaGgxs/d0OcfzqgkN9OJSeTPGtqtXH0uJDcJq\ns/P0nDsI9POUyTP6oFZLK+vzt3Go4hgeGg8eGnA/0xImS/d7HRLCQojbciy3ii17L1Fabeywv6ym\npcP2g2P7M3ZQJFH9fNF5SOj2ZWdrsnkrZwON5iYSAmJZZlhIjH+U2mU5NQlhIUSnFEWhtslEW7uN\nQ+cr2XPicoerlvsFehMS4MUoQwQT7ojGQ6vBw0MjE2a4iVZLGxsubONg+VE8NB7MGnAf0xOmSPd7\nEySEhRDXpSgKu46UsObDC9d8PsBXzwtPjJEJMtzYudpc3spZT0N7I/H+MSwbtJBY/2i1y3IZEsJC\niKtYbXY2f1rIjoNFHfaPGRRJu9nGHQNCmXxnLFqtrDrkrtqsbWzM387+8iNoNVpmJE3nvv5Tpfu9\nRRLCQogOdh8rZfWuvA77Hp6QxEMTklSqSDib7No8VuWso6G9kVj/aJYZFhIfEKN2WS5JQlgIgd2u\nsHVfIVv3Xeqw/ysPpDNpqHy5iivarCY2XdjOvrLDaDVaHkycxn2JU9FpJUpul4ycEG7q0PlKThfU\nUFJlpLS64xXN8yYP4IEx/eVws3DIqctnVfY66tsbiPGLYvmghcQHxKpdlsuTEBbCTZRUGXnvcDH1\nze1U1rdS19R+1WvGZkTytZmD0GgkfMUVJquJTQU72Hv5IFqNlgcS7+H+xHuk++0mMopC9GH1ze3s\nP1vOlr2FHaaJ/Fx6QjBPzByEt6cHvt56FSoUziy37gKrc9ZRa6on2i+S5YaFJATGqV1WnyIhLEQf\n0WqyUFnfBlyZMOOdA0VU1LV2eE1SdABzJg4gup8f/YK81ShTuACTtZ0tBTv45PIBtBot9/WfygNJ\n09BL99vtZESFcHHtFhsfHC1hw8cXr/uaJdNTmTgkGk+93D4ibiy/voCV2euoNdUR5RfJckMm/QPj\n1S6rz5IQFsJFnb9Ux8trTl61/77RV74wbXaFqcPjiAr17e3ShAtqt5nZUvAuH5fuQ4OGe/vfzYOJ\n09B7yGmKniQhLISLyS2u59dvneiwz9dLx7zJA5gyLFYuqhK3LL/+Iqty1lHTVkukbwTLDJkkBSWo\nXZZbkBAWwoV899W9NBrNju3YMD+e/+ooWRhB3BazzczWgp3sKd0HwLSEycxMule6314kISyEi/jO\nHz6lqfXK8oA6Dw2/f2Yivt7yn7C4PRcaClmVnUV1Wy2RvuGfdb/91S7L7ch/wUI4uUsVTax8L9cR\nwDKLlegKs83Ctos7+ahkLwD3xE9i5oD78JTuVxUSwkI4GWObhTMXazlfWMe+sxUdnps3eYAEsLht\nFxuLWJm9lqrWGiJ8wlhqyCQ5OFHtstyahLAQTuJ0QS2/X3fqms+lxQczY1x/MpJCe7kq0ReYbRa2\nF77Hh8WfAjA1fiKzBtyHp4csQak2CWEhnMCvVh8nr6TBse2l92BcRiRjM6IYEBMoF16J21bYWMTK\n7CwqW6sJ9+nHUkMmKcGyIpazuKkQfvHFFzl16hQajYYVK1YwZMgQx3OrV69m69ataLVaBg8ezE9/\n+tMeK1aIvuiTU2WOAO4fGcDXZ2fIvb2iyyw2C+8U7uKD4o9RULg7bgIPJd8v3a+T6TSEDx8+TFFR\nEWvXrqWgoIAVK1awdu1aAIxGI2+88Qbvv/8+Op2Oxx57jJMnT3LnnXf2eOFCuLJ2iw27XeGNd7I5\nnlcNXDnfO2NcorqFiT6hqKmEf59fS0VrFWHeoSw1LGBgSLLaZYlr6DSEDxw4wLRp0wBITk6msbER\no9GIv78/er0evV5Pa2srvr6+tLW1ERQU1ONFC+HK1uzO5/0jJR329Y8KkAAWXWaxW3nr9Ga2ZL+P\ngsLkuLuYnfwgXtL9Oq1OQ7impoaMjAzHdmhoKNXV1fj7++Pl5cXTTz/NtGnT8PLyYsaMGSQlybkG\nIa7nSE6VI4DTE4Lx0GpIiAxgwd0pKlcmXF1RUwkrs7Mob6mkn3cISw0LSA2Rz5Wzu+ULsxTli+XQ\njEYjf/3rX9m5cyf+/v48+uij5OTkkJ6eft2fDwnxRafr3knkw8MDuvX93JWMY9ddawzLqo18evIy\nq3bmOPbFhvvz229P7s3SXIZ8Dm+NxWZhw/kdbM5+H7ti596USSwdMgdvvayS1RW99TnsNIQjIiKo\nqalxbFdVVREeHg5AQUEB8fHxhIZeuW1i5MiRnD179oYhXF/fet3nbkd4eADV1c3d+p7uSMax6/5z\nDOub2/n+n/Zd9brUuCCeXTJcxvsa5HN4a4qbS1l5PouylgpCvUNYmr6ACWnDqK5uphmL2uW5rJ74\nHF4v1DsN4fHjx/PHP/6RRYsWce7cOSIiIvD39wcgNjaWgoICTCYT3t7enD17lsmT5a97IeyK0iGA\nU+KCmDkuEUP/YPTdfCRIuB+r3crOSx/yXtGH2BU7E2LGMCdlBt466X5dTachPHz4cDIyMli0aBEa\njYbnn3+ejRs3EhAQwPTp03n88cdZvnw5Hh4eDBs2jJEjR/ZG3UI4LZvdzgv/OubYfvU7E/H1likB\nRfcoaS5jZfZaLhvLCfEKZolhPobQVLXLErdJo3z5JG8v6IkWXw5fdZ2MY9cFBPrw+qbTHa58Xnpv\nKlOHx6lYlWuRz+H12ew2dhZ9yM5Lu7ErdsbHjGZOykx8/qP7lTHsOqc6HC2E6OhyTQtb9hZyNKcK\nAA+tBo1Gg9Vm7/C6xx40MGFItBolij6mtLmMldlZlBrLCPYKYkn6fAb1S1O7LNENJISFuAlWm50z\nF2t591AxF0obOzwX4KsnNNAbvc6DooomFkxJZvKwWLQajUrVir7CZrfxftFHvHtpNzbFxrjoUcwb\nOBMfnY/apYluIiEsxA3kFNXzm7dPXLU/NNCLJdNTuTMlDM1nYSuHAUV3umwsZ2V2FiXNlwnyDGSJ\nYT4Z/a5/54lwTRLCQlyDoig8+5cD1DaZHPt0HhoyEkNZcHcKMWF+KlYn+jKb3cau4j3sKPwAm2Jj\nbNRI5g2cha9eut++SEJYiC9pMVn4/p/2YbZ8cX43yN+TXzw+Bn8fucJZ9KwyYwUrs7Mobi4lyDOA\nR9LnMzjMoHZZogdJCAvxmZqGNp597UCHfQ+O7c/8KTLxvehZNruN3cWf8E7h+1gVG2OiRjB/4Cx8\n9bKaVl8nISzcntli41erj3Op4ovzuc8uHkZ6/xAVqxLuorylkpXZWRQ1lRDoGcAj6fO4I2yQ2mWJ\nXiIhLNyWoihs2VvI1n2XOux/9TuT8PWW/zREz7IrdnYXf8L2wvex2q2MihzGgtTZ+En361bkm0a4\npcPZlby25VyHfY/PMDD+DrmvV/S8ipYqVmVnUdhUTICnP4vT5jE0PKPzHxR9joSwcCuNxna++2rH\nRRVmT0hi9gRZglP0PLti58OST9l28T2sdisjI+9kQeps/PVytb27khAWbqHR2M5ft54jp7jBsS8x\nKoD/fnSkTKohekVlazWrsrO42FiEv96PxYMWc2fEHWqXJVQmISz6tIq6Vs4V1rF6V16H/b9+ahzh\nwXLfpeh5dsXOnpK9bL24E4vdyvCIIWSmPkyAp7/apQknICEs+qS6JhOvZJ2irKalw/6fPzaauHA/\nxyxXQvSkqtZqVmav42LjJfz1fiwftIjhEUPULks4EQlh0acoisLv1p7k/KX6Dvu/+mA6GYmhhAbK\nequi59kVOx+X7mdLwbtY7BaGhd/BwrQ50v2Kq0gIiz7Dbld44jcfddj3m2+MIyxIDjuL3lPdWsuq\nnCwuNBTip/dlmSGTEZFD1S5LOCkJYdEnWKw2nnvjsGP7azMHMW5wlIoVCXdjV+x8UnqALQU7MNst\nDA0fzKK0OQR6XnsdWSFAQlj0Af9529Gj96dJAIteVdNWy6rsdeQ3XMRP58uS9PmMiLxTrj0QnZIQ\nFi5t675CNn9a6Nj+1vwhDE3up2JFwp3YFTt7Lx9kU8EOzDYzQ8IyWJQ2lyAv6X7FzZEQFi7HYrWx\n81AxOcUNZBd9cQHWi0+OJSpUpvwTvaO2rY5VOevJq7+Ar86HxYMWMSpymHS/4pZICAuXYVcUNn1y\nkXcOFHXYb+gfwg8XD1OpKuFuFEVhb9khNl3YTrvNzB1hBhanzSPIK1Dt0oQLkhAWLkFRFH70lwPU\nNpkc++ZNHsCItAjpfkWvqW2r562c9eTU5+Oj82G5YSGjo4ZL9ytum4SwcGp2u8Kek5dZ9f4XM15N\nGhrD8vvS0Grli0/0DkVR2F92mI0XtmOytTO4XzqL0+cR7BWkdmnCxUkIC6d1rcUWFkxJ5oGx/VWq\nSLijelMDq3PWk12Xh4/Om6WGTMZGjZDuV3QLCWHhdOqaTPzwz/tRvrRv4pBoFk8biLenfGRF71AU\nhQPlR9iQvx2TzcSg0DQeSZ9HiHew2qWJPkS+0YRTqWls49m/HOiw73+fmUCQn6dKFQl3VG9q4K2c\nDZyvy8Xbw5sl6QsYFz1Sul/R7SSEhVPZ8PFFx+M/fXcSPl7yERW9R1EUDpYfZcOFbbRZTRhCU1mS\nPl+6X9Fj5BtOOIXK+lZ+8tf9lucwAAAgAElEQVSDju1nFw+TABa9qqG9kbdyNnCuNgdvDy8eSZ/H\nXdGjpfsVPUq+5YRqmlvNbNlbyIfHL3fYP2loNOn9Q1SqSrgbRVE4XHGcdflbabO2kR4ykCWG+YR6\ny2dQ9DwJYaGK8toWfvr6oQ77dB5aXvnmePx99CpVJdxNY3sTb+du4ExNNl4enixKm8uEmDHS/Ype\nIyEset2pCzX83/rTju1vzx9CanywHH4WvUZRFI5UnmBd3hZarW2khqSwNH0+/XxC1S5NuBn51hO9\nwq4o5Jc08Ou3TnTY/9cfTEGv06pUlXBHje3NrMndyOmac3h6eLIwdQ4TYseg1cjnUPQ+CWHRYxTl\nyp2+Zy7W8ft1pzo85+ul44/fmSiH/USvURSFY5UnycrbQou1lYHBA1hqyCRMul+hIglh0SM2fFxw\n1UILAClxQTwz9w4CfOW+X9F7mszNrMndxKnqs3hq9SxInc2k2HHS/QrVSQiLbnfuUl2HAE6JDcJD\nq+GxGQbCg31UrEy4G0VROF51irV5m2mxtJIclMQyQybhvrLmtHAOEsKi27SarHz/T/tot9gc+/7x\n46kqViTcWbPZyJrcTZysPoNeq2f+wIeYHHeXdL/CqUgIi25R22ji2df289lpYEIDvXjhiTHqFiXc\n1vGq06zN3YTR0kJyUCJLDZlE+IapXZYQV5EQFl3WYrLww7/sd2z/eMlwUuNlmj/R+4zmFtbmbeJ4\n1Wn0Wh3zBs5iStx46X6F05IQFl3yjx3Z7D1d7tj+3dPjCQnwUrEi4a5OVp1hTe4mmi1GBgT1Z6kh\nk0jfcLXLEuKGJITFLVMUhbOFdfxv1he3HWk08PJ/SQCL3me0tJCVu5ljVafQa3XMSZnB1PiJ0v0K\nlyAhLG7Zm+/m8OmXut/Mu1O4f0yCihUJd3Wq+ixv526k2WwkKTCBZYZMIv0i1C5LiJsmISxuSavJ\n4gjgYQPDmHlXIknRgSpXJdxNi6WVdXlbOFJ5Ap1Wx8PJD3JPwiTpfoXLkRAWN62wvIlf/OsoADoP\nDc/MG6JyRcIdna4+x9u5G2kyN9M/MJ7lhkyi/CLVLkuI2yIhLG7a69vOOx7/YNEwFSsR7qjV0sq6\n/K0crjiOTuPB7AEPcE/CJDy0HmqXJsRtkxAWN62irhWAP39vEt6e8tERvedMzXneztlAo7mZhIA4\nlhkyifGPUrssIbpMvklFp3YfK2X1rjwAgvw8JYBFr2m1tLE+fyuHKo7hofFg1oD7mZ4wWbpf0WfI\nt6m4oVfWnuRsYZ1j+5HpqSpWI9zJudoc3srZQEN7I/EBsSwzZBLrH612WUJ0q5sK4RdffJFTp06h\n0WhYsWIFQ4Z8cUFOeXk53/ve97BYLAwaNIj/+Z//6bFiRe86mV/jCODEqACe+8oolSsS7qDN2saG\n/O0cKD+Ch8aDmUn3cW//KdL9ij6p0xA+fPgwRUVFrF27loKCAlasWMHatWsdz//qV7/iscceY/r0\n6fz85z+nrKyMmJiYHi1a9Byrzc6WvYWUVhk5VVALgJfeQwJY9IqT5ef586F/09DeSJx/DMsHLZTu\nV/RpnYbwgQMHmDZtGgDJyck0NjZiNBrx9/fHbrdz7NgxXnnlFQCef/75nq1W9BhFUXhrVx4fHCu9\n6rk/fW+SChUJd9JmNbExfzv7yw+j1WiZkTSd+/pPle5X9HmdhnBNTQ0ZGRmO7dDQUKqrq/H396eu\nrg4/Pz9eeuklzp07x8iRI/n+979/w/cLCfFFp+ve/7DCwwO69f3cjcls5ZmXP6Kootmx77FZGYy7\nI5qofn4qVuZ65LN4605XZPOXoyupba2nf1AsT495lMSQeLXLcmnyOey63hrDW74wS/l8rbrPHldW\nVrJ8+XJiY2N58skn2bNnD1OmTLnuz9fXt95WodcTHh5AdXVz5y8U19RusfGN333s2M68O4VpI+PQ\neWjBbpexvQXyWbw1JquJTRfeYW/ZIbQaLQ8kTmPZyNnU17XJOHaBfA67rifG8Hqh3mkIR0REUFNT\n49iuqqoiPPzKyiQhISHExMSQkHBl3uBx48aRn59/wxAWzuXLizD8dNkIkmODVKxGuIucunxW56yn\nzlRPjF8UywZlkhAQh85DbtgQ7qXTiVbHjx/Pe++9B8C5c+eIiIjA398fAJ1OR3x8PJcuXXI8n5SU\n1HPVim5jttj4xzvZ5JU0APDbZyZKAIseZ7K2syZ3E388+ToN7Y3cn3gPPxr1LRIC4tQuTQhVdPpn\n5/Dhw8nIyGDRokVoNBqef/55Nm7cSEBAANOnT2fFihX8+Mc/RlEUUlNTmTp1am/ULbrgzMXaDh1w\ncmwg6YmhcghL9Ki8+gusyl5HrameaL9Ilhky6R8o536Fe9MoXz7J2wt64ji7hMfNyy2u59dvnXBs\nL5meyj0j4mQcu4GM4bW128xsKdjBx6X70aBhev8pPJg0Hb326h5AxrDrZAy7zqnOCYu+o7bR1CGA\n3/jR3Wg0GhUrEn1dfn0Bq7LXUWOqI8o3gmWDMkkMlLWnhfichLCbaDVZ+OFf9ju2//bDKRLAose0\n28xsLXiXPaX7rnS/CVOYkTQdvYde7dKEcCoSwn2coijsOFjEho8vOvb9/lsTrtyCJEQPuNBQyMrs\nLGraaon0jWCZIZOkIOl+hbgWCeE+zGa3883ff0q72ebY950FQwn09VSxKtFXmW1mtl7cyZ6SfQBM\nS5jMjKR78ZTuV4jrkhDuw47lVjsC+J7hcSy5V1ZAEj3jYuMlVp7PoqqthgjfMJYZMhkQlKh2WUI4\nPQnhPqqmoY3XtpwDYLQhQgJY9AizzcK2izv5qGQvAFPjJzJrwP3S/QpxkySE+6hnXzvgeLxgSoqK\nlYi+6mJjESuz11LVWkO4Tz+WGRaSHJyodllCuBQJ4T6o8kvzc7/05Fj6BXmrWI3oayw2C9sL32d3\n8ScA3B0/gYcG3I+nh1xrIMStkhDug/629cph6ElDo4kM9VW5GtGXFDYWszI7i8rWKsJ8+rHMkElK\nsExVK8TtkhDuYwrLmygsvzLTy6DEUJWrEX2FxWbhncJdfFD8MQoKk+PGMzv5Abyk+xWiSySE+5jP\n54SOCvVltCFS5WpEX1DUVMK/s7OoaKkkzDuUpYYFDAxJVrssIfoECeE+pKiiGWObBYCfPzZa5WqE\nq7PYrbxb+AG7ivdgV+xMir2L2ckP4K3zUrs0IfoMCeE+ouByI79ceQyAjMQQ9DqZEUvcvuKmUlZm\nZ1HWUkE/7xCWGhaQGiJX2QvR3SSE+wCL1e4IYICvzcpQsRrhyqx2K+9e2s37RR9hV+xMiB3LnOQH\n8dbJFfZC9AQJ4T7glbUnHY//9sMpMi+0uC3FzaWsPH+l+w3xCmapYQHpoQPVLkuIPk1C2MU9+ds9\nWG12AH6ydLgEsLhlVruVnZc+5L2iD7ErdsbHjGFOygx8pPsVosdJCLuwy9VGRwCPSAtnYFywyhUJ\nV1PaXMa/s9dy2VhOiFcwS9LnY+gnU5wK0VskhF1UW7uVn71xGID+kQE8PecOlSsSrsRmt/Fe0Ye8\ne2k3dsXOXdGjmTtwBj46H7VLE8KtSAi7qKf/9xPH428vGKJiJcLVXDaWs/L8WkqMZQR7BfFI+nwy\n+qWpXZYQbklC2AVVfWlu6J8uG0Gwv9y3KTpns9t4v2gP7176AJtiY1z0KOYNnCndrxAqkhB2QT/5\n20EAEiL9SY4NUrka4QrKjBWszF5LcfNlgjwDeSR9HoPDDGqXJYTbkxB2Ie1mG3/bdg5FubL9zFw5\nDC1uzGa38UHxx+wo3IVVsTEmagTzB87CVy8LewjhDCSEXYTVZucbr3zs2B42MEyWKBQ3VN5Sycrz\nWRQ1lxDkGcDi9HncETZI7bKEEF8iIewCFEXhyd/ucWw/PWcwI9Ii1CtIODWb3cbukk945+L7WBUb\no6OGs2DgQ9L9CuGEJIRdwOvbzzse//JrY4ju56diNcKZVbRU8u/sLIqaSgj0DGBx2lyGhMs0pkI4\nKwlhJ/fbt0+QXVQPwOMzDBLA4prsip3dxZ+wvfB9rHYrIyPvZEHqbPz18nkRwplJCDux4spmRwAP\nTw1n/B3RKlcknFFlSxUrs9dR2FREgN6fRRlzuTN8sNplCSFugoSwk7JY7fy/fx4BYGBcEN+cKzNi\niY7sip0PSz5l+8X3sNitjIgYSmbqw/h7SvcrhKuQEHZSv337hOPxM/PkViTRUWVrNauys7jYWIS/\n3o9HBy1mWIT8oSaEq5EQdkLtFhsXLjcC8J0FQ/D30atckXAWdsXOntJ9bC14F4vdyvCIIWSmPkyA\np7/apQkhboOEsBP6xb+OOh4PSQ5TsRLhTKpaa1iVvY6CxkL89X4sH7SI4RFylEQIVyYh7ITKaloA\n+MGiO1WuRDgDu2Lnk9IDbC7YgcVu4c7wO1iUNke6XyH6AAlhJ/PWB3kAJEUHMCgxVOVqhNpq2mpZ\nlb2O/IaL+Ol9WWZYwPCIoWg0GrVLE0J0AwlhJ3PqQg0AYwyRKlci1GRX7Hx6+SCbL7yD2W5haPhg\nFqXNIdAzQO3ShBDdSELYiWR9eIHqBhMA00bFq1yNUEtNWx2rsrPIb7iIr86HR9LnMzLyTul+heiD\nJISdxBvbz7PvbAUAkaG+aOUL1+3YFTt7Lx9iU8E7mG1mhoRlsChtLkFe0v0K0VdJCDuBspoWRwDP\nGNefuZMGqFyR6G21bfWszllHbv0FfHU+LB60iFGRw6T7FaKPkxB2Ap9PzOGh1TBvcrLK1YjepCgK\ne8sOsenCdtptZgb3M7A4fS7BXkFqlyaE6AUSwipSFIXvvbqPxhYzAK98c7zKFYneVGeqZ3X2enLq\n8/HRebPcsJDRUcOl+xXCjUgIq2jfmQpHAN8/JoEAX0+VKxK9QVEU9pcfZmP+dky2djL6pfNI+jzp\nfoVwQxLCKvn0dBn/3JEDwMKpKdw3OkHlikRvqDc1sDpnPdl1eXh7eLM0fQFjo0dK9yuEm5IQVoGi\nKI4ABpg+Um5H6usUReFA+VE25G/DZDMxKDSNR9LnEeIdrHZpQggVSQirIK+kwfH4jR/dLV1QH9fQ\n3sjqnPWcr83F28OLJenzGRc9Sv5/F0JICPc2RVHY9MlFAB4c21++iPswRVE4VHGM9flbabOaSA8Z\nyBLDfEK9Q9QuTQjhJCSEe9mWvYXklV5ZpjA9QQ5F9lUN7Y28nbOBs7U5eHl4sjhtLuNjxsgfXUKI\nDm4qhF988UVOnTqFRqNhxYoVDBly9fJpv/vd7zh58iQrV67s9iL7gqKKZrI+ukB2UT0AI1LDyUiS\nBRr6GkVROFxxnHX5W2mztpEWksKS9AX085HuVwhxtU5D+PDhwxQVFbF27VoKCgpYsWIFa9eu7fCa\nCxcucOTIEfR6WXz+en7+5hHHY18vHd94eLB0RX1MfVsjfz3zL87UZOPp4cmitDlMiBkr/z8LIa6r\n0xA+cOAA06ZNAyA5OZnGxkaMRiP+/l+sZfqrX/2K7373u7z66qs9V6mLUhSFr/1mj2P75f+6i9BA\nb/UKEt1OURSOVJ5g/YWttJhbSQ1OZolhAWE+cqRDCHFjnYZwTU0NGRkZju3Q0FCqq6sdIbxx40ZG\njx5NbGzsTf3CkBBfdDqP2yz32sLDnXOCe2ObhcX/vcOx/dWZg0hLDlexohtz1nF0Zg2mJl4/+hZH\nLp/Cy8OTx4cvYnrKRLQardqluSz5HHadjGHX9dYY3vKFWYqiOB43NDSwceNG/vnPf1JZWXlTP19f\n33qrv/KGwsMDqK5u7tb37C6rd+U5Hn8vcyiDB/Rz2lqdeRydkaIoHKs8SVbeFlqsrQwMHsC3xn8F\nbZs3tTUtapfnsuRz2HUyhl3XE2N4vVDvNIQjIiKoqalxbFdVVREefqWbO3jwIHV1dSxZsgSz2Uxx\ncTEvvvgiK1as6KayXddv3z7huAjrqdkZDB7QT+WKRHdpNhtZk7uRk9Vn8dTqWZA6m0mx44j0D6K6\nTb78hBA3r9MQHj9+PH/84x9ZtGgR586dIyIiwnEo+v777+f+++8HoLS0lJ/85CcSwMC+M+WOAO4f\nFcDItAiVKxLd5VjlKbLyNmO0tJAclMQyQybhvvIHlhDi9nQawsOHDycjI4NFixah0Wh4/vnn2bhx\nIwEBAUyfPr03anQpdkXhjXeyARiZHsF/PTxY5YpEd2g2G1mbt5kTVafRa/XMH/gQk+PuknO/Qogu\nualzwj/4wQ86bKenp1/1mri4OLlHGMj9rAMG+MbsjBu8UriKE1VnWJO7EaOlhQFBiSwzLCDC13kv\nsBNCuA6ZMaubHc+7cv78/tEJcn+oizOaW8jK28yxqlPotTrmpcxkSvwE6X6FEN1GQrgbtZgs7D5e\nCkCaTEnp0k5Wn2VNzkaaLUaSAvuzzLCASD85ty+E6F4Swt1o48cXHY8HD5CJGlyR0dLCurwtHK08\niU6rY07KDKbGy32/QoieISHcjU7kVwPw02Uj8NDKl7arOVV9jrdzN9BsNpIYmMAyQyZR0v0KIXqQ\nhHA3qWsy0WA0A5AUE6hyNeJWtFhaWZe3lSOVx9FpdTyc/CD3JEyS7lcI0eMkhLvByvdy+ejEZQDC\ngrzRygVZLuNMzXneytlAk7mZ/gHxLBuUSbRfpNplCSHchIRwF72+7RwHzn0xZedPl41QsRpxs1ot\nrazP38ahimPoNB7MHvAA9yRMwkPbvfOaCyHEjUgId0GLyeII4LuHx7Ls3jSVKxI342xNNm/lbKDR\n3ERCQCzLDAuJ8Y9SuywhhBuSEL5NdrvCM7//FACtRiMB7AJaLW1suLCNg+VH8dB4MGvAfUxPmCLd\nrxBCNRLCt6mo8ouJ+n/7X3epWIm4Gedqc3krZz0N7Y3EB8SyzJBJrH+02mUJIdychPBtulDaCMC4\njChCArxUrkZcT5u1jY3529lffgStRsvMpHu5t//d0v0KIZyChPBt2numHIDBSTIph7PKrs1jVc46\nGtobifOPYZkhk7iAGLXLEkIIBwnh22AyWympMgIwPFUm8nc2bVYTmy5sZ1/ZYbQaLQ8mTuO+xKno\ntPJxF0I4F/lWug1b914CIMjPEy9POazpTHLq8lmVvY769gZi/aNZZlhIvHS/QggnJSF8ixRFYefh\nYgC+NmuQytWIz5msJjZdeIe9ZYfQarQ8kHgP9yfeI92vEMKpyTfULfrXzlzH40GJcj7YGeTWXWBV\nzjrqTPXE+EWxzJBJQmCc2mUJIUSnJIRvQXltC5+cKgNg0T0DVa5GmKztbCnYwSeXD6DVaLm//1Tu\nT5qGXrpfIYSLkG+rW7Dr6JW1gmPC/Lh3VLzK1bi3/PoCVmavo9ZUR5RfJMsNmfQPlP9PhBCuRUL4\nJrVbbOz5bJGGr82Uc8FqabeZ2VKwg49L96NBw7397+bBpOnS/QohXJJ8c92krXsLHY9jwvxUrMR9\n5ddfZFV2FjWmOiJ9I1g+KJPEwAS1yxJCiNsmIXyTDp6/slDDt+cPQa+TdWZ7k9lmZmvBTvaU7gNg\nesIUZiRNR++hV7kyIYToGgnhm9BqslDf3A7AkOR+KlfjXi40FLIqO4vqtloifcNZZsgkKai/2mUJ\nIUS3kBC+Ce8eunJfcHiwNxqNRuVq3IPZZmbbxff4qGQvAPckTGJm0n14SvcrhOhDJIRvwjsHigCY\nMS5R3ULcxMXGS6w8n0VVWw0RPmEsG5TJgKBEtcsSQohuJyF8Ezz1WswWOxOGyNJ3Pclss7C98D0+\nLL6yTvPU+InMGnAfnh6eKlcmhBA9Q0K4EzWNbZgtdlJig9DKoegeU9hYxMrsLCpbqwn36cdSQyYp\nwUlqlyWEED1KQrgT/3o3B4AAXzkX2RMsNgvvFO7ig+KPAbg7bgIPJd8v3a8Qwi1ICN9AYXkT5y7V\nA/CETNDR7S41FbPyfBYVrVWEeYey1JDJwJABapclhBC9RkL4Bv65IxuApOgAfLxkqLqLxW5lR+Eu\ndhXtQUFhctx4Zic/gJd0v0IINyPJch2NLWZKq1sA+NEjw1Wupu8oaiphZXYW5S2V9PMOYakhk9SQ\nZLXLEkIIVUgIX8eBsxUA+Pvo8dR7qFyN67PYrews/ID3i/dgV+xMih3H7OQH8dZ5qV2aEEKoRkL4\nOiw2OwCP3p+mciWur7i5lJXnsyhrqSDUO4Sl6QtIC01RuywhhFCdhPB1WKxXQjjAV85T3i6r3crO\nS7t5r+gj7IqdCbFjmZP8IN46b7VLE0IIpyAhfA2KorB9/yUAdB6yWMPtKGkuY2X2Wi4bywnxCmap\nYQHpoQPVLksIIZyKhPA1lNe2Oh7HhcuyhbfCZrexs+hDdl7ajV2xMz5mNHNSZuIj3a8QQlxFQvga\ndh8rBWC0IUIuyroFpc1lrMzOotRYRohXMEvS52Pol6p2WUII4bQkhK/h5IUaAB4YI0vm3Qyb3cb7\nRR+x49IH2BU7d0WPYu7AmfjofNQuTQghnJqE8DU0Gs0AxEf6q1yJ87tsLGdldhYlzZcJ9grikfR5\nZPRLV7ssIYRwCRLC/6GirhW7ohAe7C0LNtyAzW5jV/EedhR+gE2xMTZ6JPNSZuGrl+5XCCFuloTw\nf1jxt4MA9AuUC4mup8xYwcrsLIqbSwnyDOSR9HkMDjOoXZYQQrgcCeEvqWlsczx+eu4dKlbinGx2\nGx8Uf8yOwl1YFRtjokYwf+AsfPW+apcmhBAuSUL4S947VAKAl94DP29ZuvDLylsqWXk+i6LmEgI9\nA3gkfR53hMnKUkII0RUSwp+x2xV2H79ya9J3M4eqXI3zsCt2dhd/wvbC97HarYyKHM6C1Ifwk+5X\nCCG6TEL4MxcuNzoeD4wLUrES51HRUsWq7CwKm4oJ8PRncdo8hoZnqF2WEEL0GRLCnzn12b3BqfHB\naNz8qmi7YufDkk/ZdvE9rHYrIyPvZEHqbPz1MnuYEEJ0p5sK4RdffJFTp06h0WhYsWIFQ4YMcTx3\n8OBBXnnlFbRaLUlJSfzyl79Eq3W9+ZaLK5sBmD/Zvde2rWytZuX5LAqbigjQ+7MoYy53hg9Wuywh\nhOiTOg3hw4cPU1RUxNq1aykoKGDFihWsXbvW8fxzzz3Hv//9b6KiovjWt77Fp59+yuTJk3u06J5Q\nVGkEIDzEPe9ztdvtfFj8CVsv7sRitzIiYiiZqQ/j7yndrxBC9JROQ/jAgQNMmzYNgOTkZBobGzEa\njfj7X5lNauPGjY7HoaGh1NfX92C5PaOpxYyxzQJAkJ/7LV1Y1VrNH07/ldyaAvz1fiwftIjhEUM6\n/0EhhBBd0mkI19TUkJHxxcU4oaGhVFdXO4L38/+tqqpi3759fPvb3+6hUnvO2g/zAUiKDlC5kt5l\nV+x8XLqfLQXvYrFbGBYxhIWpDxPgKdN1CiFEb7jlC7MURblqX21tLU899RTPP/88ISEhN/z5kBBf\ndLruXZkoPLxr4Wn97J/0w2WjuvxerqLCWM1fDq8kuzqfAE8/nh7xKHcljFC7LJfnLp+fniRj2HUy\nhl3XW2PYaQhHRERQU1Pj2K6qqiI8PNyxbTQa+drXvsZ3vvMdJkyY0OkvrK9v7fQ1tyI8PIDq6uYu\nvceR85UAeKJ0+b2cnV2x80npAbYU7MBst3Bn+GAWps0hOTamz//be1p3fBbdnYxh18kYdl1PjOH1\nQr3Ty5jHjx/Pe++9B8C5c+eIiIhwHIIG+NWvfsWjjz7KpEmTuqnU3lVU8cVAa7V9+9akmrZa/nDi\nb6zL34Jeq+erGY/wxOBlBHrKX81CCKGGTjvh4cOHk5GRwaJFi9BoNDz//PNs3LiRgIAAJkyYwObN\nmykqKmL9+vUAzJw5k4ULF/Z44d3l41NlAEwYEq1yJT3HrtjZe/kgmwp2YLaZGRqWwcK0uQR5SfgK\nIYSabuqc8A9+8IMO2+npX6wXe/bs2e6tqBfVNprYc+IyAMMGhqlcTc+obatjVfY68hoK8NX58Mig\nxYyMvNPtJyQRQghn4NYzZu0/V+F4PDSlb4WwoijsLTvIpgvv0G4zc0eYgcVp8wjyClS7NCGEEJ9x\n6xAuq2kB4PEZBrR9qDOsbavnrZz15NTn46PzYblhIaOjhkv3K4QQTsatQ/jQZ1dFD08N7+SVrkFR\nFPaXHWbjhe2YbO0M7pfO4vR5BHvJghRCCOGM3DaEqxraHI+9Pbv3vmU11JsaWJ2znuy6PHx03iwz\nZDImaoR0v0II4cTcNoS3fHoRgHEZkS4dVIqicKD8CBvyt2OymRjUL40l6fOl+xVCCBfgliFstysc\nOHflUPSEO1z31qR6UwNv5WzgfF0u3h7eLElfwLjokS79R4UQQrgTtwzhirovZu0yJIaqWMntURSF\ng+VH2XBhG21WE4bQVJakzyfEO1jt0oQQQtwCtwzhvWfKARg7KFLlSm5dQ3sjb+Vs4FxtDt4eXjyS\nPo+7okdL9yuEEC7ILUP4wNkr9wdPHxWvciU3T1EUDlUcY33+NtqsbaSHDGSJYT6h3jdeMEMIIYTz\ncssQbmwxA5AY5RrTNja0N/J2zkbO1mbj5eHJ4rS5jI8ZI92vEEK4OLcL4SM5VQB46T2cPsQUReFI\n5QnW5W2h1dpGakgKS9Pn08/H9c5jCyGEuJrbhXBeSQMAk++MUbmSG2tsb2ZN7kZO15zD08OThalz\nmBA7Bq2m04WvhBBCuAi3C+GjuVc64Wkj41Su5NoUReFY5Umy8rbQYm0lNTiZJYYFhEn3K4QQfY7b\nhfDnc0QH+XmpXMnVmszNrMndxKnqs3hq9WSmPszE2LHS/QohRB/ldiFc39xOaKAXep3zBJuiKByv\nOsXavM20WFpJCU5iaXom4b791C5NCCFED3KrEG4xWQBoNVlVruQLzWYja3I3cbL6DHqtnvkDH2Jy\n3F3S/QohhBtwqxD+5FQZAKnxzjGz1PGq06zN3YTR0kJyUCJLDZlE+PatdY2FEEJcn1uF8LsHiwG4\na3CUqnU0m41k5W3meNvVH9sAAAvbSURBVNVp9Fo98wbOYkrceOl+hRDCzbhNCCuKgrHtyuHokWkR\nqtVxouoMa3I3YrS0MCCoP0sNmUT69o31jIUQQtwatwnhBuOVWbKC/D3Rant/kg6jpYWs3M0cqzqF\nXqtjbspM7o6fIN2vEEK4MbcJ4X++mw3AnSm9f871VPVZ3s7dSLPZSFJgAssMmUT6qdeNCyGEcA5u\nE8JnL9YBMKgXly40WlpYl7eFo5Un0Wl1zEmZwdT4idL9CiGEANwohLUaDXZFYVR673Sgp6vP8Xbu\nRprMzfQPjGe5IZMoP9dbOlEIIUTPcYsQvlxtxK4oZCT2/LJ/rZZW1uVv5XDFcXQaD2YnP8A98ZPw\n0Hr0+O8WQgjhWtwihHcdLYH/397dx0R933EAf98DhzxJuZZDHg5BjBvStbErXRssVDxELVuTxXCQ\nAp1p2jTRNm2aNJV0hT8stol2XWKzNE2TZeBarb1t7WbVxMAe5PBplpanepyFAVLujqd5cjwcfPcH\nSnXioR7c9x7er788v8ePt59I3nx/d/f7AQjXLO0/9xtHGz7u+Ayjk5eRGpOC8sxiJEXL/TgUERH5\nr5Ao4Un3DACgOH/1khx/bMqFw5bPcer7c1ApVPjFqs0wpOZx90tERB6FRAlPTE4DACI0i1+KrYMd\n+GPHZxiZGEVqTDLKM43c/RIR0W0JiRJu6xoGAGjUi1fCLrcLhy1foKn/LFQKFYrSC7Fp5RPc/RIR\n0W0LiRKOjdLANuJC+CLthNsGv8WBjsMYmRiFPjoJ5WuNSI5OXJRjExFR6Aj6Ep4RArYRFxK0kV4f\ny+Ueh8nyVzT2n4ZSocST6QUoXJnP3S8REd2VoC9h18TsbQtdV29jeLfahy7gQPthDE+MIDk6EeWZ\nRuhjkhYjIhERhaigL+Fr9w7OvMsrZY27x2Hq/BtOXjoFpUKJrWkGFKblQ60M+tEREdESC/om+cri\nuOuv7Riy4EDHYQyNDyMpagUq1hqhj0lexHRERBTKgr6Eu76/DABYewdXyxp3T+DP1iP4Z58ZSoUS\nW9I2YnPaRu5+iYhoUQV9q1y7a+Ea/T239fwLw52oa/8Ug+PDSIxKQEWmEanLU5YwIRERhaqgL+Fz\nF+wAgIgFLlk57p7AX6xf4h99jVBAgcKV+diSbkAYd79ERLREgrphnK4pjF+9WlZMZNgtn2cZtqK2\n/VMMjg9hRVQCKjKLsXK53lcxiYgoRAV1CbdcHAQAqFUKKBSKm9YnpifxufVLNPSehAIKFKQ+gSfT\nCxCmunVhExERLZagLuEzHTYAwC9zM25a6xz5DrXth+BwDSIhUofyzGKkx6b6OiIREYWwoC1hIQTO\nX/140qqk5XN/Pzk9ic8vHkVDz0kAgCE1D0Xpm7j7JSIinwvaEm746tLcn6+9M9o60oW69kOwuRzQ\nRd6H8kwjVsWulBWRiIhCXNCW8Lf/mb1zUvaPdZicnsIXF4+ivudfAICN+lwUrSqEhrtfIiKSKChL\nWAiBb66+KSv7p2HYc+Y3sI05oIu4D2WZxci4J01uQCIiIgRpCVv7/gvX5CTU+k783nIMAJCvfxw/\nX1UIjUojOR0REdGsoCzhPX86gfD7v4Ey4grujbgX5ZnFWH1PuuxYRERENwiqEp6YmsTu4x8jfG0r\nFArgUd2jKM4sQjh3v0RE5Iduq4RramrQ3NwMhUKByspKPPDAA3NrjY2NePfdd6FSqZCbm4sdO3Ys\nWVhPvrV34b1Tf4Ay0gkxHoHCpCI8dX+2lCxERES3Y8ESPn36NLq7u3Hw4EFYrVZUVlbi4MGDc+u7\nd+/GRx99hISEBJSVlaGwsBCrV69e0tDXa/h3N37790NQJ34HZaSAeyAVZT95Co/fz8tOEhGRf1Mu\n9ASz2QyDwQAAyMjIwOjoKJxOJwCgp6cHsbGxSExMhFKpRF5eHsxm89Imvs65zh7sb96PsKSLEJPL\nMNGejV9v/BULmIiIAsKCO2GHw4GsrKy5x1qtFna7HdHR0bDb7dBqtTes9fT0eDxeXFwk1GqVF5F/\n4O4dg2LZFczYU/G7ip2IXx6zKMcNVfHxnJ+3OEPvcYbe4wy956sZ3vEbs4QQXn3D4eExr77+ej9L\n+RE2Zr0H5+gEMAHY7ZcX7dihJj4+hvPzEmfoPc7Qe5yh95Zihrcq9QVPR+t0OjgcjrnHNpsN8fHx\n864NDAxAp9N5m/WORGj4zmciIgpMC5ZwTk4Ojh2bveBFa2srdDodoqOjAQApKSlwOp3o7e2F2+1G\nfX09cnJyljYxERFRkFjwdPRDDz2ErKwslJSUQKFQoKqqCiaTCTExMSgoKEB1dTVeffVVAMDWrVuR\nns6LYhAREd0OhfD2Rd47tBTn2fn6h/c4R+9xht7jDL3HGXrPr14TJiIioqXBEiYiIpKEJUxERCQJ\nS5iIiEgSljAREZEkLGEiIiJJWMJERESSsISJiIgk8fnFOoiIiGgWd8JERESSsISJiIgkYQkTERFJ\nwhImIiKShCVMREQkCUuYiIhIkoAq4ZqaGhiNRpSUlODrr7++Ya2xsRHbtm2D0WjE+++/Lymh//M0\nw6amJhQXF6OkpAS7du3CzMyMpJT+zdMMr9m3bx/Ky8t9nCxweJphf38/SktLsW3bNrz55puSEgYG\nT3M8cOAAjEYjSktL8dZbb0lK6P8uXLgAg8GAurq6m9Z80isiQJw6dUo8//zzQgghOjs7RXFx8Q3r\nW7ZsEZcuXRLT09OitLRUWCwWGTH92kIzLCgoEP39/UIIIV588UXR0NDg84z+bqEZCiGExWIRRqNR\nlJWV+TpeQFhohi+99JI4fvy4EEKI6upq0dfX5/OMgcDTHC9fviw2bNggpqamhBBCbN++XZw/f15K\nTn925coVUVZWJt544w1RW1t707oveiVgdsJmsxkGgwEAkJGRgdHRUTidTgBAT08PYmNjkZiYCKVS\niby8PJjNZplx/ZKnGQKAyWTCihUrAABarRbDw8NScvqzhWYIAG+//TZeeeUVGfECgqcZzszM4Ny5\nc8jPzwcAVFVVISkpSVpWf+ZpjmFhYQgLC8PY2BjcbjdcLhdiY2NlxvVLGo0GH374IXQ63U1rvuqV\ngClhh8OBuLi4ucdarRZ2ux0AYLfbodVq512jH3iaIQBER0cDAGw2G06ePIm8vDyfZ/R3C83QZDLh\nkUceQXJysox4AcHTDIeGhhAVFYU9e/agtLQU+/btkxXT73maY3h4OHbs2AGDwYANGzbgwQcfRHp6\nuqyofkutVmPZsmXzrvmqVwKmhP+f4NU2vTbfDAcHB/HCCy+gqqrqhh9wmt/1MxwZGYHJZML27dsl\nJgo8189QCIGBgQFUVFSgrq4ObW1taGhokBcugFw/R6fTiQ8++ABHjx7FiRMn0NzcjI6ODonp6FYC\npoR1Oh0cDsfcY5vNhvj4+HnXBgYG5j29EOo8zRCY/cF97rnn8PLLL2P9+vUyIvo9TzNsamrC0NAQ\nnn76aezcuROtra2oqamRFdVveZphXFwckpKSkJqaCpVKhcceewwWi0VWVL/maY5WqxV6vR5arRYa\njQYPP/wwWlpaZEUNSL7qlYAp4ZycHBw7dgwA0NraCp1ON3f6NCUlBU6nE729vXC73aivr0dOTo7M\nuH7J0wyB2dcyn3nmGeTm5sqK6Pc8zXDz5s04cuQIDh06hP379yMrKwuVlZUy4/olTzNUq9XQ6/Xo\n6uqaW+dp1Pl5mmNycjKsVivGx8cBAC0tLUhLS5MVNSD5qlcC6i5Ke/fuxdmzZ6FQKFBVVYW2tjbE\nxMSgoKAAZ86cwd69ewEAmzZtwrPPPis5rX+61QzXr1+P7OxsrFu3bu65RUVFMBqNEtP6J0//D6/p\n7e3Frl27UFtbKzGp//I0w+7ubrz++usQQmDNmjWorq6GUhkw+wWf8jTHTz75BCaTCSqVCuvWrcNr\nr70mO67faWlpwTvvvIO+vj6o1WokJCQgPz8fKSkpPuuVgCphIiKiYMJfL4mIiCRhCRMREUnCEiYi\nIpKEJUxERCQJS5iIiEgSljAREZEkLGEiIiJJWMJERESS/A9QUfL3ZvxLAAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "PIdhwfgzIYII", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**See if you can tune the learning settings of the model trained at Task 2 to improve AUC.**\n", + "\n", + "Often times, certain metrics improve at the detriment of others, and you'll need to find the settings that achieve a good compromise.\n", + "\n", + "**Verify if all metrics improve at the same time.**" + ] + }, + { + "metadata": { + "id": "XKIqjsqcCaxO", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 656 + }, + "outputId": "846fe1c5-cc3a-4717-f2c9-eaee15c3a34d" + }, + "cell_type": "code", + "source": [ + "# TUNE THE SETTINGS BELOW TO IMPROVE AUC\n", + "linear_classifier = train_linear_classifier_model(\n", + " learning_rate=0.000002,\n", + " steps=24000,\n", + " batch_size=20,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)\n", + "\n", + "evaluation_metrics = linear_classifier.evaluate(input_fn=predict_validation_input_fn)\n", + "\n", + "print(\"AUC on the validation set: %0.2f\" % evaluation_metrics['auc'])\n", + "print(\"Accuracy on the validation set: %0.2f\" % evaluation_metrics['accuracy'])" + ], + "execution_count": 15, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "LogLoss (on training data):\n", + " period 00 : 0.52\n", + " period 01 : 0.52\n", + " period 02 : 0.52\n", + " period 03 : 0.51\n", + " period 04 : 0.50\n", + " period 05 : 0.50\n", + " period 06 : 0.50\n", + " period 07 : 0.49\n", + " period 08 : 0.49\n", + " period 09 : 0.49\n", + "Model training finished.\n", + "AUC on the validation set: 0.79\n", + "Accuracy on the validation set: 0.77\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGACAYAAACgBBhzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VFX6wPHvnZlMek8mgUAKIZQE\nQhMhIKEFSEQE1wKiuLq4+lPEAususCLYUBFxraiwlkVxUZZ1LUCkSBFCgNBDCS0hhPTey8z8/kBG\nIhlIQmYyhPfzPDzM3Dn33nfmZcibc869RzEajUaEEEIIIdoQVWsHIIQQQgjR0qTAEUIIIUSbIwWO\nEEIIIdocKXCEEEII0eZIgSOEEEKINkcKHCGEEEK0OVLgCHGD6tq1K1lZWS1yrHPnzhEeHt4ix2oN\nU6ZM4ZZbbiE2NpYxY8Zw66238vnnnzf5OAcPHmTq1KlN3i88PJxz5841eT8hhHma1g5ACCFswbPP\nPsv48eMByM3NZeLEiYSEhBAdHd3oY0RGRvLPf/7TUiEKIZpAenCEEPVUV1fz/PPPM2bMGOLi4njt\ntdfQ6/UAbNu2jaFDhxIXF8fKlSvp27fvVXseioqKeOqpp0w9Ix9//LHptbfeeosxY8YwZswYHnjg\nAbKzs6+4/aItW7Ywbty4etvGjx/P1q1b2bVrF3fccQe33norcXFxrF27tsmfga+vL7GxsWzfvh2A\nkydPcv/99zNmzBjGjRvHoUOHAEhMTGTSpEk89dRTzJw5k8TEREaNGnXVz3HLli2MGjWKuLg4li1b\nZjpveXk506ZNIy4ujpEjR/Lcc89RW1vb5PiFEFLgCCF+5/PPPycrK4sff/yR//73v+zZs4cffvgB\nvV7PrFmzePHFF1m7di2pqalUVlZe9XiLFy/G3d2d+Ph4VqxYwVdffcWePXs4ceIE69at44cffiA+\nPp5Ro0aRkJBgdvuloqKiyMrKIj09HYD09HSysrIYNGgQr7/+OrNnz2bNmjUsWbKEDRs2NOtzqKur\nQ6vVYjAYmDZtGuPHjyc+Pp758+fz+OOPU1dXB8CRI0eYNGkSb775ZqM/x7///e/MmzePtWvXolKp\nTIXPt99+i5ubG2vXriU+Ph61Ws3JkyebFb8QNzopcIQQ9WzevJl77rkHjUaDg4MD48aNY/v27aSm\nplJTU8PQoUOBC/NWDAbDVY+3ZcsWJk+eDICHhwejRo1i+/btuLm5UVBQwPfff09xcTFTpkxhwoQJ\nZrdfSqvVMnz4cDZt2gTAhg0biImJQaPR4O3tzbfffsupU6cIDg6+rPBojPT0dNatW8eoUaM4ffo0\n+fn53HXXXQD069cPLy8v9u3bB4CDgwNRUVFN/hxvueUWAO644w7TPheP+8svv2AwGHjhhRfo3r17\nk+MXQkiBI4T4nYKCAtzd3U3P3d3dyc/Pp7i4GDc3N9N2nU7X6ONdup+bmxv5+fn4+fnx7rvvsm7d\nOoYNG8YjjzxCZmam2e2/N2bMmHoFzq233grAggULcHR05KGHHmL06NGsW7euUXG+8cYbpknGM2bM\nYNasWURGRlJSUkJVVRVxcXHExsYSGxtLfn4+RUVFps/H3Ps29zm6uLjU235RXFwcDz74IG+//TZR\nUVG88MIL1NTUNCp+IUR9UuAIIerx8fEx/fCGC3NofHx8cHFxoaKiwrQ9Ly/vmo4HMHDgQD7++GO2\nb99Ou3btWLRo0RW3X2rIkCEcO3aM1NRUUlNTGThwoOl8c+fOZevWrTz//PPMnj2b8vLyq8b57LPP\nsm7dOuLj4/nmm29MBZNOp8PZ2Zl169aZ/vzyyy+muTZNfd/u7u6UlZWZthcUFNTbb9KkSXzzzTes\nWbOG5ORkvv3226vGLoS4nBQ4Qoh6hg0bxqpVq9Dr9VRUVPC///2PoUOHEhwcTF1dHYmJiQB89dVX\nKIrSqOOtXLkSuPDDfP369QwbNoxffvmFF154AYPBgJOTE926dUNRFLPbf0+r1XLLLbfwxhtvMHLk\nSNRqNbW1tUyZMoWcnBwAIiIi0Gg0qFTN/68uICAAf39/U09QQUEBM2bMqFfsmXvfDX2OgYGBqNVq\n0+e4evVq0/t7//33WbVqFQB+fn506NChUZ+xEOJycpm4EDewKVOmoFarTc9ffvllpkyZQnp6OmPH\njkVRFGJjY4mLi0NRFObPn8/s2bNxdXXloYceQqVSoSgKRqMRvV5PbGxsveMvXbqUp59+mvnz5xMb\nG4tKpeKRRx4hMjKS6upqfvzxR8aMGYNWq8XLy4sFCxag0+ka3N6QMWPGMH36dD777DMA7OzsuOuu\nu3jwwQcBUKlUPPfcczg6OrJ+/Xo2bdrEq6++2qTPSFEUFi9ezPz58/nHP/6BSqXioYcewsnJ6aqf\nrbnP8aWXXmLOnDlotVr+8Ic/mI41fvx4Zs+ezdKlS1EUhV69epkuXRdCNI1iNBqNrR2EEOL6U1FR\nQZ8+fdizZw+urq6tHY4QQtQjQ1RCiEa78847WbNmDQBr1qwhNDRUihshhE2SHhwhRKPt2bOHF198\nkerqapydnZk/fz6RkZGtHZYQQlxGChwhhBBCtDkyRCWEEEKINkcKHCGEEEK0OW3yMvHc3FKLHt/T\n04nCwivfA0NYn+TFdklubJPkxXZJbhrP17fhCx2kB6cZNBr11RsJq5O82C7JjW2SvNguyc21s2gP\nzoIFCzhw4ACKojBnzpx6V1uMGDECf39/003GFi1ahJ+fHwsXLiQpKYm6ujoeffRRRo8ezaxZs0hO\nTsbDwwOAqVOnMmzYMEuGLoQQQojrmMUKnF27dpGWlsbKlSs5deoUc+bMMd2u/aKlS5fi7Oxser5z\n505OnDjBypUrKSws5I477mD06NEAzJgxg+HDh1sqXCGEEEK0IRYrcBISEoiJiQEgNDSU4uJiysrK\n6q2i+3v9+/c39fK4ublRWVmJXq+3VIhCCCGEaKMsVuDk5eURERFheu7l5UVubm69AmfevHlkZGTQ\nr18/Zs6ciVqtNq3JsmrVKqKjo01DWF988QWffvop3t7ezJ07Fy8vL7Pn9vR0svj4pblJTaJ1SV5s\nl+TGNklebJfk5tpY7Sqq399P8Mknn2TIkCG4u7szbdo04uPjTQv1bdiwgVWrVvHJJ58AFxag8/Dw\noHv37nz88ce89957PP/882bPZemZ576+rha/Uks0neTFdklubJPkxXZJbhrP6ldR6XQ68vLyTM9z\ncnLw9fU1PZ8wYQLe3t5oNBqio6NJSUkBYNu2bXz44YcsXbrUtMZNVFQU3bt3By5MTr7YVgghhBCi\nIRYrcAYPHkx8fDwAycnJ6HQ60/BUaWkpU6dOpaamBoDdu3cTFhZGaWkpCxcu5KOPPjJdMQUwffp0\n0tPTAUhMTCQsLMxSYQshhBCiDbDYEFXfvn2JiIhg0qRJKIrCvHnzWL16Na6urowaNYro6GgmTpyI\nvb094eHhxMbG8vXXX1NYWMjTTz9tOs7rr7/Offfdx9NPP42joyNOTk68+uqrlgpbCCGEuCFs3ryR\nYcNGXrXd22+/yd13T6J9+4AGX581awavvba4pcO7Zm1ysU1Lj1vK2KhtkrzYLsmNbZK82C5L5yYz\n8zzvv/8PXn55ocXOYS3m5uC0yaUahBBCCGHe4sWvc/RoMkOG9Gf06DgyM8/zj398wKuvvkhubg6V\nlZX86U+PMHjwEJ544hFmzPgrP/+8kfLyMs6eTSMj4xxPPjmTqKjBjB07kh9/3MgTTzxC//4D2Lt3\nD0VFRbz++lv4+Pjw4otzycrKpGfPSDZt2sB//7vGKu9RChwhhBCilXy96SS7j+Vctl2tVtDrmzfA\n0r+bjntGdL5im3vvncLq1V8TEhLK2bOpfPDBMgoLC7j55oHExd1GRsY55s6dxeDBQ+rtl5OTzaJF\n77Bz5w7+97//EBU1uN7rzs7OvP32EpYseZetWzfRvn0Hamqq+fjjz9i+fRtff/1Vs95Tc0iB0wR1\nhjoO5R3lFo8+rR2KEEII0SK6d79wzzpXVzeOHk3mu+9WoygqSkqKL2sbGdkbuHCldFlZ2WWv9+rV\nx/R6cXExaWln6NmzFwBRUYNN97azBilwmuBs6TmWHV7O+vRNPNLjQTzs3Vs7JCGEENexe0Z0brC3\nxZrzo+zs7ABYv34dJSUlvP/+MkpKSnj44SmXtb20QGloCu/vXzcajahUF7YpioKiKC0dvlmymngT\nBLsFMiQgirTiDBbteZ+s8uzWDkkIIYRoMpVKddlSSEVFRbRr1x6VSsWWLZuora295vMEBHTg+PEj\nAOzatdOqyy9JgdMEKkXFxC4TmNTzdgqri3gz6QNOFaW2dlhCCCFEkwQFhXD8+DHKy38bZho2bAQ7\ndmzjqacew9HREZ1Ox6efLr2m8wwaNITy8nIee2wqBw7sw83NeiMfcpl4M/j6uvLdgU2sOP4f1IqK\nhyIm08u3h0XPKa5OLnm1XZIb2yR5sV1tJTclJcXs3buHYcNGkpubw1NPPcaKFf9p0XPIZeItLKp9\nf9zsXVl2aDlLDy1nYtcJDAmIau2whBBCCJvh5OTMpk0bWLFiOUajgenTZ1jt3NKD0wyXVtZpJel8\ncOATymrLiQ0awW2dxlh1EpX4TVv5jactktzYJsmL7ZLcNJ7VF9u8UQS5dWRmv2n4OHixLm0TXxz7\nBr3BepOohBBCCHE5KXBagM7Jh5k3TSPQtQM7M/fw4aHPqKqrbu2whBBCiBuWFDgtxE3rylN9HqW7\nVxeO5B/n7X0fUVpz+U2QhBBCCGF5UuC0IAeNPY9FPsQA/36cLT3Hm0nvk1uR39phCSGEEDccKXBa\nmFqlZkr3exgTNILcynwWJb1HWkl6a4clhBBCNMldd42joqKC5cs/4/Dhg/Veq6io4K67xl1x/82b\nNwKwZs33bNnys8XiNEcKHAtQFIXbQ2OZ2GUC5bUV/GPfRyTnH2/tsIQQQogmmzLlQXr0iGzSPpmZ\n59mwIR6AW28dx9Chwy0R2hXJfXAsKLrDINzs3fg0eQUfHvyU+7rdxcB2N7V2WEIIIW5gf/rTfSxY\n8Cb+/v5kZWUye/ZMfH11VFZWUlVVxTPPPEt4+G83r33llfkMGzaS3r378Pe//5WamhrTopsAP/20\nllWrVqJWqwgODuVvf/s7ixe/ztGjyXz66VIMBgMeHh7ceedEPvjgbQ4dOkBdnZ4777yH2NixPPHE\nI/TvP4C9e/dQVFTE66+/hb+//zW/TylwLKy3bw+m9/4zHx78jOVHv6aouoQxQcPlXjlCCCFYffIH\n9uUcumy7WqWgNzTvNnV9dD35Q+fbzL4eHT2c7du3cued97Bt2xaio4cTGhpGdPQwkpJ28+WXn/PK\nK29ctl98/Fo6dQrlySdnsnHjT6YemsrKSt58811cXV2ZNu3PnDp1knvvncLq1V/z0EN/5p///AiA\n/fv3cvr0KZYs+YTKykr++MdJREcPA8DZ2Zm3317CkiXvsnXrJu65Z3Kz3vulZIiqiQpKqhpcQfVK\nOnuEMLPf43jae/D96XV8nfItBqPBQhEKIYQQ5l0ocLYB8MsvW7jllqFs2bKRxx6bypIl71JcXNzg\nfqmpp+nRoxcAffr0M213c3Nj9uyZPPHEI6SlnaG4uKjB/Y8dO0Lv3n0BcHR0JDi4E+npF+ao9urV\nBwCdTkdZWctcgSw9OE1wKqOYV5YnMeKmjtw7IhS1qvH1YTtnP/5y0zTe3/9PtmYkUFxTyoPh96JV\n21kwYiGEELbsD51va7C3xZJ3Mu7UKZT8/Fyys7MoLS1l27bN+PjomDv3JY4dO8J77/2jwf2MRlCp\nLow+GH7tXaqtrWXx4oV89tkKvL19+OtfnzZ7XkVRuLR/oK6u1nQ8tVp9yXlaZoEF6cFpgg46Fzq1\nd2PTnnQ++u4Idfqm9cJ42LvzTN/HCPPoxIHcw7y7fynltRUWilYIIYRoWFTULXz88QcMGTKU4uIi\nAgI6ALBly8/U1dU1uE9gYBDHjh0FYO/ePQBUVJSjVqvx9vYhOzuLY8eOUldXh0qlQq+vf1f/bt0i\n2Lcv6df9KsjIOEeHDoGWeotS4DSFvZ2amRN7E9HJmz3Hcnhv9SFq65q2LIOTnSPTej9MX10kp4tT\nWZz0AQVVhRaKWAghhLjc0KHD2bAhnmHDRhIbO5aVK7/kmWemERHRg/z8fH788bvL9omNHUty8iGe\neuox0tPTUBQFd3cP+vcfwMMPP8Cnny5l8uQpvPPOYoKCQjh+/BjvvPOmaf9evXrTtWs3pk37M888\nM43/+78ncHR0tNh7lMU2m8HV3ZEXPk7g8JkCugd5Mv3OnjhomzbaZzAaWH3yB35O/wV3rRvTek8l\nwKWdhSK+McjidLZLcmObJC+2S3LTeLLYZgty0GqYfmckfcJ8OJpWyOKVB6ioarhLzxyVouKusNu5\no/NYimtKWJy0hJTCUxaKWAghhLixSIHTTHYaFY9N6MHAcD9OZhTzxlf7KK2oafJxYgKH8mD4vdQa\nanl//zKSsvdbIFohhBDixiIFzjXQqFU8fFs40b3akZZdysIV+ygua/oq4v39+/B4rz+hUWn4JHkF\nm9K3WSBaIYQQ4sYhBc41UqkUHojtRky/DmTklfPql3vJL65q8nG6eYXxdN/HcNO68p8T37P65A9y\nrxwhhBCimaTAaQEqReHemDDGRgWRU1jJa18mkV3Y9Mu/O7q25y/9puHn5MvGs1v5/Mi/qTM0bW6P\nEEIIIaTAaTGKonDn0FD+EN2J/JJqXvtyLxl55U0+jrejFzP6PU6IWyB7svfzwYFPqKxreo+QEEII\ncSOTAqeF3TYomEkjwyguq+H1L/dyNrvpl/m52DnzZJ9H6OkTzvHCk7y1dwnF1SUWiFYIIYRom6TA\nsYDR/Tvyx9iulFfWsnDFPk5lNLyux5Vo1Vr+3GMKg9sPIKMsk0VJ75NdnmOBaIUQQoi2RwocCxna\nO4CHx4VTVaNn0cr9HEtr+t2K1So193b9A7eFjKagqpA3kz7gdHGaBaIVQggh2hYpcCwoKsKfxyb0\noK7OwFvfHODQ6fwmH0NRFOJCYriv211U6qt4Z99HHMxNtkC0QgghRNshBY6F9evqy5N3RQLwzqqD\nJB3PbdZxBrW/mUd7/hEFhY8P/YtfMna2ZJhCCCFEm2LRtagWLFjAgQMHUBSFOXPmEBkZaXptxIgR\n+Pv7m5ZIX7RoEX5+fixcuJCkpCTq6up49NFHGT16NJmZmfz1r39Fr9fj6+vLG2+8gVarNXteS6/f\n0Zw1Qo6fLeQfqw5SW2tg6m3diYrwb9a5U0vOsuTAp5TVlhMXHMPYkFEoitKsY7U1snaL7ZLc2CbJ\ni+2S3DSe1dei2rVrF2lpaaxcuZJXXnmFV1555bI2S5cuZfny5Sxfvhw/Pz927tzJiRMnWLlyJcuW\nLWPBggUAvPPOO0yePJkVK1YQFBTEqlWrLBW2xXQN9OQvE3vjoFWz7PsjbNmf0azjBLsFMqPf43g7\neLE2dQMrjq1Cb2jaiuZCCCFEW2exAichIYGYmBgAQkNDKS4upqys7Ir79O/fn7fffhsANzc3Kisr\n0ev1JCYmMnLkSACGDx9OQkKCpcK2qNAAd/46uQ/OjnZ8vu44P+1Ob9Zx/Jx8+ctN0+joGsCOzN18\nfOhzqvVNXwdLCCGEaKssVuDk5eXh6elpeu7l5UVubv35J/PmzePee+9l0aJFGI1G1Go1Tk5OAKxa\ntYro6GjUajWVlZWmISlvb+/LjnM9CfRz5W/39cXdRcu/N57g+x2pzTqOm9aVp/s8SnevLhzOP8bb\n+z6itObKBaQQQghxo9BY60S/n+rz5JNPMmTIENzd3Zk2bRrx8fHExsYCsGHDBlatWsUnn3xy1eM0\nxNPTCY1G3TKBm2FuzK+x+74xPZrnPtzOf7eeRmOnZkpc92bMpXFlrm46H+7+gq1piby9/0PmDH0C\nPxffZsd2vbuWvAjLktzYJsmL7ZLcXBuLFTg6nY68vDzT85ycHHx9f/vBO2HCBNPj6OhoUlJSiI2N\nZdu2bXz44YcsW7YMV9cLyXVycqKqqgoHBweys7PR6XRXPHdhM9aBaoqWmPylAZ6d1IdF/97HNxtP\nUFhUyaSYMFTNmDB8T6c/4IATP6X9zJz1C3m8158IdO1wTfFdj2RSnu2S3NgmyYvtktw0ntUnGQ8e\nPJj4+HgAkpOT0el0uLi4AFBaWsrUqVOpqbkwb2T37t2EhYVRWlrKwoUL+eijj/Dw8DAda9CgQaZj\n/fTTTwwZMsRSYVuVt7sDs+7rS4CvMxuSzvH52mMYDE2/qE1RFMaHxnF3l/GU1ZTzj70fcjQ/xQIR\nCyGEENcHi14mvmjRIvbs2YOiKMybN48jR47g6urKqFGj+Pzzz/n222+xt7cnPDycuXPn8vXXX/Pu\nu+8SEhJiOsbrr7+ORqPhb3/7G9XV1bRv355XX30VOzs7s+e1xcvEr6SsspY3V+4nLauUAeF+TB3b\nHY26ebXnvpxDfHbkKwxGA/d3u5sB7fq1WJy2Tn7jsV2SG9skebFdkpvGM9eDY9ECp7VcbwUOQEVV\nHf/45gAnM4rpE+bD/43vgZ2meUXOyaIzfHjwMyrrKhkfGseowGE3xL1y5D8E2yW5sU2SF9sluWk8\nqw9RiaZxctAwc2Jvugd5su9EHu/85yDVtc27v01njxBm9H0MD3t3/ndqLd+c+B8Go6GFIxZCCCFs\nlxQ4NsReq+bpuyOJDPUm+UwBb319gMrqumYdq72LP3/pN432zv5sObeDTw5/Sa2+toUjFkIIIWyT\nFDg2xk6j5ok/9OSmbjpS0otY9O/9lFc1rzDxdPDgmb6P0dkjhH25h3h3/zIqai17hZkQQghhC6TA\nsUEatYpHbw9ncA9/zmSWsHDFPkrKm3enYic7R57o9TB9dJGcKj7D4r1LKKwqauGIhRBCCNsiBY6N\nUqtUPDS2O8P7BJCeU8brK/ZSWFrdrGPZqe34U8RkhnUYTGZ5NouS3ud8WVYLRyyEEELYDilwbJhK\nUbh/dBfG3NyRzPwKXv0iidyiymYeS8VdYbczIfRWiqqLWbz3A04UnmrhiIUQQgjboJ4/f/781g6i\npVVUWHbhSWdne4uf4yJFUYgI9gJg34k8ko7nEhnqjauTtlnHCvUIxtfRm705B9mdtY9qfQ0lNaXU\n6GuxV9thpzZ/fyFbZ828iKaR3NgmyYvtktw0nrOzfYPbrbYWlWg+RVGYMKQT9lo13/x8ite/3MvM\nSX3oqHNp1vFu9u+Lq9aFZYeWs/7s5nqvOds5oXP0Refkg6+jDzonH9NjB03D/4iEEEIIWyM3+muG\n1rwB06a95/jipxScHTTMmNibkHZuzT5WeW0F6aUZ5FTkkVuZR05FLjmVeeRVFjR43xx3rSu+Tj6m\nAuhi4ePr6G0TPT9yYyzbJbmxTZIX2yW5aTxzN/qTHpzrzIi+HbC3U/PJmqO88dU+nr67F106elx9\nxwY42znRzSuMbl5h9bbrDXryqwp/LXou/skltzKPU0WpnCw6U6+9goKngwe6X3t8LhRBFx57O3ih\nVll2ZXchhBDi96TAuQ4N7tkOO42Kpd8fYfHK/Uy/M5KIEK8WO75apTb10ER413+tVl9LXlVBvaLn\nYhF0rPAExwpP1GuvUlT4OHhdKHpMhY8vvo4+eDq4o1JknrsQQoiWJwXOderm7n5o7dR88N/DvL3q\nAI9P6EnvMB+Ln9dObUc7Zz/aOftd9lpVXTW5lfm/DXeZhr7ySM4/RnJ+/fYalQZfR+/fih6n3x67\naV1viPWzhBBCWIbMwWkGWxobTU4t4N3/HESvN/LnceHc3P3ywsMWVNRWkHNJb8+lPT9V+qrL2tur\ntegcLx3u8jX1ArnYOTd4DlvKi6hPcmObJC+2S3LTeDIHp42KCPZixj29eXvVAT76LpnqWj1DItu3\ndliXcbJzItgukGC3wHrbjUYjZbXlZFfkkluRZyqCcivzyKrIJb3s/OXH0jheMtnZG52TLzpHHxzc\nOqI36GXOjxBCCOnBaQ5brKzPZJaweOV+yqvquG9UF0b269DaIV0zg9FAcXXJhZ6eykvn/OSTV5mP\n3tjwautalR2OGgccNI44ahx+feyAo9qh3nOHXx9f3G56rnFAo5LavyXZ4ndGSF5smeSm8aQHp40L\naefG3yb3ZdHK/Xy5PoWaWj1xA4NaO6xrolJUeDp44OngQVc613tNb9BTWF1EdkWeqeenwlhGcXkZ\nlfoqKuuqKK8tv2IhdCV2Ks0lBZDjrwWQfQNF0W9FlOPviiaNSiPziIQQopVIgdOGdNC5MOu+vrzx\n1T6+2XyKqho9E4aEtMkfsmqVGh9Hb3wcvcG7K9DwbzxGo5FaQx1VvxY9VXUX/r74p6qu8sLjBl6/\n+LiwqohaQ13TY1TUlxU9v+8p+u2xIw5qe9N2FzsXXLQNzzUSQghxdVLgtDH+Xk7Mvq8vb/x7H9/v\nSKW6Vs/EEZ3bZJHTGIqioFXboVXb4aZtuBuzMWoNdaaCx1QE1SuKKuu9VqWvrldElVSXUGOobdI5\n/9zzAXr79mh2zEIIcSOTAqcN8vFwZNZ9/Vj07338tDudmjoD94/uguoGLXJagp1Kg53WBVdt85bH\ngAvDapX6hnqRLhZFF7dVkpC5hx9OxxPpEy73ChJCiGaQAqeN8nS152+T+/Lmyv1s3pdBdY2eP43t\nhlolPyxbi1qlxkXlbPYy90vVGfQkZiVxMDeZ3rqeVohOCCHaFvlp14a5OWv56+Q+dGrvRkJyFh/9\nL5k6/eVrTAnbMyZoOAoK61I30gYvdBRCCIuTAqeNc3awY+bE3nTp6MGe47m8t/oQNbVNv6pIWJef\ns46+ukjSy85zOP9oa4cjhBDXHSlwbgCO9hqeuacXPUK8OHgqn7dXHaSqpulXBQnrig0eCcDaM9KL\nI4QQTSUFzg3C3k7N9Dsj6RPmw9G0QhavPEBFVdOu6hHW1d7Fn96+PUgrTedoQUprhyOEENcVKXBu\nIHYaFY9N6MHAcD9OZhTzxlf7ySuqlN4BGxYbHAPAWpmLI4QQTSJXUd1gNGoVD98WjtZOxdYDmfz1\nwwQctGr8vJzw//WPn5fjhb/XBwlXAAAgAElEQVQ9nXC0l38iramja3t6+nTnUN5RThSdootn56vv\nJIQQQgqcG5FKpfBAbDc6+Lpw/GwRWQUVZOSWk5Z1+bon7s7aX4sfxwt/ezrh5+WEr4cjdhrpALSG\nuOAYDuUdZe2ZjVLgCCFEI0mBc4NSKQoxN3Uk5qaOABgMRgpKqsgqrCC7oJKsggqyCyrIKqjgRHoR\nKelF9fZXFPBxd6hX9Fzs/fFyc5CbCragILeOdPfqwtGCFE4WnaGzR0hrhySEEDZPChwBXOjV8fFw\nxMfDkR6/+/lZW6cnp6iK7EuKnuyCCrIKKzl8uoDDFNRrb6dRofN0NBU+F4e8/L2ccHG0u2GXjbgW\nccExHC1IYV3qRp7o/XBrhyOEEDZPChxxVXYaNQE+zgT4XH4H3oqqOrILLyl8Ci/0/lwc9vo9ZwfN\nhaLH85Jhr1+f22vV1ng716VQj2C6eIRytCCF1JKzBLsFtnZIQghh06TAEdfEyUFDSDs3Qtq51dtu\nNBopKa8xFTumYa/CCtKySjl9vuSyY3m62uPn+esEZ6/fhr183B3QqGW+T1xIDCn7TrH2zEYe6/VQ\na4cjhBA2TQocYRGKouDuYo+7iz1dAz3rvaY3GMgvriKroPLXoa4K0/DXsbNFHDtbf76PSlHw9XC4\nZJ6PE/6eF3p/PF3tb5ghrzCPToS6B3M4/yjppRl0dA1o7ZCEEMJmSYEjrE6tUqHzdELn6QSh3vVe\nq67Vk1v4W2/Ppb0/B0/lc/BUfr32WjvVr8NdTgS1d0ejgJuTHW7OWtMfFwc7VKrrvwhSFIW44Bje\nO7CMdakb+XPPB1o7JCGEsFlS4AibYm+npoPOhQ46l8teK6usvWS+T+Vvk54LK0jPKWP3sZwGj6ko\n4Oqkxc1Ji7uzHa7OFx9rL2x3vvDYzVmLq5OdTQ+HdfMKI8itI/tzD3O+LIv2Lv6tHZIQQtgkixY4\nCxYs4MCBAyiKwpw5c4iMjDS9NmLECPz9/VGrL0wsXbRoEX5+fqSkpPD444/z4IMPcv/99wMwa9Ys\nkpOT8fDwAGDq1KkMGzbMkqELG+TiaIeLozuh7d3rbTcajRSV1VCLQvr5IkrKaygur6G0ovbC44oa\nSspryC+p5Fxu2VXP4+ygudD746TF1VmLu5MWN2c70zZT75CT1uoToy/04ozkw4OfsS51I3/qcZ9V\nzy+EENcLixU4u3btIi0tjZUrV3Lq1CnmzJnDypUr67VZunQpzs6/XZlTUVHBSy+9RFRU1GXHmzFj\nBsOHD7dUuOI6pigKnq72+Pq6onPVXrFtTa2ekooLxU9x+YXCp6S8hpKKSx9fKIyy8iu42uII9nbq\ny4ufekXQb8NlTvaaFpkv1MO7Ox1d2rM35yC3lo/C31l3zccUQoi2xmIFTkJCAjExF9bRCQ0Npbi4\nmLKyMlxcLh96uEir1bJ06VKWLl1qqbDEDU5rp8bH3REfd8erttUbDKZeoN8KoNr6xdCvr6VmlqI3\nXLkc0qgV05CY2yW9Qu6/9hRd+tjV0fy8IUVRiA2JYemhfxGftok/hk9q1mchhBBtmcUKnLy8PCIi\nIkzPvby8yM3NrVfgzJs3j4yMDPr168fMmTPRaDRoNA2H9MUXX/Dpp5/i7e3N3Llz8fLyMntuT08n\nNBrLDh34+rpa9PiieVo6L42d4WIwGCmrrKWotIrishqKSqspLPvtcVFpNUVlVRSV1ZCZX9HgshiX\n0mpUPP/wQHqF+Tb4+kifAaw7u4E92fu5v98E/F0abmdL5DtjmyQvtktyc22sNsn49yshP/nkkwwZ\nMgR3d3emTZtGfHw8sbGxDe47fvx4PDw86N69Ox9//DHvvfcezz//vNlzFRZWtGjsv+fr60pu7pV/\nQAnrs4W8OKoVHN3t8Xe3B9wabGM0Gqmq+XWorPzXobKKGkovzhcqqyEpJZdPvjvM36f0MzusNarD\nMD5JXsG/937Pfd3vtuC7una2kBtxOcmL7ZLcNJ65QtBiBY5OpyMvL8/0PCcnB1/f337LnDBhgulx\ndHQ0KSkpZgucS+fkjBgxgvnz57d8wEJYiaIoONprcLTX4OfZcJv3Vh9ib0ouR1ILiQhpuLeyjy4S\nvzPr2ZmVRGzwSLwdzfdqCiHEjcZi18MOHjyY+Ph4AJKTk9HpdKbhqdLSUqZOnUpNTQ0Au3fvJiws\nzOyxpk+fTnp6OgCJiYlXbCtEWzBuUDAA328/Y7aNSlExJmgEBqOBn85utk5gQghxnbBYD07fvn2J\niIhg0qRJKIrCvHnzWL16Na6urowaNYro6GgmTpyIvb094eHhxMbGcvjwYV5//XUyMjLQaDTEx8fz\n7rvvct999/H000/j6OiIk5MTr776qqXCFsImBPm7EhnqzcFT+Rw/W3jZ3aAvusmvN2tSN7Dz/G7i\ngkfiYe/eYDshhLjRKMbfT45pAyw9biljo7apreXlVEYxryxPonuQJ8/e28dsux3nd/PlsW8Y1mEw\nd3cZb8UIG6+t5aatkLzYLslN45mbg2O7t2wV4gYXGuBOeLAnR9MKOZlRbLbdAP++eDl4sv18IsXV\n8h+iEEKAFDhC2LTf5uKkmm2jVqkZHTSMWkMdG9O3WCcwIYSwcVLgCGHDugZ60qWjB4dO53Mms8Rs\nu4Ht+uNh7862cwmU1lx9OQohhGjrpMARwsaNGxwMwA87Us22sVNpGBU4jBpDLZvSt1knMCGEsGFS\n4Ahh48KDPAlt78a+E3mk55jvnRnU/mZctS5sPbeD8lrL3uxSCCFsnRQ4Qtg4RVFMvTjfX6EXR6u2\nIyZwKFX6ajan/2Kd4IQQwkZJgSPEdaBnJ2+C/F1JOpbD+bxys+2GBEThYufMz+e2U1lXacUIhRDC\ntkiBI8R1QFEUxg0Kxgj8kJBqtp29WsuIjkOorKtky7kd1gpPCCFsjhQ4Qlwneof50MHXmcQj2WRf\nYUHZ6A6DcNI4sil9G1V11VaMUAghbIcUOEJcJ1SKwm2DgjEa4ceENLPtHDUODO94C+W1FWzLSLBi\nhEIIYTukwBHiOnJTVx3tvJ1IOJxFXpH5OTbDOtyCg9qBjWe3UqOvsWKEQghhG6TAEeI6olIp3BYV\njN5gZE3iWbPtnOwcGdZhEKW1ZWw/v8uKEQohhG2QAkeI68zN4Tp0Ho78cvA8haXm59gM7zgErVrL\n+rTN1OprrRihEEK0PilwhLjOqFUqxkYFUac3snan+bk4LlpnogOiKK4pISFztxUjFEKI1icFjhDX\noage/ni7ObDlwHmKy8z34owMjMZOZcdPaZupM9RZMUIhhGhdUuAIcR3SqFXcGhVEbZ2B+F3pZtu5\naV25JWAAhdVFJGYlWTFCIYRoXVLgCHGduqVnOzxd7fl5XwalFeavlIoJHIpGpeGn1J/RG/RWjFAI\nIVqPFDhCXKfsNCpiBwRSXavnp93me3E87N0Z1K4/eVUF7Mneb8UIhRCi9UiBI8R1bGiv9rg5a9mY\ndI7yKvNXSo0KGoZaUbMubSMGo8GKEQohROuQAkeI65jWTk3szYFU1ejZsOec2XZeDp4M8O9HTkUe\ne7MPWDFCIYRoHVLgCHGdG9anPS6OdqzfnU5ltfkrpcYED0elqFiXtkl6cYQQbZ4UOEJc5xy0Gkb3\n70hFdR2b9prvxfFx9Ka/Xx8yy7M5kJtsxQiFEML6pMARog0Y2a8DTvYa4nelU11j/kqpMcEjUFBY\nl7oRo9FoxQiFEMK6pMARog1wtNcQc1MHyipr+Xlfhtl2fk6+9PPrxbmy8xzOP2rFCIUQwrqkwBGi\njRjVvyMOWjXrdp2lpvYKvThBIwBYc2aD9OIIIdosKXCEaCOcHewY2a8DJeU1bD1w3my79i7+9PHt\nydnScxwpSLFihEIIYT1S4AjRhozq3xGtnYq1iWeprTN/pVRs8EgA1qVKL44Qom2SAkeINsTNScuw\n3gEUllaz/VCm2XYdXNvT0yec08VppBSesmKEQghhHVLgCNHGxA4IRKNWsWZnGnV68704cb/24qxN\n3WCt0IQQwmqkwBGijfFwsWdor/bkFVeRkJxltl2QW0fCvbpyoug0J4vOWDFCIYSwPClwhGiD4gYG\nolYp/JiQht5whV6ckF97cc5IL44Qom2RAkeINsjLzYFbItuRU1jJrqM5Ztt1cg+mq2dnjhWe4Ezx\nWStGKIQQliUFjhBt1K0Dg1ApCj/sSMVwhSul4i65okoIIdoKixY4CxYsYOLEiUyaNImDBw/We23E\niBFMnjyZKVOmMGXKFLKzswFISUkhJiaGL774wtQ2MzOTKVOmMHnyZJ566ilqamosGbYQbYKvhyNR\nPfzIzK8g6Xiu2XZhnqGEuodwOP8YZ0vNr2UlhBDXE4sVOLt27SItLY2VK1fyyiuv8Morr1zWZunS\npSxfvpzly5fj5+dHRUUFL730ElFRUfXavfPOO0yePJkVK1YQFBTEqlWrLBW2EG3KbVHBKAp8v/0q\nvTghF3txNlkrNCGEsCiLFTgJCQnExMQAEBoaSnFxMWVlZVfcR6vVsnTpUnQ6Xb3tiYmJjBx54T/g\n4cOHk5CQYJmghWhj/LycGNDdj3O5ZRw4mWe2XTfPMILdAjmQe5iMMvP3zxFCiOuFxlIHzsvLIyIi\nwvTcy8uL3NxcXFxcTNvmzZtHRkYG/fr1Y+bMmWg0GjSay0OqrKxEq9UC4O3tTW6u+e52AE9PJzQa\ndQu9k4b5+rpa9PiieSQvl5syNpzEo9ms3ZXOqKgQFEVpsN2kXuN4bdv7/Jy5lWcGPdzicUhubJPk\nxXZJbq6NxQqc3/v97eCffPJJhgwZgru7O9OmTSM+Pp7Y2NgmH6chhYUVzY6zMXx9XcnNLbXoOUTT\nSV4a5qhW6NfFlz3Hc/l5Vxo9O3k32K6DJpBA1wB2pu/lUOpJ/J39WiwGyY1tkrzYLslN45krBC02\nRKXT6cjL+61LPCcnB19fX9PzCRMm4O3tjUajITo6mpQU84v+OTk5UVVVBUB2dvZlQ1hCiCu7bVAw\ncGEujrlfEhRFITZ4JEaMrEv92YrRCSFEy7NYgTN48GDi4+MBSE5ORqfTmYanSktLmTp1qulqqN27\ndxMWFmb2WIMGDTId66effmLIkCGWCluINinQz5XenX04mVHMsbRCs+16+oTT3tmfPdn7yKkwP2dH\nCCFsncUKnL59+xIREcGkSZN4+eWXmTdvHqtXr2b9+vW4uroSHR1tuoTcy8uL2NhYDh8+zJQpU/jv\nf//Lv/71L6ZMmUJRURHTp0/n22+/ZfLkyRQVFTFhwgRLhS1EmzVucDAA3+9INdtGpahMvTg/pUkv\njhDi+qUYGzOp5Tpj6XFLGRu1TZKXq1v89X4Ony5g1n196dLRo8E2BqOBlxMXk1uZx/yBf8Xb0eua\nzyu5sU2SF9sluWk8q8/BEULYntsHhQCN6cUZgcFokF4cIcR1SwocIW4gnTu40z3Ik+QzBZw+X2K2\nXT9dL3wdvdmZuYfCqiIrRiiEEC1DChwhbjDjTFdUnTHbRq1SMyZoBHVGPevPbrFSZEII0XKkwBHi\nBtM10IOwDu4cOJVPWpb5Mf6b/fvi7eDJjvOJFFfLXAAhxPVFChwhbjCKopiuqPrhCnNx1Co1o4KG\nU2uoY6P04gghrjONLnAuriOVl5fHnj17MBgMFgtKCGFZEcFehLRzIykll3O55teIG9juJjzs3dmW\nkUBpzZXXkhNCCFvSqALnpZdeYu3atRQVFTFp0iSWL1/O/PnzLRyaEMJSGtuLY6fSMCpoGDWGWjal\nb7NOcEII0QIaVeAcOXKEu+++m7Vr13LHHXfw9ttvk5aWZunYhBAW1CvUm0A/F3YfzSEzv9xsu0Ht\nbsZN68qWc9spr7XsOm9CCNFSGlXgXLwX4ObNmxkxYgSAaZkFIcT1SVEUxg0Kxgj8mGD+Fxat2o6Y\nwKFU62v4Of0X6wUohBDXoFEFTkhICLfeeivl5eV0796db7/9Fnd3d0vHJoSwsD5dfAnwdWZncjY5\nRZVm290SMBAXO2c2n/uFyjrz7YQQwlY0qsB5+eWXefPNN/nkk08ACAsLY+HChRYNTAhheSpF4bao\nYAxGI2sSUs22s1drGdkxmsq6Kjan77BafEII0VyNKnCOHj1KVlYWWq2Wt956i4ULF5KSkmLp2IQQ\nVtC/mw4/Lye2H8oiv7jKbLvoDlE4a5z4OX0bVXXm2wkhhC1odA9OSEgIe/bs4dChQ8ydO5d33nnH\n0rEJIaxApVK4LSoIvcHImkTzc3EcNA4M73gL5XUVbMvYacUIhRCi6RpV4Njb2xMcHMzGjRu55557\n6Ny5MyqV3CNQiLZiQLgfPu4ObDuQSWFptdl2QzsMxkHtwMazW6nRy4UGQgjb1agqpbKykrVr17Jh\nwwZuueUWioqKKCkxv1CfEOL6olGrGBsVRJ3ewLrEs2bbOdk5MqzjYEpry/jlfKIVIxRCiKZpVIEz\nY8YMvv/+e2bMmIGLiwvLly/nwQcftHBoQghrGtyzHV5u9mzZn0FJufnemeEdb8FerWVD2mZq9bVW\njFAIIRqvUQXOwIEDWbRoEYGBgRw5coSHH36Y22+/3dKxCSGsSKNWETcgiJo6A/G7zPfiuNg5Ex0w\niOKaUnZk7rZihEII0XiNKnA2bNjA6NGjmTdvHs899xxjxoxhyxZZfE+Itia6VzvcXbRs2ptBWaX5\n3pmRgdHYqexYn7aZOkOdFSMUQojGaVSBs2zZMr777jtWrVrF6tWr+eabb1iyZImlYxNCWJmdRk3c\nzYFU1+r5aXe62XauWheGBAyksLqIxMwkK0YohBCN06gCx87ODi8vL9NzPz8/7OzsLBaUEKL1DO0T\ngKuTHRuT0qmoMt+LExM4FI1KQ3zaz+gNeitGKIQQV9eoAsfZ2ZlPPvmEY8eOcezYMZYtW4azs7Ol\nYxNCtAJ7OzVjbg6kslrPhqRzZtu527sxqN3N5FcVsDt7nxUjFEKIq2tUgfPKK6+QmprKrFmzmD17\nNhkZGSxYsMDSsQkhWsnwPgE4O2hYvzudymrzc2xGBw1DraiJT92EwWiwYoRCCHFlmsY08vb25sUX\nX6y37dSpU/WGrYQQbYejvYZR/Tvy7bYzbN6XQdzAoAbbeTp4MLDdTWw/n0hS9gH6+/excqRCCNGw\nZt+O+IUXXmjJOIQQNiamXwcc7dXE7zpLda35OTajg4ajUlSsS5NeHCGE7Wh2gWM0GlsyDiGEjXFy\nsGNkv46UVNSyZf95s+18HL242a8vWeXZ7M89bMUIhRDCvGYXOIqitGQcQggbNLp/R+y1atYmplFb\nZ74XZ0zwcBQU1qVulF9+hBA24YpzcFatWmX2tdzc3BYPRghhW1wc7RjRJ4C1iWfZdjCTEX07NNhO\n5+RLP79e7Mnez6G8I0T6Rlg5UiGEqO+KBU5SkvkbePXu3bvFgxFC2J4xNweyMekca3amEd2rPRp1\nwx2/scEjSco+wNrUDfT0CZdeXiFEq7pigfPqq69aKw4hhI1yc9YytHcA6/eks+NwFtG92jfYrp2z\nH711PdmXc5AjBceJ8O5m5UiFEOI3jbpMfPLkyZf9NqZWqwkJCeHxxx/Hz8/PIsEJIWxD7IBAft6X\nwY8JqQzu6Y9a1XAvTlzwSPblHGTtmY2Ee3WVXhwhRKtp1CTjQYMG4e/vzx//+EceeughOnbsSL9+\n/QgJCWH27NmWjlEI0co8Xe0Z0qsduUVV7EzONtsuwKUdkT4RnClJ43jhSStGKIQQ9TWqwElKSuLN\nN99k9OjRxMTE8Nprr5GcnMyDDz5Iba35tWqEEG3HrQOCUKsUfkhIw2Awf6VUXPBIANalbrRWaEII\ncZlGFTj5+fkUFBSYnpeWlnL+/HlKSkooLS21WHBCCNvh7e7A4J7+ZBdUsPtYjtl2gW4dCPfuyomi\n05woPG3FCIUQ4jeNmoPzwAMPEBcXR0BAAIqicO7cOR599FF+/vlnJk6caHa/BQsWcODAARRFYc6c\nOURGRppeGzFiBP7+/qjVagAWLVqEn59fg/vMmjWL5ORkPDw8AJg6dSrDhg27hrcthGiOW6OC+eVg\nFj/sSKV/dx0qM3Ns4oJjOJJ/nHWpGwnz7GTlKIUQopEFzl133UVsbCypqakYDAYCAwNNxYY5u3bt\nIi0tjZUrV3Lq1CnmzJnDypUr67VZunRpvVXJr7TPjBkzGD58eFPfnxCiBek8HBkY4ceOw1nsS8ml\nX1ddg+06uQfRzTOMY4UnOFOchq9vDytHKoS40TVqiKq8vJzPP/+c9957jyVLlrBy5UqqqqquuE9C\nQgIxMTEAhIaGUlxcTFlZWYvvI4SwrrFRQSjA9ztSr3jX4thf5+Kslbk4QohW0KgCZ+7cuZSVlTFp\n0iTuuece8vLyeO655664T15eHp6enqbnXl5el939eN68edx7770sWrQIo9F4xX2++OILHnjgAZ55\n5pl684GEENbVztuZ/t11nM0u48CpfLPtwjw70dkjhOT8Y5wuSLNihEII0cghqry8PBYvXmx6Pnz4\ncKZMmdKkE/3+N70nn3ySIUOG4O7uzrRp04iPjze7z/jx4/Hw8KB79+58/PHHvPfeezz//PNmz+Xp\n6YRGo25SfE3l6+tq0eOL5pG8WMcDYyPYdTSHdbvOEjMw2Oz9bib1GsfLW97hrR3L+FO/ifRpJ0NV\ntka+M7ZLcnNtGlXgVFZWUllZiaOjIwAVFRVUV1dfcR+dTkdeXp7peU5ODr6+vqbnEyZMMD2Ojo4m\nJSXF7D4hISGmbSNGjGD+/PlXPHdhYUVj3laz+fq6kpsrV4/ZGsmL9ThpFPp28WVvSi6bd6fRI8S7\nwXb+qgBGBw1nw9ktvLr1fSJ9IrgzbBw+jl5Wjlg0RL4ztkty03jmCsFGDVFNnDiRuLg4nnjiCZ54\n4gnGjh3L5MmTr7jP4MGDTb0yycnJ6HQ6XFxcgAuXmU+dOpWamhoAdu/eTVhYmNl9pk+fTnp6OgCJ\niYmEhYU1JmwhhAWNGxQMwPfbzc/FURSF8aFxLBw9h84eIRzMS+blxEX8eGY9NXq5h5YQwnIafRXV\n4MGDSU5ORlEU5s6dy/Lly6+4T9++fYmIiGDSpEkoisK8efNYvXo1rq6ujBo1iujoaCZOnIi9vT3h\n4eHExsaiKMpl+wDcd999PP300zg6OuLk5CRrZAlhA4L8XYkM9ebgqXyOny2iW5Cn2baBHgE83ef/\nSMrez+qTP7LmzHoSM5O4u8vt9PQJt2LUQogbhWK80mUQV/DAAw/wr3/9q6XjaRGW7taTrkPbJHmx\nvlPni3nlX0l0D/Lk2Xv7mG13aW6q6qpYm7qRTenbMBgN9PDuxp1ht6Nz8rFW2OJX8p2xXZKbxjM3\nRNWoHpyGNLMuEkK0IaHt3YkI9iQ5tZCT54rp3MH9qvs4aBy4o/NYotrdxNcp/+Nw/jGOFZwgJnAo\nY4JHoFVrrRC5EKKta9QcnIbIKsFCCIBxgy9cBPDdjjNN2s/f2Y/pvf/M1B7346J1YV3aJl7cuYj9\nOYfkFyghxDW7Yg/O0KFDGyxkjEYjhYWFFgtKCHH96NLRg64dPTh8uoAzmSWEtHNr9L6KotBXF0mE\ndzfWpW5k49mtLD28nO5eXbg77Hb8nBu+U7IQQlzNFefgZGRkXHHngICAFg+oJcgcnBuT5KX1HEkt\nYNG/99O7sw9P3hV52euNzU12RS7fpPyPowUpqBU1IzoOITZ4JA4ae0uEfcOT74ztktw0XrPm4Nhq\nASOEsC3dgzwJDXBj/8k8zmaXEujXvBuU+Tn5Mq3XVA7mJbPqxPesP7uZ3dn7+EPnsfTV9ZKhcSFE\nozV7Do4QQlykKArjBl2Yi/PDjtRrPlYv3x7MHTCTuOAYymrL+SR5Be/sX0pmeXYLRCuEuBFIgSOE\naBE9O3kR7O9K0vFcMvLKr/l4WrWW2zqN5rmbZ9LDuzsphSdZsOst/nPieyrrrrzYrxBCSIEjhGgR\nF3pxgjECPyaktthxfZ28eazXQ/xf5IN42XuwKX0bL+18g11Ze+VqKyGEWVLgCCFaTO8wHzr4upB4\nJJvsgpZdE66nTzjPDZjJbSGjqair5PMj/+atvR+SUZbZoucRQrQNUuAIIVqMoiiMGxyM0Qg/JqS1\n+PHt1HbEhcQwd8Bf6OXbg1PFZ3ht99t8k/I/KmorW/x8QojrlxQ4QogW1a+rL+28nUhIziKvyDJF\nh7ejF4/0fIBpvabi4+DF5nPbeXHnGyRk7sFgNFjknEKI64sUOEKIFqVSFG4bFIzeYGTNzpbvxblU\nuHdX5gyYwfhOcVTrq/ni6NcsTlpCeumV7+ElhGj7pMARQrS4m7vr0Hk68suhTApKLHvFk51Kw+jg\n4Tw/8Fn66iI5U5LG67vf4d/H/0t5bcvOAxJCXD+kwBFCtDi1SsXYqCDq9EbWJp61yjk9HTyY2uN+\npvf+M35OvmzLSOCFnQvZnpEow1ZC3ICkwBFCWERUhD8+7g5sPXCeQgv34lyqm1cYs29+mjs6j6XO\nUMeK4/9h0Z73SStJt1oMQojWJwWOEMIiNGoVtw4MorbOwPurDlBaUWO9c6s0xAQO5fmBz3KTX2/S\nStN5Y897rDi2irKaa78JoRDC9qnnz58/v7WDaGkVFv6P1NnZ3uLnEE0nebE9Ab4uHD6dT/KZArYd\nOI+jVk2Qn6vV1pRy0DjQR9eTLh6dOFt6jiMFx9lxfhcOagc6ugbc8GtbyXfGdkluGs/ZueHFeK+4\nmvj1SlYTvzFJXmxTnd7ArpQ8vlx3lMpqPYF+Ltw/uiudA9ytGofeoGdrRgI/nP6JKn0VHV3ac0/X\nO+jkHmTVOGyJfGdsl+Sm8cytJi49OM0glbVtkrzYJpVKoW+4P306eVFaUcvhMwVsO5hJXlEloQHu\nOGjV1olDURHiHsjAdjdRVlvOkYIUEjJ3U1BZSCf3IOzVWqvEYUvkO2O7JDeNZ64HRwqcZpB/eLZJ\n8mK7nJ3t0dfp6dvFl+ginQoAACAASURBVPBgT85mlXL4TAFbD2Sg1agJbueKymrDVvb08u1BN88w\n0kszOFJwnO3nE9GqtHR0DUCl3DhTE+U7Y7skN40nQ1QtSLoObZPkxXb9PjcGg5HN+zNYveU0FdV1\nBPg6c/+oLnQN9LRqXAajgW0ZO/n+dDyVdZUEuLTjni4T6OwRYtU4Wot8Z2yX5KbxzA1RSYHTDPIP\nzzZJXmyXudyUVNSwesspth3IxAgMCPfjnuGd8XRt+DcySymtKeO7U2vZkbkbgP5+fbmj862427tZ\nNQ5rk++M7ZLcNJ4UOC1I/uHZJsmL7bpabk6fL+HL9cc5k1mKvVbN7YODGXVTRzRq6w4XpZacZeXx\nbzlbeg4HtT23hoxiWIfBqFXWmSdkbfKdsV2Sm8aTAqcFyT882yR5sV2NyY3BaOSXg5ms2nyKsspa\n2nk7MXlUFyKCvawU5cU4DOw4v4vvTq2jvK4Cf2c/JnYZTxfPzlaNwxrkO2O7JDeNJ1dRtSCZ/GWb\nJC+2qzG5URSFIH9XhvRqT1WtnsNnCthxOItzuWWEtnfHyUFjlVgVRSHQrQNR7ftTpa/maH4KO7OS\nyC7PIdgtEEeNg1XisAb5ztguyU3jyVVULUj+4dkmyYvtakputHZqeoX60LuzDxm55SSfKWDL/gyM\nQKd2rqhV1hm20qq19PTpTg/v7mSUZXK0IIVfzidiNBrwdfLGoQ0UOvKdsV2Sm8aTq6hakHQd2ibJ\ni+1qbm6MRiM7DmfxzeZTlJTXoPNw5N6YMHp19rFAlOYZjAYSM5P49tQaymrLUVDo5hXGAP9+9PKN\nQPv/7d15XJTnvffxz7AvwzoyDPumoIAbREXBFUz0pIlpmlarsT2vk9OePulpn+bktElpU9PTava+\nzknMkzZd0rxMc0Ka2CytW6JxR0BRVBZFZBUYdgTZZ+b5A0I00YToDHMx/N5/BZxhfuR73bc/r/u6\n72uCPkNHjhl1STZjJ2twrEgGnpokF3XdajY9fUO8e7iSvSfqMFsszJk6hXVZ09D7e1qxyi/WO9TL\nceMp8hpOUHl5eJd0d2c35upnscCQylT/mAn1HB05ZtQl2YydNDhWJANPTZKLuqyVTV1zN3/Zc55z\ntR0jm3lGsjotCnfX8b/LydjTTH5jIfmNhbT1tQMQ4O7PAkMK80NSCfYKGveaviw5ZtQl2YydNDhW\nJANPTZKLuqyZjcViIb+0iZx95XR0D6Dz9eCbWdOYO22KXTbPNFvMVHRUktdYyMmm0/SZ+gGI8Y1k\nviGV1ODZeLt6jXtdYyHHjLokm7GTBseKZOCpSXJRly2y6RsY4v0jVewpqMVktpAcE8j6lfEYAu3X\nTAyYBihqLiav8QRlbeVYsOCicSZ5SiILDCkk6hJwcRqfu8HGQo4ZdUk2YycNjhXJwFOT5KIuW2bT\n0HqF1z84T3FVO85OGu6YH8lXFkXh4WbfRqKjv3N0vU79lUYAtK7epAbPYYEhhUifcLvMOF1Njhl1\nSTZjJw2OFcnAU5Pkoi5bZ2OxWCg838wbe8tpvdxPgI87a1dMZd50vd2bCIvFQl13PXmNJyhoPEn3\n4BUADN7BLDCkMC94LgEe/napTY4ZdUk2YycNjhXJwFOT5KKu8cqmf9DEjtxqdubVMGQyMz3Snw0r\n4wkL0tr8s8fCZDZR2jb84MAzLSUMmYfQoCEhYCrzDSnMDkrGw2X89uGSY0Zdks3Y2aXB2bJlC0VF\nRWg0GrKzs5k1a9bon61YsQKDwYCz8/DdD88++yzBwcHXfU9DQwM/+clPMJlMBAUF8cwzz+DmduPn\nTkiDMzlJLuoa72ya2nv43w/LKapoxUmjIeu2cNZkxODprs76l57BHgqbTpPXWMjFzipg+OGCc4Nm\nssCQyrSAWJvfci7HjLokm7G7UYNjs6M9Pz+f6upqcnJyqKioIDs7m5ycnGte8/vf/x5vb+8vfM/z\nzz/P+vXrWb16Nb/5zW946623WL9+va1KF0JMcPoAL/7v12dz6kIL//vhefYU1HKsxMg3lsexMMlg\n98tWAF6uXmSEpZERlkZTTwsFjYXkNRaS13iCvMYTBLj7M88wlwWGVAzeenuXK8SEY7N/HuTm5pKV\nlQVAXFwcnZ2ddHd339R78vLyyMzMBGD58uXk5ubaqmwhhAOZM3UKv/7XBXx1cQx9/UP84e+lPPGX\nQmqMav3LWO81hTtjb+eXCx/hoZT/w6KQ+fQO9bGn+iN+lfcsTx9/gQN1R0fX7wghvpjNZnBaWlpI\nSkoa/TowMJDm5ma02k+uhW/atIlLly6RmprKww8/fMP39Pb2jl6S0ul0NDc3f+5nBwR44eJi2wd/\n3WhKTNiX5KIue2bzL/f485UlU/nDe2fJPdPAf/25gNWLYrh/1XS0Xmpts6DXz2LhtFkMDA1wvP40\nB6ryKGosofpyLW9feJ+UkGSWRqeREpKMi/Otn8LlmFGXZHNrxu2C9KeX+vzwhz9k8eLF+Pn58f3v\nf5/du3d/4Xtu9L1Pa2/vuflCx0CujapJclGXCtlogO/cOYOFiXpe/6Ccfxyp5EBhHfctiyNjVghO\nCly2+rRpnglMm5FAZ2wXx40nh+/EulREwaUivF28hm85D0khyifipi67qZCLuD7JZuzGfQ2OXq+n\npaVl9OumpiaCgj55dPk999wz+t9Llizh/PnzN3yPl5cXfX19eHh4YDQa0evlerQQ4uYkx+j4rwcC\n+KCglveOVPHnnWUcOFXP/bfHExPia+/yrsvP3YfMyCVkRi6hrqt+eIsIYyEHLx3l4KWjBHsFMd+Q\nynzDXAI9AuxdrhBKsNkanPT09NFZmeLiYvR6/ejlqa6uLh544AEGBoa3gi8oKGDatGk3fM+iRYtG\nv79nzx4WL15sq7KFEJOAi7MTq9Oi2PydBcyfoaey4TK/fvU4f95ZRlfPgL3L+1zhPqHcO+0rbF70\nMx6c/S+k6mfT1tfO+xd38YujT/I/J1/mWMNx+ob67F2qEHZl09vEn332WY4fP45Go2HTpk2UlJTg\n4+PDypUrefXVV3nnnXdwd3cnMTGRxx57DI1G85n3TJ8+naamJh555BH6+/sJDQ3liSeewNXV9Yaf\nK7eJT06Si7pUz6asup2/fHCeSy1X8PZw4d4lsSydE4aTk3qXra6nd6iXk01nyGs8wYWOSgDcnFyZ\nHTSTBSEpJARMve4t56rnMplJNmMnD/qzIhl4apJc1DURshkymdlXeIl3D1+kt99EZLCW+1cmMDXc\nz96lfSktva3kj9xy3tLbCoC/ux/zgueyICSVEO/g0ddOhFwmK8lm7KTBsSIZeGqSXNQ1kbLp7O7n\nr/srOHp2eP+o9GQD9y2fip+3WndbfRGLxULl5WqONZygsKmI3pFLVpE+Ycw3pHJb8Bxiw0ImTC6T\nzUQ6ZuxNGhwrkoGnJslFXRMxm/K6Dv6y5zw1Td14ujtzT0YsK1LDcHay7dOFbWHQNMiZ1lLyGk5Q\n0nYOs8WMk8aJuSFJJPjGkxiYYLf9sMT1TcRjxl6kwbEiGXhqklzUNVGzMZst7D91ie0HLtLTP0RY\nkDdrV0wlMTpQydvKx6JroHtkl/Pj1HbXj34/1NtAoi6BxMAE4vyjcXFSZ1uLyWiiHjP2IA2OFcnA\nU5Pkoq6Jns3lngG2H7jIoaJ6LMAUPw/SkoJZmGQgROf9he9X1ZBHL4fKh2d1ytsrGDQPAcN7YiUE\nTCVppOHReQbaudLJZ6IfM+NJGhwrkoGnJslFXY6STWXDZfadqOP4+Wb6B0wARBt8WJhsYMGMYHwn\n2Dqdq3MZMA1yoeMiJa3nKGk7h7HnkyfGB3vpSdTFkxQ4nan+Mbg63/guVmEdjnLMjAdpcKxIBp6a\nJBd1OVo2/YMmTpY3k3vWSHFlG2aLBSeNhuTYQNKSgpk7LQh3V9tuF2MNn5dLS2/bSLNTxrn2CgZM\nw88HcnVyJT4gjsTABBJ18ei9gq77fnFrHO2YsSVpcKxIBp6aJBd1OXI2nVcGyC8xklvcSFXj8O/o\n7ubMbfFBLEw2MD0yQNnn6Yw1l0HzEBUdlZS0naOk9RwNV4yjfzbFU0diYAJJugSmBcTh7jyxZrFU\n5cjHjLVJg2NFMvDUJLmoa7JkU99yhWMljeSeNdJ6efi27AAfdxYkBrMoyUC4XvsFP2F83Wwu7X0d\no5eyytou0Gca/l1dnFyY6hdDom644Qn20t/UHlli8hwz1iANjhXJwFOT5KKuyZaN2WKhvLaD3GIj\nBWVN9PYPL94ND9KyKNnAgsRgAnzc7VyldXIxmU1c7Kwend2pu+rOrECPABID40nUJZAQMBUPF49b\nLXnSmGzHzK2QBseKZOCpSXJR12TOZnDIRNGFVnKLGzld0YrJbEEDzIgOYGGSgZT4IDzd7XNLti1y\n6ey/TEnbeUpbz1Hadp6eoV4AnDROxPlFj8zuTCfU2yCzO59jMh8zX5Y0OFYkA09Nkou6JJth3b2D\nFJQaOVrcSMWlywC4uTiREh9EWpKBpJiAcX2QoK1zMZlNVHfVUdJaRknreWq66rAw/FeOn5vv8HN3\ndAlMD5iGl6unzeqYiOSYGTtpcKxIBp6aJBd1STaf1dTeQ26xkdyzjTR1DM9y+Hq5Mj8xmEXJBqKC\nfWw+wzHeuXQNdFPadp6S1vOUtp2je/AKMDy7E+0bOfrcnXCf0OtuDjqZyDEzdtLgWJEMPDVJLuqS\nbG7MYrFwsf4yR4sbKShtort3EIAQnRcLkwykJQUzxc82sxv2zMVsMVPbdWl0sXJlZ83o7I6Pq5YZ\nuniSAhOYHhiP1m3iPkzxZskxM3bS4FiRDDw1SS7qkmzGZshk5szFVnKLjZwqb2HIZAYgIcKfhckG\nbksIwsvDeg/ZUymXK4M9lLWVjzY8lweG69KgIco3YmSx8nSifMMnxeyOStmoThocK5KBpybJRV2S\nzZfX0zfI8XPN5J5t5FxtBwAuzk7MmapjYbKBmbE6XJxv7S96VXOxWCzUdTdQ2nqO4rYyLnZWY7YM\nN3verl7MCBzeIHSGLh5ft+v/5TbRqZqNiqTBsSIZeGqSXNQl2dyals5e8kqMHD3bSENrDwBaT1fm\nzdCzKMlAbKjvTa3XmSi59A71cq7tAiVt5yhuPUdHf+fon0X4hI08VTmBGN9InJ3Uf4L0WEyUbFQg\nDY4VycBTk+SiLsnGOiwWCzXGbo6ebSSv1MjlK8PbJ+gDPEfX6wQHeI35503EXCwWCw1XjKPP3bnQ\nUYnJMrwvmM4jgOURi1kYMg8PF/s/Z+hWTMRs7EUaHCuSgacmyUVdko31mcxmSqrayT3bSOH5ZgaG\nhi/hxIX5sjDJwPwZwWg9P3+9jiPk0jfUT3lHBaebiykwnmTQPISniyeLw9JYFp6On7uvvUu8KY6Q\nzXiRBseKZOCpSXJRl2RjW739QxSeb+ZYcSMl1e1YLODspGFmrI5FyQZmT9Xh6vLZSzeOlkvXQDeH\nLuVyoO4o3YNXcNY4M88wl8yIJYRqDfYu70txtGxsSRocK5KBpybJRV2Szfhp7+onb2Tzz9qmbgA8\n3V2YNz2IhUkGpkX44zSyXsdRcxkwDZLfeIK9tQdp6mkBIFGXQFbEUuID4ibEE5QdNRtbkAbHimTg\nqUlyUZdkYx91Td0cLW7kWHEjHd3D63V0vh6kJQWzMMnA7BkGh87FbDFztqWUD2sOUtFZCUCENpTM\nyKWk6GcpvSBZjpmxkwbHimTgqUlyUZdkY19ms4WymnZyixs5fq6Z/oHhRblx4X7MjA5kZpyOKIPP\n6MyOI6rsrGFvzQFONZ/FgoUAd39WRGSwKHS+kpuAyjEzdtLgWJEMPDVJLuqSbNTRP2jiVHkLucWN\nnK1sw2weeXqwlyvJMcPNTnKM7gsXKE9UzT2tfFR3iNz6AgbMg3i6eJARmsayiHT83f3sXd4oOWbG\nThocK5KBpybJRV2SjZo8tR4cPF7DmYpWzlxspXPktnONBmJDfJkZq3PY2Z3uwSscvnSM/XVH6Bro\nxknjxLzguWRGLiFMG2Lv8uSY+RKkwbEiGXhqklzUJdmo6epcPn7GzpmLw81OxaXLmC1Xz+7omBkX\n6HCzO4OmQQqMJ/mw5iDGniYAZgTGkxm5hOkB0+y2IFmOmbGTBseKZOCpSXJRl2Sjps/L5UrfICVV\n7ZyuaOHsxbbPzu7E6ZgZ6zizO2aLmZLWc3xYc4DyjosAhGlDyIpcSqp+9rgvSJZjZuykwbEiGXhq\nklzUJdmoaay5mC0Waq+a3blwqZOP/+bw9XIlycFmd6ov17K35iCFTaexYMHf3Y/lERmkh87H08U2\nO7t/mhwzYycNjhXJwFOT5KIuyUZNN5vLlb5BiivbOHOx9bOzO6Eja3ccYHantbeNj2oPc6QhnwHT\nAB7O7qSHLmB5RAYBHv42/Ww5ZsZOGhwrkoGnJslFXZKNmqyRy8ezO6dH1+5cO7uTPNLsJMUETtjZ\nnZ7BHg5fymN/3WE6B7pw0jiRqp9NZuQSInzCbPKZcsyMnTQ4ViQDT02Si7okGzXZIperZ3fOXGwb\n3RD049mdWSN3ZkUGT7zZnUHzEMeNp9hbc4CGK0YAEgKmkhm5lMTAeKsuSJZjZuykwbEiGXhqklzU\nJdmoyda5OOrsjsVioaTtPHtrDnCu/QIAod4GVkQu4bbgObg6udzyZ8gxM3bS4FiRDDw1SS7qkmzU\nNN65dPcOUlLVNvzcncprZ3fiQv2YGRs44WZ3arrqRhckmy1m/Nx8WBaeQUZYGl6uN78gWY6ZsZMG\nx4pk4KlJclGXZKMme+ZyzexORSsV9VfN7ni7MXPkqcpJMYF4e6g/u9PW1z68ILk+j37TAO7ObiwK\nnc/y8Ax0noFf+ufJMTN2dmlwtmzZQlFRERqNhuzsbGbNmvWZ1zz33HOcOnWKbdu2YTab2bRpE+Xl\n5bi6uvL4448TFxfHo48+SnFxMf7+w6vWH3jgAZYtW3bDz5UGZ3KSXNQl2ahJpVzGMrszK24KEcFa\npWd3egZ7OVKfx/66I3T0d+KkcWJu0EyyIpcS6Rs+5p+jUjaqu1GDc+sXCm8gPz+f6upqcnJyqKio\nIDs7m5ycnGtec+HCBQoKCnB1He7O9+7dS1dXF2+88QY1NTVs3ryZ3/3udwD8x3/8B8uXL7dVuUII\nIexI6+nK/BnBzJ8RjNliocbYNbKFRBsV9Z1cuNTJ3w5VKj+74+XqycqoZSyPyOCEsYi9tQc50VTE\niaYipvnHkhW5lERdAk4aJ3uX6vBs1uDk5uaSlZUFQFxcHJ2dnXR3d6PVakdf8+STT/LQQw+xdetW\nAKqqqkZneSIjI6mvr8dkMtmqRCGEEApy0miINvgSbfDlrvSY0dmd0xWtnL3YypGzjRw52zg8uxPm\nx8xYHbNidUQGa+22tcKnuTi5sCAklfmGFMrayvmw5gBl7eWUd1zE4KUnM3IJ8wwpVlmQLK7PZv9n\nW1paSEpKGv06MDCQ5ubm0QZn+/btzJ8/n7CwT54hEB8fz6uvvsq3v/1tqqurqa2tpb29HYDXXnuN\nV155BZ1Ox2OPPUZg4Je/pimEEGLi+dzZnUudXKjr5G8HLxI6xZtV8yNJSwrGxVmNGRKNRsMMXTwz\ndPHUddWzt/Ygx42n+EvZW7x3cRfLwjNYHJaGt6uXvUt1OOPWOl691Kejo4Pt27fzyiuvYDQaR7+/\ndOlSCgsL2bBhAwkJCcTGxmKxWFizZg3+/v7MmDGDl19+ma1bt/KLX/zihp8VEOCFi4tt9w250TU/\nYV+Si7okGzVNxFyC9b7Mmzn8j+OungFOnmsi72wjR07X86cdpbx7pJI1S+K4Iy0KL4UuYQUFJTA3\nNoHWnnZ2ln/EBxWHeP/iLvZU72N57CLujF9BsDboqtdPvGxUYrNFxi+88AJBQUGsW7cOgMzMTN59\n9120Wi27du3i+eefR6vVMjAwQE1NDffddx/Z2dnX/IysrCz27NmDk9MnnfiFCxd4/PHHee211274\n2bLIeHKSXNQl2ajJ0XJp7ezjg+O1HDhVT/+gCU93F5bPDWPlbeH4ad3tXd5n9A71cbQ+n49qD9Pe\n34EGDXP0M8mKXMK8uCSHysaWbtQI2mwOLz09nd27dwNQXFyMXq8fvTy1atUqduzYwZtvvsnWrVtJ\nSkoiOzubsrIyfvrTnwJw8OBBEhMTcXJy4gc/+AG1tbUA5OXlMW3aNFuVLYQQYoLS+XmwLnMaz35/\nEV9dEours4Ydx6r58UtH+fPOMhrbeuxd4jU8XTzIjFzCLxc+wj8nfpMwbQgnm07zzPGtbNr3G0rb\nzuOAT3IZNza7RJWSkkJSUhLr1q1Do9GwadMmtm/fjo+PDytXrrzue+Lj47FYLNx33324u7vz7LPP\nArBhwwZ+9KMf4enpiZeXF0888YStyhZCCDHBeXu4cteiaO6YF8HRs43syq/hYFE9h4rqSYkPYlVa\nJHGhfvYuc5SzkzPzDHO5LXgO59ovsLfmICXN5yhtLifaN5LV0Zkk6aYrs4B6opAH/d0ER5vWdRSS\ni7okGzVNllzMZguF55vZcayaqsbh3zchwp/VaZHMjNUp2Th0Obfxvyffp6ilGIAInzBWRWcya0qi\n3GL+KfIkYyuaLCeFiUZyUZdko6bJlovFYqGspoOdedWcvdgGQFjQ8J1XCxLVufMKPsnmUncDu6r2\ncrLpDBYshHobWBWdyVz9TGl0RkiDY0WT7aQwUUgu6pJs1DSZc6kxdrErv4b8kibMFguBvu7cflsE\ni2eH4ulu/2fTfDqbxitGdlXt47jxFBYsBHvpWRW9glT9bJydbHvXsOqkwbGiyXxSUJnkoi7JRk2S\nC7R09rKnoJaDRfUMDJrxcndhRWoYmakR+Hm72a2uG2XT1NPM7uqPyG8sxGwxM8VTxx1RK1hgSJm0\njY40OFYkJwU1SS7qkmzUJLl8ort3kH2FdXx4vI7u3kFcnJ3ImGngjgWRBAeM/0P4viib1t429lR/\nRG7DcUwWE4EeAdwetYy0kHmT7unI0uBYkZwU1CS5qEuyUZPk8ln9gyaOnmlgV34NzR19aIDUhCBW\np0URE+I7bnWMNZv2vg4+qDnA0fo8Bs1D+Lv7kRW5lPTQBbg5q/OQQ1uSBseK5KSgJslFXZKNmiSX\nGzOZzZw418zOYzVUG4f/H02P9Gd1WhTJMYE2v/Pqy2bT2d/F3poDHLqUy4B5EB83LVmRS8kITcPD\nRb2HHFqTNDhWJCcFNUku6pJs1CS5fDGLxUJpdTs782oorhy+8yo8SMvqtEjmTdfb7M6rm82ma6Cb\nfbWHOFh3lD5TP96uXqyIWMLS8EV4unjYoFL7kwbHiuSkoCbJRV2SjZokly+nunHkzqtSIxYL6Hzd\nuX1eJEtmh+LuZt0FvreazZXBHvbXHuajusP0DvXh6eLJ8ogMloen4+VgG3tKg2NFclJQk+SiLslG\nTZLLzWnu6GVPfi2HTtczMGTG28OFFSnhZKaG42ulO6+slU3vUC8H6o6yr/YQVwZ78HB2Z2l4Oisi\nFqN187ZCpfYnDY4VyUlBTZKLuiQbNUkut6arZ4B9hZfYe2L4zitXFycyZoVwx7wI9Ld455W1s+kb\n6ufQpVz21hyka7AbN2c3FoelkRmxFD/3ib1ruTQ4ViQnBTVJLuqSbNQkuVhH/6CJw6cb2J1fQ0tn\nHxoN3JagZ3VaJNGGm7vzylbZDJgGOFKfzwfV++kcuIyrkwvpoQtYGbUMf3d19uf6MqTBsSI5KahJ\nclGXZKMmycW6TGYzx8ua2XmsmpqmbgBmRAWwOi2SpOgvd+eVrbMZNA2S23CcPdUf0d7fgYvGmbTQ\nedweuRydZ4DNPtcWpMGxIjkpqElyUZdkoybJxTYsFgslVe3sOFZNaXU7AJF6LatG7rxydvriO6/G\nK5sh8xD5jYXsrtpHS18bThon0gyp3B61giAvnc0/3xqkwbEiOSmoSXJRl2SjJsnF9qoaL7Mrr4aC\nsiYsFpji58Ed8yPJmBnyuXdejXc2JrOJ48ZT7KreS1NPC04aJ24LnsMdUSsweOvHrY6bIQ2OFclJ\nQU2Si7okGzVJLuOnqb2H3QW1HD7dwOCQGa2nKytSwshMDcfH67N3XtkrG7PFTGHTaXZV7aXhihEN\nGlL0s1gVnUmo1jDu9YyFNDhWJCcFNUku6pJs1CS5jL/LPQPsO1HH3hN1XOkbws3FicWzQrl9fgRB\n/p6jr7N3NmaLmdPNxeys2ktddz0As4OSWR2dSYRPmN3quh5pcKzI3gNPXJ/koi7JRk2Si/30DQxx\n6HQDe/JraL3cj0YD86brWb0giiiDjzLZWCwWzraWsrNqL9WXawFI1k1nVXQWMX6Rdq5umDQ4VqTK\nwBPXklzUJdmoSXKxvyGTmYKyJnYeq6GuefjOq6ToAL55xwxC/N1tvufVWFksFsraytlZ9SEVnVUA\nTA+YxuqYLKb6x9i1NmlwrEhOCmqSXNQl2ahJclGHxWLhbGUbO49VU1bTAcDUcD/WZMSQGBWgVKNT\n3nGRnZUfcr6jAoBp/rGsjs4iPiDOLnVKg2NFclJQk+SiLslGTZKLmiobLrPneB15xY0ATA3z4+6M\n6C/9LB1bq+ioYmfVh5S2nQcg1i+KVdFZJAbGj2ud0uBYkZwU1CS5qEuyUZPkoq6gIB8KzlzivcNV\nnLrQAkBcmC9r0mNIilGr0am6XMOuqr2caSkFINInnNXRmcyckjgudUqDY0VyUlCT5KIuyUZNkou6\nrs6murGL945UcrJ8pNEJ9eXujBiSFWt0arvq2VW1l1PNZwAI04awKjqTOUHJOGm++OGGN0saHCuS\nk4KaJBd1STZqklzUdb1saoxdvHekisLzzQDEhvpyd3oMM2PVanTquxvZXb2PE8YiLFgI9Tbww7nf\nxcdNa5PPkwbHiuSkoCbJRV2SjZokF3V9XjY1xi7eP1LFiZFGJybEhzUZMcyM1SnV6Bh7mtldtY/z\n7RX8cO530XtNHWnPSQAADLFJREFUscnnSINjRXJSUJPkoi7JRk2Si7rGkk1tUzfvHankxLnhRifa\nMNzozIpTq9GxtRs1OC7jXIcQQgghrCBCr+X7X51J3Uijc/xcM//z1mmiDT7cnR7D7KmTq9H5NGlw\nhBBCiAksXK/lwa/OpK65m/ePVHG8rInn3z5NVLAPd2dEM2fqlEnZ6EiDI4QQQjiA8CAt/+eeZC41\nd/P+0SoKSpt44e0zRAZrWZMew5xpk6vRkQZHCCGEcCBhQVq+tyaZu9Kv8P6RyuFGZ/sZIvVa7s6I\nYe4kaXSkwRFCCCEcUNgU79FG5+9Hq8gvMbJ1+xki9FruTo9hbvwUnBy40ZEGRwghhHBgYVO8+be7\nk7hrUTR/P1pFXqmRF/92hvAgLWsyopkbH+SQjY40OEIIIcQkEDrFm+/encRd6dG8f7SKvBIjL/7t\nLOFB3tydHkNKgmM1OtLgCCGEEJNIiM6b79718YxONcdKGvl/75wlbKTRSXWQRsemDc6WLVsoKipC\no9GQnZ3NrFmzPvOa5557jlOnTrFt2zbMZjObNm2ivLwcV1dXHn/8ceLi4mhoaOAnP/kJJpOJoKAg\nnnnmGdzc3GxZuhBCCOHQQnTefOeuRO5KH750lVvcyEvvnCVsijd3pUdz23T9hG50bLb7VX5+PtXV\n1eTk5LB582Y2b978mddcuHCBgoKC0a/37t1LV1cXb7zxBps3b+bpp58G4Pnnn2f9+vW8/vrrREVF\n8dZbb9mqbCGEEGJSMQR68a9fSWTLd9JITzbQ0NrDb98tZtMf88kvNWI2T8wND2zW4OTm5pKVlQVA\nXFwcnZ2ddHd3X/OaJ598koceemj066qqqtFZnsjISOrr6zGZTOTl5ZGZmQnA8uXLyc3NtVXZQggh\nxKQUHOjFA19JZPN3F5A+85NG57E/5pFXMvEaHZs1OC0tLQQEBIx+HRgYSHNz8+jX27dvZ/78+YSF\nhY1+Lz4+nsOHD2Mymbh48SK1tbW0t7fT29s7eklKp9Nd83OEEEIIYT3BAV48cGciW767gIyZIRjb\nevnde8ONzrGSxgnT6IzbIuOr9/Ts6Ohg+/btvPLKKxiNxtHvL126lMLCQjZs2EBCQgKxsbF8ei/Q\nsewNGhDghYuLs/WKv44bbe4l7EtyUZdkoybJRV32ziYoyIek+GAaW6/w5ofn2Xu8lpffK2HHsRrW\nrkxg8ZwwnJ3UXaNjswZHr9fT0tIy+nVTUxNBQUEAHDt2jLa2NjZs2MDAwAA1NTVs2bKF7Ozsay5Z\nZWVlodPp8PLyoq+vDw8PD4xGI3q9/nM/u729xza/1AjZgVdNkou6JBs1SS7qUikbZ+CbK6aSlRLG\nP3KrOHKmkef+coK/7CzlrkXRzE/U4+xkswtCX+hGjaDNKkpPT2f37t0AFBcXo9fr0Wq1AKxatYod\nO3bw5ptvsnXrVpKSksjOzqasrIyf/vSnABw8eJDExEScnJxYtGjR6M/as2cPixcvtlXZQgghhLiO\nIH9P/nn1DJ74bhpLZofS3NHL7/9ews//kM/Rsw2YzGZ7l3gNm83gpKSkkJSUxLp169BoNGzatInt\n27fj4+PDypUrr/ue+Ph4LBYL9913H+7u7jz77LMA/OAHP+CRRx4hJyeH0NBQ7rnnHluVLYQQQojP\nMcXfk39ePZ2vLIziH8eqOXy6gT/8vZT3j1TxlUXRpCUF23VG52May1gWtUwwtp7WU2nqUHxCclGX\nZKMmyUVdEymbls5eduRWc+h0AyazBX2AJ3eNY6Mz7peohBBCCOH4pvh58q1V03ny3xaybG4YrZ19\n/PEfpfzs5TwOn7bfpStpcIQQQghxy3R+HnzrjgSe/LeFLJ8bRltXH3/aUcrPf59HR3f/uNcje1EJ\nIYQQwmp0fh5svCOBOxdGseNYNcVV7QwOjf8sjjQ4QgghhLC6QF8P7r89wW6fL5eohBBCCOFwpMER\nQgghhMORBkcIIYQQDkcaHCGEEEI4HGlwhBBCCOFwpMERQgghhMORBkcIIYQQDkcaHCGEEEI4HGlw\nhBBCCOFwpMERQgghhMORBkcIIYQQDkcaHCGEEEI4HGlwhBBCCOFwNBaLxWLvIoQQQgghrElmcIQQ\nQgjhcKTBEUIIIYTDkQZHCCGEEA5HGhwhhBBCOBxpcIQQQgjhcKTBEUIIIYTDkQbnS9iyZQtr165l\n3bp1nD592t7liKs8/fTTrF27lq997Wvs2bPH3uWIq/T19ZGVlcX27dvtXYq4ynvvvcfdd9/Nvffe\ny/79++1djhhx5coV/v3f/52NGzeybt06Dh06ZO+SJiwXexcwUeTn51NdXU1OTg4VFRVkZ2eTk5Nj\n77IEcOzYMcrLy8nJyaG9vZ2vfvWr3H777fYuS4x46aWX8PPzs3cZ4irt7e28+OKLvP322/T09PDC\nCy+wbNkye5clgL/97W/ExMTw8MMPYzQa+fa3v82uXbvsXdaEJA3OGOXm5pKVlQVAXFwcnZ2ddHd3\no9Vq7VyZmDdvHrNmzQLA19eX3t5eTCYTzs7Odq5MVFRUcOHCBfnLUzG5ubksXLgQrVaLVqvlV7/6\nlb1LEiMCAgI4d+4cAJcvXyYgIMDOFU1ccolqjFpaWq4ZaIGBgTQ3N9uxIvExZ2dnvLy8AHjrrbdY\nsmSJNDeKeOqpp3j00UftXYb4lLq6Ovr6+vje977H+vXryc3NtXdJYsSdd95JfX09K1eu5P777+eR\nRx6xd0kTlszg3CTZ4UI9H374IW+99RZ/+tOf7F2KAN555x3mzJlDRESEvUsR19HR0cHWrVupr6/n\nW9/6Fh999BEajcbeZU167777LqGhofzxj3+krKyM7OxsWb92k6TBGSO9Xk9LS8vo101NTQQFBdmx\nInG1Q4cO8dvf/pY//OEP+Pj42LscAezfv5/a2lr2799PY2Mjbm5uGAwGFi1aZO/SJj2dTsfcuXNx\ncXEhMjISb29v2tra0Ol09i5t0issLCQjIwOA6dOn09TUJJfcb5Jcohqj9PR0du/eDUBxcTF6vV7W\n3yiiq6uLp59+mt/97nf4+/vbuxwx4r//+795++23efPNN/n617/Ogw8+KM2NIjIyMjh27Bhms5n2\n9nZ6enpkrYcioqKiKCoqAuDSpUt4e3tLc3OTZAZnjFJSUkhKSmLdunVoNBo2bdpk75LEiB07dtDe\n3s6PfvSj0e899dRThIaG2rEqIdQVHBzMHXfcwTe+8Q0Afv7zn+PkJP/eVcHatWvJzs7m/vvvZ2ho\niMcff9zeJU1YGossJhFCCCGEg5GWXQghhBAORxocIYQQQjgcaXCEEEII4XCkwRFCCCGEw5EGRwgh\nhBAORxocIYTd1dXVkZyczMaNG0d3UX744Ye5fPnymH/Gxo0bMZlMY379N7/5TfLy8m6mXCHEBCAN\njhBCCYGBgWzbto1t27bxxhtvoNfreemll8b8/m3btskD0YQQo+RBf0IIJc2bN4+cnBzKysp46qmn\nGBoaYnBwkF/84hckJiayceNGpk+fTmlpKa+++iqJiYkUFxczMDDAY489RmNjI0NDQ6xZs4b169fT\n29vLQw89RHt7O1FRUfT39wNgNBr5z//8TwD6+vpYu3Yt9913nz1/dSGEFUiDI4RQjslk4oMPPiA1\nNZUf//jHvPjii0RGRn5m80EvLy9ee+21a967bds2fH19ee655+jr6+Of/umfWLx4MUePHsXDw4Oc\nnByamprIzMwEYOfOncTGxvLLX/6S/v5+/vrXv4777yuEsD5pcIQQSmhra2Pjxo0AmM1mbrvtNr72\nta/x/PPP87Of/Wz0dd3d3ZjNZmB4C5VPKyoq4t577wXAw8OD5ORkiouLOX/+PKmpqcDw5rmxsbEA\nLF68mNdff51HH32UpUuXsnbtWpv+nkKI8SENjhBCCR+vwblaV1cXrq6un/n+x1xdXT/zPY1Gc83X\nFosFjUaDxWK5Zr+lj5ukuLg4/vGPf1BQUMCuXbt49dVXeeONN2711xFC2JksMhZCKMvHx4fw8HAO\nHDgAQGVlJVu3bv3c98yePZtDhw4B0NPTQ3FxMUlJScTFxXHy5EkAGhoaqKysBOD999/nzJkzLFq0\niE2bNtHQ0MDQ0JANfyshxHiQGRwhhNKeeuopfv3rX/Pyyy8zNDTEo48++rmv37hxI4899hgbNmxg\nYGCABx98kPDwcNasWcO+fftYv3494eHhzJw5E4CpU6eyadMm3NzcsFgsfOc738HFRU6NQkx0spu4\nEEIIIRyOXKISQgghhMORBkcIIYQQDkcaHCGEEEI4HGlwhBBCCOFwpMERQgghhMORBkcIIYQQDkca\nHCGEEEI4HGlwhBBCCOFw/j8QiOAKuvWFdgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + } + ] +} \ No newline at end of file From adb62de59222561f48cd4cc2fc346291ad3d7e35 Mon Sep 17 00:00:00 2001 From: Amit Rai <42401957+ardev472@users.noreply.github.com> Date: Sun, 17 Feb 2019 21:36:20 +0530 Subject: [PATCH 07/11] Created using Colaboratory --- feature_crosses.ipynb | 1344 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1344 insertions(+) create mode 100644 feature_crosses.ipynb diff --git a/feature_crosses.ipynb b/feature_crosses.ipynb new file mode 100644 index 0000000..4d6b07c --- /dev/null +++ b/feature_crosses.ipynb @@ -0,0 +1,1344 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "feature_crosses.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "ZTDHHM61NPTw", + "0i7vGo9PTaZl" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "g4T-_IsVbweU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Feature Crosses" + ] + }, + { + "metadata": { + "id": "F7dke6skIK-k", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Improve a linear regression model with the addition of additional synthetic features (this is a continuation of the previous exercise)\n", + " * Use an input function to convert pandas `DataFrame` objects to `Tensors` and invoke the input function in `fit()` and `predict()` operations\n", + " * Use the FTRL optimization algorithm for model training\n", + " * Create new synthetic features through one-hot encoding, binning, and feature crosses" + ] + }, + { + "metadata": { + "id": "NS_fcQRd8B97", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup" + ] + }, + { + "metadata": { + "id": "4IdzD8IdIK-l", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "First, as we've done in previous exercises, let's define the input and create the data-loading code." + ] + }, + { + "metadata": { + "id": "CsfdiLiDIK-n", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "10rhoflKIK-s", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Scale the target to be in units of thousands of dollars.\n", + " output_targets[\"median_house_value\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] / 1000.0)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ufplEkjN8KUp", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1205 + }, + "outputId": "b60a7d80-b18d-4389-abde-29177c0b7bd7" + }, + "cell_type": "code", + "source": [ + "# Choose the first 12000 (out of 17000) examples for training.\n", + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "\n", + "# Choose the last 5000 (out of 17000) examples for validation.\n", + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "\n", + "# Double-check that we've done the right thing.\n", + "print(\"Training examples summary:\")\n", + "display.display(training_examples.describe())\n", + "print(\"Validation examples summary:\")\n", + "display.display(validation_examples.describe())\n", + "\n", + "print(\"Training targets summary:\")\n", + "display.display(training_targets.describe())\n", + "print(\"Validation targets summary:\")\n", + "display.display(validation_targets.describe())" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 35.6 -119.6 28.6 2660.3 541.1 \n", + "std 2.1 2.0 12.7 2193.0 423.9 \n", + "min 32.5 -124.3 1.0 2.0 2.0 \n", + "25% 33.9 -121.8 18.0 1471.8 298.0 \n", + "50% 34.3 -118.5 29.0 2141.5 434.0 \n", + "75% 37.7 -118.0 37.0 3162.0 648.0 \n", + "max 41.9 -114.3 52.0 37937.0 5471.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1433.8 503.4 3.9 2.0 \n", + "std 1153.3 387.8 1.9 1.2 \n", + "min 3.0 2.0 0.5 0.0 \n", + "25% 794.0 282.0 2.6 1.5 \n", + "50% 1166.0 410.0 3.6 1.9 \n", + "75% 1728.0 604.2 4.8 2.3 \n", + "max 35682.0 5189.0 15.0 55.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean35.6-119.628.62660.3541.11433.8503.43.92.0
std2.12.012.72193.0423.91153.3387.81.91.2
min32.5-124.31.02.02.03.02.00.50.0
25%33.9-121.818.01471.8298.0794.0282.02.61.5
50%34.3-118.529.02141.5434.01166.0410.03.61.9
75%37.7-118.037.03162.0648.01728.0604.24.82.3
max41.9-114.352.037937.05471.035682.05189.015.055.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 35.6 -119.5 28.6 2603.8 535.3 \n", + "std 2.1 2.0 12.4 2147.9 415.6 \n", + "min 32.5 -124.2 1.0 8.0 1.0 \n", + "25% 33.9 -121.8 18.0 1430.0 294.0 \n", + "50% 34.2 -118.5 29.0 2105.5 432.5 \n", + "75% 37.7 -118.0 37.0 3119.2 649.2 \n", + "max 42.0 -114.6 52.0 32627.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1419.4 495.9 3.9 2.0 \n", + "std 1134.8 376.5 2.0 1.1 \n", + "min 13.0 1.0 0.5 0.2 \n", + "25% 779.0 278.0 2.5 1.5 \n", + "50% 1169.0 405.0 3.5 1.9 \n", + "75% 1705.5 607.0 4.7 2.3 \n", + "max 28566.0 6082.0 15.0 29.4 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean35.6-119.528.62603.8535.31419.4495.93.92.0
std2.12.012.42147.9415.61134.8376.52.01.1
min32.5-124.21.08.01.013.01.00.50.2
25%33.9-121.818.01430.0294.0779.0278.02.51.5
50%34.2-118.529.02105.5432.51169.0405.03.51.9
75%37.7-118.037.03119.2649.21705.5607.04.72.3
max42.0-114.652.032627.06445.028566.06082.015.029.4
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Training targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 12000.0\n", + "mean 207.8\n", + "std 115.4\n", + "min 15.0\n", + "25% 120.8\n", + "50% 181.3\n", + "75% 265.6\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count12000.0
mean207.8
std115.4
min15.0
25%120.8
50%181.3
75%265.6
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 5000.0\n", + "mean 206.0\n", + "std 117.3\n", + "min 15.0\n", + "25% 116.7\n", + "50% 177.4\n", + "75% 263.7\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count5000.0
mean206.0
std117.3
min15.0
25%116.7
50%177.4
75%263.7
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "oJlrB4rJ_2Ma", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns(input_features):\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Args:\n", + " input_features: The names of the numerical input features to use.\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\"\n", + " return set([tf.feature_column.numeric_column(my_feature)\n", + " for my_feature in input_features])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "NBxoAfp2AcB6", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "hweDyy31LBsV", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## FTRL Optimization Algorithm\n", + "\n", + "High dimensional linear models benefit from using a variant of gradient-based optimization called FTRL. This algorithm has the benefit of scaling the learning rate differently for different coefficients, which can be useful if some features rarely take non-zero values (it also is well suited to support L1 regularization). We can apply FTRL using the [FtrlOptimizer](https://www.tensorflow.org/api_docs/python/tf/train/FtrlOptimizer)." + ] + }, + { + "metadata": { + "id": "S0SBf1X1IK_O", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " feature_columns,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " feature_columns: A `set` specifying the input feature columns to use.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearRegressor` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + "\n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.FtrlOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=feature_columns,\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions.\n", + " training_predictions = linear_regressor.predict(input_fn=predict_training_input_fn)\n", + " training_predictions = np.array([item['predictions'][0] for item in training_predictions])\n", + " validation_predictions = linear_regressor.predict(input_fn=predict_validation_input_fn)\n", + " validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + "\n", + " \n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_regressor" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "1Cdr02tLIK_Q", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 741 + }, + "outputId": "6fc33e4a-18b4-4fbd-b97d-7ebda9706ffe" + }, + "cell_type": "code", + "source": [ + "_ = train_model(\n", + " learning_rate=1.0,\n", + " steps=500,\n", + " batch_size=100,\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 370.29\n", + " period 01 : 281.70\n", + " period 02 : 181.80\n", + " period 03 : 147.48\n", + " period 04 : 137.93\n", + " period 05 : 129.48\n", + " period 06 : 127.55\n", + " period 07 : 111.14\n", + " period 08 : 117.63\n", + " period 09 : 128.50\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4lfXh/vH3OScJGWTvEEgCsvcI\nAmEkrIQlKIoURWup/lrRolKrfqt8a21dba1axdWvolirlSqKjLBljxBApqyQHbL3znl+f1BTEAgz\nOSfJ/bourosznue5z/mEKzef5znnYzIMw0BERESkGTHbOoCIiIjI1VKBERERkWZHBUZERESaHRUY\nERERaXZUYERERKTZUYERERGRZsfB1gFE7FnXrl3p0KEDFosFgLq6OiIjI3n66adxdXW95v3+61//\nYsaMGRfc/8UXX/DUU0/x9ttvExMTU39/ZWUlw4YNY/z48bz44ovXfNwrlZKSwvPPP09SUhIALi4u\nPPTQQ4wdO7bRj301Fi5cSEpKygXvyc6dO5kzZw6hoaEXbLNq1aqmindd0tLSGDNmDBEREQAYhoGf\nnx+//e1v6dGjx1Xt6y9/+QshISH85Cc/ueJtvvrqK5YsWcLixYuv6lgiTUUFRuQyFi9eTFBQEADV\n1dU8+uijvPPOOzz66KPXtL+cnBz+/ve/X7TAAAQHB/PNN9+cV2A2bNiAh4fHNR3vWvz6179m6tSp\nvP322wDs37+fe++9l5UrVxIcHNxkOa5HcHBwsykrl2KxWM57DStWrGDu3LnEx8fj5OR0xfuZP39+\nY8QTsSmdQhK5Ck5OTowYMYIjR44AUFVVxYIFC4iNjWXChAm8+OKL1NXVAXD06FFmzpxJXFwcU6dO\nZfPmzQDMnDmTjIwM4uLiqK6uvuAYAwYMYOfOnVRUVNTft2LFCqKioupvV1dX84c//IHY2FhGjx5d\nXzQA9u7dy2233UZcXBwTJ05k27ZtwNn/0Q8fPpyPPvqIKVOmMGLECFasWHHR13ns2DH69u1bf7tv\n377Ex8fXF7k33niDUaNGMW3aNN59911Gjx4NwJNPPsnChQvrtzv39uVyPf/889x9990A7Nmzh+nT\npzNu3DhmzJhBamoqcHYm6pFHHiEmJoa7776brKysy4zYxX3xxRc89NBD3Hvvvbz88svs3LmTmTNn\nMm/evPpf9itXrmTy5MnExcVxzz33kJKSAsDf/vY3nn76aW6//XYWLVp03n7nzZvH+++/X3/7yJEj\nDB8+HKvVyl//+ldiY2OJjY3lnnvu4cyZM1ede+LEiVRWVnLq1CkAPvvsM+Li4hg9ejSPPfYYlZWV\nwNn3/YUXXmDKlCmsXLnyvHG41M+l1Wrl97//PdHR0dx+++0cPXq0/ri7du3i1ltvZeLEiUyYMIGV\nK1dedXaRG84QkUvq0qWLkZmZWX+7sLDQuOuuu4yFCxcahmEY77zzjnH//fcbNTU1RkVFhTF9+nRj\n6dKlRl1dnTFhwgRj2bJlhmEYxnfffWdERkYaJSUlxo4dO4yxY8de9Hj//ve/jSeeeML49a9/Xb9t\nSUmJMWbMGOPzzz83nnjiCcMwDOONN94w7r33XqOqqsooKyszpk2bZqxfv94wDMOYPHmy8c033xiG\nYRhffvll/bFSU1ONHj16GIsXLzYMwzBWrFhhjBs37qI5Hn74YSMmJsb48MMPjRMnTpz32Pfff28M\nGjTIyM7ONmpqaoxf/vKXRkxMjGEYhvHEE08Yb775Zv1zz73dUK6ePXsaX3zxRf3rjYyMNLZs2WIY\nhmEsW7bMuPXWWw3DMIyPP/7YuOuuu4yamhojPz/fiImJqX9PztXQe/zD+9yvXz8jKSmp/vm9e/c2\ntm3bZhiGYaSnpxsDBw40Tp8+bRiGYfzf//2fce+99xqGYRivv/66MXz4cCMvL++C/S5fvty46667\n6m+/9tprxnPPPWccO3bMGD9+vFFdXW0YhmF89NFHxpdffnnJfD+8L927d7/g/sjISOPkyZPG7t27\njaFDhxpZWVmGYRjGM888Y7z44ouGYZx936dMmWJUVlbW337zzTcb/LncuHGjMX78eKO0tNSoqKgw\nbr/9duPuu+82DMMwbrvtNmPnzp2GYRhGUlKS8dhjjzWYXaQpaAZG5DJmz55NXFwcY8aMYcyYMQwZ\nMoT7778fgI0bNzJjxgwcHBxwdnZmypQpbN26lbS0NHJzc5k0aRIAvXv3JiQkhAMHDlzRMSdNmsQ3\n33wDwNq1a4mJicFs/u8/1w0bNjBr1iycnJxwdXVl6tSprF69GoClS5cyYcIEAAYOHFg/ewFQW1vL\nbbfdBkDPnj3JyMi46PH/9Kc/cdddd7Fs2TImT57M6NGj+ec//wmcnR2JjIzE398fBwcHJk+efEWv\nqaFcNTU1jBs3rn7/gYGB9TNOkydPJiUlhYyMDBISEhg3bhwODg54e3ufd5rtxzIzM4mLizvvz7nX\nyoSHhxMeHl5/29nZmaFDhwKwdetWbr75ZsLCwgC444472LlzJ7W1tcDZGSkfH58LjhkdHc3hw4cp\nLCwEYM2aNcTFxeHh4UF+fj7Lli2jqKiI2bNnM23atCt6335gGAafffYZgYGBhIeHs379eiZOnEhg\nYCAAP/nJT+p/BgCGDh1KmzZtzttHQz+Xu3fvZtSoUbi5ueHs7Fw/VgC+vr4sXbqUkydPEh4ezl/+\n8peryi7SGHQNjMhl/HANTH5+fv3pDweHs/908vPz8fT0rH+up6cneXl55Ofn4+7ujslkqn/sh19i\nfn5+lz1mVFQUTz/9NIWFhSxfvpwHH3yw/oJagJKSEl544QVeeeUV4OwppT59+gCwbNkyPvroI8rK\nyrBarRjnLHdmsVjqLz42m81YrdaLHr9NmzbMmTOHOXPmUFxczKpVq3j++ecJDQ2lqKjovOtxfH19\nL/t6riRX27ZtASguLiY1NZW4uLj6x52cnMjPz6eoqAh3d/f6+z08PCgrK7vo8S53Dcy54/bj2wUF\nBee9Rnd3dwzDoKCg4KLb/sDV1ZVhw4axceNGBg4cSHFxMQMHDsRkMvG3v/2N999/n+eee47IyEie\nffbZy15PVFdXV/8+GIbBTTfdxMKFCzGbzZSUlLBmzRq2bNlS/3hNTc0lXx/Q4M9lUVERAQEB593/\ng+eff5633nqL++67D2dnZx577LHzxkfEFlRgRK6Qj48Ps2fP5k9/+hNvvfUWAH5+fvX/2wYoLCzE\nz88PX19fioqKMAyj/pdFYWHhFf+yd3R0JCYmhqVLl5KcnEz//v3PKzABAQH87Gc/u2AG4syZMzz9\n9NN8/vnndO/endOnTxMbG3tVrzM/P58jR47Uz4B4eHgwY8YMNm/ezLFjx3B3d6ekpOS85//gx6Wo\nqKjoqnMFBATQsWNHvvjiiwse8/DwuOSxbyRfX1/27t1bf7uoqAiz2Yy3t/dlt42NjWXNmjUUFBQQ\nGxtbP/5DhgxhyJAhlJeX89JLL/HnP//5sjMZP76I91wBAQHceuutPPHEE1f1ui71c9nQe+vn58cz\nzzzDM888w5YtW3j44YcZMWIEbm5uV3xskRtNp5BErsJ9993H3r172bVrF3D2lMGSJUuoq6ujvLyc\nr776ilGjRhEaGkpQUFD9RbKJiYnk5ubSp08fHBwcKC8vrz8dcSmTJk3ivffeu+hHl8eMGcPnn39O\nXV0dhmGwcOFCNm3aRH5+Pq6urnTs2JHa2lo+++wzgEvOUlxMZWUlv/rVr+ov7gRITk5m//79DBo0\niP79+5OQkEB+fj61tbUsXbq0/nn+/v71F3+mpqaSmJgIcFW5+vbtS05ODvv376/fz+OPP45hGPTr\n14/169dTV1dHfn4+mzZtuuLXdTWioqJISEioP8316aefEhUVVT/z1pCYmBj27t3L2rVr60/DbNmy\nhWeffRar1YqrqyvdunU7bxbkWowePZrVq1fXF421a9fy7rvvNrhNQz+X/fv3Z8uWLVRUVFBRUVFf\nnGpqapg9ezbZ2dnA2VOPDg4O553SFLEFzcCIXIW2bdvywAMP8NJLL7FkyRJmz55NamoqkyZNwmQy\nERcXx4QJEzCZTLzyyiv87//+L2+88QYuLi689tpruLq60rVrVzw9PYmKiuLLL78kJCTkoscaPHgw\nJpOJiRMnXvDYrFmzSEtLY9KkSRiGQa9evbj33ntxdXVl5MiRxMbG4uvry5NPPkliYiKzZ8/m9ddf\nv6LXGBISwltvvcXrr7/OH/7wBwzDoG3btjz11FP1n0y68847ufXWW/H29mb8+PEcP34cgBkzZvDQ\nQw8xfvx4evToUT/L0q1btyvO5ezszOuvv85zzz1HWVkZjo6OzJs3D5PJxIwZM0hISGDs2LGEhIQw\nduzY82YNzvXDNTA/9vLLL1/2PQgKCuIPf/gDDz74IDU1NYSGhvLcc89d0fvXtm1bevbsyffff0+/\nfv0AiIyMZPny5cTGxuLk5ISPjw/PP/88AL/5zW/qP0l0NXr27MkvfvELZs+ejdVqxdfXl2effbbB\nbRr6uYyJiWHjxo3ExcXh5+fHqFGjSEhIwNHRkdtvv52f/vSnwNlZtqeffhoXF5eryityo5mMc09E\ni4hcpYSEBH7zm9+wfv16W0cRkVZEc4AiIiLS7KjAiIiISLOjU0giIiLS7GgGRkRERJodFRgRERFp\ndprlx6hzci7+sckbwdvblYKC8kbbv1w7jY190rjYL42N/dLYXBl/f/dLPqYZmB9xcLDYOoJcgsbG\nPmlc7JfGxn5pbK6fCoyIiIg0OyowIiIi0uyowIiIiEizowIjIiIizY4KjIiIiDQ7KjAiIiLS7KjA\niIiISLOjAiMiItLCbNy47oqe99prfyEjI/2Sjz/55GM3KtINpwIjIiLSgmRmZrB2bfwVPXfevPmE\nhLS75OMvvvjKjYp1wzXLpQRERETk4l555SWOHDnEiBGRjB8/gczMDF59dSEvvPB7cnKyqaio4Gc/\ne4CoqBE89NADPPbYb9iwYR1lZaWkpCSTnp7Gr341n6FDo5g0aQzLl6/joYceIDLyZhITEygsLOSl\nl/6Kn58fv//9M2RlZdK7dx/Wr1/Ll1+uaLLXqQIjIiLSSP61/gS7j2ZfcL/FYqKuzrimfUZ2C2DG\n6Jsu+fhPfjKbL774FxERnUhJOc3ChX+noCCfwYOHMGHCZNLT03jmmSeJihpx3nbZ2Wf4859fZ8eO\nbXz11b8ZOjTqvMfd3Nx47bW3eOutv7Fp03pCQkKprq7i3XcXsXXrZv71r39e0+u5Viow58gtrCCr\nuIogjza2jiIiInLdunfvCYC7uwdHjhzi66+/wGQyU1xcdMFz+/TpB0BAQAClpaUXPN63b//6x4uK\nikhOTqJ3774ADB0ahcXStOs7qcCc46utSWw9kMXv7oukQ+ClV8AUERG5EjNG33TR2RJ/f3dyckoa\n/fiOjo4ArFmziuLiYt588+8UFxfz85/PvuC55xYQw7hwdujHjxuGgdl89j6TyYTJZLrR8Ruki3jP\nMbh7IABfbUmycRIREZFrYzabqaurO+++wsJCgoNDMJvNfPvtempqaq77OO3ahfL994cB2LVrxwXH\nbGwqMOfoFeFD93Af9h7P5XRWsa3jiIiIXLWwsAi+//4oZWX/PQ0UHT2abds2M2/eL3FxcSEgIIAP\nPnjvuo4zbNgIysrK+OUv57B//148PDyvN/pVMRkXmyeyc4057ZZRUMnT72yjTydfHrmjb6MdR65e\nU025ytXRuNgvjY39agljU1xcRGJiAtHRY8jJyWbevF/yySf/vqHH8Pe/9OUcugbmR/p09qNrey++\nO5nHyfQiOrVr2kYpIiLSHLi6urF+/Vo++WQxhmHl4Yeb9kvvVGB+xGQyMW1EBC99spelW5KYf2c/\nW0cSERGxOw4ODvz+9y/Y7Pi6BuYiunbwpke4N4eS8jmWWmjrOCIiIvIjKjCXMG1ERwCWbj5l4yQi\nIiLyYyow5zAMg9q6WgBuaudJ746+HE0p5EhygY2TiYiIyLlUYM7x5YnlzP3maUprygCYNiICODsL\n0ww/rCUiItJiqcCcw9vZi4LKItYkbwQgItiDfjf5cTytiMOnNQsjIiItx+23T6G8vJzFixdx8OB3\n5z1WXl7O7bdPaXD7jRvXAbBixTK+/XZDo+W8FBWYcwwPuRlfF2++TdtKYdXZdSKmDj87C/OlZmFE\nRKQFmj37p/Tq1eeqtsnMzGDt2ngAJk6cwqhRMY0RrUH6GPU5HC2O3N5zIu8k/IOVp9fxk663ERbk\nzsAu/uw5lsOBU3n06eRn65giIiKX9LOf3cXzz/+FoKAgsrIyeeqp+fj7B1BRUUFlZSWPPvo4PXr0\nqn/+H//4O6Kjx9CvX39++9vfUF1dXb+wI8Dq1StZsuQzLBYz4eGdeOKJ3/LKKy9x5MghPvjgPaxW\nK15eXkyfficLF77GgQP7qa2tY/r0GcTFTeKhhx4gMvJmEhMTKCws5KWX/kpQUNB1v04VmB+JjhjK\nl4fi2Zaxi7HtR+Hv6svUEREkHsvhy81J9O7o2+QLVomISPP0xYlv2Jt94IL7LWYTddZrm9XvH9Cb\n226afMnHR46MYevWTUyfPoPNm79l5MgYOnXqzMiR0ezZs5t//OND/vjHP12wXXz8Sjp27MSvfjWf\ndetW18+wVFRU8Je//A13d3fmzr2fkydP8JOfzOaLL/7Ffffdz//93zsA7NuXyKlTJ3nrrfepqKjg\n3ntnMnJkNABubm689tpbvPXW39i0aT0zZsy6ptd+Lp1C+hGL2cLkjuOxGlaWJ60GINS/LZHdA0jO\nKmHf8VwbJxQREbm0swVmMwBbtnzL8OGj+Pbbdfzyl3N4662/UVRUdNHtTp8+Ra9eZ5fQ6d9/YP39\nHh4ePPXUfB566AGSk5MoKrr496MdPXqYfv0GAODi4kJ4eEdSU1MB6Nu3PwABAQGUlpZedPurpRmY\ni+gf0IfQ5I0knNnHuLBo2rUNZurwCHYfzebLzUn07eyHWbMwIiJyGbfdNPmisyWNuRZSx46dyMvL\n4cyZLEpKSti8eSN+fgE888xzHD16mDfeePWi2xkGmM1nf7dZ/zM7VFNTwyuvvMyiRZ/g6+vHb37z\nyCWPazKZOPdS0dramvr9WSyWc45zY64n1QzMRZhNZqZ0jMXAYNmps1Nowb5uDOkRSFpOKYnf59g4\noYiIyKUNHTqcd99dyIgRoygqKqRdu1AAvv12A7W1tRfdpkOHMI4ePQJAYmICAOXlZVgsFnx9/Thz\nJoujR49QW1uL2Wymrq7uvO27devJ3r17/rNdOenpaYSGdmisl6gCcyk9fbvRyTOcA7mHOVWUDMAt\nURGYTSaWbkmqb6ciIiL2ZtSoGNaujSc6egxxcZP47LN/8Oijc+nZsxd5eXksX/71BdvExU3i0KED\nzJv3S1JTkzGZTHh6ehEZeTM///k9fPDBe8yaNZvXX3+FsLAIvv/+KK+//pf67fv27UfXrt2YO/d+\nHn10Lr/4xUO4uLg02ms0Gc3ws8GNuQT5udN6JwqT+GviW3T26si8/v8Pk8nE+8uPsOVAJg/c0oMh\nPa7/Kmq5ci1h+fmWSONivzQ29ktjc2X8/d0v+ZhmYBpwk1cEPXy7crzwFEcLjgMwJSoci9nEV1tO\nU2e12jihiIhI69RoF/FWVFTw5JNPkpeXR1VVFQ8++CDx8fEcOnQILy8vAObMmUN0dDRff/01H374\nIWazmRkzZnDHHXc0VqyrdkvHOA7nfc/XJ1fRzbsz/l4uDO8TzLf7Mthx6AxRvYNtHVFERKTVabQC\ns2HDBnr16sX9999Peno6P/vZz+jfvz+PPfYYMTH//ca+8vJy3nzzTZYsWYKjoyO3334748aNqy85\nttbevR0DAvqQmP0d+3MO0i+gN5OHhrP1QCbLtp7m5h6BOFg0kSUiItKUGu0378SJE7n//vsByMzM\nJDAw8KLP279/P71798bd3R1nZ2cGDBhAYmJiY8W6JpM7xmI2mVl2Kh6rYcXX05mRfUPILqxg28Es\nW8cTERFpdRp96mDmzJn8+te/5n/+538A+Pjjj7nnnnt49NFHyc/PJzc3Fx8fn/rn+/j4kJNjXx9T\nDnT1Z0jQQLLKs9mVdbZcTRoajoPFzLKtp6mt07UwIiIiTanRv8ju008/5ciRIzz++OP8z//8D15e\nXnTv3p13332XN954g/79+5/3/Cv5UJS3tysODpbLPu9aXeyq57vdprFr+V5WJa8lrudw/P3dmRgV\nztebTrHvVD4ThkU0Wh75r4auSBfb0bjYL42N/dLYXJ9GKzAHDx7E19eX4OBgunfvTl1dHV26dMHX\n1xeA0aNH87vf/Y7Y2Fhyc//79fzZ2dn069fvUrsFoKCgvLFiN/DRNkdGtBvChtQtLP1uHdGhUcT0\nCWbVttP8c/X39I3wxrERS5XoY4f2SuNivzQ29ktjc2Vs8jHqhIQE3n//fQByc3MpLy9nwYIF9esi\n7Ny5k86dO9O3b18OHDhAcXExZWVlJCYmMmjQoMaKdV1iw0bTxuLEqtPrqKqrxrNtG0YPDKWgpIpv\n92XYOp6IiEir0WgzMDNnzuS3v/0ts2bNorKykgULFuDq6sojjzyCi4sLrq6uvPDCCzg7OzN//nzm\nzJmDyWRi7ty5uLvb57Sau1NbRrcfwcrT69iYuoXY8NHE3dyBDYnpLN+ezMi+ITg5ahZGRESksemb\neH/kctN6FbUV/O+2l7Bi8PuhT+Dq6Mq/vz3J8u3J3Dn6JmIHN966D62dplztk8bFfmls7JfG5sro\nm3hvIBcHF8aFRVNRW8GalG8BiB3cAZc2FlbsSKaquu4yexAREZHrpQJzDUaFRuHp5MHG1C0UVZXQ\n1sWRcYPaU1Jew7rENFvHExERafFUYK6Bk8WRCRFjqLbWEJ+8DoDxke1xbePAyh3JVFRdfKlyERER\nuTFUYK7RsODB+Dn7sCV9J7kV+bg6OxI7uD1llbWs3aNZGBERkcakAnONLGYLkzqOp86oY0XSGgDG\nDmqPm7MD8TtTKK+ssXFCERGRlksF5joMCuxHiFsQu7ISySw7g0sbByYMCaO8qpbVu1NtHU9ERKTF\nUoG5DmaTmVs6xWFg8M2peADGDAjF3dWRNQmplFZoFkZERKQxqMBcp16+3YnwCGNfzkGSi1Np42Rh\n4pAwKqrqiN+VYut4IiIiLZIKzHUymUzc0ikOgK9PrgIgpn87PN2cWJuQRnF5tS3jiYiItEgqMDdA\nF+9OdPPuzNGC4xwrOIGTo4VJQ8Ooqqlj1U7NwoiIiNxoKjA3yLmzMIZhMKpfCN7ubVi/J42i0iob\npxMREWlZVGBukDCP9vTz70VScQoHcg/j6GBh8rBwqmutrNihWRgREZEbSQXmBprcMRYTJpadisdq\nWBnRJxhfD2c27E2noESzMCIiIjeKCswNFOwWyOCgAWSUZZFwZh8OFjNTosKprbOyfPtpW8cTERFp\nMVRgbrBJEeOwmCwsP7WaOmsdw3oF4e/lzKb9GeQVVdo6noiISIugAnOD+br4MLzdzeRW5rMtcxcO\nFjO3REVQW2fwzfbTto4nIiLSIqjANILYsDE4mR1ZmbSW6roahvQMJNDHlS3fZZJTWGHreCIiIs2e\nCkwj8GzjTnT74RRVl/Bt2lYsZjNTh4dTZzVYtvW0reOJiIg0eyowjWRch1G4OLiwJnkjFbUVDO4W\nSIifG9sOZnEmv9zW8URERJo1FZhG4uroyrgOoyirLWddyibMZhPThkdgNQy+3ppk63giIiLNmgpM\nI4puPxx3p7asS91MSXUpA7r6E+rflh2Hz5CRW2breCIiIs2WCkwjamNxIi58DNV11cQnr8dsMnHr\niAgMA83CiIiIXAcVmEY2PORmfJ292Zy2nfzKAvp19iMs0J3dR7JJyy61dTwREZFmSQWmkTmYHZgU\nMZ5ao46VSWsxmUxMGxGBAXy1RbMwIiIi10IFpglEBvUnyC2Q7ZkJnCnLpk8nXzqGeLDnWA7JWSW2\njiciItLsqMA0AbPJzJSOsRgYfJO0un4WBjQLIyIici1UYJpIX7+ehLm3JzH7O1JK0ugZ7kPnUE/2\nncglKbPY1vFERESaFRWYJmIymbilUxwAy07F/2cWpiMASzdrFkZERORqqMA0oa7eN9HFqxOH877n\nRGES3cO86dbBiwOn8jiRXmTreCIiIs2GCkwTOncW5uuTKzEM45xZmFO2jCYiItKsqMA0sQjPMHr7\n9eBk0WkO5R2lS3svekb4cPh0Ad+nFNg6noiISLOgAmMDUzrGYsLEslPxWA1r/SeSvtychGEYNk4n\nIiJi/1RgbKBd22AGBfYjrTSDvdnf0SnEkz6dfDmWWsiRZM3CiIiIXI4KjI1MihiP2WTmm1OrqbPW\n1c/CLNUsjIiIyGWpwNiIv6svw0IGk12Ry46sBMKDPOjf2Y8T6UUcTMq3dTwRERG7pgJjQxPCx+Bo\ndmBF0lpq6mqYOvyHWZhTmoURERFpgAqMDXm18WRUaBSFVUVsTt9Oh0B3BnX1JymzhP0n8mwdT0RE\nxG6pwNjYuLBonC3OxCdvoLK2kqnDIzChWRgREZGGqMDYWFtHN8Z2GElpTRnrUzfTzr8tg3sEkpJd\nSuKxXFvHExERsUsqMHYgpv1w2jq6sS5lE6U1ZdwSFY7JBEu3nMKqWRgREZELqMDYAWcHZ+LCx1BZ\nV8Xq5A0E+7oxtGcQ6TllJBzNtnU8ERERu6MCYyeGh9yMdxsvNqVto7CqiFuiwjGbTHy1JQmrVbMw\nIiIi51KBsROOFkcmRoyjxlrLyqS1BHi7EtU7iMy8cnYeOWPreCIiInZFBcaO3Bw0gEBXf7Zl7ia7\nPJcpw8KxmE18vSWJOqvV1vFERETshgqMHbGYLUzuGIvVsLI8aTV+Xi6M6BvCmYIKth/ULIyIiMgP\nVGDsTD//XrRvG8KeM/tJL81k8tAwHCwmvt6aRG2dZmFERERABcbumE1mpnSagIHBslOr8PFwZlS/\nduQWVbL1QKat44mIiNgFFRg71MOnC508IziQe4RTRaeZNDQMRwczy7adpqZWszAiIiKNVmAqKiqY\nN28ed999N3fccQcbNmwgMzOy8iMTAAAgAElEQVST2bNnM2vWLObNm0d1dTUAX3/9NdOnT+eOO+7g\n888/b6xIzYbJZOKWTnEAfH1yFZ5uTsT0b0d+cRWbv8uwcToRERHba7QCs2HDBnr16sXHH3/Mq6++\nyosvvsjrr7/OrFmz+OSTTwgLC2PJkiWUl5fz5ptvsmjRIhYvXsyHH35IYWFhY8VqNm7yiqCnbzeO\nF57iaP5xJg4Jw8nRzDfbTlNTW2freCIiIjbVaAVm4sSJ3H///QBkZmYSGBjIzp07GTNmDAAxMTFs\n376d/fv307t3b9zd3XF2dmbAgAEkJiY2VqxmZUrH/8zCnFqJu6sjYwaGUlhazca9moUREZHWzaGx\nDzBz5kyysrJ4++23ue+++3BycgLA19eXnJwccnNz8fHxqX++j48POTk5De7T29sVBwdLo2X293dv\ntH1fDX//rgzLGsi21D2cqjrBXRN6snFvOit3pXDb2C44OzX68NkdexkbOZ/GxX5pbOyXxub6NPpv\nwE8//ZQjR47w+OOPY5yzMKFxiUUKL3X/uQoKym9Yvh/z93cnJ6ek0fZ/tca2G82OtL38Y99XPH1z\nJ8YMbM83207z+ervibu5g63jNSl7Gxs5S+NivzQ29ktjc2UaKnmNdgrp4MGDZGae/dhv9+7dqaur\nw83NjcrKSgDOnDlDQEAAAQEB5Obm1m+XnZ1NQEBAY8VqdgJd/RkSNIgz5dnszEokdnB7XNo4sGJH\nMpXVtbaOJyIiYhONVmASEhJ4//33AcjNzaW8vJxhw4YRHx8PwOrVqxkxYgR9+/blwIEDFBcXU1ZW\nRmJiIoMGDWqsWM3SxIixOJgdWJG0BicnE7GR7SmtqGHdnjRbRxMREbGJRiswM2fOJD8/n1mzZvHA\nAw+wYMECHn74YZYuXcqsWbMoLCxk2rRpODs7M3/+fObMmcN9993H3LlzcXfXecFzeTt7MbLdUPIr\nC9iavpOxg9rj5uzAqp0pVFRpFkZERFofk3ElF53YmcY8b2iv5yVLqkv53+0v4mR24tlhT7JmZwZf\nbDrFtOER3DI8wtbxmoS9jk1rp3GxXxob+6WxuTI2uQZGbix3p7aMaT+SkppSNqRuYczAUNq6OBK/\nO5WyyhpbxxMREWlSKjDNyOgOI3FzdGVtykYMczUThnSgoqqW+F2pto4mIiLSpFRgmhEXB2fGh8VQ\nUVvJmpRvGT0gFA83J9YkpFJaoVkYERFpPVRgmpmR7Ybh1caTDalbqLSWM3FIGFXVdazcmWzraCIi\nIk1GBaaZcbI4MiF8DDXWGladXkd0vxC82jqxbk8axWXVto4nIiLSJFRgmqGhwZH4u/iyNWMnxbVF\nTBoaTnWNVbMwIiLSaqjANEMWs4XJEeOpM+pYkbSGkX1D8PFow/rEdApLq2wdT0REpNGpwDRTAwL7\n0q5tMLuyEsmpzGbysHBqaq2s2K5ZGBERaflUYJops8nMlI6xGBh8k7Sa4b2D8fN0ZuO+dPKLK20d\nT0REpFGpwDRjvXy7E+ERxv6cg6SXpTMlKpzaOoPlmoUREZEWTgWmGTOZTEztFAfA1ydXMaxXEAHe\nLmzan0FuUYWN04mIiDQeFZhmrrN3J7r7dOFowXFOFJ5ialQEdVaDb7adtnU0ERGRRqMC0wLc0vE/\nszCnVjG4ewDBvq5s+S6L7IJyGycTERFpHCowLUAHj1D6+ffmdHEKB/OPMHV4BFbDYNnW07aOJiIi\n0ihUYFqIKR3HY8LEN6fiGdDVj3b+bmw7lEVWvmZhRESk5VGBaSGC3AK5OWggGWVZJGbvZ2pUBIYB\nq3am2DqaiIjIDacC04JMjBiHg8nC8lOr6XOTNwFeLmw7mEWR1kgSEZEWRgWmBfF18WZ4uyHkVuaz\nIyuB8YPbU1tnZf2eNFtHExERuaFUYFqY2PDROFmcWHV6LZE9fHFzdmDD3nSqaupsHU1EROSGUYFp\nYTyc3BkdOpyi6hJ2nNlJzIBQSitq2HYg09bRREREbhgVmBZoTIdRuDq4sDp5A1F9/XCwmIjfnYrV\natg6moiIyA2hAtMCuTq6MC4smvLaChLzdzOsVxDZBRXsO5Fr62giIiI3hApMCzWy3VBcHFzYmLaF\nmIHBAKzapY9Ui4hIy6AC00I5Ozgzst1QSmvKSK4+TJ9OvpxIK+JEepGto4mIiFw3FZgWLLp9FA5m\nB9ambGJ8ZCgA8ZqFERGRFkAFpgXzcHJnSPAg8irzKXNOISzQncRjOVrkUUREmj0VmBZubPtRmDCx\nNuVbxg8OxTBgzW59sZ2IiDRvKjAtnL+rL/0DepNWmoF7QBG+Hm3YfCCD0ooaW0cTERG5ZiowrcC4\nsGgA1qVtYuyg9lTXWNm4N922oURERK6DCkwr0ME9lG7enTlWcIKIjlZc2lhYuyeNmlqrraOJiIhc\nExWYVuKHWZhNmZsZ1a8dxWXV7DiUZdtQIiIi10gFppXo6n0T7d3bsS/nIP17umAxn11ewDC0vICI\niDQ/KjCthMlkYlyHaAwMdufvYHD3ADJyyzhwKt/W0URERK6aCkwr0j+gN34uvuzM2kNUfx9AX2wn\nIiLNkwpMK2I2mRnbYSS11lqOV+2je5g3R5ILSM4qsXU0ERGRq6IC08rcHDQId8e2bE7fzujIQADi\nd2sWRkREmhcVmFbGyeJIdPvhVNRWku94jHb+buw6nE1+caWto4mIiFwxFZhWaGS7IbSxOLEhdTNj\nB4VgNQzWJmh5ARERaT5UYFohV0dXhocMoai6BLNPBp5uTmzcl055Za2to4mIiFwRFZhWanSHEVhM\nFjakb2LMwHZUVtexaX+GrWOJiIhcERWYVsqrjSeRQf05U56DX4ci2jhaWJOQSm2dlhcQERH7pwLT\nio3rMAqAzVlbiOoTREFJFQlHs22cSkRE5PJUYFqxILdA+vj15HRxCl26WTGZYNWuFC0vICIidk8F\nppX7YZHH3fnbGNg1gJQzpRxNLrBtKBERkctQgWnlOnqG0ckzgsN53zOgjxMA8btTbZxKRESkYSow\nwvj/zMIcrdhD51BPvjuZR3pOqW1DiYiINEAFRujp240QtyD2ZO8naoAnoFkYERGxbyowgslkYmyH\nUVgNK1kOhwj0dmHHoSyKSqtsHU1EROSirrnAnD59+rLPefnll7nzzjuZPn06q1ev5sknn2TKlCnM\nnj2b2bNns3HjRgC+/vprpk+fzh133MHnn39+rZHkOgwK7Id3Gy+2Z+xi1CB/ausM1iVqeQEREbFP\nDRaY++6777zbCxcurP/7ggULGtzxjh07OH78OJ999hl///vfef755wF47LHHWLx4MYsXLyY6Opry\n8nLefPNNFi1axOLFi/nwww8pLCy81tcj18hitjCmw0iqrTVUe56krYsjGxLTqaqus3U0ERGRCzRY\nYGprz18bZ8eOHfV/v9x3hURGRvLaa68B4OHhQUVFBXV1F/4y3L9/P71798bd3R1nZ2cGDBhAYmLi\nFb8AuXGGhQzGzcGVLZnbGdU/gLLKWrYcyLR1LBERkQs4NPSgyWQ67/a5peXHj/2YxWLB1dUVgCVL\nljBy5EgsFgsff/wxH3zwAb6+vjzzzDPk5ubi4+NTv52Pjw85OTkN7tvb2xUHB0uDz7ke/v7ujbZv\nezehazRLDq0goEcBjrvMrEtM447x3bCYGx7vptKax8aeaVzsl8bGfmlsrk+DBebHLldaLmbt2rUs\nWbKE999/n4MHD+Ll5UX37t159913eeONN+jfv/95z7+Sb4EtKCi/6hxXyt/fnZyckkbbv72L9I7k\nK/MaVp/awJBeU9m8L4vVW08xqFuAraO1+rGxVxoX+6WxsV8amyvTUMlr8BRSUVER27dvr/9TXFzM\njh076v9+OZs3b+btt9/mvffew93dnaFDh9K9e3cARo8ezbFjxwgICCA3N7d+m+zsbAICbP/LsrVq\n6+TGsJBI8isLaHdTEQDxu1NsnEpEROR8DRYYDw8PFi5cWP/H3d2dN998s/7vDSkpKeHll1/mnXfe\nwcvLC4CHH36Y1NSz3y+yc+dOOnfuTN++fTlw4ADFxcWUlZWRmJjIoEGDbtDLk2sxpv1IzCYzCfk7\n6HuTLyfTizmRVmTrWCIiIvUaPIW0ePHia97xihUrKCgo4JFHHqm/77bbbuORRx7BxcUFV1dXXnjh\nBZydnZk/fz5z5szBZDIxd+7cy5YjaVy+Lj4MCOhDwpl93NKzhv0nzi7y+FBob1tHExERAcBkNHDR\nSWlpKUuWLOGnP/0pAJ9++in//Oc/CQsLY8GCBfj5+TVVzvM05nlDnZc8K60kgxd2v8pNXh0pPTCQ\n05klPP/AEAJ9XG2WSWNjnzQu9ktjY780Nlfmmq+BWbBgAXl5eQAkJSXxyiuv8MQTTzBs2DD++Mc/\n3tiUYldC3UPo4dOVE4WnGNDPEQNYnaDlBURExD40WGBSU1OZP38+APHx8cTFxTFs2DBmzpx53oW3\n0jKN+88ij2mm/fh6OLP1u0xKyqttG0pERITLFJgfvscFYNeuXQwZMqT+9rV8pFqal85eHQnzaM+B\n3MMMHdiW6lorG/am2zqWiIhIwwWmrq6OvLw8UlJS2Lt3L1FRUQCUlZVRUVHRJAHFdkwmE+M7RGNg\nUOJ2FJc2Dqzfk0ZNrZYXEBER22qwwNx///1MnDiRKVOm8OCDD+Lp6UllZSWzZs1i2rRpTZVRbKiP\nf08CXP1IzNnL0H6eFJfXsP3QGVvHEhGRVq7Bj1GPGjWKLVu2UFVVRdu2bQFwdnbm8ccfZ/jw4U0S\nUGzLbDIztsMoPjn6byxByVjM7sTvSmF4n2DMOo0oIiI20uAMTEZGBjk5ORQXF5ORkVH/p2PHjmRk\nZDRVRrGxwUED8XRyJyFnNwN7eJGZV86Bk3m2jiUiIq1YgzMwo0ePJiIiAn9/f+DCxRw/+uijxk0n\ndsHR7EBM+xEsPbkCn4gzcNCJ+F0p9L3JNt8DJCIi0mCBeemll/jqq68oKytj0qRJTJ48+byVo6X1\nGN7uZladXk9iwS66R0ziSFIhp7OKCQ/ysHU0ERFphRo8hTR16lTef/99Xn31VUpLS7nrrrv4+c9/\nzrJly6isrGyqjGIHXBxcGNFuCCXVpYR1KwQgfpe+2E5ERGyjwQLzg+DgYB588EFWrlxJbGwsf/jD\nH3QRbysU0344DiYLh8sTaOfvyu4j2eQW6eP0IiLS9K6owBQXF/Pxxx9z22238fHHH/P//t//Y8WK\nFY2dTeyMZxsPBgcNJKcijx59q7AaBmsT0mwdS0REWqEGr4HZsmUL//73vzl48CDjx4/nxRdfpEuX\nLk2VTezQ2LBRbM/cTbKxH8+2/fl2fwa3RIXj6uxo62giItKKNFhgfv7znxMeHs6AAQPIz8/ngw8+\nOO/xF154oVHDif0JdPWnr39P9uUc5Ob+A9m4uYZv92cw4eYwW0cTEZFWpMEC88PHpAsKCvD29j7v\nsbQ0nTporcaFRbMv5yAFLodo49SVtQlpjBvUHgfLFZ2RFBERuW4N/sYxm83Mnz+fZ555hgULFhAY\nGMjgwYM5duwYr776alNlFDsT7tGBzl4dOVZ4ggF9nCgoqWLXES0vICIiTafBGZi//vWvLFq0iE6d\nOrFu3ToWLFiA1WrF09OTzz//vKkyih0aFxbD8cJT1Poex2QKJX5XKkN7BmmVchERaRKXnYHp1KkT\nAGPGjCE9PZ177rmHN954g8DAwCYJKPaph08X2rUN5lDBIfp2dyE1u5TDyQW2jiUiIq1EgwXmx/+b\nDg4OZty4cY0aSJoHk8nEuA7RGBi4tE8BIH5nio1TiYhIa3FVV13q9ICca0BAH3ydvTlUtJ9OYc4c\nTMonLafU1rFERKQVaPAamL179xIdHV1/Oy8vj+joaAzDwGQysXHjxkaOJ/bMYrYwusNIPj/2FYGd\nz3Ay2ZP4XSnMmdTD1tFERKSFa7DArFq1qqlySDM1LDiSlUlr+b58H4G+49hx6Ay3jeyEt3sbW0cT\nEZEWrMEC065du6bKIc2Uk8WJUaHDWJ60hr69Cziz0Y31iWlMH9XJ1tFERKQF0zePyXUbGToMJ7Mj\nybXf0dbNwobEdCqra20dS0REWjAVGLlubR3diAq5mcLqIrr3Kae8qpbN32XaOpaIiLRgKjByQ4zu\nMAKzyUy20yEcHUys2Z1KndVq61giItJCqcDIDeHj7M2gwH5kV2TTo08tuUWVJB7LtXUsERFpoVRg\n5IYZ1yEagArPo5iAVTtTMAzDpplERKRlUoGRGyakbRC9fLuRWpZKl25WkjKLOZ5WZOtYIiLSAqnA\nyA01LiwGAEtwEgDxu7S8gIiI3HgqMHJDdfIMJ8IjjKSy47TvYLDveC6ZeWW2jiUiIi2MCozcUCaT\niXFh0QB4RaRhAGt2p9o0k4iItDwqMHLD9fbrTpBrAKcqj+Dja2XrwSyKy6ttHUtERFoQFRi54cwm\nM2M7jMJqWAnpnk1NrZUNiem2jiUiIi2ICow0isig/ni18SS19jCublbW7UmjuqbO1rFERKSFUIGR\nRuFgdiCm/XCqrdWE9yqgtKKGbYeybB1LRERaCBUYaTTDQ27GxcGFbMthLBYr8btSseqL7URE5AZQ\ngZFG4+zgzMh2QymrLaNT72LO5Jez/4SWFxARkeunAiONKrp9FA5mB0rcjgJnZ2FERESulwqMNCoP\nJ3eGBA+isKaQsG6lHEst5FRGsa1jiYhIM6cCI41ubPtRmDBh9TsBGFpeQERErpsKjDQ6f1df+gf0\nJrc6m8AOZSR8n01uYYWtY4mISDOmAiNN4oflBVzbJ2MYsDpB18KIiMi1U4GRJtHBPZRu3p3JqknF\n07+czfszKaussXUsERFpplRgpMn8MAvje1M6VTV1fLsvw7aBRESk2VKBkSbT1fsm2ru3I6vuFM5t\nK1mTkEptndXWsUREpBlSgZEmYzKZGNchGgOD4O5ZFJVWs/PwGVvHEhGRZkgFRppU/4De+Ln4kms+\ngdmxmvhdKRhaXkBERK5SoxaYl19+mTvvvJPp06ezevVqMjMzmT17NrNmzWLevHlUV1cD8PXXXzN9\n+nTuuOMOPv/888aMJDZmNpkZ22EktUYtoT2zScsp49DpfFvHEhGRZqbRCsyOHTs4fvw4n332GX//\n+995/vnnef3115k1axaffPIJYWFhLFmyhPLyct58800WLVrE4sWL+fDDDyksLGysWGIHbg4ahLtj\nW4qdj4O5lvid+mI7ERG5Oo1WYCIjI3nttdcA8PDwoKKigp07dzJmzBgAYmJi2L59O/v376d37964\nu7vj7OzMgAEDSExMbKxYYgecLI5Etx9OlbWK4C65HDpdQMqZElvHEhGRZsShsXZssVhwdXUFYMmS\nJYwcOZItW7bg5OQEgK+vLzk5OeTm5uLj41O/nY+PDzk5OQ3u29vbFQcHS2NFx9/fvdH2LWfd6jmW\nNSkbqPU5CaYANh3I4tFeIZfdTmNjnzQu9ktjY780Nten0QrMD9auXcuSJUt4//33GT9+fP39l7pw\n80ou6CwoKL9h+X7M39+dnBzNBjSFqOCbWZe6CZ+wXL5NtDBxcHt8PJwv+XyNjX3SuNgvjY390thc\nmYZKXqNexLt582befvtt3nvvPdzd3XF1daWyshKAM2fOEBAQQEBAALm5ufXbZGdnExAQ0JixxE6M\n7jACi8mCQ1ASdVYr6/ak2TqSiIg0E41WYEpKSnj55Zd555138PLyAmDYsGHEx8cDsHr1akaMGEHf\nvn05cOAAxcXFlJWVkZiYyKBBgxorltgRrzaeRAb1p8RaQNvAPDbuy6CiqtbWsUREpBlotFNIK1as\noKCggEceeaT+vhdffJGnn36azz77jJCQEKZNm4ajoyPz589nzpw5mEwm5s6di7u7zgu2FuM6jGJH\nZgJtw1PJ2unL5u8yGR/Z3taxRETEzpmMZvgtYo153lDnJZve298t4kDuYeqODcHdGsSLvxiCxXzh\n5KDGxj5pXOyXxsZ+aWyujM2ugRG5EuPrF3lMI6+4kj3fN/wpNBERERUYsbmOnuF08gyn0JyG2aWE\nlTu1vICIiDRMBUbswrj/zMIEdM0gOauEY6n6NmYREbk0FRixCz19uxHsFkix02lMThWs0vICIiLS\nABUYsQtmk5lxHaIxMPC9KYP9J/PIzCuzdSwREbFTKjBiNwYF9sO7jRdV7kngUE38rlRbRxIRETul\nAiN2w2K2MLrDCGqNWjw7ZLDtYBZFZdW2jiUiInZIBUbsyrDgwbg6uID/aWqNajYkankBERG5kAqM\n2BVnhzaMCh1GtVGJa3Am6xPTqaqps3UsERGxMyowYndGhUbhaHakTbtkSiur2HYg09aRRETEzqjA\niN1xd2rL0OBIKinF0S+L1btTsVr1xXYiIvJfKjBil8Z0GInZZMY9LJUzBeXsO5Fr60giImJHVGDE\nLvm5+DAgoA8V5gLMnrms2qUvthMRkf9SgRG7NbZDNABeHVM5kVbE0eR82wYSERG7oQIjdqu9ewjd\nfbpQ4ZiNya2Qv/1rH2fyy20dS0RE7IAKjNi18f9Z5DGkeyYpWSU8u2g3CUezbRtKRERsTgVG7Fpn\nr06EubenwJzCfbeHYTUMFi49yCdrjlFbZ7V1PBERsREVGLFrJpOJcWFnF3ncX7Gex+7qQbCvK2v3\npPHCx4nkFlXYOqKIiNiACozYvb7+Pent150jOcdZdOIdZk71ZkjPQJIyi3n2g93s10esRURaHRUY\nsXtmk5kHet/L3X1vpaSmjHcOvk9wjzTuju1MVY2V15Z8x5KNJ6mz6pSSiEhroQIjzYLZZOaWbuN5\nbMAv8XH2YlXyOvZZv+FXMzvj7+XMih3J/Pmf+ygsrbJ1VBERaQIqMNKsRHiG8WTkI/Tz783JoiQ+\nOv0ed9ziwYAu/nyfWsjv3t/FkdP6vhgRkZZOBUaaHVdHF37e627u7HIrVXXVfHD0I4J6JTFjdEfK\nKmv582f7WLY1Cauh9ZNERFoqFRhplkwmEyNDh/L4wIcIdPVnQ9oW9pu+4v/dEYFX2zZ8uTmJV/+1\nn5LyaltHFRGRRqACI81aqHsIT0TOY0jQIFJK0vlnyv9x65Q29Orow8GkfH73wW5OpBXZOqaIiNxg\nKjDS7LWxODG7xwzu7TETKwb/PPEvAnof55YR7SksreKlTxKJ35WCoVNKIiIthgqMtBiDgwbwZOQ8\nQtuGsD1zNwcdvua+20Jxc3Hks/UnePPLg5RX1tg6poiI3AAqMNKiBLr68+uBcxkVOozMsjMsSf+Q\nSZNMdGnvSeKxHJ5dtJvkrBJbxxQRkeukAiMtjqPFkRldpnF/73twMDuw9PRX+Pc5QuyQYHIKK/nj\n4j1s3JuuU0oiIs2YCoy0WP38e/FU5CN09AwjMec7Djt9xV23+NPG0cxH8d/z3rLDVFbX2jqmiIhc\nAxUYadF8Xbx5pP8vGB8WQ15lAV+d+YTxE2uJCHFnx+EzPPdhAum5ZbaOKSIiV0kFRlo8i9nC1E4T\nmNtvDq4OLqxKW4VvnwOMGuRHZl45z324m20HM20dU0REroIKjLQa3X268NTgR+nm3ZlD+Uc55rKM\n2yZ4YjaZ+Ps3R1i08ijVNXW2jikiIldABUZaFc827sztN4cpHeMori5hVd6/iI4rIzTAjU37M3h+\n8R7OFJTbOqaIiFyGCoy0OmaTmbjw0TzS/xd4tfHk26yNePfdy5C+nqRkl/L7RbtJOJpt65giItIA\nFRhptTp5hfPU4Efo49eTE0WnONn2GyaMc6HOarBw6UE+WXuM2jqrrWOKiMhFqMBIq+bm6MoDve/h\njs5TqaytZGPRl0SNKyDI15m1CWm89I9E8ooqbR1TRER+RAVGWj2TyUR0+yjmD5qLv4svO3K349lv\nD/17unIyo5jffbCL707m2TqmiIicQwVG5D86uIfyZOQ8IgP7k1KSSrLnCmJizFTV1PHq5/v597cn\nqbPqlJKIiD1QgRE5h7ODM/f2mMnd3e6gzlrHjrIVRI7NxtfLkeXbk/nLp/soLK2ydUwRkVZPBUbk\nR0wmE0NDInki8leEuAWxr2APnv1206OrI0dTCvndB7s5mlxg65giIq2aCozIJQS5BfL4oIcZ3m4I\nmeVZpHuvYuiIGsoqqvnTp3v5ZttprFoQUkTEJlRgRBrgZHHkJ11vY06vuzGbLOyrWkefmDQ8Pcx8\nsekUr33+HaUVNbaOKSLS6qjAiFyBAQF9eGrwI4R5tOdoyUHa9t1J585w4FQev/tgFyfTi2wdUUSk\nVVGBEblCfi4+PDbgl4ztMIq8yjyyfNYwYFgpBSWVvPiPRFbvTsXQKSURkSahAiNyFRzMDtx60yQe\n7PsznB2cOVK7hR6jTuHqZuXTdcdZ+OVByitrbR1TRKTFU4ERuQY9fbvx1OBH6OLViVPlx3Hru4Ow\njrXsOZbD7xftJvn/t3fvwVHX97/Hn9/97v2a3SSbC7mQgMpVrh6LSq0Va08vMhUtlhJ7znSc6bF1\nqrWd8qNa7dBTB6ed6VgZW62d+oPjTyr2gscW7I2WUxFQECFcgtxy3Ww22WQ3u8ludvd7/tiwEEUK\nwma/G96PGSbDN9/95r28k82Lz+ez308gWugShRBiQstrgGlpaWHJkiVs2LABgFWrVvH5z3+epqYm\nmpqa2LZtGwCbN29m2bJl3H333bz88sv5LEmIy6bE4uGBeffxuYZPEUlGCJX9jZnX9xHsj/O/17/N\ntnc6ZEpJCCHyxJivC8fjcdasWcOiRYvGHP/Wt77FLbfcMua8devWsWnTJkwmE3fddRe33XYbJSUl\n+SpNiMvGoBj47w1LmFrSyK8P/hfHE7uY+vHJdO65iv/ccoSjbQPce/s1WMxqoUsVQogJJW8jMGaz\nmeeeew6/33/e8/bt28fs2bNxuVxYrVbmz5/Pnj178lWWEHlxlbeR/7juQWaVTqdj+CSOa3dQPTnO\njuYAa/7zLTpCsUKXKKfDmSEAABm+SURBVIQQE0reAozRaMRqtX7g+IYNG7j33nt56KGH6OvrIxQK\n4fP5cp/3+Xz09PTkqywh8sZpdvC1a/8Hy6Z+jqH0EP3+7Uxd2EVnKMqaF3azozlQ6BKFEGLCyNsU\n0rksXbqUkpISpk+fzrPPPsvTTz/NvHnzxpxzIWsGvF47RmP+huTLy115u7a4NMXQm+X+z7KwYRY/\nfeOXdMT20XhzDV1vX8Nzrx6kLRTnvqWzMJsm1pRSMfTlSiW90S/pzaUZ1wBz9nqYT37ykzz++OPc\nfvvthEKh3PFgMMjcuXPPe51wOJ63GsvLXfT0yDtI9KiYeuPGx3cWPMB/Hf4tbwf3YZ0dwtU5jy07\nTnLweIj/tXQWFT57ocu8LIqpL1ca6Y1+SW8uzPlC3ri+jfqBBx6gra0NgJ07d3LVVVcxZ84c9u/f\nTyQSIRaLsWfPHhYuXDieZQmRFzajjf85cwUrpi0jraWJVuygfv4pWoMR/uPZN1n18x38YnMzf97d\nxnsdAyRH0oUuWQghikbeRmAOHDjA2rVr6ejowGg0snXrVlauXMmDDz6IzWbDbrfzxBNPYLVaefjh\nh/nqV7+Koih8/etfx+WSYTUxMSiKwo3V19Pgruf55v9DIHaISYt6cQSvo6N9hJ0Hu9l5sBsA1aBQ\nU+6kodpNQ5WLxmoPVT47BoNS4GchhBD6o2hFeKOKfA67ybCefhV7b5LpJC+3bOaNrl0AuM0uKq1V\nWNOljETc9HVbaO9KkUpnco+xmlUmV7poqHbTWOWmsdqD12Up1FM4p2Lvy0QmvdEv6c2FOd8U0riu\ngRHiSmZWzXx5+l3MKL2GXYE9tEbbaYm0ZD+pAtVQ3uChzFSJJeVjuN9BT5fK4dZ+Drf2565T4jTT\nUOWmsdpNQ5WbyZVu7Fb5URZCXFnkVU+IcTbPP5t5/tkADCSitEXbORVtz36MtPPe4JHsiVagAaqn\nleAzVqAmShgKOwl0wN6jIfYezS5+V4DKUjuNVe7R6Sc3tX4nRlV2ChFCTFwSYIQoII/FhccynVll\n03PH+hMDtEbaaY120Bpt51SkjWOx0VDjAqZBtcWLx+DHMOxhsNdBoCND14E4/zqQvdeMUVWoq3Dl\nRmoaq9z4vTYURdbTCCEmBgkwQuhMicVDSbmHa8tnAtl7I/UnBrKjNJHsaE1rtJ2TidFQ4wODD6rN\nPlyUw5CHSI+NU50jHO+M8Ne3s6c5rEYmV2VHaE6P1ngc5gI9SyGEuDQSYITQOUVR8FpL8FpLmFs+\nC8iGmr7hcG6UpnU02IRTR7LraSrBXAlecymOTBmZmItw0EbzqWGaT/Tlrl3qtuYWCDdUuZhc6ZZ9\nm4QQRUECjBBFSFEUSm0+Sm2+3HoaTdPoHe7jVKQ9F2paox2E071gAWrBXqtQYvJhS5cyEnXRG7Dy\nVkuMtw4HR68Lk8qcNFZnp58aqtxMKnegGmQ9jRBCXyTACDFBKIpCma2UMlspCyrmAJDRMoSGenMj\nNK3RdtqiHYQzveAApoAdBY+xFMuIj8SAk2AgQvu7Dv65LzsSYzYZmFzhyi0QbqxyU+qxynoaIURB\nSYARYgIzKAb89nL89nIWVmb3HctoGYLxUHaUZnSkpi3aQb8SghJQS7Khxq2WYkp4Gep38l4wTEuH\nC7TsSIzLbsotEJ47rQKP1SjraYQQ40puZPc+cnMh/ZLe5E9GyxCIBWmLdmRHaiLttA92MJJJ5c4x\nYMBlKMUw7CHW6yDSa0cbOhNqPE4ztX4ndX4XdRVOav1OKrxyJ+FCkp8Z/ZLeXBi5kZ0Q4rwMioFq\nZyXVzkqur1oAQDqTJhAPjq6lyU5BdQx2kTL3QBVYq8CAilstRYu7iPfbOBiycqDNBSNmQMFsMlBb\n7qS2wkWd30lthZOacieWCbYbtxBi/EmAEUKck2pQmeSsYpKzikVcB2RDTWesm9ZoWy7YdMQCpC1B\nqABLRfaxZqyY0yWkBp20hi2cOOoks88FGSOKApU+e3a0JhdsXDIFJYS4KBJghBAXTDWo1LqqqXVV\nc2P19QB4S+0cbD1B52AXnbFuOgcDdMYC9A51o3kCGD1nXmgsmhMl4aZ/wEYw6GD3SRfasAM0Ax6H\nmdrRqafT01AyBSWE+DASYIQQl8RoUKlyVFDlqGDBWccT6SSBWDcdgwG6YoFcsIkonWAF8+hojYIB\nU8pFOu7gcMTBwcNOtL0utIQNs1Glxu/MjdLU+UenoOReNUJc8STACCHywqKaqXfXUu+uHXM8mhyk\nKzdS00XnYDddsQBJ4wAm95nzDJoRQ9JFe9TOqS4X2nEnmSEXyoiZCp8jt1D49DSUx6mvXbqFEPkl\nAUYIMa5cZicus5OrvVNyx7J3Fu6nM9ZF12A3HbEuumLdBGJBVEsYtezM4w0ZMwNxF3tjDt4+6EJ7\n20km7sJts+cWCp+ehqr0yRSUEBOVBBghRMFl7yzspdTmZXbZjNzxdCZNcCiUm37qGgzQEQvQa+jD\n6Owdc43UiI2WmJPD7U60oy4ycSemlItJZR7qKs5MQ9WUO7Ca5aVPiGInP8VCCN1Sx6yvmZM7fnp9\nzelgk1tfY+pBLek5cwFNoWvYTnvUxb+CTjK7XDDkpMxRRn3ufjXZjx6HWe4uLEQRkQAjhCg6H7a+\nZjAZywaa0VBzevHwsC0w5rxoWuXdIQfvtLrQjmSnoBx4qfWVUuK0YjGpWEwqZpNh9GP27xaziuX9\nx846blQNEoKEGCcSYIQQE4bT7OBq85QPrK8JJ/o/MFoTMAZJOyO581LA8RET2ogFEipaXIWMES2j\nQlqFjIqWNo5+HPt30ipaxoiSUTEZzJhVMxbVjNVkPGcAMucC0ukQZDgTmsxnBaOzzrWYVFnPI3Qj\nncnQFhykpW0Af4mNuVeV/fsHXWYSYIQQE5qiKPisXnxWL7PKpueOpzNpeoZCY97m3TEYIDYSJ5kZ\nIq2lP/LXTI3+iWUMaGl1NASNhp9hFeIXF4wYvYYRE2bVjNVs/OAo0PvCjtlkYEqdl6mVLmwWeakX\nl2YkleZEV5SWtn5a2vo52jFAYiSJwRGhwuVh7lVLxr0m+a4WQlyRVINKpaOCSkcFnLW+5rR0Jk0i\nnSSZSZJIJUhkkiRSSRLpBMnMSPZYOkkynT2WSCdH/5x9PDn6uET2celhUlrqg8VcBA0YyhgYyhiz\n4SgXelRIGEdHjrJ/Mu/ZMUSqmDe5hkUzK5nZ4MOoGi7p64srw1AixbHOgWxgae3neFeUtBrD4OzH\n4OzHMi2CaulHUzTMtnJAAowQQuiCalCxG2zYscFlvMXMB4LRWcHnooLRWZ87bzDSDvFO1Mvb/6zE\ntrWWj11dxw2zK6mvcMl6HZETjSc52j6QG2FpDQ6g2SIYnP2orjCWOREyxqEzD1BU6l21NHjqWOD/\n4H8AxoMEGCGEGEfjFYyG0wn6tB62HdvFe8pxVHeYtHaIf0Z8/P21KsqYzE0z6vnYjEpKPdbLV4go\nCn2RYVra+2lpy4aWzoHe3OiK6uvHUhsBJZM732F20uiZRYO7jkbPZGpdkzCrpgI+AwkwQggxIZwr\nGC0sn8E8z3z6EwPsDe7nre53OKm0onr6GNAO8mpXKb9vrqTRcTU3zahj4TS/rJeZgDRNIxge4khb\nP0fb+jnc1kffSE82sLj6USf1Y2s8M7piwMAkZyUNnsk0eLKBpdTq1d2InaJpmlboIi5WT080b9cu\nL3fl9frio5Pe6JP0Rb/O1Zu+4TB7gu+yu+sd2mMdAGgZhcxAGQxUM7t0Ootn1TGzwYdqkPUy+ZLP\nn5uMptEeHORo+wBH2vo50tlNzDAaWJxhVGcEDGcWqduNdho99TR46mn01FPvrsWi6mN3+PJy14d+\nTqK2EEJcQXxWL0vqbmZJ3c30xHvZE9zHrq53CBgC4O2hObOf/XvLMW+fxHU1s1k8q1bWy+hcKp3h\nVCD7DqEjbX0cDXWQNIcwuLJTQoZp8TGzlVWOyjGBxW8rK8r+ygjM+8j/JvVLeqNP0hf9upjedMeC\nvN29jzc799KbDAGgpVXS/eW4R+pZPHkON86skfUyl8ml/NwkRtIc7xigpX2AQ+1BTkZaydj6cmtY\nFPXM6IrFYMlOA5VMptFdz2RPLTaj7XI9jbw73wiMBJj3kRdj/ZLe6JP0Rb8+am86BwPsDrzDm517\niaTCQDbMZMJ+KtWpfGLKHK6fXi3rZS7BxfQmPjySnQ5qDXOwu42ueDs4RkdX7INjzi2zljHVmw0r\nDZ56Kh1+DErxTgVKgLkI8mKsX9IbfZK+6Nel9kbTNNoHO9nZuZddXe8Qy2TvXKyljGgDFTTaprFk\n2lyubSyX9TIX6Xy9GRhMZEdXWoMcCp2gNxXA4AxjcA6gGEdy5xkVE/WuWq7yTqbBU89kTx1Ok2O8\nnsK4kABzEeTFWL+kN/okfdGvy9kbTdM4FW3j/7W+zd7guwwTyx4fMWGIVjGjZCafnjmPhkpPUa6n\nGG+ne6NpGqGBYY60htnf0cZ74ZMMKsHsVJA9ytn/lG5jCVd5JzPVO5kGz2SqHRWoBrVwT2IcSIC5\nCPJirF/SG32SvuhXvnqT0TIc7z/FtpNvcaDvACNK9i242ogZS7yG+eXX8ulZcykvsV/2r13skiNp\nusNDdISjvHH0IKcG20iYQtnAYkrmzjOgUmmrYlrpFKZ6s9NBbvOH/zKfqCTAXAR5MdYv6Y0+SV/0\nazx6k9EyHOk7xl/f201L9BBpQwIALWnBPVLP9VVzuX3WHOzWwt70bDyNpNIE+4fp6o1ysi9IZ6SH\nnngvA6l+kkoUxRJHsQ2iGM78+rUpTupcdczyT6GxpJ4aZzVGg6wxkgBzEeTFWL+kN/okfdGv8e5N\nOpNmf7CFvxzbxamho2QM2REFLWGlXGnk43ULuPmaGRjV4p/2SKUzBMNxToZCnAp30xUN0TvcRzQ1\nwIghCpYhFPMw55pNUzSVMoufBncdsyqm0uipx2stGf8nUQQkwFwEeTHWL+mNPklf9KuQvUllUuxs\na2bbid10jhwHdXSvpoSdGvNV3Drlv7GwbgoGHS/+TaUzdPZFONbTRetAkO7BEOFEmFhmgBFDDMUy\nNOYtyzkamLDjUkvwWb1UOcuo9VZQ6SijzObDZXZS4ffIz80FkABzEeTFWL+kN/okfdEvvfQmmUqy\n7dg+/tW2h5B2EkZ/6RuSLhrt1/Dpqz/G9Mq6gtQ2kk5xPBTkeChAx0B2qqc/GSauRUgbY2PWpZxN\nyZiw4sJtLKHc5qPaXU69r4IqVzk+qxfTv5n+0Utv9E4CzEWQbyr9kt7ok/RFv/TYm3hymC2H3mZ3\nYC8DajuKIbthoGnEwzT3DD4zfRF1JZWX7etpmkY0GeN4KMCpvm46oj2E4n1EUv0MEyVjjI9Zi3Lm\ngQpq2oFdcVNiLsFvL6PGU05DaSXV7nLsRtslvdtKj73RIwkwF0G+qfRLeqNP0hf90ntvwrFB/u+B\nXewL7Sdu6cwFCWvax5zS2Xz6muvxO8r+7XVGMilC8T5O9gZo7Q/SNRiib7iPwfQACWUQ1JEPeaAF\nk+bEafDgs3ipcJZSV1JBY1klVe7SvN4ATu+90QsJMBdBvqn0S3qjT9IX/Sqm3rT1hnmteSeHBpoZ\nsQVzYcaplbOwcg431V9LbGSIU+Fu2geCdMd6CSfCxDMRUoY4nGMwREurKCN2LJoLl9FDmdVHpauM\nem8FV/urKHEU7qZvxdSbQpIAcxHkm0q/pDf6JH3Rr2LsjaZpHGzvZuvhXRyLH0Zzhs75Tp7suaAl\nrRhGHNhw4TGVUGYvZZI7O9UzuawMl10fuyq/XzH2phBkN2ohhBBFQVEUZtZWMrP2DlLpz7H7aBt/\nPbab7kQnVoODErOXCnsptSV+GsoqqC514bAa5e6/VyAJMEIIIXTJqBpYNK2eRdPqC12K0CH9vgFf\nCCGEEOJDSIARQgghRNGRACOEEEKIoiMBRgghhBBFRwKMEEIIIYqOBBghhBBCFB0JMEIIIYQoOnkN\nMC0tLSxZsoQNGzYA0NXVRVNTEytWrOCb3/wmyWR2l8/NmzezbNky7r77bl5++eV8liSEEEKICSBv\nASYej7NmzRoWLVqUO/bUU0+xYsUKXnzxRerr69m0aRPxeJx169bx61//mvXr1/PCCy/Q39+fr7KE\nEEIIMQHkLcCYzWaee+45/H5/7tjOnTu59dZbAbjlllvYsWMH+/btY/bs2bhcLqxWK/Pnz2fPnj35\nKksIIYQQE0DethIwGo0YjWMvPzQ0hNmc3VirtLSUnp4eQqEQPp8vd47P56OnpydfZQkhhBBiAijY\nXkgftgn2hWyO7fXaMRrVy11Szvl2vxSFJb3RJ+mLfklv9Et6c2nGNcDY7XaGh4exWq10d3fj9/vx\n+/2EQqHcOcFgkLlz5573OuFwPG81yhbn+iW90Sfpi35Jb/RLenNhzhfyxjXA3HDDDWzdupWlS5fy\n+uuvs3jxYubMmcMjjzxCJBJBVVX27NnD6tWrz3udfKdWScX6Jb3RJ+mLfklv9Et6c2kU7ULmbD6C\nAwcOsHbtWjo6OjAajVRUVPDjH/+YVatWkUgkqK6u5oknnsBkMrFlyxaef/55FEVh5cqV3HHHHfko\nSQghhBATRN4CjBBCCCFEvsideIUQQghRdCTACCGEEKLoSIARQgghRNGRACOEEEKIoiMB5iw/+tGP\nWL58Offccw/vvvtuocsRZ3nyySdZvnw5y5Yt4/XXXy90OeIsw8PDLFmyhN/+9reFLkWcZfPmzdxx\nxx3ceeedbNu2rdDlCCAWi/GNb3yDpqYm7rnnHrZv317okopawe7Eqze7du3i1KlTbNy4kWPHjrF6\n9Wo2btxY6LIE8Oabb3L06FE2btxIOBzmC1/4Ap/61KcKXZYY9cwzz+DxeApdhjhLOBxm3bp1vPLK\nK8TjcX72s5/xiU98otBlXfF+97vf0dDQwMMPP0x3dzdf+cpX2LJlS6HLKloSYEbt2LGDJUuWADBl\nyhQGBgYYHBzE6XQWuDJx3XXXce211wLgdrsZGhoinU6jqvnbTkJcmGPHjvHee+/JL0ed2bFjB4sW\nLcLpdOJ0OlmzZk2hSxKA1+vlyJEjAEQiEbxeb4ErKm4yhTQqFAqN+WaSTSX1Q1VV7HY7AJs2beLj\nH/+4hBedWLt2LatWrSp0GeJ92tvbGR4e5mtf+xorVqxgx44dhS5JAJ/97Gfp7OzktttuY+XKlXz3\nu98tdElFTUZgPoTc309//vKXv7Bp0yZ+9atfFboUAfz+979n7ty51NbWFroUcQ79/f08/fTTdHZ2\ncu+99/L3v/8dRVEKXdYV7Q9/+APV1dU8//zzHD58mNWrV8vasUsgAWbUuTaVLC8vL2BF4mzbt2/n\n5z//Ob/85S9xuWT/ED3Ytm0bbW1tbNu2jUAggNlsprKykhtuuKHQpV3xSktLmTdvHkajkbq6OhwO\nB319fZSWlha6tCvanj17uOmmmwCYNm0awWBQpsMvgUwhjbrxxhvZunUrAM3Nzfj9fln/ohPRaJQn\nn3ySX/ziF5SUlBS6HDHqpz/9Ka+88gq/+c1vuPvuu7n//vslvOjETTfdxJtvvkkmkyEcDhOPx2W9\nhQ7U19ezb98+ADo6OnA4HBJeLoGMwIyaP38+M2fO5J577kFRFB577LFClyRG/fGPfyQcDvPggw/m\njq1du5bq6uoCViWEflVUVHD77bfzxS9+EYBHHnkEg0H+v1poy5cvZ/Xq1axcuZJUKsXjjz9e6JKK\nmmzmKIQQQoiiI5FcCCGEEEVHAowQQgghio4EGCGEEEIUHQkwQgghhCg6EmCEEEIIUXQkwAgh8qq9\nvZ1Zs2bR1NSU24X34YcfJhKJXPA1mpqaSKfTF3z+l770JXbu3PlRyhVCFAkJMEKIvPP5fKxfv571\n69fz0ksv4ff7eeaZZy748evXr5cbfgkhxpAb2Qkhxt11113Hxo0bOXz4MGvXriWVSjEyMsL3v/99\nZsyYQVNTE9OmTePQoUO88MILzJgxg+bmZpLJJI8++iiBQIBUKsXSpUtZsWIFQ0NDPPTQQ4TDYerr\n60kkEgB0d3fz7W9/G4Dh4WGWL1/OXXfdVcinLoS4TCTACCHGVTqd5s9//jMLFizgO9/5DuvWraOu\nru4Dm9vZ7XY2bNgw5rHr16/H7Xbzk5/8hOHhYT7zmc+wePFi3njjDaxWKxs3biQYDHLrrbcC8Kc/\n/YnGxkZ+8IMfkEgkePnll8f9+Qoh8kMCjBAi7/r6+mhqagIgk8mwcOFCli1bxlNPPcX3vve93HmD\ng4NkMhkgu73H++3bt48777wTAKvVyqxZs2hubqalpYUFCxYA2Y1ZGxsbAVi8eDEvvvgiq1at4uab\nb2b58uV5fZ5CiPEjAUYIkXen18CcLRqNYjKZPnD8NJPJ9IFjiqKM+bumaSiKgqZpY/b6OR2CpkyZ\nwmuvvcbu3bvZsmULL7zwAi+99NKlPh0hhA7IIl4hREG4XC5qamr4xz/+AcCJEyd4+umnz/uYOXPm\nsH37dgDi8TjNzc3MnDmTKVOmsHfvXgC6uro4ceIEAK+++ir79+/nhhtu4LHHHqOrq4tUKpXHZyWE\nGC8yAiOEKJi1a9fywx/+kGeffZZUKsWqVavOe35TUxOPPvooX/7yl0kmk9x///3U1NSwdOlS/va3\nv7FixQpqamqYPXs2AFOnTuWxxx7DbDajaRr33XcfRqO87AkxEchu1EIIIYQoOjKFJIQQQoiiIwFG\nCCGEEEVHAowQQgghio4EGCGEEEIUHQkwQgghhCg6EmCEEEIIUXQkwAghhBCi6EiAEUIIIUTR+f+L\nPhvcVP4yIwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "i4lGvqajDWlw", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## One-Hot Encoding for Discrete Features\n", + "\n", + "Discrete (i.e. strings, enumerations, integers) features are usually converted into families of binary features before training a logistic regression model.\n", + "\n", + "For example, suppose we created a synthetic feature that can take any of the values `0`, `1` or `2`, and that we have a few training points:\n", + "\n", + "| # | feature_value |\n", + "|---|---------------|\n", + "| 0 | 2 |\n", + "| 1 | 0 |\n", + "| 2 | 1 |\n", + "\n", + "For each possible categorical value, we make a new **binary** feature of **real values** that can take one of just two possible values: 1.0 if the example has that value, and 0.0 if not. In the example above, the categorical feature would be converted into three features, and the training points now look like:\n", + "\n", + "| # | feature_value_0 | feature_value_1 | feature_value_2 |\n", + "|---|-----------------|-----------------|-----------------|\n", + "| 0 | 0.0 | 0.0 | 1.0 |\n", + "| 1 | 1.0 | 0.0 | 0.0 |\n", + "| 2 | 0.0 | 1.0 | 0.0 |" + ] + }, + { + "metadata": { + "id": "KnssXowblKm7", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Bucketized (Binned) Features\n", + "\n", + "Bucketization is also known as binning.\n", + "\n", + "We can bucketize `population` into the following 3 buckets (for instance):\n", + "- `bucket_0` (`< 5000`): corresponding to less populated blocks\n", + "- `bucket_1` (`5000 - 25000`): corresponding to mid populated blocks\n", + "- `bucket_2` (`> 25000`): corresponding to highly populated blocks\n", + "\n", + "Given the preceding bucket definitions, the following `population` vector:\n", + "\n", + " [[10001], [42004], [2500], [18000]]\n", + "\n", + "becomes the following bucketized feature vector:\n", + "\n", + " [[1], [2], [0], [1]]\n", + "\n", + "The feature values are now the bucket indices. Note that these indices are considered to be discrete features. Typically, these will be further converted in one-hot representations as above, but this is done transparently.\n", + "\n", + "To define feature columns for bucketized features, instead of using `numeric_column`, we can use [`bucketized_column`](https://www.tensorflow.org/api_docs/python/tf/feature_column/bucketized_column), which takes a numeric column as input and transforms it to a bucketized feature using the bucket boundaries specified in the `boundaries` argument. The following code defines bucketized feature columns for `households` and `longitude`; the `get_quantile_based_boundaries` function calculates boundaries based on quantiles, so that each bucket contains an equal number of elements." + ] + }, + { + "metadata": { + "id": "cc9qZrtRy-ED", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def get_quantile_based_boundaries(feature_values, num_buckets):\n", + " boundaries = np.arange(1.0, num_buckets) / num_buckets\n", + " quantiles = feature_values.quantile(boundaries)\n", + " return [quantiles[q] for q in quantiles.keys()]\n", + "\n", + "# Divide households into 7 buckets.\n", + "households = tf.feature_column.numeric_column(\"households\")\n", + "bucketized_households = tf.feature_column.bucketized_column(\n", + " households, boundaries=get_quantile_based_boundaries(\n", + " california_housing_dataframe[\"households\"], 7))\n", + "\n", + "# Divide longitude into 10 buckets.\n", + "longitude = tf.feature_column.numeric_column(\"longitude\")\n", + "bucketized_longitude = tf.feature_column.bucketized_column(\n", + " longitude, boundaries=get_quantile_based_boundaries(\n", + " california_housing_dataframe[\"longitude\"], 10))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "U-pQDAa0MeN3", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Train the Model on Bucketized Feature Columns\n", + "**Bucketize all the real valued features in our example, train the model and see if the results improve.**\n", + "\n", + "In the preceding code block, two real valued columns (namely `households` and `longitude`) have been transformed into bucketized feature columns. Your task is to bucketize the rest of the columns, then run the code to train the model. There are various heuristics to find the range of the buckets. This exercise uses a quantile-based technique, which chooses the bucket boundaries in such a way that each bucket has the same number of examples." + ] + }, + { + "metadata": { + "id": "YFXV9lyMLedy", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns():\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " households = tf.feature_column.numeric_column(\"households\")\n", + " longitude = tf.feature_column.numeric_column(\"longitude\")\n", + " latitude = tf.feature_column.numeric_column(\"latitude\")\n", + " housing_median_age = tf.feature_column.numeric_column(\"housing_median_age\")\n", + " median_income = tf.feature_column.numeric_column(\"median_income\")\n", + " rooms_per_person = tf.feature_column.numeric_column(\"rooms_per_person\")\n", + " \n", + " # Divide households into 7 buckets.\n", + " bucketized_households = tf.feature_column.bucketized_column(\n", + " households, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"households\"], 7))\n", + "\n", + " # Divide longitude into 10 buckets.\n", + " bucketized_longitude = tf.feature_column.bucketized_column(\n", + " longitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"longitude\"], 10))\n", + "\n", + " #\n", + " # YOUR CODE HERE: bucketize the following columns, following the example above:\n", + " #\n", + " bucketized_latitude = tf.feature_column.bucketized_column(latitude, boundaries=get_quantile_based_boundaries(training_examples[\"latitude\"], 10))\n", + " bucketized_housing_median_age = tf.feature_column.bucketized_column(housing_median_age, boundaries=get_quantile_based_boundaries(training_examples[\"housing_median_age\"], 7))\n", + " bucketized_median_income =tf.feature_column.bucketized_column(median_income, boundaries=get_quantile_based_boundaries(training_examples[\"median_income\"], 7))\n", + " bucketized_rooms_per_person =tf.feature_column.bucketized_column(rooms_per_person, boundaries=get_quantile_based_boundaries(training_examples[\"rooms_per_person\"], 7))\n", + " \n", + " feature_columns = set([\n", + " bucketized_longitude,\n", + " bucketized_latitude,\n", + " bucketized_housing_median_age,\n", + " bucketized_households,\n", + " bucketized_median_income,\n", + " bucketized_rooms_per_person])\n", + " \n", + " return feature_columns\n" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "0FfUytOTNJhL", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 622 + }, + "outputId": "40cc3d5a-a837-4703-b5c8-89ec2382cfff" + }, + "cell_type": "code", + "source": [ + "_ = train_model(\n", + " learning_rate=1.0,\n", + " steps=500,\n", + " batch_size=100,\n", + " feature_columns=construct_feature_columns(),\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 169.54\n", + " period 01 : 143.08\n", + " period 02 : 126.41\n", + " period 03 : 115.20\n", + " period 04 : 107.25\n", + " period 05 : 101.40\n", + " period 06 : 96.94\n", + " period 07 : 93.44\n", + " period 08 : 90.44\n", + " period 09 : 88.03\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VHX6/vH3TCadBFLpEHoNoQUJ\nvRO6VBWJoqxbBEHFul9xdbEstlUUXGFtiBWUJiCKgICKCMEYauglgRRSSc/k/P7g56wIhAQymUly\nv67L62JOvWeeM/D4OWfOMRmGYSAiIiJSiZgdHUBERESkrNTAiIiISKWjBkZEREQqHTUwIiIiUumo\ngREREZFKRw2MiIiIVDoWRwcQcWatWrWiUaNGuLi4AGC1WgkPD+eJJ57Ay8vrurf72WefMWnSpMum\nf/HFFzz++OP85z//oX///rbpeXl59OjRgyFDhvCvf/3ruvdbWqdOneK5557j+PHjAHh6ejJjxgwG\nDRpk932XxcKFCzl16tRln8lPP/3EtGnTaNCgwWXrfPXVVxUV74acOXOGgQMH0qRJEwAMwyAwMJD/\n+7//o23btmXa1ssvv0y9evW47bbbSr3OqlWrWL58OR988EGZ9iVSUdTAiFzDBx98QJ06dQAoKCjg\ngQce4K233uKBBx64ru0lJyfz3//+94oNDEDdunX58ssvL2lgNm/ejK+v73Xt73o89NBDjBkzhv/8\n5z8AxMTEcOedd7J+/Xrq1q1bYTluRN26dStNs3I1Li4ul7yHdevWMX36dDZs2ICbm1uptzN79mx7\nxBNxKJ1CEikDNzc3evfuzYEDBwDIz8/nySefZOjQoQwbNox//etfWK1WAA4ePMitt95KZGQkY8aM\nYdu2bQDceuutJCQkEBkZSUFBwWX76Ny5Mz/99BO5ubm2aevWraNnz5621wUFBTzzzDMMHTqUAQMG\n2BoNgD179jBu3DgiIyMZPnw4P/zwA3Dx/+h79erFkiVLGDVqFL1792bdunVXfJ9xcXGEhYXZXoeF\nhbFhwwZbI/fGG2/Qt29fbr75ZhYtWsSAAQMAeOyxx1i4cKFtvd+/vlau5557jilTpgCwe/duxo8f\nz+DBg5k0aRKnT58GLo5E3X///fTv358pU6Zw7ty5a1Tsyr744gtmzJjBnXfeyQsvvMBPP/3Erbfe\nyqxZs2z/2K9fv56RI0cSGRnJHXfcwalTpwB4/fXXeeKJJ5gwYQLvvffeJdudNWsW77zzju31gQMH\n6NWrF8XFxfz73/9m6NChDB06lDvuuIPExMQy5x4+fDh5eXkcO3YMgE8//ZTIyEgGDBjAgw8+SF5e\nHnDxc3/++ecZNWoU69evv6QOVzsui4uL+ec//0m/fv2YMGECBw8etO13586djB07luHDhzNs2DDW\nr19f5uwi5c4Qkatq2bKlcfbsWdvr9PR04/bbbzcWLlxoGIZhvPXWW8Y999xjFBYWGrm5ucb48eON\nlStXGlar1Rg2bJixZs0awzAM49dffzXCw8ONrKwsY8eOHcagQYOuuL/PP//cePTRR42HHnrItm5W\nVpYxcOBAY9myZcajjz5qGIZhvPHGG8add95p5OfnG9nZ2cbNN99sbNq0yTAMwxg5cqTx5ZdfGoZh\nGCtWrLDt6/Tp00bbtm2NDz74wDAMw1i3bp0xePDgK+a47777jP79+xvvv/++ceTIkUvmHTp0yOja\ntauRlJRkFBYWGn/729+M/v37G4ZhGI8++qixYMEC27K/f11Srnbt2hlffPGF7f2Gh4cb27dvNwzD\nMNasWWOMHTvWMAzDWLp0qXH77bcbhYWFRmpqqtG/f3/bZ/J7JX3Gv33OHTt2NI4fP25bPjQ01Pjh\nhx8MwzCM+Ph4o0uXLsaJEycMwzCMt99+27jzzjsNwzCM+fPnG7169TLOnz9/2XbXrl1r3H777bbX\nr732mjF37lwjLi7OGDJkiFFQUGAYhmEsWbLEWLFixVXz/fa5tGnT5rLp4eHhxtGjR42ff/7ZiIiI\nMM6dO2cYhmHMmTPH+Ne//mUYxsXPfdSoUUZeXp7t9YIFC0o8Lrds2WIMGTLEuHDhgpGbm2tMmDDB\nmDJlimEYhjFu3Djjp59+MgzDMI4fP248+OCDJWYXqQgagRG5hqioKCIjIxk4cCADBw6ke/fu3HPP\nPQBs2bKFSZMmYbFY8PDwYNSoUXz//fecOXOGlJQURowYAUBoaCj16tUjNja2VPscMWIEX375JQAb\nN26kf//+mM3/+7pu3ryZyZMn4+bmhpeXF2PGjOHrr78GYOXKlQwbNgyALl262EYvAIqKihg3bhwA\n7dq1IyEh4Yr7f/HFF7n99ttZs2YNI0eOZMCAAXz88cfAxdGR8PBwgoKCsFgsjBw5slTvqaRchYWF\nDB482Lb92rVr20acRo4cyalTp0hISGDXrl0MHjwYi8WCn5/fJafZ/ujs2bNERkZe8t/vr5UJCQkh\nJCTE9trDw4OIiAgAvv/+e2666SYaN24MwMSJE/npp58oKioCLo5I+fv7X7bPfv36sX//ftLT0wH4\n5ptviIyMxNfXl9TUVNasWUNGRgZRUVHcfPPNpfrcfmMYBp9++im1a9cmJCSETZs2MXz4cGrXrg3A\nbbfdZjsGACIiInB3d79kGyUdlz///DN9+/bF29sbDw8PW60AAgICWLlyJUePHiUkJISXX365TNlF\n7EHXwIhcw2/XwKSmptpOf1gsF786qamp1KxZ07ZszZo1OX/+PKmpqfj4+GAymWzzfvtHLDAw8Jr7\n7NmzJ0888QTp6emsXbuWe++913ZBLUBWVhbPP/88r7zyCnDxlFKHDh0AWLNmDUuWLCE7O5vi4mKM\n3z3uzMXFxXbxsdlspri4+Ir7d3d3Z9q0aUybNo3MzEy++uornnvuORo0aEBGRsYl1+MEBARc8/2U\nJleNGjUAyMzM5PTp00RGRtrmu7m5kZqaSkZGBj4+Prbpvr6+ZGdnX3F/17oG5vd1++PrtLS0S96j\nj48PhmGQlpZ2xXV/4+XlRY8ePdiyZQtdunQhMzOTLl26YDKZeP3113nnnXeYO3cu4eHhPP3009e8\nnshqtdo+B8MwaN68OQsXLsRsNpOVlcU333zD9u3bbfMLCwuv+v6AEo/LjIwMgoODL5n+m+eee443\n33yTu+66Cw8PDx588MFL6iPiCGpgRErJ39+fqKgoXnzxRd58800AAgMDbf+3DZCenk5gYCABAQFk\nZGRgGIbtH4v09PRS/2Pv6upK//79WblyJSdPnqRTp06XNDDBwcHcfffdl41AJCYm8sQTT7Bs2TLa\ntGnDiRMnGDp0aJneZ2pqKgcOHLCNgPj6+jJp0iS2bdtGXFwcPj4+ZGVlXbL8b/7YFGVkZJQ5V3Bw\nME2bNuWLL764bJ6vr+9V912eAgIC2LNnj+11RkYGZrMZPz+/a647dOhQvvnmG9LS0hg6dKit/t27\nd6d79+7k5OQwb948XnrppWuOZPzxIt7fCw4OZuzYsTz66KNlel9XOy5L+mwDAwOZM2cOc+bMYfv2\n7dx333307t0bb2/vUu9bpLzpFJJIGdx1113s2bOHnTt3AhdPGSxfvhyr1UpOTg6rVq2ib9++NGjQ\ngDp16tguko2OjiYlJYUOHTpgsVjIycmxnY64mhEjRrB48eIr/nR54MCBLFu2DKvVimEYLFy4kK1b\nt5KamoqXlxdNmzalqKiITz/9FOCqoxRXkpeXx8yZM20XdwKcPHmSmJgYunbtSqdOndi1axepqakU\nFRWxcuVK23JBQUG2iz9Pnz5NdHQ0QJlyhYWFkZycTExMjG07Dz/8MIZh0LFjRzZt2oTVaiU1NZWt\nW7eW+n2VRc+ePdm1a5ftNNcnn3xCz549bSNvJenfvz979uxh48aNttMw27dv5+mnn6a4uBgvLy9a\nt259ySjI9RgwYABff/21rdHYuHEjixYtKnGdko7LTp06sX37dnJzc8nNzbU1ToWFhURFRZGUlARc\nPPVosVguOaUp4ggagREpgxo1avDnP/+ZefPmsXz5cqKiojh9+jQjRozAZDIRGRnJsGHDMJlMvPLK\nK/zjH//gjTfewNPTk9deew0vLy9atWpFzZo16dmzJytWrKBevXpX3Fe3bt0wmUwMHz78snmTJ0/m\nzJkzjBgxAsMwaN++PXfeeSdeXl706dOHoUOHEhAQwGOPPUZ0dDRRUVHMnz+/VO+xXr16vPnmm8yf\nP59nnnkGwzCoUaMGjz/+uO2XSbfccgtjx47Fz8+PIUOGcPjwYQAmTZrEjBkzGDJkCG3btrWNsrRu\n3brUuTw8PJg/fz5z584lOzsbV1dXZs2ahclkYtKkSezatYtBgwZRr149Bg0adMmowe/9dg3MH73w\nwgvX/Azq1KnDM888w7333kthYSENGjRg7ty5pfr8atSoQbt27Th06BAdO3YEIDw8nLVr1zJ06FDc\n3Nzw9/fnueeeA+CRRx6x/ZKoLNq1a8df//pXoqKiKC4uJiAggKeffrrEdUo6Lvv378+WLVuIjIwk\nMDCQvn37smvXLlxdXZkwYQJTp04FLo6yPfHEE3h6epYpr0h5Mxm/PxEtIlJGu3bt4pFHHmHTpk2O\njiIi1YjGAEVERKTSUQMjIiIilY5OIYmIiEiloxEYERERqXTUwIiIiEilUyl/Rp2cfOWfTZYHPz8v\n0tJy7LZ9uX6qjXNSXZyXauO8VJvSCQryueo8jcD8gcXi4ugIchWqjXNSXZyXauO8VJsbpwZGRERE\nKh01MCIiIlLpqIERERGRSkcNjIiIiFQ6amBERESk0lEDIyIiIpWOGhgRERGpdOzawMTFxTFo0CCW\nLl0KwMyZM4mKiiIqKopRo0YxZ84cAP773/8yYcIEJk6cyHfffWfPSCIiIlXeli3flmq51157mYSE\n+KvOf+yxB8srUrmz2514c3JymDt3LhEREbZp8+fPt/358ccfZ+LEiZw+fZp169bxySefcOHCBSZP\nnkyvXr1wcdFNfkRERMrq7NkENm7cQL9+A6+57KxZs0uc/69/vVJescqd3RoYNzc3Fi9ezOLFiy+b\nd+zYMbKysujQoQPLly+nd+/euLm54e/vT/369Tly5AitWrWyVzQREZEq65VX5nHgwD569w5nyJBh\nnD2bwKuvLuT55/9JcnISubm53H33n+nZszczZvyZBx98hM2bvyU7+wKnTp0kPv4MM2fOJiKiJyNG\nDGTt2m+ZMePPhIffRHT0LtLT05k3798EBgbyz3/O4dy5s4SGdmDTpo2sWLGuwt6n3RoYi8WCxXLl\nzS9ZsoQpU6YAkJKSgr+/v22ev78/ycnJamBERKTS+2zTEX4+mHTZdBcXE1arcV3bDG8dzKQBza86\n/7bbovjii89o0qQZp06dYOHC/5KWlkq3bt0ZNmwk8fFnmDPnMXr27H3JeklJibz00nx27PiBVas+\nJyKi5yXzvb29ee21N3nzzdfZunUT9eo1oKAgn0WL3uP777fx2WcfX9f7uV4V/jDHgoICdu/ezVNP\nPXXF+YZx7YL6+XnZ5TkS++PPsGPPQUZ1Ci/3bUv5KOnBXuI4qovzUm0cy9PLDRcX0xXnXW16abZZ\nUl1r1fLC3d0Vb293wsO7EBTkQ61aHnzyyWHuu+8ezGYz2dlZBAX54OZmwc/PG29vdyIibiIoyIdW\nrZqQn59LUJAPJpPJtly/fr0ICvKhadNGpKenk5KSQPfu3QgK8mH06EieeOKRCj3eKryB+fnnn+nQ\noYPtdXBwMMePH7e9TkxMJDg4uMRt2OsJnq9v+YzzlsNQaKJ7E40AOZugIB+7Polcro/q4rxUG8cb\n1b0Ro7o3umz6jdampHXT03PIzy8kOzsfV1dPkpOzWL/+SxITU3jttbfIzMzkT3+KIjk5i4KCItLS\nsi9ZNi0tm4KCIpKTszAMw7ZcZmYeyclZXLiQx4ULeRQWGpjNLrblrpXrejjV06hjY2Np3bq17XX3\n7t3ZsmULBQUFJCYmkpSURPPmVx8as6deDbsAsOzQmlKNBImIiDgbs9mM1Wq9ZFp6ejp169bDbDbz\n3XebKCwsvOH91K/fgEOH9gOwc+eOy/Zpb3ZrYPbu3UtUVBQrVqxgyZIlREVFkZ6eTnJyMgEBAbbl\n6tWrx6RJk5gyZQozZ87kqaeewmx2zO1phrTpjHdhPfLckvjqwC6HZBAREbkRjRs34dChg2RnX7BN\n69dvAD/8sI1Zs/6Gp6cnwcHBvPvu5T+yKYsePXqTnZ3N3/42jZiYPfj61rzR6GViMirhUIM9h0QP\npcbz2p7XsBT68sqQx7GY9XNuZ6HhcOekujgv1cZ5VYXaZGZmEB29i379BpKcnMSsWX/jo48+L9d9\nlHQKqcKvgXF2vVq15oOfm5HmdpRP92zh9i7X/h29iIhIdePl5c2mTRv56KMPMIxi7ruvYm96pwbm\nCu7sOJp/x77GjynfMbagF15u7o6OJCIi4lQsFgv//OfzDtu/noV0BS1q16UBoRiueby/e72j44iI\niMgfqIG5imnhozCKXNl7YSfnszMdHUdERER+Rw3MVdSu6Usrt3BwKeLtXasdHUdERER+Rw1MCe6+\nKRLyvThRGMuJ1LOOjiMiIiL/nxqYEvh4etC1Zm9MZoN396xydBwREZFyM2HCKHJycvjgg/fYu/fX\nS+bl5OQwYcKoEtffsuVbANatW8N33222W86rUQNzDZPD+2LOrUWK6RgxCUccHUdERKRcRUVNpX37\nDtde8HfOnk1g48YNAAwfPoq+ffvbI1qJ9DPqa3B3tTCg7mA2pi/jo32r6FD3QUym63sAl4iIiL3d\nffftPPfcy9SpU4dz587y+OOzCQoKJjc3l7y8PB544GHatm1vW/7ZZ5+iX7+BdOzYif/7v0coKCig\nQ4eOtvlff72e5cs/xcXFTEhIMx599P945ZV5HDiwj3ffXUxxcTG1atVi/PhbWLjwNWJjYygqsjJ+\n/CQiI0cwY8afCQ+/iejoXaSnpzNv3r+pU6fODb9PNTClMKZTV75bu40LXuf47tge+jXr7OhIIiJS\nCXxx5Ev2JMVeNt3FbMJafH03wu8UHMq45iOvOr9Pn/58//1Wxo+fxLZt39GnT3+aNWtBnz792L37\nZz788H2effbFy9bbsGE9TZs2Y+bM2Xz77de2EZbc3Fxefvl1fHx8mD79Ho4ePcJtt0XxxRefcddd\n9/D2228B8Msv0Rw7dpQ333yH3Nxc7rzzVvr06QeAt7c3r732Jm+++Tpbt25i0qTJ1/Xef0+nkErB\nbDJxc7PhGAasOroea3HFPrBKRESktC42MNsA2L79O3r16st3333L3/42jTfffJ2MjIwrrnfixDHa\ntw8DoFOnLrbpvr6+PP74bGbM+DMnTx4nIyP9iusfPLifjh0v/g++p6cnISFNOX36NABhYZ0ACA4O\n5sKFC1dcv6w0AlNKfVu3Yt3RpmR7HWPV/m2Ma9/P0ZFERMTJjWs+8oqjJfZ8FlLTps04fz6ZxMRz\nZGVlsW3bFgIDg5kzZy4HD+7njTdeveJ6hgFm88VLJIr//+hQYWEhr7zyAu+99xEBAYE88sj9V92v\nyWTi909XLCoqtG3PxeV/zxUsr0cwagSmlEwmE5Pbj8Cwmtl8djN5RfmOjiQiInJFERG9WLRoIb17\n9yUjI5369RsA8N13mykqKrriOo0aNebgwQMAREfvAiAnJxsXFxcCAgJJTDzHwYMHKCoqwmw2Y7Ve\nejaidet27Nmz+/+vl0N8/BkaNGhkr7eoBqYsOoY0JKiwLcUuuXz0ywZHxxEREbmivn37s3HjBvr1\nG0hk5Ag+/fRDHnhgOu3atef8+fOsXXv5DVojI0ewb18ss2b9jdOnT2IymahZsxbh4Tfxpz/dwbvv\nLmby5Cjmz3+Fxo2bcOjQQebPf9m2flhYR1q1as306ffwwAPT+etfZ+Dp6Wm392gyymsspwLZ8xHk\n1xrWO5GUygt7XsbkYvBsr8eo5eFrtyxyqarw+PmqSHVxXqqN81JtSicoyOeq8zQCU0Yhwf40pguY\ni3gv+ktHxxEREamW1MBch7u7D8XI8+JwbgzxmYmOjiMiIlLtqIG5DkE1vWnn2QNMBu/uWenoOCIi\nItWOGpjrdGf3fpBTi7PWoxxIPuboOCIiItWKGpjrVMPTjQj/i89++CB2Zbn9rl1ERESuTQ3MDZgU\n3g1zVh0yOMePp2McHUdERKTaUANzA9xcXRjaYAiGAZ/HrdUjBkRERCqIGpgbNKxTW9yzQsgzZ/DV\nke8dHUdERKRaUANzg1zMZsa3GoZhdWHDqW/JtxY4OpKIiEiVpwamHPRsHYJvdius5lyW7/3a0XFE\nRESqPDUw5cBkMjGl0zCMQjd+TP6BjPxMR0cSERGp0tTAlJP2jWtTOz8Mw1zE0pi1jo4jIiJSpdm1\ngYmLi2PQoEEsXboUgMLCQmbPns2ECRO48847ycjIAGD16tWMHz+eiRMnsmzZMntGsqupNw2hOM+L\n/Vm/cO5CkqPjiIiIVFl2a2BycnKYO3cuERERtmmfffYZfn5+LF++nOHDh7Nr1y5ycnJYsGAB7733\nHh988AHvv/8+6enp9oplV41r16SZqRuYDN6L0SMGRERE7MVuDYybmxuLFy8mODjYNm3z5s2MHj0a\ngFtuuYWBAwcSExNDaGgoPj4+eHh40LlzZ6Kjo+0Vy+7ujOhH8YVanM4/QlzqcUfHERERqZLs1sBY\nLBY8PDwumRYfH8/WrVuJiorigQceID09nZSUFPz9/W3L+Pv7k5ycbK9YdhdUy4uO3r0BPWJARETE\nXiwVuTPDMGjSpAkzZsxg4cKFvPXWW7Rt2/ayZa7Fz88Li8XFXjEJCvK5ofXvGzmQez7aSWrNsxzK\nPkzvJl3KKZncaG3EPlQX56XaOC/V5sZUaAMTGBhIeHg4AL169eL111+nX79+pKSk2JZJSkqiY8eO\nJW4nLS3HbhmDgnxITs664e30ChrAtvxPeHvnclp4NcPFbL+Gq7oor9pI+VJdnJdq47xUm9Ipqcmr\n0J9R9+nTh23btgGwb98+mjRpQlhYGLGxsWRmZpKdnU10dDRdu3atyFh2Ma5bB1zSGpFDOt+e+NHR\ncURERKoUu43A7N27l3nz5hEfH4/FYmHDhg289NJLPPvssyxfvhwvLy/mzZuHh4cHs2fPZtq0aZhM\nJqZPn46PT+UfVnN3c2F4k8GsSX2Xdce/oU+jcDws7o6OJSIiUiWYjEp4lak9h93Kc1ivyFrMw1+8\nR0HAQfrW6cektsPLZbvVlYZcnZPq4rxUG+el2pSO05xCqm4sLmYmthuCUeDGtrPbycjXwSoiIlIe\n1MDYWUSb+vheaE+xqYhP9+sRAyIiIuVBDYydmUwmbu8ykOJcb2JS93AuW48YEBERuVFqYCpAaJMg\n6hZ0BpPB0thVjo4jIiJS6amBqSB3dO+LNasWx3MOcyRNjxgQERG5EWpgKkhIXV9aulx8sOXSvXrE\ngIiIyI1QA1OBpvS8ieK02iQXniU6MdbRcURERCotNTAVKNjPi84+vTEME58d/BJrsdXRkURERCol\nNTAVbFLPjpDSiAvF6Ww5rUcMiIiIXA81MBWsprcbfev2xbC68OXRr8krynN0JBERkUpHDYwDjL6p\nNS4pzSkgj7VHNzs6joiISKWjBsYBPN0tDG/eH6PAnS1ntpGRn+noSCIiIpWKGhgHGdQpBPfUNhSb\nivj80HpHxxEREalU1MA4iKvFzIQO/SjO9WZ3cjTnshMdHUlERKTSUAPjQBHt6lIzMwxMBh/vX+Po\nOCIiIpWGGhgHMptM3BbeC2umH0ey4jicdszRkURERCoFNTAO1qFZAPULuwLw8f7VesSAiIhIKaiB\ncTCTycTknt2wptYmMT+BPUm/OjqSiIiI01MD4wSa1atJS9fuGMUmlh1cS1FxkaMjiYiIODU1ME7i\ntl4dKU5uRKY1nW1ndjg6joiIiFNTA+Mk6gZ406VWDwyrC2uOfkOuHjEgIiJyVWpgnMiEXm0xEpuR\nb+Ty1XE9YkBERORq1MA4ET8fd/rV74VR4M6m09tIz89wdCQRERGnpAbGyYyKaIY5sRXFFLHq8AZH\nxxEREXFKamCcjJeHK8Nb9aI4pwY7k3aTcOGcoyOJiIg4HTUwTmhw14a4n28HGCw/9KWj44iIiDgd\nNTBOyNXiwriO3bFm+nEoI464tKOOjiQiIuJU1MA4qV6h9aiV1RGAzw6uodgodnAiERER52HXBiYu\nLo5BgwaxdOlSAB577DFGjRpFVFQUUVFRbNmyBYDVq1czfvx4Jk6cyLJly+wZqdIwm03cclNXis7X\n4WyuHjEgIiLyexZ7bTgnJ4e5c+cSERFxyfQHH3yQ/v37X7LcggULWL58Oa6urkyYMIHBgwdTq1Yt\ne0WrNDq2CKT+ri6cK17H53HrCAtqj8Vst5KJiIhUGnYbgXFzc2Px4sUEBweXuFxMTAyhoaH4+Pjg\n4eFB586diY6OtlesSsVkMnFr7zCsSY3IKExnW7weMSAiIgJ2HIGxWCxYLJdvfunSpbz77rsEBAQw\nZ84cUlJS8Pf3t8339/cnOTm5xG37+XlhsbiUe+bfBAX52G3bZRUU5MPXeyLYXxTP2mPfMLJ9P7zc\nPB0dy2GcqTbyP6qL81JtnJdqc2Mq9HzEmDFjqFWrFm3atGHRokW88cYbdOrU6ZJlDMO45nbS0nLs\nFZGgIB+Sk7Pstv3rcXNES35d14Tchof5cPcabm4+zNGRHMIZayOqizNTbZyXalM6JTV5FforpIiI\nCNq0aQPAgAEDiIuLIzg4mJSUFNsySUlJ1zztVN00CKpBeMBNFx8xcGoraXnpjo4kIiLiUBXawNx3\n332cPn0agJ9++okWLVoQFhZGbGwsmZmZZGdnEx0dTdeuXSsyVqUwrndLrAktsWJl9VE9YkBERKo3\nu51C2rt3L/PmzSM+Ph6LxcKGDRuYMmUK999/P56ennh5efH888/j4eHB7NmzmTZtGiaTienTp+Pj\no/OCfxRQ04N+jbuxNec4OxN3M6hxH+rXqOvoWCIiIg5hMkpz0YmTsed5Q2c+L3kht5BHP1wJTX+m\nda1W3Nd5mqMjVShnrk11prpi8cj/AAAgAElEQVQ4L9XGeak2peM018DIjanh6Upkm65YM/05mH6I\nQ6lHHB1JRETEIdTAVDJDwhvhntwegOVxX+oRAyIiUi2pgalk3N1cGNu1E0Xn65KQk0B0YoyjI4mI\niFQ4NTCVUK8OdamVGYpRbGLFkfUUFhc5OpKIiEiFUgNTCVlczEzo2QFrUiPSC9LZduYHR0cSERGp\nUGpgKqmurYKoZw3DKLKw9vi35BTmOjqSiIhIhVEDU0mZTCYm9W5L0dmm5Flz+frkZkdHEhERqTBq\nYCqxNiH+tPToSHG+B5tObyM1L83RkURERCqEGphKbmLfVhTFt8BqWFlz7GtHxxEREakQamAqucZ1\nfOgS3JHiHB92ntvNmawER0cSERGxOzUwVcC4Ps2xnmkFwIoj6xycRkRExP7UwFQBwbU86dM0DGtG\nAAfT4jiYetjRkUREROxKDUwVMbpnE0zn2gDwxeG1esSAiIhUaWpgqghfbzeGtm9PUUpd4rMT2JX4\ni6MjiYiI2I0amCpkaLdGuJ9vi1FsZtWRryi0Fjo6koiIiF2ogalCPN0tjA5vS1HixUcMfBevRwyI\niEjVpAamiunXqT41L7TFKLKw/vi3ZBfmODqSiIhIuVMDU8VYXMyM69WaooRm5FnzeHffR1iLrY6O\nJSIiUq7UwFRBN7WtTZ3idljTgziQGscnh77AMAxHxxIRESk3amCqILPJxG0DWlJ4JAxTbk1+OPsz\nG05ucnQsERGRcqMGpopqE+LPxL6tyTnYCXORF2uObWDnuWhHxxIRESkXamCqsKHdGtK3XVNyDnTC\nXOzK0gPLiEs76uhYIiIiN0wNTBVmMpm4fXBL2tRuRO6hjhQXGyyKXcK57ERHRxMREbkhamCqOIuL\nmXtvbk9tt4bkH2tHblEuC2PeIbMgy9HRRERErpsamGrAy8OV+yeG4ZUbQlF8c87npfFmzLvkWwsc\nHU1EROS6qIGpJoJqeXLfuA4Y51pAagNOZZ3h3X0f6qGPIiJSKamBqUaaN6jJ3SPakHu0LebsIGJT\nDrD88GrdI0ZERCoduzYwcXFxDBo0iKVLl14yfdu2bbRq1cr2evXq1YwfP56JEyeybNkye0aq9rq3\nrcPNvZqRfbADloKafHfmBzad3uboWCIiImVisdeGc3JymDt3LhEREZdMz8/PZ9GiRQQFBdmWW7Bg\nAcuXL8fV1ZUJEyYwePBgatWqZa9o1d6oHiEkpuawY38RNTrsZMWRtfh7+NEpONTR0URERErFbiMw\nbm5uLF68mODg4Eum/+c//2Hy5Mm4ubkBEBMTQ2hoKD4+Pnh4eNC5c2eio3XDNXsymUxMHdaG5sF1\nuLC/E2YsvL//Y45lnHR0NBERkVKx2wiMxWLBYrl088ePH+fgwYPMmjWLF198EYCUlBT8/f1ty/j7\n+5OcnFzitv38vLBYXMo/9P8XFORjt207k3/cE8HD84tIPNQBj1bRLNr7Ps8OfJg6PsHXXtlBqktt\nKhvVxXmpNs5LtbkxdmtgruT555/niSeeKHGZ0lxQmpaWU16RLhMU5ENycvW5R8qMce15dkk+hSfa\nkhWyj7mb5/NQlxnUcPN2dLTLVLfaVBaqi/NSbZyXalM6JTV5FfYrpMTERI4dO8ZDDz3EpEmTSEpK\nYsqUKQQHB5OSkmJbLikp6bLTTmI/dQO8mT4ulOKURpDUjOTc87wV+z6F1kJHRxMREbmqCmtgateu\nzcaNG/nss8/47LPPCA4OZunSpYSFhREbG0tmZibZ2dlER0fTtWvXioolQJvGftwR2YrcE82xZDXg\nWMYJ3j/wqe4RIyIiTstup5D27t3LvHnziI+Px2KxsGHDBl5//fXLfl3k4eHB7NmzmTZtGiaTienT\np+Pjo/OCFa13h3okpuay7ieDWh3y2ZP0K6s8/BjbfISjo4mIiFzGZFTCu5jZ87xhdT4vWWwYvLly\nL7uPxFOr0y7yzZnc0nIsfRpEXHvlClCda+PMVBfnpdo4L9WmdJziGhhxfmaTiT+NbEuT4AAyYjvi\nhiefxa0kNmW/o6OJiIhcQg2MXMLd1YWZ4zvg7+5H5r4wzLjwzt4POZV5xtHRREREbNTAyGVq1nBn\n1oQw3AsDyD8SRkFxIW/++i7nc9McHU1ERARQAyNX0SC4Bn8d056itCDMCe3ILMhi4a/vkFOY6+ho\nIiIiamDk6jo0C2DyoJZkn2mIe0ZzzmUnsjh2CUXFRY6OJiIi1ZwaGCnRwC4NGNSlAemHmuGV34C4\n9KN8eHB5qe6YLCIiYi9qYOSabh3Ygg7NAjkf2wbv4iB2notm7fFvHB1LRESqMTUwck1ms4m/jG5H\ng4CapPzSHi+TL+tPbOTHhJ8dHU1ERKopNTBSKp7uFu6f2IGa7j6kxXTA3ezBR4c+52DqYUdHExGR\nakgNjJSav68HMyd0wFLkS+7BTpgwsTj2A+IvnHV0NBERqWbUwEiZNKnryz2j2lGQXhPz6U7kWfNY\nGPMO6fkZjo4mIiLViBoYKbMurYKY0L8ZmQmBeKe1Jz0/g4Ux75BXlOfoaCIiUk2ogZHrEtmtEX3C\n6pJyuD4181oQf+Esb+/9EGux1dHRRESkGlADI9fFZDIxZUgr2jT259yvTfCnIftTD/Fp3ArdI0ZE\nROxODYxcN4uLmXvHtqduQA3id7WilksQ3yfs5JuTWxwdTUREqjg1MHJDvD1cmTWhAzXcPUnc3Z4a\nLr6sOraeXef2ODqaiIhUYWpg5IYF+3lx3/hQzFYPLuzviLvZnQ8OfMbhtGOOjiYiIlWUGhgpFy0a\n1OLu4W3IzfDCdLIrxRgsin2fc9lJjo4mIiJVkBoYKTfd29VhTK8mpJ31wfd8V3KKclkY8w6ZBVmO\njiYiIlWMGhgpV6N7htC9bW3OHvEnOL8D5/NS+c+v71FgLXB0NBERqULUwEi5MplM3DW8Nc0b1ORk\nTF3qmlpyMvM07+77mGKj2NHxRESkirjuBubEiRPlGEOqEleLCzPGhRJUy5NjO0Oo7dqQX1P28fnh\nNY6OJiIiVUSJDcxdd911yeuFCxfa/vzkk0/aJ5FUCb5ebtw/MQxPNzdO72yFv1sgW858z6bT2xwd\nTUREqoASG5iioqJLXu/YscP2Z91tVa6lboA308e2B6sraTFh1LDU4IvDX/JL8l5HRxMRkUquxAbG\nZDJd8vr3Tcsf54lcSdsQf6KGtiInyxXjeDiuZlfe2/cRxzNOOTqaiIhUYmW6BkZNi1yPPmH1GHZT\nI1LOulMrpTtFxVb+8+u7JOecd3Q0ERGppCwlzczIyODHH3+0vc7MzGTHjh0YhkFmZqbdw0nVMb5f\nM5LSctkdl0yrjt05xY8s/PVtZneZTg1Xb0fHExGRSqbEBsbX1/eSC3d9fHxYsGCB7c/XEhcXx733\n3svUqVOZMmUKe/bs4YUXXsBiseDm5saLL76Iv78/q1ev5v3338dsNjNp0iQmTpx4g29LnI3ZZOJP\no9py/sNoDv0C7Xp04ljOHhb9+j73dbwHVxdXR0cUEZFKxGTY6WrcnJwc/vKXvxASEkKrVq2YMmUK\nM2fO5OGHH6Zhw4a88cYbWCwW7rjjDsaOHcvy5ctxdXVlwoQJLF26lFq1al1128nJ9ruza1CQj123\nX92lX8hn7vu7SMvKo22fExzPO0SX4DCmtrsNs6nkM5qqjXNSXZyXauO8VJvSCQq6+mBJif9iXLhw\ngffee8/2+pNPPmHMmDHMnDmTlJSUEnfq5ubG4sWLCQ4Otk2bP38+DRs2xDAMEhMTqVOnDjExMYSG\nhuLj44OHhwedO3cmOjq6lG9NKptaNdyZNaED7m4WDv8YQn3PhuxOimH10a8cHU1ERCqREk8hPfnk\nk9SvXx+A48eP88orr/Dqq69y6tQpnn32Wf79739ffcMWCxbL5ZvfunUrzz77LE2bNmX06NGsXbsW\nf39/23x/f3+Sk5NLDO3n54XF4lLiMjeipI5PblxQkA+PRpl55p2fSI5pT3DHPL45tYWQoHoMbt77\nmuuK81FdnJdq47xUmxtTYgNz+vRpXnnlFQA2bNhAZGQkPXr0oEePHqxdu/a6dtinTx969+7NSy+9\nxKJFi2wN0m9Kc0YrLS3nuvZdGhrWqxghQd7cOrAFH208jOehzng33c5/d3+MpdCd9oFtrriOauOc\nVBfnpdo4L9WmdK77FJKXl5ftzzt37qR79+6219fzk+pvvvnGtu7QoUPZvXs3wcHBl5yOSkpKuuS0\nk1Rdg7o2ZGDnBpw7a6JWck8sZhfe3vchp7PiHR1NREScXIkNjNVq5fz585w6dYo9e/bQs2dPALKz\ns8nNzS3zzl5//XUOHDgAQExMDE2aNCEsLIzY2FgyMzPJzs4mOjqarl27Xsdbkcro1kHNCW0awJE4\nM00K+1JoLeTNmHdIzUtzdDQREXFiJZ5Cuueeexg+fDh5eXnMmDGDmjVrkpeXx+TJk5k0aVKJG967\ndy/z5s0jPj4ei8XChg0beOaZZ3j66adxcXHBw8ODF154AQ8PD2bPns20adMwmUxMnz69VD/RlqrB\nxWzmr2Pa8fzS3cTszia8d0/25m/nzZh3ebDL3/C0eDo6ooiIOKFr/oy6sLCQ/Px8atSoYZu2fft2\nevXqZfdwV6OfUVc95zPymLtkF1k5+XTpn8y+C9G08mvOvWF3YzFf7LNVG+ekujgv1cZ5qTalc93X\nwCQkJJCcnExmZiYJCQm2/5o2bUpCQkK5B5XqK6CmB7MmdMDVxYXYbXVo4dOSQ2lH+Ojg53pwqIiI\nXKbEU0gDBgygSZMmBAUFAZc/zHHJkiX2TSfVSpO6vvxpZFsWrtzLqZ9bUL9LNj+d202Apz8jmgx2\ndDwREXEiJTYw8+bNY9WqVWRnZzNixAhGjhx5yT1bRMpb19bBTOjXjOVbjuJzqDP+zXJYd/wbAjz8\nGBXU39HxRETESZTYwIwZM4YxY8Zw9uxZVqxYwe233079+vUZM2YMgwcPxsPDo6JySjUy7KZGnEvN\nYfuvZ2nr04u8gI18eHA5DYOCqW9p5Oh4IiLiBMr8LKRly5bx0ksvYbVa2bVrl71ylUgX8VZ9RdZi\nXvn0Fw6eSqd7N1f2mdZhpZjRTSMZ3Kjfdd2HSOxD3xnnpdo4L9WmdK77It7fZGZmsnTpUsaNG8fS\npUv5y1/+wrp168otoMgfWVzMTB8XSh1/L3bsLKRPjXHU8vBl1dH1vBX7PjmFZb8PkYiIVB0ljsBs\n376dzz//nL179zJkyBDGjBlDy5YtKzLfFWkEpvpITMvh2SW7yc0v4sE72vH12ZXEpR0h0MOfP4VG\n0dCn/rU3Inal74zzUm2cl2pTOiWNwJTYwLRu3ZqQkBDCwsIwmy8frHn++efLJ2EZqYGpXuJOp/PS\nJ3soNmBiv6bkBxxgw8lNWMwWbml5Mz3qdXN0xGpN3xnnpdo4L9WmdK67gdm5cycAaWlp+Pn5XTLv\nzJkzjBs3rpwilo0amOon7nQ6b63eR1pWPje1rU23bvBR3GfkFOXSvW5Xbmk5FjcXV0fHrJb0nXFe\nqo3zUm1K57qvgTGbzcyePZs5c+bw5JNPUrt2bbp160ZcXByvvvpquQcVuZqWDWvx7wf60rx+TX7a\nn8iKtRe4p+WfaeRTnx1nd/HS7jdIykm59oZERKRKKHEE5vbbb+ef//wnzZo149tvv2XJkiUUFxdT\ns2ZN5syZQ+3atSsyq41GYKqnoCAfzp7L4ONvD7M5Oh4vdwt3j2rJoaLv2Z7wEx4uHtzRdhJhQe0d\nHbVa0XfGeak2zku1KZ0bGoFp1qwZAAMHDiQ+Pp477riDN954w2HNi1RvFhczUUNacffwNhQUFbNg\n+X68z3cmqs0tWA0ri2KX8MWRL7EWWx0dVURE7KjEBuaP99qoW7cugwfrlu7ieL061OXvUZ3x93Vn\n5bbj7PzelftC/0qwZyDfntrK/F8WkZGf6eiYIiJiJ6W6D8xvdPMwcSYhdXx5cmo4bUP8+OVICv9d\nfoYpTabRKSiUI+nHef7nVzmcdtTRMUVExA5KvAYmNDSUgIAA2+vz588TEBCAYRiYTCa2bNlSERkv\no2tgqqer1aa42ODzrUdZv+MU7q4uTB3Wimyfw6w4shbDMBjdTHfvtSd9Z5yXauO8VJvSue6fUcfH\nx5e44fr1HXMTMTUw1dO1arPrYBJvrztAfoGVyG6N6NTJzLv7PiKjIJPQwLbc0eYWvFw9KzBx9aDv\njPNSbZyXalM6JTUwJT7M0VENisj16No6mLqB3rzxRSxf7TzFyUQ/Zgy/l2XHlhObsp95P7/Gn0Lv\noKFPPUdHFRGRG1Sma2BEnF39QG/m3NGVTi0COXAyjVc+PMDI2pOIbDyAlLxUXtr9Bj8k7HR0TBER\nuUFqYKTK8fKwMH1cKGP7NCUtM595H+6h5oUO/K3DXbiZXfnw4HI+OPAZBdZCR0cVEZHrpAZGqiSz\nycSoHiE8MCkMd1cX3lt/kOhdJmZ3vk937xURqQLUwEiV1r5pAHOmhtMwuAZbfkngv1+cYGqLu+lV\n7ybiL5xl3s/ziUne6+iYIiJSRmpgpMoLruXJ36O60L1dbY4lZPL8kl/o7DWAO353994VR9bq7r0i\nIpWIGhipFtxdXbhnZFsmD2pBdl4RL378Cxlngnmoy3SCPQPZeOo73b1XRKQSUQMj1YbJZGJQ14Y8\nfFsnani58sm3h1m3OY37w6bTUXfvFRGpVNTASLXTsmEt/jE1nGb1fdmxP5GXP97H6PrjGN98JNmF\nOby2ZxFfn9xMCfd4FBERB1MDI9WSn487j07uTP9O9TmTfIG57+8msLAd93f6K75uPqw6up5FsUvI\nKcx1dFQREbkCNTBSbVlczEQNbcVdw1tTUFTMa8ti2LfP4NHwWbT0a86vKfuYt2s+p7MSHB1VRET+\nwK4NTFxcHIMGDWLp0qUAnD17lqlTpzJlyhSmTp1KcnIyAKtXr2b8+PFMnDiRZcuW2TOSyGV6d6jH\n36M64+/rzsptx3l/zXGmtZ568e69ued1914RESdktwYmJyeHuXPnEhERYZv26quvMmnSJJYuXcrg\nwYN59913ycnJYcGCBbz33nt88MEHvP/++6Snp9srlsgVhdTx5cmp4bRp7McvR1J4dsluOvv24q8d\npuKqu/eKiDgduzUwbm5uLF68mODgYNu0f/zjHwwdOhQAPz8/0tPTiYmJITQ0FB8fHzw8POjcuTPR\n0dH2iiVyVT5ebjx4SxjDujciMS2XZ5bsJi8lkMfCZ9FQd+8VEXEqdmtgLBYLHh4el0zz8vLCxcUF\nq9XKRx99xKhRo0hJScHf39+2jL+/v+3UkkhFczGbmdivOffe3B6AN1fuZdOPqdzf8a+2u/e+sEt3\n7xURcTRLRe/QarXyyCOP0L17dyIiIlizZs0l80vz01U/Py8sFhd7RSQoyMdu25YbU1G1GRbkQ7sW\nQTz33k6+2nmKhNQcHom6jbAGrVm8+yMWxS5hdOvB3BY6Bhez/Y7FykLfGeel2jgv1ebGVHgD8/jj\nj9O4cWNmzJgBQHBwMCkp/xuST0pKomPHjiVuIy0tx275goJ8SE7Ostv25fpVdG08XUw8fnsX3l67\nnz2HU5j58mamjw3loS4z+G/sB6w++A37zx3h7na3U9Pdt8JyORt9Z5yXauO8VJvSKanJq9CfUa9e\nvRpXV1dmzpxpmxYWFkZsbCyZmZlkZ2cTHR1N165dKzKWyFV5eViYPi6UsX2akpaZz/NLozl21OCR\n8Jm6e6+IiAOZDDvdbnTv3r3MmzeP+Ph4LBYLtWvX5vz587i7u1OjRg0AmjVrxlNPPcVXX33F22+/\njclkYsqUKYwePbrEbduza1VX7LwcXZvYY+dZtHof2XlF9OtYj1sHtmD72e9ZcXQdAKObRjKoUV9M\nJpPDMjqCo+siV6faOC/VpnRKGoGxWwNjT2pgqidnqE1Sei4LvojldNIFmtXz5d6xoaRaz/L23qVk\nFGTSIbAdUW0m4eXq6dCcFckZ6iJXpto4L9WmdJzmFJJIZRdcy5O/R3Whe9vaHE3I5Ol3d1KUWZPH\nu92vu/eKiFQgNTAiZeTu6sI9o9py26AWZOcV8eLHv7AjJo0ZYdMYqrv3iohUCDUwItfBZDIxuGtD\nHrq1IzW8XPn428O8/eVBhjYafMnde5ceWKa794qI2IEaGJEb0KqRH/+YGk6zer7s2J/Is0t2U9sl\nxHb33h/P/szLuxeQnHPe0VFFRKoUNTAiN8jPx51HJnemX6f6nEm+wD/f20VCgsHszvfSq95NnLmQ\nwLxdr+nuvSIi5UgNjEg5cLWYuWNoK+4a1pqComJeWxbD+h1nuKXVOO5ocwtFxVYWxS5hxZG1WIut\njo4rIlLpqYERKUe9w+rx+JTO+Pu6s3Lbcd74PJZQvzAe7jqDYM9ANp76jvm/LCIjP9PRUUVEKjU1\nMCLlrEldX+ZMDadNYz9+OZLC3Pd/hlyfS+7e++zOV9hy+nuKioscHVdEpFJyeeqpp55ydIiyyskp\nsNu2vb3d7bp9uX6VqTburi50b1eboqJifjlynh/2nqN+oC8j20bg5erFodTD/Jqyj12Jv1DT3Zc6\nXsGV9g6+laku1Y1q47xUm9Lx9na/6jw1MH+gg8p5VbbamE0m2jXxp16gN3sOp7BjfyIFRcUMC+1A\nz/o3UVhcxKG0w0QnxbA/NY7aXkH4e/g5OnaZVba6VCeqjfNSbUpHDUwZ6KByXpW1NvUDvenUIpD9\nJ1KJOXKeI2cy6NKyLp3rtKNr7Y5kFmRxMDWOHWd3cSYrgQY16lHDzdvRsUutstalOlBtnJdqUzpq\nYMpAB5Xzqsy18fV2o0f7uiSkZLP3eCo/7juHj6crreoH06V2GG39W5KYk8zBtMNsT9hBRn4GjXwa\n4mG5+pfXWVTmulR1qo3zUm1KRw1MGeigcl6VvTauFjPhbYJxtZjZezyVXYeS+eVICrX9vWhRuw7d\n63algU99TmfFcyA1jm0JO7AaVhr5NMBitjg6/lVV9rpUZaqN81JtSqekBkZPo/4DPSHUeVWl2qRm\n5vH5d8f4cd85ADo2D2Ri/2bUDfDGWmzlh7M/s/b412QVXMDHrQYjmgyhR91wXMwuDk5+uapUl6pG\ntXFeqk3plPQ0ajUwf6CDynlVxdocP5vJp5uOEHc6HReziX4d6zO6Vwg+Xm7kFeXz7emtbDz1HQXW\nAmp7BTGm2XA6BLZ1ql8sVcW6VBWqjfNSbUpHDUwZ6KByXlW1NoZhsOdwCss2HyExLRdPdwsjezRm\nUJeGuFrMZORnsu74N/xw9meKjWKa1QxhbPMRNKnZ2NHRgapbl6pAtXFeqk3pqIEpAx1Uzquq16bI\nWszm6HhWf3+c7LwiAmt6MKFfM8JbX7xHzLnsRFYd/YpfU/YB0CkolNHNhhHsFejQ3FW9LpWZauO8\nVJvSUQNTBjqonFd1qU12XiFrvj/Bt7vPYC02aFbfl1sHtKBZ/ZoAHEk/zoojazmReQqzyUzv+hEM\nCxmIj1sNh+StLnWpjFQb56XalI4amDLQQeW8qlttktJyWLblKLsPJQPQrU0w4/s2I6iW58XTTsmx\nrDq6npTc83i4uDO4cX8GNOyFm4tbheasbnWpTFQb56XalI4amDLQQeW8qmtt4k6n8+mmwxw/m4XF\nxcTgrg0ZERGCl4eFouIitif8xPrjG7lQmE1NN19GNh1K97pdMJsq5lFn1bUulYFq47xUm9JRA1MG\nOqicV3WuTbFhsHN/Ip9/d5TzmfnU8HRlTK8m9O1YD4uLmdyiXL45+R2bTm+lsLiIet51uLn5cNr6\nt7L7L5aqc12cnWrjvFSb0lEDUwY6qJyXagMFhVa+2XWatT+eJK/ASt0ALyb2b05YswBMJhNpeems\nPf4NO87uwsCgpV9zxjYbTiPfBnbLpLo4L9XGeak2paMGpgx0UDkv1eZ/MrMLWLn9ON/9Eo9hQJvG\nftwyoDmNal/8ssdfOMuqo+vZd/4gAF1rd2R000gCPP3LPYvq4rxUG+el2pSOGpgy0EHlvFSby8Un\nX+CzzUeJPXYeE9AztC5j+zTFz+fi7bcPpR5hxdG1nM6Kx2JyoU+DHkSGDMTb1avcMqguzku1cV6q\nTemogSkDHVTOS7W5un3HU/l002HOJGfj5momslsjht3UGHc3F4qNYnYnxrD62Fek5qXhafEkMmQA\nfev3wNXF9Yb3rbo4L9XGeak2paMGpgx0UDkv1aZkxcUG22PPsmLrMTKyC6hZw41xfZrSs31dzGYT\nhcVFbD3zA1+d+Jacolz83GsxulkkXWt3vKFfLKkuzku1cV6qTemogSkDHVTOS7UpnbyCItbvOMWG\nnacoKCqmYXANbhnQnLYhF69/ySnMYcPJzWw58z1FxUU0rFGPm5uPoLV/i+van+rivFQb56XalE5J\nDYzLU0899ZS9dhwXF8ctt9yC2WymQ4cOACxZsoTJkyczdepU3Nwu3nBr9erV/P3vf2f58uWYTCba\ntWtX4nbt+QhyPeLceak2pWNxMdOmsR892tfhQm4h+46n8sPec5w4m0njOj741/CmjX9LutXuzIXC\nHA6kxbHzXDQnMk5Rv0ZdfN2u/hfGlaguzku1cV6qTel4e7tfdZ7FXjvNyclh7ty5RERE2KatXLmS\n8+fPExwcfMlyCxYsYPny5bi6ujJhwgQGDx5MrVq17BVNpFrw9/XgTyPbMqhrAz799ggxR88TeyyV\nvp3qMaZXEwK8/Jja7lYGNurNiiNr2Z96iAM747ipThdGNh2Cn4e+gyLivOx2q043NzcWL158SbMy\naNAgHnjggUturBUTE0NoaCg+Pj54eHjQuXNnoqOj7RVLpNoJqePLI5M7cd+4UIJqebA5Op7H3/qR\n9TtOUlhkpaFPfe7reA/Tw6ZR17s2O87t4ukdL7Dq6Hpyi3IdHV9E5IrsNgJjsViwWC7dfI0alz9s\nLiUlBX///92bwt/fn6i3RSUAACAASURBVOTkZHvFEqmWTCYTnVoGEdosgM174lm9/TjLthxl8554\nxvdtRrc2wbQNaEVr/xbsPBfNmmMb+PrkZr5P+IlhIYPoXb87FrPd/roQESkzp/sbqTTXFPv5eWGx\nuNgtQ0kXDYljqTY3bvKwmozu25xPN8bx5fZjvLV6H1tiEvjT6Pa0DvFnVHB/hrbtybrDm1lx4CuW\nH17NtoQfuK3DzUQ07HzFRxOoLs5LtXFeqs2NcXgDExwcTEpKiu11UlISHTt2LHGdtLQcu+XRleHO\nS7UpX6MjGtO9dRDLtxxl16FkHn59G+Gtg5nQ7+ITr3sG9iDspjC+OvEtW+P/X3t3Gtz2dd57/IuV\nJEAsJAGCBLhTomQtlChZlSJLst26i5PWjle5rhT3TacdT1+0k9R2nDh2pm0yStLUkyaTtDfOHY09\nvVZiZ3HGqWyn8SIvtBxrp0WRFHcCJAFuIMEVy30BCCJtLYAlEgfk85nReASA4IF+508+Pv+zvMfT\n7/2YXzSVc1ft51hdUJN8H8lFXZKNuiSb1FypyFua42qvYNOmTZw+fZpgMEgoFOLYsWPceOONmW6W\nECtCcYGJh+/ayJf3baG61MoHzYN85f808tPftTE5PUe+0cy9dXfwxPYvsbV4E13BHp4+/iN+dOr/\n4gsNZLr5QogVbNH2gTlz5gwHDhygr68PvV6Py+Vi586dvPvuu5w4cYKNGzeyefNmHnnkEQ4fPswz\nzzyDRqNh37593HHHHVd8b9kHZmWSbBZXNBbj6NkBXnzj0ideA3QGu/lF28u0jXagQcNO9za+cOPd\nhCcy/v9C4hLkmlGXZJMa2cguDdKp1CXZLI2Pn3hdUmjivltr2bzKgUajIRaLcWboLL9s+w39k4Pk\n6Izc6NrMLs8OKiyLd+q1SJ9cM+qSbFIjBUwapFOpS7JZWsHQLL96u4M3T3iJxmKsrbCz9w9XU1kS\n/4ESiUZo9P2e13pexz85DEClpZxdnu1sdW0mR2fMZPMFcs2oTLJJjRQwaZBOpS7JJjP6AiF+9nob\np87HT7zeuaGEu2+uTZ54XVRk5q2WDznS18iZwFlixMjV5bK9dAu73Dtw55dk9gOsYHLNqEuySY0U\nMGmQTqUuySazmjqHOfS/bfT6JzDqtfzZ9gr+bHsF5Z6CZC4j06O84z3Ku96jjM0GAaixVbHbs4MG\n58brcvq1SJ1cM+qSbFIjBUwapFOpS7LJvGg0xjunffx83onXX/jsOjZW2pMTfSF+e+nM0FmO9DVy\ndrgFALPexPbSrezy7MBlcmbqI6wocs2oS7JJjRQwaZBOpS7JRh3Ts2EOv9/N4ffjJ15bzUb2bHJz\ny2Y3hdbcBa8NTA0lR2Um5kIA1BWsYpd7O5uc62WH30Uk14y6JJvUSAGTBulU6pJs1DMcnOat0/28\ndrSbqZkwGg1sXuXg1gYP66oL0c7btTccDXPSf4a3+96nZfQ8ABZDPp9xb+Mm93YceYWX+zbiU5Jr\nRl2STWqkgEmDdCp1STZqcjot9PaN8v7ZAV4/1kfXQDyjYnsetzR42FVfSn7ewrkv/aFB3vG+T6Pv\n90yGp9Cg4YbCOnZ5drChaC067eIdFbKSyDWjLskmNVLApEE6lbokGzXNzyUWi9HhG+f1470cPTvI\nXDiKXqflD24o5tYGDzVu64KzlGYjcxwfPMXb3kbax7oAsOfY2Fm6jZ3uP6Ag156Rz7RcyDWjLskm\nNVLApEE6lbokGzVdLpeJqTneOe3jjeN9DIxMAVDhyufWBg871pWQY1w4ytI34ePtvkaO9h9jOjKD\nBg0bHevY5dnODYV1aDWy22+65JpRl2STGilg0iCdSl2SjZqulks0FuNs5wivH+/jeKufWAzycnTs\n3FDKrQ0e3A7zgtdPh2f4cPAEb/c10j3eB0BRbgE3ubfzGfc2rEY5wTdVcs2oS7JJjRQwaZBOpS7J\nRk3p5DIcnOatk17ePOllbGIWgLUVdm5p8LClzrlgKTZAV7CHt/ve5/cDx5mNzqHVaNnk3MBu9w7q\nCmoX3I4SnyTXjLokm9RIAZMG6VTqkmzU9GlyCUeinGgN8PrxPs52jQBgMxvZfZml2FPhKY72H+ft\nvka8oX4Aik0Odrl3sL10K/kG8ye+h5BrRmWSTWqkgEmDdCp1STZqutZcfEMhXj/exzun+xcuxd7i\nYV3VwqXYsViMjmAXR/oaOTZ4inA0jF6rp8FZz27PDmpslTIqM49cM+qSbFIjBUwapFOpS7JR0/XK\nZWY2ktZS7Im5EEd9H3LE28jgZACAUrOLXZ4dbC/ZQp4+75rblO3kmlGXZJMaKWDSIJ1KXZKNmq53\nLukuxY7FYrSOnudIXyMn/U1EYhGMWgNbXZvZ7dlBhaVsxY7KyDWjLskmNVLApEE6lbokGzUtZi4X\nlmK/fryPwXlLsf9wSxnbb3B9Yil2cHacRu/vedvbyNB0fG5NucXDLvd2bnQ1kKvPWZR2qkquGXVJ\nNqmRAiYN0qnUJdmoaSlyufRSbD07N5Rccil2NBalebiVt/saOT10lmgsSq4uh20lW9jl3k6Zxb2o\n7VWFXDPqkmxSIwVMGqRTqUuyUdNS55Jcin3Cy1jo4lLsW7eU0bDa8Yml2CPTo7zr+4B3vUcZnRkD\noNpawS7PDrYUb8KoM3zieywXcs2oS7JJjRQwaZBOpS7JRk2ZyuXCUuzfHeuluXsUiC/F3rPJzc2X\nWIodiUZoGmrmiLeRs0MtxIiRp89jR8lWdnm2U2J2LflnWGxyzahLskmNFDBpkE6lLslGTSrkks5S\nbIChqWHe8R7lXd9RxmcnAFhtr2GXezubnBswLJNRGRWyEZcm2aRGCpg0SKdSl2SjJpVySXcpdjga\n5lTgI97ua+TcSBsARp2RdYVr2ORcz4aitZgMpiX/HNeLStmIhSSb1EgBkwbpVOqSbNSkYi7JpdjH\nejna/LGl2Fs81JRaP7G0emDSz3veDzjuP01gaggArUbLKnsNmxzrqXeuozC3IBMf51NTMRsRJ9mk\nRgqYNEinUpdkoybVc0l3KXYsFsMXGuBU4CNO+ZvoGu9JPlee76beuZ56x3o8+aXK7y+jejYrmWST\nGilg0iCdSl2SjZqyJZcLS7F/d6yXE22B5FLsmzaUcMsllmJfMDozxin/R5wKNNEycp5ILALET8iu\nd6yn3rmeWlsVOq3ukl+fSdmSzUok2aRGCpg0SKdSl2SjpmzMJd2l2BdMhadoGjrHKX8TTUPNTEdm\nADDrTWxw3EC9cz03FNaRozMu2We5kmzMZqWQbFIjBUwapFOpS7JRUzbncqml2Hk5OuprHTSsdrCx\npoi8HP0lv3YuGqZ15HzyVtPYbBAAg1bP2sLV1Ds2sNFxAxZj/pJ9no/L5myWO8kmNVLApEE6lbok\nGzUtl1x8QyHePOHlw3N+hoLTAOh1GtZVFdKw2sHm1U5s5kuPrERjUXrG+zjpb+JkoIn+0AAAGjTU\n2CqT82aKTY4l+zywfLJZjiSb1GSsgGlpaeHhhx/mr//6r9m3bx8+n49HHnmESCSC0+nk29/+Nkaj\nkZdeeomDBw+i1Wq5//77ue+++674vlLArEySjZqWWy6xWIyewQmOtfg51hKg1x/fJ0YD1JbZ2LLa\nyZY6B8UFl19ePTjpT47MtI91ESP+Y7bU7KLesZ5NzvWUWzxoNZe+VXW9LLdslhPJJjUZKWAmJyf5\n27/9W6qqqlizZg379u3jy1/+Mnv27OH222/nu9/9LiUlJXz+85/nrrvu4oUXXsBgMHDvvffy3HPP\nYbfbL/veUsCsTJKNmpZ7LoOjUxxv8XO8xU9r7xgXfmB6nOZEMeOkwpV/2RVJ47MTnA7EJwGfHW4l\nHA0DYM+xsdGxjk2O9awuqEGvvfStqmux3LPJZpJNaq5UwOieeuqppxbjm2o0Gv78z/+cc+fOkZeX\nR319Pd/4xjf42te+hk6nIzc3l1//+tcUFxczNDTEX/zFX6DX62lubiYnJ4fq6urLvvfk5OxiNBkA\nszlnUd9ffHqSjZqWey7mXAOrPDZ21bu5tcFDSZEpuc9Mc/cIb57w8s5pH4HRafR6LYXWnAU7/+bo\njJRbPNzoauAPy3dTYS3DoNXTHxqgbayDowPHeKPnHfomvERjUQpy7RiuUzGz3LPJZpJNaszmy58g\nf/1L/gtvrNej1y98+6mpKYzG+D3koqIi/H4/gUCAwsLC5GsKCwvx+/2L1SwhhPjUrImzlvZscjM9\nG+ZM+zDHWv2cbBvitx/28tsPezHn6tm8ykFDnZP11YXkGC4ur87RGdns3MBm5wYi0Qjnxzo55W/i\nVKCJDwdP8uHgSXQaHXUFtYkl2uuw59gy+ImFUNeiFTBXc7k7V6nc0SooMKHXL96eC1cashKZJdmo\naaXmUu4p4PbdtcyFo5w5H6DxjI/GM/28k/hjNOjYssbJjg2lbFtXgvVjk4BLXJu5qW4zsViMrtE+\nPug7we/7TnF2uIWzwy0cavkFqwqruNFTzx94NuOxlqS9ed5KzSYbSDbXZkkLGJPJxPT0NLm5uQwM\nDFBcXExxcTGBQCD5msHBQTZv3nzF9xkZmVy0Nsp9SXVJNmqSXOLKCvO4d08Nd++uptM3zvFWP8da\n/DSe6afxTD9ajYa6chsNdU62rHZSZFt4WrYZG7e4buYW180MTY1wOvARJwNNtI200zbcyfOnX6I4\nz8FG5zo2OTZQbau46iRgyUZdkk1qrlTkLWkBs3PnTl555RXuvPNOXn31VXbv3s2mTZv46le/SjAY\nRKfTcezYMR5//PGlbJYQQlw3Wo2GGreVGreVe26uxTcU4nhrgGMtfpq7R2nuHuX//baVSpeFhjoH\nW+qceBzmBSMrRXkF3FJ+E7eU30RobpKmoWZO+pv4aPgc/9v9Fv/b/Rb5BjP1jnXUO9ezpmA1xmVy\ngrYQqVq0VUhnzpzhwIED9PX1odfrcblcfOc73+Gxxx5jZmYGt9vNN7/5TQwGA4cPH+aZZ55Bo9Gw\nb98+7rjjjiu+t6xCWpkkGzVJLqkbGZ/hRFuA4y1+znaNEInGf/wW2/OSxUyt24ZWe+nbRHOROc6N\ntHHS38TpwEeMz8WXeBu1BtYVraHesZ71jrXkG+LHIkg26pJsUiMb2aVBOpW6JBs1SS6fzuT0HKfa\nhzjeEuBU+xAzs/EzlqwmA5sTe83cUFmA4TLz/aKxKJ3Bbk75P+Jk4AyDk/Fb8VqNllW2auqd69lT\ndyPayRzlD51cieS6SY0UMGmQTqUuyUZNksu1mwtHONs1wrEWPydaAwQn5wDIMeqorymioc5BfY0D\nU+7l7/r3hwY5ldgJuDPYnXzcnmNjtb2G1fYaVhXUUJznkIJGAXLdpEYKmDRIp1KXZKMmyeX6ikZj\nnPeOJXYC9uMfjR9roNNquKGygIY6J5tXOSiwXH5/jNGZMU4HztIR6qBpoIWJuVDyOavREi9m7DWs\nLqihxFQsBU0GyHWTGilg0iCdSl2SjZokl8UTi8XoC4Q41uLneEuAroGL/861bisNdU4aVjsoLTJf\n8uudTguDg0H6JwdpHWmnbbSd1tF2grMX3yffYI4XM4mCptTsWvQjDoRcN6mSAiYN0qnUJdmoSXJZ\nOkNj08nl2S09Y0QTP75Li0xsqYsfa1BZYknuBHypbGKxGINTAdpG4sVM62g7ozNjyefNehO19mpW\n26tZVVBDWb5bCppFINdNaqSASYN0KnVJNmqSXDJjYmqOk23x5dlNHcPMhqMAFFhy2Lw6vqJp15Zy\nRoZDV3yfWCzG0PQwrfMKmuHpkeTzefpcam1VyVtO5fkedNrF20h0pZDrJjVSwKRBOpW6JBs1SS6Z\nNzMXoaljmOMtfk60BQhNxw+MzMvRUeu2sabCzpryAqpKLeh1Vx9NGZoaSd5uah1tJzA1lHwuR2ek\nxlaVvOVUYSlblIMolzu5blIjBUwapFOpS7JRk+Silkg0SkvPGMdb/JzrHaVnYCL5nNGgZZXHxppy\nO2sqCqgutWLQX72gGZ0ZS47QtI22MzB58bw6o9ZAta0yOTG4ylZx3Q6jXM7kukmNFDBpkE6lLslG\nTZKLupxOC22dQ7T0jHKue4RzPaP0+S/eUjLotdS6rdQlCppatxWj4eq3h8ZmxmkbvTgp2BcaSD6n\n1+qptlYkR2iqrJWyS/AlyHWTGilg0iCdSl2SjZokF3VdKpvxyVlaesY41zPCue5RegcnuPBLQK/T\nUFNqpa6igDUVdla5beQYr17QjM9OcH60I3nLyTvRTyzxrnqNjkpreXIfmhpbFTk641XecfmT6yY1\nUsCkQTqVuiQbNUku6kolm9D0XGKEZpRzPaN0D4xz4beCTquhqtTCmvIC1lbYqfXYyMu5+u2hyblJ\n2hIFTdtoOz3j3mRBo9VoqbSUJScF19iqyNPnXuUdlx+5blIjBUwapFOpS7JRk+Sirk+TzeR0mLa+\n+KGT57pH6eofTy7X1mo0VJZYEpOC7awus19xd+ALpsJTnB/tTBY13eO9RGPxVVMaNJRbPMlbTrW2\nakyGvPQ/bJaR6yY1UsCkQTqVuiQbNUku6roe2UzNhDnfN8a5xChNhy+YPIRSo4GK4kRBU2GnrtyO\nOffq812mwzN0jHUlbzl1BXuIxOJnQWnQ4MkvTd5yWmWvTh5OuZzIdZMaKWDSIJ1KXZKNmiQXdS1G\nNjOzEdq8Y5zrHqWle4R2X5BwJFHQAGXF+YlVTvGCxmK6+nyX2cgsHWPdyVtOHcFuwtFw8nm3uYRV\n9hqqbRVUWstx5hVl/eZ6ct2kRgqYNEinUpdkoybJRV1Lkc3sXIR2bzAxQjPCeW+QucSmegAehzkx\nQlNAXbkdm/nqBc1cZI7OYHdihKaDjrEu5qJzyefz9HlUWsqoslVQZS2n0lqO1Xj5X3QqkusmNVLA\npEE6lbokGzVJLurKRDZz4SgdvmBy2XZb3xizcxcLmtIiE2vK7dQlNte70qGUF4SjYXrG++gM9tAV\n7KEz2I1/3uZ6AAU59osFjaWccouHXP3V3ztT5LpJjRQwaZBOpS7JRk2Si7pUyCYcidLZP54saFp7\nx5iZjSSfdxXkJXcKXlNhp9Ca2oqk0NwkXfMKms5gz4JTtzVocOeXUGkpp8paTpWtghJTsTLHIKiQ\nTTaQAiYN0qnUJdmoSXJRl4rZRKJRuvonkvvQtPaOMjVzsaBx2HKTBc3aCjsOe2orkmKxGMPTI3Qm\nCpquYA/d430Lbj0ZtQbKLWXJgqbSUk5hrh1N4vDLpaRiNiqSAiYN0qnUJdmoSXJRVzZkE43G6Bmc\n4Fz3CM2JgubCWU4ARdYc6hKjMzVuK+4iM1ptagVHJBrBFxpIFjSdwR58oYHknjQAFkM+ldZyqqwX\n5tOUYTKYrvvn/LhsyEYFUsCkQTqVuiQbNUku6srGbKKxGL2DE5zrGaUlsbnexNTFUZQco47qEgvV\npVaqS63UuK0UWHJSHkWZDs/QM947bz5NDyMzowteU5znoNJ6cYJwmcV93c93ysZsMkEKmDRIp1KX\nZKMmyUVdyyGbaCyGLxCipXeMDm+QDl8QbyDE/F9cNrMxXtC4rdSUWqkqtaS0H80FYzPBefNpeuga\n72EqPJ18XqfRUZbvTozUxIuaYpPjmpZyL4dsloIUMGmQTqUuyUZNkou6lms2UzNhuvrH6fAFaffF\ni5rh4MyC17gKTdSUWpKFTUWxJaWTtwGisSj+yUCymOkc66F3wpvcbA8gT59LpaV8XlFTgS0n9aXc\nyzWb600KmDRIp1KXZKMmyUVdKymb0YkZOhLFTIc3SLtvnKmZi3NpdFoNFa78BbeeXIUmtCneepqL\nhumb8MYnCY/10DXezeBkYMFrCnLsyYKmylpOuaXssku5V1I210IKmDRIp1KXZKMmyUVdKzmbaCzG\nwPBkoqAZp90XpGdwPLlrMEBejo6qkngxc6GwSWVfmgsm5ybpGu9NFjSdYz2Mz00kn9egodTsSt52\nqrRW4Da70Gl1KzqbdEgBkwbpVOqSbNQkuahLslloLhyl1z9Be2IuTYcviG9ocsFrCiw5iWLGkphP\nY03pBG6IL+UemRlduJQ72MvsvKXcBq2BCouH1c4q7LoCSs0luM2uJVn5lI2kgEmDXPDqkmzUJLmo\nS7K5usnpOTr7x5NFTbs3yFhoNvm8Bih1mJMFTbXbSpkzH70utfk0kWiE/snBBUu5vRP9C5ZyA9hz\nbJSaXZSaXbjNJbjzSygxu8jRXf3oheVMCpg0yAWvLslGTZKLuiSb9MViMUbGZy5OEPYG6egfX7B7\nsF6npfLCfJrEyqfigryUl3LPRmaZMU7Q1NuON9SPb2IAX2jgE8u5ARy5hZTmuxIjNfHCptjkvO7L\nulV1pQJmZfwLCCGEECnQaDQUWnMptOaydU0xEN9szzc8mVzG3e4L0tk/znlvED6Mf505V0/VhQnC\nicLmcgdXGnVGPIWVWCKFCx6fCk/hCw3gneiP/zc0gG+in9OBs5wOnE2+TqvR4sxz4Da7KM1PFDZm\nF468ImWOSlgKSzoCE41GefLJJ2ltbcVgMPDUU09hMpl45JFHiEQiOJ1Ovv3tb2M0XnnITEZgVibJ\nRk2Si7okm8UzOxehe3BiQVEzODK14DVF1pzEiicb1aUWKkss5Brj4wbpZDM+O4Ev1J8saLyhAXyh\n/gV71QDoNTpc5uJEQVOSHLkpzLVf0541maTMLaTXXnuNl19+maeffpru7m7+9V//lcLCQvbs2cPt\nt9/Od7/7XUpKSnjwwQev+D5SwKxMko2aJBd1STZLa2Jqjs55t57afUHGJy9O4NVowOMwU11q5YYa\nB7Y8PR6nGasp/XkusViM0ZmxxEhN/DaUNxQfuZl//hPER3ySc2vM8aKmNN+FzWjNyDlQ6VDmFlJn\nZyf19fUAVFRU4PV6aW1t5etf/zoAt956Kz/5yU+uWsAIIYQQqsnPM7ChpogNNUVAvMgYCk7T4RtP\nFjSd/UF6/SGOnPIlv85iMuBxmPE48vE4zbgdZjxO8xV3E9ZoNBTk2inItbOuaE3y8WgsyvD0CN55\nIzW+0AC94166gj0L3sOkz4vPrckvSRQ48VtS+Qbzdf6XWRxLWsDU1dVx8OBBHnroIbq6uujp6WFq\naip5y6ioqAi/37+UTRJCCCEWhUajwWHLw2HLY9va+HyaSDSKLzDJ2EyE5vYAff4QfYEJznWP0ty9\ncBJvgSUnXsxc+OPMx+0wJW9DXYpWo8WRV4Qjr4h65/rk45FoBP9UAO+8OTa+UD/tY52cH+tY8B5W\noyV+C8rsojQ/PnJTYnaRp8+9jv86127JVyH9+7//O++//z5r1qzh9OnTtLS0cObMGQC6urp49NFH\nef7556/4HuFwBL1+5UxUEkIIsbxNz4TpGRynyzdO98A4Xf1BuvvHCYxOfeK1xYUmKlzxOTWVpVYq\nXBbKXBZyDOn/XpyNzOEN9tM95qU36KN7zEvPmBd/aOgTr3WaCimzuSm3ualI/NdjcWHUZ2apd0aX\nUd92223EYjFefvllcnNzOXr0KM899xzf+973rvh1MgdmZZJs1CS5qEuyUVeq2UxOh/EOhejzTyRG\na+J/gvP2qoH4/Jpie15ilMZMmTM+auMqNKW8Z8180+FpfKHB5EhNfNSmn7HZhW3WoGFbSQMPrXsg\n7e+RCmXmwDQ3N3Pw4EG++c1v8tZbb7Fu3TpsNhuvvPIKd955J6+++iq7d+9eyiYJIYQQyjLl6lnl\nsbHKY1vw+PjkLN5EMdPnTxQ4gRDHWvwca7k4FUOn1VBSaErOq7lwK6rYnodWe/kJvLn6XKptFVTb\nKhY8HpqbnLfUux9vqB9zhnYRXvI5MLFYjHvvvZecnBy+853voNPpePTRRzl06BBut5vPf/7zS9kk\nIYQQIutYTEbWVBhZU1GQfCwWizEWmk0WNd7AwlGbD5ovfr1ep8VdZJo3aTgfj8NMkS33igdcmg0m\nVtmrWWWvXsyPlxLZifdjZMhVXZKNmiQXdUk26lrKbGKxGMPBGfoCExdHbAIhfIEQs+HogtfmGHS4\nHSY8jnm3opz52PONGVlyrcwtJCGEEEIsLY1GQ5EtlyJbLvW1juTj0WgM/9gUXn+I3kAofkvKP0H3\nwAQdvoXFVV6O/uItqHmroqyX2W14KUgBI4QQQqxAWq0GV4EJV4GJhjpn8vFwJMrgyFRitCY+auMN\nhGjvC9LWO7bgPfLzDOyqL+X+W1ctdfOlgBFCCCHERXqdFrcjPjfmwv41AHPhCL6hyYWThwMTDAen\nr/Bui9jOjHxXIYQQQmQVg15HhctChevy81KWUnae7iSEEEKIFU0KGCGEEEJkHSlghBBCCJF1pIAR\nQgghRNaRAkYIIYQQWUcKGCGEEEJkHSlghBBCCJF1pIARQgghRNaRAkYIIYQQWUcKGCGEEEJkHSlg\nhBBCCJF1pIARQgghRNaRAkYIIYQQWUcTi8VimW6EEEIIIUQ6ZARGCCGEEFlHChghhBBCZB0pYIQQ\nQgiRdaSAEUIIIUTWkQJGCCGEEFlHChghhBBCZB0pYOb5xje+wd69e3nggQc4depUppsj5vnWt77F\n3r17ueeee3j11Vcz3Rwxz/T0NLfddhs///nPM90UMc9LL73EHXfcwd13380bb7yR6eYIIBQK8fd/\n//fs37+fBx54gCNHjmS6SVlNn+kGqOLo0aN0dXVx6NAhzp8/z+OPP86hQ4cy3SwBNDY20trayqFD\nhxgZGeGuu+7iT/7kTzLdLJHwwx/+EJvNlulmiHlGRkb4wQ9+wIsvvsjk5CT/8R//wS233JLpZq14\nv/jFL6iuruaLX/wiAwMDPPTQQxw+fDjTzcpaUsAkvPfee9x2220A1NbWMjY2xsTEBPn5+Rlumdi2\nbRv19fUAWK1WpqamiEQi6HS6DLdMnD9/nra2NvnlqJj33nuPz3zmM+Tn55Ofn88///M/Z7pJAigo\nKODcuXMABINBLlzrygAABTVJREFUCgoKMtyi7Ca3kBICgcCCzlRYWIjf789gi8QFOp0Ok8kEwAsv\nvMCePXukeFHEgQMHeOyxxzLdDPExvb29TE9P83d/93c8+OCDvPfee5lukgA+97nP4fV6+eM//mP2\n7dvHo48+mukmZTUZgbkMOWFBPb/97W954YUX+MlPfpLppgjgl7/8JZs3b6a8vDzTTRGXMDo6yve/\n/328Xi9f+MIXeP3119FoNJlu1or2q1/9CrfbzTPPPENzczOPP/64zB27BlLAJBQXFxMIBJJ/Hxwc\nxOl0ZrBFYr4jR47wox/9iB//+MdYLJZMN0cAb7zxBj09Pbzxxhv09/djNBopKSlh586dmW7aildU\nVERDQwN6vZ6KigrMZjPDw8MUFRVlumkr2rFjx9i1axcAa9euZXBwUG6HXwO5hZRw00038corrwDQ\n1NREcXGxzH9RxPj4ON/61rf4z//8T+x2e6abIxKefvppXnzxRX76059y33338fDDD0vxoohdu3bR\n2NhINBplZGSEyclJmW+hgMrKSk6ePAlAX18fZrNZipdrICMwCVu2bGH9+vU88MADaDQannzyyUw3\nSST85je/YWRkhH/4h39IPnbgwAHcbncGWyWEulwuF3/6p3/K/fffD8BXv/pVtFr5/9VM27t3L48/\n/jj79u0jHA7z1FNPZbpJWU0Tk8keQgghhMgyUpILIYQQIutIASOEEEKIrCMFjBBCCCGyjhQwQggh\nhMg6UsAIIYQQIutIASOEWFS9vb1s2LCB/fv3J0/h/eIXv0gwGEz5Pfbv308kEkn59X/5l3/J+++/\n/2maK4TIElLACCEWXWFhIc8++yzPPvsszz//PMXFxfzwhz9M+eufffZZ2fBLCLGAbGQnhFhy27Zt\n49ChQzQ3N3PgwAHC4TBzc3N87WtfY926dezfv5+1a9dy9uxZDh48yLp162hqamJ2dpYnnniC/v5+\nwuEwd955Jw8++CBTU1P84z/+IyMjI1RWVjIzMwPAwMAAX/rSlwCYnp5m79693HvvvZn86EKI60QK\nGCHEkopEIrz22mts3bqVf/qnf+IHP/gBFRUVnzjczmQy8dxzzy342meffRar1cq//du/MT09zWc/\n+1l2797Nu+++S25uLocOHWJwcJA/+qM/AuB//ud/qKmp4etf/zozMzP87Gc/W/LPK4RYHFLACCEW\n3fDwMPv37wcgGo1y4403cs899/C9732Pr3zlK8nXTUxMEI1GgfjxHh938uRJ7r77bgByc3PZsGED\nTU1NtLS0sHXrViB+MGtNTQ0Au3fv5r//+7957LHHuPnmm9m7d++ifk4hxNKRAkYIseguzIGZb3x8\nHIPB8InHLzAYDJ94TKPRLPh7LBZDo9EQi8UWnPVzoQiqra3l5Zdf5oMPPuDw4cMcPHiQ559//lo/\njhBCATKJVwiRERaLhbKyMt58800AOjo6+P73v3/Fr9m0aRNHjhwBYHJykqamJtavX09tbS3Hjx8H\nwOfz0dHRAcCvf/1rTp8+zc6dO3nyySfx+XyEw+FF/FRCiKUiIzBCiIw5cOAA//Iv/8J//dd/EQ6H\neeyxx674+v379/PEE0/wV3/1V8zOzvLwww9TVlbGnXfeye9+9zsefPBBysrK2LhxIwCrVq3iySef\nxGg0EovF+Ju/+Rv0evmxJ8RyIKdRCyGEECLryC0kIYQQQmQdKWCEEEIIkXWkgBFCCCFE1pECRggh\nhBBZRwoYIYQQQmQdKWCEEEIIkXWkgBFCCCFE1pECRgghhBBZ5/8DSFrb/LuAbrcAAAAASUVORK5C\nYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "AFJ1qoZPlQcs", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Feature Crosses\n", + "\n", + "Crossing two (or more) features is a clever way to learn non-linear relations using a linear model. In our problem, if we just use the feature `latitude` for learning, the model might learn that city blocks at a particular latitude (or within a particular range of latitudes since we have bucketized it) are more likely to be expensive than others. Similarly for the feature `longitude`. However, if we cross `longitude` by `latitude`, the crossed feature represents a well defined city block. If the model learns that certain city blocks (within range of latitudes and longitudes) are more likely to be more expensive than others, it is a stronger signal than two features considered individually.\n", + "\n", + "Currently, the feature columns API only supports discrete features for crosses. To cross two continuous values, like `latitude` or `longitude`, we can bucketize them.\n", + "\n", + "If we cross the `latitude` and `longitude` features (supposing, for example, that `longitude` was bucketized into `2` buckets, while `latitude` has `3` buckets), we actually get six crossed binary features. Each of these features will get its own separate weight when we train the model." + ] + }, + { + "metadata": { + "id": "-Rk0c1oTYaVH", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Train the Model Using Feature Crosses\n", + "\n", + "**Add a feature cross of `longitude` and `latitude` to your model, train it, and determine whether the results improve.**\n", + "\n", + "Refer to the TensorFlow API docs for [`crossed_column()`](https://www.tensorflow.org/api_docs/python/tf/feature_column/crossed_column) to build the feature column for your cross. Use a `hash_bucket_size` of `1000`." + ] + }, + { + "metadata": { + "id": "-eYiVEGeYhUi", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns():\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " households = tf.feature_column.numeric_column(\"households\")\n", + " longitude = tf.feature_column.numeric_column(\"longitude\")\n", + " latitude = tf.feature_column.numeric_column(\"latitude\")\n", + " housing_median_age = tf.feature_column.numeric_column(\"housing_median_age\")\n", + " median_income = tf.feature_column.numeric_column(\"median_income\")\n", + " rooms_per_person = tf.feature_column.numeric_column(\"rooms_per_person\")\n", + " \n", + " # Divide households into 7 buckets.\n", + " bucketized_households = tf.feature_column.bucketized_column(\n", + " households, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"households\"], 7))\n", + "\n", + " # Divide longitude into 10 buckets.\n", + " bucketized_longitude = tf.feature_column.bucketized_column(\n", + " longitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"longitude\"], 10))\n", + " \n", + " # Divide latitude into 10 buckets.\n", + " bucketized_latitude = tf.feature_column.bucketized_column(\n", + " latitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"latitude\"], 10))\n", + "\n", + " # Divide housing_median_age into 7 buckets.\n", + " bucketized_housing_median_age = tf.feature_column.bucketized_column(\n", + " housing_median_age, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"housing_median_age\"], 7))\n", + " \n", + " # Divide median_income into 7 buckets.\n", + " bucketized_median_income = tf.feature_column.bucketized_column(\n", + " median_income, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"median_income\"], 7))\n", + " \n", + " # Divide rooms_per_person into 7 buckets.\n", + " bucketized_rooms_per_person = tf.feature_column.bucketized_column(\n", + " rooms_per_person, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"rooms_per_person\"], 7))\n", + " \n", + " # YOUR CODE HERE: Make a feature column for the long_x_lat feature cross\n", + " long_x_lat = tf.feature_column.crossed_column(set([bucketized_longitude, bucketized_latitude]), hash_bucket_size=1000) \n", + " \n", + " feature_columns = set([\n", + " bucketized_longitude,\n", + " bucketized_latitude,\n", + " bucketized_housing_median_age,\n", + " bucketized_households,\n", + " bucketized_median_income,\n", + " bucketized_rooms_per_person,\n", + " long_x_lat])\n", + " \n", + " return feature_columns" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "xZuZMp3EShkM", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 622 + }, + "outputId": "39a5d642-2b42-4be8-91a4-6a20ab54f24a" + }, + "cell_type": "code", + "source": [ + "_ = train_model(\n", + " learning_rate=1.0,\n", + " steps=500,\n", + " batch_size=100,\n", + " feature_columns=construct_feature_columns(),\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 163.22\n", + " period 01 : 134.82\n", + " period 02 : 117.63\n", + " period 03 : 106.34\n", + " period 04 : 98.34\n", + " period 05 : 92.50\n", + " period 06 : 87.91\n", + " period 07 : 84.41\n", + " period 08 : 81.60\n", + " period 09 : 79.17\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VGX6xvHvlHQSSIcQei8plCAd\n6aEJ0iyAWFbXguLq/iy7dlzr6q4o2FZFwApKlSa9KCUG6Z1AIAmk956c3x9oBIGQQMJMkvtzXV4X\n0855Zp4zcvO+5z1jMgzDQERERKQKMdu6ABEREZHyUoARERGRKkcBRkRERKocBRgRERGpchRgRERE\npMpRgBEREZEqx2rrAkTsWatWrWjYsCEWiwWAoqIiwsLCeOaZZ3B1db3q7X777beMHz/+ovu///57\nnn76aT744AP69u1bcn9ubi7du3dn0KBBvPbaa1e937KKjo7mlVdeISoqCgAXFxemTJnCgAEDKn3f\n5TFz5kyio6Mv+ky2bdvGPffcQ2Bg4EWvWbFixfUq75qcPn2a/v3706RJEwAMw8DHx4d//vOftG3b\ntlzbeuuttwgICOC2224r82sWLVrE/PnzmTNnTrn2JXK9KMCIXMGcOXOoW7cuAPn5+fztb3/jww8/\n5G9/+9tVbS8hIYH//e9/lwwwAPXq1WPp0qUXBJh169bh4eFxVfu7Gn//+98ZOXIkH3zwAQC7du1i\n8uTJLF++nHr16l23Oq5FvXr1qkxYuRyLxXLBe1i2bBkPPfQQK1euxNHRsczbefzxxyujPBGb0hSS\nSDk4OjrSq1cvDhw4AEBeXh7PPfccgwcPZsiQIbz22msUFRUBcPDgQW699VbCw8MZOXIkmzZtAuDW\nW28lNjaW8PBw8vPzL9pHx44d2bZtGzk5OSX3LVu2jB49epTczs/P5+WXX2bw4MH069evJGgA7Ny5\nk9GjRxMeHs7QoUP56aefgHP/ou/ZsyezZ89mxIgR9OrVi2XLll3yfR4+fJiQkJCS2yEhIaxcubIk\nyL333nv06dOHUaNG8dFHH9GvXz8AnnrqKWbOnFnyuvNvX6muV155hYkTJwLwyy+/MGbMGAYOHMj4\n8eM5deoUcG4k6tFHH6Vv375MnDiRM2fOXKFjl/b9998zZcoUJk+ezBtvvMG2bdu49dZbmTp1aslf\n9suXL2f48OGEh4dzxx13EB0dDcC7777LM888w9ixY5k1a9YF2506dSqffvppye0DBw7Qs2dPiouL\n+c9//sPgwYMZPHgwd9xxB2fPni133UOHDiU3N5fjx48D8M033xAeHk6/fv147LHHyM3NBc597q++\n+iojRoxg+fLlF/ThcsdlcXExL730EjfeeCNjx47l4MGDJfvdvn07N998M0OHDmXIkCEsX7683LWL\nVDhDRC6rZcuWRlxcXMnt1NRUY8KECcbMmTMNwzCMDz/80Lj33nuNgoICIycnxxgzZoyxcOFCo6io\nyBgyZIixZMkSwzAMY/fu3UZYWJiRkZFhbN261RgwYMAl9/fdd98ZTz75pPH3v/+95LUZGRlG//79\njXnz5hlPPvmkYRiG8d577xmTJ0828vLyjKysLGPUqFHG2rVrDcMwjOHDhxtLly41DMMwFixYULKv\nU6dOGW3btjXmzJljGIZhLFu2zBg4cOAl63j44YeNvn37Gp9//rlx9OjRCx47dOiQ0blzZyM+Pt4o\nKCgwHnjgAaNv376GYRjGk08+acyYMaPkueffLq2udu3aGd9//33J+w0LCzM2b95sGIZhLFmyxLj5\n5psNwzCMuXPnGhMmTDAKCgqM5ORko2/fviWfyflK+4x//5xDQ0ONqKiokucHBQUZP/30k2EYhhET\nE2N06tTJOHHihGEYhvHJJ58YkydPNgzDMKZPn2707NnTSEpKumi7P/zwgzFhwoSS2++8844xbdo0\n4/Dhw8agQYOM/Px8wzAMY/bs2caCBQsuW9/vn0ubNm0uuj8sLMw4duyYsWPHDqNbt27GmTNnDMMw\njGeffdZ47bXXDMM497mPGDHCyM3NLbk9Y8aMUo/L9evXG4MGDTIyMzONnJwcY+zYscbEiRMNwzCM\n0aNHG9u2bTMMwzCioqKMxx57rNTaRa4HjcCIXMGkSZMIDw+nf//+9O/fn65du3LvvfcCsH79esaP\nH4/VasXZ2ZkRI0awZcsWTp8+TWJiIsOGDQMgKCiIgIAA9uzZU6Z9Dhs2jKVLlwKwevVq+vbti9n8\nx9d13bp13H777Tg6OuLq6srIkSNZtWoVAAsXLmTIkCEAdOrUqWT0AqCwsJDRo0cD0K5dO2JjYy+5\n/zfffJMJEyawZMkShg8fTr9+/fjqq6+Ac6MjYWFh+Pr6YrVaGT58eJneU2l1FRQUMHDgwJLt+/v7\nl4w4DR8+nOjoaGJjY4mIiGDgwIFYrVY8PT0vmGb7s7i4OMLDwy/47/xzZRo3bkzjxo1Lbjs7O9Ot\nWzcAtmzZwg033ECjRo0AGDduHNu2baOwsBA4NyLl5eV10T5vvPFG9u/fT2pqKgA//vgj4eHheHh4\nkJyczJIlS0hLS2PSpEmMGjWqTJ/b7wzD4JtvvsHf35/GjRuzdu1ahg4dir+/PwC33XZbyTEA0K1b\nN5ycnC7YRmnH5Y4dO+jTpw9ubm44OzuX9ArA29ubhQsXcuzYMRo3bsxbb71VrtpFKoPOgRG5gt/P\ngUlOTi6Z/rBaz311kpOTqV27dslza9euTVJSEsnJybi7u2MymUoe+/0vMR8fnyvus0ePHjzzzDOk\npqbyww8/8OCDD5acUAuQkZHBq6++yttvvw2cm1IKDg4GYMmSJcyePZusrCyKi4sxzvu5M4vFUnLy\nsdlspri4+JL7d3Jy4p577uGee+4hPT2dFStW8MorrxAYGEhaWtoF5+N4e3tf8f2Upa5atWoBkJ6e\nzqlTpwgPDy953NHRkeTkZNLS0nB3dy+538PDg6ysrEvu70rnwJzftz/fTklJueA9uru7YxgGKSkp\nl3zt71xdXenevTvr16+nU6dOpKen06lTJ0wmE++++y6ffvop06ZNIywsjBdffPGK5xMVFRWVfA6G\nYdC8eXNmzpyJ2WwmIyODH3/8kc2bN5c8XlBQcNn3B5R6XKalpeHn53fB/b975ZVXeP/997nrrrtw\ndnbmscceu6A/IragACNSRl5eXkyaNIk333yT999/HwAfH5+Sf20DpKam4uPjg7e3N2lpaRiGUfKX\nRWpqapn/sndwcKBv374sXLiQkydP0qFDhwsCjJ+fH3ffffdFIxBnz57lmWeeYd68ebRp04YTJ04w\nePDgcr3P5ORkDhw4UDIC4uHhwfjx49m0aROHDx/G3d2djIyMC57/uz+HorS0tHLX5efnR9OmTfn+\n++8veszDw+Oy+65I3t7e7Ny5s+R2WloaZrMZT0/PK7528ODB/Pjjj6SkpDB48OCS/nft2pWuXbuS\nnZ3N66+/zr///e8rjmT8+STe8/n5+XHzzTfz5JNPlut9Xe64LO2z9fHx4dlnn+XZZ59l8+bNPPzw\nw/Tq1Qs3N7cy71ukomkKSaQc7rrrLnbu3Mn27duBc1MG8+fPp6ioiOzsbBYtWkSfPn0IDAykbt26\nJSfJRkZGkpiYSHBwMFarlezs7JLpiMsZNmwYH3/88SWXLvfv35958+ZRVFSEYRjMnDmTjRs3kpyc\njKurK02bNqWwsJBvvvkG4LKjFJeSm5vLI488UnJyJ8DJkyfZtWsXnTt3pkOHDkRERJCcnExhYSEL\nFy4seZ6vr2/JyZ+nTp0iMjISoFx1hYSEkJCQwK5du0q283//938YhkFoaChr166lqKiI5ORkNm7c\nWOb3VR49evQgIiKiZJrr66+/pkePHiUjb6Xp27cvO3fuZPXq1SXTMJs3b+bFF1+kuLgYV1dXWrdu\nfcEoyNXo168fq1atKgkaq1ev5qOPPir1NaUdlx06dGDz5s3k5OSQk5NTEpwKCgqYNGkS8fHxwLmp\nR6vVesGUpogtaARGpBxq1arFfffdx+uvv878+fOZNGkSp06dYtiwYZhMJsLDwxkyZAgmk4m3336b\n559/nvfeew8XFxfeeecdXF1dadWqFbVr16ZHjx4sWLCAgICAS+6rS5cumEwmhg4detFjt99+O6dP\nn2bYsGEYhkH79u2ZPHkyrq6u9O7dm8GDB+Pt7c1TTz1FZGQkkyZNYvr06WV6jwEBAbz//vtMnz6d\nl19+GcMwqFWrFk8//XTJyqRbbrmFm2++GU9PTwYNGsSRI0cAGD9+PFOmTGHQoEG0bdu2ZJSldevW\nZa7L2dmZ6dOnM23aNLKysnBwcGDq1KmYTCbGjx9PREQEAwYMICAggAEDBlwwanC+38+B+bM33njj\nip9B3bp1efnll3nwwQcpKCggMDCQadOmlenzq1WrFu3atePQoUOEhoYCEBYWxg8//MDgwYNxdHTE\ny8uLV155BYAnnniiZCVRebRr147777+fSZMmUVxcjLe3Ny+++GKpryntuOzbty/r168nPDwcHx8f\n+vTpQ0REBA4ODowdO5Y777wTODfK9swzz+Di4lKuekUqmsk4fyJaRKScIiIieOKJJ1i7dq2tSxGR\nGkRjgCIiIlLlKMCIiIhIlaMpJBEREalyNAIjIiIiVY4CjIiIiFQ5VXIZdULCpZdNVgRPT1dSUrIr\nbfty9dQb+6S+2C/1xn6pN2Xj6+t+2cc0AvMnVqvF1iXIZag39kl9sV/qjf1Sb66dAoyIiIhUOQow\nIiIiUuUowIiIiEiVowAjIiIiVY4CjIiIiFQ5CjAiIiJS5SjAiIiISJWjACMiIlLNrF+/pkzPe+ed\nt4iNjbns40899VhFlVThFGBERESqkbi4WFavXlmm506d+jgBAfUv+/hrr71dUWVVuCr5UwIiIiJy\naW+//ToHDuyjV68wBg0aQlxcLP/970xeffUlEhLiycnJ4e6776NHj15MmXIfjz32BOvWrSErK5Po\n6JPExJzmkUcep1u3Hgwb1p8ffljDlCn3ERZ2A5GREaSmpvL66//Bx8eHl156ljNn4ggKCmbt2tUs\nWLDsur1PBRgREZFK8u3ao+w4GH/R/RaLiaIi46q2Gdbaj/H9ml/28dtum8T3339LkybNiI4+wcyZ\n/yMlJZkuXboyZMhwYmJO8+yzT9GjR68LXhcff5Z//3s6W7f+xKJF39GtW48LHndzc+Odd97n/fff\nZePGtQQEBJKfn8dHH81iy5ZNfPvtV1f1fq6WAsx5ErOTOHMmlrqWAFuXIiIics3atGkHgLu7BwcO\n7GPx4u8xmcykp6dd9Nzg4FAA/Pz8yMzMvOjxkJAOJY+npaVx8mQUQUEhAHTr1gOL5fr+vpMCzHlm\nbl3AWQ4zNfghWvo0snU5IiJSxY3v1/ySoyW+vu4kJGRU+v4dHBwA+PHHFaSnpzNjxv9IT0/nL3+Z\ndNFzzw8ghnHx6NCfHzcMA7P53H0mkwmTyVTR5ZdKJ/Gep4lzawDm7lls40pERESujtlspqio6IL7\nUlNTqVcvALPZzIYNaykoKLjm/dSvH8ihQ/sB2L5960X7rGwKMOcZ17kr5iwfkoxT7Dpz2NbliIiI\nlFujRk04dOggWVl/TAPdeGM/fvppE1OnPoCLiwt+fn589tnH17Sf7t17kZWVxQMP3MOuXTvx8Kh9\nraWXi8m41DiRnavMYbelu39leeKXeODPK30fu+5DYnJ512vIVcpHfbFf6o39qg69SU9PIzIyghtv\n7E9CQjxTpz7Al19+V6H78PV1v+xjOgfmTyb26c6qWWtJdz/DttN76dogyNYliYiI2B1XVzfWrl3N\nl1/OwTCKefjh63vROwWYP3GwWhgQOIAVqXP57vAPdAlsh9mkmTYREZHzWa1WXnrpVZvtX38zX8LQ\n0PY4ZDQg25TMxqhfbF2OiIiI/IkCzCVYLWaGNRmIUWxi8fGVFBVf3zOrRUREpHQKMJcxIKgVTpmN\nyTOns/LYT7YuR0RERM5TqQHm8OHDDBgwgLlz5wJQUFDA448/ztixY5k8eTJpaeeuBLh48WLGjBnD\nuHHjmDdvXmWWVGZms4mbWwzGKDaz6uQaCoqufc28iIiIVIxKCzDZ2dlMmzaNbt26ldz37bff4unp\nyfz58xk6dCgRERFkZ2czY8YMZs2axZw5c/j8889JTU2trLLKpVfbJrhmNKfAnM2SQ+ttXY6IiEiF\nGTt2BNnZ2cyZM4u9e3df8Fh2djZjx44o9fXr168BYNmyJWzYsK7S6rycSgswjo6OfPzxx/j5+ZXc\nt27dOm666SYAbrnlFvr378+uXbsICgrC3d0dZ2dnOnbsSGRkZGWVVS4mk4nx7QZjFFpZH7uRnMJc\nW5ckIiJSoSZNupP27YPL9Zq4uFhWr14JwNChI+jTp29llFaqSltGbbVasVov3HxMTAwbN27kzTff\nxMfHh+eff57ExES8vLxKnuPl5UVCQkKp2/b0dMVqrbwfjTr/wjlDfdqw8GAb0mrtYXnUBv7afWyl\n7VeurLSLGontqC/2S72xX5XVm5tvvpkZM2YQEBBATEwMDz30EP7+/mRnZ5Obm8uzzz5LcHAwFosZ\nH59aTJs2jcGDBxMWFsbDDz9MXl4enTp1wmIx4+vrzuLFi5k7dy5ms5kWLVowbdo0/vnPt9i9ezff\nfPM5hmHg6enJxIkTeeONN4iMjKSoqIgJEyYwatQoJk2aRPfu3dm6dSspKSl88MEHBARc+48mX9fr\nwBiGQZMmTZgyZQozZ87kww8/pG3bthc950pSUrIrq8RLXh3xlvYD+PDIIdae3MCgRj2p5ehWafuX\ny6sOV66sjtQX+6Xe2N73R5eyM37PRfdbzCaKiq/uQvgd/IIY3Xz4ZR/v3r03ixcvZ8yY8SxatIzu\n3XvTrFkLeve+kV9+2cF7783kX/96k6KiYhITM8nNLSAtLYcvvviWwMBGPPLI46xZs4qiomISEjKI\nj0/htdf+i7u7Ow89dC9bt+5kzJjbMJks3HLLZD755EMcHHL58ccN7Nt3gHff/ZicnBwmT76VDh26\nkp9fCFj597/f4/3332XBgiWMH397md5raSHvuq5C8vHxISwsDICePXty9OhR/Pz8SExMLHlOfHz8\nBdNO9iCkaT28ctphmAv5Zt9yW5cjIiJyWb1792XLlk0AbN68gZ49+7BhwxoeeOAe3n//3ZIFNH92\n4sRx2rcPAaBDh04l93t4ePD0048zZcp9nDwZRVrapc9TPXhwP6GhHQFwcXGhceOmnDp1CoCQkA4A\n+Pn5kZmZecnXl9d1HYHp3bs3mzZtYsyYMezbt48mTZoQEhLCM888Q3p6OhaLhcjISP7xj39cz7LK\nZELHgUzfd4DI5AhG5w7A07mOrUsSERE7N7r58EuOllTm6FjTps1ISkrg7NkzZGRksGnTenx8/Hj2\n2WkcPLif99777yVfZxjnVuACFP82OlRQUMDbb7/BrFlf4u3twxNPPHrZ/ZpMJs6fRCksLCjZnsXy\nx2kfFfUTjJU2ArN3714mTZrEggULmD17NpMmTWLkyJFs2LCB2267jdWrV3Pffffh7OzM448/zj33\n3MNdd93FQw89hLu7/c3ZtmnoQ938UDAV8+WeH2xdjoiIyGV169aTjz6aSa9efUhLS6V+/UAANmxY\nR2Fh4SVf07BhIw4ePABAZGQEANnZWVgsFry9fTh79gwHDx6gsLAQs9lMUdGFF3lt3bodO3f+8tvr\nsomJOU1gYMPKeouVNwLTvn175syZc9H906dPv+i+8PBwwsPDK6uUCjOpSz/ejNzDfmM3Z7MG4e/m\na+uSRERELtKnT1/uv/9uZs36itzcHF5++XnWrVvNmDHjWb16FT/8sPii14SHD+Mf//g7U6c+QHBw\nKCaTidq16xAWdgN/+csdNG/egttvn8T06W/z7rsfcujQQaZPfws3t1oAhISE0qpVax566F4KCwu5\n//4puLi4VNp7NBkVNZZzHVXmSWlXGtZ7dclSTrttpJlrax7renel1SEX0wmJ9kl9sV/qjf1Sb8rG\nbk7irQ4m3tCH4iwPjmUfJDo9xtbliIiI1EgKMOXUwM+dZuYuAHyxZ4mNqxEREamZFGCuwoSuPShO\n9+R03nGOpkTZuhwREZEaRwHmKtTzdqON07nfePpi7+IKWxImIiIiZaMAc5Vu73YDxam+xBfEsDfx\noK3LERERqVEUYK6STx0XQmv1AODr/UspNoptXJGIiEjNoQBzDcZ360Rxcj1SixKIOLP7yi8QERGR\nCqEAcw083Z24wasXhmHiu0PLKCouuvKLRERE5JopwFyj0V2DIakBmcWpbI7ZYetyREREagQFmGvk\n4epIT//eGMVmFh9dRUFRga1LEhERqfYUYCrAyBvaYEpsTK6Rydron2xdjoiISLWnAFMB3Jwd6Neg\nD0aRheVRa8gtzLV1SSIiItWaAkwFGdq5BebE5hSQy4rjG2xdjoiISLWmAFNBXJyshDfpg1HgwNrT\nG8ksyLJ1SSIiItWWAkwFGtipCdaklhRRwNKja2xdjoiISLWlAFOBnBwsDG/Zh+I8Z7bE/kxqXpqt\nSxIREamWFGAqWN/Qhjgnt6bYVMTCw6tsXY6IiEi1pABTwRysZka2601xjisR8RHEZyfauiQREZFq\nRwGmEvQKDsA1tR2GyeC7Q8ttXY6IiEi1owBTCSxmM2NDelKc5cHelD2czoi1dUkiIiLVigJMJbmh\nbV080oMAmH9omY2rERERqV4UYCqJ2WxiXKeuFKV7ciT9MMfTTti6JBERkWpDAaYSdWrlh3d2CADz\nDvyAYRg2rkhERKR6UICpRCaTiVtu6EJRqi/R2Sc5kHzY1iWJiIhUCwowlSyoqTd180MBmH9IozAi\nIiIVQQGmkplMJm7p1pnCpLqczT3DzoQ9ti5JRESkylOAuQ7aNPKkkdEZwzDx/aFlFBUX2bokERGR\nKk0B5joZ3z2EooT6pBQks+3ML7YuR0REpEpTgLlOmgfWprlDGEaxmUVHV1FQXGjrkkRERKosBZjr\naFyPdhSebUhmYTqbTv9s63JERESqLAWY66hxXQ/auYZhFFn44fgacgvzbF2SiIhIlaQAc52N7dmG\nojONyS3OZu2pTbYuR0REpEpSgLnO6vvWIrROF4wCB1adWE9mQZatSxIREalyFGBsYHSPVhTFNaPA\nyOfHE+ttXY6IiEiVowBjA/5ernTxC8PId2Ldqc2k5qXZuiQREZEqRQHGRkb2aE5RbAuKKGLZ8dW2\nLkdERKRKUYCxEZ/aLvQIDKM415Wf4naQkJ1k65JERESqDAUYGxrRrSlGXEsMillyfKWtyxEREaky\nFGBsyNPdib5NwijOcueX+F+JyYyzdUkiIiJVggKMjQ3p2gjOtAZg0dEVNq5GRESkalCAsTEPV0cG\ntOxIUUYd9iUf4HjaSVuXJCIiYvcUYOzAkBsaYjnbBoCFR5ZhGIaNKxIREbFvCjB2wNXZgfD2HShK\n9eFYehQHU47YuiQRERG7pgBjJwZ0CsQhoS0AC48s1yiMiIhIKRRg7ISLk5VhocEUJtXldFYMuxL2\n2rokERERu6UAY0f6dayPS0pbDMPEoqMrKDaKbV2SiIiIXVKAsSOODhZu6tyeooT6xOcmsO1MpK1L\nEhERsUsKMHamV3AAtdLbYhSbWXpsFQXFhbYuSURExO4owNgZB6uZUTe0pSi+Aan5qWyJ2WbrkkRE\nROyOAowd6h5Ul9rZ7TCKLCyLWk1uYZ6tSxIREbErCjB2yGI2M7pbawrPNCarMIv1p7fYuiQRERG7\nogBjp7q08cc3vx1GoQOrTqwjqyDb1iWJiIjYDQUYO2U2mxjdsxWFsU3JK87jx5PrbV2SiIiI3VCA\nsWMdW/oQQDuMfCfWndpMWl66rUsSERGxCwowdsxkMjG6VwsKYppRaBSy4sQaW5ckIiJiFxRg7FxQ\nUy8aO7ajONeVzTHbSMxJsnVJIiIiNqcAY+dMJhOjezen8HRziinmh6gfbV2SiIiIzSnAVAFtGnnS\nwr0txdnubD8TSWzmGVuXJCIiYlMKMFXE6N7NKDjdAoAlx1fYuBoRERHbUoCpIprXr00779YUZdRh\nd+J+otKibV2SiIiIzVRqgDl8+DADBgxg7ty5F9y/adMmWrVqVXJ78eLFjBkzhnHjxjFv3rzKLKlK\nG92rGYWnWwKw+NhyG1cjIiJiO5UWYLKzs5k2bRrdunW74P68vDw++ugjfH19S543Y8YMZs2axZw5\nc/j8889JTU2trLKqtEZ13ekQ0IqiVB8Opx7jYPIRW5ckIiJiE5UWYBwdHfn444/x8/O74P4PPviA\n22+/HUdHRwB27dpFUFAQ7u7uODs707FjRyIjIyurrCpvVM8mFP52LsyiY8sxDMPGFYmIiFx/1krb\nsNWK1Xrh5qOiojh48CBTp07lzTffBCAxMREvL6+S53h5eZGQkFDqtj09XbFaLRVf9G98fd0rbdvX\nytfXnd6t2/FT8nGiOc2J/ON0CQy1dVnXjT33piZTX+yXemO/1JtrU2kB5lJeffVVnnnmmVKfU5YR\nhZSUyvthQ19fdxISMipt+xVhcFggm2a3xOJ5lrk7F9DIsQlmU/U/H7sq9KYmUl/sl3pjv9Sbsikt\n5F23v/XOnj3L8ePH+fvf/8748eOJj49n4sSJ+Pn5kZiYWPK8+Pj4i6ad5EL+nq70aNmcwsT6nMmO\nZ8eZnbYuSURE5Lq6bgHG39+f1atX8+233/Ltt9/i5+fH3LlzCQkJYc+ePaSnp5OVlUVkZCSdO3e+\nXmVVWSO6N8GIawHFZpZGraKwuNDWJYmIiFw3lTaFtHfvXl5//XViYmKwWq2sXLmSd999lzp16lzw\nPGdnZx5//HHuueceTCYTDz30EO7umhe8Eu/azvRp25yN8VEk1z3Jltjt9AnsbuuyRERErguTUQWX\nsVTmvGFVmpdMzczjyf+tx9p+Pe5OLrzY/SmcLI62LqvSVKXe1CTqi/1Sb+yXelM2dnEOjFS8OrWc\n6B/cjIK4xmQUZLL+1GZblyQiInJdKMBUceFdG2JJagaFDvx4cj3ZBZW3QktERMReKMBUcR6ujgzs\n2JSC2CbkFOXyY/QGW5ckIiJqKsOQAAAgAElEQVRS6RRgqoHwLg1wSG0GBU6sO7WZtDzNq4qISPWm\nAFMNuDo7MKRLE/JPN6OguICVJ9fYuiQREZFKpQBTTQzoHIhzVhPIc2VzzDYSc5JtXZKIiEilUYCp\nJpwdrQzv2oT8080pMopYFvWjrUsSERGpNAow1UjfDvVxy2uEkePO9jORxGaesXVJIiIilUIBphpx\ndLBwU/cm5J9qgYHB0qhVti5JRESkUijAVDO9QwKoU9yA4sw67ErYy+GUY7YuSUREpMIpwFQzVouZ\nkT2bUBDdCgwT/9szh7PZCbYuS0REpEIpwFRD3dvXxdchgMKT7cgqzGbmr5+QkZ9p67JEREQqjAJM\nNWQxmxndpxkF8YE4p7QmMTeZD3bPIr8o39aliYiIVAgFmGoqrLUfAzoFknKkEbVyG3MiPZpZ+7+m\n2Ci2dWkiIiLXTAGmGru1fwuCm/mQsKcl7sX12JWwl++PLrV1WSIiItdMAaYaM5tN/PWmdjTw9SB+\nZ1vczV6sO7WZdac227o0ERGRa6IAU825OFmZOjaY2i5uJEQG4WJ247sjS9iVsNfWpYmIiFw1BZga\nwMvDmaljg3Ew3MjcH4rVZOWzfV8SlRZt69JERESuigJMDdG4rgf3jWhHQbo7xskOFBYX8cHuz0jI\nTrJ1aSIiIuWmAFODdGzpy7i+zck444VbUiiZBVnM3P0JmQVZti5NRESkXBRgapjBXRrQJzSAhGP+\neOW0JT47kY92f05BUYGtSxMRESkzBZgaxmQyMWFgS9o29iRmTwN8jKYcSzvB7APf6BoxIiJSZSjA\n1EBWi5kHR7UnwKcWpyKa4W0JIDJ+N4uPrbB1aSIiImWiAFNDuTo7MHVsMO4uzsTuaENtqxc/Rq9n\nU8zPti5NRETkihRgajDfOi48PCYYs+FE6u4QXC2ufHNoIXsS99u6NBERkVIpwNRwzevX5i/D25Cb\n6UTRsU5YzVY+3fsF0emnbV2aiIjIZSnACF3a+HNzryakxrvhFt+FguJC3t/9GUk5KbYuTURE5JIU\nYASA4d0b0719XeKOu+Of04n0/Axm7v6U7IIcW5cmIiJyEQUYAc4tr54c3pqWDeoQtceHBqYgzmSd\n5eM9syksLrR1eSIiIhdQgJESDlYzU0YH4efpwuFtAQQ6NuNw6jHmHpiPYRi2Lk9ERKSEAoxcoJaL\nA4+OC8HN2YHjW5vh7xTAjrORLI1aZevSRERESijAyEXqerkyZXQQFFuIj2yHp6MnK06s4afYHbYu\nTUREBFCAkcto1dCTO4e0JjvLQv6hTrhaXfjq0HccSDps69JEREQUYOTyegTVY3j3RiQmWHE70w0z\nZv63dw6nM2JtXZqIiNRwCjBSqlG9mtKljR/Rxx0JzOlBblEe7+/+jJTcVFuXJiIiNZgCjJTKbDJx\n99A2NAvw4MBuF1paupGal8b7uz8jpzDX1uWJiEgNpQAjV+ToYGHKmGB8ajuz62cPWrqEEJMZx//2\nzKGouMjW5YmISA2kACNlUtvNkaljg3FxsrJvc12auDXnYMoRvjr0va4RIyIi150CjJRZfd9aPDgq\niOJiMye3taCeawA/x+1gxYk1ti5NRERqGAUYKZd2TbyYOLglWdkGWftD8XSqw9KoVWyL+8XWpYmI\nSA2iACPldmNofQZ3acDZ+GJcYrrjYnXmi4PzOZR81NaliYhIDaEAI1dl3I3N6dDCh2PHi2mY1ReA\nj/fOJjbzjI0rExGRmkABRq6K2WzivhHtaOTvzq+7DIIc+5JTmMvMXZ+Slpdu6/JERKSaU4CRq+bk\naOGRscF4ujuxdZOVTh49SclL5f3dn5FbmGfr8kREpBpTgJFr4unuxNSxwTg6WNi+3p2gOqGcyojh\n031f6BoxIiJSaRRg5Jo19HfnryPbUVBkcHBLIM09mrMv6SDfHlmka8SIiEiluOoAc+LEiQosQ6q6\n0OY+3NqvBelZhSTvbkuAWz02x2zlx+j1ti5NRESqoVIDzF133XXB7ZkzZ5b8+bnnnquciqTKGtA5\nkL4d6xMTn4/jqa7UcarNomPLiTj7q61LExGRaqbUAFNYWHjB7a1bt5b8WVMD8mcmk4nbB7SgfVMv\nDhzNoVFWf5wtzszZ/w1HU6NsXZ6IiFQjpQYYk8l0we3zQ8ufHxMBsJjNPDCyPfV93dgamU0np8EU\nY/Dh7lmczYq3dXkiIlJNlOscGIUWKQsXJytTxwbj4ebImg159PIcTHZhDjN2fUp6foatyxMRkWqg\n1ACTlpbGzz//XPJfeno6W7duLfmzyOX41HbhkTHBOFjMrFtrpodvb5Jyk/lg9yzyi/JtXZ6IiFRx\n1tIe9PDwuODEXXd3d2bMmFHyZ5HSNA3w4C/D2zJz4V4iNtahQ88O7EzayWf7vuLeoEmYTVrFLyIi\nV6fUADNnzpzrVYdUU51b+zH2xmbMX3+M0zub0iIond2J+5h/ZAnjWtykaUkREbkqpf4TODMzk1mz\nZpXc/vrrrxk5ciSPPPIIiYmJlV2bVBNDbmhIz+B6RJ/JghOdqOdWlw2nt7Du1CZblyYiIlVUqQHm\nueeeIykpCYCoqCjefvttnnzySbp3786//vWv61KgVH0mk4k7BreidcM67D6STsOsftR2dOf7oz+w\nM36PrcsTEZEqqNQAc+rUKR5//HEAVq5cSXh4ON27d+fWW2/VCIyUi9Vi5qHRQdT1cmX99mS6OA/H\n0eLA5/u/4njaSVuXJyIiVUypAcbV1bXkz9u3b6dr164lt3XugpSXm7MDj44LppaLA0vXpDLAdyRF\nRjEf7p5FfLYCsYiIlF2pAaaoqIikpCSio6PZuXMnPXr0ACArK4ucnJzrUqBUL36erkwZHYTZDD+s\nzGFwwFAyC7KYuesTMvOzbF2eiIhUEaUGmHvvvZehQ4cyYsQIHnzwQWrXrk1ubi633347o0aNul41\nSjXTskEd7hrahpy8QjautXJjQG8ScpL4cM8s8osKbF2eiIhUASbjCj9qVFBQQF5eHrVq1Sq5b/Pm\nzfTs2bPSi7uchITKu5qrr697pW5f/rBocxSLNkfRtL479UIPE5mwiw5+wdzd7vZLXiNGvbFP6ov9\nUm/sl3pTNr6+l7/mXKkjMLGxsSQkJJCenk5sbGzJf02bNiU2NvaKOz58+DADBgxg7ty5AMTFxXHn\nnXcyceJE7rzzThISEgBYvHgxY8aMYdy4ccybN688702qsJt6NKZrW3+Ox2SQd7w9zWs3YWf8bhYe\nW2br0kRExM6VeiG7fv360aRJE3x9fYGLf8xx9uzZl31tdnY206ZNo1u3biX3/fe//2X8+PEMHTqU\nL774gs8++4wpU6YwY8YM5s+fj4ODA2PHjmXgwIHUqVPnWt+b2DmTycRdQ1uTmJ5LxIEkwuv0IcM1\nizXRG/F29qJPYHdblygiInaq1BGY119/nXr16pGXl8eAAQN45513mDNnDnPmzCk1vAA4Ojry8ccf\n4+fnV3Lf888/z+DBgwHw9PQkNTWVXbt2ERQUhLu7O87OznTs2JHIyMgKeGtSFThYLUwZHYRvHWdW\n/HyGG5yH4+5Qi3mHF7Encb+tyxMRETtV6gjMyJEjGTlyJHFxcSxYsIAJEyZQv359Ro4cycCBA3F2\ndr78hq1WrNYLN//7suyioiK+/PJLHnroIRITE/Hy8ip5jpeXV8nU0uV4erpitVqu+OauVmlzblLx\nfIEX7+vO/727ie9+jOP+iROYe/gzPtv3JS/0e4xmXo3+eK56Y5fUF/ul3tgv9ebalBpgflevXj0e\nfPBBHnzwQebNm8fLL7/Miy++SERERLl3WFRUxBNPPEHXrl3p1q0bS5YsueDxK5xTDEBKSna591tW\nOrHKNpzN8ODIdrz97S4++yaGcSNH823UN7yy4T3+r9MUvF281Bs7pb7YL/XGfqk3ZXPVJ/H+Lj09\nnblz5zJ69Gjmzp3LX//6V5Ytu7oTLZ9++mkaNWrElClTAPDz87vgqr7x8fEXTDtJzdGmsReTBrci\nK7eQ5avyuKnJcDLyM5mx61OyCyovtIqISNVTaoDZvHkzf/vb3xgzZgxxcXG89tprLFq0iLvvvvuq\nQsbixYtxcHDgkUceKbkvJCSEPXv2kJ6eTlZWFpGRkXTu3Ln870Sqhd4hAQzp2pCzKTns/MmNvoG9\nOJsdz0d7ZlOga8SIiMhvSr0OTOvWrWncuDEhISGYzRdnnVdfffWyG967dy+vv/46MTExWK1W/P39\nSUpKwsnJqeSaMs2aNeOFF15gxYoVfPLJJ5hMJiZOnMhNN91UatG6Dkz1VmwYvL9wL78cSqB7e39o\nFMnOhD2E1m3LbS3GUcvBzdYlynn0nbFf6o39Um/KprQppFIDzPbt2wFISUnB09PzgsdOnz7N6NGj\nK6jE8lGAqf7yCop448tIouIyGNmrIafdNrA/+RCeTnW4u/0EmtZudOWNyHWh74z9Um/sl3pTNld9\nDozZbObxxx/n2Wef5bnnnsPf358uXbpw+PBh/vvf/1Z4oSK/c3Kw8MiYYLw9nFi0KZrOjsO4pf0I\nUvPS+E/k+6yO3lCmE75FRKR6KnUEZsKECbz00ks0a9aMNWvWMHv2bIqLi6lduzbPPvss/v7+17PW\nEhqBqTlOx2fyytxfKCwy+NcD3UkpOMVn+74kPT+DIJ82TGpzC24OrlfekFQafWfsl3pjv9Sbsrmm\nEZhmzZoB0L9/f2JiYrjjjjt47733bBZepGYJ9KvFA6PaU1RczDMf/MSZaBeeCptKK8/m7Ek8wKvb\n/0tU2klblykiItdZqQHGZDJdcLtevXoMHDiwUgsS+bOgpt5MHRuCs6OFWcsPMn/1ae5tdxfDmgwk\nNS+NtyPfZ030Rk0piYjUIGW6Dszv/hxoRK6X4Gbe/OdvN9K4rjtb9pzhtbk76VSnBw+H3oubgyvf\nH13Kh3s+1/ViRERqiFLPgQkKCsLb27vkdlJSEt7e3hiGgclkYv369dejxovoHJiaydfXndi4NL5a\nc4T1O2NwcbJwz7C2NGvkzKz9X3E45Shezp7c3W4CTWo3tHW5NYa+M/ZLvbFf6k3ZXPUy6piYmFI3\nXL9+/auv6hoowNRM5/fmp71xzF5xiPzCYsJvaMjNvRuz6uRalp9Yg9lkZlTzofQN7KlRw+tA3xn7\npd7YL/WmbEoLMKX+FpKtAorIlXRvX4+Gfu7MWLCHFduiOR6bzv0j+9CsThNm7fuK744s4WjKcSa2\nGYerVimJiFQ75ToHRsSeBPrV4rk7w+jUypfDp1J58bMdmDJ9eLrLo7So05Rdift4bcc7nEw/ZetS\nRUSkginASJXm4mTlwVHtubVfczKyC3jzq1/56dcUHg69lyGNB5Ccm8pbv8xk3anNWqUkIlKNKMBI\nlWcymRjUpSFP3N4BdzcH5q07xswF++gX0I+HQu/BxerM/COL+d/eOWQX5Ni6XBERqQAKMFJttGxQ\nhxfu6kLrhnXYeSSRlz7fgVtBvZIppV8T9mpKSUSkmlCAkWqltpsjj98ayrBujYhPyeFfc35h76Fs\nHg69l/BG/UjOTeGtX2ay/tQWTSmJiFRhCjBS7VjMZsb0acYjY4KxWsx8uuwAc1YeJrzRQB4MuRsX\nqzPzjizif3vnklOoKSURkapIAUaqrdAWPjx/VxgN/WuxcVcc/5rzCz6Whjzd5VGa1W7Crwl7eG37\nO0RnnLZ1qSIiUk4KMFKt+dVx4R8TO9E7pB7RZzN56bMdnIguYGqH+xjcqB+Jucm8FTGDjad/0pSS\niEgVogAj1Z6jg4U7h7ThrqGtKSgqZvp3u1m46QTDmgziwZB7cLI68c3hhXyy7wtNKYmIVBEKMFJj\n9AoO4J+TOuFXx4Uffj7JW1//SqBzE54Oe5RmtRuzM343r+2YzqmM0n9CQ0REbE8BRmqUhv7uPHdn\nZzq08OFgdCovfradxESY2uGvDGrUl8ScJP4d8R4bT/+sKSURETumACM1jquzA1NGBzHuxmakZxXw\nxpc7WRMRw01Nw3kg+K7fppQW8Nm+L8kpzLV1uSIicgkKMFIjmUwmhnRtxP/dFoqbiwNfrz3K+wv3\n0sy9BU+HPUrT2o34JX4Xb+yYzqmMWFuXKyIif6IAIzVaq4aevHBXGC0DaxNxKIGXPo8gK8PKox3u\nZ2DDG4nPSeTfv7zHppitmlISEbEjCjBS49Wp5cTfb+tAeJeGnE3O5uXZEWzfn8Co5kO5P/hOnMyO\nfH3oe2bt/4pcTSmJiNgFBRgRwGoxM75fcx66OQiL2cTHS/cze+UhWtdpzVNdptLEoxERZ3/l9Yjp\nxGTG2bpcEZEaTwFG5DydWvny3OQwAn1rsX5nDK/O/YXiXGf+1vF++jfsTXx2Im9GvMuWmG2aUhIR\nsSEFGJE/8fdy5Z93dKJH+7qcOJPBi7N2sC8qldHNh3N/8J04mB348tB3fL7/a3IL82xdrohIjaQA\nI3IJTg4W7h7WhsnhrcgrKOadebtYsPE47bza8FTYozT2aMiOszt5Q1NKIiI2oQAjchkmk4k+ofX5\nx6SOeNd2ZslPJ/jPt7/iYLjxt473069BL85mJ/BmxLv8FLtdU0oiIteRAozIFTSu68Hzd4UR0syb\nfSdSePGzHZyMy2JMixHcFzQZq9mBLw7O5/P932hKSUTkOlGAESkDN2cHHh4bzOjeTUnNzOO1LyJZ\nHXGKYJ+2PB02lUYeDdhxNpI3It4lNvOMrcsVEan2FGBEyshsMjG8e2MevyUUV2crX64+woeL9+Fm\n8eCxjg/Qt0FPzmbH80bEu/wcu8PW5YqIVGsKMCLl1LaxFy/c1YXm9Wuz/UA80z6P4GxyHmNb3MS9\nQXdgNVuYe3Aes/d/Q15Rvq3LFRGplhRgRK6Cp7sTT9zegUFhDYhLyublzyPYtv8sob7teSrsURq6\nB7LtzC+8sWO6ppRERCqBAozIVbJazNzavwUPjGoPJvhw8T6+WHWYOo51eKzTg9wY2IMzv08pxUXY\nulwRkWpFAUbkGoW19uO5yZ2p7+PGmsjTvPZFJBmZhYxrOZJ72086N6V04Fvm7P9WU0oiIhVEAUak\nAtTzduOZOzrTtZ0/x2PTeeGzHeyNSiLUL4inwqbS0L0+W89E8EbEu8RlnbV1uSIiVZ4CjEgFcXK0\ncO/wtkwa1JLc/EL+880uFm+OwsvZi8c6PUSfwO6cyTrLGzum81PsDoqNYluXLCJSZSnAiFQgk8lE\n346BPD2xE14eTizcHMV/5+0iL89gfMtR3NN+ImaThS8OzuONiHc5mHzE1iWLiFRJlhdeeOEFWxdR\nXtnZlXcegZubU6VuX65eVeqNp7sT3dvX41RCJnuPJ7P9wFlaBNahbd2GdPYPIaMgk4PJR9h+JpLj\nqSeoV8uf2k4eti77qlSlvtQ06o39Um/Kxs3N6bKPKcD8iQ4q+1XVeuPoYOGGtv6YTSZ+PZLIlr1x\n1HJxoE0DPzr4BRPk04bk3BQOphxhS+w2zmbFE1irPm4OrrYuvVyqWl9qEvXGfqk3ZaMAUw46qOxX\nVeyNyWSiVUNPmtX3YNfRJCIOJRCfmkP7Jt54u9ahS92ONKvdmDNZZzmYcoSNMT+TWZBJQ/dAnCyO\nti6/TKpiX2oK9cZ+qTdlowBTDjqo7FdV7o2fpytd2vhzLDaNPceT+eVQAt4ezvh7ueDr6k33gC7U\nc/MjOiOGA8mH2RTzM4VGEQ3d62M1W21dfqmqcl+qO/XGfqk3ZaMAUw46qOxXVe+Nq7OV7u3rkptf\nxJ7jSWzbf5aD0akE+Ljh5eFMQK269KrfFQ9Hd6LSTrIv6SA/x+7AweJAYK16mE32ec59Ve9Ldabe\n2C/1pmxKCzAmwzCM61hLhUhIyKi0bfv6ulfq9uXqVafexCRm8d36Y/x6NBGAzq39GNOnKf6e585/\nyS3MZc2pTayJ3kBeUT4+Lt7c1HQwHfyC7S7IVKe+VDfqjf1Sb8rG19f9so8pwPyJDir7VR17cyg6\nhW/XHSUqLgOL2cSNHeozokdjPFzPnf+SkZ/J8hNr2ByzlaLfppRGNhtKa68WNq78D9WxL9WFemO/\n1JuyUYApBx1U9qu69sYwDCIOJfDd+mPEp+bg7GhhSNdGDAprgJODBYCE7CSWRq0k4uyvALTxasnI\nZkNo4F7flqUD1bcv1YF6Y7/Um7JRgCkHHVT2q7r3prComPU7Y1i85QSZOQXUqeXIqF5N6RFUF4v5\n3LRRdMZpFh1dzsGUcxfA6+wfyoimg/Fx8bZZ3dW9L1WZemO/1JuyUYApBx1U9qum9CYnr5Dl206y\navsp8guLCfBxY+yNzQhp5o3JZALgQPJhFh1bzqmMGCwmCz3rd2VI4/64O9a67vXWlL5UReqN/VJv\nykYBphx0UNmvmtablIw8Fm0+zqbdcRgGtGxQh/F9m9M04NwVe4uNYiLjd7Pk2AoSc5NxsjgyoGEf\n+jXojbP18mfuV7Sa1peqRL2xX+pN2SjAlIMOKvtVU3sTk5DJ/PXH2HUsCYCw31Ys+f22YqmwuJAt\nsdtZFvUjmQVZuDvUYmiTAfQIuAGL2VLp9dXUvlQF6o39Um/KRgGmHHRQ2a+a3psrrVj6fen16ugN\n5Bfl4+vizYim4XTwC6rUpdc1vS/2TL2xX+pN2SjAlIMOKvul3pxbsbTjYDzfbzhesmJpaNdGDDxv\nxVJ6fgYrTqxhU8xWio1iGroHMrLZkEpbeq2+2C/1xn6pN2WjAFMOOqjsl3rzh7KsWIrPTmTp8ZX8\nEr8LqLyl1+qL/VJv7Jd6UzYKMOWgg8p+qTcXK8uKpej00yw6VnlLr9UX+6Xe2C/1pmwUYMpBB5X9\nUm8uLyUjj4WbjrN5z7kVS60a1GHceSuW4Lel10eXcSozFovJQq/6XQmvgKXX6ov9Um/sl3pTNgow\n5aCDyn6pN1d2pRVLf1567WxxYkDDPvRt0Ouql16rL/ZLvbFf6k3ZKMCUgw4q+6XelN2VViwVFhey\nOXYby6NWn1t67ViLoY2vbum1+mK/1Bv7pd6UjQJMOeigsl/qTfn8vmLpuw3HSEjNveSKpdzCXNZE\nb2T1qY0XLL3u6Bdccg7Nlagv9ku9sV/qTdkowJSDDir7pd5cncutWOoZVA+z+VxISc/PYHnUGjbH\n/rH0elSzobTyan7F7asv9ku9sV/qTdkowJSDDir7pd5cm+zccyuWftxxbsVS/d9WLAWft2Lp0kuv\nh9LAPeCy21Vf7Jd6Y7/Um7JRgCkHHVT2S72pGJdasTS+X3Oa1PtjxVJ0+mkWHlvGoZSjAIT5d2B4\n08H4uHhdtD31xX6pN/ZLvSmb0gKM5YUXXnihsnZ8+PBhbrnlFsxmM8HBwcTFxfHggw8yf/58Nm7c\nSP/+/bFYLCxevJh//OMfzJ8/H5PJRLt27UrdbnZ2fmWVjJubU6VuX66eelMxXJysdGjhS6dWviSl\n57L/RAobd8USm5hFI/9auLk4UNvJgxvqdaJp7UbEZZ7hQMoRNsX8TFZBNg3c6+NkcSzZnvpiv9Qb\n+6XelI2b2+VXR1baCEx2djZ//etfady4Ma1atWLixIk8/fTT9O7dmyFDhvD2229Tt25dRo0axc03\n38z8+fNxcHBg7NixzJ07lzp16lx22xqBqZnUm8px8GQK89b/sWKpb4f6DD9vxVKxUUzk2V0sPr6S\npJKl1zfSr2EvnCyO6osdU2/sl3pTNjYZgTGZTAwfPpxDhw7h4uJCcHAwr7zyCs899xwWiwVnZ2eW\nLFmCn58fSUlJjBgxAqvVysGDB3FycqJJkyaX3bZGYGom9aZy+NRxoXdIAAE+bpw4k87eqGTW74zB\nMKBRXXccLBYCatWjV/2uuDvU4njaCfYmHeCnuO04mh1p6d+Y3JwCW78NuQR9Z+yXelM2pY3AWCtr\np1arFav1ws3n5OTg6HjuX3Xe3t4kJCSQmJiIl9cf8+peXl4kJCSUum1PT1es1vJdq6I8Skt8Ylvq\nTeUZ5ufBoO5NWf5zFF+vOsz3G4+z/tdYJoa3pl9YQyxmE+P8wxkW1Ielh1az5NAavjm8gA2xmwlv\ncSO9G99ALUc3W78N+RN9Z+yXenNtKi3AXMnlZq7KMqOVkpJd0eWU0LCe/VJvro9urf0IaexVsmJp\n+re/8t3aIxesWOrrfyOdPDuxPGoNW+K2MWvnPL7YtYAOfsH0CLiBZrUbl/k6MlJ59J2xX+pN2ZQW\n8q5rgHF1dSU3NxdnZ2fOnj2Ln58ffn5+JCYmljwnPj6e0NDQ61mWiPyJq7OVMX2a0a9jYMmKpXfm\n775gxZKHozu3tBrFpM4j+WHvBrbEbmP7mUi2n4mkrqsfPQK60KVeJ2o5aFRGRCqe+XrurHv37qxc\nuRKAVatW0atXL0JCQtizZw/p6elkZWURGRlJ586dr2dZInIZnu5O3DW0DS/e3YXgZt4cOpXKtM8j\n+GDRXuJ/Gwmt7ezBwEY38nzXJ5ja4a909g8lMSeJ744u5Z+bX+azfV9yJOVYmUZXRUTKqtJWIe3d\nu5fXX3+dmJgYrFYr/v7+/Pvf/+app54iLy+PgIAAXn31VRwcHFixYgWffPIJJpOJiRMnctNNN5W6\nba1CqpnUG9s7ePLcbyydOPPHiqU7b2pPfs6FJyNm5mex7cwvbIndxtnsc+e0+bn60CPgBm6o2+ma\nfwFbykbfGful3pSNLmRXDjqo7Jd6Yx+KDYOIg/HMX3+MxLRcXJysdG9Xlz6hAQT6XRhMDMPgaGoU\nW2K3szNhN4XFhVhMFkJ929Mj4AZaeDbFbLquA8E1ir4z9ku9KRsFmHLQQWW/1Bv7UlhUzLqdMazc\nHk1yeh4AzQI86B0aQJfW/jg5XrhSMKsgm+1nItkcu40zWWcB8HXxpntAF7rW64yHo1ZkVDR9Z+yX\nelM2CjDloIPKfqk39snTy401W0+wcVcse44lYQAuTha6tqtLn5AAGvpf+D8gwzCISj/J5phtRMbv\noqC4ELPJTIhPO3rUv9rbx60AAB5VSURBVIFWns01KlNB9J2xX+pN2SjAlIMOKvul3tin8/uSmJbD\n5t1xbNodR0rGuVGZJvU86BMaQJc2fjg7XrjwMbsgm+1nd7IlZhuxWWcA8Hb2osdvozK1nTyQq6fv\njP1Sb8pGAaYcdFDZL/XGPl2qL0XFxew5lsyGX2PYfTwJwwBnxz9GZRrVvXhU5kT6KbbEbuOXs7+S\nX1yA2WQmyKctPQJuoI1XC43KXAV9Z+yXelM2CjDloIPKfqk39ulKfUlOz2XT7jg27ootGZVpVNed\nPqEB/9/evce2eRVsAH/s2E7ie2I7cZxb01x6SZq03bqxrqMgNiYxiYkN6CgN+wsJbfwBKmhTYTdA\nSJ2ExGXTADGkqWhaYRcGAsZAsH79uq7dvrRpmy1NmqZpYse3xHF8ie/v94cdJ26y1l6b+Lh5ftKU\n1XHS4z3nTZ6d9/h9cfumWlSWX3HF7sQc3neexjHHCUwEHQCA6ooq7KzbgTtsO2AsN6zci7nJ8JgR\nF7PJDwtMATipxMVsxJRvLqmUhLMXp3DktAP9I15IElCuLMPtm2uxe6sN66y6nKv3SpKEy4EJHHOc\nwPuu04glY5BBhi7zJuyy3Y7Npg1clbkGHjPiYjb5YYEpACeVuJiNmD5JLr5AFEfPOHC034GpzDuY\nmmq12L21Hp/avHRVJpKI4ANXelXmcsAOAKgqN+IO2w7srNuBqoqPv3v9WsZjRlzMJj8sMAXgpBIX\nsxHT9eSSSkkYuDSNI6cdOD3sRUqSoFLKcfumWuzeWo+WOt2SeyqlV2VO4gPnKUSSUcggQ6dpA+60\n3Y5O00aUyVfuRq+lhseMuJhNflhgCsBJJS5mI6YblctMMIr/zeyV8fojAIDGGi12b7XhU5utUFdc\nuSoTRZ+7H8ccJ3Fp9jIAwKDSZ1dlTJXVS/6OtYbHjLiYTX5YYArASSUuZiOmG51LSpLw4aJVmWRK\ngkohx45NNdi9tR6tNv2SVZmJgAPHHCdx0tmHSDICGWTYVN2BO+tvxxbTpjW7KsNjRlzMJj8sMAXg\npBIXsxHTSubiD8Vw7Owkjpy2wzOTXpWpt2iwu8eGO7qs0FQoc54fS8bQ5z6DY44TuOgfAwDoVTrc\nUbcDO223wbzGVmV4zIiL2eSHBaYAnFTiYjZiWo1cUpKEwTEfjpx2oG/Ig2RKglIhx46NNdi91Ya2\nesOSVRlH0IljjhM44ezDXGIOALCxqh131t+ObvNmKOSK5f6qmwqPGXExm/ywwBSAk0pczEZMq53L\nbCiGY+cmceS0A25fupjYzAurMtrKK1dl4jjlPoNjjpMY8Y8CAHRKLT5Vdyt22m5Djdq8amNfbTxm\nxMVs8sMCUwBOKnExGzEVKxdJkjB4eQZHTtvRN+RBIilBUSbHjo0W7N5aj/aGpasyzpALxxwncWLy\n/xBKhAEAHVVt2GW7Dd2WLihvslUZHjPiYjb5YYEpACeVuJiNmETIZTYcw7tnnTjS74BrOl1M6kxq\nfLrHhp1dVujUqpznx5Nx9HvO4X8dJzA8cxEAoFVqcLv1Ftxm3Y56bd2S8lOKRMiGlsds8sMCUwBO\nKnExGzGJlIskSRgan8GRfgc+GPQgkUxBUSbDLRtqsLvHhg1NxiXFxBVy49hkelUmGA8BSN9QssfS\niW5zJ1qN60r2ir8iZUO5mE1+WGAKwEklLmYjJlFzCc7F8e45J46ctmNyKr0qU1utxu4eG3ZusUJ/\n5apMKoGz3g/R7zmHc95BRJLpdz1plRp0mTdhq6ULG6raoSpTLvm7RCVqNsRs8sUCUwBOKnExGzGJ\nnoskSRie8OPIaQfeH3QjkUyhTC7DLRss6VWZ5irIr1iVSaQSGPKNoN87gLOeAfhj6denkiux2bQB\n3eZObDFvglqpLsZLypvo2axlzCY/LDAF4KQSF7MRUynlEpyL4/iAE/9z2gG7N326qKaqErt7bLhz\nSx30GtWSr0lJKYzNjqPfM4B+7zm4w14AgFwmR7txPbotnegxdwp5P6ZSymatYTb5YYEpACeVuJiN\nmEoxF0mSMGKfxZHTdpwcdCOeSK/KbGs3444uKzrXVUOlXP7qvc6QG/2ec+j3DmBsdjz7eJOuIbtv\npk5TK8Qm4FLMZq1gNvlhgSkAJ5W4mI2YSj2XcCSO4wMuHDltx4QnvSqjUsrR1WLC9g4zulvNS64t\nM28m6scZzwD6PQMYmhlBSkoBACyVJvRYutBj6cQ6fVPRNgGXejY3M2aTHxaYAnBSiYvZiOlmyUWS\nJFxyBvB/5z3oG/LAmXk7tlwmw4YmI7Z3WLCt3YxqfcWyXx+Oz2FgahD9nnMYmD6PWDIGANCptOg2\nb0aPpQsdVW2req2ZmyWbmxGzyQ8LTAE4qcTFbMR0s+YyORVC35AHp4a9uOiYzT7ebNVhe4cF29vN\nsJk1y54qiifjOO+7gH7PAM54B7Jvzy4vU6HTtBE9li50mjagUlG5oq/hZs3mZsBs8sMCUwBOKnEx\nGzGthVx8gShOD3vQN+zF4JgPyVT6x2ZNVWWmzFiwvl6/5N1MQHoT8EX/WOZU0zl4I9MAgDJZGTqq\nWrP7Zgzl+hs+7rWQTaliNvlhgSkAJ5W4mI2Y1lou4UgcZ0am0DfsxdmRKUTjSQCAXqPCtnYztrVb\nsKm5CkrF0n0vkiTBEXKmy4x3AOMBe/ZzLfqm7DuaajU1N2Ssay2bUsJs8sMCUwBOKnExGzGt5Vzi\niSQ+vOTDqeH0qaZAOA4AqFCVobvVhG3tFmxZb4K6Yvl9L1NzPpzxDuCMZwAX/KPZTcBWdU26zFg6\n0aRr+MSbgNdyNqJjNvlhgSkAJ5W4mI2YmEtaKiXhgt2PU8PpTcCemfSVfMvkMmxqrsL2Dgu2tpth\n1JYv+/XBeAjnvB/hjGcAH04PIZ5KlyFjuQHd5s3otnSi3bgeigI2ATMbcTGb/LDAFICTSlzMRkzM\nZSlJkmD3hNA37MGpIS/GXAv/fVptemzrsGB7hwXW6uWv5BtLxvDR9HDmtgYfZe+cXamoQJdpE7ot\nndhcvQEViuXL0DxmIy5mkx8WmAJwUomL2YiJuVyb1z+HU8NenBryYGjcj1Tmx26dSZ3eBNxhQbNV\nt+wm4GQqiRH/JZzxDOC05xx80RkAgEKuwMaqNvRYurDFvBk6lXbJ1zIbcTGb/LDAFICTSlzMRkzM\npTDBuTj6L3jRN+TBwOg0Yon0vpcqXTm2tpuxvcOCDY1GKMqW3wQ8EXSkb2vgOQdHyAkAkEGG9Ybm\nzCbgLljUJgDMRmTMJj8sMAXgpBIXsxETc/nkovEkBkancWrIg9MXvAhFEgAAdbkC3W0mbG+3oGt9\nNSpUy+978YSncMabvhLwRf8lSEj/OLdprOixdOKutluhTRhRJl/+tghUPDxu8sMCUwBOKnExGzEx\nlxsjmUphaNyPU0MenBr2YGo2CgBQlMnRua4K2zKbgPXqpTecBIBALIiz3g/R7xnAoG8YiVS6DKnK\nVFivb0arcR1aDS1oMTRBVbb896DVw+MmPywwBeCkEhezERNzufEkScJlVzBzJWBP9h5NMhnQXm/A\ntg4LtnVYUGNc/kq+kUQUH06fx9jcGM45h+AMubKfk8vkaNI1oNW4Dm2GFrQaW6BRLr+ZmFYOj5v8\nsMAUgJNKXMxGTMxl5bl8YZwa8uLUsAcXJvyY/6HdYNFie0f64nlNtdoltzWYzyYYC2HEfwkjM6O4\n4B/FeMCeveYMANRpatFqbEGboQVtxhZUVRhX8dWtTTxu8sMCUwBOKnExGzExl9XlD8Wym4A/vDSN\nRDL9I9ykr8C2DjO2t1vQ3mhAmVz+sdlEkzGM+seypWbUP4ZY5rozAFBdUYVWQwvajOvQZmxBrbpm\n2Xs+0SfH4yY/LDAF4KQSF7MRE3MpnrloAucym4D7R6YwF03ve9FWKtHTZsJd2xth1ZdDr7n6npdk\nKonxoB0XZkYxMnMJI/5RhOLh7Oe1Sg1aDevQamxBq3EdGrX13Bh8nXjc5IcFpgCcVOJiNmJiLmJI\nJFMYvOzDqSEv+oY98Adj2c9Zq9XoaDSgvcGIjkYjzIaKq66opKQUXGFPptCM4sLMaPb6M0B6Y3CL\nvil72okbgwvH4yY/LDAF4KQSF7MRE3MRT0qSMDo5izFPCKcH3bhg9yMSS2Y/X6UrR3uDAR2NRnQ0\nGGGzaJa9iN5i0xHfQqHxX+LG4OvE4yY/LDAF4KQSF7MRE3MR13w2yVQKE+4QhsZnMDQxg6HxmeyN\nJwFAU6FAe4MR7Y0GdDQY0WzVLXshvcW4Mfj68LjJDwtMATipxMVsxMRcxPVx2UiSBOd0GMMT/nSp\nGZ+B1x/Jfl6lkGO9TY+ORiPaG41otek/9mJ686LJGC75L+OCf5Qbg/PA4yY/LDAF4KQSF7MRE3MR\nVyHZ+ALR7ArN8PgM7J5Q9u3acpkMzVYt2huM2JApNdpK5VW/37U2BmuUarQa0puC24wta25jMI+b\n/LDAFICTSlzMRkzMRVzXk00oEsfwhB/DmVJzaTKAZGrh14XNrEFHgwHtmX00JkPFVb8fNwbn4nGT\nHxaYAnBSiYvZiIm5iOtGZhONJ3HRMZstNCP2WUTjCxuDTfrybJlpbzTCZlJf8xRRIRuD1xvXQavU\n3JDXIgIeN/lhgSkAJ5W4mI2YmIu4VjKbRDKFcXcwu4dmeMKP4NzCnhdtpRLtDem3bm9oMqKpVosy\n+TU2BsdD6dNNM6MY8V/C5cBEzsZgU0U1GnU2NGjr0aizoVFXD0O5fkVe30rjcZMfFpgCcFKJi9mI\nibmIazWzkSQJk1Ph7LuchsdnsjekBIByZRla6/XZFZr1Nj3KlVff87J4Y/CofwzjATuC8VDOc/Qq\nHRp0NjRq69GoSxcbU0W18BuEedzkhwWmAJxU4mI2YmIu4ip2NlP+SHZT8NCEHw7vQvkok8uwzqrL\nnnZqazBcc2OwJEmYifoxEXTgcsCOiYAD4wF7zl4aAKhUVKBBa8sUmno0aG2oVVuE2iRc7GxKBQtM\nATipxMVsxMRcxCVaNoFwDBcm/JlVGj/GnAGkFv0KqrdoMis06evRVOuvvjF4XjAeypaZ8YAdE0EH\n3GEvJCx8b6VcgXqtLbNaky43No0VyrKrl6aVIlo2omKBKQAnlbiYjZiYi7hEzyYaS2LEsXAtmouO\nWcQSC3tezIaK9NWCG41obzCgtlp9zSsGz4skorAHJzEezJSagAOOkDNnT41cJkedpjZntaZeW4dK\nRX7F6XqIno0oWGAKwEklLmYjJuYirlLLJpFMYcwZyJx28mN4YgahSCL7+XJVGRprtGiu0aHJqkVz\nrQ42s+aaVw2eF08lMBlyLlqtccAedORccA8AairNOftqGnQ26FTaG/paSy2bYmGBKQAnlbiYjZiY\ni7hKPZuUJMHhDWF4fAYX7H5cdgXhmAph8W+tMrkM9RYNmmp1aK7VoalWi8Ya7TWvHLzwd6TgDnsw\nPl9qgg5MBOwIJ+ZynmcsNyx6B1R6s3BVufETbxYu9WxWCwtMATipxMVsxMRcxHUzZhOLJzHhCWHM\nFcDlzD8TnhDii049yQDUVqvRVKvNlJp0sdGp87swniRJmI74MB50ZE4/pVdr/LHZnOdplGo0atMr\nNI26ejRqbbCozZDLrr0idDNmsxJYYArASSUuZiMm5iKutZJNMpXC5FQ4U2iCuOwKYMwVxFw0kfO8\nKl15dpVmfsWmWl+e9yrKbCyQXamZyKzWeOemcp6jKlNl9tTYMuWmHnWaGijkuStCayWb68UCUwBO\nKnExGzExF3Gt5WwkSYLHH8FlZwCX3eliM+YKwB+M5TxPU6HIOf3UVKuDtVoNuTy/UjOXmEvvqcmu\n1jjgDLtzNgsrZGWo01rRqLWhIbNZuLu5DcGZ+FW+MwEsMAVZywe86JiNmJiLuJjNUv5QLHvqacwV\nxGVnAO6Z3P0uKqUcjRZt9tRTs1WHerMWSkV+m4VjyTgcoclFqzUO2EOTSKSuWBEqN8KqqUGdpnbh\no7oGaqX6hr3eUscCUwAe8OJiNmJiLuJiNvkJRxIYd+eefpqcCuXcvLJMLkOdSYPm2oVi01SrQ2V5\nfpuFk6kknGF39h1QU/EpXJ5xYCbqX/Jcg0qHWk0t6jQ1sKozHzW1N/ydUKWABaYAPODFxWzExFzE\nxWw+uXgiCbs3lD715Eyv2Iy7gznXqQGAGmNldpWmKbNh2KC59mbh+WzmEnNwhtyYDLnhDLkwGXbB\nGXJjOuJb8jVapQbWTJmpUy+s2uhVOuFvnfBJscAUgAe8uJiNmJiLuJjNjZVKSXBOL2wWnn8n1OJr\n1QCAQata2FNTo0OTVQeLoSKnZFwrm0giCnfYg8mQC86wO/0x5IJ3bjrnCsMAUKmoXLJaU6ephbHc\nUPLFhgWmADzgxcVsxMRcxMVsVp4kSZiejS56W3e62PgC0ZznVZYr0FQzv1KjxZaOWpTLJKiucUPL\nK8WScbjDnsxqTWbVJuSGZ86bs3EYAMrLVLAuWqmZ/1hdUZXXW71FwAJTAB7w4mI2YmIu4mI2xTMb\njmE8u6cmXWxc0+GctROZDLAYK2EzaVBv0cBm0sBm1sBqUl/zTt1XSqQScIe9Oas1zpAb7rAHCSmZ\n81ylXAmr2gKrpjazWpNetTFXVAt1w0uABaYgPODFxWzExFzExWzEEoklMO4O4rIriOlQDCPjM3B4\nQwjO5b6dWgbAbKxIF5pMsam3aFBXrUG5qrCCkUwl4Y1MZ1dqnPPlJuxG/Ip3RSlkZahRW7KrNfOn\noiyVpiXXsVktLDAF4AEvLmYjJuYiLmYjrsXZzIZicHhDcEyFYPeGMOlNfwyEl14nxmyogM2cXqnJ\nFhuTOu9bJ8xLSSlMR3yZ1Rr3wsewC7Fk7rVy5DI5LJXmhf016vTHWrVlxe/mfbUCs6qVKhQK4bHH\nHoPf70c8Hsejjz4Ki8WCp59+GgCwYcMGPPPMM6s5JCIioqLSa1TQa1TY2FyV8/hsOIZJbyhdbrzh\nbME5MzKFMyO5VwA26cthM2thM6tzCs7Hvc1bLpPDXGmCudKELebN2cclSYIvOpOzWjMZcsMZdsEV\ndgOec9nnyiCDubIat1m34wst99zA/yL5WdUC88Ybb6ClpQX79++Hy+XCww8/DIvFggMHDqC7uxv7\n9+/HkSNHsHv37tUcFhERkXD0ahX0TSpsaMotNsG5eKbUpP+xZ1Zvzl6cwtmLucWmWl+e3VuzuNio\nK5b/9S+TyVBdUYXqiip0mjZkH5ckCbOxQM5Kzfw+m7HZ8Rv/4vOwqgWmqqoK58+fBwDMzs7CaDTC\nbreju7sbAPDZz34Wx48fZ4EhIiL6GNpKJToajehoNOY8HoosLjZhOLxBOKbCODc6jXOj0znPrdKV\nw2ZSL1m10VQsf0pIJpPBUK6HoVyPjdXtK/baCrGqBea+++7D66+/jnvuuQezs7N44YUX8KMf/Sj7\neZPJBI/Hc83vU1WlhkKxcjulr3bOjYqL2YiJuYiL2YjrRmdjAbCusXrJ48G5OCbm3+btDGA88+8D\nl3wYuJR7wbxqfTkaa3VosurTH2vT17HJ907eq2lVC8ybb74Jm82GF198EYODg3j00Ueh0y0EmO9+\nYp8vvFJD5KY3gTEbMTEXcTEbca12NiaNEqb11di2fqHgzEUTcEyFlqza9A970T/szfl6vUaFevP8\nW70XVmxWutgIs4m3r68Pu3btAgBs3LgR0WgUicTC27hcLhdqampWc0hERERrUmW5Aq02A1pthpzH\n56IJOKfDsHtCOQXnozEfPhrLXbHRq5XYuaUOX/1s22oOHcAqF5jm5mb09/fj3nvvhd1uh0ajQX19\nPT744APceuutePvtt9Hb27uaQyIiIqJFKssVaKnTo6VOn/N4NJbE5HRoodhkPk7PRooyzlUtMHv2\n7MGBAwewb98+JBIJPP3007BYLHjyySeRSqXQ09ODnTt3ruaQiIiIKA/lqjKss+qxzqq/9pNXwaoW\nGI1Gg1/84hdLHn/55ZdXcxhERERU4krjbk5EREREi7DAEBERUclhgSEiIqKSwwJDREREJYcFhoiI\niEoOCwwRERGVHBYYIiIiKjksMERERFRyWGCIiIio5LDAEBERUclhgSEiIqKSwwJDREREJUcmSZJU\n7EEQERERFYIrMERERFRyWGCIiIio5LDAEBERUclhgSEiIqKSwwJDREREJYcFhoiIiEoOC8wiP/3p\nT7Fnzx489NBDOHPmTLGHQ4s8++yz2LNnDx588EG8/fbbxR4OLRKJRHD33Xfj9ddfL/ZQaJG//OUv\n+OIXv4gHHngA77zzTrGHQwBCoRC+/e1vo7e3Fw899BCOHj1a7CGVNEWxByCKkydPYmxsDIcPH8bI\nyAgOHDiAw4cPF3tYBOC9997D8PAwDh8+DJ/Phy996Uv4/Oc/X+xhUcYLL7wAg8FQ7GHQIj6fD88/\n/zxee+01hMNh/OpXv8JnPvOZYg9rzXvjjTfQ0tKC/fv3w+Vy4eGHH8Zbb71V7GGVLBaYjOPHj+Pu\nu+8GALS2tsLv9yMYDEKr1RZ5ZLRjxw50d3cDAPR6Pebm5pBMJlFWVlbkkdHIyAguXLjAX46COX78\nOO644w5otVpotVr8+Mc/LvaQCEBVVRXOnz8PAJidnUVVVVWRR1TaeAopw+v15kym6upqeDyeIo6I\n5pWVlUGtVgMAXn31VXz6059meRHEwYMH8fjjjxd7GHSFiYkJRCIRfOtb38LevXtx/PjxYg+JANx3\n331wOBy45557sG/fPjz22GPFHlJJ4wrMx+AdFsTz73//G6+++ip+//vfF3soBODPf/4ztm7disbG\nxmIPhZYxMzOD5557Dg6HA9/4xjfw3//+FzKZrNjDWtPefPNN2Gw2vPjiixgcHMSBAwe4d+w6sMBk\n1NTUwOv1Zv/sdrthsViKOCJa7OjRo/j1r3+N3/3ud9DpdMUeDgF45513MD4+jnfeeQdOpxMqlQpW\nqxU7d+4s9tDWPJPJhG3btkGhUKCpqQkajQbT09MwmUzFHtqa1tfXh127dgEANm7cCLfbzdPh14Gn\nkDLuvPNO/POf/wQADAwMoKamhvtfBBEIBPDss8/iN7/5DYxGY7GHQxk///nP8dprr+GPf/wjvvKV\nr+CRRx5heRHErl278N577yGVSsHn8yEcDnO/hQCam5vR398PALDb7dBoNCwv14ErMBnbt29HZ2cn\nHnroIchkMjz11FPFHhJl/P3vf4fP58N3vvOd7GMHDx6EzWYr4qiIxFVbW4t7770XX/3qVwEAP/zh\nDyGX8/9Xi23Pnj04cOAA9u3bh0QigaeffrrYQyppMombPYiIiKjEsJITERFRyWGBISIiopLDAkNE\nREQlhwWGiIiISg4LDBEREZUcFhgiWlETExPo6upCb29v9i68+/fvx+zsbN7fo7e3F8lkMu/nf+1r\nX8OJEyc+yXCJqESwwBDRiquursahQ4dw6NAhvPLKK6ipqcELL7yQ99cfOnSIF/wiohy8kB0Rrbod\nO3bg8OHDGBwcxMGDB5FIJBCPx/Hkk09i8+bN6O3txcaNG/HRRx/hpZdewubNmzEwMIBYLIYnnngC\nTqcTiUQC999/P/bu3Yu5uTl897vfhc/nQ3NzM6LRKADA5XLhe9/7HgAgEolgz549+PKXv1zMl05E\nNwgLDBGtqmQyiX/961+45ZZb8P3vfx/PP/88mpqaltzcTq1W4w9/+EPO1x46dAh6vR4/+9nPEIlE\n8IUvfAF33XUX3n33XVRUVODw4cNwu9343Oc+BwD4xz/+gfXr1+OZZ55BNBrFn/70p1V/vUS0Mlhg\niGjFTU9Po7e3FwCQSqVw66234sEHH8Qvf/lL/OAHP8g+LxgMIpVKAUjf3uNK/f39eOCBBwAAFRUV\n6OrqwsDAAIaGhnDLLbcASN+Ydf369QCAu+66Cy+//DIef/xx7N69G3v27FnR10lEq4cFhohW3Pwe\nmMUCgQCUSuWSx+cplcolj8lkspw/S5IEmUwGSZJy7vUzX4JaW1vxt7/9De+//z7eeustvPTSS3jl\nlVeu9+UQkQC4iZeIikKn06GhoQFHjhwBAIyOjuK555676tf09PTg6NGjAIBwOIyBgQF0dnaitbUV\np06dAgBMTk5idHQUAPDXv/4VZ8+exc6dO/HUU09hcnISiURiBV8VEa0WrsAQUdEcPHgQP/nJT/Db\n3/4WiUQCjz/++FWf39vbiyeeeAJf//rXEYvF8Mgjj6ChoQH3338//vOf/2Dv3r1oaGjAli1bAABt\nbW146qmnoFKpIEkSvvnNb0Kh4I89opsB70ZNREREJYenkIiIiKjksMAQERFRyWGBISIiopLDAkNE\nREQlhwWGiIiISg4LDBEREZUcFhgiIiIqOSwwREREVHL+HxO0y9iUS5sFAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + } + ] +} \ No newline at end of file From 8108baca4ab059247a47f4f4f8559eaa0abe3570 Mon Sep 17 00:00:00 2001 From: Amit Rai <42401957+ardev472@users.noreply.github.com> Date: Sun, 17 Feb 2019 21:56:51 +0530 Subject: [PATCH 08/11] Created using Colaboratory --- intro_to_neural_nets.ipynb | 1082 ++++++++++++++++++++++++++++++++++++ 1 file changed, 1082 insertions(+) create mode 100644 intro_to_neural_nets.ipynb diff --git a/intro_to_neural_nets.ipynb b/intro_to_neural_nets.ipynb new file mode 100644 index 0000000..3d1b810 --- /dev/null +++ b/intro_to_neural_nets.ipynb @@ -0,0 +1,1082 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "intro_to_neural_nets.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "O2q5RRCKqYaU", + "vvT2jDWjrKew" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "eV16J6oUY-HN", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Intro to Neural Networks" + ] + }, + { + "metadata": { + "id": "_wIcUFLSKNdx", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Define a neural network (NN) and its hidden layers using the TensorFlow `DNNRegressor` class\n", + " * Train a neural network to learn nonlinearities in a dataset and achieve better performance than a linear regression model" + ] + }, + { + "metadata": { + "id": "_ZZ7f7prKNdy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "In the previous exercises, we used synthetic features to help our model incorporate nonlinearities.\n", + "\n", + "One important set of nonlinearities was around latitude and longitude, but there may be others.\n", + "\n", + "We'll also switch back, for now, to a standard regression task, rather than the logistic regression task from the previous exercise. That is, we'll be predicting `median_house_value` directly." + ] + }, + { + "metadata": { + "id": "J2kqX6VZTHUy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "\n", + "First, let's load and prepare the data." + ] + }, + { + "metadata": { + "id": "AGOM1TUiKNdz", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "2I8E2qhyKNd4", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Scale the target to be in units of thousands of dollars.\n", + " output_targets[\"median_house_value\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] / 1000.0)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "pQzcj2B1T5dA", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1205 + }, + "outputId": "bc8e4297-478c-41e5-845e-e99fc0d5208e" + }, + "cell_type": "code", + "source": [ + "# Choose the first 12000 (out of 17000) examples for training.\n", + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "\n", + "# Choose the last 5000 (out of 17000) examples for validation.\n", + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "\n", + "# Double-check that we've done the right thing.\n", + "print(\"Training examples summary:\")\n", + "display.display(training_examples.describe())\n", + "print(\"Validation examples summary:\")\n", + "display.display(validation_examples.describe())\n", + "\n", + "print(\"Training targets summary:\")\n", + "display.display(training_targets.describe())\n", + "print(\"Validation targets summary:\")\n", + "display.display(validation_targets.describe())" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 35.6 -119.5 28.6 2639.1 539.7 \n", + "std 2.1 2.0 12.6 2170.6 422.2 \n", + "min 32.5 -124.3 1.0 2.0 2.0 \n", + "25% 33.9 -121.8 18.0 1451.0 295.0 \n", + "50% 34.2 -118.5 29.0 2112.0 433.0 \n", + "75% 37.7 -118.0 37.0 3164.2 650.0 \n", + "max 42.0 -114.6 52.0 37937.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1429.2 501.2 3.9 2.0 \n", + "std 1127.5 384.2 1.9 1.1 \n", + "min 3.0 2.0 0.5 0.1 \n", + "25% 788.0 280.0 2.6 1.5 \n", + "50% 1167.0 408.0 3.5 1.9 \n", + "75% 1723.0 607.0 4.7 2.3 \n", + "max 28566.0 6082.0 15.0 52.0 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean35.6-119.528.62639.1539.71429.2501.23.92.0
std2.12.012.62170.6422.21127.5384.21.91.1
min32.5-124.31.02.02.03.02.00.50.1
25%33.9-121.818.01451.0295.0788.0280.02.61.5
50%34.2-118.529.02112.0433.01167.0408.03.51.9
75%37.7-118.037.03164.2650.01723.0607.04.72.3
max42.0-114.652.037937.06445.028566.06082.015.052.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 35.7 -119.6 28.5 2654.6 538.7 \n", + "std 2.1 2.0 12.6 2202.5 419.9 \n", + "min 32.5 -124.3 1.0 8.0 1.0 \n", + "25% 33.9 -121.8 18.0 1478.8 300.0 \n", + "50% 34.3 -118.6 29.0 2173.0 436.0 \n", + "75% 37.7 -118.0 37.0 3111.0 646.2 \n", + "max 41.9 -114.3 52.0 32054.0 5290.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1430.5 501.4 3.9 2.0 \n", + "std 1195.3 385.3 1.9 1.3 \n", + "min 9.0 1.0 0.5 0.0 \n", + "25% 793.0 284.0 2.6 1.5 \n", + "50% 1165.5 412.0 3.6 2.0 \n", + "75% 1714.2 603.0 4.8 2.3 \n", + "max 35682.0 5050.0 15.0 55.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean35.7-119.628.52654.6538.71430.5501.43.92.0
std2.12.012.62202.5419.91195.3385.31.91.3
min32.5-124.31.08.01.09.01.00.50.0
25%33.9-121.818.01478.8300.0793.0284.02.61.5
50%34.3-118.629.02173.0436.01165.5412.03.62.0
75%37.7-118.037.03111.0646.21714.2603.04.82.3
max41.9-114.352.032054.05290.035682.05050.015.055.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Training targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 12000.0\n", + "mean 206.6\n", + "std 115.7\n", + "min 15.0\n", + "25% 119.4\n", + "50% 179.2\n", + "75% 264.9\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count12000.0
mean206.6
std115.7
min15.0
25%119.4
50%179.2
75%264.9
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 5000.0\n", + "mean 208.9\n", + "std 116.7\n", + "min 15.0\n", + "25% 119.3\n", + "50% 182.1\n", + "75% 265.2\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count5000.0
mean208.9
std116.7
min15.0
25%119.3
50%182.1
75%265.2
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "RWq0xecNKNeG", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Building a Neural Network\n", + "\n", + "The NN is defined by the [DNNRegressor](https://www.tensorflow.org/api_docs/python/tf/estimator/DNNRegressor) class.\n", + "\n", + "Use **`hidden_units`** to define the structure of the NN. The `hidden_units` argument provides a list of ints, where each int corresponds to a hidden layer and indicates the number of nodes in it. For example, consider the following assignment:\n", + "\n", + "`hidden_units=[3,10]`\n", + "\n", + "The preceding assignment specifies a neural net with two hidden layers:\n", + "\n", + "* The first hidden layer contains 3 nodes.\n", + "* The second hidden layer contains 10 nodes.\n", + "\n", + "If we wanted to add more layers, we'd add more ints to the list. For example, `hidden_units=[10,20,30,40]` would create four layers with ten, twenty, thirty, and forty units, respectively.\n", + "\n", + "By default, all hidden layers will use ReLu activation and will be fully connected." + ] + }, + { + "metadata": { + "id": "ni0S6zHcTb04", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns(input_features):\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Args:\n", + " input_features: The names of the numerical input features to use.\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " return set([tf.feature_column.numeric_column(my_feature)\n", + " for my_feature in input_features])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "zvCqgNdzpaFg", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a neural net regression model.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "U52Ychv9KNeH", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_nn_regression_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " hidden_units,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a neural network regression model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " hidden_units: A `list` of int values, specifying the number of neurons in each layer.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `DNNRegressor` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + " \n", + " # Create a DNNRegressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " dnn_regressor = tf.estimator.DNNRegressor(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " hidden_units=hidden_units,\n", + " optimizer=my_optimizer,\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " dnn_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions.\n", + " training_predictions = dnn_regressor.predict(input_fn=predict_training_input_fn)\n", + " training_predictions = np.array([item['predictions'][0] for item in training_predictions])\n", + " \n", + " validation_predictions = dnn_regressor.predict(input_fn=predict_validation_input_fn)\n", + " validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " print(\"Final RMSE (on training data): %0.2f\" % training_root_mean_squared_error)\n", + " print(\"Final RMSE (on validation data): %0.2f\" % validation_root_mean_squared_error)\n", + "\n", + " return dnn_regressor" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "2QhdcCy-Y8QR", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Train a NN Model\n", + "\n", + "**Adjust hyperparameters, aiming to drop RMSE below 110.**\n", + "\n", + "Run the following block to train a NN model. \n", + "\n", + "Recall that in the linear regression exercise with many features, an RMSE of 110 or so was pretty good. We'll aim to beat that.\n", + "\n", + "Your task here is to modify various learning settings to improve accuracy on validation data.\n", + "\n", + "Overfitting is a real potential hazard for NNs. You can look at the gap between loss on training data and loss on validation data to help judge if your model is starting to overfit. If the gap starts to grow, that is usually a sure sign of overfitting.\n", + "\n", + "Because of the number of different possible settings, it's strongly recommended that you take notes on each trial to help guide your development process.\n", + "\n", + "Also, when you get a good setting, try running it multiple times and see how repeatable your result is. NN weights are typically initialized to small random values, so you should see differences from run to run.\n" + ] + }, + { + "metadata": { + "id": "rXmtSW1yKNeK", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 656 + }, + "outputId": "f789885b-1b8d-4b20-877a-ec607289d145" + }, + "cell_type": "code", + "source": [ + "dnn_regressor = train_nn_regression_model(\n", + " learning_rate=0.001,\n", + " steps=3000,\n", + " batch_size=100,\n", + " hidden_units=[10, 10],\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 166.25\n", + " period 01 : 166.06\n", + " period 02 : 157.82\n", + " period 03 : 154.93\n", + " period 04 : 143.15\n", + " period 05 : 132.24\n", + " period 06 : 121.94\n", + " period 07 : 114.29\n", + " period 08 : 110.02\n", + " period 09 : 104.69\n", + "Model training finished.\n", + "Final RMSE (on training data): 104.69\n", + "Final RMSE (on validation data): 105.97\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4FOX68PHvlvTeIUBIqEkoSYAg\nvZfQpFcJiKhHEUXAI/r+1KMHj4gFla6oIKDSBASkKAIKKjWhBAKhJySQ3nt25/0jshKBkCCb3ZD7\nc125ZMrO3LP3jLnzzDPPqBRFURBCCCGEqEbUpg5ACCGEEKKypIARQgghRLUjBYwQQgghqh0pYIQQ\nQghR7UgBI4QQQohqRwoYIYQQQlQ7WlMHIIQ5a9q0KT4+Pmg0GgB0Oh2hoaG89tpr2Nra3vd2161b\nx6hRo26bv3HjRl599VWWLl1K9+7dDfMLCgro0KEDffr04d13373v/VZUbGws77zzDpcvXwbAxsaG\nqVOn0qtXL6PvuzIWL15MbGzsbd/JoUOHmDx5MnXr1r3tMzt37qyq8P6Ra9eu0bNnT/z8/ABQFAV3\nd3f+7//+j8DAwEpt68MPP8Tb25uxY8dW+DPff/89GzZsYNWqVZXalxBVRQoYIe5h1apV1KpVC4Ci\noiKmT5/Op59+yvTp0+9re8nJyXz++ed3LGAAateuzbZt28oUMHv37sXR0fG+9nc/XnrpJQYPHszS\npUsBOHHiBBMnTmTHjh3Url27yuL4J2rXrl1tipW70Wg0ZY5h+/btPPfcc+zatQtLS8sKb2fmzJnG\nCE8Ik5JbSEJUgqWlJZ07dyY6OhqAwsJC3njjDfr27Uu/fv1499130el0AJw9e5YxY8YQFhbG4MGD\n2b9/PwBjxowhISGBsLAwioqKbttHq1atOHToEPn5+YZ527dvp2PHjobpoqIi3n77bfr27UuPHj0M\nhQZAZGQkw4YNIywsjP79+/P7778DpX/Rd+rUiZUrVzJo0CA6d+7M9u3b73icMTExBAUFGaaDgoLY\ntWuXoZBbuHAhXbt2ZciQIXz22Wf06NEDgFdeeYXFixcbPnfr9L3ieueddxg/fjwAx44dY/jw4fTu\n3ZtRo0YRFxcHlLZEvfjii3Tv3p3x48dz48aNe2TszjZu3MjUqVOZOHEi7733HocOHWLMmDFMmzbN\n8Mt+x44dDBw4kLCwMCZMmEBsbCwACxYs4LXXXmPEiBGsWLGizHanTZvGl19+aZiOjo6mU6dO6PV6\nPvroI/r27Uvfvn2ZMGECiYmJlY67f//+FBQUcOnSJQDWrl1LWFgYPXr0YMaMGRQUFACl3/ucOXMY\nNGgQO3bsKJOHu52Xer2e//73v3Tr1o0RI0Zw9uxZw34PHz7M0KFD6d+/P/369WPHjh2Vjl2IB04R\nQtxVkyZNlOvXrxumMzIylMcee0xZvHixoiiK8umnnypPPfWUUlxcrOTn5yvDhw9XNm/erOh0OqVf\nv37K1q1bFUVRlJMnTyqhoaFKdna2cvDgQaVXr1533N93332nzJo1S3nppZcMn83OzlZ69uyprF+/\nXpk1a5aiKIqycOFCZeLEiUphYaGSm5urDBkyRNmzZ4+iKIoycOBAZdu2bYqiKMqmTZsM+4qLi1MC\nAwOVVatWKYqiKNu3b1d69+59xzief/55pXv37spXX32lXLhwocyyc+fOKW3atFGSkpKU4uJi5dln\nn1W6d++uKIqizJo1S1m0aJFh3Vuny4urWbNmysaNGw3HGxoaqhw4cEBRFEXZunWrMnToUEVRFGX1\n6tXKY489phQXFytpaWlK9+7dDd/Jrcr7jm9+z8HBwcrly5cN67do0UL5/fffFUVRlPj4eKV169bK\nlStXFEVRlC+++EKZOHGioiiKMn/+fKVTp05Kamrqbdv94YcflMcee8ww/cknnyizZ89WYmJilD59\n+ihFRUWKoijKypUrlU2bNt01vpvfS0BAwG3zQ0NDlYsXLypHjhxR2rdvr9y4cUNRFEV5/fXXlXff\nfVdRlNLvfdCgQUpBQYFhetGiReWel/v27VP69Omj5OTkKPn5+cqIESOU8ePHK4qiKMOGDVMOHTqk\nKIqiXL58WZkxY0a5sQtRFaQFRoh7CA8PJywsjJ49e9KzZ0/atWvHU089BcC+ffsYNWoUWq0Wa2tr\nBg0axG+//ca1a9dISUlhwIABALRo0QJvb29OnTpVoX0OGDCAbdu2AbB79266d++OWv3X5bp3717G\njRuHpaUltra2DB48mB9//BGAzZs3069fPwBat25taL0AKCkpYdiwYQA0a9aMhISEO+7//fff57HH\nHmPr1q0MHDiQHj168O233wKlrSOhoaF4eHig1WoZOHBghY6pvLiKi4vp3bu3YfteXl6GFqeBAwcS\nGxtLQkICR48epXfv3mi1WlxcXMrcZvu769evExYWVubn1r4yvr6++Pr6Gqatra1p3749AL/99huP\nPPII9evXB2DkyJEcOnSIkpISoLRFytXV9bZ9duvWjTNnzpCRkQHATz/9RFhYGI6OjqSlpbF161Yy\nMzMJDw9nyJAhFfreblIUhbVr1+Ll5YWvry979uyhf//+eHl5ATB27FjDOQDQvn17rKysymyjvPPy\nyJEjdO3aFTs7O6ytrQ25AnBzc2Pz5s1cvHgRX19fPvzww0rFLoQxSB8YIe7hZh+YtLQ0w+0Prbb0\n0klLS8PJycmwrpOTE6mpqaSlpeHg4IBKpTIsu/lLzN3d/Z777NixI6+99hoZGRn88MMPTJkyxdCh\nFiA7O5s5c+Ywb948oPSWUsuWLQHYunUrK1euJDc3F71ej3LL6840Go2h87FarUav199x/1ZWVkye\nPJnJkyeTlZXFzp07eeedd6hbty6ZmZll+uO4ubnd83gqEpe9vT0AWVlZxMXFERYWZlhuaWlJWloa\nmZmZODg4GOY7OjqSm5t7x/3dqw/MrXn7+3R6enqZY3RwcEBRFNLT0+/42ZtsbW3p0KED+/bto3Xr\n1mRlZdG6dWtUKhULFizgyy+/ZPbs2YSGhvLWW2/dsz+RTqczfA+KotCoUSMWL16MWq0mOzubn376\niQMHDhiWFxcX3/X4gHLPy8zMTDw9PcvMv+mdd95hyZIlTJo0CWtra2bMmFEmP0KYghQwQlSQq6sr\n4eHhvP/++yxZsgQAd3d3w1/bABkZGbi7u+Pm5kZmZiaKohh+WWRkZFT4l72FhQXdu3dn8+bNXL16\nlZCQkDIFjKenJ0888cRtLRCJiYm89tprrF+/noCAAK5cuULfvn0rdZxpaWlER0cbWkAcHR0ZNWoU\n+/fvJyYmBgcHB7Kzs8usf9Pfi6LMzMxKx+Xp6UmDBg3YuHHjbcscHR3vuu8Hyc3NjcjISMN0ZmYm\narUaFxeXe362b9++/PTTT6Snp9O3b19D/tu1a0e7du3Iy8tj7ty5fPDBB/dsyfh7J95beXp6MnTo\nUGbNmlWp47rbeVned+vu7s7rr7/O66+/zoEDB3j++efp3LkzdnZ2Fd63EA+a3EISohImTZpEZGQk\nhw8fBkpvGWzYsAGdTkdeXh7ff/89Xbt2pW7dutSqVcvQSTYiIoKUlBRatmyJVqslLy/PcDvibgYM\nGMCyZcvu+Ohyz549Wb9+PTqdDkVRWLx4Mb/++itpaWnY2trSoEEDSkpKWLt2LcBdWynupKCggBde\neMHQuRPg6tWrnDhxgjZt2hASEsLRo0dJS0ujpKSEzZs3G9bz8PAwdP6Mi4sjIiICoFJxBQUFkZyc\nzIkTJwzb+fe//42iKAQHB7Nnzx50Oh1paWn8+uuvFT6uyujYsSNHjx413OZas2YNHTt2NLS8lad7\n9+5ERkaye/duw22YAwcO8NZbb6HX67G1tcXf379MK8j96NGjBz/++KOh0Ni9ezefffZZuZ8p77wM\nCQnhwIED5Ofnk5+fbyiciouLCQ8PJykpCSi99ajVasvc0hTCFKQFRohKsLe35+mnn2bu3Lls2LCB\n8PBw4uLiGDBgACqVirCwMPr164dKpWLevHn85z//YeHChdjY2PDJJ59ga2tL06ZNcXJyomPHjmza\ntAlvb+877qtt27aoVCr69+9/27Jx48Zx7do1BgwYgKIoNG/enIkTJ2Jra0uXLl3o27cvbm5uvPLK\nK0RERBAeHs78+fMrdIze3t4sWbKE+fPn8/bbb6MoCvb29rz66quGJ5NGjx7N0KFDcXFxoU+fPpw/\nfx6AUaNGMXXqVPr06UNgYKChlcXf37/CcVlbWzN//nxmz55Nbm4uFhYWTJs2DZVKxahRozh69Ci9\nevXC29ubXr16lWk1uNXNPjB/9957793zO6hVqxZvv/02U6ZMobi4mLp16zJ79uwKfX/29vY0a9aM\nc+fOERwcDEBoaCg//PADffv2xdLSEldXV9555x0AXn75ZcOTRJXRrFkznnnmGcLDw9Hr9bi5ufHW\nW2+V+5nyzsvu3buzb98+wsLCcHd3p2vXrhw9ehQLCwtGjBjB448/DpS2sr322mvY2NhUKl4hHjSV\ncuuNaCGEqKSjR4/y8ssvs2fPHlOHIoSoQaQNUAghhBDVjhQwQgghhKh25BaSEEIIIaodaYERQggh\nRLUjBYwQQgghqp1q+Rh1cvKdH5t8EFxcbElPzzPa9sX9k9yYJ8mL+ZLcmC/JTcV4eDjcdZm0wPyN\nVqsxdQjiLiQ35knyYr4kN+ZLcvPPSQEjhBBCiGpHChghhBBCVDtG7QMTExPDlClTePzxxxk/fjwv\nvPCC4W2uGRkZBAcHM3v2bD7//HN27tyJSqVi6tSpdO3a1ZhhCSGEEKKaM1oBk5eXx+zZs2nfvr1h\n3q3vPHn11VcZOXIkcXFxbN++nTVr1pCTk8O4cePo1KkTGo3cHxRCCCHEnRntFpKlpSXLli3D09Pz\ntmWXLl0iOzubli1bcujQITp37mx4wVmdOnW4cOGCscISQgghxEPAaC0wWq32rq+eX7lyJePHjwcg\nJSUFV1dXwzJXV1eSk5Np2rTpXbft4mJr1B7c5T22JUxLcmOeJC/mS3JjviQ3/0yVjwNTVFTEsWPH\nePPNN++4vCJvNjDms/MeHg5GHWdG3D/JjXmSvJgvyY35ktxUjFmNA3PkyBFatmxpmPb09CQlJcUw\nnZiYeMfbTkIIIYSomH37fq7Qep988iEJCfF3Xf7KKzMeVEgPXJUXMKdOncLf398w3a5dO/bt20dR\nURGJiYkkJSXRqFGjqg5LCCGEeChcv57A7t27KrTutGkz8fauc9fl774770GF9cAZ7RZSVFQUc+fO\nJT4+Hq1Wy65du1iwYAHJycn4+PgY1vP29mbUqFGMHz8elUrFm2++iVotw9MIIYQQ92PevLlER5+m\nc+dQ+vTpx/XrCXz88WLmzPkvyclJ5Ofn88QTT9OxY2emTn2aGTNeZu/en8nNzSE29irx8dd44YWZ\ntG/fkQEDevLDDz8zderThIY+QkTEUTIyMpg79yPc3d35739f58aN67Ro0ZI9e3azadP2KjtOoxUw\nzZs3Z9WqVbfNf/3112+bFx4eTnh4uLFCEUIIIUxi3Z4LHDmbdNt8jUaFTnfvPp93Eurvyaged79T\nMXZsOBs3rsPPryGxsVdYvPhz0tPTaNu2Hf36DSQ+/hqvv/4KHTt2LvO5pKREPvhgPgcP/s73339H\n+/Ydyyy3s7Pjk0+WsGTJAn79dQ/e3nUpKirks89W8Ntv+1m37tv7Op77VS1f5mgsqflpnLp0ClWh\nFhdrZ5ytnLDV2qBSqUwdmhBCCFFpAQHNAHBwcCQ6+jRbtmxEpVKTlZV527otWwYDpX1Tc3Jyblse\nFBRiWJ6ZmcnVq5dp0SIIgPbtO1b5+G1SwNxi55U9/H79cJl5FmotzlZOt/9YO+Fs5YizlROOlg6o\nVXLbSwghRFmjejS6Y2tJVT2FZGFhAcBPP+0kKyuLRYs+JysriyefvP2ux60FyJ2eCP77ckVRUKtL\n56lUqir/Y18KmFsMbtSPkHoBxKUkklGYSUZhFhmFGWQUZnEh4zIKd27uU6vUOFo64GLlhJOVEy43\nCxxLR5ytnXG2csTJygkLtXzdQgghjEutVqPT6crMy8jIoHZtb9RqNb/8sofi4uJ/vJ86deoannY6\nfPjgbfs0NvmNegt7Czu6ercj2f72qrhEX0JmYTaZRZmkF2SSWZhJemHmLYVOJrHZ8eiyYsvd/l+t\nOI44W5UWN87WTobix0ZrbcxDFEII8ZCrX9+Pc+fOUru2N87OzgB069aDV16ZwZkzUQwY8Cienp4s\nX77sH+2nQ4fO/PDDFp59djIhIa1xdHR6EOFXmEqpyMhxZsaYzW7/pFlPr+jJKc4tLWoKyhY3N3/S\nCzMp0hXddRvWGqu/WnFuFjrWZW9f2VnY1shbVjLwk3mSvJgvyY35ehhyk5WVSUTEUbp160lychLT\npj3LN99890D3Ud5AdtIC8wDdvJXkaOmAj0PdO66jKAoFuoI/W3GySC/8e2tO6U9i3u291m/SqjQ4\nWf3VB+evPjmlPy5/9svRqOWFmEIIIYzD1taOPXt28803q1AUPc8/X7WD3kkBU8VUKhU2Whts7G3w\ntq911/WKdMVk3tIHJ6NMgVM6fSnz6l375ahQ4WLtzKMNwgitFWKswxFCCFFDabVa/vvfOabbv8n2\nLMplqbHAw9YND1u3u66j0+vILs4p0yentFUnw9AnZ8WZb7mQcYkRjR/FQmNRhUcghBBCGI8UMNWY\nRq0x3Da6k6S8ZD6PWs2BhENcyYrjyebh5RZEQgghRHVR83qC1iCeth681HoqHb3bci0ngXePfMLx\npFOmDksIIYT4x6QF5hapmQUcu5BKbm4hGrWq9EejRq1SodGo/pqnVqFRq1HfOq1R3TKtRqNW3b7c\nBAP9WGosGOc/goZOfqw5t5FlUavoXrcTQxr1Ryvj0gghhKim5DfYLbb+fplfT1w36j5uK2wM0+o7\nFEJ3KJRurq9Rl5nW3mE71pYaugR542BrySO1W+PjWJfPT61i77UDXMq6yuRm43GzcTHq8QohhDBP\nI0YMYuXKtXz33TpCQlrRvHlLw7K8vDwmTBjNhg1b7/r5fft+plu3nmzfvhU7O3u6du1eFWEbSAFz\ni2FdGvJIC2/S0vPQ6xV0t/yUTutLp3UKeqX0v7o/5+v1CiWG9f780enLTJfdpv5v6yoU6/QUFOnv\nuP79+vnYNf71aDOa+rhQ286Ll0NfYM25jRy+EcG7Rz5mQuBoWrgHPsBvUQghRHUSHv54pT9z/XoC\nu3fvolu3nvTvP+jBB1UBUsDcwtHOkoa+bmY3uJCilBZMer1CyV2Kp1sLoZvLo2PT+X7/Zd77NpIh\nnfwY0N4XK40lEwJG08jZj3Ux37P05Ap6+3RjUIO+Mm6MEEI8BJ544jHeeedDatWqxY0b13n11Zl4\neHiSn59PQUEB06f/m8DA5ob1//e/N+nWrSfBwSH83/+9TFFRkeHFjgA//riDDRvWotGo8fVtyKxZ\n/8e8eXOJjj7N8uXL0Ov1ODs7M3z4aBYv/oRTp05QUqJj+PBRhIUNYOrUpwkNfYSIiKNkZGQwd+5H\n1Kp192FEKkoKmGpApVKhUanQqMGiEhlrVNeJAB8Xlm6JYtP+y5yNzeDpQYE42VvR0fsRfBzq8UXU\nKn6K3celzKs80XzcXZ9oEkIIUXkbL2wj8g4PT2jUqvtuXQ/xbMGwRgPvurxLl+789tuvDB8+iv37\nf6FLl+40bNiYLl26cezYEb7++iv+97/3b/vcrl07aNCgIS+8MJOff/6R3bt3AZCfn8+HHy7AwcGB\n5557iosXLzB2bDgbN65j0qSn+OKLTwE4fjyCS5cusmTJl+Tn5zNx4hi6dOkGgJ2dHZ98soQlSxbw\n6697GDVq3H0d+63kKaSHXKO6Trw5qS3BjdyJvprOf748zOnLaQDUc/BmVug0QjxbcjHzMnMOf0x0\nWoyJIxZCCPFPlBYw+wE4cOAXOnXqyi+//Myzz05myZIFZGZm3vFzV65connzIABCQlob5js6OvLq\nqzOZOvVprl69TGZmxh0/f/bsGYKDWwFgY2ODr28D4uLiAAgKKh1Q1dPTk5ycnAdynNICUwPY21jw\n/PAW7D56jXV7LzBv7XEGdKjP4E5+2GitmdzsMX5x9mPj+W0sOv4F/Xx70s+vV41835IQQjxIwxoN\nvGNriTHfhdSgQUNSU5NJTLxBdnY2+/fvw93dk9dfn83Zs2dYuPDjO35OUUCtLn1SVv9n61BxcTHz\n5r3HihXf4Obmzssvv3jX/apUKm59u2JJSbFhexrNX10UHtQrGOU3VA2hUqnoHVqP/xfeGndna7b9\nfpX3vokkLasAlUpFt7odmdl6Ci7Wzmy/sptFx78gu+jBVMlCCCGqVvv2nfjss8V07tyVzMwM6tQp\nfT/fL7/spaSk5I6f8fGpz9mz0QBERBwFIC8vF41Gg5ubO4mJNzh7NpqSkhLUajU6na7M5/39mxEZ\neezPz+URH3+NunV9jHWIUsDUNH61HfnP421p4+/J+WuZvLn8CCcupABQ37Eer4ROo4V7AGfTzzPn\n8EecT79k4oiFEEJUVteu3Q1PCYWFDWDt2q+ZPv05mjVrTmpqKj/8sOW2z4SFDeD06VNMm/YscXFX\nUalUODk5Exr6CE8+OYHly5cxblw48+fPo359P86dO8v8+R8aPh8UFEzTpv4899xTTJ/+HM88MxUb\nGxujHaNKeVBtOVXImE8JPQyvOK8IRVH45XgC3+w+T4lOT9+29RjetSFajRpFUfg57le+v7gDgEEN\n+tLLp6vJbynVlNxUN5IX8yW5MV+Sm4rx8HC46zJpgamhVCoV3ULq8NqE1tRytWXX4TjmrI4gOSMf\nlUpFL5+uvBjyDI6WDnx/cQdLT64gpzjX1GELIYQQgBQwNZ6PlwNvPN6G9s1qcfl6Fm8uP8LRs0kA\nNHT25ZXQaQS4NuF06lnePfwJlzNjTRyxEEIIIQWMAKwttTw1KJDJAwLQ6fUs3hzF6h/PUVyiw8HS\nnilBTzDQrw8ZhZl8FLGEvXEHHlgvciGEEOJ+SAEjDDq2qM0bE0Op42HHnoh4/rfyGDfS8lCr1PTz\n68XzwU9ha2HDhvNb+DxqFfkl+aYOWQghRA0lBYwow9vdjtcntKFrsDexSTm8teIIB0/fAKCpayNe\nDX2Rxs4NOJ4cxbuHPyE2+5qJIxZCCFETSQEjbmNpoWFimD//erQZAJ9tPcPy7dEUFutwsnLk+eCn\n6Fu/BykFaXx4bDH74w/KLSUhhBBVSgoYcVePBHrx5uOh+HjZs//kdd7+6ijxyTlo1BoebRjGlKAn\nsFJbsubcRlac+ZaCkkJThyyEEKKGkAJGlMvL1Zb/C29Dz9Z1iU/JZfZXR9l/IgFFUWjm5s+rbV/E\nz7E+RxOP897RBSTk3DB1yEIIIWoAKWDEPVlo1TzWuwnPDW2BVqNm+Y6zLNt2hvzCElysnZne6hl6\n1utCYl4S7x1dwMHrR00dshBCiIecFDCiwlo39eDNSaE08Hbk4OlE/rviCLGJ2WjUGoY1HsjTLSag\nVWtYFb2O1dHrKdIVmTpkIYQQDykpYESluDvb8MpjrQh7xIfE9HzeXnmMPRHXUBSFII/mvBI6jXoO\ndfjj+hHeP7qQxNwkU4cshBDiISQFjKg0rUbNqO6NeHFkS6wtNaz+MYbFm6PIKyjG3caNma2m0KVO\nexJybzD36HyOJR43dchCCCEeMlLAiPvWsqE7b04KpUldJ46dS+bN5Ue4lJCFhcaC0U2HMqnZOAC+\nPP0Na89tolh/51e4CyGEEJUlBYz4R1wdrfn3uBAGdfAlNbOAOauPsetwLIqi0MYrmFltXsDbrha/\nxv/BvGOLSMlPNXXIQgghHgJSwIh/TKNWM7RLA2aOCcbOxoK1ey4wf8NJcvKL8bLz5N9tptK+diix\n2fG8e+QTTiSfNnXIQgghqjkpYMQDE+jryltPtCXQ14UTF1P5z5eHiYnLwFJjyfiAkYwPGEWJXsdn\np77iu/Nb0el1pg5ZCCFENSUFjHignOwsmTE6mGFdGpCRU8h730Tywx9X0CsK7Wu34eU2z+Nl68Ge\nuP18FLGU9IIMU4cshBCiGjJqARMTE0OvXr1YvXo1AMXFxcycOZMRI0YwceJEMjMzAdiyZQvDhw9n\n5MiRrF+/3pghiSqgVqkY2MGXWeNa4WRvyXe/XOKjtcfJzC3C274WL7d5gTZewVzOusqcIx9zOvWs\nqUMWQghRzRitgMnLy2P27Nm0b9/eMG/dunW4uLiwYcMG+vfvz9GjR8nLy2PRokWsWLGCVatW8dVX\nX5GRIX+VPwya1HPmzUmhtGzoxukr6bz55WHOXEnDWmvF44FjGdN0GIUlhSw+8SVbL+6UW0pCCCEq\nzGgFjKWlJcuWLcPT09Mwb+/evTz66KMAjB49mp49e3LixAlatGiBg4MD1tbWtGrVioiICGOFJaqY\ng60lL4xoyajujcjJL+bDNcfZ9Osl9IpC5zrtmNnmOdytXdl5dQ8Lji8jszDL1CELIYSoBrRG27BW\ni1ZbdvPx8fH8+uuvvP/++7i7u/Of//yHlJQUXF1dDeu4urqSnJxc7rZdXGzRajVGiRvAw8PBaNuu\nqcIHNqNti9q8t/oYW3+/wqUb2fx7fGtaNwggoO5rLD6yksPXjjP32HymtZtEcy//O25HcmOeJC/m\nS3JjviQ3/4zRCpg7URQFPz8/pk6dyuLFi/n0008JDAy8bZ17SU/PM1aIeHg4kJycbbTt12Sutha8\nMaE1y7ef5VhMMlPf38uTAwNo2dCdCY3H4mPjw8YL25i9bz4D/HrT17cHatVfjYSSG/MkeTFfkhvz\nJbmpmPKKvCp9Csnd3Z3Q0FAAOnXqxIULF/D09CQlJcWwTlJSUpnbTuLhYmttwZShzRnfpwkFRSV8\nvP4k6/ZeQKdX6F6vEzNaPYuzlRPbLv/I4hNfkl2UY+qQhRBCmKEqLWC6dOnC/v37ATh9+jR+fn4E\nBQVx6tQpsrKyyM3NJSIigjZt2lRlWKKKqVQqerSqy/+Ft8HLxYadh2KZ+3UEKZn5+DnV55W202jm\n5k90WgzvHvmEixlXTB2yEEIUW25cAAAgAElEQVQIM6NSKnLP5j5ERUUxd+5c4uPj0Wq1eHl58cEH\nH/C///2P5ORkbG1tmTt3Lu7u7uzcuZMvvvgClUrF+PHjDR1978aYzW7SrFe18gtLWLXrHAfPJGJr\npeWJAQG0auKBXtGz++ovbLm0E5VKxeCG/RjTagApKdIiY27kmjFfkhvzJbmpmPJuIRmtgDEmKWAe\nLoqisP/kdb75KYaiEj29WtdlZPdGWGjVnE+/yPLT35BZlI23gxf+zk0IdG1KI2c/LDQWpg5dINeM\nOZPcmC/JTcVIAVMJclKZzrXkHJZ+f5qElFzqeznwzJBmeLnYklWUzYaYLUSlRlOoKwLAQm1BY5cG\nBLo2JdCtKZ427qhUKhMfQc0k14z5ktyYL8lNxUgBUwlyUplWYZGOr3fHcODkdawtNUwM8+eRQC8A\nnF2tOXjhFGfSzhGdGkNC7g3D59ysXQl0a0qgaxOauDTEWmttqkOoceSaMV+SG/MluakYKWAqQU4q\n8/BH1A1W7jpHYbGOrsHejO3ZmDrezmVyk16QwZm0c5xJjeFs2nkKdAUAaFQaGjr5lhY0bk3xtqsl\nrTNGJNeM+ZLcmC/JTcVIAVMJclKZjxtpeSzZHEVcUg51POx4emhLvBwssbS4fRBDnV7H5axYolPP\ncSbtHLHZ8YZlTpaOBLiV9p0JcG2MrYVtVR7GQ0+uGfMluTFfkpuKkQKmEuSkMi/FJTrW7LnA3ojS\ngkSrUdOojiMB9V0I8HXFr7YDGvXtowFkF+UQnRbDmdRzRKfFkFOcC4AKFX5OPoa+M/Uc6pQZLE9U\nnlwz5ktyY74kNxUjBUwlyEllns7FpnMuPouI6ERik/56lNraUkOTes4E1nfBv74LdT3tUf/tdpFe\n0ROXHc+Z1BjOpJ3jcuZVFEpPe3sLO/xdG5e2zrg1wdFShvauLLlmzJfkxnxJbipGCphKkJPKfN3M\nTXZeEediMzhzNZ3oK2kkpucb1rG3sShtnanvQoCvC57ONrf1f8krzuNs+oU/bzfFkFGYaVhWz6GO\noXXGz9EHjdp479x6WMg1Y74kN+ZLclMxUsBUgpxU5utuuUnLKiD6arrhJz270LDMzdEK//ouBNZ3\nxb++Cy4OVmU+qygK13MT/+wMfI4LGZfRKToArDXW+Ls2MrTOuFq7GPcAqym5ZsyX5MZ8SW4qRgqY\nSpCTynxVJDeKonAjLY+zV9M5czWds1fTyS0oMSyv7Wb7Z0HjQlMfF+xtyg6GV1BSyPmMi6W3m1LP\nklKQZlhWy86LQNcmBLo1pZGTDKR3k1wz5ktyY74kNxUjBUwlyEllvu4nN3pFIS4xx9A6ExOXQWFx\naQuLCvDxciDAt/SWU5O6zlhZlr1llJSX8ue4M+c4l36RYn0xUDqQXhOXhn/ebmqCp63HAznG6kiu\nGfMluTFfkpuKkQKmEuSkMl8PIjclOj2Xr2cRfaW0heZifCY6fekloFGraOjtWNpC4+tKA29HtJq/\nnlAq1hVzMfMKZ/58VPt6bqJhmbuNm6GYaezcEGut1W37fljJNWO+JDfmS3JTMVLAVIKcVObLGLkp\nLNZx/lpGaQvNlXSu3sjm5gVhaaGmSV1nQwuNj6cDavVfHYLTCtKJ/vPJprNpFwwD6WlVGho6+/05\nMnBTatt5PdQD6ck1Y74kN+ZLclMxUsBUgpxU5qsqcpNbUMy52Ayir6QTHZtOQkquYZmdtZamPqXF\nTKCvC7VcbQ2Fyc2B9G62zsTdMpCes5UTga5NCHBrir9LY2wtbIx6DFVNrhnzJbkxX5KbipECphLk\npDJfpshNRk7hX084XUknNavAsMzZ3pKAP8efCazvipvTX+9fyirKNrTORKfFkFucB4BapcbX0YdQ\nrxA612n3ULTMyDVjviQ35ktyUzFSwFSCnFTmy9S5URSF5MwCoq+kGYqa7Lxiw3JPFxvDGDT+9V1w\ntLUEbh1I79yfA+nFoqDQ3683A/x6m+pwHhhT50XcneTGfEluKkYKmEqQk8p8mVtuFEUhPjnXUMyc\ni0snv1BnWF7Xw55A39Jipmk9Z2ystEDpSyg/ilhKakEawxsPoke9zqY6hAfC3PIi/iK5MV+Sm4op\nr4DRVmEcQjxUVCoVdT3tqetpT+/Qeuj0eq7cyC7tP3M1nfPXMrmWnMOPR+JQq1T41b75yLYrz7aY\nzIITS/nu/FZsNNa09w419eEIIUS1IgWMEA+IRq2mobcTDb2dGNjBl+ISHReuZRIdW9p/5vL1bC4m\nZLHt96u4OFjx+NBwVl1YwddnN2CltaKVZ0tTH4IQQlQbUsAIYSQWWg0Bvq4E+LpCF8gvLOFcXAbH\nz6fw64kEVm5OIHxoOF/FrGDF6W+x1lgR6NbU1GELIUS1oL73KkKIB8HGSktwI3ce7+fPkM5+pGYV\nsHZbMuFNxqNWqfjs1EouZFw2dZhCCFEtSAEjhAkM6uBL37b1uJ6ax+YdmYQ3GYtO0bHkxPIyY8gI\nIYS4MylghDABlUrFqO6N6BLkTWxSDrt+LmJck5EU6gpZePxzEnOTTB2iEEKYNSlghDARlUrFhL5N\naRvgyYX4TH7fr2ZEoyHkFOey4PjnpBWkmzpEIYQwW1LACGFCarWKJwcGEtTQjdNX0ok6as+jDfqR\nXpjBgshlZBXJOBFCCHEnUsAIYWJajZpnhzTH38eZiJhkYk950dunO0n5KSw8/jl5f76GQAghxF+k\ngBHCDFhaaHh+eEsaeDvyx+kbZF/yo3Od9sTnXGfxieUUlBSaOkQhhDArUsAIYSZsrLS8ODKIuh52\n7I1IQHu9BaFerbicdZVlp1ZSrC8xdYhCCGE2pIARwozY21gwc3Qwni42bD8Yi3tWW1q4B3I2/TzL\nT3+DTq+790aEEKIGkAJGCDPjZG/FS2OCcXW0YuMvV2hU3I0mzg05kRzF12c3oFf0pg5RCCFMTgoY\nIcyQu5MNL40JwdHWgm9/ukSIth/1Hetx6MYxNpzfSjV8ibwQQjxQUsAIYaZqudoyY3QwNlZaVu64\nSGf7wXjb1eKXa7/xw+WfTB2eEEKYlBQwQpgxHy8HXhwVhIVWzfKtF+ntNgJ3Gzd2XNnNz7G/mjo8\nIYQwGSlghDBzjeo48fzwFgB8+f0lHq01BmcrJzZe2MbvCYdNHJ0QQpiGFDBCVAOBvq48O7g5JSUK\nX26+yvB6Y7GzsOWbs99xLPGEqcMTQogqJwWMENVESBMPJg8MoKCwhK82xzPG9zGsNJZ8dWYNp1PP\nmjo8IYSoUlLACFGNtG9Wi/F9m5KdV8zXW5IY23AcapWKZadWcSHjsqnDE0KIKiMFjBDVTPeQOozs\n1pD07EI2/JDBuEZj0Sk6lpxYTmz2NVOHJ4QQVcKoBUxMTAy9evVi9erVALzyyisMGjSI8PBwwsPD\n2bdvHwBbtmxh+PDhjBw5kvXr1xszJCEeCv3a1WdA+/okpeezdVceYxqNpFBXyKLjX3AjN8nU4Qkh\nhNFpjbXhvLw8Zs+eTfv27cvMnzFjBt27dy+z3qJFi9iwYQMWFhaMGDGC3r174+zsbKzQhHgoDOvS\ngIJCHT9HXGPPHkeGdxvChoubWHB8GTNaPYubjaupQxRCCKMxWguMpaUly5Ytw9PTs9z1Tpw4QYsW\nLXBwcMDa2ppWrVoRERFhrLCEeGioVCrG9m5Mx+a1uHw9iyO/WfGoX38yCjNZcHwZmYXZpg5RCCGM\nxmgFjFarxdra+rb5q1evZsKECUyfPp20tDRSUlJwdf3rL0VXV1eSk5ONFZYQDxW1SsXj/f1p3cSD\ns7EZnD3qQh+fHiTnp7Lw+DJyi/NMHaIQQhiF0W4h3cngwYNxdnYmICCAzz77jIULFxISElJmnYq8\n48XFxRatVmOsMPHwcDDatsU/I7m5s/+b/AizvzhEZEwyjg6+9Ansyo8XfmHZ6RW83m0a1ha3/zHx\nIElezJfkxnxJbv6ZKi1gbu0P06NHD95880369u1LSkqKYX5SUhLBwcHlbic93Xh/VXp4OJCcLE3v\n5khyU76nBwby4brj7D+eQGfFj7Y+2RxOjOB/exfxbMtJWGgsjLJfyYv5ktyYL8lNxZRX5FXpY9TP\nP/88cXFxABw6dIjGjRsTFBTEqVOnyMrKIjc3l4iICNq0aVOVYQnxULCy1PDiiCB8vOzZf+IGVokh\ntHRvxrn0C3x5+ht0ep2pQxRCiAfGaC0wUVFRzJ07l/j4eLRaLbt27WL8+PG8+OKL2NjYYGtry5w5\nc7C2tmbmzJlMnjwZlUrFc889h4ODNKsJcT9srbXMGB3M3K8j+PFwPIM6daCpSyEnU06z+ux6wgNG\noVbJ8E9CiOpPpVSk04mZMWazmzTrmS/JTcWlZxcyZ/UxUjILGNmjPqfVO7icFUvXuh0Y2XgwKpXq\nge1L8mK+JDfmS3JTMWZzC0kIUTVcHKx4aUwwTvaWrN9zlRBNf7ztavHLtd/ZdvlHU4cnhBD/mBQw\nQjykPF1seWl0MHbWWr758Qqd7IfiYePGzis/szv2F1OHJ4QQ/4gUMEI8xOp42DNjdDBWFhpW/3CF\n3q4jcbZyYtOFH/gt/pCpwxNCiPsmBYwQDzm/2o5MG9EStVrFyq2xDPQajb2FHd+e28ixxOOmDk8I\nIe6LFDBC1ABNfVx4bmgL9HqFVVviGVpnDFYaK1acWUNUSrSpwxNCiEqTAkaIGqJlQzeefrQZhcU6\nvt6SyIj6o9GoNHwetYrz6ZdMHZ4QQlSKFDBC1CCh/p48HuZPbkEJ67alM8pvNHpFYenJ5cRmXTN1\neEIIUWFSwAhRw3QO8mZsz8Zk5hSxeXsOIxuMoFBXxMITn3M9N9HU4QkhRIVIASNEDdQ7tB5DOvmR\nklnAzh+LGdZgCLnFeSyIXEZKfpqpwxNCiHuSAkaIGmpQR1/6tq3H9dQ8ft2rYZBvfzKLslhwfBmZ\nhVmmDk8IIcolBYwQNZRKpWJU90Z0CfImNjGHyN8d6OPTg5T8VBYcX0ZOca6pQxRCiLuSAkaIGkyl\nUjGhb1PaBnhy/lom54950cW7A9dzE1l84ksKSgpMHaIQQtyRFDBC1HBqtYonBwYS1NCNM5fTST7T\ngLZerbiaFcenJ7+iWFds6hCFEOI2UsAIIdBq1Dw7pDn+Ps5ExKRQfLk5QR7Nicm4yBenv0an15k6\nRCGEKEMKGCEEAJYWGp4f3hK/2o78HpWEzY1Q/F0acyrlDKui16FX9KYOUQghDKSAEUIY2FhpmT4q\niDoeduw9dp1aWZ1p4FSfI4mRrI/5HkVRTB2iEEIAUsAIIf7G3saCl0YH4+liw44/Emhc3Js69rX5\nNf4Ptl7aZerwhBACkAJGCHEHTvZWvDQmGBcHKzbvu0YrzQA8bdzZdXUPP13dZ+rwhBBCChghxJ25\nO9nw0phgHGwtWP/TNTrZDcHFypnNF7ezP/6gqcMTQtRwUsAIIe6qtpsdM0cHY22l5dsd8fR0GY69\nhR1rz23i6I1IU4cnhKjBpIARQpTLx8uB6SOD0GpVfPvDdfp7jsJaa8VX0Ws5lXLG1OEJIWooKWCE\nEPfUqK4Tzw9vCSis2ZbEoNqj0Ko0fBG1mtNJMaYOTwhRA0kBI4SokGa+rjw7uDnFJXrWb0tjSL2R\n6BWFufsXcynziqnDE0LUMFLACCEqLKSJB5MHBJBfWMKmH7IZWn84xbpiFkQuIzpNWmKEEFVHChgh\nRKW0b16L8X2bkpVXzA87C3ky6HH0KCw9sZwTyVGmDk8IUUNIASOEqLTuIXUY0a0haVmFrN2YycQm\n4ajVGj6PWs2h68dMHZ4QogaQAkYIcV/6t6vPgPb1uZ6Sy/ptmUxq8jjWGitWRq/l12u/mzo8IcRD\nTgoYIcR9G9alASN6NCYxLY9vvk9mUpNJOFjaszZmM7uu7DF1eEKIh5gUMEKI+6ZSqZjQP4CBHXxJ\nyshnxaYEJjV+AhcrZ7Zc2snmC9vlBZBCCKOQAkYI8Y+oVCqGdWnAkE5+pGQW8Pl3sTze+Ak8bd35\nKXYfa2M2o1f0pg5TCPGQkQJGCPFAPNrJj6FdGpCaVcDSDRcZ3+Bx6tjXZn/8H6w8sxadXmfqEIUQ\nDxEpYIQQD8ygDr6M/PPppMXrzzPWdwJ+jvU5khjJ51GrKdYVmzpEIcRDQgoYIcQD1a9dfUb3aER6\ndiHz10Uz0mcc/i6NOZlymiUnl1NQUmjqEIUQDwEpYIQQD1zftj6M7dWYzJwiPlp7mke9RxLk3oxz\n6RdYePxz8orzTB2iEKKakwJGCGEUvdvUY3yfJmTlFjFv7Sn6eg0l1KsVl7Ou8nHkp2QVZZs6RCFE\nNSYFjBDCaHq0qsuEsKZk5xXz4ZoTdHfrT+c67YnPuc5HEUtIK0g3dYhCiGpKChghhFF1C67DpH7+\n5OYX88Ga4zzi2IM+9buTlJfCvGNLSMpLNnWIQohqyKgFTExMDL169WL16tVl5u/fv5+mTZsaprds\n2cLw4cMZOXIk69evN2ZIQggT6BzkzRMDAsgrLOGDNSdoYdORwQ36kV6YwbyIJcTnXDd1iEKIasZo\nBUxeXh6zZ8+mffv2ZeYXFhby2Wef4eHhYVhv0aJFrFixglWrVvHVV1+RkZFhrLCEECbSsUVtnhoY\nSEFRCR+ujaSBRStGNxlCdlEOH0Us5XLmVVOHKISoRoxWwFhaWrJs2TI8PT3LzF+6dCnjxo3D0tIS\ngBMnTtCiRQscHBywtramVatWREREGCssIYQJtWtWi3892ozCIj0frj1OLSWQiYFjKNQVMv/4Ms6l\nXTB1iEKIasJoBYxWq8Xa2rrMvMuXL3P27Fn69etnmJeSkoKrq6th2tXVleRkuScuxMOqbYAXzwxu\nRkmJno/WncCpyI8nm49Hr9ex+OSXnEw+beoQhRDVgLYqdzZnzhxee+21ctepyIvfXFxs0Wo1Dyqs\n23h4OBht2+KfkdyYp8rmpZ+HAy4utsxdeYSP1p/kjcmP8EqX53j/wFKWRa1i6iMT6VS/rZGirVnk\nmjFfkpt/psoKmMTERC5dusRLL70EQFJSEuPHj+f5558nJSXFsF5SUhLBwcHlbis93XiDYHl4OJCc\nLONTmCPJjXm637w09LJnytAWLN50irc+P8gLw1syNfhJFp/4kgUHV5CUnknnOu2MEHHNIdeM+ZLc\nVEx5Rd5930K6cuVKpdb38vJi9+7drFu3jnXr1uHp6cnq1asJCgri1KlTZGVlkZubS0REBG3atLnf\nsIQQ1UhwI3eeH94SRYFPNpwkN9WBaSHPYGdhy5pzG/np6j5ThyiEMFPlFjCTJk0qM7148WLDv994\n441yNxwVFUV4eDibNm1i5cqVhIeH3/HpImtra2bOnMnkyZOZNGkSzz33HA4O0qwmRE3RooEb00a0\nRKWCBd+dJDXRkhmtnsXZyonNF7ez5eLOCt1aFkLULOXeQiopKSkzffDgQaZMmQLcu69K8+bNWbVq\n1V2X79mzx/DvsLAwwsLC7hmsEOLh1MzPlRdHtOST706yaOMppgxpzoxWU1hw/DN2Xd1Dga6AEY0f\nRa2SsTeFEKXK/b+BSqUqM31r0fL3ZUII8U8E+LoyfWQQWo2axZujuHy1mOmtpuBtV4tfrv3O6uj1\n6PQ6U4cphDATlfpzRooWIYQxNfVxYfqoILRaNUu/P825S3m82OoZ6jvW49CNY3x5+muK9SX33pAQ\n4qFXbgGTmZnJH3/8YfjJysri4MGDhn8LIcSD1qSeMzNHB2NlqebTLac5FZPFC8FP0cS5IceTo/j0\n5AoKdUWmDlMIYWIqpZzOLOHh4eV+uLw+LsZkzEfP5NE28yW5MU/GysulhCzmrT1OflEJT/QPoG2g\nO1+cXs2plGgaOPnybMtJ2FrYPPD9PkzkmjFfkpuKKe8x6nILGHMlBUzNJLkxT8bMy5UbWXy45jh5\nBSU83s+fDi28WBm9lqOJx6ln781zwU/iYGlvlH0/DOSaMV+Sm4q573FgcnJyWLFihWF6zZo1DB48\nmBdeeKHM4HNCCGEMvrUc+ffYEOxsLFi+4yz7T95gYuAYOno/QlxOAh9FLCW9QF7+KkRNVG4B88Yb\nb5CamgqUvsdo3rx5zJo1iw4dOvC///2vSgIUQtRsPl4OvDw2BAdbC1buPMe+yATGNh1GL5+uJOYl\nMS9iCUl58geVEDVNuQVMXFwcM2fOBGDXrl2EhYXRoUMHxowZIy0wQogqU9fTnpfHhuBoZ8nqH2PY\nfewaQxr2Z1CDvqQVpPNRxBIScm6YOkwhRBUqt4CxtbU1/Pvw4cO0a/fXe0nkkWohRFWq42HPrHEh\nONlb8u3u8/x4JI4w356MbDyYrKJsPo5YytWsOFOHKYSoIuUWMDqdjtTUVGJjY4mMjKRjx44A5Obm\nkp+fXyUBCiHETbXd7Jg1rhUuDlas3XOBHQev0q1eR8YHjCKvJJ9PIj8lJv2iqcMUQlSBcguYp556\niv79+zNo0CCmTJmCk5MTBQUFjBs3jiFDhlRVjEIIYVDL1ZZZ40JwdbRi/b6LbP39Cu1rt2Fy8/GU\n6HUsPvEFUSnRpg5TCGFk93yMuri4mMLCQuzt/3pU8cCBA3Tq1Mnowd2NPEZdM0luzJOp8pKckc97\n30SSmlXA4E5+DO7kx5nUc3x2aiU6RcfjgWNo7RVc5XGZE7lmzJfkpmLu+zHqhIQEkpOTycrKIiEh\nwfDToEEDEhISHnigQghRUR7ONsx6LAR3J2u+P3CZjb9eIsC1CVODn8RSbcny09/yW8IhU4cphDCS\nct9G3aNHD/z8/PDw8ABuf5njypUrjRudEEKUw93Jhlcea8V730ay7fcr6PUKw7s2YFqrp1l0/Au+\nOfsdBSWF9PTpYupQhRAPWLkFzNy5c/n+++/Jzc1lwIABDBw4EFdX16qKTQgh7snV0ZpZ40qLmO0H\nr6LT6xnVvRHTWz3D/MhlbLywjfySAgb49ZanJ4V4iGjefPPNN++20N/fn8GDB9OpUydOnjzJnDlz\n2LdvHyqVivr166PVllv/GE1envFe5GZnZ2XU7Yv7J7kxT+aQFxsrLW2aenDyYirHL6SSV1hCu6Y+\nBHu2ICrlDCdTTpNfUoC/a+MaVcSYQ27EnUluKsbOzuquy8rtA3NT7dq1mTJlCjt27KBv3768/fbb\nJu3EK4QQf+dsb8XL41pRx92O3Uev8fVPMbhauzC99bPUsvNi77UDfHP2O/SK3tShCiEegAoVMFlZ\nWaxevZphw4axevVq/vWvf7F9+3ZjxyaEEJXiZGfJv8eFUNfDnj0R8azedQ5HS0emhzyDj0Nd/rh+\nhC9Pf0OJvsTUoQoh/qFy7wEdOHCA7777jqioKPr06cO7775LkyZNqio2IYSoNEdbS14eF8IH30ay\n73gCOr3CxH7+vBDyNEtPLicy6SSFukKeah6OpcbS1OEKIe5TuePA+Pv74+vrS1BQEGr17Y01c+bM\nMWpwdyPjwNRMkhvzZK55yckv5sO1x7l6I5uOzWsxqX8AJUoJn0et4nTqWRo6+fFs0CRstNamDtVo\nzDU3QnJTUeWNA1NuC8zNx6TT09NxcXEps+zatWsPIDQhhDAOexsL/j0mmA/XnuC3qBvoFIXJAwJ4\nusUEVpxZQ2TSSeZHfspzQU9ib2ln6nCFEJVUbh8YtVrNzJkzef3113njjTfw8vKibdu2xMTE8PHH\nH1dVjEIIcV9srS2YOTqYhnUcOXg6kWVbz6BCzRPNxtGhdiix2fF8FLmUjMJMU4cqhKikcltgPvro\nI1asWEHDhg35+eefeeONN9Dr9Tg5ObF+/fqqilEIIe6brbWWGaOC+Xj9CQ5HJ6HTK/zr0WaM8x+B\ntdaaPXH7mXdsCS+EPIW7jZupwxVCVNA9W2AaNmwIQM+ePYmPj2fChAksXLgQLy+vKglQCCH+KRsr\nLdNHBeHv48yxc8ks2RyFTq8wrNFA+vv1JrUgjXnHlnA9N9HUoQohKqjcAubvAz7Vrl2b3r17GzUg\nIYQwBmtLLdNGBhFQ34XI8yks3hRFiU5hgF9vhjcaSGZRFh9FLOFqVpypQxVCVECFxoG5qSaNYCmE\nePhYWWiYNqIlzfxcOX4hhYUbT1FcoqOHTxce8x9BXnE+n0R+ytm086YOVQhxD+U+Rt2iRQvc3P66\nJ5yamoqbmxuKoqBSqdi3b19VxHgbeYy6ZpLcmKfqmJfiEh0LN0Zx6lIqzfxceX5YCywtNEQmnWLF\n6W9QgAmBo2njFWzqUP+R6pibmkJyUzH3/Rj1zp07H3gwQghhahZaDVOHtWDJ5iiOX0jhkw0neWFE\nS0I8W2Bn8SSfnvyK5ae/Ibsoh+715LUpQpijcltgzJW0wNRMkhvzVJ3zUqLTs2RzFJHnU2haz5lp\nI1tibanlWnYCi058QVZRNn3qd+fRBmHV8hZ6dc7Nw05yUzHltcBUqg+MEEI8TLQaNc8OaU6bph6c\ni8vgo3UnyC8soa6DNzNbP4enjTs/Xt3L6rPr0el1pg5XCHELKWCEEDWaVqPmX4Ob0TbAk/PXMvlg\nzXFy8otxt3FlRusp+DjU5eD1o3x2aiVFuiJThyuE+JMUMEKIGk+jVvPUoEA6Nq/F5etZvPt1BOnZ\nhThY2jMt5F8EuDYhKjWa+ZHLyC3OM3W4QgikgBFCCKC0iJk0IIDebeqRkJLLnNXHSEzPw1prxTMt\nH6eNVzCXs64y79hi0gsyTB2uEDWeFDBCCPEntUrFmJ6NGNrZj5TMAuasjiA2MRutWsvEwDH0qNeZ\nG3lJfHBskYzaK4SJSQEjhBC3UKlUDOrox/g+TcjOLWLuN5Gcv5aBWqVmWKOBDGnYn4zCTOYdW8yl\nzCumDleIGksKGCGEuIMerery1KBAiop1fLjmOCcvpqJSqehdvxvhAaMo0BUyP3IZp1LOmDpUIWok\nKWCEEOIu2jWrxdRhLVCABd+d5OCZG6Xza7fhXy0mAvDZqZX8kXDEhFEKUTNJASOEEOUIauTOzNHB\nWFqoWbblDHsjrgHQ3DktK58AACAASURBVD2AaSFPY6OxZvXZ9ey6sodqOC6oENWWUQuYmJgYevXq\nxerVqwGIjIxk7NixhIeHM3nyZNLS0gDYsmULw4cPZ+TIkaxfv96YIQkhRKU1qefMy2Nb4WBrwaof\nY9j2+xUURcHPqT4zWj+Li5UzWy7tZMP5LegVvanDFaJGMFoBk5eXx+zZs2nfvr1h3vLly3nvvfdY\ntWoVISEhrFu3jry8PBYtWsSKFStYtWoVX331FRkZ8oiiEMK8/P/27jw+6ure//hr1iyTfZksZAES\nIBCSAGGHgCCgVottXbAKtr23q7WrXZQu2uu9vRdvF3+tXG0ptRZrRdFalJaqCBL2JZA9BBBCIPtG\nQvZlfn/EUhGIiTKZ78D7+R+ZJZ95vM8XPpw533MSowN5aHkm4UG+vLz9Hda/dQyXy0W0I4oHMu8j\nxhHFttM7+UPhn+nu6/F0uSJXPbc1MHa7nTVr1uB0Os//7Fe/+hXx8fG4XC6qq6uJjo4mNzeXtLQ0\nAgMD8fX1ZcqUKeTk5LirLBGRDy0qzJ+Hlk8hJtyf1/eX8/TfSujt6yPUN4RvT/kKo4NHcrAml6dy\nn6ajp8PT5Ypc1QY8jfojvbHVitV68dtv376d//qv/2L06NEsXbqUTZs2ERYWdv7xsLAwamtrB3zv\n0FB/rFbLFa/5nwY6PEo8S9kY07WUS2RkIP/79Xn85Hd72JFfSY/LxXeXTyXSFsh/OL/F47vXcqAi\njyfy17By3v0E+wZ5vF4xJmXz0bitgbmcefPmkZWVxc9+9jN++9vfMmLEiAseH8wiuMZG923lrRNC\njUvZGNO1mss3b0/niZfz2VNQxQ+f3Mn9n0rDz8fKvWM/jd3lw67K/ax8/THun/R5IvzCPVLjtZqN\nN1A2g2OY06jfeOMNoH+jqBtuuIGDBw/idDqpq6s7/5yampoLvnYSETEiPx8r37wjncljIigua+Rn\nzx+ipa0Li9nC3Sm3c2PiQmrb6/nZwdWUt5zxdLkiV51hbWB+/etfU1xcDEBubi6jRo0iIyOD/Px8\nmpubaW1tJScnh6lTpw5nWSIiH4rNauG+T05kTlo0Jypb+J8/5dDQ3NG/m2/Sjdwx9lbOdbXyeM5T\nHGk45ulyRa4qJpebNi4oKChg1apVnDlzBqvVSlRUFN/97nf56U9/isViwdfXl8cee4zw8HA2b97M\n2rVrMZlMLF++nKVLlw743u6cdtO0nnEpG2NSLtDncvHCW8d4fX854UE+PHDXZKLD/AE4WJ3LM0XP\nYwI+k/pppjjTh60uZWNcymZwBvoKyW0NjDupgbk2KRtjUi79XC4Xm3aX8fL2dwjyt/HtZZNIiOr/\ny7ek4Shr8v9IZ28Xd4y9lflxs4elJmVjXMpmcAyzBkZE5GplMpm4ZfZIViwZS0tbN6uey6G0vH9P\nq5SwMXxjypcIsDl4ofQVXn3nH9q1V+QjUgMjInIFLZgSxxeXptLV3cfP1x8m91j/TQoJgXE8kPlV\nIvzC2XxyC8+VvERvX6+HqxXxXmpgRESusBkTovjabemYoP9W68L+QyAj/cN5IPM+4gNi2VW5jzUF\n6+jq7fZssSJeSg2MiIgbpCeF8+1lk7DbLKx5tYgtB/sPgQyyB/KNKV9mXGgy+XVFPHF4DW3d7tvb\nSuRqpQZGRMRNxsaH8P27JxPosPOnN0rZuPMELpcLP6svX8n4N6Y40zl+9iS/zHmKps6zni5XxKuo\ngRERcaOEqEAeWj6FiGBfXsk+wZ+3HKXP5cJmtvK51LuZHzeHitYqfnZgNVWtNZ4uV8RrqIEREXGz\nqFB/HlqeSWyEgzcPnOb3m4rp7evDbDJzx5ilfHz0jTR2NvGLg//HibNlni5XxCuogRERGQahgT48\neM8URsUEsaugitUvF9Dd04vJZOLGkQu5J+V22nra+X+HfktBXbGnyxUxPDUwIiLDJMDPxnc/PYnx\niaEcPlbHL1/Ipb2zB4DZsdP5Ytq9gIvf5D/D3sqDni1WxODUwIiIDCNfu5Vv3pFB5thISk418dif\nD9Hc1gVAemQqX5v0RXwsPvyxeD1vlG3Thncil6EGRkRkmNmsZr78iVTmpsdQVtXCqncPgQRIChnJ\nt6d8hRCfYF45/jdePvYafa4+D1csYjxqYEREPMBiNvO5m1K4cXoClfVt/PTZg1TWtwIQGxDNA5n3\nEe3v5K3ybJ4pep6evh4PVyxiLGpgREQ8xGQycceCJG6bP5qG5k7+5085lFX1H/AX5hvKtzK/wqig\nBA5UH+apvD/Q0dPp4YpFjEMNjIiIB5lMJm6eNZJ7bxjHuXcPgTxyqhGAAJuDr0/+IhPDUyhuKOVX\nh35LS9c5D1csYgxqYEREDOC6ySP40q2pdPf08YsXcjl8tP8QSLvFzhfTPsOM6EzKWsr5xcH/o669\nwcPVinieGhgREYOYPj6Kb9yejsnUfwjk7oL+QyAtZgsrxt/JksQF1LTX8fODqzndUuHhakU8Sw2M\niIiBTBwdzneWTcbXbmHNa0W8eaAc6P+q6dakm7htzMdp7mrhlzlPcbTxuIerFfEcNTAiIgaTHBfM\n9++ZQpDDznNvHuWvO06c3w9mYXwWn53wabr7unkidy2Ha/I9XK2IZ6iBERExoHhnACvfPQTyrztO\n8Oc3+w+BBJgWPZmvpH8Os8nM7wqeJfvMbg9XKzL81MCIiBiU891DIEdEOHjz4GnWvlZET2//pnbj\nw8fyzclfwmHz5/kjf2HTO69r1165pqiBERExsNBAH75/zxSSYoPYXVjN//2lgK7uXgASg+J5IPM+\nwn1D+dvJN3n+yMvatVeuGWpgREQMLsDPxgN3TSJ1ZP8hkL94IZe2jv6deZ3+kTyQ+VVGBMSwo2Iv\nawuepbu328MVi7ifGhgRES/ga7fy9dszmDouktLyJh77cw7Nrf2HQAb7BPGtKV9mTMhoDtcW8ETu\n72jrbvdwxSLupQZGRMRL2KxmvnzrROZlxHCq+hz//acc6s/2HwLpZ/Xjqxn/zuTINI41neCXOU/S\n0N7k4YpF3EcNjIiIFzGbTXzmxhRumpFAdcOFh0DaLDb+beI9ZI2YRUVrFSvfWEVBXbGHKxZxDzUw\nIiJepv8QyGRuvy6JxpZO/vvZHE5WNQNgNplZNvYT3Jp0E2c7mnky72n+UPg857pbPVy1yJWlBkZE\nxEt9bGYin7lxHK3t3Tz23CFKyvoPgTSZTCxJXMCqJStJCIxjf3UOj+75GQerc3WrtVw11MCIiHix\n+ZNG8OVPTDx/COSho7XnH0sIGcF3Mr/KJ5NvprO3k98X/ok1+X/kbGezBysWuTLUwIiIeLlpKU6+\ncUc6ZjOsfrmAnfmV5x+zmC0sSpjPyunfIjlkFLl1hTy69+fsrtiv2RjxampgRESuAhNHhfOduybj\n52Nh7aZi3thffsHjTv9IvjH5Sywb+0n6XL08W/IiTxz+HfXtDR6qWOSjsTzyyCOPeLqIoWpr63Lb\nezscPm59f/nwlI0xKRfjCAvyJX10ODmltRw4UktPbx9JMUGYTCagf21MYlA806InU91aS3FjKTsr\n9+Fr8SEhKO7888T9dN0MjsPhc9nHNAMjInIViXMG8NCKTCJDfHlxy1H+5085VDe2XfCcMN9Q7sv4\nN+4dvwybycqLR//KL3Oeorq1xkNViwydZmDeR12xcSkbY1IuxuPwtTErNZpznb0cPlpLdl4FDj8b\nI6MDL5iNiQuMZUZMJg3tjRQ39M/GWDAzMigBs0n/v3UnXTeDM9AMjBqY99GgMi5lY0zKxZjsNgtL\nZo0iyNdK4YkGDhyp5Z3KZlISQvHzsZ5/no/FhylRGYxwRFPaeJy8ukIK6ktIDEog2CfQg5/g6qbr\nZnDUwAyBBpVxKRtjUi7G5XD4EOron42pqGul4EQDO/MriQj2ZURkwAXPjXZEMTtmGi1d5yhqOMKu\nyn309vUwOmQkFs3GXHG6bgZHDcwQaFAZl7IxJuViXP/Mxs/HyszUKIIddvLeqWdvUQ1VDW2kJIRi\nt1nOP99msZERmcqooASONr5DQX0xh2vyiQ8cQahviAc/ydVH183gqIEZAg0q41I2xqRcjOu92ZhM\nJkbFBDEtxcnJymby32lgd2EVIyIdOEP9L3hdpH8Es2On0dHTSWFDCXsqD9DW3U5SyCisZsulfpUM\nka6bwfFYA1NaWsqyZcswm82kp6dTWVnJ1772NTZs2MDGjRuZM2cODoeDjRs3snLlSjZs2IDJZCI1\nNXXA91UDc21SNsakXIzrUtkE+NmYkxaNzWIm73g9uwqqaG7rIiU+FKvlX18VWc1WJkakMC40meNN\nJyhsKOFA9WFiHFFE+IUP90e56ui6GRyP3Ebd1tbGo48+yqxZs87/7PHHH+fOO+/k2WefZfHixTz9\n9NO0tbWxevVq/vCHP7Bu3TqeeeYZmpp0BLyIiLtYzGZumT2SH947lRERDrbmnOGRp/dx/MzZi56b\nHDKKh6Z/i8UJ19HY2cSvD6/hT8UbaO9p90DlIv/ithkYk8nELbfcwpEjR/Dz8yM9PZ05c+Ywbtw4\nzGYzp0+fprS0lODgYOrr6/n4xz+O1WqlpKQEHx8fRo0addn31gzMtUnZGJNyMa4PyiYkwIes9Bh6\nelzkHa8nO7+S3r4+xsSFYDb/a1M7i9lCStgYJoancLL5FEUNR9hbmYPTP4Io/8jh+ChXHV03gzPQ\nDIz1so98RFarFav1wrf39+//nrW3t5fnnnuOr371q9TV1REWFnb+OWFhYdTW1jKQ0FB/rFb3fQ8b\nGalbB41K2RiTcjGuwWTz1WWTmTc1nsf/nMNru8ooKmvi23dPITE66H3vNZ6MkSv5a8nrvFT0d57K\n+wNzEqbyucl3EuSrMTBUum4+Grc1MJfT29vL9773PWbOnMmsWbN49dVXL3h8MIeLNb5vV8krKTIy\nkNraFre9v3x4ysaYlItxDSWb6CAfHv7sNJ7fcpTsvEq++Yu3+dS80SyZHo/5fUcMzHNmMcYxlmeL\nX2TnqQPkVhZzx5ilZEZN0nEEg6TrZnAGavKG/eb+hx56iMTERO6//34AnE4ndXV15x+vqanB6XQO\nd1kiItc8Px8rn/vYeL52Wxr+PhZe2HqM/33uEHVNF693iXFE8UDmfdyWfAudvV08XfRnfpP/B5o6\nL15HI+IOw9rAbNy4EZvNxte//vXzP8vIyCA/P5/m5mZaW1vJyclh6tSpw1mWiIi8x+QxkfzH52cw\nZWwkR8qb+PHv95GdW3HRDLnZZGZhwjx+OOPbjA1NJr+umEf3/JydZ/YOajZd5KMwudw0ygoKCli1\nahVnzpzBarUSFRVFfX09Pj4+BAT07wCZlJTEI488wubNm1m7di0mk4nly5ezdOnSAd/bndNumtYz\nLmVjTMrFuD5qNi6Xi10FVTz3Zintnb1MSo7gMzelEOywX/q5Fft4+dgmOno7GBuazD0pt+mW68vQ\ndTM4A32F5LYGxp3UwFyblI0xKRfjulLZ1J/tYO2mIkpONRHob+PeG1LIHHfpu48aO5p4/shfKKgv\nxm628fGkG7kubo4Oh3wfXTeDM1ADo51430e3thmXsjEm5WJcVyobf18rsyZG4/C1kfdOPXuKqqlr\naiclIRSb9cLGxM/qy9SoSUT5R1LSeJTc2kJKGkoZFZxIoD3gMr/h2qPrZnB0lMAQaFAZl7IxJuVi\nXFcyG5PJRNKIYDLHRnK8ov8ogr1FVcQ7A4kM8bvoubEBMcyMmUpjRxNFDaXsqtgHmBgdnKjZGHTd\nDJYamCHQoDIuZWNMysW43JFNoL+duWkxmEyQd7z/dOu2jh7GxYdgsVzYmPhY7Ex2phMfEEtp4zHy\n64vIqysiMSieYJ+gy/yGa4Oum8FRAzMEGlTGpWyMSbkYl7uyMZtNpCSGMnF0OEfKm8g7Xs/B0lqS\nRgQREnDxPzhRDiezYqbT2t1KUcMRdlfup7uvm6TgkViu0cMhdd0MjhqYIdCgMi5lY0zKxbjcnU1o\nYP9RBJ1dveQdr2dHXiW4IDku+KLN72wWG+mRqSQFj+RY0wkK6ovJqc0jLiCWMN9Qt9VoVLpuBkcN\nzBBoUBmXsjEm5WJcw5GN1WImLSmc5Lhgik42cvhYHQXvNDA2PphA/4tvt47wC2d27HS6ersoqj/C\nnsoDnOtuJSl4FFbzsG8O7zG6bgZHDcwQaFAZl7IxJuViXMOZjTPEj6z0GBpbOsl/p4EdeZX42i2M\njAm66HgBq9nChPBxpISN4fjZMgrrSzhQfZgY/ygi/a+NfWN03QyOGpgh0KAyLmVjTMrFuIY7G5vV\nQuY4JyMiHBScaOBgaS3HzpwlJSEUP5+LZ1dCfUOYHTMNgMKGI+ytOkhDeyNjQkZhs9iGrW5P0HUz\nOGpghkCDyriUjTEpF+PyVDaxEQ5mT4ymsr6NghMNZOdVEhbkQ1yk46LZGIvZwriwZNIiJlDWfIqi\ndxuZCL9woh1X77l4um4GRw3MEGhQGZeyMSblYlyezMbXbmXGhCjCgnzJf6eefcU1VNS1kpIYio/t\n4juPgn0CmRUzDbvZTlHDEQ5UH6KytZrkkFH4WC7/j5i30nUzOAM1MNfOiikRERlWJpOJeRmxpCSG\nsva1Ig4cqeXo6bN89qYUMpIjLnq+xWxhycgFpEem8qeSDRyqyaO04Ri3j13KtKjJF83eyLVNMzDv\no67YuJSNMSkX4zJKNg5fG3MmxuBjt5B3vJ7dhdU0tnSSkhiC1XLxrrwBdgczYzIJsDkoaiwlpyaX\nky3lRDucV80GeEbJxug0AyMiIh5lNpu4aUYiE0eFs+bVIrbnVlBc1sC/3zyBsfEhFz/fZOa6+Dmk\nRYznuZKXKKo/QlH9EcaEjOb6hHmkhqfoSIJrnGZg3kddsXEpG2NSLsZlxGyCHXbmpsfgcrnIPV7P\nzrxKurp7GRsfgsV88VdE/jY/pkdPYVRwIue6WznSeIwD1Yc5WH0Ys8lMjCPKK3fzNWI2RjTQDIzJ\n5XK5hrGWK8KdR5DriHPjUjbGpFyMy+jZHD3dxNrXiqlpaicu0sHnb5lAQlTggK85c66SreU72F+V\nQ4+rF4fVn7kjZjI/brZXfb1k9GyMIjLy8uNBDcz7aFAZl7IxJuViXN6QTUdXDy+8dYxthyuwmE18\nImsUN81IxHyJ2Zj3OtvZQvaZXWw/s5vW7jYsJgtToyaxMD6LuMDYYar+w/OGbIxADcwQaFAZl7Ix\nJuViXN6UTd7xep7+ezFnz3WRHBfM528ejzPU/wNf19Xbzb6qg7xVnk11Wy0AKaFjWJiQxfiwsYZd\nJ+NN2XiSGpgh0KAyLmVjTMrFuLwtm3Pt3az7xxH2l9TgY7Ow7Ppk5mfEDur26T5XH0X1R9hSnk1p\n4zEAov2dLIzPYlr0FOwG29nX27LxFDUwQ6BBZVzKxpiUi3F5YzYul4u9xdU8+49S2jp7SBsdzuc+\nlkJIwOA3sytvqWBreTYHqg/T6+olwOYga8Qs5sXNIsg+8Bqb4eKN2XiCGpgh0KAyLmVjTMrFuLw5\nm8aWTn7/t2IKTzTg8LWy4oZxTEtxDmkzu6bOs7x9ehc7zuyhracdq9nK9KjJLIjPIjYg2o3VfzBv\nzmY4qYEZAg0q41I2xqRcjMvbs3G5XGw9dIYX3jpGV08fUWH+ZKXHMGdiNMFDmJHp7O1ib+UB3irP\npra9HoDxYWO5Pn4eKWFjPLLDr7dnM1zUwAyBBpVxKRtjUi7GdbVkU9XQxsYdJzhwpJae3j7MJhPp\nSeFkpceQlhR+yd18L6XP1Ud+XTFvlW/nWNMJAGId0SyMz2Jq9GRs5uHb2/Vqycbd1MAMgQaVcSkb\nY1IuxnW1ZdPa0c3eomqycyspq+7/XEEOO7MnRpOVHkNMuGPQ71XWXM5b5dnk1OTR5+oj0B7A/BGz\nmTtiJoH2AHd9hPOutmzcRQ3MEGhQGZeyMSblYlxXczanqlvIzqtkT2EVrR09ACSPCCYrPYZp4534\n2gc3m9LY0dS/TqZiD+09HdjMVqZHZ7IwPotoh9Nt9V/N2VxJamCGQIPKuJSNMSkX47oWsunu6eXQ\n0Tqy8yopOtGAC/CxWZg23klWegzJI4IHtcalo6eD3ZUH2Fq+g/qOBgAmhqewMH4eY0OTrvg6mWsh\nmytBDcwQaFAZl7IxJuViXNdaNnVn29mVX0V2XiX1zR0AxIT7Mzc9htmpg1v42+fqI6+2kC3l2bxz\n9iQAIwJiuD5+HplRGViv0DqZay2bD0sNzBBoUBmXsjEm5WJc12o2fS4XxWWN7Mir5OB7Fv5mJIeT\nlR5LWlIYFvMHL/w9cfYUb5Vv51BNPi5cBNsDmR83h7kjZuKwffAuwQO5VrMZKjUwQ6BBZVzKxpiU\ni3Epm/7dffcWVZOdV8Gp6nNA/4nYs9OimZs2uIW/9e0NbDu9k10V++jo7cRutjEzZioL4ufi9I/8\nUHUpm8FRAzMEGlTGpWyMSbkYl7K5UFlVCzvyKtlT9K+Fv2PigpmbHsO0lA9e+Nve086uiv1sLd9B\nY2cTJkxMjBjP9fHzSA4ZNaR1MspmcNTADIEGlXEpG2NSLsalbC6tu6eXnNI6svMqKDrZCICP3cL0\nFCdZGbEkxQYN2Iz09vVyuLaALeXbKWsuByAhcAQL4+cxxZmOxWz5wBqUzeCogRkCDSrjUjbGpFyM\nS9l8sLqmdnbkV7Izv5L65k6gf+FvVnossydGE+SwX/a1LpeLE81lbDm1ndzaQly4CPEJ5rq4OcyJ\nnYG/ze+yr1U2g6MGZgg0qIxL2RiTcjEuZTN4fX39C3+z8yrIKa2lp9eFxWwiIzmCuekxpI0eeOFv\nbVs9207vYFflfrp6u7Bb7MyOmcaC+LlE+IVf9HxlMzhqYIZAg8q4lI0xKRfjUjYfzrn2bvYU9t+O\nXV7z7sLfADtzJsaQlR5DVNjl70Bq625nZ8Vetp3eSVPnWUyYyIhMZWH8PEYHJ57/akrZDI4amCHQ\noDIuZWNMysW4lM1HV1bVQnZeBXsKq2nr7F/4OzYumKyMWKaOc+Jjv/R6l96+XnJq8thSvp3yljMA\njAxKYGF8FpMiJxIdFaJsBkENzBDogjcuZWNMysW4lM2V09XdS87RWrJzKyku61/462u3MH18FFkZ\nMYyOufTCX5fLxbGmE2wp305BXTEuXIT6hLB0/CLSgzLwtQ7+VO1rkRqYIdAFb1zKxpiUi3EpG/eo\nbWpnZ34lO/IraXh34W9shIOs9BhmTYwmyP/SC3+r22rZVr6D3ZUH6O7rxmH1Z37cbObHzSHAPviD\nKK8lamCGQBe8cSkbY1IuxqVs3Kuvz0VRWQPZuZUcOvqvhb+TkiPIyoghddSlF/6e62plf+MB/n5k\nK609bdjNNmbHTmdh/DzC/UI98EmMa6AGxvLII4884q5fXFpayrJlyzCbzaSnpwPwxz/+kbvvvpvP\nfvaz2O39XerGjRtZuXIlGzZswGQykZqaOuD7trV1uatkHA4ft76/fHjKxpiUi3EpG/cymUw4Q/2Z\nluJkwZQ4QgJ9aGju5Eh5E3uKqsnOreBcezfhwb4E+NnOv85usTN9VBpTw6YSaA/g9LlKShqP8vaZ\nXdS21+H0iyDQHuDBT2YcDsflv2K7MqdSXUJbWxuPPvoos2bNOv+zV155hfr6epxO5wXPW716NRs2\nbMBms3H77bezePFiQkJC3FWaiIjIFRXgZ2Px1HgWZcZRVt1Cdm4le4qq2bS7jE27yxgXH8Lc9Bim\npjjxsfUv/PWx2FkQP5d5I2ZxoPowr5/axr6qHPZV5ZAWMZ7FCQtIChnp2Q9mYG5rYOx2O2vWrGHN\nmjXnf7Zo0SICAgJ49dVXz/8sNzeXtLQ0AgP7p4mmTJlCTk4OCxcudFdpIiIibmEymRgZHcTI6CCW\nLUzmYGkt2bkVlJxq4kh5E8+9WcqM8VHctmgcDmv/ol+L2cKMmEymRU+msL6Ef5zcSn5dMfl1xSQF\nj2RJ4gJSw1OGdFTBtcBtDYzVasVqvfDtAwIunhKrq6sjLCzs/J/DwsKora11V1kiIiLDwm6zMCs1\nmlmp0dQ0tbMjr3/H322HK9h2uIJJyRHcMnsko2ODADCbzKRFTGBi+HiOnz3JG2VbKagv4cm8p4l1\nRLM48ToynRmDOqrgWuC2BubDGsya4tBQf6xW9wU40KIh8SxlY0zKxbiUjTFERgaSOsbJ5z+ZzsGS\najZsOcrhY3UcPlbHpDGR3LloLBOTws/Psjid6cwak05Z02n+WvIGu04d4Jmi59l08nU+Pm4RC0fP\nwcd6+WMOrgUeb2CcTid1dXXn/1xTU8OkSZMGfE1jY5vb6tGqfeNSNsakXIxL2RjTqEgHq+6fy46D\n5by2+ySHj9Zy+GgtySOCuWV2Immj/9XI+BPMp5NuZ0nsQraUb2dXxX6ePvQCLxZs4rq4OcyLm43D\ndvmdgb3dQA345Q92GCYZGRnk5+fT3NxMa2srOTk5TJ061dNliYiIuI3JZCIlMZTv3DWZH9ybyaTk\nCI6dOcvjL+bxk6f3s7+khr6+f30jEe4Xxp1jP8Gjsx/ippHX0+fq47UTr/PDXT/lpaOv0tjR5MFP\n4xlu2wemoKCAVatWcebMGaxWK1FRUcyePZtdu3Zx+PBh0tLSmDRpEt/73vfYvHkza9euxWQysXz5\ncpYuXTrge2sfmGuTsjEm5WJcysa4LpVNec05Nu0+yf6SGlwuiA7z5+ZZicyYEIXVcuF8Q0dPBzsr\n9vFWeTZNnWcxm8xMj5rC4sT5RDuihvGTuJc2shsCXfDGpWyMSbkYl7IxroGyqW5oY9OeMnYXVNHb\n5yIi2JebZiQwNz0G2/vWf/b09bC/6hBvnHqb6rYaADIiUlmceB2jghPd/jncTQ3MEOiCNy5lY0zK\nxbiUjXENJpv6sx1s3neK7bkVdPf0ERxg54ZpCVw3ORZf+4VLWPtcfeTXFfF62TZONp8CYEzIaBYn\nXseEsHFeewu2fS5nigAACy5JREFUGpgh0AVvXMrGmJSLcSkb4xpKNmdbu3h9/ym25pyho6sXh6+V\nxVPjuX5qHA5f2wXP7T888h1eL9tGUcMRAEYExLAk4TomO9O97hZsNTBDoAveuJSNMSkX41I2xvVh\nsmnt6GbLgdO8caCc1o4efO0WFkwZwZJpCQQ7Lr6lurylgjdPbeNgdS4uXIT7hrEoYR4zY6Zht9gu\n8RuMRw3MEOiCNy5lY0zKxbiUjXF9lGw6unrYdqiCf+w7xdnWLmxWM/MyYrlpRgJhQb4XPb+uvZ43\nT21nT+V+uvt6CLA5zh9h4G/wW7DVwAyBLnjjUjbGpFyMS9kY15XIprunlx15lfxtzynqmzuwmE3M\nmhjNzTMTiQq7uDFp7mphW/lOtp/ZRXtPBz4WO3NHzGRhfBYhPsEfqRZ3UQMzBLrgjUvZGJNyMS5l\nY1xXMpue3j72vntwZFVDGyYTTEtxcsuskcQ5Lz7Cp72ng50Ve3nr1HbOdrVgMVmYET2FRQnziXI4\nL/EbPEcNzBDogjcuZWNMysW4lI1xuSObvj4XB0treW3XScprzgFcdN7Se3X39bCv6iBvnnqbmrY6\nTJjIiExlSeICEoPir2htH5YamCHQBW9cysaYlItxKRvjcmc2LpeLvOP1vLb7JMfPNAMwYWQot8wa\nybiEkItuqe5z9ZFbW8jrZVs51XIagLGhySxJuI6UsDEevQV7oAbG42chiYiIyJVjMpnISI4gPSmc\nI6eaeG33SYpONlJ0svGS5y2ZTWYmO9OYFDmR0sbjvF62lZLGo5Q2HiM+IJbFiQuY7EzDbPL46UMX\n0AzM++h/LMalbIxJuRiXsjGu4c7meMVZNu0q4/Cx/sOTE5wB3Dx7JJljIzGbL55hOdV8mjdObeNQ\nTT4uXET4hbMoYT4zozOxDeMt2PoKaQh0wRuXsjEm5WJcysa4PJXNUM5bAqhpq2PLqbfZU3mAHlcv\ngfYAFsZlkRU3Ez+rn9vrVQMzBLrgjUvZGJNyMS5lY1yezmYo5y0BnO1sZmv5DrLP7KGjtwNfiy9Z\nI2ayIH4uwT4XLxC+UtTADIGnB5VcnrIxJuViXMrGuIySzVDOWwJo72kn+8we3irPpqXrHFaThRtH\nXs9Noxa5pT41MENglEElF1M2xqRcjEvZGJfRshnKeUsA3b3d7K06yJby7YT5hPK1yV9wS11qYIbA\naINK/kXZGJNyMS5lY1xGzWao5y25m26jFhERkQ/k8LWxdO4olkyPP3/e0t/3nOLNA6cHPG/JE9TA\niIiIyAV87VZunJHA9Zkjzp+3tOXgabYdOjPgeUvDSQ2MiIiIXJLNamHBlDiyMmLPn7e0I6+SnfmV\nA563NBzUwIiIiMiArBYzc9JimJUaff68pX3FNewrruH6zDjuWTx2+Gsa9t8oIiIiXslsNjEtxcnU\ncZHkHa9n895TtLR1eaQWNTAiIiIyJP88bykjOcJjNRjrZCYRERGRQVADIyIiIl5HDYyIiIh4HTUw\nIiIi4nXUwIiIiIjXUQMjIiIiXkcNjIiIiHgdNTAiIiLiddTAiIiIiNdRAyMiIiJeRw2MiIiIeB01\nMCIiIuJ11MCIiIiI1zG5XC6Xp4sQERERGQrNwIiIiIjXUQMjIiIiXkcNjIiIiHgdNTAiIiLiddTA\niIiIiNdRAyMiIiJeRw3Me/z0pz9l2bJl3HXXXeTl5Xm6HHmPxx57jGXLlnHbbbfx+uuve7oceY+O\njg4WLVrEyy+/7OlS5D02btzI0qVL+dSnPsW2bds8XY4Ara2t3H///axYsYK77rqL7OxsT5fk1aye\nLsAo9u3bR1lZGevXr+f48eOsXLmS9evXe7osAfbs2cPRo0dZv349jY2NfPKTn2TJkiWeLkve9eST\nTxIcHOzpMuQ9GhsbWb16NS+99BJtbW38+te/5rrrrvN0Wde8v/zlL4waNYoHHniA6upqPvOZz7B5\n82ZPl+W11MC8a/fu3SxatAiApKQkzp49y7lz5wgICPBwZTJt2jTS09MBCAoKor29nd7eXiwWi4cr\nk+PHj3Ps2DH942gwu3fvZtasWQQEBBAQEMCjjz7q6ZIECA0N5ciRIwA0NzcTGhrq4Yq8m75Celdd\nXd0FgyksLIza2loPViT/ZLFY8Pf3B2DDhg3MmzdPzYtBrFq1igcffNDTZcj7nD59mo6ODr785S9z\n9913s3v3bk+XJMDNN99MRUUFixcvZvny5Xz/+9/3dEleTTMwl6ETFoznzTffZMOGDfz+97/3dCkC\nvPLKK0yaNIn4+HhPlyKX0NTUxBNPPEFFRQX33nsvW7duxWQyebqsa9pf//pXYmNjWbt2LSUlJaxc\nuVJrxz4CNTDvcjqd1NXVnf9zTU0NkZGRHqxI3is7O5unnnqK3/3udwQGBnq6HAG2bdtGeXk527Zt\no6qqCrvdTnR0NLNnz/Z0ade88PBwJk+ejNVqJSEhAYfDQUNDA+Hh4Z4u7ZqWk5PD3LlzAUhJSaGm\npkZfh38E+grpXXPmzOEf//gHAIWFhTidTq1/MYiWlhYee+wxfvOb3xASEuLpcuRdjz/+OC+99BIv\nvPACd9xxB/fdd5+aF4OYO3cue/bsoa+vj8bGRtra2rTewgASExPJzc0F4MyZMzgcDjUvH4FmYN41\nZcoUUlNTueuuuzCZTDz88MOeLkne9be//Y3Gxka++c1vnv/ZqlWriI2N9WBVIsYVFRXFDTfcwJ13\n3gnAD3/4Q8xm/X/V05YtW8bKlStZvnw5PT09PPLII54uyauZXFrsISIiIl5GLbmIiIh4HTUwIiIi\n4nXUwIiIiIjXUQMjIiIiXkcNjIiIiHgdNTAi4lanT59m4sSJrFix4vwpvA888ADNzc2Dfo8VK1bQ\n29s76Od/+tOfZu/evR+mXBHxEmpgRMTtwsLCWLduHevWreP555/H6XTy5JNPDvr169at04ZfInIB\nbWQnIsNu2rRprF+/npKSElatWkVPTw/d3d38+Mc/ZsKECaxYsYKUlBSKi4t55plnmDBhAoWFhXR1\ndfGjH/2Iqqoqenp6uPXWW7n77rtpb2/nW9/6Fo2NjSQmJtLZ2QlAdXU13/nOdwDo6Ohg2bJl3H77\n7Z786CJyhaiBEZFh1dvbyxtvvEFmZibf/e53Wb16NQkJCRcdbufv78+zzz57wWvXrVtHUFAQP//5\nz+no6OBjH/sYWVlZ7Nq1C19fX9avX09NTQ3XX389AH//+98ZPXo0P/nJT+js7OTFF18c9s8rIu6h\nBkZE3K6hoYEVK1YA0NfXx9SpU7ntttv41a9+xQ9+8IPzzzt37hx9fX1A//Ee75ebm8unPvUpAHx9\nfZk4cSKFhYWUlpaSmZkJ9B/MOnr0aACysrJ47rnnePDBB5k/fz7Lli1z6+cUkeGjBkZE3O6fa2De\nq6WlBZvNdtHP/8lms130M5PJdMGfXS4XJpMJl8t1wVk//2yCkpKS2LRpE/v372fz5s0888wzPP/8\n8x/144iIAWgRr4h4RGBgIHFxcbz99tsAnDhxgieeeGLA12RkZJCdnQ1AW1sbhYWFpKamkpSUxKFD\nhwCorKzkxIkTALz66qvk5+cze/ZsHn74YSorK+np6XHjpxKR4aIZGBHxmFWrVvGf//mf/Pa3v6Wn\np4cHH3xwwOevWLGCH/3oR9xzzz10dXVx3333ERcXx6233spbb73F3XffTVxcHGlpaQAkJyfz8MMP\nY7fbcblcfOELX8Bq1V97IlcDnUYtIiIiXkdfIYmIiIjXUQMjIiIiXkcNjIiIiHgdNTAiIiLiddTA\niIiIiNdRAyMiIiJeRw2MiIiIeB01MCIiIuJ1/j9gG9p5sCMWvwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "c6diezCSeH4Y", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Evaluate on Test Data\n", + "\n", + "**Confirm that your validation performance results hold up on test data.**\n", + "\n", + "Once you have a model you're happy with, evaluate it on test data to compare that to validation performance.\n", + "\n", + "Reminder, the test data set is located [here](https://download.mlcc.google.com/mledu-datasets/california_housing_test.csv)." + ] + }, + { + "metadata": { + "id": "icEJIl5Vp51r", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "d53ffbe5-e2f1-475f-80b6-af94d8bd75a4" + }, + "cell_type": "code", + "source": [ + "california_housing_test_data = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_test.csv\", sep=\",\")\n", + "\n", + "# YOUR CODE HERE\n", + "test_examples = preprocess_features(california_housing_test_data)\n", + "test_targets = preprocess_targets(california_housing_test_data)\n", + "\n", + "predict_testing_input_fn = lambda: my_input_fn(test_examples, \n", + " test_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + "test_predictions = dnn_regressor.predict(input_fn=predict_testing_input_fn)\n", + "test_predictions = np.array([item['predictions'][0] for item in test_predictions])\n", + "\n", + "root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(test_predictions, test_targets))\n", + "\n", + "print(\"Final RMSE (on test data): %0.2f\" % root_mean_squared_error)" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Final RMSE (on test data): 103.08\n" + ], + "name": "stdout" + } + ] + } + ] +} \ No newline at end of file From a24dbeb82b6bdb79d35dd63637dde4981c4e6bb9 Mon Sep 17 00:00:00 2001 From: Amit Rai <42401957+ardev472@users.noreply.github.com> Date: Sun, 17 Feb 2019 21:59:03 +0530 Subject: [PATCH 09/11] Created using Colaboratory --- sparsity_and_l1_regularization.ipynb | 1102 ++++++++++++++++++++++++++ 1 file changed, 1102 insertions(+) create mode 100644 sparsity_and_l1_regularization.ipynb diff --git a/sparsity_and_l1_regularization.ipynb b/sparsity_and_l1_regularization.ipynb new file mode 100644 index 0000000..d69b794 --- /dev/null +++ b/sparsity_and_l1_regularization.ipynb @@ -0,0 +1,1102 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "sparsity_and_l1_regularization.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "yjUCX5LAkxAX" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "g4T-_IsVbweU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Sparsity and L1 Regularization" + ] + }, + { + "metadata": { + "id": "g8ue2FyFIjnQ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Calculate the size of a model\n", + " * Apply L1 regularization to reduce the size of a model by increasing sparsity" + ] + }, + { + "metadata": { + "id": "ME_WXE7cIjnS", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "One way to reduce complexity is to use a regularization function that encourages weights to be exactly zero. For linear models such as regression, a zero weight is equivalent to not using the corresponding feature at all. In addition to avoiding overfitting, the resulting model will be more efficient.\n", + "\n", + "L1 regularization is a good way to increase sparsity.\n", + "\n" + ] + }, + { + "metadata": { + "id": "fHRzeWkRLrHF", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "\n", + "Run the cells below to load the data and create feature definitions." + ] + }, + { + "metadata": { + "id": "pb7rSrLKIjnS", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "3V7q8jk0IjnW", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Create a boolean categorical feature representing whether the\n", + " # median_house_value is above a set threshold.\n", + " output_targets[\"median_house_value_is_high\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] > 265000).astype(float)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "pAG3tmgwIjnY", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1205 + }, + "outputId": "16c2eac6-4041-46b0-f982-af636c1147df" + }, + "cell_type": "code", + "source": [ + "# Choose the first 12000 (out of 17000) examples for training.\n", + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "\n", + "# Choose the last 5000 (out of 17000) examples for validation.\n", + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "\n", + "# Double-check that we've done the right thing.\n", + "print(\"Training examples summary:\")\n", + "display.display(training_examples.describe())\n", + "print(\"Validation examples summary:\")\n", + "display.display(validation_examples.describe())\n", + "\n", + "print(\"Training targets summary:\")\n", + "display.display(training_targets.describe())\n", + "print(\"Validation targets summary:\")\n", + "display.display(validation_targets.describe())" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 35.6 -119.6 28.6 2624.1 535.0 \n", + "std 2.1 2.0 12.6 2068.5 402.5 \n", + "min 32.5 -124.3 1.0 2.0 1.0 \n", + "25% 33.9 -121.8 18.0 1468.0 297.0 \n", + "50% 34.2 -118.5 29.0 2127.0 433.0 \n", + "75% 37.7 -118.0 37.0 3138.2 648.0 \n", + "max 42.0 -114.6 52.0 32054.0 5290.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1422.3 497.8 3.9 2.0 \n", + "std 1111.7 367.4 1.9 1.2 \n", + "min 3.0 1.0 0.5 0.1 \n", + "25% 790.0 282.0 2.6 1.5 \n", + "50% 1165.0 409.0 3.5 1.9 \n", + "75% 1720.0 606.0 4.8 2.3 \n", + "max 35682.0 5050.0 15.0 55.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean35.6-119.628.62624.1535.01422.3497.83.92.0
std2.12.012.62068.5402.51111.7367.41.91.2
min32.5-124.31.02.01.03.01.00.50.1
25%33.9-121.818.01468.0297.0790.0282.02.61.5
50%34.2-118.529.02127.0433.01165.0409.03.51.9
75%37.7-118.037.03138.2648.01720.0606.04.82.3
max42.0-114.652.032054.05290.035682.05050.015.055.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 35.6 -119.6 28.5 2690.6 550.1 \n", + "std 2.2 2.0 12.6 2426.2 463.8 \n", + "min 32.5 -124.3 2.0 25.0 5.0 \n", + "25% 33.9 -121.8 18.0 1443.8 295.8 \n", + "50% 34.2 -118.5 29.0 2127.0 435.0 \n", + "75% 37.7 -118.0 37.0 3185.2 650.2 \n", + "max 41.8 -114.3 52.0 37937.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1447.1 509.4 3.9 2.0 \n", + "std 1230.2 422.8 1.9 1.0 \n", + "min 13.0 2.0 0.5 0.0 \n", + "25% 789.8 280.8 2.6 1.5 \n", + "50% 1172.0 408.0 3.5 1.9 \n", + "75% 1723.2 605.0 4.7 2.3 \n", + "max 28566.0 6082.0 15.0 26.5 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean35.6-119.628.52690.6550.11447.1509.43.92.0
std2.22.012.62426.2463.81230.2422.81.91.0
min32.5-124.32.025.05.013.02.00.50.0
25%33.9-121.818.01443.8295.8789.8280.82.61.5
50%34.2-118.529.02127.0435.01172.0408.03.51.9
75%37.7-118.037.03185.2650.21723.2605.04.72.3
max41.8-114.352.037937.06445.028566.06082.015.026.5
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Training targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value_is_high\n", + "count 12000.0\n", + "mean 0.2\n", + "std 0.4\n", + "min 0.0\n", + "25% 0.0\n", + "50% 0.0\n", + "75% 0.0\n", + "max 1.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value_is_high
count12000.0
mean0.2
std0.4
min0.0
25%0.0
50%0.0
75%0.0
max1.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value_is_high\n", + "count 5000.0\n", + "mean 0.2\n", + "std 0.4\n", + "min 0.0\n", + "25% 0.0\n", + "50% 0.0\n", + "75% 0.0\n", + "max 1.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value_is_high
count5000.0
mean0.2
std0.4
min0.0
25%0.0
50%0.0
75%0.0
max1.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "gHkniRI1Ijna", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "bLzK72jkNJPf", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def get_quantile_based_buckets(feature_values, num_buckets):\n", + " quantiles = feature_values.quantile(\n", + " [(i+1.)/(num_buckets + 1.) for i in range(num_buckets)])\n", + " return [quantiles[q] for q in quantiles.keys()]" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "al2YQpKyIjnd", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns():\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\"\n", + "\n", + " bucketized_households = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"households\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"households\"], 10))\n", + " bucketized_longitude = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"longitude\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"longitude\"], 50))\n", + " bucketized_latitude = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"latitude\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"latitude\"], 50))\n", + " bucketized_housing_median_age = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"housing_median_age\"),\n", + " boundaries=get_quantile_based_buckets(\n", + " training_examples[\"housing_median_age\"], 10))\n", + " bucketized_total_rooms = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"total_rooms\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"total_rooms\"], 10))\n", + " bucketized_total_bedrooms = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"total_bedrooms\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"total_bedrooms\"], 10))\n", + " bucketized_population = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"population\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"population\"], 10))\n", + " bucketized_median_income = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"median_income\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"median_income\"], 10))\n", + " bucketized_rooms_per_person = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"rooms_per_person\"),\n", + " boundaries=get_quantile_based_buckets(\n", + " training_examples[\"rooms_per_person\"], 10))\n", + "\n", + " long_x_lat = tf.feature_column.crossed_column(\n", + " set([bucketized_longitude, bucketized_latitude]), hash_bucket_size=1000)\n", + "\n", + " feature_columns = set([\n", + " long_x_lat,\n", + " bucketized_longitude,\n", + " bucketized_latitude,\n", + " bucketized_housing_median_age,\n", + " bucketized_total_rooms,\n", + " bucketized_total_bedrooms,\n", + " bucketized_population,\n", + " bucketized_households,\n", + " bucketized_median_income,\n", + " bucketized_rooms_per_person])\n", + " \n", + " return feature_columns" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "hSBwMrsrE21n", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Calculate the Model Size\n", + "\n", + "To calculate the model size, we simply count the number of parameters that are non-zero. We provide a helper function below to do that. The function uses intimate knowledge of the Estimators API - don't worry about understanding how it works." + ] + }, + { + "metadata": { + "id": "e6GfTI0CFhB8", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def model_size(estimator):\n", + " variables = estimator.get_variable_names()\n", + " size = 0\n", + " for variable in variables:\n", + " if not any(x in variable \n", + " for x in ['global_step',\n", + " 'centered_bias_weight',\n", + " 'bias_weight',\n", + " 'Ftrl']\n", + " ):\n", + " size += np.count_nonzero(estimator.get_variable_value(variable))\n", + " return size" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "XabdAaj67GfF", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Reduce the Model Size\n", + "\n", + "Your team needs to build a highly accurate Logistic Regression model on the *SmartRing*, a ring that is so smart it can sense the demographics of a city block ('median_income', 'avg_rooms', 'households', ..., etc.) and tell you whether the given city block is high cost city block or not.\n", + "\n", + "Since the SmartRing is small, the engineering team has determined that it can only handle a model that has **no more than 600 parameters**. On the other hand, the product management team has determined that the model is not launchable unless the **LogLoss is less than 0.35** on the holdout test set.\n", + "\n", + "Can you use your secret weapon—L1 regularization—to tune the model to satisfy both the size and accuracy constraints?" + ] + }, + { + "metadata": { + "id": "G79hGRe7qqej", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Task 1: Find a good regularization coefficient.\n", + "\n", + "**Find an L1 regularization strength parameter which satisfies both constraints — model size is less than 600 and log-loss is less than 0.35 on validation set.**\n", + "\n", + "The following code will help you get started. There are many ways to apply regularization to your model. Here, we chose to do it using `FtrlOptimizer`, which is designed to give better results with L1 regularization than standard gradient descent.\n", + "\n", + "Again, the model will train on the entire data set, so expect it to run slower than normal." + ] + }, + { + "metadata": { + "id": "1Fcdm0hpIjnl", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_linear_classifier_model(\n", + " learning_rate,\n", + " regularization_strength,\n", + " steps,\n", + " batch_size,\n", + " feature_columns,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " regularization_strength: A `float` that indicates the strength of the L1\n", + " regularization. A value of `0.0` means no regularization.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " feature_columns: A `set` specifying the input feature columns to use.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearClassifier` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 7\n", + " steps_per_period = steps / periods\n", + "\n", + " # Create a linear classifier object.\n", + " my_optimizer = tf.train.FtrlOptimizer(learning_rate=learning_rate, l1_regularization_strength=regularization_strength)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_classifier = tf.estimator.LinearClassifier(\n", + " feature_columns=feature_columns,\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " \n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"LogLoss (on validation data):\")\n", + " training_log_losses = []\n", + " validation_log_losses = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_classifier.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions.\n", + " training_probabilities = linear_classifier.predict(input_fn=predict_training_input_fn)\n", + " training_probabilities = np.array([item['probabilities'] for item in training_probabilities])\n", + " \n", + " validation_probabilities = linear_classifier.predict(input_fn=predict_validation_input_fn)\n", + " validation_probabilities = np.array([item['probabilities'] for item in validation_probabilities])\n", + " \n", + " # Compute training and validation loss.\n", + " training_log_loss = metrics.log_loss(training_targets, training_probabilities)\n", + " validation_log_loss = metrics.log_loss(validation_targets, validation_probabilities)\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, validation_log_loss))\n", + " # Add the loss metrics from this period to our list.\n", + " training_log_losses.append(training_log_loss)\n", + " validation_log_losses.append(validation_log_loss)\n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"LogLoss\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"LogLoss vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_log_losses, label=\"training\")\n", + " plt.plot(validation_log_losses, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_classifier" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "9H1CKHSzIjno", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 707 + }, + "outputId": "1d7153eb-fb4a-449e-9d83-09b52e2e5466" + }, + "cell_type": "code", + "source": [ + "linear_classifier = train_linear_classifier_model(\n", + " learning_rate=0.1,\n", + " # TWEAK THE REGULARIZATION VALUE BELOW\n", + " regularization_strength=0.1,\n", + " steps=500,\n", + " batch_size=100,\n", + " feature_columns=construct_feature_columns(),\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)\n", + "print(\"Model size:\", model_size(linear_classifier))" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "LogLoss (on validation data):\n", + " period 00 : 0.31\n", + " period 01 : 0.28\n", + " period 02 : 0.27\n", + " period 03 : 0.26\n", + " period 04 : 0.25\n", + " period 05 : 0.25\n", + " period 06 : 0.25\n", + "Model training finished.\n", + "Model size: 790\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGACAYAAABY5OOEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8lfX5//HXfUb23mQSkpCEPUQI\nCUtWwigqMkRBtOrX1lasXUqroharVWm1w+/PjbgYIihT9l5hkz0gJITsvcc5vz9oY/kKISfkzjlJ\nrufj0cejOSf3ua68vWMuP/dSjEajESGEEEKILkpj7gaEEEIIIW6HDDNCCCGE6NJkmBFCCCFElybD\njBBCCCG6NBlmhBBCCNGlyTAjhBBCiC5Nhhkhurnw8HDy8vI65LNycnLo169fh3yWOSxcuJCYmBhi\nY2OZOnUq06ZNY+XKlSZ/zrlz5/jpT39q8nb9+vUjJyfH5O2EEK3TmbsBIYToTL/97W+ZNWsWAIWF\nhcybN4/g4GDGjh3b5s8YNGgQH374oVotCiFMJCszQvRQ9fX1vPDCC0ydOpW4uDhee+01mpubAThw\n4ADjxo0jLi6O1atXM2zYsFuuKJSVlbFkyZKWFY/33nuv5b2//vWvTJ06lalTp7Jo0SLy8/Nbff0/\n9u3bx8yZM697bdasWezfv5/jx49zzz33MG3aNOLi4ti6davJGXh6ehIbG8uhQ4cASE9P58EHH2Tq\n1KnMnDmT8+fPA3Ds2DHmz5/PkiVL+PWvf82xY8eYPHnyLXPct28fkydPJi4ujg8++KClbnV1NU8+\n+SRxcXFMnDiRP/7xjzQ2NprcvxDiGhlmhOihVq5cSV5eHps3b+abb74hPj6eTZs20dzczLPPPsvL\nL7/M1q1buXTpErW1tbf8vBUrVuDs7Mz27dv54osv+PLLL4mPjyctLY1t27axadMmtm/fzuTJkzly\n5MhNX/9vUVFR5OXlkZ2dDUB2djZ5eXmMHj2a119/neeee44tW7bw7rvvsnPnznbl0NTUhJWVFQaD\ngSeffJJZs2axfft2li1bxs9//nOampoASExMZP78+bz11lttzvEPf/gDL774Ilu3bkWj0bQMORs2\nbMDJyYmtW7eyfft2tFot6enp7epfCCHDjBA91t69e5k7dy46nQ4bGxtmzpzJoUOHuHTpEg0NDYwb\nNw64dp6JwWC45eft27ePBQsWAODi4sLkyZM5dOgQTk5OlJSU8N1331FeXs7ChQu5++67b/r6f7Oy\nsmLChAns3r0bgJ07dzJp0iR0Oh3u7u5s2LCBjIwMevfu/aMhoy2ys7PZtm0bkydPJjMzk+LiYu67\n7z4Ahg8fjpubG6dPnwbAxsaGqKgok3OMiYkB4J577mnZ5j+fe/DgQQwGAy+99BKRkZEm9y+EuEaG\nGSF6qJKSEpydnVu+dnZ2pri4mPLycpycnFpe9/LyavPn/fd2Tk5OFBcX4+3tzd///ne2bdvG+PHj\nefzxx7l69epNX/+/pk6det0wM23aNABeffVVbG1tefjhh5kyZQrbtm1rU59vvPFGywnAzzzzDM8+\n+yyDBg2ioqKCuro64uLiiI2NJTY2luLiYsrKylryudnPfbMcHRwcrnv9P+Li4li8eDFvv/02UVFR\nvPTSSzQ0NLSpfyHEj8kwI0QP5eHh0fKHGq6d8+Lh4YGDgwM1NTUtrxcVFd3W5wGMGjWK9957j0OH\nDtGrVy/efPPNVl//b2PGjCE5OZlLly5x6dIlRo0a1VLv+eefZ//+/bzwwgs899xzVFdX37LP3/72\nt2zbto3t27ezdu3aluHIy8sLe3t7tm3b1vK/gwcPtpwbY+rP7ezsTFVVVcvrJSUl1203f/581q5d\ny5YtW0hISGDDhg237F0IcWMyzAjRQ40fP55169bR3NxMTU0NGzduZNy4cfTu3ZumpiaOHTsGwJdf\nfomiKG36vNWrVwPX/nDv2LGD8ePHc/DgQV566SUMBgN2dnZERESgKMpNX/+/rKysiImJ4Y033mDi\nxIlotVoaGxtZuHAhBQUFAPTv3x+dTodG0/5/pfn5+eHj49OywlNSUsIzzzxz3WB3s5/7RjkGBgai\n1Wpbcly/fn3Lz/fPf/6TdevWAeDt7Y2/v3+bMhZC3Jhcmi1ED7Bw4UK0Wm3L13/6059YuHAh2dnZ\nTJ8+HUVRiI2NJS4uDkVRWLZsGc899xyOjo48/PDDaDQaFEXBaDTS3NxMbGzsdZ///vvv8/TTT7Ns\n2TJiY2PRaDQ8/vjjDBo0iPr6ejZv3szUqVOxsrLCzc2NV199FS8vrxu+fiNTp07ll7/8JZ988gkA\ner2e++67j8WLFwOg0Wj44x//iK2tLTt27GD37t38+c9/NikjRVFYsWIFy5Yt429/+xsajYaHH34Y\nOzu7W2Z7sxxfeeUVli5dipWVFffee2/LZ82aNYvnnnuO999/H0VRGDx4cMvl4kII0ylGo9Fo7iaE\nEJarpqaGoUOHEh8fj6Ojo7nbEUKIH5HDTEKIH5k9ezZbtmwBYMuWLYSEhMggI4SwWLIyI4T4kfj4\neF5++WXq6+uxt7dn2bJlDBo0yNxtCSHEDckwI4QQQoguTQ4zCSGEEKJLk2FGCCGEEF1al780u7Cw\nUrXPdnW1o7S09XtMiOtJZqaTzEwnmZlOMjOdZGY6NTPz9Lz5RQiyMtMKnU57628S15HMTCeZmU4y\nM51kZjrJzHTmykyGGSGEEEJ0aTLMCCGEEKJLk2FGCCGEEF2aDDNCCCGE6NJkmBFCCCFElybDjBBC\nCCG6NBlmhBBCCNGlyTAjhBBCdGN79+5q0/e9/fZb5OZeuen7zz77TEe11OFkmBFCCCG6qatXc9m5\nc3ubvnfJkl/j6+t30/dfe21FR7XV4br84wyEEEIIcWMrVrxOUlICY8aMYMqUOK5ezeVvf/sXf/7z\nyxQWFlBbW8sjjzxOdPQYfvGLx3nmmd+xZ88uqquruHw5iytXcnjqqV8TFRXN9OkT2bx5F7/4xeOM\nGDGSU6fiKSsr4/XX/4qHhwcvv/w8xcUFRET0Z/funXzzzZZO+zllmBFCCCE6wZrd6ZxILujQzxwR\n4cXcu0Jv+v799y9k/fo1BAeHcPnyJf71rw8oLS3hzjtHERc3gytXcnj++WeJjh5z3XYFBfm8+eY7\nHD16mI0bvyYqKvq69+3t7Xn77Xd5992/s3//bnx9/WloqGfNmjVs2LCFNWu+7NCf81ZkmLmJi+VZ\n1Fu7Y42DuVsRQgghbltkZH8AHB2dSEpK4Ntv16MoGioqyn/0vYMGDQHAy8uLqqqqH70/ePDQlvfL\ny8vJyrrIwIGDAYiKikar7dxnNMkwcxOfJHxJ/fl6nhvxDM7WN39SpxBCCNEWc+8KbXUVRW16vR6A\nHTu2UVFRwT//+QEVFRU8+ujCH33vfw8jRqPxlu8bjUY0mmuvKYqCoigd3X6r5ATgmxgfEENlQzVf\npqy74T9IIYQQwtJpNBqam5uve62srIxevXzRaDTs27ebxsbG267j5+dPSkoiAMePH/1RTbXJMHMT\n4/xH09+rL+eLkjiad9Lc7QghhBAmCwoKJiUlmerqHw4VjR9/F4cPH2DJkp9ha2uLl5cXH3/8/m3V\nGT16DNXV1dx///2cPXsaJyfn223dJIqxiy87FBZWqvfhdg38eusrgMIfRv4KNxtX9Wp1E56ejur+\nM+mGJDPTSWamk8xMJ5m1XUVFOadOxTNnzt0kJmawZMnP+OKLrzu0hqfnzU/5kJWZVnjauzM77CfU\nNdexKmktBqPB3C0JIYQQFsfOzp7du3cyd+5cli79Db/8ZefeYE9OAL6FqF53cLbwAheKk9ifc4Tx\nAdG33kgIIYToQXQ6HS+//GezrWbJyswtKIrCgoj7sNfbsSFjC/k1heZuSQghhBD/RYaZNnC2dmR+\n+L00GhpZlbiaZkPnnqUthBBCiJuTYaaNhnkNYrjXYC5WXGbn5X3mbkcIIYQQ/ybDjAnmhd+Ds5Uj\nmy/uIKcy19ztCCGEEAIZZkxir7djQcR9NBub+TRpNU2GJnO3JIQQQty2++6bSU1NDatWfcKFC+eu\ne6+mpob77pvZ6vZ79+4CYP369ezbt0e1Pm9GhhkTDfCIJNr3Tq5UXWXLxZ3mbkcIIYToMAsXLmbA\ngEEmbXP1ai47d24H4N5772XcuAlqtNYquTS7He4NnUFySRrfZ+1hoEckwc5B5m5JCCGE+JFHHnmA\nV199Cx8fH/LyrvLcc7/G09OL2tpa6urq+NWvfku/fgNavn/58mWMHz+RIUOG8oc//I6GhoaWh04C\nfP/9VtatW41Wq6F37xB+//s/sGLF6yQlJfDxx+9ja6tHr7dl9ux5/Otfb3P+/FmampqZPXsusbHT\n+cUvHmfEiJGcOhVPWVkZr7/+V3x8fG7755Rhph1sdDYsjJzL26ff49Ok1Tw34mmstFbmbksIIYQF\nW5++idMF5zv0M4d6DeTe0Bk3fX/s2AkcOrSf2bPncuDAPsaOnUBISBhjx47n5MkTfP75SpYvf+NH\n223fvpU+fUJ46qlfs2vX9y0rL7W1tbz11t9xdHTkyScfIyMjnfvvX8j69Wt4+OHH+OqrTwA4c+YU\nmZkZvPvuR9TW1vLQQ/MZO3Y8APb29rz99ru8++7f2b9/N3PnLrjtHOQwUzuFuYYwISCGgpoiNmZs\nNXc7QgghxI9cG2YOAHDw4D5iYsaxb98ufvazn/Luu3+nvLz8httdupTJgAGDARg6dHjL605OTjz3\n3K/5xS8eJyvrIuXlZTfcPjk5kSFDhgFga2tL7959yM7OBmDw4KEAeHl5UVVVdcPtTSUrM7dhZp9Y\nEopT2JtziEEe/Ql3M9+j3YUQQli2e0NntLqKooY+fUIoLi4kPz+PyspKDhzYi4eHF88//wrJyYn8\n4x9/u+F2RiNoNAoABsO1Rzg2NjayYsVf+OSTL3B39+B3v3v6pnUVReG/n/zY1NTY8nlarfa/6nTM\n4yFlZeY2WGn1PNRvHhpFw6qkNdQ21Zq7JSGEEOI6UVExvPfevxgzZhzl5WX4+fkDsG/fHpqabnxV\nbmBgEMnJSQCcOhUPQE1NNVqtFnd3D/Lz80hOTqKpqQmNRkNz8/U3k42I6M/p0yf/vV0NV67k4O8f\nqNaPKMPM7QpyCmBq0ARK68tYl/adudsRQgghrjNu3AR27tzO+PETiY2dzurVn/OrXz1J//4DKC4u\nZvPmb3+0TWzsdBISzrNkyc/Izs5CURScnV0YMWIkjz66iI8/fp8FCxbyzjsrCAoKJiUlmXfeeatl\n+8GDhxAeHsGTTz7Gr371JE888QtsbW1V+xkVY0et8ZiJmg+0ausDs5oMTbwZ/w+yq3J5YtBiBnr0\nU60nS2euh4x1ZZKZ6SQz00lmppPMTKdmZp6ejjd9T1ZmOoBOo2NRv/noFC2fJ6+jqqHa3C0JIYQQ\nPYYMMx3E18GHGX2mUtlQxVep33TYSU1CCCGEaJ0MMx1oYuBY+jj35nTBOU7mnzF3O0IIIUSPIMNM\nB9IoGhZGzsVKo2d16gbK6m98/b4QQgghOo4MMx3My86De0JnUNNUy+fJ6+RwkxBCCKEyGWZUMMZv\nFBGuYSQWp3A497i52xFCCCG6NRlmVKAoCg9GzsFWZ8PX6d9RVFti7paEEEKIbkuGGZW42rgwJ2wW\n9c0NrEpajcFoMHdLQgghRLckw4yK7vQZxmDPAaSXXWRv9kFztyOEEEJ0SzLMqEhRFO4PvxcHvT0b\nM7eRV51v7paEEEKIbkeGGZU5Wjlwf8RsmgxNrExcTbOh+dYbCSGEEKLNZJjpBEM8B3CnzzAuV+bw\nfdYec7cjhBBCdCsyzHSSOWGzcLF2ZsulnVyuzDF3O0IIIUS3IcNMJ7HT2/JgxBwMRgOfJq6msbnR\n3C0JIYQQ3YIMM50o0r0vY/yiuFqdz6aL35u7HSGEEKJbkGGmk90TOh0PW3d2Xd5PRtklc7cjhBBC\ndHkyzHQya60ViyLnAfBp0mrqmurN3JEQQgjRtckwcxMJl0pIvVyqymeHuPRmUuA4imqL2ZCxRZUa\nQgghRE8hw8xNfLotmRf+32FKK9VZOZkePJle9t4cuHKEpOJUVWoIIYQQPYEMMzcRe2cg1XVNfL5D\nnUFDr9XzUL/5aBQNnyWvpaaxVpU6QgghRHcnw8xNjBvqR/8+7pxKLSQ+uUCVGgGOfkzrPYmy+nLW\npm1UpYYQQgjR3ckwcxMaReGXc4eg02r4fEcq1XXq3BdmStAEghwDOJ53ijOFF1SpIYQQQnRnMsy0\nws/TgVkxvSmvbmD17nRVamg1Whb1m4tOo+PL5K+pbKhSpY4QQgjRXckwcwtT7wwk0MuBg+euknCp\nRJUaPvbezOoTS1VjNV8mf43RaFSljhBCCNEdyTBzCzqthsXTIlAUWLk1mfoGdZ56PT4ghjCXPpwt\nSuB43ilVagghhBDdkQwzbdDbx4nYOwMpKq/jmwOZqtTQKBoejJyLtdaKtWkbKa0rU6WOEEII0d2o\nOsy8+uqrzJs3j/nz53Pu3Lnr3luzZg1z585l/vz5LFu2rOXQSmvbmNOsmGC8XG3ZEZ/NxasVqtTw\nsHVjduhMapvq+CxprRxuEkIIIdpAtWHm+PHjZGVlsXr1apYvX87y5ctb3qutrWXz5s18/vnnfPXV\nV2RmZnL69OlWtzE3K72WxbERGI3w8ZYkmpoNqtQZ7Xsn/dzDSS5N48CVo6rUEEIIIboT1YaZI0eO\nMGnSJABCQkIoLy+nquralTq2trasXLkSvV5PbW0tVVVVeHp6trqNJYgIcmXsYF9yCqvZcjRLlRqK\novBAxH3Y6Wz5Jn0TBTVFqtQRQgghugvVhpmioiJcXV1bvnZzc6OwsPC673nvvfeYPHkysbGxBAQE\ntGkbc5s7IQRnBys2Hb5EblG1KjVcrJ2ZF34PDYZGViWtwWBUZxVICCGE6A50nVXoRud/PP744yxa\ntIjHHnuM4cOHt2mb/8vV1Q6dTtshPd6Ip6fjj177xZwhLP/4OJ/vTOO1J2PQaJQOrxvrEUNSRTJH\ns09xtPgYsyKndHgNtdwoM9E6ycx0kpnpJDPTSWamM0dmqg0zXl5eFBX9cIikoKAAT09PAMrKykhL\nS2PEiBHY2NgwduxYTp061eo2N1NaWqPOD8C1fyCFhZU/ej3E24E7IryITy5gzffJTBzur0r9e4Jm\nkpCfyurz39LbJhhfBx9V6nSkm2Umbk4yM51kZjrJzHSSmenUzKy1IUm1w0zR0dFs374dgISEBLy8\nvHBwcACgqamJZ599lurqa4dpzp8/T3BwcKvbWJoHJvfF3kbHun0ZFJWr85BIByt7Hoi4jyZjM58m\nfkWToUmVOkIIIURXptrKzLBhw+jfvz/z589HURRefPFF1q9fj6OjI5MnT+bJJ59k0aJF6HQ6wsPD\nmThxIoqi/GgbS+Vsb8W8u8L4aEsSn25P4VdzBqMoHX+4aaBHP6J6jeDI1RNsu7SLGX2mdngNIYQQ\noitTjF38ZiZqLgHearnMaDSyYvUZEi6V8tiMfkQNUOcwUG1THcuPraC8oYLfDH+SIKcAVep0BFmW\nNZ1kZjrJzHSSmekkM9N1u8NMPYGiKCyKjcBKr+HLXWlU1DSoUsdWZ8OifnMxGA2sTFxNQ7M6T/AW\nQgghuiIZZm6Tp4st944Noaq2kS93pqlWp69rKOP9o8mvKeC7zG2q1RFCCCG6GhlmOsCk4f708XXi\nWGI+Z9LVu8ndrJA4vOw82JN9kLTSDNXqCCGEEF2JDDMdQKNRWBwXgVajsGp7CrX16lx1ZKW1YlHk\nPABWJa2hrqlOlTpCCCFEVyLDTAfx93RgelQQpZX1rNur3qpJsHMQU4ImUFxXyvr0TarVEUIIIboK\nGWY60PSo3vh62LPn9BVSs8tUqzMteBJ+Dr04lHucC0VJqtURQgghugIZZjqQXqdhcVwECvDx1mQa\nm5pVqaPT6Hio33y0ipYvktdR3ajeXZCFEEIISyfDTAcL9XNm4nB/8ktq+PbQJdXq+Dn0YkbwFMob\nKlmd8o1qdYQQQghLJ8OMCu4d1wd3Jxu2Hr3M5Xz1brg0MXAswU6BnCw4y8n8s6rVEUIIISyZDDMq\nsLHS8VBsOAajkY+3JNNsMKhSR6vRsqjfPPQaPatTv6G8Xu5UKYQQoueRYUYlA/q4M3qAD1n5lXx/\nIlu1Ol52ntwdOo3qxhq+SF5HF386hRBCCGEyGWZUNH9iGI52ejYcuEh+qXon6Y71iyLcNZQLxUkc\nuRqvWh0hhBDCEskwoyIHWz0PTO5LY5OBlVuTVVs10SgaHoycg43Whq/TvqW4tlSVOkIIIYQlkmFG\nZSMivBgS6kHy5TL2n81VrY6bjSv39f0Jdc31fJa0BoNRnfN0hBBCCEsjw4zKFEXhwSl9sbHSsmZP\nBqWV9arVGuUznIEe/Ugty2BfzmHV6gghhBCWRIaZTuDmZMPcCaHU1jfx2fcpqh1uUhSFBRGzsdfb\nsTFjC/nVBarUEUIIISyJDDOdZOwQX/oGuHA6rYiTKYWq1XGycmR++L00Gpr4NGkNzQZ17kIshBBC\nWAoZZjqJRrn2ZG2dVsNnO1Kpqm1UrdYwr0Hc4T2ESxWX2XF5n2p1hBBCCEsgw0wn8nGzY1ZMbyqq\nG1izO13VWvP63o2zlRNbLu4gp1K9E4+FEEIIc5NhppNNvTOQQG8HDp6/SsLFEtXq2OnteCByDs3G\nZlYmfkWjoUm1WkIIIYQ5yTDTyXRaDQ/HRaJRFFZuS6a+Qb1zWvq7hxPtO5Lc6jy2XNyhWh0hhBDC\nnGSYMYMgH0emjgygqLyObw5kqlrr3tDpuNu4sSNrL5nlWarWEkIIIcxBhhkzmRUdjLerLTvis8nM\nrVCtjo3OhkX95gGwKnE19c0NqtUSQgghzEGGGTOx0mtZHBeB0Qgfb02iqVm9O/aGugRzV8AYCmqL\n2JixRbU6QgghhDnIMGNG4YGujB/iy5XCarYcUfcQ0Mw+U/Gx82JfzmGSS9JUrSWEEEJ0JhlmzOy+\n8aG4OFjx3eFLXCmqVq2OXqtnUb95aBQNnyWtpbapVrVaQgghRGeSYcbM7Gx0LJwaTrPByCdbkzAY\n1HnUAUCQUwCxQXdRWl/GutTvVKsjhBBCdCYZZizA0DBPRkR4kXGlgt2nclStFdt7IgGOfhzNi+dc\nYYKqtYQQQojOIMOMhVgwuS/2Njq+3pdJUbl6h4C0Gi2LIueh0+j4IvlrqhrUO7QlhBBCdAYZZiyE\ns70V8yeGUd/YzKfb1HuyNoCvgw8z+0ylsrGKr1LWq1pLCCGEUJsMMxZk9AAf+ge7ceFiCUcS8lSt\ndVfAGEKcgzldeJ74/DOq1hJCCCHUJMOMBVEUhYemhmOt1/LlzjQqqtW7wZ1G0bAwci5WWitWp26g\nrL5ctVpCCCGEmmSYsTAeLrbcO7YP1XVNfLEzVdVannbu3Bs6ndqmWj5PWieHm4QQQnRJMsxYoInD\n/enj68TxpALOpBWpWivGdxSRbn1JLEnhUO4xVWsJIYQQapBhxgJpNAoPx0Wg1Sis+j6Fmrom1Wop\nisKDkXOw1dnydfomimqLVaslhBBCqEGGGQvl5+nAjNG9Ka2sZ92+DFVruVg7M7fvLBqaG/g0cQ0G\no3rPiRJCCCE6mgwzFmx6VBB+HvbsPX2FlMulqtYa4T2UIZ4DyCi/yJ7sg6rWEkIIITqSDDMWTKfV\nsDguAgX4ZFsKjU3NqtVSFIX54ffiqHfg28xtXK3OV62WEEII0ZFkmLFwIX7OTLzDn/ySGr49dEnV\nWo5WDtwfMZsmQxOfJn5Fs0G94UkIIYToKDLMdAH3ju2Dh7MNW49eJiuvUtVagz37M9JnOJcrr7At\na7eqtYQQQoiOIMNMF2BjpWNRbDgGo5FPtibTbFD3BN05fX+Cq7UL2y7t4nKFug++FEIIIW6XDDNd\nxIBgd6IH+JCVX8n3x7NVrWWrs+XByDkYjAZWJq2msblR1XpCCCHE7ZBhpguZNzEMJzs9Gw5eJL+k\nRtVaEW5hjPUbTV51Pt9d3K5qLSGEEOJ2yDDThTjY6lkwuS+NTQY+2ZqMQeXHD9wdOg1PW3d2Xz5A\netlFVWsJIYQQ7SXDTBczIsKLoWEepGSXsf9srqq1rLVWLOo3D4BViaupa6pXtZ4QQgjRHjLMdDGK\novDglHBsrbWs3ZNOaaW6A0Yf595MChxHUV0J32RsVrWWEEII0R4yzHRBro7WzJkQSm19M599n6L6\n066n95mCr70PB68cJbE4RdVaQgghhKlkmOmixg72JTzAhdNpRcSnFKpaS6/RsajffLSKls+S1lLT\nqO7Jx0IIIYQpZJjpojSKwuK4CPQ6DZ9/n0JVrbqXTwc4+jIteBLlDRWsSf1W1VpCCCGEKWSY6cK8\n3ey4OyaYippGVu9KU73e5MDxBDkFcCL/FGcKzqteTwghhGgLGWa6uCl3BhDk7cihC3lcuFisai2t\nRsuiyHnoNTq+TFlPRYO6j1YQQggh2kKGmS5Oq9Hw8LQINIrCp9tSqGtoUrWej70Xs0KmUdVYzZfJ\n61U/+VgIIYS4FRlmuoFAb0diRwZSVF7HN/vVv7ndOP/RhLn04VxRAsfzTqleTwghhGiNDDPdxE+i\ne+PtZsfO+GwycstVraVRNCyMnIuN1po1qRsprStTtZ4QQgjRGhlmugkrvZbFseEYgU+2JNPUrO6T\ntd1t3ZgdNpO65jo+S1qLwahuPSGEEOJmZJjpRsIDXRk/1I8rRdVsPpKler2oXiMY4B5BcmkaB64c\nVb2eEEIIcSMyzHQzc8aH4OpozabDl7hSWKVqLUVRWBBxH/Y6Ozakb6agRt2b9wkhhBA3IsNMN2Nr\nrWPhlHCaDcZrT9Y2qHu1kbO1E/PC76bB0MiqpDUYDHK4SQghROeSYaYbGhLmwZ2RXmTkVrDrVI7q\n9YZ7D2G412Ayy7P4/Nw3NBuaVa8phBBC/IcMM93Ugkl9sbfRsX5fJkVltarXmxt+Ny7WznyXspM/\nn/gbKSXpqtcUQgghQIaZbsvJ3or7J4VR39jMyu3qP1nbQW/PcyOeZlKfGPKqC3jnzHt8cOEzSupK\nVa0rhBBC6NT88FdffZWzZ88vk7XKAAAgAElEQVSiKApLly5l0KBBLe8dPXqUFStWoNFoCA4OZvny\n5dTW1vL73/+e8vJyGhsbefLJJxkzZoyaLXZrUf19OJqQz4WLJRy+kEf0wF6q1nOwsufxEQ8w3G0Y\na1I3cLrgHAlFSUztfRcTA8ai1+pVrS+EEKJnUm1l5vjx42RlZbF69WqWL1/O8uXLr3v/hRde4J13\n3uGrr76iurqaAwcO8M033xAcHMyqVat4++23f7SNMI2iKCyKDcdar+WrXWlUVDd0St1AJ3+eGf5z\nFkbOxVpnzXeZ2/nT8RWcL0rslPpCCCF6FtWGmSNHjjBp0iQAQkJCKC8vp6rqh0uF169fj4+PDwBu\nbm6Ulpbi6upKWdm1u8lWVFTg6uqqVns9hoezLbPH9aG6rokvdqZ2Wl2NomFUrzt4cdRvuStgDCV1\npfzvuU/419mP5BJuIYQQHUq1YaaoqOi6YcTNzY3Cwh/+iDk4OABQUFDAoUOHGDduHNOnTyc3N5fJ\nkyfz4IMP8vvf/16t9nqUu4b5E+LnxPGkAk6nde4gYauzZXbYTJ4b8TR9XUNJKE5m+bEVbMzYSn1z\n56wUCSGE6N5UPWfmv93oBNTi4mKeeOIJXnzxRVxdXdm4cSO+vr58+OGHJCcns3TpUtavX9/q57q6\n2qHTadVqG09PR9U+uzM9s2A4S1bs4/MdaUQPDcDeVr3zV26UmaenI4N6P8OxnNOsPLOO77P2cLLg\nDAuH3EtUwHAURVGtn66gu+xnnUkyM51kZjrJzHTmyEy1YcbLy4uioqKWrwsKCvD09Gz5uqqqisce\ne4ynn36amJgYAE6dOtXy/yMiIigoKKC5uRmt9ubDSmlpjUo/wbV/IIWFlap9fmey1SrMiApiw8GL\n/O+6MyyKjVClzq0yC7EJ4w8jfs33WXvYeXkffzvyIZuT9jCn7yz8HNQ9QdlSdaf9rLNIZqaTzEwn\nmZlOzcxaG5JUO8wUHR3N9u3bAUhISMDLy6vl0BLAa6+9xkMPPcTYsWNbXgsKCuLs2bMAXLlyBXt7\n+1YHGWGaaVFB+Hnas/dMLimXzXfJtLXWipl9pvLHO3/NQI9I0soyee3E26xN3UhNo/r3xBFCCNG9\nKEYVb0Dy5ptvEh8fj6IovPjiiyQmJuLo6EhMTAwjRoxg6NChLd87Y8YMZsyYwdKlSykuLqapqYkl\nS5YQFRXVag01p+buOJVn5lawfFU8Xi62vPTInVjpO3ZYbE9mCcXJrEv9loLaIhz09swKmcaoXsPR\nKD3jNkjdcT9Tm2RmOsnMdJKZ6cy1MqPqMNMZZJgx3Ve70vj+RDbTRgVx3/iQDv3s9mbWaGhiz+UD\nbM3aRUNzA0FOAczrezdBTgEd2p8l6q77mZokM9NJZqaTzEzX7Q4zCct1z5g+eDjbsO3YZbLyLOMX\nVa/RMaX3BF4Y+RuGew0mqyKbN+L/wedJa6lsUPfp30IIIbo2GWZ6IGsrLQ/FRWAwGvl4axLNFvSk\na1cbFx4Z8ABLhv4Pvey9OXz1BC8dfYO92YfkAZZCCCFuSIaZHqp/bzeiB/pwOb+K7cezzd3Oj/R1\nDeHZEUuYEzYLMLI2bSOvnXibtNIMc7cmhBDCwsgw04PNuysMJ3srNh68SH6Jepe4t5dWo2V8QDQv\njvodo3uN4Gp1Pn87/f/46MLnlNaVmbs9IYQQFkKGmR7MwVbPg5P70thk4JOtyRgs9FxwRysHHoic\nw2/ueJIgxwBOFpzl5WNv8v2lPTQamszdnhBCCDNr8zDzn+cqFRUVER8fj8GCzrMQ7Tc83JOhYR6k\nZJex/0yuudtpVW+nQH5zx5M8EDEHK42ejZlbefXYCi4UJZm7NSGEEGbUpmHmlVdeYevWrZSVlTF/\n/nxWrVrFsmXLVG5NdAZFUXhwSji21jrW7k2ntLLe3C21SqNoGO07ghdH/Y7x/tEU1ZXw7rmP+d9z\nH1NYU2zu9oQQQphBm4aZxMRE5syZw9atW7nnnnt4++23ycrKUrs30UlcHa2Zd1cotfXNrNqecsPn\naFkaO70tc/rO4tkRSwhz6cP5oiT+dPwtvsvcToM8wFIIIXqUNg0z//njtnfvXu666y4AGhrkD0Z3\nMmZQLyICXTiTXsSJ5AJzt9Nmfg69WDL0f3ik/wIc9PZsu7SLl4++yamCc11iKBNCCHH72jTMBAcH\nM23aNKqrq4mMjGTDhg04Ozur3ZvoRIqi8FBcBHqdhi92pFJV22jultpMURSGew/h+ZG/YUrQBCob\nKvnwwme8c+Z9rlbnm7s9IYQQKmvT4wyam5tJTU0lJCQEKysrEhISCAgIwMnJqTN6bJU8zqBjbT2W\nxdo9GYwe4MOjM/qZvL0lZFZQU8i6tO9IKE5Go2gY7x/NtOBJ2OpszdrXzVhCZl2NZGY6ycx0kpnp\nLPpxBklJSeTl5WFlZcVf//pX/vKXv5CamtphDQrLMWVEAEE+jhy+kMeFzK55Qq2XnSc/H/wITwxa\njJuNK7uzD/DS0Tc4ejUeg1GuwhNCiO6mTcPMn/70J4KDg4mPj+f8+fM8//zzvPPOO2r3JsxAq9Hw\ncFwEWo3Cym0p1DV03fu4DPToxx/vfIaZfaZS11TPqqQ1rDj5Ly5X5Ji7NSGEEB2oTcOMtbU1vXv3\nZteuXcydO5fQ0FA0GrnfXncV6O1I7MhAiivqWL8/09zt3Ba9Vk9s74m8MOo3DPUaxMWKy/wl/u98\nkfw1VQ3V5m5PCCFEB2jTRFJbW8vWrVvZuXMnMTExlJWVUVFRoXZvwox+Et0bHzc7dsXnkHGl3Nzt\n3DY3G1ceHfAgTw15HG97Lw7lHuOlo39hX85heYClEEJ0cW0aZp555hm+++47nnnmGRwcHFi1ahWL\nFy9WuTVhTnqdlsVxERiBj7cm09jUPc41CXcLZemIp5kdNhOD0cia1A28Hv8O6WUXzd2aEEKIdtIu\na8OtfP39/ZkwYQJGo5GioiImTpzIgAEDOqG9W6upUe9+N/b21qp+vqVzd7ahorqB85nFaBSICHK9\n5TZdITONoiHYOYgo3zuobqghqSSVo1fjKawpordzIDY6m07tpytkZmkkM9NJZqaTzEynZmb29tY3\nfU/Xlg/YuXMny5Ytw8fHB4PBQFFREa+88grjxo3rsCaFZbpvfAhn0ovYfCSLERFe+Hk6mLulDuNk\n5cjCfnOJ8RvJmtQNnMg/zbmiBOJ6T2JCQAw6TZt+PYQQQphZmw4zffDBB3z77besW7eO9evXs3bt\nWt599121exMWwNZax6Kp4TQbjHy8NRmDofvdVTfYOYjf3vFLFoTPRqfRsSFjC68e/yuJxSnmbk0I\nIUQbtGmY0ev1uLm5tXzt7e2NXq9XrSlhWQaHejCynzeZuRXsOtk9L2vWKBqi/Uby4qjfMdZvNAU1\nRfzz7Ie8d24lRbUl5m5PCCFEK9q0jm5vb89HH33E6NGjATh48CD29vaqNiYsy/2Twki4WMLX+zMY\nGuaBh4tl3k33dtnr7ZgXfjfRvneyJnUjZ4sSSCxJYVLgeKYEjcdKa2XuFoUQQvwfbToBOCoqiu3b\nt/P555+za9cu7O3tWbp0Kba25v+DJicAdw5rvRYXB2tOJBeQW1RNVH8fFEX50fd1l8ycrB0Z1esO\nvOw8ySi7xIXiJE7kn8bN2gVvO68b/uzt1V0y60ySmekkM9NJZqaz6BOA3d3defnll697LSMj47pD\nT6L7G9Xfm6OJ+ZzPLObwhTyiB/Yyd0uqUhSFET5DGegRybZLu9mdfYD3L6wiwjWMOX1n4WPvZe4W\nhRBC0MZzZm7kpZde6sg+RBegKAqLpoZjbaXlq11plFf3jP9isdHZcHfoNP5w56+IdOtLcmkay4+v\nYH3aJmqb6szdnhBC9HjtHmba8LBt0Q25O9tw37gQquua+GJHz3rYqLe9F08O/imPD3wIV2sXdmXv\n5+Wjb3A875T8PgghhBm1e5jpyHMGRNcyYZgfoX7OnEgu4HRqobnb6VSKojDYsz9/HPlrpgdPprap\nlpWJX7Hi1LtkV14xd3tCCNEjtXrOzLp16276XmFhz/ojJn6gURQWx0Ww7OPjrPo+hfBAV+xsetYN\n5qy0eqYFT2akzx2sT9/EmcLzvH7iHWL8RjGjzxQc9HK1nxBCdJZW/wKdPHnypu8NGTKkw5sRXYev\nhz0zR/fmmwMXWbs3nYdiI8zdklm427ry2MCFJJeksSZ1IweuHOFU/llmhkwl2nckGkWeLi+EEGpT\njF38YH9hYaVqn+3p6ajq53d1Tc0GXv7kBDmF1fx+wVDCA117dGZNhib25hxi68Wd1DXXE+Dgy9zw\nu+nj3LvV7XpyZu0lmZlOMjOdZGY6NTPz9HS86XttOjawYMGCH50jo9VqCQ4O5uc//zne3t6316Ho\nknRaDQ9Pi+RPn8bz8dZkXn7kTnO3ZFY6jY5JgeMY4T2UjRlbOZZ3krdO/os7fYZxd8g0nK2dzN2i\nEEJ0S226ad7Vq1dpampi9uzZDBs2jOLiYvr27YuPjw8fffQRs2bN6oRWb0xummdero7W1NY3cS6j\nmGajkRH9e/X4zGx01gz2HECEaxjZlVdIKknlUO4xtBotQY4BPzr0JPuZ6SQz00lmppPMTGeum+a1\n6YD+yZMneeutt5gyZQqTJk3itddeIyEhgcWLF9PY2NhhjYqu6Z4xffBwtmH7sWzSc8rM3Y7FCHHp\nze9HPMX88HvQKlq+Sd/M8uN/JamkZ13SLoQQamvTMFNcXExJyQ8P26usrCQ3N5eKigoqK+V4Yk9n\nbaVlcVwEBqORlz84yrmMInO3ZDE0ioYxflG8EPVbYvxGUVBTyD/OfMD751dRXFtq7vaEEKJbaNMJ\nwOvWreONN97Az88PRVHIycnhf/7nf3B3d6empob777+/M3q9ITkB2HLsOJHN2r0ZNDUbGDu4F/Pu\nCsPWumddsn0r2ZVXWJO6gczyLPQaPVOCxnP/sBmUl9abu7UuRX43TSeZmU4yM525TgBu89VMVVVV\nXLp0CYPBQGBgIC4uLh3W4O2QYcayVDcZeePTE1wuqMLdyYZHpkcSGeRq7rYsitFo5HjeKTZkbKGi\noRJna0eifUcxxm8UTlY3/2UVP5DfTdNJZqaTzExnrmGmTScAV1dXs3LlSjZt2kR8fDzFxcUMGDAA\nnc78/9UtJwBbFj9vJ4aFugNwLqOYQ+evUl3XSN8AF3RauecKXLuLsL+jL9G+IwG4VHGZxOIU9mUf\norC2GDcbN5ytZahpjfxumk4yM51kZjpznQDcppWZZ555Bm9vb0aOHInRaOTw4cOUlpby5ptvdmij\n7SErM5blvzPLzK3gw82JXC2uwdvNjkenRxLi52zmDi2Po4ueTRf2sTf7IAW11843CnPpw4SAGAZ6\n9JMb792A/G6aTjIznWRmOou+z0xRURErVqxo+XrChAksXLjw9jsT3VofXydeXDyC9fsz2XEim1c/\nO8m0UUH8JDoYvU7+QP+Hjd6Gcf6jGeM3isTiFPZkHyS5NI20skzcbdwY7z+aKN8R2Opszd2qEEJY\npDYNM7W1tdTW1mJre+1fpjU1NdTXywmL4tas9FrmTwxjaJgHH25OYvORLM6mF/PojEgCveVQyn/T\nKBoGeEQywCOS3Ko89uYc5HjeKb5O38Smi98T1WsE4/yj8bLzMHerQghhUdp8NdM//vEPBgwYAEBC\nQgJLlizh7rvvVr3BW5HDTJaltcxq65tYuyedvWdy0WoUfhITzLRRgWg1PXuVprXMqhqqOZR7jH05\nhylvqEBBYYBHBBP8x9DXNaTHPr1efjdNJ5mZTjIzncVfzXT16lUSEhJQFIUBAwawatUqfvOb33RY\nk+0lw4xlaUtm5zOL+XhLEmVVDQT3cuLRGZH0cu+5T5luS2bNhmZOF5xjd85BsiqyAfC192FCQAx3\neA/FSqvvjFYthvxumk4yM51kZjqLH2b+r0WLFvHpp5+2u6mOIsOMZWlrZtV1jXyxI5UjCfnodRpm\njwth0h3+aHrgSoOp+9nF8iz2ZB/kdOF5DEYDDnp7YvyuXdrtYt0zTrCW303TSWamk8xMZ9EnAN9I\nF3/YtjAzexs9j83sz7C+nny6PYWvdqVxOrWQR6ZH4ukiJ7q2Jtg5iGDnIErryth/5QgHrxxl26Vd\n7MjayzCvQUwIiCHIKcDcbQohRKdp9zDTU4/Vi441PNyLMH8XVm5L5nRaES98dJz5d4UydrCv7GO3\n4GrjwqyQOOJ6T+RY3in2Zh/kRP5pTuSfpo9zbyYExDDYoz9ajdbcrQohhKpaHWbGjRt3wz8oRqOR\n0lJ5rozoGE72Vvzi3oEcTcjnsx2prNyWwqnUIhbHReDqePObJIlrrLRWjPEbRYzvSJJL0tidc4DE\n4hQyyy/hau3COP/RRPveiZ3eztytCiGEKlo9Z+bKlSutbuzn59fhDZlKzpmxLLebWUlFHR9vTSbh\nYgn2NjoemNyXkf28u/UqjRr7WV51AftyDnH0ajwNhkasNHpG9rqD8f7R+Nh7dWgtc5DfTdNJZqaT\nzEzX5U4AthQyzFiWjsjMaDSy70wuq3enU9/YzPBwTxZODcfJzqqDurQsau5nNY01HMo9zr6cw5TW\nlwHQzz2cu/zHEOEW1mWHRPndNJ1kZjrJzHRd7gRgIdSiKArjh/rRL9iNjzYlcjKlkNTsMh6KjWBY\nX09zt9el2OntmBw0nrsCxnC2KIE92QdJLE4hsTgFHzsvxgfEMNJnGFba7jkoCiF6hjY9aNKSyYMm\nLUtHZmZvo2f0gF7YWus4l1HC0cR8CstqiQh0Qa/rPie1dsZ+plE09LL3ZrTvCAa4R9DQ3ER6eSbn\nixI5eOUoNU21eNt5YquzUbWPjiK/m6aTzEwnmZnOoh80acnkMJNlUSuz3KJqPtiUyKW8SlwdrXl4\nWgQDgt07vI45mGs/K6sv58CVoxy8cpSqxmo0ioahngOZEBBDsHNQp/djCvndNJ1kZjrJzHTmOswk\nKzOtkKncdGpl5mhnRfTAXmi1Cuczijl8IY+K6gbCA13Qabv24xDMtZ/Z6GwIdw1lnH80HrbuFNUW\nk1qWweGrJ0gsTsFao8fbzssin9otv5umk8xMJ5mZTlZm2klWZixLZ2SWlVfJB5sTuVJYjaeLDT+d\n3o++AS6q1lSTpexnRqOR1NIM9uQc4EJRMkaMuFg7M9Yvimi/kTjoLeeRE5aSWVcimZlOMjOdrMy0\nk6zMWJbOyMzFwZoxg3xpNhg4l1HMoXNXqWtoIjzApUs+tNJS9jNFUfCwdeMO76Hc4T0UBbhYkUVi\nSQr7cg5RUleKu40bjlYO5m7VYjLrSiQz00lmppOVmXaSlRnL0tmZpeeU88HmRApKa+nlbsejM/oR\n3Mup0+p3BEvez2qbajmSe4K9OYcprisBIMI1jAkBMfRzDzfbIShLzsxSSWamk8xMJysz7SQrM5al\nszNzc7JhzCBf6uqbOZdZzMFzVzEYjYT6O6PRdI17qFjyfqbX6Al2DmKc/2gCHH2paKgktSyD+Pwz\nnCw4g4KCj50XOk3n3uXBkjOzVJKZ6SQz08nKTDvJyoxlMWdmCZdK+HhLEiUV9QR6O/DojH74e5r/\nkMitdLX9LLsyl73ZB4nPP02TsRlbnQ2je93JOP/RuNu6dUoPXS0zSyCZmU4yM52szLSTrMxYFnNm\n5uViS8xAXyqqGzifWcKBc7notBpCfJ0t+k63XW0/c7Z2ZLBnf6L9RmKttSanMpfk0jT25hziSlUe\nztZOuFq7qJp5V8vMEkhmppPMTCcrM+0kKzOWxVIyO51WyMptKVRUNxDq58xPZ0Ti7WqZD1q0lMza\nq9HQxKn8s+zJPkB2VS4AgY5+jPePYbj3YFUOQXX1zMxBMjOdZGY6WZlpJ1mZsSyWklkvd3uiB/pQ\nVF7HhYvXVmlsrXX07uVocas0lpJZe2kVDf6OvkT7jqSvayh1zXWklmZytugCh3OP09jciI+9F9Yd\n+MiErp6ZOUhmppPMTCcrM+0kKzOWxRIzO56Uz6rtKVTXNdGvtysPx0Xi7mw5t+23xMxuV1FtCfty\nDnE49wR1zXXoNDru8B7CBP8Y/B19b/vzu2NmapPMTCeZmU5WZtpJVmYsiyVm5ufpwOgBPlwtruHC\nxRIOns/F2d6aAC8Hi1ilscTMbped3pZ+7uGM84/C2dqJ/OoCUkszOJh7lPTSTOx0tnjaebQ7/+6Y\nmdokM9NJZqYz18qMqtdTvvrqq5w9exZFUVi6dCmDBg1qee/o0aOsWLECjUZDcHAwy5cvR6PR8O23\n3/LBBx+g0+l46qmnGD9+vJotih7CxcGaJfcN4uC5q3y5K42PtiRxKrWQh2LDcXa4+S+IuD02OhvG\n+0cz1i+KhOJk9mQfJKU0ndSyDDxs3BgfEMOoXnd0mQdcCiEsk2rDzPHjx8nKymL16tVkZGSwdOlS\nVq9e3fL+Cy+8wKeffoqPjw9PPfUUBw4cYNCgQfzzn//k66+/pqamhr///e8yzIgOoygKYwb7Ehnk\nykdbkjiTXkT6h+UsnBrOiAgvc7fXrWkUDQM9+jHQox9Xqq6yN/sQx/NPsS7tWzZlbifKdwTj//2M\nKCGEMJVqt+88cuQIkyZNAiAkJITy8nKqqqpa3l+/fj0+Pj4AuLm5UVpaypEjR4iKisLBwQEvLy9e\neeUVtdoTPZiHiy2/uX8oCyaF0dDYzLsbLvC/Gy9QVdto7tZ6BD+HXjwQeR9/Gr2UmX2mYq21Yk/2\nQZYd+Qv/79xKUksz6OKn8gkhOplqw0xRURGurq4tX7u5uVFYWNjytYPDtZuZFRQUcOjQIcaNG0dO\nTg51dXU88cQTLFiwgCNHjqjVnujhNIrCpDsCWPbInYT4OnE8qYDnPzjG2fQic7fWYzhaORDbeyIv\nj36Oxf3uJ8DRj3NFCbx9+v/x5xN/40juCRqbZcAUQtxap92D/Eb/pVVcXMwTTzzBiy++2DL4lJWV\n8Y9//IPc3FwWLVrEnj17Wj1J0NXVDp1Oq1rfrZ09LW6sK2Xm6enIW6GerN+bzhfbk3l73Tkm3xnI\no7MGYGej79Q+erJe3mOJGzCG1OJMtqTu4VjOaT5LXsu3F7cyJXQsU0LG4mLrfN02PT2z9pDMTCeZ\nmc4cmak2zHh5eVFU9MN/5RYUFODp6dnydVVVFY899hhPP/00MTExALi7uzN06FB0Oh2BgYHY29tT\nUlKCu/vNj6OXltao9SPIZXnt0FUzGz+oFyE+jnywKZEdxy9zKrmAR6ZHEhnkeuuNb1NXzUwNbnjx\nYNg8pgVMYX/OEQ7lHmNdwha+SdzOcO/BTAiIIdDRXzJrB8nMdJKZ6cx1abZqh5mio6PZvn07AAkJ\nCXh5ebUcWgJ47bXXeOihhxg7dmzLazExMRw9ehSDwUBpaSk1NTXXHaoSQk0BXg48/9AdzBjdm9LK\net748jRf7EilvrHZ3K31OG42rtwdOo0/Rf+B+eH34GHrzvG8U7x+4h1WnHyX3ZmHKK4tMXebQggL\noepN8958803i4+NRFIUXX3yRxMREHB0diYmJYcSIEQwdOrTle2fMmMG8efP46quvWLduHQA/+9nP\nmDhxYqs15KZ5lqW7ZJaZW8GHmxO5WlyDt5sdj06PJMTP+dYbtkN3yUxNBqOBpJI09mYfJLEkpeV1\nDxs3wt1CCXcNpa9rKI5Wlv9gUXOR/cx0kpnpzLUyI3cAboXsyKbrTpk1NDazfn8mO05kgwLTRgXx\nk+hg9LqOXdDsTpl1hoKaQi7XZ3EyO4G0sgxqm+pa3vNz6EW467XhJtQlGBu5f00L2c9MJ5mZzlzD\nTKedACxEV2Ol1zJ/YhhDwzz4cHMSm49kcTa9mEdnRBLoLScFmouXnSf9g/pwh+sdNBuaya66QkpJ\nOiml6WSWX+JK1VV2Zx9Ao2gIcgxoWbkJdg5Cr8JDL4UQ5icrM62Qqdx03TWz2vom1uxJZ9+ZXLQa\nhZ/EBDNtVCBaze2v0nTXzNR0s8wamxvJLM8itfTacJNVmYPBaABAr9ET4ty7ZbgJcPRDo6h22qDF\nkf3MdJKZ6WRlRggLZmut46HYCIb19eTjLUl8sz+TM2mFPDqjH73c7c3dnvg3vVZ/bVhxC2UmUNtU\nS3rZxZaVm+TSNJJL0wCw1dnS16UPfd1CiXANxdvOyyKe1SWEMJ2szLRCpnLT9YTMqusa+XxHKkcT\n8tHrNMweF8KkO/zRtPMPYU/IrKO1N7OKhkpSSzNahpviuh+uiHK2cqKv67VBKMI1FFcbl45s2exk\nPzOdZGY6OQG4nWSYsSw9KbP45AI+3Z5CVW0j4QEuPDI9Ek8XW5M/pydl1lE6KrOi2hJSStNIKUkn\ntTSDysYfHrniaet+7WRitzD6uoTgYNW1V+BkPzOdZGY6GWbaSYYZy9LTMquobmDltmROpxVhbaVl\n/l2hjB3sa9Lhip6WWUdQIzOj0UhudR4ppemklKSTXpZJXXN9y/v+Dr7/Hm5CCXEOxkbXtZ62LvuZ\n6SQz08kw004yzFiWnpiZ0WjkSEIen+9Io7a+iQF93Hg4LhJXx7b9seuJmd2uzsis2dDM5cqcluEm\ns/wSTcZrN1DUKBp6OwW2XAYe7ByIzsKvlJL9zHSSmelkmGknGWYsS0/OrKSijo+3JpNwsQQ7ax0P\nTOnLqH7et1yl6cmZtZc5MmtobiSz/FLLcHO5Mgcj1/71aaXRE+IS3LJy4+/ga3FXSsl+ZjrJzHQy\nzLSTDDOWpadnZjQa2XsmlzW706lvbGZ4uCcLp4bjZGd10216embtYQmZ1TTWklaWeW24KU0nrzq/\n5T17nR1hrn1aVm687DzNfqWUJWTW1UhmppNLs4XoBhRFYcJQP/r3duXDzUmcTCkkNbus5bJu0X3Y\n6W0Z7NmfwZ79ASivr2gZbFJK0jlTeIEzhRcAcLF2bhlswt1CcbFW59EYQvRUsjLTCpnKTSeZ/cBg\nMPL9iWzW78+kqdnA6MixdYYAACAASURBVAE+LJgUhp2N/rrvk8xMZ+mZGY1GCmuLSSlNJ7X02pVS\nVY3VLe9723m2DDdhriHY6+1U78nSM7NEkpnpZGVGiG5Go1GIHRnIwBB3PtiUyOELeSRllfLwtAgG\nBLubuz2hIkVR8LLzwMvOgzF+ozAYDeRW5bWs3KSXZbL/yhH2XzmCgoK/o2/LcBPiEoy19uaHJYUQ\nPyYrM62Qqdx0ktmNNTUb2HIki+8OX6LZYGTCUD/mTAjBxkonmbVDV8+s2dDMpYpsUkrTSC3NILM8\ni+Z/XymlVbQEO//nSqkwejsFoNVob7tmV8/MHCQz08kJwO0kw4xlkcxal5VXyQebErlSVI2niw0/\nnd6P6GEBkpmJutt+1tDcQEbZv6+UKk0juzL3hyultFaE/udKKdcw/Bx82nWlVHfLrDNIZqaTYaad\nZJixLJLZrTU2GdhwIJNtxy4DMOnOQMYM9MHf08HMnXUd3X0/q26sIa0049/DTQb5NQUt7zno7Qlz\nDWk5LOVp696mK6W6e2ZqkMxMJ8NMO8kwY1kks7ZLzynnwy1J5JfUABAR6MLE4f4MCfPokKdxd2c9\nbT8rqy9veZ5USmk6ZfXlLe+5Wru0XCUV7hqKs7XTDT+jp2XWESQz08kw004yzFgWycw0BoORzIJq\nvtmTRlJWKQBuTtZMGOrH2MG+OLZyf5qerCfvZ0ajkYLaov/f3p3HtH3f/wN/fnxhfOALGxvMnZAD\ncpJkuZMmfNtv++2hpetCs6WTJlWqqmnttFaq0rXZ1K1aKm2qmlbd1m1Sl373K1sb5Zuta5uWJlmW\nO+SEJBAgAWzAgG0OY8zlz+8PGyeEXE4CtuH5kKKEjw/evPQBnnmfkXBzyVuH3iF/5HGryhIJNtP1\n+VDJQ+eFTeWa3S3WLHoMM3eJYSa+sGbRG6mZs6MX31Q4cKiyFf2Dw5BJJfjWbAtKijORbb35N/FU\nxPvsqqAYhMPXHDkNvLazHgPBQQCAAAGZ2gzMMEzDgqyZ0AwbYFTqY76BX6LgfRY9hpm7xDATX1iz\n6F1fM39gEP8514pvTjrQ5u0DAEzL0GFdcQYWzbBAJuUQFO+zmxsKDoVWSnkuodpbi8vdjQiKwcjj\nyTIl0tU22LU2ZKhtyNDakK62QsHl4GPwPosew8xdYpiJL6xZ9G5Ws6AoorLeg/IKB87VuwEAOo0C\na+dnYO38dOg0iXVq8/3E++zOBYb6Udd1BZ5gO2pcV+D0taDN3xFZLQWEenDMKhMyNOmwa2zICP8x\nJE3tXhzeZ9FjmLlLDDPxhTWL3p3UzOXxo/ykAwfPtaCvfxhSiYDFMy1YX2xHXnrKlPuFw/ssetfW\nbGB4AC29Ljh8zXD6WuH0NcPpa0HfUGDUa1SyZGRobEjX2CIhx6a2QiGV3+hTTDq8z6LHHYCJ6KbS\njCpsKinAhtV5OFzZiq8rHDhy3oUj513ItmpRUmzHklkWyGX3vrkaTX4KqQLZKZnITsmMXBNFEd7+\nTjh9LXD0tIQCTm8Lajsv41JnfeR5AgRYVGbYrws5+iTdlAvVFD/YM3MLTOXRY82idzc1E0URFxq8\nKK9w4HRtB0QR0CTLsWZ+Oh5YkAFjinKcWhsfeJ9F725r1j88gGZfK5p9LXD4wiHH14rA8OheHLVM\nhXSNFXZNeiTk2NRpkCdwLw7vs+ixZ4aI7pggCJidY8TsHCM6Ovuw95QT/z7TjM8ON+DzI41YUJCK\nkmI7CjKn9pwHundJUgVydVnI1WVFromiCE/AC4evZVTIub4XRyJIYElORYbGFg45Vti16dAppt7Q\nKI0v9szcAlN59Fiz6N2vmvUPDuPoeRfKKxxoavMBAOxmNdYX27G00Iok+eQZguJ9Fr2JqFlgqB8t\nva2jQk6zrwWB4f5Rz1PLVZGVVBmadGRorLCp4q8Xh/dZ9DgB+C4xzMQX1ix697tmoijikqML5RUO\nVFS3IyiKUCXJsGqeDesW2mHWJ9+3zxUrvM+iF6uaBcUgPIFOOH3No0JOR5971PMkggRpKnNkJdXI\nyqoUhTZmvTi8z6LHYSYiui8EQUBBph4FmXp4e/pDQ1CnnfjyWBP2HGvCvGmpWF9sx+wcA7v6adxJ\nBAlSk41ITTZinrkocj0wFEBzr2tUyHH6WtDS68IJ1+nI8zRy9TUBJxRyrGoL5BL++qKreDcQTWIG\nbRI2rM7DY8tzcPyiKzJh+HRtB6xGFdYX27G8yIrkJP4ooImllCmRp8tGni47ci0oBuHu80aWijvD\nvTgjZ1KNkAgSWFWWMSFHl8SdsqcqDjPdArsYo8eaRW+ia1bf3I3yiiYcu9CG4aAIpUKKFXNsWF9s\nh9WomrB23AveZ9FL5Jr1DQXQfM1+OE5fC5y9rRgYHhj1PK1cc13AscGqtkB2l704iVyzWOGcmbvE\nMBNfWLPoxapmXb0D2H/aiX2nnOj0hX4pFOUasa7Yjrn5JkjieAiK91n0JlvNgmIQHX2ecLi5uvmf\nO+Ad9TypIIVVbbl6hEM45KQobt+LM9lqNhE4Z4aIJpROrcDjK3LxyNJsnKxpR3mFA5WXPai87IFZ\nr8S6hXasmmuDShlfK0yIgPCyb1UqLKpULLDMiVzvG+oLB5urIWdkPs5x19XXaxWaq8vFNemhXhyV\nBVLJ5Fn1N5WwZ+YWmMqjx5pFL55q1ujqQXl4d+HBoSAUcgmWF1qxrtgOu1kT6+ZFxFPNEsVUrllQ\nDKK9z311iCoccjw36cUZCTkzbDmQDyTDpDTE3bLxeMVhprvEMBNfWLPoxWPNfH2DOHCmGd+cdMLd\nHdrpdWaWHuuL7Zg/PRVSSWxP7o7HmsU71mws/2DfNQEn9Ke5txWDwcFRzxMgQJeUElqVpTQhNdkU\nWaGVmmyCRq7mysAwDjMRUdzQJMvx8NJsPLQkC6drO1Be4cCFBi8uNnbCmJKEBxZkYPW8dGhVilg3\nleiuqeTJmG7Iw3RDXuRaUAyi3d8Bh68FfkkPGjpCe+J09HlQ13kFtbg85n2SpIpwwDEhVWkcFXaM\nSsNdT0CmO8cKE9FNSSQCFhaYsbDADGdHL76pcOBQZSs+3V+P//vPFXxrtgUlxZnItnJJLE0OEkGC\nNLUFaWrLmF6GweAQPAEvOvo84YDjhrvPg/Y+d2QY63oCBBiU+jEhZyT8qGTJ7NW5DzjMdAvslo0e\naxa9RKuZPzCI/5xrxTcnHWjz9gEApmXosL7YjuIZZsik4z8ElWg1iwesWfSiqZkoivAN9qI9HHJG\nenNGgk/XQPcNX5csU96gRyf0tyFJn3ATkjnMREQJQaWU48HFmShZZEdlvQflFQ6cq3ej1tkFnUaB\ntfMzsHZ+OnSapFg3lWjCCIIArUIDrUIzaiPAEQPDg/AEPOGw44n06HQEPGjtdaGpxznmNRJBAmOS\nflTIMSUbYQ5/nCxL/KNJ7heGGSK6KxJBwNx8E+bmm+Dy+FF+0oGD51rwf/+5jH8euoLFMy1YX2xH\nXjpPSCZSSOWwqtNgVaeNeSwoBtE90DM65PR54A6Ehq8uei8B3rHvqZapIkHn2pCTmmyCPkkHiRDb\nifoTiWGGiO5ZmlGFTSUF2LA6D4crW/F1eHn3kfMu5Fi1WF9sx5JZFshlidVlTjQRJIIE+iQd9Ek6\nTNPnjnm8f3ggEnLc4d6c9vB8HaevGQ09TWNeIxWkMCkNNwg7JpiURihlk6vnlHNmboFjzNFjzaI3\nGWsmiiIuNHgjZ0GJYmiF1Jr56XhgQQaMKcp7ev/JWLPxxppFLxFqFhSD6OrvvmaOTijsjPzbN9h7\nw9dp5ZpRIccUnrdjVpmQotDeda8O58wQ0aQhCAJm5xgxO8eIjs6+0MndZ5rx2eEGfH6kEQsLQid3\nF2TqOQRFdA8kggQGpR4GpR7TDfljHu8bCsB9g5DT0edGQ48Dl7sbx7xGJpHBpDTCnGwMhZyRwKMM\nrcRSSONvSwaGGSIaV6n6ZDz1wDQ8vjIXR8+HTu4+Ud2OE9XtsJs1WF+cgaWFViTJOQRFdL8ly5Sw\na9Nh16aPeWw4OIzO/q5QwAlc07MT/tvlb7vhe+oU2kjIGb0SywQzYrNNA4eZbiERuhjjDWsWvalW\nM1EUccnRhfIKByqq2xEURaiSZFg1z4Z1C+0w62+/QmOq1ex+YM2iN9Vr5h/0X9ebc/Vvb38ngmJw\nzGu+W/Qo1lhWj0t7OMxERHFDEAQUZOpRkKmHt6c/NAR12okvjzVhz7EmzJsWGoKanWPgEBRRDKnk\nKmTJVcjS2sc8NhwchifQOapHxxvoxDTj2AnME4FhhohixqBNwobVeXhseQ6OX3RFJgyfru2A1ajC\n+mI7lhdZkZzEH1VE8UQqkcKsMsGsMo26HqveLP6EIKKYk8skWF5kw/IiG+qbu1Fe0YRjF9rwv1/V\n4NP9dVgxx4b1xXZYjapYN5WI4hDDDBHFlbz0FOSlF+K766Zj/2kn9p1yorzCgfIKB4pyjVhXbMd6\nkybWzSSiOMIwQ0RxSadW4PEVuXhkaTZO1rSjvMKBysseVF724C9fVKMwx4C501JRmGOASimPdXOJ\nKIYYZogorsmkEiyZlYYls9LQ0NqDfaedOFPnxsHKVhysbIVEEDDdrsPcaSbMzTMhPVXNicNEUwzD\nDBEljGyrFj/475kwmTSoqGrG2Vo3zta7UdPUieqmTvx9bx1MKcrImVEzsw3cv4ZoCmCYIaKEI5EI\nyLGmIMeagsdX5qK7dwCVl904W+dGZb0He085sfeUE3KZBDOzDJFwcyd72BBR4mGYIaKEl6JWRFZD\nDQeDqHN242ydG2frOnCu3o1z9W7871eAzaQKB5tUTLfrIJNOnVOFiSYzhhkimlSkEklkU77vrM2H\nuyuAc/WhXpvzDR58eawJXx5rglIhRWGuMRRu8kzQaSbXKcJEUwnDDBFNaiadEmsXZGDtggwMDg2j\nurETZ8K9NhXV7aiobgcQmo8zN8+EudNMyLWlQMJJxEQJg2GGiKYMuUyKojwTivJM2FQyHa0eP87V\nuXGmLjSJuKG1B/84dAValRxFuSbMm2ZCYa4Rai79JoprDDNENCUJggCbSQ2bSY0Hl2Shr38I5694\ncbauA2fr3Thc1YrDVaGl39MyUjAn34R5+anIMHPpN1G8YZghIgKQnCRD8QwzimeYIYoiGl0+nK0P\nDUddcnShxtGFT/fXw5iSFBqOyk/FrGwDkhRc+k0UawwzRETXEQQB2VYtsq1aPLY8Bz3+AVRe9uBc\nXWhl1L7Tzdh3uhkyqQQzs/ThXhsTLAaeHUUUCwwzRES3oVUpsKzQimWFVgwHg6hvHln67Y4csfD/\nvr4Eq1EV2dOmIFPPpd9EE4RhhogoClKJBNPteky36/Hkmnx4uq9Z+n3Fiz3Hm7DneBOSFFIU5oSW\nfs/JM8Gg5dJvovHCMENEdA+MKUqsmZ+BNfMzMDgURE1TZ2TDvpM17ThZE1r6nZWmiWzYl2dLgUTC\nScRE9wvDDBHRfSKXSVCYa0RhrhFPl0yHy+OPBJvqpk40unz456EGaJLlKMoL9doU5ZqgSebSb6J7\nMa5h5s0338SZM2cgCAK2bNmCuXPnRh47cuQIfvvb30IikSA3Nxe/+tWvIJGExpcDgQAeffRRPP/8\n89iwYcN4NpGIaNykGVX4L6MK/7U4E4GBIVy44g2vkHLjSJULR6pcEAQgP0MXXiFlQqZFw6XfRFEa\ntzBz7NgxNDQ0oKysDHV1ddiyZQvKysoij7/++uv4y1/+AqvVih//+Mc4cOAA1qxZAwB4//33odPp\nxqtpREQTTqmQYUGBGQsKQku/He29oT1t6tyodXah1tGFnf+uh0GbhDl5odVRs3IMUCrYgU50O+P2\nXXL48GGUlJQAAPLz89HV1QWfzweNRgMA2LlzZ+TfRqMRXq8XAFBXV4fa2lqsXbt2vJpGRBRTgiAg\n06JBpkWD/1mWA1/fICovu8NLvz3495lm/PtMM2RSATMy9ZiTn4p5+SakGbn0m+hGxi3MdHR0oLCw\nMPKx0WhEe3t7JMCM/N3W1oaDBw/ihRdeAABs27YNr732Gnbt2nVHn8dgUEEmG79Nq8xm7bi992TF\nmkWPNYveZKqZGUBulhGPrZmO4aCIS41enLjgwvELLlRd8aLqihcfl1+CLVWNxbPSsGhWGoryTZBH\n+bNvMtVsorBm0YtFzSas/1IUxTHX3G43nnvuOWzduhUGgwG7du3C/PnzkZmZecfv6/X672czRzGb\ntWhv7xm395+MWLPosWbRm+w1M6nleGiRHQ8tssPb049z9aFem8orHuw+UI/dB+qRJJdido4Bc8Kn\nfhtTlLd8z8les/HAmkVvPGt2q5A0bmHGYrGgo6Mj8nFbWxvMZnPkY5/Ph2effRYvvvgiVq5cCQDY\nt28fmpqasG/fPrS2tkKhUMBqtWL58uXj1Uwiorhm0CZh9bx0rJ6XjqHhIC41jZz67capSx04dSn0\nczbTools2JeXngKphBv20dQxbmFmxYoV2L59O0pLS1FVVQWLxRIZWgKAX//61/jBD36A1atXR669\n/fbbkX9v374dGRkZDDJERGEyqQSzcoyYlWNE6frpaPOGl37Xu3GxoRNNbT58drgBaqUMRXmhHpui\nPCO0KkWsm040rsYtzCxcuBCFhYUoLS2FIAjYunUrdu7cCa1Wi5UrV2LXrl1oaGjAJ598AgB49NFH\nsXHjxvFqDhHRpGMxqFCySIWSRZnoHxjGhUZvZF+bo+ddOHreBQFAXnoKFhfaYDclIz9DhyQ5D8ek\nyUUQbzSZJYGM53gmx0ujx5pFjzWLHmt2a6IowtnRGzk/qtbRhWD4R71UIiDXloKCTD1mZOkxLUOH\n5CQu/74R3mfRm3RzZoiIKDYEQYDdrIHdrMEjS7PhDwzC1TOA45UtqG7sRH1zN2qdXfjXkQYIApCV\npsWMcLiZbtdzR2JKOAwzRESTnEopx5JMI3LNagBAYGAItc4u1DR1orqxE5dbutHQ2oM9x5sgAMgw\na66Gm0w9dGrOuaH4xjBDRDTFKBUyFOWGzoUCgIHBYdQ3d6O6qRM1TZ2oc3bB0e5D+UkHAMBmUoWG\npTL1KMjU33YZONFEY5ghIpriFHIpZmYbMDPbAAAYGg7iSksPqpu8qG7qxCVHF/afbsb+080AALNe\nGQ43BhRk6WHWKXmeFMUUwwwREY0ik0owza7DNLsO/7MMGA4G0ejyobox1HNzydGJg+dacfBcK4DQ\nXjgzMvUoyAr13liNKoYbmlAMM0REdEtSiQS5thTk2lLw39/KQlAU4WzvRXWjNzTvpqkTR867cOS8\nCwCQopKHV0sZUJCpR4ZZDQnDDY0jhhkiIoqK5JqDMksWZUIURbS4/ZFgU93oxYnqdpyobgcAqJUy\nTLeHJhQXZOqRlabhDsV0XzHMEBHRPREEAempaqSnqrF2QQZEUUR7Z19oQnFjKOCcru3A6drQ0QtK\nhRTT7LrwiikDcqxayKQMN3T3GGaIiOi+EgQBFoMKFoMKq+amAwA83YFwr01o3k1lvQeV9R4AgEIm\nQX6GLrIcPNeWAgV3KaYoMMwQEdG4M6YosazQimWFVgBAl68/shS8uqkTFxq8uNDgBQDIpALybCnh\nCcUG5GekQKngryu6Od4dREQ04XSaJCyZlYYls9IAAL6+QdSMhJvGTlxydqHG0YV/ogFSiYBsqzay\n1810uw4qJXcppqsYZoiIKOY0yXIsLDBjYYEZAOAPDKHW2RmZd3OltQf1zd344mgjBACZaZqre91k\n6ngy+BTHMENERHFHpZRhbn4q5uanAgD6B4ZR29wVmVBc39yNRpcPX58I7VKckaqOHJ5ZkKmHXpMU\ny+bTBGOYISKiuJekkKIwx4jCHCMAYHAodATDyJybWmcXnB292HvKCQBIMySPCjepuuRYNp/GGcMM\nERElHLlMihlZBszIMuAxhI5gaGjtiYSbS45OHDjbggNnWwAAphRlJNjMyNLDok/mLsWTCMMMEREl\nPJk0tLw7P0OHh5dmIxgU0dTmQ3WjN7Jq6lBlKw5Vho5g0GkUoaXgmXoUZBmQbuIRDImMYYaIiCYd\nSXgFVLZViweXhI5gaO7ojexzU93UiWMX2nDsQhuA0ATkkVPBZ2TpYTdrYvwVUDQYZoiIaNKTCALs\nZg3sZg3WF9shiiJc3r5R50tV1LSjoiZ0BENykgzTM/UwaZNgNalgM6lgM6phSEniOVNxiGGGiIim\nHEEQYDWqYDWqsGZ+6AgGd1d4l+LwsNTZ8PEL11LIJbAaVbCZ1LAZVeGgo0aaIZm7FscQwwwREU15\ngiAgVZ+MVH0yVsyxAQC0umRU1bSh1eNHi9uPFncvWt1+tLr9aHT5Rr8egEmnDIUcUzjkhEOPViXn\nfJxxxjBDRER0A0qFDFlpWmSlaUddD4oiPN0BtLrDIcfjR6u7Fy1uP87Vu3Gu3j3q+WqlLBxurgk6\nJjVSdUoesHmfMMwQERFFQSIISNUlI1WXjKI806jH/IHBcLi5pjfH48eVlh7UObtHPVcqEWAxJF/t\nzQn35FiNKqiU/PUcDVaLiIjoPlEp5chP1yE/XTfq+tBwEO2dfaGQ47k6ZNUcDj3X02kUkWEqTkC+\nPYYZIiKicSaTSsI9MGosuOa6KIro9g9GhqlCw1ahoHOxsRMXGztHvQ8nIN8YwwwREVGMCIIAnVoB\nnVqBGVmGUY/1Dw7D5fFzAvIdYJghIiKKQ0lyKScg3yGGGSIiogTCCchjJVZriYiI6KZuNwH52uGq\nlsjwVeJPQGaYISIimuSunYAMmCPXRVFEd+9AZLgqMi/Hk1gTkBlmiIiIpihBEKDTJEGnScLM7JtP\nQG7u6L1mIvLNJyD/8LEizLSnTOBXEMIwQ0RERGPccgJyVyAyTNUanoDs8vbB2xMAwDBDREREcUxy\nzTlWc66bgGw2a9He3jPxbZrwz0hERER0HzHMEBERUUJjmCEiIqKExjBDRERECY1hhoiIiBIawwwR\nERElNIYZIiIiSmgMM0RERJTQGGaIiIgooTHMEBERUUJjmCEiIqKExjBDRERECY1hhoiIiBKaIIqi\nGOtGEBEREd0t9swQERFRQmOYISIiooTGMENEREQJjWGGiIiIEhrDDBERESU0hhkiIiJKaAwzN/Dm\nm29i48aNKC0txdmzZ2PdnIRRU1ODkpISfPTRR7FuSsJ46623sHHjRjz55JPYs2dPrJsT1/r6+vDC\nCy/g+9//Pp566ins3bs31k1KGIFAACUlJdi5c2esmxL3jh49iqVLl2Lz5s3YvHkz3njjjVg3KSHs\n3r0bjz/+ODZs2IB9+/ZN+OeXTfhnjHPHjh1DQ0MDysrKUFdXhy1btqCsrCzWzYp7fr8fb7zxBpYt\nWxbrpiSMI0eO4NKlSygrK4PX68W3v/1tPPjgg7FuVtzau3cvioqK8Oyzz8LpdOKHP/whHnjggVg3\nKyG8//770Ol0sW5GwliyZAneeeedWDcjYXi9Xrz33nv49NNP4ff7sX37dqxdu3ZC28Awc53Dhw+j\npKQEAJCfn4+uri74fD5oNJoYtyy+KRQKfPDBB/jggw9i3ZSEsXjxYsydOxcAkJKSgr6+PgwPD0Mq\nlca4ZfHpkUceify7paUFaWlpMWxN4qirq0Ntbe2E/3KhqePw4cNYtmwZNBoNNBpNTHqzOMx0nY6O\nDhgMhsjHRqMR7e3tMWxRYpDJZFAqlbFuRkKRSqVQqVQAgE8++QSrV69mkLkDpaWleOmll7Bly5ZY\nNyUhbNu2Da+88kqsm5FQamtr8dxzz+Hpp5/GwYMHY92cuOdwOBAIBPDcc89h06ZNOHz48IS3gT0z\nt8HTHmi8ff311/jkk0/w5z//OdZNSQgff/wxLly4gJdffhm7d++GIAixblLc2rVrF+bPn4/MzMxY\nNyVh5OTk4Ec/+hEefvhhNDU14ZlnnsGePXugUChi3bS41tnZiXfffRfNzc145plnsHfv3gn93mSY\nuY7FYkFHR0fk47a2NpjN5hi2iCazAwcO4He/+x3++Mc/QqvVxro5ca2yshImkwk2mw2zZs3C8PAw\nPB4PTCZTrJsWt/bt24empibs27cPra2tUCgUsFqtWL58eaybFrfS0tIiQ5pZWVlITU2Fy+ViILwF\nk8mEBQsWQCaTISsrC2q1esK/NznMdJ0VK1bgyy+/BABUVVXBYrFwvgyNi56eHrz11lv4/e9/D71e\nH+vmxL0TJ05Eeq86Ojrg9/tHDQnTWG+//TY+/fRT/O1vf8NTTz2F559/nkHmNnbv3o0//elPAID2\n9na43W7Oz7qNlStX4siRIwgGg/B6vTH53mTPzHUWLlyIwsJClJaWQhAEbN26NdZNSgiVlZXYtm0b\nnE4nZDIZvvzyS2zfvp2/pG/hX//6F7xeL1588cXItW3btiE9PT2GrYpfpaWlePXVV7Fp0yYEAgG8\n/vrrkEj4/zG6v9atW4eXXnoJ5eXlGBwcxM9//nMOMd1GWloaHnroIXz3u98FAPzsZz+b8O9NQeSk\nECIiIkpg/G8NERERJTSGGSIiIkpoDDNERESU0BhmiIiIKKExzBAREVFCY5ghognjcDhQVFQUOZG4\ntLQUP/3pT9Hd3X3H77F582YMDw/f8fOffvppHD169G6aS0QJgmGGiCaU0WjEjh07sGPHDnz88cew\nWCx4//337/j1O3bs4BlWRDQKN80jophavHgxysrKcPHiRWzbtg1DQ0MYHBzE66+/jtmzZ2Pz5s2Y\nOXMmLly4gA8//BCzZ89GVVUVBgYG8Nprr6G1tRVDQ0N44oknsGnTJvT19eEnP/kJvF4vsrOz0d/f\nDwBwuVx46aWXAACBQAAbN27Ed77znVh+6UR0nzDMEFHMDA8P46uvvkJxcTFefvllvPfee8jKysLF\nixexZcsW7Ny5EwCgUqnw0UcfjXrtjh07kJKSgt/85jcIBAJ45JFHsGrVKhw6dAhKpRJlZWVoa2vD\n+vXrAQCff/45neD1JwAAAclJREFU8vLy8Itf/AL9/f34+9//PuFfLxGND4YZIppQHo8HmzdvBgAE\ng0EsWrQITz75JN555x28+uqrkef5fD4Eg0EAoWNGrnfmzBls2LABAKBUKlFUVISqqirU1NSguLgY\nQOjg2Ly8PADAqlWr8Ne//hWvvPIK1qxZg40bN47r10lEE4dhhogm1MicmWv19PRALpePuT5CLpeP\nuSYIwqiPRVGEIAgQRXHUuTAjgSg/Px+fffYZjh8/ji+++AIffvghPv7443v9cogoDnACMBHFnFar\nhd1ux/79+wEAly9fxrvvvnvL18ybNw8HDhwAAPj9flRVVaGwsBD5+fk4deoUAKClpQWXL18GAPzj\nH//AuXPnsHz5cmzduhUtLS0YGhoax6+KiCYKe2aIKC5s27YNv/zlL/GHP/wBQ0NDeOWVV275/M2b\nN+O1117D9773PQwMDOD555+H3W7HE088gW+++QabNm2C3W7HnDlzAADTpk3D1q1boVAoIIoinn32\nWchk/BFINBnw1GwiIiJKaBxmIiIiooTGMENEREQJjWGGiIiIEhrDDBERESU0hhkiIiJKaAwzRERE\nlNAYZoiIiCihMcwQERFRQvv/I+ODN5bubccAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + } + ] +} \ No newline at end of file From e018af7e29d4d7f6a5a8b21342716ba9977caf50 Mon Sep 17 00:00:00 2001 From: Amit Rai <42401957+ardev472@users.noreply.github.com> Date: Sun, 17 Feb 2019 23:13:50 +0530 Subject: [PATCH 10/11] Created using Colaboratory --- improving_neural_net_performance.ipynb | 1558 ++++++++++++++++++++++++ 1 file changed, 1558 insertions(+) create mode 100644 improving_neural_net_performance.ipynb diff --git a/improving_neural_net_performance.ipynb b/improving_neural_net_performance.ipynb new file mode 100644 index 0000000..cc83f03 --- /dev/null +++ b/improving_neural_net_performance.ipynb @@ -0,0 +1,1558 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "improving_neural_net_performance.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "jFfc3saSxg6t", + "FSPZIiYgyh93", + "GhFtWjQRzD2l", + "P8BLQ7T71JWd" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "JndnmDMp66FL" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "cellView": "both", + "colab_type": "code", + "id": "hMqWDc_m6rUC", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "eV16J6oUY-HN" + }, + "cell_type": "markdown", + "source": [ + "# Improving Neural Net Performance" + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "0Rwl1iXIKxkm" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objective:** Improve the performance of a neural network by normalizing features and applying various optimization algorithms\n", + "\n", + "**NOTE:** The optimization methods described in this exercise are not specific to neural networks; they are effective means to improve most types of models." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "lBPTONWzKxkn" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "\n", + "First, we'll load the data." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "VtYVuONUKxko", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "code", + "id": "B8qC-jTIKxkr", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Scale the target to be in units of thousands of dollars.\n", + " output_targets[\"median_house_value\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] / 1000.0)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "code", + "id": "Ah6LjMIJ2spZ", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1205 + }, + "outputId": "4339eb4d-f3cc-4f77-9d47-c28cb65d0636" + }, + "cell_type": "code", + "source": [ + "# Choose the first 12000 (out of 17000) examples for training.\n", + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "\n", + "# Choose the last 5000 (out of 17000) examples for validation.\n", + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "\n", + "# Double-check that we've done the right thing.\n", + "print(\"Training examples summary:\")\n", + "display.display(training_examples.describe())\n", + "print(\"Validation examples summary:\")\n", + "display.display(validation_examples.describe())\n", + "\n", + "print(\"Training targets summary:\")\n", + "display.display(training_targets.describe())\n", + "print(\"Validation targets summary:\")\n", + "display.display(validation_targets.describe())" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 35.6 -119.6 28.5 2648.1 539.8 \n", + "std 2.1 2.0 12.6 2223.2 427.7 \n", + "min 32.5 -124.3 1.0 2.0 1.0 \n", + "25% 33.9 -121.8 18.0 1454.0 296.0 \n", + "50% 34.3 -118.5 29.0 2125.0 432.0 \n", + "75% 37.7 -118.0 37.0 3150.0 647.0 \n", + "max 42.0 -114.3 52.0 37937.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1433.3 501.8 3.9 2.0 \n", + "std 1178.1 389.8 1.9 1.2 \n", + "min 6.0 1.0 0.5 0.0 \n", + "25% 791.0 281.0 2.6 1.5 \n", + "50% 1164.0 408.0 3.5 1.9 \n", + "75% 1720.0 602.0 4.8 2.3 \n", + "max 35682.0 6082.0 15.0 52.0 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean35.6-119.628.52648.1539.81433.3501.83.92.0
std2.12.012.62223.2427.71178.1389.81.91.2
min32.5-124.31.02.01.06.01.00.50.0
25%33.9-121.818.01454.0296.0791.0281.02.61.5
50%34.3-118.529.02125.0432.01164.0408.03.51.9
75%37.7-118.037.03150.0647.01720.0602.04.82.3
max42.0-114.352.037937.06445.035682.06082.015.052.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 35.6 -119.5 28.7 2633.1 538.4 \n", + "std 2.1 2.0 12.5 2072.7 406.2 \n", + "min 32.6 -124.3 1.0 11.0 3.0 \n", + "25% 33.9 -121.7 18.0 1476.0 298.0 \n", + "50% 34.2 -118.5 29.0 2137.5 436.0 \n", + "75% 37.7 -118.0 37.0 3152.2 653.0 \n", + "max 41.9 -114.6 52.0 21060.0 4952.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1420.7 499.9 3.9 2.0 \n", + "std 1071.8 371.7 1.9 1.2 \n", + "min 3.0 2.0 0.5 0.1 \n", + "25% 786.0 282.0 2.6 1.5 \n", + "50% 1173.0 411.0 3.5 1.9 \n", + "75% 1722.0 609.0 4.7 2.3 \n", + "max 12427.0 4616.0 15.0 55.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean35.6-119.528.72633.1538.41420.7499.93.92.0
std2.12.012.52072.7406.21071.8371.71.91.2
min32.6-124.31.011.03.03.02.00.50.1
25%33.9-121.718.01476.0298.0786.0282.02.61.5
50%34.2-118.529.02137.5436.01173.0411.03.51.9
75%37.7-118.037.03152.2653.01722.0609.04.72.3
max41.9-114.652.021060.04952.012427.04616.015.055.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Training targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 12000.0\n", + "mean 207.7\n", + "std 116.1\n", + "min 15.0\n", + "25% 119.4\n", + "50% 180.6\n", + "75% 265.6\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count12000.0
mean207.7
std116.1
min15.0
25%119.4
50%180.6
75%265.6
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 5000.0\n", + "mean 206.3\n", + "std 115.6\n", + "min 15.0\n", + "25% 119.4\n", + "50% 179.7\n", + "75% 264.1\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count5000.0
mean206.3
std115.6
min15.0
25%119.4
50%179.7
75%264.1
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "NqIbXxx222ea" + }, + "cell_type": "markdown", + "source": [ + "## Train the Neural Network\n", + "\n", + "Next, we'll train the neural network." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "6k3xYlSg27VB", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns(input_features):\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Args:\n", + " input_features: The names of the numerical input features to use.\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " return set([tf.feature_column.numeric_column(my_feature)\n", + " for my_feature in input_features])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "code", + "id": "De9jwyy4wTUT", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a neural network model.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "code", + "id": "W-51R3yIKxk4", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_nn_regression_model(\n", + " my_optimizer,\n", + " steps,\n", + " batch_size,\n", + " hidden_units,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a neural network regression model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " my_optimizer: An instance of `tf.train.Optimizer`, the optimizer to use.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " hidden_units: A `list` of int values, specifying the number of neurons in each layer.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A tuple `(estimator, training_losses, validation_losses)`:\n", + " estimator: the trained `DNNRegressor` object.\n", + " training_losses: a `list` containing the training loss values taken during training.\n", + " validation_losses: a `list` containing the validation loss values taken during training.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + " \n", + " # Create a DNNRegressor object.\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " dnn_regressor = tf.estimator.DNNRegressor(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " hidden_units=hidden_units,\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " dnn_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions.\n", + " training_predictions = dnn_regressor.predict(input_fn=predict_training_input_fn)\n", + " training_predictions = np.array([item['predictions'][0] for item in training_predictions])\n", + " \n", + " validation_predictions = dnn_regressor.predict(input_fn=predict_validation_input_fn)\n", + " validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " print(\"Final RMSE (on training data): %0.2f\" % training_root_mean_squared_error)\n", + " print(\"Final RMSE (on validation data): %0.2f\" % validation_root_mean_squared_error)\n", + "\n", + " return dnn_regressor, training_rmse, validation_rmse" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "code", + "id": "KueReMZ9Kxk7", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 775 + }, + "outputId": "ec43a3da-6dd0-463b-d2e2-9db0e423fe27" + }, + "cell_type": "code", + "source": [ + "_ = train_nn_regression_model(\n", + " my_optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.0007),\n", + " steps=5000,\n", + " batch_size=70,\n", + " hidden_units=[10, 10],\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 156.14\n", + " period 01 : 143.40\n", + " period 02 : 130.17\n", + " period 03 : 117.49\n", + " period 04 : 110.82\n", + " period 05 : 109.35\n", + " period 06 : 106.46\n", + " period 07 : 105.64\n", + " period 08 : 101.87\n", + " period 09 : 100.60\n", + "Model training finished.\n", + "Final RMSE (on training data): 100.60\n", + "Final RMSE (on validation data): 101.10\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XdYU/f+B/D3SUIII+wtKjiZ4q57\nK7gH1rpwVmvVtrf13o7fbXvb2mV7b2+Xu3WBto66cNZRZ+tArDLFgYqA7L1Jzu8Pb1MpJIBCCPB+\nPY/PY3K+OfkkX6jvnvM95yOIoiiCiIiIqBGRNHQBRERERLXFAENERESNDgMMERERNToMMERERNTo\nMMAQERFRo8MAQ0RERI2OrKELIDJkHTt2RKtWrSCVSgEAKpUKPXr0wNtvvw1TU9Mn3u+OHTswZcqU\nSs/v3r0bb731FtasWYPBgwdrni8uLkafPn0wYsQIfPrpp0/8vjV1//59fPzxx4iPjwcAmJiYYOnS\npRg2bFi9v3dtrFq1Cvfv36/0nVy8eBHz58+Hq6trpdccOXJEX+U9lQcPHmDo0KFwd3cHAIiiCDs7\nO/zzn/+El5dXrfb1n//8By4uLpg2bVqNX7Nv3z7s2rULwcHBtXovIn1hgCGqRnBwMJycnAAApaWl\nePXVV7F27Vq8+uqrT7S/tLQ0fPfdd1UGGABwdnbGgQMHKgSYX375BRYWFk/0fk/i73//O8aPH481\na9YAAK5du4bZs2fj8OHDcHZ21lsdT8PZ2bnRhBVtpFJphc9w6NAhLFmyBEePHoVcLq/xfpYtW1Yf\n5RE1KJ5CIqoFuVyO/v37IyYmBgBQUlKCd999F/7+/hg5ciQ+/fRTqFQqAEBsbCymTp2KgIAAjB8/\nHmfPngUATJ06FUlJSQgICEBpaWml9+jatSsuXryIoqIizXOHDh1C3759NY9LS0vx4Ycfwt/fH0OG\nDNEEDQC4evUqJk2ahICAAIwaNQq//vorgEf/R9+vXz9s2bIFY8eORf/+/XHo0KEqP2dcXBz8/Pw0\nj/38/HD06FFNkPv2228xcOBATJgwAevWrcOQIUMAAG+++SZWrVqled3jj6ur6+OPP8bMmTMBAFeu\nXEFgYCCGDx+OKVOmICEhAcCjI1F/+9vfMHjwYMycORMPHz6sZsaqtnv3bixduhSzZ8/GZ599hosX\nL2Lq1Kl45ZVXNP/YHz58GGPGjEFAQABmzZqF+/fvAwC++eYbvP3225g8eTI2bdpUYb+vvPIKNmzY\noHkcExODfv36Qa1W47///S/8/f3h7++PWbNmISUlpdZ1jxo1CsXFxbhz5w4AYPv27QgICMCQIUPw\n2muvobi4GMCj7/2TTz7B2LFjcfjw4QrzoO3nUq1W44MPPsCgQYMwefJkxMbGat730qVLmDhxIkaN\nGoWRI0fi8OHDta6dqM6JRKRVhw4dxOTkZM3j7OxsccaMGeKqVatEURTFtWvXigsWLBDLysrEoqIi\nMTAwUNy7d6+oUqnEkSNHiqGhoaIoiuL169fFHj16iHl5eeKFCxfEYcOGVfl+P/30k/jGG2+If//7\n3zWvzcvLE4cOHSru3LlTfOONN0RRFMVvv/1WnD17tlhSUiIWFBSIEyZMEE+ePCmKoiiOGTNGPHDg\ngCiKorhnzx7NeyUkJIheXl5icHCwKIqieOjQIXH48OFV1vHSSy+JgwcPFjdv3izeunWrwrYbN26I\n3bt3F1NTU8WysjLxxRdfFAcPHiyKoii+8cYb4sqVKzVjH3+sqy5vb29x9+7dms/bo0cP8dy5c6Io\nimJoaKg4ceJEURRFMSQkRJwxY4ZYVlYmZmZmioMHD9Z8J4/T9R3/8T137txZjI+P14z39fUVf/31\nV1EURTExMVHs1q2bePfuXVEURfH7778XZ8+eLYqiKH799ddiv379xIyMjEr7PXjwoDhjxgzN46++\n+kpcvny5GBcXJ44YMUIsLS0VRVEUt2zZIu7Zs0drfX98L56enpWe79Gjh3j79m3x8uXLYu/evcWH\nDx+KoiiK77zzjvjpp5+Kovjoex87dqxYXFysebxy5UqdP5enTp0SR4wYIebn54tFRUXi5MmTxZkz\nZ4qiKIqTJk0SL168KIqiKMbHx4uvvfaaztqJ9IFHYIiqERQUhICAAAwdOhRDhw5Fr169sGDBAgDA\nqVOnMGXKFMhkMigUCowdOxbnz5/HgwcPkJ6ejtGjRwMAfH194eLigoiIiBq95+jRo3HgwAEAwPHj\nxzF48GBIJH/+uv7yyy+YPn065HI5TE1NMX78ePz8888AgL1792LkyJEAgG7dummOXgBAeXk5Jk2a\nBADw9vZGUlJSle//+eefY8aMGQgNDcWYMWMwZMgQ/PDDDwAeHR3p0aMH7O3tIZPJMGbMmBp9Jl11\nlZWVYfjw4Zr9Ozo6ao44jRkzBvfv30dSUhLCwsIwfPhwyGQyWFtbVzjN9lfJyckICAio8OfxtTJu\nbm5wc3PTPFYoFOjduzcA4Pz583jmmWfQunVrAMCzzz6Lixcvory8HMCjI1I2NjaV3nPQoEGIjo5G\ndnY2AODYsWMICAiAhYUFMjMzERoaipycHAQFBWHChAk1+t7+IIoitm/fDkdHR7i5ueHkyZMYNWoU\nHB0dAQDTpk3T/AwAQO/evWFsbFxhH7p+Li9fvoyBAwfCzMwMCoVCM1cAYGtri7179+L27dtwc3PD\nf/7zn1rVTlQfuAaGqBp/rIHJzMzUnP6QyR796mRmZsLS0lIz1tLSEhkZGcjMzIRSqYQgCJptf/wj\nZmdnV+179u3bF2+//Tays7Nx8OBBLF68WLOgFgDy8vLwySef4IsvvgDw6JRSp06dAAChoaHYsmUL\nCgoKoFarIT7W7kwqlWoWH0skEqjV6irf39jYGPPnz8f8+fORm5uLI0eO4OOPP4arqytycnIqrMex\ntbWt9vPUpC5zc3MAQG5uLhISEhAQEKDZLpfLkZmZiZycHCiVSs3zFhYWKCgoqPL9qlsD8/i8/fVx\nVlZWhc+oVCohiiKysrKqfO0fTE1N0adPH5w6dQrdunVDbm4uunXrBkEQ8M0332DDhg1Yvnw5evTo\ngffff7/a9UQqlUrzPYiiiHbt2mHVqlWQSCTIy8vDsWPHcO7cOc32srIyrZ8PgM6fy5ycHDg4OFR4\n/g8ff/wxVq9ejblz50KhUOC1116rMD9EDYEBhqiGbGxsEBQUhM8//xyrV68GANjZ2Wn+bxsAsrOz\nYWdnB1tbW+Tk5EAURc0/FtnZ2TX+x97IyAiDBw/G3r17ce/ePXTp0qVCgHFwcMC8efMqHYFISUnB\n22+/jZ07d8LT0xN3796Fv79/rT5nZmYmYmJiNEdALCwsMGXKFJw9exZxcXFQKpXIy8urMP4Pfw1F\nOTk5ta7LwcEBbdq0we7duytts7Cw0PredcnW1hZXr17VPM7JyYFEIoG1tXW1r/X398exY8eQlZUF\nf39/zfz36tULvXr1QmFhIVasWIF///vf1R7J+Osi3sc5ODhg4sSJeOONN2r1ubT9XOr6bu3s7PDO\nO+/gnXfewblz5/DSSy+hf//+MDMzq/F7E9U1nkIiqoW5c+fi6tWruHTpEoBHpwx27doFlUqFwsJC\n7Nu3DwMHDoSrqyucnJw0i2TDw8ORnp6OTp06QSaTobCwUHM6QpvRo0dj/fr1VV66PHToUOzcuRMq\nlQqiKGLVqlU4c+YMMjMzYWpqijZt2qC8vBzbt28HAK1HKapSXFyMl19+WbO4EwDu3buHa9euoXv3\n7ujSpQvCwsKQmZmJ8vJy7N27VzPO3t5es/gzISEB4eHhAFCruvz8/JCWloZr165p9vOPf/wDoiii\nc+fOOHnyJFQqFTIzM3HmzJkaf67a6Nu3L8LCwjSnuX788Uf07dtXc+RNl8GDB+Pq1as4fvy45jTM\nuXPn8P7770OtVsPU1BQeHh4VjoI8iSFDhuDnn3/WBI3jx49j3bp1Ol+j6+eyS5cuOHfuHIqKilBU\nVKQJTmVlZQgKCkJqaiqAR6ceZTJZhVOaRA2BR2CIasHc3BwLFy7EihUrsGvXLgQFBSEhIQGjR4+G\nIAgICAjAyJEjIQgCvvjiC/zrX//Ct99+CxMTE3z11VcwNTVFx44dYWlpib59+2LPnj1wcXGp8r16\n9uwJQRAwatSoStumT5+OBw8eYPTo0RBFET4+Ppg9ezZMTU0xYMAA+Pv7w9bWFm+++SbCw8MRFBSE\nr7/+ukaf0cXFBatXr8bXX3+NDz/8EKIowtzcHG+99ZbmyqTnnnsOEydOhLW1NUaMGIGbN28CAKZM\nmYKlS5dixIgR8PLy0hxl8fDwqHFdCoUCX3/9NZYvX46CggIYGRnhlVdegSAImDJlCsLCwjBs2DC4\nuLhg2LBhFY4aPO6PNTB/9dlnn1X7HTg5OeHDDz/E4sWLUVZWBldXVyxfvrxG35+5uTm8vb1x48YN\ndO7cGQDQo0cPHDx4EP7+/pDL5bCxscHHH38MAHj99dc1VxLVhre3NxYtWoSgoCCo1WrY2tri/fff\n1/kaXT+XgwcPxqlTpxAQEAA7OzsMHDgQYWFhMDIywuTJkzFnzhwAj46yvf322zAxMalVvUR1TRAf\nPxFNRFRLYWFheP3113Hy5MmGLoWImhEeAyQiIqJGhwGGiIiIGh2eQiIiIqJGh0dgiIiIqNFhgCEi\nIqJGp1FeRp2WVvVlk3XB2toUWVmF9bZ/enKcG8PEeTFcnBvDxbmpGXt7pdZtPALzFzKZtKFLIC04\nN4aJ82K4ODeGi3Pz9BhgiIiIqNFhgCEiIqJGhwGGiIiIGh0GGCIiImp0GGCIiIio0WGAISIiokaH\nAYaIiIgaHQYYIiKiJubUqRM1GvfVV/9BUlKi1u1vvvlaXZVU5xhgiIiImpDk5CQcP360RmNfeWUZ\nXFxaaN3+6adf1FVZda5RthIgIiKiqn3xxQrExEShf/8eGDFiJJKTk/Dll6vwyScfIC0tFUVFRZg3\nbyH69u2PpUsX4rXXXscvv5xAQUE+7t+/h8TEB3j55WXo3bsvRo8eioMHT2Dp0oXo0eMZhIeHITs7\nGytW/Bd2dnb44IN38PBhMnx9O+HkyePYs+eQ3j4nAwwREVE92XHyFi7HplZ6XioVoFKJT7TPHh4O\nmDKkndbt06YFYffuHXB3b4v79+9i1arvkJWViZ49e2HkyDFITHyAd955E3379q/wutTUFPz731/j\nwoVfsW/fT+jdu2+F7WZmZvjqq9VYvfobnDlzEi4urigtLcG6dZtw/vxZ7NjxwxN9nifFAPOY9Owi\nJGUXw8VK0dClEBERPTVPT28AgFJpgZiYKOzfvxuCIEFubk6lsZ06dQYAODg4ID8/v9J2P78umu05\nOTm4dy8evr5+AIDevftCKtVvfycGmMeE/noXZ68n46VJvujSwb6hyyEiokZuypB2VR4tsbdXIi0t\nr97f38jICABw7NgR5ObmYuXK75Cbm4vnnw+qNPbxACKKlY8O/XW7KIqQSB49JwgCBEGo6/J14iLe\nxwzv3hJyIym+OxiD1Oyihi6HiIio1iQSCVQqVYXnsrOz4ezsAolEgtOnT6KsrOyp36dFC1fcuBEN\nALh06UKl96xvDDCPcXUwx4uTOqGopByr90airFy/k0FERPS0Wrd2x40bsSgo+PM00KBBQ/Drr2fx\nyisvwsTEBA4ODti4cf1TvU+fPv1RUFCAF1+cj2vXrsLCwvJpS68VQazqOJGBq8/Dbvb2SqzYdAnn\nIpIxuGsLBI3oWG/vRbWjr0OuVDucF8PFuTFcTWFucnNzEB4ehkGDhiItLRWvvPIitm37qU7fw95e\nqXUb18BUYcaIDrj7MBe/hCeig6sVnvFybOiSiIiIDIqpqRlOnjyObduCIYpqvPSSfm96xwBTBWMj\nKV6c4IMPNodh0+FYtHI0h7OtWUOXRUREZDBkMhk++OCTBnt/roHRwtnWDHNHeqCkTIVVeyNRUsb1\nMERERIaCAUaHnp6OGNK1BRLTChDy842GLoeIiIj+hwGmGs8NaY/WTkqcj3iIs9eTGrocIiIiAgNM\ntYxkEiye4ANTYxlCfo5DQmrluxMSERGRfjHA1IC9lQnmj/FEWbkaq/ZEoKikvKFLIiIieiqTJ49F\nYWEhgoM3ITLyeoVthYWFmDx5rM7Xnzp1AgBw6FAoTp/+pd7q1IYBpoa6tLdHQM9WSMkqwuYjsVXe\nZpmIiKixCQqaAx+fTrV6TXJyEo4fPwoAGDVqLAYOHFwfpenEy6hrYdLANriVlINLMalo72qFod1c\nG7okIiKiCubNm4GPP/4PnJyc8PBhMt56axns7R1QVFSE4uJivPrqP+Dl5aMZ/9FH72HQoKHo3LkL\n/vnP11FaWqpp7AgAP/98GLt2bYdUKoGbW1u88cY/8cUXKxATE4WNG9dDrVbDysoKgYHPYdWqrxAR\ncQ3l5SoEBk5BQMBoLF26ED16PIPw8DBkZ2djxYr/wsnJ6ak/JwNMLcikEiwa5433Nl7Gjyduoo2L\nBdydLRq6LCIiMlC7bx3A1dSISs9LJQJU6ic7kt/FwReT2o3Run3AgME4f/4MAgOn4OzZ0xgwYDDa\ntm2PAQMG4cqVy9i6dTM++ujzSq87evQw2rRpi5dfXoYTJ37WHGEpKirCf/7zDZRKJZYsWYDbt29h\n2rQg7N69A3PnLsD3368FAPz+ezju3LmN1as3oKioCLNnT8WAAYMAAGZmZvjqq9VYvfobnDlzElOm\nTH+iz/44nkKqJRsLBRaO84JaLWL13kgUFD99QywiIqK68ijAnAUAnDt3Gv36DcTp0yfw4ovzsXr1\nN8jJyanydXfv3oGPjx8AoEuXbprnLSws8NZby7B06ULcuxePnJzsKl8fGxuNzp27AgBMTEzg5tYG\nCQkJAAA/vy4AAAcHB+Tn183FMDwC8wR83G0xtq8b9p+/i+8PxOClQF+9txEnIiLDN6ndmCqPltRn\nL6Q2bdoiIyMNKSkPkZeXh7NnT8HOzgHvvLMcsbHR+PbbL6t8nSgCEsmjf8vU/zs6VFZWhi+++Ayb\nNm2Dra0dXn/9b1rfVxAEPL48tLy8TLM/qVT62PvUzRpSHoF5TExmHHZEhkItqqsdO66vOzxbW+P3\nW+k4eilBD9URERHVTO/e/bBu3Sr07z8QOTnZaNHi0ZrN06d/QXl51VfStmrVGrGxMQCA8PAwAEBh\nYQGkUilsbe2QkvIQsbExKC8vh0QigUpV8Q71Hh7euHr1yv9eV4jExAdwdW1VXx+RAeZxEekx2BV1\nCAfu/FztWIlEwMJx3rA0l2PXqduIS6j6kBoREZG+DRw4GMePH8WgQUMREDAa27dvxauvLoG3tw8y\nMjJw8OD+Sq8JCBiNqKgIvPLKi0hIuAdBEGBpaYUePZ7B88/PwsaN6zF9ehC+/voLtG7tjhs3YvH1\n1//RvN7PrzM6dvTAkiUL8OqrS7Bo0VKYmJjU22cUxEZ4PXB9HXYrLCvEv8O/RUpBOhb6zoafvXe1\nr7lxPwuf/XAVlmZyvDevJyxM5fVSGzWN9vNNEefFcHFuDBfnpmbs7ZVat/EIzGNMjUyxrO8LMJIY\nYUv0dqQUplX7mo6trDFpQBtk55difWi05rwhERER1R8GmL9ws3bFdI9AFKuKsS5iC4rLS6p9zche\nrdGprS2i4jNx4Ne79V8kERFRM8cAU4WeTl0x0LUvHhakYGvszmpXTEsEAc+P8YKthTH2nYtH9N1M\nPVVKRETUPDHAaDGp3Wi0sXRDeOp1nEw4W+14cxMjLJrgA4lEwLr9UcjKq/7IDRERET0ZBhgtZBIZ\nnveZCQu5EntvH0Jc1u1qX9PWxRJThrRDbmEZ1u6Pgkpd/eXYREREVHsMMDpYGltgvs9MAMD3kSHI\nKq7+Uulh3VzRraM94hKysedMfH2XSERE1CwxwFSjnZU7JrUbg/yyAnwXGYIyddU3APqDIAiYO9IT\nDtYmOHThHn6/la6nSomIiJoPBpgaGOTaF90dO+Nu7n3suln55j9/ZaqQYfEEH8ikEnx/IBrpOUV6\nqJKIiKj5YICpAUEQMN1jMlzMnHAu8QJ+Sw6r9jWtHJWYMbw9CorLsXpvFMpVXA9DRERUVxhgashY\nKscC31kwkSnw443duJ/3oNrXDPBzQW9vJ8Qn52LHyVt6qJKIiKh5qNcAExcXh2HDhiEkJAQA8Oab\nb2Ls2LEICgpCUFAQTp06BQDYv38/AgMD8eyzz2Lnzp31WdJTcTC1wxyvaShXl2N9RDDyywp0jhcE\nAbP8O8LFzgzHrzxAWGyqniolIiJq2uotwBQWFmL58uXo3bt3hedfe+01BAcHIzg4GIMGDUJhYSFW\nrlyJTZs2ITg4GJs3b0Z2tuE2RvSx88Qot2HILM7Cpqgfqu1cbSyX4sUJPpAbSbDhUAxSMgv1VCkR\nEVHTVW8BRi6XY/369XBwcNA57tq1a/D19YVSqYRCoUDXrl0RHh5eX2XViZHuw+Bt64GYzDgcrEHn\n6hZ2Zpjt74HiUhVW7Y1EaZmq2tcQERGRdvUWYGQyGRQKRaXnQ0JCMGvWLLz66qvIzMxEeno6bGxs\nNNttbGyQllZ9E8WGJBEkmOM1FXYKGxy5dxLX0qKqfU1vHycM7OyChNR8bDt+Uw9VEhERNV0yfb7Z\n+PHjYWVlBU9PT6xbtw7ffvstunTpUmFMdX2HAMDa2hQymbS+ytTZvvtPSrw+4EW8feIzBMduh1fL\nN+GidNT5ipendkVCagHOXEtCNy8nDOnesm4KbkZqNjekb5wXw8W5MVycm6ej1wDz+HqYIUOG4L33\n3oO/vz/S0/+82Vtqaio6d+6scz9ZWfW3jsTeXom0tLwajTWDJaZ1DMTm6B/x6enV+Ee3pVDIjHW+\nZsFYT3yw6TJW7vodNqYytLA3r4uym4XazA3pD+fFcHFuDBfnpmZ0hTy9Xkb90ksvISEhAQBw8eJF\ntG/fHn5+foiIiEBubi4KCgoQHh6O7t2767Osp/Koc3WfGneudrQ2xbxRnigtU2PV3kgUl+q+sy8R\nERFVVm9HYCIjI7FixQokJiZCJpPh6NGjmDlzJv72t7/BxMQEpqam+OSTT6BQKLBs2TLMnz8fgiBg\nyZIlUCob12G1Se3GICEvEeGp1+Fm0QpDWw3QOb5bRwcM794Sx8ISsOXoDSwY4wVBEPRULRERUeMn\niDVZdGJg6vOw25Me1ssuycGKy18jv6wAL3VegA7WbXWOL1epsWJrOG4n5WJWQEcM6tziSUtuNnjI\n1TBxXgwX58ZwcW5qxmBOITVlVsaWms7VGyK3Vtu5WiaVYNF4H5gpZNh27CbuPeQPMhERUU0xwNSh\nPzpX55Xl4/sadK62tVRgwVgvlKvUWLU3AoXFXA9DRERUEwwwdeyPztXxuffx083Qasd3amuH0b1b\nIy27GBsPxdToMnIiIqLmjgGmjj3eufps4m+4UIPO1RP6u6NjSytciUvDsbDqm0QSERE1dwww9aC2\nnaulEgleGO8NCzM5dv5yC7cTc/RUKRERUePEAFNPHEztMNtrKspq2LnaytwYL4zzhloUsXpfJPKL\nyvRUKRERUePDAFOPfO28MLIWnas9W1tjQj93ZOaWYH1oNNRcD0NERFQlBph6Nsp9GLxsO9a4c/Xo\nPm7wcbdBxJ0MHL5wTw8VEhERNT4MMPXsUefqabCtYedqiSBgwVgvWCuNsfvMHcTey9JTpURERI0H\nA4wemBmZYoHvLBhJZNgSvR0phWk6xytN5XhxvA8kgoC1+6OQk1+ip0qJiIgaBwYYPWmpdMG0joEo\nVhVjfcQWFJfrDiXtXC0ROLAtcgpKsXZ/FNRqrochIiL6AwOMHj3j3A0DXfsguSAF22J3VXvTOv+e\nLdGlvR1i72dj77l4PVVJRERk+Bhg9GxSuzFoY9kaV1Kv4ZeEszrHCoKA+aM9YWepwIFf7yLiToae\nqiQiIjJsDDB6JpPIMN9nJizkSuy5fQg3s27rHG+qMMLiiT6QSQWsD41GZm6xniolIiIyXAwwDeDx\nztXfR25FdonuO++6OVlg2tD2yC8qw+p9kShX6b6fDBERUVPHANNAHu9c/V1EcLWdqwd1aYGeng64\nnZiLn07rPmpDRETU1DHANKDadK4WBAGzAzzgZGOKo5cSEB6n+1JsIiKipowBpgHVtnO1ibEMiyf6\nQC6T4PuDMUjNLtJTpURERIaFAaaB/bVzdUJeos7xrvbmCPLviKKScqzeE4mycpWeKiUiIjIcDDAG\noGLn6i3Vdq7u6+uMfp2ccS8lDz+euKWnKomIiAwHA4yBeNS5eigyati5esbwDnC1N8MvVxNxIfqh\nnqokIiIyDAwwBmSU+/A/O1fHH9M51thIisUTfWEsl2Lz4RtIztB91IaIiKgpYYAxIBU6V989gevV\ndK52sjHF3JEeKClTYdWeSJSUcT0MERE1DwwwBubxztWbo7cjtZrO1T09HTGkawskphcg5OcbeqqS\niIioYTHAGKCKnauDq+1c/dyQ9nBzUuJ8xEOcvZakpyqJiIgaDgOMgXrGuRsGtOiDpIKH1XauNpJJ\n8OIEH5gayxByLA4Jqfl6rJSIiEj/GGAMWGD7mneutrcywfwxnigrV2PVnggUlehuTUBERNSYMcAY\nsD86Vyvl5jXqXN2lvT0CnmmFlKwibDwcq/OoDRERUWPGAGPgrIwtMd+75p2rJw1og/aulgiLTcXJ\ncN139SUiImqsGGAagfbWbTCx3WhN5+pyHZ2rZVIJFo33gbmJEX48cRPxybl6rJSIiEg/GGAaicGu\n/WrcudpaaYyF47ygVotYuy+K62GIiKjJYYBpJB7vXH0m8TdcTL6ic7yPuy1G9mqN1OwiBB+9wfUw\nRETUpDDANCKPd67+4cZP1XauntDfHW1dLHAhOgXnI9gviYiImg4GmEamYufqYBSUFWodK5NKsHCc\nN0yMpQg5xn5JRETUdDDANEJ/dq7OxMaobTo7V9tbmWDOSE+Ulqmxdl8UysrZL4mIiBo/BphGapT7\ncHjZ1KxzdQ8PBwzwc8H91Hzs+EX3vWSIiIgaAwaYRkoiSDDHu+adq6cNaw8XOzOcuPIAV2/qbhBJ\nRERk6BhgGrFHnauDatS52thllMQVAAAgAElEQVRIikXjvGEkk2DDwRhk5hbrsVIiIqK6xQDTyLVU\ntqjQubpEVap1rKuDOaYObY+C4nKsC42GWs1Lq4mIqHFigGkCHnWu7o2kgofYGrNT5z1fBnV2QbeO\n9ohLyEbor3f1VyQREVEdYoBpIgLbj4W7xf86Vz84p3WcIAiYM9IDthbG2H8+HjfuZ+mxSiIiorrB\nANNEyCQyPO/7v87Vtw7iZtYdrWPNFEZ4YZwPBAhYFxqN/KIyPVZKRET09BhgmpAKnaujQnR2rm7n\naonx/d2RlVeCDQdj2GqAiIgaFQaYJkbTubo0H99FhOjsXD26V2t4tLLC77fScTJcd1sCIiIiQ8IA\n0wQNdu2Hbg5+iM+9h723D2kdJ5EIWDDWG+YmRth+8ibup+TpsUoiIqInV68BJi4uDsOGDUNISEiF\n58+ePYuOHTtqHu/fvx+BgYF49tlnsXPnzvosqVn4o3O1o6k9fkk4h4j0aK1jrZXGeH6MJ8pVItbs\ni0JJKVsNEBGR4au3AFNYWIjly5ejd+/eFZ4vKSnBunXrYG9vrxm3cuVKbNq0CcHBwdi8eTOys7Pr\nq6xmQyEzxnyfmZBJZAiO3oGsYu3faae2dhjRoyUeZhZi67E4PVZJRET0ZOotwMjlcqxfvx4ODg4V\nnl+zZg2mT58OuVwOALh27Rp8fX2hVCqhUCjQtWtXhIeH11dZzUoLc2cEthuLgvJCbIzaBpVa+9GV\nwIFt0dpJiXMRybgQ9VCPVRIREdWerN52LJNBJqu4+/j4eMTGxuKVV17B559/DgBIT0+HjY2NZoyN\njQ3S0nT36rG2NoVMJq37ov/H3l5Zb/vWt0l2w3G38C4uPriKU6lnMNV3nNax/ze3J/72xSkE/xyH\n7j4ucLYz02OlNdOU5qYp4bwYLs6N4eLcPJ16CzBV+eSTT/D222/rHFOTy3mzsgrrqqRK7O2VSEtr\nWotZJ7tPwK30u9gTfQQt5K7wsGlf5TgjADOHd8T6A9H4eONF/F9QN8ikhrPOuynOTVPAeTFcnBvD\nxbmpGV0hT2//OqWkpODOnTv4+9//jilTpiA1NRUzZ86Eg4MD0tPTNeNSU1MrnXaip2NqZIK53jMg\nCAI2R/+I3FLtvzS9fZzQ18cJdx/mYfdp7TfDIyIiakh6CzCOjo44fvw4duzYgR07dsDBwQEhISHw\n8/NDREQEcnNzUVBQgPDwcHTv3l1fZTUb7patML7tSOSW5mFL9HaoRbXWsTNGdICjjSmOXLqP67cz\n9FglERFRzdRbgImMjERQUBD27NmDLVu2ICgoqMqrixQKBZYtW4b58+dj7ty5WLJkCZRKnhesD0Na\n9oeXbUfEZMbh+L3TWscp5DIsGucNmVTA9wejkZ1foscqiYiIqieIjfAe8vV53rCpn5fMK83HJ5e+\nRF5ZPl7tughtLN20jj0WloAfjt+EZ2trLJvaGRJB0F+hVWjqc9NYcV4MF+fGcHFuasYg1sCQYVDK\nzTHHexpEUcSGyG0oKNO+IHpYN1d0bmeHmHtZOHzhnh6rJCIi0o0BphnqYN0WI92GIqskG1tjdmq9\n8ksQBMwd5QErczn2nInHrUTtzSGJiIj0iQGmmRrpPgztrdrgWnoUTif+qnWc0lSOhWO9IYoi1u6L\nQmFxmR6rJCIiqhoDTDMlESSY4z0N5kZm2HPzABLytHej9mhtjbF93ZCRW4xNh2NrdK8eIiKi+sQA\n04xZGVtiltdzKBdV+D4yBMXlxVrHju3rhg6ulgi7kYbT15L0WCUREVFlDDDNnLetB4a2GoC0ogz8\neGOP1qMrUokEC8d5w0whww/HbyIxLV/PlRIREf2JAYYwrk0AWlu0xOWUq7iQHKZ1nI2FAnNHeaKs\nXI01+6JQUqa9OSQREVF9YoAhyCQyzPOeAROZAjvi9uJhQYrWsV072GNI1xZITC/A9hM39VglERHR\nnxhgCABgZ2KD6R6TUaouw/eRW1Gq0n610XND2sHV3hynfk9CWGyqHqskIiJ6hAGGNLo6dEL/Fr2R\nVPAQP93cr3WckUyKReO9ITeSYOPhWKRnF+mxSiIiIgYY+ovAdmPQwtwZ55Iu4krKNa3jXOzMMGNY\nBxSVlGNtaBTKVdqbQxIREdU1BhiqwEhqhHneMyCXGGFb7E9IL9LejbpfJ2f09HTA7cRc7DsXr8cq\niYiouWOAoUqczBzwXMeJKFYV4/vIrShXl1c5ThAEzPL3gL2VAod+u4fou5l6rpSIiJorBhiqUi/n\n7ujp1BX38x5g3+3DWseZKmR4YZwPJBIB60OjkVtQqscqiYiouWKAIa2e6zARDqZ2OJlwFpHpMVrH\ntXGxwKSBbZBTUIrvD8ZAzVYDRERUzxhgSCuFzBjzvWdCJpFhS8x2ZBVnax3r37MVfNxtEHEnA8cu\nJ+ixSiIiao4YYEgnV6ULAtuNQUFZITZF/wCVuuq770oEAfPHeMHCTI5dp24jPjlXz5USEVFzwgBD\n1erfojc62/viVnY8Dt89oXWcpZkcC8Z4QaUWsXZfFIpKql78S0RE9LQYYKhagiBghsdk2CisceTu\nCdzIvKV1rLe7DUb2aoXU7CIEH72htTkkERHR02CAoRoxNTLBPO/pEAQBm6J/QF6p9m7UE/u3QRsX\nC1yITsH5iId6rJKIiJoLBhiqMXfL1hjXJgC5pXnYHP0j1GLVd9+VSSV4YZw3TIylCDl2A8kZBXqu\nlIiImjoGGKqVoa0GwMu2I2Iy43Di/hmt4+ytTDA7wAOlZWqs3ReFsnK2GiAiorrDAEO1IhEkmOX5\nHCzlSuy/cwTxOfe0ju3p6YgBfi64n5qPnb9oXzdDRERUWwwwVGtKuTnmeE+DKIrYELUNhWWFWsdO\nG9YeLnZmOH7lAa7eTNNjlURE1JQxwNAT6WDdDgFuQ5FZnIWtsbu0Xm1kbCTFonHeMJJJsOFgDDJz\ni/VcKRERNUUMMPTERroNRTsrd/yeFokzib9pHefqYI6pQ9ujoLgc60KjoVbz0moiIno6DDD0xKQS\nKeZ6T4eZkSl23wxFQl6S1rGDOrugW0d7xCVkI/TXu/orkoiImiQGGHoqVsaWmOX5HMpFFTZEhaC4\nvKTKcYIgYM5ID9haGGP/+XjcuJ+l50qJiKgpYYChp+Zj54mhLQcgtTAd2+P2aB1npjDCwnHeECBg\nXWg08ovK9FglERE1JQwwVCfGtQ1Aa4uWuPQwHBeSw7SOa+9qhfH93ZGVV4INB2PYaoCIiJ4IAwzV\nCZlEhnne06GQKrD9xh48LEjVOnZ0r9bwaGWF32+l42R4oh6rJCKipoIBhuqMnYktZnhORqm6DBui\ntqJUVfUpIolEwIKx3jA3McL2kzdxPyVPz5USEVFjxwBDdaqrQyf0a9ELifnJ+OlWqNZx1kpjzB/t\niXKViDX7olBSqtJjlURE1NgxwFCdC2w3Fi3MnXEu8QLCU69rHefXzg4jerTEw8xCbD0Wp8cKiYio\nsWOAoTonlxphnvcMyCVG2BqzC+lFmVrHBg5si9aOSpyLSMaF6Id6rJKIiBozBhiqF05mDpjScSKK\nVcXYELUV5eryKscZySRYNN4bxnIpthy5gdQs7X2ViIiI/sAAQ/Wml1M39HDsinu5Cdh/54jWcY42\nppg1oiOKS1VYsy8K5Sq1HqskIqLGiAGG6o0gCJjacQIcTOxw4v4ZRGXEah3b28cJfXyccPdhHnaf\nvqPHKomIqDFigKF6pZApMM9nJmQSGbZEb0d2SY7WsTNHdICjtQmOXLqPiDsZeqySiIgaGwYYqnct\nlS6Y1G4M8ssKsCnqB6jFqk8RKeQyLBrvA5lUwHcHopGdX3VfJSIiIgYY0osBLXrDz94HN7Pv4HD8\nca3jWjsp8eygdsgrLMN3B6KhZqsBIiKqAgMM6YUgCJjpMRk2CmscvnsCcVm3tY4d1t0Vfm1tEX03\nC4cv3NNjlURE1Fg8cYC5e/duHZZBzYGpkSnmek+HIAjYFLUNeaX5VY4TBAHzRnvCylyOPWficStR\n+7oZIiJqnnQGmLlz51Z4vGrVKs3f33333fqpiJq0NpatMbaNP3JK87AlZrvW9TBKUzkWjvWGKIpY\nuy8KhcVV91UiIqLmSWeAKS+vePOxCxcuaP4u1mBtQlxcHIYNG4aQkBAAwNWrVzFt2jQEBQVh/vz5\nyMx8dIfW/fv3IzAwEM8++yx27txZ6w9BjcuwVgPhadMB0Rk3cDLhrNZxHq2tMaaPGzJyi7HpyI0a\n/cwREVHzoDPACIJQ4fHj/4D8ddtfFRYWYvny5ejdu7fmuY0bN+Kzzz5DcHAwunTpgh07dqCwsBAr\nV67Epk2bEBwcjM2bNyM7O/tJPgs1EhJBgtleU2EpV2Lf7cOIz7mvdey4fm5o72qJsNhUHOF6GCIi\n+p9arYGpLrQ8Ti6XY/369XBwcNA89/XXX6Nly5YQRREpKSlwcnLCtWvX4OvrC6VSCYVCga5duyI8\nPLw2ZVEjpJSbY7bXNIiiiI1RW1FYVlTlOKlEghfGecNMIcP6vRG49zBPz5USEZEhkunamJOTg99+\n+03zODc3FxcuXIAoisjNzdW9Y5kMMlnl3Z85cwYfffQR2rRpg3HjxuHgwYOwsbHRbLexsUFaWprO\nfVtbm0Imk+oc8zTs7ZX1tm/6k719FySWjsRP0YewK34vXuuzoMqQbG+vxLIZ3fDB9xexLjQa/311\nIMxMjBqgYtKGvzOGi3NjuDg3T0dngLGwsKiwcFepVGLlypWavz+JAQMGoH///vj3v/+NdevWoUWL\nFhW212SdQ1Y9Nvyzt1ciLY3/l68vAx364/fEGFx8cBW7fz+GAa69qxznZm+GZ4e2x84TN/HZlstY\nMtGnVkcEqf7wd8ZwcW4MF+emZnSFPJ0BJjg4uE4LOXbsGIYPHw5BEODv749vvvkGXbp0QXp6umZM\namoqOnfuXKfvS4ZLKpFirvc0fHL5S/x0KxRtLFvDVelS5dgZ/h64HpeG8Lg0HLucgBE9W+m5WiIi\nMhQ618Dk5+dj06ZNmsc//vgjxo8fj5dffrlC6Kipb775BjExMQCAa9euwd3dHX5+foiIiEBubi4K\nCgoQHh6O7t2713rf1HhZK6wwy/M5lKvLsSFqK4rLq24hIJVK8MJ4b1iYybHz1G3cesD7wxARNVc6\nA8y7776LjIxHTfXi4+PxxRdf4I033kCfPn3w0Ucf6dxxZGQkgoKCsGfPHmzZsgVBQUH48MMP8f77\n72PGjBk4deoUXnjhBSgUCixbtgzz58/H3LlzsWTJkic+PUWNl4+dJ4a07I+UwjTsiNurdZyVuTEW\njfOGWhSxel8kcgtL9VglEREZCkHUsejk8fuyrFmzBklJSfjggw8AAEFBQXV+iqmm6vO8Ic9LNpxy\ndTm+uLIa9/ISMMvzOTzj3K3C9sfn5uBvd/HT6TvwdrfBq8/6QSLhepiGwt8Zw8W5MVycm5rRtQZG\n5xEYU1NTzd8vXbqEXr16aR5zASXVNZlEhnk+06GQKvBj3B6kFKRqHTuyV2t0amuLqPhMHPj1rv6K\nJCIig6AzwKhUKmRkZOD+/fu4evUq+vbtCwAoKChAUVHV9+0gehp2JraY7hGIUlUpvo/aijJV1S0E\nJIKA58d4wdbCGPvOxSPqbqaeKyUiooakM8AsWLAAo0aNwtixY7F48WJYWlqiuLgY06dPx4QJE/RV\nIzUz3Rz90NflGSTmJ2P3rQNax5mbGOHFCb6QSASs2x+FrLyqF/8SEVHTo3MNDACUlZWhpKQE5ubm\nmufOnTuHfv361Xtx2nANTNNXqirD52HfIKngIZ73CUIXB1+tc3M8LAHbjt9EO1dLvD6tC2TSJ26y\nTk+AvzOGi3NjuDg3NfPEa2CSkpKQlpaG3NxcJCUlaf60adMGSUlJdV4o0R/kUiPM95kBucQIW2N3\nIqNI+ymiod1c0cPDAbce5GD36Tt6rJKIiBqKzhvZDRkyBO7u7rC3twdQuZnjli1b6rc6ataczBwx\npcMEhMTuxIaobfjY9fUqxwmCgDkjPXA/NR9HLt1He1dLdOlgr+dqiYhIn3QGmBUrVmDfvn0oKCjA\n6NGjMWbMmAp9i4jqWy/n7riRdQuXU65i67U9GOXqX+U4E2MZlkzwwYdbwvDdwRj8y8EcDlYmeq6W\niIj0RecppPHjx2PDhg348ssvkZ+fjxkzZuD5559HaGgoiouL9VUjNWOCIGBqx4lwNHXAwbgT+DXp\nstaxrg7mmDmiI4pKyrF6TyTKylV6rJSIiPSpRqsdnZ2dsXjxYhw+fBj+/v748MMPG3QRLzUvCpkC\nizrNgbncDD/e2I2bWbe1ju3XyRn9OjnjXkoefjh+U49VEhGRPtUowOTm5iIkJASTJk1CSEgIXnjh\nBRw6dKi+ayPScDC1w7K+CyFCxPrIYKQVZmgdO3N4B7jam+PU70n4LeqhHqskIiJ90Rlgzp07h1df\nfRWBgYFITk7Gp59+in379mHevHlwcHDQV41EAABvhw6Y2nEiCsoKseb6RhSVV30zRbmRFEsm+kAh\nl2LzkVgkphfouVIiIqpvOu8D4+HhATc3N/j5+UEiqZx1Pvnkk3otThveB6Z5+mNufroZipMJZ+Fp\n0wEvdpoLqURa5fiw2FSs2hsJZ1tTvDO7OxRynWvW6Qnxd8ZwcW4MF+emZnTdB0bnf9H/uEw6KysL\n1tbWFbY9ePCgDkojqr2J7UYjtTANkRmx+OnWAUzpML7Kcd09HDCsuyuOhz3AlqM3sGCMF3t4ERE1\nETpPIUkkEixbtgzvvPMO3n33XTg6OqJnz56Ii4vDl19+qa8aiSqQCBLM8Z4OFzMnnH5wHmce/KZ1\n7JTB7dDWxQIXolJw6nfefJGIqKnQGWD++9//YtOmTbh06RL+8Y9/4N1330VQUBAuXLiAnTt36qtG\nokpM/rgyycgMO2/uQ2xm1VccyaQSLBrvA3MTI/xwPA53H+bquVIiIqoP1R6Badu2LQBg6NChSExM\nxKxZs/Dtt9/C0dFRLwUSaWNrYoOFvrMhgYDvIkOQUpBa9ThLBRaM9YJKJWLVnkgUFFfd4ZqIiBoP\nnQHmr+sFnJ2dMXz48HotiKg22lq5YbrHZBSVF2H19Y0oKCuscpxvG1uM7uOG9JxibDgYg2p6mBIR\nkYGrVdteLoAkQ/SMczeMaD0YaUUZ+C4iGCp11XfgndDPHZ6trXH1ZjqOXkrQc5VERFSXdF6FdPXq\nVQwaNEjzOCMjA4MGDYIoihAEAadOnarn8ohqZmwbf6QUpuFaWiS2x+3BtI6BlQK3RCJg4ThvvLfx\nEnaduo02Lhbo0NKqgSomIqKnoTPAHDlyRF91ED0ViSDBbK+p+O+VVTifdAlOZo4Y0rJ/pXGWZnIs\nGueNz3/4HWv2ReK9uT1hYSZvgIqJiOhp6DyF1KJFC51/iAyJsVSOFzrNgYVcid03DyAyPabKcR1b\nWSNwYBtk55di7f4oqNVcD0NE1NjUag0MkaGzVlhhUac5kEmk2Bi1DUn5VfdC8n+mFTq3s0PMvSzs\nPx+v5yqJiOhpMcBQk9PaoiWCPJ9DsaoEa65vRF5pfqUxEkHA/DGesLNUIPT8XUTe0d4ckoiIDA8D\nDDVJ3Rz9MNp9ODKKs7AuYgvK1OWVxpgpjPDiBB9IpQLWhUYjM7e4ASolIqInwQBDTdZIt2Ho5uCH\nOzl38UPsT1Xe+8Xd2QLThrZHflEZVu+LRLlK3QCVEhFRbTHAUJMlCAJmek5Ba4uWuPjwCo7dO1Xl\nuEFdWuAZL0fcTszFrlO39VskERE9EQYYatLkUiO84DsbVsaW2HfnMH5Pi6w0RhAEzA7oCGdbU/x8\nOQFXblTdkoCIiAwHAww1eZbGFljUaS7kEiNsjvoBCXmJlcYo5DIsnuADuZEEGw7FICWr6pYERERk\nGBhgqFloqXTBHO9pKFOXY831TcgpqdyVuoW9OWb5d0RRiQqr9kSitKzqlgRERNTwGGCo2fCz98G4\ntgHILsnB2ojNKFVV7krdx8cZAzu7ICE1H9uOxzVAlUREVBMMMNSsDG81CM84dcO93ASExOyo8sqk\n6cPao5WjOc5cS8b5iOQGqJKIiKrDAEPNiiAImOYRiLaWbriSeg2H7h6vNMZIJsXiCT4wMZYh+OgN\nPEitfCM8IiJqWAww1OwYSWRY4DsLtgprHIo/hispv1ca42BtinmjPFFarsaqvZEoKql8IzwiImo4\nDDDULCnl5ljUaS4UUmMEx+zA3dz7lcZ062iPET1a4mFmITYfia3ydBMRETUMBhhqtlzMnTDPZwbK\n1Sqsvb4ZWcXZlcZMHtQW7VpY4lJMKk6GV778moiIGgYDDDVr3rYemNR+DHJL87Dm+iaUqEorbJdJ\nJVg03hvmJkb48cRNxCdXvvyaiIj0jwGGmr3Brv3Q1+UZPMhPwuaoH6AWK/ZDsrFQ4IVx3lCrRaza\nE4n8osqXXxMRkX4xwFCzJwgCnuswAR2s2uJaehRC7xytNMbb3QZj+7ohI7cY3x2IhprrYYiIGhQD\nDBEAqUSK532D4GBih5/v/YKLyVcqjRnX1x1ebta4fjsDhy/ca4AqiYjoDwwwRP9jZmSKRZ3mwERm\ngm2xu3ArO77CdolEwMJx3rBWGmP3mTu4cT+rgSolIiIGGKLHOJo54HmfmVBDxPqILcgoyqyw3cJU\njkXjvSFAwJp9UcjJL2mgSomImjcGGKK/8LBpjykdxiO/rACrr29EUXlxhe3tXa0weVBb5BSUYu3+\nKKjUai17IiKi+sIAQ1SF/i16Y6BrXyQXpGBj1LZKVyb592yJLu3tEHs/G3vPxmvZCxER1RcGGCIt\nAtuNgadNB0RlxGLPrYMVtgmCgPmjPWFvpcDB3+7h+u30BqqSiKh5qtcAExcXh2HDhiEkJAQAkJyc\njDlz5mDmzJmYM2cO0tLSAAD79+9HYGAgnn32WezcubM+SyKqMalEivk+M+Bk6oCTCWdxPvFihe2m\nCiMsnuALmVSC9aHRyMgp1rInIiKqa/UWYAoLC7F8+XL07t1b89yXX36JKVOmICQkBMOHD8fGjRtR\nWFiIlStXYtOmTQgODsbmzZuRnV35lu5EDcFEZoJFnebCzMgUP8btQVzWrQrbWzspMX14exQUl2P1\nvkiUq7gehohIH+otwMjlcqxfvx4ODg6a5/71r3/B398fAGBtbY3s7Gxcu3YNvr6+UCqVUCgU6Nq1\nK8LDw+urLKJasze1xQKfWRAgYH1EMFIL0ypsH+jngt7ejriTlIsdJ29p2QsREdUlWb3tWCaDTFZx\n96ampgAAlUqFbdu2YcmSJUhPT4eNjY1mjI2NjebUkjbW1qaQyaR1X/T/2Nsr623f9HQaam7s7f1Q\nIpuO1ZeDsS5qMz4a9jrM5Waa7a/N6I7XvjqD41ceoJu3E/r5tWiQOhsKf2cMF+fGcHFunk69BRht\nVCoVXn/9dfTq1Qu9e/dGaGhohe1iDW7RnpVVWF/lwd5eibS0vHrbPz25hp4bH6UvhrUaiOP3T+Oz\nU2ux2G8epJI/g/QLY72wfHMYvvrxKiwVMjjZmDZYrfrU0PNC2nFuDBfnpmZ0hTy9X4X01ltvoXXr\n1li6dCkAwMHBAenpf17BkZqaWuG0E5EhGd92JHztvBCbdRM7b+6vELhd7MwwO6AjiktVWLUnAiVl\nqgaslIioadNrgNm/fz+MjIzw8ssva57z8/NDREQEcnNzUVBQgPDwcHTv3l2fZRHVmESQYI7XVLQw\nd8bZxN9wOvHXCtt7eTthcJcWeJBWgK0/xzVQlURETV+9nUKKjIzEihUrkJiYCJlMhqNHjyIjIwPG\nxsYICgoCALRt2xbvvfceli1bhvnz50MQBCxZsgRKJc8LkuFSyBR4wXcOPg/7Brvi9sPBxA5eth01\n26cObY87ybk4F5GM9q6W6O/n0oDVEhE1TYJYk0UnBqY+zxvyvKThMrS5uZNzD19dXQuZIMM/ui+B\nk5mjZltadhHe33gZZSo1/hnUDa0cm24oN7R5oT9xbgwX56ZmDGoNDFFT0cayNWZ4TEaxqhirr21E\nfmmBZpu9lQnmj/FEWbkaq/dGoqikvAErJSJqehhgiJ5CT6euCHAbivTiTKyP3IJy9Z9BpUt7e4x8\nphVSsoqw8VBMja6wIyKimmGAIXpKo92Ho4u9L25lx+PHG3sqBJVJA9ugg6slwm6k4fiVBw1YJRFR\n08IAQ/SUJIIEs7yeQytlC/yWfBknEs5otkklErww3gcWpkbYcfIWbifmNGClRERNBwMMUR2QS+V4\nodMcWMotsPfWIUSkR2u2WSuNsXCcN9RqEav3RSK/qKwBKyUiahoYYIjqiJWxJRZ1mgOZRIaNUduQ\nmJ+s2eblZoPx/d2RmVuC9aHRUHM9DBHRU2GAIapDrSxcMcvrOZSoSrH62kbklv55meSYPm7wcbdB\nxJ0MHPj1bsMVSUTUBDDAENWxrg6dMMbdH1kl2Vh3fQvKVI9OGUkEAQvGesFaaYy9Z+OxPjQahcU8\nnURE9CQYYIjqQYDbEHR37Iz43HvYGrtLc2WS0lSO16d1gbuzEr9FPcS7Gy4h+m5mA1dLRNT4MMAQ\n1QNBEDDT41m4W7TC5ZSrOHrvpGabo40p/i+oGyb0c0d2Xin+/ePv2HY8DqVs/khEVGMMMET1xEhq\nhIWdZsPa2Aqhd44iPPW6ZptUIsG4fu7456xucLY1xfGwB3h/02XEJ+c2YMVERI0HAwxRPbKQK/Gi\n31zIpXJsid6O+7kVb2bn7myBf83pgWHdXZGcUYiPtlzBvnPxKFepG6hiIqLGgQGGqJ61MHfGPO/p\nKFeXY831TcguqXgzO7mRFNOHdcA/pnaGlVKOfefi8UnIFSRnFGjZIxERMcAQ6YGvnRcmtBuFnNJc\nrL2+CaWq0kpjPN1s8MG8nujj44T45Dy8t/Eyjocl8J4xRERVYIAh0pOhLQegl3N33M9LxIaobSgs\nK6o0xlRhhOfHeGHxBHYfJqgAACAASURBVB8YG0mx7fhNfLH9d2TmFjdAxUREhosBhkhPBEHAtI6T\n0N6qDSLSo/HBxc8R9vBqlV2qu3s4YPn8nvBra4vou1l45/tL+C3yITtaExH9j/S99957r6GLqK3C\nwsqH3+uKmZlxve6fnlxTmBuJIEF3x84wkhghNjMOV1Kv407OPbhbtoKZkVmFsQq5DM94OcLGQoGI\nOxm4FJOKpPQCeLS2hrGRtIE+QWVNYV6aKs6N4eLc1IyZmbHWbQwwf8EfKsPVVOZGIkjQzsod3R07\nI7UwHTFZcTifdAmiqIabZWtIhT8PjAqCgNZOSvT0dMS9h3mIjM/Eb5EP4WxrCicb0wb8FH9qKvPS\nFHFuDBfnpmYYYGqBP1SGq6nNjamRKXo4doGzuRNuZd1GREYMwlOvwdnUEXYmNhXGmimM0NfHGcZy\nKa7fzsBvUSnIzi+BRysryKQNeya4qc1LU8K5MVycm5phgKkF/lAZrqY4N4IgwNnMEX1cnkGpqhTR\nGXG4+PAK0v6/vXsPjvI+zD3+ffe+q71LqxtCgBAgQIC4+YIvrWOcNGkmdh3buNSkmcnJnI7TOdMe\nN67HubgddzpDeplOao/bOu0Z1z09JiGJYzeJSdLEDraxwcYIxE1CiJuuK+1KK2l3dds9f0hWEDev\nMGJfoeczwyDtvrv7Wz+v0OPf7933TfZQFVyA0+qcsu2SiiB1SyKcONc3sazUycJSH4V+V97ew42Y\ny41C2ZiXssmNCsw0aKcyrxs5G7vFxsrCGmoLl3O2v5WjseO83bYPt83NfF85hmFMbhsocHD76jIy\nmSwHm3t482A7w6NjLK0IYrUYV3iVmXEj5zLbKRvzUja5UYGZBu1U5jUXsgk4/Wwq34jXUcDxWBMH\nog0cizVS6avA7/RNbme1GKxYGGbFwhDHzsSpP9HDgaZuqisCBAoc13XMcyGX2UrZmJeyyY0KzDRo\npzKvuZKNYRgs9Fdyc9l6+oYSHIk18nb7XtKjaRYFFmCz2Ca3LfS7uGN1GQOpEQ6d7OHNg23YrBYW\nlwemzNrMpLmSy2ykbMxL2eRGBWYatFOZ11zLxmVzsbZ4NYv8lZzsPcXh2DH2duynyB2mtKB4cjub\n1UJddRGLynwcbomzv6mbo6fjLKsMUeCyz/g451ous4myMS9lkxsVmGnQTmVeczWbiKeI28pvxjAM\njsYaea/zAGf7W1nkX4DH7p7criTs4bZVpXT3pmhoibH7YDt+j4PKEu+MzsbM1VxmA2VjXsomNyow\n06CdyrzmcjZWi5VloWrWFq+mfbCDo7FG3mp7F6thZaF/PpaJc8c47VY21BRTEvZw6GSM9451caqj\nn+ULQrgcto94laszl3MxO2VjXsomNyow06CdyryUDXgdBdxcup4idyGNvc0c7D5CffQwFb4yQq4g\nMH4MzfxiL7euLOFs1wCHW2K8daiDSNBNeVHBR7zC9CkX81I25qVscqMCMw3aqcxL2YwzDIMKXzmb\nym8iOZrkSOw4e9r30TfUR1VgIQ7r+HEvbqeNW2tL8brtHDzZw7tHOumKp1i+IIjddu0uRaBczEvZ\nmJeyyY0KzDRopzIvZTOVw2pnVdEKakJLOJ04O1lk/A4f87xlGIaBYRhUlQfYsCxCS3uCQydjvHOk\nk4qIl0jQ/dEvkgPlYl7KxryUTW5UYKZBO5V5KZtLC7uC3FZ+E06rk2OxJvZHD9LUe5KF/kq8jvEl\nI59n/OR3VsOg/kQPbzV0MJgeYdn8INaPeSkC5WJeysa8lE1uVGCmQTuVeSmby7MYFhYHF7KxZB3d\n6R6Oxpp4q+1dRrNjLPIvwGqxYjEMllWGWLW4kKZzvRxs7uH9xihV5X5Cvsv/I/FRlIt5KRvzUja5\nUYGZBu1U5qVsPprH7mZDyVoqvOU097bQ0HOU9zsPUOKJEPEUARDyObljdRnpkbHJSxFkgep5ASxX\ncSkC5WJeysa8lE1uVGCmQTuVeSmb3JUWFLOp/CbGMmMcjTeyt2M/nYNdVAUW4rI5sVotrKoqZElF\ngCOn4xw40U1DSw9L5wfxeaZ3KQLlYl7KxryUTW5UYKZBO5V5KZvpsVlsLC9cyuqiFbQOtHEk1shb\nbXtx2hxU+iowDINI0M0dq8voHRjm0Mnxk9+5HVYWlvlzPvmdcjEvZWNeyiY3KjDToJ3KvJTN1fE7\nfdxStoGA08/x+Anqow0c7jlGpW8eAacfu83KuqUR5hUVcLglxvuNUU609lFTGcLt/OiT3ykX81I2\n5qVscqMCMw3aqcxL2Vw9wzBY4K/glrINJIYGOBo7ztttexkcSVIVWIjdYqO8qIBNtaV09CQnL0UQ\n9jmpiBRccTZGuZiXsjEvZZMbFZhp0E5lXsrm43NandQV11IdWERL4jSHe47zbvt7hFwhSj3FuJw2\nbl5RQtjv4tDJHvYe7aKte5CaBSGc9kuf/E65mJeyMS9lkxsVmGnQTmVeyubaKXKHua38ZqyGhaPx\nJt7vPMCp/rNUBRZQYPewoNTHTctLON3RT0NLjD0NHZQVeigNey56LuViXsrGvJRNblRgpkE7lXkp\nm2vLalhYElrM+uLVdA5GJy8QCQYL/fPxuZ3cVluG027l4Mke9hzupHdgiJrKILbzTn6nXMxL2ZiX\nssnNlQqMkc1ms9dxLNdENNo/Y88difhm9Pnl6imbmZPNZnm/8wA7T7xK//AApZ5iHl52P0tCVQCc\n7Rrg+VePcC46QCTo4n98dgVLKsYvHqlczEvZmJeyyU0k4rvsfZqBuYBasXkpm5ljGAbl3jI2ld3E\n0NgQR2KNvNPxHrFUnKrAAiJ+L7evLiOTyU6e/G54dIylFUF8PpdyMSn9zJiXssmNZmCmQa3YvJTN\n9XMqcYb/d+wHnBtoo8Dm4b7qz3BL2QYshoWmc71857+OEO1NUxHx8vgXNuC1f7zrKcnM0M+MeSmb\n3FxpBkYF5gLaqcxL2VxfY5kx3mh9m/86uYuhsWEWBxby8LL7KfeWkh4eZccvT/DGgTYsBkRCHsrC\nHkrCbkrD4wf7lhYW4PfYcz4hnlx7+pkxL2WTGxWYadBOZV7KJj/i6V52Nr3KgeghLIaFu+ffyacX\nbcZpdVB/opufv3+O0+0JBtOjFz3W7bRRel6pKTnv78t9LFuuHf3MmJeyyU3eCkxjYyOPPvooX/zi\nF3nkkUcA+Pd//3e2b9/O3r17KSgoAOCVV17hhRdewGKx8NBDD/Hggw9e8XlVYOYmZZNfDd1H+W7j\ny/Sk44RdIbYsvY/aouWTuQykRujoSdIeG6QjlqQzlqIjlqQrnmR07OJ/Zgr9zslCMz5j46E05CEc\ncGHRrM01oZ8Z81I2ublSgfno84RfpWQyydNPP82tt946edvLL79MT08PxcXFU7Z79tln2blzJ3a7\nnQceeIB77rmHYDA4U0MTkatQW7ScpaHF/PTUf/OLM2/w3MH/Q12klv95y1bAhtdtp7oiQHVFYMrj\nMpks3X0pOiYKTUcsSUfPIJ3xFEdOxTlyKj5le7vNQknIPWXGprRwfInK47Jfx3csImY2YwXG4XDw\n/PPP8/zzz0/etnnzZrxeL6+++urkbfX19axatQqfb7xlrVu3jv379/OJT3xipoYmIlfJYXVw7+JP\ns7FkLS8d/wEHog38rx9/k5AriM/uw+fw/uaP/byvnV6qK72sqgpPOSYmPTxKZyxFe2xwcsamoydJ\nRzzJuejgRa/v89gvmrEpLfQQCbqnnJtGRG58M1ZgbDYbNtvUp/d6vRdt193dTTgcnvw+HA4TjUav\n+NyhkAebbebWz680ZSX5pWzMIRLxsWrhV3m95R12Nb1OLNVLNNXDR61I2yw2Ak4ffpeXgNNHwOUn\n4PLhL/GxdIGfDU4/Adc8/A4vY8N2OnpStHYNcC46QGvXAG3RQZpb+2g61zfleS0Wg9Kwh/KIl4pi\nL/MiXuYVe6mIeAn6nHP6QGL9zJiXsvl4ZqzAXK1cDsmJx5Mz9vpalzQvZWM+q3yr+MSnNhGN9pPJ\nZhgcSdI/PDD+Z2TgN19f8H1ropOWsbMf+fwem3t8BsflxbfYy+rlXjy2Ahh1MpyykRq0kOgziMWy\ndPYM0dY9yHtHO6c8h9tppSQ0dcamNOyhJOTB6bixDyTWz4x5KZvc5OUYmFwVFxfT3d09+X1XVxd1\ndXV5HJGIXA2LYZlcMsrF0NjweQWnf6LgDDIwPEBiuJ/+kd983ZXsJstl/ufGBZSDrcJGqa0Ap+HG\nmnGRHXEwkraTHLTQmjA4c9ZBtsVBdsQBow7IWgj5nL9ZjppYmqoq91OgY21ETC/vBWbNmjV8/etf\nJ5FIYLVa2b9/P08++WS+hyUiM8xpdeB0hylyhz9y2w9ndxLD/fQPD4wXm4kZnYGJ2Z3ExNfx4R5G\nMiPjD3SN/7EVXvyPnSXjYGjEQfOQnRN9TuiZKDcpP4t8C1m7uJw11YWUhj1zeglKxKxmrMA0NDSw\nfft2Wltbsdls7Nq1i02bNvH2228TjUb58pe/TF1dHY8//jiPPfYYX/rSlzAMg6985SuTB/SKiMD0\nZ3fSo0MMTBScxHkl51JLWoPO3otmd85m93OmM8APmgrxZ8pYO28p6xaXsGR+UAcLi5iETmR3Aa1L\nmpeyMafZnstYZozB0fFjd3qHErT0neZIdyNnBs6RJQNANmMhMxDEOlhElX8xNy9cSl11MV63uZea\nZns2NzJlkxudiXcatFOZl7Ixpxs1l/Romua+UxztaeJQ13G6h7sm78uOWcn0hwkb81hdsozbq5cy\nL+I13VLTjZrNjUDZ5EYFZhq0U5mXsjGnuZLLwPAgjfET7G8/RmO8mcFs7+R92REHtlSEBd5F3FK5\ngo2LFuEwwaUS5ko2s5GyyY2pP4UkIjIbeB0FrCtZw7qSNcD4NaLqO4/xXutRzmZOM+pv5SStnDz3\nJv/3pJtQtpyawmruWrKGilBRnkcvcuPRDMwF1IrNS9mYk3IZP39V20AXb7UcoiHaRE/mHFhHJu+3\njfgpd1Wyvnw5ty5YQYGj4LqMS9mYl7LJjWZgRERmkGEYzPOV8NDqEh5iM2OZMQ62tvD26QZOJlpI\n2bs4M9bAmbMN/PAMFGSLqA5WcWvlSpYWLsZpdeT7LYjMOiowIiLXmNViZe38atbOrwagL5nijcYj\nHGg/RufIWQY8PdQnuqlv2AtZCxF7GatLlrG6ZBmL/JVYLfk/fkbE7LSEdAFN65mXsjEn5TI9Y5kM\nR89EefPkERrjJ0g5OjE8CT78AJMVG5XeBawpWUZNeAnzvGVYjKs794yyMS9lkxstIYmImITVYqF2\nYQm1C0uAu+iMJ9nX1Mp7547SMXyGjK+HFpppGWiGZnBaXCwLVbO8cAnLwtUUu4tM93FtkXxQgRER\nyaOSkIfP3rSEz960hGR6lMOnYuxrPs2R7hOMuLrI+Hs4mGngYE8DAH67f7zMhKpZGlpMyBXM8zsQ\nyQ8VGBERk/C4bGysKWZjTTGZzAZOtiX4oCnKB2dOEx09i8Ufo8/fw7sj7/Nux/sAFLuLWBquniw0\nXvv1+YSTSL6pwIiImJDFYlBdEaC6IsCDVNPdm6K+uYcDJ6Icj54BbzcWf4yusRhdqXd4s/UdDAzm\nectYFqpmWbiaDYEVZLNZLTnJDUkH8V5AB1aZl7IxJ+Vy/aWGRjlyKk59czf1J7oYtIyXGWugB4u3\nF4zM5LZOq4OQM0jIFSTkDBB0BSe+D0zero9xX3/6ucmNDuIVEbmBuJ021i+LsH5ZhEy2hlPt/Rw4\n0c3BE92cOd6HxRvH4u/B5U8y5kjTNdJLR7Lr8s9nc00pOaHzSk7QOX6b3WruC1fK3KMCIyIyi1kM\ng6pyP1Xlfu6/s4pYIk19cw/1J7ppax2kd2CY0bEMWEYxHOmL/zhTDDrSpIaitA12XPZ13BYPAWeA\nsCtIkSdE2BUkOFl2AgSdAZ2/Rq4rFRgRkRtI2O/irrXzuGvtPCIRH11dCdLDYySSw/QPjoz/nRwm\nkRyhf3B4/PvECH3JIfpTSQYz/WA/v+SkMBxpBp1pkqOddKTaIX6JF86C0/BQYPXhd4wXm4gnSIm3\nkOKCEGF3CL/Dd9XntBG5kAqMiMgNzDAM3E4bbqeNktBHb5/JZBlIj9B/fsFJjpAYHCaRHCKeGqB3\nqI+B0QSpzAAjlsHJspNypEk7uoiNdXIqxcVFJ2tgy7hx4sVj9eK3Bwg6AhR5QhR7w5T7CynxB3Ha\n9atJPpr2EhERmWSxGPg9DvweBxR99EeyR0YzDKTGC05/cpi+wSGiA330pOLEh/roH02QHOtniEFG\nLUmG7SlGHFEG6SI6AowAg0B0/PmyGQNjxI11zIODAjwWHz6bj0J3mLuXrWFBsc57I+NUYERE5KrZ\nbRZCPichn/O8W8svuW02m2VoZIzewTQdfXE6BnroTvYST/fSN9JHcqyfVHaAEWuSMUc3KaObFNAD\nnBqB9+pfwzNUwcbSOj5bu4ECl/OSryNzgwqMiIhcF4Zh4HLYKHV4KQ15gfmX3XY0M0o83UdHf4z2\nRA/NsbMcSxwh5TnNrxOneePXP6HYqOKuhRu5ffFKHUA8B6nAiIiI6dgsNiKeQiKeQlaVLAFuIZvN\ncqCtiV1N73CWJqLW43z37HG+1+Kiyl3Dp5fdQk1kkU7cN0eowIiIyKxgGAZr5y1l7byljI6N8Ytj\n9ew++x5xy2maRw7wTMMBHBkvteFVfGrJzVT4Lr2UJTcGFRgREZl1bFYrv7NyHb+zch2xgSSvHtzH\ngehBhjxt7O/dw/59e/AaIW4uW8vtlRso9hTle8hyjelSAhfQ6Z3NS9mYk3Ixr7mWTTab5di5Hn5y\neC/NyaPgj2JYxi+rUGQv5fb569lYVkfQGcjzSOdeNlfrSpcSUIG5gHYq81I25qRczGsuZ5MaGuWt\nI2f5VfP79FhOYgn0YBjjv+4qCxawqWIddZFV+BzevIxvLmczHboWkoiIzClup43Naxexee0iWqMD\n/PfBk+xtrWfUd44znObM8dPsOP4yy0JL2Fhax5pILW6bK9/DlmnQDMwF1IrNS9mYk3IxL2Uz1cho\nhgMnuvnloRM0Dx7FGm7H4k0AYDWs1BYtZ0NJHbWFy3HM8MUrlU1uNAMjIiJznt1mYWNNMRtriunu\nW8ubB9v59bEmBpxnyITbqc82UB9twGFxsCaykg0lddSEl2Cz6FelGSkVERGZc4oCbu67o4rP3baI\nI6divFHfSv3hUxBqI1vYzr7OD9jX+QEem4e1xbVsKKmjOlili1GaiAqMiIjMWRaLQW1VIbVVhSSS\nNexp6OCN+lY60+3YCttJFXXyVtte3mrbS8DhY13xGtaX1LHQP18nzMszFRgRERHA73HwqZsq+eTG\n+TS3Jfh1fRv7DnUy4opiLWynv6iLX517k1+de5NCV5j1JWvYUFJHeUGpykwe6CDeC+jAKvNSNuak\nXMxL2Xx8qaFR9h3r4tf1bZxs78Xi78ZV0okl2MUYIwCUFpSwYWJmJtcT5imb3Og8MNOgncq8lI05\nKRfzUjbX1rnoALvr29lzuIOBoTSWQJRARTfD7nYyjAFQ6ZvH+pI61hevIeQKXva5lE1uVGCmQTuV\neSkbc1Iu5qVsZsbIaIYPmqLsrm/jyKk4WcsorkiU4PweEpZWsoz/Wl0cWMSGkjrWFl98wjxlkxt9\njFpEROQasdss3LS8hJuWl9Ddm+LNQ+28eaiAjvfKwLaUoso4rpIuTvadormvhe81/YhloWrWl9RR\nF1mJ2+bO91u4IWgG5gJqxealbMxJuZiXsrl+Mpksh0/F2F3fxgdN3Yxlsthcw1QuTTAWaKVrqB0A\nm8XGysIaVpZV4xzzEHYFCTmDBJx+fUT7EjQDIyIiMoMsFoNVVYWsqiokkRxmT0PH+IG/Bx1AEeGi\nWiqW9NFnP0V9dPyEeVMeb1gIOQOEXEFCzhCFruD4167xr4POIC6bMz9vzqRUYERERK6hKR/Hbk3w\n64Nt7D3aycE9YQwjzLJqO5ULLYwwQMaWZIgBEiMJ4kO9NPeeIkvLJZ+3wOYh5AoSdoUm/h6fvQm7\nQoRdQXwO75yaxdES0gU05WpeysaclIt5KRvzmPJx7LbERfd7nDYiQTeFQTu+QAa3dwSrKz1ecIxB\neod6iad7iaXjDGdGLvkaNsNK0BUk7AxOFpzJsjNxm8PqmOm3ek1pCUlERCSP3E4bd64p58415XTG\nkgyMZGg+HSPalybamyLam6KtZ5DTnZkLHunEwEnIX0Yk4KY26CIQMCYLTtaWJJntJz7URywdJ57u\npbG3+bLj8NoLxmduJmZtxotNaLLseO0Fs+akfCowIiIi11FJ2ENtxMfikqkfrc5ms/QNDhPtTdHd\nO1Fs+lJEJ75uPNvL8bMXP5/D5qMoWEwk4GJV0E0o4MDtHcbmHiJrS9E/2kcsPTGDMxSnfbCTM/2t\nlxyb3WKbXJYKTRyHEz7/e2cA+wxfqTtXKjAiIiImYBgGQa+ToNfJkoqL7x8ZzdCTSE8UnN8Umw9L\nTlv34CWf1+9xEQkuoijoZlXQRVHQRYEvi82dZsyaoncoTmxyiWp8maor3n3Zcfoc3vHjbiaWpVYW\n1lATXnKt/jPkTAVGRERkFrDbLJSGPZSGPZe8fzA9MrEclZ4oOBN/+tKc6uin+RLH3lgtBoV+F5Hg\nfIqCS1kVdBOJuAn4rNjdw6SyCXqHzpvBSY+Xndb+Nk4nxqeDjsWa+NrN/3tG3/ulqMCIiIjcAApc\ndgpK7Sws9V90XyaTJdafPm9p6ryS05fm8Kk4EL/ocW6nlUjATSRYRlFw0XjBKXFT6HficI/SP9pH\n0Bm4Du/uYiowIiIiNziLxaAo4KYo4KZmQeii+4eGx4j2TT325sOvO+JJznQNXPQYAwj6nNy8YoSH\n7rr8dZ9myowWmMbGRh599FG++MUv8sgjj9De3s7jjz/O2NgYkUiEv/mbv8HhcPDKK6/wwgsvYLFY\neOihh3jwwQdnclgiIiJyHqfDSkXES0XEe9F92WyWRHLkvGNvps7gxBLpPIx4BgtMMpnk6aef5tZb\nb5287dvf/jZbt27l05/+NH//93/Pzp07ue+++3j22WfZuXMndrudBx54gHvuuYdg8Pq3OREREZnK\nMAwCBQ4CBQ6q5+VnuehSZuyUfQ6Hg+eff57i4uLJ2959913uvvtuAO666y727NlDfX09q1atwufz\n4XK5WLduHfv375+pYYmIiMgNYMZmYGw2Gzbb1KdPpVI4HONnASwsLCQajdLd3U04HJ7cJhwOE41G\nr/jcoZAHm8167Qc94Upn/pP8UjbmpFzMS9mYl7L5ePJ2EO/lrmCQy5UN4vHktR7OJJ1627yUjTkp\nF/NSNualbHJzpZJ3Xa/65PF4SKfHD/bp7OykuLiY4uJiurt/c8Kcrq6uKctOIiIiIhe6rgVm06ZN\n7Nq1C4Cf/exn3HHHHaxZs4ZDhw6RSCQYHBxk//79bNiw4XoOS0RERGaZGVtCamhoYPv27bS2tmKz\n2di1axd/+7d/yxNPPMGOHTsoLy/nvvvuw26389hjj/GlL30JwzD4yle+gs+ndUERERG5PCOby0En\nJjOT64ZalzQvZWNOysW8lI15KZvcmOYYGBEREZFrQQVGREREZh0VGBEREZl1VGBERERk1lGBERER\nkVlHBUZERERmnVn5MWoRERGZ2zQDIyIiIrOOCoyIiIjMOiowIiIiMuuowIiIiMisowIjIiIis44K\njIiIiMw6KjDn+eu//mu2bNnCww8/zMGDB/M9HDnPt771LbZs2cLnP/95fvazn+V7OHKedDrN5s2b\n+cEPfpDvoch5XnnlFT73uc9x//338/rrr+d7OAIMDg7yx3/8x2zbto2HH36Y3bt353tIs5ot3wMw\ni71793L69Gl27NhBc3MzTz75JDt27Mj3sAR45513aGpqYseOHcTjcX7v936PT37yk/kelkx47rnn\nCAQC+R6GnCcej/Pss8/y/e9/n2QyyT/+4z/y27/92/ke1pz3wx/+kEWLFvHYY4/R2dnJH/7hH/La\na6/le1izlgrMhD179rB582YAFi9eTF9fHwMDA3i93jyPTDZu3Mjq1asB8Pv9pFIpxsbGsFqteR6Z\nNDc3c+LECf1yNJk9e/Zw66234vV68Xq9PP300/kekgChUIjjx48DkEgkCIVCeR7R7KYlpAnd3d1T\ndqZwOEw0Gs3jiORDVqsVj8cDwM6dO7nzzjtVXkxi+/btPPHEE/kehlzg3LlzpNNp/uiP/oitW7ey\nZ8+efA9JgN/93d+lra2Ne+65h0ceeYQ///M/z/eQZjXNwFyGrrBgPr/4xS/YuXMn//Zv/5bvoQjw\n8ssvU1dXx/z58/M9FLmE3t5ennnmGdra2vjCF77Ar371KwzDyPew5rQf/ehHlJeX86//+q8cO3aM\nJ598UseOfQwqMBOKi4vp7u6e/L6rq4tIJJLHEcn5du/ezT/90z/xne98B5/Pl+/hCPD6669z9uxZ\nXn/9dTo6OnA4HJSWlrJp06Z8D23OKywsZO3atdhsNiorKykoKCAWi1FYWJjvoc1p+/fv5/bbbweg\npqaGrq4uLYd/DFpCmnDbbbexa9cuAA4fPkxxcbGOfzGJ/v5+vvWtb/HP//zPBIPBfA9HJvzDP/wD\n3//+9/nud7/Lgw8+yKOPPqryYhK3334777zzDplMhng8TjKZ1PEWJrBgwQLq6+sBaG1tpaCgQOXl\nY9AMzIR169axcuVKHn74YQzD4Kmnnsr3kGTCT37yE+LxOH/yJ38yedv27dspLy/P46hEzKukpIRP\nfepTPPTQQwB8/etfx2LR/6/m25YtW3jyySd55JFHGB0d5S/+4i/yPaRZzcjqYA8RERGZZVTJRURE\nZNZRgREREZFZRwVGREREZh0VGBEREZl1VGBERERk1lGBEZEZde7cOWpra9m2bdvkVXgfe+wxEolE\nzs+xbds2xsbGYstJggAAAtRJREFUct7+93//93n33XevZrgiMkuowIjIjAuHw7z44ou8+OKLvPTS\nSxQXF/Pcc8/l/PgXX3xRJ/wSkSl0IjsRue42btzIjh07OHbsGNu3b2d0dJSRkRG++c1vsmLFCrZt\n20ZNTQ1Hjx7lhRdeYMWKFRw+fJjh4WG+8Y1v0NHRwejoKPfeey9bt24llUrxp3/6p8TjcRYsWMDQ\n0BAAnZ2d/Nmf/RkA6XSaLVu28MADD+TzrYvINaICIyLX1djYGD//+c9Zv349X/3qV3n22WeprKy8\n6OJ2Ho+H//iP/5jy2BdffBG/38/f/d3fkU6n+cxnPsMdd9zB22+/jcvlYseOHXR1dXH33XcD8NOf\n/pSqqir+8i//kqGhIb73ve9d9/crIjNDBUZEZlwsFmPbtm0AZDIZNmzYwOc//3m+/e1v87WvfW1y\nu4GBATKZDDB+eY8L1dfXc//99wPgcrmora3l8OHDNDY2sn79emD8wqxVVVUA3HHHHfznf/4nTzzx\nBL/1W7/Fli1bZvR9isj1owIjIjPuw2Ngztff34/dbr/o9g/Z7faLbjMMY8r32WwWwzDIZrNTrvXz\nYQlavHgxP/7xj9m3bx+vvfYaL7zwAi+99NLHfTsiYgI6iFdE8sLn81FRUcEbb7wBQEtLC88888wV\nH7NmzRp2794NQDKZ5PDhw6xcuZLFixfzwQcfANDe3k5LSwsAr776KocOHWLTpk089dRTtLe3Mzo6\nOoPvSkSuF83AiEjebN++nb/6q7/iX/7lXxgdHeWJJ5644vbbtm3jG9/4Bn/wB3/A8PAwjz76KBUV\nFdx777388pe/ZOvWrVRUVLBq1SoAqqureeqpp3A4HGSzWb785S9js+mfPZEbga5GLSIiIrOOlpBE\nRERk1lGBERERkVlHBUZERERmHRUYERERmXVUYERERGTWUYERERGRWUcFRkRERGYdFRgRERGZdf4/\ngKDJXI7pLoUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "flxmFt0KKxk9" + }, + "cell_type": "markdown", + "source": [ + "## Linear Scaling\n", + "It can be a good standard practice to normalize the inputs to fall within the range -1, 1. This helps SGD not get stuck taking steps that are too large in one dimension, or too small in another. Fans of numerical optimization may note that there's a connection to the idea of using a preconditioner here." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "Dws5rIQjKxk-", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def linear_scale(series):\n", + " min_val = series.min()\n", + " max_val = series.max()\n", + " scale = (max_val - min_val) / 2.0\n", + " return series.apply(lambda x:((x - min_val) / scale) - 1.0)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "MVmuHI76N2Sz" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Normalize the Features Using Linear Scaling\n", + "\n", + "**Normalize the inputs to the scale -1, 1.**\n", + "\n", + "**Spend about 5 minutes training and evaluating on the newly normalized data. How well can you do?**\n", + "\n", + "As a rule of thumb, NN's train best when the input features are roughly on the same scale.\n", + "\n", + "Sanity check your normalized data. (What would happen if you forgot to normalize one feature?)\n" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "yD948ZgAM6Cx", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 656 + }, + "outputId": "a4fbadae-60ad-4acf-ea57-aa9513b5f995" + }, + "cell_type": "code", + "source": [ + "def normalize_linear_scale(examples_dataframe):\n", + " \"\"\"Returns a version of the input `DataFrame` that has all its features normalized linearly.\"\"\"\n", + " #\n", + " # Your code here: normalize the inputs.\n", + " processed_features = pd.DataFrame()\n", + " processed_features[\"latitude\"] = linear_scale(examples_dataframe[\"latitude\"])\n", + " processed_features[\"longitude\"] = linear_scale(examples_dataframe[\"longitude\"])\n", + " processed_features[\"housing_median_age\"] = linear_scale(examples_dataframe[\"housing_median_age\"])\n", + " processed_features[\"total_rooms\"] = linear_scale(examples_dataframe[\"total_rooms\"])\n", + " processed_features[\"total_bedrooms\"] = linear_scale(examples_dataframe[\"total_bedrooms\"])\n", + " processed_features[\"population\"] = linear_scale(examples_dataframe[\"population\"])\n", + " processed_features[\"households\"] = linear_scale(examples_dataframe[\"households\"])\n", + " processed_features[\"median_income\"] = linear_scale(examples_dataframe[\"median_income\"])\n", + " processed_features[\"rooms_per_person\"] = linear_scale(examples_dataframe[\"rooms_per_person\"])\n", + " return processed_features\n", + " \n", + "\n", + "normalized_dataframe = normalize_linear_scale(preprocess_features(california_housing_dataframe))\n", + "normalized_training_examples = normalized_dataframe.head(12000)\n", + "normalized_validation_examples = normalized_dataframe.tail(5000)\n", + "\n", + "_ = train_nn_regression_model(\n", + " my_optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.0007),\n", + " steps=5000,\n", + " batch_size=70,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 231.68\n", + " period 01 : 209.40\n", + " period 02 : 164.03\n", + " period 03 : 121.52\n", + " period 04 : 117.73\n", + " period 05 : 114.24\n", + " period 06 : 110.40\n", + " period 07 : 105.88\n", + " period 08 : 100.34\n", + " period 09 : 94.17\n", + "Model training finished.\n", + "Final RMSE (on training data): 94.17\n", + "Final RMSE (on validation data): 92.99\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VHWixvHvTCYhPaRCQk0CSDWh\nROm9hKYoRUWwsbqrsKKyq+u96q6Loujq2sCCa8NGEREUBZEuAkKQJhB6QhLSe8/MuX+wzgWBkADD\npLyf5/GRKeecd+aXPLz8TjMZhmEgIiIiUouYnR1AREREpLpUYERERKTWUYERERGRWkcFRkRERGod\nFRgRERGpdVRgREREpNaxODuASE12zTXX0Lx5c1xcXACwWq3ExMTwxBNP4OnpecnrXbhwIRMmTDjn\n+SVLlvD444/z1ltvMWDAAPvzJSUl9OzZk6FDh/L8889f8narKiEhgVmzZnHs2DEAPDw8mDZtGoMH\nD3b4tqtj7ty5JCQknPOdbN26lSlTptC0adNzlvnuu++uVrzLcvLkSQYNGkR4eDgAhmEQFBTE//7v\n/9K+fftqreull14iLCyM2267rcrLfPXVVyxevJj58+dXa1siV4sKjMhFzJ8/n8aNGwNQVlbGww8/\nzNtvv83DDz98SetLT0/n3XffPW+BAQgNDeXrr78+q8CsXbsWX1/fS9repfjLX/7CjTfeyFtvvQXA\nrl27uPPOO/n2228JDQ29ajkuR2hoaK0pKxfi4uJy1mdYsWIFU6dOZeXKlbi5uVV5PTNmzHBEPBGn\n0i4kkWpwc3OjT58+7N+/H4DS0lKeeuophg0bxvDhw3n++eexWq0AHDhwgFtvvZXY2FhuvPFGNm7c\nCMCtt95KcnIysbGxlJWVnbONLl26sHXrVoqLi+3PrVixgl69etkfl5WV8cwzzzBs2DAGDhxoLxoA\nO3fu5OabbyY2NpYRI0awefNm4PS/6Hv37s1HH33E6NGj6dOnDytWrDjv54yPjycqKsr+OCoqipUr\nV9qL3BtvvEG/fv0YM2YM77zzDgMHDgTgb3/7G3PnzrUvd+bji+WaNWsWkyZNAmDHjh2MHTuWIUOG\nMGHCBBITE4HTM1EPPfQQAwYMYNKkSZw6deoiI3Z+S5YsYdq0adx555288MILbN26lVtvvZXp06fb\n/7L/9ttvGTVqFLGxsdxxxx0kJCQA8Prrr/PEE08wbtw4Pvjgg7PWO336dN577z374/3799O7d29s\nNhv//ve/GTZsGMOGDeOOO+4gNTW12rlHjBhBSUkJR48eBWDBggXExsYycOBAHnnkEUpKSoDT3/tz\nzz3H6NGj+fbbb88ahwv9XNpsNv75z3/Sv39/xo0bx4EDB+zb3bZtGzfddBMjRoxg+PDhfPvtt9XO\nLnLFGSJyQW3atDFSUlLsj3Nycozbb7/dmDt3rmEYhvH2228b9957r1FeXm4UFxcbY8eONZYuXWpY\nrVZj+PDhxvLlyw3DMIzdu3cbMTExRn5+vrFlyxZj8ODB593eF198YTz22GPGX/7yF/uy+fn5xqBB\ng4xFixYZjz32mGEYhvHGG28Yd955p1FaWmoUFhYaY8aMMdasWWMYhmGMGjXK+Prrrw3DMIwvv/zS\nvq3ExESjffv2xvz58w3DMIwVK1YYQ4YMOW+OP//5z8aAAQOMDz/80Dh8+PBZrx08eNDo1q2bkZaW\nZpSXlxv333+/MWDAAMMwDOOxxx4z5syZY3/vmY8ry9WhQwdjyZIl9s8bExNjbNq0yTAMw1i+fLlx\n0003GYZhGB9//LFx++23G+Xl5UZWVpYxYMAA+3dypsq+49++5+joaOPYsWP293fq1MnYvHmzYRiG\nkZSUZHTt2tU4fvy4YRiG8Z///Me48847DcMwjNdee83o3bu3kZmZec56v/nmG+P222+3P3711VeN\nmTNnGvHx8cbQoUONsrIywzAM46OPPjK+/PLLC+b77Xtp167dOc/HxMQYR44cMX7++WejR48exqlT\npwzDMIwnn3zSeP755w3DOP29jx492igpKbE/njNnTqU/l+vWrTOGDh1qFBQUGMXFxca4ceOMSZMm\nGYZhGDfffLOxdetWwzAM49ixY8YjjzxSaXaRq0EzMCIXMXnyZGJjYxk0aBCDBg2ie/fu3HvvvQCs\nW7eOCRMmYLFYcHd3Z/To0fz444+cPHmSjIwMRo4cCUCnTp0ICwtjz549VdrmyJEj+frrrwFYvXo1\nAwYMwGz+/1/XtWvXMnHiRNzc3PD09OTGG29k1apVACxdupThw4cD0LVrV/vsBUBFRQU333wzAB06\ndCA5Ofm823/xxRe5/fbbWb58OaNGjWLgwIF89tlnwOnZkZiYGIKDg7FYLIwaNapKn6myXOXl5QwZ\nMsS+/kaNGtlnnEaNGkVCQgLJycls376dIUOGYLFY8Pf3P2s32++lpKQQGxt71n9nHivTsmVLWrZs\naX/s7u5Ojx49APjxxx+5/vrradGiBQDjx49n69atVFRUAKdnpAICAs7ZZv/+/fn111/JyckB4Pvv\nvyc2NhZfX1+ysrJYvnw5ubm5TJ48mTFjxlTpe/uNYRgsWLCARo0a0bJlS9asWcOIESNo1KgRALfd\ndpv9ZwCgR48eNGjQ4Kx1VPZz+fPPP9OvXz+8vLxwd3e3jxVAYGAgS5cu5ciRI7Rs2ZKXXnqpWtlF\nHEHHwIhcxG/HwGRlZdl3f1gsp391srKy8PPzs7/Xz8+PzMxMsrKy8PHxwWQy2V/77S+xoKCgi26z\nV69ePPHEE+Tk5PDNN9/wwAMP2A+oBcjPz+e5557j5ZdfBk7vUrr22msBWL58OR999BGFhYXYbDaM\nM2535uLiYj/42Gw2Y7PZzrv9Bg0aMGXKFKZMmUJeXh7fffcds2bNomnTpuTm5p51PE5gYOBFP09V\ncnl7ewOQl5dHYmIisbGx9tfd3NzIysoiNzcXHx8f+/O+vr4UFhaed3sXOwbmzHH7/ePs7OyzPqOP\njw+GYZCdnX3eZX/j6elJz549WbduHV27diUvL4+uXbtiMpl4/fXXee+995g5cyYxMTE8/fTTFz2e\nyGq12r8HwzBo1aoVc+fOxWw2k5+fz/fff8+mTZvsr5eXl1/w8wGV/lzm5uYSEhJy1vO/mTVrFm++\n+SZ333037u7uPPLII2eNj4gzqMCIVFFAQACTJ0/mxRdf5M033wQgKCjI/q9tgJycHIKCgggMDCQ3\nNxfDMOx/WeTk5FT5L3tXV1cGDBjA0qVLOXHiBJ07dz6rwISEhHDPPfecMwORmprKE088waJFi2jX\nrh3Hjx9n2LBh1fqcWVlZ7N+/3z4D4uvry4QJE9i4cSPx8fH4+PiQn59/1vt/8/tSlJubW+1cISEh\nREREsGTJknNe8/X1veC2r6TAwEB27txpf5ybm4vZbMbf3/+iyw4bNozvv/+e7Oxshg0bZh//7t27\n0717d4qKipg9ezb/+te/LjqT8fuDeM8UEhLCTTfdxGOPPVatz3Whn8vKvtugoCCefPJJnnzySTZt\n2sSf//xn+vTpg5eXV5W3LXKlaReSSDXcfffd7Ny5k23btgGndxksXrwYq9VKUVERX331Ff369aNp\n06Y0btzYfpBsXFwcGRkZXHvttVgsFoqKiuy7Iy5k5MiRzJs377ynLg8aNIhFixZhtVoxDIO5c+ey\nYcMGsrKy8PT0JCIigoqKChYsWABwwVmK8ykpKeHBBx+0H9wJcOLECXbt2kW3bt3o3Lkz27dvJysr\ni4qKCpYuXWp/X3BwsP3gz8TEROLi4gCqlSsqKor09HR27dplX89f//pXDMMgOjqaNWvWYLVaycrK\nYsOGDVX+XNXRq1cvtm/fbt/N9fnnn9OrVy/7zFtlBgwYwM6dO1m9erV9N8ymTZt4+umnsdlseHp6\n0rZt27NmQS7FwIEDWbVqlb1orF69mnfeeafSZSr7uezcuTObNm2iuLiY4uJie3EqLy9n8uTJpKWl\nAad3PVoslrN2aYo4g2ZgRKrB29ub++67j9mzZ7N48WImT55MYmIiI0eOxGQyERsby/DhwzGZTLz8\n8sv8/e9/54033sDDw4NXX30VT09PrrnmGvz8/OjVqxdffvklYWFh593Wddddh8lkYsSIEee8NnHi\nRE6ePMnIkSMxDIOOHTty55134unpSd++fRk2bBiBgYH87W9/Iy4ujsmTJ/Paa69V6TOGhYXx5ptv\n8tprr/HMM89gGAbe3t48/vjj9jOTbrnlFm666Sb8/f0ZOnQohw4dAmDChAlMmzaNoUOH0r59e/ss\nS9u2baucy93dnddee42ZM2dSWFiIq6sr06dPx2QyMWHCBLZv387gwYMJCwtj8ODBZ80anOm3Y2B+\n74UXXrjod9C4cWOeeeYZHnjgAcrLy2natCkzZ86s0vfn7e1Nhw4dOHjwINHR0QDExMTwzTffMGzY\nMNzc3AgICGDWrFkAPProo/YziaqjQ4cO/OlPf2Ly5MnYbDYCAwN5+umnK12msp/LAQMGsG7dOmJj\nYwkKCqJfv35s374dV1dXxo0bx1133QWcnmV74okn8PDwqFZekSvNZJy5I1pEpJq2b9/Oo48+ypo1\na5wdRUTqEc0BioiISK2jAiMiIiK1jnYhiYiISK2jGRgRERGpdVRgREREpNapladRp6ef/7TJK8Hf\n35Ps7CKHrV8uncamZtK41Fwam5pLY1M1wcE+F3xNMzC/Y7G4ODuCXIDGpmbSuNRcGpuaS2Nz+VRg\nREREpNZRgREREZFaRwVGREREah0VGBEREal1VGBERESk1lGBERERkVpHBUZERERqHRUYERGROmbd\nuh+q9L5XX32J5OSkC77+t789cqUiXXEqMCIiInVISkoyq1evrNJ7p0+fQVhYkwu+/vzzL1+pWFdc\nrbyVgIiIiJzfyy/PZv/+ffTpE8PQocNJSUnmlVfm8txz/yQ9PY3i4mLuuec+evXqw7Rp9/HII4+y\ndu0PFBYWkJBwgqSkkzz44Ax69OjFyJGD+OabH5g27T5iYq4nLm47OTk5zJ79b4KCgvjnP5/k1KkU\nOnW6ljVrVvPllyuu2udUgREREXGQhWsO8/OBtHOed3ExYbUal7TOmLYhTBjY6oKv33bbZJYsWUh4\neCQJCceZO/ddsrOzuO667gwfPoqkpJM8+eTf6NWrz1nLpaWl8q9/vcaWLZv56qsv6NGj11mve3l5\n8eqrb/Lmm6+zYcMawsKaUlZWyjvvfMCPP25k4cLPLunzXCoVmDNk5BSTlF1ME38PZ0cRERG5bO3a\ndQDAx8eX/fv3sWzZEkwmM3l5uee899prowEICQmhoKDgnNejojrbX8/NzeXEiWN06hQFQI8evXBx\nubr3d1KBOcPXP51gw65kRvVsyU19wjGZTM6OJCIitdiEga3OO1sSHOxDenq+w7fv6uoKwPfff0de\nXh5z5rxLXl4ef/jD5HPee2YBMYxzZ4d+/7phGJjNp58zmUxX/e9MHcR7hlE9WhAa5MXXm48zf1U8\nNtulTe+JiIg4i9lsxmq1nvVcTk4OoaFhmM1m1q9fQ3l5+WVvp0mTphw8+CsA27ZtOWebjqYCc4ZA\nP3eeub87zUK8WbczibeX7aPCanN2LBERkSpr0SKcgwcPUFj4/7uB+vcfyObNG5k+/X48PDwICQnh\n/ffnXdZ2evbsQ2FhIfffP4Vdu3bi6+t3udGrxWScb56ohnPUtNsXh5azLTWOO9rczvJVucSfzKVD\neABTb+qIu5v2tjnb1ZpylerRuNRcGpuaqy6MTV5eLnFx2+nffxDp6WlMn34/n376xRXdRnCwzwVf\n0wzMGdr4R1JUXsy8X98ndog70a2C2Hcsi399/gsFxZc/3SYiIlJXeHp6sWbNau677y7+53/+wp//\nfHUveqcZmN9JLD/OSz++g9WwMantBPbscGfz3lOEBXkx45Zo/H0aOGzbUrm68C+WukjjUnNpbGou\njU3VaAamGrqEdWJa9L24md2Yv38BraJzGNKtGckZhcyav4PUrCJnRxQREan3VGDOo1XDcB7q8ie8\nXb1YFL8Uv8jj3NQnnMy8EmZ9vIMTp9SaRUREnEkF5gKa+YTxSNf7CXD355tj31MavIfJQ9tQUFTO\n7E/jOJiQ7eyIIiIi9ZYKTCVCPIOZ0fUBGns1Yu3JTSS4b+LeG9pSXmHjpQW72Hko3dkRRURE6iUV\nmIto2MCPh7v8iRa+zdh2Ko5fKlYybWx7XMwm5izZy6bdKc6OKCIiUm3jxo2mqKiI+fM/YO/e3We9\nVlRUxLhxoytdft26HwBYsWI569evdVjOC1GBqQJvVy8ejL6Ptv6t2ZOxn7W5X/LnCW3xaODCeyv2\ns3JbgrMjioiIXJLJk++iY8drq7VMSkoyq1evBGDEiNH06zfAEdEqpauzVZG7pQF/irqbD/Z9xi/p\neyip+Iw/3zqRt784xII1hykoLufmvhG6f5KIiDjVPffczqxZL9G4cWNOnUrh8cdnEBwcQnFxMSUl\nJTz88F9p376j/f3PPvsP+vcfRHR0Z/73fx+lrKzMfmNHgFWrvmXx4gW4uJhp2TKSxx77X15+eTb7\n9+/j/ffnYbPZaNiwIWPH3sLcua+yZ88uKiqsjB07gdjYkUybdh8xMdcTF7ednJwcZs/+N40bN77s\nz6kCUw2uZgtTOt7OZweWsDllG58d/4D7x0/mP0tP8M1PJ8gvKueOYddgNqvEiIgILDn8NTvT9pzz\nvIvZhPUS77fXOaQTN7cadcHX+/YdwI8/bmDs2Als3Lievn0HEBnZmr59+7Njx8988smHPPvsi+cs\nt3Llt0RERPLggzP44YdV9hmW4uJiXnrpdXx8fJg69V6OHDnMbbdNZsmShdx997385z9vA/DLL3Ec\nPXqEN998j+LiYu6881b69u0PgJeXF6+++iZvvvk6GzasYcKEiZf02c+kXUjVZDaZmdh2LEOa9yet\nKIP3D73HlJub0qKRDxt2JfPmV3spr9D9k0RExDlOF5iNAGzatJ7evfuxfv0P3H//FN5883Vyc3PP\nu9zx40fp2DEKgM6du9qf9/X15fHHZzBt2n2cOHGM3Nyc8y5/4MCvREd3AcDDw4OWLSNITEwEICqq\nMwAhISEUFBScd/nq0gzMJTCZTIxpNQIvV0+WHlnBO/vfZcrou1i60oUdB9N5pWQX027uhEcDfb0i\nIvXZza1GnXe2xJFX4o2IiCQzM53U1FPk5+ezceM6goJCePLJmRw48CtvvPHKeZczDOx7EGz/nR0q\nLy/n5Zdf4IMPPiUwMIhHH33ogts1mUyceW3/iopy+/pcXFzO2M6VuQGAZmAuw5AW/ZnYdixF5cW8\nve9dRg31pnPrIPafyOZfn+8kv6jM2RFFRKQe6tGjN++8M5c+ffqRm5tDkyZNAVi/fi0VFRXnXaZ5\n8xYcOLAfgLi47QAUFRXi4uJCYGAQqamnOHBgPxUVFZjNZqxW61nLt23bgZ07d/x3uSKSkk7StGlz\nR31EFZjL1SvseqZ0nITVZuWdve/Tqzf06tSYYyn5PP9JHFl5Jc6OKCIi9Uy/fgNYvXol/fsPIjZ2\nJAsWfMLDD0+lQ4eOZGZm8s03y85ZJjZ2JPv27WH69PtJTDyByWTCz68hMTHX84c/3MH7789j4sTJ\nvPbay7RoEc7Bgwd47bWX7MtHRUVzzTVtmTr1Xh5+eCp/+tM0PDw8HPYZdTPH37nUab0DWYd4e8+H\nlFvLmdh2LCcPBPDdtgQCfBsw45ZoQgO9HJC2ftHNz2omjUvNpbGpuTQ2VaObOV4FbQNaM73zfXha\nPPjkwGICWiUxrn8kWXmlPPdxHMdS8pwdUUREpM5QgbmCWvo25+Gu99OwgR9fHv6G8uBfuWNYGwpL\nynnhs53sP6H7J4mIiFwJKjBXWKhXIx7pcj8hHkGsOrGWFI+t/PGG9litNv698Bd2HExzdkQREZFa\nz6EF5oUXXuCWW25h7NixrFq1ipSUFO666y4mTZrEXXfdRXr66ZshLlu2jLFjxzJ+/HgWLVrkyEhX\nRaBHAA93vZ+m3mFsSt7KHutq/jyuIy4uZuYu3cuGXcnOjigiIlKrOexCJVu2bOHQoUMsWLCA7Oxs\nbrrpJq6//nomTJjAiBEj+OSTT3j//feZNm0ac+bMYfHixbi6ujJu3DiGDBlCw4YNHRXtqvB18+Gh\nLn/kzV0fEJe2m+KAEh66ZQxzFu/ng28PUFhczvDuLZwdU0REpFZy2AxMTEwMr776KnD6Kn7FxcX8\n/e9/Z9iwYQD4+/uTk5PDrl276NSpEz4+Pri7u9OlSxfi4uIcFeuq8rB4MC36D3QMbMf+rHiWp3zO\nQ7e2w9+nAYvWHWHh2sNX7II+IiIi9YnDZmBcXFzw9PQEYPHixfTt29f+2Gq18umnnzJ16lQyMjII\nCAiwLxcQEGDftXQh/v6eWCwulb7nclR22tal+J+Qqczd9hGbTmxj4cmPeeKPf+DlD3/lu60JWA2Y\nOi4KFxcdjlQVV3ps5MrQuNRcGpuaS2NzeRx+rfvVq1ezePFi3nvvPeB0eXn00Ufp3r07PXr0YPny\n5We9vyozEtnZRQ7JCo47N/+WiJtxsbqy/uSP/HvbG9x90518vOwk329LIDOnmD/e0B5XB5ayukDX\nTaiZNC41l8am5tLYVI3TrgOzceNG3nrrLebNm4ePz+kQjz/+OC1atGDatGnA6Rs7ZWRk2JdJS0sj\nJCTEkbGcwmwyM771DYwIH0JmSRbv/DqP229oTLsW/sTFp/PvhbsoLj3/5Z1FRETkbA4rMPn5+bzw\nwgu8/fbb9gNyly1bhqurKw8++KD9fVFRUezZs4e8vDwKCwuJi4ujW7dujorlVCaTiZHhQxjf+kby\nywp4c+88bhjqS9c2wRxIyOGFz3aSp/sniYiIXJTDdiGtWLGC7OxsHnro/+9cmZycjK+vL5MnTwYg\nMjKSf/zjH8yYMYMpU6ZgMpmYOnWqfbamrurfrBeerh7M37+QN/e8x5Q+k/B0D2Xj7hSe+ziOv9wS\nTaCfu7NjioiI1Fi6F9LvXM39knsz9vPu3vlYDRt3tLuF4wd8+HZLAv4+p++fFBak+yedSfuMayaN\nS82lsam5NDZVo3sh1VAdg9oxLfpe3MxufPjr5zRqlcaEAa3Izi/l+U/iOJqs+yeJiIicjwqMk7Vq\nGM5DXf6Et6sXC+KXYoQc4q7h11BYUs6Ln+1k3/EsZ0cUERGpcVRgaoBmPmE80vV+Atz9+frYStI8\nd/DAmI5YbQavLNzF9gO6f5KIiMiZVGBqiBDPYGZ0fYDGXo1Ym7iJfda1TB/fCVeLmTeX7mXdL0nO\njigiIlJjqMDUIA0b+PFwlz/RwrcZW0/tYGPech6+tSNeHq589N1BvvnpuG49ICIiggpMjePt6sWD\n0ffR1r81ezJ+5ZtTi3jktg4E+jbgi/VHWbDmMDaVGBERqedUYGogd0sD/hR1N9HBnTiUc5TPT8zn\nz7dcQ2igJ6t+TuT9b/ZjtdmcHVNERMRpVGBqKFezhSkdb6dn6HUk5ifx/qH3+NP4SMJDfflx7ynm\nLNlLWbnV2TFFREScQgWmBjObzExsO5YhzfuTVpTBW/ve4Y4bw+jQ0p9fDmfw8sJdFJXo/kkiIlL/\nqMDUcCaTiTGtRjAmcgQ5pbnM2fMOY4YF0q1tCPGJObzwaRy5hbp/koiI1C8qMLXEkBb9mdh2LEXl\nxczZ/Q4D+jSgf3QYCWkFPPfxDjJyip0dUURE5KpRgalFeoVdz5SOk7DarLy1+z2u7VLBqJ4tSMsu\nZtbHOziZXuDsiCIiIleFCkwt0zmkE/dH3YPZ7MK7e+cT2iqLWwe2IqegjNmfxHE4KdfZEUVERBxO\nBaYWahvQmumd78PT4sHHBxbh0vg4U0a2o7jUyr8+38neo5nOjigiIuJQKjC1VEvf5jzc9X4aNvBj\nyeGvyfTcxQM3dcBmg1cX72bb/lRnRxQREXEYFZhaLNSrEY90uZ9gj0BWnljDQdtGHp7QCTdXM29/\ntY+1cSedHVFERMQhVGBquUCPAB7p+gBNvcPYlLyVzfnfMuPWKHw8XZm/Kp4dB3UnaxERqXtUYOoA\nXzcfHuryRyL9wolL282K1MVMv7UjLmYTi9cdocKq2w6IiEjdogJTR3hYPJgWPYWOgW3ZnxXPFwmf\n0jM6kNTsYjbtSXF2PBERkStKBaYOcXNx475OdxLTqDPH8k6Q6LMKN/cKlm06RqnumyQiInWICkwd\n42J24Y72t9C3SU9Si9NoHpVMTkEZP+zQAb0iIlJ3qMDUQWaTmXGtRxPiGUQKB/D0LWXFTycoLCl3\ndjQREZErQgWmjnIxuzA6IhabYSOsw0mKSiv4dkuCs2OJiIhcESowdVjn4E4092lCkvUQfkElrN6e\nSHZ+qbNjiYiIXDYVmDrMZDJxQ+RwAAKvOU5ZhY3lPx5zbigREZErQAWmjmvr35o2/q1IKT9OUFgh\nG3alkJpV5OxYIiIil0UFpo4zmUzcGBkLgGf4EWyGjSUbjjo5lYiIyOVRgakHWvo2Jzq4I+nlyYSG\nF/DzgTSOn8pzdiwREZFLpgJTT4yOGIYJE+awg4DBF+s1CyMiIrWXCkw90dirEd1Du5FVnkHztrns\nO5bF/uNZzo4lIiJySVRg6pER4YOxmC2UBu4Hk43F649gGIazY4mIiFSbCkw9EuDuT98mPcgrzyWi\nUzbHUvKJi093diwREZFqU4GpZ4a1GIi7SwNyvfdhdrHyxfqjWG02Z8cSERGpFocWmBdeeIFbbrmF\nsWPHsmrVKlJSUpg8eTITJ05k+vTplJWVAbBs2TLGjh3L+PHjWbRokSMj1Xvebl4Mbt6PoooiIqMy\nOZVVxI97Tjk7loiISLU4rMBs2bKFQ4cOsWDBAt59911mzZrFa6+9xsSJE/n0009p0aIFixcvpqio\niDlz5vDBBx8wf/58PvzwQ3JychwVS4ABzfrg7epFuts+XBtU8NWmY5SVW50dS0REpMocVmBiYmJ4\n9dVXAfD19aW4uJitW7cyaNAgAAYMGMBPP/3Erl276NSpEz4+Pri7u9OlSxfi4uIcFUsAd0sDYlsO\notRWSsuoVLLzS1kTl+TsWCLGMLNJAAAgAElEQVQiIlXmsALj4uKCp6cnAIsXL6Zv374UFxfj5uYG\nQGBgIOnp6WRkZBAQEGBfLiAggPR0HVjqaL2bdCfA3Z9Tpv14eJfzzU/HKSopd3YsERGRKrE4egOr\nV69m8eLFvPfeewwdOtT+/IVO363Kab3+/p5YLC5XLOPvBQf7OGzdNclt197AnG0fEt7lFL9uaMaG\nvalMHt7O2bEqVV/GprbRuNRcGpuaS2NzeRxaYDZu3Mhbb73Fu+++i4+PD56enpSUlODu7k5qaioh\nISGEhISQkZFhXyYtLY3o6OhK15ud7bibEQYH+5Cenu+w9dckbb3aEerViOOFv+IbEMLS9Yfp3jaY\nht4NnB3tvOrT2NQmGpeaS2NTc2lsqqaykuewXUj5+fm88MILvP322zRs2BCAnj17snLlSgBWrVpF\nnz59iIqKYs+ePeTl5VFYWEhcXBzdunVzVCw5g9lk5oaIWAwMQtolUFZuY/nm486OJSIiclEOm4FZ\nsWIF2dnZPPTQQ/bnnn/+eZ544gkWLFhAWFgYY8aMwdXVlRkzZjBlyhRMJhNTp07Fx0fTaldLp6D2\nhPu24FjeEYIaN2XDL8kMi2lGiL+ns6OJiIhckMmohdeSd+S0W32c1juUfZRXdr5FY7dmHNvUnuvb\nN+aPN3Rwdqxz1MexqQ00LjWXxqbm0thUjVN2IUnt0do/gvaB13CqLJHQlsVs/TWVhFT9YomISM2l\nAiMA3BAxHADXpvGAwRfrjzo3kIiISCVUYASAZj5hdGsUTXrZKZq3KWDP0UwOJmQ7O5aIiMh5qcCI\n3cjwoZhNZipC9gM2Fq87UqXr8oiIiFxtKjBiF+IZRK+w68kuyyKiYx5HkvP45VDGxRcUERG5ylRg\n5CzDWw7C1exKgd8+zGYbX2w4is2mWRgREalZVGDkLH4NfBnQrDf55flERmeRnFHI5r2nnB1LRETk\nLCowco4hzfvhYfEgs8E+XBtY+WrTUcorrM6OJSIiYqcCI+fwdPVkaIv+FFuLiYjKIDOvlLVxSc6O\nJSIiYqcCI+fVv2kv/Nx8SDHvxcOrgq9/OkFxaYWzY4mIiAAqMHIBbi5uDA8fQrmtnObXnqKguJzv\ntiY4O5aIiAigAiOV6BkaQ7BHICdtv+LbsJxVPyeSW1jm7FgiIiIqMHJhLmYXRkcMw2bYCO1wktJy\nK19vPu7sWCIiIiowUrnOIdfSzDuMxPJ4AkPKWLczibScYmfHEhGRek4FRiplNpm5IXI4Bgb+1xzH\najP4aqNu9CgiIs6lAiMX1S6gDa0bRpBUepTQZiVs2ZdKYlqBs2OJiEg9pgIjF2UymbgxcjgA7i0P\nYWDwxfojTk4lIiL1mQqMVEm4XwuuDerAqdIkmrcuZveRTOITc5wdS0RE6ikVGKmy0RHDMGHCaHQA\nMFi8/giGoRs9iojI1acCI1UW5t2Y6xp3IaMsjYgOBRw+mcuuw5nOjiUiIvWQCoxUy8jwIVhMLhT7\n78NktvHFhiPYbJqFERGRq0sFRqol0COAPk16kFOWQ+tr80hKL2TLr6ecHUtEROoZFRiptmEtB9LA\nxY1sz71YXG18ueEY5RU2Z8cSEZF6RAVGqs3HzZtBzfpSUFFAq+gsMvNKWPdLkrNjiYhIPaICI5dk\nYPO+eLt6ccqyB3eP0/dIKi6tcHYsERGpJ1Rg5JJ4WNwZ1nIgpdZSwqPTyC86fbdqERGRq0EFRi5Z\nn7Du+DdoyEnbPnx8K/huWwJ5RWXOjiUiIvWACoxcMlcXV0ZGDKXCqKBppxRKy6x8s/mEs2OJiEg9\noAIjl+X6xl1o7BlCQvl+AoLKWbvzJBm5xc6OJSIidZwKjFwWs8nM6MhYbNgIbpdIhdXgq43HnB1L\nRETqOBUYuWxRQR1o4duMhNJ4GjcpY/PeU5xML3B2LBERqcNUYOSymUwmxkQOB8A78igGsGT9UeeG\nEhGROk0FRq6INv6taBfQhqSS4zSPKOGXwxkcPpnr7FgiIlJHqcDIFXNDRCwA5iYHAYPF6w5jGLrR\no4iIXHkOLTDx8fEMHjyYjz/+GICff/6Z2267jcmTJ/PHP/6R3NzT/0J/9913GTduHOPHj2f9+vWO\njCQO1Ny3KV1CriW1NIXIdsXEn8xlz9FMZ8cSEZE6yGEFpqioiJkzZ9KjRw/7c8899xzPPvss8+fP\np3PnzixYsIDExERWrFjBp59+yttvv81zzz2H1Wp1VCxxsFERwzCbzJQG/YoJG4vXHcWmWRgREbnC\nHFZg3NzcmDdvHiEhIfbn/P39ycnJASA3Nxd/f3+2bt1Knz59cHNzIyAggCZNmnD48GFHxRIHa+QZ\nTI/QGDJLM2gTVcjJ9AK2/Zrq7FgiIlLHWBy2YosFi+Xs1f/P//wPkyZNwtfXFz8/P2bMmMG7775L\nQECA/T0BAQGkp6dzzTXXXHDd/v6eWCwujopOcLCPw9ZdH0z2GsO21DjyfPdisXRn2ebjxPaOxNVy\n+X1ZY1MzaVxqLo1NzaWxuTwOKzDnM3PmTN544w26du3K7Nmz+fTTT895T1UO+szOLnJEPOD0D1R6\ner7D1l8/uNC/SS++T1hH6+gc9m838cXqgwzq2vSy1qqxqZk0LjWXxqbm0thUTWUl76qehXTw4EG6\ndu0KQM+ePdm7dy8hISFkZGTY35OamnrWbiepnYa06I+HxZ00tz00cLexfPNxSsoqnB1LRETqiKta\nYIKCguzHt+zZs4cWLVrQvXt31q1bR1lZGampqaSlpdGqVaurGUscwMvVk8HN+1NUUUSr6EzyCsv4\n/udEZ8cSEZE6wmG7kPbu3cvs2bNJSkrCYrGwcuVKnn76aZ544glcXV3x8/Nj1qxZ+Pr6MmHCBCZN\nmoTJZOIf//gHZrMuT1MXDGjWm3UnN3GyYg9e3v35blsC/Ts3wcfTzdnRRESkljMZtfBKY47cb6j9\nklfWhpObWRC/lAjXKPb9GMqw65pxy8DWl7QujU3NpHGpuTQ2NZfGpmpqzDEwUv/0DLuOIPcATlTs\nxT/Qyg87ksjMLXF2LBERqeVUYMShLGYLoyKGYTWshLY/SYXVxlc/HnN2LBERqeVUYMThujaKool3\nKMdLD9AotIIf96SQnFHo7FgiIlKLqcCIw5lNZm6IiMXAoGHr4xgGLNlw1NmxRESkFlOBkauiQ2Bb\nIv3CSSg5TLPwcuLi0zmSnOvsWCIiUkupwMhVYTKZuDFyOABuzeIBgy/WHanSlZdFRER+TwVGrprI\nhi3pFNSO5JJEItuWciAhh33HspwdS0REaiEVGLmqRkfEYsJERch+TBgsXn8Em2ZhRESkmlRg5Kpq\n4h1Kt0adSStJpc21RSSkFrD9QJqzY4mISC2jAiNX3aiIIbiYXMj324eLi8GSDUepsNqcHUtERGoR\nFRi56oI8Aund5HqyS7NoG11AWnYxG3enODuWiIjUIiow4hSxLQfh5uJGuvsuGrjBsk3HKC23OjuW\niIjUEiow4hS+bj4MbNaH/PICWnfJJrewjNXbE50dS0REagkVGHGawc374mXxJNm0Cy8vgxVbEigo\nLnd2LBERqQVUYMRpPCweDG05gGJrCRHR6RSXVvDtlhPOjiUiIrWACow4Vd8mPWnYwI8T1t34B9hY\nveMkWXklzo4lIiI1nAqMOJWbiysjw4dQbqugSccUyitsLPvxuLNjiYhIDacCI053feOuNPIM5ljJ\nPkIa29i0O4WUzEJnxxIRkRrskgvM8ePHr2AMqc9czC6MjojFho2gaxKwGQZfbjjq7FgiIlKDVVpg\n7r777rMez5071/7np556yjGJpF6KDu5Ic5+mHCs+QLMWVrYfTOdYSp6zY4mISA1VaYGpqKg46/GW\nLVvsfzZ0Az65gkwmEzdGDgfAs+VhAL5Yf8SZkUREpAartMCYTKazHp9ZWn7/msjlahvQmmv8W5FQ\nfIzINuX8ejybfceznB1LRERqoGodA6PSIo722ywMoQcAg8Xrjmi2T0REzmGp7MXc3Fx++ukn++O8\nvDy2bNmCYRjk5en4BLnyWvg2Izq4E7+k76Ftp9Yc2JPPjoPpdGsb4uxoIiJSg1RaYHx9fc86cNfH\nx4c5c+bY/yziCKMjhrErfS9F/vtwMXfliw1H6dwmyNmxRESkBqm0wMyfP/9q5RCxa+wVQo/QbmxO\n+Zl20UXsjYNNu1MYN8TP2dFERKSGqPQYmIKCAj744AP7488//5wbb7yRBx98kIyMDEdnk3psRPgQ\nLGYLmZ67cHM1+GrTMUrKKi6+oIiI1AuVFpinnnqKzMxMAI4dO8bLL7/MY489Rs+ePXn22WevSkCp\nn/zdG9KvSU9yynJp2yWfnIIyvt50zNmxRESkhqi0wCQmJjJjxgwAVq5cSWxsLD179uTWW2/VDIw4\n3NCWA3B3cSfZ5Rc8PWHRD/HkFZU5O5aIiNQAlRYYT09P+5+3bdtG9+7d7Y91SrU4mrerF4Ob96Ow\nooi2XbMpKqlg6UbNwoiIyEUKjNVqJTMzk4SEBHbu3EmvXr0AKCwspLi4+KoElPptQLPe+Lh6c7Ri\nJ2GNXVn/SxIn0wucHUtERJys0gJz7733MmLECEaPHs0DDzyAn58fJSUlTJw4kTFjxlytjFKPuVsa\nENtyEKXWMiI6p2EYsOCHQ7q4nYhIPVfpadT9+vVj06ZNlJaW4u3tDYC7uzt//etf6d2791UJKNKr\nyfWsTdzIL1k/06bVCPYdzmb3kUyiWunaMCIi9VWlMzDJycmkp6eTl5dHcnKy/b+IiAiSk5MvuvL4\n+HgGDx7Mxx9/DEB5eTkzZsxg3Lhx3HnnneTm5gKwbNkyxo4dy/jx41m0aNEV+FhSl7iaLdzUehRW\nw0aDFgcxm0wsWHOYCqvN2dFERMRJKp2BGThwIOHh4QQHBwPn3szxo48+uuCyRUVFzJw5kx49etif\nW7hwIf7+/rz00kssWLCA7du306NHD+bMmcPixYtxdXVl3LhxDBkyhIYNG17uZ5M6JCqoAx1C2rAv\nLZ6oLhHs3FHE2p1JDOnWzNnRRETECSqdgZk9ezahoaGUlpYyePBgXn31VebPn8/8+fMrLS8Abm5u\nzJs3j5CQ/7+Hzdq1a7nhhhsAuOWWWxg0aBC7du2iU6dO+Pj44O7uTpcuXYiLi7sCH03qEpPJxJ3R\n4zFhIss7Do8GZpZtOkZBcbmzo4mIiBNUWmBuvPFG3nvvPV555RUKCgq4/fbb+cMf/sDy5cspKSmp\ndMUWiwV3d/eznktKSmLDhg1MnjyZhx9+mJycHDIyMggICLC/JyAggPT09Mv4SFJXtfRvSs+w60gr\nTqdTTAGFJRUs08XtRETqpUp3If0mNDSUBx54gAceeIBFixbxzDPP8PTTT7N9+/ZqbcwwDMLDw5k2\nbRpz587l7bffpn379ue852L8/T2xWFyqte3qCA7WjSprqrtibiZuxS6OsYNGIQNZszOJmwe1oVkj\njZkz6Xem5tLY1Fwam8tTpQKTl5fHsmXLWLJkCVarlT/+8Y+MGjWq2hsLCgoiJiYGgN69e/P666/T\nv3//s67qm5aWRnR0dKXryc4uqva2qyo42If09HyHrV8uXXCwD2X5JmJbDOLLw9/QvmMSqWtCeOuL\nXTw0PsrZ8eot/c7UXBqbmktjUzWVlbxKdyFt2rSJhx9+mLFjx5KSksLzzz/PV199xT333HPWsS1V\n1bdvXzZu3AjAvn37CA8PJyoqij179pCXl0dhYSFxcXF069at2uuW+qN/014EewRyoPAXIsNN7D6S\nyd5jmc6OJSIiV5HJqGSfTdu2bWnZsiVRUVGYzed2neeee+6CK967dy+zZ88mKSkJi8VCo0aN+Ne/\n/sWzzz5Leno6np6ezJ49m6CgIL777jv+85//YDKZmDRpkv1A3wtxZGtVK665zhyb3en7eHvPh4R7\nR7J/TWvCgrz4xz0xuJzn51QcS78zNZfGpubS2FRNZTMwlRaYbdu2AZCdnY2/v/9Zr508eZKbb775\nCkWsHhWY+unMsTEMgzd+eZcD2YdoXT6Y3TstTB7ahgFdmjo5Zf2j35maS2NTc2lsquaSdyGZzWZm\nzJjBk08+yVNPPUWjRo247rrriI+P55VXXrniQUWqymQyMbb1aEyYyPb5BXc3E19uPEZRiU6rFhGp\nDyo9iPff//43H3zwAZGRkfzwww889dRT2Gw2/Pz8dMVccbow78b0btKdjUk/0T4mj7gffVi++Ti3\nDGzt7GgiIuJgF52BiYyMBGDQoEEkJSVxxx138MYbb9CoUaOrElCkMqPCh+Jh8eC4sYPAABOrt58k\n1YFnqYmISM1QaYExmUxnPQ4NDWXIkCEODSRSHd5uXowIH0xxRQnNr03BajNYuOaws2OJiIiDVeuU\njd8XGpGaoG+THoR4BnGwaBctWxrsPJTB/hPZzo4lIiIOVOkxMDt37qR///72x5mZmfTv3x/DMDCZ\nTKxbt87B8UQuzmK2MLbVaN7c/T7u4fFwvA2f/3CIv98Vg9ms0i0iUhdVWmC+++67q5VD5LJ0CGxL\nu4A27M+Kp0NUBPt2FbBpTwp9o8KcHU1ERByg0gLTpEmTq5VD5LL8dlr1rG3/Jtf3F9zcYliy4Sgx\nbUPwaFClO2aIiEgtosuWSp0R6tWIPk26k1maSfuueeQVlrFiywlnxxIREQdQgZE6ZUT4EDwtHpwg\njoYNYeW2RDJyip0dS0RErjAVGKlTvF29GBk+lBJrCc2jkqmw2li07oizY4mIyBWmAiN1Tp8m3Wns\nGcLh4j00a2Hj5wNpxCfmODuWiIhcQSowUue4mF24ufVoDAw8wuMBg89/OITtwvctFRGRWkYFRuqk\nDoHX0CGwLYlFx2nbqYzjp/L5ae8pZ8cSEZErRAVG6qybW43CbDKT33AXrq4GX6w/QmmZ1dmxRETk\nClCBkTqrsVcI/Zr0JKs0i7Zdc8kpKOPbrTqtWkSkLlCBkTptRPhgvFw9STTtxNfPxndbE8jKK3F2\nLBERuUwqMFKnebp6Mip8KKXWUppfm0xZhY3F63VatYhIbacCI3Ver7DrCfVqxNHSfYQ1tbJlXypH\nknOdHUtERC6DCozUeS5mF8b+97Rqz4iD/HZataHTqkVEai0VGKkX2gW0oVNQO5JKEmjdoZgjSXls\n25/m7FgiInKJVGCk3ri51ShcTC4U+O/GYrGxaN1hysp1WrWISG2kAiP1RohnMP2a9iSnLIc2XXLI\nyitl5c+Jzo4lIiKXQAVG6pXhLQfj7epFsvkXfHytrPjpBNn5pc6OJSIi1aQCI/WKp6sHoyKGUWor\no+m1SZSWW/lyw1FnxxIRkWpSgZF6p1fYdTTxDuVE2X4aNynnxz0pnDiV7+xYIiJSDSowUu+YTWbG\ntvrvadWRBzEw+EynVYuI1CoqMFIvXRPQiqigDqSUnCSifRHxiTnsOJju7FgiIlJFKjBSb93039Oq\ni/x34+JiY+Haw5RX2JwdS0REqkAFRuqtYM9ABjTrTW55Lq07Z5GRW8Lq7TqtWkSkNlCBkXottuUg\nfFy9SbHsxtO7guWbj5NbWObsWCIichEqMFKveVjcGR05jDJbGc2iTlJSZmXpRp1WLSJS06nASL3X\nIzSGpt5hJJQfIDishA27kklMK3B2LBERqYQKjNR7ZpOZca1HA+AVGY9h6G7VIiI1nUMLTHx8PIMH\nD+bjjz8+6/mNGzdyzTXX2B8vW7aMsWPHMn78eBYtWuTISCLn1do/kujgTqSWJtOibT77T2Sz63Cm\ns2OJiMgFOKzAFBUVMXPmTHr06HHW86WlpbzzzjsEBwfb3zdnzhw++OAD5s+fz4cffkhOTo6jYolc\n0E2tRmIxuVAcuBezi40Faw5RYdVp1SIiNZHDCoybmxvz5s0jJCTkrOffeustJk6ciJubGwC7du2i\nU6dO+Pj44O7uTpcuXYiLi3NULJELCvIIYGDzvuSX5xEZnUFqdjFr4pKcHUtERM7D4rAVWyxYLGev\n/tixYxw4cIDp06fz4osvApCRkUFAQID9PQEBAaSnV35FVH9/TywWlysf+r+Cg30ctm65PI4em9sb\n3sC21B2kle/F06cPyzcfZ3S/Vvh6uTl0u7WdfmdqLo1NzaWxuTwOKzDn89xzz/HEE09U+p6qHDiZ\nnV10pSKdIzjYh/R03divJrpaYzOq5TA+PrCIpp0SObQ5gveW7uH2oW0cvt3aSr8zNZfGpubS2FRN\nZSXvqp2FlJqaytGjR/nLX/7ChAkTSEtLY9KkSYSEhJCRkWF/X1pa2jm7nUSuputDu9LMpwknK+IJ\nDC1m7c4kkjMKnR1LRETOcNUKTKNGjVi9ejULFy5k4cKFhISE8PHHHxMVFcWePXvIy8ujsLCQuLg4\nunXrdrViiZzj9GnVNwCnT6u2GTYWrDns5FQiInImh+1C2rt3L7NnzyYpKQmLxcLKlSt5/fXXadiw\n4Vnvc3d3Z8aMGUyZMgWTycTUqVPx8dF+QXGuVg3D6RJyLXFpu2l2TQv2HDSx52gmnSICnR1NREQA\nk1ELr9blyP2G2i9Zc13tsckszuafW1/Ew+xB+tbrCfX34+l7YnAx6/qPZ9LvTM2lsam5NDZVUyOO\ngRGpbQI9/BncrC/5FflERGWQnFHI+l+SnR1LRERQgRGp1JAWA/Bz8yHNdS/uXmUs3XiMwpJyZ8cS\nEan3VGBEKuFuacCNkSOoMCpocm0iBcXlLP/xuLNjiYjUeyowIhcR07gzLXyakWw9hH/jQn7YcZLU\nLMddi0hERC5OBUbkIswmM+PanL5btXdkPFabjYVrdVq1iIgzqcCIVEGEX0u6NYomozyVJq2z2Xko\ng/3Hs5wdS0Sk3lKBEamiMZEjcDW7Uhr8KyZzBZ/9cBibrdZdhUBEpE5QgRGpIn/3hgxp3o/CigJa\nRqVxMr2Ajbt1WrWIiDOowIhUw+AW/WnYwI8Mt19x8yrhyw1HKS6tcHYsEZF6RwVGpBoauLhxY+Rw\nKowKwjolkldUztc/HXd2LBGRekcFRqSaYhp1Jty3Oam2I/g1yuf7nxNJzyl2diwRkXpFBUakmkwm\nE2P/e7dq78hDVFhtLNJp1SIiV5UKjMglCPdrTkyjLmRVpBHaKpPtB9OJT8xxdiwRkXpDBUbkEo1p\nNRw3sytlwfvBXMFnPxzCVvtu7i4iUiupwIhcooYN/BjaYgBF1kJaXHuKE6fy+WnvKWfHEhGpF1Rg\nRC7DoOZ98W/QkMwG+3H1LGHx+iOUlOm0ahERR1OBEbkMbi5ujGk1AqthJbTTCXILyvh2S4KzY4mI\n1HkqMCKXqWtIFBF+LUg3juETksd32xLIzC1xdiwRkTpNBUbkMplMJsadcVp1eYWVL9YfcXIqEZG6\nTQVG5Apo4duM6xt3JceaTkhkBlt+TeVIUq6zY4mI1FkqMCJXyA2Rsbi5uFERsh9cyvnsh0MYOq1a\nRMQhVGBErpCGDfwY1mIgxdYimnZM4WhyHlt/TXV2LBGROkkFRuQKGtisDwHu/mS7H8TiWcTi9Uco\nLbc6O5aISJ2jAiNyBbm5uHJTq5HYDCuNO54gK6+Uldt0WrWIyJWmAiNyhXUO7kSkXziZnMA7OIcV\nW06QnV/q7FgiInWKCozIFWYymRjXZjQmTHi3OkRZeQVLdFq1iMgVpQIj4gDNfZrSPbQbudZMgiLS\n+XHvKY6fynN2LBGROkMFRsRBRkfE4u7SAGvIgdOnVa/WadUiIleKCoyIg/g18GFYy4GU2IoJa5/M\noZO57DiY7uxYIiJ1ggqMiAMNaNqbQPcAcj0O4uJRxMK1hymv0GnVIiKXSwVGxIFcXVy5udVIbNho\n3PE4GbklfL/9pLNjiYjUeiowIg4WFdyR1g0jyDIl4BWczdebj5NbWObsWCIitZoKjIiDmUwmxra+\nARMmvCIPUVJWzserDnL4ZC4FxeXOjiciUitZHLny+Ph4HnjgAe666y4mTZpESkoKjz/+OBUVFVgs\nFl588UWCg4NZtmwZH374IWazmQkTJjB+/HhHxhK56pr5hNEzLIYfk7cRGJHGjoNm+wG9vp6uNA70\nIjTQk9AAT0KDvAgN8CTAzx2zyeTk5CIiNZPDCkxRUREzZ86kR48e9udeeeUVJkyYwIgRI/jkk094\n//33mTZtGnPmzGHx4sW4uroybtw4hgwZQsOGDR0VTcQpRkfEsiN1NzQ+yG2tu5OVbSUls4iUzEIO\nJeYQn5hz1vvdLGYaBXieLjb/LTiNA07/5+bq4qRPISJSMziswLi5uTFv3jzmzZtnf+7vf/87DRo0\nAMDf3599+/axa9cuOnXqhI+PDwBdunQhLi6OgQMHOiqaiFP4uHkzPHwQXx7+hpQGPzP4un4Ee7TE\n1cWV8gorqVnFpGQVkZJRePr/mYWcyiwiMa3grPWYgEA/9/8vNYGehAV60TjQEx8PV0yatRGResBh\nBcZisWCxnL16T09PAKxWK59++ilTp04lIyODgIAA+3sCAgJIT9e1MqRu6te0F5uStrD11A62ntqB\nCRMB7g0J8QwmxDOYRt7BtAkJprdnGA0b+AEmsvJKOJVZdHq2JquIU5mFJGcWsedoJnuOZp61fi93\ni73YhP631IQGehLs54HZrGIjInWHQ4+BOR+r1cqjjz5K9+7d6dGjB8uXLz/r9apcqdTf3xOLxXFT\n6MHBPg5bt1yeujA2M4f8hR9PbCc5P5WU/FSS81PZ/3/t3XlwW+X9LvBHu3S0b0e2LFu25Tg7CWtL\nSiil0E7b34WyJqVJ23867TBMpx26hBQKTHvbCV2m08LQlsIME6ZDWuhCp22gnZYOdwi09wbIQhLH\n8i5bmy3J2rzI0v3jyMdWDCEJcXQUP58ZRuNzjg6v+CLnybucd6IHxyZ6aq7Ta3Rotohotvngt/oQ\n8PlwldUHv3U9BL0JucIMRhI5jMRyGIlnMRKXXvvGJtEbydTcS6tRo8VrRkC0IiBapH98VrR4LTAZ\n3v+vgYuhLhcr1ka5WBPEHQYAABzGSURBVJv354IHmPvuuw/BYBD33HMPAEAURSSTSfl8PB7H5s2b\nT3uPVKqwbO3zeq1IJLLLdn86dxdPbTT4oPsDgHvhSLFURLyQRKyQQLyQRLyQQKyQwFg2jsFMZMkd\nrDqL1GMjeCAKXrR2enH5Bi88pm6gokYsVUR0PF+dY1NAdELqtRmMLv3v57IZpMnD8pCU9Go3689o\nOOriqcvFh7VRLtbmzJwu5F3QAPPCCy9Ap9PhK1/5inxs06ZNuP/++zE5OQmNRoODBw9i9+7dF7JZ\nRHVn0poQtLUiaGutOV6pVJCeziwKNwnEignE8wn0ZQYQzvTXXK9WqeExuiBWg40Y9KJ7rRc+IQCr\nzoJMfhZjcrDJV8NNAUcHUjg6kKptk0Err4xaPM/G6zBBq+ETGIiovlSVZdpd7siRI9izZw8ikQi0\nWi18Ph/Gx8dhMBhgsVgAAKFQCA899BD279+PJ598EiqVCjt27MBNN9102nsvZ2plKlYu1qbWbLmE\nZHF8IdhUX+OFJHKz+SXXGzWGhWAjeOETvNLPJi8qcxpEJxaFmup8m9hEAXPl2l8RGrUKotMk99h0\nt7tg0qrhc5pg4SRiReF3RrlYmzNzuh6YZQswy4kBZmVibc5cfrZwSrCRhqXixSRK5dKS6x0GO0ST\nB6K5GmxMHvgEETa9DanJWXlF1Kj8WkBxeul9BIMWPpcJolOAz2mCzylAdEmvFpPuQnx0WoTfGeVi\nbc6MYoaQiOjCMOsEdNqD6LQHa46XK2WkptJyqFkccnrSYfSkwzXXa1UaeExuKdR4vFjb5sV1ghde\nkxvlWT1iEwVkZ8oID00gNlFELCUt++4fW/qL2WzUwueSgo0ccKo/C0aGGyI6OwwwRCuIWqWG2+SC\n2+TCOvfqmnMzczNST00xiVg+gXhxYVgqWogvuZegNUEUvGhzNcPW4UBovRteUws8RjeKBRViKSnQ\nxCaKiKcKiKWKGIxm0Tc6ueReFpMOvmpPzXywEas9OOdjlRQRXXz4m4GIAAB6jR4Bqx8Bq7/meKVS\nQW42X9NbM9+DM5yNYGByaMm9LDozvCYPvIIb3pAbq0weeIUWuAxOFIsaxCekQBObf00V0D+aRTiy\nNNzYBB1E18KQ1EIvjglGPX+FEa1U/PYT0WmpVCpY9RZY9RZ0OTpqzs2V5wBhBscjQ0gUkkgUk0gU\nx5EoJDGYHUb/5OCS+5l1ghRuTG54uzzoMkk9Ny6DC1NFtTwUFa++xlIFhCMZ9I5kltzLbtZLYeaU\ngCM6TTBwuwWiixoDDBGdM41aA69VhMZtAk4ZkporzyE1nUa8sBBq5gPOu/XcCFoTvMJCuFkleOA1\ntcBpcKGQUyGRnpJ7bOZ7cU6OZNDzDuHGaTVAdJjkoSnRKUgTjB0m7iVFdBFggCGiZaFRSxOAPSb3\nknNSuMlIgaYacOaDTiQ7isHJ4SXvMWlNUrAxuSG6Peg2eeAV/HDqXCjk1Yini4inivLQVDxVQM9w\nGidO2SRTBcBpM8jzbeYnFIsuAaLDBJ2Wz7ghagQMMER0wUnhxgWPyYW1ru6ac/MrpRLFcSSKyYUe\nnOI4RvNRDGVHltzPqDFCFNxS743bje75nhu9A4WcBvH01JIJxccGUzg2WPvwvvmNMv0ec80u4M1u\nM5eBEykMAwwRKcrilVJrsKrmXLlSlp9MPB9wEgXpdSwfw1B26bYLRo0BXpMbHrMHoseD1SY3vIIf\ndp0TUzkN4ulizYTi6Hgeh8LjOBSu3SjTJujQ5DbDPx9sPAKaXWa4bAY+vI+oDhhgiKhhqFVquIxO\nuIzOdww3melJOdTEF00ojhYSGM6NLrmfQaOXJhSb3fB6PVht8kAUArCqXchOAqPj+ZqtF04Op9Fz\nypCUQaeRd/1urgacJrcZPie3XCBaTgwwRHRRUKvUcBodcBod6HZ21ZwrV8qYnMlWe24Wem2kuTcJ\njLxDuLHozPAJIpr8XlzSJeJGswi33oOZggHRiQJGk/nqawGRRH7JRpkatQpeh6lmKMrvMaPJxWfb\nEJ0P/BYR0UVPrVLDYbDDYbCj2xmqOVepVJCZmZRDTayQQDQfR7QQf8cNM3VqHXyCFz6nF20BEVcK\nInymANSzZiRSsxhbtOXC2LgUct44may5h9NqqG6UWR2Kqvbc2M5wB3AiYoAhohVOpVLJ4WaVs7Pm\n3OzcrPRk4kIC0XxMDjexd+i1UUEFt8mFJsELX7eINYIIn9AKQeXEZKaC0fECxpJ5jFU3zXx7IIW3\nT9kBXJjfAXzRHJtmjwCv3QS1msGGaDEGGCKid6HT6NBiaUaLpbnm+PxKqWghgVg+hqgcbOI4Mn4c\nR8aP11xv1VngM3vR1Cri0jUiPiGIcOhcmMrpEZsoVufaSMFmIJpF+JTtFrQaFXyuhZ6a+SGpJpfA\nZ9rQisUAQ0R0lhavlFp/ygP8crN5xPIJRAux6mscsXwc4fQAetO1w1H6+eEoj4hQm4gtZhEeYxtU\n02YkUjMYG89jNCkFm7EJaa7NYvPLvk+dY+P3cNk3XfwYYIiIziOLzgyLw4yQo73m+MzcLBLFJKLV\nHptYdZ5NtBBfskJKBRU8JheazCJ8XhEbBBGiEISxbEc6U6lZGTU6XsDhvnEc7qtd9m0VdGhvtqPJ\naUKbz4JW0QK/x8yVUXTRYIAhIroA9KcZjpqYSp8yx0YKNoeTx3AYx2qut+otaBJE+NpFXLlORJMg\nwqZ1opDVSROHJ6pzbcYLONKXxOHKwns1ahVaPGa0iha0+qxoEy1o9VlgNrK3hhoPAwwRUR2pVWr5\nqcQbsLbmXG4mLw9BzffWxPJx9Kb7cTLdV3OtXqOXJhCLIlZ3iLhWEBHyrUNsuIyRRAHDsSyG4jmM\nxHMYiueAI1H5vW6bUe6laasGG7fdyBVRpGiqSqVSee/LlCWRyL73RefI67Uu6/3p3LE2ysS6XHgz\nczOIFZJST818j00+jngxiVK5VHOtTq2D39KEgKUZAYsffnMztLN2xJKzGIpnMRzLYSiWxWRhtuZ9\nJoNW7qFpE61o83EI6nzi9+bMeL3Wdz3HHhgiogaj1+jRavWj1eqvOV6ulDFeTMlDUBOlcfQmBzHy\nDhtkek1utLj9WBv040ZrM2wqDzJpNYbjOfmfUzfD1KhV8HvMUrCpDkO1ihZOGKa6YIAhIrpIqFVq\neAU3vIIbG7BW/lt+qVxCNB/HSG4UkdwYRrLS65uJw3gzcVh+v1kroMXSjMA6Py69yg+voRulooDR\neBFD8RyGY1kMJ6Rws5jbZkBrtZdm/tXDIShaZgwwREQXOa1ai4DVj8CiHptKpYL0dAYjuVGMZMeq\n4WYUPekwetJh+TqNSoNmsw8trc24ep0ftwkB6EsOJCfmMBTLycNQb/Ym8WbvwhOHTQatNKdm0TCU\n32OGTsshKDo/GGCIiFYglUol7x210bNOPj5VmkIkF0UkNyqFm9wYRnNSwHk9+v/k65wGBwKuZnS3\n+fERix92tQf5jA7DiTyGYlkMx3NLNr/UqFVodpvR5rPUDENxCIrOBQMMERHJjFojQo72mufYzJXn\nkCgmMVIdfpofijqcPIbDyYVl3kaNAX5LMwJr/Nh4RTNEYyfmihZEE9M1Q1AjiRxeXfTvdNkMaBOt\n1VVQUqjxcgiK3gMDDBERnZZGrUGT2Ycmsw9X+DbLxydnsohUh5/me2v6M4PoywzI16iggk/wIhDw\n46o1fnza3AR9yYlUChiKSfNphuLZdxiC0qDVu/C8mjafFQHRDI2aQ1AkYYAhIqJzYtNbYXNbsdbd\nLR+bmZvFWD4qz62JVHtrooU4/m/sTfk6q96CgMOPjoAfWy3NsGvbUZw0IBIvYCguLe0+GcmgZyQj\nv0evU6Oz2YaugB1dLQ50tdgg8CF8KxYDDBERnTd6jQ5BWyuCtlb5mPS04ZQ8/DQ/FHVsogfHJnrk\n63RqLfzmZgS6m/Gxy/zwGYNA0Ybo+AwGxrIIRzI4PpTG8aE0gEGoAPg95mqgsaMrYIfoMHHoaYVg\ngCEiomUlPW3YDY/Jjc3iRvl4frYgLevOjdYMRQ1ma59Z4zG5EQj48eH1bfCbgpjOWNE/mkXvSAZ9\nY5OIJPP495vSflI2s14KM9VAE/RZufLpIsUn8Z6CT0dULtZGmVgX5WrE2pTKJcQKiZremkh2FPlS\nQb5Gq9YiaA2g096OdmsbdDMejMZm0TuSQW8kg1R2euFajRrtzVasqoaaUMAOm6Cvx0er0Yi1qQc+\niZeIiBqCVq2VN738AC4HID2zZmIqhb7qBGHpdRDhRZOFfYIXnavbcdtV7XBp2pBKatEXyeJkJI1w\nJIPeRXNpfC4BXS02rAo40NViR5NbgJrDTg2HPTCnYCpWLtZGmVgX5bqYa1MsTWFgckgKM+kBDEwO\nYWpuoefFrBPQaQ+i09aOFiGAuZwNA6MF9EYyCI9mUJyeW7jWqEWoxY5V1bk07c02GHSaZW3/xVyb\n84k9MEREdFExaY1Y6+rGWpe0AqpcKSOSi6I/M4BwtZdm8XNqNCoNWq0t6LwsiOuua4ep5EU0Pofe\nkTR6IxkcCo/jUHhculatQpvPgq4WB1YF7Ai12OG0Gur2WemdsQfmFEzFysXaKBProlwrvTbp6Yzc\nQ9OXGcRwLoJypSyf9xhd6HS0o9PeDq+uGdlxI8Kjk+iNZDAYzWKuvPDHo8duXFjt1GJHwGuBWn3u\nw04rvTZn6nQ9MAwwp+D/VMrF2igT66JcrE2t6bkZDE4O18yjKZaK8nmT1ogOWxCd9iDaLG1AwYGB\n0QLCESnU5Iqz8rVGvQYhvw1dAQe6AnZ0NttgMpz5oAZrc2Y4hERERCueQaNHtzOEbmcIgDTsFM3H\n0V+dENyXGcDbEyfw9sQJANLy7xZLMzovaceWa4KwVnyIxys4WZ0UfHQghaMDKQCASgW0ei0IBezS\niqeAHW4bt0NYTsvaA9PT04O7774bX/jCF7Bjxw6MjY3hm9/8Jubm5uD1evHDH/4Qer0eL7zwAp5+\n+mmo1WrceeeduOOOO057X/bArEysjTKxLsrF2py97EwOffPzaNKDGM6OoFRZmPDrNDikycGOdjQZ\nWlBICegbzaJ3JI3+aBazpYUhKodFj66AQw40raIFWo30TBrW5szUZQipUCjgS1/6Etrb27F69Wrs\n2LED9913H6699lp84hOfwE9+8hM0NTXh05/+NG655RY899xz0Ol0uP322/HMM8/A4XC8670ZYFYm\n1kaZWBflYm3ev9m5WQxlI4uGnQaQm83L5w0aPdptbei0BxG0BqGZcmJ4bBq91V6aTH5GvlavVaOj\nuhXCVRv9EC16GPTLu9qp0dVlCEmv1+OJJ57AE088IR97/fXX8fDDDwMAPvKRj+Cpp55CR0cHNm7c\nCKtVauRll12GgwcP4vrrr1+uphEREZ0RnUZXszt3pVJBvJhcNDl4ACdSvTiR6gUgbV7ptzShY10Q\n2z8YhEPdifG4Cr2jk+gdSaNnOI0Tw2n85cAgNGoVOv02rGlzYk3Qia4WG3RaBpoztWwBRqvVQqut\nvX2xWIReLz0B0e12I5FIIJlMwuVyyde4XC4kEonT3tvpFKBdxiKfLvFRfbE2ysS6KBdrc/6JsGED\nOuWfs9M5nBzvx/FkGCeSfeidGEAkN4b/E3kNAOAw2rC6I4RPXRlCm3UdptIC3u5L43A4id7hNE6O\nZPDnVweg06qxtt2FS7o82NjlwapWJ7dBOI26TeJ9t5GrMxnRSqUK73nNuWKXq3KxNsrEuigXa3Ph\ntOra0drcjhubP4pSuYSR3Ki8fLsvM4DXR97A6yNvAAB0ah26PR3YdHUH/tcN7ZjKWHByaBLHB1M4\n1JvEod4kAGn37e6AA2uCTqwNOtHms0CjXlmBRjGrkARBwNTUFIxGI2KxGERRhCiKSCaT8jXxeByb\nN2++kM0iIiI6b7RqLdptbWi3teF6SH8xH59KyfNowul+HI334Ciknbj1Gj1C7nZs6Qphm9CB3LgJ\nPUOTODaUwpH+CRzpnwAAmAwadAccWBuUhpwComVFb4FwQQPMli1b8OKLL+Lmm2/GSy+9hK1bt2LT\npk24//77MTk5CY1Gg4MHD2L37t0XsllERETLRqVSwWNywWNy4aqmywAABpsKr/UeQk+qFz2pMI5N\n9ODYhBRojBojunwduH5NCM2GTmSSRpwYTuPYYApvhcfxVvWJwWajVp4/sybohN8trKhl28u2CunI\nkSPYs2cPIpEItFotfD4ffvSjH2HXrl2Ynp6G3+/HD37wA+h0Ouzfvx9PPvkkVCoVduzYgZtuuum0\n9+YqpJWJtVEm1kW5WBvlOrU2melJnEyF0ZMOoycVRqI4Lp8zawWscnZilTMEn64V4zEtTgyncXww\nhfHJhf2fbGY91rQtDDmJDlPDBxo+ifcs8AuvXKyNMrEuysXaKNd71SY1lUZPSgozJ1K9SE2n5XNW\nvQXdjhBWOTrh0bYiHlXhxFAax4ZSyOQWlm07rQZpuKnNiTVBBzx207J+puXAAHMW+IVXLtZGmVgX\n5WJtlOtsaiPNoZmQw8zJVBiZmYX3Ogx2rHKE0O3shFPVguhYBceGpB6axdsfeB1GrGlzynNoHBbl\nb1DJAHMW+IVXLtZGmVgX5WJtlOv91KZSqSBeSOBEdcjpZCpc83A9t9GJbmcXVjk6YSs3Y2R0DseH\nUjgxlEZhuiRf1+QS5DCzus0Bm6B/35/rfGOAOQv8wisXa6NMrItysTbKdT5rM7+n03zvTE+6r2aT\nSlHwoNsRQpcjBKHkw3BkFscGU+gZSWN6ZmGbhIDXLM2faZMCjWDUnZf2vR8MMGeBX3jlYm2UiXVR\nLtZGuZazNuVKGSO5UXkOTTjdj6m5hcm+zWYfup0hhOydMEyLGBiZwvGhFE6OZOS9nFQA2pqsWFtd\n5bQqYD+r3bbPFwaYs8AvvHKxNsrEuigXa6NcF7I2c+U5DGUj8pLtcGYAs2VpbowKKrRYmqVAY+uE\nuuhG33ABx4fSCEcymCtLEUGtUqGj2Sov2e5qscOgW/5tDxhgzgK/8MrF2igT66JcrI1y1bM2s+US\nBieH5UDTnxmUd9xWQYU2WwDdjhA6bB2o5JwID+dxfDCF/rEsytXIoNWo0Om3Y02bAx9Y50Oz27ws\nbWWAOQv8wisXa6NMrItysTbKpaTazMzNoj8zWH0GTS8GJodRrkhDSRqVBkFbK1Y7Qwia2zGbtaN3\nKIdjgykMxbKoAGh2C/jfX/zgsrRNMVsJEBERkbLoNTqsdnVhtasLwMcxVZpGX2ZAnkPTX93PCZC2\nSeh0BHFVRwi3mYOYSlvhsgh1aTcDDBEREcmMWgPWuVdjnXs1AKBYKqI33S8HmpPpPvSkwwAAvVqH\nrS1XoxP/c8HbyQBDRERE78qkNWGjZx02etYBAHKzefSm+qrPoOlDejpTl3YxwBAREdEZs+jM2Cxu\nxGZxY13boa7rv52IiIjoHDDAEBERUcNhgCEiIqKGwwBDREREDYcBhoiIiBoOAwwRERE1HAYYIiIi\najgMMERERNRwGGCIiIio4TDAEBERUcNhgCEiIqKGwwBDREREDYcBhoiIiBqOqlKpVOrdCCIiIqKz\nwR4YIiIiajgMMERERNRwGGCIiIio4TDAEBERUcNhgCEiIqKGwwBDREREDYcBZpHvf//72LZtG7Zv\n345Dhw7Vuzm0yCOPPIJt27bhtttuw0svvVTv5tAiU1NTuOGGG/D73/++3k2hRV544QXcdNNNuPXW\nW/Hyyy/XuzkEIJ/P45577sHOnTuxfft2vPLKK/VuUkPT1rsBSvGf//wHg4OD2LdvH8LhMHbv3o19\n+/bVu1kE4LXXXsPJkyexb98+pFIp3HLLLfjYxz5W72ZR1eOPPw673V7vZtAiqVQKjz32GJ5//nkU\nCgX8/Oc/x3XXXVfvZq14f/jDH9DR0YF7770XsVgMn//857F///56N6thMcBUHThwADfccAMAIBQK\nIZPJIJfLwWKx1LlldOWVV+KSSy4BANhsNhSLRczNzUGj0dS5ZRQOh9Hb28s/HBXmwIEDuPrqq2Gx\nWGCxWPDd73633k0iAE6nEydOnAAATE5Owul01rlFjY1DSFXJZLLmfyaXy4VEIlHHFtE8jUYDQRAA\nAM899xyuvfZahheF2LNnD3bt2lXvZtApRkZGMDU1hS9/+cu46667cODAgXo3iQB86lOfwujoKG68\n8Ubs2LED3/rWt+rdpIbGHph3wR0WlOcf//gHnnvuOTz11FP1bgoB+OMf/4jNmzejtbW13k2hd5BO\np/Hoo49idHQUn/vc5/Cvf/0LKpWq3s1a0f70pz/B7/fjySefxPHjx7F7927OHXsfGGCqRFFEMpmU\nf47H4/B6vXVsES32yiuv4Be/+AV+/etfw2q11rs5BODll1/G8PAwXn75ZUSjUej1ejQ1NWHLli31\nbtqK53a7cemll0Kr1aKtrQ1msxkTExNwu931btqKdvDgQVxzzTUAgDVr1iAej3M4/H3gEFLVhz70\nIbz44osAgKNHj0IURc5/UYhsNotHHnkEv/zlL+FwOOrdHKr66U9/iueffx6//e1vcccdd+Duu+9m\neFGIa665Bq+99hrK5TJSqRQKhQLnWyhAMBjEW2+9BQCIRCIwm80ML+8De2CqLrvsMqxfvx7bt2+H\nSqXCgw8+WO8mUdVf//pXpFIpfPWrX5WP7dmzB36/v46tIlIun8+Hj3/847jzzjsBAPfffz/Uav59\ntd62bduG3bt3Y8eOHSiVSnjooYfq3aSGpqpwsgcRERE1GEZyIiIiajgMMERERNRwGGCIiIio4TDA\nEBERUcNhgCEiIqKGwwBDRMtqZGQEGzZswM6dO+VdeO+9915MTk6e8T127tyJubm5M77+M5/5DF5/\n/fVzaS4RNQgGGCJadi6XC3v37sXevXvx7LPPQhRFPP7442f8/r179/KBX0RUgw+yI6IL7sorr8S+\nfftw/Phx7NmzB6VSCbOzs/jOd76DdevWYefOnVizZg2OHTuGp59+GuvWrcPRo0cxMzODBx54ANFo\nFKVSCTfffDPuuusuFItFfO1rX0MqlUIwGMT09DQAIBaL4etf/zoAYGpqCtu2bcPtt99ez49OROcJ\nAwwRXVBzc3P4+9//jssvvxzf+MY38Nhjj6GtrW3J5naCIOCZZ56pee/evXths9nw4x//GFNTU/jk\nJz+JrVu34tVXX4XRaMS+ffsQj8fx0Y9+FADwt7/9DZ2dnXj44YcxPT2N3/3udxf88xLR8mCAIaJl\nNzExgZ07dwIAyuUyrrjiCtx222342c9+hm9/+9vydblcDuVyGYC0vcep3nrrLdx6660AAKPRiA0b\nNuDo0aPo6enB5ZdfDkDamLWzsxMAsHXrVvzmN7/Brl278OEPfxjbtm1b1s9JRBcOAwwRLbv5OTCL\nZbNZ6HS6Jcfn6XS6JcdUKlXNz5VKBSqVCpVKpWavn/kQFAqF8Je//AX//e9/sX//fjz99NN49tln\n3+/HISIF4CReIqoLq9WKQCCAf//73wCA/v5+PProo6d9z6ZNm/DKK68AAAqFAo4ePYr169cjFArh\njTfeAACMjY2hv78fAPDnP/8Zhw8fxpYtW/Dggw9ibGwMpVJpGT8VEV0o7IEhorrZs2cPvve97+FX\nv/oVSqUSdu3addrrd+7ciQceeACf/exnMTMzg7vvvhuBQAA333wz/vnPf+Kuu+5CIBDAxo0bAQBd\nXV148MEHodfrUalU8MUvfhFaLX/tEV0MuBs1ERERNRwOIREREVHDYYAhIiKihsMAQ0RERA2HAYaI\niIgaDgMMERERNRwGGCIiImo4DDBERETUcBhgiIiIqOH8f+U6efsW4UllAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "MrwtdStNJ6ZQ" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Try a Different Optimizer\n", + "\n", + "** Use the Adagrad and Adam optimizers and compare performance.**\n", + "\n", + "The Adagrad optimizer is one alternative. The key insight of Adagrad is that it modifies the learning rate adaptively for each coefficient in a model, monotonically lowering the effective learning rate. This works great for convex problems, but isn't always ideal for the non-convex problem Neural Net training. You can use Adagrad by specifying `AdagradOptimizer` instead of `GradientDescentOptimizer`. Note that you may need to use a larger learning rate with Adagrad.\n", + "\n", + "For non-convex optimization problems, Adam is sometimes more efficient than Adagrad. To use Adam, invoke the `tf.train.AdamOptimizer` method. This method takes several optional hyperparameters as arguments, but our solution only specifies one of these (`learning_rate`). In a production setting, you should specify and tune the optional hyperparameters carefully." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "61GSlDvF7-7q", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 656 + }, + "outputId": "5e663dd7-9fc1-4fac-b58b-62bc876b2606" + }, + "cell_type": "code", + "source": [ + "# Using Adagrad\n", + "# YOUR CODE HERE: Retrain the network using Adagrad and then Adam.\n", + "#\n", + "_, adagrad_training_losses, adagrad_validation_losses = train_nn_regression_model(\n", + " my_optimizer=tf.train.AdagradOptimizer(learning_rate=0.5),\n", + " steps=500,\n", + " batch_size=100,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 81.62\n", + " period 01 : 72.83\n", + " period 02 : 72.42\n", + " period 03 : 71.72\n", + " period 04 : 74.47\n", + " period 05 : 72.38\n", + " period 06 : 71.53\n", + " period 07 : 72.43\n", + " period 08 : 70.15\n", + " period 09 : 69.58\n", + "Model training finished.\n", + "Final RMSE (on training data): 69.58\n", + "Final RMSE (on validation data): 67.65\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGACAYAAACDX0mmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XlY1OXaB/DvLCwzrDMwbCKyKIKg\nSOauuZXidtypXPKU1XtSy8xTtpjnVLafMsul1TrZadPMsrTFzMpMjDQVZBQVZV9nGGDYZvm9fyCT\nyoCgzAJ8P9fldTnz2+7hQbh9lvsRCYIggIiIiMgJiR0dABEREVFzmKgQERGR02KiQkRERE6LiQoR\nERE5LSYqRERE5LSYqBAREZHTkjo6ACJn0Lt3b4SFhUEikQAATCYTBg4ciFWrVkEul1/1fT/99FMk\nJyc3eX/79u145JFH8Prrr2PMmDGW92trazFs2DCMHz8ezz333FU/t7Wys7PxzDPPICsrCwAgk8mw\ndOlS3HjjjTZ/dlts3LgR2dnZTb4mKSkpWLRoEUJDQ5tc880339grvGuSm5uLcePGISIiAgAgCAL8\n/f3x2GOPoU+fPm2610svvYSQkBDceuutrb7miy++wLZt27Bly5Y2PYvIXpioEF2wZcsWBAUFAQDq\n6+uxfPlyvPHGG1i+fPlV3a+kpARvv/221UQFAIKDg/HVV19dkqj8+OOP8Pb2vqrnXY1//vOfmDZt\nGl5//XUAwNGjR7Fw4ULs3r0bwcHBdovjWgQHB3eYpKQ5Eonkks+wa9cuLFmyBN9++y1cXV1bfZ8V\nK1bYIjwih+LQD5EVrq6uGDlyJDIyMgAAdXV1WL16NSZMmICJEyfiueeeg8lkAgCo1WrccsstSEpK\nwrRp0/DLL78AAG655Rbk5+cjKSkJ9fX1TZ5x3XXXISUlBTU1NZb3du3aheHDh1te19fXY82aNZgw\nYQLGjh1rSSgA4MiRI5g5cyaSkpIwadIkHDhwAEDD/9BHjBiB999/H1OnTsXIkSOxa9cuq5/z1KlT\nSEhIsLxOSEjAt99+a0nY1q9fj1GjRmH69Ol48803MXbsWADAww8/jI0bN1quu/j1leJ65plnMH/+\nfADAH3/8gVmzZuGmm25CcnIycnJyADT0LN1///0YM2YM5s+fj8LCwiu0mHXbt2/H0qVLsXDhQrzw\nwgtISUnBLbfcgmXLlll+qe/evRtTpkxBUlISbrvtNmRnZwMAXnvtNaxatQqzZ8/Ge++9d8l9ly1b\nhs2bN1teZ2RkYMSIETCbzVi7di0mTJiACRMm4LbbbkNRUVGb4540aRJqa2tx9uxZAMAnn3yCpKQk\njB07Fg888ABqa2sBNHzdn332WUydOhW7d+++pB2a+740m8148sknMXr0aMyePRtqtdry3EOHDmHG\njBmYNGkSJk6ciN27d7c5dqJ2JxCREB0dLRQUFFhel5eXC/PmzRM2btwoCIIgvPHGG8Jdd90lGAwG\noaamRpg1a5awY8cOwWQyCRMnThR27twpCIIgHDt2TBg4cKBQWVkpHDx4ULjxxhutPu+zzz4TVq5c\nKfzzn/+0XFtZWSmMGzdO2Lp1q7By5UpBEARh/fr1wsKFC4W6ujpBr9cL06dPF/bu3SsIgiBMmTJF\n+OqrrwRBEITPP//c8qycnByhT58+wpYtWwRBEIRdu3YJN910k9U47r33XmHMmDHCf//7X+H06dOX\nHDt58qRw/fXXC8XFxYLBYBDuueceYcyYMYIgCMLKlSuFDRs2WM69+HVLccXFxQnbt2+3fN6BAwcK\n+/fvFwRBEHbu3CnMmDFDEARB+OCDD4R58+YJBoNB0Gg0wpgxYyxfk4u19DVu/Dr3799fyMrKspzf\nt29f4cCBA4IgCEJeXp4wYMAA4dy5c4IgCMI777wjLFy4UBAEQXj11VeFESNGCGVlZU3u+/XXXwvz\n5s2zvF63bp3w1FNPCadOnRLGjx8v1NfXC4IgCO+//77w+eefNxtf49clNja2yfsDBw4Uzpw5I/z+\n++/C0KFDhcLCQkEQBOHxxx8XnnvuOUEQGr7uU6dOFWpray2vN2zY0OL35b59+4Tx48cLVVVVQk1N\njTB79mxh/vz5giAIwsyZM4WUlBRBEAQhKytLeOCBB1qMncge2KNCdMGCBQuQlJSEcePGYdy4cRgy\nZAjuuusuAMC+ffuQnJwMqVQKd3d3TJ06Fb/++ityc3NRWlqKyZMnAwD69u2LkJAQHD9+vFXPnDx5\nMr766isAwJ49ezBmzBiIxX/9s/zxxx8xd+5cuLq6Qi6XY9q0afjuu+8AADt27MDEiRMBAAMGDLD0\nRgCA0WjEzJkzAQBxcXHIz8+3+vwXX3wR8+bNw86dOzFlyhSMHTsWH330EYCG3o6BAwdCpVJBKpVi\nypQprfpMLcVlMBhw0003We4fGBho6UGaMmUKsrOzkZ+fj9TUVNx0002QSqVQKBSXDI9drqCgAElJ\nSZf8uXguS3h4OMLDwy2v3d3dMXToUADAr7/+isGDB6NHjx4AgDlz5iAlJQVGoxFAQw+TUqls8szR\no0fjxIkTKC8vBwB8//33SEpKgre3NzQaDXbu3AmdTocFCxZg+vTprfq6NRIEAZ988gkCAwMRHh6O\nvXv3YtKkSQgMDAQA3HrrrZbvAQAYOnQo3NzcLrlHS9+Xv//+O0aNGgUPDw+4u7tb2goA/Pz8sGPH\nDpw5cwbh4eF46aWX2hQ7kS1wjgrRBY1zVDQajWXYQipt+Cei0Wjg4+NjOdfHxwdlZWXQaDTw8vKC\nSCSyHGv8ZeXv73/FZw4fPhyrVq1CeXk5vv76ayxevNgysRUAKisr8eyzz+Lll18G0DAU1K9fPwDA\nzp078f7770Ov18NsNkO4aNsuiURimQQsFothNputPt/NzQ2LFi3CokWLUFFRgW+++QbPPPMMQkND\nodPpLpkv4+fnd8XP05q4PD09AQAVFRXIyclBUlKS5birqys0Gg10Oh28vLws73t7e0Ov11t93pXm\nqFzcbpe/1mq1l3xGLy8vCIIArVZr9dpGcrkcw4YNw759+zBgwABUVFRgwIABEIlEeO2117B582Y8\n9dRTGDhwIJ544okrzvcxmUyWr4MgCOjZsyc2btwIsViMyspKfP/999i/f7/luMFgaPbzAWjx+1Kn\n0yEgIOCS9xs988wz2LRpE26//Xa4u7vjgQceuKR9iByBiQrRZZRKJRYsWIAXX3wRmzZtAgD4+/tb\n/vcMAOXl5fD394efnx90Oh0EQbD8UigvL2/1L3UXFxeMGTMGO3bswPnz55GYmHhJohIQEIA77rij\nSY9CUVERVq1aha1btyI2Nhbnzp3DhAkT2vQ5NRoNMjIyLD0a3t7eSE5Oxi+//IJTp07By8sLlZWV\nl5zf6PLkR6fTtTmugIAAREZGYvv27U2OeXt7N/vs9uTn54cjR45YXut0OojFYigUiiteO2HCBHz/\n/ffQarWYMGGCpf2HDBmCIUOGoLq6Gs8//zz+85//XLFn4vLJtBcLCAjAjBkzsHLlyjZ9rua+L1v6\n2vr7++Pxxx/H448/jv379+Pee+/FyJEj4eHh0epnE7U3Dv0QWXH77bfjyJEjOHToEICGrv5t27bB\nZDKhuroaX3zxBUaNGoXQ0FAEBQVZJqsePnwYpaWl6NevH6RSKaqrqy3DCM2ZPHky3nrrLatLgseN\nG4etW7fCZDJBEARs3LgRP//8MzQaDeRyOSIjI2E0GvHJJ58AQLO9DtbU1tbivvvus0yyBIDz58/j\n6NGjuP7665GYmIjU1FRoNBoYjUbs2LHDcp5KpbJMwszJycHhw4cBoE1xJSQkoKSkBEePHrXc58EH\nH4QgCOjfvz/27t0Lk8kEjUaDn3/+udWfqy2GDx+O1NRUy/DUxx9/jOHDh1t60loyZswYHDlyBHv2\n7LEMn+zfvx9PPPEEzGYz5HI5YmJiLunVuBpjx47Fd999Z0ko9uzZgzfffLPFa1r6vkxMTMT+/ftR\nU1ODmpoaS4JkMBiwYMECFBcXA2gYMpRKpZcMRRI5AntUiKzw9PTE3Xffjeeffx7btm3DggULkJOT\ng8mTJ0MkEiEpKQkTJ06ESCTCyy+/jH/9619Yv349ZDIZ1q1bB7lcjt69e8PHxwfDhw/H559/jpCQ\nEKvPGjRoEEQiESZNmtTk2Ny5c5Gbm4vJkydDEATEx8dj4cKFkMvluOGGGzBhwgT4+fnh4YcfxuHD\nh7FgwQK8+uqrrfqMISEh2LRpE1599VWsWbMGgiDA09MTjzzyiGUl0M0334wZM2ZAoVBg/PjxyMzM\nBAAkJydj6dKlGD9+PPr06WPpNYmJiWl1XO7u7nj11Vfx1FNPQa/Xw8XFBcuWLYNIJEJycjJSU1Nx\n4403IiQkBDfeeOMlvQAXa5yjcrkXXnjhil+DoKAgrFmzBosXL4bBYEBoaCieeuqpVn39PD09ERcX\nh5MnT6J///4AgIEDB+Lrr7/GhAkT4OrqCqVSiWeeeQYA8NBDD1lW7rRFXFwc/vGPf2DBggUwm83w\n8/PDE0880eI1LX1fjhkzBvv27UNSUhL8/f0xatQopKamwsXFBbNnz8bf//53AA29ZqtWrYJMJmtT\nvETtTSRcPIBMRNSM1NRUPPTQQ9i7d6+jQyGiLoR9ekREROS0mKgQERGR0+LQDxERETkt9qgQERGR\n02KiQkRERE7LqZcnl5RYX47YHhQKObTaapvdn64e28Z5sW2cE9vFebFtWkel8mr2WJftUZFKJY4O\ngZrBtnFebBvnxHZxXmyba9dlExUiIiJyfjYb+tHr9Vi5ciV0Oh0MBgOWLFkClUqFJ598EmKxGN7e\n3njppZdY9ZCIiIiaZbNE5fPPP0dERARWrFiBoqIiLFy4EP7+/nj44YfRr18/PP/889i+fTvmzZtn\nqxCIiIiog7NZoqJQKHDy5EkADdu5KxQKvP7665Yt3pVK5SW70RIRERFdzqYF3xYtWoTs7GxUVFTg\njTfesGzcVV1djeTkZKxbtw5RUVHNXm80mjgRiYiIqAuzWY/KF198gZCQELzzzjtQq9V49NFHsX37\ndlRXV+Oee+7BHXfc0WKSAsCmS7pUKi+bLn+mq8e2cV5sG+fEdnFebJvWccjy5MOHD2PEiBEAGrZ+\nLy4uRn19PRYvXowpU6Zg5syZtno0ERERdRI2S1R69OiBo0ePAgDy8vLg4eGBd955B4MGDcKcOXNs\n9VgiIqIuY9++H1p13rp1LyE/P6/Z4w8//EB7hdTubDZHRa/X49FHH0VZWRmMRiOWLVuGBx98EKGh\noXBxcQEADB48GEuXLm32HrbsLmN3nPNi2zgvto1zYrs4L1u2TUFBPjZseAVr1rxgk/vbU0tDP069\nezITla6JbeO82DbOie3ivGzZNg8+uAwZGenQ6XQYP34iCgry8corG/Hss0+ipKQYNTU1uOOOuzF8\n+EgsXXo3HnjgIfz44w/Q66uQnX0eeXm5uO++FRg6dDgmTx6Hr7/+AUuX3o2BAwfj8OFUlJeX4/nn\n18Lf3x9PPvk4CgsL0LdvP+zduweff76rXT9LS4mKU+/1Q0RE1BF8uvc0flcXN3lfIhHBZLq6/oCB\nMQFIHtuz2eO33roA27d/ioiIKGRnn8PGjW9Dq9Vg0KAhmDhxCvLycvH44w9j+PCRl1xXXFyE//zn\nVRw8eABffPEZhg4dfslxDw8PrFu3CZs2vYaff96LkJBQ1NfX4c0338Ovv/6CTz/96Ko+z9XqkolK\nXb0Jvx7LR88gT4hFIkeHQ0REdE1iY+MAAF5e3sjISMeXX26HSCRGRYWuybn9+jWUCgkICEBVVVWT\n4wkJiZbjOp0O589noW/fBADA0KHDIZHYt2xIl0xUDmUU4d3daiyeHo/rYwIcHQ4REXVwyWN7Wu39\nsNewXOPcz++//wYVFRXYsOFtVFRU4M47FzQ59+JEw9rsj8uPC4IAsbjhPZFIBJGd/4PfJTcl7B7Y\nUB332JkyB0dCRER0dcRiMUwm0yXvlZeXIzg4BGKxGD/9tBcGg+Gan9OtWyhOnjwBADh06GCTZ9pa\nl0xUwgK94OPpirSsMqvZJBERkbPr0SMCJ0+qodf/NXwzevRYHDjwC5YtuwcymQwBAQF49923ruk5\nw4aNhF6vxz33LMLRo0fg7e1zraG3SZdd9fPfb0/hpyO5eGrRIHRTedrsOdR2XMHgvNg2zont4rw6\nQ9tUVOhw+HAqRo8eh5KSYixbdg8+/PCzdn0GV/1YcV2MCj8dyUValoaJChERUTPkcg/s3bsHH364\nBYJgxr332rc4XJdNVPpHN0yiTcvSYMKgMAdHQ0RE5JykUimefPJZhz2/S85RAQCltztCVZ44lVOO\neoN9JwYRERFR63TZRAUA4iOVMBjNOJVT7uhQiIiIyIqunahEKAE0DP8QERGR8+nSiUqvUF+4uoiZ\nqBARETmpLp2ouEjFiAlTIL9UD01FraPDISIianezZ09FdXU1tmx5D2lpxy45Vl1djdmzp7Z4/b59\nPwAAdu3aiZ9++tFmcTanSycqABB3Yfgnnb0qRETUiS1Y8HfEx/dr0zUFBfnYs+dbAMCkSVMxatQY\nW4TWoi67PLnRxfNURiaEODgaIiKi1rnjjnl45pmXEBQUhMLCAjzyyAqoVAGoqalBbW0tli9/EH36\nxFvOf/rpf2P06HHo3z8Rjz32EOrr6y0bFALAd9/txrZtn0AiESM8PAorVz6Gl19+HhkZ6Xj33bdg\nNpvh6+uLWbNuxsaN63D8+FEYjSbMmpWMpKTJWLr0bgwcOBiHD6eivLwczz+/FkFBQdf8Obt8ohKk\nlMPP2w0nzmlgNgsQi7mbMhERtc3201/hSPHxJu9LxCKYzFdXAD4xoC9m9pzS7PEbbhiDX3/9GbNm\nJeOXX37CDTeMQVRUL9xww2j88cfv+N///ounn36xyXXffrsbkZFRuO++Ffjhh+8sPSY1NTV46aXX\n4OXlhSVL7sKZM6dx660LsH37p7j99rvwzjtvAAD+/PMwzp49g02bNqOmpgYLF96CG24YDQDw8PDA\nunWbsGnTa/j5571ITp57VZ/9Yl1+6EckEiEuwg/6WiOyCiscHQ4REVGrNCQqvwAA9u//CSNGjMJP\nP/2Ae+5ZhE2bXoNOp7N63blzZxEfnwAASEwcYHnf29sbjzyyAkuX3o3z57Og01kv3aFWn0D//tcB\nAGQyGcLDI5GTkwMASEhIBAAEBASgqqrK6vVt1eV7VICG4Z+fj+Yj/awGUSH23WyJiIg6vpk9p1jt\n/bDlXj+RkVEoKytBUVEhKisr8csv++DvH4DHH38KavUJrF//itXrBAGW0QPzhd4eg8GAl19+Ae+9\n9yH8/Pzx0EP3N/tckUiEi3cJNBoNlvtJJJKLntM+Wwl2+R4VAOgTroBYJOIyZSIi6lCGDh2BN9/c\niJEjR0GnK0e3bqEAgJ9++hFGo9HqNWFhPaBWZwAADh9OBQBUV+shkUjg5+ePoqJCqNUZMBqNEIvF\nMJkurd4eExOHI0f+uHBdNfLychEaarutaJioAJC7uyAyxBtn8ytQXWtwdDhEREStMmrUGOzZ8y1G\njx6HpKTJ+OST/2H58iWIi4tHWVkZvv76yybXJCVNRnr6cSxbdg9ycs5DJBLBx8cXAwcOxp133oZ3\n330Lc+cuwKuvvowePSJw8qQar776kuX6hIT+6N07BkuW3IXly5fgH/9YCplMZrPPKBLaq2/GBmy5\nNfbl3XFf7s/Cjv1ZWDw9HtfHBNjsuXRlnWFb9M6KbeOc2C7Oi23TOiqVV7PH2KNygaWeyjkO/xAR\nETkLJioXRAR7w8NdirSzmnabAERERETXhonKBWKxCLHhSpRV1KJQU+3ocIiIiAhMVC7B3ZSJiIic\nCxOVi8Rz3x8iIiKnwkTlIkpvd4T4e0CdrYXBaHZ0OERERF0eE5XLxEcoUW8wIzPXeulgIiIish8m\nKpeJ4/APERGR02Cicpno7r6QSsScUEtEROQEmKhcxs1Fgt7dfZBTXAVdVZ2jwyEiIurSumSikqk9\ni3u/Xo3i6hKrx+Mi/ABwmTIREZGjdclEpdJQhaKqEvxRdMzq8fhIzlMhIiJyBlJb3Viv12PlypXQ\n6XQwGAxYsmQJVCoV/v3vfwMAevfujSeeeMJWj29RtCIKIoiQoTmFiRHjmhzv5u8BhZcb0rI0MAsC\nxCKRA6IkIiIimyUqn3/+OSIiIrBixQoUFRVh4cKFUKlUePTRR9GvXz+sWLECP/30E0aNGmWrEJrl\n6eKBSGUYsrTnUWushbvU/ZLjIpEIceFK7D9egOyiSoQHeds9RiIiIrLh0I9CoUB5eUMtkoqKCvj6\n+iIvLw/9+vUDAIwZMwa//fabrR5/RQlBsTALZmSWn7V6vHH4J+0sh3+IiIgcxWaJyuTJk5Gfn4+b\nbroJ8+fPx0MPPQRv7796Jvz8/FBSYn0yqz30C4wFAGRoTlk93idcCRE4T4WIiMiRbDb088UXXyAk\nJATvvPMO1Go1lixZAi8vL8txQRCueA+FQg6pVGKT+BQmGdykbsjUnYFK5dXkuApAz+6+OJ2ng4eX\nO+TuLjaJg6yz1ibkHNg2zont4rzYNtfGZonK4cOHMWLECABATEwM6urqYDQaLceLiooQEBDQ4j20\n2mpbhQeVygu9fCKRVpYBdXY2/GSKJuf07u6LzJxy7D+cg8ReKpvFQpdSqbxQUlLp6DDICraNc2K7\nOC+2Teu0lMzZbOinR48eOHr0KAAgLy8PHh4eiIqKQmpqKgDgu+++w8iRI231+FaJUfYCAKi11od/\nGndTZj0VIiIix7BZj8rNN9+MRx99FPPnz4fRaMS///1vqFQqrF69GmazGQkJCRg2bJitHt8qscpo\nAIBak4nhIYObHI8M8YbMTYJ0TqglIiJyCJslKh4eHli3bl2T9z/88ENbPbLNAuUqKNx8cVJzGmbB\nDLHo0g4mqUSM2B5KHD5VgmJtNQIUcgdFSkRE1DV1ycq0jUQiEWKUvaA3ViOnMs/qORz+ISIicpwu\nnagAQOyFeSoZmkyrx+MiWE6fiIjIUbp8otJb0QsiiKBupp6KyleGQIUMGee1MJrMdo6OiIioa+vy\niYqnqwe6e4XgrO48ao11Vs+Jj/BDbb0JZ/J0do6OiIioa+vyiQoAxCijYRJMON1MOf24SM5TISIi\ncgQmKvhrmXJz5fRjwnwhEYuYqBAREdkZExUAET494Cp2gbqZCbXurlL0CvVBdmElKqrr7RwdERFR\n18VEBYCLWIpeiigUVhdDW1tu9Zz4SD8IAE6wV4WIiMhumKhc8NfwTzPLlMM5T4WIiMjemKhcYNn3\np5l5Kt0DPeEtd0F6lqZVOz8TERHRtWOickGQPAC+bj5QazNhFprWSxGLRIiLUEKnr0duid4BERIR\nEXU9TFQusJTTN1QjtzLf6jnxEX4AgLSsMnuGRkRE1GUxUblIrKJx+Kflcvpp3E2ZiIjILpioXKS3\nZd8f6/NUvD1cERboiczcctTVm+wZGhERUZfEROUiXq6e6O4ZgjO6c6gzWa+XEh/hB6NJwMkcrZ2j\nIyIi6nqYqFzmiuX0OfxDRERkN0xULnOlcvq9Qn3g5iJhPRUiIiI7YKJymUjfcLiIXZot/CaViBET\n5otCTTVKdTV2jo6IiKhrYaJyGRexFL18I1GoL0J5nc7qOfGRDcuU09mrQkREZFNMVKyItaz+sd6r\nEh/BcvpERET2wETFipgL81SaK6cfoJDB38cdJ85pYTI3rWJLRERE7YOJihXBHoHwcfWCWmO9nL5I\nJEJ8pB9q6ozIyq90QIRERERdAxMVKxrK6UejyqBHXlWB1XP+Gv5hOX0iIiJbYaLSjJgrVKmNCVNA\nLBJxngoREZENMVFpRmOi0ty+P3J3KaK6eSOroAJVNQZ7hkZERNRlMFFphrerF0I9Q3CmPAv1zZbT\nV0IQgIzzLKdPRERkC0xUWhCj7AWjYMLp8iyrxxvrqaSd5TwVIiIiW2Ci0oIrldPvEegFT5kL0rI0\nEATBnqERERF1CUxUWhDlEw4XsbTZeSpisQh9whXQVtYhv6zaztERERF1fkxUWuAicUFP30jk6wuh\nq6uwek58xIVy+hz+ISIiandMVK7gSqt/4lhOn4iIyGaYqFzBleapKLzc0E3lgZM55ag3mOwZGhER\nUafHROUKQjyC4O3qBbXWejl9oGGZssFoRmau9d2WiYiI6OpIbXXjrVu34ssvv7S8TktLw3PPPYfN\nmzfDxcUFgYGBePbZZ+Hq6mqrENpFQzn9XjhUeBj5VYUI9Qppck58hB++PZSDtKwyy1AQERERXTub\n9ajMmTMHW7ZswZYtW3Dvvfdi+vTpWLNmDd5++2188MEHkMvl+P777231+HZ1peGf6O4+cJWKOU+F\niIiondll6GfDhg1YvHgxfH19UVHRsHqmoqICCoXCHo+/Zr0VLU+odZFKEB3mi7wSPbSVdfYMjYiI\nqFOzeaJy7NgxBAcHQ6VSYdWqVZgxYwbGjRsHs9mMYcOG2frx7cLHzQvdPINxWpeFepP1fX0alylz\nN2UiIqL2Y7M5Ko22bduGGTNmwGw2Y82aNdi2bRu6d++O+++/Hz/88APGjRvX7LUKhRxSqcRmsalU\nXq0+N7FbHL46uQelKESCqk+T4yOvC8XHP2TidH4lZo5r/X3Jura0DdkX28Y5sV2cF9vm2tg8UUlJ\nScGqVaug0TTM3wgLCwMADB06FGlpaS0mKlqt7aq9qlReKCmpbPX54e7hAICDWUcRIune5Li7uGGp\n8mF1EYqKKiAWi9or1C6nrW1D9sO2cU5sF+fFtmmdlpI5mw79FBUVwcPDA66urlAoFNDpdJaE5fjx\n4+jRo4ctH9+uonwjIG2hnL5IJEJ8hBL6WiPOF/GbkoiIqD3YNFEpKSmBUtmwXFcikWD16tX4xz/+\ngfnz58NkMmHy5Mm2fHy7cpW4oKdPBPKqCqCrs56IcDdlIiKi9mXToZ/4+Hi8/fbbltc33ngjbrzx\nRls+0qZilL2g1mbipDYTg4Kua3K8T7gCIlFDOf2pwyMcECEREVHnwsq0bXCleioe7i6IDPbGmbwK\nVNca7RkaERFRp8REpQ1CPIP9S/a4AAAgAElEQVTg5eIJtSYTgiBYPScuQgmzICDjvNbO0REREXU+\nTFTaQCwSI0bZCxX1lcjXF1o9p7GeSjrrqRAREV0zJiptdKXhn4gQL8jcpEjL0jTb60JEREStw0Sl\njXorewJovpy+RCxGn3AFSnW1KNLW2DM0IiKiToeJShv5uvkgxCMIp8vPwtBsOf2GJdnp3KSQiIjo\nmjBRuQoxyl4wmI04oztn9bhl3x/WUyEiIromTFSuQswV5qn4+bgj2E8OdXY5jCazPUMjIiLqVJio\nXIVevhGQiiTNzlMBGpYp1xlMyMzV2TEyIiKizoWJylVwlbgiyjcCuVX5qKhvppx+4/APlykTERFd\nNSYqVylG2QsAcFJz2urx3t19IZWIkH6WE2qJiIiuFhOVq3SleipurhL0CvVFdnEVdPp6e4ZGRETU\naTBRuUrdPIPh6eIBteZUs4Xd4iMblylz+IeIiOhqMFG5So3l9HX1lSjQF1k9569y+hz+ISIiuhpM\nVK5B4zJldTPDP6EqD/h4uiI9SwMzy+kTERG1GROVaxB7YUJtRjPLlEUiEeLDlaioNiCnqMqeoRER\nEXUKTFSuga+bD4I8ApFZfhYGs9HqOXEX5qlwmTIREVHbMVG5RrHKXjCYDThbfs7q8T7hSojAeSpE\nRERXg4nKNbrSMmVvuSvCgryQmatDbb31XhciIiKyjonKNerpG9lQTl/bfDn9+AglTGYB6vPldoyM\niIio42Oico3cJK6I9AlHTmUeKuutT5iNj2isp8LhHyIiorZgotIO/iqnb71XJaqbD9xdJZxQS0RE\n1EZMVNqBZZ5KM8M/UokYsT0UKNLWoKS8xp6hERERdWhMVNpBqFcIPFzkUGsymy+nH9G4TJnDP0RE\nRK3FRKUdiEVixCh6obxOh8LqYqvnxDUmKmc5/ENERNRaTFTayV/l9K0P/wQo5AjwlSHjvBZGk9me\noREREXVYTFTayV/l9K3XUwEaqtTW1ptwNr/CXmERERF1aExU2onC3ReB8gBkas80W07/r3kqHP4h\nIiJqDSYq7ShW2Qv1ZgOydOetHo8JU0AiFrGeChERUSsxUWlHVyqnL3OTomc3H5wrqERldb09QyMi\nIuqQmKi0o56+kZCIJFC3ME8lPlIJAcCJc1r7BUZERNRBMVFpR+5SN0T69EBOZT6q6vVWz4njPBUi\nIqJWY6LSzmKU0RAg4GQzVWrDAr3gJXdBepam2eJwRERE1EBqqxtv3boVX375peV1Wloafv75Zyxf\nvhw6nQ6BgYF4+eWX4erqaqsQHCJW2Qs7z34DtSYTAwL7NzkuFokQF67EwRNFyCvRIzTA0wFREhER\ndQw261GZM2cOtmzZgi1btuDee+/F9OnTsWnTJowYMQJbt25FTEwM1Gq1rR7vMN29usFDKkdGC+X0\n41hOn4iIqFXsMvSzYcMGLF68GD/++COmTp0KAFi6dCn69etnj8fblVgkRm9lT2jrylFUXWL1nMZ6\nKumcp0JERNQimycqx44dQ3BwMFQqFUpLS/HRRx9h7ty5WL16NerrO+cS3ZgLVWqbK6fv4+mG7gGe\nOJmjQ53BZM/QiIiIOhSbzVFptG3bNsyYMQMAUFdXh+HDh2Pp0qVYtWoVtm7dinnz5jV7rUIhh1Qq\nsVlsKpWXTe47XJ6ID9Wf4Yz+LOaokqyeMyguCJ/9eBpFFXUYEBNokzg6Mlu1DV07to1zYrs4L7bN\ntbF5opKSkoJVq1YBAIKDg5GYmAgAGD58OFJSUlq8VquttllcKpUXSkoqbXR3VwTKVUgrOomCIi2k\n4qZf5sjAhkm0vx7JQ5if3EZxdEy2bRu6Fmwb58R2cV5sm9ZpKZmz6dBPUVERPDw8LCt7Bg8ejIMH\nDwIA0tPTERERYcvHO1SMshfqTfXI0mVbPd4z1BeuLmLWUyEiImqBTROVkpISKJVKy+v7778fb775\nJubOnYvs7GzMmTPHlo93qMZy+s1VqXWRihETpkBBWTU0FbX2DI2IiKjDsOnQT3x8PN5++23La6VS\nic2bN9vykU6jl28kxCIxMjSZmBplfZ5KXIQSx86UIS1LgxsSQuwcIRERkfNjZVobcZe6I8K7B7Ir\nc6E3WJ9r07hMOe0sh3+IiIisYaJiQ7GWcvqnrR4PUsrh5+2OE+e0MJtZTp+IiOhyTFRsqLGeSkaZ\n9XkqIpEI8ZFKVNcZkVVQYc/QiIiIOgQmKjbUwzsUMqkMam3z5fTjWU6fiIioWUxUbEgsEiNG0ROa\nWi2Ka0qtnhPbQwGxSMRlykRERFYwUbExy/BPM8uU5e4uiAzxxtn8CuhrDfYMjYiIyOkxUbGxGEs9\nFev7/gANwz+CAGSc09orLCIiog6BiYqN+cuUCJD545T2NExm6xsQxkU2zlPh8A8REdHFmKjYQYyy\nF+pM9ciqsF5OPyLIGx7uUqRlaZqddEtERNQVMVGxg5grlNMXi0XoE66EpqIOhRrbbcRIRETU0Vx1\nonLu3Ll2DKNzi1ZEWcrpN+evKrVcpkxERNSoxUTl9ttvv+T1xo0bLX9fvXq1bSLqhGRSd4R7h+F8\nRQ6qmymnH8d6KkRERE20mKgYjcZLXh88eNDyd86laJtYZa8L5fTPWD2u9HZHiL8HTmZrYTBan3RL\nRETU1bSYqIhEokteX5ycXH6MWhZ7YZ5Kc/VUgIbhn3qjGadydfYKi4iIyKm1aY4Kk5OrF+YVCpnU\nHWrNqSuW00/nPBUiIiIAgLSlgzqdDr/99pvldUVFBQ4ePAhBEFBRwU302kIilqC3oif+LElDSU0Z\nAuT+Tc6J7u4LF6kYaVllSEZPB0RJRETkXFpMVLy9vS+ZQOvl5YUNGzZY/k5tE6OMxp8laVBrTllN\nVFxdJIju7ov0LA3Kq+rg6+nmgCiJiIicR4uJypYtW+wVR5cQe2HfH7UmEzeEDrN6TnyEEulZGqRn\naTC8b7A9wyMiInI6Lc5RqaqqwnvvvWd5/fHHH2PatGm47777UFpqfTdgap6/zA/+Mj+c1J5pvpw+\nlykTERFZtJiorF69GmVlDfvPZGVl4eWXX8bKlSsxbNgwPP3003YJsLOJVUaj1lSLcxU5Vo938/eA\nwssN6VkamLkEnIiIurgWE5WcnBysWLECAPDtt98iKSkJw4YNwy233MIelasUYxn+sb5MWSQSIS5c\niaoaA84XVtozNCIiIqfTYqIil8stfz906BCGDBliec2lylcn2rcV5fQjOfxDREQEXCFRMZlMKCsr\nQ3Z2No4cOYLhw4cDAPR6PWpqauwSYGcjd5Eh3Ls7zlVko9pg/WvYJ1wJEYD0s2X2DY6IiMjJtJio\n3HXXXZg0aRKmTp2KxYsXw8fHB7W1tZg7dy6mT59urxg7nRhFQzn9U+XWy+l7ylwQHuyNM/kVqKkz\nWj2HiIioK2hxefKoUaOwf/9+1NXVwdPTEwDg7u6OBx98ECNGjLBLgJ1RrF80dp3bgwzNKfRXxVs9\nJz5CiayCCqjPa5EYrbJzhERERM6hxR6V/Px8lJSUoKKiAvn5+ZY/kZGRyM/Pt1eMnU4Pr+5wl7hD\nXdbCvj+cp0JERNRyj8rYsWMREREBlarhf/SXb0r4/vvv2za6TqqhnH4Ujpamo6S6DCq5X5NzIoK9\nIXOTIC2L81TI8cxmAb+lF2JQPxFcHB0MEXUpLSYqzz//PL744gvo9XpMnjwZU6ZMgVKptFdsnVqM\nMhpHS9Oh1p6CSj60yXGpRIzYHkocPlWCIm01AhVyK3chsj1BEPDRnkz8cDgXH/+QicXT4xEbzp8D\nRGQfLQ79TJs2DZs3b8Yrr7yCqqoqzJs3D3feeSd27tyJ2tpae8XYKTXWU2lxmXJjlVrupkwO9E1K\nNn44nAt/H3fUGUx4+dOj+OUYh36JyD5aTFQaBQcHY/Hixdi9ezcmTJiANWvWcDLtNVLJ/ODnrsQp\n7elmy+k3JirpnKdCDnIwvRBb952BwssND8+7Dk/+3zC4u0rw7i41PvvpDKsnE5HNtSpRqaiowAcf\nfICZM2figw8+wP/93/9h165dto6tUxOJRIhV9kKNsRbnK3OtnuPvK0OgUo6MbC2MJrOdI6Su7sQ5\nDd75OgMyNymWJydA6e2OvlH+eOy26xGgkOHr387jjS/SUW+wnmgTEbWHFhOV/fv3Y/ny5Zg1axYK\nCgrw3HPP4YsvvsAdd9yBgIAAe8XYacUoowEAGc2U0wcaelXq6k04k6ezV1hEyC6qxPrtxyESAffN\n6otQlaflWJBSjscWDECvUB/8ri7Gix8dQYW+3oHRElFn1mKicueddyIjIwPXXXcdNBoN3n33XTzy\nyCOWP3RteiuiIIII6tbMU+HwD9lJma4Wr2w9itp6E+6c0ge9wxRNzvGSu+KftyRiSFwgzuRXYM37\nqcgv1TsgWiLq7Fpc9dO4/Fir1UKhuPSHVW6u9eEKaj25i9xSTr/GWAOZVNbknN5hvpCIRUg7q8Gs\nUVEOiJK6En2tAS9/+ifKq+px89ieGBQb2Oy5LlIx7prSBwG+Mnz56zk8veUPLJ3BFUFE1L5a7FER\ni8VYsWIFHn/8caxevRqBgYEYNGgQTp06hVdeeaXFG2/duhULFiyw/ElMTLQc+/jjjzF27Nj2+QQd\nXIyyF8yCGae01svpu7tK0SvUB+eLKtm9TjZlMJrw2rZjKCirxviB3TFhUNgVrxGJRJg+MhJ3TolF\nfeOKoKNcEURE7afFHpW1a9fivffeQ1RUFH744QesXr0aZrMZPj4+2Lp1a4s3njNnDubMmQOgYefl\n3bt3AwDKysrw/ffft1P4HV+MMhq7z/0AtSYTCc2V04/0gzq7HOnnNBgaF2TnCKkrMAsC3tp5Aqdy\ndRgYE4DksT3bdP2w+GD4ebtj/fbjeHe3GsXlNZhxQyTE3GWdiK7RFXtUoqIahhvGjRuHvLw83Hbb\nbVi/fj0CA5vvEr7chg0bsHjxYgDAiy++iPvuu+8aQu5cIrzD4C5xu+KEWoD1VMg2BEHAxz9kIvVk\nCaK7++LOKbFXlWD0DlNg1UUrgl7niiAiagct9qiILvthFRwcjJtuuqlNDzh27BiCg4OhUqmQkpIC\nNzc3JCQktOpahUIOqVTSpue1hUrlZbN7t0V8YG+k5h+DIKtDgKd/k+N+fp7w9XJDRrYWfn6eEIs7\n//9SnaVtuoLP953GntRchAV54Ym7h8JT7tri+S21jUrlhbXLR+Ppd1OQqi5GZY0Bq24fDF8vt/YO\nmy7DfzPOi21zbVpMVC53eeLSGtu2bcOMGTNQX1+PV199FRs3bmz1tVptdZuf11oqlRdKSiptdv+2\niPSMRCqO4dfTRzCi2xCr58SGKfBbeiGOnChAWGDn/qZ3prbp7FJOFGHzznT4errivpl9UaOvQ42+\nrtnzW9s2y2b1w7u7M3AwvQjL1+7D/XMSEOLv0Z6h00X4b8Z5sW1ap6VkrsWhnyNHjmD06NGWP42v\nR40ahdGjR7fq4SkpKUhMTERGRgZKS0tx1113ITk5GcXFxVi+fHmbPkhnFduacvqRrFJL7SvjvBbv\nfH0CMjcJlif3h9Lbvd3u3bgiaNqICJTqavH0lj9w4hy/d4mo7VrsUfnmm2+u6eZFRUXw8PCAq6sr\nEhIS8O2331qOjR07FmvXrr2m+3cWKpk/lO4KnNSehlkwQyxqmj/Ghf9VT2XikB72DpE6mdziKqzf\nfgyCACyd2Q/dAzyvfFEbiUQiTBsRgQBfGd7dnYG1nx7FbRN6Y2RCSLs/i4g6rxYTlW7dul3TzUtK\nSrjbcis0ltP/Nf8QzlfkIsKn6bJQbw9XhAV6IjO3HHX1Jri52m7uDnVumoparN16FDV1Jtz9tz6I\n7dG0oFt7GhofBKW3G1cEEdFVadVeP1crPj4eb7/9ttVje/futeWjO5zGcvrqFlf/+MFoEqDO1tor\nLOpkqmsNWPvpUWgr6zBnTBSG9LHPcneuCCKiq2XTRIVar7eiJ0QQtTxPheX06RoYjGa89tlx5JXq\nceOAUCS1oqBbewpUyrHqtusRHeqDVO4RREStxETFSXi4yBHmHYqsivOoMdZaPadnqA/cXCVMVKjN\nzIKAt786gZM55RjQW4VbxvW6qlV818pT5oIVtyRi6EV7BOVxjyAiagETFScSq4yGWTAjs5ly+lKJ\nGLFhChRpqlFaXmPn6Kgj+3TvafyuLkavUB/cPbWPQ2vxuEjFuPOiFUHPcEUQEbWAiYoTiVE0LFNW\na5sf/onj8A+10Xe/5+C733MQ7CfHvbP6wcWGRRRbq3FF0F1T+sBgNGHtp0fxM/cIIiIrmKg4kQif\nMLhJXFtVTp/1VKg1flcX45MfMuHj6YrlyQnwlLk4OqRLDI0Pwj9vSYS7qwTv7VZj274zMAuCo8Mi\nIifCRMWJSMVSRCuiUFxdirIa6yt7AhQy+Pu448R5LUxms50jpI7kZLYWb+1Mh5urBMvnJMDfR+bo\nkKyK7u6LVbddj0CFDLsOckUQEV2KiYqTiVFcWKastd6rIhKJEB/ph5o6I87mV9gzNOpA8kqq8Npn\nxyEIwJKZfZ1+24VApRyP3XY9orv7IlVdjBe4IoiILmCi4mRaVU6fuylTC7SVdXj506OorjPijkmx\nlqrGzs5T5oIVN/fH0LhAnOWKICK6gImKkwmQq6Bw88VJTSbMgvWhndgeCkjEIk6opSaqa41Y++mf\n0FbWYdaoSAyNt09Bt/ZibUVQOlcEEXVpTFScTGM5/WpjDXIq86yeI3OTIirEG+cKKlBVY7BzhOSs\nDEYz1m8/htwSPcZe1w2TOuieUJYVQVMbVgS9whVBRF0aExUn1FhOv6XVP3GRfhAA1p8gAA0F3Tbv\nyoA6uxzXRasw98ZohxR0a09D4xpWBMncpFwRRNSFMVFxQr2VjeX0r7xMmcM/BADb9p1Byoki9Ozm\n+IJu7Sm6uy8eu20AVwQRdWFMVJyQp4sHunt1Q5YuG7XNlNPvEegFT5kL0rM0EPi/zC5tT2oOvknJ\nRpBSjvtm94Ori+MLurWnQEXTFUE6rggi6jKYqDipWGU0TIIJmeVnrR4Xi0XoE66AtrIO+VwZ0WWl\nqovx0Z5M+Hi44gEnLOjWXi5fEfQ0VwQRdRlMVJxUTKuWKfsB4PBPV3Uqpxxv7jwBV1cJ7p+TAH9f\n5yzo1l4aVwRN54ogoi6FiYqTivDpAVeJK9QtJCrc96fryi/V47XPjkEQBCyZEY8eQc5d0K29iEQi\n/G1EBO7miiCiLoOJipNyEUsR7RuJoupiaGqtl9NXeLkhVOWBUznlnGDYhWgr67D20z+hrzXi7xNj\nLD1rXcmQy1YEbd13miuCiDopJipOrHGZcku9KvERfjAYzTiVU26vsMiBauqMeGXrUZRV1GHGDZEY\n3jfY0SE5zMUrgnYfzMbrO9KYsBN1QkxUnFhjOf0Wh38iG4Z/3vgyHS98eBj/+/4U9h3JQ2ZuOapr\nWQyuMzGazNjw+XHkFFdhdGI3TBnaMQu6tadLVgSdLOGKIKJOSOroAKh5gfIA+Lr5QK1tKKcvFjXN\nK3t398XQuCBk5pZDnd3w52IKLzeE+Hug24U/ISoPhPh5QObGpu9IBEHAu7sycOKcFv17+mP+TR2/\noFt7aVwR9N5uNX5LL8TT76di2ZwEdPP3cHRoRNQO+NvKiYlEIsQoe+FgQSpyK/MR5h3a5BypRIy7\npvYBANTWG1FQVo28Ej3ySquQV6pHXoke6VkapF824dbP2x3dVBeSF38PhKo8EeQnh1snq8HRWXz2\n01n8ll6EqBBv/N+0uE5T0K29NKwIikWgUoYdv2ThmS2pWDyjb4fZkJGImsdExcnFKqNxsCAVGZpT\nVhOVi7m7ShER7I2IYO9L3q+uNSK/TI+8kr+Sl/xSPY6dKcOxM2WW80QAVL4ydFM1JC8NiYwngpRy\nuEg5Sugoew/nYtfB8whUyHDf7H5MJpshEonwt+ERCPCVYfOuDLzy6VEsmNAbNySEODo0IroGTFSc\nXIyil6Wc/oTwsVd1D7m7FD27+aBnN59L3q+qMSCvpAr5pXrkluqRX6JHXqkeRzJLcSSz1HKeWCRC\noFL21xCSyhPd/D0QoJBBKmECY0t/nCzB/747BW+5C5bf3B9ecldHh+T0hsQFQentjvXbj+O93WoU\naaoxa3QUxBwqI+qQmKg4OU9XD4R6heCs7jzqTPVwk7TfLypPmQt6hynQO0xheU8QBFRUG5BfUtWQ\nvFzogckr1aOgrBp/nCyxnCsRixDkJ7fMf2lMYFS+Mg5NtIPTuTq8uTMdri4S3J+cgIBOXtCtPTWu\nCHpl6zHsTslGcXkN7prSp9NtL0DUFTBR6QBildHIqcxDpvYM4v1jbfoskUgEHw9X+HgoEXvR+L4g\nCJZy/XkXJS+NiczFXKRiBDcmMCpPS0+Mn487/1fbSgVleqzbdhQmk4Als/siPMj7yhfRJQIVcjy2\nYAA2bD+OP06WQFNxBPfN7gcfD/ZKEXUkTFQ6gFhlL3x3/keoNZk2T1SaIxKJoPR2h9LbHfGRfxUY\nMwsCNLrahuTFksBUoaCsGtlFVQCKLOe6uUgQ4i9HN3/PCxN4G+bCKLzcuILlIrqqOqz99Cj0tUbc\nPikG/aK6XkG39uIpc8GKWxpWBB1IK8Sa/6bi/jn90E3l6ejQiKiVmKh0ABE+4XAVuyBD23w9FUcR\ni0Tw95XB31eGhJ7+lvfNZgEl5TUXJTANc2Gyi6qQVVB5yT1kblLL6qNuKg8kxgRBIZdAIu56819q\n6oxYu/UoSnW1mD4yAiP7cSLotZJKxFg0ORYBigsrgj74A4un97VsQUHOo0xXi2Nny5AQ5Qelt7uj\nwyEnwUSlA3ARS9FTEYkTZSehrS2Hwt3X0SFdkVgsQqBSjkClHNdFqyzvG01mFGtrGibwXkhe8kr1\nOJtfgdN5OgDAR3syIXeTIi5Cib6RfugbqYSPp5ujPordGE1mbNyRhuyiKtyQEIKpw8IdHVKnYVkR\npJBh89cZWPvpUcwcFYmR/YI5QdnBauqMOHyqBAfSCqE+r4UAYKenK1bckshaOAQAEAmC826QUVJS\neeWTrpJK5WXT+7e3vTm/4LPMnZgfMwdDQwY6Opx2ZzCaUaipRl5JFXJKq3EovRBlFbWW42GBnheS\nFj9EdfPudL0tgiDgna8zcCCtEAlRflg6q69TfUaT2YTfCn7HwMh4uNV17GGTzNxyvPbZcVTVGCAW\niRAXocTgPgFI7KXqsIUQO9rPM7NZQMZ5LQ6kFeCPUyWoN5gBANGhPugW4IkfD+fBU+aC5ckJTcot\ndDQdrW0cRaVqfmNVJiodRH5VIZ4+9DKuD+yP2+PmOjocm1KpvFBcXIGCsmocP1uG42fLcCqnHEZT\nw7eq3E2KPhFK9I1s6HHx7QS9Ldt/PoOvDpxHRLA3Hro1EW6uzrM6xWAy4J30/+F46Qm4SlyQHD0D\nQ4Ovd3RY10Snr8fB9EKknCjCucKGnwMuUjESovwwuE8Q+kUp4SJ1nja4ko7y8yyvpAoH0grxW3oh\nyqsatjoI8JVhWHwQhsQHWVa2/XI0H+99o4abiwTLZve7ZGViR9NR2sbRmKhY0dG+eQRBwGO/Pg2T\nYMKzIx63Wk6/s7DWNrX1RmSc1+L4WQ2OnynrVL0t+47k4f1vTyLAV4ZHFwyAtxOtSqk11uGN4//F\nKe1pRHiHoaimBNWGGgwJuh43954O13ZcLu8oRZpqpJwoQkpGEQrKqgEAMjcJrotWYXCfQMT2UDj9\n95Qz/zyr0Ncj5UQRDqQV4nxRQ4xyNykGxQZgWHwworp5W51Mn6ouxhtfpkMsFmHx9PhL5sB1JM7c\nNs6EiYoVHfGb5/0TnyCl8A+sHHgfwrxarlLbkV2pbQRB6DS9LUcyS7B++3F4ylzw6IIBCFTIHR2S\nhd5QjY1HN+NcRTYS/ONwe9xcSDxNePHnN5BdmYcQjyAsip+PII8AR4faLgRBQE5xlSVp0VTUAQC8\n5S4YGBOIwX0Cm/2l6mjO9vPMYDThz9NlOHC8AMfPamAWBEjEIvSN9MOw+CAk9PRrVY9V2tkyrN9+\nHCazgEVTYjGkT5Adom9fztY2zoqJihUd8Zvn98IjeO/ER5gWNRHje4xxdDg209a2qa03Qn2+3JK4\nlOou6m0J8ETfKOfsbTmTp8OLHx0BRMDKudc51Vi8rq4S6/98C/n6QgwKug7zY+ZAIpZApfJCfpEW\nn5/+Cj/lHoCrxBW39p6JQUHXOTrkdmUWBJzO1SElowip6mJUVjfsRO7n7Y5BfQIwODYQ3QM8nSZp\ncYafZ4Ig4HSeDgfSCnEooxg1dUYAQI8gLwyLD8Lg2MCr6i3MzC3HK1uPobbOiAUTemN0Yrf2Dt2m\nnKFtOgKHJCpbt27Fl19+aXmdlpaGjz76CE8++STEYjG8vb3x0ksvQSZrvtomE5VLVdZX4eH9TyJa\n0RPLEu92dDg2cy1tIwgCCjXVOH6mIWk5eVFvi8xNirhwBfpG+iE+0g8KL8f1thRqqvHMlj9QXWvE\nvbP6OlW3dlmNFq/9+SZKaspwQ7ehmBM9zTLUeHHbHC4+hv9lbEWtqQ7DQwZjdq+/wVXi4sjQbcJk\nNiPjnBYHTxTh8KkS1NabAAAh/h4YHBuAwX0CEeDgnjBH/jwr1lbjt/QiHEgrQEl5w38SFF5uGBIX\niGFxQe1Ssya7qBIvffInKqsNmD06CpOG9Ljme9pLR/xd4wgO71E5dOgQdu/ejczMTDz00EPo168f\nnn/+eYSGhmLevHnNXsdEpalnD72CQn0RXrzhiU4xP8Ca9mybunoTMrK1lsTl4t6W7gENc1v6Rdm3\nt0Wnr8fT76eiVFeLv0+McapN84r0xXjtz7ehrSvH+B5j8LfIpEt6DS5vm+LqEryT9j/kVuWjm2cw\n7oyfjwC5ytqtO4V6gwnHzpQhJaMIR0+XwWhqWK0SEeyFwX2CMDAmwCEJsL1/nlXXGnBIXYwDaYU4\nndtQVsDVRYwB0QEY1uYkihYAACAASURBVDcIsWGKdt9Go6BMj5c++ROaijpMGtIDs0ZFOk2PVks6\n6u8ae3N4orJw4UL85z//gUwmg6dnQ3b91ltvob6+HkuWLGn2OiYqTe04vQvfZ+/D4oRFiPPr7ehw\nbMJWbeMMvS219UY8/+ERnC+sxN+Gh2P6yEibPOdq5FTmY/2fb6HKoG92eNFa2xhMBmzL/BL781Pg\nLnHD3JjZGBCYYK+wHaa61ogjmSVIOVGEE+e0MAsCRAB6h/licJ9ADOgdAE+ZfXqY7PHzzGgyIz1L\ngwNphTiSWQqjyQwRgJgeCgyLD8KA3iq4u9p2eXeZrhb/+eRPFGmqMTqxG+aPj3b6bTk66u8ae3No\nonLs2DF8+OGHeO655yzvVVdXIzk5GevWrUNUVFSz1xqNJkg70BJBezhepMZT+9ZhcvQ4LEyc7ehw\nOrTaOiOOnSnFHxlF+ENdjCJNteVYRIg3BsQEYkBMAGLCle2yS7TRZMaazSn4Q12MmwaF4d7k/k7z\nP8KTpWfw7M8bUGOoxaIBN2N8z1Ftvsf+84fwRuqHqDPWYULPUbit/yy4dMKhIGvKK+vw67F8/HQ4\nFxnnNAAAqUSE63oH4obEbhgcFwT3DlijRRAEnM3TYe8fOfj5cB7KqxomGHcP9MSYAd0x+rruUCns\nu1mmtrIW/3rzN2TlV2BUYijuvzWRu7h3cjZPVFavXo3Jkydj8ODBABqSlHvuuQfTpk3DzJkzW7yW\nPSpNGUwGPPjLv+Av88OqwSscHY5NOKJtLL0tZzUNvS3Z5ZZufZmbBH3ClZYl0FfT2yIIAt7dpcb+\n4wXoG+mHe2f1dZofrmpNJt449h6MggkLYpNbnBh7pbYp1BfjnbQPkK8vRJhXNyyKnw9/Wdfaq6hU\nV4PfM4qRcqII2cVVABqGRfr39MeQPkGIj2yfxPdi7f1vRltZh4PphTiQXmjZdNRT5oLBfQIxLD4I\n4UFeDk2yq2sNeGXrMZzO0yEhyg/3TI932p2xO+rvGntzaI/KhAkTsHPnTri6usJoNOLOO+/E5MmT\nMWfOnCtey0TFuvV/vo0MzSk8Pfwx+Lr5ODqcducMbVNXb4I6W2tZSdQ4SRAAQlWe6BulRL9IP0R1\n82nVL50dv5zFl7+eQ48gL6ycm2jzLvLWOlqShs1p/wNEIiyKm4d+qrgWz29N29Sb6vHJqR04WJAK\nmdQd82OT0V8V355hdxj5pXrLcudibQ0AwMNdigG9VRgcG4je7TSXoz3+zdTVmy6Usi/AiXMNpeyl\nEhESevpjWHwQ+kb6OU1yDTTEu/7z40jP0iAmzBf3zurnlJWFneHnWUfgsESlqKgI99xzD/6/vTsP\nj6o8Gz/+nS3bTDJZJ9skgbBnIQlLKYjautS+9q1atQYpYF1wq1J9bX/l52u1vdrLXvrrohU3ira4\no6IoLrhUsVo2ERKyrxCyZ7Lvy8yc3x8TAtgEAyQ5Z5L7c11eXiSz3Ml9zsk9z/Oc+3njjTcAePLJ\nJ1EUhdtvv31Uz5dCZXj/PPov3ih9h9XzruHbXt4hdDhay42iKNS39AytbSk8zdGWz7Kq2byjiIhg\nP+5dvQirRhq67a39ihcKX8OoN3JL6nXMDZ31jc85ndzsqd3PK0VvMuAe4Ltxy7lixqUY9dr7QzIR\nFEXhSF0He/Pr2VdQP9SV1Wrx4VuDPVqmR5/5KMWZnjNuRaGoooVduXXsL3bQN3hH08xYK8tSolg8\nz4bZT7vTdwNONxu35/FVkYNpUYHcfU2a5vZu0tr1TKtUK1Ryc3N55JFH2LRpEwDLly/HbrdjMnkO\n/CVLlnDHHXeM+HwpVIZX3VnLg/v+Mmnb6Ws9N30DLoqOtnCo7JtHW3IPN7Nhaw4Bfkb+d/VCIkO1\n0dDtX1W72FK8DX+jPz9Lu4Hp1tHd7nm6uanprGNT7gvUdzcwLSieG5J/Qpi/97ZDHwtut0JxZetQ\nj5auXk+/EVuwv6dHS1LUaW/Gd7p5qW3qGmplf6yxXbjVj6XJUSxLidLMcToaLrebze8X8UVOLTHh\nZu7JTFe19cDXaf16phWq3/VzpqRQGZ6iKNz779+jKAoPLr9v0rXT96bcfNNoi9PluRPklyszmBGj\njWm6D458wtvlOwj0sXBn+lpiLdGjfu6Z5KbX2ccrRW/yZf0BAoz+rEnKJDU86XTDnpScLje5h5vZ\nl1/PwZJG+gY8Ixr2CAtLBhvLhQd/82LV0eSlo7uffQUN7Mqt5XCt57F+PgYWz7WxLCWKWXHBmr+D\nZiRuRWHLP0v5aH8l4VY/fnFtxtC+QWrzpuuZmqRQGYa3HzzH2umvX3wXcYHa6cMxFrw5N8dGW3LK\nPItymzt6ue2KFDJmqd9bRFEU3ip7n4+O7iTEN5h1GWtPu+fJmeZGURR21e7j1eK3cLqdXBR/Ppcl\nfh+DXpsLINXQ1+8iu6yRPXn15JQ34XJ7Ls0zY60sSYpk0VzbiNOGI+VlwOnmUFkju3LrOFTmeU29\nTkdKYihLk6PImBWu2UWop0tRFLb/+wjbvjiM1eLDPZnp2Meg2dzZ8ubr2USSQmUY3n7w7Ks7wOb8\nV7hixqVcnPAdtcMZU96emxMNON2YjOqPeLkVN1uKt/FF9R5sAeHcmb6WUL/Tn4I529xUddTwTO4L\nNPQ0kmidxg3JKwnxCz7j15usunoH+KrI06Ol8GgLigI6HSQlhLAkKYoFsyMI8Du+3ufEvCiKQnlN\n+2Ar+/qhqaV4m8XTyj4pEqvG98A6Gx/tr+Tlj0sw+xm5+5p0EmPU3ZpiMl3PxpMUKsPw9oOnra+D\ne//9O+aGzOLOjLVqhzOmvD03WuNyu3iuYAv767OItURzR/pNBPmMfFE4lbHITY+zl5cLt/JVQzYW\nk5k1SSsmbfPCsdDa2ee53bmgnvKadgCMBj3zZ4SxJCmStBlhxMYEU1DSwO68Onbl1lE/eIeR1ezD\n0uQolqZEEWdTf3Rhovw7p5Zn3yvAx2Rg3VXzmZeg3roouZ6NjhQqw5gMB8+D+/5CfbeD/3fubyfV\nHiuTITdaMeAa4Jm8F8lpzGd6UAK3p11PgOnMF0qOVW4UReHz6t1sLdmOU3Hx/YQLuHT6xTIV9A0a\nWnvYl1/P3vx6qhs9/U18fQzERQZSWtkKgI9Rz4LZESxLiWLetBBNbcQ5kb4qauDpt/MAHbddkaza\n9Ktcz0bnVIWK4Te/+c1vJi6U09Pd3T9ur202+47r608ER08TZa2HmRWcSETA5GmqNRlyowW9zj6e\nyvkHBc1FzA2ZxW1p1+NvOrsFhmOVG51OR0JQHMlhcylqLuFQUz6lrYeZFzobP+PknZY4W2Y/E7Pj\ngrlggZ2Fg9M/jtYeqho6mRsfzA/PmcYNl87j28lR2EICvHZx7FiICTeTGGPly8J69uY1EBHsr8qo\nklzPRsdsHvm8lxEVL1bQXMyGrE1cGHceV876b7XDGTOTITdq6xro5onsZznSfpS08GSuT145Ju3s\nxyM33QM9vFD4GtmOXAJNFn6afO2oeroID0VRCLQG0Nneo3YomlRa3cYjr2bT3edk1fdmc8EC+4S+\nv1zPRudUIypTc0xwkphhnY5Jb6SguVjtUISGtPV18MiBpzjSfpRvRS3gxpRVmt5zJ8Dkz9qU1Vw9\n6zK6nT1syNrEu+Uf4lbcaofmFXQ6nSY7smrFzFgr/2dlBkEBJl74sJh3dx9Bw5/PxTCkUPFiPgYT\nM6zTqemqo62vXe1whAY09bTwlwNPUNNVx3mxy1g97xqvWPeh0+n4btxy/mfhbYT4BfPekY/ZkLWJ\n9n75JCrOXnxkIP931ULCgnzZ+lk5r+0sk2LFi0ih4uXmhc0G4Mv6g/S7ZB50KqvvauAvB57E0dPE\nJQkXcM3sy72uGeC0oHjWL/45qeHzKGop5Q/7HqGkpUztsMQkEBkawP9dtZCo0AB27D3K5h1FuN1S\nrHgDWUzr5fwMfnxevZvC5hI+rPiU/fXZlLUextHdRK+rDx+DCV+Dr6o7nZ6uyZKbiVTZUcOjB5+m\nvb+DK2ZcyqXTLxqXnE9EbnwMJhba0vE1+pLTmM+e2q/Q6wwkWhO86jieSHLOjI6/r5HF82zkH2nm\nUFkTdc3dpM8KH5ONIUciuRkdWUw7jMm0wOlgQw4lreVUddRQ3VlLr6v3pO9bTGbslhhiA6M9/7dE\nExVg0+yUwGTKzUQobzvCE9nP0uvsI3POFZwbu3Tc3muic1PWeoRn816kta+NpNA5XJe0AovP6e2D\nMxXIOXN6unudPPp6NiVVbcyfEcZtV6TgO04deiU3oyN9VIYxWQ8eRVFo7m2hqrOGqs5aqjs8/2/q\nbT7pcUadgWhzJLGWGOyBnuLFbok+qx4bY2Wy5mY8FDaX8PShf+BUXKyZl8niqIxxfT81ctPZ38Xm\n/FfIby4i2NfKDck/YUbwtAmNQevknDl9fQMuHn8zh9zyZmbbray7Ou2kbr9jRXIzOlKoDGOqHTw9\nzh6qO+uo6qyhuqOWqs4aarvqGHA7T3pciG8w9qGRF08BE+4fOqFrHaZabs5UtiOXZ3NfBJ2Om1JW\nTchGf2rlxq24+ahiJ9vLP0Cn03FZ4ve5MP48r1uDM17knDkzTpebv23P58vCBhIiA7k7M42ggOH3\nUzpTkpvRkUJlGHLweFqrO3oaqRocdanq9Ewdff1OC1+Dz+CIi6dw8RQwUfgYxvaEPkZy88321n7F\nC4WvYdQbuTX1p8wJnTkh76t2bkpayvh73ku09XeQEjaPNUmZmDUwCqg2tfPizdxuhec+KORf2bVE\nhwVwT2Y6oUF+Y/b6kpvRkUJlGHLwjKy9v2No1KV6sICp73ac1NdChw5bQPhJBYw9MAarT9BZL3iU\n3Jzav6p2saV4GwFGf25Pu5Hp1vgJe28t5Ka9v4PNea9Q2FJCiG8wN6asmtDfgRZpIS/eTFEUXv20\nlA/2VRIW5Mcvrk0nMmRsCmDJzehIoTIMOXhOz4BrgNrueqo6aqnurBkqYnqc/7lw9+vFy+ku3JXc\njOyDI5/wdvkOAn0s3Jm+llhL9IS+v1Zy41bcvH/kn7x/+GP0Oj1XzLyU79qXT9m7grSSF2+mKArv\n7K7gzX+VE2T24Z7M9DFpuS+5GR0pVIYhB8/Z8yzcbR0sWgZHXzpqaBxm4W6UOfKEO48800cjDdlL\nbv6Toii8VfY+Hx3dSYhvMOsy1mILmPhN1rSWm8LmEv6R9zIdA52kRaSwau6PCTjL/Yy8kdby4s3+\n+VUVL35UTICvkbuvSWNGrPWsXk9yMzpSqAxDDp7x0+PspebYwt3Bu49qOusYcA+c9LgQ3+ChUZdj\nozDh/qFE2qySmxO4FTdbirfxRfUebAHhrEu/mRC/YFVi0eJ509bXzt/zXqKktZwwv1BuSllFfNDE\n7ueiNi3mxZvtyq3l2XcLMRn13HFVKsnTQs/4tSQ3oyOFyjDk4JlYbsVNQ3fjSeteqjtqaBtm4e7s\n8OnMs84jLSKZYN+z+zTj7VxuF88VbGF/fRZ2Swx3pN9EoM/E7wB7jFbPG5fbxXuHP2JHxScYdQau\nnPVDzotdOmWmgrSaF292oNjBU2/lAnDLZSksnHNmI5iSm9GRQmUYcvBoQ0d/51Dhcmz9S01XHeBZ\nsDvdGk96RCrpESmE+Z/5pxpvNOAa4Jm8F8lpzCfRmsBt829QfVpD6+dNXlMRm/NfpmugmwW2+ayc\nezX+xrG7g0OrtJ4Xb5V/pJnHtuYw4HRz/aVzOSf19NeESW5GRwqVYcjBo10Gs4t/Fu0hqyGH0tbD\nKHgO0fjAWE/RYkslUoX1GROp19nL0znPUdxSytyQWdw8/zp8x+l28NPhDedNS28rz+a9RHnbEWz+\n4dyYsgp7YIzaYY0rb8iLtyqraeORV7Pp6nWy8qJZXLQo7rSeL7kZnVMVKrLXj9Cc8GArNmMk345e\nxLmxS7H5h+NUXBxuP0phSwmfVe3iYMMh2vs7MZsCCDRZJtUQf9dAN49nP0NZ22HSIlJYm7oGH4NJ\n7bAA7zhv/I1+LIlagNPtIqcpnz11+wkyWYgLjJ1Ux8mJvCEv3io00I/5iWEcKHawv8iBTgez44JH\nfSxJbkZH9voZhlS52jVSbroHuslpLOCgI4eC5mKcg111I/zDSI9IJcOWSnyg3av/GLX1dbAh62/U\ndNXxragFrJr7Y03tyeRt501OYz7P5W+h29nD4sgMVsy5Ej/jyBdEb+VtefFG9S3d/OmVLBrbevne\n4jgyL5g5qmuN5GZ0ZOpnGHLwaNdoctPr7CWvqZCDjlzymgrpd3k+sYT4BpNuSyE9IpVEa4JXtVhv\n6mnhsayNOHqaOC92GT+efZnm4vfG86app4Vn817kSPtRIgNs3JSyihhLlNphjSlvzIs3auno44+v\nHKS2qZtz50dz3ffnfuPOy5Kb0ZFCZRhy8GjX6eam3zVAQXMxWY4cchrzh5rQBfkEkhaRQnpECrOC\nEzU1MvF19V0N/DXrb7T2tXFJwgX8MPESTY4Meet543Q72Vb2Hp9WfoFJbyJzzo9YGr1I7bDGjLfm\nxRt1dPfz51ezqajrYNGcCNb+MBmTceQPFJKb0ZE1KsOQeUPtOt3cGPQGosw20iNSuCDuXBKt0zDp\nTdR1N1DaWs6+ugP8q3o39d0O9Do9IX4hGDQ0UlHZUcOjB5+mvb+DK2ZcyqXTL9JkkQLee97odXqS\nwuYQa4kmt6mAAw3ZVHZUe44H32CM+rHfNXcieWtejnErbg63H+XTyi94s+xdQEeCRnvh+JoMLJkX\nSWl1GznlzRypbWfB7AiMhuGvKd6em4kia1SGIVWudo1VblxuF2VthznYkEu2I2eoZ4ufwY+U8Llk\nRKSSFDZn3DZXHI3ytiM8kf0svc4+MudcwbmxS1WLZTQmw3nT2NPEs3kvUdFeCYBJb2Re6BzSI1JI\nDZ9HgBducuiNeXG5XZS2HibLkUu2I5e2/vaTvn/lzP/mwvjzVIrum/UPuHhiWy6HypqYabdy19Xz\nCfD7z0Xv3pgbNcjUzzDk4NGu8ciNW3FzpP0oBxtyyHLk0tzbAoCP3kRS2FwyIlJIDp83oT03CpqL\n2XhoM07FxZp5mSyOypiw9z5Tk+W8URSFqs4ash25ZDlyqe2qBzwjL7ODZ5BuS2F+eDJW3yCVIx0d\nb8nLgNtJUXMJ2Y5cDjXm0znQBYDZGEBqRBIZEamE+AXzRPaztPa18cPE7/P9aReoHPXInC43m97J\nZ19BA/E2C/+TmU6Q+eQPPt6SG7VJoTIMOXi0a7xzoygKlR3VHHTkkOXIoaG7EfDsSTQ3dDbptlTm\nhyeNuBfRWMhy5PL33BdBp+OmlFWkhieN23uNpcl63tR3NZDtyCPLkUtFh2ekxdNwMIH0iBTSIlII\n13DDQS3npd/VT35TEQcdOeQ2FtLr8qwhsw6uIUsbZg1ZY08Tjx7cSHNvC/817UJ+MP17mp0OdbsV\nXviwiJ1ZNUSGBvCLzHTCrMc/8Gg5N1oihcow5ODRronMjaIo1HbVk+XwjLRUd9YCJ36yTiUtIpkg\nn5FPotO1t/YrXih8DaPeyK2pP2VO6Mwxe+3xNhXOm+beFrIdeWQ7ck9qOBhniSEtIpV0WwpRATZN\n/eHUWl56nD3kNhaS5cghr6loaJ+vUL8Q0iNSyLClMi0o/pR3tTX1tPDXrI009jRxcfx3uHzGf2nq\nd34iRVF4fWcZ7+89SmiQL79YkUFUqOeDjtZyo1VSqAxDDh7tUjM3Dd0Oshy5ZDWc/Ml6RvC0oVb+\nZ7Mh4GdVu3i1eBsBRn9uT7uR6db4sQp9Qky186ajv5NDjZ6RlqLmUlyKCwBbQPjQ8aCF3j1ayEtn\nf9cJv6sSnIO/q8iAiMGO0inEWU6v6V5rXxt/PbiR+m4H37Gfw9WzLlP9d30q7+4+wtbPygkKMPE/\nmenERwZqIjfeQAqVYcjBo11ayU1zb8tg0ZJDeVvF0CfrhKA4MiJSSY9IJSIgbFSvpSgKH1R8yvby\nHQT6WLgzfS2xltPfN0RtWsmNGo6PEuSS31RI/+AoQYhvMGkRyaRHpDAjeLoqvW/UyktrX5tnyqwh\nh5LW8qFzxG6JGSpOos2RZ/Ue7f0dPHbQ0wRxecwSMuf8SHP9hU706YEqXviwGD9fI3f9eD7LMuKm\n7DlzOqRQGcZUvuBqnRZz09bXPriGwXNBdituAGIt0Z6ixZY64gVZURTeKnufj47uJMQ3mHUZa7F5\n6V5FWsyNGvpd/YO9e3LJaSygx9kDgMVkZn54Mum2FGaHzMQ0Qbc9T2ReGnuaPVOlDbkcbq8Y+vr0\noHjPVGl4yqgL+NHq7O/isay/UdVZw7ejFvGTeVdruljZnVfHM+8UYDTouP3qNKbbzAQGqL9Xl5ap\nUqi89tprvP3220P/zs3N5eWXX+ZY25Y5c+bw29/+9pSvIYXK1KT13HiGuPPJcuRQ2FwyNB0QGWAj\nIyKFdFsqdksMOp0Ot+JmS9GbfFGzF1tAOOvSbz6rqSO1aT03anC6nZS0lJPlyCG7MY+O/k7g+G3w\n6YO3wY/nppLjnZe6rvqh2/wrO2sAz5TorOBE0myeporBvtZxe3/wbKGxIesZKjoqWRSZzpp5mZpu\n4phV0sgT23JxujwfaqLDAphltzLLHswsu5WIYH9NT2NNNNVHVPbt28f7779PaWkpv/zlL5k/fz73\n3HMPl112Geeff/6Iz5NCZWryptz0OHvIaSwYnA44vmgwzC+U9IgUWvpaOdBwCLslhjvSbyLQx6Jy\nxGfHm3KjBrfi5nDb0aHF2cdugzfpjSSFziFtnHq1jHVejt2+ndWQw0FHLvXdDQAYdAbmhM4kIyKV\n1PCkCT+ee5y9PJH9LOVtR0iPSOX65Gs13ayvytFJYVU72UX1lNa009fvGvqe1exzvHCJsxJns2DQ\na3eUaLypXqhcd911/OEPf2DVqlV88sknALzzzjvk5uayfv36EZ8nhcrU5K256Ru8DTPLkUNuYwG9\nrj4AEq0J3Db/BgJM/ipHePa8NTdqGPpjP9irpe6EXi1zQmaSFnGsV8vZ31E2Fnk51msoq8ETb1Nv\nMwAmvYmkME9DvJSweaofx73OPp469HdKWstJCZvHTSmrMGlkd/HhHMuNy+2mqqGL4qpWSqraKKlq\npa3zeMdaX5OBxJggT/ESF8yMmCD8fLRbhI21UxUq4/5bOHToENHR0RgMBoKCjjdPCgsLw+FwjPfb\nCzFhfA0+ZNg8uzgPuAYobCmhrquB8+zLxnXYX2iTTqcjLjCWuMBYfph4CXVdDUMN5gqaiyloLmZL\n0ZskntCrJWyCe7WM1B3Wz+DLosj0CZm2Ol1+Rl9uT7uBjTnPkdtUwNM5m7k5dY2qHaZHw6DXkxAV\nSEJUIBcvikNRFBrbeikZKlzaKKhooaDCMwqn1+mIi7Qwy25ltj2YmXYrwZbJt/P3aIz7iMr999/P\nD37wA6ZNm8Ytt9zCtm3bANi1axdbt27lT3/604jPdTpdGI3anYMUQogz4ehq4svqbPZWZVHoKB26\nW2Z6SBxL7Bl8y56OPWh87gobcA2QU1/E3qqD7K/OpqPf0x020MfMotg0ltjTSY2cq+lRCvBsRvrn\nXX/jQE0OybbZ/Gr5bfiZJq6z9Hho7+qn8Egz+YebyD/cTEllC07X8T/R0WFm5k0PJWl6GEnTQ7Hb\nLFNincu4FyqXXHIJ27dvR6fTcfHFF7Nz504A3nzzTYqLi/nVr3414nNl6mdqktxol+Rm7LX3d5Dj\nyPf0H2kpPWlxdvrg7t9xgafuP/JNeTl5WvI/u8OmR6QyM3i6phenDsfpdvL3vJfJcuSQaE3g9rQb\n8Ddqa4r1bM6Z/gEXR+o6hkZdSqva6O5zDn3f4m9iZqyVWXGetS7TogJH3BxR61Sb+qmvr8dsNuPj\n4xmSS0xMZP/+/SxatIgPP/yQ1atXj+fbCyGE5gX5BHJO7BLOiV1C90APuU0FZDtyyWsq4oOKT/ig\n4hNCfIOHpodmBE8b1a25Iy/0DmFZzOJRdYfVOqPeyA3JK3muYAv767N47OAm7ki/0Ss3lhyOj8nA\n7LhgZsd57hR0Kwo1jV1Da1xKKtvIKm0kq9SzDYjJqGd6dNDQIt2ZsUHDbpTobca1UHE4HISGHp9z\nvffee7n//vtxu92kpaWxbNmy8Xx7IYTwKgEmf74VtYBvRS3w7JHTXExWQy65Tfl8WvUFn1Z9gcVk\nJi0imbSIVOaEzDjprpeO/k5yGvM56Mg5qZPusVvn086gO6zWGfQGrktagVFnZE/dfh49uJE709di\n8TGrHdqY0+t02CMs2CMsfDcjFoDm9t7jhUtVGyWVrRRXtgIV6IDYCPPQLdGz7MEn7UPkLaThm9Ac\nyY12SW7U4XQ7KW4pI8uRyyFHHh0Dnl4t/kY/UsLmMSdqGvsqDp3UHfbY3kQZthSizrI7rDc4sWdR\ntDmSdRk3j+keXWdqos+Z7l4n5TVtFFe1UVrVSnlNO/1O99D3Q4N8TypcYsPN6PXqF66q3558pqRQ\nmZokN9oluVGfW3FT3lYxdAfRsV4tANODEkgfbMAW7j+23WG9gaIobC3ZzqdVXxAZEMG6jJvHvRHd\nN1H7nHG63FTUd1BSeXzUpbNnYOj7/r5GzzoXu+e/6dFB+Jgmfq2SFCrDUPvgESOT3GiX5EZbFEWh\nsrOaLn070cZY1f8oa8GJW1aE+4WyLuMWwvxDVItHa+eMoijUt/RQUnm8n0t9S8/Q9w16HdOiAodG\nXWbarRPS/l8KlWFo7eARx0lutEtyo02Sl5MpisK7hz/i/SMfE+IbzM8zbhnz/YdGyxty09bVT+kJ\njegq6jpxKyfeFu1p/z9/RjgZs8LHZY2TFCrD8IaDZ6qS3GiX5EabJC/D23HkE7aX7yDY18q69LVE\nmm0THoM35qav30V5TRsl1Z5GdKXVbUPt//9yxzlYx6HxnKqdaYUQQgg1fH/aBZj0Rt4ofYe/HHyK\ndek3E2OJUjssHwRHeQAADodJREFUzfP1MTBvWijzpnnu2j3W/r+33zkuRco38d4b6IUQQohvcGH8\neVwz+wo6+jt59ODTVHbUqB2S1znW/n9OvDprfaRQEUIIMamdb1/GyrlX0TXQzaMHn6aivVLtkMRp\nkEJFCCHEpHdOzBJWz7uGXmcvfz24kbLWI2qHJEZJChUhhBBTwpLohVyfvJJ+9wAbsjdR3FKmdkhi\nFKRQEUIIMWUsjEzjppRVuNwunsh+hoKmYrVDEt9AChUhhBBTSlpECrfMvw4FeOrQ38lpzFc7JHEK\nUqgIIYSYcpLD5nLb/OvR6fT8Led5shpy1A5JjEAKFSGEEFPS3NBZ/CztRox6A8/kvcj++iy1QxLD\nkEJFCCHElDUrJJE709fia/DhH3kvs6d2v9ohia+RQkUIIcSUNt2awLr0m/E3+vFCwWt8Ub1H7ZDE\nCaRQEUIIMeXFB9n5ecYtmE0BvFz0Bjsr/612SGKQFCpCCCEEYA+M4a4FtxLkE8hrJW/xUcVOtUMS\nSKEihBBCDIk2R3L3glsJ9rWyrew93j/8sdohTXlSqAghhBAnsAVEcPeC2wjzC+Gdwx+yvWwHiqKo\nHdaUJYWKEEII8TXh/qHcteBWIvzD2FHxCW+WvivFikqkUBFCCCGGEeoXwl0LbiUywMY/K//Fq8Vv\n4Vbcaoc15UihIoQQQowg2NfK3QtuJcYcxb+qd/Fy4RtSrEwwKVSEEEKIUwj0sfDzBbcQFxjLrtp9\nPF/wKi63S+2wpgwpVIQQQohvYDGZWZd+M9OC4tlXd4DN+a9IsTJBpFARQgghRiHA5M+d6Tcxwzqd\nrxqyeSb3BQbcTrXDmvSkUBFCCCFGyc/ox8/Sb2R2yEyyG/P4W85zDLgG1A5rUpNCRQghhDgNvgYf\nbpt/PUmhc8hrKuSpQ/+g39WvdliTlhQqQgghxGnyMZi4ef51pIYnUdhSwuPZz9Dr7FU7rElJChUh\nhBDiDJj0RtamrCbDNp/S1sNsyNpE90CP2mFNOlKoCCGEEGfIoDdwfdK1LI7M4HD7UR7L2kjXQLfa\nYU0qUqgIIYQQZ8GgN7AmKZOl0Ys52lHNowefpqO/U+2wJg0pVIQQQoizpNfpWTn3Ks6NXUp1Zy2P\nHHyatr52tcOaFKRQEUIIIcaAXqcnc/YVfDduOXVd9Txy4Ckau5rVDsvrGcfzxd9++202bdqE0Whk\n3bp1mM1m/vznP2M0GgkICODhhx/GarWOZwhCCCHEhNHpdFw184eY9CY+rPiUn71zH7aAcOID7cQH\nxhIfFIfdEoOf0VftUL2GThmnfatbWlpYsWIFW7dupbu7m8cee4y8vDz++Mc/kpiYyFNPPYVer+fm\nm28e8TUcjo7xCA2AiIjAcX19ceYkN9oludEmyYv2KIrCFzV7yWnJpazpKL2u47cu69ARGRBBXKCd\nhCA7cYGxU754iYgIHPF74zaisnv3bpYuXYrFYsFisfC73/2OG2+8kdbWVgDa2tpITEwcr7cXQggh\nVKPT6Tg39ttcmX4x9Q1tNPY0cbSjmqPtVRztqKKyo5q67ga+rD/geTw6Is02EgI9hUtCkB27JQYf\ng4/KP4n6xm1EZePGjZSXl9Pa2kp7ezt33nknNpuNVatWERQUhNVq5aWXXsJoHLlWkhGVqUlyo12S\nG22SvGjXSLlxK24cPU1Dhcux4qXvhA63OnREmW2D00Z24oPs2C3Rk7J4OdWIyrgWKgcOHGDDhg3U\n1NSwZs0aEhISWLduHQsXLuShhx4iOjqaNWvWjPgaTqcLo9EwHuEJIYQQmuJW3NR2NFDefJSylgoO\ntxylvKWSPmff0GP0Oj32oGgSQ+JJDI0nMSSeacF2fIyTr3g5ZtymfsLCwsjIyMBoNBIfH4/ZbGbv\n3r0sXLgQgGXLlrF9+/ZTvkZLy/g1zZFPINoludEuyY02SV6063Rz44OZueZ5zDXPA7uneGnodlDR\n7hlxqeiooqqjmqNt1ew8shvwFC/R5sgTFuzaiTVHYzKYxuvHGnOqrFFZvnw569evZ+3atbS1tdHd\n3c2sWbMoLS1l5syZ5OTkkJCQMF5vL4QQQng9vU5PlDmSKHMkS6I9H/Tdipu6roahwqWyo4rKjhqq\nO2vZXfvl0PNizFHEB8YOLdqNsURj0o/rzb7jYtwijoyM5JJLLuGaa64B4L777iMkJIT77rsPk8mE\n1WrlwQcfHK+3F0IIISYlvU5PjCWKGEvUUPHicruo73YMrXc52l5NVWc1VZ01cELxEmuOIm5wvUt8\nYKxXFC/jtkZlLMhi2qlJcqNdkhttkrxol5q5cbld1HU3DC7YreZoRxXVnTUMuJ1DjzHoDMRYok6a\nNooxR2Gc4OJFlakfIYQQQqjHoDcQa4km1hLNUhYDnuKltqt+qHDxFC+1VHZU8+/B5xl1BmIs0UOF\nS3ygp3gx6NW5uUUKFSGEEGKKMOgN2ANjsAfGsOyE4qWmq56jHZVDvV5qOms52lEFNXsBMOqNzLRO\n55b5P8VnghfpSqEihBBCTGEGvYG4wBjiAmM4Z/BrTreTmq46KtuPL9ht7+/ApTgBKVSEEEIIoSKj\n3jjUaO4clqgai+yeLIQQQgjNkkJFCCGEEJolhYoQQgghNEsKFSGEEEJolhQqQgghhNAsKVSEEEII\noVlSqAghhBBCs6RQEUIIIYRmSaEihBBCCM2SQkUIIYQQmiWFihBCCCE0SwoVIYQQQmiWFCpCCCGE\n0CydoiiK2kEIIYQQQgxHRlSEEEIIoVlSqAghhBBCs6RQEUIIIYRmSaEihBBCCM2SQkUIIYQQmiWF\nihBCCCE0a0oWKg8++CCZmZmsWLGCQ4cOqR2OOMHDDz9MZmYmV111FR9++KHa4YgT9Pb2ctFFF/HG\nG2+oHYo4wdtvv81ll13GlVdeyc6dO9UORwzq6urijjvuYPXq1axYsYLPP/9c7ZC8llHtACbavn37\nqKioYMuWLZSVlXHvvfeyZcsWtcMSwJ49eygpKWHLli20tLTwox/9iO9973tqhyUGPfnkk1itVrXD\nECdoaWnh8ccfZ+vWrXR3d/PYY4/xne98R+2wBPDmm28yffp07rnnHurr67nuuuvYsWOH2mF5pSlX\nqOzevZuLLroIgBkzZtDW1kZnZycWi0XlyMTixYuZP38+AEFBQfT09OByuTAYDCpHJsrKyigtLZU/\nghqze/duli5disViwWKx8Lvf/U7tkMSgkJAQioqKAGhvbyckJETliLzXlJv6aWxsPOmACQ0NxeFw\nqBiROMZgMBAQEADA66+/znnnnSdFikY89NBDrF+/Xu0wxNdUVVXR29vLrbfeysqVK9m9e7faIYlB\nP/jBD6ipqeHiiy9m1apV/OpXv1I7JK815UZUvk52ENCejz/+mNdff51nn31W7VAEsG3bNtLT04mL\ni1M7FDGM1tZWNmzYQE1NDWvWrOHTTz9Fp9OpHdaU99ZbbxETE8MzzzxDYWEh9957r6zvOkNTrlCx\n2Ww0NjYO/buhoYGIiAgVIxIn+vzzz3nqqafYtGkTgYGBaocjgJ07d1JZWcnOnTupq6vDx8eHqKgo\nli1bpnZoU15YWBgZGRkYjUbi4+Mxm800NzcTFhamdmhT3oEDB1i+fDkAc+fOpaGhQaayz9CUm/o5\n55xz+OCDDwDIy8vDZrPJ+hSN6Ojo4OGHH+bpp58mODhY7XDEoEceeYStW7fy6quv8uMf/5jbb79d\nihSNWL58OXv27MHtdtPS0kJ3d7eshdCIhIQEsrOzAaiursZsNkuRcoam3IjKggULSE5OZsWKFeh0\nOh544AG1QxKD3nvvPVpaWrjrrruGvvbQQw8RExOjYlRCaFdkZCSXXHIJ11xzDQD33Xcfev2U+/yp\nSZmZmdx7772sWrUKp9PJb37zG7VD8lo6RRZpCCGEEEKjpPQWQgghhGZJoSKEEEIIzZJCRQghhBCa\nJYWKEEIIITRLChUhhBBCaJYUKkKIMVFVVUVKSgqrV68e2jH2nnvuob29fdSvsXr1alwu16gff+21\n17J3794zCVcI4SWkUBFCjJnQ0FCef/55nn/+eV555RVsNhtPPvnkqJ///PPPS1MsIcRJplzDNyHE\nxFm8eDFbtmyhsLCQhx56CKfTycDAAPfffz9JSUmsXr2auXPnUlBQwObNm0lKSiIvL4/+/n5+/etf\nU1dXh9Pp5PLLL2flypX09PRw991309LSQkJCAn19fQDU19fzi1/8AoDe3l4yMzO5+uqr1fzRhRBj\nRAoVIcS4cLlcfPTRRyxcuJBf/vKXPP7448THx//HBm0BAQG88MILJz33+eefJygoiD/96U/09vZy\n6aWXcu6557Jr1y78/PzYsmULDQ0NXHjhhQC8//77JCYm8tvf/pa+vj5ee+21Cf95hRDjQwoVIcSY\naW5uZvXq1QC43W4WLVrEVVddxV//+lf+93//d+hxnZ2duN1uwLOtxddlZ2dz5ZVXAuDn50dKSgp5\neXkUFxezcOFCwLPBaGJiIgDnnnsuL730EuvXr+f8888nMzNzXH9OIcTEkUJFCDFmjq1ROVFHRwcm\nk+k/vn6MyWT6j6/pdLqT/q0oCjqdDkVRTtrL5lixM2PGDN59912+/PJLduzYwebNm3nllVfO9scR\nQmiALKYVQoyrwMBA7HY7n332GQCHDx9mw4YNp3xOWloan3/+OQDd3d3k5eWRnJzMjBkzOHjwIAC1\ntbUcPnwYgO3bt5OTk8OyZct44IEHqK2txel0juNPJYSYKDKiIoQYdw899BC///3v2bhxI06nk/Xr\n15/y8atXr+bXv/41P/nJT+jv7+f222/Hbrdz+eWX88knn7By5UrsdjupqakAzJw5kwceeAAfHx8U\nRWHt2rUYjXJ5E2IykN2ThRBCCKFZMvUjhBBCCM2SQkUIIYQQmiWFihBCCCE0SwoVIYQQQmiWFCpC\nCCGE0CwpVIQQQgihWVKoCCGEEEKzpFARQgghhGb9f1UOO3z6lB/LAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "BFo0TozObMzs", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 656 + }, + "outputId": "dfcfdcf0-6563-4996-9938-adf7aeb374c1" + }, + "cell_type": "code", + "source": [ + "# Using Adam\n", + "# YOUR CODE HERE: Retrain the network using Adagrad and then Adam.\n", + "#\n", + "_, adam_training_losses, adam_validation_losses = train_nn_regression_model(\n", + " my_optimizer=tf.train.AdamOptimizer(learning_rate=0.009),\n", + " steps=500,\n", + " batch_size=100,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 15, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 227.41\n", + " period 01 : 152.84\n", + " period 02 : 118.94\n", + " period 03 : 113.59\n", + " period 04 : 105.69\n", + " period 05 : 93.75\n", + " period 06 : 78.55\n", + " period 07 : 73.02\n", + " period 08 : 71.11\n", + " period 09 : 70.72\n", + "Model training finished.\n", + "Final RMSE (on training data): 70.72\n", + "Final RMSE (on validation data): 69.08\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl4VOX9/vH3LJmsk30jCYR9D3tY\nBVklgNaFxQ3E5dvaFqq19qe1pbYWN2xr6wJu1apQWxRBQXFDRFkEhVBMEAg7gez7vk3O7w9gCgIh\ngUxmAvfrurzqnDlz5jP5TJrb53nOOSbDMAxEREREWhGzuwsQERERaSoFGBEREWl1FGBERESk1VGA\nERERkVZHAUZERERaHQUYERERaXWs7i5AxJN169aNdu3aYbFYAHA4HCQmJjJv3jz8/Pwu+Lhvv/02\nM2bMOGP78uXLeeihh3jxxRcZM2aMc3tVVRXDhw/nqquu4sknn7zg922sI0eO8Pjjj3Pw4EEAfH19\nmTt3LuPHj3f5ezfFokWLOHLkyBk/ky1btnDXXXcRFxd3xms+/vjjlirvohw9epRx48bRoUMHAAzD\nIDw8nN/97nf07NmzScf661//SkxMDDfffHOjX/P++++zbNkyFi9e3KT3EmkpCjAi57F48WKio6MB\nqKmp4b777uOll17ivvvuu6Dj5ebm8o9//OOsAQagTZs2fPDBB6cFmC+++ILAwMALer8L8etf/5pr\nr72WF198EYAdO3Ywe/ZsPvroI9q0adNidVyMNm3atJqwci4Wi+W0z7B69WrmzJnDJ598gs1ma/Rx\n7r//fleUJ+JWmkISaQKbzcbIkSPZtWsXANXV1Tz88MNMnDiRSZMm8eSTT+JwOADYvXs3N910E0lJ\nSVx77bWsX78egJtuuomMjAySkpKoqak54z0GDBjAli1bqKysdG5bvXo1I0aMcD6uqanh0UcfZeLE\niYwdO9YZNAC2b9/ODTfcQFJSEpMnT2bTpk3A8f+iv+KKK3jzzTe55pprGDlyJKtXrz7r50xLS6Nv\n377Ox3379uWTTz5xBrnnn3+eK6+8kuuuu46XX36ZsWPHAvCb3/yGRYsWOV936uPz1fX4448zc+ZM\nALZt28bUqVOZMGECM2bMID09HTg+EvXLX/6SMWPGMHPmTLKyss7TsbNbvnw5c+fOZfbs2Tz11FNs\n2bKFm266iXvvvdf5x/6jjz7i6quvJikpidtuu40jR44A8NxzzzFv3jymTZvG66+/ftpx7733Xl57\n7TXn4127dnHFFVdQX1/P3/72NyZOnMjEiRO57bbbyM7ObnLdkydPpqqqigMHDgCwdOlSkpKSGDt2\nLL/61a+oqqoCjv/cn3jiCa655ho++uij0/pwru9lfX09f/rTnxg9ejTTpk1j9+7dzvf95ptvuP76\n65k8eTKTJk3io48+anLtIs3OEJFz6tq1q5GZmel8XFRUZNx6663GokWLDMMwjJdeesn48Y9/bNTW\n1hqVlZXG1KlTjffee89wOBzGpEmTjFWrVhmGYRjfffedkZiYaJSWlhqbN282xo8ff9b3e/fdd40H\nH3zQ+PWvf+18bWlpqTFu3DjjnXfeMR588EHDMAzj+eefN2bPnm1UV1cb5eXlxnXXXWesXbvWMAzD\nuPrqq40PPvjAMAzDWLFihfO90tPTjZ49exqLFy82DMMwVq9ebUyYMOGsdfziF78wxowZY7zxxhvG\nvn37Tntuz549xqBBg4ycnByjtrbW+NnPfmaMGTPGMAzDePDBB42FCxc69z31cUN19erVy1i+fLnz\n8yYmJhobNmwwDMMwVq1aZVx//fWGYRjGkiVLjFtvvdWora01CgoKjDFjxjh/Jqdq6Gd88ufcr18/\n4+DBg879ExISjE2bNhmGYRjHjh0zBg4caBw6dMgwDMN49dVXjdmzZxuGYRjPPvusccUVVxj5+fln\nHPfDDz80br31VufjZ555xpg/f76RlpZmXHXVVUZNTY1hGIbx5ptvGitWrDhnfSd/Lj169Dhje2Ji\norF//37j22+/NYYNG2ZkZWUZhmEYv//9740nn3zSMIzjP/drrrnGqKqqcj5euHBhg9/LdevWGVdd\ndZVRVlZmVFZWGtOmTTNmzpxpGIZh3HDDDcaWLVsMwzCMgwcPGr/61a8arF2kJWgERuQ8Zs2aRVJS\nEuPGjWPcuHEMHTqUH//4xwCsW7eOGTNmYLVa8fHx4ZprrmHjxo0cPXqUvLw8pkyZAkBCQgIxMTGk\npKQ06j2nTJnCBx98AMCaNWsYM2YMZvP/fl2/+OILbrnlFmw2G35+flx77bV8+umnALz33ntMmjQJ\ngIEDBzpHLwDq6uq44YYbAOjVqxcZGRlnff8///nP3HrrraxatYqrr76asWPH8u9//xs4PjqSmJhI\nREQEVquVq6++ulGfqaG6amtrmTBhgvP4UVFRzhGnq6++miNHjpCRkcHWrVuZMGECVquVkJCQ06bZ\nfigzM5OkpKTT/jl1rUz79u1p376987GPjw/Dhg0DYOPGjQwZMoT4+HgApk+fzpYtW6irqwOOj0iF\nhoae8Z6jR4/m+++/p6ioCIDPPvuMpKQkAgMDKSgoYNWqVRQXFzNr1iyuu+66Rv3cTjIMg6VLlxIV\nFUX79u1Zu3YtkydPJioqCoCbb77Z+R0AGDZsGN7e3qcdo6Hv5bfffsuVV16Jv78/Pj4+zl4BhIWF\n8d5777F//37at2/PX//61ybVLuIKWgMjch4n18AUFBQ4pz+s1uO/OgUFBQQFBTn3DQoKIj8/n4KC\nAux2OyaTyfncyT9i4eHh533PESNGMG/ePIqKivjwww/5+c9/7lxQC1BaWsoTTzzB008/DRyfUurT\npw8Aq1at4s0336S8vJz6+nqMU253ZrFYnIuPzWYz9fX1Z31/b29v7rrrLu666y5KSkr4+OOPefzx\nx4mLi6O4uPi09ThhYWHn/TyNqSsgIACAkpIS0tPTSUpKcj5vs9koKCiguLgYu93u3B4YGEh5eflZ\n3+98a2BO7dsPHxcWFp72Ge12O4ZhUFhYeNbXnuTn58fw4cNZt24dAwcOpKSkhIEDB2IymXjuued4\n7bXXmD9/PomJiTzyyCPnXU/kcDicPwfDMOjcuTOLFi3CbDZTWlrKZ599xoYNG5zP19bWnvPzAQ1+\nL4uLi4mMjDxt+0mPP/44L7zwAnfccQc+Pj786le/Oq0/Iu6gACPSSKGhocyaNYs///nPvPDCCwCE\nh4c7/2sboKioiPDwcMLCwiguLsYwDOcfi6Kiokb/sffy8mLMmDG89957HD58mP79+58WYCIjI7nz\nzjvPGIHIzs5m3rx5vPPOO/To0YNDhw4xceLEJn3OgoICdu3a5RwBCQwMZMaMGaxfv560tDTsdjul\npaWn7X/SD0NRcXFxk+uKjIykY8eOLF++/IznAgMDz/nezSksLIzt27c7HxcXF2M2mwkJCTnvaydO\nnMhnn31GYWEhEydOdPZ/6NChDB06lIqKChYsWMBf/vKX845k/HAR76kiIyO5/vrrefDBB5v0uc71\nvWzoZxseHs7vf/97fv/737NhwwZ+8YtfMHLkSPz9/Rv93iLNTVNIIk1wxx13sH37dr755hvg+JTB\nsmXLcDgcVFRU8P7773PllVcSFxdHdHS0c5FscnIyeXl59OnTB6vVSkVFhXM64lymTJnCK6+8ctZT\nl8eNG8c777yDw+HAMAwWLVrEV199RUFBAX5+fnTs2JG6ujqWLl0KcM5RirOpqqrinnvucS7uBDh8\n+DA7duxg0KBB9O/fn61bt1JQUEBdXR3vvfeec7+IiAjn4s/09HSSk5MBmlRX3759yc3NZceOHc7j\n/L//9/8wDIN+/fqxdu1aHA4HBQUFfPXVV43+XE0xYsQItm7d6pzm+s9//sOIESOcI28NGTNmDNu3\nb2fNmjXOaZgNGzbwyCOPUF9fj5+fH927dz9tFORCjB07lk8//dQZNNasWcPLL7/c4Gsa+l7279+f\nDRs2UFlZSWVlpTM41dbWMmvWLHJycoDjU49Wq/W0KU0Rd9AIjEgTBAQE8JOf/IQFCxawbNkyZs2a\nRXp6OlOmTMFkMpGUlMSkSZMwmUw8/fTT/OEPf+D555/H19eXZ555Bj8/P7p160ZQUBAjRoxgxYoV\nxMTEnPW9Bg8ejMlkYvLkyWc8d8stt3D06FGmTJmCYRj07t2b2bNn4+fnx6hRo5g4cSJhYWH85je/\nITk5mVmzZvHss8826jPGxMTwwgsv8Oyzz/Loo49iGAYBAQE89NBDzjOTbrzxRq6//npCQkK46qqr\n2Lt3LwAzZsxg7ty5XHXVVfTs2dM5ytK9e/dG1+Xj48Ozzz7L/PnzKS8vx8vLi3vvvReTycSMGTPY\nunUr48ePJyYmhvHjx582anCqk2tgfuipp546788gOjqaRx99lJ///OfU1tYSFxfH/PnzG/XzCwgI\noFevXuzZs4d+/foBkJiYyIcffsjEiROx2WyEhoby+OOPA/DAAw84zyRqil69evHTn/6UWbNmUV9f\nT1hYGI888kiDr2noezlmzBjWrVtHUlIS4eHhXHnllWzduhUvLy+mTZvG7bffDhwfZZs3bx6+vr5N\nqlekuZmMUyeiRUSaaOvWrTzwwAOsXbvW3aWIyGVEY4AiIiLS6ijAiIiISKujKSQRERFpdTQCIyIi\nIq2OAoyIiIi0Oq3yNOrc3LOfNtkcQkL8KCyscNnx5cKpN55JffFc6o3nUm8aJyLCfs7nNALzA1ar\nxd0lyDmoN55JffFc6o3nUm8ungKMiIiItDoKMCIiItLqKMCIiIhIq6MAIyIiIq2OAoyIiIi0Ogow\nIiIi0uoowIiIiEirowAjIiJyiVm37vNG7ffMM38lI+PYOZ//zW9+1VwlNTsFGBERkUtIZmYGa9Z8\n0qh97733fmJiYs/5/JNPPt1cZTW7VnkrARERETm7p59ewK5dOxk5MpGrrppEZmYGf//7Ip544k/k\n5uZQWVnJnXf+hBEjRjJ37k/41a8e4IsvPqe8vIwjRw5z7NhR7rnnfoYNG8GUKeP48MPPmTv3JyQm\nDiE5eStFRUUsWPA3wsPD+dOffk9WViYJCX1Yu3YNK1asbrHPqQAjIiLiIm+v3ce3u3PO2G6xmHA4\njAs6ZmL3SGaM7XzO52++eRbLl79Nhw6dOHLkEIsW/YPCwgIGDx7KpElXc+zYUX7/+98wYsTI016X\nk5PNX/7yLJs3b+L9999l2LARpz3v7+/PM8+8wAsvPMdXX60lJiaOmppqXn75dTZuXM/bb//7gj7P\nhVKAOUVeUSVZJdVEB3q7uxQREZGL1qNHLwDs9kB27drJypXLMZnMlJQUn7Fvnz79AIiMjKSsrOyM\n5/v27e98vri4mMOHD5KQ0BeAYcNGYLG07P2dFGBO8d6Gg2zemcWTdw8jPNjX3eWIiEgrN2Ns57OO\nlkRE2MnNLXX5+3t5eQHw2WcfU1JSwsKF/6CkpIT/+79ZZ+x7agAxjDNHh374vGEYmM3Ht5lMJkwm\nU3OX3yAt4j1Ft3bB1BuwaWeWu0sRERG5IGazGYfDcdq2oqIi2rSJwWw28+WXa6mtrb3o94mNjWPP\nnu8B+OabzWe8p6spwJyiQ7wVW0ghm1Kzzpo+RUREPF18fAf27NlNefn/poFGjx7Lpk3ruffen+Hr\n60tkZCT//OcrF/U+w4ePpLy8nJ/97C527NhOYGDQxZbeJCajFf6ldtWw25vfL2VL5jaqvhvFQ9NH\n0jmuZZshDWupIVdpGvXFc6k3nutS6E1JSTHJyVsZPXocubk53Hvvz3jrrXeb9T0iIuznfE5rYE7R\nJaQTW7K2YQnLYGNqpgKMiIjIOfj5+bN27RreemsxhlHPL37Rshe9U4A5Rf+I3rydtgJTZCbf7Mrm\n5nFdsHm17KpqERGR1sBqtfKnPz3htvfXGphT+Fh9GBzXH8NWTrVXHv/dl+fukkREROQsFGB+YHT7\noQBYwjPYlKqzkURERDyRAswP9I7sRpAtEK/wLFIP5lJcVu3ukkREROQHFGB+wGw2Mzh6AIa5FoJy\n2Px9trtLEhERkR9QgDmLwdEDAPCKOMbGFE0jiYjIpWfatGuoqKhg8eLXSU397rTnKioqmDbtmgZf\nv27d5wCsXr2KL7/8wmV1notLz0J66qmn2LZtG3V1ddx9990kJCTw0EMPUVdXh9Vq5c9//jMRERGs\nXLmSN954A7PZzIwZM5g+fboryzqvmIBo2tpjSTcyOHognyPZpbSLOve56CIiIq3VrFm3N/k1mZkZ\nrFnzCaNHj2Py5IaDjqu4LMBs3ryZvXv3snTpUgoLC7n++usZMmQIM2bMYPLkyfzrX//in//8J3Pn\nzmXhwoUsW7YMLy8vpk2bxoQJEwgODnZVaY0yJHog6aXHsIRlsik1SwFGRERahTvvvJXHH/8r0dHR\nZGVl8tBD9xMREUllZSVVVVXcd9//o2fP3s79H3vsj4wePY5+/frzu989QE1NjfPGjgCffvoRy5Yt\nxWIx0759Jx588Hc8/fQCdu3ayT//+Qr19fUEBwczdeqNLFr0DCkpO6irczB16gySkqYwd+5PSEwc\nQnLyVoqKiliw4G9ER0df9Od0WYBJTEykT58+AAQGBlJZWckf/vAHvL2P3+k5JCSEnTt3smPHDhIS\nErDbjweEAQMGkJyczNixY11VWqMMiurH8r0fYIvMZPPOLKaN7oTVohk3ERFpvOX7PmB7TsoZ2y1m\nE476C7sQfv/IBG7ofPU5nx81agwbN37F1KkzWL/+S0aNGkOnTl0YNWo027Z9y7/+9QaPPfbnM173\nyScf0bFjJ+65534+//xT1qz5BIDKykr++tfnsNvtzJnzY/bv38fNN89i+fK3ueOOH/Pqqy8B8N//\nJnPgwH5eeOE1KisrmT37JkaNGg2Av78/zzzzAi+88BxffbWWGTNuuaDPfiqXBRiLxYKfnx8Ay5Yt\nY9SoUc7HDoeDt956izlz5pCXl0doaKjzdaGhoeTm5jZ47JAQP6xW111gLiLCTgR2+sX0IjkjhVKj\ngPSCSgb3vPjEKBenoctKi/uoL55LvXEvv2M2LOaz36X5XNvPe0xfW4N9ve66q3nyySf56U/vYsuW\nDTz00EO8+uqrLFv2FjU1Nfj5+RERYcdiMRMeHoCPjxdBQb58991Rhg8fQkSEnfHjr+TllxcSEWEn\nLi6Khx9+AIAjRw5hMtUQHOyHt7cXERF2/P29CQjw4ejRA4wYMexEbXa6detKWVk+NpuV0aOvICLC\nTseO7SgqKmqW76XLr8S7Zs0ali1bxmuvvQYcDy8PPPAAQ4cOZdiwYaxateq0/Rtza6bCwgqX1Aqn\n35+if2hfkjNSsIRl8NGGA3SI8HfZ+8r5XQr3DrkUqS+eS71xv6TYq0iKveqM7Rfbm4ZeGxwcTWZm\nFqmpeykoKOL99z/Ebg/h2WcfZvfu73n++b+Tm1uKw1FPXl4ZVVW1FBdXUlFRQ1lZNbm5peTlHX8+\nI6OAP/7xEV5//S3CwsJ54IFfUlR0/G9wdXUtubmllJdX4+VVRV1dHTU1tc7ayssrKS6upKamjpKS\nKnJzSykrq6KsrKrRn72hoOPSOZH169fz4osv8sorrziniB566CHi4+OZO3cuAJGRkeTl/e+Ktzk5\nOURGRrqyrEZLCOuBr9UXW2Qm/92XS3nVxd9+XERExNWGDbuCl19exMiRV1JcXERsbBwAX375BXV1\ndWd9Tbt28ezevQuA5OStAFRUlGOxWAgLCyc7O4vdu3dRV1eH2WzG4XCc9vru3Xuxffu2E6+r4Nix\no8TFtXPVR3RdgCktLeWpp57ipZdeci7IXblyJV5eXtxzzz3O/fr27UtKSgolJSWUl5eTnJzMoEGD\nXFVWk3hZvBgY2QfDWkW9fx7f7Mpxd0kiIiLndeWVY5xnCSUlTWHp0n9x331z6NWrN/n5+Xz44coz\nXpOUNIWdO1O4996fkZ5+GJPJRFBQMImJQ/i//7uNf/7zFW65ZRbPPvs08fEd2LNnN88++1fn6/v2\n7Ue3bt2ZM+fH3HffHH7607n4+vq67DOajMbM2VyApUuX8txzz9GhQwfntoyMDAIDAwkICACgU6dO\n/PGPf+Tjjz/m1VdfxWQyMXPmTH70ox81eGxXDon+cFjvQPEh/rptEY78NrStHMnvbvOMcHU50nC4\nZ1JfPJd647nUm8ZpaArJZWtgbrzxRm688cZG7ZuUlERSUpKrSrkoHQLjCfcNIz80h/3bCsgqqCA6\n1M/dZYmIiFzWdF7weZhMJoZED8AwObCEZrEpNdPdJYmIiFz2FGAa4X+3Fsjk69Qs6l0z6yYiIiKN\npADTCOG+YXQK6oDJnk9BVRF7jhS5uyQREZHLmgJMIw1pc3wUxhKWwaYUTSOJiIi4kwJMIw2I7IOX\n2YotMpOte3Koqjn7efQiIiLiegowjeRr9aVPeC8M7zJqbAUkpzV8uwMRERFxHQWYJhjSZiAA1vAM\nNqZkubkaERGRy5cCTBN0D+mC3RaALSKL3UfyKSipcndJIiIilyUFmCawmC0kRvWn3lyDKTiXTaka\nhREREXEHBZgmGhJ9fBrJKyKDTalZjbp7toiIiDQvBZgmirPHEBvQBktQLlklRRzILHF3SSIiIpcd\nBZgLMDh6AIapHktoJpu0mFdERKTFKcBcgMSoAZgw4R2ZyTe7sqmtq3d3SSIiIpcVBZgLEORtp0dY\nVwy/IiooYse+PHeXJCIicllRgLlAJxfzWsIzdDaSiIhIC1OAuUB9wnvhY/HBOzKTlAN5lJTXuLsk\nERGRy4YCzAWyWbwYEJlAvbUSwz+fLd9nu7skERGRy4YCzEUYfGIayRqRwcZU3aFaRESkpSjAXIRO\nwe0J8wnBGpbNkdwijuaUubskERGRy4ICzEUwm8wnrglThyUkR4t5RUREWogCzEU6OY1ki8zg651Z\nOOp1TRgRERFXU4C5SJF+4XQMioeAPIprSth5sNDdJYmIiFzyFGCaweDogWACa3gGm7SYV0RExOUU\nYJrBwMg+WE0WvCMz2b43l4qqOneXJCIicklTgGkGfl5+JIT3pN67lDpbEd/u1jVhREREXEkBppkM\naXPimjC6tYCIiIjLKcA0k56h3Qjw8scWmcXeY4XkFFa4uyQREZFLlgJMM7GYLQyK6ke9uRpzUJ5G\nYURERFzIpQHmqaee4sYbb2Tq1Kl8+umnZGZmMmvWLG655RbuvfdeamqO3wBx5cqVTJ06lenTp/PO\nO++4siSXOjmNZIs4Po1UbxhurkhEROTSZHXVgTdv3szevXtZunQphYWFXH/99QwbNoxbbrmFSZMm\n8fTTT7Ns2TKuu+46Fi5cyLJly/Dy8mLatGlMmDCB4OBgV5XmMm0DYmnjH0WWkUPegRL2phfRrV2I\nu8sSERG55LhsBCYxMZFnnnkGgMDAQCorK9myZQvjxo0DYMyYMXz99dfs2LGDhIQE7HY7Pj4+DBgw\ngOTkZFeV5VImk4kh0QMxTPVYQrPYqGkkERERl3DZCIzFYsHPzw+AZcuWMWrUKDZs2IDNZgMgLCyM\n3Nxc8vLyCA0Ndb4uNDSU3NzcBo8dEuKH1WpxVelERNgv+LVJ/iN5f/9H+ERnsW1PLvfePAAfm8t+\nzJedi+mNuI764rnUG8+l3lwcl/9lXbNmDcuWLeO1117jqquucm43zrE+5FzbT1XowjN8IiLs5OaW\nXsQRLHQL6cxu9lJFMZ9tOsjQXtHNVt/l7OJ7I66gvngu9cZzqTeN01DIc+ki3vXr1/Piiy/yyiuv\nYLfb8fPzo6qqCoDs7GwiIyOJjIwkLy/P+ZqcnBwiIyNdWZbLnVzMawnP0DSSiIiIC7gswJSWlvLU\nU0/x0ksvORfkDh8+nE8++QSATz/9lJEjR9K3b19SUlIoKSmhvLyc5ORkBg0a5KqyWkTfiN7YLDZ8\norL4/lA+haXV7i5JRETkkuKyKaTVq1dTWFjIL3/5S+e2J598knnz5rF06VJiYmK47rrr8PLy4v77\n7+euu+7CZDIxZ84c7PbWPS/obbHRPyKBLVnbMAUUsnlnFpOGxru7LBERkUuGyWjMohMP48p5w+aa\nl0wr3Mcz21+mPi+OsJIhzL9rMCaTqRkqvHxpztgzqS+eS73xXOpN47htDczlrHNwR0K8g7GGZZNR\nUMKhLH1RRUREmosCjIuYTWYGRw+g3lSLJThbtxYQERFpRgowLjQ4egAA3lGZbPk+mzpHvZsrEhER\nuTQowLhQtH8k8YFtMQLyKKsr5bv9+e4uSURE5JKgAONiQ6IHgsnAGpapaSQREZFmogDjYgMj+2Ix\nWfCJymLHvjzKKmvdXZKIiEirpwDjYgE2f3qHdcfhXUy9dzFbvs92d0kiIiKtngJMCzh5awFrRAab\nUjPdXI2IiEjrpwDTAnqFdcff6od3ZBYHM4vJyCt3d0kiIiKtmgJMC7CarQyM6ofDXIU5KJ+NGoUR\nERG5KAowLWRImxPXhInM5OvULOrrW90dHERERDyGAkwLibe3JcovAlNwNkWV5ew6XOjukkRERFot\nBZgWYjKZGBw9EMPkwBKapWkkERGRi6AA04IGR/cHwDc6i+Q9uVRW17m5IhERkdZJAaYFhfqE0DW4\nEw7ffGotZWzdk+PukkRERFolBZgWdvKaMJawDDal6NYCIiIiF0IBpoX1i+iNzeyFb3Qme9ILyS2q\ndHdJIiIirY4CTAvzsfrQNyKBOms55oAivt6pURgREZGmUoBxg5PXhPGKzGBTahaGoWvCiIiINIUC\njBt0C+lMkC0Qa1gWOUVl7DtW7O6SREREWhUFGDcwm8wMjh5AvakWc3Aum1I1jSQiItIUCjBuMjj6\n+DSSb3Qm3+zKoabW4eaKREREWg8FGDeJCYimrT0Ww55DpaOc/+7Lc3dJIiIirYYCjBsNiR6IgYEl\nLJONuiaMiIhIoynAuNGgqH6YTWb82mSRejCf4rJqd5ckIiLSKijAuJHdFkCvsG7U2YrAp5Svd2a7\nuyQREZFWQQHGzQZHH7+1gFdEBptSM3VNGBERkUZQgHGzhLAe+Fp98Y7M4mhuGek5Ze4uSURExOO5\nNMCkpaUxfvx4lixZAsC3337KzV3EAAAgAElEQVTLzTffzKxZs7j77rspLj5+Abd//OMfTJs2jenT\np/Pll1+6siSP42XxYmBkH+rMlZgD87WYV0REpBFcFmAqKiqYP38+w4YNc2574okneOyxx1i8eDH9\n+/dn6dKlpKens3r1at566y1eeuklnnjiCRyOy+uaKCfvUO0Tlcnm77Ooc9S7uSIRERHP5rIAY7PZ\neOWVV4iMjHRuCwkJoaioCIDi4mJCQkLYsmULI0eOxGazERoaSmxsLPv27XNVWR6pQ2A8Eb5hmIKz\nKK2qJPVggbtLEhER8WguCzBWqxUfH5/Ttv32t79lzpw5TJw4kW3btnH99deTl5dHaGioc5/Q0FBy\nc3NdVZZHMplMDIkeSL3JgSU0i00pme4uSURExKNZW/LN5s+fz/PPP8/AgQNZsGABb7311hn7NOYs\nnJAQP6xWiytKBCAiwu6yY59Lku9IPjj4Kf4x2fx3Zz4+/t7Y/WwtXoenc0dv5PzUF8+l3ngu9ebi\ntGiA2bNnDwMHHl/vMXz4cFatWsXQoUM5ePCgc5/s7OzTpp3OprCwwmU1RkTYyc0tddnxz8WEN52D\nO7Cv6CAOSzkfbTjAmP6xLV6HJ3NXb6Rh6ovnUm88l3rTOA2FvBY9jTo8PNy5viUlJYX4+HiGDh3K\nunXrqKmpITs7m5ycHDp37tySZXmMISeuCWMJz9A0koiISANcNgKTmprKggULOHbsGFarlU8++YRH\nHnmEefPm4eXlRVBQEI8//jiBgYHMmDGDmTNnYjKZ+OMf/4jZfHlenqZ/ZAJvp72HV3QW+5OLycwv\np02Yv7vLEhER8TgmoxVe+tWVw27uHtZ7LfVfbMvZQdXOoUzu05epV3ZyWy2ext29kbNTXzyXeuO5\n1JvG8ZgpJDm/k9eE8Y7M5OudWdS3vnwpIiLicgowHqZ7SBcCbXas4ZkUlFay53Chu0sSERHxOAow\nHsZitpAY1R+HqQZzcA4bU3VrARERkR9SgPFAJ6eR/KKz2LYnl6qaOjdXJCIi4lkUYDxQbEAbYgPa\nUG/PodqoZNuey+vKxCIiIuejAOOhhkQPxKAeS2gmmzSNJCIichoFGA81KKo/Jkz4x2Sz+3Ah+cVV\n7i5JRETEYyjAeKggbzs9wrpSaysAnzK+3qlRGBERkZMUYDzYyVsL2CIz2Zia1agbXYqIiFwOFGA8\nWJ/wXvhYfPCOzCS7oJwDmSXuLklERMQjKMB4MJvFiwGRfag1V2AOLGBTiqaRREREQAHG4528Joxv\ndCbf7Mqmtq7ezRWJiIi4nwKMh+sYFE+YTygEZ1FeU8WOfXnuLklERMTtFGA8nNlkZnD0AOqpwxKS\nrWvCiIiIoADTKgyOHgCAf0w2KQfyKSmvcXNFIiIi7qUA0wpE+oXTMSieWt8cHJZKNn+f7e6SRERE\n3EoBppUYfOKaMF4RGWxKzXRzNSIiIu6lANNKDIzsg9Vsxa9NNkeySzmaU+bukkRERNxGAaaV8PPy\nIyG8JzWWYkz+JWzUKIyIiFzGFGBakSEnFvP6RGWyeWc2jnpdE0ZERC5PCjCtSM/QbgR4+WMNy6K4\nooqdBwvdXZKIiIhbKMC0IhazhcSo/tSZqjAH5Wkxr4iIXLYUYFqZwW1OXhMmi+S0PCqqat1ckYiI\nSMtTgGll2gbE0sY/ivqALOqo4tvdOe4uSUREpMUpwLQyJpOJIdEDqacea1gWG3VrARERuQwpwLRC\nidH9MWEiIDabfUeLyS6scHdJIiIiLUoBphUK9g6ie2gXqr3yMfmU87VGYURE5DKjANNKnbzBo3dk\nJptSs6g3DDdXJCIi0nJcGmDS0tIYP348S5YsAaC2tpb777+fadOmMXv2bIqLiwFYuXIlU6dOZfr0\n6bzzzjuuLOmS0TeiN94WG96RmeQVV7I3vcjdJYmIiLQYlwWYiooK5s+fz7Bhw5zb3n77bUJCQli2\nbBmTJ09m69atVFRUsHDhQl5//XUWL17MG2+8QVGR/hifj7fFRv+IPtSYyzHbC7WYV0RELisuCzA2\nm41XXnmFyMhI57YvvviCH/3oRwDceOONjBs3jh07dpCQkIDdbsfHx4cBAwaQnJzsqrIuKUNOXBPG\nr00WW3fnUF3rcHNFIiIiLcNlAcZqteLj43PatmPHjvHVV18xa9Ys7rvvPoqKisjLyyM0NNS5T2ho\nKLm5ua4q65LSObgjId7BEJxJVV0NyWn6uYmIyOXB2pJvZhgGHTp0YO7cuSxatIiXXnqJnj17nrHP\n+YSE+GG1WlxVJhERdpcdu7mN7jiUFbs+xhKSzdY90fxodBd3l+RSrak3lxP1xXOpN55Lvbk4LRpg\nwsPDSUxMBOCKK67gueeeY/To0eTl5Tn3ycnJoV+/fg0ep9CF1z2JiLCTm1vqsuM3t96BvVnBx9hj\nc/hvSi5pB/IIsXu7uyyXaG29uVyoL55LvfFc6k3jNBTyWvQ06lGjRrF+/XoAdu7cSYcOHejbty8p\nKSmUlJRQXl5OcnIygwYNasmyWrVo/0jiA9tS7ZONYa3i651azCsiIpc+l43ApKamsmDBAo4dO4bV\nauWTTz7hL3/5C4899hjLli3Dz8+PBQsW4OPjw/33389dd92FyWRizpw52O0aVmuKodEDOVySji0i\ni02pYUwa0g6TyeTuskRERFzGZDRm0YmHceWwW2sc1iurLee3Gx7FWmenaNsQfj87kQ5tAt1dVrNr\njb25HKgvnku98VzqTeN4zBSSuEaAlz+9w3tQbSnC5FfKphRNI4mIyKVNAeYSMeTErQX8orPYsiub\nOke9mysSERFxHQWYS0SvsO74W/2whGVSVlnNd/vz3V2SiIiIy1xwgDl06FAzliEXy2q2MjCqH7Wm\nSsxBeWxMyXR3SSIiIi7TYIC54447Tnu8aNEi578//PDDrqlILtjJWwvY43L4bn8+pRU1bq5IRETE\nNRoMMHV1dac93rx5s/PfW+HJS5e8eHtbovwiqPPPxGGq4ZtdOe4uSURExCUaDDA/vJbIqaFF1xnx\nPCaTiSHRA6nHgTU0W9NIIiJyyWrSGhiFFs+XGN0fEybscdkcyirlaE6Zu0sSERFpdg1eibe4uJiv\nv/7a+bikpITNmzdjGAYlJSUuL06aLtQnhC4hnUgr3IfJu4KXV33Pb2cNwMfWore9EhERcakG/6oF\nBgaetnDXbrezcOFC57+LZxoSPYC0wn107l3K3m1+vPrhLn5+XW+NoImIyCWjwQCzePHilqpDmlG/\niN4s3bOCSp/DdGnblW17cvlg0yGuGdHB3aWJiIg0iwbXwJSVlfH66687H//nP//h2muv5Z577iEv\nL8/VtckF8rH60DcigfyqAiaM8SEs0IcV6w+yPS3X3aWJiIg0iwYDzMMPP0x+/vEruh48eJCnn36a\nBx98kOHDh/PYY4+1SIFyYa6MG47ZZGbZ/ne57Zq22LzMvPzB9xzL1aJeERFp/RoMMOnp6dx///0A\nfPLJJyQlJTF8+HBuuukmjcB4uA5B7ZjW5UeU1paxKnMZt03qTHWNg+feTaGsstbd5YmIiFyUBgOM\nn5+f89+/+eYbhg4d6nysBaGeb1TsMK6IHcqxskxSHWuZMqwdOUWVvPR+Ko563exRRERarwYDjMPh\nID8/nyNHjrB9+3ZGjBgBQHl5OZWVlS1SoFw4k8nEjC7X0iW4IztyU/GK20e/zuHsPFTIO1/sd3d5\nIiIiF6zBAPPjH/+YyZMnc8011/Dzn/+coKAgqqqquOWWW7juuutaqka5CBazhf9LmEW4TyifHF7L\noKG1tAnz49Nv03WlXhERabVMxnlualRbW0t1dTUBAQHObRs2bOCKK65weXHnkptb6rJjR0TYXXp8\nd8ksz+YvW5/HYTi4rfMdvPZOJjV19Tx4a386xQS5u7xGuVR709qpL55LvfFc6k3jRESc+5pzDY7A\nZGRkkJubS0lJCRkZGc5/OnbsSEZGRrMXKq7Txj+KO3rdQl29g2WH/sOsKe1w1Nfz/PIUCkur3V2e\niIhIkzR4IbuxY8fSoUMHIiIigDNv5vjmm2+6tjppVr3De3Bd58ms2PchXxav4oYrp/DuukMsXJHC\ng7f0x8tqcXeJIiIijdJggFmwYAHvv/8+5eXlTJkyhauvvprQ0NCWqk1cYFzbUWSUZbElaxvhkZsZ\n2qsvm3dm8+bHe7hzSg+dXSYiIq1CgwHm2muv5dprryUzM5MVK1Zw6623Ehsby7XXXsuECRPw8fFp\nqTqlmZhMJm7uPpWcijy25fyXyT0j6VAQxMbULNpF2ZmQ2NbdJYqIiJxXg2tgTmrTpg0///nP+eij\nj5g4cSKPPvqoWxfxysXxMlv5SZ/bCPEOZvXhTxk7xkqQv42la/ex81CBu8sTERE5r0YFmJKSEpYs\nWcINN9zAkiVLuPvuu1m9erWraxMXCrTZubvP7djMXiw7+C4zJkdiNsOL76WSU1jh7vJEREQa1GCA\n2bBhA/fddx9Tp04lMzOTJ598kvfff58777yTyMjIlqpRXKStPYbZPW+ixlHDh1nLmD6hLeVVdTz3\nbgqV1XXuLk9EROScGrwOTPfu3Wnfvj19+/bFbD4z6zzxxBMuLe5cdB2Y5vXRwc/54OAndAxqT1TB\nGNZuy6R/l3Dm3JCA2YMW9V6OvWkN1BfPpd54LvWmcRq6DkyDi3hPniZdWFhISEjIac8dPXq0GUoT\nT5DUfiyZ5Vlsy9lBROx3dM/rwva9eazccJDrRnZ0d3kiIiJnaDDAmM1m7rvvPqqrqwkNDeWll14i\nPj6eJUuW8PLLL3PDDTe0VJ3iQiaTiZk9ZpBbmc+WrG1MGRxJXpEPKzceIi4igEHdNV0oIiKepcEA\n87e//Y3XX3+dTp068fnnn/Pwww9TX19PUFAQ77zzTkvVKC3AZvHi7j6zeerbZ1l9+GOmXXUTS9+r\n5dUPdxEV6kfbyIDzH0RERKSFNLiI12w206lTJwDGjRvHsWPHuO2223j++eeJioo678HT0tIYP348\nS5YsOW37+vXr6datm/PxypUrmTp1KtOnT1cwcqNg7yB+0mc2VrOFVUdXMHViBNW1Dp579ztKK2rc\nXZ6IiIhTgwHmh1dlbdOmDRMmTGjUgSsqKpg/fz7Dhg07bXt1dTUvv/yy8/YEFRUVLFy4kNdff53F\nixfzxhtvUFRU1JTPIM2ofWA7ZnafTpWjivWlq0gaHk1ecRUvvJdKnaPe3eWJiIgAjbwOzElNucy8\nzWbjlVdeOeN06xdffJFbbrkFm80GwI4dO0hISMBut+Pj48OAAQNITk5uSlnSzAZF9ycpfix5lflk\nBKynf9cwdh8pYunafe4uTUREBDjPGpjt27czevRo5+P8/HxGjx6NYRiYTCbWrVt37gNbrVitpx/+\n4MGD7N69m3vvvZc///nPAOTl5Z12f6XQ0FByc3MbLDokxA+rC2882NBpW5eL28Onkl+Xz7fHdjC2\nXxsKStrw+baj9OwUzlVD4t1Wl3rjmdQXz6XeeC715uI0GGA+/vjjZn2zJ554gnnz5jW4TwOXpXEq\ndOGVYnVu/v/c1GkaGcU5rD20gckjppD3oZVFy3Zgt1noHBfU4vWoN55JffFc6o3nUm8ap6GQ1+AU\nUmxsbIP/NEV2djYHDhzg17/+NTNmzCAnJ4eZM2cSGRlJXl6ec7+cnBxd5ddD+Fi9uTvhdgK8/Pn4\n6EdcPTEAw4DnV6RQUFLl7vJEROQy1qQ1MBcjKiqKNWvW8Pbbb/P2228TGRnJkiVL6Nu3LykpKZSU\nlFBeXk5ycjKDBg1qqbLkPMJ8Q/hJwmxMmFiT+z5TRodTUl7D88tTqKl1uLs8ERG5TLkswKSmpjJr\n1ixWrFjBm2++yaxZs856dpGPjw/3338/d911F3fccQdz5szBbte8oCfpFNyem7tPpaKukhTjY4Ym\nhHIoq5Q3Pt7dqCk/ERGR5tbgvZA8le6F5B7L937A5+lf0T2kK8UpfTiQUcaMMZ1JGtKuRd5fvfFM\n6ovnUm88l3rTOBe8BkbkVNd1nkzPsG7sLkyj48AMggNsvLNuHykH8t1dmoiIXGYUYKTRzCYzd/a6\nhWi/SDZmb+LKsQ4sZjMvvr+TrALXnRkmIiLyQwow0iS+Vl/u7nM7/lY/Ps/+mElj/amsruO5d7+j\noqrO3eWJiMhlQgFGmizSL5y7es/EwGBzxWpGJQaTmV/By6t2Ul/f6pZUiYhIK6QAIxekW2hnpne5\nlrLaco4FrKNHRzvf7c9nxfoD7i5NREQuAwowcsFGxQ1jVOwwMsqz8O+aSkSIDx9+fZhvdmW7uzQR\nEbnEKcDIRZnW5Ud0DenMzoJd9BmRh7fNwmsf7uJwlk4PFBER11GAkYtiMVv4v94zCfcNY1POBsaO\nhdq6ep5f/h0l5TXuLk9ERC5RCjBy0fy9/PhZn9vxsfiwoegTRl/hT35JNYtWpFDnqHd3eSIicglS\ngJFmEe0fxZ29b8FR7+B7PqVvD3/Sjhbz7zV73V2aiIhcghRgpNn0CuvODZ2nUFJTSkWbzcRG+vDF\n9mOs237M3aWJiMglRgFGmtWYtiMZ1iaRo2XHaNNvL/6+Vv71WRpp6WfeyFNERORCKcBIszKZTNzY\n7Xo6BbVnZ9FOBl9ZDMDCFSnkF1e5uToREblUKMBIs/MyW/lxwm2E+oSwuWA9o0aZKK2o5bnl31Fd\n63B3eSIicglQgBGXsNsC+Gmf27FZbCRXfcbAft4cyS7jn6t3YRi63YCIiFwcBRhxmdiANtze82Zq\n6+vIsK+jQzsb3+zKYfXmw+4uTUREWjkFGHGpvhG9uKbjRIqqi/HqvJ3gQCvLvzzAjn157i5NRERa\nMQUYcbmr4scwKKof6WXpdB5yGKvVxMurdpKRV+7u0kREpJVSgBGXM5lM3Np9OvGBbdlZnMLgK8uo\nrHbw3LvfUVFV6+7yRESkFVKAkRZhs3hxd8Jsgr2D2F66gcQhBtmFlby4cif19VrUKyIiTaMAIy0m\nyDuQuxNmYzVb2Wv+gq5dLKQeKGDZl/vdXZqIiLQyCjDSotoFxjGrxwyqHTWUR28iItzCx1uO8PXO\nLHeXJiIirYgCjLS4gVF9mdR+PAXVhYQmpOLrY+L1j3ZzMLPE3aWJiEgroQAjbjG5w3j6RSRwpPww\n3Ycfo67OwfPLUyguq3Z3aSIi0goowIhbmE1mbut5I3EBMewu+44BIyooLK1m4YpUauvq3V2eiIh4\nOAUYcRtvi427+8zGbgtgV+0GeibUse9YMUs+3aPbDYiISIMUYMStQn1C+EnCbCwmM5kBG4iNhfXf\nZbI2+Zi7SxMREQ+mACNu1zEonpu7T6XKUYWp47fYAwz+vWYvuw8Xurs0ERHxUC4NMGlpaYwfP54l\nS5YAkJmZye23387MmTO5/fbbyc3NBWDlypVMnTqV6dOn884777iyJPFQQ9sMYny7K8mvzidmUBom\nUz2L3kslt6jS3aWJiIgHclmAqaioYP78+QwbNsy57e9//zszZsxgyZIlTJgwgX/+859UVFSwcOFC\nXn/9dRYvXswbb7xBUVGRq8oSD3Ztp0n0DuvOkYqD9ByRTVllLc+9m0JVTZ27SxMREQ/jsgBjs9l4\n5ZVXiIyMdG77wx/+wMSJEwEICQmhqKiIHTt2kJCQgN1ux8fHhwEDBpCcnOyqssSDmU1mbu91C9H+\nUeyr/i89B5ZyNLeMVz/cpUW9IiJyGqvLDmy1YrWefng/Pz8AHA4Hb731FnPmzCEvL4/Q0FDnPqGh\noc6ppXMJCfHDarU0f9EnRETYXXZsOR87vxs9h99+toAjtV/TsetYtu3JZe2OTG6aEKjeeCj1xXOp\nN55Lvbk4Lgsw5+JwOHjggQcYOnQow4YNY9WqVac935j/0i4srHBVeURE2MnNLXXZ8eX8zPhwZ6+Z\nPPffVygO30RI/nD+9fFuamodxIX50S7KTpC/zd1lygn6nfFc6o3nUm8ap6GQ1+IB5qGHHiI+Pp65\nc+cCEBkZSV5envP5nJwc+vXr19JliYfpGtKJG7tex7/3LCe85w4qv+3PO5/vdT4fHGAjPspOfLSd\ndlF24qPshAZ6YzKZ3Fi1iIi0lBYNMCtXrsTLy4t77rnHua1v377MmzePkpISLBYLycnJ/Pa3v23J\nssRDXRE7lIzybL48upEeow4zKWY6qXvzOJJdxuHsUnbsz2fH/nzn/gG+XsRHBRwPNNHHQ01EiC9m\nhRoRkUuOyXDR6sjU1FQWLFjAsWPHsFqtREVFkZ+fj7e3NwEBAQB06tSJP/7xj3z88ce8+uqrmEwm\nZs6cyY9+9KMGj+3KYTcN63kWR72DRTteY3fhXjqFxBPnH0fbgBji7LH4E0xGbiWHs0s5nF3GkaxS\ncn5w2rWPzUK7yADanQg08VF22oT7YTHrEkjNRb8znku98VzqTeM0NIXksgDjSgowl5eK2gpeSVnM\n3uIDp62RspgsxPhHEWePJS4ghjh7DKFeEeTk1XIku9QZbDLzyzn1W+5lNRMXEXBi+imA+Cg7cRH+\neLlwYfilTL8znku98VzqTeN41BoYkaby8/Lj3gF3ExjizY5Dezladoz00gyOlmaQUZ5JelmGc18T\nJiJ8w4izxxCfEMuI4TFE+nSnuIjjgSbreLA5kl3KwcwS5+ssZhMx4f7OQBMfbadtZAA+Nv2KiIh4\nIv2/s7Qa3lYbHYLa0SGonXObo95BdkUu6aXHOFp2PNSkl2WQnPMdyTnfOfcLsgXS1h5DXPdY+g+K\noY1fRypLbRzJKXMGmvTsMtJzytiYkgWACYgK9XOup4mPOj4V5e/j1dIfXUREfkBTSD+gYT3P1dje\nGIZBQVUh6WUZHC09MVpTlkFRdfFp+/lafYkLaEPbE1NQsf4xGNUBHM0ud4aaw9mlVFY7TntdeJAP\n8VH2E+tqjo/YBAV4N+tnbU30O+O51BvPpd40jqaQ5LJiMpkI8w0lzDeUfhG9ndtLa8pOjNAcc/7v\nvqKD7C064NzHy2wlxr8NcbExDOsewzT/9ng7gsjMrTltCmpbWi7b0v53wcWgE6d1nzylOz46gLBA\nH53WLSLiIgowctmw2wLoEdaVHmFdnduq6qo5VpbpDDVHT0xFHS5Nd+5jwkSUfyRtw2Po0yGGyQEx\n2E3h5OY5nKHmSE4p3+3P57tTTuv297Gedkp3u6gAokL9dFq3iEgzUICRy5qP1ZtOwe3pFNzeua2u\nvo7M8pzj009l/ws1WeXZfJu93blfqE8IbQNj6Bwbwxh7LMGWCIoKTaTnlDtHanYdLmTX4ULna7xP\nnNbdMSaQ3h3D6BoXjJdVp3SLiDSV1sD8gOYlPZc7e1Nv1JNXme9cT3NyCqq0puy0/QK8/IkLiDm+\nrsYeQ7gtiqoSb46cCDVHskvJOOW0bm8vCz3iQ0joGEpCxzDCg33d8Okujn5nPJd647nUm8bRGhiR\ni2Q2mYn0iyDSL4KBUX2d24urS5xnQKWfmILaXbiX3YX/u+2BzWIj1r8NbbvGkDQwhiifzlQU+fD9\nwWJSDuTz3315/Hff8dtptAnzI6FjGAmdNDojItIQBRiRixDkHUiQdyC9w3s4t1XWVTpP5z5amkF6\n6TEOl6ZzsOSwcx8vsxddwjoyrmtXoqydyMowk3qggF1HCvn023Q+/Tb9f6MzncJI6BhKeFDrG50R\nEXEVBRiRZuZr9aVLSCe6hHRybqt11JJRnuUMNvuLDvJ9wR6+L9gDQIh3MD16d+GuK7pgLo8g7VDF\nGaMzMeH+zqmmrm2DsVo0OiMily+tgfkBzUt6rkutN0XVxezKT2NXQRq7C/ZSXlcBHD/rqX1gW7qH\ndqWNLZ6CLF92Hixk9+FCaurqgeOLgXvGhxyfbuoYRliQj9s+x6XWl0uJeuO51JvG0RoYEQ8U7B3E\nsJhEhsUkUm/Uk156jO/z09hVsIeDJUc4WHIEOD6i0617Z24e2hlbZRQHj9SRcqCA7Xvz2L73+OhM\nbLj/iTATSheNzojIZUAjMD+gVOy5LqfeVNZVkla4n+8L0tiVn0Z+VYHzuSi/CHqEdiXGuz1luYHs\nOlhy9tGZTmH06RhGaKBrR2cup760NuqN51JvGkd3o24Cfak81+XaG8MwyK3Mc4aZtKL91DhqALCa\nLHQM7kDXoM741rTh2FEzqfsLyC6sdL4+NsLfOdXUJS6o2UdnLte+tAbqjedSbxpHAaYJ9KXyXOrN\ncXX1dRwoPsyugjR25e857W7cgTY73UO7EOvdnuqCUNIOVrL7SCG1J0ZnfGwWerYPdS4Gbo7RGfXF\nc6k3nku9aRwFmCbQl8pzqTdnV1JTyu6CvccDTUHaaRfXa2uPpVtwF/xq25B7zIedB4rOGJ3pc2J0\npvMFjs6oL55LvfFc6k3jKMA0gb5Unku9Ob96o55jZVnsKtjDrvw09hcfwmEcv5u2t8VG15BOxPl0\noK4ojIOH6s86OtOn0/FAE2Jv3B221RfPpd54LvWmcRRgmkBfKs+l3jRdtaOGvScXAxfsIaciz/lc\nuE8oXYO7EOCIoSjLzq4DpeScMjoTF+HvXAjcKfbcozPqi+dSbzyXetM4CjBNoC+V51JvLl5+ZYFz\nqmlP4T4q66qA47dK6BAYTzvfDtSXhpN+2ELakWLn6Iyvt4We8aEnrgp8+uiM+uK51BvPpd40jq4D\nIyIAhPmGckXsUK6IHYqj3sGhknR2Fezh+4I0DhQfYn/xQQD82/iR2KMzQfWxlGUHs+dAFdvSctmW\nlgtAXEQACZ1C6dMxjJBQf3d+JBG5TGkE5geUij2XeuNa5bUVpy0GLqoudj4X4x9NO78OmMsiyTzi\nQ9qRUuocx0dn/H29GNYrivED44gM8XNX+XIW+p3xXOpN42gKqQn0pfJc6k3LMQyDzPJsZ5jZV3SA\n2vo64PiNKDsFdSCEWCpyQ9izr47CkhpMQJ9OYYxPbEvP+BBMJpN7P4Tod8aDqTeNoykkEWkSk8lE\nTEA0MQHRjGs3ihpHrZsFu5AAABzFSURBVPMGlLsK0thdmAakgRXCB4TQzdydrLQIduzPZ8f+fGLD\n/Rk3KI5hvaLx9rK4++OIyCVIIzA/oFTsudQbz3HqjSi/L9xDZW0VVpOFrvae1GbFs/N7B456A38f\nK6P6xjB2QJxbbzh5udLvjOdSbxpHU0hNoC+V51JvPJM92IsPUr9k3dENztO04wPisVd0Zdd3Nsoq\nHJhNJgZ0DWf8oLZ0iQvS9FIL0e+M51JvGkdTSCLiMj5ePlwZN5yRsUPZVZDGuvSNfF+wBzhM8MAg\nelsSOLo7lK17ctm6J5f4KDvjB8UxuEcUXlbdNVv+f3v3HhxVff9//Hn2kmR3s7mSC8kmAcIdwh2R\nm4iA12+1VRRKSZ3vd8b59qv9TdsfbaW0Vh077eC0/Xasjq2t/X4d+utIRS3aCl5aQcCA3AwQ7hFi\n7jcSkuxmk2x2f38khHA1gMmehddjJrObs+ecvMN7d3nlcz57jsjV0QjMeZSKzUu9MaeL9aXKW8Pm\nsm1sr9pNe2c7doudUbHj8JV5OHgkQCgEcU47t07OZP7kTOJj+3bWX7kyes2Yl3rTNzqEdAX0pDIv\n9cacLtcXX0crBZU72Vy2jXp/AwDD3MNwNI+gqNBGa1snVovBTWNSWTgti6GD4way9OueXjPmpd70\nzeUCjPWpp556qr9+8NGjR1myZAkWi4UJEyZQWVnJo48+yrp16/joo49YsGABVquVt956i1WrVrFu\n3ToMw2DcuHGX3a/P195fJeNyRffr/uXqqTfmdLm+2K12hsXnMM8zmyx3Bk3tzRQ3fUYtxSQPqWfs\nkEQ6WpwcLmnio8IKik6cIjrKSlqSE4tF82SulV4z5qXe9I3LdenR2X6bA+Pz+XjmmWeYOXNmz7Ln\nnnuOZcuWcdddd/HrX/+adevW8dWvfpUXXniBdevWYbfbWbx4MYsWLSIhIaG/ShORAWYxLExMGc/E\nlPGUt1SyqXQrO6v3Uhj8iOgRUdw0KY+mkgwOHzvN8fLTJLqjuW1KJvMmZRLrsIe7fBExoX6bQRcV\nFcUf/vAHUlNTe5bt2LGDBQsWADB//nwKCgooLCwkLy8Pt9tNTEwMU6ZMYc+ePf1VloiEWWbsYL4x\n5kF+NuvHfGXYnThsDvY37aYk8W3yFhYzdSr42jp4ffNnrHhhG/+74RBlNS3hLltETKbfRmBsNhs2\n27m7b21tJSoqCoDk5GRqa2upq6sjKSmpZ52kpCRqa2v7qywRMYnYKBd3DrmNRdnz+LR2Px+WbuN4\n0zGwHiN9ZgrpwXEUH4jlo8JKPiqsZExOIgunepg4fJAOL4lI+D5Gfam5w32ZU5yY6MRm67+ze15u\n0pCEl3pjTtfalzvT5nLn+Lkcrz/JhmMf8nHpbmqCm3CNdTA3fhL1xWkcPNLAoZIG0pOd3DN7GItu\nysalw0tfSK8Z81Jvrs2ABhin04nf7ycmJobq6mpSU1NJTU2lrq6uZ52amhomTZp02f00NPj6rUbN\nDDcv9cacvsy+xJPM0tzF3OW5nS3l29lavp1ddQUY8QaTFo6CuqEUHWjl5bcO8OeNh5gzfjALpnlI\nT9JFJC9GrxnzUm/65nIhb0DPIjVr1izeffddAN577z3mzp3LxIkT2b9/P01NTXi9Xvbs2cO0adMG\nsiwRMZn46Dj+bdjtPDN7Fd8cswSPO4MjTYc5ErWBrDl7mTGnHUeMwT/3lLHqpe38918LOfBZfZ9G\ncEXk+tBv54E5cOAAq1evpry8HJvNRlpaGr/85S9ZuXIlbW1tZGRk8Itf/AK73c7GjRt5+eWXMQyD\n5cuXc++991523zoPzI1JvTGngehLKBSi+PRJNpVupbCuiGAoSKzdxbDoPGqOp3Li866Pow5OdrJw\nqodZ4wcTHaWLSOo1Y17qTd/oRHZXQE8q81JvzGmg+3LK38BHZQVsq9iBL9CKxbAwyj2GQPUQioqC\ndAZDOKNtzJ04mAVTPAxKcAxYbWaj14x5qTd9owBzBfSkMi/1xpzC1Zf2znZ2Vu3lw7KtVHqrAfC4\nPCT6R3Fov4PmlgCGAZNHpLBomoeRWQk33EUk9ZoxL/Wmb3QxRxG57kRZo5idOYNZGTdxpOE4m8q2\ncqDuMGWUETfJzVh7HhVHBrHnaC17jtaSlRrLwqkebh6Xhr0fP8UoIgNDIzDnUSo2L/XGnMzUlxpf\nHR+Vf0xBxU78nW3YLDZGxo6lrSKbg4c6CYZCxDrs3Do5g/mTPSS6r++LSJqpN3Iu9aZvdAjpCuhJ\nZV7qjTmZsS/+gJ/tlbvZXLaNmtau0zQMic3B5R3JwUI7Pn8Qq8Vg2uhUFk71kJsZH+aK+4cZeyNd\n1Ju+0SEkEbmhxNhiuDVrNrd4ZnKw/gibyrZx6NRRoITE6QlMsI6n5FAiOw5Ws+NgNUMHx7Fomodp\no1OxWQf07BIicpU0AnMepWLzUm/MKVL6UuWt5sOybXxSuZv2YAdRFjsjXeNpKc3k8NEAISA+Noo7\nb8rmtike7LbIDzKR0psbkXrTNzqEdAX0pDIv9cacIq0vvg4fH1fuZHPZx5zyNwAwzJ2Lo2k4Rfus\ntLYFGRQfwwPzcrlpTGpEf3Ip0npzI1Fv+kYB5groSWVe6o05RWpfOoOd7K87yKaybRxr/AyA5Jhk\nklrHUrTbRWcQhg5289D84YzKTgxztVcnUntzI1Bv+kZzYEREzmO1WJmUmsek1DxKmyvYVLaVXdWf\nUm9swTMnDeepPA4daGb1X/YyecQgFt+ay+BkV7jLFpFuGoE5j1Kxeak35nQ99aWx7TRvF7/Ljqrd\nhAgxxDWM1hMjOHnSwGIYzJuUwb1zhhLvigp3qX1yPfXmeqPe9I1GYERE+iAhOp78sQ9xa9Yc3jz+\nd440HMdIPcGkoXmUH/Dw4d5yPi6q4u4Z2dx+UzbRdp0QTyRcIn+avYjIlyzLncH/mfQI/zXh30lz\npnDEu4/23A+YeksjdnuQN7ec4Ee/L2DLvgqCwYgbxBa5LmgERkTkIgzDYPygMYxJGsnHlZ/w98/e\n46B/O3GT4xgZmML+XQb/885h3t9ZykPzhzN+WHK4Sxa5oSjAiIhchtViZW7mTKalTeb9kk38q/Qj\nDgU34ZmdTmzjBA4Uevn1XwsZNySRB+cPJzvt0sfsReTLowAjItIHDlsM9+beydzMm3nrs418UrUH\noqsYd9sI2j4fSdHxBg7+z05mjU/na7cMIykuJtwli1zXFGBERK5AYkwCD49dynzPHN44/neONR7D\nklzM1JwJVB7wsO1AFZ8cruH26VncfXMOjmi9zYr0B03iFRG5CtlxHr4z+T/5z7yHSXEkc7D5U1qH\nvc+MW5txOS38o6CEx39XwD93lxHoDIa7XJHrjv40EBG5SoZhMCFlHOOSR7O1YgfvnHiffb5tJEyM\nZ1RwGoU7Lfy/94/ywe4yFs/LZcrIQRF9aQIRM1GAERG5RlaLlXmeWdyUPpl3T37Ih2Vb2Rf8J57Z\nGcSfnsTeva288OZ+RnjieWj+cHIz48NdskjE05l4z6OzI5qXemNO6suF6ltP8dZnG9lV/SkAI+NG\n0VE6koNHOgCYNjqVxfOGkZro7Nc61BvzUm/6RmfiFREZQMmOJP593DLmZ83hjWN/5+jpI1gSjjFj\n0WSqDmay63ANe4/WctsUD1+ZPYRYhz3cJYtEHE3iFRHpJ0PisvnelP/ikbxvkhyTyL7Tu2nKfpfZ\nC7wkxNl4f1cpj/+ugA07SugIdIa7XJGIogAjItKPDMNgUsp4fjJjBYtH3IvVsLKneQvReVuYMzeI\nYYR47cNiVr20g4KiKoKRd1RfJCw0B+Y8Oi5pXuqNOakvV8bX4WNjyb/YXLqNQKiTrNhMklumsnN3\nB4HOEDnpbh6aP5wxOYnX/LPUG/NSb/rmcnNgFGDOoyeVeak35qS+XJ261nreKt7I7ppCAMYkjCFU\nPpq9Ra0ATMxNZvH84WQOcl31z1BvzEu96RtN4hURMZlBjmT+Y/w3mH+664y+hxoPYYk9wuw7plF9\nKJPC4nr2fVbPLRMz+OqcocTHRoe7ZBFT0QjMeZSKzUu9MSf15dqFQiH21u5n/fF3qPOfwmFzMME1\ng8N74qmqbyPabuXOGdnceVM20VHWPu9XvTEv9aZvLjcCo0m8IiJhZhgGU1In8JObv88Dw/8NA9hx\nehO2cVuYP98gKsrC+q0nWPn7AjZ/Wk5nUJcmEBnQERiv18vjjz/O6dOn6ejo4LHHHiMlJYWnnnoK\ngFGjRvH0009/4X40AnNjUm/MSX358nk7fGw8+U82l31MZ6iTHHcWKb6p7NjVTntHkMxBLh6cn0ve\nsOTLXppAvTEv9aZvTDMH5s0332To0KGsWLGC6upqHn74YVJSUli1ahUTJkxgxYoVbN68mXnz5g1k\nWSIipuKyO3lgxFeYmzmT9cUb+LR2PyWUMvG2cVA1ml37vPzmtX2MyUnkofnDyUm/9Ju8yPVqQA8h\nJSYm0tjYCEBTUxMJCQmUl5czYcIEAObPn09BQcFAliQiYlqpzkE8kpfP/53yKEPisjnQUMShmL9x\ny52NjM2N5VBJA0//707+8HYR9af94S5XZEANaIC55557qKioYNGiRSxfvpwf/vCHxMXF9TyenJxM\nbW3tQJYkImJ6uQlD+P7Ux/iPcctIiI7jk/rtVKf9g0V3dZCV6qSgqJofvbSd1zYdx+cPhLtckQEx\noIeQ1q9fT0ZGBi+//DKHDx/msccew+0+O/TZ1+k4iYlObLa+z8S/Upc75ibhpd6Yk/oyMO5Mnctt\nY25m47FNvHFwA1vr/0nauBTumzGHrR8F2bD9c7buq2Lp7SO5a+ZQQL0xM/Xm2gxogNmzZw9z5swB\nYPTo0bS1tREInP1robq6mtTU1C/cT0ODr99q1MQq81JvzEl9GXgzk28mb0Ye75z8gC3lBbznfZOh\n03OY1DaNjz/x84e/HWD95mIeWjiKtPhoBic5sVguPdlXBp5eN31jmkm8OTk5FBYWcscdd1BeXo7L\n5SIzM5Ndu3Yxbdo03nvvPfLz8weyJBGRiBQb5eKhkfcxzzOL9cUbKKw9wAlKmHBbHraasWzf28Tz\nr30KQLTdSnZaLDnpboamx5GT7iZdoUYi3IB/jHrVqlXU19cTCAT4zne+Q0pKCj/96U8JBoNMnDiR\nH/3oR1+4H32M+sak3piT+mIOxxo+443jf+fz5jJshpWbUmaQbZ3K0eJmTlY3U1Hnpfe7fbTdSk5a\nLDnpcQxJdyvUDDC9bvpG10K6AnpSmZd6Y07qi3kEQ0F2VxeyvngDDW2NWA0LGa50cuKyyHR5iGpP\novlUFJ9XezlZ1UxF/XmhJspKTmp3qBnsZki6m7QkJ5bLnGtGro5eN31jmkNIIiLSfyyGhenpk5mY\nMp7NZdsoajzEiYZSSlsqgB0ARFmjyMnwMGV0Fl9xZmJrS6K+DkqqWyipauZY+WmOlp3u2Wd0lJWc\nNHfPKI1CjZiFRmDOo1RsXuqNOakv5pWS4qayuoGKlipONpVS0lxKSVMpVd4aQpx963fbY8mJy2JI\nXBYZzkws/gSqagOUVDVzsqqZyvNGamKirGR3h5ozwUah5sroddM3GoEREblB2Sw2suM8ZMd5gJkA\n+AN+Pm8up6SptCvYNJVyoP4QB+oP9WyX4kgmZ2gWCyZmM9gxhJDPTVmNn5OVzZRUN3OstJGjpY09\n68d0j9TkKNTIAFGAERG5wcTYYhiZmMvIxNyeZafbmvm8+WygOdlUyq7qT9lV3fVJJothIdOVTs6I\nLO6ems1gx0jamp2Uds+nOVnVxNHSRo5cKtQMdjMkPY7URIdCjXwpFGBERIT4aDd50WPJGzQW6Dqx\naG1rXU+gKWkqo7SlnNKWCrZW9JpP4/aQPcbD1BnZpMfk0txo655P08TJquYLQo0j+myo6RqtUaiR\nq6MAIyIiFzAMg1RnCqnOFG5KnwJAIBigwlt1zqGn440nONb4Wc92PfNpxmcxe1YWadFjqW8IcrKq\nuSfUHPm8kcOfXzzUDOn+WHeKQo18AQUYERHpE5vFRrbbQ7bbw9zMs/NpSpvLzzn0dNH5NHFZ5E7K\nYkFcFoPsaVTVt3GysomT1c2UXCbUDOk+8V52WixuZxTOaJvOVSOAAoyIiFyDGFsMIxJzGXGR+TS9\nR2ouOp8mLovxnmzuicshwZZMWY2365NP1c2crLww1AAYgDPGhivG3nXrsOPqfRtj7/668DF7P15D\nTwaeAoyIiHypLj6fpr57Lk1XqLnYfJpsdyY5SVlMG5LNA+5ROIxYSmtaOFnVTHmdF29rR9dXWwBv\nawcNdW10BIJ9rivKZsHlsPcEoAuCzzn3z64TE23T4SwTUoAREZF+1TWfZhCpzkFMT58MQGewkwpv\nVa9JwqUUN57keOOJnu3OzKfJSfEwfVgmcVGJOGwOXHYnDlsMFsNCe0cnXn8Ar78r3Pj8AVr8HXhb\nA/jaum69/o6udVo78Po7aGhqo6LWS19PgmYY9IQZZ3e4iY3pFYQuEXxcDjs2q6Uf/kUFFGBERCQM\nrBYrWe5MstyZzM28GThvPk1z2UXPT3OGgUGMLQanzYHL7sBpc+K0O3DaHDhdTpzxDtLsDlw9y8/e\nRlujCIXA19YVbnzd4aal131v71v/2dv6Jj+Bzr6f/zXabsXlsOGMthPrOHvoK84dQ1tbBxbDwGox\nsFiMnvuGpXuZ0bW86z5d6/Ra76LbXOpxg7PLLAZW4+z9y21jmHjkSQFGRERM4WLzaZramylpKqW8\npQpvhxdfoBVfRyu+gK/7tpUqbw3twY4+/xyLYekVbBw47c6ztwkOYlOcpNoc3Y/HnROAbIaV9kCw\nZ7TH6++gpTWAz39e2Oke7TkzAlTf5KesNtAf/2z9ytITdDgnVFl6hay83GTybx814LUpwIiIiGnF\nRbnJG3R2Ps2ldAQD5wWbrltvr6Dj6/Cdc+vt8FHbWk8wdAXzaCz2XoGna4THYXfgcnaN+qTYHOR0\nP+6yx59zyCsUgta2TrytHbjjHNTVtxAMhegMhggFoTMYJBiCYLBrWTAUIhjs/upe78z3naEQoWCv\nZaHu7Xvun93uovvr3kfP/WCIUM92wQv20VXjhdsEQyECVzAP6cukACMiIhHPbrERH+0mPvrS1865\nmFAoRFtnW3egaaX1EsHHG2iltdfyhrbTVHirruhnOWyOnuDjjI4hGAhhNaxYLBashrX7y4LVYsVi\n9FpmPfdxi2HF2r2Nrdd9q9G9naV7P2e2sViwGLazyyy99nPO9mf2fea+uefvKMCIiMgNyzC65tLE\n2GJIikm8om2DoSCtAT/eDh+t3SM654/w+M4LPr5AK9XeGjpaApj9WsoGRleQsfQKVxcEIAvjkkfz\n1eF3D3h9CjAiIiJXwWJYcNmduOzOK942JcVNdc1pgqEgnaEgncFOOkPdX8EgnaHO7sfOX3b2fmf3\n48Hg2fsXXdZ9/9z9nft4Tx09j523zXnrtwfbu78PUu8/1Q//ul9MAUZERCQMLN2HaWwAOsfeFTP3\nAS4RERGRi1CAERERkYijACMiIiIRRwFGREREIo4CjIiIiEQcBRgRERGJOAowIiIiEnEUYERERCTi\nKMCIiIhIxFGAERERkYijACMiIiIRRwFGREREIo4CjIiIiEQcIxQKhcJdhIiIiMiV0AiMiIiIRBwF\nGBEREYk4CjAiIiIScRRgREREJOIowIiIiEjEUYARERGRiKMA08vPf/5zlixZwtKlS9m3b1+4y5Fe\nnn32WZYsWcIDDzzAe++9F+5ypBe/38/ChQt54403wl2K9PLWW29x7733cv/997Np06ZwlyOA1+vl\n29/+Nvn5+SxdupQtW7aEu6SIZgt3AWbxySefUFJSwtq1aykuLmbVqlWsXbs23GUJsH37do4dO8ba\ntWtpaGjga1/7Grfffnu4y5JuL774IvHx8eEuQ3ppaGjghRde4PXXX8fn8/Hb3/6WW2+9Ndxl3fDe\nfPNNhg4dyooVK6iurubhhx9m48aN4S4rYinAdCsoKGDhwoUA5Obmcvr0aVpaWoiNjQ1zZTJ9+nQm\nTJgAQFxcHK2trXR2dmK1WsNcmRQXF3P8+HH952gyBQUFzJw5k9jYWGJjY3nmmWfCXZIAiYmJHDly\nBICmpiYSExPDXFFk0yGkbnV1dec8mZKSkqitrQ1jRXKG1WrF6XQCsG7dOm655RaFF5NYvXo1K1eu\nDHcZcp6ysjL8fj/f+ta3WLZsGQUFBeEuSYB77rmHiooKFi1axPLly3n88cfDXVJE0wjMJegKC+bz\nwQcfsG7dOv70pz+FuxQB/va3vzFp0iSysrLCXYpcRGNjI88//zwVFRV885vf5MMPP8QwjHCXdUNb\nv349GRkZvPzyyxw+fJhVq1Zp7tg1UIDplpqaSl1dXc/3NTU1pKSkhLEi6W3Lli387ne/449//CNu\ntzvc5QiwadMmSktL2bRpE1VVVURFRZGens6sWbPCXdoNLzk5mcmTJ2Oz2cjOzsblcnHq1CmSk5PD\nXdoNbc+ePcyZMweA0aNHU1NTo8Ph10CHkLrNnj2bd999F4CioiJSU1M1/8UkmpubefbZZ/n9739P\nQkJCuMuRbr/5zW94/fXX+etf/8qDDz7Io48+qvBiEnPmzGH79u0Eg0EaGhrw+Xyab2ECOTk5FBYW\nAlBeXo7L5VJ4uQYagek2ZcoUxo0bx9KlSzEMgyeffDLcJUm3d955h4aGBr773e/2LFu9ejUZGRlh\nrErEvNLS0rjjjjt46KGHAPjJT36CxaK/V8NtyZIlrFq1iuXLlxMIBHjqqafCXVJEM0Ka7CEiIiIR\nRpFcREREIo4CjIiIiEQcBRgRERGJOAowIiIiEnEUYERERCTiKMCISL8qKytj/Pjx5Ofn91yFd8WK\nFTQ1NfV5H/n5+XR2dvZ5/a9//evs2LHjasoVkQihACMi/S4pKYk1a9awZs0aXn31VVJTU3nxxRf7\nvP2aNWt0wi8ROYdOZCciA2769OmsXbuWw4cPs3r1agKBAB0dHfz0pz9l7Nix5OfnM3r0aA4dOsQr\nr7zC2LFjKSoqor29nSeeeIKqqioCgQD33Xcfy5Yto7W1le9973s0NDSQk5NDW1sbANXV1Xz/+98H\nwO/3s2TJEhYvXhzOX11EviQKMCIyoDo7O3n//feZOnUqP/jBD3jhhRfIzs6+4OJ2TqeTP//5z+ds\nu2bNGuLi4vjVr36F3+/n7rvvZu7cuXz88cfExMSwdu1aampqWLBgAQAbNmxg2LBhPP3007S1tfHa\na68N+O8rIv1DAUZE+t2pU6fIz88HIBgMMm3aNB544AGee+45fvzjH/es19LSQjAYBLou73G+wsJC\n7r//fgBiYmIYP348RUVFHD16lKlTpwJdF2YdNmwYAHPnzuUvf/kLK1euZN68eSxZsqRff08RGTgK\nMCLS787MgemtubkZu91+wfIz7Hb7BcsMwzjn+1AohGEYhEKhc671cyYE5ebm8o9//IOdO3eyceNG\nXnnlFV599dVr/XVExAQ0iVdEwsLtduPxeNi8eTMAJ06c4Pnnn7/sNhMnTmTLli0A+Hw+ioqKGDdu\nHLm5uezduxeAyspKTpw4AcDbb7/N/v37mTVrFk8++SSVlZUEAoF+/K1EZKBoBEZEwmb16tX87Gc/\n46WXXiIQCLBy5crLrp+fn88TTzzBN77xDdrb23n00UfxeDzcd999/Otf/2LZsmV4PB7y8vIAGD58\nOE8++SRRUVGEQiEeeeQRbDa97YlcD3Q1ahEREYk4OoQkIiIiEUcBRkRERCKOAoyIiIhEHAUYERER\niTgKMCIiIhJxFGBEREQk4ijAiIiISMRRgBEREZGI8/8B8h9Psz9avRUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "8RHIUEfqyzW0", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 376 + }, + "outputId": "0ecd3b65-97db-4afc-c2ee-b183565d99b1" + }, + "cell_type": "code", + "source": [ + "plt.ylabel(\"RMSE\")\n", + "plt.xlabel(\"Periods\")\n", + "plt.title(\"Root Mean Squared Error vs. Periods\")\n", + "plt.plot(adagrad_training_losses, label='Adagrad training')\n", + "plt.plot(adagrad_validation_losses, label='Adagrad validation')\n", + "plt.plot(adam_training_losses, label='Adam training')\n", + "plt.plot(adam_validation_losses, label='Adam validation')\n", + "_ = plt.legend()" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAFnCAYAAABdOssgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8U/X+x/FXRtOZjrRpaRndjAKy\npewNZckeMgRF8aegXsUr4AUVUZbKFQVERQThqkhVBEVRRBSEllFk77266Ei61/n9UYlWoBRokpZ+\nno/HfTxIcnLyzqe9fnq+OTkflaIoCkIIIYSolNT2DiCEEEKIOyeNXAghhKjEpJELIYQQlZg0ciGE\nEKISk0YuhBBCVGLSyIUQQohKTGvvAELcSp06dahVqxYajQaAwsJCWrRowbRp03Bxcbnj/X7xxRcM\nHTr0uvu/+uorpk6dypIlS+jUqZPl/pycHFq3bk337t2ZM2fOHb9uWZ0/f55Zs2Zx5swZAJydnZk4\ncSJdu3a1+mvfjsWLF3P+/PnrahIbG8u4ceOoUaPGdc/54YcfbBXvrly8eJEuXboQHBwMgKIo+Pj4\n8J///IeIiIjb2tdbb71FQEAADz74YJmf88033xAdHc3KlStv67VE1SKNXFQKK1eupFq1agDk5eXx\n7LPP8v777/Pss8/e0f6SkpJYunTpDRs5gL+/P99++22JRv7LL7/g7u5+R693J55//nn69evHkiVL\nANi3bx9jxozh+++/x9/f32Y57oa/v3+lado3o9FoSryHDRs2MGHCBDZu3IhOpyvzfiZNmmSNeELI\n0rqofHQ6He3atePIkSMA5Obm8tJLL9GjRw969uzJnDlzKCwsBODo0aMMHz6cqKgo+vXrx9atWwEY\nPnw4ly9fJioqiry8vOteo2nTpsTGxpKdnW25b8OGDbRp08ZyOy8vj9dee40ePXrQuXNnS8MF2Lt3\nLwMHDiQqKopevXqxfft2oPgIr23btnzyySf07duXdu3asWHDhhu+z+PHj9OoUSPL7UaNGrFx40bL\nHzQLFy6kQ4cO9O/fnw8++IDOnTsDMGXKFBYvXmx53t9v3yrXrFmzGDVqFAB79uxh0KBBdOvWjaFD\nh3LhwgWgeGXiX//6F506dWLUqFHEx8ff4id2Y1999RUTJ05kzJgxzJs3j9jYWIYPH84zzzxjaXrf\nf/89ffr0ISoqioceeojz588D8O677zJt2jQGDx7M8uXLS+z3mWeeYdmyZZbbR44coW3bthQVFfHf\n//6XHj160KNHDx566CESEhJuO3evXr3Iycnh9OnTAKxevZqoqCg6d+7Mc889R05ODlBc99mzZ9O3\nb1++//77Ej+Hm/1eFhUV8eqrr9KxY0cGDx7M0aNHLa+7c+dOBgwYQK9evejZsyfff//9bWcX9yhF\niAqudu3aypUrVyy309LSlJEjRyqLFy9WFEVR3n//feWxxx5T8vPzlezsbGXQoEHK2rVrlcLCQqVn\nz57K+vXrFUVRlP379ystWrRQzGazEhMTo3Tt2vWGr/fll18qkydPVp5//nnLc81ms9KlSxdlzZo1\nyuTJkxVFUZSFCxcqY8aMUXJzc5XMzEylf//+yubNmxVFUZQ+ffoo3377raIoivL1119bXuvChQtK\nRESEsnLlSkVRFGXDhg1Kt27dbpjjqaeeUjp16qSsWLFCOXnyZInHjh07pjRv3lxJTExU8vPzlSee\neELp1KmToiiKMnnyZGXRokWWbf9+u7Rc9evXV7766ivL+23RooWybds2RVEUZf369cqAAQMURVGU\nVatWKSNHjlTy8/OVlJQUpVOnTpaa/F1pNb5W58aNGytnzpyxbN+wYUNl+/btiqIoyqVLl5RmzZop\nZ8+eVRRFUT766CNlzJgxiqIoyjvvvKO0bdtWuXr16nX7/e6775SRI0dabi9YsECZOXOmcvz4caV7\n9+5KXl6eoiiK8sknnyhff/31TfNdq0u9evWuu79FixbKqVOnlF27dimtWrVS4uPjFUVRlOnTpytz\n5sxRFKW47n379lVycnIstxctWlTq7+WWLVuU7t27KxkZGUp2drYyePBgZdSoUYqiKMrAgQOV2NhY\nRVEU5cyZM8pzzz1XanZRdcgRuagURo8eTVRUFF26dKFLly5ERkby2GOPAbBlyxaGDh2KVqvFycmJ\nvn378vvvv3Px4kWSk5Pp3bs3AA0bNiQgIIADBw6U6TV79+7Nt99+C8CmTZvo1KkTavVf/5f55Zdf\nGDFiBDqdDhcXF/r168ePP/4IwNq1a+nZsycAzZo1sxzNAhQUFDBw4EAA6tevz+XLl2/4+m+88QYj\nR45k/fr19OnTh86dO/PZZ58BxUfLLVq0wGg0otVq6dOnT5neU2m58vPz6datm2X/fn5+lhWIPn36\ncP78eS5fvszu3bvp1q0bWq0WLy+vEh8//NOVK1eIiooq8b+/f5YeFBREUFCQ5baTkxOtWrUC4Pff\nf6dly5YEBgYCMGTIEGJjYykoKACKVygMBsN1r9mxY0cOHz5MWloaAD/99BNRUVG4u7uTkpLC+vXr\nSU9PZ/To0fTv379MdbtGURRWr16Nn58fQUFBbN68mV69euHn5wfAgw8+aPkdAGjVqhWOjo4l9lHa\n7+WuXbvo0KEDrq6uODk5WX5WAN7e3qxdu5ZTp04RFBTEW2+9dVvZxb1LPiMXlcK1z8hTUlIsy8Ja\nbfGvb0pKCh4eHpZtPTw8uHr1KikpKej1elQqleWxa/8x9/HxueVrtmnThmnTppGWlsZ3333Hk08+\naTnxDMBsNjN79mzmz58PFC+133fffQCsX7+eTz75hMzMTIqKilD+NtJAo9FYTtJTq9UUFRXd8PUd\nHR0ZN24c48aNw2Qy8cMPPzBr1ixq1KhBenp6ic/rvb29b/l+ypLLzc0NAJPJxIULF4iKirI8rtPp\nSElJIT09Hb1eb7nf3d2dzMzMG77erT4j//vP7Z+3U1NTS7xHvV6Poiikpqbe8LnXuLi40Lp1a7Zs\n2UKzZs0wmUw0a9YMlUrFu+++y7Jly5g5cyYtWrRgxowZtzzfoLCw0FIHRVEICwtj8eLFqNVqzGYz\nP/30E9u2bbM8np+ff9P3B5T6e5meno6vr2+J+6+ZNWsW7733Hg8//DBOTk4899xzJX4+ouqSRi4q\nFYPBwOjRo3njjTd47733APDx8bEcfQGkpaXh4+ODt7c36enpKIpi+Y9mWlpamZueg4MDnTp1Yu3a\ntZw7d44mTZqUaOS+vr488sgj1x2RJiQkMG3aNNasWUO9evU4e/YsPXr0uK33mZKSwpEjRyxHxO7u\n7gwdOpStW7dy/Phx9Ho9ZrO5xPbX/POPg/T09NvO5evrS0hICF999dV1j7m7u9/0tcuTt7c3e/fu\ntdxOT09HrVbj5eV1y+f26NGDn376idTUVHr06GH5+UdGRhIZGUlWVhZz587lzTffvOWR7T9Pdvs7\nX19fBgwYwOTJk2/rfd3s97K02vr4+DB9+nSmT5/Otm3beOqpp2jXrh2urq5lfm1xb5KldVHpPPzw\nw+zdu5edO3cCxUup0dHRFBYWkpWVxTfffEOHDh2oUaMG1apVs5xMFhcXR3JyMvfddx9arZasrCzL\nMu3N9O7dmw8//PCGX/nq0qULa9asobCwEEVRWLx4Mb/99hspKSm4uLgQEhJCQUEBq1evBrjpUeuN\n5OTk8PTTT1tOggI4d+4c+/bto3nz5jRp0oTdu3eTkpJCQUEBa9eutWxnNBotJ0lduHCBuLg4gNvK\n1ahRI5KSkti3b59lP//+979RFIXGjRuzefNmCgsLSUlJ4bfffivz+7odbdq0Yffu3Zbl/88//5w2\nbdpYVmJK06lTJ/bu3cumTZssy9Pbtm1jxowZFBUV4eLiQt26dUscFd+Jzp078+OPP1oa7qZNm/jg\ngw9KfU5pv5dNmjRh27ZtZGdnk52dbfkDIj8/n9GjR5OYmAgUfySj1WpLfNQjqi45IheVjpubG+PH\nj2fu3LlER0czevRoLly4QO/evVGpVERFRdGzZ09UKhXz58/n5ZdfZuHChTg7O7NgwQJcXFyoU6cO\nHh4etGnThq+//pqAgIAbvtb999+PSqWiV69e1z02YsQILl68SO/evVEUhQYNGjBmzBhcXFxo3749\nPXr0wNvbmylTphAXF8fo0aN55513yvQeAwICeO+993jnnXd47bXXUBQFNzc3pk6dajmTfdiwYQwY\nMAAvLy+6d+/OiRMnABg6dCgTJ06ke/fuREREWI6669atW+ZcTk5OvPPOO8ycOZPMzEwcHBx45pln\nUKlUDB06lN27d9O1a1cCAgLo2rVriaPIv7v2Gfk/zZs375Y1qFatGq+99hpPPvkk+fn51KhRg5kz\nZ5apfm5ubtSvX59jx47RuHFjAFq0aMF3331Hjx490Ol0GAwGZs2aBcALL7xgOfP8dtSvX5//+7//\nY/To0RQVFeHt7c2MGTNKfU5pv5edOnViy5YtREVF4ePjQ4cOHdi9ezcODg4MHjyYsWPHAsWrLtOm\nTcPZ2fm28op7k0pRZB65EJXd7t27eeGFF9i8ebO9owghbEzWZYQQQohKTBq5EEIIUYnJ0roQQghR\nickRuRBCCFGJSSMXQgghKrFK+fWzpKQbf9XlTnl5uZCamlWu+xQ3JrW2DamzbUidbUPqDEaj/qaP\nyRE5oNVq7B2hypBa24bU2TakzrYhdS6dNHIhhBCiEpNGLoQQQlRi0siFEEKISkwauRBCCFGJSSMX\nQgghKjFp5EIIIUQlJo1cCCGEqMSkkQshhLgrP/30Ax06tCQtLe2Gj3/55Wo++uh9q2Y4ffokEyeO\nv+7+X37ZVOZ9rFy5nIMH99/08Zdfnkpubs4d5bMmaeRCCCHuyk8/baR69Rps2VL2pmkL+fn5rF79\naZm3Hz16LA0a3HfTx2fMmI2jo1N5RCtXlfISrUIIISoGkymdI0cOMXXqS3z66Sf07z8YgN27d/LO\nO29hMHjj7e1DQEB1CgoKeP31V0hKSiQ7O5tHHhlPmzbt2LUr9s9tfahVKxBPT0+aNGnG55+vIisr\ni+nT/8PmzVvZsuVnioqKaNWqDY88Mp7ExASmT5+Cg4MDYWG1r8v2zjvzOXXqJG++OYeIiPrExGwn\nOTmJGTNm8fnnqzh8+BB5eXn07z+Ivn378/rrr9CxYxfS09PYv/8P0tJSOX/+HCNGjKZPn/4MHtyX\nTz5ZzX//Ow8fHyPHjh0hISGel156jTp16vL2229w4MB+goNDOH/+HDNmzMLfP8DqP4Mq38gLMzJI\nPLQXIhqjUqnsHUcIIe7IF5tPsutoYrnus0VdX4Z2Dit1m82bN9G6dVtatmzF3LmvkZSUiNHoy/vv\nL2T69JmEh9fm+eefJiCgOmazifvvj6Rnzz5cunSR6dOn0KZNO957712mT3+V0NBwJkx4jBYtWgJw\n6tRJPvvsK6pX92bz5q0sXrwUtVrN0KH9GDZsBNHRn9OlS3eGDn2QVauWc/Lk8RLZRowYzeHDB3n+\n+Sls2LCehIR4lixZRl5eHtWqBfDUU8+Rm5vD0KH96du3f4nnnjp1kiVLlnHx4gVefvlF+vQp+Xhe\nXh7z5y9k7dpofvjhO7RaLfv3/8HSpSs5c+Y0jzwyshx+AmVT5Ru5KWYHSZ//D/8nJqBv1sLecYQQ\nolLZtGkjY8aMQ6PR0KlTF37++UeGDx/FlStXCA8vPkpu3Lgpubm56PXuHDlyiHXrvkKlUmMypQOQ\nkHCF2rXrAhAZ2ZrCwkIAwsLC0el0ADg5OTFx4ng0Gg1paWmYTCbOnj1Dp05dAWjSpDkxMdtLzVqv\nXgQqlQpHR0dMpnT+7/8eQavVkpaWet22DRrch0ajwWj0JTMz47rHGzVqAoDR6Mfhw4c4e/YMEREN\nUavVhIaGUa2a/52U845U+UbuUrf4l8cUs0MauRCi0hraOeyWR8/lLTExgcOHD7Jw4duoVCpycnLQ\n690YPnwUavVfp2ApigIUnxRnMplYtGgpJpOJRx8dfd0+/74y6uDgAMClS5dYvfp/LFv2P1xcXBg9\neqhlvyqV+s9/F90yr1ZbvL+9e/cQF7ebhQs/QKvV0q1bu+u21Wj+GtRyLX/pjyuo1X9lt+UKb5U/\n2c3s4MWxkB6YDh6hMDPT3nGEEKLS2LRpIwMGDGHFis9YvvxTPvvsS0wmE5cuXcTHx8j582dRFIW9\ne/cAkJaWhr9/AGq1ml9/3Ux+fj4ABoM3586dpbCwkF27Yq97ndTUVLy8vHBxceHYsaPEx8eTn59P\nrVqBHD16GIC4uN3XPU+lUluO7v8uPT0NX18/tFot27b9SmFhkSXLnapevQbHjh1FURTOnj1DfPyV\nu9rf7ajyjTzhsomLan8uuwRi3rPL3nGEEKLS2LRpI71797XcVqlU9OzZh02bNjJ+/JNMmzaZyZOf\nxdfXD4COHTuzfftWnnnmCZydnfH19eXjjz/kscee5D//+TdTpjxHYGBQiaNdgHr16uHs7MITTzzC\nzz//SL9+A3nrrbkMGfIg3323jueem4jZbL4un4+PDwUF+UybNrnE/c2bt+TixfNMnDieS5cu0rp1\nW958c/Zd1aJu3Qhq1qzF+PFj+OKLTwkKCimxKmFNKuVGawYVXFLS9T+wO5WZkcsnC3fgkZ1IO9dT\n1HxharntW1zPaNSX689P3JjU2TakzuVj584Yatashb9/APPmvU7jxs3o3j3K8nhlqHNeXh4///wj\nPXv2ITs7m5EjB/PFF9+g1ZbPJ9hGo/6mj1X5z8hd3RwJDvfhzAlIOf0b1VKu4mDwtncsIYSoMhRF\n4cUXn8fFxRUvLwOdOnWxd6TbptPpOHr0MNHRq1GrVTz66P+VWxO/lSrfyAEaNq3OmRPJxOtDqBkb\ni6FnL3tHEkKIKqNly1a0bNnK3jHu2rPPvmCX163yn5ED1G3oj0ajIl4fQnrsDnvHEUIIIcpMGjng\n5OxAYJg3WTpPUhIzyb100d6RhBBCiDKxaiOfN28ew4YNY9CgQfz4449cuXKFsWPHMmrUKMaOHUtS\nUhIA69atY9CgQQwZMoQ1a9ZYM9JNhUcUn1UZrw/GFCNH5UIIISoHq31GHhMTw4kTJ1i9ejWpqakM\nGDCAli1bMnToUHr16sX//vc/Pv74YyZOnMiiRYuIjo7GwcGBwYMH061bNzw9Pa0V7YZqhRrQOWpI\n0Idiiv0ZnwGDUNnoqwNCCCHEnbJap2rRogULFiwAwN3dnezsbF5++WV69OgBgJeXF2lpaezbt4+G\nDRui1+txcnKiadOmxMXFWSvWTWm1GkLqGMnVupCcpSX75AmbZxBCiMqoIo8xLauJE8dz+vRJNmxY\nz6+//nLd4717l34m/bVxqTEx2/n66+g7znEnrNbINRoNLi4uAERHR9O+fXtcXFzQaDQUFhby6aef\n0rdvX5KTkzEYDJbnGQwGy5K7rf21vB6CWU56E0KIMqmoY0zvRK9efenQodNtPefv41IjI1szYMBg\na0S7Kat//WzTpk1ER0ezbNkyAAoLC3nhhReIjIykVatWrF+/vsT2Zbk+jZeXC1qt5pbb3Q6jUY+3\ntxu/fHeUpKJgzHHfEvHU/6H+81q/ovyUdmEDUX6kzrZR1euclpbGsWOHmTVrFkuXLuWxxx4GYMeO\nHcyaNQsfHx+MRiM1a9bEy8uZyZMnk5CQQFZWFk899RSdOnVi+/btlm2Dg4MxGAzcf//9LFu2jKys\nLCZPnszOnTvZuHEjRUVFdOjQgYkTJxIfH88zzzyDTqejTp066HTaEj+PCRMmMHbsWFq0aEFOTg69\nevXihx9+YOrUqddl0Om0eHm58vnny/Hy8mL48OFMmjSJ+Ph4GjZsiEqlwmjUs337dhYsWICDgwPu\n7u68/fbbzJ49n9OnT7Jo0Vvcd999nDhxgsmTJ7NixQo2bNgAQJcuXRg/fjxTpkzB19eXQ4cOcfny\nZd58803q169/Vz8DqzbyrVu3smTJEpYuXYpeX1zcqVOnEhgYyMSJEwHw9fUlOTnZ8pzExEQaN25c\n6n5TU7PKNeffrxoUUtfI/l25JBR5cG7LDtwaNynX16rqKsMVmu4FUmfbqEh1/urkt+xNPFCu+2zi\n25CBYX1K3Wbt2rVERrahbt3GnD59hsOHT2E0+jJ37jymTn3FMsbUYPDl9OlLNGrUvMQY0wYNmjN7\n9lymTn25xBjTtLQsjhw5WmKM6YIF71vGmPbpM4gVKz6iffsuljGmeXkFJX4ekZHt+O67jQQF1WXb\ntl9p2vR+zp69csMMeXkFpKZmkpmZi4NDDhs2/ERmZg4LFy7l0KGDrFy5kqQkMxcuJPDiizMICKjO\nzJkv8d13PzFgwHD27NnLhAmT2LBhPVlZeezbd5Q1a6L58MNPABg/fgz339+OnJx80tIymDPnbdau\njeazz9bwzDO1bvmzKO0PRqstrZvNZubNm8f7779vOXFt3bp1ODg48PTTT1u2a9SoEQcOHMBkMpGZ\nmUlcXBzNmze3Vqxbql3/z+V1txA5e10IIW5h06aNdO3ao8QYU+C6MaaAZYzpE088wuuvv3LdGFON\nRkNkZGvLvm80xvSppx4vMca0YcP7gOIxpv/Upk17YmOLR5tu3fornTp1uWmGfzpz5q9916/fAEdH\nRwA8PT2ZO/c1Jk4cz969e276/BMnjlG/fkO0Wi1arZaGDRtZ5qX/fQTqjUak3i6rHZFv2LCB1NRU\n/vWvf1nuu3z5Mu7u7oweXTy6LjQ0lFdeeYVJkyYxbtw4VCoVEyZMsBy924OPnxseBmeSlVqk74/G\nLzsbjbOz3fIIIURZDAzrc8uj5/JW0ceY6vV6fHx8OX/+LAcP7uff/36xTBn+TG3Z99/fw+zZM3nj\njbcJCgpm/vy5pVRHVeKj4vz8fMv+bjUi9XZZrZEPGzaMYcOGlWnbqKgooqKibr2hDahUKmpH+LFr\nWzaJjgEExO3Bo01be8cSQogK59oY06eeehYobkrDhw8oMca0Zs1A9u7dQ/36DW85xrRGjZrs2hVL\nkybNSrzOrcaY1q1b74ZjTAHat+/IihXLLEfHN8vwT7VqBfLTTxsBOHBgH3l5eQBkZmbg51cNs9lM\nXNweQkPDbzgutXbtOixb9gEFBQUAHD58iIceeoStW7fcWbFLIV+UvoHw+r6AnL0uhBClqehjTKG4\nkf/884+WQSw3y/BPkZFtyMvLZeLE8fz8848YjcV9YeDAITzxxDjmzXudkSMfYtWq5ahUXDcu1d8/\ngAceGMBTT41nwoTH6Nu3H9Wq+d9dwW+iyo8xhRufsPLlij0kXjbR9twX1Js7G62HbS9Qc6+qSCcH\n3cukzrYhdS4f98IYU2uTMaZ3IDzCj8QrZhJdA6mxMxavbj3sHUkIIe5J98IYU3uSRn4TYfWMbN98\nknh9KKbYGGnkQghhJffKGFN7kc/Ib8LFzZHqgV6YnIykXkwmLz7e3pGEEEKI60gjL0V4RPHJDQn6\nYExy0psQQogKSBp5KULqGNFoVMS7h2KK2VEu3/cTQgghypM08lLoHLUEhvmQ5eBBiqmAnDOn7R1J\nCCGEKEEa+S3U/vM75QluIZjlkq1CCHEdW44xPXnyBOfPnyvTtlevJjNv3us3fdweI0etQRr5LdQK\n8UbnqCHBPRTTrp0o/7h6jxBCVHW2HGP666+buXDhfJm29fb24YUX/nPTx+0xctQa5Otnt6DRqgmt\n68uRfYUkF7jgf+QQrg3us3csIYSoEEymdI4cOcTUqS/x6aef0L9/cWPcvXsn77zzFgaDN97ePgQE\nVKegoIDXX3+FpKREsrOzeeSR8bRp046JE8fTtGlzdu2KRa1W07NnbzZs+Ba1Ws2CBe9ZXuvUqZN8\n881X/PrrZry8vHj11elERrbBy8uL1q3bMX/+XLRaLWq1mpkz55CZmcm0aZP56KOVDBvWn379BvL7\n71vJy8tjwYLFbNmymdOnTzFo0FBef/0VAgKqc/LkCWrXrsOUKdM5efIEr7/+Mm5ueurWjSAtLZX/\n/OcVO1X65qSRl0F4hC9H9l0hwS2EwJgd0siFEBVO0prPMe/eVa771DdvgXHI8FK32bx5E61bt6Vl\ny1bMnfsaSUmJGI2+vP/+QqZPn2kZYxoQUB2z2cT990eWGCHapk07oPjo+b33PuKJJx7BZDKxePFS\nnnzyUU6fPkm1asWTzUJDw2jZshUdO3YhIqIBBQUFREa2JjKyNbt2xfDss/+mdu26LF26hB9//J42\nbdpbchYWFlKrVhAjRjzEyy9PZfc/anXs2BFmzJiFl5eBAQN6YTab+fjjDxg79jE6dOjE9OlTcHJy\nKtf6lhdp5GXgX9MTVzcdiUowpr1f4Zebi/rPkXZCCFGVbdq0kTFjxpUYYzp8+Kjrxpjm5uZaRoiu\nW/cVKpW6xAjQiIj6QHFDDw+vA4DBYCAjo/Qxn9ee5+XlzXvvvUtubg7JyUl063b9IK7SxodWr14T\nb28fAHx8jGRmZnDu3Fnuu68RAG3btmf37p23XR9bkEZeBmq1irAIX/btvEiy1oj/H3txbxlp71hC\nCGFhHDL8lkfP5a08x5j+fVDK7Yz51GqLR50uWPAmI0eOITKyNZ9+upLs7Kzrti1tv/8c1KIoSokx\nqX8fr1rRyMluZRQeUTy9RyaiCSFEsWtjTFes+Izlyz/ls8++xGQylRhjqigKe/fuASjzCNHSqFSq\n60aGAqSnp1G9eg3y8vKIifndMj70blSvXoOjRw8DxWe4V1TSyMvIx88NT28Xkl1rkn74GIU3GZkn\nhBBVRXmNMb0djRo14e2337humXvQoGFMnfo806dPZtCgYXz//be3XJa/lYceGseiRW/z3HMT8fLy\nKrHKUJHIGFPKPiJv9+9n2bX1LPUSttH4gVZ4yoSe2ybjCG1D6mwbUmfbsFedDx48gJOTE2Fh4axc\n+TGKovDQQ4/YPAeUPsa0Yv55UUFdW15P0IdgkovDCCHEPU2nc2DOnJlMmPAYe/fG0b//IHtHuiE5\n2e02eHg54xugJ/GyP+lntpKflISD0WjvWEIIIayg+Ktsn9g7xi3JEfltqh3hB6hIcAuSiWhCCCHs\nThr5bQqt54tKBQnuoZhjY2SKQKzfAAAgAElEQVQimhBCCLuSRn6bXFx11AjywuToQ1qymdwyXvNX\nCCGEsAZp5HfA8p1yN/lOuRBCCPuSRn4Hgmv7oNGqSfAIxbQzFqWoyN6RhBDCbmw5xrSs4uJ2M23a\nCwBMmfLcbWf6+7jUl1+eSm5ujnWClgNp5HdA56glKMybLK07qVlqso8fs3ckIYSwG1uOMb0Tc+bM\nv+3n/H1c6owZs3F0rJgDU8DKXz+bN28ee/bsoaCggMcff5yGDRvywgsvUFhYiNFo5I033kCn07Fu\n3TpWrFiBWq1m6NChDBkyxJqxykV4fT9OHU0iXh9CjZgduNStZ+9IQghhc7YcY3rixHHefXc+77yz\nBIBlyz5Ar3cnKCiYpUuX4ODggF6v59VX55TI2Lt3F7777ucyZ6pWzb/EuNSXXprKJ5+sJiPDzOzZ\nr5Kfn49arWbKlOmoVKobjkC1Jas18piYGE6cOMHq1atJTU1lwIABtGrVihEjRtCzZ0/mz59PdHQ0\n/fv3Z9GiRURHR+Pg4MDgwYPp1q0bnp6e1opWLmqFGHB00pLoHop5zzp8R45C7aCzdywhRBW1ffMp\nTh9NLNd9htT1pXXn0FK3seUY0/Dw2iQnJ2E2m9Hr9Wzb9htz587nwIH9vPzyawQEVGfmzJeIjd2B\ni4vLdVnLmmnZslUlxqVes3TpEvr06UeXLt355ZdNLFv2AePGPX7DEah6/c2vxFberLa03qJFCxYs\nWACAu7s72dnZxMbG0qVL8WVNO3XqxI4dO9i3bx8NGzZEr9fj5ORE06ZNiYuLs1ascqPRqAmtayRX\n7cRVPMjcv9/ekYQQwuY2bdpI1649SowxBa4bYwpYxpg+8cQjvP76K3c0xrRNm/bExm4nPj4eR0cd\nRqMvnp6ezJ37GhMnjmfv3j0l9vt3t5vpn44dO0KTJs0AaNq0OSdOFH+sem0EqlqttoxAtSWrHZFr\nNBrLX0TR0dG0b9+ebdu2odMVH7V6e3uTlJREcnIyBoPB8jyDwUBSUpK1YpWr8Ag/Dv9xhXh9MLVi\nd6Bv1tzekYQQVVTrzqG3PHoub/YYY9qhQye+/PIL0tPT6NChMwCzZ8/kjTfeJigomPnz59407+1m\nup7K8rz8/ALLiNMbjUC1JatfonXTpk1ER0ezbNkyunfvbrn/Zm+0LAXw8nJBq9XccrvbUdoF6W/G\nx9uNX747SpISgunAF9R3VqN1cy3XXPeiO6m1uH1SZ9uoynX+5pvVjBw5kilTpgDF//3u3r072dmp\n+PtXw2xOIjg4mEOH9tG4cWMKCrIJCwvGz8+DLVt+oLCwAKNRj06nxcvLFaNRj6OjA56eLiX+DX/V\nuWPH1ixY8AY5OZm8+uqrGI16srMzqV8/jIKCAvbv30vjxg3x9HTB0dEBo1GPSqXCaNTfViZnZx1u\nbjqMRj0ajRofHzeaNGnEyZOHqFu3Dzt3/kbjxvdhMLii1aot+bRaNQaDq01/L6zayLdu3cqSJUtY\nunQper0eFxcXcnJycHJyIiEhAV9fX3x9fUlOTrY8JzExkcaNG5e639TU6wfG3427mawTUtfIH7E5\nJOuqcfbHX/Bo16Fcs91rZFqUbUidbaOq1/mbb9YxbdqMEjXo3r0XX3zxFQ8//DgTJkykWjV/DAZv\nMjNz6dChO1OmPMeuXXvo3fsBfHyMzJs3n7y8AlJTM0lKMpObm09aWlaJf0PJqZd16zbgxIljODgU\n179//8EMGTKMmjVrMWzYKN57bwnjxz9Jbm4+SUlmFEUhKcl8W5nq1GnAjBmvkp+vorCwiOTkDEaN\nGsfs2TP53/8+Q6t1YOrU6aSkZFJQUGTJV1BQREpKJo6O5T+l82asNsbUbDYzYsQIli9fjre3NwDT\np0+nefPm9OvXj9dee406derQt29f+vbty5dffolGo2HgwIFER0eXeqKAvcaY3khygpk1H+/BmHGW\nlp4J1Hx+crlmu9dU9f/w2YrU2TakzrYhdS69kVvtiHzDhg2kpqbyr3/9y3LfnDlzmDZtGqtXryYg\nIID+/fvj4ODApEmTGDduHCqVigkTJtj0bL+75e3rhpePC1ephenEdvJTU3Hw8rJ3LCGEEFWE1Y7I\nrakiHZED7Nl+jp2/naFewjbui2qGoUfPckx3b5G/rG1D6mwbUmfbkDqXfkQuV3YrB+ERvgDEu4di\njpFrrwshhLAdaeTlwN3TGb/q7qQ6V8N0OYncy5fsHUkIIUQVIY28nNSO8ANUJLgFy1G5EEIIm5FG\nXk5C6hpRqfhzIlqMzS8IIIQQomqSRl5OXFx11Aw2YNJ5Y0rPI+fkSXtHEkIIUQVIIy9HlpPe9CGY\nYmV5XQghhPVJIy9HQeE+aLVqEtzDMO3eiVJQYO9IQggh7nHSyMuRzlFLULgPWVo30vMdyTx00N6R\nhBBC3OOkkZezv5bXQzHL8roQQggrk0ZezmqGGHB00pLgHor5jz8oysm2dyQhhBD3MGnk5UyjURNa\n10ie2pEUjYGMvXH2jiSEEOIeJo3cCsLr+wF/nr0uF4cRQghhRdLIrcC/hgdu7o4k6YMxHzlKQXq6\nvSMJIYS4R0kjtwKVSkV4hC8FKi3JztUx79pp70hCCCHuUdLIrSQ8onh5PcE9RM5eF0IIYTXSyK3E\n29cNg9GVq641MZ+7SF5CvL0jCSGEuAdJI7ei8AhfilCT5BqIOTbG3nGEEELcg6SRW1FYvT8vDuMR\niil2h0xEE0IIUe6kkVuRu6cz1Wq4k+rkhznZTO7ZM/aOJIQQ4h4jjdzKik96U5GgD5aJaEIIIcqd\nNHIrC61rRK1WkeARhnlnLEphob0jCSGEuIdII7cyZxcdNYK9MDt4YcpWkXX0iL0jCSGEuIdII7eB\na98pj9cHY5ZLtgohhChH0shtIDjcG62DmgSPcExxeyjKzbV3JCGEEPcIaeQ24KDTEhzuQ7bGlXTc\nyNz3h70jCSGEuEdYtZEfP36crl27smrVKgB27drFgw8+yOjRo3n88cdJ/3OYyNKlSxk8eDBDhgzh\n119/tWYku/lreT1Ezl4XQghRbrTW2nFWVhYzZ86kVatWlvtmz57Nm2++SUhICEuWLGH16tX07NmT\nDRs28Pnnn5ORkcGIESNo27YtGo3GWtHsokawF07OWhKVMMwHv6AwIwONm5u9YwkhhKjkrHZErtPp\n+PDDD/H19bXc5+XlRVpaGgDp6el4eXkRGxtLu3bt0Ol0GAwGqlevzsmTJ60Vy240GjWhdX3JU+lI\n1fli3i0T0YQQQtw9qzVyrVaLk5NTiftefPFFJkyYQI8ePdizZw8DBgwgOTkZg8Fg2cZgMJCUlGSt\nWHYVXv/P5XX3ELn2uhBCiHJhtaX1G5k5cyYLFy6kWbNmzJ07l08//fS6bcpyPXIvLxe02vJdejca\n9eW6vxvx8Xbjl++OkkwwGSd3oFeycfrbikVVYYtaC6mzrUidbUPqfHM2beTHjh2jWbNmALRu3Zr1\n69cTGRnJmTN/XYM8ISGhxHL8jaSmZpVrLqNRT1KSuVz3eTMhdYzsjckm2bUm577/GUOvPjZ53YrC\nlrWuyqTOtiF1tg2pc+l/yNj062c+Pj6Wz78PHDhAYGAgkZGRbNmyhby8PBISEkhMTCQsLMyWsWwq\nvH7xHykJ7qGYYmQimhBCiLtjtSPygwcPMnfuXC5duoRWq2Xjxo3MmDGDadOm4eDggIeHB7NmzcLd\n3Z2hQ4cyatQoVCoVr7zyCmr1vfv1dm+jGwajK8lJ1ck8vZW8ixdwrFnL3rGEEEJUUiqlEh4SlvcS\ni62XbfbGnCdmy2nqJv5Og1ZhGIcMs9lr25sskdmG1Nk2pM62IXWuQEvrolhYvT+X169NRCsqsnMi\nIYQQlZU0cjvQezjhX8ODVEdfMkw5ZB8/Zu9IQgghKilp5HZSfNKbigR9sFyyVQghxB2TRm4noXV9\nUatVJHiGk7FnN0X5+faOJIQQohKSRm4nTs4O1Aw2YNZ6Ysp3IPPAfntHEkIIUQlJI7cjy3fK9SGY\nZXldCCHEHZBGbkdBYT5oHdTFy+v7/qAwq3yvWCeEEOLeJ43cjhx0GkJqG8lWu5Cu9SIjbre9Iwkh\nhKhkpJHbWVhE8fJ6vFsIphhZXhdCCHF7pJHbWY0gL5ycHUj0CCXz2DHyU1PtHUkIIUQlIo3czjQa\nNWH1jOSpdKQ6+2PeKXPKhRBClJ008gogPMIPgHh9COZYaeRCCCHKThp5BeBX3R29hxNJ+iCyLlwk\n9/Jle0cSQghRSUgjrwBUKhXhEb4UoiHZtaZ8p1wIIUSZSSOvIMLr/7m87hGGOTaGSjhdVgghhB1I\nI68gDD6uePu6ctW5OlkpJnJOnbR3JCGEEJWANPIKJLy+HwoqEtwCZSKaEEKIMpFGXoGE1yu+OEyi\nZzgZu3ahFBTYOZEQQoiKThp5BeLm7kRATQ9SdUYycwrJPHzQ3pGEEEJUcNLIK5hrJ70luIVgjpHv\nlAshhCidNPIKJqSOEbVaRYJXbTL+iKMoJ8fekYQQQlRg0sgrGCdnB2qFGDBr3DHjQsbeOHtHEkII\nUYFJI6+A/lpeD5az14UQQpRKGnkFFBjmjYNOQ4JXbTIPH6LAZLJ3JCGEEBWUNPIKyMFBQ3C4D9kq\nZ9J13ph3xdo7khBCiArKqo38+PHjdO3alVWrVgGQn5/PpEmTGDx4MGPGjCE9PR2AdevWMWjQIIYM\nGcKaNWusGanSsFyyVR8q114XQghxU1Zr5FlZWcycOZNWrVpZ7vviiy/w8vIiOjqaXr16sXv3brKy\nsli0aBHLly9n5cqVrFixgrS0NGvFqjRqBHni7OJAkkcoWafPkJeQYO9IQgghKiCrNXKdTseHH36I\nr6+v5b5ffvmFBx54AIBhw4bRpUsX9u3bR8OGDdHr9Tg5OdG0aVPi4uRMbbVaTVg9X/JwIMUlAPNO\n+U65EEKI61mtkWu1WpycnErcd+nSJX777TdGjx7Ns88+S1paGsnJyRgMBss2BoOBpKQka8WqVMIi\niv8ISnAPwxSzQyaiCSGEuI7Wli+mKArBwcFMnDiRxYsX8/777xMREXHdNrfi5eWCVqsp12xGo75c\n91cefHzc2LLhGMmqQHJO/o5zeiL68DB7x7prFbHW9yKps21InW1D6nxzNm3kPj4+tGjRAoC2bdvy\n7rvv0rFjR5KTky3bJCYm0rhx41L3k5qaVa65jEY9SUnmct1neQmpY2TP9iySXGty/oef8fX0s3ek\nu1KRa30vkTrbhtTZNqTOpf8hY9Ovn7Vv356tW7cCcOjQIYKDg2nUqBEHDhzAZDKRmZlJXFwczZs3\nt2WsCi382vK6ZzjmXbEoRUV2TiSEEKIisdoR+cGDB5k7dy6XLl1Cq9WyceNG3nzzTV5//XWio6Nx\ncXFh7ty5ODk5MWnSJMaNG4dKpWLChAno9bKEco2Xjys+fm5cTfAn+3IOWUcO41q/gb1jCSGEqCBU\nSiU8g6q8l1gq+rLNH7Hn2fHLaeok7iCigQ/VHnnM3pHuWEWv9b1C6mwbUmfbkDpXoKV1cWfC6v25\nvO5Vm4y4PRTl5dk5kRBCiIpCGnkl4ObuREAtT9IcvMks0JC57w97RxJCCFFBSCOvJMLr/3lU7hYi\nE9GEEEJY3HEjP3v2bDnGELcSWseIWqMi0VCbzAP7KczIsHckIYQQFUCpjfzhhx8ucXvx4sWWf7/0\n0kvWSSRuyNHJgcAQb8xqPRkaPeY9u+wdSQghRAVQaiMvKCgocTsm5q/rfVfCk90rvWvL6/H6UMwx\nsrwuhBDiFo1cpVKVuP335v3Px4T1BYZ646DTkOgVTtaJ4+QnyzXphRCiqrutz8ileduX1kFDSG0f\nsnEi3cmX+OXLUAoL7R1LCCGEHZV6Zbf09HR27PhrCddkMhETE4OiKJhMJquHE9cLr+/HsYMJXA26\nH8+j35K89iuMg4bYO5YQQgg7KbWRu7u7lzjBTa/Xs2jRIsu/he1VD/TE2dWBK4XVqG30I/X773AK\nDkHftJm9owkhhLCDUhv5ypUrbZVDlJFarSasri8H9lwis/tDOK9ZQMKyD3EMqI6uWjV7xxNCCGFj\npX5GnpGRwfLlyy23P//8c/r168fTTz9dYvSosK37WtRA56glZncy2gEPUZSTw+XF71KUk2PvaEII\nIWys1Eb+0ksvcfXqVQDOnDnD/PnzmTx5Mq1bt+b111+3SUBxPXdPZ7o+UI/CQoVtJzQ4d+hO3uVL\nJKxYJl8LFEKIKqbURn7hwgUmTZoEwMaNG4mKiqJ169YMHz5cjsjtLDDUm/vbB5NhyiVOXQ9daBjm\nXTtJ2/SjvaMJIYSwoVIbuYuLi+XfO3fuJDIy0nJbvopmf01b1SI43IfLF9K52GgAGnd3ktasJuv4\nMXtHE0IIYSOlNvLCwkKuXr3K+fPn2bt3L23atAEgMzOT7OxsmwQUN6dSqejcpy6e3i4c2J9Edq/i\nS+peeX8xBWlpdk4nhBDCFkpt5I899hi9evWib9++PPnkk3h4eJCTk8OIESPo37+/rTKKUugctUQN\nbICDTsOOP8xoew2jMD2dy0sWofzjErtCCCHuPSrlFmdH5efnk5ubi5ubm+W+bdu20bZtW6uHu5mk\nJHO57s9o1Jf7Pm3tzIlkfvjyIHoPJ9oq+8iL24Fn1274Dh9p72gl3Au1rgykzrYhdbYNqXNxDW6m\n1CPyy5cvk5SUhMlk4vLly5b/hYSEcPny5XIPKu5ccLgPzdoEYk7P4YDn/Tj4B5C26SdMsTG3frIQ\nQohKq9QLwnTu3Jng4GCMRiNw/dCUTz75xLrpxG1p0TaI5PgMzp26iqHlMPx+eI+EFctwrF4dxxo1\n7R1PCCGEFZR6RD537lz8/f3Jzc2la9euLFiwgJUrV7Jy5Upp4hWQSqWiS9+6eHg5s/9gKjm9xqLk\n5XF58UIKs7LsHU8IIYQVlNrI+/Xrx7Jly3j77bfJyMhg5MiRPProo6xfv54cuYpYheTo5EDUwAZo\nHdTsOJKHulNf8hMTiF/2IUpRkb3jCSGEKGdlGmPq7+/Pk08+yffff0+PHj147bXX7HqymyidwehK\n5971KMgvItZcHW2dBmT+sZfUHzbYO5oQQohyVupn5NeYTCbWrVvHV199RWFhIY8//jh9+vSxdjZx\nF0LrGmkSWYu9Mec5XKsz9RIvk/z1lzgGBuFav4G94wkhhCgnpTbybdu28eWXX3Lw4EG6d+/OnDlz\nqF27tq2yibt0f/tgkhPMXDiTiqHdKHy+W8SVD5cQOH0GDt7e9o4nhBCiHJT6PfK6desSFBREo0aN\nUKuvX4WfPXu2VcPdjHyPvOxysvOJXr4Hc3oO7WoXodvwCY5BwdScPBW1g87mee7lWlckUmfbkDrb\nhtS59O+Rl3pEfu3M9NTUVLy8vEo8dvHixVu+8PHjx3nyyScZO3Yso0aNsty/detWHn30UY4dK74m\n+Lp161ixYgVqtZqhQ4cyZMiQW+5blI2TswM9BzXgq5VxxJzV0OH+juTu3ELSZ//D76GH7R1PCCHE\nXSr1ZDe1Ws2kSZOYPn06L730En5+ftx///0cP36ct99+u9QdZ2VlMXPmTFq1alXi/tzcXD744APL\nd9OzsrJYtGgRy5cvZ+XKlaxYsYI0uU54ufL2daNjzzrk5xWyW6mHumYw6b/9SvrWX+0dTQghxF0q\ntZH/97//Zfny5ezcuZN///vfvPTSS4wePZqYmBjWrFlT6o51Oh0ffvghvr6+Je5fsmQJI0aMQKcr\nXtbdt28fDRs2RK/X4+TkRNOmTYmLi7vLtyX+KTzCj0b31yAtNZtj4X1QubiS+L+V5Jw9a+9oQggh\n7kKpS+tqtZrQ0FAAunTpwuzZs5k8eTLdunW79Y61WrTakrs/c+YMR48e5ZlnnuGNN94AIDk5GYPB\nYNnGYDCQlJRU6r69vFzQajW3zHA7Svv84V7Rd3Aj0lNyOHsyGf8ej+C2diEJHyyi0Vtv4OBuu/df\nFWpdEUidbUPqbBtS55srtZH/c+a4v79/mZr4zcyePZtp06aVus0tZrgAkJpavlcpq0onUnTsVZvo\n5WZiD5hp23EQ/BLNwTlvUv2Z51Dd4ITG8laVam1PUmfbkDrbhtT5Loam/NM/G/vtSEhI4PTp0zz/\n/PMMHTqUxMRERo0aha+vL8nJyZbtEhMTr1uOF+XH2UVH1MAGaLRqdiZ6oNRvQdahg1xdt9be0YQQ\nQtyBUo/I9+7dS8eOHS23r169SseOHVEUBZVKxZYtW8r8Qn5+fmzatMlyu3PnzqxatYqcnBymTZuG\nyWRCo9EQFxfHiy++eNtvRJSdsZqeDlG12fztUfYamtHM5wIp367DKSgYt8ZN7B1PCCHEbSi1kf/w\nww93vOODBw8yd+5cLl26hFarZePGjbz77rt4enqW2M7JyYlJkyYxbtw4VCoVEyZMQK+Xz0KsrU6D\naiRdMXNgzyVONhxI6LYPif/oA2pNewWdn5+94wkhhCijUi8IU1HJBWHKR2FhEes/28eVi+k0DlLj\nvWkZuuo1qPXidNSOjlZ5zapaa1uTOtuG1Nk2pM7l+Bm5uLdoNGq6D6iPq17HvnNF5ET2Iu/SRRJW\nLi/TSYdCCCHsTxp5FefiqqPHgAao1Cp2ZwRQFBKBOWYH6b/8bO9oQgghykAaucAvwJ323WuTm1PA\nPp/2KHpPEld/RvbJE/aOJoQQ4hakkQsA6jXyJ6JJACkpOZxpOgylqIjLSxZRkJ5u72hCCCFKIY1c\nWLTtGka16u6cuZRLSrsHKUxL48r7i1EKC+0dTQghxE1IIxcWGo2a7v3r4+KqY98VHdn3tSf7+DGS\nvyz9uvpCCCHsRxq5KMFV70j3AfVRqVTEKbUp8A8i9ccfMO/eae9oQgghbkAaubiOfw0P2nYLIye7\ngIO1elDk5EL8xx+Re/myvaMJIYT4B2nk4oYiGgdQ975qXL2ay7nmD1KUm8vlxe9QmJ1t72hCCCH+\nRhq5uCGVSkW77uH4+us5HV9ISssB5MfHk7D8I7lYjBBCVCDSyMVNabUaegyoj7OLA/tTPckKb07G\nnt2k/njn1+AXQghRvqSRi1K5uTvRvX99FEXhD6fG5BuqkRz9BVlHj9g7mhBCCKSRizIIqOVJ6y5h\nZGcXcDisL0VqLVfeX0x+Soq9owkhRJUnjVyUScNm1ald34/klHzO3f8ghWYzV5YspCg/397RhBCi\nSpNGLspEpVLRIao2Pn5unE5Sc7VRFDmnT5P0xWf2jiaEEFWaNHJRZloHDVEDG+DkrGV/tj+ZNeuT\n/stmTNt/t3c0IYSosqSRi9ui93CiW7/ik9/2e7Yi39WLhJXLyTl/zt7RhBCiSpJGLm5bjSAvIjuG\nkpVdwJF6AynML+TKewspzMy0dzQhhKhypJGLO9Lo/hqE1fMlKa2Q882Hkp+URPzS91GKiuwdTQgh\nqhRp5OKOqFQqOvasg8Hoyqk0J5LrdiDzwH5Svltv72hCCFGlSCMXd8xBV3zym6OTloNKCJm+IVxd\nt5bMA/vtHU0IIaoMaeTirnh4OdP1gXoUFirs9+tEvoMLVz58n/ykJHtHE0KIKkEaubhrtUK8adkh\nmKzsQo42GEJBVhaX31tIUV6evaMJIcQ9Txq5KBdNImsRUseHRBOcb9Sf3PPnSFz1iUxKE0IIK5NG\nLsqFSqWiU6+6ePm4cCrTg+Tglpi2byP9t1/tHU0IIe5pVm3kx48fp2vXrqxatQqAK1euMHbsWEaN\nGsXYsWNJ+vNz1HXr1jFo0CCGDBnCmjVrrBlJWJHOUUvUwAboHDUc1EWQ4VmDpM9WkX36tL2jCSHE\nPctqjTwrK4uZM2fSqlUry31vv/02Q4cOZdWqVXTr1o2PP/6YrKwsFi1axPLly1m5ciUrVqwgLS3N\nWrGElXkaXOjSt/jkt4M1u5OraLny3kIKzCZ7RxNCiHuS1Rq5Tqfjww8/xNfX13Lfyy+/TI8ePQDw\n8vIiLS2Nffv20bBhQ/R6PU5OTjRt2pS4uDhrxRI2EBTmQ4u2QWRmF3GswWDyUlO58v57KIWF9o4m\nhBD3HK3VdqzVotWW3L2LiwsAhYWFfPrpp0yYMIHk5GQMBoNlG4PBYFlyvxkvLxe0Wk255jUa9eW6\nv6ouql8D0lOzOX4oAa8Gvalx8FuyfvwWHholtbYRqbNtSJ1tQ+p8c1Zr5DdTWFjICy+8QGRkJK1a\ntWL9+pJXAivLWc6pqVnlmslo1JOUZC7XfQpo2y2chCsmjqX44BTQCL78GvORo6ir18IpKAinwGAc\nfH1RqeWcy/Imv9O2IXW2Dalz6X/I2LyRT506lcDAQCZOnAiAr68vycnJlscTExNp3LixrWMJK3B0\n0tJzYAO+/CSOQ5qmRAbmYzp6FA4fsWyjdnbGsVagpbE7BgXjYDSiUqnsmFwIISoPmzbydevW4eDg\nwNNPP225r1GjRkybNg2TyYRGoyEuLo4XX3zRlrGEFXn5uNK5d102fn2I/cb29Hr0cbh6GeIvkHP2\nDLlnz5J9/BjZx45anqN2ccEpMAjHwCCcgoJxCgxC6+MjzV0IIW5ApVjpih0HDx5k7ty5XLp0Ca1W\ni5+fH1evXsXR0RE3NzcAQkNDeeWVV/jhhx/46KOPUKlUjBo1igceeKDUfZf3Eoss21hf7G+nidt+\n3nLbzd0RYzU9xmp6vL10uOenooo/T87Zs+ScO0N+QkKJ56tdXS1N/VqD1xoM0txvQn6nbUPqbBtS\n59KX1q3WyK1JGnnloygK50+nYE7N4dzpqyTFm8nOyi+xjZu7I0Y/PcZqbhi8HHDPT0N15Rw5Z8+S\ne+7Mdddv1+j1OAYG/7ksH4RjUDBaT09p7sjvtK1InW1D6lzBPiMXVZNKpSIw1Nvyf0hFUcg055IU\nn0FSvJmkBDNJ8WbOnEjmzIm/zplw1XthrFYTY8NeeHto0eeloo4/R865s+ScO0vWwf1kHfxr2prG\nw6PksnxQEFoPT3u8ZWUG2PwAACAASURBVCGEsAlp5MIuVCoVbu5OuLk7EVzbByg+as/MyCtu7PFm\nkuPNJMVncPbEVc6euGp5rqubAZ9qgRgb9sHbQ4M+N8XS3HPPnSVz/z4y9++zbK/18ipu7H82d8fA\nILTu7jZ/z0IIYQ3SyEWFoVKpcNM74qZ3JDjcx3J/Zkbun809w9Lgz528yrmTfzV3FzcfjH7BGO9z\nw+CuQZ97FU3C+eIj97NnyPxjL5l/7LVsrzV4/7kc/9cJdZo/z90QQojKRBq5qPBc3RxxDXMkKOyv\n5p6V8bdl+T+X5s+dusq5U39r7q5GjNWC8Wn0AN56Ffqcq6jiz5N3/iw5Z86QsXcPGXv3WLbX+vhY\njtqdgoJxrBWIxtXVpu9VCCFulzRyUSm5uDkSGOZIYJi35b6szL+W5a8dwZ87lcK5UymWbZxdfTH6\nh2Js7IbBTYU+9yrq+HPknjtL7tmzZOzZTcae3ZbtHYy+uNSLwPW+RrjUi0Dt6GjT9ymEELcijVzc\nM1xcdQSGehMYWrK5J/9/e3ceJldd53v8fZbaq3qv6qSzdBYgTdJJB0hAA4gIBEZn4CpoMJJRr9d7\nR5xxZi6jMHEUFEdFx+eZh5HBDR8ZHC44wQVnHERRFCVk69AJIQvpdHpJ73tV13qW+0dVV1cnnXQC\n3VW9fF/PU09VnXOq+te/OlWf3+93fnWqKzyu997S2E9Lbrh7FxCsupiKy/yU+SEQ70XrbCHR3ET8\nZBNDv3+Rod+/iOJwZEPdt249jpxTCwshRKFIkIs5zetzsnRFOUtXjIV7LJocF+y9nWFaTvTTcmIs\n3N3ehQQXX0Lwch9BRxRf+2FiBxtyJtL9G64lS/HVpUPdvWy5nGpWCFEQEuRi3vF4nSxdUcbSFWM9\n6lg0SW9XZNywfOuJfloz4e5wLmRx3WoW3eSgLNKCfaSB2NEjJFpb6P/Pn6MFijI99Tp8a9aguj2F\n+veEEPOMnBAGOdlAPs2muo7HUnR3DNN6YoDmE30M9cey68qCPpZWFxFkEG/ra8QONmAOp39zXdF1\nPKtq8K2rw79uPY5gMO9ln031PJtJPeeH1LOc2W1SspPkz2yu66GBGC0n+mhp7OdUyyCmYQHgdGks\nXlbKwiKL0oFGrNdfJdHSnH2cs6oK37r1+OvW416xEkWb2p/gnchsrufZROo5P6SeJcgnJTtJ/syV\nuk6lTNpbBmlp7Ke5sY/wUDy7rqLSz+IqLxXJLtwnXiV+5HXsVPp0tKrPh692XfrYeu1aNO/0fL1t\nrtTzTCf1nB9SzxLkk5KdJH/mYl3bts1g/1hvvb11EMtMv61cbp3F1cVUumKUdB/BPLQfY2Ag/UBV\nxXPxJekh+Lr1OBcsnLIyzcV6nomknvND6lmCfFKyk+TPfKjrVNLgVPMgzSf6aWnsIzKcyK4LLgyw\nqFyjfKQN1/F6Ek0nsusclZXpIfh1dXguvgRFf/NzUedDPc8EUs/5IfUsQT4p2UnyZ77VtW3bDPRG\naTnRR3NjP51tQ1hW+i3n9jhYvNhPSBmkuP0QqcMHsBPpIXrV48G7Zi3+ujp8tevQAmd/E09kvtVz\noUg954fUs/z6mRAFoygKZUEfZUEf669aSjJh0HZyIP299cY+jr8xwHFAUVYTvPIqqopMyoaaUI7s\nIbJ3N5G9u0FRcK9Yib9uPb669TirFslPtQohsiTIhcgjp0tnxaogK1YFsW2bvu6R7LH1zlNDdHcA\nVOKpei+LrnATNHoINDcQbzxCvPE4vT/egV5enpkFX4dnVQ2qw1nof0sIUUAytI4M2+ST1PXZJeIp\n2k4O0NzYT8uJPmIj6ZnuigKVC/xUumOU9h5DP7IXO5b+TrvicuFdvQb/ujp8a+vQS9K/vS71nB9S\nz/kh9SxD60LMCi63g5U1IVbWhLBtm96uCC2NfTSf6KerfZhOG2Al3lWXsqhcpSLege/4Xkb21zOy\nvz79HMuW469bj/9PbgRdfrlNiPlAeuRIay+fpK7fnHgsRWtT+sdeWk70E49lvpeuKlSGPIS0YYo7\nX0c/3oBimqAo+C+7nNLNt+C56OICl37ukv05P6SepUcuxKzn9ji4eHUlF6+uxLLszK+49dFyop+O\njjAd6MA6fGs3sDBgUNlej12/j0j9PtwrL6J08834L7tCfthFiDlIeuRIay+fpK6nXnQkme2ttzb1\nk4gbAFSUOlg2cozA679HxcYRDFJy080UX32t/K76FJH9OT+knuV75JOSnSR/pK6nl2VZtLcMcfRg\nJ8cOdQHg9+usULsoO/grtFQc1euj5J3XU/KuG7OT48SbI/tzfkg9S5BPSnaS/JG6zo9gMMCxI10c\n2NPK0de6MA0Lp0tjuX+EysMv4BjuAU2j6Kq3U3rzLbgWLS50kWcl2Z/zQ+pZgnxSspPkj9R1fuTW\ncyya5FB9OwfrTxGPplBVhaVlFlXNL+PpeAMA75paSjffgnf1GjnZzAWQ/Tk/pJ5lspsQ85rH62TD\nNctY/7YlHDvUxYHdbZzsjXLSdzULrrqOpf0HsQ/tInroNZyLl1C2+RYCV171ls71LoTIH+2BBx54\nYLqe/NixY2zZsgVVVVm3bh0dHR3cfffd7Nixg9///vfccMMNaJrGs88+y/bt29mxYweKorBmzZpz\nPm80mpzScvp8ril/TjExqev8mKieVVUluCDAmsurCC0sYiSSpKMzyimCDCzfiDtUgd54kJH6vQz9\n4fdgGDirFqE65cxxZyP7c35IPafr4Gym7bso0WiUBx98kLe//e3ZZQ8//DBbt27lySefpLq6mh07\ndhCNRnnkkUf4wQ9+wBNPPMHjjz/O4ODgdBVLiHlPURSqLyrntq3rueMjV3Dx6hBDwyn2j1TxypqP\n0LnxduIJi94f7+DEZ/4v3f/v30n19BS62EKIs5i2IHc6nXz3u98lFApll+3atYsbbrgBgOuvv56d\nO3fS0NDA2rVrCQQCuN1uLr/8curr66erWEKIHMEFAW68dTV3feJt1F25BNOyOTQQ4OXqO2h+24eI\n+4MMvvArmrZ/hvZHv0nsRGOhiyyEOM20HQTTdR39tGNssVgMZ2aYrry8nJ6eHnp7eykrK8tuU1ZW\nRs8krf/SUi+6rk1pec81kUBMLanr/LiQeg4GAyxfGeSW29awf1cLu15q4nivxfGyG1l+qc6iU3tg\n314i+/YSuLSGRbfdStmVG1C0qX0fzkayP+eH1PPZFWw2y9kmy5/PJPqBgeiUlkVmROaP1HV+vJV6\nXrk6xPKaChqP9NCwu42mzjBN2mUEN26keuQY9usvET78NRyhSkpv2kzRpmvm7QlmZH/OD6nnGTRr\n3ev1Eo/HcbvddHV1EQqFCIVC9Pb2Zrfp7u5m/fr1+SyWEOI0qqpy8epKLro0REfrEK/ubqX5eB89\nrMC//hJWKJ2UvfZruv/9CXp/9pP0CWauvxG9uLjQRRdi3snriZc3bdrEL3/5SwCef/55rr32Wurq\n6jh48CDDw8OMjIxQX1/Phg0b8lksIcRZKIpC1dIS3n3HWu78+JWsXr+QWNziQLiCly/+EKeu3EJc\ncdH/nz+n6d576PzBYyROnSp0sYWYV6bthDCvvfYaDz30EKdOnULXdSorK/mnf/on7rvvPhKJBFVV\nVXzlK1/B4XDw3HPP8dhjj6EoCnfddRe33nrrOZ9bTggze0ld58d01vPZTjCzqPmPuDuOA+CtXUfZ\nzbfgqbl0Tp9gRvbn/JB6ljO7TUp2kvyRus6PfNSzkTI5dqiLhj1tDPal560sLNdY0ncQ//HdKIBr\nyVJKN99CYOOVc/IEM7I/54fUswT5pGQnyR+p6/zIZz3btk1LYz+v7m6lvSV9DoiSYgfLkicpfe03\nqLaJXlpGyQ03UvyOd6J5vXkpVz7I/pwfUs8S5JOSnSR/pK7zo1D13NMZpmF3K8cPd2Pb4PHorHD1\nUXHo1+ixMIrLTfG176D0xptwVATzXr6pJvtzfkg9S5BPSnaS/JG6zo9C13N4KM7BfW28/moHqaSJ\nrqssK06w4I3f4upvB1UlcMUGSjffgnv5ioKV860qdD3PF1LPM+jrZ0KI+SFQ7GbTuy5iw9XLONzQ\nwYG9bRzvszhetpkllyjpE8zs2U14z248l6yidPMt+NbVoah5/SKNEHOCBLkQYto4XTp1Vy6h9opF\nnDjaQ8PuVlo7I7S6NlCx8W1UR45iH/4DsWNHcS1ZSvDOrXhX1RS62ELMKhLkQohpp2kTn2Cml5UE\n1q9imXWK8oO/ou3rX8V/+RVUvH8LzmBo8icWQkiQCyHyZ/QEM1VLSxjoG+HAnjaOvtbFQaMSb+2H\nuST6Onb9TkYONFBy082Uv+dPUd2eQhdbiBlNJrshEynySeo6P2ZTPceiSQ7saaNhTxumYVFRpHBR\ny4v4epvQioupeO8dFG26ekYeP59N9TybST2fe7LbzHtnCCHmFY/XyVXXreDO/7WRlTVBeodtXim5\njsYNHySWsOn6wWO0/OMXib1xrNBFFWJGkiAXQswIRSUeNv+PNdz6wTrKgz5ODrp4ZfkddK57N7Hm\nFlof+jId3/5XUn19hS6qEDOKBLkQYkZZVF3KHR/dwDtuvgRNVzkUDbF3/f9kcPkGhvfs5uQ/3Efv\nT3+MlUgUuqhCzAgS5EKIGUdVFdZcVsXW/3MVazcsIjJisE+r5fDGjxINVNL/n8/S9Nl7Gd75R2zL\nKnRxhSgoCXIhxIzlcju45saL+cDHNrJ4WSkdAzavVNxEy8YtJKJJOh/7Lq1f/RKxxuOFLqoQBSNB\nLoSY8coqfPzplnXccnst/iIXbwx42HXJB+ldu5nYiSZav/IlOr77bVL9/YUuqhB5J98jF0LMCoqi\nsPziCpYuL+PA3jb2vdxMQ7KK0is+xqre3bBrJ5H9+yj7k/dQuvkWVJer0EUWIi+kRy6EmFU0XeWy\nty3lg//7SlatXcDAkMErjst5420fIeEtpe9nP+Hk5/6e4d2vMAtPkyHEBZMgF0LMSj6/i3e9p4bb\nP3w5lVVFtPTCy5Xvpv3K95MMj9D5nW/R+tV/JN50otBFFWJaSZALIWa10MIi3rvtMm740xrcHgeH\n+33sXr2NwbXvItZ4nJZ//CKd3/8uxuBAoYsqxLSQY+RCiFlPURQuqV3A8ksqqN/ZQsPuVvaZSwld\n9XEu7vgjvPxHwvv2UvbuP6V0882oDmehiyzElJEeuRBiznA49fTpXj9+JcsvqaC7L8UfnVdyctNH\nSLkC9P3kGU5+bjvhvXvk+LmYMyTIhRBzTlGJh1veV8uf3VlHWdBHYze8vPg2eq56H8mBITq+9Qht\nX/8q8ZbmQhdViLdMglwIMWctXlbK+z96BdfedDGqqnCgr4j69R8lUvsOYseO0vLgA3T+4PsYQ0OF\nLqoQb5ocIxdCzGmqqlJ7xSIuWh1iz0tNHNrfzi57BYs21bCy+bcM/+H3RPbupuw9t1Jy402oDkeh\niyzEBZEeuRBiXnB7HFy7+RLe/9ENLKou4VR3kj/4ruHUNX9OyuGm95kf0fz5zxLZv0+On4tZRbFn\n4R47lT8wH40bNPWMUFXipjQgZ4KabsFgYEpfPzExqedzs22bpmO9vPybRsJDcTwenUu9vZTs/U8U\n08BTcymhO7fiWrzknM8j9ZwfUs/pOjibvAb5yMgI9957L0NDQ6RSKT75yU8SDAZ54IEHAFi1ahVf\n+MIXJn2eqXxBX9jXxr//6hgAFy0qZkNNiA2rgpQVuafsb4gx8obMD6nn82MYJg2726jf2YyRsigv\nc1ETOYD79Z2gKBS/452U/4/3ogeKJny81HN+SD3PoCD/4Q9/SFdXF/fccw9dXV18+MMfJhgM8ulP\nf5p169Zxzz33cOutt3Lddded83mm8gU1TIt9x/v43b5WjrYOMlobKxcVsXFViA01IQn1KSRvyPyQ\ner4wkXCCXS+e4NihLgCWVTlZ9sav0DqaUD0eyv/sNkredSOKPn5akdRzfkg9nzvI8zrZrbS0lKNH\njwIwPDxMSUkJp06dYt26dQBcf/317Ny5c9Ign0oH+l7jyY6nuGT1Sj60aTWp3iANx4Y52jpI46lh\nnvrNcVZUFbFhVYgNNUEqij15K5sQIj/8ARc3/NmlrLm8ij/++jgn28O0FV9PzcXXENr7U3p+9BSD\nv3uR4AfuxLeuDkVRCl1kIbLyfoz8Yx/7GC0tLQwPD/Poo4/yxS9+kZ/+9KcA7Ny5kx07dvCNb3zj\nnM9hGCa6rk1JeVqH2vnXXf9G40D6+6SaqlFXeSl1wXUk+0PsOdjLweO9WJlaumRpCVevW8TVdVVU\nlnmnpAxCiJnDtmwa9rbxwi8OMxJOUFzsYp2vC8cfnkWxLErW17H8Yx/Fu/Tcx8+FyJe8BvnPfvYz\n9u7dy4MPPsiRI0f45Cc/SSAQyAb5yy+/zDPPPDNpkE/1EEswGOBwy0nquw9Q39VAa6QdAF3RuLR8\nFZeWrCbZV0HD0SGONA9iZaps+cJA5ph6iGCJ9NTPhwyR5YfU81uXTBjU72ymYU8blmmzoNLDJf17\ncRzeA6pKyTuv56IPbWHYltO9TjfZn2fQ0Hp9fT3XXHMNADU1NSQSCQzDyK7v6uoiFArls0hZFZ5y\nNldfz+bq6+mO9lDffZD67gYO9r7Owd7X0VWdNWtq+Mim1cT7ymk4Osjh5kGaOsL8x28bqV4QYGNN\n+ph6SEJdiFnP6dJ52ztXcmndQl5+oZGTx/voUtZw0fWXseTwLxj8zQvs/c0LaCUluJevwL1sefai\n+XyFLr6YR/Ia5NXV1TQ0NHDzzTdz6tQpfD4fixYtYu/evWzYsIHnn3+ebdu25bNIEwp5g9yy7F3c\nsuxddI50U9/dQH33ARp6XqOh5zUcqoPaNTV89Oo1JPrKefXoAIebB2juDLPjxUaqKwNsqAmysSZE\nqFSG34WYzYpLvfzJHWtpbernj78+zhutUZrLb6Z2TYrl4cOEj73ByP56RvbXZx/jqKzEvWwF7uXp\nYHctrUZ1Ss9dTI+8f/1s+/bt9PX1YRgGf/3Xf00wGOTzn/88lmVRV1fH3//930/6PNMxtH4+z9ke\n6UwPv3c30BXtAcCpOlhbsZrVJWuI9Zax/1g/h08OYGYOqi+t9Gd76pUS6jJElidSz9PDNC0O7W9n\nz0snSSYMXG6d4IIAFWUOSgkTGGrDbjlBvLkJKxode6Cm4apaNNZzX74cZ9UiFG1q5vrMdbI/z6Cv\nn02VQgX5KNu2aR/ppL6rgX3dDfTE+gBwac6cUC9l/9EBXj/Znw31JSE/G2pCbKwJsWCeTpSTN2R+\nSD1Pr1g0Sf3LLbS3DNLbHRm3rrjUQ2hhgIqAQrHRh6e3meTJJhItzdipVHY7xenEtbQ6E+zpgHeE\nQjIjfgKyP0uQT+qt7CS2bdMWaae++wD7uhroi/cD4NbcrAuOhnoJ9Uf7OdQ0FuqLg3421gTZUBNi\nYfn8OZ4mb8j8kHrOj2AwQFtrP13tYbrah9OXU8MkE2NzfzRdJbggQOUCP2XuFEXRbtSOE8Sbmkie\naoOcj2DV68sOx4+Gu15SUoh/bUaR/VmCfFJTtZPYtk1LuC0z/H6A/vgAAB7dTV1FLWtKVxPpKWH/\n0T4OnezHMEdD3Zftqc/1UJc3ZH5IPefHRPVs2zaD/VG6Tg1nw72/ZyQ3r/EFXCxYVEQo5KVUHcE3\neIpUSxPxphOkerrHPZ9eWpYdjncvX4Grehmad36N6Mn+LEE+qenYSWzb5uRwa3ai3GAi/TOJXt3D\n+mAtq0trGekpov5oH6819WVDfVFFOtQ31IRYVDH3Ql3ekNMnmTIZjCQYGkkSqgiQSiQJeJw4HaoM\n106T892fU0mD7o7xvfZYdGyYXVUVKir9VFYVESxzUmwMoHe3kDh5gvjJJszTfmbVUbkg03NPT6hz\nLV2K6pi7k+nkc0OCfFLTvZNYtsXJ4Rb2dTWwv/sAQ8n03/I7fNQFa6ktrSXcE6D+aC8HT/RjmBYA\nVRU+NqxKz35fFPRPW/nySd6QF86ybIZGkgxGEgyGEwxGEgxEEgyGk+nrzPKRuDHh4x26it/jIOBx\nEPA68Hud2ft+ryNnnTN7X9fkhxHPx5vdn23bJjwUHwv29mF6OyNY1tjHsdvroLKqiMqqABUBlUC0\nC7PtJImTTcRPNmHFYmNPqGm4Fi0eNyzvXFg1ZybTyeeGBPmk8rmTWLbFiaHmdKj3HCCcTE+UCTj8\nrA+tpbZ0DcPdfvadFuoLy73Z2e+LKnyztoclb8gxtm0TTRgMjIZzOMFgJDkW1pnroZEk53qXelw6\nJX4npQEXJX4XxX4nDqdOT98I4ViKSDRFJJYiHE2RSJnnVTaPS8PvceD3OAl4Twv9TEPAn2kYBLxO\nvG4ddZbuk2/FVO7PhmHS2xUZNyQfGU5k1ysKlFb40uG+MEC5O4mrv43EyZPERyfT5ZyXQ3E6cVcv\nS3/9LTMs76gIzsrPDvnckCCfVKF2Esu2OD7YxL7uBl7tPkgkNQJAkTPAZaG11JbWMtTty4R6Hylj\nLNTXX1SB3+NAVRVUVUEbvVZOu3/W9eq45RfyHG/lA3u+vCFHh7mz4ZwTzIM5y5KZ13QiuqZQ4ndR\nEnBR6k+HdDqsx0K7xO/C5Tyz13W2ek6mTCKxTLCPC/nkGaEfiSUJR1PZCZrnoijgc2d6/KeFfO59\nvyfd6w94HLid2qwMlVzTvT+PhBPjeu09HWGMnH3G6dKorCoiVFVEZaWPEsLY7c3ETzalJ9O1nxo/\nmc7vx1m5AM3vR/P50Hx+1My15s/czlmnuFwz4jWaL58b5yJBPomZsJOYlskbgyeo727g1e7XGDHS\n30EtdhZxeWgdtWW1DHV72Xu0h4ONfecMgHwY1wA478aDgtvtAMtC11R0XU1fawoOTUXTVByaiq4r\n6OrYeoem5KxT0VUlZ52Klnn86et0TUHXVDRVmbIPI9OyGB5JZQN5dGj79N702Ya5ARSgyOccF8wl\ngdygTl/73PpZy21aJpFUlHAyTDgVIZyMEElGCKdGiCQjBHxeVEPH6/Di1T34HF68uhefw4NH9+J1\neHCok58PyrZt4kkzJ+STmZDPaQCMu59iJJbifD5UdE0Z1+t3OzUcevo1dejp19OpZ5blLD/joqk4\ndA1nzjI9s9zpUNHU6TtMMF3zawzTImVYJDOXlGGRMkziCZOh/igDXRGG+qJE+qMkR1LjHq+5dVSv\nAzw6tm7jGekhMNBBYKCTkuFOfPEwynm9QoCmpUPd7z8t9EcbAf6c9b7sesXpnNIGwEz4jC40CfJJ\nzLSdxLRMjg4cp777AK/2vEbMSB8LK3WVcFloLWvLakkNF2GYNpZlY1o2lp25tsauc5flLj/b9mdb\nP7bOGtvGPv/Hjt43Tfu8endTTYFMuCuZgB+7PXEDYKxxoaoKkVjqTQ9z5/acSwJOSv0uinzOM45B\n27ZN3IwTTkYIJ0fGhfNwMkI4lQnqzO2RVPQsJTh/Ts2JLxPquWHvdXjGlp/WEPA6PLi1c/fSLCt9\nyODMkE+mb0fTowGjvf5ILEUscX5D/m+GqijnaACkL05dy4b/2LIztz29cVFU5KGnN0LKHA1bi6Rh\nkkpZpEyLZCodwKnTAnnsdmZ7wxq3zYXQAD/gQ8lcg87Y62NiMwKMAFEFopaFaqVwWAk8ZvritpLp\n21YCt5nEayfwk8JnJXFbCVypOHoqzvlGs6LrqJnwH9fzP30kwD/WEFB9vrNO2Jtpn9GFIEE+iZm8\nkxiWwZH+N6jvPsCB3kPEjDgAxc4APocPTVFRFQ1VSfc8VEVDU9TxyzO3NTXntqJm1o3dHt3m9OVa\n7vOoEy/XVO3MbXOfI7N+QUUxvb0xbEshZVqYpk3KtDAMC8O0MMxMb8S0ME2LlGFnlo+tTxkWppX+\nwBvdfvSSMuzzXHf6+nO/Dd7MMLdhGURSI4QzYRzJhHA4J5AjOcFtWGfvxY/yObwEHH4CTj9+p58i\np5+AI307MHrb4aWoxE1bdw8jRoxoKkbUiDKSihJNRRkxYsRSMUaMzP1UjLgZP+99UlXUnHAfDft0\nb3/0fu46nz7WINDUiSdfGaZFIjUWaNmLaZFKmeOCcnR5MhOWKSO9/2RDcYJtU9ltzTOWF+IDUAEc\njtFRA+20xoN2RkMit/GQu81Ej9F1hUQkSbgvxlDvCP1dEQb7Jm74aQ4VzaGhaCqWCiaQAhKmRcyw\niKZMYqaFCRi2jWolcZoJPJngd2caAwElRUAxCJDMrnMYcfRkHC0Rm/BvT1gvTueEoe8rKyIWN1BU\nFTQNRVXTE/kUFUVTQdUy12p6m8x9RdXSy3K3UTKPzTxHevvMthM9ZvQ5tQm2yeNhBwnySczkIM+V\nsgyO9B9jX9cBjg28QcoyMG0Ty7YwbQvLLuxw+4VQFRVd0XCoDnRVQ1cdOFQdXdWz1+nb6fXp6/Hr\nx2+nZ7dxqDq6klmupW+PbevIuZ1uXEC6R2xa9oQhH/A68bnTw9BRIzZBEKeHtMPJcHZ5ODmSHUk5\nF4fqoCgTyqMBnQ5kHwFnIHvfnwnoswXh6S50nzYtk5gRz4Z71Ihlgj8d+KcHf9SIZRoF0Qva79ya\n64xwHw1+p+qc4PWa+DU/c70DXdHOu35G5b7u4xsJZraBeXpveayhYOL3u0kmUtnQHe3ZOycM37HA\n1bULP9xj2zaGbWJYRvaSslKksrdzl4+/TiaSRHpNoj0WVlRDNXRIqVhJBSNhk4ybmBcwEqBoCmgq\ntqpgAknbzoZ/ChuDdKPAAEzbQrOSOMwkHivd6y/VDIo1kyJS+DLh7zYTOFJx9EQMNRGD+Pk3AApG\nUcYaBWpug0LDtWQJiz71t+nlU2DG/PqZeGscqs7aitWsrVg94XrbtrEygZ4b8KO3LdvCtMxs6I9v\nBKSXm5Y57jkm3PYsz3H63zl9uWlbqDqMxOOZD5zxH0KJVCJ727Snb6g1l65oZwRGbuNCU1RiRjwb\n0JOFloKC3+GjXEKr7gAADFdJREFU1FXM0sCisV6y00/A6Rsf1s4ALm1mfPdXUzX8Th9+54Wdu8C2\nbRJmIhP8Y+E+2hiIpjINAmOsURBNxeiK9ZKMJKf8/1AVNf06KmdvBJyzQaikG3vZxqOm4XCkG4hu\nVScw7jEOSkpc9PTHMawEqZzgjI2GasrASIwP3NywnTh8Uxi2Qco0MOzx694yb+YyAQ9eitVi/EoR\nPjuAx/bitNw4TBea4UQ1NOykipWEZNwiEU8Rj6UgZeEBPEAJCpw+AK+ooOmgebEVsFWFFNBu2Zy0\n06GfDn4bw8PYfdtCt5J4SFHstNGw0QFdtdEUcCg2mmKjK6Ar6WUamWWkt1cV0LDQSF+ro8uzFwsV\nUG0LFQvFttO3bVCwUKz0cmwL1bbBSm+j2CaKZYOd3gYrvQ2Z27Zlouh6ehZoHkiQzyGKoqSHxNFw\n4Ch0cSZ0vj1Fy7YwLDPnQyw1dnv0Q2709gS9k4l6JdkPScvMXJ+5XdJMEU3Fss9lY+PWXPidfqrd\nSzIBPBrIgfTtTI854PTjc3izvfz5QFEU3Lobt+6mzF16QY81LGOsZ5+KkbSSk/YsJ3wdbTN7f9x+\ncloDMb2/5KeB+GaNNhBGGxIezZ0ZbZh8ZGKi0auxxmnmvqKTslI5I0cRhkdHkpIRwskwXalO7NED\nDgrplNBPL2d6JCngDODX/PgJ4MOP28qEv+FENRwohoaZgETcIBE3iMdSJGIp4nEDp2kyPvTP0gAA\nbBNsMhdzrLdvZUp6vhfrnOsv7LlsJXNRxy9XFAVVU1hY7Oe+M/+raSFBLmYkVVFxaipOrbANEsu2\n5lUw55Ou6hQ5AxQ5zz5kONVGR4vG94bHNwZSpzUGztWo8HpdpBLWWG9eGzu0M9Hw/+mHg3Jva8rM\n+DqeZVvZuR1nBn2E4dTY/dbwqUlHzzSXRiAw/nBRhTOAX/fhsX24bA8u04NmOFBSGsm4mQ79eIpE\nLB3+2JBIGFiWlZ5Am5noa5mZCbimPW7dmzNFdW+TbmV0RbEtG7Tpf00lyIU4BwnxuUVVVFRNxTFF\nDcTZMr/mQqiKet4NLNu2iRmx9DcrkmHCqZGc4A+nJ3ImwwwnI3RFe2iNtJ/z+RQUfA4vRa5AOvyd\nfoqcASqKi4lHjezE2bFJtY4zJttqioqKimKPXVRbQUFFsdJdaMVWUDLdaSUzKj663LJs7NFv3Iw2\nGCwr53ZOA2KCRoRlpm+XVvjQ8nSGRAlyIYQQb4qiKOlJiw4vC3yhSbePGwkiqUg2+Idzv2I5ej8V\nYSAxRPtI59gDW6fxn5jAaINgfAMh00hQVTQ9tzEx+o2g3Psai/0Lgeq8lFeCXAghRF64dRdu3UWF\np3zSbVOWkf1WiMuv0DcQGT+5Njuh1kxfrJxJu7Z5xoTb7ORdK2eb7P3RZaPPO37Z6DaGbWIayfQ5\nNXL+1kSTYJuHW7ll2Q15GdWTIBdCCDHjOFSdUncJpe6S9CEMdeYewhj9xlBuo8GtufJ2aE6CXAgh\nhHgLcr8xRAG+MSQzeYQQQohZTIJcCCGEmMUkyIUQQohZTIJcCCGEmMUkyIUQQohZTIJcCCGEmMUk\nyIUQQohZLO/fI3/22Wf53ve+h67rfOpTn2LVqlV85jOfwTRNgsEgX//613E6Z8ZPOwohhBAzXV57\n5AMDAzzyyCM8+eSTfOtb3+KFF17g4YcfZuvWrTz55JNUV1ezY8eOfBZJCCGEmNXyGuQ7d+7k7W9/\nO36/n1AoxIMPPsiuXbu44YYbALj++uvZuXNnPoskhBBCzGp5HVpva2sjHo/zF3/xFwwPD/NXf/VX\nxGKx7FB6eXk5PT09kz5PaakXXdemtGzBYP5+E3m+k7rOD6nn/JB6zg+p57PL+zHywcFBvvnNb9Le\n3s6f//mfY9tjPwKfe/tcpjrEhRBCiNkqr0Pr5eXlXHbZZei6ztKlS/H5fPh8PuLxOABdXV2EQpP/\npq0QQggh0vIa5Ndccw2vvPIKlmUxMDBANBpl06ZN/PKXvwTg+eef59prr81nkYQQQohZTbHPdzx7\nijz11FPZmemf+MQnWLt2Lffeey+JRIKqqiq+8pWv4HDk/2fghBBCiNko70EuhBBCiKkjZ3YTQggh\nZjEJciGEEGIWm/dB/uUvf5ktW7Zw5513cuDAgUIXZ8762te+xpYtW7j99tt5/vnnC12cOS0ej3Pj\njTfy4x//uNBFmdOeffZZbr31Vt73vvfx4osvFro4c9LIyAh/+Zd/ybZt27jzzjt56aWXCl2kGSnv\n3yOfSXbv3k1zczNPP/00jY2NbN++naeffrrQxZpzXnnlFd544w2efvppBgYGeO9738vmzZsLXaw5\n69FHH6W4uLjQxZjTRk83/cwzzxCNRvmXf/kX3vnOdxa6WHPOT37yE5YvX84999xDV1cXH/7wh3nu\nuecKXawZZ14H+c6dO7nxxhsBWLlyJUNDQ0QiEfx+f4FLNrds3LiRdevWAVBUVEQsFsM0TTRNTuwz\n1RobGzl+/LiEyjTLPd203+/nwQcfLHSR5qTS0lKOHj0KwPDwMKWlpQUu0cw0r4fWe3t7x+0YZWVl\n53WKWHFhNE3D6/UCsGPHDt7xjndIiE+Thx56iPvuu6/QxZjzck83vXXrVvmNiGnynve8h/b2dm66\n6Sbuuusu7r333kIXaUaa1z3y08k38abXr3/9a3bs2MH3v//9QhdlTvrpT3/K+vXrWbJkSaGLMi+c\nfrrp3/72tyiKUuhizSk/+9nPqKqq4rHHHuPIkSNs375d5n5MYF4HeSgUore3N3u/u7ubYDBYwBLN\nXS+99BLf+ta3+N73vkcgID9+MB1efPFFWltbefHFF+ns7MTpdLJgwQI2bdpU6KLNOROdbrq/v5/y\n8vJCF21Oqa+v55prrgGgpqaG7u5uOSw3gXk9tH711VdnTw976NAhQqGQHB+fBuFwmK997Wt8+9vf\npqSkpNDFmbP++Z//mWeeeYYf/ehHvP/97+fuu++WEJ8mE51uWo7fTr3q6moaGhoAOHXqFD6fT0J8\nAvO6R3755ZezZs0a7rzzThRF4f777y90keakX/ziFwwMDPA3f/M32WUPPfQQVVVVBSyVEG9eZWUl\nN998Mx/4wAcA+Id/+AdUdV73i6bFli1b2L59O3fddReGYfDAAw8UukgzkpyiVQghhJjFpAkphBBC\nzGIS5EIIIcQsJkEuhBBCzGIS5EIIIcQsJkEuhBBCzGIS5ELMA21tbdTW1rJt27bsL0ndc889DA8P\nn/dzbNu2DdM0z3v7D37wg+zatevNFFcIcQEkyIWYJ8rKynjiiSd44okneOqppwiFQjz66KPn/fgn\nnnhCTsYhxAw0r08II8R8tnHjRp5++mmOHDnCQw89hGEYpFIpPv/5z7N69Wq2bdtGTU0Nhw8f5vHH\nH2f16tUcOnSIZDLJ5z73OTo7OzEMg9tuu42tW7cSi8X427/9WwYGBqiuriaRSADQ1dXF3/3d3wHp\n30rfsmULd9xxRyH/dSHmFAlyIeYh0zT51a9+xRVXXMGnP/1pHnnkEZYuXXrGD1N4vV5++MMfjnvs\nE088QVFREd/4xjeIx+O8+93v5tprr+Xll1/G7Xbz9NNP093dzQ033ADAf//3f7NixQq+8IUvkEgk\n+I//+I+8/79CzGUS5ELME/39/Wzbtg0Ay7LYsGEDt99+Ow8//DCf/exns9tFIhEsywLSpzE+XUND\nA+973/sAcLvd1NbWcujQIY4dO8YVV1wBpH+QaMWKFQBce+21PPnkk9x3331cd911bNmyZVr/TyHm\nGwlyIeaJ0WPkucLhMA6H44zloxwOxxnLTv+pTtu2URQF27bHnW98tDGwcuVK/uu//os9e/bw3HPP\n8fjjj/PUU0+91X9HCJEhk92EmMcCgQCLFy/md7/7HQBNTU1885vfPOdj6urqeOmllwCIRqMcOnSI\nNWvWsHLlSvbv3w9AR0cHTU1NAPz85z/n4MGDbNq0ifvvv5+Ojg4Mw5jG/0qI+UV65ELMcw899BBf\n+tKX+M53voNhGNx3333n3H7btm187nOf40Mf+hDJZJK7776bxYsXc9ttt/Gb3/yGrVu3snjxYtau\nXQvARRddxP3334/T6cS2bT7+8Y+j6/LRI8RUkV8/E0IIIWYxGVoXQgghZjEJciGEEGIWkyAXQggh\nZjEJciGEEGIWkyAXQgghZjEJciGEEGIWkyAXQgghZjEJciGEEGIW+//Odr4ZQOxIfAAAAABJRU5E\nrkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "UySPl7CAQ28C" + }, + "cell_type": "markdown", + "source": [ + "## Task 3: Explore Alternate Normalization Methods\n", + "\n", + "**Try alternate normalizations for various features to further improve performance.**\n", + "\n", + "If you look closely at summary stats for your transformed data, you may notice that linear scaling some features leaves them clumped close to `-1`.\n", + "\n", + "For example, many features have a median of `-0.8` or so, rather than `0.0`." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "QWmm_6CGKxlH", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 715 + }, + "outputId": "78d0b7b2-adbf-4156-ae43-a5db1314161f" + }, + "cell_type": "code", + "source": [ + "_ = normalized_training_examples.hist(bins=20, figsize=(18, 12), xlabelsize=10)" + ], + "execution_count": 17, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABB0AAAK6CAYAAAB1zCTyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XtclHX+///nMDBL6JCijLuWWZmp\n5SnXMvBQYCRSFpknXDvJViZaFqmEmra2QSrdPETZemR1NVayIjMwE7dMZDNaV902s/2065nBUFQg\nEOf3hz/nK3GQGWYYDo/7X8x75rpe7/d1MS8uX77f12Ww2Ww2AQAAAAAAuJiXpzsAAAAAAACaJooO\nAAAAAADALSg6AAAAAAAAt6DoAAAAAAAA3IKiAwAAAAAAcAuKDgAAAAAAwC0oOsCtDh8+rFtuucVj\n8ZcsWaIZM2Y4tE1OTo7CwsKqfG/GjBlasmSJK7oGADWqj/z5z3/+U9HR0W6N4Uq33HKLDh8+rE8/\n/VQvvfSSp7sDAA1WTdezl+zZs0f//ve/JUlr167VwoULK7U7IiwsTDk5OY53Fk2et6c7AAAAPKNn\nz55asWKFp7vhsLCwsCteTAMAavbee+/pt7/9rbp27apx48ZV2Q64AkUH1Iu0tDSlpKSosLBQU6dO\nVUREhBYtWqTMzExJUu/evfXyyy/Lz89PoaGhmjdvnvr27StJ9te9e/fW7NmztXv3bl24cEFdunRR\nYmKiWrZsqa1bt2rRokUqKipSx44dtWDBAgUEBEiSSktL9cILL+gf//iH2rZtqyVLlqhdu3Y6evSo\nZs2apcOHD8vHx0e///3vFRkZWaHfBQUFio2N1Y8//qibbrpJvr6++vWvfy3pYkX4L3/5i2w2m1q2\nbKmEhAR17ty5Ho8qgObAnflz//79mjlzpj799FMtWbJEBQUFOnHihP7973+rdevWeuutt2SxWLR/\n/349//zzkqQHHnhAmZmZmjlzpvr161dtv5csWaL8/HwdP35c+/fvV1BQkCIiIrRkyRLl5eVp7ty5\nCgkJUWlpqebNm6cvvvhCZWVlGjVqlCZMmCBJ+tvf/qZXX31V3t7eevjhh+373rhxo9LT07V69Wrl\n5+dr+vTpOnLkiEpLS/XII4/oiSeesI//qaeeUlpamo4fP677779fcXFxNR7v4uJivfTSS/r2229V\nVlamIUOGaPr06ZJU43Go6e8QAHhKdTlt/fr1+vDDD7Vt2zb99NNPOnv2rI4fP67u3btX2f7HP/5R\n0sXcfun1vn37NH36dJ0/f1533XVXhbjkRFyO5RVwuwsXLqisrEwfffSRXnrpJS1cuFCffPKJPv/8\nc23cuFEff/yxCgsLtXr16hr3s2PHDh0+fFgZGRnasmWLbrrpJn3zzTc6dOiQpk2bpqSkJH322Wfq\n16+f5syZY98uOztbsbGx2rZtmwICApSWliZJmjVrlu644w5lZmbqnXfe0auvvqrDhw9XiLls2TK1\nbt1a27Zt08svv6wdO3ZIks6ePatFixZpw4YNysjIUHR0tLZv3+7KwwYAbs+fv5SRkaH4+Hht3bpV\nbdq00XvvvSfpYr58/PHHtWXLFrVs2VI//vhjrfq/fft2vfbaa/roo4+UkZFh7/eECRO0bNkySRfz\n7MGDB/XRRx9p06ZNyszMVFZWlsrLyzVjxgzNnj1bn3zyiby8vFReXl4pxttvv61rr71WGRkZSklJ\nUVJSko4dO2Z//6uvvlJqaqree+89rV27VsePH6+xz+vXr9e5c+eUkZGh999/Xxs3btTu3btrPA5X\n+jsEAJ5SXU6LiopSz549NXXqVHuhVlK17VWZM2eOHn30UWVmZuq2226zX0eTE/FLFB3gdjabzT6D\n4JZbbtHx48e1fft2RUZGys/PT0ajUcOHD9eXX35Z434CAgL0ww8/6NNPP1VxcbGmTJmigQMH6vPP\nP9cdd9yhm2++WZI0ZswYbdu2zX5x+tvf/lbXXHONJKlr1646ceKEysrKtHPnTo0dO1aSdM0116hf\nv37atWtXhZi7d+/W0KFDJUnXXnut7rjjDknSr371KxkMBqWlpSk/P19Dhw7Vk08+6aIjBgAXuTt/\n/lLfvn11zTXXyGAwqFu3bjp27JhKSkq0f/9+3X///ZKk3/3ud7LZbLXq/2233aY2bdqodevWCgwM\n1KBBgyRJN998s/Ly8iRJWVlZGjt2rEwmk/z8/PTggw9qy5Yt+vHHH1VaWqoBAwZIkh566KEqY8yc\nOVOzZs2SJHXo0EGBgYEVCsjDhg2T0WhUu3bt1KZNmwoFiaqMHz9eb731lgwGg66++mp17txZhw8f\nrvE4XOnvEAB4SnU5ra5+/vln7d27VxEREZKk8PBwXXXVVZLIiaiM5RVwO6PRaE9CXl5eunDhgn76\n6SddffXV9s9cffXVOnnyZI376dmzp2bOnKk1a9Zo+vTpCg0N1ezZs3XmzBnt3r1b4eHh9s+2bNlS\np06dsv98eV/Ky8t16tQp2Ww2mc1m+3v+/v766aef1KFDB3vb6dOnK31Gknx8fLR69WotXbpUS5Ys\nUZcuXTR79mx16dLFmUMEAFVyd/78pcvz3aV8efr0aRkMhgr5r02bNrXqf4sWLSrsz8/Pr8JYJOnM\nmTNKSEjQG2+8IenikriePXvq9OnTFfL35WO+3N69e+2zG7y8vGS1Wu37lqr+G1CTH3/8UYmJifrP\nf/4jLy8vHT9+XMOHD6/xONT0d6i2xwoA3KG6nFZXv7zOvjw/khPxSxQd4BFt27a1JyvpYuJq27at\npIoXo9LFf/hfEh4ervDwcJ06dUrx8fFasWKFOnbsqODgYC1evLjW8Vu3bi0vLy+dPn3afiFbVSL0\n9/fXmTNn7K8vL0rccsstWrx4sUpLS7V8+XLNnj1b7777rgNHAQAc58r8GRwcfMV4LVu2lM1mU3Fx\nsa666iqdP39eP/30k8vGY7FYNH78eIWEhFRo/+GHH3T27Fn76+piTp06VY899piioqJkMBiqnMHh\niD/84Q+69dZblZycLKPRqDFjxkiq+ThYLBaH/w4BQH2oLqfVVnV/Vy5dP589e1Zms1kXLlywv0dO\nxC+xvAIecffddys9PV3FxcU6f/680tLS7DegCQwMtD+mZ/Pmzfr5558lXbyTbnJysiSpVatWuvHG\nGyVJAwYM0O7du3Xo0CFJFx8B9+qrr9YY39vbWwMGDFBqaqok6X//+592795d6QK8d+/e2rp1q/0z\nX3/9tSTpu+++07PPPqvS0lKZTCZ1795dBoOhzscFAK7ElfmzNlq0aKFOnTrpk08+kSSlpqa6NN8N\nHjxYGzZsUHl5uWw2m9566y19/vnnuu6662Q0Gu2PX9u4cWOVcU+ePGnPwe+//76Ki4tVVFTkdH9O\nnjypbt26yWg06ssvv9R///tfFRUV1XgcnPk7BAD1obqcJl28Hr78P9cuubzdYrHowIED9pl2n3/+\nuSTJ19dXXbt21aeffipJ+vjjj+1/c8iJ+CVmOsAjwsPD9d1332n48OGy2Wzq16+fHn30UUnSxIkT\nNXv2bP31r3/VkCFDdNNNN0m6eGEaHx+ve++9V0ajUR07dlRiYqJatWqluXPnKiYmRmVlZWrRooXi\n4+Ov2IdXXnlFM2fO1MaNG+Xj46NXX31Vv/nNb/S///3P/pmnn35azz//vEJDQ9WpUyfde++9ki6u\nR7722mt1//33y8fHRy1atNDLL7/shiMFABW5Mn9+9913tYo5e/ZszZo1SytWrFBkZKTatWvnssLD\n2LFjdfjwYd13332y2Wzq3r27HnvsMfn4+Gju3LmKj4+XyWTS8OHD7cszLvfcc88pJiZGrVq10pgx\nYzR69GjNmjVL69atc6o/zzzzjBISEvTWW29p8ODBmjRpkhYvXqxu3bpVexwsFotTf4cAwN1qymn3\n3HOP5s+fr0OHDlVYinZ5+6RJk5Senq577rlHN954o8LDw+1L+ubMmaP4+Hi98847GjRokDp16iRJ\n5ERUYrDV9m5QAACg2bLZbPZCw5133qnVq1c3y2e4cxwAAHAMyysAAECNnn32WfsjLrOzs2Wz2XT9\n9dd7tlMewHEAAMBxzHQAAAA1+uGHH/TSSy/p9OnT8vHx0dSpU3XttdcqJiamys936tTJfg+JhuaH\nH35wut9VHYdL99MAAABVo+gAAAAAAADcguUVAAAAAADALRrN0yus1sqPc7mS1q39VFDg/GOz6sqT\n8Zvz2Jt7/OY8dmfiBwaa3dib5qex5erG9vtK/KYRu7nHdyY2udq1HM3Vzfn3tbnHb85j93T8xjj2\n6nJ1k57p4O1tbLbxm/PYm3v85jz2hhAfjuP7QvzmFru5x/f02OE4T58z4jff72tzjt+Uxt6kiw4A\nAAAAAMBzKDoAAAAAAAC3oOgAAAAAAADcgqIDAAAAAABwC4oOAAAAAADALSg6AAAAAAAAt6DoAAAA\nAAAA3MLb0x1oaMYnbnPo8yvjQt3UEwAAUFeO/l2X+NuO+lVcXKy4uDidPHlSP//8syZOnKiuXbtq\n2rRpKi8vV2BgoObPny+TyaT09HSlpKTIy8tLo0aN0siRI1VWVqa4uDgdPXpURqNRCQkJ6tChg6eH\nVS/4fgONAzMdAAAAAA/JyspS9+7dtXbtWi1cuFCJiYlavHixxo4dq3Xr1qljx45KS0tTUVGRkpOT\ntXr1aq1Zs0YpKSk6deqUNm3aJH9/f61fv14TJkxQUlKSp4cEABVQdAAAAAA8JCIiQk8++aQk6dix\nY2rXrp1ycnI0ePBgSVJISIiys7O1Z88e9ejRQ2azWb6+vurTp49yc3OVnZ2tsLAwSVJwcLByc3M9\nNhYAqArLKwAAAAAPGzNmjI4fP66lS5fqiSeekMlkkiS1adNGVqtV+fn5CggIsH8+ICCgUruXl5cM\nBoNKS0vt21eldWs/eXsbHepfYKDZiVG5jqviO7ufpjL+xha7ucdvKmOn6AAAAAB42Lvvvqtvv/1W\nU6dOlc1ms7df/vPlHG2/XEFBkUN9Cww0y2o949A2ruTK+M7spymNvzHFbu7xG+PYqytSsLwCAAAA\n8JB9+/bp2LFjkqRu3bqpvLxcLVq0UElJiSTpxIkTslgsslgsys/Pt2+Xl5dnb7darZKksrIy2Wy2\nGmc5AEB9o+gAAAAAeMju3bu1cuVKSVJ+fr6KiooUHByszMxMSdKWLVs0cOBA9erVS3v37lVhYaHO\nnTun3Nxc9e3bV/3791dGRoakizel7Nevn8fGAgBVYXkFAAAA4CFjxozRjBkzNHbsWJWUlOjll19W\n9+7dNX36dKWmpqp9+/aKjIyUj4+PYmNjFR0dLYPBoJiYGJnNZkVERGjnzp2KioqSyWRSYmKip4cE\nABVQdAAAAAA8xNfXt8rHXK5atapSW3h4uMLDwyu0GY1GJSQkuK1/AFBXLK8AAAAAAABuQdEBAAAA\nAAC4BUUHAAAAAADgFk7d0yEnJ0fPPfecOnfuLEm6+eab9fvf/17Tpk1TeXm5AgMDNX/+fJlMJqWn\npyslJUVeXl4aNWqURo4cqbKyMsXFxeno0aP2dWgdOnRw6cAAANKBAwc0ceJEPf744xo3bpyOHTtG\nrgYAAEC9cXqmwx133KE1a9ZozZo1mjVrlhYvXqyxY8dq3bp16tixo9LS0lRUVKTk5GStXr1aa9as\nUUpKik6dOqVNmzbJ399f69ev14QJE6q8eQ4AoG6Kioo0d+5cBQUF2dvI1QAAAKhPLnt6RU5Ojl55\n5RVJUkhIiFauXKkbbrhBPXr0kNlsliT16dNHubm5ys7OVmRkpCQpODhY8fHxruoGAOD/ZzKZtGzZ\nMi1btszeRq5uWIbFfujwNivjQt3QEwAAAPdwuuhw8OBBTZgwQadPn9akSZNUXFwsk8kkSWrTpo2s\nVqvy8/MVEBBg3yYgIKBSu5eXlwwGg0pLS+3bV6V1az95exsd7mdgoNnhbVy5f3fHb6ixic+5b87x\nGwpvb295e1dM8801VzfU2M5wdX89PX5Px69KffXJ02PnewcAqA9OFR2uv/56TZo0SUOHDtWhQ4f0\n6KOPqry83P6+zWarcjtH2y9XUFDkcD8DA82yWs84vJ0jatp/fcRviLGJz7lvTPGb84Vvc8rVDTG2\ns1zZX0+P39Pxq+PoDBRnZp94euyN7XvXnHM1ADR2Tt3ToV27doqIiJDBYNB1112ntm3b6vTp0yop\nKZEknThxQhaLRRaLRfn5+fbt8vLy7O1Wq1WSVFZWJpvNVuP/nAEAXMPPz49cDQAAgHrjVNEhPT1d\nK1askCRZrVadPHlSw4cPV2ZmpiRpy5YtGjhwoHr16qW9e/eqsLBQ586dU25urvr27av+/fsrIyND\nkpSVlaV+/fq5aDgAgJoEBweTqwEAAFBvnFpeERoaqhdffFGfffaZysrKNGfOHHXr1k3Tp09Xamqq\n2rdvr8jISPn4+Cg2NlbR0dEyGAyKiYmR2WxWRESEdu7cqaioKJlMJiUmJrp6XADQ7O3bt0+vv/66\njhw5Im9vb2VmZmrBggWKi4sjVwMAAKBeOFV0aNmypZYuXVqpfdWqVZXawsPDFR4eXqHt0vPeAQDu\n0717d61Zs6ZSO7kaAAAA9cWp5RUAAAAAAABXQtEBAAAAAAC4BUUHAAAAAADgFhQdAAAAAACAWzh1\nI0kAAIDLjU/c5vA2HyU96IaeAACAhoSZDgAAAAAAwC0oOgAAAAAAALdgeQUAAADgQfPmzdPXX3+t\n8+fP6+mnn9a2bdu0f/9+tWrVSpIUHR2tu+++W+np6UpJSZGXl5dGjRqlkSNHqqysTHFxcTp69KiM\nRqMSEhLUoUMHD48IAP4fig4AAACAh+zatUvff/+9UlNTVVBQoIceekh33nmnXnjhBYWEhNg/V1RU\npOTkZKWlpcnHx0cjRoxQWFiYsrKy5O/vr6SkJO3YsUNJSUlauHChB0cEABWxvAIAAADwkNtvv12L\nFi2SJPn7+6u4uFjl5eWVPrdnzx716NFDZrNZvr6+6tOnj3Jzc5Wdna2wsDBJUnBwsHJzc+u1/wBw\nJRQdAAAAAA8xGo3y8/OTJKWlpWnQoEEyGo1au3atHn30UT3//PP66aeflJ+fr4CAAPt2AQEBslqt\nFdq9vLxkMBhUWlrqkbEAQFVYXgEAAAB42NatW5WWlqaVK1dq3759atWqlbp166Y//elPevPNN3Xb\nbbdV+LzNZqtyP9W1X651az95exsd6l9goNmhz7uaq+I7u5+mMv7GFru5x28qY6foAAAAAHjQF198\noaVLl2r58uUym80KCgqyvxcaGqo5c+ZoyJAhys/Pt7fn5eWpd+/eslgsslqt6tq1q8rKymSz2WQy\nmWqMV1BQ5FD/AgPNslrPODYoF3JlfGf205TG35hiN/f4jXHs1RUpWF4BAAAAeMiZM2c0b948vfPO\nO/anVUyePFmHDh2SJOXk5Khz587q1auX9u7dq8LCQp07d065ubnq27ev+vfvr4yMDElSVlaW+vXr\n57GxAEBVmOkAAAAAeMjmzZtVUFCgKVOm2NuGDx+uKVOm6KqrrpKfn58SEhLk6+ur2NhYRUdHy2Aw\nKCYmRmazWREREdq5c6eioqJkMpmUmJjowdEAQGUUHQAAAAAPGT16tEaPHl2p/aGHHqrUFh4ervDw\n8AptRqNRCQkJbusfANQVyysAAAAAAIBbUHQAAAAAAABuwfIKAAAAOG184jaHPv9R0oNu6gkAoCGi\n6AAAQBPm6D8IJWllXKgbegIAAJojllcAAAAAAAC3YKYDAADwiGGxHzr0eWZgAADQ+FB0AIBm5ty5\nc5o+fbpOnz6tsrIyxcTEKDAwUHPmzJEkdenSRa+88ookafny5crIyJDBYNCkSZN01113ebDnAAAA\naGzqVHQoKSnR/fffr4kTJyooKEjTpk1TeXm5AgMDNX/+fJlMJqWnpyslJUVeXl4aNWqURo4cqbKy\nMsXFxeno0aP2Zwt36NDBVWMCANTg/fff1w033KDY2FidOHFCjz32mAIDAxUfH6+ePXsqNjZWf/vb\n33TjjTdq8+bNevfdd3X27FmNHTtWAwYMkNFo9PQQAAAA0EjU6Z4Ob7/9tq6++mpJ0uLFizV27Fit\nW7dOHTt2VFpamoqKipScnKzVq1drzZo1SklJ0alTp7Rp0yb5+/tr/fr1mjBhgpKSklwyGADAlbVu\n3VqnTp2SJBUWFqpVq1Y6cuSIevbsKUkKCQlRdna2cnJyNHDgQJlMJgUEBOiaa67RwYMHPdl1AAAA\nNDJOz3T44YcfdPDgQd19992SpJycHPt03JCQEK1cuVI33HCDevToIbPZLEnq06ePcnNzlZ2drcjI\nSElScHCw4uPj6zgMAEBt3Xfffdq4caPCwsJUWFiot99+W3/4wx/s77dp00ZWq1WtWrVSQECAvT0g\nIEBWq1VdunSpdt+tW/vJ29vxmRCBgWaHt3EVT8Z2Rn30t6Eek6bWL0+Ph+8dAKA+OF10eP311zVr\n1ix98MEHkqTi4mKZTCZJ/++CNT8/v8oL1svbvby8ZDAYVFpaat++Kg31QvZK+2/Of9CJz7lvrvEb\nug8//FDt27fXihUr9O9//1sxMTH24rAk2Wy2Krerrv1yBQVFDvcnMNAsq/WMw9u5gidjO6s++ttQ\nj0lT6penf/c8Hd/R2OR1AGi8nCo6fPDBB+rdu3e192Fw9IK1MV/I1rT/5nwhTXzOfWOJ3xwvZHNz\nczVgwABJUteuXfXzzz/r/Pnz9vdPnDghi8Uii8Wi//u//6vUDgAAANSWU/d02L59uz777DONGjVK\nGzZs0FtvvSU/Pz+VlJRIqnjBmp+fb98uLy/P3m61WiVJZWVlstlsNc5yAAC4TseOHbVnzx5J0pEj\nR9SiRQt16tRJu3fvliRt2bJFAwcO1J133qnt27ertLRUJ06cUF5enm666SZPdh0AAACNjFMzHRYu\nXGj/ecmSJbrmmmv0zTffKDMzUw8++KD9grVXr16aOXOmCgsLZTQalZubq/j4eJ09e1YZGRkaOHCg\nsrKy1K9fP5cNCABQs9GjRys+Pl7jxo3T+fPnNWfOHAUGBurll1/WhQsX1KtXLwUHB0uSRo0apXHj\nxslgMGjOnDny8qrT/YcBAADQzNTpkZmXmzx5sqZPn67U1FS1b99ekZGR8vHxUWxsrKKjo2UwGOzr\nhiMiIrRz505FRUXJZDIpMTHRVd0AAFxBixYttGjRokrt69atq9T2yCOP6JFHHqmPbgEAAKAJqnPR\nYfLkyfafV61aVen98PBwhYeHV2gzGo1KSEioa2gAAAAATcT4xG2e7gIAN2CeLAAAAAAAcAuXLa8A\nAABojpz539mPkh50Q08AAGh4mOkAAAAAAADcgqIDAAAAAABwC5ZXAAAAAB40b948ff311zp//rye\nfvpp9ejRQ9OmTVN5ebkCAwM1f/58mUwmpaenKyUlRV5eXho1apRGjhypsrIyxcXF6ejRo/abtXfo\n0MHTQwIAO4oOAAAAgIfs2rVL33//vVJTU1VQUKCHHnpIQUFBGjt2rIYOHao33nhDaWlpioyMVHJy\nstLS0uTj46MRI0YoLCxMWVlZ8vf3V1JSknbs2KGkpCQtXLjQ08MCADuWVwAAAAAecvvtt2vRokWS\nJH9/fxUXFysnJ0eDBw+WJIWEhCg7O1t79uxRjx49ZDab5evrqz59+ig3N1fZ2dkKCwuTJAUHBys3\nN9djYwGAqjTpmQ7DYj/0dBcAAHApnmMPNC1Go1F+fn6SpLS0NA0aNEg7duyQyWSSJLVp00ZWq1X5\n+fkKCAiwbxcQEFCp3cvLSwaDQaWlpfbtq9K6tZ+8vY0O9TMw0Ozo0BokZ8fh6fF7Mn5zHrun4zeV\nsTfpogMAAADQGGzdulVpaWlauXKl7r33Xnu7zWar8vOOtl+uoKDIob4FBppltZ5xaJuGyplxeHr8\nnozfnMfu6fiNcezVFSlYXgEAAAB40BdffKGlS5dq2bJlMpvN8vPzU0lJiSTpxIkTslgsslgsys/P\nt2+Tl5dnb7darZKksrIy2Wy2Gmc5AEB9o+gAAAAAeMiZM2c0b948vfPOO2rVqpWki/dmyMzMlCRt\n2bJFAwcOVK9evbR3714VFhbq3Llzys3NVd++fdW/f39lZGRIkrKystSvXz+PjQUAqsLyCgAAAMBD\nNm/erIKCAk2ZMsXelpiYqJkzZyo1NVXt27dXZGSkfHx8FBsbq+joaBkMBsXExMhsNisiIkI7d+5U\nVFSUTCaTEhMTPTgaAKiMogMAAADgIaNHj9bo0aMrta9atapSW3h4uMLDwyu0GY1GJSQkuK1/AFBX\nLK8AAAAAAABuQdEBAAAAAAC4BUUHAAAAAADgFhQdAAAAAACAW1B0AAAAAAAAbkHRAQAAAAAAuAVF\nBwAAAAAA4BYUHQAAAAAAgFtQdAAAAAAAAG7h7cxGxcXFiouL08mTJ/Xzzz9r4sSJ6tq1q6ZNm6by\n8nIFBgZq/vz5MplMSk9PV0pKiry8vDRq1CiNHDlSZWVliouL09GjR2U0GpWQkKAOHTq4emwAgGqk\np6dr+fLl8vb21rPPPqsuXbrUOocDAAAAteVU0SErK0vdu3fXk08+qSNHjmj8+PHq06ePxo4dq6FD\nh+qNN95QWlqaIiMjlZycrLS0NPn4+GjEiBEKCwtTVlaW/P39lZSUpB07digpKUkLFy509dgAAFUo\nKChQcnKy3nvvPRUVFWnJkiXKzMysdQ5v1aqVp4cAAACARsKpokNERIT952PHjqldu3bKycnRK6+8\nIkkKCQnRypUrdcMNN6hHjx4ym82SpD59+ig3N1fZ2dmKjIyUJAUHBys+Pr6u4wAA1FJ2draCgoLU\nsmVLtWzZUnPnzlVoaGitc3hoaKgnuw80W+MTtzn0+ZVxfFcBAJ7nVNHhkjFjxuj48eNaunSpnnji\nCZlMJklSmzZtZLValZ+fr4CAAPvnAwICKrV7eXnJYDCotLTUvn1VWrf2k7e3sS7ddYvAQHOd3ncn\nT8YmPue+Ocdv6A4fPqySkhJNmDBBhYWFmjx5soqLi2udw2vibK5uzt+XhqihHpOG2i9nuXs8XKMA\nABqCOhUd3n33XX377beaOnVss+qZAAAgAElEQVSqbDabvf3yny/naPvlCgqKnOukm1mtZ6p9LzDQ\nXOP77uTJ2MTn3Dem+M31wvfUqVN68803dfToUT366KN1yuGXcyZXN+fvS0PVUI9JQ+2Xs9w9noZ6\njSI5PvbmmqsBoClw6ukV+/bt07FjxyRJ3bp1U3l5uVq0aKGSkhJJ0okTJ2SxWGSxWJSfn2/fLi8v\nz95+6X/LysrKZLPZapzlAABwnTZt2ui2226Tt7e3rrvuOrVo0cKhHA4AAADUllNFh927d2vlypWS\npPz8fBUVFSk4OFiZmZmSpC1btmjgwIHq1auX9u7dq8LCQp07d065ubnq27ev+vfvr4yMDEkXb0rZ\nr18/Fw0HAHAlAwYM0K5du3ThwgUVFBQ4nMMBAACA2nJqecWYMWM0Y8YMjR07ViUlJXr55ZfVvXt3\nTZ8+XampqWrfvr0iIyPl4+Oj2NhYRUdHy2AwKCYmRmazWREREdq5c6eioqJkMpmUmJjo6nEBAKrR\nrl07DRkyRKNGjZIkzZw5Uz169Kh1DgcAAABqy6mig6+vr5KSkiq1r1q1qlJbeHi4wsPDK7QZjUYl\nJCQ4ExoA4AJjxozRmDFjKrTVNocDAAAAteXU8goAAAAAAIAroegAAAAAeNCBAwd0zz33aO3atZKk\nuLg4DRs2TI888ogeeeQRbd++XZKUnp6uhx9+WCNHjtSGDRskXbwpe2xsrKKiojRu3DgdOnTIU8MA\ngCrV6ZGZAAAAAJxXVFSkuXPnKigoqEL7Cy+8oJCQkAqfS05OVlpamnx8fDRixAiFhYUpKytL/v7+\nSkpK0o4dO5SUlKSFCxfW9zAAoFoUHQAAQKMwPnGbp7sAuJzJZNKyZcu0bNmyGj+3Z88e9ejRw35D\n3z59+ig3N1fZ2dmKjIyUJAUHBys+Pt7tfQYAR1B0AAAAADzE29tb3t6VL8nXrl2rVatWqU2bNpo1\na5by8/MVEBBgfz8gIEBWq7VCu5eXlwwGg0pLS2UymaqN2bq1n7y9jQ71MzCwaTy9yNlxeHr8nozf\nnMfu6fhNZewUHQAAAIAG5MEHH1SrVq3UrVs3/elPf9Kbb76p2267rcJnbDZbldtW1365goIih/oT\nGGiW1XrGoW0aKmfG4enxezK+M7GdmZW2Mi7UZfFdqbEde0/Hr65IwY0kAQAAgAYkKChI3bp1kySF\nhobqwIEDslgsys/Pt38mLy9PFotFFotFVqtV0sWbStpsthpnOQBAfaPoAAAAADQgkydPtj+FIicn\nR507d1avXr20d+9eFRYW6ty5c8rNzVXfvn3Vv39/ZWRkSJKysrLUr18/T3YdACpheQUAAADgIfv2\n7dPrr7+uI0eOyNvbW5mZmRo3bpymTJmiq666Sn5+fkpISJCvr69iY2MVHR0tg8GgmJgYmc1mRURE\naOfOnYqKipLJZFJiYqKnhwQAFVB0AAAAFfCUCKD+dO/eXWvWrKnUPmTIkEpt4eHhCg8Pr9BmNBqV\nkJDgtv4BQF2xvAIAAAAAALgFRQcAAAAAAOAWFB0AAAAAAIBbUHQAAAAAAABuQdEBAAAAAAC4BUUH\nAAAAAADgFjwyEwAAAABQybDYDz3dBTQBzHQAAAAAAABuQdEBAAAAAAC4BUUHAAAAAADgFhQdAAAA\nAACAW3AjSQAAqjA+cZtDn18ZF+qmngAAADReThcd5s2bp6+//lrnz5/X008/rR49emjatGkqLy9X\nYGCg5s+fL5PJpPT0dKWkpMjLy0ujRo3SyJEjVVZWpri4OB09elRGo1EJCQnq0KGDK8cFAKhBSUmJ\n7r//fk2cOFFBQUG1zt8AAACAI5xaXrFr1y59//33Sk1N1fLly/Xaa69p8eLFGjt2rNatW6eOHTsq\nLS1NRUVFSk5O1urVq7VmzRqlpKTo1KlT2rRpk/z9/bV+/XpNmDBBSUlJrh4XAKAGb7/9tq6++mpJ\ncih/AwAAAI5wquhw++23a9GiRZIkf39/FRcXKycnR4MHD5YkhYSEKDs7W3v27FGPHj1kNpvl6+ur\nPn36KDc3V9nZ2QoLC5MkBQcHKzc310XDAQBcyQ8//KCDBw/q7rvvliSH8jcAAADgCKeKDkajUX5+\nfpKktLQ0DRo0SMXFxTKZTJKkNm3ayGq1Kj8/XwEBAfbtAgICKrV7eXnJYDCotLS0rmMBANTC66+/\nrri4OPtrR/I3AAAA4Ig63Uhy69atSktL08qVK3Xvvffa2202W5Wfd7T9cq1b+8nb2+hcR90oMNBc\np/fdyZOxic+5b87xG7IPPvhAvXv3rvY+OnXJ05LzubopfF/4vYOj3P07wzUKAKAhcLro8MUXX2jp\n0qVavny5zGaz/Pz8VFJSIl9fX504cUIWi0UWi0X5+fn2bfLy8tS7d29ZLBZZrVZ17dpVZWVlstls\n9v9lq05BQZGzXXUrq/VMte8FBpprfN+dPBmb+Jz7xhS/uV34bt++XYcOHdL27dt1/PhxmUwmh/L3\nlTiTq5vK98WTv/donNz9O9NQr1Ekx8fe3HI1ADQlTi2vOHPmjObNm6d33nlHrVq1knTx3gyZmZmS\npC1btmjgwIHq1auX9u7dq8LCQp07d065ubnq27ev+vfvr4yMDElSVlaW+vXr56LhAABqsnDhQr33\n3nv661//qpEjR2rixIkO5W8AAADAEU7NdNi8ebMKCgo0ZcoUe1tiYqJmzpyp1NRUtW/fXpGRkfLx\n8VFsbKyio6NlMBgUExMjs9msiIgI7dy5U1FRUTKZTEpMTHTZgAAAjpk8ebKmT59eq/wNAHC9AwcO\naOLEiXr88cc1btw4HTt2jEfRA2gynCo6jB49WqNHj67UvmrVqkpt4eHhCg8Pr9B2KSECADxn8uTJ\n9p9rm78BAK5VVFSkuXPnKigoyN526VHGQ4cO1RtvvKG0tDRFRkYqOTlZaWlp8vHx0YgRIxQWFqas\nrCz5+/srKSlJO3bsUFJSkhYuXOjBEQFARU4trwAAAABQdyaTScuWLZPFYrG38Sh6AE1JnZ5eAQAA\nAMB53t7e8vaueEnuikfR13STdmeeNNRUbubp7Dg8PX5Px3e3msbn6bE35yf9uCo+RYc6Gp+4zeFt\nVsaFuqEnAAAAaGrc8Sh6R5805OmnnbiSM+Pw9Pg9Hb8+VDc+T4+9qTxhq77iV1ekoOgAAGhUKPYC\naOrc/Sh6AKhP3NMBAAAAaEB4FD2ApoSZDgAAAICH7Nu3T6+//rqOHDkib29vZWZmasGCBYqLi+NR\n9ACaBIoOAAAA9WxY7Iee7gIaiO7du2vNmjWV2nkUPYCmguUVAAAAAADALZjpAAAA0ARx01UAQEPA\nTAcAAAAAAOAWzHQAAMAFnPlfZaCh4fcYAOBqzHQAAAAAAABuQdEBAAAAAAC4BcsrAAAAAFTLmUe8\nclNSAJcw0wEAAAAAALgFRQcAAAAAAOAWFB0AAAAAAIBbUHQAAAAAAABuQdEBAAAAAAC4BUUHAAAA\nAADgFjwyEwDQ5I1P3ObpLgAAgGo4+neaR7I2Lsx0AAAAAAAAbkHRAQAAAAAAuEWdig4HDhzQPffc\no7Vr10qSjh07pkceeURjx47Vc889p9LSUklSenq6Hn74YY0cOVIbNmyQJJWVlSk2NlZRUVEaN26c\nDh06VMehAABqa968eRo9erQefvhhbdmyxaH8DQAAANSW00WHoqIizZ07V0FBQfa2xYsXa+zYsVq3\nbp06duyotLQ0FRUVKTk5WatXr9aaNWuUkpKiU6dOadOmTfL399f69es1YcIEJSUluWRAAICa7dq1\nS99//71SU1O1fPlyvfbaaw7lbwAAAKC2nC46mEwmLVu2TBaLxd6Wk5OjwYMHS5JCQkKUnZ2tPXv2\nqEePHjKbzfL19VWfPn2Um5ur7OxshYWFSZKCg4OVm5tbx6EAAGrj9ttv16JFiyRJ/v7+Ki4udih/\nAwAAALXl9NMrvL295e1dcfPi4mKZTCZJUps2bWS1WpWfn6+AgAD7ZwICAiq1e3l5yWAwqLS01L79\nL7Vu7Sdvb6Oz3W1QAgPNTSoO8Rte/OY89oYQv6EzGo3y8/OTJKWlpWnQoEHasWNHrfN3TZzN1Zwz\noHnhO1+znJwcPffcc+rcubMk6eabb9bvf/97TZs2TeXl5QoMDNT8+fNlMpmUnp6ulJQUeXl5adSo\nURo5cqSHew8AFbntkZk2m80l7ZcUFBTVuU8NhdV6xu0xAgPN9RKH+A0vfnMeuzPxm/OF79atW5WW\nlqaVK1fq3nvvtbc7m6cl53K1p39nANQ/R7/zzTFX33HHHVq8eLH99UsvvaSxY8dq6NCheuONN5SW\nlqbIyEglJycrLS1NPj4+GjFihMLCwtSqVSsP9hwAKnLp0yv8/PxUUlIiSTpx4oQsFossFovy8/Pt\nn8nLy7O3X/ofs7KyMtlstmpnOQAAXOuLL77Q0qVLtWzZMpnNZofyNwCg/rEMDkBj5dKZDsHBwcrM\nzNSDDz6oLVu2aODAgerVq5dmzpypwsJCGY1G5ebmKj4+XmfPnlVGRoYGDhyorKws9evXz5VdAQBU\n48yZM5o3b55Wr15t/98wR/I3AMD9Dh48qAkTJuj06dOaNGmSQ8uYr6Q+li031NkpzvbL0+PxdPyG\npj6PB0um687posO+ffv0+uuv68iRI/L29lZmZqYWLFiguLg4paamqn379oqMjJSPj49iY2MVHR0t\ng8GgmJgYmc1mRUREaOfOnYqKipLJZFJiYqJLBgQAqNnmzZtVUFCgKVOm2NsSExM1c+bMWuVvAIB7\nXX/99Zo0aZKGDh2qQ4cO6dFHH1V5ebn9/bosg5PqZ9lyQ10250y/PL0M0NPxG6L6Oh4smXbNUjin\niw7du3fXmjVrKrWvWrWqUlt4eLjCw8MrtBmNRiUkJDgbHgDgpNGjR2v06NGV2mubvwEA7tWuXTtF\nRERIkq677jq1bdtWe/fuVUlJiXx9fWtcBte7d29PdRsAquTSezoAAAAAqJv09HStWLFCkmS1WnXy\n5EkNHz5cmZmZklRhGdzevXtVWFioc+fOKTc3V3379vVk1wGgErc9vQIAAACA40JDQ/Xiiy/qs88+\nU1lZmebMmaNu3bpp+vTpLIMD0OhQdAAAAAAakJYtW2rp0qWV2lkGB6AxougAAAAAAM3A+MRtnu4C\nmiHu6QAAAAAAANyCmQ4AAAAAgEbDmRkbK+NC3dAT1AZFBw/gSwIAAACgLlgqgcaC5RUAAAAAAMAt\nKDoAAAAAAAC3oOgAAAAAAADcgns6AAAAAHAp7jcA4BKKDgAAAACaBWeKIR8lPeiGngDNB8srAAAA\nAACAWzDTAQDgUcNiP/R0FwAAAOAmFB0AAAAAAE0aS2s8h+UVAAAAAADALZjpAAAAAADVcHQZ4Mq4\nUDf1BGicKDo0Eo5OB2IqEAAAAFD/nJnGT6ECTRnLKwAAAAAAgFsw0wEAAAAAPMiZ2RFoGprDzBhm\nOgAAAAAAALdgpgMAAAAAAL/ATURdw6NFh9dee0179uyRwWBQfHy8evbs6cnuNCmOfkEkviQAqkau\nBoCGjTwNNAwsk6max4oOf//73/Xf//5Xqamp+uGHHxQfH6/U1FRPdQcAUAVyNQA0bORpAA2dx4oO\n2dnZuueeeyRJnTp10unTp3X27Fm1bNnSU11q9uqjMsdsCqBxIVcDQMNGngZwJc78O++jpAddFt9j\nRYf8/Hzdeuut9tcBAQGyWq0kyCauuU85ouiCxoZcDQANG3kaaH4a27+pGsyNJG02W43vBwaaHd6n\nK6szQGPizPeF+KgNcjUAVyBPu8+V8rTk+PEnTwPNk6tytccemWmxWJSfn29/nZeXp8DAQE91BwBQ\nBXI1ADRs5GkADZ3Hig79+/dXZmamJGn//v2yWCxMAwOABoZcDQANG3kaQEPnseUVffr00a233qox\nY8bIYDBo9uzZnuoKAKAa5GoAaNjI0wAaOoOtNgu/AAAAAAAAHOSx5RUAAAAAAKBpo+gAAAAAAADc\nosE8MrMu/v73v+u5557Ta6+9ppCQkErvp6enKyUlRV5eXho1apRGjhypsrIyxcXF6ejRozIajUpI\nSFCHDh0cjn2l/ezbt0+vv/66/fXBgweVnJysL7/8Uh999JHatWsnSXrggQc0cuRIl8aWpFtvvVV9\n+vSxv169erUuXLhQL2OXpM2bN2vlypXy8vJSUFCQnn/+eW3cuFGLFi3SddddJ0kKDg7WM888U+u4\nr732mvbs2SODwaD4+Hj17NnT/t7OnTv1xhtvyGg0atCgQYqJibniNo6qaV+7du3SG2+8IS8vL91w\nww364x//qK+++krPPfecOnfuLEm6+eabNWvWLLfEDw0N1a9//WsZjUZJ0oIFC9SuXbt6Gf+JEyf0\n4osv2j936NAhxcbGqqysrE7n+5cOHDigiRMn6vHHH9e4ceMqvFcf5x/Oaa55ujbxJXJ1U8vV5Gny\ndGNFrvZMrvZUnpY8m6u5pm5GudrWyP33v/+1TZgwwTZx4kTbtm3bKr1/7tw527333msrLCy0FRcX\n2+677z5bQUGBbePGjbY5c+bYbDab7YsvvrA999xzTsV3ZD+nT5+2/e53v7OVl5fbFi9ebFuzZo1T\nMR2Jfccdd9Spz3WJX1RUZAsJCbGdOXPGduHCBduIESNs33//ve29996zJSYmOhUzJyfH9tRTT9ls\nNpvt4MGDtlGjRlV4f+jQobajR4/aysvLbVFRUbbvv//+itu4Mn5YWJjt2LFjNpvNZps8ebJt+/bt\ntl27dtkmT57sdExH4oeEhNjOnj3r0DaujH9JWVmZbcyYMbazZ8/W6Xz/0rlz52zjxo2zzZw5s8rv\nj7vPP5zTnPN0beOTq5tOriZPk6cbK3K153K1J/K0zebZXM01dfPK1Y1+eUVgYKDefPNNmc3mKt/f\ns2ePevToIbPZLF9fX/Xp00e5ubnKzs5WWFiYpItVotzcXKfiO7KfFStW6LHHHpOXl2sOu7NjqK+x\nX3XVVUpPT1fLli1lMBjUqlUrnTp1yqlYl8e85557JEmdOnXS6dOndfbsWUkXq4BXX321fvOb38jL\ny0t33XWXsrOza9zGlfElaePGjfr1r38tSQoICFBBQYHTY3Umvqu2qeu+3n//fQ0ZMkQtWrRwKk51\nTCaTli1bJovFUum9+jj/cE5zztOOxnfFdo7uh1zt2lxNniZPN1bkas/lak/k6UtxPZWruaZuXrm6\n0RcdrrrqKvu0l6rk5+crICDA/jogIEBWq7VCu5eXlwwGg0pLSx2OX9v9lJSUaMeOHRo8eLC9LSMj\nQ0888YSefvppHTp0yC2xS0tLFRsbqzFjxmjVqlUO9dkV8S89J/q7777TkSNH1KtXL0kXp+9FR0fr\nscce07/+9S+HYrZu3dr++tL5lCSr1Vrtua5uG0ddaV+XxpuXl6cvv/xSd911l6SLUwAnTJigqKgo\nffnll07Frk18SZo9e7aioqK0YMEC2Wy2eh3/JRs2bNCIESPsr50937/k7e0tX1/fKt+rj/MP5zTn\nPF3b+OTqppOrydPk6caKXO25XO2JPH0prqdyNdfUzStXN6p7OmzYsEEbNmyo0DZ58mQNHDiw1vuw\nVfOE0OrarxR/z549tdrP1q1bdffdd9srsnfddZfuvPNO3X777fr444/16quv6p133nF57GnTpumB\nBx6QwWDQuHHj1Ldv30qfcffYf/zxR7344otKSkqSj4+PevXqpYCAAN1999365ptvNH36dH300UdX\n7ENVatN3V2zjyL5OnjypCRMmaPbs2WrdurWuv/56TZo0SUOHDtWhQ4f06KOPasuWLTKZTC6P/+yz\nz2rgwIG6+uqrFRMTo8zMzFr12VXxJembb77RjTfeaP9j4crz7QquHD8qa855ui7xydWu2caRfdVX\nriZPO4487X7kas/l6oaap2vTd1dtU9v9cE3ddHJ1oyo6jBw50uEbw1gsFuXn59tf5+XlqXfv3rJY\nLLJareratavKyspks9mu+AtbVfy4uLha7ScrK0tRUVH217+8UcmCBQvcEvvymHfeeacOHDhQr2M/\nfvy4YmJiNG/ePHXr1k3Sxek4nTp1kiTddttt+umnn1ReXl5jdf2Sqs5nYGBgle+dOHFCFotFPj4+\n1W7jqJriS9LZs2f15JNPasqUKRowYIAkqV27doqIiJAkXXfddWrbtq1OnDjh1E2WrhQ/MjLS/vOg\nQYPs57u+xi9J27dvV1BQkP11Xc53XfrmjvOPK2vOebou8cnVTSdXk6dr3zfytOeQqz2XqxtKnpY8\nm6u5pm5eubrRL6+4kl69emnv3r0qLCzUuXPnlJubq759+6p///7KyMiQdDF59evXz6n913Y/+/bt\nU9euXe2vX331Ve3evVvSxWkyl+7C6srY//nPfxQbGyubzabz588rNzdXnTt3rtexz5gxQ3PmzNGt\nt95qb1u2bJk2bdok6eJdUwMCAmr9Zenfv7+90rh//35ZLBZ79e/aa6/V2bNndfjwYZ0/f15ZWVnq\n379/jds4M+aa9pWYmKjHHntMgwYNsrelp6drxYoVki5OVzp58qT9DsuujH/mzBlFR0fbp+N99dVX\n9vNdX+OXpL1791b4Xa/L+XZEfZx/uEdTztO1iU+ublq5mjxdPfJ040audl+u9kSevhTXU7maa+rm\nlasNtkY+h2379u1asWKF/vOf/yggIECBgYFauXKl/vSnP+n222/XbbfdpoyMDK1YscI+FeqBBx5Q\neXm5Zs6cqR9//FEmk0mJiYn6zW9+43D86vZzeXxJCgoKUnZ2tn277777TrNnz5a3t7cMBoNeffVV\ndezY0eWx58+fr127dsnLy0uhoaF65pln6m3srVq1UmRkZIUK9OOPP65bb71VU6dOtSdtRx83s2DB\nAu3evVsGg0GzZ8/Wv/71L5nNZoWFhemrr76yV7jvvfdeRUdHV7nN5V9gR1UXf8CAARXOuSTdf//9\nuu+++/Tiiy+qsLBQZWVlmjRpkn1dmivjh4WFKSUlRR988IF+9atf6ZZbbtGsWbNkMBjqZfyXboA0\nbNgwrVq1Sm3btpV0sTJfl/N9uUuPyzpy5Ii8vb3Vrl07hYaG6tprr6238w/HNec8Xdv45OqmlavJ\n0+Tpxohc7blc7ak8LXk2V3NN3XxydaMvOgAAAAAAgIapyS+vAAAAAAAAnkHRAQAAAAAAuAVFBwAA\nAAAA4BYUHQAAAAAAgFtQdAAAAAAAAG5B0QEAAAAAALgFRQcAAAAAAOAWFB0AAAAAAIBbUHQAAAAA\nAABuQdEBAAAAAAC4BUUHAAAAAADgFhQdAAAAAACAW1B0AAAAAAAAbkHRAQAAAAAAuAVFBwAAAAAA\n4BYUHQAAAAAAgFtQdAAAAAAAAG5B0QEAAAAAALgFRQcAAAAAAOAWFB0AAAAAAIBbUHQAAAAAAABu\nQdEBAAAAAAC4BUUHAAAAAADgFhQdAAAAAACAW1B0gEfk5OQoLCzM5ftNSkrS+vXrJUlffPGFjh49\n6vA+brnlFh0+fNjVXQMAAAAajUceeUQffvjhFT/317/+1f5zeHi48vPz3dktNEIUHdCkxMbGKioq\nSpK0evVqp4oOAICKZsyYoSVLlkhy3wXlP//5T0VHR7t8vwAA97FarVq+fLn9dUZGhtq2bevBHqEh\nougAj/r555/18ssva8iQIRo6dKgSExNVXl4uSQoNDdW7776rESNGaMCAAUpMTLRvt3TpUgUFBenh\nhx/WX/7yF4WGhkqS4uLi9NZbb2nhwoXatWuXpk6dqs2bN9vbL7n89d/+9jeFhYVp6NChFZKmJKWm\npio8PFyhoaF64YUXVFJS4u5DAgANmrsuKHv27KkVK1a4fL8A0NTk5ORo2LBhSkxM1JAhQxQaGqp/\n/OMfNV5Xd+nSRX/+85/14IMPKigoyD4zeOPGjXr88cft+/7l60s+++wzDRs2TEOGDNHw4cP17bff\nSpLGjBmjo0ePKjw8XKWlperSpYuOHz8uSfrzn/+siIgIhYeH65lnntFPP/0k6eJ1+OLFi/XEE08o\nJCRETzzxhIqLi914xOBpFB3gUSkpKTp+/Lg+/vhjvf/++9q9e7c2bdpkf/+rr75Samqq3nvvPa1d\nu1bHjx/X999/r+XLl+vDDz/UunXrlJGRUWm/U6ZMUbt27TR//nxFRERUG7+8vFwzZszQ7Nmz9ckn\nn8jLy8uenHfv3q1FixYpJSVF27ZtU8uWLbVo0SLXHwQAcLHDhw9rwIABWrZsmYYMGaIhQ4boH//4\nh5566ikNHDhQL730kiRp69atGjZsmAYPHqzx48fbLwgLCgo0fvx4hYaG6qmnntKZM2fs+778gjI5\nOVlDhgzRPffco6efflqFhYWSpCVLlugPf/iDYmJiNHjwYI0YMUJ5eXk19vnyZXc1bX/o0CH97ne/\nU1hYmB5++GHt379fknT06FFFR0dryJAhuv//Y+/u46Kq8///P4cZWEJBhRjNrLbaTDev8yJRVFAE\nLRPzEtMs3U1dMy3KWD6a9tENtDAzLc3yYrU2v5IZXYGa2KYihbSWtZtdbIloCgICooFwfn/4cz4S\noAwyDDCP++3m7ea857zP6/2egZfH13mfc+65R9u2bbPrs7jc5wEA9c0PP/ygTp06KSkpSdOnT9eC\nBQuueFz9888/691339Ubb7yhZ599Vrm5udWKdf78eUVFRWnhwoVKSkpScHCwFi9eLEl69tlndd11\n1ykxMVEeHh62Pv/617/0+uuva+PGjUpMTFTr1q0VFxdnez8xMVEvvPCCduzYoZycHO3YsaOWPhnU\nRxQd4FS7d+/WmDFjZLFY5OnpqWHDhmnv3r2294cNGyaz2ayWLVvKz89Px48f1+eff66ePXvKarXq\nd7/7nUaOHFnj+D/99JOKi4vVt29fSdKIESNs7+3atUtDhw5Vy5YtJUkRERHavn17jWMBQF3Kzc2V\nv7+/kpKSdPvtt+uxxwUO/2MAACAASURBVB5TbGysEhIS9P777+vIkSOaM2eO4uLi9PHHH6tXr15a\nsGCBJGnNmjVq0aKFdu3apaefflp79uypsP9Dhw7pjTfe0Ntvv63t27eruLhYmzZtsr2fmJio6Oho\n7dy5U35+fnr77bftGn9V/efNm6e7775bO3bs0PTp0zVnzhxbe8+ePZWUlKTVq1dr0aJFtvvzVOez\nyMjIqPLzAID6xsvLS0OGDJEkDR48WP/+97+VlJR02ePqi8fMt9xyi26++WZ9+eWX1YplsVi0b98+\ndenSRZLUvXt3ZWRkXLbP7t27FRoaKj8/P0nS6NGjy42lf//+at68uSwWi9q2bavjx49Xf/JocCzO\nHgBcW05Ojpo1a2Z73axZM506dcr2umnTpra/m81mlZaWKj8/v1yfi0WBmjh9+nS5GJfut6CgQDt2\n7LAdbBuGoZKSkhrHAoC6dP78eYWFhUmS2rZtK0ny9fWVJPn7+yshIUE9e/a0vTdu3Dj16dNHpaWl\nSktL08MPPyxJatOmjXr27Flh/x06dNDu3bttZ7a6du1a7iC0e/fuuv766yVJ7du3t/uAsrL+v/76\nq1JTU7V8+XJJ0sCBA9W7d2+VlJRo3759WrZsmSTp+uuvV69evbR//37dddddV/wsTp48qW+//bbK\nz8NsNts1dgBwNB8fH5lMJtvfJamwsPCyx9W/fe/i6rTq2Lhxo9555x0VFxeruLjYFrsqOTk5slqt\n5cZ76Vi8vb1tf794jI/Gi6IDnOraa69VXl6e7XVeXt4VrxVu2rSpioqKbK+vtGRXktzc3FRWVmZ7\nffr0aUkXEm5hYaGt/dKltFarVSNGjNBTTz115YkAQD1jNpvl6ekp6UIO9PLyKveexWJRWlqa7T/j\n0oX8mpeXp9OnT5c7ILx4QHups2fPKiYmRqmpqZIu5NUBAwbY3r/aA8rK+ufl5amsrMz2nslkUpMm\nTZSVlSXDMCqM+WJOv9JnUVpaqoKCgio/j4tn6gCgvrj0+Pnica2Pj89lj6tzc3Ntxdy8vDw1a9ZM\nOTk55fJzZYWI9PR0rVmzRlu2bFGbNm20d+9ezZs377Ljq8kxPhovLq+AUw0YMEDx8fEqLS1VUVGR\n3n33XfXv3/+yfTp16qTU1FTl5OSouLjYdt3ub1ksFtt1yP7+/vrPf/4j6cL1wOnp6ZKkG2+8UWaz\n2XbQvHXrVlvlNjg4WNu3b7cdtO7cuVOvvvrq1U8aAOoBq9WqgIAAJSYm2v7s379ffn5+8vHxKXcf\nh8rubbBhwwb99NNP2rp1q5KSkjR27FiHj7lFixYymUy265ANw9DPP/+s5s2by83NzXbgLcnuYsHl\nPg8AqG/OnTunnTt3SpKSkpLUoUMHhYaGXva4+oMPPpB04X4QP//8szp37iyr1ar//ve/+vXXX3X2\n7NlK75WWk5MjPz8/tW7dWmfPntU777yjoqIiGYYhi8WioqIinT9/vlyfAQMGaMeOHbZ8/dZbb13x\nGB+NF0UHONXEiRPVqlUr3X333Ro5cqQGDBhguz6tKp06ddKIESM0YsQIPfDAAwoKCqp0u9DQUD3+\n+ONat26dxowZo8zMTA0ePFhxcXEKDQ2VJLm7u2vhwoWKjo7WkCFDZDKZbGfA7rjjDk2bNk0TJ07U\nkCFDtH79eg0cOLB2PwAAcBIPDw+lpaXZLon48ssvtWjRIklSly5dbAezR44c0YEDByr0P3XqlG65\n5RY1adJEmZmZ+uSTT8qtQnPUmPv06aN33nlHkvTpp5/q4Ycflru7u/r27avNmzfbxpyWlqaAgIBq\n77tv375Vfh4AUN9cf/31OnDggEJDQ7V69WrNnz//isfVvr6+Gj58uO6//37NnTtXzZo1U69evdS5\nc2eFhobqz3/+c6XHuoGBgbJarRo0aJAmT56sSZMmydvbW48++qhuv/12NWvWTH369Cn3qPpOnTrp\n4Ycf1v3336+wsDAVFBToscceq5PPBvWPyTAMw9mDAOxlGIZtRcLu3bu1bNmyKlc8AICrOXr0qAYP\nHqxvvvlGkvTyyy/ryJEjtkcPh4SEaNGiRSosLNSLL76okpISNWnSRNHR0erWrZuys7P12GOPKTMz\nU7feeqt8fX3Vpk0bzZw5U7fffrs++eQTnTlzRo8++qjOnz+v22+/XePHj9fMmTM1Y8YMFRQU6Jdf\nftHf/vY3SReeRnHp68qkpqZq7ty52rFjR4XtL339yy+/6IknntDx48fVrFkzPfPMM+rYsaOOHz+u\nuXPnKjMzU+7u7nrkkUcUGhpa7c+iV69e+vjjjyv9PACgPrk0X1bXxdzdqlUrB44MqBxFBzQ4OTk5\nGjJkiLZu3arWrVsrKipK11xzDXcZBwAAQKNH0QENDTeSRIPj6+ur2bNn68EHH5TJZNItt9xie2Qa\nAAAAAKD+YKUDAACoEzNmzNAPP/xQ6XsrV67UrbfeWscjAgAAjkbRAQAAAAAAOESDubwiK6vgyhv9\nRosWXsrNdeydtOtrfFeeu6vHd+W51yS+v7+3A0fjehparm5oP6/EbxyxXT1+TWKTq2uXvbnalX9e\nXT2+K8/d2fEb4tyrytWN+pGZFovZZeO78txdPb4rz70+xIf9+H0hvqvFdvX4zp477Ofs74z4rvv7\n6srxG9PcG3XRAQAAAAAAOA9FBwAAAAAA4BAUHQAAAAAAgENQdAAAAAAAAA5B0QEAAAAAADgERQcA\nAAAAAOAQFB0AAAAAAIBDWJw9AKChmhy7y+4+a6OCHTASAI5g7+84v98AGqthke/a3YecCOAiVjoA\nAAAAAACHoOgAAAAAAAAcgqIDAAAAAABwCIoOAAAAAADAISg6AAAAAAAAh6DoAAAAAAAAHIKiAwAA\nAAAAcAiKDgAAAAAAwCEoOgAAAAAAAIeg6AAAAAAAAByCogMAAAAAAHAIig4AAAAAAMAhLM4eAAAA\njjY5dpezhwAAAOCSKDoAQCO2ZMkSHThwQOfPn9fUqVPVsWNHzZkzR6WlpfL399dzzz0nDw8PJSQk\naMOGDXJzc9OYMWM0evRolZSUKCoqSseOHZPZbFZMTIxuuOEGZ08JAAAADQhFBwBopPbv36/vvvtO\nmzdvVm5urkaMGKHevXtr/PjxGjJkiJYuXar4+HiFh4dr5cqVio+Pl7u7u0aNGqWQkBAlJyfLx8dH\ncXFx2rNnj+Li4rRs2TJnTwsAAAANSI2LDr89e7Zr1y59/fXXat68uSRpypQpGjBgAGfPAMBJevTo\noU6dOkmSfHx8dPbsWaWmpuqZZ56RJAUFBWnt2rW6+eab1bFjR3l7e0uSunXrpvT0dKWkpCg8PFyS\nFBAQoOjoaOdMpIGoySUc78UNd8BIAAAA6o8aFR0qO3t211136fHHH1dQUJBtu6KiIs6eAYCTmM1m\neXl5SZLi4+PVr18/7dmzRx4eHpIkPz8/ZWVlKTs7W76+vrZ+vr6+Fdrd3NxkMplUXFxs6w8AAABc\nSY2KDpWdPSstLa2w3cGDBzl7BgBOtnPnTsXHx2vt2rUaPHiwrd0wjEq3t7f9Ui1aeMliMds9Rn9/\nb7v7NBbOnrsrx3fluTs7vrPnDgCoOzUqOlR29sxsNmvTpk1at26d/Pz8NG/evFo9e9ZQD2Rd+R90\nV49fmboak7Pn7urx65NPP/1Uq1at0muvvSZvb295eXnp3Llz8vT01IkTJ2S1WmW1WpWdnW3rc/Lk\nSXXp0kVWq1VZWVlq166dSkpKZBjGFVc55OYW2T1Gf39vZWUV2N2vsXDm3J392TszvivP3dnxaxK7\nMef1M2fO6KmnntLp06dVUlKiGTNmyN/fXwsWLJAk3X777bbL4l577TUlJibKZDLpkUceUf/+/VVQ\nUKDIyEgVFBTIy8tLcXFxtsudAaA+uKobSV569uzQoUNq3ry52rdvr1dffVUrVqxQ165dy21/NWfP\nGuKBbEP7B534jlcXY3L23Bta/MZ8IFtQUKAlS5Zo/fr1tgPQgIAAJSUlafjw4dq+fbsCAwPVuXNn\nzZ07V/n5+TKbzUpPT1d0dLQKCwuVmJiowMBAJScnq1evXk6eEQA0Pu+8845uvvlmRUZG6sSJE5o0\naZL8/f0VHR2tTp06KTIyUp988oluueUWffjhh3rrrbdUWFio8ePHq2/fvtqwYYN69uypP/3pT9q8\nebPWrFmjJ5980tnTAgAbt5p2vHj2bM2aNfL29lbv3r3Vvn17SVJwcLAOHz5c6dmzi2fVsrKyJKna\nZ88AAPb58MMPlZubq9mzZ2vixImaOHGipk2bpm3btmn8+PHKy8tTeHi4PD09FRkZqSlTpuihhx7S\njBkz5O3traFDh6qsrEwRERF64403FBkZ6ewpAUCj06JFC+Xl5UmS8vPz1bx5c2VmZtouZQ4KClJK\nSopSU1MVGBgoDw8P+fr66vrrr9f333+vlJQUhYSElNsWAOqTGq10qOzs2cyZMzVnzhzdcMMNSk1N\n1W233cbZMwBworFjx2rs2LEV2tetW1ehLSwsTGFhYeXaLj5dCADgOHfffbe2bt2qkJAQ5efn65VX\nXtH//u//2t6/eNPf5s2bX/GyZT8/P508ebLO5wAAl1OjosOlZ88uuu+++zR79mxdc8018vLyUkxM\nTLmzZyaTqdzZs3379ikiIkIeHh6KjY2ttQkBAAAADcW7776r1q1b6/XXX9d//vMf2/HyRfZcnlyd\nS5almt8rzR61ffmisy+HdOX4rjx3Z8dvLHOvUdGhqrNnI0aMqNDG2TMAAACgcunp6erbt68kqV27\ndvr11191/vx52/uX3vT3v//9b6XtWVlZ8vb2trVdSU3ulWav2ry/U0O7X1Rjiu/Kc3d2/IY496qK\nFDW+pwMAAACAq3PTTTfp4MGDkqTMzEw1adJEt956q9LS0iTJdtPfu+66S7t371ZxcbFOnDihkydP\n6g9/+IP69OmjxMTEctsCQH1yVU+vAAAAAFBzY8eOVXR0tCZMmKDz589rwYIF8vf319NPP62ysjJ1\n7txZAQEBkqQxY8ZowoQJMplMWrBggdzc3DRx4kQ9+eSTGj9+vHx8fPTcc885eUYAUB5FBwAAAMBJ\nmjRpohdffLFC+5tvvlmh7eKTiH7b/+WXX3bY+ADganF5BQAAAAAAcAiKDgAAAAAAwCEoOgAAAAAA\nAIeg6AAAAAAAAByCogMAAAAAAHAIig4AAAAAAMAhKDoAAAAAAACHoOgAAAAAAAAcgqIDAAAAAABw\nCIoOAAAAAADAISg6AAAAAAAAh6DoAAAAAAAAHIKiAwAAAAAAcAiKDgAAAAAAwCEoOgAAAAAAAIeg\n6AAAAAAAAByCogMAAAAAAHAIig4AAAAAAMAhKDoAAAAAAACHsNS045IlS3TgwAGdP39eU6dOVceO\nHTVnzhyVlpbK399fzz33nDw8PJSQkKANGzbIzc1NY8aM0ejRo1VSUqKoqCgdO3ZMZrNZMTExuuGG\nG2pzXgAAAAAAwMlqVHTYv3+/vvvuO23evFm5ubkaMWKEevfurfHjx2vIkCFaunSp4uPjFR4erpUr\nVyo+Pl7u7u4aNWqUQkJClJycLB8fH8XFxWnPnj2Ki4vTsmXLantuAAAAAADAiWp0eUWPHj304osv\nSpJ8fHx09uxZpaamauDAgZKkoKAgpaSk6ODBg+rYsaO8vb3l6empbt26KT09XSkpKQoJCZEkBQQE\nKD09vZamAwAAAAAA6osarXQwm83y8vKSJMXHx6tfv37as2ePPDw8JEl+fn7KyspSdna2fH19bf18\nfX0rtLu5uclkMqm4uNjWvzItWnjJYjHbPVZ/f2+7+9QmZ8Z35bnXh/iVqasxOXvurh4fAAAAwAU1\nvqeDJO3cuVPx8fFau3atBg8ebGs3DKPS7e1tv1RubpHd4/P391ZWVoHd/WqLM+O78tzrQ/yq1MWY\nnD33hhafAgUAAADgODV+esWnn36qVatWac2aNfL29paXl5fOnTsnSTpx4oSsVqusVquys7NtfU6e\nPGlrz8rKkiSVlJTIMIzLrnIAAAAAAAANT42KDgUFBVqyZIlWr16t5s2bS7pwb4akpCRJ0vbt2xUY\nGKjOnTvrq6++Un5+vs6cOaP09HR1795dffr0UWJioiQpOTlZvXr1qqXpAAAudfjwYQ0aNEibNm2S\nJEVFRWnYsGGaOHGiJk6cqN27d0uSEhISNHLkSI0ePVpbtmyRdKEoHBkZqYiICE2YMEEZGRnOmgYA\nAAAaqBpdXvHhhx8qNzdXs2fPtrXFxsZq7ty52rx5s1q3bq3w8HC5u7srMjJSU6ZMkclk0owZM+Tt\n7a2hQ4dq3759ioiIkIeHh2JjY2ttQgCAC4qKirRw4UL17t27XPvjjz+uoKCgctvxpCEAAAA4Qo2K\nDmPHjtXYsWMrtK9bt65CW1hYmMLCwsq1mc1mxcTE1CQ0AKCaPDw8tGbNGq1Zs+ay2136pCFJ5Z40\nFB4eLunCarbo6GiHjxkAAACNy1XdSBJ1Z3LsLru2fy9uuINGAqChsFgsslgqpvlNmzZp3bp18vPz\n07x583jSkJM5e+6uHN+V5+7s+M6eOwCg7lB0AAAXMnz4cDVv3lzt27fXq6++qhUrVqhr167ltnG1\nJw0507DId+3uszYquNbiO/uz5ylPrhm/JrEbe5EiISFBr732miwWix599FHdfvvtmjNnjkpLS+Xv\n76/nnntOHh4eSkhI0IYNG+Tm5qYxY8Zo9OjRKikpUVRUlI4dO2ZbTXzDDTc4e0oAYFPjp1cAABqe\n3r17q3379pKk4OBgHT58mCcNAYAT5ebmauXKlXrzzTe1atUqffzxx1q+fLnGjx+vN998UzfddJPi\n4+Nt999Zv369Nm7cqA0bNigvL0/vv/++fHx89I9//EPTpk1TXFycs6cEAOVQdAAAFzJz5kzbUyhS\nU1N122238aQhAHCilJQU9e7dW02bNpXVatXChQuVmpqqgQMHSpKCgoKUkpJS7v47np6e5e6/ExIS\nIunC/XfS09OdOR0AqIDLKwCgkTp06JAWL16szMxMWSwWJSUlacKECZo9e7auueYaeXl5KSYmRp6e\nnjxpCACc5OjRozp37pymTZum/Px8zZw5U2fPnrWtLPPz86twnx3JOfffsUdtXxLj7EtsXDm+K8/d\n2fEby9wpOgBAI9WhQwdt3LixQntoaGiFNp40BADOk5eXpxUrVujYsWN64IEHyt1Dx9777Djq/jv2\nqs17hrjyPVCcHd+V5+7s+A1x7lUVKbi8AgAAAHASPz8/de3aVRaLRTfeeKOaNGmiJk2a6Ny5c5Kk\nEydO2O6zw/13ADREFB0AAAAAJ+nbt6/279+vsrIy5ebmqqioSAEBAUpKSpIkbd++XYGBgdx/B0CD\nxeUVAAAAgJO0bNlSoaGhGjNmjCRp7ty56tixo5566ilt3rxZrVu3Vnh4uNzd3bn/DoAGiaIDAAAA\n4ETjxo3TuHHjyrWtW7euwnbcfwdAQ8TlFQAAAAAAwCEoOgAAAAAAAIeg6AAAAAAAAByCogMAAAAA\nAHAIig4AAAAAAMAhKDoAAAAAAACHoOgAAAAAAAAcgqIDAAAAAABwCIoOAAAAAADAISg6AAAAAAAA\nh6DoAAAAAAAAHOKqig6HDx/WoEGDtGnTJklSVFSUhg0bpokTJ2rixInavXu3JCkhIUEjR47U6NGj\ntWXLFklSSUmJIiMjFRERoQkTJigjI+PqZgIAAAAAAOoVS007FhUVaeHCherdu3e59scff1xBQUHl\ntlu5cqXi4+Pl7u6uUaNGKSQkRMnJyfLx8VFcXJz27NmjuLg4LVu2rOYzAQAAAAAA9UqNVzp4eHho\nzZo1slqtl93u4MGD6tixo7y9veXp6alu3bopPT1dKSkpCgkJkSQFBAQoPT29pkMBAAAAAAD1UI2L\nDhaLRZ6enhXaN23apAceeECPPfaYcnJylJ2dLV9fX9v7vr6+ysrKKtfu5uYmk8mk4uLimg4HAAAA\nAADUMzW+vKIyw4cPV/PmzdW+fXu9+uqrWrFihbp27VpuG8MwKu1bVftFLVp4yWIx2z0mf39vu/vU\nJmfGd+W514f4lamrMTl77q4eHwAAAMAFtVp0uPT+DsHBwVqwYIFCQ0OVnZ1taz958qS6dOkiq9Wq\nrKwstWvXTiUlJTIMQx4eHlXuOze3yO7x+Pt7KyurwO5+tcXZ8V157s6OX5W6GJOz597Q4lOgAAAA\nABynVh+ZOXPmTNtTKFJTU3Xbbbepc+fO+uqrr5Sfn68zZ84oPT1d3bt3V58+fZSYmChJSk5OVq9e\nvWpzKAAAAAAAwMlqvNLh0KFDWrx4sTIzM2WxWJSUlKQJEyZo9uzZuuaaa+Tl5aWYmBh5enoqMjJS\nU6ZMkclk0owZM+Tt7a2hQ4dq3759ioiIkIeHh2JjY2tzXgAAAAAAwMlqXHTo0KGDNm7cWKE9NDS0\nQltYWJjCwsLKtZnNZsXExNQ0PAAAAAAAqOdq9fIKAAAAAACAi2r1RpIAADja5Nhdzh4CAAAAqomV\nDgAAAAAAwCFY6QAAQANi70qPtVHBDhoJAADAlbHSAQAAAAAAOARFBwAAAAAA4BAUHQCgETt8+LAG\nDRqkTZs2SZKOHz+uiRMnavz48Zo1a5aKi4slSQkJCRo5cqRGjx6tLVu2SJJKSkoUGRmpiIgITZgw\nQRkZGU6bBwAAABomig4A0EgVFRVp4cKF6t27t61t+fLlGj9+vN58803ddNNNio+PV1FRkVauXKn1\n69dr48aN2rBhg/Ly8vT+++/Lx8dH//jHPzRt2jTFxcU5cTYAAABoiCg6AEAj5eHhoTVr1shqtdra\nUlNTNXDgQElSUFCQUlJSdPDgQXXs2FHe3t7y9PRUt27dlJ6erpSUFIWEhEiSAgIClJ6e7pR5AEBj\nd+7cOQ0aNEhbt25lRRqARoenVwBAI2WxWGSxlE/zZ8+elYeHhyTJz89PWVlZys7Olq+vr20bX1/f\nCu1ubm4ymUwqLi629a9MixZesljMdo/V39/b7j6onit9ts7+7J0Z35Xn7uz4zp57ffPKK6+oWbNm\nkv5vRdqQIUO0dOlSxcfHKzw8XCtXrlR8fLzc3d01atQohYSEKDk5WT4+PoqLi9OePXsUFxenZcuW\nOXk2AFAeRQegnrP38XjvxQ130EjQ2BiGUSvtl8rNLbJ7HP7+3srKKrC7H6rncp+tsz97Z8Z35bk7\nO35NYjfmIsUPP/yg77//XgMGDJB0YUXaM888I+nCirS1a9fq5ptvtq1Ik1RuRVp4eLikCyvSoqOj\nnTIHALgcig4A4EK8vLx07tw5eXp66sSJE7JarbJarcrOzrZtc/LkSXXp0kVWq1VZWVlq166dSkpK\nZBjGZVc5AADst3jxYs2bN0/btm2T5PgVaVLNV6XZo7YLRc4uPLlyfFeeu7PjN5a5U3QA/n/2rigA\nGqKAgAAlJSVp+PDh2r59uwIDA9W5c2fNnTtX+fn5MpvNSk9PV3R0tAoLC5WYmKjAwEAlJyerV69e\nzh4+ADQq27ZtU5cuXXTDDTdU+r4jVqRJNVuVZq/aXEnjyiuDnB3flefu7PgNce5VFSkoOgBAI3Xo\n0CEtXrxYmZmZslgsSkpK0vPPP6+oqCht3rxZrVu3Vnh4uNzd3RUZGakpU6bIZDJpxowZ8vb21tCh\nQ7Vv3z5FRETIw8NDsbGxzp4SADQqu3fvVkZGhnbv3q1ffvlFHh4erEgD0OhQdACARqpDhw7auHFj\nhfZ169ZVaAsLC1NYWFi5NrPZrJiYGIeNDwBc3aU3fXzppZd0/fXX64svvmBFGoBGhaIDAAAAUE/M\nnDlTTz31FCvSADQaFB0AAAAAJ5s5c6bt76xIA9CYuDl7AAAAAAAAoHGi6AAAAAAAAByCogMAAAAA\nAHAIig4AAAAAAMAhKDoAAAAAAACHuKqiw+HDhzVo0CBt2rRJknT8+HFNnDhR48eP16xZs1RcXCxJ\nSkhI0MiRIzV69Ght2bJFklRSUqLIyEhFRERowoQJysjIuMqpAAAAAACA+qTGRYeioiItXLhQvXv3\ntrUtX75c48eP15tvvqmbbrpJ8fHxKioq0sqVK7V+/Xpt3LhRGzZsUF5ent5//335+PjoH//4h6ZN\nm6a4uLhamRAAAAAAAKgfalx08PDw0Jo1a2S1Wm1tqampGjhwoCQpKChIKSkpOnjwoDp27Chvb295\nenqqW7duSk9PV0pKikJCQiRJAQEBSk9Pv8qpAAAAAACA+sRS444WiyyW8t3Pnj0rDw8PSZKfn5+y\nsrKUnZ0tX19f2za+vr4V2t3c3GQymVRcXGzr/1stWnjJYjHbPU5/f2+7+9QmZ8Z35bnXh/iVqasx\nOXvurh4fAAAAwAU1LjpciWEYtdJ+UW5ukd1j8Pf3VlZWgd39aouz47vy3J0dvyp1NSZX/uztjU+B\nAgAAAHCcWn16hZeXl86dOydJOnHihKxWq6xWq7Kzs23bnDx50taelZUl6cJNJQ3DqHKVAwAAAAAA\naHhqtegQEBCgpKQkSdL27dsVGBiozp0766uvvlJ+fr7OnDmj9PR0de/eXX369FFiYqIkKTk5Wb16\n9arNoQAAAAAAACer8eUVhw4d0uLFi5WZmSmLxaKkpCQ9//zzioqK0ubNm9W6dWuFh4fL3d1dkZGR\nmjJlikwmk2bMmCFvb28NHTpU+/btU0REhDw8PBQbG1ub8wIAAAAAAE5W46JDhw4dtHHjxgrt69at\nq9AWFhamsLCwcm1ms1kxMTE1DQ8AAAAAAOq5Wr28AgAAAAAA4CKKDgAAAAAAwCEoOgAAAAAAAIeg\n6AAAAAAAAByixjeSBAAA9d/k2F1291kbFeyAkQAAAFdE0aGRGhb5rt19OMgEAAAAANQmLq8AAAAA\nAAAOwUoHJ6jJUlcAAAAAABoaVjoAAAAAAACHoOgAAAAAAAAcgssrgDrEpTUAAAAAXAkrHQAAAAAA\ngENQdAAAAAAA8ZEQWwAAIABJREFUAA7B5RUA4GJSU1M1a9Ys3XbbbZKktm3b6k9/+pPmzJmj0tJS\n+fv767nnnpOHh4cSEhK0YcMGubm5acyYMRo9erSTRw8AaAhqcknp2qhgB4wEgLNRdAAAF9SzZ08t\nX77c9vqvf/2rxo8fryFDhmjp0qWKj49XeHi4Vq5cqfj4eLm7u2vUqFEKCQlR8+bNnThyAAAANCQU\nHWBDRRpwXampqXrmmWckSUFBQVq7dq1uvvlmdezYUd7e3pKkbt26KT09XcHB/N4DQG1asmSJDhw4\noPPnz2vq1Knq2LFjtVeflZSUKCoqSseOHZPZbFZMTIxuuOEGZ08JAGwoOgCAC/r+++81bdo0nT59\nWo888ojOnj0rDw8PSZKfn5+ysrKUnZ0tX19fWx9fX19lZWU5a8gA0Cjt379f3333nTZv3qzc3FyN\nGDFCvXv3rvbqs+TkZPn4+CguLk579uxRXFycli1b5uxpAYANRQcAcDG///3v9cgjj2jIkCHKyMjQ\nAw88oNLSUtv7hmFU2q+q9ku1aOEli8Vs95j8/b3t7gPHqcvvw5nfvbN/7lw5vrPnXp/06NFDnTp1\nkiT5+Pjo7Nmzdq0+S0lJUXh4uCQpICBA0dHRzpkIAFSBogMAuJiWLVtq6NChkqQbb7xR1157rb76\n6iudO3dOnp6eOnHihKxWq6xWq7Kzs239Tp48qS5dulx237m5RXaPx9/fW1lZBXb3g+PU1ffhzO/e\n2T93rhy/JrEbc5HCbDbLy8tLkhQfH69+/fppz5491V59dmm7m5ubTCaTiouLbf0rU9MCsaNd7nt2\n9s+AK8d35bk7O35jmTtFBwBwMQkJCcrKytKUKVOUlZWlU6dO6b777lNSUpKGDx+u7du3KzAwUJ07\nd9bcuXOVn58vs9ms9PR0zqABgIPs3LlT8fHxWrt2rQYPHmxrt3f1WXVWpdWkQFwXqipGuXKRztnx\nXXnuzo7fEOdeVZGCogMAuJjg4GA98cQT+vjjj1VSUqIFCxaoffv2euqpp7R582a1bt1a4eHhcnd3\nV2RkpKZMmSKTyaQZM2bYlvUCAGrPp59+qlWrVum1116Tt7e3vLy8qr36zGq1KisrS+3atVNJSYkM\nw7jsKgcAqGu1WnTg2e8AUP81bdpUq1atqtC+bt26Cm1hYWEKCwuri2EBgEsqKCjQkiVLtH79etsj\niQMCAqq9+qywsFCJiYkKDAxUcnKyevXq5eQZAUB5tb7SgWe/AwAAANXz4YcfKjc3V7Nnz7a1xcbG\nau7cudVafTZ06FDt27dPERER8vDwUGxsrBNnAwAVOfzyCp79DgBAwzI5dpfdfdZG8W84UBNjx47V\n2LFjK7RXd/WZ2WxWTEyMw8YHAFer1osOPPsdAAAAAABItVx04Nnv9S++o/Foo/rJ2XN39fgAAAAA\nLqjVogPPfq9f8esCjzaqn1z5s7c3PgUKAAAAwHFqtejAs99RXwyLfNfZQwAAAAAAl1erRQee/Q4A\nAAAAAC6q1aIDz34HAAAAAAAXOfyRmcDVqsmj2wAAAAAAzufm7AEAAAAAAIDGiaIDAAAAAABwCIoO\nAAAAAADAISg6AAAAAAAAh6DoAAAAAAAAHIKnV+Cq2PtkibVRwQ4aCQAAAACgvmGlAwAAAAAAcAhW\nOgAAgKtm78o3SXovbrgDRgIAAOoTVjoAAAAAAACHYKUDAMCphkW+6+whwEns/e65LxAAAA0PKx0A\nAAAAAIBDUHQAAAAAAAAOweUVqFM1udEYAAAAAKBhYqUDAAAAAABwCIoOAAAAAADAISg6AAAAAAAA\nh6DoAAAAAAAAHIKiAwAAAAAAcAieXgEAABqEmjwBaW1UsANGAsAR7P0d5/cbaBgaddFhWOS7dvex\nN3nxCEjUN3Xxcw8AjRn/8QEAoPZweQUAAAAAAHAIp650ePbZZ3Xw4EGZTCZFR0erU6dOzhwO4LLq\nYsUOZwIbLnI1GrK6yG81ifFe3HAHjASuijwNoD5zWtHhs88+088//6zNmzfrhx9+UHR0tDZv3uys\n4dhwuQQA/J/6mqsB1B/2HjtRcKldrpynuc8L0DA4reiQkpKiQYMGSZJuvfVWnT59WoWFhWratKmz\nhgSgnuHsofORqwHHqMn9d+oC/yFreMjTAOo7pxUdsrOzdccdd9he+/r6Kisrq8oE6e/vbXcM/vMB\nNGw1/R2uSb5A5cjVAK6kJr/D5OnaY2+eluz//MnTzv+ZdWZ8V567s+M3lrnXmxtJGobh7CEAAK6A\nXA0A9Rt5GkB947Sig9VqVXZ2tu31yZMn5e/v76zhAAAqQa4GgPqNPA2gvnNa0aFPnz5KSkqSJH39\n9deyWq1cewYA9Qy5GgDqN/I0gPrOafd06Natm+644w6NGzdOJpNJ8+fPd9ZQAABVIFcDQP1GngZQ\n35kMLvwCAAAAAAAOUG9uJAkAAAAAABoXig4AAAAAAMAhnHZPh9r02WefadasWXr22WcVFBRU4f2E\nhARt2LBBbm5uGjNmjEaPHq2SkhJFRUXp2LFjMpvNiomJ0Q033GB37Cvt59ChQ1q8eLHt9ffff6+V\nK1dq7969eu+999SyZUtJ0r333qvRo0fXamxJuuOOO9StWzfb6/Xr16usrKxO5i5JH374odauXSs3\nNzf17t1bjz32mLZu3aoXX3xRN954oyQpICBA06dPr3bcZ599VgcPHpTJZFJ0dLQ6depke2/fvn1a\nunSpzGaz+vXrpxkzZlyxj70ut6/9+/dr6dKlcnNz080336y//e1v+vzzzzVr1izddtttkqS2bdtq\n3rx5DokfHBysVq1ayWw2S5Kef/55tWzZsk7mf+LECT3xxBO27TIyMhQZGamSkpKr+r5/6/Dhw/rL\nX/6iBx98UBMmTCj3Xl18/6gZV83T1YkvkasbW64mT5OnGypytXNytbPytOTcXM0xtQvlaqOB+/nn\nn41p06YZf/nLX4xdu3ZVeP/MmTPG4MGDjfz8fOPs2bPG3XffbeTm5hpbt241FixYYBiGYXz66afG\nrFmzahTfnv2cPn3auP/++43S0lJj+fLlxsaNG2sU057YPXv2vKoxX038oqIiIygoyCgoKDDKysqM\nUaNGGd99953x9ttvG7GxsTWKmZqaajz88MOGYRjG999/b4wZM6bc+0OGDDGOHTtmlJaWGhEREcZ3\n3313xT61GT8kJMQ4fvy4YRiGMXPmTGP37t3G/v37jZkzZ9Y4pj3xg4KCjMLCQrv61Gb8i0pKSoxx\n48YZhYWFV/V9/9aZM2eMCRMmGHPnzq3098fR3z9qxpXzdHXjk6sbT64mT5OnGypytfNytTPytGE4\nN1dzTO1aubrBX17h7++vFStWyNvbu9L3Dx48qI4dO8rb21uenp7q1q2b0tPTlZKSopCQEEkXqkTp\n6ek1im/Pfl5//XVNmjRJbm6187HXdA51NfdrrrlGCQkJatq0qUwmk5o3b668vLwaxbo05qBBgyRJ\nt956q06fPq3CwkJJF6qAzZo103XXXSc3Nzf1799fKSkpl+1Tm/ElaevWrWrVqpUkydfXV7m5uTWe\na03i11afq93XO++8o9DQUDVp0qRGcari4eGhNWvWyGq1VnivLr5/1Iwr52l749dGP3v3Q66u3VxN\nniZPN1Tkauflamfk6YtxnZWrOaZ2rVzd4IsO11xzjW3ZS2Wys7Pl6+tre+3r66usrKxy7W5ubjKZ\nTCouLrY7fnX3c+7cOe3Zs0cDBw60tSUmJuqhhx7S1KlTlZGR4ZDYxcXFioyM1Lhx47Ru3Tq7xlwb\n8S8+J/rbb79VZmamOnfuLOnC8r0pU6Zo0qRJ+uabb+yK2aJFC9vri9+nJGVlZVX5XVfVx15X2tfF\n+Z48eVJ79+5V//79JV1YAjht2jRFRERo7969NYpdnfiSNH/+fEVEROj555+XYRh1Ov+LtmzZolGj\nRtle1/T7/i2LxSJPT89K36uL7x8148p5urrxydWNJ1eTp8nTDRW52nm52hl5+mJcZ+VqjqldK1c3\nqHs6bNmyRVu2bCnXNnPmTAUGBlZ7H0YVTwitqv1K8Q8ePFit/ezcuVMDBgywVWT79++vu+66Sz16\n9NAHH3ygRYsWafXq1bUee86cObr33ntlMpk0YcIEde/evcI2jp77Tz/9pCeeeEJxcXFyd3dX586d\n5evrqwEDBuiLL77QU089pffee++KY6hMdcZeG33s2depU6c0bdo0zZ8/Xy1atNDvf/97PfLIIxoy\nZIgyMjL0wAMPaPv27fLw8Kj1+I8++qgCAwPVrFkzzZgxQ0lJSdUac23Fl6QvvvhCt9xyi+0fi9r8\nvmtDbc4fFblynr6a+OTq2uljz77qKleTp+1HnnY8crXzcnV9zdPVGXtt9anufjimbjy5ukEVHUaP\nHm33jWGsVquys7Ntr0+ePKkuXbrIarUqKytL7dq1U0lJiQzDuOIPbGXxo6KiqrWf5ORkRURE2F7/\n9kYlzz//vENiXxrzrrvu0uHDh+t07r/88otmzJihJUuWqH379pIuLMe59dZbJUldu3ZVTk6OSktL\nL1tdv6iy79Pf37/S906cOCGr1Sp3d/cq+9jrcvElqbCwUH/+8581e/Zs9e3bV5LUsmVLDR06VJJ0\n44036tprr9WJEydqdJOlK8UPDw+3/b1fv36277uu5i9Ju3fvVu/evW2vr+b7vpqxOeL7x5W5cp6+\nmvjk6saTq8nT1R8bedp5yNXOy9X1JU9Lzs3VHFO7Vq5u8JdXXEnnzp311VdfKT8/X2fOnFF6erq6\nd++uPn36KDExUdKF5NWrV68a7b+6+zl06JDatWtne71o0SKlpaVJurBM5uJdWGsz9o8//qjIyEgZ\nhqHz588rPT1dt912W53O/X/+53+0YMEC3XHHHba2NWvW6P3335d04a6pvr6+1f5l6dOnj63S+PXX\nX8tqtdqqf23atFFhYaGOHj2q8+fPKzk5WX369Llsn5rM+XL7io2N1aRJk9SvXz9bW0JCgl5//XVJ\nF5YrnTp1ynaH5dqMX1BQoClTptiW433++ee277uu5i9JX331Vbmf9av5vu1RF98/HKMx5+nqxCdX\nN65cTZ6uGnm6YSNXOy5XOyNPX4zrrFzNMbVr5WqT0cDXsO3evVuvv/66fvzxR/n6+srf319r167V\nq6++qh49eqhr165KTEzU66+/blsKde+996q0tFRz587VTz/9JA8PD8XGxuq6666zO35V+7k0viT1\n7t1bKSkptn7ffvut5s+fL4vFIpPJpEWLFummm26q9djPPfec9u/fLzc3NwUHB2v69Ol1NvfmzZsr\nPDy8XAX6wQcf1B133KEnn3zSlrTtfdzM888/r7S0NJlMJs2fP1/ffPONvL29FRISos8//9xW4R48\neLCmTJlSaZ9Lf4HtVVX8vn37lvvOJemee+7R3XffrSeeeEL5+fkqKSnRI488YrsurTbjh4SEaMOG\nDdq2bZt+97vf6Y9//KPmzZsnk8lUJ/O/eAOkYcOGad26dbr22mslXajMX833famLj8vKzMyUxWJR\ny5YtFRwcrDZt2tTZ9w/7uXKerm58cnXjytXkafJ0Q0Sudl6udlaelpybqzmmdp1c3eCLDgAAAAAA\noH5q9JdXAAAAAAAA56DoAAAAAAAAHIKiAwAAAAAAcAiKDgAAAAAAwCEoOgAAAAAAAIeg6AAAAAAA\nAByCogMAAAAAAHAIig4AAAAAAMAhKDoAAAAAAACHoOgAAAAAAAAcgqIDAAAAAABwCIoOAAAAAADA\nISg6AAAAAAAAh6DoAAAAAAAAHIKiAwAAAAAAcAiKDgAAAAAAwCEoOgAAAAAAAIeg6AAAAAAAAByC\nogMAAAAAAHAIig4AAAAAAMAhKDoAAAAAAACHoOgAAAAAAAAcgqIDAAAAAABwCIoOAAAAAADAISg6\nAADQCP2///f/amWbo0eP6o9//OMVtwsODlZaWlq1xlaV//mf/9FLL710VfsAgMaornM6UJsoOqCc\no0ePqm/fvnr22Wc1YcIEpaamasSIEQoLC9Po0aP11VdfSZLKysr0wgsvKCwsTGFhYYqKilJRUZEk\naeLEiXr11Vc1duxY3XXXXXrjjTf08ssvKywsTEOHDlVGRoYk6aOPPtI999yjIUOGaNiwYUpNTb3s\n2FJTUzVs2DDFxsYqNDRUwcHB+te//iVJKi4u1qJFi2ztq1atsvULDg7WihUrFBoaqmPHjjl8/1XN\n69ixY5oyZYpCQ0N1zz33aNu2beU+87///e8aNmyYAgMD9eGHH9r1vQHApUpLS7VkyZKr3gYA4Hzk\ndDR0FB1QQV5entq3b6/Vq1dr1qxZmjt3rhITE/WnP/1JTzzxhMrKyvTRRx/pn//8p7Zu3aoPPvhA\n+fn5Wr9+vW0fn3/+ud544w3FxMToueeeU6tWrZSYmKg//OEPevvttyVJzzzzjFavXq2PPvpI8+fP\n165du644th9++EGdOnVSUlKSpk+frgULFkiS1qxZo++//17vvfee3n//fSUlJSk5OdnW78SJE0pK\nSlLr1q0dvv+q5jVv3jz17NlTSUlJWr16tRYtWqSjR49KknJzc+Xm5qb33ntP0dHRWrZs2RU/CwCo\nykMPPaSCggKFhYXps88+q7Tgeek2GRkZ+vHHHxUREaEhQ4YoJCRE77//vt1x9+/fr/DwcPXv318v\nvPCCrX3nzp0aNmyYBg4cqMmTJysnJ0fShdw3efJkBQcH6+GHH1ZBQYGtz28LulUVbqX/K2KHhYXp\ngQce0JEjRyRJL730kubPn6+pU6eqb9++evLJJ5WcnKz77rtPffv2teXxw4cPa+zYsbr77rs1ePBg\nbdq0yf4PHQAcxBk5feLEiXrhhRc0ZMgQpaenKy8vT7NmzVJoaKiGDh2qV1991bZtVScpt27dqkcf\nfVSRkZEaMGCAHnroIaWlpWncuHEKCAjQ5s2bJV04jp40aZKGDh2qQYMGlfv3A42EAVwiIyPDaNu2\nrVFQUGDs27fPGD58eLn3e/ToYRw5csR44oknjPXr19vad+zYYYwfP94wDMOYMGGC8cYbbxiGYRhH\njx412rZtaxQWFhqGYRgvvfSS8de//tUwDMMYOnSo8fzzzxtHjx6t1tj2799v3HnnnUZZWZlhGIaR\nl5dntG3b1igqKjJGjhxpJCUl2bZdt26dERUVZRiGYQQFBRk7d+6ss/1XNq/i4mKjXbt2Rn5+vq3t\nL3/5i7FlyxbbZ37mzBnDMAzj559/Nu64445qfSYAUJmMjAyjffv2hmEYxuTJk41Vq1YZhnEhJ995\n551GRkZGuW0MwzCmTp1qrF692jAMw/jss8+MTp06GcXFxRW2q0pQUJAxbdo04/z580Z2drbRo0cP\n49///rdx5MgRo2vXrsa3335rGIZhrFq1ypg5c6ZhGIaxePFi4/HHH7eNuWvXrsby5ctt+5s7d65t\n/1XNIzMz07jzzjuNn376yTAMw3j99deNSZMmGYZhGMuXLzf69etnZGdnGzk5OUaHDh2MBQsWGIZh\nGBs3bjQiIiIMwzCMmTNnGlu3bjUMwzBOnTplTJ8+3fj111/t+swBwFGckdMnTJhgTJ482SgtLTUM\nwzDmzZtnzJs3zzAMw8jNzTUGDBhgfP7550ZhYaHRq1cvIy0tzTAMw0hMTDQGDx5slJaWGm+//bbR\npUsX48cffzR+/fVXIzAw0Jg6dapx/vx5Y9euXUa/fv0MwzCM2NhY46WXXjIMwzCKioqMxx57zDhx\n4kRtfHSoJ1jpgArMZrOaNm2qnJwc+fj4lHvP29tbp06dUk5Ojpo1a2Zrb9asmU6dOmV73aRJE9u+\nLn3t5uamsrIySdIrr7yi7Oxs3XfffQoPD9dnn312xbH5+PjIZDLZ/i5J+fn5KigoUExMjO1yj7//\n/e86e/ZsufFVR23sv7J55eXlyTAMeXt7l4t18Wyf2WyWl5dXhc8IAK5GSUmJ9u3bp/Hjx0uSrr/+\nevXq1Uv79++vsO3LL7+sKVOmSJLuvPNO/frrr8rKyrIr3rBhw2Q2m+Xn56cePXroiy++0D//+U/1\n7NlTbdu2lSSNGzdOu3btUmlpqdLS0jRkyBBJUps2bdSzZ89y+xswYMAV57F371716tVLN910kyRp\n9OjRSk1N1fnz5yVJXbt2lZ+fn1q0aCF/f3/169dPktS2bVudPHlSkuTn56ekpCR9/fXXatGihV5+\n+WV5eHjYNXcAcLS6zun9+/eXm9uF/y5+8skntrjNmzdXSEiI9u7dqy+//FKtWrXSnXfeKUkKDQ1V\nbm6uMjMzJUl/+MMfdPPNN8vDw0M33XST+vbtK7PZXCEH79mzR2lpafLw8NDSpUtltVpr8AmhvrI4\newCov/z8/JSXl2d7bRiGTp8+LT8/P1177bXl3svLy9O1115r1/5vvPFGxcTEqKysTNu2bVNkZKQ+\n/fTTy/a5NObp06clXUh8VqtVkydPVlBQkF1jcMT+K5tXcnKy3NzcdPr0aVuBIi8vT35+flc1XgC4\nnCsVPC/16aef6pVXXlFubq5MJpMMw7C7AOrr62v7u7e3t/Lz82UYhtLS0hQWFmZ7r2nTpsrLy9Pp\n06crjO1Sl+bLy83j0n7e3t4yDEO5ubmS/q/oLVVd4H3iiSe0evVqzZ49W7/++qumTp2q+++/3665\nA4Cj1XVOv/Sk2m9PRvr4+OjkyZOXPUkpVZ2DzWazbTwPPvigysrK9Mwzz+jkyZO6//77NXPmTNuJ\nQDR8rHRAlTp16qTs7Gx98cUXkqQPPvhArVq1Ups2bTRgwAAlJCTo7NmzOn/+vOLj49W/f/9q7zsn\nJ0cPPfSQCgsL5ebmps6dO1crsZw7d047d+6UJCUlJalDhw763e9+p4EDB2rLli0qLS2VYRh6+eWX\n9c9//tPuOV/t/qual8ViUd++fW3Xrh05ckRpaWkKCAiwe4wAUF0tWrSwFTwvqqzgWVJSotmzZ2v6\n9OlKSkpSQkJCjQ72Lo1zschqtVoVEBCgxMRE25/9+/fLz89PPj4+5e7jUNmB85Xm8dsC+enTp+Xm\n5qYWLVpUe9xNmjTR448/rh07dmjFihVavny5/vvf/9ozdQBwuLrO6Zeq6oTj5U5SVpfFYtHDDz+s\n9957T2+99ZYSEhK0b9++qxov6heKDqiSl5eXli1bpoULFyosLExvvvmmli5dKpPJpLCwMPXr10/3\n3Xef7rnnHrVq1UoPPPBAtfft6+urwMBAjRw5UkOHDtXjjz+uv/3tb1fsd/311+vAgQMKDQ3V6tWr\nNX/+fEnS+PHj1bp1a919990KCwvTDz/8YFvmZY+r3f/l5vXMM88oNTVVYWFhmjFjhhYtWqTrrrvO\n7jECwJW4u7urrKxM586dq7LgeXGbwsJCnT17VkVFRerQoYMkacOGDXJ3d7c9lai6PvjgA5WVlenU\nqVM6cOCAunfvrr59+yotLc325KIvv/xSixYtkiR16dLFVug9cuSIDhw4UOl+L1e47dOnT7n9v/XW\nW+rTp48sluov5pw2bZq+++47SRcuu2jatCln2ADUG87K6ZcaMGCALW5OTo527NihAQMGXPYkZXU9\n/fTT2rt3r6QLK4avvfZacnAjYzIMw3D2IIDqSE1N1dy5c7Vjx44GuX8AqCtlZWWaOHGiDh8+rJUr\nV2r16tXKzMyUu7u7HnnkEYWGhpbbZvXq1fr444+VkJAgPz8/TZ8+XYmJiTp48KBWr16t4cOH65tv\nvrlszODgYEVEROijjz5STk6ORo8erRkzZkiSPv74Y7344osqKSlRkyZNFB0drW7duik7O1uPPfaY\nMjMzdeutt8rX11dt2rTRzJkzFRwcrCVLlqh79+6SpOPHj2vu3LkV5iFdWJm2YsUKlZSUqE2bNlq4\ncKGuu+46vfTSS/rll19sxd+QkBAtWrRIvXr1UlpamubMmaNdu3Zpz549WrJkiUpKSiRJo0aNsl0L\nDQDO5oycPnHiRI0aNUrDhw+XdGEV2YIFC/Tvf/9bbm5uuv/++22XoX322WeKjY1VUVGRfH19tWDB\nArVt21Zbt25VQkKC7Ql3Dz74oO69917dd999+uWXX9S/f399++23+uabb/T000+rsLBQhmEoODhY\nc+bMofDQiFB0QINB0QEAAAAAGhZuJIl6ZcaMGfrhhx8qfW/SpEn1fv8AAAAAgP/DSgcAAHBF27Zt\n06pVqyp9b8SIEZo6dWodjwj4/9q7/6io7jv/46/hxyxFh+iYGRu3amyarlmjGI6JEYOJP7BI0oSN\nosJC0pbNloqu2YNRlmo0TSL4A49xy8asinLI0VCJtdTNAU9a7IkRadzp4Wi7bWK67aFqYHBRRKCM\nON8//DqVAioDlzvA8/GXfGbufN4fGN7MeXnv5wLwFz0d/YnQAQAAAAAAGIK7VwAAAAAAAEMMmD0d\n3O4rd37SXxk5MlwNDf7fGqavBEIdgVADdQReDdQhORy2fp9zMBtovdrs9z/z87MfivP7Mze9um/1\ntFcP5ffrUJ9/KK/d7PkH4tq769WD+kyHkJBgs0uQFBh1BEINEnUEWg0SdcB8Zv7szX7fMT8/+6E4\nv9lrR8+Z/TNj/qH7+zqU5x9Max/UoQMAAAAAADAPoQMAAAAAADAEoQMAAAAAADAEoQMAAAAAADAE\noQMAAAAAADDEgLllJgAAADDYVFVVaeXKlXrwwQclSV//+tf1T//0T1q9erXa29vlcDi0ZcsWWa1W\nlZaWqrCwUEFBQVq8eLESExPl8XiUlZWl8+fPKzg4WDk5ORo7dqzJqwKAvxjUocM3M3/S42MKsuYY\nUAkAoK98J/fnPT6G3g4gkD322GPasWOH7+t/+7d/U3JyshYsWKBt27appKRECQkJys/PV0lJiUJD\nQ7Vo0SLFxsaqoqJCERERysvL0/Hjx5WXl6ft27f3aX18pgbQG4M6dAAAAAAGmqqqKr322muSpNmz\nZ6ugoEAUDY4PAAAgAElEQVQTJkzQ5MmTZbPZJElRUVFyuVyqrKxUQkKCJCk6OlrZ2dmm1X0rAmIA\nNxE6AAAAACY6e/as0tPTdfnyZS1fvlwtLS2yWq2SpFGjRsntdqu+vl52u913jN1u7zQeFBQki8Wi\ntrY23/FdGTkyXCEhwcYuyg8Oh82vx/rDUJ5/KK/d7PkHy9oJHQAAAACT3H///Vq+fLkWLFigmpoa\nvfDCC2pvb/c97vV6uzyup+O3amho9q9Yg7ndV7ocdzhs3T7WH4by/EN57WbPPxDX3l1Iwd0rAAAA\nAJOMHj1a8fHxslgsGjdunO69915dvnxZra2tkqTa2lo5nU45nU7V19f7jqurq/ONu91uSZLH45HX\n673tWQ4A0N8IHQAAAACTlJaWas+ePZIkt9utixcv6vnnn1d5ebkk6ejRo4qJiVFkZKROnz6txsZG\nXb16VS6XS9OmTdPMmTNVVlYmSaqoqND06dNNWwsAdIXLKwAAAACTzJkzR6tWrdLPfvYzeTwebdiw\nQQ899JDWrFmj4uJijRkzRgkJCQoNDVVmZqbS0tJksViUkZEhm82m+Ph4nThxQklJSbJarcrNzTV7\nSQDQAaEDAAAAYJLhw4dr586dncb37t3baSwuLk5xcXEdxoKDg5WTk2NYfQDQW3d1ecWnn36qefPm\n6d1335UkXbhwQampqUpOTtbKlSvV1tYm6cbpYQsXLlRiYqIOHjwo6ca1ZZmZmUpKSlJKSopqamok\nSb/97W+1dOlSLV26VOvXrzdibQAAAAAAwER3DB2am5v1+uuva8aMGb6xHTt2KDk5Wfv379f48eNV\nUlKi5uZm5efna9++fSoqKlJhYaEuXbqkI0eOKCIiQgcOHFB6erry8vIkSW+++aays7P13nvvqamp\nSb/4xS+MWyUADEFVVVV6/PHHlZqaqtTUVL3++ut9EhoDAAAAd+uOoYPVatWuXbvkdDp9Y1VVVZo7\nd64kafbs2aqsrFR1dbUmT54sm82msLAwRUVFyeVyqbKyUrGxsZKk6OhouVwutbW16dy5c5oyZUqH\n1wAA9K3HHntMRUVFKioq0rp16/okNAYAAADu1h1Dh5CQEIWFhXUYa2lp8d2KZ9SoUXK73aqvr5fd\nbvc9x263dxoPCgqSxWJRfX29IiIifM+9+RoAAGP1NjQGAAAAeqLXG0l6vd5ej3f33FuNHBmukJDg\nnhXnB4fDNqBed6DVIFFHoNUgUcdgdvbsWaWnp+vy5ctavnx5r0PjtrY27v8OAACAu+ZX6BAeHq7W\n1laFhYWptrZWTqdTTqdT9fX1vufU1dVp6tSpcjqdcrvdmjhxojwej7xerxwOhy5duuR77s3XuJ2G\nhmZ/Su0xt/tKn7+mw2Ez5HUHWg3UEXg1UMfgDjruv/9+LV++XAsWLFBNTY1eeOEFtbe3+x7vi9D4\nr/kbEBv9c7jd65v9HmB+8+Yfyms3e36z1w4A6D9+hQ7R0dEqLy/Xc889p6NHjyomJkaRkZFau3at\nGhsbFRwcLJfLpezsbDU1NamsrEwxMTGqqKjQ9OnTFRoaqq9+9as6deqUpk2bpqNHjyo1NbWv1wYA\nQ9ro0aMVHx8vSRo3bpzuvfdenT59uleh8Z3OcvAnIO6PwKm71zc7dGN+8+Yfyms3e35/5iakAICB\n646hw5kzZ7Rp0yadO3dOISEhKi8v19atW5WVlaXi4mKNGTNGCQkJCg0NVWZmptLS0mSxWJSRkSGb\nzab4+HidOHFCSUlJslqtys3NlSRlZ2fr1Vdf1fXr1xUZGano6GjDFwsAQ0lpaancbrfS0tLkdrt1\n8eJFPf/8870KjQEAAICeuGPo8PDDD6uoqKjT+N69ezuNxcXFKS4ursNYcHCwcnJyOj33a1/7mvbv\n39+TWgEAPTBnzhytWrVKP/vZz+TxeLRhwwY99NBDWrNmTa9CYwAAAOBu9XojSQBAYBo+fLh27tzZ\naby3oTEAAABwt+54y0wAAAAAAAB/EDoAAAAAAABDEDoAAAAAAABDEDoAAAAAAABDEDoAAAAAAABD\nEDoAAAAAAABDEDoAAAAAAABDEDoAAAAAAABDEDoAAAAAAABDEDoAAAAAAABDEDoAAAAAAABDEDoA\nAAAAAABDEDoAAAAAAABDEDoAAAAAAABDEDoAAAAAAABDEDoAAAAAJmptbdW8efN06NAhXbhwQamp\nqUpOTtbKlSvV1tYmSSotLdXChQuVmJiogwcPSpI8Ho8yMzOVlJSklJQU1dTUmLkMAOgSoQMAAABg\norffflv33HOPJGnHjh1KTk7W/v37NX78eJWUlKi5uVn5+fnat2+fioqKVFhYqEuXLunIkSOKiIjQ\ngQMHlJ6erry8PJNXAgCdEToAAAAAJvn888919uxZPfXUU5KkqqoqzZ07V5I0e/ZsVVZWqrq6WpMn\nT5bNZlNYWJiioqLkcrlUWVmp2NhYSVJ0dLRcLpdZywCAboWYXQAAAAAwVG3atEnr1q3T4cOHJUkt\nLS2yWq2SpFGjRsntdqu+vl52u913jN1u7zQeFBQki8WitrY23/HdGTkyXCEhwQatyH8Oh82vx/rD\nUJ5/KK/d7PkHy9oJHQAAAAATHD58WFOnTtXYsWO7fNzr9fbJ+F9raGi+uwL7mdt9pctxh8PW7WP9\nYSjPP5TXbvb8A3Ht3YUUhA4AAACACY4dO6aamhodO3ZMX3zxhaxWq8LDw9Xa2qqwsDDV1tbK6XTK\n6XSqvr7ed1xdXZ2mTp0qp9Mpt9utiRMnyuPxyOv13vEsBwDob+zpAAAAAJhg+/btev/99/WjH/1I\niYmJWrZsmaKjo1VeXi5JOnr0qGJiYhQZGanTp0+rsbFRV69elcvl0rRp0zRz5kyVlZVJkioqKjR9\n+nQzlwMAXeJMBwAAACBArFixQmvWrFFxcbHGjBmjhIQEhYaGKjMzU2lpabJYLMrIyJDNZlN8fLxO\nnDihpKQkWa1W5ebmml0+AHTiV+hw9epVrVmzRpcvX5bH41FGRoYcDoc2bNggSfq7v/s7vfbaa5Kk\n3bt3q6ysTBaLRcuXL9eTTz6pK1euKDMzU1euXFF4eLjy8vI0YsSIPlsUAOAvWltb9cwzz2jZsmWa\nMWOGVq9erfb2djkcDm3ZskVWq1WlpaUqLCxUUFCQFi9erMTERHk8HmVlZen8+fMKDg5WTk5Ot9cd\nAwB6Z8WKFb5/7927t9PjcXFxiouL6zB2szcDQCDz6/KKH//4x5owYYKKior01ltv6c0339Sbb76p\n7Oxsvffee2pqatIvfvEL1dTU6IMPPtD+/fv1zjvvKCcnR+3t7SosLNRjjz2mAwcOaP78+dq1a1df\nrwsA8P9x/3cAAACYxa/QYeTIkbp06ZIkqbGxUSNGjNC5c+c0ZcoUSX+5p3BVVZViYmJktVplt9v1\nt3/7tzp79myHewrffC4AoO9x/3cAAACYya/LK55++mkdOnRIsbGxamxs1Ntvv60f/OAHvsdv3lN4\nxIgRd7yn8KhRo1RXV3fHOfvrfsJG3QvV7HusBkoNEnUEWg0SdQxmZtz/HQAAALjJr9DhJz/5icaM\nGaM9e/bot7/9rW8zm5t6cu/gQLufsBH3QjX7HquBUgN1BF4N1DG4gw4z7v/ub0Bs9M/hdq9v9nuA\n+c2bfyiv3ez5zV47AKD/+BU6uFwuPfHEE5KkiRMn6s9//rOuXbvme/zWewr/7//+b5fjbrdbNpvN\nNwYA6Ftm3P/dn4C4PwKn7l7f7NCN+c2bfyiv3ez5/ZmbkAIABi6/9nQYP368qqurJUnnzp3TsGHD\n9MADD+jUqVOS/nJP4ccff1zHjh1TW1ubamtrVVdXp6997Wsd7il887kAgL7F/d8BAABgNr/OdFiy\nZImys7OVkpKia9euacOGDXI4HHr11Vd1/fp1RUZGKjo6WpK0ePFipaSkyGKxaMOGDQoKClJqaqpe\neeUVJScnKyIiQlu2bOnTRQEAusb93wEAANCf/Aodhg0bprfeeqvT+P79+zuNpaamKjU1tdPx//Ef\n/+HP1AAAP3D/dwAAAJjBr8srAAAAAAAA7oTQAQAAAAAAGILQAQAAAAAAGILQAQAAAAAAGILQAQAA\nAAAAGILQAQAAAAAAGILQAQAAAAAAGCLE7AIAAEPbNzN/YnYJAAAAMAhnOgAAAAAAAEMQOgAAAAAA\nAEMQOgAAAAAAAEMQOgAAAAAAAEMQOgAAAAAAAEMQOgAAAAAAAEMQOgAAAAAAAEMQOgAAAAAAAEMQ\nOgAAAAAAAEOEmF0AAAAAMFS1tLQoKytLFy9e1J///GctW7ZMEydO1OrVq9Xe3i6Hw6EtW7bIarWq\ntLRUhYWFCgoK0uLFi5WYmCiPx6OsrCydP39ewcHBysnJ0dixY81eFgD4cKYDAAAAYJKKigo9/PDD\nevfdd7V9+3bl5uZqx44dSk5O1v79+zV+/HiVlJSoublZ+fn52rdvn4qKilRYWKhLly7pyJEjioiI\n0IEDB5Senq68vDyzlwQAHRA6AAAAACaJj4/XSy+9JEm6cOGCRo8eraqqKs2dO1eSNHv2bFVWVqq6\nulqTJ0+WzWZTWFiYoqKi5HK5VFlZqdjYWElSdHS0XC6XaWsBgK5weQUAAABgsqVLl+qLL77Qzp07\n9e1vf1tWq1WSNGrUKLndbtXX18tut/ueb7fbO40HBQXJYrGora3Nd3xXRo4MV0hIsLEL8oPDYfPr\nsf4wlOcfyms3e/7BsnZCBwAAAMBk7733nv7nf/5Hr7zyirxer2/81n/fqqfjt2poaPavSIO53Ve6\nHHc4bN0+1h+G8vxDee1mzz8Q195dSMHlFQAAAIBJzpw5owsXLkiSHnroIbW3t2vYsGFqbW2VJNXW\n1srpdMrpdKq+vt53XF1dnW/c7XZLkjwej7xe723PcgCA/uZ36FBaWqpnn31Wzz//vI4dO6YLFy4o\nNTVVycnJWrlypdra2nzPW7hwoRITE3Xw4EFJNxpiZmamkpKSlJKSopqamr5ZDQDAp6WlRStXrlRK\nSooSExNVUVFBrwaAAHPq1CkVFBRIkurr69Xc3Kzo6GiVl5dLko4ePaqYmBhFRkbq9OnTamxs1NWr\nV+VyuTRt2jTNnDlTZWVlkm5sSjl9+nTT1gIAXfHr8oqGhgbl5+fr/fffV3Nzs/793/9d5eXlSk5O\n1oIFC7Rt2zaVlJQoISFB+fn5KikpUWhoqBYtWqTY2FhVVFQoIiJCeXl5On78uPLy8rR9+/a+XhsA\nDGk3d0R/6aWXdO7cOX3nO99RVFQUvRoAAsjSpUv1/e9/X8nJyWptbdWrr76qhx9+WGvWrFFxcbHG\njBmjhIQEhYaGKjMzU2lpabJYLMrIyJDNZlN8fLxOnDihpKQkWa1W5ebmmr0kAOjAr9ChsrJSM2bM\n0PDhwzV8+HC9/vrrmjNnjl577TVJN3bZLSgo0IQJE3y77ErqsMtuQkKCpBu77GZnZ/fRcgAAN8XH\nx/v+feuO6PRqAAgcYWFhXd7mcu/evZ3G4uLiFBcX12EsODhYOTk5htUHAL3lV+jwpz/9Sa2trUpP\nT1djY6NWrFihlpaWQbHLrlE7hJq982ig1CBRR6DVIFHHYNefO6IDAAAAt/L77hWXLl3SD3/4Q50/\nf14vvPDCoNll14gdQs3eeTRQaqCOwKuBOoZG0NGfO6JzG7aeY35uRTYU5zd77QCA/uNX6DBq1Cg9\n8sgjCgkJ0bhx4zRs2DAFBwertbVVYWFht91ld+rUqb5ddidOnMguuwBgkDNnzmjUqFG67777Ou2I\nblSv5jZsPcP83IpsKM7fl7dhAwAEPr/uXvHEE0/o5MmTun79uhoaGthlFwACEDuiAwAAwGx+nekw\nevRofeMb39DixYslSWvXrtXkyZPZZRcAAgg7ogMAAMBsfu/psHTpUi1durTDGLvsAkDgYEd0AAAA\nmM2vyysAAAAAAADuhNABAAAAAAAYgtABAAAAAAAYgtABAAAAAAAYgtABAAAAAAAYgtABAAAAAAAY\ngtABAAAAAAAYgtABAAAAAAAYgtABAAAAAAAYgtABAAAAAAAYgtABAAAAAAAYgtABAAAAAAAYgtAB\nAAAAAAAYgtABAAAAAAAYgtABAAAAAAAYgtABAAAAAAAYgtABAAAAAAAYgtABAAAAAAAYgtABAAAA\nAAAYIsTsAgAAAIChbPPmzfrv//5vXbt2Td/97nc1efJkrV69Wu3t7XI4HNqyZYusVqtKS0tVWFio\noKAgLV68WImJifJ4PMrKytL58+cVHBysnJwcjR071uwlAYAPoQMAAABgkpMnT+qzzz5TcXGxGhoa\n9A//8A+aMWOGkpOTtWDBAm3btk0lJSVKSEhQfn6+SkpKFBoaqkWLFik2NlYVFRWKiIhQXl6ejh8/\nrry8PG3fvt3sZQGAD5dXAAAAACZ59NFH9dZbb0mSIiIi1NLSoqqqKs2dO1eSNHv2bFVWVqq6ulqT\nJ0+WzWZTWFiYoqKi5HK5VFlZqdjYWElSdHS0XC6XaWsBgK5wpgMAAABgkuDgYIWHh0uSSkpKNGvW\nLB0/flxWq1WSNGrUKLndbtXX18tut/uOs9vtncaDgoJksVjU1tbmO74rI0eGKyQk2MBV+cfhsPn1\nWH8YyvMP5bWbPf9gWXuvQofW1lY988wzWrZsmWbMmMG1ZwAQYLhOGAAGhg8//FAlJSUqKCjQ/Pnz\nfeNer7fL5/d0/FYNDc3+FWkwt/tKl+MOh63bx/rDUJ5/KK/d7PkH4tq7Cyl6dXnF22+/rXvuuUeS\ntGPHDiUnJ2v//v0aP368SkpK1NzcrPz8fO3bt09FRUUqLCzUpUuXdOTIEUVEROjAgQNKT09XXl5e\nb8oAAHTh1uuEd+/erY0bN9KrASAAffTRR9q5c6d27dolm82m8PBwtba2SpJqa2vldDrldDpVX1/v\nO6aurs437na7JUkej0der/e2ZzkAQH/zO3T4/PPPdfbsWT311FOSxLVnABBguE4YAALflStXtHnz\nZr3zzjsaMWKEpBs9t7y8XJJ09OhRxcTEKDIyUqdPn1ZjY6OuXr0ql8uladOmaebMmSorK5MkVVRU\naPr06aatBQC64vflFZs2bdK6det0+PBhSVJLS8uguPbMqOtmzL4eJ1BqkKgj0GqQqGOwMuM6YQBA\nz3zwwQdqaGjQyy+/7BvLzc3V2rVrVVxcrDFjxighIUGhoaHKzMxUWlqaLBaLMjIyZLPZFB8frxMn\nTigpKUlWq1W5ubkmrgYAOvMrdDh8+LCmTp3a7bW9A/naMyOumzH7epxAqYE6Aq8G6hgaQUd/XifM\n5mQ9x/xs0DUU5zd77YFkyZIlWrJkSafxvXv3dhqLi4tTXFxch7Gbe+4AQKDyK3Q4duyYampqdOzY\nMX3xxReyWq2+a8/CwsJue+3Z1KlTfdeeTZw4kWvPAMBAN68T3r17d4frhI3q1WxO1jPMzwZdQ3H+\nvtycDAAQ+Pza02H79u16//339aMf/UiJiYlatmwZ154BQIDhOmEAAACYrVe3zLzVihUrtGbNGq49\nA4AAwXXCAAAAMFuvQ4cVK1b4/s21ZwAQOLhOGAAAAGbz+5aZAAAAAAAAt9Nnl1cAABCovpP78x4f\nU5A1x4BKAAAAhhbOdAAAAAAAAIYgdAAAAAAAAIYgdAAAAAAAAIYgdAAAAAAAAIYgdAAAAAAAAIYg\ndAAAAAAAAIYgdAAAAAAAAIYgdAAAAAAAAIYgdAAAAAAAAIYgdAAAAAAAAIYgdAAAAAAAAIYgdAAA\nAAAAAIYgdAAAAAAAAIYgdAAAAAAAAIYgdAAAAAAAAIYgdAAAAAAAAIYgdAAAAAAAAIYIMbsAAAAA\nAPhO7s979PyCrDkGVQKgL3GmAwAAAAAAMAShAwAAAGCiTz/9VPPmzdO7774rSbpw4YJSU1OVnJys\nlStXqq2tTZJUWlqqhQsXKjExUQcPHpQkeTweZWZmKikpSSkpKaqpqTFtHQDQFUIHAAAAwCTNzc16\n/fXXNWPGDN/Yjh07lJycrP3792v8+PEqKSlRc3Oz8vPztW/fPhUVFamwsFCXLl3SkSNHFBERoQMH\nDig9PV15eXkmrgYAOvM7dNi8ebOWLFmihQsX6ujRoySyABCA+N8zAAhsVqtVu3btktPp9I1VVVVp\n7ty5kqTZs2ersrJS1dXVmjx5smw2m8LCwhQVFSWXy6XKykrFxsZKkqKjo+VyuUxZBwB0x6/Q4eTJ\nk/rss89UXFys3bt3a+PGjSSyABBg+N8zAAh8ISEhCgsL6zDW0tIiq9UqSRo1apTcbrfq6+tlt9t9\nz7Hb7Z3Gg4KCZLFYfIEyAAQCv+5e8eijj2rKlCmSpIiICLW0tKiqqkqvvfaapBuJbEFBgSZMmOBL\nZCV1SGQTEhIk3Uhks7Oz+2ItAIBb3Pzfs127dvnG6NUAMLB4vd4+Gb/VyJHhCgkJ7lVdgcDhsA3K\nuQJt/qG8drPnHyxr9yt0CA4OVnh4uCSppKREs2bN0vHjx3udyN48HgDQeyEhIQoJ6djm++J/z+jV\nAGCs8PBwtba2KiwsTLW1tXI6nXI6naqvr/c9p66uTlOnTpXT6ZTb7dbEiRPl8Xjk9Xrv2KcbGpqN\nXkK/cLuv9Ms8Doet3+YKtPmH8trNnn8grr27kMKv0OGmDz/8UCUlJSooKND8+fN94wM5kTUqTTI7\npQqUGiTqCLQaJOoYqgZyr+4P/fV+NPt9P5TnH8prN3t+s9ce6KKjo1VeXq7nnntOR48eVUxMjCIj\nI7V27Vo1NjYqODhYLpdL2dnZampqUllZmWJiYlRRUaHp06ebXT4AdOB36PDRRx9p586d2r17t2w2\n26BJZI1Ik8xOqQKlBuoIvBqoY+h98B0svbo/9Mf70ezfv6E8/1Beu9nz9+X/ng0GZ86c0aZNm3Tu\n3DmFhISovLxcW7duVVZWloqLizVmzBglJCQoNDRUmZmZSktLk8ViUUZGhmw2m+Lj43XixAklJSXJ\narUqNzfX7CUBQAd+hQ5XrlzR5s2btW/fPo0YMUISiSwADAT0agAILA8//LCKioo6je/du7fTWFxc\nnOLi4jqMBQcHKycnx7D6AKC3/AodPvjgAzU0NOjll1/2jeXm5mrt2rUksgAQIPjfMwAAAJjNr9Bh\nyZIlWrJkSadxElkACBz87xkAAADMFmR2AQAAAAAAYHAidAAAAAAAAIYgdAAAAAAAAIYgdAAAAAAA\nAIYgdAAAAAAAAIYgdAAAAAAAAIYgdAAAAAAAAIYIMbuAQPOd3J/36PkFWXMMqgQAYCb+HgAAAPQe\nZzoAAAAAAABDEDoAAAAAAABDEDoAAAAAAABDEDoAAAAAAABDEDoAAAAAAABDcPcKAAAAAANOT+8y\nJHGnIcAMnOkAAAAAAAAMQegAAAAAAAAMQegAAAAAAAAMQegAAAAAAAAMwUaSAAD0AX82NPtp3nMG\nVAIAABA4ONMBAAAAAAAYgtABAAAAAAAYgssrAAAAAAwJXAoH9D/OdAAAAAAAAIbgTAcAAEzyzcyf\n9PiYgqw5BlQCAABgDFNDh40bN6q6uloWi0XZ2dmaMmWKmeUAALpArwaAwEafNlZPA2LCYaAj00KH\nX/7yl/rjH/+o4uJiff7558rOzlZxcbFZ5QAAukCvDjz+XI/cU3xgBgYO+nTg8adP03cxmJkWOlRW\nVmrevHmSpAceeECXL19WU1OThg8fblZJfumPD38SjQiAOQZLr0bP9Nfftv7YnI0P/xjs6NODQ3/1\n3Z5iE030BdNCh/r6ek2aNMn3td1ul9vt7rZBOhy2Hs/BL0lH/nwPjUAdgVWDRB3oHr0aRjP69z6Q\n319m9zwz5zd77YNJT/u01PPvfyD/HsF4Zv++DuX5B8vaA+buFV6v1+wSAAB3QK8GgMBGnwYQaEwL\nHZxOp+rr631f19XVyeFwmFUOAKAL9GoACGz0aQCBzrTQYebMmSovL5ck/frXv5bT6eTaMwAIMPRq\nAAhs9GkAgc60PR2ioqI0adIkLV26VBaLRevXrzerFABAN+jVABDY6NMAAp3Fy4VfAAAAAADAAAGz\nkSQAAAAAABhcCB0AAAAAAIAhTNvToS/98pe/1MqVK7Vx40bNnj270+OlpaUqLCxUUFCQFi9erMTE\nRHk8HmVlZen8+fMKDg5WTk6Oxo4d69f8d3qtM2fOaNOmTb6vz549q/z8fH388cf66U9/qtGjR0uS\nnn32WSUmJvpVw93UIUmTJk1SVFSU7+t9+/bp+vXrffa9uNs6PvjgAxUUFCgoKEgzZszQv/7rv+rQ\noUN66623NG7cOElSdHS0vve97/V4/o0bN6q6uloWi0XZ2dmaMmWK77ETJ05o27ZtCg4O1qxZs5SR\nkXHHY/x1u9c8efKktm3bpqCgIE2YMEFvvvmmPvnkE61cuVIPPvigJOnrX/+61q1bZ1gNc+bM0Ze/\n/GUFBwdLkrZu3arRo0f36/eitrZWq1at8j2vpqZGmZmZ8ng8ffJeQOAws0+b3aPN7s1m9WSze7GZ\nPdjs3mt2z/3000+1bNkyfetb31JKSkqHx/rz7zB6jl5tTq8287Ozmb3a7M/K9Op+7NXeAe6Pf/yj\nNz093bts2TLvz3/+806PX7161Tt//nxvY2Ojt6Wlxfv00097GxoavIcOHfJu2LDB6/V6vR999JF3\n5cqVftfQk9e6fPmy9x//8R+97e3t3h07dniLior8ntefOh577DG/juvLOpqbm72zZ8/2XrlyxXv9\n+nXvokWLvJ999pn3/fff9+bm5vZq7qqqKu8///M/e71er/fs2bPexYsXd3h8wYIF3vPnz3vb29u9\nSUlJ3s8+++yOxxhRR2xsrPfChQter9frXbFihffYsWPekydPelesWNHrue+2htmzZ3ubmpp6dIwR\nddzk8Xi8S5cu9TY1NfXJewGBw+w+bXaPNrs3m9GTze7FZvZgs3uv2T336tWr3pSUFO/atWu7/P3p\nr+wMRhwAAAdcSURBVL/D6Dl6tXm92qzPzmb2arM/K9Or+7dXD/jLKxwOh374wx/KZrN1+Xh1dbUm\nT54sm82msLAwRUVFyeVyqbKyUrGxsZJupEQul8vvGnryWnv27NGLL76ooKC+/9b7u6a+/F7czet9\n6UtfUmlpqYYPHy6LxaIRI0bo0qVLvZrz1rnnzZsnSXrggQd0+fJlNTU1SbqREt5zzz267777FBQU\npCeffFKVlZW3PcaIOiTp0KFD+vKXvyxJstvtamho6NV8/tTQV8f0VR0//vGP9Y1vfEPDhg3r1XwI\nPGb3abN7tNm92YyebHYvNrMHm917ze65VqtVu3btktPp7PRYf/4dRs/Rq83r1WZ9djazV5v9WZle\n3b+9esCHDl/60pd8p710pb6+Xna73fe13W6X2+3uMB4UFCSLxaK2tja/arjb12ptbdXx48c1d+5c\n31hZWZm+/e1v67vf/a5qamr8mr8ndbS1tSkzM1NLly7V3r17e1R/X9Zx8/7Rv/vd73Tu3DlFRkZK\nunFaX1paml588UX95je/8WvukSNH+r6++fOWJLfb3e17obtj/HWn17y5/rq6On388cd68sknJd04\nVTA9PV1JSUn6+OOPDa1BktavX6+kpCRt3bpVXq/XlO/FTQcPHtSiRYt8X/f2vYDAYXafNrtHm92b\nzejJZvdiM3uw2b3X7J4bEhKisLCwLh/rz7/D6Dl6tXm92qzPzmb2arM/K9Or+7dXD6g9HQ4ePKiD\nBw92GFuxYoViYmLu+jW83dwhtLvxu6mhurr6rl7rww8/1FNPPeVLZZ988kk9/vjjevTRR/Vf//Vf\neuONN/TOO+8YWsfq1av17LPPymKxKCUlRdOmTev0nLv9XvSmDkn6wx/+oFWrVikvL0+hoaGKjIyU\n3W7XU089pV/96ldas2aNfvrTn951LV3pyVp6c4w/r3nx4kWlp6dr/fr1GjlypO6//34tX75cCxYs\nUE1NjV544QUdPXpUVqvVkBr+5V/+RTExMbrnnnuUkZGh8vLyu6q7r+uQpF/96lf66le/6vsDY8R7\nAf3D7D5tdo82uzcHak82uxeb2YPN7r0Dseca8bcHHdGrzevVgdqn76b2vjrmbl+nPz8r06t7rifr\nH1ChQ2JiYo83hnE6naqvr/d9XVdXp6lTp8rpdMrtdmvixInyeDzyer139YbtqoasrKy7eq2Kigol\nJSX5vv7rzUq2bt161+vyt45b53/88cf16aef+v296E0dX3zxhTIyMrR582Y99NBDkm6cpvPAAw9I\nkh555BH93//9n9rb22+buv+1rn7eDoejy8dqa2vldDoVGhra7TH+ul0dktTU1KSXXnpJL7/8sp54\n4glJ0ujRoxUfHy9JGjdunO69917V1tb6vannnWpISEjw/XvWrFm+90J/fy8k6dixY5oxY4bv6754\nL8AcZvdps3u02b05UHqy2b3YzB5sdu8N5J7bn3+HcXv0avN6daD0acncXm32Z2V69d3X1hc/+wF/\necWdREZG6vTp02psbNTVq1flcrk0bdo0zZw5U2VlZZJuNK/p06f7PcfdvtaZM2c0ceJE39dvvPGG\nTp06JenGqTI3d2I1qo7f//73yszMlNfr1bVr1+RyufTggw/26ffibuqQpO9///vasGGDJk2a5Bvb\ntWuXjhw5IunGbqp2u73Hv0QzZ870JZG//vWv5XQ6fengV77yFTU1NelPf/qTrl27poqKCs2cOfO2\nx/jrTq+Zm5urF198UbNmzfKNlZaWas+ePZJunNZ08eJF307MfV3DlStXlJaW5jt175NPPvG9F/r7\neyFJp0+f7vC70RfvBQwcRvdps3u02b3ZjJ5sdi82sweb3XsDuef2599h9D16tXG92qzPzmb2arM/\nK9Oru2fEz97iHeDnsB07dkx79uzR73//e9ntdjkcDhUUFOg///M/9eijj+qRRx5RWVmZ9uzZ4zsV\n6tlnn1V7e7vWrl2rP/zhD7JarcrNzdV9993nVw3dvdatNUjSjBkzVFlZ6Tvud7/7ndavX6+QkBBZ\nLBa98cYbGj9+vN/fi7upY8uWLTp58qSCgoI0Z84cfe973+vT78Xd1DFixAglJCR0SKa/9a1vadKk\nSXrllVd8zdzf29Bs3bpVp06dksVi0fr16/Wb3/xGNptNsbGx+uSTT3wJ+Pz585WWltblMbf+gvur\nuzqeeOKJDu8LSXrmmWf09NNPa9WqVWpsbJTH49Hy5ct916/1dQ2xsbEqLCzU4cOH9Td/8zf6+7//\ne61bt04Wi6Vfvxc3N0365je/qb179+ree++VdCPN74v3AgKD2X3a7B5tdm82qyeb3YvN7MFm914z\ne+7N2xqeO3dOISEhGj16tObMmaOvfOUr/f53GD1DrzavV5v52dnMXm32Z2V6df/16gEfOgAAAAAA\ngMA06C+vAAAAAAAA5iB0AAAAAAAAhiB0AAAAAAAAhiB0AAAAAAAAhiB0AAAAAAAAhiB0AAAAAAAA\nhiB0AAAAAAAAhvh/m9fmVtIrhvsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "Xx9jgEMHKxlJ" + }, + "cell_type": "markdown", + "source": [ + "We might be able to do better by choosing additional ways to transform these features.\n", + "\n", + "For example, a log scaling might help some features. Or clipping extreme values may make the remainder of the scale more informative." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "baKZa6MEKxlK", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def log_normalize(series):\n", + " return series.apply(lambda x:math.log(x+1.0))\n", + "\n", + "def clip(series, clip_to_min, clip_to_max):\n", + " return series.apply(lambda x:(\n", + " min(max(x, clip_to_min), clip_to_max)))\n", + "\n", + "def z_score_normalize(series):\n", + " mean = series.mean()\n", + " std_dv = series.std()\n", + " return series.apply(lambda x:(x - mean) / std_dv)\n", + "\n", + "def binary_threshold(series, threshold):\n", + " return series.apply(lambda x:(1 if x > threshold else 0))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "-wCCq_ClKxlO" + }, + "cell_type": "markdown", + "source": [ + "The block above contains a few additional possible normalization functions. Try some of these, or add your own.\n", + "\n", + "Note that if you normalize the target, you'll need to un-normalize the predictions for loss metrics to be comparable." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "8ToG-mLfMO9P", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 656 + }, + "outputId": "57aff67d-7a72-41f8-ff5a-f101db4142da" + }, + "cell_type": "code", + "source": [ + "def normalize(examples_dataframe):\n", + " \"\"\"Returns a version of the input `DataFrame` that has all its features normalized.\"\"\"\n", + " #\n", + " # YOUR CODE HERE: Normalize the inputs.\n", + " #\n", + " processed_features = pd.DataFrame()\n", + "\n", + " processed_features[\"households\"] = log_normalize(examples_dataframe[\"households\"])\n", + " processed_features[\"median_income\"] = log_normalize(examples_dataframe[\"median_income\"])\n", + " processed_features[\"total_bedrooms\"] = log_normalize(examples_dataframe[\"total_bedrooms\"])\n", + " \n", + " processed_features[\"latitude\"] = linear_scale(examples_dataframe[\"latitude\"])\n", + " processed_features[\"longitude\"] = linear_scale(examples_dataframe[\"longitude\"])\n", + " processed_features[\"housing_median_age\"] = linear_scale(examples_dataframe[\"housing_median_age\"])\n", + "\n", + " processed_features[\"population\"] = linear_scale(clip(examples_dataframe[\"population\"], 0, 5000))\n", + " processed_features[\"rooms_per_person\"] = linear_scale(clip(examples_dataframe[\"rooms_per_person\"], 0, 5))\n", + " processed_features[\"total_rooms\"] = linear_scale(clip(examples_dataframe[\"total_rooms\"], 0, 10000))\n", + "\n", + " return processed_features\n", + "\n", + "normalized_dataframe = normalize(preprocess_features(california_housing_dataframe))\n", + "normalized_training_examples = normalized_dataframe.head(12000)\n", + "normalized_validation_examples = normalized_dataframe.tail(5000)\n", + "\n", + "_ = train_nn_regression_model(\n", + " my_optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.15),\n", + " steps=1000,\n", + " batch_size=50,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 21, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 112.52\n", + " period 01 : 105.82\n", + " period 02 : 104.10\n", + " period 03 : 102.13\n", + " period 04 : 100.03\n", + " period 05 : 100.63\n", + " period 06 : 99.47\n", + " period 07 : 97.40\n", + " period 08 : 95.65\n", + " period 09 : 97.44\n", + "Model training finished.\n", + "Final RMSE (on training data): 97.44\n", + "Final RMSE (on validation data): 95.85\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGACAYAAACgBBhzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4FWXa+PHvKTnpvZCe0DuhBUgg\nQBJKKC4gyEqJ4vK6xbqoi/iz7uKKWNgVFQu7rgvq6qqAICAdQg3E0AKBSEkhjZBOek7m94ev5zWm\nEOC0hPtzXVwXZ+aZmfvkniE3zzwzj0pRFAUhhBBCiA5EbekAhBBCCCGMTQocIYQQQnQ4UuAIIYQQ\nosORAkcIIYQQHY4UOEIIIYTocKTAEUIIIUSHo7V0AEK0Zz179iQ4OBiNRgOAXq8nPDyc5557DgcH\nh1ve73//+19mz57dZPm6det45plneP/994mOjjYsr66uJjIykgkTJvDqq6/e8nHbKjMzk1deeYXL\nly8DYG9vzyOPPMK4ceNMfuybsWrVKjIzM5v8TBITE1m4cCGBgYFNtvnuu+/MFd5tuXLlCrGxsXTu\n3BkARVHw8vLi2WefpU+fPje1rzfffBN/f3/mzJnT5m2++eYbvvrqK9auXXtTxxLCXKTAEeI2rV27\nFl9fXwBqa2tZtGgRH3zwAYsWLbql/RUUFPCPf/yj2QIHwM/Pj2+//bZRgbNnzx5cXFxu6Xi34qmn\nnmLatGm8//77AJw8eZL777+frVu34ufnZ7Y4boefn1+7KWZaotFoGn2HLVu28PDDD7Nt2zZ0Ol2b\n9/Pkk0+aIjwhLEpuUQlhRDqdjqioKFJTUwGoqanhhRdeYOLEiUyaNIlXX30VvV4PwLlz57j33nuJ\ni4tj2rRp7N+/H4B7772XnJwc4uLiqK2tbXKMwYMHk5iYSFVVlWHZli1bGDlypOFzbW0tL7/8MhMn\nTiQmJsZQiAAcP36cu+++m7i4OCZPnsyhQ4eAH3sERo0axZo1a7jrrruIiopiy5YtzX7PtLQ0wsLC\nDJ/DwsLYtm2bodB75513GDNmDNOnT+fDDz8kJiYGgCVLlrBq1SrDdj//fKO4XnnlFebPnw/A999/\nz8yZMxk/fjyzZ88mKysL+LEn649//CPR0dHMnz+fvLy8G2SseevWreORRx7h/vvv57XXXiMxMZF7\n772Xxx9/3FAMbN26lalTpxIXF8d9991HZmYmAG+//TbPPfccs2bN4uOPP26038cff5yPPvrI8Dk1\nNZVRo0bR0NDA3/72NyZOnMjEiRO57777yM/Pv+m4J0+eTHV1NZcuXQLgiy++IC4ujpiYGJ544gmq\nq6uBH3/uy5Yt46677mLr1q2N8tDSednQ0MBf/vIXxo4dy6xZszh37pzhuEePHmXGjBlMnjyZSZMm\nsXXr1puOXQijU4QQt6xHjx5Kbm6u4XNJSYkyb948ZdWqVYqiKMoHH3ygPPjgg0pdXZ1SVVWlzJw5\nU9mwYYOi1+uVSZMmKZs2bVIURVFOnTqlhIeHK+Xl5cqRI0eUcePGNXu8r7/+Wnn66aeVp556yrBt\neXm5Ehsbq3z55ZfK008/rSiKorzzzjvK/fffr9TU1CgVFRXK9OnTld27dyuKoihTp05Vvv32W0VR\nFGX9+vWGY2VlZSl9+vRR1q5dqyiKomzZskUZP358s3E8+uijSnR0tPLvf/9buXDhQqN158+fV4YO\nHapcvXpVqaurU/7whz8o0dHRiqIoytNPP628++67hrY//9xaXH379lXWrVtn+L7h4eHKgQMHFEVR\nlE2bNikzZsxQFEVRPvnkE2XevHlKXV2dUlRUpERHRxt+Jj/X2s/4p5/zwIEDlcuXLxva9+/fXzl0\n6JCiKIqSnZ2tDBkyRElPT1cURVH++c9/Kvfff7+iKIqycuVKZdSoUUphYWGT/W7evFmZN2+e4fNb\nb72lLF26VElLS1MmTJig1NbWKoqiKGvWrFHWr1/fYnw//Vx69+7dZHl4eLhy8eJF5dixY0pERISS\nl5enKIqiPP/888qrr76qKMqPP/e77rpLqa6uNnx+9913Wz0v9+7dq0yYMEG5fv26UlVVpcyaNUuZ\nP3++oiiKcvfddyuJiYmKoijK5cuXlSeeeKLV2IUwB+nBEeI2xcfHExcXR2xsLLGxsYwYMYIHH3wQ\ngL179zJ79my0Wi12dnbcddddHDx4kCtXrnDt2jWmTJkCQP/+/fH39+f06dNtOuaUKVP49ttvAdi5\ncyfR0dGo1f93Oe/Zs4e5c+ei0+lwcHBg2rRpbN++HYANGzYwadIkAIYMGWLo/QCor6/n7rvvBqBv\n377k5OQ0e/zXX3+defPmsWnTJqZOnUpMTAz/+c9/gB97V8LDw/H29kar1TJ16tQ2fafW4qqrq2P8\n+PGG/Xfq1MnQYzV16lQyMzPJyckhKSmJ8ePHo9VqcXd3b3Qb75dyc3OJi4tr9OfnY3VCQ0MJDQ01\nfLazsyMiIgKAgwcPMnz4cEJCQgC45557SExMpL6+HvixR8vDw6PJMceOHcvZs2cpKSkBYMeOHcTF\nxeHi4kJRURGbNm2itLSU+Ph4pk+f3qaf208UReGLL76gU6dOhIaGsnv3biZPnkynTp0AmDNnjuEc\nAIiIiMDW1rbRPlo7L48dO8aYMWNwdHTEzs7OkCsAT09PNmzYwMWLFwkNDeXNN9+8qdiFMAUZgyPE\nbfppDE5RUZHh9opW++OlVVRUhKurq6Gtq6srhYWFFBUV4ezsjEqlMqz76Zecl5fXDY85cuRInnvu\nOUpKSti8eTMPPfSQYcAvQHl5OcuWLWPFihXAj7esBgwYAMCmTZtYs2YNFRUVNDQ0oPxsOjqNRmMY\nHK1Wq2loaGj2+La2tixcuJCFCxdSVlbGd999xyuvvEJgYCClpaWNxgN5enre8Pu0JS4nJycAysrK\nyMrKIi4uzrBep9NRVFREaWkpzs7OhuUuLi5UVFQ0e7wbjcH5ed5++bm4uLjRd3R2dkZRFIqLi5vd\n9icODg5ERkayd+9ehgwZQllZGUOGDEGlUvH222/z0UcfsXTpUsLDw/nzn/98w/FMer3e8HNQFIVu\n3bqxatUq1Go15eXl7NixgwMHDhjW19XVtfj9gFbPy9LSUnx8fBot/8krr7zCe++9xwMPPICdnR1P\nPPFEo/wIYQlS4AhhJB4eHsTHx/P666/z3nvvAeDl5WX43zpASUkJXl5eeHp6UlpaiqIohl8mJSUl\nbS4GbGxsiI6OZsOGDWRkZDBo0KBGBY6Pjw+/+c1vmvRg5Ofn89xzz/Hll1/Su3dv0tPTmThx4k19\nz6KiIlJTUw09KC4uLsyePZv9+/eTlpaGs7Mz5eXljdr/5JdFU2lp6U3H5ePjQ5cuXVi3bl2TdS4u\nLi0e25g8PT05fvy44XNpaSlqtRp3d/cbbjtx4kR27NhBcXExEydONOR/xIgRjBgxgsrKSpYvX84b\nb7xxw56QXw4y/jkfHx9mzJjB008/fVPfq6XzsrWfrZeXF88//zzPP/88Bw4c4NFHHyUqKgpHR8c2\nH1sIY5NbVEIY0QMPPMDx48c5evQo8OMtia+++gq9Xk9lZSXffPMNY8aMITAwEF9fX8Mg3uTkZK5d\nu8aAAQPQarVUVlYabne0ZMqUKaxevbrZR7NjY2P58ssv0ev1KIrCqlWrSEhIoKioCAcHB7p06UJ9\nfT1ffPEFQIu9HM2prq7mscceMww+BcjIyODkyZMMHTqUQYMGkZSURFFREfX19WzYsMHQztvb2zA4\nNSsri+TkZICbiissLIyCggJOnjxp2M+f/vQnFEVh4MCB7N69G71eT1FREQkJCW3+Xjdj5MiRJCUl\nGW6jff7554wcOdLQc9ea6Ohojh8/zs6dOw23eQ4cOMCf//xnGhoacHBwoFevXo16UW5FTEwM27dv\nNxQiO3fu5MMPP2x1m9bOy0GDBnHgwAGqqqqoqqoyFFZ1dXXEx8dz9epV4Mdbm1qtttEtUyEsQXpw\nhDAiJycnfvvb37J8+XK++uor4uPjycrKYsqUKahUKuLi4pg0aRIqlYoVK1bw4osv8s4772Bvb89b\nb72Fg4MDPXv2xNXVlZEjR7J+/Xr8/f2bPdawYcNQqVRMnjy5ybq5c+dy5coVpkyZgqIo9OvXj/vv\nvx8HBwdGjx7NxIkT8fT0ZMmSJSQnJxMfH8/KlSvb9B39/f157733WLlyJS+//DKKouDk5MQzzzxj\neLLq17/+NTNmzMDd3Z0JEybwww8/ADB79mweeeQRJkyYQJ8+fQy9NL169WpzXHZ2dqxcuZKlS5dS\nUVGBjY0Njz/+OCqVitmzZ5OUlMS4cePw9/dn3LhxjXodfu6nMTi/9Nprr93wZ+Dr68vLL7/MQw89\nRF1dHYGBgSxdurRNPz8nJyf69u3L+fPnGThwIADh4eFs3ryZiRMnotPp8PDw4JVXXgFg8eLFhieh\nbkbfvn35/e9/T3x8PA0NDXh6evLnP/+51W1aOy+jo6PZu3cvcXFxeHl5MWbMGJKSkrCxsWHWrFks\nWLAA+LGX7rnnnsPe3v6m4hXC2FTKz290CyGEkSUlJbF48WJ2795t6VCEEHcQ6UMUQgghRIcjBY4Q\nQgghOhy5RSWEEEKIDkd6cIQQQgjR4UiBI4QQQogOp0M+Jl5Q0Pxjocbi7u5AcXGlSY8hbp7kxXpJ\nbqyT5MV6SW7aztvbudnl0oNzC7RajaVDEM2QvFgvyY11krxYL8nN7ZMCRwghhBAdjhQ4QgghhOhw\npMARQgghRIcjBY4QQgghOhwpcIQQQgjR4UiBI4QQQogORwocIYQQQnQ4UuAIIYQQd6C9e3e1qd1b\nb71JTk52i+uXLHnCWCEZlRQ4QgghxB0mNzeHnTu3tant448/ib9/QIvrX311hbHCMiqTTtWQlpbG\nQw89xIIFC5g/fz4Aa9asYfny5Rw9ehRHR0cAtmzZwkcffYRarSYiIoJFixY12s+SJUs4c+YMbm5u\nACxcuJCxY8eaMnQhhBCiw1qxYjmpqWeIigpnwoRJ5Obm8Pe/r2LZsr9QUHCVqqoqfvOb3zJyZBSP\nPPJbnnhiMXv27KKi4jqZmRlkZ1/hsceeJCJiJFOmxLJ58y4eeeS3hIcPJzk5iZKSEpYv/xteXl78\n5S/Pk5eXS//+A9i9eyfr128xy3c0WYFTWVnJ0qVLiYiIMCzbsGEDhYWF+Pj4GJZVVVXxxhtvsHHj\nRhwdHZk9ezZ33XUX3bp1a7S/J554gujoaFOFK4QQQpjdf3df4Ni5q02WazQq9HrllvYZ3suH2THd\nWm0zZ04869b9l86du5KZmc6qVf+guLiIYcNGMGnSVLKzr/D880sYOTKq0XZXr+bzxhsrOXLkEN98\n8zURESMbrXd0dOStt97jvffeJiFhN/7+gdTW1vDhhx9z8OB+/vvf/9zSd7oVJitwdDodq1evZvXq\n1YZl48aNw8nJiU2bNhmW2dvbs3HjRpycnABwc3OjpKTEVGHdloYGhe/TChjn5mDpUIQQQgij6N27\nLwDOzi6kpp5h48Z1qFRqyspKm7QdMGAgAD4+Ply/fr3J+rCwQYb1paWlZGRcpn//MAAiIkai0Zhv\nji2TFTharRattvHufypifumn5efPnyc7O5uwsLAmbT755BP+9a9/4enpyfPPP4+Hh4fxg76BH66U\n8N6GFK6WVjNleLDZjy+EEKJjmR3TrdneFm9vZwoKys0Sg42NDQA7dnxHWVkZ7777D8rKyvif/4lv\n0vbnBYqiNO1h+uV6RVFQq39cplKpUKlUxg6/RSYdg3Mz0tPTeeqpp3jzzTcNP+yfTJs2DTc3N3r3\n7s2HH37IO++8wwsvvNDivtzdHUwyE6urmwMe355ly6HLzIzpjrODzujHELfH29vZ0iGIFkhurJPk\nxXqZMjceHk5oNCocHW1xcrLD29uZ+voqunXrTKdOruzd+x16fT3e3s7odFrc3R0btS0udkSn0+Lt\n7YxKpWrUztvbGScnO+rqbOnevTvbtm3D29uZ/fv3o9frzXbOWUWBk5eXx8MPP8xrr71G7969m6z/\n+TiemJgYXnrppVb3V1xcaewQDcYNCeK/ey7wxbZzTBvV2WTHETfPnP/jETdHcmOdJC/Wy9S5cXXt\nxOnTKXh6+mBjY09BQTlDh45kyZInOHbse6ZM+RVeXt689toKamvrKS6uoKKiBhubagoKyikurqC2\ntp6CgnIURaGgoNzQrqCgnOvXq6moqKFfv6H85z9fMGvWbAYNGoKLi6vRv1dLBZNKaa6PyYjefvtt\n3N3dDU9RwY9FyqZNmwxPUS1cuJDf//73hIeHN7uPRx99lMWLFxMUFMSnn37KhQsXePHFF1s8pilP\niuraep5+/zANDQqv/SESe1urqBEF8o+1NZPcWCfJi/XqKLkpKyslOTmJsWNjKSi4yuOP/4HPPvva\nqMdoqcAx2W/nlJQUli9fTnZ2Nlqtlm3bthEZGcmhQ4coKCjgwQcfZODAgdxzzz0kJSWxcuVKw7YL\nFizA39+fHTt28NhjjzFv3jz++Mc/Ym9vj4ODA8uWLTNV2Ddkp9Pyq9Fd+fS7c+w7kUOcjMURQggh\nmuXg4Mju3Tv57LO1KEoDjz5qvpcCmrwHxxJMXfXaO9rywNLt2NpoeO0PEdiYYLyPuHkd5X88HZHk\nxjpJXqyX5KbtWurBkTcZ3wInBx3RgwMorahl/6lcS4cjhBBCiF+QAucWTQgPxkarZuuRTOr1DZYO\nRwghhBA/IwXOLXJ11DE6zJ/CsmoSz+ZbOhwhhBBC/IwUOLchblgwGrWKzYczaGjocEOZhBBCiHZL\nCpzb4OlqR0Q/X/KKKklOK7B0OEIIIYTRzJp1F5WVlaxd+zEpKacarausrGTWrLta3X7v3l0AbNmy\niX379pgszpZIgXObpowIQaWCbw+nN/vaaiGEEKI9i49fQL9+A25qm9zcHHbu3AbA5Ml3MWaM+SfL\nlrfU3aZOHg6E9/LhaOpVTl8qZEBXL0uHJIQQQrToN7+ZxyuvvImvry95ebk888yTeHv7UFVVRXV1\nNYsW/Yk+ffoZ2v/1ry8xdmwsAwcO4tlnF1NbW2uYdBNg+/atfPXVF2g0akJDu/L008+yYsVyUlPP\n8K9/raahoQE3Nzdmzvw1q1a9xenTJ6mv1zNz5mzi4qbwyCO/JTx8OMnJSZSUlLB8+d/w9fW97e8p\nBY4RTIkI5WjqVb49lEH/Lp5mnUxMCCFE+7Xuwrccv3q6yXKNWoX+Fsd2DvLpz93dpra4fvToaA4e\nTGDmzNns37+P0aOj6dq1O6NHj+X774/x6af/5q9/fb3Jdtu2baVLl6489tiT7Nq13dBDU1VVxZtv\nvo2zszMPP/wgFy9eYM6ceNat+y8PPPAg//znBwCcOJHMpUsXee+9j6iqquL+++9l9OixADg6OvLW\nW+/x3ntvk5Cwm9mz597Sd/85uUVlBEE+Tgzs5sWF7FLSskosHY4QQgjRoh8LnP0AHDiwj1GjxrBv\n3y7+8IeFvPfe25SWlja7XXr6Jfr1CwNg0KAhhuUuLi4888yTPPLIb8nIuExpafO/B8+dO8vAgYMB\nsLe3JzS0C1lZWQCEhQ0CwMfHh+vXrxvle0oPzk1QFIXLZRl4evZtsm5KZAgnLlzj20Pp9Ax2t0B0\nQggh2pu7u01ttrfFlG8y7tKlK4WFBeTn51FeXs7+/Xvx8vLh+eeXcu7cWd555+/NbqcooFb/eIfi\npyeH6+rqWLHiNT7++DM8Pb1YvPiPLR5XpVLx86Gq9fV1hv1pNP83I4CxxrNKD85NuFiazpvfr2Lj\n+R1N1nX1d6V3iDtn0ou5nFtmgeiEEEKItomIGMWHH64iKmoMpaUlBAQEArBv3x7q6+ub3SY4OIRz\n51IBSE5OAqCysgKNRoOnpxf5+XmcO5dKfX09arUavV7faPtevfpy/Pj3/7tdJdnZVwgMNN18jlLg\n3IRAJz/stXZsPr+LOn1dk/VTI0IA+PZQupkjE0IIIdpuzJhodu7cxtixscTFTeGLLz5l0aKH6du3\nH4WFhWzevLHJNnFxUzhz5jSPP/4HsrIyUKlUuLq6ER4+nP/5n/v4179WM3duPCtXriAkpDPnz59j\n5co3DduHhQ2kZ89ePPzwgyxa9DC///0j2Nvbm+w7ymSbN2nDhS3syNzLnJ53MypgRKN1iqLwytrv\nuZhTxl8WDiPQ28lkcYimZHI66yW5sU6SF+sluWk7mWzTSMYGjUSj1rArK4EGpfEcVCqViimRoQBs\nOZxhgeiEEEIIAVLg3DQ3W1dGhwznauU1Tl8722R9WFdPAr2dSEzNJ7+40gIRCiGEEEIKnFtwV69x\nAOzM3NdknUqlYmpkCIoCW49IL44QQghhCVLg3IJAFz/6efbmUmkGF0vSm6wf2tOHTh4OHDydR1FZ\ntfkDFEIIIe5wUuDconHBY4Dme3HUahWTRwSjb1D47mimuUMTQggh7nhS4Nyibm6dCXUJ5vS1s+RX\nXG2yPqKvLx4utiScyKGsotYCEQohhBB3LilwbpFKpWJc8BgUFHZlJTRZr9WomTQ8hNr6BnYkZVkg\nQiGEEOLOJQXObQjz7ou3vSeJecmU1jR9X0HUAD9cHHXsTr5CZXXTFwMKIYQQwjSkwLkNapWamKDR\n1DfUs+/KwSbrdTYaJoYHUVWjZ1dytgUiFEIIIe5MUuDcphF+Q3GycWR/9mGq62uarB87KAAHWy07\njmVRU6tvZg9CCCGEMDYpcG6TTmPDmMBIKuurOJx7rMl6e1st44YGcr2qjn0ncywQoRBCCHHnkQLH\nCEYHRGKjtmFXZgL6hqa9NOOGBmFro+G7xAzq6hua2YMQQgghjEkKHCNw0jkS4RdOcU0JyVdPNV1v\nb0P0oABKrtdyMCXXAhEKIYQQdxYpcIwkNjgKFSp2Zu6juQnaJwwLQqtRs/VIBvoG6cURQgghTEkK\nHCPxsvdkkE9/rlzP4XzxhSbr3ZxsiRrgR0FJNUdTm74YUAghhBDGIwWOEbU2fQPApOHBqFUqNh/O\noKGZXh4hhBBCGIcUOEYU4hJEd7cupBalkVXe9IkpLzd7RvTtRM61Co6nXbNAhEIIIcSdQQocIxsf\nMhaAXS304kyJCEEFfHs4vdmxOkIIIYS4fSYtcNLS0hg3bhyffPKJYdmaNWvo27cvFRUVhmUbN25k\n5syZ3HPPPXz55ZdN9pObm0t8fDxz587l8ccfp7bWeiev7OPRE39HX76/epKi6uIm6/08HRnS05uM\nvHLOpBdZIEIhhBCi4zNZgVNZWcnSpUuJiIgwLNuwYQOFhYX4+Pg0avfuu+/y8ccfs3btWv79739T\nUlLSaF8rV65k7ty5fPbZZ4SEhPDVV1+ZKuzbplKpiA0eTYPSwJ6sA822mRIRCsC3hzLMGJkQQghx\n5zBZgaPT6Vi9enWjYmbcuHEsWrQIlUplWHby5En69++Ps7MzdnZ2DB48mOTk5Eb7SkxMJDY2FoDo\n6GgOHz5sqrCNYmingbjZunIgJ5HKusom60N8nenfxZO0rBLSskqa2YMQQgghbofJChytVoudnV2j\nZU5OTk3aXbt2DQ8PD8NnDw8PCgoKGrWpqqpCp9MB4Onp2WS9tdGqtYwNHEmtvpb92UeabTM1MgSA\nzYelF0cIIYQwNq2lA/ilGw28bcvAXHd3B7RajbFCapa3t3Or66e7jmNb5m4Scg7x68GTsdHYNNm+\n3+EMTl8spLRGT7dAN1OGe8e4UV6E5UhurJPkxXpJbm6PxQscHx8frl37v0emr169ysCBAxu1cXBw\noLq6Gjs7O/Lz8xvd9mpOcXHT20LG5O3tTEFB+Q3bjfQbzs7MfWxJSSDSf1iT9ROHBpFysZBPtpzl\n4Rn9TRHqHaWteRHmJ7mxTpIX6yW5abuWCkGLPyYeFhbG6dOnKSsro6KiguTkZIYOHdqoTWRkJNu2\nbQNg+/btREVFWSLUmxYdNAqNSsPOzH00KE2nZ+gT6k6orzPJ5wvIuVbRzB6EEEIIcStMVuCkpKQQ\nHx/P+vXrWbNmDfHx8bz33nvEx8dTUFDAgw8+yGuvvYadnR1PPvkkCxcu5IEHHuDhhx/G2dmZ1NRU\nVq5cCcCjjz7Khg0bmDt3LiUlJUyfPt1UYRuVm60rQzsNJL+ygJRrqU3Wq1QqpkaGogBbjshYHCGE\nEMJYVEoHfNucqbv1bqbrMOd6Hn89uoKurqE8MeShJusbFIUX/3mU3MJKlv1uBN5u9sYO944hXbrW\nS3JjnSQv1kty03ZWe4uqo/N38qWvZy8ulqZzubRpL41apWJKRAgNisLWxEwLRCiEEEJ0PFLgmMGN\nJuEM7+2Dt5sdB07lUFxeY87QhBBCiA5JChwz6O7WhWDnQE4WnCG/suk7fDRqNZNHhFCvV9h+THpx\nhBBCiNslBY4ZqFQqxoeMRUFhd2ZCs20i+/nh7mzL3uM5XK+qM3OEQgghRMciBY6ZDPTuh5edB0fy\nvqe89nqT9TZaNROHBVNTp2fHsSwLRCiEEEJ0HFLgmIlapSYmeDT1DfXsu3Kw2TZjwvxxsrdh1/dX\nqKqpN3OEQgghRMchBY4ZRfgNxdHGgYQrh6nR1zZZb6vTMCE8iMqaevYcz7ZAhEIIIUTHIAWOGek0\nOsYERFJRX8nhnGPNtokZHIi9rYbtRzOprdObOUIhhBCiY5ACx8xGB0Zio9ayOysBfUPTAsbBTkvM\n4EDKKutIOJljgQiFEEKI9k8KHDNz1jkxwi+cwupiThScbrbN+PAgdDZqvjuaSb2+6RxWQgghhGid\nFDgWEBMUhQoVOzL30dxMGS4OOsaEBVBUVsPhlDwLRCiEEEK0b1LgWICPgxcDvfuRVZ5NWvHFZtvE\nDQ9Go1ax5UgGDQ0dbrowIYQQwqSkwLGQcSGtT9/g7mzLyP5+5BdXcezcVXOGJoQQQrR7UuBYSKhL\nMN3cOnO26DzZ13ObbTN5RDAqFWw+nN7srSwhhBBCNE8KHAu60SScPu4ODO/TiSsFFZy8UGjO0IQQ\nQoh2TQocC+rr2Qtfx04k5Z+guLqk2TaTR4QA8O1h6cURQggh2koKHAtSq9SMCxpNg9LAnqwDzbYJ\n9HZiUHcvLuWUkZpRbOYIhRD6D8bZAAAgAElEQVRCiPZJChwLG+o7CFedMwdzEqmsq2q2zdTIUAA2\nH84wY2RCCCFE+yUFjoXZqLWMDRpFtb6GAzlHmm3T2c+Fvp09SM0o5mJ2qZkjFEIIIdofKXCswCj/\nEdhpbNmbdYC6huZnEZ8a8b9jcQ6lmzEyIYQQon2SAscKONjYM9J/OKW15STlHW+2TY8gN7oFunLy\nYiGZ+eVmjlAIIYRoX6TAsRLRQaNQq9TszEqgQWk6/5RKpWJqRCgAW47IWBwhhBCiNVLgWAl3OzeG\ndhpIXkU+ZwrPNdumfxcPgjs5cSz1KnlFlWaOUAghhGg/pMCxIjd68d9PvTgKsEWeqBJCCCFaJAWO\nFQlw8qOPR08ulFwmvSyz2TaDe3rj5+nA4TN5FJZWmzlCIYQQon2QAsfKGHpxMprvxVGrVEweEYK+\nQeG7xOaLICGEEOJOJwWOlenh3pUg5wBOFKRwtfJas22G9+mEl6sdCadyKK2oNXOEQgghhPWTAsfK\nqFQqxgWPQUFhd9b+ZttoNWomDQ+mrr6B7UelF0cIIYT4JSlwrNAg7/542rlzJPcY5bXXm20zaoAf\nrk46dh/PpqK6zswRCiGEENZNChwrpFFriAkaTV1DPQlXDjXbxkarYWJ4MDW1enYlXTFzhEIIIYR1\nkwLHSkX4h+OodWBf9iFq9c2Psxk7yB9HOy07krKorm1+igchhBDiTmTSAictLY1x48bxySefAJCb\nm0t8fDxz587l8ccfp7a2lpSUFOLj4w1/IiIiSE5ObrSf+Ph4Zs6caWiTkpJiyrCtgq1GR1RgBBV1\nlRzOTWq2jZ1Oy/ihQVRU17P3eI6ZIxRCCCGsl9ZUO66srGTp0qVEREQYlq1cuZK5c+cyadIkVqxY\nwVdffcXcuXNZu3YtAGVlZTz00EMMHDiwyf6WLVtGjx49TBWuVRobOJKdmfvYnZlAVMAI1Kqm9Wjs\n0EC+O5rJtqOZxA4JwEarsUCkQgghhHUxWQ+OTqdj9erV+Pj4GJYlJiYSGxsLQHR0NIcPH260zT//\n+U/uv/9+1Gq5cwbgrHNihO8QrlUXcaKg+V4rRzsbogcHUFpRy4FTuWaOUAghhLBOJqsktFotdnZ2\njZZVVVWh0+kA8PT0pKCgwLCuurqaAwcOGAqgX1q5ciXz5s3jhRdeoLr6znmDb2zwaFSo2JmxD0VR\nmm0zITwYG62aLUcyqdc3nahTCCGEuNOY7BbVjfzyl/XOnTsZO3Zss7039913Hz179iQ4OJgXX3yR\nTz/9lIULF7a4b3d3B7QmvlXj7e1s0v0bjoMz4VlhHM0+QQF59PVuepvO2xsmDg/h24OXSb1SSszQ\nYLPEZo3MlRdx8yQ31knyYr0kN7fHrAWOg4MD1dXV2NnZkZ+f3+j21Z49e5gzZ06z240fP97w95iY\nGLZs2dLqcYqLTTvTtre3MwUF5SY9xs+N9h3J0ewTfHVqKz5hfs22GTPAj62H0/l8+3n6BruhVqnM\nFp+1MHdeRNtJbqyT5MV6SW7arqVC0KyDXSIjI9m2bRsA27dvJyoqyrAuJSWFXr16NdlGURQWLFhA\nWVkZ8OM4nu7du5snYCvR2TWErq6hnCk8R871vGbbeLraEdHPl9zCSpLPFzTbRgghhLhTmKzA+enx\n7/Xr17NmzRri4+N55JFH2LBhA3PnzqWkpITp06cb2peVleHk5GT4nJCQwGeffYZKpWL27NksWLCA\nefPmkZeXx7x580wVttX6aRLOXZkJLbaZPCIElQq+PZze4ngdIYQQ4k6gUjrgb0JTd+tZouuwQWng\n5cQVXKsq5C+RS3CzdW223fvfpHA09Sp/vCeMAV09zRqjpUmXrvWS3FgnyYv1kty0nVXcohK3Tq1S\nMy54NHpFz56sAy22mxIRCkgvjhBCiDubFDjtSLjvYFx0zhzITqSqvvlH5YN8nBjYzYsLV0pJyyox\nc4RCCCGEdZACpx2xUWsZGziSan01B3MSW2w3JSIEgG8PpZspMiGEEMK6SIHTzkQFjECn0bEn6wD1\nDc1PsNk1wJXeIe6cSS/mcm6ZmSMUQgghLE8KnHbGwcaBUf7DKakpJSn/RIvtpkovjhBCiDuYFDjt\nUHTQKNQqNbsyE1ocSNwrxJ0u/i4c/+EaVwqumzlCIYQQwrKkwGmHPOzcGeITRk5FHmeLzjfbRqVS\nMfV/n6jacjjDjNEJIYQQlicFTjv104v/dmbsa7FNWDdPAr2dSEzN56qJp68QQgghrIkUOO1UoLM/\nvT16kFZykYyyrGbbqFQqpkaGoCiw5UimmSMUQgghLEcKnHbM0IuT2XIvztCePnRyt+fg6VyKypp/\nd44QQgjR0UiB0471dO9GoJM/x6+e5lpVYbNt1GoVk0eEoG9Q2Ha0+Z4eIYQQoqORAqcdU6lUjAse\ng4LC7qz9LbaL6OeLh4st+05kU1ZZa8YIhRBCCMuQAqedG+wzAA87dw7lHON6bUWzbbQaNZOGh1Bb\n38COY9KLI4QQouOTAqed06g1xARFUddQR0L2oRbbRQ3ww8XBht3JV6isrjNjhEIIIYT5SYHTAUT4\nheOgtWfflUPU6psvXnQ2GiYMC6aqRs/u5GwzRyiEEEKYlxQ4HYCd1paogAiu11WQmJfUYrvoQQE4\n2GrZfiyLmlq9GSMUQgghzEsKnA5iTOBItCoNOzMTaFAamm1jb6sldkgg16vq2Hcyx8wRCiGEEOYj\nBU4H4WrrzHC/IVyrKuRkwZkW240PD8LWRsN3iRnU1TdfCAkhhBDtnRQ4HUhs0GhUqNiZua/FSTid\n7G0YO8ifkuu1HErJNXOEQgghhHlIgdOBdHL0ob9XH9LLMrlYmt5iu4nDgtFqVGw5koG+QXpxhBBC\ndDxS4HQwP03fsCNjb4tt3JxsGTXAn4KSao6cyTdTZEIIIYT5SIHTwXR1C6WLawgphankVrRcvEwe\nHoxGreKjLal8tDlV5qkSQgjRoUiB0wH91IuzKzOhxTZebvb88Z4w/D0dOXA6lyUfHOGL3T9wvUpe\nAiiEEKL9kwKnA+rv1QcfBy+O5SVTUlPaYru+nT3482+GsXBKb1wdbdh2NIun3z/EpkPp8p4cIYQQ\n7ZoUOB2QWqUmNmg09YqevVkHW2+rVjGyvx+v/HYE98Z0Q6NWsz7hEks+OMye5CvU62UQshBCiPZH\nCpwOarjvEJxtnDiQc4Tq+huPr7HR/jiVw6u/i2BqZChVtfWs3Z7Gc/9I5GhqPg0tPHYuhBBCWCMp\ncDooG40NY4NGUlVfzcGco23ezsFOy92ju7D8dxHEDA6gsLSa9785w9KPkzhzuciEEQshhBDGIwVO\nBxYVEIFOo2N31n70DTc3psbVyZb5E3ry1weHM7xPJzLyy3nzixO8/p/jXM4tM1HEQgghhHFIgdOB\nOdo4EOkXTklNKUn5J25pHz7uDvzuV315cUE4/Tp7kJpRzNJ/J7Fq/WnyiiqNHLEQQghhHFLgdHAx\nQVGoVepWp29oixBfZ5749UD+NGcQnf1cSDpfwHOrE/n3d+coLq8xYsRCCCHE7ZMCp4PztPdgsM8A\ncirySC1Ku+399Q5x57n7hvDQ9H74uNuz70QOz3xwmK/2XqSyWt6hI4QQwjpoTbnztLQ0HnroIRYs\nWMD8+fPJzc1l8eLF6PV6vL29ef3119HpdPTt25fBgwcbtvv444/RaDSGzy1tJ9pmXPAYkvJPsDNz\nH308e972/lQqFUN7+TCohxcHT+fxzYHLbDmSwb4T2UyOCCF2cCA6G82NdySEEEKYiMl6cCorK1m6\ndCkRERGGZStXrmTu3Ll89tlnhISE8NVXXwHg5OTE2rVrDX9+Xty0tp1omyDnAHq6d+N88QUyy68Y\nbb8atZrRYf4s++0I7hnbFUWBL/dc5JkPj5BwMkcm8hRCCGExJitwdDodq1evxsfHx7AsMTGR2NhY\nAKKjozl8+HCb9nWr24n/Mz54LAA7M/YZfd86Gw2TRoSw/A8RTBoRzPWqOj7eeo4X/nmU789fva2x\nP0IIIcStMFmBo9VqsbOza7SsqqrKcGvJ09OTgoICAGpra3nyySe59957+de//tVkXy1tJ9qul0d3\nApz8OF5wmsIq07zPxtHOhnvGduPV30UwOsyf/KIq3l2fwl/Xfs+5jGKTHFMIIYRojknH4LTm5/+r\nX7x4Mb/61a9QqVTMnz+foUOH0r9//xtu1xJ3dwe0WtOOAfH2djbp/k1hRt+JvJP4MYevJfLA4Nkm\nO463tzN/6uLFnKvlfLL1HAdP5fDaf44zuJcP90/uQ5cAV5MeW1gnyY11krxYL8nN7TFrgePg4EB1\ndTV2dnbk5+cbbl/NmTPH0GbEiBGkpaU1KnBa2q4lxcWmfT+Lt7czBQXlJj2GKfSw74m7rRu7Lh5g\nrO9onGwcTXo8WxUsnNyLmEH+fLX3IsnnrpJ87irD+3RiRlRnfNwdjHq89pqXO4HkxjpJXqyX5Kbt\nWioEzfqYeGRkJNu2bQNg+/btREVFcenSJZ588kkURaG+vp7k5GS6d+9+w+3EzdOoNcQEjaK2oY79\nV46Y7bid/Vx46t6BPPHrMII7OZF4Np9nVyfyyfbzlFbUmi0OIYQQdw6T9eCkpKSwfPlysrOz0Wq1\nbNu2jTfeeIMlS5bwxRdf4O/vz/Tp07GxscHX15dZs2ahVquJiYlhwIABpKamsmPHDh577DEeffRR\nnn766UbbiVsT6T+MLek72XflIOOCR2OjsTHLcVUqFf06e9In1INjqVdZn3CJ3cnZHDydx4TwIOKG\nB2Nva7E7pkIIIToYldIBH3Exdbdee+86/ObiVrZn7GFOz7sZFTDCIjHU6xvYfzKHbw6mU1ZRi5O9\nDVMjQ4keFICN9tY6Ftt7XjoyyY11krxYL8lN21nFLSphHcYGjkSr0rArK4EGxTLvqtFq1EQPDuTV\n341gxugu6Bsa+HzXD/y/D49w8HQuDQ0dru4WQghhRlLg3IFcbV0Y5juYq5XXOHXtrEVjsdNpuSsy\nlFd/F8GE8CBKK2r45+ZUXvzXUU78cE3eoSOEEOKWSIFzh4oNHgPAmrOfs/XyLmr0lh3s6+yg497Y\n7iz7bQQj+/uSc62ClV+fYtmnyfxwpcSisQkhhGh/NC+99NJLlg7C2CorTfvL2tHR1uTHMDUnnSNe\ndh6kFV8kpTCVI7lJ2GvtCHDyQ6VSWSwuBzstg3t4M7SnNyXXazibXsyBU7lk5JUT4O2Ii2PLc5B1\nhLx0VJIb6yR5sV6Sm7ZzdLRtdrkMMr4FHWnwV1V9NTsz97ErM4G6hjr8HX2Z3m0yfTx6WrTQ+cmF\nK6V8tfcCaVdKUQGR/XyZFtUZL1f7Jm07Ul46GsmNdZK8WC/JTdu1NMhYCpxb0BFPvJKaUjZf2s7h\n3CQUFHq4d2NGt8kEOwdaOjQUReHUxUK+3neRKwUVaDUqogcFMjUyBGeH/+vR6Yh56SgkN9ZJ8mK9\nJDdtJwWOEXXkEy/7ei4bLm7hbOF5AMI7DeauLhPxtHe3cGTQ0KBw5Gwe6xMuU1hWjZ1OQ9zwYCaE\nB2Gn03bovLR3khvrJHmxXpKbtpMCx4juhBPvXNEPbLiwmazrOWjVWsYGjmRiSAwONk1vDZlbXX0D\ne49ns+lQOter6nBx1HFXZCgzx/WkpLjC0uGJZtwJ10x7JHmxXpKbtjN6gZOenk5oaOjtxGQyUuAY\nR4PSQFL+CTZe/I7imhIctQ7EdY4lKiACG7Xl3zpcVVPPtqOZbDuWRU2tHj8vR+6N6Ub/Lp6WDk38\nwp1yzbQ3khfrJblpu1t60d8DDzzQ6POqVasMf3/hhReMEJawZmqVmmG+g3lxxJ+Y3nUyDTTw9Q+b\nWHrkDb7PP2Hxd9TY22qZHtWF5b+LIHZwIPlFlfztvydZtSGF4vIai8YmhBDCslotcOrr6xt9PnLk\n/yZotPQvN2E+NhobxoeM5aWIp4kOGkVJTSkfnfmM15Pe4YfiS5YODxdHHfMm9ODvi8bQNcCFpHNX\n+X+rj7D9WBb6Bsu8qVkIIYRltVrg/PIx4Z8XNdbwCLEwLycbR2Z1/xXPD3+KIT5hZJRn8ffj7/P+\nqY/Jq7hq6fDo7O/KM/OHcH9cT7RqFZ/v+oGlHydxMbvU0qEJIYQws5saSCFFjQDwdvDkN/3mEV0a\nxfoLmzl97SxnCs8R6T+MyaHjcbVt/n6oOahVKsYMDGBQD2++3HOBg6fzeGXt94we6M/MMV1xsjfP\n7OlCCCEsq9UCp7S0lMOHDxs+l5WVceTIERRFoayszOTBCevW2TWYRYN/z+lrZ9lwcSsHso9wNC+Z\n8cFjiA0eg62m5bcOm5qLg46FU/oQNcCftdvOs+9EDslpBcyO7kZkP18p1oUQooNr9Smq+Pj4Vjde\nu3at0QMyBnmKyvz0DXoO5R5l86UdlNddx0XnzNTOExjhNxSNWmOWGFrKS72+gR3Hsvjm4GVq6xro\nEeRG/MSeBHg5miUuIdeMtZK8WC/JTdvJe3CMSE68llXXV7MzM4FdmfuobajD17ETM7pOpq9nL5P3\nmtwoL9dKq/jPzh84/sM1NGoVE4cFc9fIUGxtzFOA3cnkmrFOkhfrJblpu5YKnFYn27x+/TqfffYZ\nAwcOBODzzz/n2Wef5fDhw4SHh+Pg4GCSYG+XTLZpOVq1lh7uXRnhN5Tq+hrOFf3AsfzjXCi5jL+j\nL662LiY79o3y4mBnw/A+nQjp5MwPV0o5dbGQI2fy8XGzx9fTOs/ljkKuGeskebFekpu2a2myzVYL\nnCVLlqDVaomMjOTy5cs8+eSTvPzyy7i4uPCf//yHuLg4U8V7W6TAsTw7rR0DvPsw0Ls/xdXFpBb/\nwMGcRK5WFhDsHGCSNyK3NS++ng6MCfOnQVE4c7mII2fzycwvp1uAKw52ln+BYUck14x1krxYL8lN\n27VU4LT6r3lWVhYrVqwAYNu2bcTFxREZGUlkZCSbN282fpSiw/F38uUPYb8hrfgC6y5sJin/BCeu\nnmZM4EjiQmNwsLFMz4mtTsM9Y7sR2deXtdvTOP7DNc6kFzFtZGfGhweh1bT6BgUhhBBWrtV/xX9+\nC+ro0aOMGDHC8FmeQhE3o4d7NxYPfZQFfebgYuvCrqwEXjy8nF2ZCdQ11N94ByYS4O3E03MHsXBK\nb3RaDV/uvcifPz5GWlaJxWISQghx+1otcPR6PYWFhWRmZnL8+HFGjhwJQEVFBVVVVWYJUHQcapWa\ncN9BvDD8KWZ0m4ICrLvwLUuPvE5S3nEaFMu8dVilUjGyvx+v/HYEYwb6k11QwaufJvPR5lTKpYtY\nCCHapVbH4Hh6erJgwQLWrl3Lww8/TGRkJNXV1cyZM4eZM2cyYMAAM4badjIGx7pp1Bq6uIYy0n84\nekVPWvEFkgtOcabwHJ0cvPC097il/d5uXnQ2GgZ286JvZw/S88pJuVzE/pM5ONnbENTJSXotb4Nc\nM9ZJ8mK9JDdt19IYnBs+Jl5XV0dNTQ1OTk6GZQcOHGDUqFHGjdCI5DHx9uVaVRGbLn1HUv4JAPp5\n9mZ6t8n4OXa6qf0YMy/6hgZ2JV1h/YHL1NTq6RbgSvzEngT5ON14Y9GEXDPWSfJivSQ3bXdL78HJ\nyclpdaf+/v63F5WJSIHTPmWUZbH+wmZ+KLmEChWR/sOY0nl8mx8tN0Veisqq+XzXDySdL0CtUjFu\naCDTRnXG3laetroZcs1YJ8mL9ZLctN0tFTi9evWic+fOeHt7A00n21yzZo2RwzQOKXDaL0VRSClM\nZcOFLeRVXkWn0TEuaDSxwWOw0zbfDfkTU+bl1MVCPt1xnoKSatydbZkT250hPb3ltlUbyTVjnSQv\n1kty03a3VOB88803fPPNN1RUVDBlyhSmTp2Kh8etjY8wJylw2j99g57Ducf49vJ2ymt/nPphSufx\nRPiFtzj1g6nzUlunZ/PhDLYmZlCvVxjQ1ZO543vg42b8d/p0NHLNWCfJi/WS3LTdbU3VkJuby/r1\n69m0aRMBAQFMmzaN8ePHY2dnZ/RAjUEKnI6jur6GXVkJ7MzcR62+Fl8HH6Z3m0w/z95Nek/MlZfc\nwgo+2Z5GakYxNlo1UyNDiRsWjI1W3p3TErlmrJPkxXpJbtrOaHNRffnll7zxxhvo9XqSkpKMEpyx\nSYHT8ZTWlLH58g4O5RxFQaG7WxdmdJtCiEuQoY0586IoColn8/l89wXKKmrx9XAgfmJPeoe4m+X4\n7Y1cM9ZJ8mK9JDdtd1sFTllZGRs3bmTdunXo9XqmTZvG1KlT8fHxMXqgxiAFTseVV5HPhotbOH0t\nFYAhPmH8quskvOw9LJKXyuo61iVcYk9yNgowom8nfh3THVdHnVnjsHZyzVgnyYv1kty03S0VOAcO\nHODrr78mJSWFCRMmMG3aNHr06GGyII1FCpyOL634IusvbCaz/ApalYbRgZHMHzKNqjLLvCzwcm4Z\na7adJyOvHHtbLbPGdGHMwADUahmEDHLNWCvJi/WS3LTdLT9FFRoaSlhYGGp10/EFy5YtM16ERiQF\nzp2hQWkg+eopNl7cSmF1MU46R+7uOpVhvoMt8nRTQ4PCnuPZrEu4SFWNns5+ztw3sRchvs1ffHcS\nuWask+TFeklu2u6WCpyjR48CUFxcjLt747EFV65c4e677271oGlpaTz00EMsWLCA+fPnk5uby+LF\ni9Hr9Xh7e/P666+j0+nYsmULH330EWq1moiICBYtWtRoP0uWLOHMmTO4ubkBsHDhQsaOHdvicaXA\nubPUNdSz78pBtqTvpKa+hj4ePZnT62487CwzHqbkeg1f7L5A4tl8VCqIGRzIjKgud/RM5XLNWCfJ\ni/WS3LTdLRU4SUlJLFq0iJqaGjw8PPjggw8ICQnhk08+4cMPPyQhIaHFA1ZWVvK73/2O0NBQevbs\nyfz583nmmWcYPXo0kyZNYsWKFfj6+jJjxgymTJnCxo0bcXR0ZPbs2Sxbtoxu3boZ9rVkyRImTpxI\ndHR0m76sFDh3KIda3jm0htSiNGw1OqZ1nUxUwAjUKss83XQmvYhPtqeRX1SJq5OOe2O6M6y3zx35\n7hy5ZqyT5MV6SW7arqUCp9V/+f/2t7/x8ccfc/ToUf70pz/xwgsvEB8fz5EjR/jyyy9bPaBOp2P1\n6tWNBiInJiYSGxsLQHR0NIcPH8be3p6NGzfi5PTjXD9ubm6UlMhMzuLmeTt68nDYQuJ7z0aj0vDf\ntA38Pfl98iuuWiSevqEe/OU3w5ge1ZmKqno+2HiGN784QX5RpUXiEUKIO0mrBY5araZr164AxMbG\nkp2dzX333cc777xDp06tzxOk1WqbvCenqqoKne7Hp0s8PT0pKCgAMMxzdf78ebKzswkLC2uyv08+\n+YT77ruPRYsWUVRU1MavJ+40KpWKEX5DeW74Uwzy7s/F0nReOfZ3tqfvQd+gN3s8Nlo1vxrZmZf/\nZxj9unhwNr2Y5/+ZyIb9l6irN388Qghxp2h1UMAvu9L9/PwYP368UQ78yztj6enpPPXUU7z55pvY\n2Ng0Wjdt2jTc3Nzo3bs3H374Ie+88w4vvPBCi/t2d3dAq23+bbfG0lKXmLCsn/LijTPPBD5E4pXj\n/OP7z/nm0lZOFafwh/B4Qt2DbrAX08T1SncfDp3K5cMNp9l4MJ1j5wv4/d0DGNzTOl+3YGxyzVgn\nyYv1ktzcnpsa9Xi7YwccHByorq7Gzs6O/Px8w+2rvLw8Hn74YV577TV69+7dZLuIiAjD32NiYnjp\npZdaPU5xsWlvAci9UevUXF662HbjufAn+PrCtxzJTWLJjlcZHzyWSaGx2GhsWtiT6fTwd2bpwmF8\nc+AyO5KyePHDw4T38uHe2O64O7c+11Z7JteMdZK8WC/JTdu1VAi2WuAcP3680dNKhYWFjB07FkVR\nUKlU7N2796aCiIyMZNu2bUybNo3t27cTFRUFwLPPPstLL71E3759m93u0UcfZfHixQQFBZGYmEj3\n7t1v6rjizuZg40B879kM9RnIZ+e/ZlvGbk4UpDC/9yy6uIaaPR57Wy33xnYnsp8va7ed59i5q5y+\nVMiMqC7EDAlA08wrGYQQQtycVp+iys7ObnXjgICAFtelpKSwfPlysrOz0Wq1dOrUiTfeeIMlS5ZQ\nU1ODv78/y5Yt48qVK0yfPp0BAwYYtl2wYAH+/v7s2LGDxx57jCNHjvD6669jb2+Pg4MDy5Ytw9PT\ns8Vjy1NUd6a25KW6voaNl74j4cohAEYHRvKrLnE3nKncVBoUhYSTOXy99yIV1fUEd3IifmJPuvq7\nWiQeU5FrxjpJXqyX5KbtjDYXVXsgBc6d6WbycrEknU/PfUl+ZQEedu7M7TmT3p6We0t3WUUtX+65\nwMGUPFTAmIH+zBrbFQc7899GMwW5ZqyT5MV6SW7arqUCR/PSjQa0tEOVlbUm3b+jo63JjyFu3s3k\nxcPOjUi/YSjA2aLzJOZ9T1FVMd3dOltkbI6tTsPgHt70CnbjUm45py8VcSglDx93e/w8Hc0ej7HJ\nNWOdJC/WS3LTdo6OzffAS4FzC+TEs043mxeNWkNPj2709+pDRlmmodDxsvPA17H11yCYiperPaPD\n/NFoVJy+VMSRs/nkFVXSM8gNWxvTPhloSnLNWCfJi/WS3LSdFDhGJCeedbrVvLjaOhPhF45OreNs\n0XmS8k+Qez2Prm5dLDI2R61W0TPYnSE9vEnPKyflchEHT+fi6WKHv5dju3wTslwz1knyYr0kN20n\nBY4RyYlnnW4nL2qVmq5unRns3Z8r13M4W5TG4dxjuOpcCHDys0hR4eKoI2qAH3Y6LSmXiziaepWs\nq9fpGeyGna59zWsl14x1krxYL8lN20mBY0Ry4lknY+TFSefIcL8hOOucSC1KI/nqKS6XZdLVtTMO\nNvZGirTtVCoV3QJdGdbLh6yr1zlzuYj9J3NxcdQR5OPUbnpz5JqxTpIX6yW5aTspcIxITjzrZKy8\nqFQqQl2CGNppEHmVV0ov8igAACAASURBVEktSuNQ7lHstHYEOwdYpKhwsrchsr8vLo46UtKLSDp3\nlUs5ZfQIcmsXs5TLNWOdJC/WS3LTdlLgGJGceNbJ2HlxsLEnvNMgPO09OFf0AycKUkgrvkAX1xCc\ndOZ/skmlUtHZz4URfTqRU1jJmctFJJzKwdFWS4ivs1X35sg1Y50kL9ZLctN2UuAYkZx41skUeVGp\nVAQ6+zPcdyhF1cWcLUrjYO5RNKgJdQlGrTL/W4cd7GyI6NsJT1c7zl4u5vu0As5nltA9yBUne+t8\nb45cM9ZJ8mK9JDdtJwWOEcmJZ51MmRc7rS2DO4UR4OjL+eILnLp2lpRrqYS4BOFq62KSY7ZGpVIR\n0smZiH6+FJRUkXK5iP0nc7DRquni52J1vTlyzVgnyYv1kty0nRQ4RiQnnnUyR158HTsR6RdOed11\nzhad51DuMeob6uniGoJGbf731NjbahnW2wd/L0fOpBdz/IdrpFwuomuAKy4OOrPH0xK5ZqyT5MV6\nSW7aTgocI5ITzzqZKy82GhvCvPvSxSWEH0oukVKYyvGC0wQ6BeBh52by4/+SSqUiwNuJkQP8KCqr\nNvTmoFLR1d8FtdryvTlyzVgnyYv1kty0nRQ4RiQnnnUyd168HTyJ9BtGrb6Ws4XnOZKbxPW6Srq6\ndkarNv+TTbY2Gob28iH4/7d33+FRXXf+x98zo1HvZdQlVAAh0YtNb8amGgym2ARSNrvPJv5lN/Fm\nsy67ttkncfw462STdbKJ401hwV6KKQZTjemmGdOEkBDqEiqj3tvM3N8fAhmMsAcxM/dK+r7+wWDN\nzBGfc66+nHvuOSZfMotquXSjiss5VSRE+hPoq85horfJmNEmyUW7JBv7SYHjQNLxtEmNXNz0bqSF\npDA0aDB59QVkVGdxvuISkd7hhHnf/8R7Z4oM8WHayEgaWzpJz+vaN6fTamNwTAAGvesXRYOMGa2S\nXLRLsrGfFDgOJB1Pm9TM5X6HdyYHJuCuwuGd7m4GxgwOIynan+tFdVzOrebz65UMivAj2N/T5e2R\nMaNNkot2STb2kwLHgaTjaZPaufR0eOeZ8vOEeAYTqdLhnaYgb6aNjKStw0J6Xg0nr5TR2m5hcGwg\nbgbXzeaonY3omeSiXZKN/aTAcSDpeNqklVzuPrwzm/MVlyhtKidZpcM7jW56RiaFkhIXSHZJPVdy\nqzmXWUFMmC9hga45fkIr2Yi7SS7aJdnYTwocB5KOp01ayuXLh3dm3jq809/dT7XDO0MDvJg+KgqL\nTSE9r5pP08upb+5gSGwgRjfnzuZoKRvxBclFuyQb+0mB40DS8bRJi7lo7fBOg0FPWkIwIxJDyL1Z\nT3peNWeulRMR7EN4sLfTPleL2QjJRcskG/tJgeNA0vG0Sau59HR456dl5/B08yDOL0aV2ZwgPw+m\njYxCr4P0vBpOZ5RTVdfKkNhA3I2O37BQq9kMdJKLdkk29pMCx4Gk42mT1nO5fXhnqFcIWTU3uFx5\nleu1OSSpdHinQa8jJT6I0cmh5Jc1kp5fw6dXywkL9CIq1LHt0Xo2A5Xkol2Sjf2kwHEg6Xja1Bdy\nuX1458TI8dS01nbP5ujRkaDS4Z0Bvh5MGxWJu5ueq3k1nL1Wwc2qZobGBuLh7pjZnL6QzUAkuWiX\nZGM/KXAcSDqeNvWlXDwMdx/ema7y4Z16nY4hsYGMTwmjsKKRjPwaTqaXEeTnQXSYz0PfRutL2Qwk\nkot2STb2kwLHgaTjaVNfzKWnwzs7bZ0kBQxS5fBOP293po6IxMfTyNX8as5lmiksb2RoXBBeHr0/\nfqIvZjMQSC7aJdnY734Fjk5RFMXFbXG6yspGp75/WJif0z9DPLi+nktmdTbvX99GTVst4d5hrBm2\ngsSAQaq1x1zXyl/3ZpJVVIeXh4FVswczbWTvHnHv69nYFIXK2laKzE0oisKIxJCHKvi0oq/n0p9J\nNvYLC/Pr8c+lwOkF6Xja1B9yabO0sztvP8dKTgEwK3YqTybOU+W4BwBFUTh2uZQth3No67CSOiiI\nb81LeeANAvtSNu2dVm5WNlNkbqS4ookicyMl5mbaO63dX+PupmfMkDAmpYWTOijYpbtCO1JfymWg\nkWzsJwWOA0nH06b+lEtOXT4bM7dQ2VqNyTuUtcNWqjqbU9PQxv8euM6V3GrcjXqWz0hi9rgY9HbO\n5mg1m/rmDoorGik2N1FkbqKoopHymhbuvCrqdTqiQr2JNfkRF+5LW4eVMxnlVNS2AuDnbeSRYeFM\nSosgIdJPlcf+e0uruQjJ5kFIgeNA0vG0qb/l0mHtYFfefo4Wfwrcns2Zi7vBXZX2KIrC6Yxy/u/Q\nDZrbLCTHBPCd+SlEhnz9I+VqZ2OzKVTUtnQVMrdmZYormqhvvnuNg5eHgViTH7EmX+JMvsSF+xEV\n6o3R7e71UIqikF/WyOmMcs5lVtDY0glAeLA3k9LCmZgWgclFx2A8DLVzEfcn2dhPChwHko6nTf01\nl7tmc7xCWTNsJUmBg1RrT31zB+8dvM7565W4GfQ8NS2BuY/EYtDf/zaNK7Np77BSUtk1I1Nsbuqa\noalsoqPTdtfXhfh7dM/K3P41NMDzgWdgLFYb1wpqOHW1nIs3qui0dH1OcnQAk9LCmTAsHF8vdW4x\nfp3+Omb6A8nGflLgOJB0PG3qz7lobTYH4HyWmY0Hr9PQ0kl8hB/fXTCMGJNvj1/rrGzqm9q7by3d\nnp2pqGnhzouaQa8jKtSHOJMvsSZfYsO7ZmicUXS0tlu4kF3J6YxyMgtqUW59/sikECalRTAqOeSe\n2SA19ecx09dJNvaTAseBpONp00DIJacun/cyt2JurdLEbE5Tayf/d+gGpzPKMeh1LJwUz6LJg+5Z\ndPuw2dhsCuU1LXcs/O2anWm45xaTW1chE+5L3K1ZmcgQH6cfJtqT2sZ2zl6r4HRGOcXmpu72jR8a\nxqS0CIbEBdq9hslZBsKY6askG/tJgeNA0vG0aaDk0mHtYHfeAY4UnwS0MZtzJbeK9fuvU9vYTkyY\nD99ZMIyEyC82LHyQbNo6LJRUNlNc0XhrdqaJm5VNdFjuvsUUGuDZtVYm/Is1MyG9uMXkCiXmJk5f\nK+dMRgW1je0ABPt7MDE1gklp4USH9Tzz5WwDZcz0RZKN/VQpcLKzs3nuuef49re/zZo1aygrK+Nf\n/uVfsFqthIWF8R//8R+4u7uza9cu1q9fj16vZ+XKlaxYseKu97nf6+5HCpyBaaDl8uXZnG8MW0Fy\nYIJq7Wlps7D1aA7HLpWi08G8R+JYMjUBd6Ohx2wURaGuqYNic+Othb9d62XMta333GKKDvW5a1Ym\nxuSLj6c217V8FZuikF1Ux6mMcj6/bqa1vevR8ziTLxPTIng0NZwgv543LXOGgTZm+hLJxn4uL3Ba\nWlr4+7//ewYNGsTQoUNZs2YNL730EtOnT2f+/Pn86le/IiIigqeeeoqlS5fywQcfYDQaWb58ORs3\nbiQwMLD7vXp63erVq+/72VLgDEwDMZcvz+bMjJ3C4sR5qs7mZBbU8Jd9WVTVtxEe7M135qcwcVQ0\n6dcr7lr4W2Ru6n766DYfT7e7ZmViTb5Ehfr02X1mvkpHp5XLudWcvlpOel41VpuCTgep8UFMTItg\n7JAwp28mOBDHTF8h2djP5QWOxWLBYrHw7rvvEhQUxJo1a5g9ezb79+/H3d2dixcv8uc//5nVq1ez\nbds23nrrLQBeffVVZs6cyezZs7vfq6fXvf322/f9bClwBqaBnEtuXQEbM7doZjanvcPKtuO5fHK+\nBACjm77HW0xx4X53rZkJ9vfQ5C0mZ2ts6eB8lplTGeXk3mwAXLOZ4EAeM1on2djvfgWO0/554Obm\nhpvb3W/f2trafWspJCSEyspKqqqqCA4O7v6a4OBgKisrv/Z1XyUoyBs3Jz+pcL+/UKGugZpLWNgI\nxiQMZXP6LvZkH+bXF/7A/CGzeHbEEjzc1JnN+eGz43hiYgJ/2n0Vi9VGYlQACVEBJEYHMCjSHx+N\nPjqthjAgMT6ElXOHUVbVzNELJRz9vJiz1yo4e62CAF93po2OZta4WAbHBjq0CByoY6YvkGwejmqH\nqdxv4ujrJpTsmXCqrW3pVZvsJZW1NkkuMD9mLkP9hrIhcwt7sw/zWfFl1gxbqdpsTqivkReeHXNP\nNi1NbbQ0tanSJq1zA+aMieKx0ZHdmwmevVbBRyfz+ehkvkM3E5Qxo12Sjf1cPoPTE29vb9ra2vD0\n9KSiogKTyYTJZKKqqqr7a8xmM6NHj/7a1wkhepYYMIiXJjzP7rz9HCk+ya8v/EETa3PEg9HpdCRG\n+ZMY5c+q2clk5NdwOqNrM8GdJ/LZeSK/T2wmKIRaXLpyb/LkyRw4cACAgwcPMm3aNEaNGkV6ejoN\nDQ00Nzdz4cIFxo8f/7WvE0Lcn7vByNODn+Sfxn2fMO8QjhSf5Ofn/pOcuny1myZ6wc2gZ1RyKN9b\nMpxf/8NUvrtwGMPig8i9Wc+Gg9k8//ZJ3t52hfNZZjot1q9/QyEGAKctMr569SpvvvkmN2/exM3N\njfDwcN566y1efPFF2tvbiYqK4o033sBoNLJ//37+9Kc/odPpWLNmDYsXLyYzM5OPP/6Yf/zHf8Rs\nNvPCCy/c87r7kUXGA5Pk0rMOaycf5R3gcPEJAGbGTGFxkmtncyQb53jYzQQlF+2SbOwnG/05kHQ8\nbZJcvlpefQEbMrdgbqki1CuEtS5cmyPZOF9vNhOUXLRLsrGfFDgOJB1PmySXr9dh7eSj/AMcLvpi\nNufJpHl4OHk2R7JxHZuicL2ojtN2bCYouWiXZGM/KXAcSDqeNkku9surL2RD5maXzeZINur4us0E\nn5icQHOjPM2mRTJm7CcFjgNJx9MmyeXBfHk2Z0bMZBYnzXfKbI5ko76eNhP0cDewaFI8cx+J65e7\nRfdlMmbsJwWOA0nH0ybJpXfy6gvZmLmFipZKQr1CWJOygsFBiQ79DMlGW8y1LZzJqODo5VLqGtuJ\nM/nynQXDiI+QjeW0QsaM/aTAcSDpeNokufTenbM5CsqtJ60cN5sj2WiTp48H/73lEifTy9DrdDzx\nSCxLpibgYXTuTvDi68mYsd/9ChzDunXr1rm2Kc7X0tLh1Pf38fFw+meIBye59J5Bb2BY8BBSgoeQ\nV19ARnUWn5svE+MbRYhX0EO/v2SjTUGB3gyN9ic5JoDs4jqu5FbzWaaZ6DBfwh5yl2TxcGTM2M/H\nx6PHP5cCpxek42mT5PLwgjwDmRT5CFbFSkZ1FmfKz9Pc2UJyYCJu+t7/q16y0abbuZgCvZg+KgqL\n1UZ6XjWfppdT29jGkNhAjE4+10/0TMaM/e5X4Mgtql6QqUNtklwcK7++kA231+Z4BrNm2AoGByX1\n6r0kG23qKZf8sgb+sjeLksomAnzcWfPEEMYNleNxXE3GjP3kFpUDSWWtTZKLY909m3P9oWZz+kM2\nNsWGubWKpo5mfIzeDj3RWy095RLk58G0UZG4uem5ml/N2WtmSsxNDIkNxNNdtfOZB5z+MGZcRWZw\nHEgqa22SXJynazZnKxUt5l7N5vSlbGyKjZq2OsqayylrqqC0uYKy5nIqWsx02iwAhHuHMdY0kjGm\nkUT5RPTZYufrcimrbuav+7K4UVKPt4cbK2cnM21kZJ/9fvuSvjRm1CZPUTmQdDxtklycq9PayZ78\njzlUdAwFhRkxk1mStMCuJ620mI2iKNS111PWXEFpczllzRWUNVVQ1lJBh/Xufzkb9UYifExE+UTQ\nbu0gozqLTlsnAOHeJsaaRjDWNIpIn/A+9cPfnlxsisKxizfZejSXtg4rKXGBfGt+CuFB3i5q5cCk\nxTGjVVLgOJB0PG2SXFwjv77o1tqcrtmcbwxbwZCvmc1RO5vGjiZKm8rvKGa6/rvVcvcuvgadgXDv\nMKJ8I4j0CSfSp+vXUK9g9LovNsJrs7STUZ3JBfOVW8VO18xOhLeJMaaRjDWNJMo3wqXfY288SC41\nDW1sOHCdy7nVuLvpWTItgScmxGLQywaBzqD2mOlLpMBxIOl42iS5uE5PszmLE+fj6dbzvXBXZdPc\n2dI1E9NcTmlTRXch09TZfNfX6XV6wrxCifIJ7ypkfCOI8gknzCsUwwOuL2qztHO1OpOLXy52fMIZ\nGzaCseFdMzta9KC5KIrCZ1lm3vs4m8aWTuIj/PjO/BTiwmWDQEeT65n9pMBxIOl42iS5uN6dszkh\nt9bm9DSb4+hs2ixttwqZWzMyt4qZ+o67P0OHjhCvYCJ9wom6NRsT5RuByTsMo97xC2bbLG1crc7q\nntmx3Fns3JrZ0VKx09tcmlo72fTJDU5dLUev0zF/YhyLpwySR8odSK5n9pMCx4Gk42mT5KKOL8/m\nTI+ezJKku2dzeptNh7WT8pZba2NuFTOlTeXUttfd87VBHoFE+t5RyPhEEOFjwt3JJ6XfT5uljatV\nt25j1VzvLnYi7yh2IlQudh52zFzNq2b9/utUN7QRHuzNt+cNZWjcw28MKeR69iCkwHEg6XjaJLmo\nK7++iI2ZWyjvYTbn67LptFkwt1RS1r1OpmtGpqq1BoW7L1H+7n7dRUyk7+11Mia83LS7827rHcXO\ntTuKnSifiO6nsSJ8XL/XjCPGTFuHhR3H8zl0vhgFmDk6iuUzk/H2lEfKH4Zcz+wnBY4DScfTJslF\nffebzYmNDKWyshGrzUpla/UdTy11/WpurcKm2O56Lx+j9xeFzB0Fja/RR6XvzjFaLW2kV13jgvkK\nmdXXsShW4ItiZ6xpJOEuKnYcOWZyS+v5674sblY2E+TnwZonhjBmcJhD3nsgkuuZ/aTAcSDpeNok\nuWhHQUMRG659MZuTYkqkoOYmFc3m7h/ot3kaPG+tjfmikInyjcDP6NunHrnujVZLK+m3ZnbuLXZG\nMdY0wqnFjqPHjMVqY+/pQnafKsBqU5iQYmL140MI8FHnNmFfJtcz+0mB40DS8bRJctGWTmsnewsO\n8XHhURQU3PVGIm4v9r1VzET5hBPoEdDvCxl7fFHsXCazOru72In2jey+jRXu7dgZEWeNmZtVzfx1\nXya5Nxvw8XRj1ezBTBnRdzdEVINcz+wnBY4DScfTJslFm2rb6ggI8oQW97v2khH312pp5UrlrdtY\nNdlY7yp2umZ2TA4odpw5ZmyKwpELN/ngWC7tHVbSBgXxzXkpckq5neR6Zj8pcBxIOp42SS7aJdn0\nXktn6601O5fJrLnRXezE+EZ1z+yYvEN79d6uyKW6vo3/PXCd9Lxq3I16lk1LZM74WPR6mc35KjJm\n7CcFjgNJx9MmyUW7JBvHaOls5UpVBhfMV8i6o9iJ9Y1iTC+KHVfloigKZ65V8H+HbtDU2klCpB/f\nmT+MGJOv0z+7r5IxYz8pcBxIOp42SS7aJdk4XktnC5errnHx1m2s20+hxfpGMdY0ijGmkYR5h3zl\ne7g6l4aWDjZ9coMzGRUY9DrmT4znycmDMLrJrcsvkzFjPylwHEg6njZJLtol2TjX7WLngvkyWTU3\nvih2/KK7Hz0P9bq32FErlyu51fzvgSxqGtqJDPHm2/NTGBwT6PJ2aJmMGftJgeNA0vG0SXLRLsnG\ndZo7W7hSees2Vu0XxU6cX3T3zE6oVzCgbi6t7Ra2H8/j8OclAMwaG83TM5Lw8pANAkHGzIOQAseB\npONpk+SiXZKNOpo7W7hcmcEF82Wu1+bcUezEMNY0kjkpk9C19nxAqqvklNTzl32ZlFW3EOTnwTfn\nDmVUcu8WTfcnMmbsJwWOA0nH0ybJRbskG/U1dTZ3z+zcWez0dHaYq3VabOw5XcCe04VYbQqPpobz\n7JzB+HsP3A0CZczYTwocB5KOp02Si3ZJNtrS1NHM5aqrHCv9lJsN5YR4BrE6ZTkpwYNVbVdJZRN/\n3ZdFXmkDvl5Gnn1sMBPTwgfkBoEyZux3vwLHsG7dunWubYrztbR0OPX9fXw8nP4Z4sFJLtol2WiL\nu8GdOL8Ynhw+i+bmdjJqrnO2/HPq2xtIDkzEqFdnHYy/jztTR0Ti42nkan41n2WZyStrYHBMAN6e\nRlXapBYZM/bz8el59lEKnF6QjqdNkot2STba5OfrRaxHHMNDUsivL+RazXU+K79IhI+JsF5uHviw\ndDodSdEBTEwNp7S6hYz8Go5fLsPD3UBChP+Amc2RMWM/KXAcSDqeNkku2iXZaNPtXAI8/JkcNQEd\nOjJqsjhXfoGatloGByZiNKgzc+LtaWRSWjimIC+uFdRwIbuKjPwakqL88R8Ah3fKmLHf/Qocl67B\nsdlsvPbaa9y4cQOj0ci6dev4zW9+Q21tLQB1dXWMHj2an/70p92v2b59O7/5zW+Ii4sDYPLkyXz/\n+9//ys+RNTgDk+SiXZKNNvWUS3FjKRszt1DSVEqAuz/PpixjRGiqSi3s0tDcwfuHsjmXacag17Fo\n8iAWTorHzdB/NwiUMWO/+63BcemN1k8++YTGxkY2bdpEUVERr7/+Ou+88073/3/ppZdYsWLFPa9b\nsGABL7zwgiubKoQQA1KsXxT/Mv4fOFh4lH0Fh/jDlb/ySMRYlg9ejI/RW5U2+fu4870lw5mYVsWG\nA9f58GQ+57PMfHt+CknRAaq0SWifS8vfgoICRo4cCUBcXBylpaVYrV1nqeTl5dHY2Nj9/4UQQqjD\noDcwP+ExXpzwQ+L8YjhXfoGfnf0llyuvqtqu0cmh/OxvH2XWmGhuVjXz8w2f8/7H2bR1WFRtl9Am\nl96iOnbsGOvXr+fdd9+lsLCQZcuWcejQIUJDQ1m3bh3z5s1j4sSJd71m+/btvPfeewQGBmKxWHjh\nhRdITf3q6VKLxYqbm8GZ34oQQgwIVpuV3dcPsfXqR3TaLEyOG8/fjF2Fv4e6B2Vm5FXz9pZL3Kxs\nwhTkxf9bPpqxKSZV2yTuVVHTQnpOJTPGxrr8zDGX74Pzn//5n5w9e5ahQ4eSnp7OO++8Q0BAAE8/\n/TS7d+++5+tzc3MpLi5m5syZXLx4kVdffbXHr7uTrMEZmCQX7ZJstOlBcilvrmBj5lbyG4rwNfqw\nauhSxprUnXHvtFjZfaqAfWeKsNoUxqeYWD4jEVOQOrfSHKmvj5mWNgt7Thfw8fkSLFYbr3xrPAmR\n/k75LE1u9DdnzhwOHjzI6dOn2bt3L6+//vrXvmbKlCkcP34cg+H+MzRS4AxMkot2STba9KC52BQb\nh4tP8FHeATptFkaHjWDV0Kfwd+/5B4yrFJub+N/9WeSWNmDQ65g1JponpwzCrw/vhNxXx4zFauPY\npVI+PJlPU2snQX4eLJ+RxKThEU77TE0sMs7KymL9+vW88cYbHD9+nNTUVPR6Penp6aSkpPT4mnff\nfZfIyEgWLVpEdnY2wcHBX1ncCCGEcA69Ts+cuBmMCE3lvcytXKpM50ZdLisHL2Fc+GjV9qiJNfny\n8tpxnL9eybajuRz6vIRPr5axYGI8c8bH4mGUnxnOpigKl3Kq2Hokl/KaFjzcDSybnsgTE2JxV+nv\n36UFzpAhQ1AUheXLl+Ph4cFbb70FQGVlZfdj4Ld9//vf5/e//z1PPvkkP/nJT9i0aRMWi8WuWR4h\nhBDOE+4dxo/Gfo9jJafYlbuPv1z7Pz43X+GZoUsJ8HDObYivo9PpmJBiYszgUI5evMmuTwvYdiyP\nwxdu8tS0BKYMj0SvHxibBLpaQXkDWw7nkFVUh04HM8dEs2RqAgEq71ckZ1H1Ql+dOuzvJBftkmy0\nyRG5VLZU817WVm7U5eHl5sWKwYt5JGKs6jsOt7Zb2He2kIPniumw2IgO82HFzCRGJIao3jZ79IUx\nU9PQxrZjuZzOqABgZFIIK2YlEx3q49J2aHINjrNIgTMwSS7aJdlok6NysSk2Tt48y87cPbRbO0gL\nSeHZocsI8gx0QCsfTm1jOztP5HEyvQxFgZS4QFbMSnbagldH0fKYaW23sPdMIQc/K6bTYiPW5Muq\n2cmkDgpWpT1S4DiQljveQCa5aJdko02OzqW6tYb3s7aRVXsDT4MnTw9exKTICZqYMSmpbOKDo7lc\nya0G4NHUcJZNTyQs0EvllvVMi2PGarNx/HIZH57Io6Glk0Bfd5ZNT2Ly8AhVb/9JgeNAWux4QnLR\nMslGm5yRi6IonCo7x/YbH9FmbWdY8BBWpzxNsGeQQz+ntzILa9lyJIfC8kYMeh2zx8bw5JRB+Hpp\n67RyLY0ZRVG4klvNliM5lFW34GE0MH9iHHMnxOHhrv4CbilwHEhLHU98QXLRLslGm5yZS21bHe9n\nbeNazXU8DO4sTV7IlKhH0evUPz/Kpih8lmlm27Fcqurb8PJwY+GkeOaMi1HtiZ8v08qYKapoZPPh\nHDILa9HpYNrISJ6alkigb88HXKpBChwH0krHE3eTXLRLstEmZ+eiKApnyj9n241dtFraGBKYxDeG\nrSDUS521Gl/WabFx5OJNdn+aT3ObhSA/D5ZNT2RSmrq3XED9MVPb2M7247mcSi9HAYYnBLNyVjIx\nJnV3sO6JFDgOpHbHEz2TXLRLstEmV+VS117PpuvbSa/KxN3gzpKk+UyPnqSJ2RyAlrZO9pwp5ND5\nEjotNmLCfFk5K4m0hGDV1g+pNWbaOizsP1vE/nNFdHR2PX22alYywxNDXN4We0mB40BysdYmyUW7\nJBttcmUuiqLwWcVFPsjeRbOlhaSABNYMW47JO8wln2+PmoY2dpzI6561SB0UxIqZycRHuH6nZleP\nGZtN4WR6GTuO51Hf3EGAjztLpycydYT29w+SAseB5GKtTZKLdkk22qRGLvXtjWzJ3sGlyqsY9UYW\nJ85lZuxUzczmQNfRD1uP5nA1rwaAiWnhLJuWSKgLn7hyZTZX86rZfCSHm5XNuLvpmfdoHPMejcPT\n3aV7AfeaFDgOJBdrbZJctEuy0Sa1clEUhQvmK2zJ3klTZzMJ/vGsGbaCCB9tnQaeUVDD1iM5FFU0\n4WbQ8di4GBZO8jbPkgAAFbRJREFUcs0TV67IpqSyiS2Hc7iaX4MOmDIikqXTEwny084CYntIgeNA\ncrHWJslFuyQbbVI7l8aOJrZk7+SC+QpuejcWJTzB7NhpGPTaeJIJup64Onutgu3H8qhuaMPbw41F\nkwfx2LhojG7Oa6czs6lvamfHiTxOXOna/HBYfBCrZicTF67uoam9JQWOA6l9URA9k1y0S7LRJq3k\ncsmczqbrO2jsbCLeL5Y1w1YQ5eu806d7o9Ni5fCFm3x0qoDmNgsh/h4sm57Eo2nh6J2wENkZ2bR3\nWjlwroh9Z4po77QSGeLNqtnJfeb4ivuRAseBtHJREHeTXLRLstEmLeXS1NnMB9m7+KziIm46A/MT\n5vB43ExNzeYANLd1sud01xNXFquNOJMvK2Ylk5bg2EffHZmNzaZw6mo524/nUtfUgZ+3kaemJTJ9\nVCQGvXbWPvWWFDgOpKWLgviC5KJdko02aTGXK5UZbLq+nfqORmJ9o1ibuopo30i1m3WPqvpWdhzP\n50xG1xNXaQnBrJiZ5LDbPI7K5lpBDVsO51BkbsLopueJCbEsmBiPl0ffWEBsDylwHEiLFwUhuWiZ\nZKNNWs2lpbOFbTc+4kz5efQ6PfPiZzN30Gzc9Nr7oVxY3sgHR3PIKKhFB0waHsHSaYmEBHg+1Ps+\nbDalVc1sOZLTffbWpLQIlk1/+HZpkRQ4DqTVi8JAJ7lol2SjTVrPJaM6i/eztlHXXk+0byRrhq0g\nzi9G7Wb16Gp+NVuP5FJsbsLNoGfO+BgWTorHx7N3T1z1NpuG5g52nszn+KVSbIrC0NhAVj2WzKAI\nbZ+e/jCkwHEgrV8UBirJRbskG23qC7m0WlrZkbOHT0vPodfpeSJuJvMS5mDU4GyOzaZwOqOcHSfy\nqGlox8ez64mr2WNjMLo92FqXB82mo9PKx+eL2XO6kLYOK+HB3qyclcTo5NA+vYDYHlLgOFBfuCgM\nRJKLdkk22tSXcsmsyea9zA+oba8j0iectcNWEu8fq3azetRpsXLo8xI+OlVIa7uF0ABPlk1P5JFU\n+5+4sjcbm6JwNqOCbcdzqWlox9fLyJKpCcwYHYWboe8vILaHFDgO1JcuCgOJ5KJdko029bVc2ixt\n7Mzdx4mbp9GhY07cDBYmPI7R4PyN93qjqbWTj04VcPhCCRarQny4HytnJTFs0Nc/cWVPNteLatl0\nOIfC8kbcDHoeH9+1EaG3p/Zmt5xJChwH6msXhYFCctEuyUab+mou2bU5bMz8gOq2GsK9w1gzbAWJ\nAYPUbtZ9Vda1suN4HmeuVQAwIjGEFTOTvvJk7q/Kpqy6mQ+O5nLxRhUAj6aG8/R01x4loSVS4DhQ\nX70o9HeSi3ZJNtrUl3Npt3awK3cfx0pOATArdipPJs7F3eCucsvur6C8ga1Hcsks7HriavKIrieu\ngv3vfbKpp2waWzrYdbKAo5duYrUpDI4JYOXsZJKiAlz0HWiTFDgO1JcvCv2Z5KJdko029Ydccury\neS9zK+bWKgI9AlicOI8JEWM0dXjnnRRF4Wp+1xlXJZXNGN30PD6+a2+aO28t3ZnNl9f0mIK8WDEz\nibFDwjS9gLi2rY6P8g6SUZ3F8+O+T7iTTo6XAseB+sNFoT+SXLRLstGm/pJLh7WDfQWfcLj4BBab\nhRjfKJYmLyQleLDaTbuv27sL7ziRR21j1+LgJycPYuaYaIxuesLC/DCbGziXaWbbsVyq6tvw8XRj\n8ZQEZo2N1vQC4lZLKwcLj3Kk+ASdt/L4h9F/h6+7j1M+TwocB+ovF4X+RnLRLslGm/pbLtWttezO\nO8BnFRcASA0ZytKkhZo71+pOtx/v3numkNZ2K6EBnjw9I4mE2CDe2X6F/LIGDPquk8yfnDKo1/vq\nuILFZuHkzbPsKzhEU2czgR4BPJk4l0cixjp1Rk0KHAfqbxeF/kJy0S7JRpv6ay5FDSXsyNlDdl0u\nOnRMjprAwoQnCPDQ7mZ3jS0d7D5VwJELXetrbhufYmL5zCRMGl5ArCgKlyqv8mHuXipbq/E0ePBE\n/CxmxU7D3QVPuEmB40D99aLQ10ku2iXZaFN/zkVRFDKqs9iRs4fyFjPuBnfmxM3gsdjpeLp5qN28\n+zLXtbLrZD6dNoXHx8aQHKPtBcR59QVsv7GH/IZC9Do906InMX/QY/i53/8JMUeTAseB+vNFoS+T\nXLRLstGmgZCL1WblVNln7Mk/SGNHE/7ufixKfIJJkRM0uxAZtJ9NRUslu3L3canyKgCjw0awJGke\nJictJP4q9ytwBtZuQEIIIQYUg97AtOiJTAgfzaGiYxwqOs77Wds4WvwpTyUvIDV4qKafRNKaxo4m\n9uYf4mTpGWyKjcSAeJYmLyIxIF7tpt1DChwhhBD9nqebJ4sS5zI1eiIf5R3kTNl5/vvyn0kJGsxT\nyQuJ9YtSu4ma1mHt4HDxCT4uPEqbtR2TVyhLkuYzKmy4ZgtEKXCEEEIMGIEeAawZtoJZsVPZkbOH\nzJps3vzsNzwSMZYnE+cS5BmodhM1xabYOFv2OR/lH6SuvR5fow8rk+YzNepRDHqD2s37SlLgCCGE\nGHCifSP5wei/JbM6mx25ezhb/jkXzJeZHTudx+Nn4uV27+7CA4miKFyryWZnzh5Km8sx6o3Mi5/N\nnD70dyMFjhBCiAFrWMgQhgYnc7b8Artz93Og8DCflp5lYcLjTOkDsxTOUNxYys6cPWTV3kCHjomR\n41mU8ESfm91yaYFjs9l47bXXuHHjBkajkXXr1vHuu++SkZFBYGDXX9x3v/tdZs6cedfrfv7zn3P5\n8mV0Oh0vv/wyI0eOdGWzhRBC9GN6nZ5JkeMZZxrJJ0Un+LjoCJuzd3K05FOWJC1gZGiqZteZOFJN\n262NEssvoqCQGjyUp5IXEO0bqXbTesWlBc4nn3xCY2MjmzZtoqioiNdff52goCD+6Z/+iVmzZvX4\nmnPnzlFYWMjmzZvJzc3l5ZdfZvPmza5sthBCiAHA3eDO/ITHmBL9CHvyP+ZU6Tn+mL6e5MAEliUv\nIt4/Vu0mOkVLZysHC49wpORknznqwh4uLXAKCgq6Z1/i4uIoLS3F3/+rd5Y8ffo0c+bMASApKYn6\n+nqamprw9XXdJkJCCCEGDn93P54duoxZMVPYmbuX9KpMfnH+bcaHj2Zx4jxCvILVbqJDWGwWTtw8\nw76CQzR3thDkEciTiXM1fVjpg3BpgTNkyBDWr1/Pt771LQoLCykuLiY8PJyNGzfyl7/8hZCQEF55\n5RWCg7/oPFVVVaSlpXX/Pjg4mMrKyq8scIKCvHFzc+590/ttLCTUJblol2SjTZLL/YWF+TFi0D+S\nYc5mw6VtnK+4xKXKq8wfPJOlqfOcdnjknZ/vDIqicKbkAu9f+ZCKpkq8jJ6sHvkUCwbPwt3N3Smf\nqQaXFjgzZszgwoULfOMb32Do0KEkJiayePFiBg8ezLBhw/jjH//Ib3/7W1599dX7voc9Gy/X1rY4\nstn30PoOkwOV5KJdko02SS72MekieX70c3xecZkPc/ex+/ohDueeYl7CY0yPnoSb3vE/Sp2VTU5d\nPjty9lDQUIRBZ2BWzFTmDXoMX3cf6mvbgXaHf6azaWYn4+eff777v+fMmcOiRYvQ67umwmbPns26\ndevu+nqTyURVVVX3781mM2Fhrt8KWgghxMCl1+mZEDGG0WHDOVryKQcKD7Ptxm6OlZxiSdJ8xoSN\n0PRC5IpmMztz93GlKgOAMaaRLEmcT5h3iMotcx6X3mTLysripZdeAuD48eOkpqbywx/+kOLiYgDO\nnj3L4MF3L2qaMmUKBw4cACAjIwOTySTrb4QQQqjCaDDyePxM1k18gZkxU6hpq+VPVzfyy8//m7z6\nArWbd4+GjkY2Xd/Bz879iitVGSQFDOKfx/2Avx2+pl8XN6DCGhxFUVi+fDkeHh689dZbFBYW8qMf\n/QgvLy+8vb154403gK6ZnjfeeIOxY8eSlpbGM888g06n47XXXnNlk4UQQoh7+Lr7sGLIEmbETObD\n3P1cqkznl5//961DJ+dj8g5VtX3t1g4OFx3n46KjtFs7MHmH8lTSAkaGpml6psmR5DTxXpD71tok\nuWiXZKNNkovj5NUXsP3GR+Q3FKHX6ZkePYn5g+b0eiFyb7OxKTbOlJ3no7yD1Hc04Gf0ZUHC40yJ\neqTfblqomTU4QgghRH+TGDCIH4/7f1ysTOfDnL0cLfmUs+WfMzd+NjNjpmA0GJ36+YqikFGdxc7c\nvZQ1V3QdrTDoMR6Pm4FnHzlawdGkwBFCCCEcQKfTMdY0kpGhqV37y+QfYmfuXo6VnGJx0jzGh492\nyv4yRY0l7MjZS3ZtDjp0TI6cwMLEJwj0CHD4Z/UlUuAIIYQQDuSmd2NW7FQejRjL/sLDHCv+lPXX\nNnGk+ARLkxcxJCjJIZ9T3VrL7rz9fFZxEYC0kBSeSlpAlG+EQ96/r5MCRwghhHACb6M3y5IXMSN6\nMrvy9nO+4hK/ufgOI0KH8VTSAiJ8wnv1vi2dLd2Fk0WxEusbxdLkRQwNTnbwd9C3SYEjhBBCOFGI\nVzDfSVvN7NhpbM/5iPSqTDKqrzM56hEWJjyOv7t9OxZ32iycKDnF/oLDNFu6jlZw5q2vvk4KHCGE\nEMIF4v1j+dGY75FedY2duXs5efMMn5Vf4PG4WTwWNw13Q8/HJCiKwufmy+zK3U91Ww1ebp48lbTA\nJYuX+zIpcIQQQggX0el0jAxLIy0khU9Lz7En/yAf5R/gxM3TPJk4l0cjx901G3OjNo8dOXsobCzG\noDMwO3YacwfNxtfo3HOw+gMpcIQQQggXM+gNTI+ZxISIMRwqPMonxcfZmLWVIyUnWZq0kHaPKP5y\nZSvpVZkAjDONYnHSPEK9+vfuw44kG/31gmyOpU2Si3ZJNtokuWhHbVsdu/MOcK78AgoKOnQoKCQF\nJLBs8EIG+cep3UTNko3+hBBCCI0K8gzkm6mrmBU7jd15++mgndlR0xkRmjpgjlZwNClwhBBCCI2I\n9YviuVF/I7NrDiDPlQkhhBCi35ECRwghhBD9jhQ4QgghhOh3pMARQgghRL8jBY4QQggh+h0pcIQQ\nQgjR70iBI4QQQoh+RwocIYQQQvQ7UuAIIYQQot+RAkcIIYQQ/Y4UOEIIIYTod6TAEUIIIUS/IwWO\nEEIIIfodnaIoitqNEEIIIYRwJJnBEUIIIUS/IwWOEEIIIfodKXCEEEII0e9IgSOEEEKIfkcKHCGE\nEEL0O1LgCCGEEKLfkQLnAfz85z9n1apVPPPMM1y5ckXt5og7/OIXv2DVqlU8/fTTHDx4UO3miDu0\ntbUxZ84ctm/frnZTxB127drF4sWLWbZsGUePHlW7OeKW5uZmfvCDH7B27VqeeeYZTpw4oXaT+iw3\ntRvQV5w7d47CwkI2b95Mbm4uL7/8Mps3b1a7WQI4c+YMN27cYPPmzdTW1rJ06VKeeOIJtZslbvn9\n739PQECA2s0Qd6itreV3v/sd27Zto6WlhbfffpuZM2eq3SwB7Nixg4SEBH784x9TUVHBt771Lfbv\n3692s/okKXDsdPr0aebMmQNAUlIS9fX1NDU14evrq3LLxIQJExg5ciQA/v7+tLa2YrVaMRgMKrdM\n5ObmkpOTIz88Neb06dNMmjQJX19ffH19+elPf6p2k8QtQUFBXL9+HYCGhgaCgoJUblHfJbeo7FRV\nVXVXRwsODqayslLFFonbDAYD3t7eAHzwwQdMnz5dihuNePPNN3nxxRfVbob4kpKSEtra2vje977H\n6tWrOX36tNpNErcsXLiQ0tJSHn/8cdasWcMLL7ygdpP6LJnB6SU54UJ7Dh06xAcffMCf//xntZsi\ngJ07dzJ69GhiY2PVboroQV1dHb/97W8pLS3lm9/8JkeOHEGn06ndrAHvww8/JCoqij/96U9kZWXx\n8ssvy/q1XpICx04mk4mqqqru35vNZsLCwlRskbjTiRMn+MMf/sD//M//4Ofnp3ZzBHD06FGKi4s5\nevQo5eXluLu7ExERweTJk9Vu2oAXEhLCmDFjcHNzIy4uDh8fH2pqaggJCVG7aQPehQsXmDp1KgAp\nKSmYzWa55d5LcovKTlOmTOHAgQMAZGRkYDKZZP2NRjQ2NvKLX/yCd955h8DAQLWbI2759a9/zbZt\n29iyZQsrVqzgueeek+JGI6ZOncqZM2ew2WzU1tbS0tIiaz00Ij4+nsuXLwNw8+ZNfHx8pLjpJZnB\nsdPYsWNJS0vjmWeeQafT8dprr6ndJHHL3r17qa2t5Uc/+lH3n7355ptERUWp2CohtCs8PJy5c+ey\ncuVKAP7t3/4NvV7+vasFq1at4uWXX2bNmjVYLBbWrVundpP6LJ0ii0mEEEII0c9IyS6EEEKIfkcK\nHCGEEEL0O1LgCCGEEKLfkQJHCCGEEP2OFDhCCCGE6HekwBFCqK6kpIThw4ezdu3a7lOUf/zjH9PQ\n0GD3e6xduxar1Wr31z/77LOcPXu2N80VQvQBUuAIITQhODiYDRs2sGHDBjZt2oTJZOL3v/+93a/f\nsGGDbIgmhOgmG/0JITRpwoQJbN68maysLN58800sFgudnZ28+uqrpKamsnbtWlJSUsjMzGT9+vWk\npqaSkZFBR0cHr7zyCuXl5VgsFpYsWcLq1atpbW3l+eefp7a2lvj4eNrb2wGoqKjgn//5nwFoa2tj\n1apVLF++XM1vXQjhAFLgCCE0x2q18vHHHzNu3Dh+8pOf8Lvf/Y64uLh7Dh/09vZm48aNd712w4YN\n+Pv788tf/pK2tjYWLFjAtGnTOHXqFJ6enmzevBmz2cxjjz0GwL59+0hMTOTf//3faW9vZ+vWrS7/\nfoUQjicFjhBCE2pqali7di0ANpuN8ePH8/TTT/Nf//Vf/Ou//mv31zU1NWGz2YCuI1S+7PLlyyxb\ntgwAT09Phg8fTkZGBtnZ2YwbNw7oOjw3MTERgGnTpvH+++/z4osvMmPGDFatWuXU71MI4RpS4Agh\nNOH2Gpw7NTY2YjQa7/nz24xG4z1/ptPp7vq9oijodDoURbnrvKXbRVJSUhJ79uzhs88+Y//+/axf\nv55NmzY97LcjhFCZLDIWQmiWn58fMTExHDt2DID8/Hx++9vffuVrRo0axYkTJwBoaWkhIyODtLQ0\nkpKSuHjxIgBlZWXk5+cDsHv3btLT05k8eTKvvfYaZWVlWCwWJ35XQghXkBkcIYSmvfnmm/zsZz/j\nj3/8IxaLhRdffPErv37t2rW88sorfOMb36Cjo4PnnnuOmJgYlixZwuHDh1m9ejUxMTGMGDECgOTk\nZF577TXc3d1RFIW/+7u/w81NLo1C9HVymrgQQggh+h25RSWEEEKIfkcKHCGEEEL0O1LgCCGEEKLf\nkQJHCCGEEP2OFDhCCCGE6HekwBFCCCFEvyMFjhBCCCH6HSlwhBBCCNHv/H+SLmpawyHLVAAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "b7atJTbzU9Ca" + }, + "cell_type": "markdown", + "source": [ + "## Optional Challenge: Use only Latitude and Longitude Features\n", + "\n", + "**Train a NN model that uses only latitude and longitude as features.**\n", + "\n", + "Real estate people are fond of saying that location is the only important feature in housing price.\n", + "Let's see if we can confirm this by training a model that uses only latitude and longitude as features.\n", + "\n", + "This will only work well if our NN can learn complex nonlinearities from latitude and longitude.\n", + "\n", + "**NOTE:** We may need a network structure that has more layers than were useful earlier in the exercise." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "T5McjahpamOc", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 656 + }, + "outputId": "e6fd6be4-942f-4e0c-cd1c-5345ac79b887" + }, + "cell_type": "code", + "source": [ + "#\n", + "# YOUR CODE HERE: Train the network using only latitude and longitude\n", + "#\n", + "def location_location_location(examples_dataframe):\n", + " \"\"\"Returns a version of the input `DataFrame` that keeps only the latitude and longitude.\"\"\"\n", + " processed_features = pd.DataFrame()\n", + " processed_features[\"latitude\"] = linear_scale(examples_dataframe[\"latitude\"])\n", + " processed_features[\"longitude\"] = linear_scale(examples_dataframe[\"longitude\"])\n", + " return processed_features\n", + "\n", + "lll_dataframe = location_location_location(preprocess_features(california_housing_dataframe))\n", + "lll_training_examples = lll_dataframe.head(12000)\n", + "lll_validation_examples = lll_dataframe.tail(5000)\n", + "\n", + "_ = train_nn_regression_model(\n", + " my_optimizer=tf.train.AdagradOptimizer(learning_rate=0.05),\n", + " steps=500,\n", + " batch_size=50,\n", + " hidden_units=[10, 10, 5, 5, 5],\n", + " training_examples=lll_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=lll_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 22, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 110.59\n", + " period 01 : 105.65\n", + " period 02 : 104.99\n", + " period 03 : 101.55\n", + " period 04 : 100.69\n", + " period 05 : 100.20\n", + " period 06 : 99.72\n", + " period 07 : 99.44\n", + " period 08 : 99.58\n", + " period 09 : 98.93\n", + "Model training finished.\n", + "Final RMSE (on training data): 98.93\n", + "Final RMSE (on validation data): 97.28\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XdYVFf+P/D3nUavQ692AQsooiKi\nUhREEzUxxuCSnt1NYtZfutnEbDHfJGZTNiYxm7ibakxMjNFYUYPGCohiIVJUlA4OvcPA3N8frrMq\nRRiZAr5fz+Pz7My999zPcJjlnXPPPVcQRVEEERERUT8iMXYBRERERL3FAENERET9DgMMERER9TsM\nMERERNTvMMAQERFRv8MAQ0RERP2OzNgFEJmykSNHwsfHB1KpFADQ3t6OkJAQvPLKK7C0tNS53e+/\n/x6LFi3q8P6mTZvw0ksv4V//+hciIiK07zc3N2PKlCmYNWsW3nzzTZ3P21P5+fl4/fXXcfHiRQCA\nhYUFli5diujoaL2fuzfWrFmD/Pz8Dj+TlJQUPPLII/Dy8upwzK5duwxV3i0pLCxEVFQUBg8eDAAQ\nRRFOTk54+eWXERAQ0Ku23nnnHXh4eOC+++7r8TFbtmzBxo0b8fXXX/fqXESGwgBDdBNff/013Nzc\nAACtra14+umn8cknn+Dpp5/WqT2VSoV///vfnQYYAHB3d8e2bduuCzD79u2Dra2tTufTxXPPPYd5\n8+bhX//6FwDg1KlTeOCBB7Bz5064u7sbrI5b4e7u3m/CSlekUul1n2HHjh148sknkZiYCIVC0eN2\nnn32WX2UR2RUvIRE1AsKhQLh4eHIzMwEALS0tODVV19FTEwMZs+ejTfffBPt7e0AgKysLCxevBix\nsbGYN28eDh48CABYvHgxiouLERsbi9bW1g7nGD9+PFJSUtDU1KR9b8eOHQgLC9O+bm1txWuvvYaY\nmBhERkZqgwYApKen46677kJsbCzi4uJw5MgRAFf+i37q1Kn46quvcMcddyA8PBw7duzo9HPm5OQg\nMDBQ+zowMBCJiYnaIPfhhx9i+vTpmD9/Pj799FNERkYCAJYvX441a9Zoj7v29c3qev311/G73/0O\nAHD8+HHcfffdmDlzJhYtWoSCggIAV0ai/t//+3+IiIjA7373O5SWlt6kxzq3adMmLF26FA888ADe\neustpKSkYPHixVi2bJn2j/3OnTsxd+5cxMbG4v7770d+fj4A4IMPPsArr7yChQsX4osvvriu3WXL\nluGzzz7Tvs7MzMTUqVOh0Wjw3nvvISYmBjExMbj//vtRVlbW67rj4uLQ3NyM3NxcAMCGDRsQGxuL\nyMhIPPPMM2hubgZw5ef+xhtv4I477sDOnTuv64eufi81Gg3+/ve/Y8aMGVi4cCGysrK0501NTcWC\nBQsQFxeH2bNnY+fOnb2unajPiUTUpREjRoglJSXa19XV1eKSJUvENWvWiKIoip988on42GOPiWq1\nWmxqahLvvvtucfPmzWJ7e7s4e/ZscevWraIoiuLp06fFkJAQsa6uTkxOThajo6M7Pd+PP/4ovvji\ni+Jzzz2nPbaurk6MiooSf/jhB/HFF18URVEUP/zwQ/GBBx4QW1paxIaGBnH+/PliUlKSKIqiOHfu\nXHHbtm2iKIriTz/9pD1XQUGBGBAQIH799deiKIrijh07xJkzZ3Zax1NPPSVGRESIX375pXj+/Pnr\ntmVnZ4sTJkwQL1++LKrVavHxxx8XIyIiRFEUxRdffFH86KOPtPte+7q7ukaNGiVu2rRJ+3lDQkLE\nQ4cOiaIoilu3bhUXLFggiqIorlu3TlyyZImoVqvFyspKMSIiQvszuVZ3P+OrP+egoCDx4sWL2v3H\njBkjHjlyRBRFUSwqKhKDg4PFS5cuiaIoiv/5z3/EBx54QBRFUVy9erU4depUsaKiokO727dvF5cs\nWaJ9/f7774srV64Uc3JyxFmzZomtra2iKIriV199Jf70009d1nf15+Lv79/h/ZCQEPHChQvisWPH\nxNDQULG0tFQURVFcsWKF+Oabb4qieOXnfscdd4jNzc3a1x999FG3v5f79+8XZ82aJdbX14tNTU3i\nwoULxd/97neiKIriXXfdJaakpIiiKIoXL14Un3nmmW5rJzIEjsAQ3URCQgJiY2MRFRWFqKgoTJ48\nGY899hgAYP/+/Vi0aBFkMhnMzc1xxx134PDhwygsLER5eTnmzJkDABgzZgw8PDxw5syZHp1zzpw5\n2LZtGwBg7969iIiIgETyv6/rvn37EB8fD4VCAUtLS8ybNw+7d+8GAGzevBmzZ88GAAQHB2tHLwCg\nra0Nd911FwBg1KhRKC4u7vT8//jHP7BkyRJs3boVc+fORWRkJL799lsAV0ZHQkJC4OzsDJlMhrlz\n5/boM3VXl1qtxsyZM7Xtu7q6akec5s6di/z8fBQXFyMtLQ0zZ86ETCaDg4PDdZfZblRSUoLY2Njr\n/l07V2bQoEEYNGiQ9rW5uTlCQ0MBAIcPH8akSZPg6+sLALjnnnuQkpKCtrY2AFdGpBwdHTucc8aM\nGTh79iyqq6sBAHv27EFsbCxsbW1RWVmJrVu3oqamBgkJCZg/f36Pfm5XiaKIDRs2wNXVFYMGDUJS\nUhLi4uLg6uoKALjvvvu0vwMAEBoaCjMzs+va6O738tixY5g+fTqsrKxgbm6u7SsAUCqV2Lx5My5c\nuIBBgwbhnXfe6VXtRPrAOTBEN3F1DkxlZaX28odMduWrU1lZCTs7O+2+dnZ2qKioQGVlJWxsbCAI\ngnbb1T9iTk5ONz1nWFgYXnnlFVRXV2P79u144okntBNqAaCurg5vvPEG3n33XQBXLimNHTsWALB1\n61Z89dVXaGhogEajgXjN486kUql28rFEIoFGo+n0/GZmZnjkkUfwyCOPoLa2Frt27cLrr78OLy8v\n1NTUXDcfR6lU3vTz9KQua2trAEBtbS0KCgoQGxur3a5QKFBZWYmamhrY2Nho37e1tUVDQ0On57vZ\nHJhr++3G11VVVdd9RhsbG4iiiKqqqk6PvcrS0hJTpkzB/v37ERwcjNraWgQHB0MQBHzwwQf47LPP\nsHLlSoSEhOBvf/vbTecTtbe3a38Ooihi2LBhWLNmDSQSCerq6rBnzx4cOnRIu12tVnf5+QB0+3tZ\nU1MDFxeX696/6vXXX8fHH3+Mhx56CObm5njmmWeu6x8iY2CAIeohR0dHJCQk4B//+Ac+/vhjAICT\nk5P2v7YBoLq6Gk5OTlAqlaipqYEoito/FtXV1T3+Yy+XyxEREYHNmzcjLy8P48aNuy7AuLi44OGH\nH+4wAlFWVoZXXnkFP/zwA/z9/XHp0iXExMT06nNWVlYiMzNTOwJia2uLRYsW4eDBg8jJyYGNjQ3q\n6uqu2/+qG0NRTU1Nr+tycXHBkCFDsGnTpg7bbG1tuzx3X1IqlUhPT9e+rqmpgUQigYODw02PjYmJ\nwZ49e1BVVYWYmBht/0+ePBmTJ09GY2MjVq1ahbfffvumIxk3TuK9louLCxYsWIAXX3yxV5+rq9/L\n7n62Tk5OWLFiBVasWIFDhw7hqaeeQnh4OKysrHp8bqK+xktIRL3w0EMPIT09HampqQCuXDLYuHEj\n2tvb0djYiC1btmD69Onw8vKCm5ubdpLsiRMnUF5ejrFjx0Imk6GxsVF7OaIrc+bMwdq1azu9dTkq\nKgo//PAD2tvbIYoi1qxZgwMHDqCyshKWlpYYMmQI2trasGHDBgDocpSiM83NzfjTn/6kndwJAHl5\neTh16hQmTJiAcePGIS0tDZWVlWhra8PmzZu1+zk7O2snfxYUFODEiRMA0Ku6AgMDoVKpcOrUKW07\nzz//PERRRFBQEJKSktDe3o7KykocOHCgx5+rN8LCwpCWlqa9zPXdd98hLCxMO/LWnYiICKSnp2Pv\n3r3ayzCHDh3C3/72N2g0GlhaWsLPz++6URBdREZGYvfu3dqgsXfvXnz66afdHtPd7+W4ceNw6NAh\nNDU1oampSRuc1Go1EhIScPnyZQBXLj3KZLLrLmkSGQNHYIh6wdraGr///e+xatUqbNy4EQkJCSgo\nKMCcOXMgCAJiY2Mxe/ZsCIKAd999F3/5y1/w4YcfwsLCAu+//z4sLS0xcuRI2NnZISwsDD/99BM8\nPDw6PdfEiRMhCALi4uI6bIuPj0dhYSHmzJkDURQxevRoPPDAA7C0tMS0adMQExMDpVKJ5cuX48SJ\nE0hISMDq1at79Bk9PDzw8ccfY/Xq1XjttdcgiiKsra3x0ksvae9Muvfee7FgwQI4ODhg1qxZOHfu\nHABg0aJFWLp0KWbNmoWAgADtKIufn1+P6zI3N8fq1auxcuVKNDQ0QC6XY9myZRAEAYsWLUJaWhqi\no6Ph4eGB6Ojo60YNrnV1DsyN3nrrrZv+DNzc3PDaa6/hiSeegFqthpeXF1auXNmjn5+1tTVGjRqF\n7OxsBAUFAQBCQkKwfft2xMTEQKFQwNHREa+//joA4IUXXtDeSdQbo0aNwh//+EckJCRAo9FAqVTi\nb3/7W7fHdPd7GRERgf379yM2NhZOTk6YPn060tLSIJfLsXDhQjz44IMAroyyvfLKK7CwsOhVvUR9\nTRCvvRBNRNRLaWlpeOGFF5CUlGTsUojoNsIxQCIiIup3GGCIiIio3+ElJCIiIup3OAJDRERE/Q4D\nDBEREfU7/fI2apWq89sm+4KDgyWqqhr11j7pjn1jmtgvpot9Y7rYNz3j7GzT5TaOwNxAJpMauwTq\nAvvGNLFfTBf7xnSxb24dAwwRERH1OwwwRERE1O8wwBAREVG/wwBDRERE/Q4DDBEREfU7DDBERETU\n7zDAEBERUb/DAENERDTA7N//S4/2e//9d1BcXNTl9uXLn+mrkvocAwwREdEAUlJSjL17E3u077Jl\nz8LDw7PL7W+++W5fldXn+uWjBIiIiKhz7767CpmZvyE8PASzZs1GSUkx/vnPNXjjjb9DpbqMpqYm\nPPzw7xEWFo6lS3+PZ555Afv2/YKGhnrk5+ehqKgQf/rTswgNDcOcOVHYvv0XLF36e4SETMKJE2mo\nrq7GqlXvwcnJCX//+wqUlpZgzJixSErai59+2mGwz8kAQ0REpCffJ53HsazLHd6XSgW0t4s6tRni\n54JFkcO63H7ffQnYtOl7DB48FPn5l7Bmzb9RVVWJiRMnY/bsuSgqKsSKFcsRFhZ+3XGXL5fh7bdX\nIzn5CLZs+RGhoWHXbbeyssL773+Mjz/+AAcOJMHDwwutrS349NMvcPjwQXz//bc6fR5dMcBco7y6\nCaW1LXCzNTN2KURERLfM338UAMDGxhaZmb/h5583QRAkqK2t6bDv2LFBAAAXFxfU19d32B4YOE67\nvaamBnl5FzFmTCAAIDQ0DFKpYZ/vxABzjS2HL+JIRin+/sgkeDpZGbscIiLq5xZFDut0tMTZ2QYq\nVZ3ezy+XywEAe/bsQm1tLT766N+ora3Fo48mdNj32gAiih1Hh27cLooiJJIr7wmCAEEQ+rr8bnES\n7zXGj3CGKAK7kvOMXQoREZFOJBIJ2tvbr3uvuroa7u4ekEgk+PXXJKjV6ls+j6enF7KzzwIAUlOT\nO5xT3xhgrhE4zAnerjZIPluGippmY5dDRETUa76+g5GdnYWGhv9dBpoxIxJHjhzEsmWPw8LCAi4u\nLvj887W3dJ4pU8LR0NCAxx9/BKdOpcPW1u5WS+8VQexsnMjE6XPY7UxeFd77Nh3RwV6InzlCb+eh\n3jPUkCv1DvvFdLFvTNdA6Jva2hqcOJGGGTOioFJdxrJlj2P9+h/79BzOzjZdbuMcmBtMG+eFL7ef\nxYFTxbgjbBBsLBXGLomIiMjkWFpaISlpL9av/xqiqMFTTxl20TsGmBvIpBLETPTBt3vP4ZfjhZgf\nPsTYJREREZkcmUyGv//9DaOdn3NgOjEt0APWFnL8crwQza1txi6HiIiIbsAA0wkzuRTRE7zQ0NyG\nX08WG7scIiIiugEDTBcix3vBTC5FYmo+1G0aY5dDRERE12CA6YK1hRzTgzxQXd+K5N9KjV0OERER\nXUOvASYnJwfR0dFYt26d9r2vvvoKo0aNQkNDg/a9n3/+GXfffTfuuece/PDDD/osqVdmhXhDKhGw\nMyUfGk2/u9uciIioSwsX3oHGxkZ8/fUXyMg4fd22xsZGLFx4R7fH79//CwBgx46t+PXXfXqrsyt6\nuwupsbERK1euRGhoqPa9zZs3o6KiAi4uLtft99FHH2Hjxo2Qy+VYuHAhZs6cCXt7e32V1mOOtuYI\nHe2GQ6dLkH5OheCRLjc/iIiIqB9JSHiw18eUlBRj795EzJgRhbi47oOOvugtwCgUCqxduxZr1/5v\npb/o6GhYW1tj69at2vdOnTqFMWPGwMbmymI148ePx4kTJxAZGamv0npl9iQfHD5dgh3JeRg/wtng\nz3ogIiLqjYcfXoLXX38Hbm5uKC0twUsvPQtnZxc0NTWhubkZTz/9PAICRmv3/7//+ytmzIhCUNA4\nvPzyC2htbdU+2BEAdu/eiY0bN0AqlWDQoKF48cWX8e67q5CZ+Rs+/3wtNBoN7O3tcffd92LNmvdx\n5swptLW14+67FyE2dg6WLv09QkIm4cSJNFRXV2PVqvfg5uZ2y59TbwFGJpNBJru+eWtr6w77lZeX\nw9HRUfva0dERKpWq27YdHCwhk+nvqZfXrvzn7GyD0LHuOHK6BCXVLQgc4ay389LNdbcqIxkP+8V0\nsW+M6+uTPyK54ESftjnZezwSgu7ucntsbAxOn07FmDFLsHPnT4iNjYGfnx+io6Nx9OhRrF+/Hh98\n8AGkUgmcnKxhbi6HnZ0FDh9OwqhR/vjzn/+MHTt2YN++PXB2toFMJuLLLz+Hra0tlixZgsrKYjz+\n+B/wzTff4IUXnsEHH3wAa2tzXLqUhcLCPGzc+AMaGxtx5513YsGCuVAoZHB1VWL9+nV4++23cfz4\nYTz44IO3/HMwuYXsevJkg6qqRr2dv7PlnaPGeeLI6RKsT8yEh4O53s5N3RsIS28PROwX08W+Mb7G\npla0dzKHUioROn2/p212168TJoThww//iVmz7sSuXbuxdOnT+O67r/Gvf30KtVoNc3NzqFR1aG/X\noLy8Hs3NatTUNCEjIxNBQcFQqeowdGgA2ts1UKnqIAgKPPbYHwAAly7l4tKlK8uLtLSooVLVoaGh\nBXJ5M5KT0xAQMFZbm7f3IJw8mYnW1jYMHeoPlaoO1tb2KCur6PHvpUk/SsDFxQXl5eXa15cvX0ZQ\nUFA3R+hPa7saNc21AK6/TDTY3Rb+vg44e6kKF0tqMdjd1ij1ERFR/3LXsLm4a9jcDu/rM1wOGTIU\nFRUqlJWVoq6uDgcP7oeTkwtWrFiJrKyz+PDDf3Z6nCgCEsmVv39Xb1xRq9V499238MUX66FUOuGF\nF/5fl+cVBAHXjkG0tam17Uml/7tq0lePYDT6bdSBgYE4c+YMamtr0dDQgBMnTmDChAlGqWXT+W34\n046/oLa14y9VXKgvAGBncp6hyyIiIuqV0NCp+PTTNQgPn46ammp4enoBAH79dR/a2jpfYd7HxxdZ\nWZkAgBMn0gAAjY0NkEqlUCqdUFZWiqysTLS1tUEikaC9vf264/38RiE9/fh/j2tEUVEhvLx89PUR\n9TcCk5GRgVWrVqGoqAgymQyJiYmYMmUKjhw5ApVKhcceewxBQUF44YUX8Oyzz+KRRx6BIAh48skn\ntRN6Dc3NygVN6mYcKDyKuUNmXbctwNcBvm42OJ6tQmllI9wcLY1SIxER0c1Mnx6BP/7xYXzxxbdo\nbm7Ca6/9Bfv27cXddy/C3r27sX37zx2OiY2dgz//+TksW/Y4xo4NgiAIsLOzR0jIJDz66P0YNmw4\n4uMTsHr1u/jgg0+QnZ2F1avfgZXVlfmtgYFBGDnSD08++Rja2trwxz8uhYWFhd4+oyD21ViOAelr\n2K2lvRUrjr4OQRSwcsqfoZDKr9uelnUZazZnIHysOx6K89dLDdQ1Xs83TewX08W+MV3sm57pbg6M\n0S8hmRIzqQIzh4ajXt2AlNLjHbaPH+EMV0dLHMkoRVVdixEqJCIiIoABpoPY4TMgFaRIKjgAjXj9\nM5AkEgGzJ/mgXSNi97F8I1VIREREDDA3cLSwxwTXIFxuLMdvFVkdtoeOcoO9tQL7TxajvklthAqJ\niIiIAaYTUT7TAAC/5B/osE0uk2BWiA9aWtux70ShoUsjIiIiMMB0ytPaHX4Ow3GuOhf5tR1DyvQg\nD1iZy7AnrRAt6vZOWiAiIiJ9YoDpgnYUpqDjKIyFmQyR471Q36TGwVPFhi6NiIjotscA0wV/xxHw\nsHLDicunUdlc1WF71AQvKGQSJKbmo61d00kLREREpC8MMF0QBAGR3uHQiBrsLzjcYbutpQLhgR6o\nqG1BamaZESokIiK6fTHAdGOC2zjYKmxwuDgVTW3NHbbHTPSGRBCwMzkfmv63HiAREVG/xQDTDblE\nhuleU9Dc3owjxakdtjvZWWBSgCuKyhtw+nyFESokIiK6PTHA3MRUz8mQS+TYV3AI7ZqOdxzFTb7y\noKrtyZf67AmbRERE1D0GmJuwllsh1H0Cqlqqka4602G7p7M1goY54UJRLXIKqo1QIRER0e2HAaYH\nIrzDIUDAL/kHOh1liQv1BQDsSObjBYiIiAyBAaYHXCydMNYpAPl1hThffbHD9mGedhjhbY8zuRXI\nL+PTRYmIiPSNAaaHIrtZ2A4A4iZfGYXZmcJRGCIiIn1jgOmhoXaD4GvrjYzyTJQ1qjpsHzPEEd4u\n1kjNLMPl6iYjVEhERHT7YIDpIUEQEOU9DSJEJBUc7HR73GRfiCKwi6MwREREesUA0wtBzqPhaO6A\nlJI01Lc2dNg+wc8ZzvbmOHS6BDX1LUaokIiI6PbAANMLUokUEd5Toda04WDR0U62SxA7yRdt7Rrs\nSev4FGsiIiLqGwwwvTTFPQQWMnP8WngE6nZ1h+1Tx7jB1kqBfemFaGxuM0KFREREAx8DTC+Zy8wR\n5jEJdep6HCtL77BdLpNi5gQvNLW0Y//JIiNUSERENPAxwOhghlcYJIIEvxQc7HRhu4hxXrAwk2L3\nsQK0qjs+foCIiIhuDQOMDhzM7RHsEojShjKcrczusN3SXIaIcV6obWjF4YxSI1RIREQ0sDHA6Cjq\n6sJ2+Z0vbDdzghdkUgl2peShXaMxZGlEREQDHgOMjrxtPDHCfiiyq86joK64w3Y7azNMHesOVXUz\n0rI6LnxHREREumOAuQVXR2GSuni8QOxEbwgCsCM5r9O5MkRERKQbBphbEKAcCVdLF6SVnUR1S02H\n7S4Olgjxc0HB5XpkXKw0QoVEREQDEwPMLZAIEkR5h0MjarC/4HCn+1x9yOP2o3mGLI2IiGhAY4C5\nRRPdxsNaboVDxSlobuv4+AAfVxuMGaJETkE1zhd2HKUhIiKi3mOAuUVyqRzTvKagqa0JR0uOdbpP\n3GQfAFfmwhAREdGtY4DpA9M8QyGXyLCv4BA0Ysdbpkd422Oopy1Oni9HkareCBUSERENLAwwfcBG\nYY2JbsGoaK7ESVVGh+2CIGjnwuxMyTd0eURERAMOA0wfifQOBwAkdbGwXeAwJ3g6WSHlbBnKa5oM\nWRoREdGAwwDTR9ysXDBa6Y+LtfnIrbnUYbtEEDB7sg/aNSISUwsMXyAREdEAwgDTh272eIGJ/q5Q\n2prh4Kli1Da2GrI0IiKiAUWvASYnJwfR0dFYt24dAKCkpAQJCQmIj4/HsmXL0Np65Y/4e++9h8WL\nF+Pee+/F2rVr9VmSXg23HwJvG0+cUv0GVWNFh+0yqQQxE33Q2qbBL2mFRqiQiIhoYNBbgGlsbMTK\nlSsRGhqqfW/16tWIj4/H+vXr4evri40bNyInJwcpKSn47rvv8O2332LTpk1Qqfrns4MEQUCU9zSI\nELGv8GCn+4QHesDaQo6kE4VoamkzcIVEREQDg94CjEKhwNq1a+Hi4qJ9LyUlBVFRUQCAiIgIHD16\nFDY2NmhpaUFraytaWlogkUhgYWGhr7L0brzLWNib2eFo8TE0qBs7bDeTSxE9wQsNzW04cKrjQyCJ\niIjo5vQWYGQyGczNza97r6mpCQqFAgCgVCqhUqng7u6O2NhYREREICIiAosXL4a1tbW+ytI7qUSK\nCO+paNWocagoudN9ooK9YKaQIjE1H+q2juvGEBERUfdkxjrx1aczFxQUYM+ePdi7dy/a2tqwePFi\nxMXFQalUdnmsg4MlZDKp3mpzdra5pePn2UVh16VfcLD4KBaPnwOZ9PofszOA2aGDsPnXC8jIr8as\nSb63dL7bya32DekH+8V0sW9MF/vm1hg0wFhaWqK5uRnm5uYoKyuDi4sLzpw5g8DAQO1lo5EjRyIn\nJ+e6uTM3qqrqeGmmrzg720ClqrvldkLdQ5BUcBA7fzuIye4TOmwPH+2GrQdz8f3eHAQOcoBEItzy\nOQe6vuob6lvsF9PFvjFd7Jue6S7kGfQ26ilTpiAxMREAsHv3boSHh8PHxwcZGRnQaDRQq9XIycmB\nt7e3IcvSixleUyERJPgl/4B2tOlaDjZmmDLaDWWVjTiR0z8nLRMRERmL3kZgMjIysGrVKhQVFUEm\nkyExMRFvv/02li9fjg0bNsDDwwPz58+HXC5HWFgY4uPjAQALFy6El5eXvsoyGKWFA8Y5j8Hxy6eQ\nVXUO/o4jOuwTO8kHh06XYEdyHoJHOkMQOApDRETUE4LY2fCAidPnsFtfDuvl1RbgrbQP4O84AkuD\nHu10nzU/nUFatgrPLQ5CwCDHPjnvQMUhV9PEfjFd7BvTxb7pGZO5hHS78bX1xlC7wciszEFxfWmn\n+8z+70Metx/NM2RpRERE/RoDjJ5pHy9Q0PnjBQa72yJgkAMy86pwsaTWkKURERH1WwwwejbGyR8u\nFk5IK01HTUvnw4Vx/x2F2ZHMURgiIqKeYIDRM4kgQYR3ONrEdhwoPNzpPv6+DhjkZoMT2SqUVDQY\nuEIiIqL+hwHGACa7B8NKbomDRcloae/4FGpBEBA32RcigF0p+YYvkIiIqJ9hgDEAhVSBcM9QNLQ1\nIqUkrdN9xo90hpujJY5klKKmkTKyAAAgAElEQVSyttnAFRIREfUvDDAGMs1zCmSCFEkFB6EROz7/\nSCIImD3JB+0aEbuPFRihQiIiov6DAcZA7MxsEOI2HqqmCpwpP9vpPpNHucHBxgy/nixGfZPawBUS\nERH1HwwwBhTpHQ4A+CW/81uq5TIJZoV4o0XdjqQThYYsjYiIqF9hgDEgD2s3BDiOxIWaS7hU2/lk\n3WmBHrAyl2FvWiFaWtsNXCEREVH/wABjYNqF7boYhbEwkyEq2Av1TWocPF1syNKIiIj6DQYYAxvp\nMAye1u5Iv3wGFU2Vne4TFewFhUyCxNR8tLV3nPBLRER0u2OAMTBBEBDlPQ0iROwrPNTpPjaWCkwL\n9EBFbQtSzpYZuEIiIiLTxwBjBMGugbBT2OJIcSoa1U2d7jNrojekEgE7U/Kh6X8PDCciItIrBhgj\nkElkmOEVhpb2VhwuTul0Hyc7C0wKcEVxeQNOnS83cIVERESmjQHGSKZ6ToJCqsD+wsNo13R+t9Hs\nST4AgB1H8yByFIaIiEiLAcZILOWWCHUPQXVLDY5fPtXpPp7O1hg33AkXimuRU1Bt4AqJiIhMFwOM\nEUV6T4UAAUn5B7ocYYmb7AsA2J6cZ8jSiIiITBoDjBE5WSgR6DwaBfXFOFd9odN9hnraYaS3PTJy\nK5FfVmfgComIiEwTA4yR3WxhOwCIC70yCrODozBEREQAGGCMboidLwbb+iKjIgulDZ2v+TJ6sCO8\nXaxxLOsyLlc1GrhCIiIi08MAYwKujsIkFRzsdLsgCIib7AtRBHalFhiyNCIiIpPEAGMCAp1Hwcnc\nESmlJ1DXWt/pPhP8nOFib4FDp0tQU99i4AqJiIhMCwOMCZAIEkR4h6NN04YDhUc63UcqkSB2kg/a\n2jXYncZRGCIiur0xwJiIye4TYCGzwIGio2htV3e6T9gYN9haKbA/vQiNzW0GrpCIiMh0MMCYCHOZ\nGcI9J6Ne3YDU0uOd7iOXSTErxBtNLe3Yl15o4AqJiIhMBwOMCZnuNQVSQYqkgoPQiJpO95kR5AkL\nMyn2pBWiVd35IwiIiIgGOgYYE2JvZocJrkEoa1Tht4qsTvexNJchcrwXahtacfhMiYErJCIiMg0M\nMCYm0jscQPcL20VP8IZMKsHOlHy0azofqSEiIhrIGGBMjJeNB/wchuNcdS7y6zqf52JnpUD4WHeU\n1zTjWNZlA1dIRERkfAwwJiiyB48XiJnkA0EAdhzN7/JBkERERAMVA4wJCnAcAXcrV5y4fBpVzdWd\n7uNib4GJ/q4oVNXjTG6lgSskIiIyLgYYEyQIAiK9p0EjarCv8FCX+82e5AOAD3kkIqLbDwOMiQpx\nGwcbhTUOF6Wiqa250318XG0wdqgSOQXVOF9YY+AKiYiIjIcBxkTJJTJM9wxDc3szjhandrlf3GRf\nAByFISKi2wsDjAkL95oMuUSOfYWH0a7pfNG64V52GOZph5Pny1Go6vxBkERERAONXgNMTk4OoqOj\nsW7dOgBASUkJEhISEB8fj2XLlqG1tRUAkJWVhbvuugt33XUXPvroI32W1K9Yy60w2X0CKpurcFJ1\nptN9BEHQjsLsTM43ZHlERERGo7cA09jYiJUrVyI0NFT73urVqxEfH4/169fD19cXGzduBACsWLEC\nK1euxMaNG3HhwgU0NTXpq6x+J9J7KgQI+CX/YJe3S48dpoSnkxVSzpahvIY/OyIiGvj0FmAUCgXW\nrl0LFxcX7XspKSmIiooCAERERODo0aMoLy9HY2MjRo0aBYlEgnfffRcWFhb6KqvfcbF0xhinAOTV\nFeBCzaVO95H8dxRGI4pITCkwbIFERERGINNbwzIZZLLrm29qaoJCoQAAKJVKqFQqFBUVwc7ODsuX\nL8elS5cQGxuLBx98sNu2HRwsIZNJ9VU6nJ1t9Na2Lu4eG4PTSb/hYNkRhA4f2+k+cdOssOXwRRw8\nXYwH7xwNexszA1dpGKbWN3QF+8V0sW9MF/vm1ugtwNzM1cshoiiisLAQH330EczNzXHvvfciLCwM\nw4cP7/LYqqpGvdXl7GwDlapOb+3rQim6wtfGG8eLTuO3vFy4WDp3ut/MCd74Zk8ONuzOwl3Thhi4\nSv0zxb4h9ospY9+YLvZNz3QX8gx6F5KlpSWam6+saVJWVgYXFxcolUoMHz4cDg4OsLCwQHBwMM6d\nO2fIskyeIAiI8gmHCBFJBV0vbDd1rDusLeRIOl6IppY2A1ZIRERkWAYNMFOmTEFiYiIAYPfu3QgP\nD4e3tzcaGhpQXV0NjUaDzMxMDBky8EYPblWQ8xg4mjsguSQN9eqGTvcxk0sxc4IXGlva8OvJYgNX\nSEREZDh6CzAZGRlISEjATz/9hK+++goJCQlYunQpNm/ejPj4eFRXV2P+/PkAgJdeegmPPfYYFi9e\njLCwMPj5+emrrH5LKpEiwisMao0aBwuTu9wvMtgLZgopdh/Lh7pNY8AKiYiIDEcQ++GjjPV53dCU\nr0s2tTXjlcOvQy6VYWXoS5BL5Z3u933SeexKzceDs/0wLdDDwFXqjyn3ze2M/WK62Demi33TMyYz\nB4ZujYXMHGGeE1HXWo9jZSe73G9miDdkUgE7k/Og0fS7fEpERHRTDDD9TITXVEgECZIKDnS5sJ2D\njRmmjHZDWVUT/rw2Gev35CAjtwLqts4fR0BERNTfGO02atKNg7k9xruMRVrZSZytzMEo5chO91sw\nbSgam9tw5mIl9h4vxN7jhVDIJPDzdcCYIUqMGaqEiz0XDCQiov6JAaYfivKZhrSyk0jKP9BlgLGz\nUuCJBWPQ1q7BuYJqnM6twJncSpy+UIHTFyqAPYCbo+V/w4wjRnrbQ67HxQGJiIj6EgNMP+Rj44Xh\n9kOQVXUOhXXF8LLpeqKuTCqB/yBH+A9yxL2RQHlNE87kVuLMhQqczavEnrQC7EkrgEIugb+PA8YO\nVWLMECWcODpDREQmjAGmn4rymYZz1blIKjiI+wPu7fFxTnYWiBjniYhxnlC3aZBTWI0zFypwJrcC\npy5c+QcA7kpL7aWmEV72kMs4XYqIiEwHA0w/NUrpB1dLZ6SVncSdQ2Nhb2bX6zbkMglGDXLEqEGO\nWBw1HKrqJpzJrcCZCxXIzK/C7mMF2H2sAGZyKfx9/zc6o7Qz18MnIiIi6jkGmH5KIkgQ6R2Ob7M3\n4dfCI5g3dPYtt+lsb4HI8V6IHO8FdVs7sguqceZCJU7nVuDk+XKcPF8OAPBwssLYIUqMGeKI4d72\nkEk5OkNERIbFANOPTXQLxtbcRBwsSkaMbyTMZX33BGq5TIrRg5UYPViJ+zAcl6ubtJeasvKqsCs1\nH7tS82GmkCLgmtEZR1uOzhARkf4xwPRjCqkc0zxDsePSXiSXpGGGd5jezuVib4GoYC9EBXuhVX11\ndKYCp3MrkH6uHOnnrozOeDpfHZ1RYpiXHUdniIhILxhg+rlpXlOwO38/9hUcxDSvUEgE/QcGhVx6\nZYLvECXiAZRVNWrDTHZ+NXam5GNnSj4szKQI8HXEmP+OzjjY9N0IERER3d4YYPo5G4U1JrmNx+Hi\nVJxS/YZxLmMMXoOrgyVcJ1gieoI3WtTtyM6/OjpTjuM5KhzPUQEAvJyt/3upyRFDPTk6Q0REumOA\nGQAivafhcHEqfsk/YJQAcy0zuRRjhyoxdqgS8eJwlFU1XTc6U6iqx47kPFiYyTBqkIN2dMbemqMz\nRETUcwwwA4CblQtGK/2QUZGF3Jo8DLHzNXZJAABBEODmaAk3R0vMDPFGS2s7svKrrqwKfKECadkq\npGVfGZ3xcbHWhpmhnraQSjg6Q0REXWOAGSCifKYhoyILv+QfwJAxCcYup1NmCikChzkhcJgTRFFE\naWWj9s6m7IJq5F+ux/ajebA0k2HUYMf/zrNxhB1HZ4iI6AYMMAPEcPuh8Lb2wClVBsqbKuBkoTR2\nSd0SBAHuSiu4K60wa6IPmlvbkJVXrR2dOZZ1GceyLgMAfF1tMGaoIxZGd/7cJyIiuv0wwAwQgiAg\n0mcavjz7HZIKDmHRiHnGLqlXzBUyBA13QtDwK6MzJRWNOP3f0ZmcgmrkldXh5PkKvJIQDIWcD50k\nIrrdcaLBABLsEgh7MzscLTmGRnWjscvRmSAI8HCyQuwkHzx/3zisXhaO6UEeKLxcj58O5hq7PCIi\nMgEMMAOIVCLFDK8wtLa34lBRirHL6TMWZjIsjhoODycr7E4tQE5BtbFLIiIiI2OAGWDCPCbBTKrA\n/sLDaNO0GbucPmMml+Lp+8YDAvDZ9ky0tLYbuyQiIjIiBpgBxlJugTCPSahprcXxslPGLqdP+Q1y\nRMxEH1yubsLG/ReMXQ4RERkRA8wANMNrKiSCBL8UHIAoisYup08tCB8MDycr/HKiEJmXKo1dDhER\nGQkDzACktHDAOOcxKKovwX9++waZlTnQiBpjl9Un5DIpHpnjD4kg4LMdWWhqGTiXyYiIqOcYYAao\nuUNmwdXSBemXT+PDk//Gq0fexNbcRFxuLDd2abdssLst4kJ9UVHbjA1J541dDhERGYH0r3/961+N\nXURvNTa26q1tKyszvbZvKFZyK0zzDIW/cgQECCioK0RW1Tn8WngY2ZVX/ug7WzhBJuk/SwFd2zfD\nvexw8nw5zuRWYIiHLVwdLI1c3e1roHxnBiL2jeli3/SMlVXXK7ELYj+cJKFS1emtbWdnG722byyt\n7a04qcrA0ZI05FRdCTAKqQLjncdisnswhtkPgSAIRq6yezf2TX5ZHVZ+mQZbKwVWPjIRluZyI1Z3\n+xqo35mBgH1jutg3PePsbNPlNp1HYC5dugR7e3tda7olHIHpPalECk9rd0x2D8Zkt2BYyC2gaizH\nuepcJJceR2rpCTS3NUNp4QALmYWxy+3UjX1jZ20GAUD6uXJU17di/Ahn4xV3Gxuo35mBgH1jutg3\nPdPdCEy3c2Aeeuih616vWbNG+79fffXVWyyLjEVp4Yg5g2fir6EvYtm4P2CSWzBqW+uw7eJuvHrk\nTXyQvhappSfQ2q42dqk3FRfqi0FuNjiSUYr0cypjl0NERAbSbYBpa7v+Do/k5GTt/+6HV57oBhJB\nghEOQ3F/wL14Y+oKLPFbiCF2vsiqOocvz36Hlw6txPqsH3GxJs9k+1sqkeCRuQGQSSX4clc26ptM\nP3QREdGt63YG541zIq79I2bq8yWod8xl5pjiMRFTPCbicqMKySXHkVJ6HIeLU3C4OAWuli6Y7B6M\niW7jYW9mZ+xyr+PpZIUF0wbjh30XsG53Nv44b7SxSyIiIj3r1S0oDC23BxdLZ9w5NBZzh8xCVuU5\nJJek4VT5b9hyYSd+vrALAcqRmOw+AWOcAiA3kbuYYkJ8kJ5TjtTMywgeeRkhfi7GLomIiPSo278+\nNTU1OHr0qPZ1bW0tkpOTIYoiamtr9V4cGZdEkCBAORIBypFoVDcirewUkkvS8FtFFn6ryIKVzBIT\n3IIw2X0CvK09jRpwJRIBj8zxx18+S8XXidkY4W0POyuF0eohIiL96vY26oSEhG4P/vrrr/u8oJ7g\nbdTGVVxfiuTSNKSWnkBdaz0A/PcOpwkIcR0HG4W1Xs7bk77Zk1aAb/eew7jhTlh61xiOGhoAvzOm\ni31jutg3PdPdbdRcB+YG/KXquXZNO85WZuNoSRrOlJ+FRtRAIkgwRumPye4TMErpB6lE2mfn60nf\naEQRb3+bjqz8ajw2NwCho9367PzUOX5nTBf7xnSxb3qmuwDT7V1I9fX1+OKLL7Svv/vuO8ybNw9/\n+tOfUF7e/5ekp1sjlUgxxikAvx9zP14PewULh98JdytXnCr/DZ+c+RIvH/4/bDq3DcX1pQarSSII\neCjOH2YKKb7Zk4OquhaDnZuIiAyn24Xsli9fDplMhilTpuDixYt49tln8dprr8HW1hbffvstYmNj\nu208JycH9957LyQSCcaOHYuSkhI88cQT2LhxIw4cOICoqChIpf/7L/RnnnkG+/btQ3R0dLftciE7\n02MmVWCwnQ/CPUMx1ikAUokMRfUlyK4+j4NFR5FRngmN2A5nCyXkUt1WzO1p31iZy2FtLkdatgol\nFY2YHODKS0l6xO+M6WLfmC72Tc/ovJBdQUEBnn32WQBAYmIiYmNjMWXKFCxevPimIzCNjY1YuXIl\nQkNDte+tXr0a8fHxWL9+PXx9fbFx40bttsOHDyM/P79HH4hMm7eNJxaNmIf/m/oKHh2dgNFKPxTU\nFWFDzma8dPg1fJbxDX6ryNbrE7KnB3lg1GBHnMmtwMHTJXo7DxERGUe3AcbS8n8PyEtNTcXkyZO1\nr2/2X7QKhQJr166Fi8v/bmdNSUlBVFQUACAiIkJ7h1Nrays+/vhjPP74473/BGSy5BIZxrmMweOB\nD+P/wl7G/KFxUJo74vjlU1hz6j9YceQNbLmwE2WNfb+CriAIeGi2HyzMpPjul3Mor2nq83MQEZHx\ndHsbdXt7OyoqKtDQ0ID09HS89957AICGhgY0NXX/B0Emk0Emu775pqYmKBRXbm1VKpVQqa784frk\nk09w3333wdq6Z3evODhYQibru8mhN+pu0hDpxhk2GOblifvEuThfeQn7Lh7F4fxj2J23D7vz9mGk\n01DMGDQZoT7BsJR3/Sym3vSNs7MNfj9/LN7fkI5v9p7D338/BRIJLyXpA78zpot9Y7rYN7em2wDz\n2GOPIS4uDs3NzVi6dCns7OzQ3NyM+Ph4LFq06JZOfPXmp0uXLiEjIwNPPfUUUlJSenRsVVXjLZ27\nO5wZrn/2cMIC3zswxysWp1QZSC5JQ3b5eWSXX8DnJ75HkMsYhLpPwDD7IZAI/xsk1KVvxg6yR+BQ\nJU6dK8cPe7IQOd6rrz/ObY/fGdPFvjFd7Jue6S7kdRtgpk+fjkOHDqGlpUU7OmJubo7nn38eU6dO\n7XUhlpaWaG5uhrm5OcrKyuDi4oL9+/ejuLgYixYtQn19PSorK7F27Vo89thjvW6f+heFVI4Qt3EI\ncRuHyuYqpJSc0K4vk1p6AkpzB0xyC8Zk9wlQWjjqdA5BEPDAbD+s+HcKvt93HqMHO8LFwfLmBxIR\nkUnr9i6k4uJiNDY2oqWlBXV1ddp/Dg4OqKurg43NzYe/UlNTYWFhgbFjx+L8+fNoamqCn58fPv/8\nc4wfPx5LlixBfHw87rnnHgwbNgzNzc148cUXu22TdyENPBYyCwx3GIIZXmEY4TAMAJBXV4isqnPY\nV3gI56ty4e3gDnOx9+HDXCGDo40ZUjMvI7+sDlPGuPOupD7E74zpYt+YLvZNz3R3F1K3IzCRkZEY\nPHgwnJ2dAXR8mONXX33V5bEZGRlYtWoVioqKIJPJkJiYiLfffhvLly/Hhg0b4OHhgfnz5/f2s9AA\nJwgChjsMwXCHIbinbR7SVWeQXHIMOdUX8Nahf+HlkGdgJe99iJkU4Irj2Socz1Fh77ECzJroo4fq\niYjIULpdiXfLli3YsmULGhoaMGfOHMydOxeOjroN5fclrsR7+9mdtw9bLuzEZLcJSAjQbf5VbUMr\nXvl3ClrU7fjrQyFwV1r1cZW3J35nTBf7xnSxb3pG55V4582bh88++wz//Oc/UV9fjyVLluDRRx/F\n1q1b0dzc3OeFEnUlynsaBjt4I7k0DZmVOTq1YWulwP0xI6Fu0+A/2zPRrtHfOjRERKRf3QaYq9zd\n3fHEE09g586diImJwWuvvabTJF4iXUklUjwekgCJIMG3WT+iuU23RwRM8HPBpABX5BbXYlcKF04k\nIuqvehRgamtrsW7dOtx1111Yt24d/vCHP2DHjh36ro3oOoMcvBHtMx0VzVXYlpuocztLZo6AnZUC\nWw5dRKGqvg8rJCIiQ+k2wBw6dAhPP/007r77bpSUlODNN9/Eli1b8PDDD1+3wi6RocQNioaLpRP2\nFx7GxZo8ndqwtpDjgdl+aGsX8e9tZ9HWzktJRET9TbeTeP38/DBo0CAEBgZCIumYdd544w29FtcV\nTuK9PV3tm/PVF/HeiY/hZuWK5SHLIJd0ezNdl/6z/SwOnynFvKmDMW/q4D6u9vbB74zpYt+YLvZN\nz+i8kN3V26Srqqrg4OBw3bbCwsI+KI2o94bZD8Y0z1AcKDqKxEtJmDtklk7t3Bc1AmcvVWHbkUsI\nGuYEXzcu601E1F90ewlJIpHg2WefxYoVK/Dqq6/C1dUVEydORE5ODv75z38aqkaiDu4cOhsOZvbY\nnbcPRfW6PW3a0lyGh+L80K4R8e/tZ6Fu46UkIqL+otsA89577+GLL75Aamoqnn/+ebz66qtISEhA\ncnIyfvjhB0PVSNSBhcwci0cuQLvYjm8yN0Ij6hY+Rg9WYkaQB4pUDfj58MU+rpKIiPTlpiMwQ4cO\nBQBERUWhqKgI999/Pz788EO4uroapECirox28keI6zjk1RVgX8Ehndu5J2IYnOzMsSM5DxeKa/qw\nQiIi0pduA8yNz4txd3fHzJkz9VoQUW8sHH4nrOVW2JqbiPKmCp3asDCT4eE4f4gi8J9tmWhVt/dx\nlURE1Nd6tA7MVXwAHpkaa4UV7hl+J9QaNb7J+hHd3FTXLT9fB0QHe6G0shGbDuT2cZVERNTXur0L\nKT09HTNmzNC+rqiowIwZMyCKIgRBwP79+/VcHtHNBbsG4VjZSWRUZOJoyTFM8ZioUzt3zxiKM7kV\n2HOsAONHOGOEt30fV0pERH2l2wCza9cuQ9VBpDNBELB45AK8lpKLTee3IUA5EvZmdr1ux0wuxSNz\nAvDGN8fx2fZM/O3hiTBTSPVQMRER3apuLyF5enp2+4/IVDiY22P+sDg0tTXj++zNOl9KGuZlh5iJ\nPrhc3YQf9p/v4yqJiKiv9GoODJEpC/OYhGH2g3Gq/Dekq87o3M6C8MFwV1oi6UQRzl6q7MMKiYio\nrzDA0IAhESSI91sIuUSG73M2o0HdqFM7cpkUj84NgEQQ8PmOTDS1tPVxpUREdKsYYGhAcbV0Rtzg\nmahrrcemc9t0bmewuy3iQn1QUduCDUm8lEREZGoYYGjAifKeBm8bTySXpiGzIkfndu4MGwwvZ2sc\nOFWMM7m6rTFDRET6wQBDA45UIsUSv3sgEST4NvtHNLe16NSOTCrBo3P9IZUI+GJnFhqb1X1cKRER\n6YoBhgYkbxsPRPtMR0VzFbblJurcjo+rDe4IG4Squhas33uuDyskIqJbwQBDA1bcoGi4WDphf+Fh\n5Nbk6d7OZF/4utngSEYp0s+p+rBCIiLSFQMMDVhyqRxL/O6BCBHfZG2EWqPb3UQyqQSPzvGHTCrg\ny13ZqG/ipSQiImNjgKEBbZj9YEzzDEVpQxkSLyXp3I6nszUWhA9BbUMr1u3O7sMKiYhIFwwwNODd\nOXQ2HMzskZiXhKL6Ep3biZnog6GetkjNvIxjWZf7sEIiIuotBhga8Cxk5lg8cgE0ogbfZG6ERtTo\n1I5EIuCROQFQyCT4OjEbNQ2tfVwpERH1FAMM3RZGO/kjxHUc8uoKsK/gkM7tuDla4u7pQ1HfpMZX\nu7J0fuYSERHdGgYYum0sHH4nrOVW2JqbiPIm3Remi5rghZHe9kg/V47k38r6sEIiIuopBhi6bVgr\nrHDP8Duh1qjxTdaPOo+eSAQBD83xh5lcim/25KCqTreF8oiISHcMMHRbCXYNwmilP3KqzuNoyTGd\n23Gxt8CiyGFobGnDFzt5KYmIyNAYYOi2IggCFo9cAHOpGTad34bqlhqd25oR5IFRgxxwJrcCB0/r\nfncTERH1HgMM3XYczO0xf1gcmtqa8X32Zp1HTwRBwENx/rAwk+K7X86hvKapjyslIqKuMMDQbSnM\nYxKG2Q/GqfLfkK46o3M7jrbmWBw1HM2t7fh8RxY0vJRERGQQDDB0W5IIEsT7LYRcIsP3OZvRoG7U\nua2pY9wxdqgSmXlV2J9e1IdVEhFRVxhg6LblaumMuMEzUddaj03ntuncjiAIeCDWD1bmMny/7zwu\nV+kehoiIqGcYYOi2FuU9Dd42nkguTUNmRY7O7TjYmCF+5gi0qjX4bHsmLyUREemZXgNMTk4OoqOj\nsW7dOgBASUkJEhISEB8fj2XLlqG19cpS7Dt27MDChQuxaNEivPfee/osieg6UokUS/zugUSQ4Nvs\nH9HcpvuaLpMDXDF+hDNyCmuw91hBH1ZJREQ30luAaWxsxMqVKxEaGqp9b/Xq1YiPj8f69evh6+uL\njRs3oqmpCW+//Ta++OILbNiwAUeOHMH58+f1VRZRB942Hoj2mY6K5ipsy03UuR1BEHB/zEhYW8jx\n44FclFQ09GGVRER0Lb0FGIVCgbVr18LFxUX7XkpKCqKiogAAEREROHr0KCwsLPDzzz/D2toagiDA\n3t4e1dXV+iqLqFNxg6LhYumE/YWHkVuTp3M7tlYK3B8zEuo2Df6zPRPtGt0eHElERN3TW4CRyWQw\nNze/7r2mpiYoFAoAgFKphEqlAgBYW1sDALKzs1FUVITAwEB9lUXUKblUjiV+90CEiG+yNkKtadO5\nrQl+Lpjo74Lc4lrsSsnvwyqJiOgqmbFOfOPiYZcuXcJzzz2Hd955B3K5vNtjHRwsIZNJ9Vabs7ON\n3tqmW6PPvnF2Hovfaqdh9/kDOKQ6hEWj79C5rWX3BWPpP5Kw5dAlRIT4wtfdtg8rNT38zpgu9o3p\nYt/cGoMGGEtLSzQ3N8Pc3BxlZWXay0ulpaV48skn8dZbb8Hf3/+m7VTp8TZVZ2cbqFR1emufdGeI\nvpnlEY1jBaex6ewujLAaCU9rd53bSpg1Eqt/PI23vj6GV+6fAJl0YN70x++M6WLfmC72Tc90F/IM\n+v+oU6ZMQWLilUmSu3fvRnh4OADg5Zdfxl//+leMGjXKkOUQdWAhM8fikQugETX4JnMjNKLuc1iC\nhjshbLQb8svqsf2o7vNqiIioI72NwGRkZGDVqlUoKiqCTCZDYmIi3n77bSxfvhwbNmyAh4cH5s+f\nj4sXLyItLQ2rV6/WHkI4KucAACAASURBVPvggw9qJ/sSGdpoJ3+EuI7DsbJ07Cs4hCifaTq3dV/0\ncJzNq8K2I5cQNMwJvm4cMiYi6guCqOuT7IxIn8NuHNYzXYbsm/rWBqxMeRst7a14eeIzcLZU6txW\nRm4F3v3+FDydrfDqAyGQywbWpSR+Z0wX+8Z0sW96xmQuIRH1F9YKK9wzYh7UGjXWZ/+o8xOrAWD0\nECWmB3mgSNWAnw9f7MMqiYhuXwwwRF0IdgnEaKU/cqrO42jJsVtqa1HEMDjZmWNHch4uFNf0UYVE\nRLcvBhiiLgiCgMUjF8BcaoZN57ehukX34GFhJsNDcf4QReA/2zLRqm7vw0qJiG4/DDBE3XAwt8f8\nYXPQ1NaM77M339KlJH9fB0QFe6G0shHfJZ1HC0MMEZHOGGCIbiLMYyKG2Q/GqfLfkK46c0ttLZw+\nFC4OFtifXoRnPjyEL3ZmIqfg/7d358Fx1/f9x597aqW9V/etXUm2sSXfdrCNDeFKCS0kBDAlNu3M\nb9J2aPtrUtLGIaSQaRJ+JiTppMmQQpOOf/BjcApJCjkwBAI2tnxhY0uyLetY3at7V6tb2uP3x67W\n8gWSLWm/K70fMxqttNdn/d7v+qXP8f34risYCSHEYiQBRohPoFapeXjZ/ejUWn5R82uGJq79RIpJ\neg1fe3gtd28qxKDXsv+Uh//z/07w9ecP8/pBNz39I7PYciGEWLg0Tz311FPxbsRMDQ+Pz9ljG41J\nc/r44trFszYmnRGNSsPpnmoGxgdZlX7tJ11MTtKyvMjBHevzKc23QTiMu91PdaOXt4+3UtPsBSDD\nnpwQZ++VY0a5pDbKJbWZHqMx6arXxW0vJCESza35W/mw6xSHO46zPnM1N6Quua7HU6tVrChysKLI\nwY47Axw/18XBSg/nmn2ca/bx0lvnWb80nS3l2SwpsKFWqWbplQghROKTE9ldQk4upFxKqE3LQDvP\nHP8RtiQr39j4jxi0V//r4Fp1eYc5VNXBoaoOevpHAUizGthclsXmsiwy7Cmz/pzXQwl1EVcmtVEu\nqc30fNyJ7GQI6RLSradcSqiNNclMIBSgqvcsE8EJlqcunfXnMCbrWFZo57b1eSwrsIMKGj0DnGn0\n8ocPWznb2EcoHBliUsJZfZVQF3FlUhvlktpMjwwhCTGL7iq6jY+6K3mv9SBrM1fhshbOyfOoVSqW\nFdpZVmjni3cE+LCmm0NVHZxt8nK+tZ+X3z7P2qXpbCnL5oZCO2q1DDEJIRYPGUK6hHTrKZeSalPn\nc/PDE8+RlZLBro1fRqeev78FevpHqKjq4GBlB12+yKoluzkpNsSUnWqct7aAsuoiLia1US6pzfTI\nENIMSLeecimpNg6DncHxQar7alChYom9eN6eO8WgY2lB5KR4K5wO1CoVzZ2RIaZ3T7RR1dBLKBSO\nDjFp5rw9SqqLuJjURrmkNtMjQ0hCzIF7iu+isucs+5reZU1GObmm7Hl9fpVKRWmejdI8Gw/fXsqJ\n2m4OVnZwxt1Hfbufl/9Qy9olaWwuy2aF045GHf/5MkIIMVtkCOkS0q2nXEqsTVXPWZ47/V8UmvP5\n6vq/Ra2Kf0jo849SUR1ZxeTpjZx0z2rUs6ksiy1lWeSmm2b1+ZRYFxEhtVEuqc30yBDSDEi3nnIp\nsTYZKel0D/dwpq+GZK1hzib0zkRykpYl+TZuXZtLeXEqWrWa5s5BzjZ5+ePJNk7V9RAIRoaY9Lrr\nH2JSYl1EhNRGuaQ20yNDSELMoftL7+Fs33neaNjHyrQVpKekxrtJQGSIqTjHSnGOlYduK+Gjul4O\nVnqoauijseM8r7xTy+qSNDaXZ1HuSk2Is/4KIcQkCTBCXCeT3sgDS+7lv6pf5uWa1/jfq7+ESmFn\nzdVpNWxYlsGGZRn0D45RUd3JwSoPH57v5sPz3ZhTdNy4PIst5VkUZF69y1YIIZRCAowQs2BdxiqO\ndZykqvcsFZ5jbM7ZGO8mXZXVlMSffKqAz2zMp7lzkA8qPRw508nbx1t4+3gL+RkmtpRnc+PyTCxG\nfbybK4QQVySTeC8hE6uUS+m18Y76+PaR76NSqXjiU49hS7LGu0nTFgiGOF0fGWI6Xd9LMBRGo1ZR\n7kplS3kWq0rSrjrEpPS6LGZSG+WS2kzPx03ilR4YIWaJ3WDjcyV380rNL/lFza/5UvkjihtKuhqt\nRs3aJemsXZKOf3icI9Ehpo/qeviorgejQcuNy7PYXJ5FUZY5YV6XEGLhkgAjxCzakrOR450nOdVT\nzcnuStZmrIx3k2bMkqLnjg353LEhn5auQQ5Wejhc3cE7J1p550QruWlGNpdnsWlFFjbT7G9mKYQQ\n0yFDSJeQbj3lSpTadA538/TRH2LQGPjmjV/FqFPW7tHXIhAMUeXu41BlpFcmEAyjUkGZM5XPbCoi\n127AKmFGcRLlmFmMpDbTI0NIQsyjzJR07nbeya/rf8cva3/DzuUPxrtJ102rUbO6JI3VJWkMjkxw\n9GwnBys9VDb0UtnQC0CqJQlntgVXjhVntpmiLAtJ+rnfykAIsThJgBFiDtyav5UPu05xuOM46zNX\nc0Pqkng3adaYknXcujaPW9fm0dYzRE1rP5W13TR4/Byv6eZ4TTcAKhXkpplw5VgiX9kWctKMsmu2\nEGJWyBDSJaRbT7kSrTYtA+08c/xH2JKsfGPjP2LQLswhlsm6hMNhevtHafD4aWj30+Dx09QxwEQg\nFLttkk5DUZYZV44l2ltjwWExxLH1C1uiHTOLidRmemQISYg4yDfncEfBLexrepffNOzj/iX3xLtJ\nc0qlUpFmSybNlszGGzKByNyZtu4h3FNCzfkWHzUtvtj9bCZ9LMy4si0UZVtITpKPJiHEx5NPCSHm\n0F1Ft/FRdyXvtR5kbeYqReyVNJ+0GjWFWWYKs8zcsiYXgJGxAI0e/0U9NSdrezhZ2wOACshJM8ZC\njTPbQl6GUXbTFkJcRIaQLiHdesqVqLWp87n54YnnyErJYNfGL6NTL6y/G2ajLn3+URra/bGemsaO\nAcYmgrHr9Vo1BVlmXFN6alKtBjkfzSdI1GNmMZDaTI8MIQkRRyU2J9tyN7O/7RD7Gt/lT113xrtJ\niuOwGHBYDKxflgFAKBSmvWfoQi9Nu5/6tn7qWvtj97Gk6C700kRDTYpBF6+XIISYZxJghJgH9xb/\nCZU9Z9jX9C5rMsrJNWXHu0mKplaryMswkZdhYtuqHADGxoM0dvhxewZoaO+nwePnVH0vp+p7Y/fL\ncqRcmE+TYyE/wyS7bAuxQMkQ0iWkW0+5Er02VT1nee70f1Fozuer6/8WtWph/Mcaz7r4Bsdwt1+Y\nT9PY4Wdk7MLQk1ajoiAzMvTkjIaaDFvyohl6SvRjZiGT2kyPDCEJoQBlaTewIXMtxzpP8G7LAW4v\nuDneTUp4NlMSa5aks2ZJOgChcJiO3uELq57aI0u5G9r98GHkPkaDNjbkNDlJ2Jwiu24LkWgkwAgx\nj+4v/TPO9tXwq7rfcrr7DNvyNrE6vQztApvYGy9qlYqcNCM5aUa2lEeG6cYngjR3DkZ7afpxe/xU\nNfRR1dAXu1+6zYArxxrpqcm2kJ9pIkknZxEWQslkCOkS0q2nXAulNk3+Ft5o2MfZvvMAmHUmtuRs\nZEvup3AY7HFu3cwlYl38w+O4p6x6cnv8DI0GYtdPBiFnthlntoWibDN56Yk3nyYRa7NYSG2m5+OG\nkOY0wJw/f55HH32Uv/zLv2THjh14PB7++Z//mWAwSHp6Ot/73vfQ6/W8/vrr7NmzB7VazYMPPsgD\nDzzwsY8rAWZxWmi16Rru5kDbYSo8xxkJjKBCxcq05WzN28RSe0nCzJFZCHUJh8N0eUciYabDT6Nn\ngObOAcannEVYq1GTn2GiKNuMM8uCM9tMdqqyt0ZYCLVZqKQ20xOXADM8PMxf//VfU1RUxNKlS9mx\nYwdf//rX2bZtG3fddRc/+MEPyMrK4nOf+xyf//znefXVV9HpdNx///289NJL2Gy2qz62BJjFaaHW\nZjw4zvHOU+xvO0TLQBsAGclpbM29kRuz15Oi8N2sF2pdgqEQ7T2R+TSNHj/ujgFauwYJhi58ZCbp\nNBRmmiiK9tI4s5U1SXih1mYhkNpMT1wm8er1el544QVeeOGF2O+OHDnCt771LQA+/elP8/Of/xyn\n00l5eTlmc6SRa9eu5cSJE9x6661z1TQhFEWv0bM5ZwObstfTNNDC/tYKPuw6xWt1v+H1hn1syFzN\n1rxNFJjz4t3URUWjjvS45E9Zyj0RCNLSNRRdzh3pqalt6+f8lPPTpCRpY2GmKNpTYzcnKSbUCLFQ\nzFmA0Wq1aLUXP/zIyAh6fWS2f2pqKt3d3fT09OBwOGK3cTgcdHd3z1WzhFAslUpFkaWAouUF3Ff6\np1S0H+NA22EOeY5xyHOMIksB23I3sTZjJTqNnLAtHnRaTewcM5NGxwM0dw5GAk3HAG6PnzONXs40\nemO3sRj1OLPMFGVHAk1RtgWLrHwS4rrEbenD1UaupjOiZbenoNXO3QqBj+uyEvG1WGqTjhlnzp/x\n0Lq7OdVxhn11+znZXsX/9Tfzq/rf8GnXFu4s3kqGKS3eTQUWT12uJj/XzpYpPw8Oj1PX6qO25cLX\npSfdS7cnU5pvozTfTmmejZJ8G8bk2Q+mi702Sia1uT7zGmBSUlIYHR3FYDDQ2dlJRkYGGRkZ9PT0\nxG7T1dXF6tWrP/ZxvN7hOWujjEsq12KtTZ62kP+1bCc9hX180HaYCs8xXj/3Fm+ce5vlqUvZlruJ\n5alL4zbpd7HW5ZPk2pPJtSdzy8rIcu7+ofHIXJopPTWHTns4dNoTu0+mI+WinpqCDDNJ+mv/Y01q\no1xSm+lRzInsNm/ezL59+7j33nt566232Lp1K6tWreKJJ57A7/ej0Wg4ceIEjz/++Hw2S4iEkJbs\n4HMln+Vu5x2c7K5kf2sF1b3nqO49R6rBwdbcG9mUvQGT3hjvpoorsBr1rCpJY1VJpNcsHA7T5x+7\nKNA0dgxw+Ewnh890AqBSQW6aMRJoosFGtkcQImLOViFVVVWxe/du2tra0Gq1ZGZm8uyzz7Jr1y7G\nxsbIycnh6aefRqfT8eabb/Kzn/0MlUrFjh07uOeeez72sWUV0uIktblc80ArB1oPc6zzJBOhCbRq\nLWszVrItdzNFlvx5mTgqdZk9oXCYbu8Ibk9kz6fGDj9NnQOMT0xdzq0iL90UOz+NM8tCTtqVl3NL\nbZRLajM9cTsPzFyRALM4SW2ubnhihCMdH7K/7RBdw5Eh2XxzLttyN7E+czV6zdxNGJW6zK1gKISn\ndzi26qmxw09L1yCB4IWPbr1OTWGmObbqyZltId2eTGaGRWqjUHLcTI8EmBmQN5VySW0+WSgc4ry3\nnv1tFZzuriZMmGRtMjdmr2Nr7iYyU9Jn/TmlLvNvIhCitXvwwtCTx09bzxBTP82Tk7S4cq1YkrWk\nWg04LAbSLIbYZdkqIb7kuJkeCTAzIG8q5ZLazIx31McH7Uc42H6EgfFBAJbZS9mWt4my1BvQqGfn\nPzCpizKMTQRp7hyg0TOAuyMyBNXtHSZ0lU94U7KOVKuBVEv0y2og1ZIU+50pWSfnrplDctxMjwSY\nGZA3lXJJba5NIBTgVHcV+9sqqPO5AbAlWbkp50Y252zEmnR9SzmlLspldxipbeih1z9KT/8off5R\nev2j9PaP0usfo9c/ysSU7RKm0uvUsXDjiAacCz04SdjNSWjUMpn4WslxMz0SYGZA3lTKJbW5fm2D\nHg60HeZox4eMBcfRqDSsTi9jW95miq1F1/QXt9RFuT6pNuFwmIHhiSmhZsr36OWpm1xOpVapsJv1\nsXBzcU9O5Ot6loAnkkAwxPBogJGxAMPRr5HR6OXo95Ho5ZGxAKPjAZx5NkqyzSwrsJOcJLvRX40E\nmBmQD2PlktrMnpHAKMc6TvB+WwUdQ5EluznGLLbmbmJj1hoMWsO0H0vqolyzUZvR8UCkt+ayHpzI\nl3dgjKv9L2JK1kV7cJJiPTixwGM1YFbAMFU4HGZ0PHghfFwhcFzp56mXr9aLNR0atYrSPCtlrlTK\nnA7yM0xx/zdREgkwMyAfxsoltZl94XCYOl8D+9sq+Ki7ilA4hEGTxMasdWzNvZEcU9YnPobURbnm\nozaBYAjf4NglPThjsct9/tGLdvWeSq9VT+nBSbqsB8dmTvrEc94EgqHLQ8U0g8fk95n+L6hRq0gx\naElJ0pKcpCXFEP1+hZ9TLv3ZoEWn1eAdCfDByRYqG/po6rhQI6tRT5nTQZkrlRVOB6Y5ODtzIpEA\nMwPyYaxcUpu51T/m51D7UT5oP4JvLLI5YanNxdbcTaxOL7vqpF+pi3IpoTbhcJiBkYkLPTj9o/T4\nR+nzXwg9gyMTV7yvSgU2U6T3xmrUMzYRvDA0Ew0gU8+RM10GvSYWNK4WOpINUy5fcr1Oq77uXpKp\ntfEPjVPd2EdVQy9V7j4GhiP/HiqgKNtCuSsSaFzZliue72chkwAzA0o44MWVSW3mRzAUpLLnDPvb\nKqjx1gFg0ZvZkvMptuRsxG6wXXR7qYtyJUptRscDkUBzhTk4ff5R+qYMU2nUqk8OHFcLHwYtyXqt\nIkLA1WoTCodp6RyksqGXqoZe6tr8hKIv3mjQckORg/JoD43dnDTfzZ53EmBmIFEO+MVIajP/Ooa6\nONBWwWHPh4wGR1Gr1KxMW87W3E0stZegUqmkLgq2UGoTDIUYGgmQpNegn4XeDyWYbm2GRwOcbfJS\n5Y4Eml7/WOy6vHQjZc5UylwOSvNs6LQLb1WYBJgZWCgH/EIktYmfseA4xztO8n7bIdoGI5sPZqak\nszV3E3eX3cxwfzDOLRRXIseMcl1LbcLhMJ7eYarckeGmc80+AsHIEJpep+aGAntkMrDLQaY9ZS6a\nPe8kwMyAHPDKJbWJv3A4jNvfxP7WCk52nSYQDqLX6HBZiiixuSi1uyi05KNTy7JQJZBjRrlmozZj\nE0HOt/ioauijyt2Lp3c4dl2GLZkyl4MyZyrLCm0Y9Il5TEqAmQE54JVLaqMsA+ODVLQf40TPR7T4\nPbHf69RanNYiSm1OSm0uiiwF6DSLeyVFvMgxo1xzUZse30ikd8bdx5nGPkbHIz2jGrWKJfk2ylwO\nyp2p5KYbE2YYTgLMDMgBr1xSG2VKTzfT0Oahzuem1tdArbee9qGO2PVatRanpYASm4sldhdFlkL0\nEmjmhRwzyjXXtQkEQ9S39UeHm/po6rzwXDaTPjZ3ZnmRspdqS4CZATnglUtqo0xXqsvgxBD1Pje1\n3gZqfQ20DXoIE/mo0ao0FFoKKLW7KLW5cFkL53S37MVMjhnlmu/a9A+NU+3ujQWayaXrKhW4si2x\nuTPOLGUt1ZYAMwNywCuX1EaZplOX4YnhWA9Nna+BloH2WKDRqDQUWvIiPTS2YpzWQgzahb88dD7I\nMaNc8axNKBymqWOAqoZeKt19NFyyVHuF0xHrobGZ4nssSoCZATnglUtqo0zXUpeRwAj1vsbokFMD\nLYNthMKR1RRqlZpCc15sUnCxtWhGWxuIC+SYUS4l1WZ4dIIzjZGl2pUNfXgHpi7VNsVOpFeaZ/3E\nMyPPNgkwM6CkN5W4mNRGmWajLiOBURr6G6n1RnpomgZaLwo0+abc2JBTsa2IZG3ybDR9wZNjRrmU\nWptwOEx773DkrMANvdS09MeWaifpNNxQaI+sbnKlkmGb++NQAswMKPVNJaQ2SjUXdRkNjOHub4r0\n0PjqafK3EgxHVlSoUJFvzon00NhclNicpOgWxjkvZpscM8qVKLUZmwhS0+yLDTd19k1Zqm1PptyZ\nyk0rsynMunrQuB4SYGYgUd5Ui5HURpnmoy7jwXEaJgONt4EmfzOBKYEm15Qd66EpsbkwSqAB5JhR\nskStTffkUu2GXs40eRkbD5KdmsJ3vnTjnDyfBJgZSNQ31WIgtVGmeNRlPDhBo78ptsrJ7W8mEArE\nrs81ZV/UQ2PWm+a1fUohx4xyLYTaTC7VNiXryE2fm2Ps4wJMYp6aTwixqOk1OpbYS1hiLwFgIjhB\no7+FWl89tT437v5G2gY9vN96EIBsYyalNhel9mJKbE4s+rnp7hZiMdFq1CwtsMfv+eP2zEIIMUt0\nGl1kCMnuAmAiFKDJ30JddMipob8Rz1An+9sqAMhKyaAkOuRUanNhTbLEs/lCiGsgAUYIseDo1FpK\nbE5KbE7+pOg2AqEAzQNt1HrrqfU1UN/fyAdth/mg7TAAGSlp0TAT6aGxG2xxfgVCiE8iAUYIseBp\n1Vpc1kJc1kI+w60EQ0GaB9oiPTS+Bup9bg62H+Vg+1EAUg12im1Oiq1FlNicZKZkJMzeMUIsFhJg\nhBCLjkatwWktwGkt4I7CWwiGgrQOtkfPFOymwdfI0Y4THO04AYBJZ6TYWkRxtFcnz5SDRq2J86sQ\nYnGTACOEWPQ0ag2FlnwKLfncXnAzoXCIzuFu6nxu6n1u6nxuTvVUc6qnGgC9Ro/LUkixrYhiqxOn\ntUD2cxJinkmAEUKIS6hVarKNmWQbM9maGzm/Rd+o90Kg6W/knLeWc97a2O0LzHkU24oosToptjnl\nXDRCzDEJMEIIMQ0Og52NWXY2Zq0FIjtuN/gaqet3U+9rpHmglUZ/M++wH4gs3Z46j8ZhiN9yUyEW\nIgkwQghxDUw6IyvTV7AyfQUAY8FxGvubo4HGjbu/Cc9QZ2ylkz3JRonNGZtHkyUTg4W4LhJghBBi\nFiRp9Cx1lLDUETm53uTE4Mlhp/r+Ro51nuRY50kAjLoUiq3OyLCTzUm+KVcmBgsxAxJghBBiDkyd\nGHxbwTbC4TCdw13U+dzU+Rqp73dzuqea05MTg9U6iqyFlERXOzmthSTJxGAhrkoCjBBCzAOVSkWW\nMZMsYyY3RScGe0d9kR6a/kbqfW7Oe+s4760DIhOD8825sUnBxdYiTHpjPF+CEIoiAUYIIeLEbrCx\nIWsNG7LWADA0MUxDf2Ns2KlpoJUmfwvvtEQmBmelZMTm0BRbnaQmy8RgsXhJgBFCCIUw6lIoT1tO\nedpyAMaD4zT6m6OBppEGfxMd7Uc42H4EiEwMnpxDU2x1kmXMQK1Sx/MlCDFvJMAIIYRC6TX6i3bd\nnpwYPHkumnqfm+OdH3G88yMAjNoUXLZCiq2RXhq7Y1k8my/EnJIAI4QQCWLqxOBbmZwY3B0NNJFe\nmsqes1T2nAVAdUKFI8lGanIqaQYHacmTX6mkJjswalNkKbdIWPMaYEKhEE8++SS1tbXodDqeeuop\n+vr6+MEPfoBWqyUlJYVnnnkGq9U6n80SQoiEFJkYnEGWMYMtuZ8CIhODJycFd4934/F3RyYHX+H+\nBo0hFmpSkx2kGVJjAcdhsKFVy9+4Qrnm9d35zjvvMDAwwCuvvEJzczPf+c536O7u5tlnn8XlcvHT\nn/6UvXv38ld/9Vfz2SwhhFgw7AYb6w2rWZ+5mvR0M93dA4wHJ+gb7aNnJPo12kvPSB+9I310DXfT\nOth+2eOoUGE32GI9N6nJqRd6cAypGHXSeyPia14DTGNjIytXrgSgoKCA9vZ20tLS8Pl8APT39+Ny\nueazSUIIseDpNbrYEu5LhcNhBiYGo+Gml95LQs55Xz3nffWX3c+gSYr02kwZnpoMOQ6DHZ303og5\npgqHw+H5erL333+fPXv28MILL9DU1MR9993H888/zz/8wz9gsViwWq28/PLLaLUf/8YPBIJotXLG\nSiGEmGvjwQl6hnrpHOqhczD6NdRDV/T7WGDssvuoUOFIsZFlSifDmEamKS32PdOYhjnJJL034rrN\na4AB+OEPf8iRI0dYunQplZWVWCwW/v7v/55169axe/dusrOzeeSRRz72Mbq7B+asfZNdrkJ5pDbK\nJHVRrrmuTTgcZnBiiJ6R3ouGpyZ7cXxj/YS5/L+YJI0+1nMT68VJdpBmcOBIdiRc700oHCIYDhEM\nBQmGo1+hYOR3F10OEAyFCIVDLC9wMjEgIe6TpKebr3rdvL9LvvKVr8Qu33777Xg8HtatWwfA5s2b\neeONN+a7SUIIIa6BSqXCrDdh1ptwWgsvu34iFKBv1Budb9MbG6bqGY18bxv0XP6YqLAmWWJzbSYn\nGNuTbEA4FgoC0bAQmhoUwkGCoRCBcIBQaMrvLgoXIYKhwBXCRfCSADL1/lN+nnqb6ONeKaR9opOQ\nY8xiqT2yf1aJzUWy1nANVVi85jXAnDt3jj179vD000+zf/9+li9fjtvtpq6ujpKSEiorKyksvPwg\nEEIIkXh0ai2ZKelkpqRfdt2F3ptouIlNMo4EnXpfI3W449DqyDYOGpUajUqDRq2JfFdp0Ko0JOn0\n0Z/VqNWR3124XeQ+6uhlrUqLRq2O3V8dvQzQMdrB2e462oc6+GPrB6hVagrN+ZENQe0lOK2FCdcT\nNd/m9V9nyZIlhMNh7r//fpKSknj22WfxeDw88cQT6HQ6rFYr3/3ud+ezSUIIIeLg4t6bgsuunwgF\n8EZ7b3pG+ugf60cVCxUXQsHFlzWxcHHlyxcHjSv9Xh39mmvp6WbaO724+5uo8dZR01dH00ALbn8T\nbza+g06to9haFAs0+eZcOcvyJeZ9DsxskDkwi5PURpmkLsoltVGuK9VmJDBKna+Bmr46aryR3plJ\nKdpkSu3FkSEnewmZKemLYiK0oubACCGEEOJyyVrDRXth+ccHOB8NMzXeOk51V3GquwoAW5KVJVMC\njd1gi2fT40ICjBBCCKFAFr2Z9VlrWB/drbxnpDfWO1PjreNoxwmOdpwAIDMlPRZmSu3FGHUp8Wz6\nvJAAI4QQQiSAtORU0nJT2ZL7KULhEJ6hTmr6aqnx1lHra2B/WwX72ypQoSLfnMNSeylL7SUU24rQ\na/Txbv6skwAjhBBCJBi1Sk2uKZtcUza3FmwjGArSNNBCTV8d57y1uPubaR5o4+3m99CqNDithbEl\n24XmfDTqxD8ZI0e7OAAACHlJREFUrAQYIYQQIsFp1Bpc1iJc1iLuct7OWHCcep87NtxU53NT62vg\nN+63MGiSKLG5YiuccoxZCTkhWAKMEEIIscAkafQsT13K8tSlAAxODFHrbYgGmlqqes9S1XsWALPO\nFJkQ7Chhqb2UtGRHPJs+bRJghBBCiAXOpDOyJqOcNRnlAHhHfbHemZq+Oj7sOsWHXacASDU4YsNN\nS+0lmPWmeDb9qiTACCGEEIuM3WDjxuz13Ji9nnA4TOdwdyzQnPfWc8hzlEOeo0B0y4NomCm1uTAo\nZMsDCTBCCCHEIqZSqcgyZpBlzODmvM2EwiFaBtpiS7br+920t3Twx5bIlgdFlvzYku2iOG55IAFG\nCCGEEDFqlZpCSz6FlnzuLPo0E8EJ3P6mWKBp9LfQ0N/E76NbHmzL3cR9pX867+2UACOEEEKIq9Jp\ndCyxl7DEXsKfASOBEep87lig8Y31x6VdEmCEEEIIMW3J2uSLtjyIF9naUgghhBAJRwKMEEIIIRKO\nBBghhBBCJBwJMEIIIYRIOBJghBBCCJFwJMAIIYQQIuFIgBFCCCFEwpEAI4QQQoiEIwFGCCGEEAlH\nAowQQgghEo4EGCGEEEIkHAkwQgghhEg4EmCEEEIIkXBU4XA4HO9GCCGEEELMhPTACCGEECLhSIAR\nQgghRMKRACOEEEKIhCMBRgghhBAJRwKMEEIIIRKOBBghhBBCJBwJMFN897vfZfv27Tz00EOcPn06\n3s0RUzzzzDNs376dL3zhC7z11lvxbo6YYnR0lNtvv51f/vKX8W6KmOL111/nnnvu4b777uO9996L\nd3MEMDQ0xN/93d+xc+dOHnroIQ4cOBDvJiU0bbwboBRHjx6lqamJvXv3Ul9fz+OPP87evXvj3SwB\nHD58mNraWvbu3YvX6+Xzn/88d955Z7ybJaKee+45rFZrvJshpvB6vfzkJz/htddeY3h4mH//93/n\nlltuiXezFr1f/epXOJ1OHnvsMTo7O/mLv/gL3nzzzXg3K2FJgImqqKjg9ttvB6C4uJj+/n4GBwcx\nmUxxbpnYsGEDK1euBMBisTAyMkIwGESj0cS5ZaK+vp66ujr5z1FhKioq2LRpEyaTCZPJxL/+67/G\nu0kCsNvt1NTUAOD3+7Hb7XFuUWKTIaSonp6ei95MDoeD7u7uOLZITNJoNKSkpADw6quvsm3bNgkv\nCrF792527doV72aIS7S2tjI6Osrf/M3f8PDDD1NRURHvJgng7rvvpr29nTvuuIMdO3bwta99Ld5N\nSmjSA3MVssOC8vzhD3/g1Vdf5ec//3m8myKAX//616xevZr8/Px4N0Vcgc/n48c//jHt7e088sgj\n/PGPf0SlUsW7WYva//zP/5CTk8PPfvYzzp07x+OPPy5zx66DBJiojIwMenp6Yj93dXWRnp4exxaJ\nqQ4cOMBPf/pT/vM//xOz2Rzv5gjgvffeo6Wlhffee4+Ojg70ej1ZWVls3rw53k1b9FJTU1mzZg1a\nrZaCggKMRiN9fX2kpqbGu2mL2okTJ7jpppsAWLZsGV1dXTIcfh1kCClqy5Yt7Nu3D4Dq6moyMjJk\n/otCDAwM8Mwzz/Af//Ef2Gy2eDdHRP3bv/0br732Gr/4xS944IEHePTRRyW8KMRNN93E4cOHCYVC\neL1ehoeHZb6FAhQWFnLq1CkA2traMBqNEl6ug/TARK1du5YVK1bw0EMPoVKpePLJJ+PdJBH1u9/9\nDq/Xy5e//OXY73bv3k1OTk4cWyWEcmVmZvKZz3yGBx98EIAnnngCtVr+Xo237du38/jjj7Njxw4C\ngQBPPfVUvJuU0FRhmewhhBBCiAQjkVwIIYQQCUcCjBBCCCESjgQYIYQQQiQcCTBCCCGESDgSYIQQ\nQgiRcCTACCHmVGtrK2VlZezcuTO2C+9jjz2G3++f9mPs3LmTYDA47dv/+Z//OUeOHLmW5gohEoQE\nGCHEnHM4HLz44ou8+OKLvPLKK2RkZPDcc89N+/4vvviinPBLCHEROZGdEGLebdiwgb1793Lu3Dl2\n795NIBBgYmKCf/mXf2H58uXs3LmTZcuWcfbsWfbs2cPy5cuprq5mfHycb37zm3R0dBAIBLj33nt5\n+OGHGRkZ4Stf+Qper5fCwkLGxsYA6Ozs5Ktf/SoAo6OjbN++nfvvvz+eL10IMUskwAgh5lUwGOTt\nt99m3bp1/NM//RM/+clPKCgouGxzu5SUFF566aWL7vviiy9isVj4/ve/z+joKJ/97GfZunUrhw4d\nwmAwsHfvXrq6urjtttsA+P3vf4/L5eJb3/oWY2Nj/Pd///e8v14hxNyQACOEmHN9fX3s3LkTgFAo\nxPr16/nCF77Aj370I77xjW/Ebjc4OEgoFAIi23tc6tSpU9x3330AGAwGysrKqK6u5vz586xbtw6I\nbMzqcrkA2Lp1Ky+//DK7du3i5ptvZvv27XP6OoUQ80cCjBBizk3OgZlqYGAAnU532e8n6XS6y36n\nUqku+jkcDqNSqQiHwxft9TMZgoqLi/ntb3/LsWPHePPNN9mzZw+vvPLK9b4cIYQCyCReIURcmM1m\n8vLyeP/99wFwu938+Mc//tj7rFq1igMHDgAwPDxMdXU1K1asoLi4mJMnTwLg8Xhwu90AvPHGG1RW\nVrJ582aefPJJPB4PgUBgDl+VEGK+SA+MECJudu/ezbe//W2ef/55AoEAu3bt+tjb79y5k29+85t8\n8YtfZHx8nEcffZS8vDzuvfde3n33XR5++GHy8vIoLy8HoKSkhCeffBK9Xk84HOZLX/oSWq187Amx\nEMhu1EIIIYRIODKEJIQQQoiEIwFGCCGEEAlHAowQQgghEo4EGCGEEEIkHAkwQgghhEg4EmCEEEII\nkXAkwAghhBAi4UiAEUIIIUTC+f88ELhQ56AU7QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + } + ] +} \ No newline at end of file From 1f0e207734fa1a49a082ebd77ed51eac61f8d56e Mon Sep 17 00:00:00 2001 From: Amit Rai <42401957+ardev472@users.noreply.github.com> Date: Sun, 17 Feb 2019 23:25:52 +0530 Subject: [PATCH 11/11] Created using Colaboratory --- ...classification_of_handwritten_digits.ipynb | 2450 +++++++++++++++++ 1 file changed, 2450 insertions(+) create mode 100644 multi_class_classification_of_handwritten_digits.ipynb diff --git a/multi_class_classification_of_handwritten_digits.ipynb b/multi_class_classification_of_handwritten_digits.ipynb new file mode 100644 index 0000000..5237e6a --- /dev/null +++ b/multi_class_classification_of_handwritten_digits.ipynb @@ -0,0 +1,2450 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "multi-class_classification_of_handwritten_digits.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "266KQvZoMxMv", + "6sfw3LH0Oycm" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "mPa95uXvcpcn", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Classifying Handwritten Digits with Neural Networks" + ] + }, + { + "metadata": { + "id": "Fdpn8b90u8Tp", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "![img](https://www.tensorflow.org/versions/r0.11/images/MNIST.png)" + ] + }, + { + "metadata": { + "id": "c7HLCm66Cs2p", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Train both a linear model and a neural network to classify handwritten digits from the classic [MNIST](http://yann.lecun.com/exdb/mnist/) data set\n", + " * Compare the performance of the linear and neural network classification models\n", + " * Visualize the weights of a neural-network hidden layer" + ] + }, + { + "metadata": { + "id": "HSEh-gNdu8T0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Our goal is to map each input image to the correct numeric digit. We will create a NN with a few hidden layers and a Softmax layer at the top to select the winning class." + ] + }, + { + "metadata": { + "id": "2NMdE1b-7UIH", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "\n", + "First, let's download the data set, import TensorFlow and other utilities, and load the data into a *pandas* `DataFrame`. Note that this data is a sample of the original MNIST training data; we've taken 20000 rows at random." + ] + }, + { + "metadata": { + "id": "4LJ4SD8BWHeh", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 233 + }, + "outputId": "9f1b7e7a-6084-4730-8c3c-a1074a590327" + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import glob\n", + "import math\n", + "import os\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "mnist_dataframe = pd.read_csv(\n", + " \"https://download.mlcc.google.com/mledu-datasets/mnist_train_small.csv\",\n", + " sep=\",\",\n", + " header=None)\n", + "\n", + "# Use just the first 10,000 records for training/validation.\n", + "mnist_dataframe = mnist_dataframe.head(10000)\n", + "\n", + "mnist_dataframe = mnist_dataframe.reindex(np.random.permutation(mnist_dataframe.index))\n", + "mnist_dataframe.head()" + ], + "execution_count": 1, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0123456789...775776777778779780781782783784
90346000000000...0000000000
44711000000000...0000000000
71585000000000...0000000000
4744000000000...0000000000
99632000000000...0000000000
\n", + "

5 rows × 785 columns

\n", + "
" + ], + "text/plain": [ + " 0 1 2 3 4 5 6 7 8 9 ... 775 776 777 \\\n", + "9034 6 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", + "4471 1 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", + "7158 5 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", + "474 4 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", + "9963 2 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", + "\n", + " 778 779 780 781 782 783 784 \n", + "9034 0 0 0 0 0 0 0 \n", + "4471 0 0 0 0 0 0 0 \n", + "7158 0 0 0 0 0 0 0 \n", + "474 0 0 0 0 0 0 0 \n", + "9963 0 0 0 0 0 0 0 \n", + "\n", + "[5 rows x 785 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 1 + } + ] + }, + { + "metadata": { + "id": "kg0-25p2mOi0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Each row represents one labeled example. Column 0 represents the label that a human rater has assigned for one handwritten digit. For example, if Column 0 contains '6', then a human rater interpreted the handwritten character as the digit '6'. The ten digits 0-9 are each represented, with a unique class label for each possible digit. Thus, this is a multi-class classification problem with 10 classes." + ] + }, + { + "metadata": { + "id": "PQ7vuOwRCsZ1", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "![img](https://www.tensorflow.org/versions/r0.11/images/MNIST-Matrix.png)" + ] + }, + { + "metadata": { + "id": "dghlqJPIu8UM", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Columns 1 through 784 contain the feature values, one per pixel for the 28×28=784 pixel values. The pixel values are on a gray scale in which 0 represents white, 255 represents black, and values between 0 and 255 represent shades of gray. Most of the pixel values are 0; you may want to take a minute to confirm that they aren't all 0. For example, adjust the following text block to print out the values in column 72." + ] + }, + { + "metadata": { + "id": "2ZkrL5MCqiJI", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 419 + }, + "outputId": "53e655a5-0b1a-4a6b-a709-6c470769fcd9" + }, + "cell_type": "code", + "source": [ + "mnist_dataframe.loc[:, 72:72]" + ], + "execution_count": 2, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
72
90340
44710
71580
4740
99630
......
43790
69540
6460
58950
55750
\n", + "

10000 rows × 1 columns

\n", + "
" + ], + "text/plain": [ + " 72\n", + "9034 0\n", + "4471 0\n", + "7158 0\n", + "474 0\n", + "9963 0\n", + "... ..\n", + "4379 0\n", + "6954 0\n", + "646 0\n", + "5895 0\n", + "5575 0\n", + "\n", + "[10000 rows x 1 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 2 + } + ] + }, + { + "metadata": { + "id": "vLNg2VxqhUZ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Now, let's parse out the labels and features and look at a few examples. Note the use of `loc` which allows us to pull out columns based on original location, since we don't have a header row in this data set." + ] + }, + { + "metadata": { + "id": "JfFWWvMWDFrR", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def parse_labels_and_features(dataset):\n", + " \"\"\"Extracts labels and features.\n", + " \n", + " This is a good place to scale or transform the features if needed.\n", + " \n", + " Args:\n", + " dataset: A Pandas `Dataframe`, containing the label on the first column and\n", + " monochrome pixel values on the remaining columns, in row major order.\n", + " Returns:\n", + " A `tuple` `(labels, features)`:\n", + " labels: A Pandas `Series`.\n", + " features: A Pandas `DataFrame`.\n", + " \"\"\"\n", + " labels = dataset[0]\n", + "\n", + " # DataFrame.loc index ranges are inclusive at both ends.\n", + " features = dataset.loc[:,1:784]\n", + " # Scale the data to [0, 1] by dividing out the max value, 255.\n", + " features = features / 255\n", + "\n", + " return labels, features" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "mFY_-7vZu8UU", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 346 + }, + "outputId": "ca2683cd-cfce-4e22-8f71-b5c469ab0f37" + }, + "cell_type": "code", + "source": [ + "training_targets, training_examples = parse_labels_and_features(mnist_dataframe[:7500])\n", + "training_examples.describe()" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
12345678910...775776777778779780781782783784
count7500.07500.07500.07500.07500.07500.07500.07500.07500.07500.0...7500.07500.07500.07500.07500.07500.07500.07500.07500.07500.0
mean0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
std0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
min0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
25%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
50%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
75%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
max0.00.00.00.00.00.00.00.00.00.0...1.01.00.80.00.00.00.00.00.00.0
\n", + "

8 rows × 784 columns

\n", + "
" + ], + "text/plain": [ + " 1 2 3 4 5 6 7 8 9 10 \\\n", + "count 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 \n", + "mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "25% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "50% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "75% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "max 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + " ... 775 776 777 778 779 780 781 782 783 \\\n", + "count ... 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 \n", + "mean ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "std ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "min ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "25% ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "50% ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "75% ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "max ... 1.0 1.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + " 784 \n", + "count 7500.0 \n", + "mean 0.0 \n", + "std 0.0 \n", + "min 0.0 \n", + "25% 0.0 \n", + "50% 0.0 \n", + "75% 0.0 \n", + "max 0.0 \n", + "\n", + "[8 rows x 784 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 4 + } + ] + }, + { + "metadata": { + "id": "4-Vgg-1zu8Ud", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 346 + }, + "outputId": "a1b3a96c-8903-42d4-e49c-71049435730a" + }, + "cell_type": "code", + "source": [ + "validation_targets, validation_examples = parse_labels_and_features(mnist_dataframe[7500:10000])\n", + "validation_examples.describe()" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
12345678910...775776777778779780781782783784
count2500.02500.02500.02500.02500.02500.02500.02500.02500.02500.0...2500.02500.02500.02500.02500.02500.02500.02500.02500.02500.0
mean0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
std0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
min0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
25%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
50%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
75%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
max0.00.00.00.00.00.00.00.00.00.0...0.91.00.30.21.00.20.00.00.00.0
\n", + "

8 rows × 784 columns

\n", + "
" + ], + "text/plain": [ + " 1 2 3 4 5 6 7 8 9 10 \\\n", + "count 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 \n", + "mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "25% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "50% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "75% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "max 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + " ... 775 776 777 778 779 780 781 782 783 \\\n", + "count ... 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 \n", + "mean ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "std ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "min ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "25% ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "50% ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "75% ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "max ... 0.9 1.0 0.3 0.2 1.0 0.2 0.0 0.0 0.0 \n", + "\n", + " 784 \n", + "count 2500.0 \n", + "mean 0.0 \n", + "std 0.0 \n", + "min 0.0 \n", + "25% 0.0 \n", + "50% 0.0 \n", + "75% 0.0 \n", + "max 0.0 \n", + "\n", + "[8 rows x 784 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 5 + } + ] + }, + { + "metadata": { + "id": "wrnAI1v6u8Uh", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Show a random example and its corresponding label." + ] + }, + { + "metadata": { + "id": "s-euVJVtu8Ui", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 360 + }, + "outputId": "50cd8058-9eae-4d04-8936-20cb12afb5a7" + }, + "cell_type": "code", + "source": [ + "rand_example = np.random.choice(training_examples.index)\n", + "_, ax = plt.subplots()\n", + "ax.matshow(training_examples.loc[rand_example].values.reshape(28, 28))\n", + "ax.set_title(\"Label: %i\" % training_targets.loc[rand_example])\n", + "ax.grid(False)" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFXCAYAAAAro2x+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFNNJREFUeJzt3X9MVff9x/EXckvqLSgDhcQsrZvD\nlVndMovr1WoLWFtcjT+yVSTCutpGu2GkzjlqqralG4riVuwakNTOlczejSZLk9pB0P1wFGlw7Rbc\nWtB1htrKEKk/rxvi3R/N9+brpON9b++954LPx196efvhc73JM+dyOefE+f1+vwAA/9MopzcAAMMB\nsQQAA2IJAAbEEgAMiCUAGBBLADAgloiaL37xizp58mRQ/yYnJ0dtbW1B/ZvS0lI9//zzQ87t379f\nCxcuVF5enpYtW6aOjo6gvg+uL8QS16Xu7m6VlpaqsrJSr7/+uu6//35t2rTJ6W0hhhFLOM7n86mk\npET33nuvcnJytHXr1qu+fujQIS1atEh33XWXfvzjHwceb2pq0oIFC5Sbm6uHHnpIp0+fvmbtyspK\n7d2795rHXS6XKisr9YUvfEGSNH36dB09ejTMzwwjicvpDQB79+7VhQsX9Jvf/EZnz57VvHnzlJub\nq9tvv12SdOTIEb3yyiv66KOPlJeXp7y8PN10001av369Xn75ZU2ePFk1NTV68sknVVVVddXa3/ve\n9wb9nqmpqZozZ07g73/4wx/05S9/OXJPEsMesYTjHnroIRUWFiouLk5jx45VRkaG3n///UAsFyxY\noPj4eKWmpiorK0tvvfWWrly5ohkzZmjy5MmSpPz8fM2aNUsDAwNBf/+Wlhbt2bNHe/bsCevzwshC\nLOG4f/zjH9qyZYv+/ve/a9SoUTp58qSWLFkS+HpKSkrgz0lJSTp79qz8fr/a2tp03333Bb6WmJio\njz76KKjv3dTUpLKyMlVXVwfekgODIZZw3NNPP60pU6bopz/9qeLj45Wfn3/V18+cOXPVn8eOHauE\nhATNnDnzmrfdwXjjjTf0wx/+ULt379akSZNCXgfXBz7ggeN6e3uVmZmp+Ph4NTc36/jx47p48WLg\n66+99pquXLmi3t5eHT58WLfffrvuvPNOtbW1qaurS5L0l7/8Rc8884z5e/p8Pj3++OPauXMnoYQJ\nR5aIqsLCQsXHxwf+/swzz+jRRx9VeXm5nn/+eeXm5qq4uFhVVVXKzMyUJE2dOlXf+MY3dPr0aX3r\nW98KvF0uKyvTd7/7XfX39+umm27Shg0brvl+lZWVmjBhgpYtW3bV4/v379fp06e1bt26qx6vq6vT\nuHHjwv20MQLEcT1LABgab8MBwIBYAoABsQQAA0c+4PnRj36kP//5z4qLi9OGDRs0bdo0J7YRVq2t\nrVqzZo0yMjIkSZMnT9bGjRsd3lXoOjo69J3vfEcPPvigli9frg8//FDr16/XwMCAxo8fr23btikh\nIcHpbQblv59TaWmpjhw5ouTkZEnSihUrdPfddzu7ySBVVFTo8OHDunz5slauXKmpU6cO+9dJuvZ5\nHThwwPHXKuqxfPPNN3X8+HF5vV4dO3ZMGzZskNfrjfY2ImLGjBmf6vf+YsXFixdVVlYmj8cTeKyq\nqkoFBQXKy8vTjh07VF9fr4KCAgd3GZzBnpMkrV27VtnZ2Q7t6tM5dOiQOjs75fV61dfXp8WLF8vj\n8Qzr10ka/Hndcccdjr9WUX8b3tLSorlz50qSJk2apDNnzuj8+fPR3gb+h4SEBNXW1iotLS3wWGtr\nq3JzcyVJ2dnZamlpcWp7IRnsOQ13WVlZevbZZyVJY8aMkc/nG/avkzT48wrlNNZwi3osT506pc98\n5jOBv6ekpKinpyfa24iIo0ePatWqVVq2bJmam5ud3k7IXC6Xbrzxxqse8/l8gbdzqampw+41G+w5\nSR//XmVRUZEee+yxQa9aFMvi4+PldrslSfX19ZozZ86wf52kwZ9XfHy846+V47+UPlJ+zXPixIkq\nLi5WXl6eurq6VFRUpMbGxmH586KhjJTXbOHChUpOTlZmZqZ27dql5557blhe07KpqUn19fXavXu3\n5s2bF3h8uL9O//95tbe3O/5aRf3IMi0tTadOnQr8/Z///KfGjx8f7W2EXXp6uubPn6+4uDjdfPPN\nGjdunLq7u53eVti43W5dunRJ0scXzh0Jb2c9Hk/gLKGcnJxheaX0gwcPqrq6WrW1tUpKShoxr9N/\nP69YeK2iHstZs2apoaFB0sfXKUxLS1NiYmK0txF2r776ql544QVJUk9Pj3p7e5Wenu7wrsJn5syZ\ngdetsbFRs2fPdnhHn97q1asD55a3trYGfpNhuDh37pwqKipUU1MT+JR4JLxOgz2vWHitHDndcfv2\n7Wpra1NcXJw2b96sW2+9NdpbCLvz589r3bp1Onv2rPr7+1VcXKy77rrL6W2FpL29XVu3btWJEyfk\ncrmUnp6u7du3q7S0VP/61780YcIElZeX64YbbnB6q2aDPafly5dr165dGj16tNxut8rLy5Wamur0\nVs28Xq927typz33uc4HHtmzZoieeeGLYvk7S4M9ryZIlqqurc/S14txwADDgDB4AMCCWAGBALAHA\ngFgCgAGxBAADYgkABsQSAAyIJQAYEEsAMAj5qkMj8WrnAPBJQorlSL7aOQAMJqS34VztHMD1JqRY\njuSrnQPAYMLyAQ8XLgIw0oUUy5F6tXMA+CQhxXKkXu0cAD5JSJ+Gf/WrX9WUKVOUn58fuNo5AIxk\nXCkdAAw4gwcADIglABgQSwAwIJYAYEAsAcCAWAKAAbEEAANiCQAGxBIADIglABgQSwAwIJYAYEAs\nAcCAWAKAAbEEAANiCQAGxBIADIglABgQSwAwIJYAYEAsAcCAWAKAQUj3DQci5cyZM6a5mpoa85q/\n/e1vzbOTJk0yz1rNnz8/IrOILo4sAcCAWAKAAbEEAANiCQAGxBIADIglABgQSwAwIJYAYEAsAcCA\nWAKAQZzf7/c7vQmMbO+884559utf/7pp7r333gt1O1E3apT9mKSurs48m5+fH8p2ECKOLAHAgFgC\ngAGxBAADYgkABsQSAAyIJQAYEEsAMCCWAGBALAHAgDN4EJLe3l7zrMfjMc9az8wpLi42r1leXm6e\ntXr//ffNs9OmTTPPJiUlmWf37dtnmps+fbp5TXwyjiwBwCCkW+G2trZqzZo1ysjIkCRNnjxZGzdu\nDOvGACCWhHzf8BkzZqiqqiqcewGAmMXbcAAwCDmWR48e1apVq7Rs2TI1NzeHc08AEHNCehs+ceJE\nFRcXKy8vT11dXSoqKlJjY6MSEhLCvT8AiAkhHVmmp6dr/vz5iouL080336xx48apu7s73HsDgJgR\nUixfffVVvfDCC5Kknp4e9fb2Kj09PawbA4BYEtLb8JycHK1bt0779+9Xf3+/nnzySd6CAxjRQopl\nYmKiqqurw70XAIhZnO6Iq5w6dco0N2vWLPOaH3zwgXn2wIEDprmsrCzzmk57/fXXzbPWG7ZJUmFh\noWluz5495jXxyfg9SwAwIJYAYEAsAcCAWAKAAbEEAANiCQAGxBIADIglABgQSwAwIJYAYBDybSUw\nMm3evNk019nZaV7zqaeeMs8Op9MYrb70pS9FZN0//elPEVkXg+PIEgAMiCUAGBBLADAglgBgQCwB\nwIBYAoABsQQAA2IJAAbEEgAMOIPnOnD58mXzbHNzs2kumJtgLV261DwLxCqOLAHAgFgCgAGxBAAD\nYgkABsQSAAyIJQAYEEsAMCCWAGBALAHAgFgCgAGnO14HLl26ZJ695557THPBnMKYkJBgnoVdYmKi\n01u4rnBkCQAGxBIADIglABgQSwAwIJYAYEAsAcCAWAKAAbEEAANiCQAGxBIADDjd8ToQzGlx27Zt\ni+BOrk/Hjx+PyLrf/va3I7IuBmc6suzo6NDcuXNVV1cnSfrwww9VWFiogoICrVmzRv/+978jukkA\ncNqQsbx48aLKysrk8XgCj1VVVamgoEC/+MUvdMstt6i+vj6imwQApw0Zy4SEBNXW1iotLS3wWGtr\nq3JzcyVJ2dnZamlpidwOASAGDPkzS5fLJZfr6jGfzxe47FZqaqp6enoiszsAiBGf+tNwv98fjn0A\nQEwLKZZutztwQdnu7u6r3qIDwEgUUixnzpyphoYGSVJjY6Nmz54d1k0BQKwZ8meW7e3t2rp1q06c\nOCGXy6WGhgZt375dpaWl8nq9mjBhghYtWhSNvQKAY4aM5W233aaXXnrpmsdffPHFiGwIAGJRnJ9P\naICgXblyxTybnZ1tnm1ubjbPnjhxwjSXnp5uXhOfjHPDAcCAWAKAAbEEAANiCQAGxBIADIglABgQ\nSwAwIJYAYEAsAcCAWAKAATcsA0Jw7Ngx8+zBgwfNs4WFheZZTmOMLo4sAcCAWAKAAbEEAANiCQAG\nxBIADIglABgQSwAwIJYAYEAsAcCAWAKAAac7AiHYu3eveTYlJcU8+9RTT4WyHUQBR5YAYEAsAcCA\nWAKAAbEEAANiCQAGxBIADIglABgQSwAwIJYAYMAZPMNUT0+Peba8vNw8+/bbb5vmpk+fbl7z/vvv\nN89mZWWZ5txut3nNYFjPoHn66afNaxYVFZlnJ06caJ5FdHFkCQAGxBIADIglABgQSwAwIJYAYEAs\nAcCAWAKAAbEEAANiCQAGxBIADOL8fr/f6U2MdD6fzzz7wAMPmOYOHDhgXvOzn/2sedaqs7Mz7GtK\n0uzZs01zv/rVr8xrNjQ0mGcffPBB09yUKVPMa7755pvm2RtvvNE8i+jiyBIADEyx7Ojo0Ny5c1VX\nVydJKi0t1YIFC1RYWKjCwkL97ne/i+QeAcBxQ1516OLFiyorK5PH47nq8bVr1yo7OztiGwOAWDLk\nkWVCQoJqa2uVlpYWjf0AQEwaMpYul2vQHzrX1dWpqKhIjz32mE6fPh2RzQFArAjpA56FCxdq3bp1\n+vnPf67MzEw999xz4d4XAMSUkGLp8XiUmZkpScrJyVFHR0dYNwUAsSakWK5evVpdXV2SpNbWVmVk\nZIR1UwAQa4b8NLy9vV1bt27ViRMn5HK51NDQoOXLl6ukpESjR4+W2+0O6h4vADAcDRnL2267TS+9\n9NI1j997770R2RAAxCLu7hgFW7ZsMc++9tprprlgPlRbsWKFedbqwoUL5tnKykrzrPVdyuc//3nz\nmsHsNSUlxTT3yiuvmNfkFMaRgdMdAcCAWAKAAbEEAANiCQAGxBIADIglABgQSwAwIJYAYEAsAcCA\nWAKAAXd3jIJHHnnEPPvuu++a5vbt22deMzEx0TwbCQMDA+ZZ661K/vjHP4a6nf/p1ltvNc0Fc8dG\np///ER4cWQKAAbEEAANiCQAGxBIADIglABgQSwAwIJYAYEAsAcCAWAKAATcsC1FPT495ds+ePebZ\n+vp605zTZ4VcunTJPPuTn/zEPGs9M2fs2LHmNZOSksyz77zzjmnu4YcfNq/5s5/9zDzLzc1iF0eW\nAGBALAHAgFgCgAGxBAADYgkABsQSAAyIJQAYEEsAMCCWAGBALAHAgNMdQxTMTbiCceHChYisa3X+\n/HnT3H333Wde84033jDPWk9j/PWvf21e82tf+5p5dtGiRaa5X/7yl+Y1r1y5Yp59+eWXzbOjRnGs\nE038bwOAAbEEAANiCQAGxBIADIglABgQSwAwIJYAYEAsAcCAWAKAAbEEAIM4v9/vd3oTI53H4zHP\ndnR0mOZ27txpXvNvf/ubedZ6Gt+xY8fMa27fvt08u3z5ctPcuHHjzGsGo7u72zSXn59vXvP3v/+9\nefaBBx4wz1ZXV5vmgrljpMtlPwM6mNmRwPRsKyoqdPjwYV2+fFkrV67U1KlTtX79eg0MDGj8+PHa\ntm2bEhISIr1XAHDMkLE8dOiQOjs75fV61dfXp8WLF8vj8aigoEB5eXnasWOH6uvrVVBQEI39AoAj\nhvyZZVZWlp599llJ0pgxY+Tz+dTa2qrc3FxJUnZ2tlpaWiK7SwBw2JCxjI+Pl9vtliTV19drzpw5\n8vl8gbfdqamp6unpiewuAcBh5k/Dm5qaVF9fr02bNl31OJ8PAbgemGJ58OBBVVdXq7a2VklJSXK7\n3bp06ZKkjz89TEtLi+gmAcBpQ8by3LlzqqioUE1NjZKTkyVJM2fOVENDgySpsbFRs2fPjuwuAcBh\nQ34avm/fPvX19amkpCTw2JYtW/TEE0/I6/VqwoQJ5kvxA8BwNWQsly5dqqVLl17z+IsvvhiRDQFA\nLOIMnij461//ap613lwrmBub3XDDDebZO++80zS3atUq85rf/OY3zbPDxf/9zN7i+9//vnl2165d\n5tn+/n7T3OjRo81rfuUrXzHPzps3zzS3efNm85qxjHPDAcCAWAKAAbEEAANiCQAGxBIADIglABgQ\nSwAwIJYAYEAsAcCAWAKAAac7xpgPPvggrHOSNHHiRPNspG4EBpv33nvPPLtjxw7TnPUmdJKCupD3\nD37wA9NceXm5ec1YxpElABgQSwAwIJYAYEAsAcCAWAKAAbEEAANiCQAGxBIADIglABgQSwAw4HRH\nADDgyBIADIglABgQSwAwIJYAYEAsAcCAWAKAAbEEAANiCQAGxBIADIglABgQSwAwIJYAYEAsAcCA\nWAKAAbEEAANiCQAGxBIADIglABgQSwAwIJYAYEAsAcDAZRmqqKjQ4cOHdfnyZa1cuVIHDhzQkSNH\nlJycLElasWKF7r777kjuEwAcNWQsDx06pM7OTnm9XvX19Wnx4sW64447tHbtWmVnZ0djjwDguCFj\nmZWVpWnTpkmSxowZI5/Pp4GBgYhvDABiSZzf7/dbh71er9ra2hQfH6+enh719/crNTVVGzduVEpK\nSiT3CQCOMseyqalJNTU12r17t9rb25WcnKzMzEzt2rVLJ0+e1KZNmyK9VwBwjOnT8IMHD6q6ulq1\ntbVKSkqSx+NRZmamJCknJ0cdHR0R3SQAOG3IWJ47d04VFRWqqakJfPq9evVqdXV1SZJaW1uVkZER\n2V0CgMOG/IBn37596uvrU0lJSeCxJUuWqKSkRKNHj5bb7VZ5eXlENwkATgvqAx4AuF5xBg8AGBBL\nADAglgBgQCwBwIBYAoABsQQAA2IJAAbEEgAMiCUAGBBLADAglgBgQCwBwIBYAoABsQQAA2IJAAbE\nEgAMiCUAGBBLADAglgBgQCwBwIBYAoABsQQAA2IJAAbEEgAMiCUAGBBLADAglgBgQCwBwIBYAoDB\nfwAJpqfhwz+VygAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "ScmYX7xdZMXE", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Build a Linear Model for MNIST\n", + "\n", + "First, let's create a baseline model to compare against. The `LinearClassifier` provides a set of *k* one-vs-all classifiers, one for each of the *k* classes.\n", + "\n", + "You'll notice that in addition to reporting accuracy, and plotting Log Loss over time, we also display a [**confusion matrix**](https://en.wikipedia.org/wiki/Confusion_matrix). The confusion matrix shows which classes were misclassified as other classes. Which digits get confused for each other?\n", + "\n", + "Also note that we track the model's error using the `log_loss` function. This should not be confused with the loss function internal to `LinearClassifier` that is used for training." + ] + }, + { + "metadata": { + "id": "cpoVC4TSdw5Z", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns():\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " \n", + " # There are 784 pixels in each image.\n", + " return set([tf.feature_column.numeric_column('pixels', shape=784)])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "kMmL89yGeTfz", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Here, we'll make separate input functions for training and for prediction. We'll nest them in `create_training_input_fn()` and `create_predict_input_fn()`, respectively, so we can invoke these functions to return the corresponding `_input_fn`s to pass to our `.train()` and `.predict()` calls." + ] + }, + { + "metadata": { + "id": "OeS47Bmn5Ms2", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def create_training_input_fn(features, labels, batch_size, num_epochs=None, shuffle=True):\n", + " \"\"\"A custom input_fn for sending MNIST data to the estimator for training.\n", + "\n", + " Args:\n", + " features: The training features.\n", + " labels: The training labels.\n", + " batch_size: Batch size to use during training.\n", + "\n", + " Returns:\n", + " A function that returns batches of training features and labels during\n", + " training.\n", + " \"\"\"\n", + " def _input_fn(num_epochs=None, shuffle=True):\n", + " # Input pipelines are reset with each call to .train(). To ensure model\n", + " # gets a good sampling of data, even when number of steps is small, we \n", + " # shuffle all the data before creating the Dataset object\n", + " idx = np.random.permutation(features.index)\n", + " raw_features = {\"pixels\":features.reindex(idx)}\n", + " raw_targets = np.array(labels[idx])\n", + " \n", + " ds = Dataset.from_tensor_slices((raw_features,raw_targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " feature_batch, label_batch = ds.make_one_shot_iterator().get_next()\n", + " return feature_batch, label_batch\n", + "\n", + " return _input_fn" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "8zoGWAoohrwS", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def create_predict_input_fn(features, labels, batch_size):\n", + " \"\"\"A custom input_fn for sending mnist data to the estimator for predictions.\n", + "\n", + " Args:\n", + " features: The features to base predictions on.\n", + " labels: The labels of the prediction examples.\n", + "\n", + " Returns:\n", + " A function that returns features and labels for predictions.\n", + " \"\"\"\n", + " def _input_fn():\n", + " raw_features = {\"pixels\": features.values}\n", + " raw_targets = np.array(labels)\n", + " \n", + " ds = Dataset.from_tensor_slices((raw_features, raw_targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size)\n", + " \n", + " \n", + " # Return the next batch of data.\n", + " feature_batch, label_batch = ds.make_one_shot_iterator().get_next()\n", + " return feature_batch, label_batch\n", + "\n", + " return _input_fn" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "G6DjSLZMu8Um", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_linear_classification_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear classification model for the MNIST digits dataset.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " a plot of the training and validation loss over time, and a confusion\n", + " matrix.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate to use.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " training_examples: A `DataFrame` containing the training features.\n", + " training_targets: A `DataFrame` containing the training labels.\n", + " validation_examples: A `DataFrame` containing the validation features.\n", + " validation_targets: A `DataFrame` containing the validation labels.\n", + " \n", + " Returns:\n", + " The trained `LinearClassifier` object.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + "\n", + " steps_per_period = steps / periods \n", + " # Create the input functions.\n", + " predict_training_input_fn = create_predict_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " predict_validation_input_fn = create_predict_input_fn(\n", + " validation_examples, validation_targets, batch_size)\n", + " training_input_fn = create_training_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " \n", + " # Create a LinearClassifier object.\n", + " my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " classifier = tf.estimator.LinearClassifier(\n", + " feature_columns=construct_feature_columns(),\n", + " n_classes=10,\n", + " optimizer=my_optimizer,\n", + " config=tf.estimator.RunConfig(keep_checkpoint_max=1)\n", + " )\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"LogLoss error (on validation data):\")\n", + " training_errors = []\n", + " validation_errors = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " classifier.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " \n", + " # Take a break and compute probabilities.\n", + " training_predictions = list(classifier.predict(input_fn=predict_training_input_fn))\n", + " training_probabilities = np.array([item['probabilities'] for item in training_predictions])\n", + " training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions])\n", + " training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10)\n", + " \n", + " validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn))\n", + " validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) \n", + " validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions])\n", + " validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) \n", + " \n", + " # Compute training and validation errors.\n", + " training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot)\n", + " validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot)\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, validation_log_loss))\n", + " # Add the loss metrics from this period to our list.\n", + " training_errors.append(training_log_loss)\n", + " validation_errors.append(validation_log_loss)\n", + " print(\"Model training finished.\")\n", + " # Remove event files to save disk space.\n", + " _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*')))\n", + " \n", + " # Calculate final predictions (not probabilities, as above).\n", + " final_predictions = classifier.predict(input_fn=predict_validation_input_fn)\n", + " final_predictions = np.array([item['class_ids'][0] for item in final_predictions])\n", + " \n", + " \n", + " accuracy = metrics.accuracy_score(validation_targets, final_predictions)\n", + " print(\"Final accuracy (on validation data): %0.2f\" % accuracy)\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"LogLoss\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"LogLoss vs. Periods\")\n", + " plt.plot(training_errors, label=\"training\")\n", + " plt.plot(validation_errors, label=\"validation\")\n", + " plt.legend()\n", + " plt.show()\n", + " \n", + " # Output a plot of the confusion matrix.\n", + " cm = metrics.confusion_matrix(validation_targets, final_predictions)\n", + " # Normalize the confusion matrix by row (i.e by the number of samples\n", + " # in each class).\n", + " cm_normalized = cm.astype(\"float\") / cm.sum(axis=1)[:, np.newaxis]\n", + " ax = sns.heatmap(cm_normalized, cmap=\"bone_r\")\n", + " ax.set_aspect(1)\n", + " plt.title(\"Confusion matrix\")\n", + " plt.ylabel(\"True label\")\n", + " plt.xlabel(\"Predicted label\")\n", + " plt.show()\n", + "\n", + " return classifier" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ItHIUyv2u8Ur", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Spend 5 minutes seeing how well you can do on accuracy with a linear model of this form. For this exercise, limit yourself to experimenting with the hyperparameters for batch size, learning rate and steps.**\n", + "\n", + "Stop if you get anything above about 0.9 accuracy." + ] + }, + { + "metadata": { + "id": "yaiIhIQqu8Uv", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1092 + }, + "outputId": "15c49f74-dd23-4b0b-f27a-4ea33ab11a84" + }, + "cell_type": "code", + "source": [ + "classifier = train_linear_classification_model(\n", + " learning_rate=0.04,\n", + " steps=1500,\n", + " batch_size=30,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "LogLoss error (on validation data):\n", + " period 00 : 15.92\n", + " period 01 : 14.19\n", + " period 02 : 10.79\n", + " period 03 : 9.93\n", + " period 04 : 8.18\n", + " period 05 : 6.62\n", + " period 06 : 6.65\n", + " period 07 : 6.62\n", + " period 08 : 6.30\n", + " period 09 : 6.34\n", + "Model training finished.\n", + "Final accuracy (on validation data): 0.82\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAFnCAYAAACLnxFFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd0VVXexvHvLemdNEJCCp0QSkCU\nIL0niKhYkCGKDR3FMvrOjIw6oo46joiCjgULKoiNEQtdUAER0EDohB5CAgkhvZH+/hGMoJQbuPem\nPZ+1XJqTnH1+2esun+xz9tnbUF1dXY2IiIg0eMb6LkBEREQso9AWERFpJBTaIiIijYRCW0REpJFQ\naIuIiDQSCm0REZFGQqEtYgUdO3YkPT3dKm2lpqYSGRlplbbqQ3x8PP369WPUqFGMHDmSuLg4Pvjg\ngzq3s23bNu644446nxcZGUlqamqdzxNpDMz1XYCIND1//etfGTt2LACZmZncdNNNREREMGDAAIvb\n6NatG++++66tShRplDTSFrGh0tJS/vnPfzJy5EhiY2P597//TWVlJQBr165l4MCBxMbG8umnn9Kz\nZ88LjhBzc3N58MEHa0ews2fPrv3eyy+/zMiRIxk5ciS33HILGRkZ5z3+q9WrVzNmzJgzjo0dO5Y1\na9bw888/c+211xIXF0dsbCxLly6tcx/4+/szatQo1q1bB8D+/fuZOHEiI0eOZMyYMWzfvh2AjRs3\nMn78eB588EEeeeQRNm7cyPDhwy/Yj6tXr2b48OHExsbyzjvv1F63qKiI++67j9jYWIYOHcrjjz9O\neXl5nesXaUgU2iI29MEHH5Cens7ixYtZuHAhCQkJLFq0iMrKSh599FGefvppli5dSnJyMiUlJRds\nb8aMGXh5ebF8+XLmz5/Pxx9/TEJCAvv27WPZsmUsWrSI5cuXM3z4cNavX3/O46eLiYkhPT2dI0eO\nAHDkyBHS09Pp27cvL7zwAlOnTmXJkiW88cYbrFy58qL6oaKiAkdHR6qqqrjvvvsYO3Ysy5cvZ9q0\nadx7771UVFQAsGvXLsaPH89LL71kcT8+9thjPPnkkyxduhSj0Vgb5l9++SWenp4sXbqU5cuXYzKZ\n2L9//0XVL9JQKLRFbOiHH37gxhtvxGw24+zszJgxY1i3bh3JycmUlZUxcOBAoOY5cFVV1QXbW716\nNRMmTADA29ub4cOHs27dOjw9PcnOzuabb74hLy+P+Ph4rrnmmnMeP52joyODBw/mu+++A2DlypUM\nGzYMs9mMr68vX375JQcOHCA8PPwPYWqJI0eOsGzZMoYPH87BgwfJysri+uuvB6BXr160aNGCxMRE\nAJydnYmJialzP/br1w+Aa6+9tvacX9v98ccfqaqq4qmnnqJz5851rl+kIVFoi9hQdnY2Xl5etV97\neXmRlZVFXl4enp6etccDAgIsbu/08zw9PcnKyiIwMJBXX32VZcuWMWjQICZPnsyxY8fOefz3Ro4c\neUZox8XFAfDcc8/h4uLCbbfdxogRI1i2bJlFdb744ou1E9EefvhhHn30Ubp160Z+fj4nT54kNjaW\nUaNGMWrUKLKyssjNza3tn3P93ufqR3d39zOO/yo2NpZJkyYxc+ZMYmJieOqppygrK7OofpGGSqEt\nYkN+fn61gQQ1z6T9/Pxwd3enuLi49viJEycuqT2APn36MHv2bNatW0dQUBDTp08/7/HT9e/fn6Sk\nJJKTk0lOTqZPnz6113viiSdYs2YN//znP5k6dSpFRUUXrPOvf/0ry5YtY/ny5Xz++ee1fwQEBATg\n5ubGsmXLav/58ccfa59d1/X39vLyorCwsPZ4dnb2GeeNHz+ezz//nCVLlrBz506+/PLLC9Yu0pAp\ntEVsaNCgQSxYsIDKykqKi4v56quvGDhwIOHh4VRUVLBx40YAPv74YwwGg0Xtffrpp0BNQH377bcM\nGjSIH3/8kaeeeoqqqipcXV3p1KkTBoPhnMd/z9HRkX79+vHiiy8ydOhQTCYT5eXlxMfHc/z4cQC6\ndOmC2WzGaLz4/20EBwfTsmXL2hF7dnY2Dz/88Bl/wJzr9z5bP4aGhmIymWr78Ysvvqj9/f773/+y\nYMECAAIDAwkJCbGoj0UaMr3yJWIl8fHxmEym2q//9a9/ER8fz5EjRxg9ejQGg4FRo0YRGxuLwWBg\n2rRpTJ06FQ8PD2677TaMRiMGg4Hq6moqKysZNWrUGe2//fbbPPTQQ0ybNo1Ro0ZhNBqZPHky3bp1\no7S0lMWLFzNy5EgcHR1p0aIFzz33HAEBAWc9fjYjR47k/vvv5/333wfAwcGB66+/nkmTJgFgNBp5\n/PHHcXFx4dtvv+W7777j+eefr1MfGQwGZsyYwbRp03jllVcwGo3cdtttuLq6XrBvz9WPzzzzDP/4\nxz9wdHTkuuuuq21r7NixTJ06lbfffhuDwUD37t1rX0MTaawM2k9bpP4VFxcTHR1NQkICHh4e9V2O\niDRQuj0uUk/GjRvHkiVLAFiyZAlt27ZVYIvIeWmkLVJPEhISePrppyktLcXNzY1p06bRrVu3+i5L\nRBowhbaIiEgjodvjIiIijYRCW0REpJFo0K98ZWYWWL1NHx9XcnLO/06oXDr1s32on+1D/Wwf6uca\n/v7nnpDa7EbaZrPpwj8kl0z9bB/qZ/tQP9uH+vnCml1oi4iINFYKbRERkUZCoS0iItJIKLRFREQa\nCYW2iIhII6HQFhERaSRsGtp79+5l2LBhzJs3D4Dy8nIeeeQRrr/+em699Vby8vJseXkREZEmxWah\nXVxczDPPPENMTEztsc8++wwfHx8WLFhAXFwcCQkJtrq8iIg0Mz/8sMqin5s58yWOHk075/cfffRh\na5VkdTYLbUdHR95++20CAgJqj33//fdcffXVANx0000MHTrUVpcXEZFm5Nixo6xcudyin33wwUdo\n1Sr4nN//979nWKssq7PZMqZmsxmz+czm09LSWLNmDS+++CJ+fn48+eSTeHt7n7MNHx9Xm6yQc74l\n4sR61M/2oX62D/WzfVxsPz/22Ets27aN/v17c/XVV5Oamsr777/P1KlTycjIoLi4mPvvv5/BgwcT\nHx/PE088wfLlyykoKODQoUOkpKTwj3/8g4EDB3LFFVewceNG4uPj6du3Lxs2bCAnJ4c333wTf39/\n/vrXv3L06FGio6NZunQpa9assXIvnJtd1x6vrq4mIiKCKVOm8Prrr/PWW2/x97///Zw/b+01aBOP\nb6dHeEcMxY5WbVf+yN/fwyZrx8uZ1M/2oX6um8++288vScfrfJ7JZKCy8uy7RffuFMCNQ9qd89xx\n427GYDAREdGWlJRkZs58i+TkY3TvfhmxsVeRlpbKE088SlTUZZSVVZCTU0RRUSmHDx/huedmsGHD\nT8yd+xGRkT2prq4mM7OAsrIKwMz06a/xxhuvsnDhN7RqFUJBQRH//e+7rFu3lg8++MDqn43z/eFi\n19D28/Ojd+/eAPTr149XX33Vbtc+WVHKuzvm4bnfgwe6T6alW8CFTxIRkUanc+cuAHh4eLJ7906+\n/voLDAYj+fl/nPzcrVsPAAICAigsLPzD97t3j679fl5eHocPH6Jr1+4AxMRciclk3/XS7RraAwYM\nYO3atYwbN46dO3cSERFht2s7m524ocNYPtv7JTMT3+Kh6LsJVHCLiFjdjUPanXdUfC7WuqPh4OAA\nwLffLiM/P5///vcd8vPzufPO+D/87OmhW139x1H+779fXV2N0VhzzGAwYDAYLrneurDZRLQdO3YQ\nHx/PwoUL+fDDD4mPj2fs2LGsXr2am2++mZUrVzJ58mRbXf6sBob0ZVL0DeSXFTAz8S0yijPten0R\nEbENo9FIZWXlGcdyc3MJCmqF0Whk9ervKC8vv+TrBAeHsGfPLgB+/nnDH65pazYbaUdFRTF37tw/\nHJ81a5atLmmRuA5DKCgo4X/7FzFz81s81PMeAlz96rUmERG5NGFhEezZk0RQUKvaCc6DBg3h0Ucf\nZteuHYwefTUBAQHMmfP2JV2nb9/+LF78NX/+8x1ER/fC09PLGuVbzFB9tvsBDYQtJn78evtlZcpq\nFu5fjLeTFw9F34O/q6/Vr9WcaeKOfaif7UP9bB+NoZ/z8/PYvDmBQYOGkpl5nAcf/DPz5//Pqtdo\nMBPR6tvuwzk4ONfMHB8WOpDq6mq+PLCk5hl3z7vxc1Fwi4jIubm6uvHddyuZP38u1dVV3H+/fRdi\naTYj7ZNlFdz38hr8vV34v5t64OftAsCK5O/56uBSfJy8+UvPe/B1aWG1azZnjeEv5qZA/Wwf6mf7\nUD/XON9Iu9lsGOLsaOba/m04nlPCC/M3k5lbAsCI8MGMaTOSnNJcZia+RVZJTj1XKiIicnbNJrQB\nruobTnxsZ7LyS3lh/maOnwruUeFDuSpiBFknc5iZ+BbZJxXcIiLS8DSr0Aa4cVgHxg1sQ3Z+Kf+Z\nv5njp1Zdi40YRlz4MLJOZjNz81vknMyt50pFRETO1OxCG2B0TDjXD2pLdn4pL8xPrA3uuIjhjAof\nyomT2cxMfIvcUm0dKiIiDUezDG2AuD5h3DCoLTkFNcGdkVOMwWDgqogRjAwbQmZJloJbRKSJuf76\nMRQXFzN37vvs2LHtjO8VFxdz/fVjznv+r9t/LlnyDatXf2+zOs+l2YY2QGyfMG4c3I6cglL+Mz+R\njOya4B7TZiTDQwdxvPgEsxJnk1eaX9+lioiIFcXHTyIqqludzjl9+8+4uDEMHDjYFqWdV7N6T/ts\nRl0RCsBn3+/nhfmb+duEnrRs4crYtrFUU83KlNXMTJzNQz3vxtNRW/OJiDREt9/+J5577iVatmxJ\nevoxpk59BH//AEpKSjh58iR/+ctfiYyMqv35Z5+dxqBBQ+nRI5rHHvsbZWVltZuHAKxYsZQFCz7F\nZDISHt6Wv//9MWbMeIHdu3cyZ87bVFVV4e3tzbhxN/H66zPZvn0rFRWVjBt3I6NGjWbKlMn07n0F\nmzcnkJubywsvvEzLli0v+fds9qENNcFtNMAn350K7pujCfJ145q2cVRVV/HdkbU1wR19Nx6O7vVd\nrohIg/bF/kUkHt9e5/NMRgOVVWdfOiQ6oCvXtbvqnOcOGDCYdevWMG7cjaxdu5oBAwbTtm17BgwY\nxKZNv/DRRx/w7LMv/uG85cuX0qZNWx544BFWrVpRO5IuKSnhpZdexcPDg/vuu4sDB/Zz883xfPHF\nZ9x22128++5bAGzZspmDBw/wxhvvUVJSwq23jmfAgEEAuLm5MXPmG7zxxqusWfMdN944oc598nvN\n+vb46UZcHsr4Ie3IKyzjPx8nciyrCIPBwHXtrmJwSD/SizKYmfgWBWV/3LpNRETqV01orwXgxx9X\n06/fQFavXsWf/3wHb7zxKnl5Z5+flJx8kKiomq02o6N71R739PRk6tRHmDJlMocPHyIv7+xvFCUl\n7aJHj54AuLi4EB7ehiNHjgBnbut5tm0/L4ZG2qcZcXkoBoOBj1ft4z/zE/nbhJoR97j2Y6iimtWp\n65iVOJsHo+/G3dGtvssVEWmQrmt31XlHxedyKSuitWnTlqysTDIy0ikoKGDt2h/w8wvgiSeeISlp\nF6+99spZz6uuBqOxZnvNqlOj/PLycmbM+A/vvz8fX18//va3h855XYPBwOnrilZUlNe2d6FtPy+G\nRtq/M7x3a24e1p68ojJemJ/I0RM1I+4b2l/NgOC+HC1KZ9aW2RSWF9V3qSIicpqYmH7Mnv06/fsP\nJC8vl+DgEABWr/6eioqKs54TGhpGUtJuADZvTgCguLgIk8mEr68fGRnpJCXtpqKi4qzbf3bq1IXE\nxE2nzismLS2VkJBQW/2KCu2zGX5Za/40vAP5RTW3ytNOBfeNHcbSL7gPaYXHeDXxbYrKi+u7VBER\nOWXgwMGsXLmcQYOGMmrUaD799CP+8pf76NIliqysLBYv/voP54waNZqdO7fz4IN/5siRwxgMBry8\nvOnd+wruvPMW5sx5mwkT4pk1a0bt9p+zZr1Ue3737j3o2LET9913F3/5y33cc88UXFxcbPY7NpsN\nQ35Vl9svqzal8tG3e/F0deCvN0cT7O9OVXUVn+xZyLqjG2ntEcwDPe7C1cHV6nU2dlr43z7Uz/ah\nfrYP9XMNbRhykYb2CmHiiA7kF5fXjLgzCzEajIzveC19gy7nSEEar255h+LykvouVUREmgGF9gUM\n6RlC/MiOFJwK7tRTwX1zp+voE3QZKQWpvLblHUoqFNwiImJbCm0LDI4O5pZfg3t+IqnHa4L7T52u\n54qWvThccIT/bnmXkoqT9V2qiIg0YQptCw2KDuaWUR0pLKkZcR85FdwTO9/A5S17cig/hf9ueZeT\nCm4REbERhXYdDOoRzKTYThSWlPPix4mkZBRgNBiJ73wjlwX24FD+Yf679T0Ft4iI2IRCu44GdG/F\npNhOFJWUM/2TLbXBfUvnm+gV0J2Decm8vnUOJytK67tUERFpYhTaF+H04H7x40QOpxdgMpq4NXI8\nPQO6cSDvEG9um0NpZVl9lyoiIk2IQvsi9e/eiklxnSg+WcH0T34L7kmRNxPt35V9uQd5c+scyhTc\nIiJiJQrtS9C/WytuH935D8F9W5cJ9PCPYm/uAd7c9j5lleX1XaqIiDQBCu1LdGXXoNrgfvHjRJLT\n82uDu7tfF/bk7OctBbeIiFiBQtsKruwaxB1XdaaktILpH2/h0LF8zEYzt0f9ia5+kSTl7GP29g8o\nV3CLiMglUGhbSd+oIO68KpKSsgqmf/JbcN8RNZEo307szt7L7B0fUl519p1mRERELkShbUUxUS25\n66pITp4K7oNH83Ewmrmz6y108e3Erqw9vLNdwS0iIhdHoW1lfbq05K4xNcH90qeJHDiah4PRzF1R\n8US26MiOrCTe3TGXCgW3iIjUkULbBvpEtmTymC6cLKtkxqdbOJCWh4PJgcldb6Fziw5sP7Gbd3d8\npOAWEZE6UWjbyBWRgdx9dRdKy6p46dMt7K8N7lvp5NOebSd28t7O+VRWVdZ3qSIi0kgotG3o8s6B\nTL46krLyKmZ8uoX9qXk4mhy4u9utdPBpx9bMHQpuERGxmELbxi7vHMjdY7tQVl7FS59tYV9qLo4m\nR+7pNon23m3YkrmdObs+VnCLiMgFKbTtoHenAO4Z24WKiipmfLaVvUdycTI58ufut9POO4LE49v4\nYNcnCm4RETkvhbadXHZacL98enB3u522XuFsOr6VD3d/SlV1VX2XKiIiDZRC2456dQzgnrFRVFTW\nBPeelByczU7c2/122niFkZCxhQ93fabgFhGRs1Jo21mvjv78+Zqa4H7l822ngtuZe7vfQYRnGL9k\nbGbe7s8V3CIi8gcK7XrQs4M/954K7pc/30rS4RxczM7c1+N2wj1D2Zi+iY+SFii4RUTkDArtehLd\nwZ/7ru1KZWU1ryzYyu7DObiYXZjS4w7CPFqz4VgCHyf9T8EtIiK1FNr1qEd7P+67ritVVdXM/Hwr\nu5OzTwX3nYR6BPPTsV/4ZM9CBbeIiAAK7XrXo50f913blarqamYu2Mau5GxcHVy4v8ddtPYIZt3R\njSw6uKK+yxQRkQZAod0AdG/nx5TrfgvuncnZuDq4cn+Pu/B19mHVkTXklubVd5kiIlLPbBrae/fu\nZdiwYcybN++M42vXrqVjx462vHSj062tH1Ou60Z1NcxasI2dh7Jxc3BlVPgwKqoqWJ78fX2XKCIi\n9cxmoV1cXMwzzzxDTEzMGcdLS0uZPXs2/v7+trp0o9WtrS/3j+tKdTXMXLCNHYeyuKJlT/ycW/DT\n0Y3knMyt7xJFRKQe2Sy0HR0defvttwkICDjj+JtvvsmECRNwdHS01aUbta5tfHlgXFcAZi3Yzu7k\nXEZFDKOiupIVhzXaFhFpzmwW2mazGWdn5zOOHTp0iKSkJGJjY2112SYhqo0vD1zfFYMBZv1vO+4l\n4fi5+PLT0Z812hYRacbM9rzY888/z+OPP27xz/v4uGI2m6xeh7+/h9XbtLbB/h54e7ny9Lsb+Wjl\nfv40Po43E+ayOmMtd102ob7Ls0hj6OemQP1sH+pn+1A/n5/dQjsjI4ODBw/yf//3fwAcP36ciRMn\n/mGS2ulycoqtXoe/vweZmQVWb9cWQlq4MKB7EN9tTiP/cCgBLn58d/AnBgT2o4WzT32Xd16NqZ8b\nM/Wzfaif7UP9XON8f7jY7ZWvwMBAVq5cyWeffcZnn31GQEDAeQNbaoy6PBSjwcCyjUcYGT6UyupK\nlid/V99liYhIPbBZaO/YsYP4+HgWLlzIhx9+SHx8PLm5eh5bV37eLvTpEkjaiSIc8kMIcPFj/bEE\nskpy6rs0ERGxM0N1dXV1fRdxLra4TdIYb78cPVHEE+9sJDzIkxEjDHy4+1OubHU5EzpdX9+lnVNj\n7OfGSP1sH+pn+1A/12gQt8fl4rXycyO6gz+HjuXjfjKMQFf/U6Pt7PouTURE7Eih3UiMjgkDYMmG\nI8SGD6OquoplerYtItKsKLQbiYggTyLDfdh9OAefyggCXQPYkJ7ACY22RUSaDYV2IzI6JhyApRtS\niAsfemq0vap+ixIREbtRaDcinUK9advKk8R9Jwg0tqWlawAb0zdxoiSrvksTERE7UGg3IgaDgbhT\nz7aXbTxCXETNs+2lGm2LiDQLCu1Gpns7P4L93di46zghju1p6RbIz+mbOV58or5LExERG1NoNzJG\ng4HRfcKoqq5mxc+pxNXOJNdoW0SkqVNoN0K9Owfg7+3M2m3HaOPagSC3QH7JSNRoW0SkiVNoN0Im\no5HYK8KoqKxiZUIacRHDNdoWEWkGFNqN1JVdW+Ll7sh3iWm09+hIK7eW/Jy+mYzizPouTUREbESh\n3Ug5mE2M7B1KaVkl328+SlzEcKqpZukhjbZFRJoqhXYjNrBHK9yczaxMSKWTVyeC3YNIyEgko+h4\nfZcmIiI2oNBuxFyczAztFUJhSTlrt6UTFz6sZrStZ9siIk2SQruRG3ZZa5wcTCz/OYXOPp1Pjba3\nkK7RtohIk6PQbuTcXRwY2KMVOQWlbNx1nNG/PttOXlnfpYmIiJUptJuAkZeHYjYZWLLhMFEtIglx\nb8WmjK2kF2XUd2kiImJFCu0mwMfDib5RQRzPKWHT3szameRLDmm0LSLSlCi0m4jYPqEYDLB4/WG6\n+namtUcwm49v42hhen2XJiIiVqLQbiICfVzp3SmAI8cL2XEou/bZtlZJExFpOhTaTcjomHCgZrQd\n5duZUI22RUSaFIV2E9I6wJ3ubX3Zl5rHvtS8355taya5iEiToNBuYn4dbS9an0yUb2fCPFqTeHwb\naYXH6rUuERG5dArtJqZdiBcdW3uz42A2KRmFxEUMA2CpZpKLiDR6Cu0maHTfMAAWbzhMF99OhHm2\nJjFzu0bbIiKNnEK7CeoS3oKwQA82JR0nPbuY0RHDAVhy6Nt6rkxERC6FQrsJMhgMjI4JoxpYujGF\nyBYdCfcMZUvmDo4UHK3v8kRE5CIptJuonh39CfJ1Zf2OdLLzS2tH21qTXESk8VJoN1FGg4HYK8Ko\nrKqu2QGsRQciPEPZqtG2iEijpdBuwvp0CcTX04k1W49SUFLO6IgRgJ5ti4g0VgrtJsxsMjLqijDK\nKqpYmXCETi3a08YrjG0ndpJSkFrf5YmISB0ptJu4ft2C8HB1YNWmNE6WVRJXO5Ncz7ZFRBobhXYT\n5+RgYkTv1pSUVvB9YhqdfNrTxiuc7Sd2kZKv0baISGOi0G4GBkeH4OJkYsXPKZRXVNXOJF+sZ9si\nIo2KQrsZcHU2M6RnCPnF5azddoyOPu1o6xXBjqzdHM4/Ut/liYiIhRTazcTwy1rjYDaybGMKlVXV\nWiVNRKQRUmg3E55ujgzo1oqs/JNs3JVBB5+2tPOOYEdWEsn5KfVdnoiIWECh3YyMvKI1JqOBJRsO\nUw21723r2baISOOg0G5G/Lxc6NMlkGNZxSTuPUEHn7a0927Drqw9HMrTaFtEpKFTaDczcX3CMACL\n1ydTXa1n2yIijYlCu5kJ8nWjZ0d/ktML2JWcQ3uftnTwbsuu7D0czDtc3+WJiMh5KLSbodExYUDN\naBs4bZU0jbZFRBoyhXYzFN7Sky4RLUhKyeVAWh7tfdrQwacdu7P3cjAvub7LExGRc1BoN1NX1Y62\na26J166SdlCjbRGRhsqmob13716GDRvGvHnzADh27BiTJk1i4sSJTJo0iczMTFteXs6jQ2tv2gV7\nsWX/CVKPF9LOO4JOPu1JytnHgdzk+i5PRETOwmahXVxczDPPPENMTEztsVdeeYUbb7yRefPmMXz4\ncObMmWOry8sFGAwG4k6NtpdsqBltx9WuSb6i3uoSEZFzs1loOzo68vbbbxMQEFB77Mknn2TkyJEA\n+Pj4kJuba6vLiwW6t/UlxN+djbszOJ5bQlvvcDr5tGdPzn725x6q7/JEROR3bBbaZrMZZ2fnM465\nurpiMpmorKxk/vz5jBkzxlaXFwsYDAZGx4RRXQ3LTo22R7fRKmkiIg2V2d4XrKys5G9/+xt9+vQ5\n49b52fj4uGI2m6xeg7+/h9XbbKxi+7nx9bpkftyezqSro7iiXRTd0yLZmr6LzOp0IgPaX3Tb6mf7\nUD/bh/rZPtTP52f30J46dSphYWFMmTLlgj+bk1Ns9ev7+3uQmVlg9XYbsxG9Q/hg2R4+WZbEjUPa\nMTx4MFvTd/FR4pc81POei2pT/Wwf6mf7UD/bh/q5xvn+cLHrK19ff/01Dg4OPPDAA/a8rFxA36gg\nvN0d+T4xjcKSciK8wohs0ZF9uQfZm3OgvssTEZFTbDbS3rFjBy+88AJpaWmYzWaWL19OVlYWTk5O\nxMfHA9C2bVumTZtmqxLEQg5mIyMvD+XT7/azalMqY/tFMLrNcHZl72HJoW/p4NO2vksUERFsGNpR\nUVHMnTvXVs2LlQ3s0YpFPyWzMuEIIy9vTbhnKF18O7EzK4m9Ofvp4NOuvksUEWn2tCKaAODsaGbY\nZa0pOlnB6i1HAYiLGAbAooPfUl1dXZ/liYgICm05zdBeITg5mFj+cwrlFVWEe4YS5duJA3mH9Gxb\nRKQBUGhLLXcXBwZHB5NbWMbx8m1BAAAgAElEQVRPO44BZ66SptG2iEj9UmjLGYb3bo3ZZGDphhQq\nq6oI82xNV7/OHMhLZk/O/vouT0SkWVNoyxl8PJzo1zWI47kl/JJ0HIC4cI22RUQaAoW2/MGoPmEY\nDLBk/WGqq6sJ9Qyhq18kB/MOk5Szr77LExFpthTa8gcB3i5c0TmQ1Mwith7IAs7cb1ujbRGR+qHQ\nlrOK61Ozbefi9clUV1fT2iOYbn5dOJR/mN3Ze+u3OBGRZkqhLWcVEuBOj3Z+HEjLZ++Rmi1Uf51J\nvuSQRtsiIvXB4tAuLCwE4MSJEyQkJFBVVWWzoqRhGB1TM9petL5m287WHq3o7h/FofwUdmm0LSJi\ndxaF9jPPPMPSpUvJzc1l/PjxzJ07V2uGNwNtg73oFOrNzkPZJKfnAxAXXrNKmmaSi4jYn0WhvWvX\nLm644QaWLl3Ktddey8yZMzl8+LCta5MGYHTfcAAWnxpth3i0ood/FIfzj7AzK6keKxMRaX4sCu1f\nR1Q//PADQ4YMAaCsrMx2VUmDERnmQ3hLDzbvyeToiSLg9GfbKzXaFhGxI4tCOyIigri4OIqKiujc\nuTNffvklXl5etq5NGgCDwcDomHCqgaUbakbbwe5BRPt35XCBRtsiIvZk0dac//rXv9i7dy9t29bs\nq9y+ffvaEbc0fdEd/AjydWXDrgzG9o/Az8uFuIjhJGZuZ/Ghb+ni2wmDwVDfZYqINHkWjbR3795N\neno6jo6OvPzyy/znP/9h717NHm4ujAYDcX3CqKyqZvnGIwC0cm9JdEA3UgpS2ZG1u54rFBFpHiwK\n7X/9619ERESQkJDA9u3beeKJJ5g1a5ata5MG5IrIQHw9nVmz7Sj5RTXzGeLCh2HAwGK9ty0iYhcW\nhbaTkxPh4eGsWrWKG2+8kXbt2mE0al2W5sRsMjLqilDKK6r4NuG30XbPgG4cKUhj+4ld9VyhiEjT\nZ1HylpSUsHTpUlauXEm/fv3Izc0lPz/f1rVJA9O/WxCerg58tzmV4pMVAMRG1Iy2tUqaiIjtWRTa\nDz/8MN988w0PP/ww7u7uzJ07l0mTJtm4NGloHB1MjLg8lJLSSr5PTAUgyC2wZrRdeJRtJ3bWc4Ui\nIk2bRaHdp08fpk+fTmhoKLt27eLOO+/k6quvtnVt0gANjg7GxcnMil+OUFpeCUBc7Whb722LiNiS\nRaG9cuVKRowYwZNPPsnjjz/OyJEjWb16ta1rkwbIxcnM0F7BFBSXs3brUQBaugXSK7A7qYVH2arR\ntoiIzVgU2u+88w5ff/01CxYs4IsvvuDzzz/njTfesHVt0kANu6w1jmYjy35OoaKyZuOY2PDfnm1X\nVWszGRERW7AotB0cHGjRokXt14GBgTg4ONisKGnYPF0dGdC9Fdn5pWzYmQFAS7cALgvsQVrhMbZm\narQtImILFoW2m5sb7733HklJSSQlJfHOO+/g5uZm69qkARt1RSgmo4ElGw5TVVXzHPv0meQabYuI\nWJ9Fof3ss8+SnJzMo48+ytSpU0lLS+O5556zdW3SgLXwdCYmqiXp2cVs3psJQKCrP71bRnO0KJ2f\nU7fUc4UiIk2PRWuP+/r68vTTT59x7MCBA2fcMpfmJ/aKUNZtO8bi9Yfp1dEfg8HAqPCh/JKeyGsb\n36d/qxiGhQ3E09GjvksVEWkSLnpZs6eeesqadUgjFOTrRq9OARzOKGDnoWygZrQ9KXI8Ho7urDqy\nhn/+9G++2LeI/LKCeq5WRKTxu+jQ1vu4AjC6TxgAi9cfrj12WctoZo1+ips6XIubg+tv4b1/EQVl\nhfVVqohIo2fR7fGz0VaMAhDW0oOoNi3YcTCbfam5tA/xBsDB5MCAkBhiWvVm/dGfWX74e1alrGFt\n6nr6h8QwPHQQHo7u9Vy9iEjjct7QXrBgwTm/l5mZafVipHG6KiacHQezWbz+MA/d4H3G9xyMZgaE\n9CUmqDc/HfuFFaeF94CQvgwLHajwFhGx0HlDe9OmTef8Xo8ePaxejDROHVp70z7Ei20HskjJKCA0\n8I8TzxxMDgwM6UvfU+G9PPk7VqasZk3qTwwMuZKhoQMU3iIiF2CobsAPpzMzrT95yd/fwybtNnfb\nDpzglc+3cXnnAO4ZG3XBfi6vLGfdsZ9Zkfw9eWX5OBodFN4XQZ9n+1A/24f6uYa//7nfuLHomfaE\nCRP+8AzbZDIRERHBvffeS2Bg4KVVKI1e1za+tA5w55ek41w7oPi8HzqoGXkPCrmSK4Murw3vb1N+\nYHXaTwwM7qvwFhE5C9O0adOmXeiHjh07RkVFBePGjaNnz55kZWXRoUMHWrZsyXvvvcfYsWNtUlxx\ncZnV23Rzc7JJu82dwWDAzdlMQlIm5RVVXNk92KJ+NhlNhHuGMiA4Bg9HD1Lyj7Arey9r0tZzsuIk\nIe6tcDQ52uE3aJz0ebYP9bN9qJ9ruLk5nfN7Fo20N23axJw5c2q/HjZsGJMnT2b27NmsWrXq0iuU\nJuGyjgEE+Bxk3fZj3J5XUqdzHUwODGp9JX1bXc66oxv59vBvI+9BIVcytPUA3B21dK6ING8Wvaed\nlZVFdnZ27dcFBQUcPXqU/Px8Cgr0/EFqGI0G4vqEUVlVzUfLkqi6iOkSjiYHBrfux7SYR7m+/dU4\nm5xYcfh7/rn+eb46sJTCsiIbVC4i0jhYNBFtwYIFvPjiiwQHB2MwGEhNTeXuu+/G19eX4uJibr75\nZpsUp4lojU9FZRWPv7OR4zkldA7z4c6rIvHxOPetngspqyxn3dGNrDj8PfllBTiZHGsnrLk7aOSt\nz7N9qJ/tQ/1c43xzgiyePV5YWEhycjJVVVWEhobi7e194ZMukUK7ccovKuOjVfv4ZVcGbs5mJsV2\npldH/0tq82zhPSikH0NC+zfr8Nbn2T7Uz/ahfq5xvtC2aCJaUVERH3zwAYsWLSIhIYGsrCyioqIw\nmy96QTWLaCJa4+TkaCL2yjaYqWbrgSw27Mogp+AkncJ8MJsubuVck9FEhFcoA4L74u7oRnL+EXZl\n72Ft2npKK8sI9ghqlhPW9Hm2D/Wzfaifa5xvIppFI+2HH36YwMBArrjiCqqrq/npp5/Iyclh+vTp\nVi309zTSbrx+7eejJ4qY/fVOUo4XEujjwuSruxAR5HnJ7ZdVlvFj2gZWpPxAQVkhziYnBoVcyZDQ\nAbg5uFrhN2gc9Hm2D/Wzfaifa1zy7fFbbrmFDz/88Ixj8fHxzJ0799KrOw+FduN1ej+XV1SxcM1B\nlv2cgslo4Jr+EcReEYbReOnr1581vFv3Y0jr/s0ivPV5tg/1s32on2ucL7QtuldZUlJCSclvr/AU\nFxdTWlp66ZVJs+BgNnLjkHY8Mr4HHq4O/G/1Qf7zcSJZeScvuW1HkyNDQgfwdMyjXNfuKhyMDixL\nXsU/f3qebw4up6i82Aq/gYhIw2Dx7PHXXnuNqKgoAHbu3MmDDz7INddcY9PiNNJuvM7Vz4Ul5by/\nNInNezNxcTJz66iOXN7ZeivqlVWWsTZtA98e/oGC8kKcTc4Mbn0lQ1r3x7UJjrz1ebYP9bN9qJ9r\nXPJEtMjISEaOHImvry+dO3fm3nvv5YcffqBv377nPW/v3r3cdNNNGI1GunXrxrFjx7j33ntZsGAB\na9asYejQoZhMpnOer4lojde5+tnRwUTvTgG08HRm24ETbNx1nMzcmtfDHMwXvb17LZPRRBuvMPqH\nxODq4EJyfsqpCWsbKK8qI8S9FQ4mh0u+TkOhz7N9qJ/tQ/1c45JXRAMICgoiKCio9utt27ad9+eL\ni4t55plniImJqT02a9YsJkyYQGxsLDNmzGDBggVMmDDB0hKkiTAYDAzo3ooOrb156+ud/LQjnX2p\nudw1pgvtgr2scg0nkyPDQgfSPziGtWnr+fbwDyxNXsX3R9YxuHU/hrTu1yRH3iLStF300OZCd9Ud\nHR15++23CQgIqD22ceNGhg4dCsDgwYNZv379xV5emoCWLVx5LL4Xo2PCOJF7kn/P28zXPx6isqrK\natf4Nbyf7juVa9uNxmw0sTR5Jf9c/28WH1xBcXndllsVEalPF/2i9e93/fpDw2bzH97jLikpwdGx\n5l1aX19fMjMzz9uGj48rZvO5b59frAvtQCXWYWk/33N9D66MDmHG/M18+eMh9qTm8fCEnrT0te6i\nKTe3vIpruw9nxf7VfJX0LUuSV/JD2jriOgxhdIchuDk2zpG3Ps/2oX62D/Xz+Z03tAcOHHjWcK6u\nriYnJ+eSLmzJQmw5Odaf+auJDvZR135u6enEk5Mu48Nle/gl6Tj3T/+e+BEdiYlqafXaYnxjiL6i\nJ2vT1rMyZTULdi5m8Z5VxEUMZ0jr/la/ni3p82wf6mf7UD/XuOj9tOfPn2/VQlxdXTl58iTOzs5k\nZGSccetcxM3ZgXvGdqFbW1/mfbuXtxftYvvBLCaO6ICrs3UnjzmbnRgeNui3Z94pP/C/fd9QWlFK\nbMQwq15LRMRazhvawcHBVr1Y3759Wb58OWPHjmXFihX079+4RjViewaDgSu7BtE+xIu3v9nFhl0Z\n7EvN464xkXRobf317n8N716B3Xll85ssOrQCk9HEiLDBVr+WiMilsnjDkLrasWMHL7zwAmlpaZjN\nZgIDA5k+fTqPPvoopaWltGrViueffx4Hh3OPoPSeduNljX6uqKxi0U/JfPNTMgCjY8K5+srwi16/\n/EJOlGTzyuY3ySnNZVy7qxgSOsAm17EmfZ7tQ/1sH+rnGlbZ5as+KLQbL2v2877UXN7+Zhcn8k4S\nEeTJ5KsjCfSxzaSx48UneGXzG+SVFXBTh2sYEHL+tQjqmz7P9qF+tg/1c41LXsZUpD61D/Fm2m2X\nE9MlkEPH8pn23i+s3XbUosmMdRXg6scD0Xfj4eDOp3u/ZN3RjVa/hojIxVJoS6Pg6mzmrjFdmDwm\nEqMR5ixJ4o0vd1BYUm71a7V0C+CB6Mm4ObjycdIXbDiWYPVriIhcDIW2NCp9urTkqdsup32IFwl7\nMnnyvZ/ZffjSXj88m1buLbm/x2RczM7M2/05CRlbrH4NEZG6UmhLo+Pn7cLfJ/Tk2gFtyCssY/rH\niXz+w34qKq23khpAa49WTOlxJ04mJz7Y9QmJx7dbtX0RkbpSaEujZDQaGNM3nKnxPfH3dmHphhSe\n/XATx7KKrHqdMM/WTOlxBw5GM+/t/IhtmTut2r6ISF0otKVRa9vKiydv602/rkEczijgqTm/8MOW\nNKtOUovwCuPe7ndgNph4d8c8dmbtsVrbIiJ1odCWRs/Fycztozvz52uiMJuMfLhsD699sZ0CK27x\n1847gnu63YbBYGD29g9Iyt5ntbZFRCyl0JYmo3enAJ6+43I6hXqTuO8E/3z3Z3YcyrJa+x1btGNy\n11uhupo3t73PvpwDVmtbRMQSCm1pUlp4OvN/46O5YVBbCkvKmfHpVj5ZtY/yikqrtB/p25E7u8ZT\nVV3F69vmcCA32SrtiohYQqEtTY7RaCC2TxiP3dKLwBaurPjlCM98sIm0zEKrtN/VL5Lbo/5ERVUF\nr299l+T8FKu0KyJyIQptabLCW3oybVJvBvVoRWpmIU9/kMCqTalWmaTWwz+KSZE3U1pZxmtb3iWl\nINUKFYuInJ9CW5o0J0cTt4zqxP3XdcXJwcRH3+5l5oJt5BVd+iS1XoHduSXyJk5WnOS1xHdIKzxm\nhYpFRM5NoS3NQnQHf566/XK6hPuw7UAWT767kW0HTlxyu5e37MmETtdTVFHMrMTZHCvKsEK1IiJn\np9CWZsPHw4m/3NSD8UPaUVxawSufb+OjFXspK7+0SWp9W/VmfMdrKSwvYlbibDKKM61UsYjImRTa\n0qwYDQZGXB7K47dcRis/N1ZtTuXpDxJIybi07QD7B8dwffuryS8rYFbibDKLrfeqmYjIrxTa0iyF\nBnrwz1svY2jPEI6eKOJfHyawMuHIJU1SG9y6H9e2G01uaR4zE98iq8T6G5mISPOm0JZmy9HBxJ9G\ndODB67vh6mRm/sp9fLxyH1VVFx/cw0IHMqbNSHJKc5mV+BY5J3OtWLGINHcKbWn2urfz44lbe9PK\nz42Vm1J546sdl7QYy6jwocSGD+PEyWxmbZlNXmm+FasVkeZMoS0C+Ho5M3ViTzq29mbTnkymf7KF\nwpLyi25vdMRwhocO4njxCWYlzqagzDoLu4hI86bQFjnFzdmBh2/qQe9OAexLzeP5eZs4kVdyUW0Z\nDAbGto1lcOt+pBcfZ1bibArLrbttqIg0PwptkdM4mI3cPbYLI3q35lhWMc/O3XTRM8sNBgPj2o1h\nQHAMR4vSeS3xbYrLi61csYg0Jwptkd8xGgyMH9qe8UPakV9Yxr8/2szOQ9kX1ZbBYOCGDmPpG3Q5\nRwqP8trWdympOGnlikWkuVBoi5zDiMtDueeaKCoqq3jl8638tOPilik1Gozc3Ok6rmjZi8P5R3h9\n67ucrCi1crUi0hwotEXOo3enAB65qQdODibeWbSbxeuTL+pdbqPByMTON3BZYA8O5h3mzW1zKKu8\n9PXPRaR5UWiLXEDHUB+mTuxJC08n/rf6IPNW7L2od7mNBiO3dL6JHv5d2Zd7kLe2fUB55cXPUBeR\n5kehLWKBYH93Hou/jBB/d75PTOO/C7dTehFrlpuMJm7rcjNd/SJJytnH7B0fUl5VYYOKRaQpUmiL\nWMjHw4lH/9STzmE+JO47wfSPEykorvstbrPRzB1RE4n07ciurD28u2MeFQpuEbGAQlukDlydzfzl\nxu706RLIgaP5PDd3E8dz6/4ut4PRzF1Rt9DJpz3bT+xizs6Pqay6tN3GRKTpU2iL1JHZZOTOqyKJ\n6xNGRk4Jz32YQHJ63ZcqdTQ5cHe3W2nv3YYtmdv5cPenVFVX2aBiEWkqFNoiF8FoMHD9oLb8aXgH\nCorLeeGjRLYdqPt2nI4mR+7pdhttvMJIyNjCvN2fK7hF5JwU2iKXYGivEO69titV1dXMWrCNtVuP\n1rkNZ7MT93a/nTCP1mxM38Qne75QcIvIWSm0RS5Rr47+/HV8NC5OJuYsTeLrHw/V+V1uF7MLU3rc\nQWv3Vqw7+jOf7/36kvb2FpGmSaEtYgXtQrz4R3wv/Lyc+fLHQ3ywbA+VVXUbLbs6uDIl+i5aubVk\nTdpPfLF/kYJbRM6g0BaxkiBfNx6L70VYoAdrth7l1f9tp7SsbjPC3R3ceCB6Mi1dA/juyFq+PrhM\nwS0itRTaIlbk5e7E3yZEExXRgm0Hsnhh/mbyi+r2LreHozsPRE8mwMWPFYe/Z8mhb21UrYg0Ngpt\nEStzcTLzwPXduLJrS5LTC3hu7iYycuq2JaeXkycPRE/Gz7kFS5JXsiz5OxtVKyKNiUJbxAbMJiO3\nx3VmTN9wjueW8OyHmzhwNK9Obfg4e/NA9N34OHnzzcFlrExZbaNqRaSxUGiL2IjBYODaAW24ZVRH\nik6W8+L8RLbsO1GnNnxdfHgw+m68nbxYuH8xPxxZZ6NqRaQxUGiL2NigHsHcP64bAK9+sY0fEtPq\ndL6/qy8PRE/G09GDz/d9xdq0DbYoU0QaAYW2iB30aOfH3yb0xM3ZgQ+X7+GLNQfrNCs80NWfB6In\n4+7gxid7vmD90V9sWK2INFQKbRE7adPKk8du6UWAtwuLfkrmvcW7qai0/F3uILdAHoiejJvZlY+S\nFvBz+mYbVisiDZFCW8SOAn1c+Ud8LyKCPFi3I52ZC7ZRUmr5tpzB7kFMib4TZ7MzH+76lJ9SNtmw\nWhFpaBTaInbm6ebI327uSfe2vuw8lM0L8zeTV1hq8fmhHiFM6XEHTiZHZm54l590q1yk2VBoi9QD\nJ0cTU8Z1ZUD3VqRkFPLs3E0cyyqy+Pxwz1Cm9LgLNwdXPkr6nG8P/6CV00SaAbuGdlFREVOmTCE+\nPp7x48ezdu1ae15epEExGY3cOqoj1/SP4ETeSZ6bu4l9qbkWnx/hFcrTQx/B28mLLw8sYeH+xdod\nTKSJs2toL1y4kIiICObOncvMmTN59tln7Xl5kQbHYDBw9ZUR3BbXiZLSSqZ/soVNezItPj/EM4j/\n63Ufga4BrDqyhrm7P6Oyqm7rnYtI42HX0Pbx8SE3t2YkkZ+fj4+Pjz0vL9Jg9e/Wiodu6IbRYOD1\nhdtZtSnV4nN9nL15uNefCfcM5ef0zby1/QPKKuu23rmINA6Gajs/CLvjjjtISUkhPz+ft956ix49\nepzzZysqKjGbTXasTqR+7T+Sy1PvbiC3oJRxg9txS1wkRqPBonNPVpTy0rrZbE3fRUffNvy9/724\nO7nZuGIRsSe7hvZXX31FQkICzzzzDElJSfzjH//giy++OOfPZ2YWWL0Gf38Pm7QrZ1I/X7zM3BJm\nfLaVjOxi+nQJ5Pa4zphNZ78p9vt+rqiqYO7uz0jI2EKQWyBTetyJt5OXvUpvsvR5tg/1cw1/f49z\nfs+ut8c3b95Mv379AOjUqRPHjx+nslLP30RO5+/twj8m9qRtsCcbdmbw8mdbKT5p2bvcZqOZWyPH\nMyjkSo4VZTA94b9kFB23ccUiYi92De2wsDC2bt0KQFpaGm5ubphMuv0t8nsero78dXw00e392H04\nh39/tJmcAsve5TYajFzf/mrGtBlFTmkuMza/weH8IzauWETswa6hfdNNN5GWlsbEiRN55JFHmDZt\nmj0vL9KoODqYuO/argzpGUxqZiHPzk0gLbPQonMNBgOjwocwodM4isqLeSXxLXZn77VxxSJia3af\niFYXeqbdeKmfrae6upqlG1NY8MMBXJ3M3D+uKx1Da968sKSft2TuYM7O+VRXV3Nr5Hh6BXa3R9lN\nij7P9qF+rtFgnmmLSN0ZDAbi+oRx11WRlJZX8tKnW/h5d4bF5/fwj+K+7nfgYDQzZ+d8Vqf+ZMNq\nRcSWFNoijURMVEv+cmN3zCYjb361kxU/p1h8bgeftjzU8x7cHd34bO+XLDq4QsueijRCCm2RRiQy\nvAWP/qkn3u6OfPLdft75agdVFoZva49gHul5H37OLViavJJP936pZU9FGhmFtkgjExrowWPxl9HK\nz42v1hxgzuLdVFZZFr7+rr483Otegt2DWJu2nvd2zqe8yvKtQUWkfim0RRohXy9nHv1TTzqEerNu\nRzqvL9xBeYVlax54OXnyl5730M47gsTj23hj63ucrDhp44pFxBoU2iKNlLuLA/+650o6h/mQuO8E\nr3y+jZJSy0bNLmYXpnS/k+5+XdiTs5+ZiW9RUGbZ62QiUn8U2iKNmIuTmYdu6Fa7CMv0T7ZQWFJu\n0bkOJgfuiJpI36DepBSkMWPT62SVZNu4YhG5FAptkUbOwWzi3mujuDKqJYeO5fNCHVZPMxlNTOh0\nPSPCBnO85AQvbfovaYXHbFyxiFwshbZIE2AyGrltdGeGXRZC2okinp+3ieM5xRadazAYGNs2lnHt\nx5BXVsDLm9/kQG6ybQsWkYui0BZpIowGAzcPbc81/SM4kXeS5+dtJvW45c+ph7Tuz62R4ymtLOXV\nLbPZfmKXDasVkYuh0BZpQgwGA1dfGcGEYe3JKyrjhfmbOZCWZ/H5l7fsyT3dJgEGZm//kA3HEmxW\nq4jUnUJbpAkadllr7ryqMyWllUz/ZAs7ky2fYNbFtxMPRE/G2eTE3N2fsTJltQ0rFZG6UGiLNFF9\no4K479ooKquqmfn5VjbtsXxf7TZeYfyl55/xdvJi4f7FLNy/WMueijQACm2RJiy6gz9/ubE7JpOR\n17/cwdptRy0+t5V7Sx7pdS+Brv6sTFnNvN2fU1ll2QIuImIbCm2RJq5zmA9/uzkaN2cH5ixJqtNG\nIy2cfXi4572EebRmQ3oCs7d/SFllmQ2rFZHzUWiLNAMRQZ78/bSNRr5Yc9Di293ujm48ED2Zzi06\nsCNrN69teYficsteJxMR61JoizQTwX5u/GNiLwK8XVj0UzLzv91n8Q5hzmYn7uk2iV4B3TmQl8zL\nm98kt9TyWekiYh0KbZFmxM/bhakTexLi78aqzam8u2gXFZWW7RBmNpqZ1OVmBob05WhROjM2vU5G\ncaaNKxaR0ym0RZoZL3cn/v6nnrQN9mT9zgxeX7iDsnLLJpgZDUZuaD+WqyJGknUyhxmbXiclP9XG\nFYvIrxTaIs2Qm7MD/3dTNF0iWrBl/wle/myrxTuEGQwGYiOGMr7jdRSVF/NK4pvsyd5v44pFBBTa\nIs2Wk6OJB8Z147KO/uw5kst/Pk6koNjymeH9g/twR9REKqsqeX3ru2w+vs2G1YoIKLRFmjUHs5F7\nxkbRv1sQh9ML+PdHm8nOP2nx+dEBXbmvxx2YjWbe2/ERa9PW27BaEVFoizRzRqOBSbGdGHV5KMey\ninl+3mYysi1/pauDTzse7Hk3bg6ufLJnIUsOfavV00RsRKEtIhgMBm4Y3JbrBrQhK/8kz3+0mZSM\nAovPD/UI4ZFe9+Lr7MPiQ9/y2d6vqKq2bFa6iFhOoS0iQE1wX9U3nPgRHSgoKuOF+YnsS821+PwA\nV38e6XUfwe5BrEn7ifd3fkxFlWWT20TEMgptETnD4J4h3DUmkrLySl76ZAs7DmZZfK6XkycPRd9D\nW68INh3fyhtb53CyotSG1Yo0LwptEfmDPl1aMuW6rlQDMxds4+fdGRaf6+rgwpQed9LVL5KknH3M\nSpxNQVmh7YoVaUYU2iJyVt3b+fHwjd1xMBt566udrN6SZvG5jiYH7oqKp0/QZRwuOMLLm98gqyTH\nhtWKNA8KbRE5p46hPvx9Qk/cXBz4YNkelm48bPG5JqOJiZ1uYHjoIDKKM5mx+XWOFqbbsFqRps9Q\n3YDfzcjMtHz2qqX8/T1s0q6cSf1sH/bq52NZRUz/ZAs5BaXE9Qlj3MA2GAwGi89fmbKahfsX42p2\n4dbI8fg4e1NVXUVVdRWVp/5dVV1JZVUVldWVZ/lezfHff11VXUVlVc25lv78Gd+rOvM6f7x2zdcY\ngSoDJqMRo8GEyWDEeOgjP/MAABCtSURBVOofU+2/Tad9feZ/1/680fi7c09v6/ftnuU6xnO0e5Y6\nHE2OtHD2xmhoPGMz/X+jhr+/xzm/p9AWm1A/24c9+/lEXgkvfbKFjJwSBkUHM3F4B4xGy4N747FN\nzEv6vMG+CvZb6J4ZhkaDEbPZRHlFxVkD/dfAb4gcTY4EuwUR7BFEiHsrQtyDaOUehJPJsb5LOyv9\nf6PG+ULbbMc6RKQR8/NyYerEXsz4dAs/JKZRfLKcO6+KxGyybCR3RVAvfJy92Xx8G0aD4YwRpaWj\nxz+ONn/73unHfm3njFGv8dyj2AuNRi8UJtXV1ee8O3C2kD9jRF91rrsDf7xTcPrXVVVnaeu0/y6u\nKOFoYTqHC45wKP+3xxoGDAS4+hHsfirIPVoR7B6El6Nnne6eSP1QaIuIxTzdHPnbhOhTM8qPU1Ja\nyb3XRuHkYLLo/A4+beng09bGVdqfwWCo+UMAEw71XczvlFeWc6w4g/9v7+6Dmyr3PIB/T3Lyfpq0\nDfSNUi6UuXABkRfZuSAIM6LM6C6MgBQrwT922GFYvaOiQxdBdHC8W2bcdYQuylVn2KqXIvUFr4ov\nI3WYsaizeCtbBbUiS98obdMmaZqkJ8n+kTRN+maFNqcn/X5mOufkyTnJL4fQb5/zJOdpcDeh3tOI\nBk9kebXlWsL14iWdBflSXlyvPA/Z5snQakb2b0vJwdPjNCZ4nJNDqePs7wniv97+X5z/uQ2/z7fh\nTxtvhtmYun2AVHs/h8NhtPs6UO9p7AtydyPafO0J24kaEbmW7FiIT5FykZ+WC5NoGpO6Uu04Xy+O\nacfhmyI5eJyTQ8njLAdDePlv3+Gr71tQkC3h0U0LYLWMz7HSGzVR3s/dcjcaPM2odzeiIRrojV1X\nB1zZzm7MiPbKI+Pk+VIeMo0ZN3x6faIc51/DMW0iGnWiVoN/+ae5MBtEVP29EX9+/RweK1oAu82o\ndGl0nUyiCTPTp2Nm+vRYWzAUxFXvtdhp9Xp3JMxrWmtR01obt68RU6RcTIn2yvPTcpFrzoZOO94G\nDNSNoU1E102jEeBYMwtmow4fnL2MP7/+P9hZtAC5dovSpdEo0Wq0yJNykCflYAkWAoicXncF3Kj3\nNKEhGuL1nibUdfyCnzouxfbVCBrkmLMiQR4dK58i5SJNLyn1clSPoU1EN0QQBGxcVQizUcSJqjr8\n++vn8OimBZiWM/QpPlI3QRBgM1hhM1gx1z4r1h4IBtDY1Xt6vSkW5o1dzfg67kq4Nr019qn13q+i\nTTZPGvHzB0NBBMNByLGlHF2XY209IRnBUBByOIhgSIYc3a6vLQi5d/vo/YltcesJbdHHiT6/VtDA\nMWcTCtLyR/MQD4mhTUSj4q4/ToPFKOK/T13Egb+ew582zMesggyly6Ik0mv1+J21AL+zFsTaQuEQ\nWrvbEz7w1uBpQm3bBdS2XejbV6PDFFsOgnIoLowHD+UwlPsoVu9XBkWNFqIgwiQakzp/PEObiEbN\nygVTYDKI+Mt73+E/jtfgX++Zh/mFI+9BUerRCBpkmSchyzwJi7Lmx9o9PV1ocDdFP/AW7ZW7miFA\ngChooY2Gok4jwiga49q0EDVi7P6BbX37inHbxG8X2SbxflGjjYZx4v3xAa2NXiNASQxtIhpV//CH\nbJgMIsreOo+Dlefxz//4B/xxTo7SZdE4I+ksmJU5E7MyZ8ba+OnxX6eei9ISkWrcNMOOR4sWQK/T\n4i8nv8Ppb0Y+QxgRDY2hTURj4vdT07GreCHSzDqUf3QR71f/ktSxP6JUlPTQPnnyJNauXYv169ej\nqqoq2U9PRElUkJ2Gki2LYbcaUPn5z3izqo7BTXQDkjqm7XQ6UVZWhsrKSni9Xhw8eBCrVq1KZglE\nlGQ5mWb825bFeK7i7zj15f+hsbULdqsxOslG5Du/4TD6bqPf7ej9oVA4sg4gFLfPYNtGbg9sC4cH\n7hu7jXD0OQY+nihqYDXrkJ5mQIZkQEaaYcB6mknHCTdozCU1tKurq7F06VJIkgRJkrB///5kPj0R\nKSTTasSu+xfhP4/X4Nu6tjF7HkEANIIAQYh8l7jvtgBNXFvifZGZrzSCAFHUQND02xYCwohMTVp/\nrWvI5xa1AmyWwQJd37cuGaAf4eQqRINJamjX19fD5/Nh+/btcLlceOihh7B06dJklkBECrGa9diz\ndTGa2rwQ0C84NQI0SAzV/iGrGSSI+4f0WOn9VHO3X0aHxw+n29+3dAfgjGv7udGF0DBDABajGAv2\ndGnwnrtk1kHDXjsNIqkThhw5cgTnzp3DoUOH0NjYiK1bt+L06dND/meT5SBEkX+VEpF6BENhdLh9\naOuM/LS7fGjr7I6sd/rQ5oqse33ykI8hagVkWo2w20zItBlhtxphtxmRaTPBbjNGf0wjnhKVUkdS\ne9p2ux0LFy6EKIooKCiAxWJBe3s77Hb7oNs7nd5Rr4HfA0wOHufk4HFOjus5zhkmERkmCcgZ/Drb\nvoAc7an70eGJ6627/bH1i5edv9pr7+2hD1zqIRl1sJh0MOq1qhhv5/s5YtzM8rV8+XKUlJRg27Zt\n6OzshNfrRUYGL3NIRBOPUS8i1y4OO7lKKBSGyxuIC3d/v3APoN3lR8MwY+1AZAjBYhJhMer6ltH1\n3mC3GMXosm8bs0GERjP+w34iSWpoZ2dnY82aNdi0aRMAYM+ePdBo+FVxIqLBaDQC0qXI2Ddyh97O\nHwgmhHmHJ9J77/L1oKu7B10+ObZ+raMbwdDIR0XNBjEu8BPDXRok6Hu3EbX83T4Wkjqm/VuNxWkS\nnn5JDh7n5OBxTo5UOs7hcBi+QDAa4pEw9/pkeOIDPmHZtx6QQyN+HoNeGwl448BefELvPm592tQM\nuDu7x/DVq8O4OT1ORETKEgQBJoMIk0HEJNtv2zfQE0zotScEvK9f0Ef/IGjt7MaVluCIn8Oo18Im\nGZBu0cMm6WGzGJAuRddj7QZYjKIqxulHG0ObiIhGRK/TQq/TIiPN8Jv2k4MheP2D9OC75b6lvwcB\nOYxrTi86PX60tHuHnYAz8r34SIDbLHqkR5excI8GvtWigzaFhmEZ2kRENKZErQZWsx5Ws37Y7eKH\nIeRgCG5vDzo8fnR6Aujo8sPlCaCjK4DO6Jh9Z5cfl5vdw47RCwDSzLpIuEt6pFuiy/4hb9Gr4sI3\nDG0iIhp3RK0GGWmGX+3Vh8NhdPnkvnD3+NHZFVm6ugKRcPf40dLRjSstnmEfy2QQoz30fj14SY90\nix7WaA/ebFDu1DxDm4iIVEsQBEgmHSSTDvmTh9/WF5ATgr23B98ZDfaOaFtT2/DXCNGJmlgvfZLN\nhI0rC2G3GUfxVQ2NoU1ERBOCUS/CmCkiO9M87HZyMJTQS+89JR8L+uj6L01u/Nzgwq3zchjaRERE\nShC1GmRajci0Dh/EoXAYPXIoqZeTTZ2P1BERESWRRhCSfv13hjYREZFKMLSJiIhUgqFNRESkEgxt\nIiIilWBoExERqQRDm4iISCUY2kRERCrB0CYiIlIJhjYREZFKMLSJiIhUgqFNRESkEkI4HB569nAi\nIiIaN9jTJiIiUgmGNhERkUowtImIiFSCoU1ERKQSDG0iIiKVYGgTERGpxIQJ7WeffRZFRUXYvHkz\nvv32W6XLSWkHDhxAUVERNmzYgI8//ljpclKaz+fD6tWr8dZbbyldSso6efIk1q5di/Xr16Oqqkrp\nclJSV1cXHnzwQTgcDmzevBlnzpxRuqRxS1S6gGT46quvcPnyZVRUVKCurg67d+9GRUWF0mWlpLNn\nz+LHH39ERUUFnE4n7rnnHtx5551Kl5WyDh8+DJvNpnQZKcvpdKKsrAyVlZXwer04ePAgVq1apXRZ\nKeftt9/G9OnTsXPnTly9ehUPPPAATp06pXRZ49KECO3q6mqsXr0aAFBYWIjOzk54PB5IkqRwZaln\nyZIlmD9/PgDAarWiu7sbwWAQWq1W4cpST11dHX766SeGyBiqrq7G0qVLIUkSJEnC/v37lS4pJWVk\nZODixYsAAJfLhYyMDIUrGr8mxOnx1tbWhDdBZmYmrl27pmBFqUur1cJsNgMATpw4gdtuu42BPUZK\nS0tRUlKidBkprb6+Hj6fD9u3b0dxcTGqq6uVLikl3X333WhsbMQdd9yBLVu2YNeuXUqXNG5NiJ52\nf7xy69j79NNPceLECbz66qtKl5KS3nnnHSxYsABTp05VupSU19HRgUOHDqGxsRFbt27F6dOnIQiC\n0mWllHfffRd5eXl45ZVXcOHCBezevZuf0xjChAjtrKwstLa2xm63tLRg8uTJClaU2s6cOYMXX3wR\nL7/8MtLS0pQuJyVVVVXhypUrqKqqQnNzM/R6PXJycrBs2TKlS0spdrsdCxcuhCiKKCgogMViQXt7\nO+x2u9KlpZRz585h+fLlAIDZs2ejpaWFw2pDmBCnx2+99VZ89NFHAIDa2lpkZWVxPHuMuN1uHDhw\nAC+99BLS09OVLidlPf/886isrMTx48dx7733YseOHQzsMbB8+XKcPXsWoVAITqcTXq+X461jYNq0\naaipqQEANDQ0wGKxMLCHMCF62osWLcLcuXOxefNmCIKAffv2KV1Syvrggw/gdDrx8MMPx9pKS0uR\nl5enYFVE1yc7Oxtr1qzBpk2bAAB79uyBRjMh+jpJVVRUhN27d2PLli2QZRlPPfWU0iWNW5yak4iI\nSCX4JyMREZFKMLSJiIhUgqFNRESkEgxtIiIilWBoExERqQRDmyjF1NfXY968eXA4HLFZk3bu3AmX\nyzXix3A4HAgGgyPe/r777sOXX355PeUS0W/A0CZKQZmZmSgvL0d5eTmOHTuGrKwsHD58eMT7l5eX\n8+IWROPQhLi4CtFEt2TJElRUVODChQsoLS2FLMvo6enBk08+iTlz5sDhcGD27Nn4/vvvcfToUcyZ\nMwe1tbUIBALYu3cvmpubIcsy1q1bh+LiYnR3d+ORRx6B0+nEtGnT4Pf7AQBXr17FY489BiAy13dR\nURE2btyo5EsnSikMbaIUFwwG8cknn2Dx4sV4/PHHUVZWhoKCggETM5jNZrz22msJ+5aXl8NqteK5\n556Dz+fDXXfdhRUrVuCLL76A0WhERUUFWlpacPvttwMAPvzwQ8yYMQNPP/00/H4/3nzzzaS/XqJU\nxtAmSkHt7e1wOBwAgFAohFtuuQUbNmzACy+8gCeeeCK2ncfjQSgUAhC53G9/NTU1WL9+PQDAaDRi\n3rx5qK2txQ8//IDFixcDiEzIM2PGDADAihUr8MYbb6CkpAQrV65EUVHRmL5OoomGoU2UgnrHtOO5\n3W7odLoB7b10Ot2Atv5TUIbDYQiCgHA4nHAN7t7gLywsxPvvv4+vv/4ap06dwtGjR3Hs2LEbfTlE\nFMUPohFNEGlpacjPz8fnn38OALh06RIOHTo07D4333wzzpw5AwDwer2ora3F3LlzUVhYiG+++QYA\n0NTUhEuXLgEA3nvvPZw/fx7Lli3Dvn370NTUBFmWx/BVEU0s7GkTTSClpaV45plncOTIEciyjJKS\nkmG3dzgc2Lt3L+6//34EAgHs2LED+fn5WLduHT777DMUFxcjPz8fN910EwBg5syZ2LdvH/R6PcLh\nMLZt2wZR5K8ZotHCWb6IiIhUgqfHiYiIVIKhTUREpBIMbSIiIpVgaBMREakEQ5uIiEglGNpEREQq\nwdAmIiJSCYY2ERGRSvw/I7qVmO4JuoIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAFnCAYAAACM3c9QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XlcVXX+P/DXYVdAWfSCoGjikEVS\noGWGijIgatk45kIZZtFXcRnT0lQkQBOUpnLKsLRMiyxRpHRyr4nG5YqaudFoqcWIxr4o+3Z+fzje\nn6gscTj3nHN5PXvcx4O7nfcHjPvifT7nfI4giqIIIiKiVjJTegBERKRtDBIiIpKEQUJERJIwSIiI\nSBIGCRERScIgISIiSRgkJIkoitiwYQOeeOIJhISEICgoCLGxsbh+/bqk7c6fPx8BAQE4cODAH37v\n6dOnER4eLql+W9u1axdKS0vv+txbb72FL774wsgjImo7As8jISn+/ve/4+jRo3jvvffg4uKC8vJy\nxMXF4ddff8WmTZsgCEKrtnvfffdh79698PDwaOMRK2PkyJHYuHEjXF1dlR4KUZtjR0KtVlxcjKSk\nJKxcuRIuLi4AgI4dOyI6OhovvvgiRFFEVVUVoqOjERISglGjRmHlypWoq6sDAAQGBmLz5s0YP348\nBg8ejJUrVwIAwsLCUF9fj/DwcHz//fcIDAzE8ePHDXVv3q+trcWSJUsQEhKC4OBgzJ49G6WlpUhP\nT0dwcDAAtKr+7cLCwrBu3TpMmjQJjz76KDZt2oQ1a9Zg5MiRGD16NC5fvgwAuHTpEp5++mmMGjUK\nwcHB+PrrrwEAixcvxq+//oqwsDAcP34cixYtwooVKzBmzBjs3r0bixYtwpo1a3D69GkMGzYMZWVl\nAIAPPvgAc+bMaet/NqI2xyChVjt16hRcXV3h6enZ4HFra2sEBgbCzMwMn3zyCbKzs7Fz5058+eWX\nOH78uOEDFgCOHTuG5ORkbNu2DZ999hmys7ORlJQEAEhKSkJAQECj9Q8ePIisrCzs2bMH+/btQ58+\nffDjjz82eE1r6t/NsWPHsGnTJqxYsQJ///vf4erqij179qBPnz7Ytm0bAOCNN97A8OHDsXv3bsTH\nx2PJkiWoqanBihUrDN/PgAEDAAB6vR4pKSkYNWqUoYaPjw+CgoKwdu1a5OTk4PPPP0dUVFSz/w5E\nSmOQUKsVFxfD2dm5ydekpaVh4sSJsLCwgI2NDcaMGYNDhw4Znh8zZgzMzc3h4uICZ2dn/P777y2u\n7+TkhIsXL2L//v2oqKjA3LlzMWTIEFnqDx8+HBYWFvDy8kJFRQVCQkIAAF5eXsjNzQUArFmzxjA3\n079/f1RVVSEvL++u2xs0aBCsra3veHzevHnYs2cPFi9ejJkzZ0Kn07X450GkFAYJtZqjoyNycnKa\nfE1hYSE6d+5suN+5c2cUFBQY7tvZ2Rm+Njc3N+x2agkfHx9ERUUhKSkJ/v7+eOWVV3Dt2jVZ6tva\n2hpec+t9MzMz1NfXAwAOHDiAyZMnIyQkBKNHj4YoiobnbnfrmG6vM2rUKPzwww8YM2ZMk98/kVow\nSKjVHnroIRQUFCAjI6PB4zU1NVi1ahUqKirQpUsXFBcXG54rLi5Gly5d/lCdWz+sAaCkpMTw9ciR\nI5GUlITvvvsOFRUVWL9+fYP3tkX9lqipqcHcuXMxY8YM7N27Fzt27GjVgQY5OTn45z//iccffxzv\nvfdem4+TSA4MEmq1Tp064cUXX8TChQuRmZkJAKioqEB0dDR++ukndOjQAcOGDUNKSgrq6upQXl6O\n7du3NznvcTddu3bFuXPnANw4jLaqqgoAsG3bNiQmJgIAHBwc0Lt37zve2xb1W6KiogLl5eV44IEH\nANyYm7G0tER5eTkAwMLC4o5u6W7i4uLw4osvIjIyErt378Z//vOfNh8rUVtjkJAkf/vb3zBx4kTM\nmDEDISEhGDduHJydnQ1/TYeFhcHV1RWPP/44nnrqKQwbNqzBBHNLzJw5Exs3bsQTTzyBixcvok+f\nPgCAP//5z8jIyMCIESMwatQoXLhwAc8//3yD97ZF/Za4Gapjx47F2LFj4eHhgaCgIERERKC8vBwj\nR45EaGgodu3a1eg20tLSkJWVhdDQUNjZ2WHevHmIior6Q7v7iJTA80iIiEgSdiRERCQJg4SIiCRh\nkBARkSQMEiIikoRBQkREklgoPYDGtHbVWKmUOIhNqQPnlPoZK6VWocNozc2U+XtNqX/faxUVitS1\nvcuSM8Yg579va/8Njf2ZotogISJq77Tyxx53bRERkSTsSIiIVEorHQmDhIhIpQRBGzuNGCRERKrF\njoSIiCTgri0iIpKEQUJERJJoZY5EG6MkIiLVYkdCRKRS3LVFRESSMEgAlJWVIT8/H8CN62537NhR\nznJERCalXQfJmTNnEBcXh2vXrsHR0RGiKCI3NxcuLi6Ijo7GvffeK0dZIiKT0q6DJD4+HnFxcfD0\n9GzweEZGBpYtW4ZNmzbJUZaIyMRo43goWUYpiuIdIQIA3t7eqFNoKW8iIpKHLB3Jgw8+iIiICAQF\nBcHJyQkAkJ+fj7179+KRRx6RoyQRkcnRyq4tQZTpCijHjh2DXq83TLbrdDr4+/vD19e3ZQPjha1k\np5X/SdsKL2xlHLywVduxt3dq1fuuXy9s45E0TbYgkYpBIj8GiXEwSIzDFIOkUyfnVr3v2rWCNh5J\n03geCRGRSmnljz0GCRGRSmllrS0GCRGRSmmlI9FG3BERkWqxIyEiUimtdCQMEiIi1WKQEBGRBJxs\nJyIiSbhri4iIJGGQEBGRJFoJEm3sgCMiItVSbUei1PpTFhZWRq9ZUVVu9JpKsjRX5n87EapcVs7k\nKLW2mFJ15aSVjkS1QUJE1N7xqC0iIpKEHQkREUnEICEiIgnYkRARkSRamSPRxiiJiEi12JEQEakU\nd20REZEkDBIiIpJEziCJj4/HqVOnIAgCIiMj4ePjY3hu06ZN2LFjB8zMzPDAAw9gyZIlTW6LQUJE\npFJyBcnRo0eRmZmJ5ORkXLx4EZGRkUhOTgYAlJaWYv369di3bx8sLCzwwgsv4OTJk3jooYca3R4n\n24mIVEoQzFp1a45er0dQUBAAwNPTEyUlJSgtLQUAWFpawtLSEuXl5aitrUVFRQU6d+7c5PaMHiTX\nrl0zdkkiIk0SWvlfc/Lz8+Ho6Gi47+TkhLy8PACAtbU1Zs2ahaCgIAwfPhwPPvgg7rnnnia3Z/Qg\nmT17trFLEhFRE25dJLe0tBRr167Fnj178O233+LUqVM4d+5ck++XZY5k06ZNjT6Xk5MjR0kiItMj\n0xyJTqdDfn6+4X5ubi66du0KALh48SJ69OgBJycnAMCAAQNw9uxZ9O3bt9HtydKRbNy4EefPn0dR\nUdEdt9raWjlKEhGZHEEQWnVrjr+/P/bu3QsAyMjIgE6ng52dHQDA3d0dFy9eRGVlJQDg7Nmz6NWr\nV5Pbk6UjSUxMxPLlyxEVFQUrq4bX90hPT5ejJBGRyZHrqC0/Pz94e3sjNDQUgiAgJiYGqampsLe3\nR3BwMMLDwzFlyhSYm5vD19cXAwYMaHqcokxXkKqoqIC1tTXMbrvYTEZGBry9veUo2SZ4YSv5KXVh\nq5o6ZbphCzNzReoqdTJbWVWVInVtra0VqSunPn38WvW+CxdOtPFImibbb3SHDh3u+riaQ4SISE14\nZjsREUmilSDhCYlERCQJOxIiIpXSSkfCICEiUilBIzuNGCRERGrFjoSIiKTgri0iIpKEQUJERJJo\nJUi0MZNDRESqxY6EiEilWnKRKjVgkBARqZRWdm2pNkhkWkuyWWWVxl9A0auVC7NJdfbcMUXqKkWp\nxSJL/7cct7FZWyrz/Rb875KtxmaKizYySIiISCIGCRERScA5EiIikkQru7a0EXdERKRa7EiIiFRK\nKx0Jg4SISKUYJEREJAmDhIiIJOFRW0REJAk7EiIikkTQyAmJ2uibiIhItWQNkrutl5WdnS1nSSIi\n0yEIrbsZmSxBsn//fgwfPhyDBg3CwoULUXrLIm6vvvqqHCWJiEyOIAituhmbLEGybt06fPnllzh8\n+DD8/PwQHh6O69evA1BuVV8iIq0RBLNW3YxNlsl2c3NzODg4AAAmTZoEZ2dnhIeH44MPPtDMUQhE\nRErTyuelLEHi5+eH6dOn45133oGNjQ2CgoJgbW2NqVOnori4WI6SREQmp10Hyauvvor09HRY33Kh\nmSFDhsDX1xe7du2SoyQRkclp10ECAAMHDrzjMTs7O0ycOFGukkREpACekEhEpFJcIoWIiCRq57u2\niIhImnY/R0JERNIwSIiISBIGCRERSaKVyXZtjJKIiFSLHQkRkUpx1xYREUnCICEiIkkYJEREJJE2\nprFVGyRKJXFtXZ3Ra549d8zoNQGgt4eXInVzcjIVqVtTV6tIXQtzc0XqKkXXqZMidZX697U0l+9j\nlB0JERFJopUg0UbfREREqsWOhIhIpbTSkTBIiIhUikFCRESSaGWJFAYJEZFKsSMhIiJJGCRERCSR\nNoJEGzvgiIhItdiREBGplFZ2bRmtIyksLDRWKSIikyAIZq26GZssFdPS0hASEoKpU6fi559/xpNP\nPomwsDAEBgbi+++/l6MkEZHJEQShVTdjk2XX1vvvv48NGzbg6tWriIiIwJo1a9C3b1/k5+cjIiIC\nAQEBcpQlIjIpcoZCfHw8Tp06BUEQEBkZCR8fH8Nzv//+O15++WXU1NTg/vvvx7Jly5rcliwdiZWV\nFdzc3DBgwADodDr07dsXANClSxdYW1vLUZKIyOTI1ZEcPXoUmZmZSE5ORlxcHOLi4ho8v3LlSrzw\nwgtISUmBubk5rl692uT2ZAkSZ2dnrF+/HgCwefNmAEB2djbi4+Ph6uoqR0kiIpMj1xyJXq9HUFAQ\nAMDT0xMlJSUoLS0FANTX1+OHH35AYGAgACAmJgZubm5Nbk+WIFm5ciW6devW4LGCggK4ubkhPj5e\njpJERNRC+fn5cHR0NNx3cnJCXl4egBsHRtna2mLFihV4+umn8dZbbzW7PVnmSGxsbDB69OgGj3l7\ne8Pb21uOckREJslYE+eiKDb4OicnB1OmTIG7uzumTZuGtLQ0DBs2rNH384REIiLVElp5a5pOp0N+\nfr7hfm5uLrp27QoAcHR0hJubGzw8PGBubo5Bgwbhl19+aXJ7DBIiIpWSa7Ld398fe/fuBQBkZGRA\np9PBzs4OAGBhYYEePXrgt99+Mzx/zz33NLk9ntlORKRSgpk8u7b8/Pzg7e2N0NBQCIKAmJgYpKam\nwt7eHsHBwYiMjMSiRYsgiiK8vLwME++NjlO8decYoayqSukhGE1vDy9F6ubkZCpSt6auVpG6dfXK\n/IqZy/Qh1Jz29v1amsv39/j4CfNb9b6UrW+28Uiaxo6EiEiluNYWERG1C+xIiIhUSisdCYOEiEil\nGCRERCSJAivCtwqDhIhIrdiREBGRFNy1RUREkjBIJFLqPElzM+PvlFTqf5YrVy8pUrd37wcVqXvp\n0ilF6lbXKnOSq6W5pSJ164V6RepmFRYpUvee/61R1Z6pNkiIiNo7diRERCSJXGtttTUGCRGRSrEj\nISIiSRgkREQkiUZypPEgSUlJafKN48ePb/PBEBHRLTSSJI0GyQ8//NDkGxkkREQENBEkK1asMHxd\nX1+PgoICwzV9iYhIflo5aqvZs+/0ej2CgoIQFhYGAIiPj0daWprc4yIiavfkumZ7W2s2SFatWoUt\nW7YYupGIiAisWbNG9oEREbV3JhMkHTt2RJcuXQz3nZycYGn5x5Ze0Ov1f3xkRETtnFaCpNnDf21s\nbHD06FEAQElJCXbu3Alra+tGX//VV181uC+KIt5//33MnDkTADB27Fgp4yUiajdM5jySmJgYxMbG\n4syZMwgODkb//v2xbNmyRl+fmJgIBwcHBAQEGB6rqqpCVlZW24yYiKid0Mpke7NB0q1bN6xdu7bF\nG/z666+xZs0anD9/HosWLYK7uzsOHDiA2bNnSxooERGpU7NBcuzYMaxcuRIXL16EIAjw8vLCq6++\niv79+9/19dbW1pg3bx4uXbqEZcuWwdfXF/X1yiwrTUSkZRrZs9X8ZPuyZcswf/58pKenQ6/XY86c\nOVi6dGmzG+7duzfWrl0LV1dXdO/evU0GS0TUnpjMZLuzszMGDRpkuO/v7w83N7cWFxg7diwn2ImI\nWkMjLUmjQXL58mUAQL9+/fDxxx/jscceg5mZGfR6Pe6//36jDZCIqL3S/FFbzz33HARBMFzy9rPP\nPjM8JwgC5syZI//oiIjaMc0ftfWvf/2r0TedOHFClsEQEdH/p/mO5KbS0lJs374dRUVFAICamhps\n27YNBw8elH1wRESkfs0etTV37lycP38eqampKCsrw3fffYfY2FgjDI2IqH3TylFbzQZJVVUVli1b\nBnd3dyxcuBCffvopdu/ebYyxERG1a1oJkmZ3bdXU1KC8vBz19fUoKiqCo6Oj4YguIiKSj0amSJoP\nkr/85S/YsmULJkyYgNGjR8PJyQkeHh7GGBsRUfum9aO2bnr66acNXw8aNAgFBQU8j4SIyAg0f9TW\nO++80+ib9u/fj5deekmWARER0Q2aDxJzc3NjjoOIiDSq0SDhsu9ERMrSfEeitNr6OkXqWpg1e0R0\nm6tVaJn9b376SZG6x88cVqTu89ObX7VaDu/841VF6irl6v9OXja2rvb2itSVE4OEiIgk0cpaWy36\n87uoqAhnzpwBAF6kiojISLRyQmKzQfL1119j0qRJWLx4MQDg9ddfx9atW2UfGBFReycIrbsZW7NB\nsmHDBmzfvh2Ojo4AgIULF2LLli2yD4yIqN3TSJI0GyT29vbo0KGD4b6NjQ0sLS1lHRQREWlHs5Pt\njo6O+PLLL1FVVYWMjAzs2rULTk5OxhgbEVG7ppWjtprtSJYuXYozZ86grKwMUVFRqKqqwvLly40x\nNiKidk0wE1p1M7ZmO5JOnTohOjraGGMhIqJbaKUjaTZIAgIC7vrNpKWlyTEeIiL6H5MJks8//9zw\ndU1NDfR6PaqqqmQdFBERmVCQuLu7N7jfq1cvhIeHY+rUqS0uUltbi5ycHLi4uMDCgifTExG1hMkE\niV6vb3A/Ozsb//3vf5t8z/LlyxEVFQUAOHz4MJYsWYIuXbqgoKAAS5cuxZAhQyQMmYiI1KTZIFmz\nZo3ha0EQYGdnh6VLm1787vz584avExMT8emnn6JHjx7Iy8vD7NmzGSRERC0gGH8N2VZpNkgWLVoE\nb2/vP7TRW9uxzp07o0ePHgCArl27ctcWEVFLaWTXVrN5l5CQ8Ic3+ssvv+Cll17CnDlzkJmZid27\ndwMAPv74Y9ib4FLPRERy0Mqijc22B25ubggLC8ODDz7YYGmUpi61e/tlenv27AngRkfy1ltvtXas\nRETtislMtnfv3h3du3f/Qxt95JFH7vr4mDFj/tB2iIjaMzmDJD4+HqdOnYIgCIiMjISPj88dr3nr\nrbdw8uRJJCUlNbmtRoNkx44dePLJJ3nJXSIihci13MnRo0eRmZmJ5ORkXLx4EZGRkUhOTm7wmgsX\nLuDYsWMtWqS30TmSlJQU6aMlIiLV0ev1CAoKAgB4enqipKQEpaWlDV6zcuVKzJs3r0Xb08jBZURE\n7Y9ck+35+fmGa0wBgJOTE/Ly8gz3U1NT8cgjj9xxQnpjGt219eOPP2LYsGF3PC6KIgRB4FpbREQy\nM9ZkuyiKhq+Li4uRmpqKDRs2ICcnp0XvbzRI7r//frz99tvSR0hERK0iV47odDrk5+cb7ufm5qJr\n164AgCNHjqCwsBCTJ09GdXU1/vvf/yI+Ph6RkZGNbq/RILGysmpxW0NERG1Prsl2f39/rF69GqGh\nocjIyIBOp4OdnR0AYOTIkRg5ciQAICsrC4sXL24yRIAmguRuh4IREZERydSS+Pn5wdvbG6GhoRAE\nATExMUhNTYW9vT2Cg4P/8PYaDZIFCxZIGigREanX/PnzG9zv27fvHa/p3r17s+eQAC04IZGIiJRh\nMme2ExGRMhgkREQkCYOEiIgkkeuorbam2iCxNFdmaLV1de2iJgCE9OunSN26+npF6n64JkqRuh07\n2CpSt7q6UpG63Z0cm3+RDJT6zJATOxIiIpJEIznCtbaIiEgadiRERCrFXVtERCQNg4SIiKTgUVtE\nRCQJd20REZEkDBIiIpJEK0HCw3+JiEgSdiRERCrFjuQ2hYWFxipFRGQSBLPW3YxNlpLff/89oqOj\nAQB6vR7Dhw/HlClTEBgYiLS0NDlKEhGZHEEQWnUzNll2bb377rtYu3YtACAxMRGffvopevTogaKi\nIkyfPh3Dhg2ToywRkWnRyK4tWYKktrYWtrY3Vjy1t7dH9+7dAQAODg4QRVGOkkREJkcrcySyBEl4\neDjGjh0Lf39/ODg4YObMmfD19UV6ejomTJggR0kiIpPTroPkySefxNChQ3H48GFcuXIFoiiiS5cu\niI+Ph4uLixwliYhIIbId/uvg4IDRo0fLtXkiIpPHtbaIiEiSdr1ri4iIpGOQEBGRJBrJEQYJEZFq\naSRJGCRERCqllcl2rv5LRESSsCMhIlIpTrYTEZEkDBIiIpKEQUJERJIwSIiISBKtHLXFICEiUimN\nNCTqDZK6+nqlh2A0HayslB6CUVXX1SlSt6NCP+fq6kpF6trY2CpSt7KyTJG6NXW1itS1NFftx6jR\n8CdARKRWGmlJGCRERCrFyXYiIpKEQUJERJLwqC0iIpKEHQkREUmilSDh6r9ERCQJOxIiIpXSSkfC\nICEiUimN5AiDhIhItXjUFhERSaGVXVuyTLb7+fnh9ddfR0FBgRybJyJqFwRBaNXN2GTpSLy9vTFy\n5Ei88sor6NatG8aNGwdfX19YWLABIiJqKa10JLJ8sguCgIcffhgbN27EmTNnsHXrVrz22muwtbWF\ns7Mz1q1bJ0dZIiJSgCxBIoqi4et+/fqhX79+AIDc3Fzk5eXJUZKIyOSYteeO5C9/+ctdH9fpdNDp\ndHKUJCIyOe1619b48ePl2CwRUbvSrjsSIiKSTiM5wiAhIlIrAdpIEgYJEZFKcdcWERGpVnx8PE6d\nOgVBEBAZGQkfHx/Dc0eOHMHbb78NMzMz3HPPPYiLi4OZWePnr3MZeSIilZLrzPajR48iMzMTycnJ\niIuLQ1xcXIPno6Oj8e6772Lz5s0oKyvDgQMHmtweOxIiIpWS6/BfvV6PoKAgAICnpydKSkpQWloK\nOzs7AEBqaqrhaycnJxQVFTW5PXYkREQqZSYIrbo1Jz8/H46Ojob7Tk5ODU4Wvxkiubm5OHToEAIC\nAprcHjsSIiKVMtYJibeuRnJTQUEBIiIiEBMT0yB07oZBQkSkUnIdtaXT6ZCfn2+4n5ubi65duxru\nl5aW4v/+7/8wd+5cDB48uPlxyjJKIiKSTBBad2uOv78/9u7dCwDIyMiATqcz7M4CgJUrV+K5557D\n0KFDWzROdiRERO2Mn58fvL29ERoaCkEQEBMTg9TUVNjb22Pw4MH46quvkJmZiZSUFADAE088gUmT\nJjW6PUG8284xFairr1ekrhI/DqUWZlPqZKeKmhpF6na0slKkrlJsbGwVqVtZWaZI3Zq6WkXqWprL\n9/f4vjNnWvW+Ef9bcd1YVNuRKPUhV67Ah5yNpaXRawLA1eKmD+mTi5tD0xN3cqlUKMAsmjiRS06l\nZdcUqdur1wOK1P3p5xOK1LU0l2/bPLOdiIgkadfLyBMRkXQMEiIikoS7toiISBKtdCQ8j4SIiCRh\nR0JEpFJa6UgYJEREKmWmjRxhkBARqRUvtUtERJLwqC0iIpKEcyS3EUVRMz8UIiI10MpnpiyH/x48\neBCjRo3C5MmTcfr0aTz11FMYOnQoRo4ciaNHj8pRkoiIFCJLR5KYmIhPPvkEJSUlCAsLw8aNG9G3\nb19cuXIFCxYswOeffy5HWSIik9Ku50gsLS2h0+mg0+nQqVMn9O3bFwDg7u4Oc3MZl8okIjIhWtm1\nJUuQdO7cGatWrUJRURE8PDwQHR2NIUOG4OTJk3B2dpajJBGRydFKkMgyR5KQkACdTodHH30UH330\nEQYMGIBDhw6hS5cuiI+Pl6MkEZHJMRNadzM21V4hUalhlVdXG72mUhe2yi4pVqSuUhe2qqpV5gp6\nSl3YSil9PB9UpK5SF7aS88qbJzMzW/W+h3r2bOORNI3nkRARqZRWJtvb159KRETU5tiREBGplFYm\n2xkkREQqxSAhIiJJtDJHwiAhIlIpdiRERCQJg4SIiCTRyhUSefgvERFJwo6EiEileKldIiKShHMk\nEtXW1ylSV6l1r5TgaGunSN1fcrIVqevl2k2RukqtG/drXp4idc9fOKlI3cGDxihS99ix3bJtm4f/\nEhGRJOxIiIhIEnYkREQkiVY6Eh7+S0REkrAjISJSKa10JAwSIiKV0sqZ7QwSIiKV4gmJREQkCXdt\nERGRJDz8l4iIJNFKR8LDf4mISBJZOxJRFFFUVARRFOHs7CxnKSIik6OVjkSWIPn111+RkJCAK1eu\nICsrC56enigpKYG3tzcWL14MFxcXOcoSEZkUrcyRyLJrKyYmBkuWLME///lPbNu2Df369cP+/fsx\nbtw4zJ8/X46SREQmRxCEVt2MTZYgqa6uRo8ePQAAvXr1wvnz5wEAQ4cORWVlpRwliYhMjpnQupux\nybJry8vLCy+//DJ8fHxw4MABDBw4EAAQGRmJPn36yFGSiMjktOsTEpcuXYpvv/0Wv/32G5577jkM\nHToUADBlyhTce++9cpQkIjI57XqyXRAEBAUF3fF437595ShHREQK4gmJREQqpZWjthgkREQq1a53\nbRERkXQMEiIikoS7toiISBJ2JEREJIlWrpDI1X+JiEgSdiRERCol55nt8fHxOHXqFARBQGRkJHx8\nfAzPHT58GG+//TbMzc0xdOhQzJo1q8ltsSMhIlIpuRZtPHr0KDIzM5GcnIy4uDjExcU1eH758uVY\nvXo1vvjiCxw6dAgXLlxocnsMEiIilTIThFbdmqPX6w2rj9y8zEdpaSkA4PLly+jcuTO6desGMzMz\nBAQEQK/XNz1O6d8qERHJQa72aHxVAAAKkElEQVSOJD8/H46Ojob7Tk5OyMvLAwDk5eXBycnprs81\nRrVzJJbmqh2ayehoZaVIXS/XborUVYpSh3D21ukUqauUY8d2Kz0EzRJFUdL72ZEQEbUzOp0O+fn5\nhvu5ubno2rXrXZ/LycmBrpk/ShgkRETtjL+/P/bu3QsAyMjIgE6ng52dHQCge/fuKC0tRVZWFmpr\na/Hdd9/B39+/ye0JotSehoiINOfNN9/E8ePHIQgCYmJi8NNPP8He3h7BwcE4duwY3nzzTQDAiBEj\nEB4e3uS2GCRERCQJd20REZEkDBIiIpLE5I6xbeq0fzn9/PPPmDlzJqZOnYpnn33WKDUB4I033sAP\nP/yA2tpaTJ8+HSNGjJC1XkVFBRYtWoSCggJUVVVh5syZGD58uKw1b1VZWYknnngCM2fOxLhx42Sv\nl56ejpdeegl/+tOfAABeXl547bXXZK8LADt27MBHH30ECwsLzJkzB8OGDZO95tatW7Fjxw7D/bNn\nz+LHH3+UvW5ZWRkWLlyIkpIS1NTUYNasWRgyZIjsdevr6xETE4NffvkFlpaWiI2Nhaenp+x1TY5o\nQtLT08Vp06aJoiiKFy5cECdOnGiUumVlZeKzzz4rRkVFiUlJSUapKYqiqNfrxRdffFEURVEsLCwU\nAwICZK+5c+dOcd26daIoimJWVpY4YsQI2Wve6u233xbHjRsnbtu2zSj1jhw5Iv7tb38zSq1bFRYW\niiNGjBCvX78u5uTkiFFRUUYfQ3p6uhgbG2uUWklJSeKbb74piqIoZmdniyEhIUapu2/fPvGll14S\nRVEUMzMzDZ8f9MeYVEfS2Gn/Nw9rk4uVlRU+/PBDfPjhh7LWud3DDz9s6Lg6deqEiooK1NXVwdzc\nXLaao0ePNnz9+++/w8XFRbZat7t48SIuXLhglL/MlabX6zFo0CDY2dnBzs4Or7/+utHHkJiYaDhy\nR26Ojo44f/48AODatWsNzrqW02+//Wb4HfLw8MDVq1dl/x0yRSY1R9LUaf9ysrCwgI2Njex1bmdu\nbo6OHTsCAFJSUjB06FCj/QKEhoZi/vz5iIyMNEo9AEhISMCiRYuMVu+mCxcuICIiAk8//TQOHTpk\nlJpZWVmorKxEREQEnnnmmWbXOmprp0+fRrdu3Qwnqcnt8ccfx9WrVxEcHIxnn30WCxcuNEpdLy8v\nHDx4EHV1dbh06RIuX76MoqIio9Q2JSbVkdxObCdHNn/zzTdISUnBxx9/bLSamzdvxn/+8x8sWLAA\nO3bskH0ZkK+++goPPfQQevToIWud2/Xq1QuzZ8/GqFGjcPnyZUyZMgX79u2DlRGWlykuLsZ7772H\nq1evYsqUKfjuu++MttxKSkoK/vrXvxqlFgBs374dbm5uWL9+Pc6dO4fIyEikpqbKXjcgIAAnTpzA\n5MmTce+996J3797t5nOjLZlUkDR12r+pOnDgAD744AN89NFHsLe3l73e2bNn4ezsjG7duuG+++5D\nXV0dCgsL4ezsLGvdtLQ0XL58GWlpacjOzoaVlRVcXV3x2GOPyVrXxcXFsDvPw8MDXbp0QU5OjuyB\n5uzsDF9fX1hYWMDDwwO2trZG+TnflJ6ejqioKKPUAoATJ05g8ODBAIC+ffsiNzfXaLuY5s2bZ/g6\nKCjIaD9jU2JSu7aaOu3fFF2/fh1vvPEG1q5dCwcHB6PUPH78uKHzyc/PR3l5uVH2Z//jH//Atm3b\nsGXLFkyYMAEzZ86UPUSAG0dOrV+/HsCNVVELCgqMMi80ePBgHDlyBPX19SgqKjLazxm4sbaSra2t\nUbqum3r27IlTp04BAK5cuQJbW1ujhMi5c+ewePFiAMC///1v3H///TAzM6mPRaMwqY7Ez88P3t7e\nCA0NNZz2bwxnz55FQkICrly5AgsLC+zduxerV6+W/cN9165dKCoqwty5cw2PJSQkwM3NTbaaoaGh\nWLJkCZ555hlUVlYiOjrapH/xAgMDMX/+fHz77beoqalBbGysUT5gXVxcEBISgokTJwIAoqKijPZz\nvn0ZcWOYNGkSIiMj8eyzz6K2thaxsbFGqevl5QVRFDF+/HhYW1sb7eACU8MlUoiISBLT/VOSiIiM\ngkFCRESSMEiIiEgSBgkREUnCICEiIkkYJCSbrKwsPPDAAwgLC0NYWBhCQ0Pxyiuv4Nq1a63e5tat\nWw3LpMybNw85OTmNvvbEiRO4fPlyi7ddW1uLe++9947HV69ejVWrVjX53sDAQGRmZra41qJFi7B1\n69YWv55IzRgkJCsnJyckJSUhKSkJmzdvhk6nw/vvv98m2161alWTJwempqb+oSAhotYxqRMSSf0e\nfvhhJCcnA7jxV/zNNazeffdd7Nq1C5999hlEUYSTkxOWL18OR0dHbNq0CV988QVcXV2h0+kM2woM\nDMSGDRvQo0cPLF++HGfPngUAPP/887CwsMCePXtw+vRpLF68GD179sTSpUtRUVGB8vJyvPzyy3js\nscdw6dIlLFiwAB06dMDAgQObHf/nn3+O7du3w9LSEtbW1li1ahU6deoE4Ea3dObMGRQUFOC1117D\nwIEDcfXq1bvWJTIlDBIymrq6Ouzfvx/9+/c3PNarVy8sWLAAv//+Oz744AOkpKTAysoKn3zyCdau\nXYtZs2bh3XffxZ49e+Do6IgZM2agc+fODba7Y8cO5OfnY8uWLbh27Rrmz5+P999/H/fddx9mzJiB\nQYMGYdq0aXjhhRfw6KOPIi8vD5MmTcK+ffuQmJiIp556Cs888wz27dvX7PdQVVWF9evXw87ODtHR\n0dixY4fhQmYODg745JNPoNfrkZCQgNTUVMTGxt61LpEpYZCQrAoLCxEWFgbgxtXoBgwYgKlTpxqe\n9/X1BQD8+OOPyMvLQ3h4OACguroa3bt3R2ZmJtzd3Q3rTA0cOBDnzp1rUOP06dOGbqJTp05Yt27d\nHeNIT09HWVkZEhMTAdxY+r+goAA///wzpk2bBgB49NFHm/1+HBwcMG3aNJiZmeHKlSsNFgX19/c3\nfE8XLlxosi6RKWGQkKxuzpE0xtLSEsCNi4P5+Phg7dq1DZ4/c+ZMg6XT6+vr79iGIAh3ffxWVlZW\nWL169R1rSImiaFjDqq6ursltZGdnIyEhATt37oSzszMSEhLuGMft22ysLpEp4WQ7qUK/fv1w+vRp\nw4XIdu/ejW+++QYeHh7IysrCtWvXIIriXS/w5OvriwMHDgAASktLMWHCBFRXV0MQBNTU1AAA+vfv\nj927dwO40SXFxcUBuHElzZMnTwJAsxePKigogKOjI5ydnVFcXIyDBw+iurra8PyRI0cA3Dha7OY1\n3hurS2RK2JGQKri4uGDJkiWYPn06OnToABsbGyQkJKBz586IiIjA5MmT4e7uDnd3d1RWVjZ476hR\no3DixAmEhoairq4Ozz//PKysrODv74+YmBhERkZiyZIliI6Oxs6dO1FdXY0ZM2YAAGbNmoWFCxdi\nz549hut/NOa+++5Dz549MX78eHh4eGDOnDmIjY1FQEAAgBsXopo+fTquXr1qWHm6sbpEpoSr/xIR\nkSTctUVERJIwSIiISBIGCRERScIgISIiSRgkREQkCYOEiIgkYZAQEZEkDBIiIpLk/wFtPQygkNbT\nWAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "mk095OfpPdOx", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Replace the Linear Classifier with a Neural Network\n", + "\n", + "**Replace the LinearClassifier above with a [`DNNClassifier`](https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier) and find a parameter combination that gives 0.95 or better accuracy.**\n", + "\n", + "You may wish to experiment with additional regularization methods, such as dropout. These additional regularization methods are documented in the comments for the `DNNClassifier` class." + ] + }, + { + "metadata": { + "id": "rm8P_Ttwu8U4", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "#\n", + "# YOUR CODE HERE: Replace the linear classifier with a neural network.\n", + "#\n", + "def train_nn_classification_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " hidden_units,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods \n", + " # Create the input functions.\n", + " predict_training_input_fn = create_predict_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " predict_validation_input_fn = create_predict_input_fn(\n", + " validation_examples, validation_targets, batch_size)\n", + " training_input_fn = create_training_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " \n", + " # Create the input functions.\n", + " predict_training_input_fn = create_predict_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " predict_validation_input_fn = create_predict_input_fn(\n", + " validation_examples, validation_targets, batch_size)\n", + " training_input_fn = create_training_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " \n", + " # Create feature columns.\n", + " feature_columns = [tf.feature_column.numeric_column('pixels', shape=784)]\n", + "\n", + " # Create a DNNClassifier object.\n", + " my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " classifier = tf.estimator.DNNClassifier(\n", + " feature_columns=feature_columns,\n", + " n_classes=10,\n", + " hidden_units=hidden_units,\n", + " optimizer=my_optimizer,\n", + " config=tf.contrib.learn.RunConfig(keep_checkpoint_max=1)\n", + " )\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"LogLoss error (on validation data):\")\n", + " training_errors = []\n", + " validation_errors = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " classifier.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " \n", + " # Take a break and compute probabilities.\n", + " training_predictions = list(classifier.predict(input_fn=predict_training_input_fn))\n", + " training_probabilities = np.array([item['probabilities'] for item in training_predictions])\n", + " training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions])\n", + " training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10)\n", + " \n", + " validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn))\n", + " validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) \n", + " validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions])\n", + " validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) \n", + " \n", + " # Compute training and validation errors.\n", + " training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot)\n", + " validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot)\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, validation_log_loss))\n", + " # Add the loss metrics from this period to our list.\n", + " training_errors.append(training_log_loss)\n", + " validation_errors.append(validation_log_loss)\n", + " print(\"Model training finished.\")\n", + " # Remove event files to save disk space.\n", + " _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*')))\n", + " \n", + " # Calculate final predictions (not probabilities, as above).\n", + " final_predictions = classifier.predict(input_fn=predict_validation_input_fn)\n", + " final_predictions = np.array([item['class_ids'][0] for item in final_predictions])\n", + " \n", + " \n", + " accuracy = metrics.accuracy_score(validation_targets, final_predictions)\n", + " print(\"Final accuracy (on validation data): %0.2f\" % accuracy)\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"LogLoss\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"LogLoss vs. Periods\")\n", + " plt.plot(training_errors, label=\"training\")\n", + " plt.plot(validation_errors, label=\"validation\")\n", + " plt.legend()\n", + " plt.show()\n", + " \n", + " # Output a plot of the confusion matrix.\n", + " cm = metrics.confusion_matrix(validation_targets, final_predictions)\n", + " # Normalize the confusion matrix by row (i.e by the number of samples\n", + " # in each class).\n", + " cm_normalized = cm.astype(\"float\") / cm.sum(axis=1)[:, np.newaxis]\n", + " ax = sns.heatmap(cm_normalized, cmap=\"bone_r\")\n", + " ax.set_aspect(1)\n", + " plt.title(\"Confusion matrix\")\n", + " plt.ylabel(\"True label\")\n", + " plt.xlabel(\"Predicted label\")\n", + " plt.show()\n", + "\n", + " return classifier\n" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "GCegiMWidinK", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 973 + }, + "outputId": "213f972a-07f0-400c-a2bb-ca4b6c9b4c1f" + }, + "cell_type": "code", + "source": [ + "classifier = train_nn_classification_model(\n", + " learning_rate=0.05,\n", + " steps=1000,\n", + " batch_size=30,\n", + " hidden_units=[100, 100],\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 22, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "LogLoss error (on validation data):\n", + " period 00 : 4.72\n", + " period 01 : 3.97\n", + " period 02 : 3.47\n", + " period 03 : 2.47\n", + " period 04 : 2.71\n", + " period 05 : 2.49\n", + " period 06 : 2.11\n", + " period 07 : 1.98\n", + " period 08 : 2.10\n", + " period 09 : 2.03\n", + "Model training finished.\n", + "Final accuracy (on validation data): 0.94\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe8AAAFnCAYAAACPasF4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VFX+x/H3lEx675WEUEICoYbe\nREoAAVEQRFBRwVVUdkVd2V0VXX8WxF5QQATrgsgiImXp0kkAqaEESEjvvZf5/RGIIC2Embkzyff1\nPD5u7sy9883Zaz5zzr3nHpVer9cjhBBCCIuhVroAIYQQQtwaCW8hhBDCwkh4CyGEEBZGwlsIIYSw\nMBLeQgghhIWR8BZCCCEsjIS3EAbUtm1b0tPTDXKs5ORkwsPDDXIsJUyZMoW+ffsSHR3NsGHDGDFi\nBEuXLr3l4xw5coRHH330lvcLDw8nOTn5lvcTwhJolS5ACNF0Pf/884wZMwaArKwsJkyYQEhICP37\n92/wMSIjI/nyyy+NVaIQFkl63kKYQEVFBS+//DLDhg1j+PDhvPXWW9TU1ACwY8cOBgwYwPDhw1m2\nbBldunS5aY8xPz+fmTNn1vdoFyxYUP/a+++/z7Bhwxg2bBgPPvggGRkZN9x+yfbt2xk1atQV28aM\nGcNvv/3G/v37GTt2LCNGjGD48OGsW7fultvA09OT6Ohodu3aBUB8fDyTJ09m2LBhjBo1iqNHjwKw\nb98+Jk6cyMyZM5k1axb79u1jyJAhN23H7du3M2TIEIYPH86iRYvqP7ekpIQZM2YwfPhw7rzzTv71\nr39RVVV1y/ULYU4kvIUwgaVLl5Kens6vv/7Kf//7X2JjY1mzZg01NTW8+OKLvPbaa6xbt46EhATK\nyspuerz33nsPZ2dnNmzYwPfff88PP/xAbGwsZ86cYf369axZs4YNGzYwZMgQ9uzZc93tl+vVqxfp\n6ekkJSUBkJSURHp6Or179+btt99m9uzZrF27lvnz57Np06ZGtUN1dTU6nY7a2lpmzJjBmDFj2LBh\nA3PmzOHJJ5+kuroagBMnTjBx4kTefffdBrfjP//5T1555RXWrVuHWq2uD/VVq1bh5OTEunXr2LBh\nAxqNhvj4+EbVL4S5kPAWwgS2bdvGfffdh1arxcbGhlGjRrFr1y4SEhKorKxkwIABQN114tra2pse\nb/v27UyaNAkAFxcXhgwZwq5du3ByciI3N5dffvmFgoICpkyZwt13333d7ZfT6XTccccdbNmyBYBN\nmzYxePBgtFot7u7urFq1irNnzxIcHHxVqDZEUlIS69evZ8iQIZw7d46cnBzGjRsHQNeuXXFzc+PQ\noUMA2NjY0KtXr1tux759+wIwduzY+n0uHXfnzp3U1tby6quv0q5du1uuXwhzIuEthAnk5ubi7Oxc\n/7OzszM5OTkUFBTg5ORUv93Ly6vBx7t8PycnJ3JycvD29ubjjz9m/fr1DBw4kOnTp5OWlnbd7X82\nbNiwK8J7xIgRALzxxhvY2toydepUhg4dyvr16xtU5zvvvFN/w9qzzz7Liy++SGRkJIWFhZSXlzN8\n+HCio6OJjo4mJyeH/Pz8+va53u99vXZ0cHC4Yvslw4cP5+GHH+bDDz+kV69evPrqq1RWVjaofiHM\nlYS3ECbg4eFRH0xQd83aw8MDBwcHSktL67dnZ2ff1vEAevbsyYIFC9i1axe+vr7Mmzfvhtsv169f\nP06ePElCQgIJCQn07Nmz/vNeeuklfvvtN15++WVmz55NSUnJTet8/vnnWb9+PRs2bODHH3+s/zLg\n5eWFvb0969evr/9n586d9de2b/X3dnZ2pri4uH57bm7uFftNnDiRH3/8kbVr13L8+HFWrVp109qF\nMGcS3kKYwMCBA1mxYgU1NTWUlpby888/M2DAAIKDg6murmbfvn0A/PDDD6hUqgYdb9myZUBdUG3c\nuJGBAweyc+dOXn31VWpra7GzsyMsLAyVSnXd7X+m0+no27cv77zzDnfeeScajYaqqiqmTJlCZmYm\nABEREWi1WtTqxv/58Pf3x8fHp74Hn5uby7PPPnvFF5nr/d7XasegoCA0Gk19O65cubL+9/v0009Z\nsWIFAN7e3gQEBDSojYUwZzJVTAgDmzJlChqNpv7n119/nSlTppCUlMTIkSNRqVRER0czfPhwVCoV\nc+bMYfbs2Tg6OjJ16lTUajUqlQq9Xk9NTQ3R0dFXHH/hwoX89a9/Zc6cOURHR6NWq5k+fTqRkZFU\nVFTw66+/MmzYMHQ6HW5ubrzxxht4eXldc/u1DBs2jKeffpolS5YAYGVlxbhx43j44YcBUKvV/Otf\n/8LW1paNGzeyZcsW3nzzzVtqI5VKxXvvvcecOXP44IMPUKvVTJ06FTs7u5u27fXa8d///jf/+Mc/\n0Ol03HPPPfXHGjNmDLNnz2bhwoWoVCo6duxYP31NCEulkvW8hTAfpaWldO7cmdjYWBwdHZUuRwhh\npmTYXAiF3XvvvaxduxaAtWvXEhoaKsEthLgh6XkLobDY2Fhee+01KioqsLe3Z86cOURGRipdlhDC\njEl4CyGEEBZGhs2FEEIICyPhLYQQQlgYi5kqlpVVZNDjubrakZd34zmlwjCkrU1D2tk0pJ1NQ9q5\njqfntW9ebbY9b61Wc/M3CYOQtjYNaWfTkHY2DWnnG2u24S2EEEJYKglvIYQQwsJIeAshhBAWRsJb\nCCGEsDAS3kIIIYSFkfAWQgghLIyEtxBCCGFhJLyFEEI0Odu2bW7Q+z788F1SU1Ou+/qLLz5rqJIM\nSsJbCCFEk5KWlsqmTRsa9N6ZM2fh5+d/3dffeus9Q5VlUBbzeFQhhBCiId57723i4o7Tr18UQ4cO\nJy0tlQ8++Iw333yNrKxMysrKeOSR6fTp04+nnprOs8++wNatmykpKebChURSUpJ55plZ9OrVh5Ej\n7+TXXzfz1FPTiYrqwcGDseTn5/P22+/j4eHBa6+9RHp6Gh06RLJlyyb++9+1Jvkdm2V4V9ZU8lvC\nPlratMJao1O6HCGEaJKWb4kn5mRmo/bVaFTU1Fy9YnVUmBf3DWp1w33vv38KK1cuJyQklAsXEvjs\ns0Xk5eXSvXtPhg+/i5SUZF566UX69Ol3xX6ZmRnMm/cRe/fu5ueff6JXrz5XvG5vb8+HH85n/vyP\n+e23Lfj5BVBZWcGCBUvYtWsHy5f/0KjftTGaZXifyT/PZ4eXEO7Wlr9EPoxGLc/QFUKIpqhduwgA\nHB2diIs7zurVK1Gp1BQWFlz13sjITgB4eXlRXFx81esdO3auf72goIDExPN06NARgF69+qDRmC5L\nmmV4h7m2orNvew6lHWPZ6f9yf9t7UalUSpclhBBNyn2DWt20l3w9np6OBllN0srKCoCNG9dTWFjI\np58uorCwkMcem3LVey8PX73+6l7/n1/X6/WoL3b+VCqVSXOkWd6wplFr+FuvRwl08GNX6n42Jm5T\nuiQhhBAGolarqampuWJbfn4+vr5+qNVqtm/fQlVV1W1/jr9/AKdOnQBg//69V32mMTXL8AawsbLh\nLx2n4mrtws/n1hGbfkjpkoQQQhhAixYhnDp1kpKSP4a+Bw4cxO7dO5g58wlsbW3x8vLiq68W3tbn\n9O7dj5KSEp544lEOHz6Ek5Pz7ZbeYCr9tcYGzJAhhk8ud2lIJrU4nXcPfEZ1bRVPd55OK5cQg36O\nMNzwl7gxaWfTkHY2DUto58LCAg4ejGXgwDvJyspk5swn+P77nwz6GZ6ejtfc3mx73pf4OfgwrcMU\natHzxZElZJQ07s5IIYQQzYudnT1btmxi+vSH+cc/nuPpp033QJdm3/O+ZE9aLN/GLcfDxo3nuj2F\no87BoJ/XnFnCN+imQNrZNKSdTUPauY70vG+il283hgcPJrs8l8+PLKGyplLpkoQQQohrkvC+zMiQ\nIXT36UJC4QWWnPgPtfpapUsSQgghriLhfRmVSsUDYeNo4xLK4axj/Df+V6VLEkIIIa4i4f0nWrWW\naR0exMfemy1JO9iWtEvpkoQQQogrSHhfg52VLU9GTsVR58CKM6s5nHVc6ZKEEEIY2LhxoygtLeWb\nb5Zw7NiRK14rLS1l3LhRN9z/0rKja9f+wvbtW41W57UYNbzLy8sZPHgwK1euvGL7oEGDmDRpElOm\nTGHKlClkZGQYs4xGcbd144nIqViptXx1/HsSC5OULkkIIYQRTJnyMO3bR97SPpcvOzpixCgGDLjD\nGKVdl1GfbT5//nycna/9xJmFCxdib29vzI+/bS2cAnmk/QN8cWQp8w9/xXPdnsLD1k3psoQQQtzA\nI488wBtvvIuPjw/p6WnMnj0LT08vysrKKC8v529/e57w8Pb17/+//5vDwIF30qlTZ/75zxeorKys\nX6QE4H//W8eKFcvQaNQEB4fy97//s37Z0a++WkhtbS0uLi7ce+8EPvvsQ44ePUx1dQ333nsf0dEj\nr7mcqI+Pz239jkYL77NnzxIfH8/AgQON9REm0cEjnPFtxrD89Co+O7yY57o+iZ2VndJlCSGE2VsZ\nv4ZDmUcbta9GraKm9urHkHT26sA9re664b79+9/Brl2/ce+997Fjx3b697+D0NDW9O8/kAMHYvju\nu6X83/+9c9V+Gzaso2XLUJ55ZhabN/+vvmddVlbGu+9+jKOjIzNmTOPs2fj6ZUenTp3Gl19+AcDv\nvx/k3LmzzJ+/mLKyMh56aCL9+w8Erl5O9L77JjWqXS4x2rD522+/zYsvvnjd11955RXuv/9+5s2b\nd83VW8zJgIDe3BnYn4zSTBYc/Zqq2mqlSxJCCHEddeG9A4CdO7fTt+8Atm/fzBNPPMr8+R9TUHD1\ncqAACQnnaN++bonPzp271m93cnJi9uxZPPXUdBITz1NQkH/N/U+ePEGnTl0AsLW1JTi4JUlJdZdc\nL19O9FrLjd4qo/S8V61aRadOnQgMDLzm68888wz9+vXD2dmZGTNmsGHDBqKjo294TFdXO7Raw66V\ner0n11zLNI8JFOuL2Jd8iBXnV/F0j4dlGdFbcCttLRpP2tk0pJ0b5nHP+4H7Tf65np6deP31HKqr\niykvL+XgwT0EBQXw0UcfcPToUebOnYunpyMajRoPDwdsbKxwdrbFxsYKFxc7PD0d0evL0GjUODtb\n88EH7/Dzzz/j6enJ448/jotL3eirtbUVnp6O2Ntb4+BgQ3W1lsrKyvrzQ63W4+7ugE6nxcPDCU9P\nRxwcbKiqKrvtc8go4b1t2zaSkpLYtm0b6enp6HQ6fHx86N27NwB33313/Xv79+/P6dOnbxreeXml\nBq2xMY/emxg6jszCXHYm7sdB5ciolsMMWlNTJY85NA1pZ9OQdjaN223n7t178+abc+nZsy+pqRmE\nhrYmK6uIn3/+ldLScrKyiqipqSU7u5jy8ioKCsrw9PRj//6DdOnSm40bt1NTU8uFCxmoVGrAhmPH\nznDkyFGyswvR6XT1xykpqcDKqpxWrdqydOmXjB17P6WlpZw/n4C9vTuVldXk5ZWQlVVEcXE5JSUV\nDf7dTPp41A8++ICffvqJ5cuXM378eJ588sn64C4qKuLRRx+lsrLu8aMxMTG0bt3aGGUYnE5jxeOR\nD+Fh6876hM3sTo1RuiQhhBDXMGDAHWzatIGBA+8kOnoky5Z9x9/+NoOIiPbk5OTw66+rr9onOnok\nx48fZebMJ0hKSkSlUuHs7EJUVA8ee+xBvvpqIZMmTeGjj96rX3b0o4/erd+/Y8dOtG0bxowZ0/jb\n32bwl788ha2trVF+P6MvTPLxxx/j7+8PgKOjI0OGDGHp0qWsWrUKa2trwsPDeemll246BG3shUlu\nRUZpFu/GfkpZTTlPRj5CO/c2Bq2tqZGeimlIO5uGtLNpSDvXuV7PW1YVa6Sz+Ql89PsCtCoNz3Z9\nEn8HXwNW17TIf4SmIe1sGtLOpiHtXEdWFTOwUJdgHmw3gfKaCj47vJj8imvfvSiEEEIYmoT3bejq\n3ZG7Q0eQX1HAZ4cXU15drnRJQgghmgEJ79s0OGgAff17klKcxpfHvqOmtkbpkoQQQjRxEt63SaVS\ncV/rMUS4h3Ei9xTLTv/X7B86I4QQwrJJeBuARq3hkYgHCHTwY1fqfjYmblO6JCGEEE2YhLeB2Git\n+UvHqbhau/DzuXXEph9SuiQhhBBNlIS3AblYO/Nkx0ew0djwTdxyzuSdU7okIYQQTZCEt4H5Ofgw\nrcMUatGz4OhSMkoylS5JCCFEEyPhbQRhbq2ZFDaO0uoyPj28mKLK219BRgghhLhEwttIevl2Y3jw\nYHLKc/n8yBIqayqVLkkIIUQTIeFtRCNDhtDDpysJhRdYcuI/1OprlS5JCCFEEyDhbUQqlYpJYffS\nxiWUw1nHWBm/RumShBBCNAES3kamVWuZ1uFBfOy92Zq0k61JO5UuSQghhIWT8DYBOytbnox8BCed\nIz+d+YXDWceVLkkIIYQFk/A2EXdbV56InIqVWstXx78nofCC0iUJIYSwUBLeJhTkFMAj7R+guraa\nzw8vIbssV+mShBBCWCAJbxPr4BHOfW3GUFRVzGeHF1NaVap0SUIIISyMhLcC+gf05s7A/mSUZrLg\n6NdU1VYrXZIQQggLIuGtkLtbjaCzZwfO5J/ju7gfZRlRIYQQDSbhrRC1Ss2D4RMJcWpBTMYh1pzb\noHRJQgghLISEt4J0Gisej3wID1t31iduYXfqfqVLEkIIYQEkvBXmqHNgRsdHsLey44dTK4nLOa10\nSUIIIcychLcZ8LLz5PEOD6NWqVl07BuSi1KVLkkIIYQZk/A2E6EuwTwUPpHymgrmH/mK/IoCpUsS\nQghhpiS8zUgXr0juDh1BfkUBnx1eTFl1udIlCSGEMENGDe/y8nIGDx7MypUrr9i+e/duxo0bx4QJ\nE/j000+NWYLFGRw0gL7+PUkpTuPLY99SU1ujdElCCCHMjFHDe/78+Tg7O1+1/fXXX+fjjz/mhx9+\nYNeuXcTHxxuzjGuqqTXPedUqlYr7Wo+hvXsYcbmnWXb6vzIHXAghxBWMFt5nz54lPj6egQMHXrE9\nKSkJZ2dnfH19UavVDBgwgD179hirjGuKTy7gvtlr2B+XYdLPbSiNWsPUiAcIdPBjV+p+/pe4VemS\nhBBCmBGjhffbb7/Niy++eNX2rKws3Nzc6n92c3MjKyvLWGVck6ujNRqNiqXrT5KdX2bSz24oG601\nf+k4FVdrF1afW09s+iGlSxJCCGEmtMY46KpVq+jUqROBgYEGO6arqx1arcYgx/L0dGT63ZF8uOwQ\nSzac4o0n+6JRqwxybEPyxJF/OjzFS1vm8c3JH2nh7Uu4V2uly2oUT09HpUtoFqSdTUPa2TSkna/P\nKOG9bds2kpKS2LZtG+np6eh0Onx8fOjduzdeXl5kZ2fXvzcjIwMvL6+bHjMvz7Crb90ZFciuwynE\nnsxk6S/HGNU72KDHNxRbnHgsYgqfHv6SuTvm80znxwl09FO6rFvi6elIVlaR0mU0edLOpiHtbBrS\nznWu9wXGKMPmH3zwAT/99BPLly9n/PjxPPnkk/Tu3RuAgIAAiouLSU5Oprq6mq1bt9KnTx9jlHFD\nKpWKB4e1xdXRmp93nOdcaqHJa2ioMLfWPBA2jtLqMt498Am7UvbJTWxCCNGMmWye98qVK9m4cSMA\nc+bMYdasWTzwwAOMGDGCkJAQU5VxBQdbKx67Kxy9Xs+CX45TXmm+S3P29O3GXyIfxkptxfenfmLp\nif9QXl2hdFlCCCEUoNJbSBfO0MMnlw/J/Lg1nnX7LtAv0pepI9oZ9HMMLacsj8XHvyOh8ALedp48\n2n4y/g6+Spd1QzL8ZRrSzqYh7Wwa0s51TDpsbmnG9m9JC29HdhxJI/ZkptLl3JC7rSt/6/IXBgX2\nI6M0i3diP2Z36n4ZRhdCiGZEwhvQatRMHx2OTqtm6fqT5Baa92NJtWot97YexfQOD6FVW/HdyRV8\nHbeMippKpUsTQghhAhLeF/m62zPxztaUlFfz5a9x1FpAT7ajZwSzo2bSwimQ/ekHmRvzEanF6UqX\nJYQQwsgkvC8zoJMfnVp5EJeYx//2JyldToO427rxbJcnuCOgL+mlmcyN/Zg9abFKlyWEEMKIJLwv\no1KpeHhEGM72On7afpbEdMu4WUKr1jKuzWimdXgQrVrDt3HL+ebEchlGF0KIJkrC+0+c7HQ8MrId\nNbV108cqqixnVa9Onu15MWomQY4B7E2PZW7sx6SVmOfz24UQQjSehPc1dGjpzuBuAaTllLJ8q+lX\nPLsdHrbuPNv1SQYE9CG9JIO5MR+xL+2A0mUJIYQwIAnv6xg/MBR/T3u2Hkzh9/jsm+9gRqzUWu5r\nM4ZH209GrdLwddwyvo37kUoZRhdCiCZBwvs6rLQaHh8VgVaj5qu1cRQUW97TzLp4RfJi1EwCHf3Z\nkxbDO7GfkF5i3vPYhRBC3JyE9w0EeDkw/o5Qikqr+HJtnEU+CMXTzp1ZXZ6kv38vUkvSeTv2I2Jk\neVEhhLBoEt43MbhrAO1D3Dh2LpfNB5KVLqdRrDRWTGg7lkciJqFGxZITP/D9yRVU1lQpXZoQQohG\nkPC+CZVKxSMj2+Fga8XyrWdJzipWuqRG6+rdib9HPUOAgx+7Uvcz78AnZJRmKV2WEEKIWyTh3QAu\nDtZMHRFGdU0tC1Yfp6racqaP/ZmXnSfPdZ1BX/+epBSn8XbMh8Rm/K50WUIIIW6BhHcDdW7tycDO\n/iRnlfDT9nNKl3NbrDRW3N/2HqaG3w/AV8e/54dTK6mSYXQhhLAIEt63YMKgVvi42fG/mCSOnc9R\nupzb1s2nM3/v9gz+Dr7sTNnLvAOfkllqWdPihBCiOZLwvgXWVhoeHx2BRq3iyzVxFJVa/rxpb3sv\nnuv6FH38upNcnMrbMR9yIOOw0mUJIYS4AQnvW9TCx5F7BrSkoKSSJetOWuT0sT/TaayYFDaOh8In\nUouexce/Y9mp/8owuhBCmCkJ70YY1j2IsCAXDp3JZvvhVKXLMZjuPl34e7dn8LP34beUPbx78DOy\nSi3/8oAQQjQ1Et6NoFapeOyucOxttPxn0xnSckqULslgfOy9eL7bU/T2jSKpKIW3Yj7kUOZRpcsS\nQghxGQnvRnJzsuHB6DAqq2tZsPoE1TW1SpdkMDqNjgfajefBdhOo1dew6Ng3LD/9M1W11UqXJoQQ\nAgnv2xIV5kXfDr4kZhSxasd5pcsxuB6+XXkh6hl87L3ZnryL9w58RnZZrtJlCSFEsyfhfZvuH9wa\nLxdb1u1N5GRintLlGJyvvTcvdHuaHj5duVCUzFsxH/B71jGlyxJCiGZNwvs22VprmTY6HJVKxcI1\nJygpb3p3aFtrdDwYPoHJ7e6juraGhUe/ZsXp1VTLMLoQQihCwtsAQv2cGd03mLyiCpauP9Ukpo9d\nSy/fbrzQ7Wl87LzYmryT9w7OJ0eG0YUQwuQkvA1kZK8WtApwJvZkJruPpStdjtH4OfjwfLen6e7T\nhcTCJN6M+ZDDWceVLksIIZoVo4V3WVkZM2fOZPLkyYwfP56tW7de8fqgQYOYNGkSU6ZMYcqUKWRk\nZBirFJPQqNVMvyscW2sN3248TWZeqdIlGY2N1poH203ggbBxVNdWseDoUn468ws1tZa7YIsQQlgS\nrbEOvHXrVtq3b8+0adNISUnhkUce4Y477rjiPQsXLsTe3t5YJZich4stk4e2ZeEvJ1j4ywlenNwF\njbppDm6oVCp6+3WnhVMgXx77li1JOzhfkMjUiAdwt3VVujwhhGjSjJYsI0aMYNq0aQCkpaXh7e1t\nrI8yK70ifOgZ7s3Z1EJ+2ZWgdDlG5+/gywvdnqabdyfOF17grZgPOJp9QumyhBCiSTNaz/uSiRMn\nkp6ezueff37Va6+88gopKSl07dqVWbNmoVKpjF2OSUwe2oYzyQX8sjuB9iHutApwVroko7LR2vBw\n+P20cQll+Zmf+fzIEu4M6s+YlsPRqDVKlyeEEE2OSm+CW6Pj4uJ44YUXWL16dX1Ar1q1in79+uHs\n7MyMGTMYO3Ys0dHR1z1GdXUNWq3lBMHxczn847OdeLja8fGsgdjZWCldkkkk5CXz/u6FpBVn0ta9\nJTN7P4qHnZvSZQkhRJNitPA+duwY7u7u+Pr6AnXD6N988w3u7u5Xvfe7774jJyeHZ5555rrHy8oq\nMmh9np6OBj/mn6387SxrdifSK8KHaaPCjfpZ5qS8upzvT/7EgczD2GvteHHAk7jpvZQuq8kzxTkt\npJ1NRdq5jqen4zW3G+2ad2xsLIsXLwYgOzub0tJSXF3rbmQqKiri0UcfpbKybj3smJgYWrdubaxS\nFDO6Twghvo7sOZ7O3hNNd/rYn9lobZgaMYmJbe+hrKacD/cspry6XOmyhBCiyTBaeE+cOJHc3Fwm\nTZrE9OnTefnll1m1ahUbN27E0dGR/v37M2HCBCZOnIibm9sNh8wtlVajZvqoCKytNHyz4TTZBWVK\nl2QyKpWKfv49GdriDrJLc/nv2bVKlySEEE2GSa55G4IlDptfsuNwKl+tO0mbAGdemNQFtbpp3JjX\nEFW11bx76BOSClJ5utM0wtya3giLuZBhRtOQdjYNaec6Jh82F3/oG+lL17aenE4uYN2+RKXLMSkr\ntZYZ3R9ErVLz3ckVMnwuhBAGIOFtAiqVioeiw3B1tGbVjvOcTytUuiSTaunWgqFBA8ktz2PV2XVK\nlyOEEBZPwttEHGyteHRkO2pq9SxYfZzyyua1Ild0yGB87b3ZkbKHU7nxSpcjhBAWTcLbhMKD3Yju\nHkRGXhn/2XxG6XJMykqtZUq7+y4On/9IeXWF0iUJIYTFkvA2sbH9WxLk5cBvh9M4cCpT6XJMqoVT\nIIODBpBTnsfPMnwuhBCNJuFtYlZaNdNHR2ClVbNk3UnyippXD3REyBB87L35LWU3p/POKl2OEEJY\nJAlvBfh52DNxUCtKyqtZtOYEtZYxW88g6obPx6NCxbdxP1JRU6l0SUIIYXEkvBUysLM/HUPdiUvM\nY2NMktLlmFSwU9DF4fNcGT4XQohGkPBWiEqlYuqIdjjZ6/hp+1kuZDSvhxGMDBmCt50X25N3cUaG\nz4UQ4pZIeCvIyV7HIyPaUV3Zu5OiAAAgAElEQVSj54vVx6moqlG6JJOx0lj9MXx+coUMnwshxC2Q\n8FZYZKg7d3YNIC2nlB+3Nq/5zyHOLbgzqD/ZZTn8cna90uUIIYTFkPA2A+MHhuLvYc+Wgyn8Hp+t\ndDkmNTJkKN52nmxL3kV8/nmlyxFCCIsg4W0GdFYapo+OQKtR8dXaOApKms8Qsk5jxeR29wHwbdxy\nKmX4XAghbkrC20wEejkwbmArikqr+GptHBay2JtBtHRuwaCgfmSV5fDLuQ1KlyOEEGZPwtuMDO4W\nQESIG0fO5rDlYIrS5ZjUXSHD8LLzYGvSTs7mJyhdjhBCmDUJbzOiVql4dGQ7HGytWL41npSsYqVL\nMhmdxoopMnwuhBANIuFtZlwcrJk6PIyq6lq+WH2CqupapUsymZbOwdwR2JfMsmwZPhdCiBuQ8DZD\nndt4MqCTH8lZxfy0vXk9wGRUy2F42dYNn58rSFC6HCGEMEsS3mZq4qDWeLvZ8b+YJI6fz1W6HJPR\naXQ80G48AN/ELaeypkrhioQQwvxIeJspa52Gx0eHo1GrWPTrCYpKm8814FYuIQwM7ENmaTZrzsvw\nuRBC/JmEtxkL9nFibP+WFBRXsmTdyWY1fWx0y2g8bN3ZcmEH5woSlS5HCCHMioS3mYvuHkRYkAuH\nzmSz40ia0uWYjE6j+9Pd5zJ8LoQQl0h4mzm1WsVjd4VjZ63l+02nSc8tVbokk2nlEsKAgN5klGax\n9vxGpcsRQgizIeFtAdycbHgwui2VVbV8sfo41TXNZ/rY6NDheNi4senCds4XXFC6HCGEMAsS3hai\neztv+rT3ITG9iP/uOKd0OSZjrdExud149Oj5Nm45VTJ8LoQQxgvvsrIyZs6cyeTJkxk/fjxbt269\n4vXdu3czbtw4JkyYwKeffmqsMpqUSUPa4OViy/q9F4hLzFO6HJNp7RrKgIDepJdmsjZhk9LlCCGE\n4owW3lu3bqV9+/Z8++23fPDBB7z11ltXvP7666/z8ccf88MPP7Br1y7i45vXWtaNYWutZdrocFQq\nFYvWnKC4rPn0QseEjsDDxo2NidtILExSuhwhhFCU0cJ7xIgRTJs2DYC0tDS8vb3rX0tKSsLZ2Rlf\nX1/UajUDBgxgz549xiqlSQn1c2ZMvxDyiipYur75TB+zvvjwFj16vo5bTlVttdIlCSGEYox+zXvi\nxIk899xz/OMf/6jflpWVhZubW/3Pbm5uZGVlGbuUJmNkzxa0CXDmwKmsZjV9rI1rKP39e5NeksG6\n8zJ8LoRovrQNfWNxcTEODg5kZ2eTkJBAly5dUKtvnv3/+c9/iIuL4/nnn2f16tWoVKpGFerqaodW\nq2nUvtfj6elo0OOZ0t8f7s4z87byw+Yz9Ozoj7+ng9Il3ZCh2voxl/HEbTjFxgvbGNimO6FuLQxy\n3KbCks9pSyLtbBrSztfXoPD+97//TVhYGEOGDGHixIlERESwevVqXnvttevuc+zYMdzd3fH19aVd\nu3bU1NSQm5uLu7s7Xl5eZGdn1783IyMDLy+vG9aQl2fY+c2eno5kZRUZ9JimpAKmDGvL5z8f580l\n+/nnlK5oNeY5ecDQbX1/63v56PcFfLx7CS9EPYOVusHfQZs0Sz+nLYW0s2lIO9e53heYBv21P3Hi\nBOPHj2fdunWMHTuWDz/8kMTEGz+yMjY2lsWLFwOQnZ1NaWkprq6uAAQEBFBcXExycjLV1dVs3bqV\nPn363MrvI7hy+tiqHeeVLsdk2rq1op9/L1JL0lkvw+dCiGaoQeF96aaobdu2MWjQIAAqK2+8UMbE\niRPJzc1l0qRJTJ8+nZdffplVq1axcWPdk7LmzJnDrFmzeOCBBxgxYgQhISG383s0W5emj63bm9is\npo/dHTocNxtX/ndhGxcKk5UuRwghTKpB440hISGMGDECNzc32rVrx6pVq3B2dr7hPjY2Nrz77rvX\nfT0qKoply5bdWrXiKpemj735zUEWrTnBq490x8HWSumyjM5Ga8MDYeP4+PeFfBO3nL9HPYNWhs+F\nEM2EZs6cOXNu9qY77riDbt26MXXqVDQaDTU1NYwbNw5ra2sTlFin1MBLYtrbWxv8mEpxc7RBpYJD\nZ7LJzC8jKsyr0TcGGoOx2trD1p3CikKO555CBbRxbWXwz7AkTemcNmfSzqYh7VzH3v7aOdugYfO4\nuDjS09PR6XS8//77zJ07l9OnTxu0QHF7RvYKrp8+trMZTR+7u9VIXK1d2JC4lQtFMnwuhGgeGhTe\nr7/+OiEhIcTGxnL06FFeeuklPvroI2PXJm6BWq1i2qgIbK21fL/pDBnNZPUxW60ND7QbR62+lm/j\nfqRaHt4ihGgGGhTe1tbWBAcHs3nzZu677z5atWrVoDnewrTcnW14KLotFVU1zWr1sXZubejj152U\n4jQ2JGxRuhwhhDC6BiVwWVkZ69atY9OmTfTt25f8/HwKCwuNXZtohO7tvOnd3oeEZjZ9bGyru3C1\ndmF94haSilKVLkcIIYyqQeH97LPP8ssvv/Dss8/i4ODAN998w8MPP2zk0kRjPTCkDZ4uNs1q+pjt\nxbvPa/W1fBO3jJraGqVLEkIIo2lQePfs2ZN58+YRFBTEiRMneOyxxxg9erSxaxONZGutZfroiGa3\n+lg79zb09r04fJ4ow+dCiKarQeG9adMmhg4dyiuvvMK//vUvhg0bxvbt241dm7gNoX7OjOkbTF5R\nBV83o9XH7mk9EhdrZ9YlbCZZhs+FEE1Ug8J70aJFrF69mhUrVrBy5Up+/PFH5s+fb+zaxG0a2SuY\n1gHOxDaj6WO2WlsmhV26+3y5DJ8LIZqkBoW3lZXVFUt4ent7Y2XV9J/iZenqpo+FN7vpYxHubenl\nG0VScSr/S9ymdDlCCGFwDQpve3t7Fi9ezMmTJzl58iSLFi3C3t7e2LUJA/BwtuXBYc1v+tg9re66\nOHy+iZTi5jHqIIRoPhoU3v/3f/9HQkICL774IrNnzyYlJYU33njD2LUJA+kR/sf0sZ93No/pY3ZW\nttzf9h5q9DV8I8PnQogmpkErObi7u1+1dvfZs2evGEoX5u2BIW04k5zP2j2JRAS7EdbCVemSjK69\nRzt6+nRjb3osGy9sJzp4kNIlCSGEQTT6MWmvvvqqIesQRmZrrWX6qLrpYwub0fSxe1vfhbPOibXn\nN5JanK50OUIIYRCNDu/mMvWoKQn1d2Z0M5s+Zmdlx6Swey8Onze9h7cUV5bwW/IePjq0gPd2LeRA\nxmEqamQlJiGaukYvgGxOS06KhrurVzDHz+fWTR87mka/SD+lSzK69h7t6OHTlX3pB9h0YTvDLHz4\nvLKmkiPZJ4hJP8SJ3FPU6i/ehJgHe5MPYqW2or17GJ29Imnv0Q5rjU7ZgoUQBnfD8F6xYsV1X8vK\nyjJ4McL4Lk0fe2VxDN9vPEObABe83eyULsvoxrUexcnc06w9v5EOHuH4OfgoXdItqamt4WRePDHp\nhzicfYzKi73rQAc/uvl0ppt3J3QOsPnUXg5mHuZQ1lEOZR2tC3KPdnTxiiTCPUyCXIgmQqW/wdjp\n7Nmzb7jzm2++afCCricrq8igx/P0dDT4MS3JvhMZfLH6OCG+jsye3BWtxnirxJlLWx/NPsHnR5bQ\nwjGQWV2fRKPWKF3SDen1ehIKk4jJOMTBjMMUVRUD4G7jRpR3J6J8OuNj713//kvtrNfrSS1J52DG\nYQ5mHiGzLBsA3cUg7+wVSXv3MHQS5I1iLudzUyftXMfT0/Ga228Y3uZEwtvwFv5ygj3H0xnZqwX3\nDgg12ueYU1svOf4fYjIOMiZ0OENb3KF0OdeUUZpFTPohYjMOkVWWA4CDlT1dvCKJ8ulMiFOLa162\nulY76/V6UorTOJh5hIOZh+uPp1Nb0cEjnM5ekUS4t5UgvwXmdD43ZdLOda4X3g265j1p0qSr/lho\nNBpCQkJ48skn8fb2vs6ewpxNHtqG+JTmNX1sfJvRnMo7w6/n/kcHj3B87c3j3C2oKOJA5u/EpB/i\nQlEyUBew3bw7EeXdmXZubRo1UqBSqQhw9CPA0Y9RLYeRXJxWN6yeeYQDmYc5kHkYnUZHB/e6ofVw\n9zB0Gnl6ohDmrkE9708++YTz588zbNgw1Go1mzZtwtfXF2dnZ3777TcWL15s9EKl520cZ1MKePPb\ngzg76Hjt0e7Y2xj+D7e5tfWRrON8cXQpLZwCmdVFueHzsupyDmcdIyb9EKfy4tGjR61SE+bWmijv\nzkR6RGCjtW7w8W6lnfV6PcnFqRd75EfIvtQjvxTk3h0Jd2srQX4N5nY+N1XSznVuq+d94MABvvrq\nq/qfBw8ezPTp01mwYAGbN282TIVCEZemj63acZ6l60/xxJiIJj+TINIzgijvzsRkHGJL0g6GtBho\nss+urq3mRM4pYjIOcTT7BFW11QCEOAXRzaczXb064qhzMHodKpWKQEd/Ah39Gd0ymqTiFA5mHLmi\nR26t0dHBI7yuR+7WFisJciHMRoPCOycnh9zc3PonqhUVFZGamkphYSFFRfLNyNLVTx87mcnOlm7N\nYvrYuDajOZl3hjXn64bPfey9jPZZtfpazhUkEpN+kEOZRymprlsgxtvOkyjvznTz7oynnbvRPv9m\nVCoVQY4BBDkGMCZ0OElFKfU98tiM34nN+P2yIO9IuFsbCXIhFNagYfMVK1bwzjvv4O/vj0qlIjk5\nmccffxx3d3dKS0u5//77jV6oDJsbV3Z+Ga98tZ/aWpgzNcqg08fMta0PZx1jwdGvCXEK4tmuT6JW\nGfaO+9TidGIyDhGTfoi8inwAnHSO9dexAx39DTrKYeh21uv1XChK5lDmUQ5mHianPA8AG411/c1u\nzTHIzfV8bmqknevc9t3mxcXFJCQkUFtbS1BQEC4uLgYt8GYkvI1v74l0Fqw+YfDpY+bc1l8d/57Y\njN8Z22okg4MG3Pbx8srzic34nZiMQ/WrmdlorOnk2YEon860cQ01+JeES4zZzpeC/FKPPPeKII+g\ni1cH2rm3xUrd6Oc+WQxzPp+bEmnnOrd1zbukpISlS5dy9OhRVCoVnTp14qGHHsLGxsagRQpl9Qz3\n4ejZXPYcT+fnneeNOn3MXIxvPYZTufGsObeBDu7t8G7E8HlpVSmHMo8Sk3GI+Pzz6NGjUWmI9Igg\nyqcz7d3bWfyNXyqVihZOgbRwCuTu0BEkFiXVBXnGEWIyDhKTcRAbjQ2RnnXXyMPc2jSLIBdCKQ3q\neT/77LN4e3vTo0cP9Ho9u3fvJi8vj3nz5t1wv7lz53LgwAGqq6t5/PHHGTp0aP1rgwYNwsfHB42m\n7k7fefPm3XDKmfS8TaOsopo5X+0nO7+cFyZ1pm3Q7U8fM/e2/j3zKAuPfUNL5xb8rcsTDeoZV9VU\ncTQnjtj0QxzPOUm1vu6Z6a1cQojy7kxnr0jsrUz75Dol2lmv19cFeUZdj/zS5QEbjQ0dPSPo7NWh\nyQW5uZ/PTYW0c53b6nlnZ2fz3nvv1f98xx13MGXKlBvus3fvXs6cOcOyZcvIy8tj7NixV4Q3wMKF\nC7G3t29ICcJEbK21TBsVwVvfHmTBLyeMNn3MnHTy6kBXr44cyDzMtqSdDArqf8331eprOZ13lpiM\nQ/yeeYzymnIA/Ox9iLr4iFI3m6Y/V/5yKpWKYKcggp2CGNtqJAmFSRfnkR9lX/oB9qUfwFZrQ6RH\nxMUeeWu0TSjIhVBKg/4rKisro6ysDFtbWwBKS0upqKi44T5RUVFERkYC4OTkRFlZGTU1NfU9bWG+\nWvk7M7pPMKt2Np/pY+PbjOFUXjyrz62nvUc7vOw8gbqeZVJxCjHphziQcZiCykIAXK1d6Offkyif\nzvg7+CpZutlQqVSEOAcR4lwX5ImFSfXXyP8IclsiPcIlyIW4TQ2+2/yTTz6hffv2ABw/fpyZM2dy\n9913N+hDli1bRmxsLO+88079tkGDBtGlSxdSUlLo2rUrs2bNumFAVFfXoNVK8JtKTU0tsz/bRVxC\nLjMndGZw9yClSzK6vUkHeW/3Qtp6hDKj+4PsuhDLzsQYUorq1gG319nRK6ALfVt0J8zTeDeeNTW1\n+lricxLYnXSAfUmHyCmru9nN3sqWAcE9uTdiBI7Wxp/bLkRT0uC7zdPS0jh+/DgqlYr27dvzzTff\n8Nxzz910v02bNvHFF1+wePFiHB3/GLtftWoV/fr1w9nZmRkzZjB27Fiio6Ovexy55m16V0wfeyQK\nb9fGXcO1pLZedOxbDmUeqf/ZSq2lvUc4Ud6dCTfzu6ktoZ1r9bUkFF6ov9mtoLIQW60tI4LvpH9A\nb4voiVtCOzcF0s51buuaN4Cvry++vn8MDx45cuQG766zY8cOPv/8cxYtWnRFcANX9Nr79+/P6dOn\nbxjewvQ8XGyZMqwtC1afYMHq40ZffcwcTGhzN9llOdhr7ejm05lOnu2x1cqsCkNRq9S0dA6mpXMw\nd4eO4LeUPaw9v4mf4tfwW8oe7m41ko4eTf8yjRC3q9F/iW/WYS8qKmLu3Ll88cUXV80JLyoq4tFH\nH6Wysm5N4piYGFq3bt3YUoQR9Qz3oVeEN+fTivh553mlyzE6R50DL0bN5OnO0+jl202C24i0ai2D\nAvsxp9cLDAjoQ055HguPfs2Hh76oX5xFCHFtjR6jutk347Vr15KXl8df//rX+m09evSgbdu2DBky\nhP79+zNhwgSsra0JDw+XXrcZmzy0LWeSC1i7J5H2IW4GmT4mxCUOVvbc12YM/f17sersrxzNjmNu\nzMf08OnKqNBhuFg7K12iEGbnhte8BwwYcM2Q1uv15OXlNWjo3FDkmrey4lMKeOvbg7g46nj1kVub\nPiZtbRpNpZ1P5p5hZfwaUorT0KmtGNJiIIODBpjNmuNNpZ3NnbRznUY9HjUlJeWGB/X397+9qm6B\nhLfyVu88z6qd54kK8+IvtzB9TNraNJpSO9fqa9mTFsMv5zZQVFmMi7Uzo1tGE+XTWfG7/JtSO5sz\naec6jbphzZThLMzfyN4tOJaQS8zJTDq0dKdvpMxvFsahVqnp49eDrl4d+V/iNjYn/cbXccvYlryL\ne1uPopVLiNIlCqGopn3rsDAojVrN9LvCsbXW8N3G02TklSpdkmjibLQ2jA6N5uUez9PNuxMXipJ5\n/+B8Fh79huyyHKXLE0IxEt7ilni42DJlaFsqqmpYsPoE1TW1SpckmgF3W1emRkziua4zCHEK4ves\no/x77zxWxq+hrLpM6fKEMDkJb3HLekZcmj5WyOpdTX/6mDAfIc4tmNV1BlMjJuGoc2Tzhd+Ys2cu\nvyXvpqa2RunyhDAZCW/RKJOHtsXD2YZfdydy6kKe0uWIZkSlUtHNuxMv93ye0S2jqaqtYtnpVbyx\n/32O55xUujwhTELCWzSKrbWW6aPr7jhfuOYEJeVVSpckmhmdxophwYOY0+vv9PHrTkZpFp8dXswn\nvy8itThd6fKEMCoJb9ForfydGdUnmNzCCr5ef+qmT90TwhicdI5MChvH7O5/Jcy1NXG5p3lj//v8\ncGolRZXFSpcnhFFIeIvbclfvFrQKcCbmZCa7j0lvRyjH38GXpzo9xhORU/Gy82Bnyl7m7JnLxsRt\nVNXIyJBoWiS8xW25fPrYtzJ9TChMpVLR3qMd/+z+LOPbjEGjUrPq7Fr+ve9dDmYekdEh0WRIeIvb\nVj99rFKmjwnzoFFrGBjQhzm9XmBQYD/yKwr48ti3vHdwPgmFF5QuT4jbJuEtDKJnhA89ZfqYMDN2\nVnbc23oU/+rxLB0923OuIIF3Yj9hyfEfyCvPV7o8IRpNwlsYzOQhMn1MmCcvO0+md3iQmZ0fJ9DB\nj5iMQ7y6dy6/nNtAeXWF0uUJccskvIXB2NlomT6qbvrYojUnKJXpY8LMtHEN5YWoZ5jc7j7stLas\nT9jMq3vnsjs1hlq9XO4RlkPCWxhUq4C66WM5hRV8vUGmjwnzo1ap6eXbjVd6/Z3hwYMpqy7nu5M/\n8nbMR5zOi1e6PCEaRMJbGNxdvVvQyt+Z/XEyfUyYL2uNjrtaDuWVns/T3acLycWpfHhoAZ8fWUJG\naZbS5QlxQxLewuA0ajXTRv0xfSwpQ9bkFebL1caFh8In8kK3pwl1DuZo9gle3/cuK86spqRKpj4K\n86SZM2fOHKWLaIjS0kqDHs/e3trgxxR/sLexws3Jhv1xmWyKuYBWrSbEzxG1SqV0aU2WnNO3x8Xa\nmZ6+3fBz8CWxMIkTuafYlboPK7UVQY7+qFV1fR1pZ9OQdq5jb299ze0S3sJoAr0c8Ha15eSFfA6e\nzuJIfA4hvk64OFz7ZBS3R87p26dSqfC196avf09stTacyTvHkezjHMg8jLuNK162HtLOJiLtXOd6\n4a3SW8gdRVlZhh169fR0NPgxxbXpbHXM//F3dh1LR6WCoVGB3N23JdY6jdKlNSlyThteUWUxa89v\nZGfqPmr1tbRxbcX9nUbhUuuOTqNTurwmTc7nOp6ejtfcLuEtjO5SW59IyOXr9afIzC/D3cmGB6Pb\n0qGlu9LlNRlyThtPWkkGK+PXcCLnFFB3x7qfvQ8tnAJo4RRIC8dAfO290ajlC+ntKqsuI7koDZVt\nNZRb4WLtjLO1E1ZqrdKlKULC+0/kD53pXN7WlVU1rN6VwPp9F6jV6+kZ7s3EO1vjZC+9mNsl57Tx\nncw9w9mSeOIyzpFcnEJVbXX9a1ZqKwId/Ql2CqSFYwAtnILwsHVDJfd5XJNerye/ooDk4lSSi1JJ\nLk4lqSiVnPLca77f3squPshddBf/be10cZszLtZO2FvZ1d+b0FRIeP+J/KEznWu1dVJmMUvWxXE+\nrQh7Gy0TBrWmTwcf+UN3G+ScNo1L7VxTW0NqSTqJhUl1/xQlk1qcjp4//qTaa+0Iutg7D3YKJMgx\nEGfra/8xbspqamvIKM26GNApJBenkVKUSkn1lXfzO1jZE+DgR4CjHwHuXqTmZpNfUUB+RSEFFQUU\nVBRSXnP9J+JpVJr6UHe2dsZF53TxZ+eL2+r+tyVd8pDw/hP5Q2c612vr2lo9mw8ms3L7OSqqaggL\ncuGh6DC83ewUqNLyyTltGjdq54qaSpKKUv4I9MIksv/Uk3S1drliuD3IKQBbrY0pSjeJ8upyUorT\nSSpOIeVijzq1JIPqy0YpADxt3f8I6ov/dtY51X+Bv147l1eXk19RSP7FMC+oKCS/8lLA120vrCy6\n4RPzbLW2f/TadZeF/WUB76hzMItevIT3n8gfOtO5WVvnFJTz7f9OcfhsDlqNmtF9gonuEYRWo/x/\nOJZEzmnTuNV2Lq4sIbEomcTCCyQWJpNYmERRVXH96ypUeNl51vXMnQIIdgrE38HP7K/x6vV6CioL\n64e8L/07qyznivdp1Vr87L0JcPDD39GPQAd//B18sLnJF5bbOZ9r9bUUVRbXh/mlnnt+ZeEV28qq\ny657DLVKjZPO8Yqe+6Xh+su33ez3uF2KhPfcuXM5cOAA1dXVPP744wwdOrT+td27d/Pee++h0Wjo\n378/M2bMuOGxJLwtV0PaWq/XE3sqi+82nqawpJIAT3seGh5GqJ+ziaq0fHJOm8bttrNeryevIp+E\nwiQuFCaTUHiBpKKUK4aDNSoN/g6+db3zi9fQfey9FOsJ1tTWkFmWfVVQF1eVXPE+e60d/o5+BDj4\nEujoT4CDH952no26kc8U53NlTeUfwV5RSEFl4VXD9AUVhVTra657DBuN9cVAdybAwZexrUYa9P8n\nk4f33r17+fLLL1m4cCF5eXmMHTuWbdu21b8+YsQIvvzyS7y9vZk8eTKvvfYarVq1uu7xJLwt1620\ndUl5FT9uPctvh1NRAYO6BnBP/5bYWpt3L8QcyDltGsZo51p9LRmlWZcNtyeTXJxKzWWhYa3REeQY\ncFmgB+Jm42Lw+0TKqytILUn/I6iLU0ktTrvi5jwAdxs3Ahz9CLxs6NvF2tlg9ZjL+azX6ymuKrki\n0PP/FPYFFYUUV5WgU1vx7z7/wMHK3mCff73wNtpfxKioKCIjIwFwcnKirKyMmpoaNBoNSUlJODs7\n4+vrC8CAAQPYs2fPDcNbNA/2NlY8PDyMXhHeLF1/is0Hkjl4OovJQ9vQubWn0uUJYRRqlRpfe298\n7b3p6dsNgKraalKL00i47Pp5fP55zuSfq9/P0crhj+vnFwPdQdfw4CioKCK5OJWUolSSilPqhr1L\nc6646U6j0uBr7/3HtWkHP/wdfLGzsjVcA5gxlUqFo84BR50DgY5+131fVW01er0encbKJHUZLbw1\nGg12dnU3Hq1YsYL+/fuj0dQNnWRlZeHm5lb/Xjc3N5KSkm54PFdXO7Raw86hvN43GmF4t9rWnp6O\n9Ojoz4+bz/Dj5tN8/NNR+kT6MX1sB9ycms7NPYYm57RpmKqd/bxd6UZ4/c+lVWWcy73A2dxE4nMT\nOJubyLGckxzLOVn/Hi97d1q5BRPqFkwr9xaEuAahU1uRXpxJQn4y5/OSSMhPJiE/mYLywis+z97K\nlnCv1rRwCSDYJYBgl0ACnHzQapQZ+ZLz+fqM/v/Ipk2bWLFiBYsXL76t4+TlGXaBAHMZkmkObqet\nh3TxJzzIhaXrT7LrSCoHT2UyfmAo/Tv5yXPS/0TOadNQup291X54e/jR26MXAIWVRVcMtycWJrE7\n6QC7kw4AdTfEadVaqmqrrjiOq7ULkR4RBDj41veq3Wxcrxz2roa83Ovf1GVMSrezuTD5sDnAjh07\n+Pzzz1m0aBGOjn8U4OXlRXZ2dv3PGRkZeHl5GbMUYcH8Pex58YEubP89lRXb4vl6wyn2HE/noegw\n/DwMd21JCEvkpHOkg0c4HTzqeuh6vZ6c8twrhtvLayouDnnXBbW/gx/2VjIl05IZLbyLioqYO3cu\nS5YswcXF5YrXAgICKC4uJjk5GR8fH7Zu3cq8efOMVYpoAtQqFXd09qdTKw++33SaA6eymPPVfkb2\nCmZEzxZYaWVamRBQd6nWVm4AABnASURBVI3Ww9YdD1t3unl3UrocYSRGC++1a9eSl5fHX//61/pt\nPXr0oG3btgwZMoQ5c+Ywa9YsoO7O85CQEGOVIpoQV0drZoztwKHTWXy78TQ/7zzP/rgMHooOo02g\ny80PIIQQTYA8pEUYnbHauqyimpXbz7HlYDJ6YEAnP8YPDMXOxjR3e5obOadNQ9rZNKSd61zvmreM\nNQqLZWut5YGhbfjHlK74e9qz/fdU/rlwH7EnM7GQ76RCCNEoEt7C4oX6O/PKw1Hc078lJeXVfLbq\nGB//dJTcwnKlSxNCCKOQx1aJJkGrUXNX72CiwrxYuv4kv8dnE3chj3v7t2RQlwDUaplWJoRoOqTn\nLZoUbzc7nr+/M1NHhKFVq/h+0xne+PYAyZnFN99ZCCEshIS3aHJUKhX9Iv34v2k96RHuzbnUQl5d\nEsNP289SWXX9BQaEEMJSSHiLJsvJXsfjoyP46/iOuDhY8+ueRF5evJ+4hNyb7yyEEGZMwls0eZGh\n7rz+WA+GRgWSlV/GO//5ncW/xlFcVnXznYUQwgxJeItmwVqnYeKdrXnpoW4EeTuw82ga/1y4l73H\n02VamRDC4kh4i2Yl2MeJlx7qxn13tKKisoYFv5zg/eWHycpXZvEFIYRoDAlv0exo1GqiewTx78d6\n0D7EjWPnc3npy32s33eBmtpapcsTQoibkvAWzZaniy1/u68j00aFo9NqWL41nteXHiAxXR7JKIQw\nb/KQFtGsqVQqekX40KGlO8u2nGHX0XReWxpDj3Bv+rT3pV0LV3nAixDC7Eh4CwE42Frx6MhwekX4\n8N3G0+w9nsHe4xm4OlrTM6IuyGXtcCGEuZBVxYTRWVpb6/V6zqYUsutYGvvjMimrqAYg2MeRPh18\n6d7OC0c7ncJVXs3S2tlSSTubhrRzneutKiY9byH+RKVS0SrAmVYBzkwa3JpDZ7LZfSydY+dySUg/\nzX82nyEy1J3e7X3p2ModrUZuHRFCmJaEtxA3YKXV0L2dN93beVNQXMHeExnsPpbOoTPZHDqTjb2N\ntu76eAdfgn0cUank+rgQwvgkvIVoIGcHa4Z1D/r/9u49KOr7/vf4c5dlubOwwLKLK17wglyjqAko\nJjEa2/Scpk2aYo20nTPTmR7b6SRjO3VsU+2Y6QyZdKbTJGNbm85k7PTENrZNO2ljc1MJYDQaEfCC\nIDHclosgoAgIu+ePVSJq8rMJu8sur8cMAyy7y3vfs8OLz+f7/Xw/rFuezkcdA1TWujh0soO3j7Xy\n9rFWHEnRFOXYKcy2Y42PDHS5IhLCFN4in0F6ahzpqXE8dn8GdU09VNR4R+N7D5zjrwfOsWh2Iity\nHCxZkEKEOSzQ5YpIiFF4i3wOYUYjeRnJ5GUkc3noKkdOd1JZ4+Lkh72c/LCXCHMYSxemUJTjYGF6\nAkZNq4vIJFB4i0ySmMhw7rtrBvfdNYOO3kEqa1xU1rqoqPF+JMVHUJhjpyjHgd0aHehyRSSIaamY\n+Nx07rXb4+Fs80UqalwcOdPJ8Ih3P/GMGfEU5XiXncVEhk/K75rOffYn9dk/1GcvLRUTCQCjwcDC\n9EQWpify+IMLOFbfRWWti5NNPTS29vP/3qznrnnJFOU6yJlj1bIzEbkjCm8RP4kID6Mw23s2eu/A\nMIfqXFTUunj/TBfvn+kiPjqcu7PsrMi1M9MWq2VnIvKJFN4iAZAYF8EX75nFF+5O50OXd9nZeyc7\neOP9Zt54vxlnSgxFOQ7uyU4lITYi0OWKyBSjY97ic+r1nRkdc1PTeIGKWhfVDd2MuT0YDJA9x8qK\nHAeL5ydjDv/kZWfqs3+oz/6hPnsF5Jh3fX09mzZt4tvf/jYbN26c8LPVq1djt9sJC/P+MXr22WdJ\nTU31ZTkiU5opzMjiBSksXpDCpStXee/a1dxqz/VQe66HqIgwlmXaKMpxMN9p0bS6yDTms/AeHBxk\nx44dFBYWfuJ9du3aRUyMdmoSuVlsVDgPFDh5oMBJW/dlquq8y84OVrdzsLqdlIRIinIcFObYsSVE\nBbpcEfEzn4W32Wxm165d7Nq1y1e/QmRaSEuO4dF7M/hq8VxOf9RLRY2Lo/WdvPpuE6++28QCp4Wi\nXAdfXDk30KWKiJ/4/Jj3c889R2Ji4m2nzZcsWUJraysFBQVs3rz5U6cBR0fHMJl0mUkRgMGhq1TV\ntPP2+82caOgGIMIcxsr8NB68exaLZls1rS4SwgJ2tvkPfvADiouLsVgsfO9732Pfvn184Qtf+MT7\n9/YOTurv18kQ/qNe+0be7ETyZifS3XeFqloXlXUdvHWkmbeONONIiqY4L42iHDvxMVNv7/Fgpvez\nf6jPXlPuIi1f+cpXxr9etWoV9fX1nxreInJ7yZYo/veKOXz7y7m8e/QjDp5o5+iZTv78TgN7DzSy\neH4yxflpZM+2YjRqNC4SCgIS3gMDAzzxxBPs3LkTs9nMkSNHWLduXSBKEQkZRqOBRbOtLJpt5dKV\nBVTVuThY3TZ+ERhrfAQrcx2szHOQbNFJbiLBzGfhXVtbS1lZGa2trZhMJvbt28fq1atxOp2sXbuW\nVatWUVJSQkREBFlZWRp1i0yi2Khw1i6dyZoCJ03tAxysbuO9Ux38o+JD/lnxIdlzrKzKT+Ou+cm6\nJKtIENJFWsTn1Gv/+J/6PDQyypFTnZSfaKehtQ/whvyKXDvFeWmkJWvZ5p3Q+9k/1GevKXfMW0T8\nK9Jsojg/jeL8NFq7L1Ne3UZlrYt9h5vZd7iZeU4LxXkOlmemEmHWyg6RqUwjb/E59do/Pkufr466\nOd7QzcHqNk429eABIs1h3J2Vyqr8NGbb47Tk7CZ6P/uH+uylkbeI3CLcZGRZpo1lmTa6L17h3Zp2\nyk+0c+B4GweOt+FMiWVVvoN7su3ERk3OvuMi8vlp5C0+p177x2T12e32UNvUQ/mJNo6f9W6QYgoz\nsnRhCsX5aSxMT8A4jUfjej/7h/rspZG3iNwRo9FAXkYSeRlJ9F0eoarWu+Ts0MkODp3swJYQxco8\nBytyHSTGabtSkUDQyFt8Tr32D1/22ePxcLalj/LqNo6c7mRk1I3R4A354nwHeRlJhBmnx5IzvZ/9\nQ3320shbRD4zg8HAgpkJLJiZwDfWLOC9Ux0crG7jeEM3xxu6scSaxy8Ak5oYHehyRUKewltE/ivR\nkSbuXzyD+xfP4KOOAcqr26mqc/Fa1XleqzpPZnoCq/LTKFiYQrg2ExLxCYW3iHxm6alxPP5gHI/d\nn8HR+i7Kq9s4/dFFTn90kZg3TNyTbac4z0F66u2n/kTks1F4i8jnZg4PozDbTmG2nY6eQcpPtFNR\n085bR1t462gLs+1xrMpP4+6sVKIi9GdH5PPSCWvic+q1f0y1Po+OualpvMDB6jZOnLuAxwPmcO+6\n8lX5acybYQnKC8BMtT6HKvXZSyesiYhfmcKMLF6QwuIFKfQODFNR087B6jYqalxU1LhwJEWzMs/B\nPVl2LTkT+S9p5C0+p177RzD02e3xcOZ87/ie46NjHgwGyJ5tpSjXzuL5KUSET+2T3IKhz6FAffbS\nyFtEAs5omLjn+JFTHVTUuqht6qG2qYeoiDCWLrSxItfBfGdwTquL+IPCW0QCIjYqnPuXOLl/iZP2\nC5eprHVRVeei/IT3+urJlkiKcuwU5dixae24yASaNhefU6/9IxT6fH1avaLWxdEzXQxfHQNgvtNC\nUY6dZZmpREcGdswRCn0OBuqzl6bNRWTKu3FafeODoxw900VlrYvT53s529LHn948y+L5yRTlOMie\nkzhtLskqcjOFt4hMSZFmEytyvRugXOgboqrORUWti8OnOjl8qhNLjJl7slNZkePAaYsNdLkifqXw\nFpEpL8kSyf8qms2XCmdxrr2fyloXh092sO9wM/sON5Nui6Uo18E9WanEx5gDXa6Iz+mYt/iceu0f\n063PV0fdVDd0U1nroubcBcbcHowGA7lzrazIdZA/L8kn11afbn0OFPXZS8e8RSSkhJuMLM20sTTT\nRv/lEd471UFlrYvqxgtUN14gOsLE8kU2inIdZKTFa9mZhBSFt4gEvfgYM2uXzmTt0pm0dF0aX3a2\n/3gb+4+3kZoYRVGOncIcO8mWqECXK/K5adpcfE699g/1eSK328PJD3uorHVxrL6LkVE3AJnpCRTl\nOChYmPKZNklRn/1DffbStLmITCtGo4GcuUnkzE3iyvAo75/upKLWNb5l6R/fOEPBghSKch0sSk/E\naNS0ugQPhbeIhLyoCBPF+WkU56fRefEKh2pd16bWO6iq6yAxLoLCbO/V3NKSYwJdrsj/KGz79u3b\nffXk9fX1lJSUYDQaycvLm/CzyspKnnzySfbu3UtnZyfLly//1OcaHByZ1NpiYiIm/Tnl9tRr/1Cf\n70xMZDgL0xN5oMBJ9hwrRoOBjzoGOHW+l7ePtXKisZvRMQ+2xCjMt9kkRX32D/XZKybm9jvu+Wzk\nPTg4yI4dOygsLLztz59++mlefPFFUlNT2bhxI+vWrWPevHm+KkdEZAKDwcB8ZwLznQlsWDOf4w3d\nVNS4qG26QFP7AC+/dZb8eckU5djJy0jCFKarucnU4bPwNpvN7Nq1i127dt3ys+bmZiwWCw6HA4B7\n772XqqoqhbeIBIQ5PIzli1JZviiVvkvDHDrZQUWN90S3Y/VdxEaFc/eiVIpy7SQn62puEng+C2+T\nyYTJdPun7+rqwmq1jn9vtVppbm72VSkiInfMEhvBuuXprFuezkcdA1TWujhU5+KtYy28dawFa3wk\nqYlR2JOisVujcVz7bI2PxKi15OInQXPCWmJiNKZJvlrSJ52CL5NPvfYP9XlypaTEUZCTxv8dc/PB\nmU7efr+Z0+d7OXXt40bm8DDSkmNw2mKZYYvFmeL9PCMllujI8AC9guCm9/MnC0h422w2uru7x7/v\n6OjAZrN96mN6ewcntQatIfQf9do/1Gffmp0Sw//5YiYpKXG0tF7E1TM4/tF+4bL3c/dlPmzvv+Wx\nCbFm7NZo7EkxE0brSfGRWqL2CfR+9ppS67ydTieXLl2ipaUFu93OO++8w7PPPhuIUkRE/msR5jBm\n2eOYZZ/4h9Xj8dA7MHwt0D8Od9eFwfH15TcyhRlJtUbhsEaPT8Pbrd6AD/S+5TK1+ezdUVtbS1lZ\nGa2trZhMJvbt28fq1atxOp2sXbuW7du3s3nzZgAeeugh5syZ46tSRET8wmAwYI2PxBofSdZs64Sf\nDV8do6NnYqC3X/u6tevyLc9libk+Wo+eEO7JliiN1kWXRxXfU6/9Q332j8nus8fj4eKlEVzXp95v\nCPcLfUPc/AfaFGbAlhh902jd+3VMCB1b1/vZa0pNm4uIiJfBYCAxLoLEuAgW3TRaH7k6RmfvlQnH\n1a9/tHXfOlqPjw4fD3K7NWZ81J6cEEmYUevUQ4nCW0RkijKHh+G0xeK0TVxb7vF46Ls8guvG4+rX\nAv5sax/1LX03PY+RuY545jktzJuRwLwZ8ToDPsgpvEVEgozBYCAhNoKE2AgyZyVO+NnVUTedvYMT\nTpo73zHAmfET5s5jANJSYpg3w8K8GRbmOy2kJERpz/MgovAWEQkh4SYjM1K868tvNDh0lYbWfhpa\nL9LQ0se59n5auy5z4Hgb4N0Tff4Mi3d07rQwKzVOl4SdwhTeIiLTQHRkOHkZSeRlJAEwOuamufMS\nDS19nG3to6HlIkfruzha3wV4/wmY44j3js6d3hF6bJSm2qcKhbeIyDRkCvOG8xxHPGuXzcTj8XCh\nf+iGMO/jbPNF6ps/XpvuSIpm/vXj5k4LqYmaag8UhbeIiGAwGEi2RJFsieKebDsAV4ZHaWy7FuQt\nfZxr6+dgdTsHq9sBiIsOHx+Zz5+RwCx7HOEmTbX7g8JbRERuKyrCRM6cJHLmeKfax9xuWjov09Da\nx9mWizS09vHB2W4+OOu93LUpzMhsR5z32PkMCxlOC/HR5kC+hJCl8BYRkTsSZjSOXxb2gQInAD39\nQ5xtuTY6b71I47Up9+tSrdHjJ8LNd1qwW6M11T4JFN4iIvKZWeMjuTsrkruzUgEYGhnlXFv/+LHz\nxtY+3q1p590a71R7TKTp46l2ZwJzHHGET/KOkdOBwltERCZNpNlE1mzr+LXd3W4PLV2XaGjt8360\n9FHdeIHqxgsAhBkNzLbHfXwBGacFS4zvp9rdHg9u97WPa1+PuT24PYzfPubx4Bm//cb73PDYa48Z\nc3uwxJhv2azGVxTeIiLiM0ajgfTUONJT41i9xDvV3jsw/PFx85Y+mtoHaGzrZx/NANgSopjrtDA8\nPPqpYXlzAI/dFMYT7nvT7b7a1ONXP1jpl+P8Cm8REfGrxLgIlmXaWJZpA2B4ZIxz7f3jI/OG1j4O\n1bo+8fFGgwGj0YDR6B25f/y99+swowGTyYjR6P3acO02o5EJ9zHe+NhrtxmuPcZ7+03Pf+3zLY81\nGjAavIcQ4vy0Fl7hLSIiARVhDmPRrEQWXbvUq9vjITI6gt7eyxMD02DAYEAnvKHwFhGRKcZoMGCJ\njWDkykigS5mytJpeREQkyCi8RUREgozCW0REJMgovEVERIKMwltERCTIKLxFRESCjMJbREQkyCi8\nRUREgozCW0REJMgovEVERIKMwltERCTIGDwej692RhMREREf0MhbREQkyCi8RUREgozCW0REJMgo\nvEVERIKMwltERCTIKLxFRESCzLQM71/84heUlJSwfv16Tpw4EehyQtYzzzxDSUkJjz76KP/5z38C\nXU5IGxoaYs2aNfz1r38NdCkh7R//+Adf/vKXeeSRR9i/f3+gywlJly9f5vvf/z6lpaWsX7+e8vLy\nQJc0JZkCXYC/HT58mPPnz7Nnzx4aGxvZunUre/bsCXRZIefQoUOcPXuWPXv20Nvby1e/+lUefPDB\nQJcVsnbu3InFYgl0GSGtt7eXF154gb179zI4OMhzzz3HfffdF+iyQs7f/vY35syZw+bNm+no6OBb\n3/oWr7/+eqDLmnKmXXhXVVWxZs0aADIyMujr6+PSpUvExsYGuLLQsmzZMvLy8gCIj4/nypUrjI2N\nERYWFuDKQk9jYyMNDQ0KEh+rqqqisLCQ2NhYYmNj2bFjR6BLCkmJiYmcOXMGgP7+fhITEwNc0dQ0\n7abNu7u7J7wZrFYrXV1dAawoNIWFhREdHQ3AK6+8wqpVqxTcPlJWVsaWLVsCXUbIa2lpYWhoiO9+\n97ts2LCBqqqqQJcUkr70pS/R1tbG2rVr2bhxIz/+8Y8DXdKUNO1G3jfT1WF968033+SVV17hD3/4\nQ6BLCUl///vfueuuu5g5c2agS5kWLl68yPPPP09bWxvf/OY3eeeddzAYDIEuK6S8+uqrpKWl8eKL\nL3L69Gm2bt2qczluY9qFt81mo7u7e/z7zs5OUlJSAlhR6CovL+c3v/kNv//974mLiwt0OSFp//79\nNDc3s3//flwuF2azGbvdTlFRUaBLCzlJSUksXrwYk8lEeno6MTEx9PT0kJSUFOjSQsqxY8dYuXIl\nAJmZmXR2duqQ221Mu2nzFStWsG/fPgDq6uqw2Ww63u0DAwMDPPPMM/z2t78lISEh0OWErF/96lfs\n3buXP//5zzz22GNs2rRJwe0jK1eu5NChQ7jdbnp7exkcHNTxWB+YNWsW1dXVALS2thITE6Pgvo1p\nN/JesmQJ2dnZrF+/HoPBwLZt2wJdUkj617/+RW9vL0888cT4bWVlZaSlpQWwKpHPLjU1lXXr1vH1\nr38dgJ/+9KcYjdNu/ONzJSUlbN26lY0bNzI6Osr27dsDXdKUpC1BRUREgoz+bRQREQkyCm8REZEg\no/AWEREJMgpvERGRIKPwFhERCTIKb5EQ1tLSQk5ODqWlpeO7NG3evJn+/v47fo7S0lLGxsbu+P7f\n+MY3eO+99z5LuSJyhxTeIiHOarWye/dudu/ezcsvv4zNZmPnzp13/Pjdu3frIhkiU8y0u0iLyHS3\nbNky9uzZw+nTpykrK2N0dJSrV6/ys5/9jKysLEpLS8nMzOTUqVO89NJLZGVlUVdXx8jICE899RQu\nl4vR0VEefvhhNmzYwJUrV3jyySfp7e1l1qxZDA8PA9DR0cEPf/hDwLvfeElJCV/72tcC+dJFQobC\nW2QaGRsb44033qCgoIAf/ehHvPDCC6Snp9+yAUR0dDR//OMfJzx29+7dxMfH88tf/pKhoSEeeugh\niouLqaysJDIykj179tDZ2ckDDzwAwL///W/mzp3Lz3/+c4aHh/nLX/7i99crEqoU3iIhrqenh9LS\nUgDcbjdLly7l0Ucf5de//jU/+clPxu936dIl3G434L2M8M2qq6t55JFHAIiMjCQnJ4e6ujrq6+sp\nKCgAvBv/zJ07F4Di4mL+9Kc/sWXLFu69915KSkp8+jpFphOFt0iIu37M+0YDAwOEh4ffcvt14eHh\nt9x289aXHo8Hg8GAx+OZcI3v6/8AZGRk8Nprr3HkyBFef/11XnrpJV5++eXP+3JEBJ2wJjItxcXF\n4XQ6OXDgAABNTU08//zzn/qY/Px8ysvLARgcHKSuro7s7GwyMjL44IMPAGhvb6epqQmAf/7zn9TU\n1FBUVMS2bdtob29ndHTUh69KZPrQyFtkmiorK+Ppp5/md7/7HaOjo2zZsuVT719aWspTTz3F448/\nzsjICJs2bcLpdPLwww/z9ttvs2HDBpxOJ7m5uQDMmzePbdu2YTab8Xg8fOc738Fk0p8ckcmgXcVE\nRESCjKbNRUREgozCW0REJMgovEVERIKMwltERCTIKLxFRESCjMJbREQkyCi8RUREgozCW0REJMj8\nfzIaRUbYAQuNAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAFnCAYAAACM3c9QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XlcVPX+P/DXGTYXkE0HBUFLL6kk\nBVpmqCgXRC3Lay6UYRrdxCXT0lQkQBOUSr2puJVlkSaKlJZ7Xe2qIWrmRmlpRaLJvsgispzfH/6c\nr6gMyOHMnDPzevaYx4OZYT7vDyTzms/nfM7nCKIoiiAiImokjbE7QERE6sYgISIiSRgkREQkCYOE\niIgkYZAQEZEkDBIiIpKEQUKSiKKITz75BE8//TSCg4MRGBiImJgYXLt2TVK7M2bMgL+/Pw4ePHjf\nrz19+jTCwsIk1W9qO3fuRElJyT2fW7x4Mb744gsD94io6Qg8j4SkeO+993D06FGsWLECLi4uKCsr\nQ2xsLP744w9s2LABgiA0qt2uXbtiz5498PDwaOIeG8egQYOwfv16tG3b1thdIWpyHJFQoxUWFiIx\nMRGLFi2Ci4sLAKBFixaIiorCK6+8AlEUUVFRgaioKAQHB2Pw4MFYtGgRqqurAQABAQHYtGkTRowY\ngT59+mDRokUAgNDQUNTU1CAsLAzff/89AgICcPz4cV3dW/erqqowd+5cBAcHIygoCFOmTEFJSQnS\n0tIQFBQEAI2qf6fQ0FCsXbsWo0ePxhNPPIENGzZg5cqVGDRoEIYMGYJLly4BAH7//Xc8//zzGDx4\nMIKCgvDNN98AAObMmYM//vgDoaGhOH78OGbPno2FCxdi6NCh2LVrF2bPno2VK1fi9OnT6N+/P0pL\nSwEAq1evxtSpU5v6fxtRk2OQUKOdOnUKbdu2RadOnWo9bmNjg4CAAGg0Gnz66ae4evUqduzYgS+/\n/BLHjx/XvcECwLFjx5CUlIStW7fi888/x9WrV5GYmAgASExMhL+/f531Dx06hMzMTOzevRt79+5F\n586d8dNPP9X6nsbUv5djx45hw4YNWLhwId577z20bdsWu3fvRufOnbF161YAwLvvvosBAwZg165d\niIuLw9y5c1FZWYmFCxfqfp6ePXsCAFJTU5GcnIzBgwfranh7eyMwMBBr1qxBVlYWNm7ciMjIyHr/\nPxAZG4OEGq2wsBDOzs56v+fAgQMYNWoULC0t0axZMwwdOhSHDx/WPT906FBYWFjAxcUFzs7O+Pvv\nvxtc38nJCRcvXsS+fftQXl6OadOmoW/fvrLUHzBgACwtLeHp6Yny8nIEBwcDADw9PZGdnQ0AWLly\npe7YTI8ePVBRUYGcnJx7tte7d2/Y2Njc9fj06dOxe/duzJkzB5MmTYJWq23w74PIWBgk1GiOjo7I\nysrS+z35+fmwt7fX3be3t0deXp7uvq2tre5rCwsL3bRTQ3h7eyMyMhKJiYnw8/PDm2++ieLiYlnq\nt2zZUvc9t9/XaDSoqakBABw8eBBjxoxBcHAwhgwZAlEUdc/d6fY+3Vln8ODB+PHHHzF06FC9Pz+R\nUjBIqNEeffRR5OXlIT09vdbjlZWVWLp0KcrLy9G6dWsUFhbqnissLETr1q3vq87tb9YAUFRUpPt6\n0KBBSExMxP79+1FeXo5169bVem1T1G+IyspKTJs2DRMnTsSePXuwffv2Ri00yMrKwtdff42nnnoK\nK1asaPJ+EsmBQUKN1qpVK7zyyiuYNWsWMjIyAADl5eWIiorCzz//jObNm6N///5ITk5GdXU1ysrK\nsG3bNr3HPe6lTZs2OHfuHICby2grKioAAFu3bkVCQgIAwMHBAQ8++OBdr22K+g1RXl6OsrIyPPzw\nwwBuHpuxsrJCWVkZAMDS0vKu0dK9xMbG4pVXXkFERAR27dqFX375pcn7StTUGCQkyWuvvYZRo0Zh\n4sSJCA4OxvDhw+Hs7Kz7NB0aGoq2bdviqaeewnPPPYf+/fvXOsDcEJMmTcL69evx9NNP4+LFi+jc\nuTMA4J///CfS09MxcOBADB48GBcuXMD48eNrvbYp6jfErVAdNmwYhg0bBg8PDwQGBiI8PBxlZWUY\nNGgQQkJCsHPnzjrbOHDgADIzMxESEgJbW1tMnz4dkZGR9zXdR2QMPI+EiIgk4YiEiIgkYZAQEZEk\nDBIiIpKEQUJERJIwSIiISBJLY3egLhqNcTKurjORSf2MtUCxsTsgq1WVkZYrG+v3bCHje1VjfyZD\n/1tXbJAQEZk7tXwI4dQWERFJwhEJEZFCqWVEwiAhIlIoQVDHpBGDhIhIsTgiISIiCTi1RUREkjBI\niIhIErUcI1FHL4mISLE4IiEiUihObRERkSQMEgClpaXIzc0FcPO62y1atJCzHBGRSTHrIDlz5gxi\nY2NRXFwMR0dHiKKI7OxsuLi4ICoqCg899JAcZYmITIpZB0lcXBxiY2PRqVOnWo+np6dj/vz52LBh\ngxxliYhMjDrWQ8nSS1EU7woRAPDy8kK1kbaYJiIiecgyInnkkUcQHh6OwMBAODk5AQByc3OxZ88e\nPP7443KUJCIyOWqZ2hJEma6AcuzYMaSmpuoOtmu1Wvj5+cHHx6dBr+eFraip8cJWhsELWzUdOzun\nRr3u2rX8Ju6JfrIFiVQMEmpqDBLDYJA0nVatnBv1uuLivCbuiX48j4SISKHU8iGEQUJEpFBq2WuL\nQUJEpFBqGZGoI+6IiEixOCIhIlIotYxIGCRERIrFICEiIgl4sJ2IiCTh1BYREUnCICEiIknUEiTq\nmIAjIiLFUuyIxFh7XllaWhm8Zun1coPXBAAbS8X+7zcpCt3OTjZy7j2lj1o+vd8PtfxMfCchIlIo\nrtoiIiJJOCIhIiKJGCRERCQBRyRERCSJWo6RqKOXRESkWByREBEpFKe2iIhIEgYJERFJwiAhIiJJ\nGCRERCQJV23Vobi42NAliYhUSWjkf4Zm8CCZMmWKoUsSEZGMZJna2rBhQ53PZWVlyVGSiMj0mPMx\nkvXr16N3797QarV3PVdVVSVHSSIik2PWB9sTEhKwYMECREZGwtrautZzaWlpcpQkIjI5agkSQZTp\nqjvl5eWwsbGB5o6L3KSnp8PLy0uOkk2CF7YyXeZ2gSlzo5Y33fvRubNvo1534cKJJu6JfrK9kzRv\n3vyejys5RIiIlEQt4WheH0mJiFRELUGijrNdiIhIsTgiISJSKDlHJHFxcTh16hQEQUBERAS8vb11\nz23YsAHbt2+HRqPBww8/jLlz5+pti0FCRKRQgkyTRkePHkVGRgaSkpJw8eJFREREICkpCQBQUlKC\ndevWYe/evbC0tMTLL7+MkydP4tFHH62zPU5tEREplSA07laP1NRUBAYGAgA6deqEoqIilJSUAACs\nrKxgZWWFsrIyVFVVoby8HPb29nrb44iEiEih5Jrays3NrbWC1snJCTk5ObC1tYWNjQ0mT56MwMBA\n2NjY4KmnnsIDDzygtz2OSIiIFEoQhEbd7tft51iVlJRgzZo12L17N7777jucOnUK586d0/t6BgkR\nkULJFSRarRa5ubm6+9nZ2WjTpg0A4OLFi3B3d4eTkxOsra3Rs2dPnD17Vm97DBIiIjPj5+eHPXv2\nALi524hWq4WtrS0AwM3NDRcvXsT169cBAGfPnkXHjh31tsdjJERECiXXha18fX3h5eWFkJAQCIKA\n6OhopKSkwM7ODkFBQQgLC8PYsWNhYWEBHx8f9OzZU38/5dprS62415bp4j9106aWs8DvR/fu/Rr1\nujNn/tfEPdFPse8k1TU1RqlbcaPC4DVbtrAzeE0AKC27ZpS6GiP9wRvrjaaqutoodS00xpm5rjFS\nYFuYYJCoJRwVGyRERMQgISIiCeQ6RtLUGCRERAqllqktdcQdEREpFkckREQKpZYRCYOEiEihGCRE\nRCQJg4SIiCThqi0iIpKEIxIiIpJEUMkJieoYNxERkWLJGiT32iTv6tWrcpYkIjIdMl1qt6nJEiT7\n9u3DgAED0Lt3b8yaNUt3LWAAeOutt+QoSURkcgx1hUSpZAmStWvX4ssvv8QPP/wAX19fhIWF4dq1\nmzvNcitvIqKGEQRNo26GJsvBdgsLCzg4OAAARo8eDWdnZ4SFhWH16tWqWYVARGRsanm/lCVIfH19\nMWHCBHzwwQdo1qwZAgMDYWNjg3HjxqGwsFCOkkREJsesg+Stt95CWloabGxsdI/17dsXPj4+2Llz\npxwliYhMjlkHCQD06tXrrsdsbW0xatQouUoSEZER8IREIiKF4hYpREQkkZlPbRERkTRmf4yEiIik\nYZAQEZEkDBIiIpJELQfb1dFLIiJSLI5IiIgUilNbREQkCYOEiIgkYZAQEZFE6jiMrdgg0agkiZtC\nfnGBUepq27gbpW5e3mWj1C2tqDBK3RbW1kapW1VTbZS6GiOtNDLWtY7kHDVwREJERJKoJUjUMW4i\nIiLF4oiEiEih1DIiYZAQESkUg4SIiCRRyxYpDBIiIoXiiISIiCRhkBARkUTqCBJ1TMAREZFicURC\nRKRQapnaMtiIJD8/31CliIhMgiBoGnUzNFkqHjhwAMHBwRg3bhx+/fVXPPPMMwgNDUVAQAC+//57\nOUoSEZkcQRAadTM0Waa2Vq1ahU8++QRXrlxBeHg4Vq5ciS5duiA3Nxfh4eHw9/eXoywRkUlRy9SW\nLEFibW0NV1dXuLq6QqvVokuXLgCA1q1bw8bGRo6SREQmRy1BIsvUlrOzM9atWwcA2LRpEwDg6tWr\niIuLQ9u2beUoSURkcsz6GMmiRYvQrl27Wo/l5eXB1dUVcXFxcpQkIiIjkWVqq1mzZhgyZEitx7y8\nvODl5SVHOSIik6SWqS2eR0JEpFgMEiIikoAjEiIikkTQMEiIiEgCjkiIiEgSOYMkLi4Op06dgiAI\niIiIgLe3t+65v//+G2+88QYqKyvRrVs3zJ8/X29b3P2XiMjMHD16FBkZGUhKSkJsbCxiY2NrPb9o\n0SK8/PLLSE5OhoWFBa5cuaK3PQYJEZFCybXXVmpqKgIDAwEAnTp1QlFREUpKSgAANTU1+PHHHxEQ\nEAAAiI6Ohqurq972GCRERAolV5Dk5ubC0dFRd9/JyQk5OTkAbu7U3rJlSyxcuBDPP/88Fi9eXG97\nDBIiIoUSNI273S9RFGt9nZWVhbFjx+Lzzz/Hzz//jAMHDuh9PYOEiEipBKFxt3potVrk5ubq7mdn\nZ6NNmzYAAEdHR7i6usLDwwMWFhbo3bs3fvvtN73tMUiIiBRKrqktPz8/7NmzBwCQnp4OrVYLW1tb\nAIClpSXc3d3x559/6p5/4IEH9LbH5b9ERAol1/JfX19feHl5ISQkBIIgIDo6GikpKbCzs0NQUBAi\nIiIwe/ZsiKIIT09P3YH3Ovsp3j45RqiqrjZ4TUsLC4PXNCYXlw5GqZuVlWGUusb4NwUY72Q2jZHq\nXiksMEpdN0cn2dp+ITSiUa/bmGjYXdY5IiEiUiie2U5ERJJwry0iIpKEIxIiIpKEQUJERJKoJEfq\nDpLk5GS9LxwxYkSTd4aIiG6jkiSpM0h+/PFHvS9kkBAREaAnSBYuXKj7uqamBnl5ebpT6ImISH5q\nWbVV7xYpt7YbDg0NBXDzYij1beBFRETSybVFSlOrN0iWLl2KzZs360Yj4eHhWLlypewdIyIydyYT\nJC1atEDr1q11952cnGBlZXVfRVJTU++/Z0REZk4tQVLv8t9mzZrh6NGjAICioiLs2LEDNjY2dX7/\nV199Veu+KIpYtWoVJk2aBAAYNmyYlP4SEZkNkzmPJDo6GjExMThz5gyCgoLQo0cPvReCT0hIgIOD\nA/z9/XWPVVRUIDMzs2l6TERkJtRysL3eIGnXrh3WrFnT4Aa/+eYbrFy5EufPn8fs2bPh5uaGgwcP\nYsqUKZI6SkREylRvkBw7dgyLFi3CxYsXIQgCPD098dZbb6FHjx73/H4bGxtMnz4dv//+O+bPnw8f\nHx/U1NQ0eceJiEydSma26j/YPn/+fMyYMQNpaWlITU3F1KlTMW/evHobfvDBB7FmzRq0bdsW7du3\nb5LOEhGZE5M52O7s7IzevXvr7vv5+cHV1bXBBYYNG8YD7EREjaGSIUmdQXLp0iUAQPfu3fHxxx/j\nySefhEajQWpqKrp162awDhIRmSvVr9p66aWXIAgCbl2J9/PPP9c9JwgCpk6dKn/viIjMmOpXbf33\nv/+t80UnTpyQpTNERPR/VD8iuaWkpATbtm1DQUEBAKCyshJbt27FoUOHZO8cEREpX72rtqZNm4bz\n588jJSUFpaWl2L9/P2JiYgzQNSIi86aWVVv1BklFRQXmz58PNzc3zJo1C5999hl27dpliL4REZk1\ntQRJvVNblZWVKCsrQ01NDQoKCuDo6Khb0UVERPJRySGS+oPk2WefxebNmzFy5EgMGTIETk5O8PDw\nMETfiIjMm9pXbd3y/PPP677u3bs38vLyeB4JEZEBqH7V1gcffFDni/bt24fXX39dlg4REdFNqg8S\nCwsLQ/aDiIhUqs4g4bbvRETGpfoRibFVVVcbpa6Fpt4V0SbjemWlUepmZWUYpa6dnZNR6uYWZBul\nro2RZhWqjXTZCFcHR6PUlRODhIiIJFHLXlsN+vhdUFCAM2fOAAAvUkVEZCBqOSGx3iD55ptvMHr0\naMyZMwcA8M4772DLli2yd4yIyNwJQuNuhlZvkHzyySfYtm0bHB1vzj/OmjULmzdvlr1jRERmTyVJ\nUm+Q2NnZoXnz5rr7zZo1g5WVlaydIiIi9aj3YLujoyO+/PJLVFRUID09HTt37oSTk3FWvxARmRO1\nrNqqd0Qyb948nDlzBqWlpYiMjERFRQUWLFhgiL4REZk1QSM06mZo9Y5IWrVqhaioKEP0hYiIbqOW\nEUm9QeLv73/PH+bAgQNy9IeIiP4/kwmSjRs36r6urKxEamoqKioqZO0UERGZUJC4ubnVut+xY0eE\nhYVh3LhxDS5SVVWFrKwsuLi4wNKSJ9MTETWEyQRJampqrftXr17FX3/9pfc1CxYsQGRkJADghx9+\nwNy5c9G6dWvk5eVh3rx56Nu3r4QuExGRktQbJCtXrtR9LQgCbG1tMW/ePL2vOX/+vO7rhIQEfPbZ\nZ3B3d0dOTg6mTJnCICEiagBBJXvI1hsks2fPhpeX1301evtwzN7eHu7u7gCANm3acGqLiKihVDK1\nVW/excfH33ejv/32G15//XVMnToVGRkZ2LVrFwDg448/hp2d3f33kojIDKll08Z6hweurq4IDQ3F\nI488UmtrFH2X2r3zMr0dOnQAcHNEsnjx4sb2lYjIrJjMwfb27dujffv299Xo448/fs/Hhw4del/t\nEBGZM9UHyfbt2/HMM8/wkrtEREai+gtbJScnG7IfRESkUlxCRUSkUKqf2vrpp5/Qv3//ux4XRRGC\nIHCvLSIimak+SLp164YlS5YYsi9ERHQbleRI3UFibW191z5bRERkOHIebI+Li8OpU6cgCAIiIiLg\n7e191/csXrwYJ0+eRGJiot626gySezVKREQGJNOQ5OjRo8jIyEBSUhIuXryIiIgIJCUl1fqeCxcu\n4NixYw26tHqdq7ZmzpwpvbdERKQ4qampCAwMBAB06tQJRUVFKCkpqfU9ixYtwvTp0xvUnkq2BCMi\nMj9ybZGSm5sLR0dH3X0nJyfk5OTo7qekpODxxx9v8OENBgkRkUIZaq8tURR1XxcWFiIlJQXjx49v\n8Ot5HgkRkULJtfxXq9UiNzdXdz87Oxtt2rQBABw5cgT5+fkYM2YMbty4gb/++gtxcXGIiIiosz2O\nSIiIFErQCI261cfPzw979uwBAKSnp0Or1cLW1hYAMGjQIOzcuRObN2/GihUr4OXlpTdEAAWPSCw0\nxsk4Y5wAVFldZfCaANCsAasxTMm1a/lGqWusk8pun64wJGP97Zoiuf7t+Pr6wsvLCyEhIRAEAdHR\n0UhJSYGdnR2CgoLuuz1BNNa/tnoYq1vmFCRWFor9HGFSzC1IqOnEr9vUqNfNCgtp4p7ox48OREQk\nCT+SEhEplOr32iIiIiNjkBARkRRqubAVg4SISKE4tUVERJIwSIiISBK1BAmX/xIRkSQckRARKRRH\nJHfIzzfO9hRERGolaBp3MzRZSn7//feIiooCcPMCKgMGDMDYsWMREBCAAwcOyFGSiMjkGGobealk\nmdpatmwZ1qxZAwBISEjAZ599Bnd3dxQUFGDChAno37+/HGWJiEyLSqa2ZAmSqqoqtGzZEgBgZ2eH\n9u3bAwAcHBy4kRwRUQOp5RiJLEESFhaGYcOGwc/PDw4ODpg0aRJ8fHyQlpaGkSNHylGSiMjkmHWQ\nPPPMM+jXrx9++OEHXL58GaIoonXr1oiLi4OLi4scJYmIyEhkW/7r4OCAIUOGyNU8EZHJ415bREQk\niVlPbRERkXQMEiIikkQlOcIgISJSLJUkCYOEiEih1HKwnbv/EhGRJByREBEpFA+2ExGRJAwSIiKS\nhEFCRESSMEiIiEgStazaYpAQESmUSgYkyg0StQzpmoKVhWL/N1ATMNY1eKytmxmlbkVFuXHqVlUZ\npW4zKyuj1FUSvoMRESmVSj5QM0iIiBRKLTMzDBIiIoVikBARkSRctUVERJJwREJERJKoJUi4+y8R\nEUnCEQkRkUKpZUTCICEiUiiV5AiDhIhIsbhqi4iIpFDL1JYsB9t9fX3xzjvvIC8vT47miYjMgiAI\njboZmiwjEi8vLwwaNAhvvvkm2rVrh+HDh8PHxweWlhwAERE1lFpGJLK8swuCgMceewzr16/HmTNn\nsGXLFrz99tto2bIlnJ2dsXbtWjnKEhGREcgSJLdvm929e3d0794dAJCdnY2cnBw5ShIRmRyNOY9I\nnn322Xs+rtVqodVq5ShJRGRyzHpqa8SIEXI0S0RkVsx6REJERNKpJEcYJERESiVAHUnCICEiUii1\nTG1x918iIpKEIxIiIoUy61VbREQkHYOEiIgkkfMYSVxcHE6dOgVBEBAREQFvb2/dc0eOHMGSJUug\n0WjwwAMPIDY2FhpN3UdCeIyEiEih5Nq08ejRo8jIyEBSUhJiY2MRGxtb6/moqCgsW7YMmzZtQmlp\nKQ4ePKi3PY5IiIgUSq4RSWpqKgIDAwEAnTp1QlFREUpKSmBrawsASElJ0X3t5OSEgoIC/f2UpZdE\nRCSZIDTuVp/c3Fw4Ojrq7js5OdXaB/FWiGRnZ+Pw4cPw9/fX2x6DhIjIzN2+0e4teXl5CA8PR3R0\ndK3QuRdObRERKZRcZ7ZrtVrk5ubq7mdnZ6NNmza6+yUlJfj3v/+NadOmoU+fPvW2p9ggqayuMkpd\nKwvD/0rKbtwweE0AsDHShcYs9Kz+kNO9PnWZsoqKcqPUtbXV/+lVLiUl+ufx1UiuYyR+fn5Yvnw5\nQkJCkJ6eDq1Wq5vOAoBFixbhpZdeQr9+/RrUnmKDhIjI3Ml1Homvry+8vLwQEhICQRAQHR2NlJQU\n2NnZoU+fPvjqq6+QkZGB5ORkAMDTTz+N0aNH191PUaEf0zgikR9HJCQHcxuRyHnS4H9//rlRrwvo\n1q2Je6IfRyRERAqllk0bGSRERAqlli1SuPyXiIgk4YiEiEih1DIiYZAQESmURh05wiAhIlIqXmqX\niIgk4aotIiKShMdI7iCKomp+KURESqCW90xZlv8eOnQIgwcPxpgxY3D69Gk899xz6NevHwYNGoSj\nR4/KUZKIiIxElhFJQkICPv30UxQVFSE0NBTr169Hly5dcPnyZcycORMbN26UoywRkUkx62MkVlZW\n0Gq10Gq1aNWqFbp06QIAcHNzg4WFhRwliYhMjlqmtmQJEnt7eyxduhQFBQXw8PBAVFQU+vbti5Mn\nT8LZ2VmOkkREJkctQSLLMZL4+HhotVo88cQT+Oijj9CzZ08cPnwYrVu3RlxcnBwliYhMjkZo3M3Q\nuI38HbiNvPy4jbxp4zbyTedkRkajXvdohw5N3BP9eB4JEZFCqeVgO3f/JSIiSTgiISJSKLUcbGeQ\nEBEpFIOEiIgkUcsxEgYJEZFCcURCRESSMEiIiEgStVwhkct/iYhIEo5IiIgUipfaJSIiSXiMRCJL\njflsN9/C2toodY2191RVdbVR6hprjy9jvRlUVBlnv7ria/lGqdu8ua1R6l6/Xipb21z+S0REknBE\nQkREknBEQkREkqhlRMLlv0REJAlHJERECqWWEQmDhIhIodRyZjuDhIhIoXhCIhERScKpLSIikoTL\nf4mISBK1jEi4/JeIiCSRdUQiiiIKCgogiiKcnZ3lLEVEZHLUMiKRJUj++OMPxMfH4/Lly8jMzESn\nTp1QVFQELy8vzJkzBy4uLnKUJSIyKWo5RiLL1FZ0dDTmzp2Lr7/+Glu3bkX37t2xb98+DB8+HDNm\nzJCjJBGRyREEoVE3Q5MlSG7cuAF3d3cAQMeOHXH+/HkAQL9+/XD9+nU5ShIRmRyN0LibockyteXp\n6Yk33ngD3t7eOHjwIHr16gUAiIiIQOfOneUoSURkctRyQqIgynB1I1EU8d133+HPP/+Ep6cn+vXr\nBwA4d+4cHnrooQYNvYx10SW1HNxqCsb6HVfX1BilLi9sZRiWRvo9t2xhZ5S6cl7Yqri8vFGva9W8\neRP3RD9ZgqQpMEjkxyAxDAaJYTBI/o+hg4QnJBIRKZRaVm0xSIiIFEotMyQMEiIihWKQEBGRJJza\nIiIiSTgiISIiSdRyhUTu/ktERJJwREJEpFByntkeFxeHU6dOQRAEREREwNvbW/fcDz/8gCVLlsDC\nwgL9+vXD5MmT9bbFEQkRkULJtWnj0aNHkZGRgaSkJMTGxiI2NrbW8wsWLMDy5cvxxRdf4PDhw7hw\n4YLe9hgkREQKpRGERt3qk5qaisDAQADQXeajpKQEAHDp0iXY29ujXbt20Gg08Pf3R2pqqv5+Sv9R\niYhIDnKNSHJzc+Ho6Ki77+TkhJycHABATk4OnJyc7vlcXRR7jEQty97UzFi/Y0sLC6PUNTc2lor9\n85aFnHtemTqp++5xREJEZGa0Wi1yc3N197Ozs9GmTZt7PpeVlQWtVqu3PQYJEZGZ8fPzw549ewAA\n6enp0Gq1sLW1BQC0b98eJSXD0fE5AAAKBklEQVQlyMzMRFVVFfbv3w8/Pz+97Sl2G3kiIpLP+++/\nj+PHj0MQBERHR+Pnn3+GnZ0dgoKCcOzYMbz//vsAgIEDByIsLExvWwwSIiKShFNbREQkCYOEiIgk\nMbn1gfpO+5fTr7/+ikmTJmHcuHF48cUXDVITAN599138+OOPqKqqwoQJEzBw4EBZ65WXl2P27NnI\ny8tDRUUFJk2ahAEDBsha83bXr1/H008/jUmTJmH48OGy10tLS8Prr7+Of/zjHwAAT09PvP3227LX\nBYDt27fjo48+gqWlJaZOnYr+/fvLXnPLli3Yvn277v7Zs2fx008/yV63tLQUs2bNQlFRESorKzF5\n8mT07dtX9ro1NTWIjo7Gb7/9BisrK8TExKBTp06y1zU5oglJS0sTX331VVEURfHChQviqFGjDFK3\ntLRUfPHFF8XIyEgxMTHRIDVFURRTU1PFV155RRRFUczPzxf9/f1lr7ljxw5x7dq1oiiKYmZmpjhw\n4EDZa95uyZIl4vDhw8WtW7capN6RI0fE1157zSC1bpefny8OHDhQvHbtmpiVlSVGRkYavA9paWli\nTEyMQWolJiaK77//viiKonj16lUxODjYIHX37t0rvv7666IoimJGRobu/YPuj0mNSOo67f/Wsja5\nWFtb48MPP8SHH34oa507PfbYY7oRV6tWrVBeXo7q6mpYyHjC35AhQ3Rf//3333BxcZGt1p0uXryI\nCxcuGOSTubGlpqaid+/esLW1ha2tLd555x2D9yEhIUG3ckdujo6OOH/+PACguLi41lnXcvrzzz91\nf0MeHh64cuWK7H9DpsikjpHoO+1fTpaWlmjWrJnsde5kYWGBFi1aAACSk5PRr18/g/0BhISEYMaM\nGYiIiDBIPQCIj4/H7NmzDVbvlgsXLiA8PBzPP/88Dh8+bJCamZmZuH79OsLDw/HCCy/Uu9dRUzt9\n+jTatWunO0lNbk899RSuXLmCoKAgvPjii5g1a5ZB6np6euLQoUOorq7G77//jkuXLqGgoMAgtU2J\nSY1I7iSaycrmb7/9FsnJyfj4448NVnPTpk345ZdfMHPmTGzfvl327Va++uorPProo3B3d5e1zp06\nduyIKVOmYPDgwbh06RLGjh2LvXv3wtraWvbahYWFWLFiBa5cuYKxY8di//79BtvWJjk5Gf/6178M\nUgsAtm3bBldXV6xbtw7nzp1DREQEUlJSZK/r7++PEydOYMyYMXjooYfw4IMPms37RlMyqSDRd9q/\nqTp48CBWr16Njz76CHZ2drLXO3v2LJydndGuXTt07doV1dXVyM/Ph7Ozs6x1Dxw4gEuXLuHAgQO4\nevUqrK2t0bZtWzz55JOy1nVxcdFN53l4eKB169bIysqSPdCcnZ3h4+MDS0tLeHh4oGXLlgb5Pd+S\nlpaGyMhIg9QCgBMnTqBPnz4AgC5duiA7O9tgU0zTp0/XfR0YGGiw37EpMampLX2n/Zuia9eu4d13\n38WaNWvg4OBgkJrHjx/XjXxyc3NRVlZmkPns//znP9i6dSs2b96MkSNHYtKkSbKHCHBz5dS6desA\n3NwVNS8vzyDHhfr06YMjR46gpqYGBQUFBvs9Azf3VmrZsqVBRl23dOjQAadOnQIAXL58GS1btjRI\niJw7dw5z5swBAPzvf/9Dt27doNGY1NuiQZjUiMTX1xdeXl4ICQnRnfZvCGfPnkV8fDwuX74MS0tL\n7NmzB8uXL5f9zX3nzp0oKCjAtGnTdI/Fx8fD1dVVtpohISGYO3cuXnjhBVy/fh1RUVEm/YcXEBCA\nGTNm4LvvvkNlZSViYmIM8gbr4uKC4OBgjBo1CgAQGRlpsN/znduIG8Lo0aMRERGBF198EVVVVYiJ\niTFIXU9PT4iiiBEjRsDGxsZgiwtMDbdIISIiSUz3oyQRERkEg4SIiCRhkBARkSQMEiIikoRBQkRE\nkjBISDaZmZl4+OGHERoaitDQUISEhODNN99EcXFxo9vcsmWLbpuU6dOnIysrq87vPXHiBC5dutTg\ntquqqvDQQw/d9fjy5cuxdOlSva8NCAhARkZGg2vNnj0bW7ZsafD3EykZg4Rk5eTkhMTERCQmJmLT\npk3QarVYtWpVk7S9dOlSvScHpqSk3FeQEFHjmNQJiaR8jz32GJKSkgDc/BR/aw+rZcuWYefOnfj8\n888hiiKcnJywYMECODo6YsOGDfjiiy/Qtm1baLVaXVsBAQH45JNP4O7ujgULFuDs2bMAgPHjx8PS\n0hK7d+/G6dOnMWfOHHTo0AHz5s1DeXk5ysrK8MYbb+DJJ5/E77//jpkzZ6J58+bo1atXvf3fuHEj\ntm3bBisrK9jY2GDp0qVo1aoVgJujpTNnziAvLw9vv/02evXqhStXrtyzLpEpYZCQwVRXV2Pfvn3o\n0aOH7rGOHTti5syZ+Pvvv7F69WokJyfD2toan376KdasWYPJkydj2bJl2L17NxwdHTFx4kTY29vX\nanf79u3Izc3F5s2bUVxcjBkzZmDVqlXo2rUrJk6ciN69e+PVV1/Fyy+/jCeeeAI5OTkYPXo09u7d\ni4SEBDz33HN44YUXsHfv3np/hoqKCqxbtw62traIiorC9u3bdRcyc3BwwKefforU1FTEx8cjJSUF\nMTEx96xLZEoYJCSr/Px8hIaGArh5NbqePXti3Lhxuud9fHwAAD/99BNycnIQFhYGALhx4wbat2+P\njIwMuLm56faZ6tWrF86dO1erxunTp3WjiVatWmHt2rV39SMtLQ2lpaVISEgAcHPr/7y8PPz66694\n9dVXAQBPPPFEvT+Pg4MDXn31VWg0Gly+fLnWpqB+fn66n+nChQt66xKZEgYJyerWMZK6WFlZAbh5\ncTBvb2+sWbOm1vNnzpyptXV6TU3NXW0IgnDPx29nbW2N5cuX37WHlCiKuj2sqqur9bZx9epVxMfH\nY8eOHXB2dkZ8fPxd/bizzbrqEpkSHmwnRejevTtOnz6tuxDZrl278O2338LDwwOZmZkoLi6GKIr3\nvMCTj48PDh48CAAoKSnByJEjcePGDQiCgMrKSgBAjx49sGvXLgA3R0mxsbEAbl5J8+TJkwBQ78Wj\n8vLy4OjoCGdnZxQWFuLQoUO4ceOG7vkjR44AuLla7NY13uuqS2RKOCIhRXBxccHcuXMxYcIENG/e\nHM2aNUN8fDzs7e0RHh6OMWPGwM3NDW5ubrh+/Xqt1w4ePBgnTpxASEgIqqurMX78eFhbW8PPzw/R\n0dGIiIjA3LlzERUVhR07duDGjRuYOHEiAGDy5MmYNWsWdu/erbv+R126du2KDh06YMSIEfDw8MDU\nqVMRExMDf39/ADcvRDVhwgRcuXJFt/N0XXWJTAl3/yUiIkk4tUVERJIwSIiISBIGCRERScIgISIi\nSRgkREQkCYOEiIgkYZAQEZEkDBIiIpLk/wHCcg5l94O/JQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "TOfmiSvqu8U9", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Once you have a good model, double check that you didn't overfit the validation set by evaluating on the test data that we'll load below.\n" + ] + }, + { + "metadata": { + "id": "evlB5ubzu8VJ", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 346 + }, + "outputId": "3b353697-65ec-4988-e928-7afb72efc8a9" + }, + "cell_type": "code", + "source": [ + "mnist_test_dataframe = pd.read_csv(\n", + " \"https://download.mlcc.google.com/mledu-datasets/mnist_test.csv\",\n", + " sep=\",\",\n", + " header=None)\n", + "\n", + "test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe)\n", + "test_examples.describe()" + ], + "execution_count": 23, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
12345678910...775776777778779780781782783784
count10000.010000.010000.010000.010000.010000.010000.010000.010000.010000.0...10000.010000.010000.010000.010000.010000.010000.010000.010000.010000.0
mean0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
std0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
min0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
25%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
50%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
75%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
max0.00.00.00.00.00.00.00.00.00.0...1.01.00.60.00.00.00.00.00.00.0
\n", + "

8 rows × 784 columns

\n", + "
" + ], + "text/plain": [ + " 1 2 3 4 5 6 7 8 9 \\\n", + "count 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 \n", + "mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "25% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "50% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "75% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "max 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + " 10 ... 775 776 777 778 779 780 781 \\\n", + "count 10000.0 ... 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 \n", + "mean 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "std 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "min 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "25% 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "50% 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "75% 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "max 0.0 ... 1.0 1.0 0.6 0.0 0.0 0.0 0.0 \n", + "\n", + " 782 783 784 \n", + "count 10000.0 10000.0 10000.0 \n", + "mean 0.0 0.0 0.0 \n", + "std 0.0 0.0 0.0 \n", + "min 0.0 0.0 0.0 \n", + "25% 0.0 0.0 0.0 \n", + "50% 0.0 0.0 0.0 \n", + "75% 0.0 0.0 0.0 \n", + "max 0.0 0.0 0.0 \n", + "\n", + "[8 rows x 784 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 23 + } + ] + }, + { + "metadata": { + "id": "PDuLd2Hcu8VL", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "f1e17c1b-6444-4eeb-b9df-186b7c831f3a" + }, + "cell_type": "code", + "source": [ + "#\n", + "# YOUR CODE HERE: Calculate accuracy on the test set.\n", + "#\n", + "predict_test_input_fn = create_predict_input_fn(\n", + " test_examples, test_targets, batch_size=100)\n", + "\n", + "test_predictions = classifier.predict(input_fn=predict_test_input_fn)\n", + "test_predictions = np.array([item['class_ids'][0] for item in test_predictions])\n", + " \n", + "accuracy = metrics.accuracy_score(test_targets, test_predictions)\n", + "print(\"Accuracy on test data: %0.2f\" % accuracy)" + ], + "execution_count": 24, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Accuracy on test data: 0.95\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "WX2mQBAEcisO", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 3: Visualize the weights of the first hidden layer.\n", + "\n", + "Let's take a few minutes to dig into our neural network and see what it has learned by accessing the `weights_` attribute of our model.\n", + "\n", + "The input layer of our model has `784` weights corresponding to the `28×28` pixel input images. The first hidden layer will have `784×N` weights where `N` is the number of nodes in that layer. We can turn those weights back into `28×28` images by *reshaping* each of the `N` `1×784` arrays of weights into `N` arrays of size `28×28`.\n", + "\n", + "Run the following cell to plot the weights. Note that this cell requires that a `DNNClassifier` called \"classifier\" has already been trained." + ] + }, + { + "metadata": { + "id": "eUC0Z8nbafgG", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1172 + }, + "outputId": "373d60d5-80c2-4e5f-e827-f8e09de7fc12" + }, + "cell_type": "code", + "source": [ + "print(classifier.get_variable_names())\n", + "\n", + "weights0 = classifier.get_variable_value(\"dnn/hiddenlayer_0/kernel\")\n", + "\n", + "print(\"weights0 shape:\", weights0.shape)\n", + "\n", + "num_nodes = weights0.shape[1]\n", + "num_rows = int(math.ceil(num_nodes / 10.0))\n", + "fig, axes = plt.subplots(num_rows, 10, figsize=(20, 2 * num_rows))\n", + "for coef, ax in zip(weights0.T, axes.ravel()):\n", + " # Weights in coef is reshaped from 1x784 to 28x28.\n", + " ax.matshow(coef.reshape(28, 28), cmap=plt.cm.pink)\n", + " ax.set_xticks(())\n", + " ax.set_yticks(())\n", + "\n", + "plt.show()" + ], + "execution_count": 25, + "outputs": [ + { + "output_type": "stream", + "text": [ + "['dnn/hiddenlayer_0/bias', 'dnn/hiddenlayer_0/bias/t_0/Adagrad', 'dnn/hiddenlayer_0/kernel', 'dnn/hiddenlayer_0/kernel/t_0/Adagrad', 'dnn/hiddenlayer_1/bias', 'dnn/hiddenlayer_1/bias/t_0/Adagrad', 'dnn/hiddenlayer_1/kernel', 'dnn/hiddenlayer_1/kernel/t_0/Adagrad', 'dnn/logits/bias', 'dnn/logits/bias/t_0/Adagrad', 'dnn/logits/kernel', 'dnn/logits/kernel/t_0/Adagrad', 'global_step']\n", + "weights0 shape: (784, 100)\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGcAAARNCAYAAAD/4C04AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvWeUnFeVNXzVOVTnnHO31EE552RZ\ntixZlnPAxjaYAQYGZsDAGGaGGfPCgIkGEzwGJ2ycs+Qg2bJyzmqp1VJ3dc6xOlXH7xfP3ueOrfWu\n16XVP76zf51edar6Cfeee5+qvc+eMjExMWEUCoVCoVAoFAqFQqFQKBSTAr/JPgCFQqFQKBQKhUKh\nUCgUiv8/Q7+cUSgUCoVCoVAoFAqFQqGYROiXMwqFQqFQKBQKhUKhUCgUkwj9ckahUCgUCoVCoVAo\nFAqFYhKhX84oFAqFQqFQKBQKhUKhUEwi9MsZhUKhUCgUCoVCoVAoFIpJRMDlXjz9xmNOPDo4Kl4L\nigx24vGxccRDMs8/LAhxKP5dcEyoyDvz12NOnDEnw4mHO4dEXlRJghM3ba9y4sTFeE/vhQ7xnr4W\njxOHRYc5cXRZonWsgU48xW+KE/ecaxN5oz3DTpxydZ4Tn3/uhMgLC8Y1GvR6cazTU0WeKzvaiQuX\n3GN8jcr9Tztxy45q8drEGJzUK+obnHjGgiKR11/T48SZN05z4qb3Lom80FSXEycswD3Z/9tdIi+n\nFK+Nj2L8jPWNOHFQXIh4z8UTNU7c3d/vxBu+e63Iq996wYmD4zDOyvdXirzSlTiPUx+VO/GSLywV\neQMNvU7csNftxLmbikWewZAxhYt9ex/Pbv2jE0fkxorXOo43OrG3bcCJXbkxIq+/Fvcwcmq8Ew/S\n+dmfEZKC+xmSEC7yeN57KjDneB5FTUsQ7xkbwv0NCEdt6DjYIPK4ViStyHbi6r+eFnnhOZg73laM\nCVdutMgz/vgeegrdp56TrTKNjn3xg983vsbRp37hxKEpEeK12h0XndgzhLo3de1UkRddhGvastvt\nxJFT5bWOzItzYr7ubYfqRV7vGdS3KXSdAiJwLYIT5b3vpfvd2dfnxPO+KudO56lmJ46bmeLEDdvk\nXAxwUe0N8Mf/jZE1wC8Yrw33oKYGRQWLvIvbzjvxxkceMb5ETfmLTtx1pkW8NtqHtaGvutuJuWYa\nY4ynEtevrwp5rgI5t3nOte50O3Fomhw7wQlY13hMp20sdOKWj938FhO/IN2J2w9gTMQtSBN5Q22Y\nVxE5OL6e83JdDKR7MNiINTeA5pQxxoRnYW7y/w2KCxN5XeU4jzU/+pHxNd781receNpN08VrJ54/\n6sRz7l3gxK27akReaHok/hjHWjrcOSjyeNz6BSEeGxqTn5eE+91X1eXEKWuxzzj8h73iPaPjqMOL\nvroM76/pFnmX3q9w4tg4HHd3V5/Iy1yS7cRe2n95LnWKPF6Dh8dwHov/cbnIazuM2j77zn8yvkT5\nB4878UCdXMeqT9Y68Zx75jvxkScPiryIUOwRggKw7qSszBZ53acwHjuacG+m3TpT5LV+5HbiSNqv\ntu6vc+K+IbmvLb1zthNP0Dhqp/fYiJ2DfWTb7lrx2pgX+/CACKyzobSeG2NMRB7mM//fwSaPyGs/\njD3Gqocf/tRj+n/F6Td/78S959rFa9U1TU6cm41zdhXI/c2IB7U357qFTvzMN34v8j73qy85ceXz\ne5y4pVrWs3nfxDg+9mvkzf76Eidu3CH3v63lWA9y1mMPPUFz1Bhj+msxVotu2uDETacOiDyec81n\ncB2SS5JFHtfU0ETc44FmeR+7jmM9XvwvDxlf4uBvf4LjyZH3hp+nAunZ0R5nPB47j+N8h7vkfAlL\nx/rXT+tnrLV2Vbx9FsdEz2NZG7Gn8g+Wj8E8D9p2o96PDchn2wl6buH/Gxwrn23db5xz4tAI7Gf8\nw+W6OD6CzwvLQH0eapL1OXYu5sCVeF7kudh9rFm8FhiL40+5Kt+Jg6jGGGNM1V9POXFkMZ41wtOj\nRF7Tu9jzTgnE3jOqWO5lRzzY6/H9Dk7GWB+kZ1RjjMm9B3W5+xxqtytbjs0Jeo7ppmf9uNnyOb3y\nyeNOnDAf97vrSJPIy7q1xIk7aAzzuDLGmPAMXIupq+4zNpQ5o1AoFAqFQqFQKBQKhUIxibgscyaY\nfskaPCN/YeZvOFs+BBsjemaSyOt341uuMWLfRE6LF3m5qwqceGIUv8JMyC+czfgIXmP2jacS3zAn\nLMoQ70l14Vs9Dx2Pe6f81jvQH79oFdw+w4n9Q+RlSliIz++pwLf8ybPkt7adp/Etup8fvgcL51/b\njDF+gVf2O7JTL4CVNGp9g5+Rhfu1/B78IsDfbhtjTEsFzqX5fTCWguPlt8QtZ/BNa9Np+sVjVrbI\ni8jDt5fdpzG2YmbjF4Htz+wW71mxGb9+XdyFb1y3//wDkTdzFb655HvAv5AZY0zCPPxyXDqMcfX2\nr98Tedd/G8wcF/161mv9cnxgF1gdvmbODLWDzRJkfTPPGKfz4F9ojTFmuAO/5k4h+khAhLzXLprb\nXSfom3OmnBhjwlLx68U4/QLMv5J4OwbEe/hb6tEBsDmiSuU35a4sjI9x+hUwYamc2x378Mt74pqc\nT/2/IfGoZfzLUkyprFdtByWrxNdwH8cvnIvXrhavDdTj17RsYj2FXIZR0FBOvy51e0WeKxO/pjGD\nxZUlWUXtJ/AZmfRrH//fwRb56w3XxNgAMGI6jkoGVNKSLCc+/CvM53nfkL+ue2rwS3Qj/ZoyZtWr\nAKrRPBpDUuUvwrlrCs0VA82DoWbrV63ZuBaxsxCPeyVDou8izjd1A9a+xm0XRd4wzXtmk0UWxom8\nXlr/EldnO7H7JfxymLFRsiH9Q/HLXVgWfsUZIgaaMcYE09wZ7sUvmGP2OdEvSGn0v+pfPy/yhlpx\nTqJeBcj6krwk01xJ8HrvudQlXpt52xwn9hILZsRi8sbMxHrFDKHRJDkemz/AminYpYtlPTv4+D4c\nw42znHioHfdkfEL+AleyDgxOZjlVbCsXeWlTMR4jCjB+/E/LvV3PaaxrI8S4C0uW5xSTiNrJvwI2\nvCtZcfHWfsyXCIrEL7nD4ZKtVLYZe7hBui4psfKXU1cR1rs2qpPhafJX3pFu3Pu0azBn+xvkL7ad\nbfh74gzuVeqaXCf2dsljHe7BZzObIMD6RZrHmD+xsUaIsWeMMaFpuFfeJpx7bb1kP5UWYh/ecw57\npWhrXWTmzJUAs2WK7l8hXos6gHGctmSuE196dafIqzmNtTv9atT/Do9kZzz+lUed+IuPgck18It3\nRB6zTWd8Cey5hvcwvqPL5HViNiyvmR+/c1jk8Z7yxM+fc+Ip1p7tyDn8r+Xrce4j1vjZ+TSYPSvu\nwj7e/d4FkTf/wY3mSiGIWOpn3zsrXiu9ptSJmTXrsRhkCbQHYmYnrzvGGNNDNStuEeVZ12Xa5jIn\nbtmO59ReYkjYDGZmaYRlogZ42+WekvfhU/xJaWE9F0TSfmuwAWPC2y/nbCTt+UKp1naclOyVcWLT\nFS4xPgcznP8Xy4T2Y/31eJZuq5U1kBmlQy2oP37+8lk3kdiJrMapffmcyAuIQh2MmIq1i9edzA2l\n4j1jw1RTaZ8WN1MyYiZoPeXrHmA990eQwoXrVdLaHJHnqcZeIoyuQ+dRybDh+v1JUOaMQqFQKBQK\nhUKhUCgUCsUkQr+cUSgUCoVCoVAoFAqFQqGYROiXMwqFQqFQKBQKhUKhUCgUk4jL95yJhda89ZLU\n0UWXwumI+8eM9sq+B34B+P7HRR2YuVeEMcak34Du2Z2ksbO19dzPIoT0Ydwh23aHOPHnQ04cG4H3\nFN4gNWpnX4LbUt3L0LmG58keDawpHO2HLpUdM4yRGuMw0qBbknFT+Vf83/z5xuco3gTdZd0HsqdB\nO7kOuJ+HrtjWtUeHw0XiXCU6mK+6apXI467xF7ZBN2hrZF2Z0OnteQY6e1cFOTtMzRPvaSaXmfQi\n6CKn5UuHk61/+ciJubdKWYbUvrN+ct8H6MQdEy6dabg3Q+x86BVZZ2qMMTkVUn/sS0TQObJ21hjZ\nt8FVhPli9xbhJh1B0dDqj4/K3hF8zQwNg95y6aLAPWf6u6ArDerD9QqMlm47rD9NWoF+JG17pStF\n+278HUR9jQItVx7uks8OONwXyhhjeiowZ9kBx9a2pl6bb64kRsjVpP6dCvEaa5ibyVWt4L7ZIq/i\nI7wvaxrOP2OjdHU68Ru4uuRcQ71k4uX4jpuOvhnsMMT3nnsiGCN7fw1xr5ybSkRe2xHM5wXfXunE\n1S9I160Y6s/CDmt2Le+4hDFYeBt6SrDjmzFy3fE1qv560olzbisTr40OkFsTueXYfcZSN6Anwtgg\n1pCEJXLcdlOvNxfVgBFrnR0mh7VBmiPcA2fAcsbgtZTdhYbbZa0OWog5XLMNPQziSz693nFtZUdA\nY6TjIvcu6quWfV8CXLLfhq9ReAscmnrOy9rGfdVau3AfZ9w5V+RxqfSQu1LzUbm/cUVhzoWRTr51\nj3TZmbYKc3iYepz0XUSvkLz5ueI97JyWth71KzBAbu8CXBgX7FASvzBd5FW+esaJyx7AhqTbukYe\n6rcXVYQ9oN1HR7g8zTM+xdkXsXdKLZIONuwUePppuG/FJcheMmPU+yzzavSS6S6XvXiq96MmF9K6\n5hcgewcUbEINbKf7205rXGOrdBRNS8H1S70Wx8D9L4yR855d7exej/UHsEeLTcb5Tr9JOkxW/w11\nOJTWxY7DsndYW690wvI1uGfd/p+8KV5b+tAtTuz14tmg+pTcM8y+G2N12IO5kxUv+1t2kcvYmV9t\nc+KjVVUib+hPGBexGdQDjp47BhplTc1Zg/3wzh8+4cRxEbKvSeXzcLOp78BYWP+QdB6NvYD63XkY\nPSti5sixvnnLDU68/WGcU/Fi2Xut8wLOMW6RdFb8rHAfcjvxzJvlnsX9DvqOpa9C/QrYL8cZ91Yc\npZ4sdt+9AOpHw3Oi54x8To2nfjR834cvoY9h0znZ0yUxh/of0nMQ92UzRs77gTr0XOlzWz2oyM2y\n9CY4CJW/clLkTaHhN1iHcZVp9Yqznat8jZZ9qFmhVp8xrhGR5Bpr35/gGPxdQ33veq3eWLIPHhbT\nmLkpIq/3LO4rOwdzv6DRIdkTaMDqk/h39Fy01np6noqdR/PttHTiTKT+idwfp/Ok7CXDz0kBkdjD\n5Nwq94rcZ/GToMwZhUKhUCgUCoVCoVAoFIpJhH45o1AoFAqFQqFQKBQKhUIxibisrKnpA1hNp5RJ\n+6k+ohZFk1ypbb+kGo4PgT42MAXUyLTrJVWrrxbUYaYKd5+S1KJRokXl3AZasiGKds2r0sYtmOi9\nKSRbYBqyMcZEhYGKFT0LNFGbKpdJ1P3xYZyfTcGveQnSqC6WdxVIezLbLtbXYAu4hBmSLhaSCJra\npW2gHiZkSTlZH1HiF24BN9k+56BInFskWVfvOyptPVPW4T6s+gqooIOtoKJ1n5D3fuo9oEqOkhSA\n5QPGGLPlO7AL7Ce64Yhtx3cRdNLMBIzhgmukPOTNh99y4hU3LXTiA28cFXn5yZJq6kvwPGCqnDHS\ncrC7HGO1/g0pmwlJwb1mm+XWXZJaHzkVNOARolDakiKeqKERuNd+QRjrtiU7yxi6+Jwsy9ApNF/G\nqIYEB8uSFZZGln1kl1pn2fe68jEu2w6gRsUtkHWtm+iTZqbxOaZvQs2q3S4lhikxuI+FD0A+YdMm\nMwtxzCxBqfzjEZGXPAuSpwaq5Z5BKVuZcQ/mc8NbkK2EJKIeNu6tEe8p++oiJy7//UEnbj0g638E\n2UM27QRv110prVnZbpfHyIQlryx9AJam7WTbbbm8Czvg3FnGp4gmWY4tCWT71EGivLMsxRjLapJs\nHgOjpAwwbi7udQ/Zfw6RFMMYY8JzMZ8TF5CshC4fy5iMMaa3CvVvhGRrbFtpjDHHXzrmxGmJWBfa\nzkg6eBbZ1/aS5CVxZZbIC4rBOTa9j3EZYUmYA6+wrInloIP1UrYRPROy7QgvjuvSK2dEXsEtoCpf\n2odzSYqXa3zmjdM+8RiYrm2MMaEkf2baOEtoPRfkWGI5dctuzNMZX1oo8rpO436x5awtfy26HXLB\niXGi9adJaYaLbWZZtmxPRvtvHyJ7EeTR4dZ58FpYcjsVAaumnHkekubp81AzOw/JGpW/GuPbQ1Ky\nBMvy/cTTsE1mOcugF/KLMloHjDGmlyRjfe5Pp7t3kF195FTMWZb1G2NMENnED3fj/1Y8e1zkTbsX\nlvEnHkcdn3H/ApFnz01fI/9+7O1e+N5L4rUFI9jfdZ7G+a/7z/tFXuUrHzhx+nrcq+HRUZHH+zQ/\nsq6+6ibpSzzUhLrMss8Rup7+YXI/sv/g006cvSKP3iP3nnmbVjtx0CMvO/Hx3+0TeefqIY9kmeLq\nsgSRV/03yKQW3bfYiS++LOvV+f2wsS5YdLfxJfJWQI5X8Yb8v3FxWO9Ycjw2Jp99omjvyWt/+wEp\nEw2gfeW5AzinAH8pMRzYjuuelIXP5rUwa47cA7btxX44gtoEXNgh99OuEKxjLE2bt0FuOM68hnlV\nTHJwfr8x8jlwCu0rJizJtngmvsb4HP0XUX9iLav4oCjUGd735d4qW4SwNCp+KfYj9prONuFjJGML\nz5S1PH0Tvi9gW/Vjz6LW5s6QdTiGLMFZJhYzXZ5TaCrW3NTFWM+Dg2VeayX+VxfZiMfPSRN5kfkY\nM2O0xxjqlLKrkT4pWbWhzBmFQqFQKBQKhUKhUCgUikmEfjmjUCgUCoVCoVAoFAqFQjGJuKysKWIq\n6Dk9p2Xn+rRrQGFr3unGCxZllCUSfsGgnIXEyu7O3PU8gmhBNsUzZgY5ixC1aGwQ1MWoYkn5S14J\n6msAOe80vXdJ5KVRl/yJEVDJ4i0HjV7q9txM9K04y70iKA60NT7u8y+fEnkxsdLJw9dgd5qTr50Q\nrxUuhryo7POQUmx95F2Rt/rzy51459N7nNimjK4k2U/2LaC6Bbwhh5qXKF495ZLa/Xe4ciW1rfwv\nkG0kkWSDHU2MkdS57pOgACavzRF5Z1/AtZjzFVBaj/xuj8i74T83O3HzLrcTFxdIuv7E2JWTpzFl\n26ahs3MOU/YCQuQ1ryOZU0cAKNuZWyTl3i8Q81RQ/2tkF/r+WvztH4L37DxIFNse6Raw5zzkRqvm\ngtrNrmfGGJO4AhTF8WFc14EGKT9g6WVIEsZ53EJJNWzbCbp/9p2gLrIznDHGjHouTzX8rOjYBylO\neJikorcdB2WbnZuqd0r509Qbcd2atuG11I3yWpfT+B4aBmW0eJ107Kh4DnmRcaDhH3sNFHjviLw/\nNT+E1K+E5kHjYSlrKsqDNOPAe/g/o2NSDsRyqhiSlE6xXJd4rLNkanxEzr2RPnm8vkRfBWQlQZYM\nqfsoxlNoJup64lJJuWVJbQJJumx3lkGSPEWX4rq40qRspu0ornvPBXILoFroZ7nLsQtdKDmvsQzW\nGGMKyR2o7SzqaeoieU4sYWwjl5oxr7zXTFFPWIbPqN9aKfL8Qy67PfnMYPcq2xnK2wnqtO00yHC/\nCre3vEW4Tv1VUmrLzh7nn8A6ljBLyoy9Hbj29SQN4zrc1ihlTc3lkAtu/HdIeu05wVszliuFJEhH\nDnYjYwla6hrpnsj3h+vwqEfOvZRr5Pt8CVcO5kHHEen8Ek2U/IFGrBu2e1jBesiYxTpkzRd2jzly\nBOvYbEt2UEDyJ3buyKA1adhyW/MneTjfp+5jcn0apDo+haRV3mgpH05djr2O5wK5eS0qEHktH7ud\neOoWrIu9lqNJC7UrmLrS+Bx9dSQTsJyNjMH1jS3BPvqJr/5UZG14YI0TuyIhg/Bae9Q1P3zAiXta\nIbff+fPtIi84EPckhyQTLJk69aiUIUVlYG/GkqnBeunqVPH8e07M+69zz8v9+e0/utmJ2w6jbrYd\nlGO9dwB1Y+xdnO+C794s8gY8Uh7kS7DrYNp0uf8aoL0jt4lw5ci9bFAM9j3s9hoeLMd35wVI2Gdd\nBxnm7pcPirzS9XgGef/53U68fA1kdO0H5TWpq8XzRDatkUVrZbsD3oueJfnZx6/JY2C3pvI34I52\nvFq6rl49H8fEzlAnX5JSxMKlV9ZRNG7Rp9cpfjZIp9YUvD4ZY0wiOQD6h+Aadp6S9YwVr7EkQ/J2\nyjXXU4U1LyAca3VyNMbPYL10Z5oYwzNOUwfenxMjv3vIv2WZEw97UfeGeuVzaSftzyMK8B1FRISU\nqJ564a9OzM8kIz3yWoZYTlg2lDmjUCgUCoVCoVAoFAqFQjGJ0C9nFAqFQqFQKBQKhUKhUCgmEfrl\njEKhUCgUCoVCoVAoFArFJOKyom62Mo4qkX1cWNduhDRX6nTZGrTrBPRm7fukzq/gi+h3wnbKE1Yb\nD+5bwzq3iGxoj0MiZO+XS6/udeKUVdCFJ6/NFXnc36D5Qzfy1sk87jMw85+vcuLeGmm92Ec9OWre\nhEbZtlBLXCF7l/gaF96Brrb4KtlfpIr6WVQdgHb9qq+sEXl+gbg2WfHoI1TfKfXvQZE4tw8f3eHE\nRVnpIm/MC10s2wGPDJHm23LgnPvt9U689QcvOvGC2+aLPNaXe3qgTQ06Li2JFz4IC++DP9vpxIu+\nI8/90lPQfAbFQxMbnCS1i42n5f33JYa7cY06e6QtY18l7kHcAuhFm4/K8w3PgY41fi7yRsie3hhj\nmj/EOIihngi2lSrrgwfIUnJ1EKwEpwTK73/vuftWnMdp1JeUpbIvQeNH6EESmkq9O5b8382VwRap\n8ebj6DyB6+JnWXOnrJZz3ddIWA7tOtvmGiP7QNS9jDmbWiatHj2XcL+5B4ErLUrkld0Nm1T+7NaP\npS12Aun4u85DZ9vYhb4oS2eV2Kfi4OcvvObENy9eLF778LGPnPhcA3TyNy+Tea4C1O+BWszf2Dmy\nJ4f7OWi2s25Hj4SLz0qtftraK9fnYoRsLtsPSO0/98vhnh/Dlt6Ye7iNUy2MmpYo8riPBvcOGx2U\nnxeagrHE1vOdx1CTWCdtjDEB1OciLAVzLNwaRzV/gy1q+grMjy6rvsTOwL2KnIY1oov6fhljTPJq\n9MNoehe9SlwZsvea3RvE1zi/Ez24pi6X/ZrqD6FnTsp0zL+RJtlLpugu1LqWneghEL9Y9qlrISv6\nsn9Cf7PKx4+IvEKyij//W/SzGKKeT8U3zxDvKSHh/nF6T/51cq0fpTrP1/bQIztFXvpMrNU8rhp3\nyB59bA8cPQPjfsTqU9C6G9cyXy7VnxktO3DNB7plr6SoadizdpAtNvcdNMaYxmbsZUOD0M8gpVjW\nHrZ3vebr2Pe1H5I1YArdj95O7GWTEzHu2/bJ3lyDrdineMoxr1JLZO2/uB/7yGnF2U48ZvXYqv4Q\n/ZsSsjEX+6plD0cX9e0yNN06LBvxlBXZ5kqCa9biB5aK187RmGY7ct6HGmNMfx3WjcFpeL5Yvn6u\nyKvd/bETn3n3rBNPnSd7eQTTXo/nzoU/wFLXz7KJb6nC+sn9Nqf4y31Q4wU8C1045Xbidf+xWeT1\nN6NfUM1B5PUMyLFe244x/NUf3ObEIyNyf372sQNOnPrj640vwZbP7eWy5kdn0vMZ99oYlzXeLwjX\nKW8l+iPZvZeiqTETP0vEWf2K3v0r7vW6WzCu9r911IlLC7PFe9iGfudu7P1Tz8aKvHeOoHbH0v8t\ny5S92PqHUCdzFqAGFK4pEnndp7AnaDqJmhLrkvvE0UHZQ8nX4LEaEiefcVr2YB1LoJ5zl+u3yZbR\n4Rlyb9FXg/W0gXrO2f1GD76HPmjz1qLHSyD12opbIJ8xxf6G/m/t6+dEXsZGHLunBvXx1JuyN2x6\nCtaT0BTc75bKvSKv8K6VTuwdQD2YsPrxdp2WY9qGMmcUCoVCoVAoFAqFQqFQKCYR+uWMQqFQKBQK\nhUKhUCgUCsUk4rKyJlceUR4t+l7DAbKQzgFdOjhe0qCq3gQ9P305KNFBsVLaU/HYoU98LfsmSacf\nJkkHU0OnEKWpZd8h8Z6hJlBLO4lKFGxRtobbQC3NuRPUKW+3tPXqPgv6WX8taFmx0yUNlqmaRfdB\nYsCyLWMkPfhKoGgjrmFYiqT9FZAdZqALFLGTf5V065LNuB7Z60HHK4ySFnev/2KbE7Nd3Wuvfyzy\nZrSCrjn7c+A6hyXj+Iba+8V7zv4GEonqVqIA/v49kXfS7XbiJVNhfxeTJqlyXrJIXfXv9zvx2Ji8\n30EJoL+P0PiLnSMpxzP/LyU3/y9ImI/xbVukhtCc4/tr50XkgpbJ1MVAy0Y260aMF5YHRRVIGnHn\nadCvY8ogjXGRxJBlbsZIK/LhNrJTT5V26GwdHpGN4+44KenWbHnP8ixXtrzXLGEcbMH8YztmY4wZ\n6ZcSL18jNBHSlEvPSdpkCF2rggdAxW7YLq20ua4wDX/Qmi8Vf4XUx98P9zvzGinhYEvIY2TvuGxB\nmfk0TPHDevC9r97hxAd3nRZ5eUmQO3R4MJaS1khbe7apZYvnjiPyfqduANX5wtPHnHjGN5eLvAM/\nhaRy6irjU2Rch+tnzzGWKAVGoDZ6LDlBynpQ6Ft3gSrMlrrGGBNGUh+2Zh237HujMkAxbj8LerCH\npLXxFu2XpS0Dzbg3o9YcSLkWx9pLEsq8z88SeQNUK1jaEmidE9uFR5WgpnScklT44FhpNe9rzLwJ\nx3/0BbneLSJpxQckz50xU0ofei9iHesn2/OklXJ8N5LVdIMf7o89Dyr+CNmBqwj7qoFTmAdtu2rF\ne4Z6sSax5X3D+1KGlHMz6nr5X0HXT8qRkvVd74Hyv/Y2XIfYmckiLywZY/PAI1ibs+Zni7zE5Vdu\nXRymsRRXJuXstdsgjS1+AHuMoU4pCQk9izUzjmS8XmtfxvsRthFPtu71Wz95x4mve/BaJ+4giWFg\ntFwXG6ux/rFkxXtCSlCTyDo2YyP2YRV/Piby4tKwrp09iXFgyz6KrsOY6HNjL5tsjctOljBebXyO\nPc/td+I5q0vFawX3Yx958FfYR86+b6HIc6WglgQEQApyaMdJkTe9GHuBeffiM3hfb4wxe1+DfCmc\nWhEs+zLWms9tfki857/uwFrySN5/AAAgAElEQVTI9St6phybu/8MqejG+yGjb95bKfL+9hfsbW+9\ne50Tp6+S0sazv/7AiX/3wM+c+O6HbxF5ix6611wpXDyMvUPBIikrHhvkNgYY39xKwhhjPBewvrS2\nYc2MCQ8XedtPYe90UwbG+tQ10u465RT2jme341l06U2Qjx59U1pVN1CrhrRYvP9Hzzwj8sro2eLD\nQ3jmXFMm902lWVib+85jvQjPl3vPqjrMscRI1NZYq67Z+3Vfo5vWYW4XYowxAeFYy/vrUS9YFm2M\nbFnAz0zcTsEYY0IS8OxS1Ya9SnCCfDZ/YTds0HnPGxyAOpyy7tPXZv76IiRRfvZAE/YtvecgDxwZ\nk/bgkcWoL15aC+xniHOPb3fi+EXYc01YEr7eCzg+c635X1DmjEKhUCgUCoVCoVAoFArFJEK/nFEo\nFAqFQqFQKBQKhUKhmERcVtY0RDTdsCzZZTlrDShELupi31PRJvIGyE0kmrqXM83XGGMSlsHdwFMB\nuo/75bMiLzASVPH+RtCR4qkTcvIySclsJUeWnpOgLobnSekDd/cPjYJrhl9gh8gLnA9aVXg8aEvu\nbQdFXs61cGVwv4eO8xE5kgbFjlZXAm3kllBRI12y1n4TrgNDJOsKC5ZyJS+9lrAA96ryfySddsMX\nQdHc/SzOOSdRupBk5IIiHZuHsTTQhS7lXot+/OZh0EzXzQCtc29FhcgbHwflf+dZjJ/8ZEnLdhHt\nra9ujxMnzioQeZkbQLNtJIcPu5O5p4o640uG3WdGx0nI8UIs6WD7ftzT9E2gOgdGSPqjP3XCbyX3\nkLg5kmrocYNOmlAM6mbtdksu2Er0VJJJnXkDlNPWnh7xHqZV588E3Z3HnjHGJM4HFbTyCdDsc26X\nlFF2EBknuc+ARZcNJPldWBoomM3bq0Qeu45cCTANP329RcMkmmNPJeiVtceljGHJ965xYverkC7Z\ndNdSovLv/DmkGVnWtWHZ53X3rnZiln260mX9r30LriHhtDZEhcmxGZsLacamqyEH6jwmnX7m/sM/\nOfHICGRWlR+8IvKaSKpRcOdMJ54yRUpnpt7w6ZIsXyLIqt2tJNvzkGtccJA8vuEOSCfZCW+gRs4X\nloScfBL1r+AqSd8ezYCchSVFLnI6c5MDmDHGZJIsgmnJ7uelNC39euRFF2ONHLAd0UjqxmvpYIy8\nRuXb4ZaQTlIElt4ZY0wXuVeYm43PUfUOxvDSr60UrzHVmSnmgy2yTjVV4RiLt0D623Ne7oO2HsM6\nmduAGvPrL78s8hbSurab1rtNq6DNu/8fpaNLGMnQ+g+jVrx1REq17szBfidpGtbClnPSNeLaL691\n4r5qUNeb90qJDbtPsLNKWKqUznSX07WYZ3yKmOnYV9hOZxF5kCTUkVtmxiY5d1y0HxulNWTEckXk\nOpmyBrKNiXEpMcxKwNg//j+QqTWR+93TH30k3pOXAjnVhjmQwKckSIeYzm6My9Z9uNfHSY5qjDGr\nCiGLXbAZn2e3HeD6dWkbrlHSkLyWcfPlHsHXmLsW9dqWN0aX4Fi6SfI1ZLUHeOfnkNRzLVlyvRx0\nLC+ISMdnH/nLAZHHkpY5X4e8b1HWDU581XIppy35Oubpm//6vBPXdchniNm5kFa99Id3nXj1TLlu\nfe2xLzhxy163E5/7oxw/M78F+VJWPeo8u+EYY8xTD/2rE//gZVl7PisKl2A/E+CSzw/t5EgVEoLX\n4pdKqe1QI0lDk3H92ZXHGGMW9WNNGqKaHGo5inb34PPGaJ6Wk0vXmVq5v2I5y3tUt1fOk+PoSw+g\nDo/SmhucKCVY/LzHTnEhMXJuC0kzuR/Z+/Ph3ivbBiNlDcZmzStyzzBErSBKaU4Me+Szmpeka+GZ\n2B+yfNoYWX9YzplqtVFh1LRhPVm/HvK0yFQpnw1LxP9luXDcQquW0b7l3Fm3E8+/frZIG6JziiTn\ny/ZD8pk6ugw15dzr2EsFkAuYMcakzpRj34YyZxQKhUKhUCgUCoVCoVAoJhH65YxCoVAoFAqFQqFQ\nKBQKxSRCv5xRKBQKhUKhUCgUCoVCoZhEXLbnTE8D9O+R06SNbtcJ6EL9AqGlGmySOtAZd0H7GhIF\nnVZIstSVduyFbssvGJ+X+7mZIo+tsOPJXthTjX4fAWGy94KLbHm5X8don7QMDSLr086L6EUREic1\nhM07oe8NiIQ94hR/qZPra3c7sbcVukjbTszbIfV6vkYgWZMXGalzGx+BvpK14vk3SAvzgXr0T3j7\nP9924nXfuErkHfgjerecJi3nhYYGkZdNuuzQUBxTcDD0+G2H3hTvKc1EH5JIsvGcNypt+5pJ212Y\nCrvrfq9X5KUtgZVq1Zt7nXhiptSQX3wavVYGqA8O31NjjBn10HhaZ3yK6CLMv+5yafnI9nZ9ZO3u\n5y+/e+W+MMHxGNN2rxI/6knCfWbGx6QVXDjZVVduRR+Jyib0E2nr7RXvWbYZfVAmyA6445C0TJ5C\nmtOhPmhsbX0/W5omkFUw9w4wRvbD6K2E/juiME7kBVt9hHyNMy/AtnHWfQvEa1Vkmzp3NnoQpBWl\niLyJCfQXCaJ+HrVWT5EqN67prOvQy2K4S2qW69yoxdWX8J546rUxZl33vI3TnLi3Av1xln11hcgL\nT4L+dmQIeuP8ZbKJSFcXrFTHxjDHeI4aY8y4F300uk7LXhmMmrfRP6Fwyaem/T+BdeNNVu+0+AWo\n7S6yWBxsklrrMS/qrot6Y9hzke1dXWTnatsyDpKWmy282TbSP1Qu950nME+5dmXcIHtysA14xkqs\nx437z4i8YbIe7qO+cawlN8aYrj7sEeI8sLwNi5ZzL3rWle3/lLsB59l+WOrG2XszOBD3O/fO6SKt\njfTmbDOeuDhD5G2aj34FVc2Yb9xjxhhjFhWhl0I+9SFZtxbvn2LV9cSFWBf3v4v6sna6PNYbv/Bt\nJ75+LfrK3LhokcgbG0R9aSUL75r2dpF37XfR+6ruNcy30BTZ98HukeZL1B3CHiOyUO5ReR0LJUv6\nvjrZh2OI1nHuaWifB4/v7nPUuzBT9i5MKcV9u3TU7cRledlO3Pik7N/zjU2b8H/JKjZpreyfOPw2\n7MEHarC2zsqReZG0X+inviMRubLPRcM2WDfHJqNHA9ckY4wpfxV21EXLjM8RFAPb6eBQWQMjUtEf\n6fofwwq6q1rW3jt++WUnfvU7Tzhx7V7Zj6fgumInvvQc+jp5BgdFXiD1iDj8a1j5bn3nD04cNytV\nvOeX9//KiTupzqXHyX0G90R7/XvUy08us2K/4zmP+tLtkc9Zp3//mhNHT0fdPPia7Du18Ra5PvsS\n3WfQCyRurtyzhMejzjfVIS+6T/Y2ipmD9/XRumP3sEmIxViNnY97wFbIxsh7Gk123GlzUJ95XTXG\nmCOXMK7+Yf16Jy5ZVyzyDK3BSYtQgwNC5ecNtmOeRiah715/rxyX8bNxHoMtuL/2vk48H8vHY59g\nkOoh95gxxphA6t/qpX4+9W/Jvp+jvdhPDLdh/edjN0ZaZhcU4Z6c2HdO5N1P6xWvx7FzcM28A/I7\nheQ01NSWmbjW0YUJIq/jJPZBtbTGZe+rE3nDo3im4OcJu/7vew79ba568GonvvAX2Z91fFhaddtQ\n5oxCoVAoFAqFQqFQKBQKxSRCv5xRKBQKhUKhUCgUCoVCoZhEXFbWFEL0Ib8ASUdy5ZEdNKl54uZJ\nyU7LR6AThdwEClPq0lKRx9TD2AjQhNg+zhhjRgdALfIja2CWQTRsvSDek7Qy24nDiKp67s9HRV40\nWTGOj4BO2H5USnIiyEar9n3QQjs8krqeTVbfGdeDQt1mWW9FFUk6rq8xTJbHEdMkvXL3H3Y58fxb\nQZ2OyJJ2391kbxhPdsi2VV8CSSHe2wcr7RtXrxZ5TDdkWVNj7etO3H9JfvZ+ssxmyunblmXoQ98H\n9ZWlWqkla0TeqSeecuKUtZBGHfrZuyJv1tegi7j4OMYMW+UaY8zU++eaK4W+ekgMw7Mkjc5Ltry2\nZIXRstvtxGx120z2v8YYk7keVPvxUYx9m77H0orzJFtjC8ppabIesGwoOBr0z+Rl2SKvnySVebeB\nAlz/jpzbadfAwrVhK+ZiZLGcU0073U6cSlaBNuW+7mXQKa8EZTTGBXpv1xlJw4wh2i1L0rK3SHlC\nfzPovtUHUDcLLXvlGTTXy98DNTYsWFKE2eKP528rSdKW/vMq8Z4JkrhxTW3+2C3yorbAXnM8CHKJ\nk888LvKSV2Q78SDZqg93ydrLtrcsybSvZUefpH37Eu6XYMMZP0/S2geo5g814xiETaYxJowsPzsO\n0hzLihR54yT9y70Fa2Z/rbTcNlNwD9niODgBY8qWJcZNw7EPkbSWZVHGGJNAMty6HaDmCqtrY8zg\nMKjMMamoFR7LRnbOYtDDx/oxJlh6Yoy047wS6DwCyY5fiNwKVZ/DGp1XBso63w9j5DwIIYr2iccP\niryUqZBmuLpx75YXS6p8agzGd3EG1sXhDtR1vwC57mQsWezEC1ajVgw2yjlwz2ZYvy4oQN2MKpG1\n8vnfvuPEa8pQey+SXNUYOecyb4TMsc8am61EDy+51vgULFE58eQh8Vos7VP8gzA/AuZJyUXcLPzd\nT/N3uFtS+k/uxtowrTjbiat2XhR5LOtdPAfHt/8Y3v9vX/iCeM+1P4Ikp70aEqJBy3o2bgYkKwGR\ncp4yWj9yO3HiKhxrT4W0eB/pxLjqpT3Z6E4p+U/OuLJ71OS5uE4Js6REq/JZSF4jSYZsSySGhyFJ\n2Pjw9U4cEiIlhv09WDP5OiXHyD3vvG9hzQsJQQ345b3/5sQNVm37lx/e48T172NcxM9MFnm7n4T8\n/5HXf+rEbz/0lMjLGkB9LPkaJBLn//KhyOtpRU3ILMC1vOG/7xd5LBn2NcKzyDK5TtYotrhOJjmH\np6JT5J2rhNwvjuZveqncR0aWYP/afQzy5ujZ8jrn0HNhIEnAaw65nbjVkt4vpNoYmYZzipsu68Y4\n2V0npUPi2dd3XuT19mHOTUzg+TXA2oeNDaPtwogHcXurfA4KD/70ee8LsJQutkzKzmRLDlzbnDuk\nPLfq6RNOzPLkgfpPl3eH52LPsOclKWvisXDbDfQsSc8gE3J7Y9rbtztxxjK0ENj/4xdEXnweatui\nQsjO7JYMhUsxLk7vxPG5rPtRPB3PF8070R4lZVW2PMDL2IUbo8wZhUKhUCgUCoVCoVAoFIpJhX45\no1AoFAqFQqFQKBQKhUIxibisrClhZZYTj/ZLmiN3Gq59D3KC9FW5Is+P6KRM1epvkJ2qo2NAW3IR\nvanruKSrhySBpv3+U5DkJEfjPXZX7fYDoCjXXwQFzt9Pfjf11n+95cSpJM3Yc05SrCLDQF9ef81C\nJ44akrIPplwN94A+ajvCDDRdOQq+McY0d4EWl1E8Tbw29iEo+m274Xxw5EUpFWK5Q2oOqG62u8jH\n5ZBPsBPFpqsXi7wUkpYc/O1PnJjHS0eXpJWFU1f1eSTBmn/HfJHXvg/3mx1Kutok1Tx5FeizXupK\n3mu5i9S8gmvEx1dwm5TmDbWTe5M0kPrMCCd6Zc95SU3mc0wgB7NgckAwxpigIFBBq9+G5KzysJyL\nLFcaagANcaBW3o8T59DVvpCcRRo6QVWdsVq6frkycB4te0BhzVxvubKdgISt+iTGpe38wnWIO6hX\nvS/lT3lXwwWlvwa0+/bdsiP7lMAr+311ylqM+wtvnRWvZS3Faz3kgMQyH2OMqfsAdOkZd2MeNL0v\n3SuiiPrb1Y/PsGVNsz6P+cMuAUVFeD/L6owxZoD+nnnr1524Zc8vRF7V23C5CE2BpCu6TDrxMCWV\n3fZCE6RTXkL6chzrIOZ5RLaUP3Wc+nQnp8+K6FLUP1tiWPcqKM1p14EGO0r0dGOk+1033ZvDO6RE\nYvEczB++N/3Vkuo8Rp8/0EuS0QjUgMAoed/ZtSwgHNec1ypjpPwwJBnrdLBFXR9qwR6huxHHZ9PG\nS+g4xkhONDEi3QuutNw3iu6j7bTodx7jaagF94flMcYYk7d5qRMf+u9XnfhcvZQu9w/hmu49jzHy\nhQeuF3nHtp924pIsLCLsSpe/RUoMB/pQv8cGQZsPz44SeVcNYT3Ouxf19tUfvCbyrl4424nPkszg\n1pvXiryLuzBWp5EULiJHOv1EWM4/vsTZ1085cclmKf8cG8a18JB7mHBVNMZExIPKfuz3kJVEWC4u\nvPZUVmDdyEmVtWy+i+Sp5G5y9edQu6Ly5dgeGsJ4y5l+mxNf8EiZCyM0GfXUc0nKQ1gi6E/HYFPp\nR0nCUHg9ao2nqkvk9V2Uf/saux5+xYkvWPK52/5jC47LjeNwU0sBY2QNu/ga1tZpd0nHv5RCjOP2\nGbjuZ96Ue95FAajtQ0O43//w2H1O3F0hpZ3xJZDxhqfjHnz3rkdE3i/e+HcnPv2rrU688htS/s9u\nWqGpWNPaGuX9jo/HXH/vvyHLv+PX3xd53W1wczM+Lq/j5JAZY8m4Gt/D3iRhKWRmfZfkuGJlSmIy\n6oa3Re6BeHzGkcPTaL9cZ2Nm4TjcW7GnZHl5Sp6cv7FzpHzp7+i32hiwe9toP2po4za5hud+DnW3\nYR/cwZLmy2exnno5lv6O4lukZMh26/M1Rqg+pqyUDzIsJR8dwrWue1tKuVhaHZaCeWDXvcOPYn84\ndga1qKVb7m++checl3iNy5pxkxOz46cxxtRtx9ow7sV7Eiy3Jh4zQyOII0Pl81MASdNPud1OzA6L\nxhhz7AiuxVVfQSuNtr21Ii9jk2xDYEOZMwqFQqFQKBQKhUKhUCgUkwj9ckahUCgUCoVCoVAoFAqF\nYhKhX84oFAqFQqFQKBQKhUKhUEwiLttzpnEHbKAS51sW2ceg1YxMhqYsPENq8Hf9DTow7xH0blm2\nbrbIi1+EXhl//O8XnXjLooUiLzgeOrDZeejREFkGHVnPaandi5kLDWFILbSaX/nZz0Tei9T7ZGwQ\n2rOiHmmXGhhAl420dYERsv8K9yNo+gDXMmlVtsibsCxOfY28eeit0mtpk5c/AB10/RvQZM6/a4HI\nO/0itKrR/rAc3P3sPpF317dh1zlONmln3zgl8iKLYInIdshv/wg2nqvuXS7ek1oE/WgfaY+97dLy\nMvt22H8ef3SvE88qklrDimdh9zbgRT+k3GJpvcj2uIEh0B2y3bMxxgyRZbmRl+8zY7AFxxAULbXw\nQbGYE54aXBehNTfGDLa5nTiU7I+5n5AxsvdDMPV46rV06HPnQjN54BB6DbX24Lr0W5pini/5m65y\n4u6mcpHGPUmqP4AWfOP90g69zw1tanslevGkzpD1apTmczjp8bl/iDHGdJ/5ZN3vlUCEpWkdpZ5c\n3KMkbaXsbXTurTNOHJoA7XThfUtEXn8LrsdVX4fO3pUidb/126HPD4zE2AqPRt0Y6jgj3sNzbt9P\nHzafhrx70Nvi0jOYb6wFN0b2TAhNwjn1XpRz2xholEeoD1qQZf/Mts6+xgD1e7H7afhR36PaN1FP\no6fJ2hMQjjrSQvPF7qnU2oBeGYdP4vNs+8YX9qLOXTtnjhPXtaN30fSsLPGe5ctWOHHVC7i/UdY5\nsX0t9zVi611jjAkJxDlxDVg4V/aA494QUdOwRvbXWn10vLIHja/BduRjVk+gWXfMdeK6t9G/aqBJ\nWoG2H8X+JmUh7HbDwmWNPlOF3i2lmch768WPRd71d6KfDI+tqHSy8x6X190/EP+L7ZX73XJ9GhvF\n9ax7E7r4VbfKfnBvPLnDiROj0Mui+kSNyEvPQY2u2Ir6XXyj7JHAvVF8jaRE7EV4T2CMMRPkes59\n2ZKWyHlw6S2cb3IB1gNXjrRWzn0fPSaKNqE/S8cB2e8qJAvrC6+zGQsx37qa5X5oYgLjr68PfUYi\nc+VcZCv3N//9DSeev6pM5AXSHoHnbHCi7OEVQ33JuNdEzHTZh4P7hV0JpBVjjz33H5eK17gX5PRC\nrEmna2UPh0VTb3XiqikYj/E5c0Xesd//yYl5/b/7t/8m8vb81x+dODwSfSL5WcXu9VP1DuZV8izs\nQb73H/eKvEM/w5hb+J0NThwSIp81WlyYc9nrcF0SF8o9KvdM9L6E+/jO92QPuNmfQ486I6fBZ4ar\nAGN1fGRcvMbPPH4B4ASwdb0xst68sANr/QP/tEXk9ZzB3oZ7eA42y/6dHYcwNyPiMYbjF+H6tX4s\n69oU6svEvcjaD8p57spHfeBnJ7bsNsaY936IZ5qypdgz17wjexzxuigs4wNkn7OOY434Y47xOaIK\naL3/uEq8NkTXd7QX4ywsSz5DcJ3hXpxdZ2QPWb7Wrx1ET9CxcTl+hhrxf8u+uYleQV5vrbw/3Kft\nwj7q07hF9rfsOoYeVzERGCPh+bL+83PXsmLsabifnDHGLFiN3mdNW/F/8+6Tva/q3sD3Ien/aP4X\nlDmjUCgUCoVCoVAoFAqFQjGJ0C9nFAqFQqFQKBQKhUKhUCgmEZeVNWVeB4uo1p1u8RpbToX1gN40\n3C0pt6FBoGqxheuFg9L21UW2hWyL3d4tqbnjZ0FjYgp5J1GT2K7WGGOe+OnLOL4xUHu/eNNNIu/8\naVhSss12uGWpWNMGSl3kWVDMgonWbYwxNR+RLWYOaMlMQTTGmAG2JF1kfI642aBKNr4r7QdjST5y\nvgG0sK6XJT2Q7V776DrNWyftK0f7MBaYElh6o6SSsQSsn2xl13xxJT5rQEoTbvrSg0783c9/3onX\nfVVKXRrI2j17DawNbTvgSLZ4o7H04cfHRN7d/w1ry95LkBkEWlKKkW5Jb/MlXJmYE9XPSEp08nrY\n3YWRJMQ+375q0L6Zsp1OsjJjpGXvII3NyFxJ82Oq+MZvrndituL1XJS0X/6/tbv3OHFwrJT4sM3v\nomLUoZE+OSbC0nAP44jyHZEv6eDtB2BtyzaPzR9I2mbqeh97oFvoOIJ6ETtbSntq97mdOCYWdPix\nMWkjmZoNKnZvFa5T254TIi99E65b3cugeaddL63/2CI9JJmkD7sh2WjcK6m/2RtBzz36HOwh05Ok\nZKr2LdC8G+pQN597d6fI++JXbqDzAF3dOyjvd8thaVH8d6RYNO+SO2Z9Yp4vEEWU//b90ordLxgU\n5LBYrBsDNXIuevshYfvwFObz/sOHRV7cXXc5MVN9D1+S6+d9a1ADK8mKNj8ZYywqLEy8Z/8fMf9m\nbkZ99guUNOr+Ohx7cBzm6cAlKUPKXYlam0xz8f0X94i8LctA42eac3SxlH6x1KrgCqyLwx1Yh6PL\npLyRJblsC9rwgbzuLBtjFM/NF39Ht4DmzfbFC9fLcRrC9Zskm2zPGmJJTFj+FEA1ub9bSuQy1qK2\nsX2oLQVYtRhj4chx0PXDLSndYDs+v3gL9gHHXzgq8oqWyvXFl4gsxZgZ7pLrbzzJ2YOi5frCYAlP\nbwXuJ0vbjTFmnO5bA0mF8u6UMq6weKxxgYGIBwbITjhdSlDbGyEPH/agHoTFSJnLyz94wokXXYOx\n4x8q9548jrh2u3Jl2wG+Zmz77aH11xhjGo+g7hZfZXyO1DUYm93npLS4m6Sevd1YC+94WO7f3/+3\nJ5142YOQ8Q4PSylF/p2Q9rzyneedOPglWXs3/NeNThwQgPW4+i2si/1WXS/7EvTsrXTdR3u9Iu9S\nC45p9P+86cQZM+U6xvvk6m27nDh9bYnI43YFCQsgpyqZLz/vxQdfcuKvPXWX8SVY8hJdIuvpGNls\nsxX06JiUrn50BjV/3QzMq64T8h5GFGBesb1z+mpLUhkKCVrjaaxD4anYNx5pkJ899g6OdVc59k32\nc6D7dbyPn53Wz5YtO6JIvu5txfg9eUauJcXpOFauPX5WewJul3El0H4Ue9TkZdnitfqtkPhO0Bof\nNzdd5FU8jWcobkUy3C7XJDc9S18/f74TeyzJdNk3sWeIiYFMcWQEsriLL0np/Qmyu9781audeO8z\n0nJ73ibcrykBeA4MipT3e6AB+2R+Hk602kLEz8e1iJ+H2G6Dkbzm8s8aypxRKBQKhUKhUCgUCoVC\noZhE6JczCoVCoVAoFAqFQqFQKBSTiMvKmpgKGpIqqbSpCaBIc8fzHX/aKfLYiaKN4tiICJF36wPX\nOHH/NlAAj1RJ2cGWG1c6sfsYaINp5BwwNjjKbzG5SXgtJQZ0OO4UbYwxiRncIRvfW+3Zf1rksaPG\nsWpIfNaUyY75XUR9Ynp+7YeSzmbLoXwNlhclrc4Rr9W+go7RLL1K3SCpyOyksfNVdNXuOCkpgfFz\nQCVmKmPS0myRN9QGCuShF0AnnbsFFLPe85Iy/vpzv3Lif//Jn514+gfynLJvk/fh7+g6K481hWje\nPRfwv6amSiqxh1wgmO4+HiwpmVMCrtx3nV1nQfWNXyapqn3kotROXc1DMyXdLncjXDk6L0H6xTIk\nY6S7RspSXKMpU6TcISYG1Oy6cjhHTIxDBmBLvZiqH5aO4/N2SLrjCNGto6ejvsTNkveGHalGyb3H\nWAZoA22Yi2nkoBE5LU7kte0HfTtXslN9gliaH942KVdiCWjcQtAha14/K/I6GnC/48hFb8JySPCQ\nBC99M6RMzR9Wi7zGRoz9uddAjlH5POj16aukVHSIpG9l12C+sXzMGGMqjqF+V7diDH/j/9wj8lp3\noZanrMOYO/6cdDRgF6aV31jtxBeeOi7yppZKyZgvMUyy1GjL1SQ4Futi6y63E8cvlrTfc29gTSkl\nF6VFU6eKPHYCaOsFrXZWjqx5FY2gIs+gz2ul97AjijHy3gSQLIIdLoyRNHSWMtrwC0J9OPo2JHZl\n5E5kjHSFiSfJ7ZBVA3JultR9X4NdV1q2yzkRRTWHKcwZ0+Q1nL8q24l7z2Ee2XKH3Gmo2X6BtE5M\nyELFdPb42ZjbTfsh9Rv2SIkEy5qii3HcnUebRZ4/OQ227MR8s53NAv1xHxethEwgMErKmsJSUUfZ\n0SrOJfeKrcfJXeQW44kaSmMAACAASURBVFOwa1z8XHlvWOoxhWTLXotaH0VyuqMfYF7aMoZODyj0\n8fGQFoj7aYy58GfQ5mNIuuolGd3FelnXyHTEZN2Cce8daBNpK+6BYw9vX8PTokTesd/BvS0xB+fX\nXy3HZUQRxg7v923nq6LbpVzE1zj7p0NOzOPPGGNu+fZGJw6Kwj3Z92vpdFbfifvt7cI9btknJblx\ns7AGs5Qk+WopM+i+CHloWBLWu6Ibr3PiJ74inQqDX8fxDXdjnubdI6/fzQshmTrya7gS5W1aIfLc\n7+M+5l6L157+unRhuvs3/+LE4+NYM1pPyb3D8Kh8NvIlGk9jnkeXynXx9MtYDzKmYp42d0tp7D98\nD45bXSdRv1hCY4wxmWshgYmJgZRsbEzKYfz8ULPSpqP+HX/0SSfOL5O2VYf245rxM6ItwWqg8dZO\n55GXJM+dpTtvf4xxvn6WbPXA+/WGk1iDbYl2w5uotUXLjM8xSDL3dq7dxpiRHq+dbowxpuZ5+Yyc\nSs97vE4075MOa+y4nLgS98E/TD4Td9dhrxIeXujEF95/wYnTVso9Uc9W1ICectyDFV+Wc4wlnPwM\nNzQs7/fWlzBPb3sIrsRhSfK7jI6TqBvteyB7Z+dbY4wJItl71jTzv6DMGYVCoVAoFAqFQqFQKBSK\nSYR+OaNQKBQKhUKhUCgUCoVCMYm4rKyp80Tjp74WRxTS3gugBTE13xhJcQ0h+c6y2aUi7+iboKUn\nUPfjTVcvFnlVR92f+HnxCyVtnLFgLehj4SSlaN4hqczsTDAzHxSpjDgpfeggeitT3V4/dEjkFZE8\nJoHo27b8pfmgdPzwNYZJWrLvyX3itdKloNGHZ0Z94nuMMab7OCRBN/0IlEx2izHG6py+Atf9rX99\nRuRxN+7lm0FRbPwI9+RCoxx/M0pAO2V3kqE+SbV7/iF0pF++HMfQ5ZbOQdmRoDw2HQDdLjpc0s8+\n+Avos2vvWe7E4emSSuwfctnp9JnAtGy/AEn7ZYcs/3DMiRiLWlq7HeMzlKQ9IQnyfIdIbtN1jqi9\nqZK+F0DSxqh0SBf8AkDJHJsqHS/CyXWKpW2J87NFXs0uklzQfeo+L2neSXPAB0xaAlpkHbkEGWOM\nH9NTSTrgb3XCD0uX5+hrsOSyn+ijxhgTQt3heR6ND0l6JdfYhq2Qp0396gKRd/F/4JrC7h0sPzHG\nmHlfRI09/wy67BfcAgeWnnPyuvdWkGsZUVC5NhojJZvTSW7TWynnIo9vrsveETl+Ymk9GSYHjIxr\nCkVe9TMnnTj9P7YYX2KwAecYY8maWA7gInezS1vleIyiGrNhC6QKYVZNKX8V57GgAFJTP0uSu3jT\nHCceJ3lb8GGsLa4c6fKQXIW/Wcr08gfSXWk+/V927OkbkmvExBgkOnyfwl3SKYfHX3cFxpXtaBUY\nTbISyQD3CVgiEVkiXcZYepVZDHnR0QPnRF7occzFt49ivvlb92dFCaQq7TRHegekxKaA9gzsErXs\n1oV4jyX3DaW5HRKF8ZN9m9xj9dC1TrsW95TduIyR69hgI451YuTT1zd2/PNclHuCK7kusgvOsT8f\nFK8VXYW9DV+zhGVSxjDuRU0uzMY+0l0vZWElGZCmBUbT3mGHlKnHL0beYCNqPLuRBbrkPnnPq1ib\nO34LicSML8qaLiSVJGHzWDIkft8EKUI6jkrJYu1etxNHhmGe2vPhzLNYF3Jn3mF8jfgS1NHhTilN\nYTex13+5zYlv+Y8bRF5AKK4p77FffOg5kffl2ZDU+tHYfOux90Xejd/b5MTPfR97yuvuxfi++b/k\n2jJG6/a+32DfGHlYXvf8DbC8Cg6ADO7Fbz0m8oTbLT27BAXIOXXy53Cknf3g3U7sspx97FYOvkT2\ncuzPm96znIg2QfrsT/U/ydqTjw5hvU+geWS7dPbUY48QHg7J9uiorGXG4Hw9HkhvElegBtS+VSHe\nMXe2lBb/HbsOSJfUufmQgN+5HM8FmfNkfcmPxN7k2NtYz4e8lpyUzjGlBOvAoCV/t+emr5FzJ/Z9\nvC8zxhgXPSMGx6BeNO+S0sGuI3huGCvGec34ppQUtRykvV4n1sKEPPk8H5uAPVLD+fecmGtDlOX2\nmFkA+WLWZsgK698vF3nB9BwTSs9CZ56TUvnZJCXvofWkv1aOufAMXKNckjO2WpL/2JlShmtDmTMK\nhUKhUCgUCoVCoVAoFJMI/XJGoVAoFAqFQqFQKBQKhWISoV/OKBQKhUKhUCgUCoVCoVBMIi4rBnZl\nQzPPVsrGSJsz7l+Rmyw1+A0d0BQumgfbrLoTss8K2zly34LYiViRF0aa94Q8aO/C6BhsjR5r2UMS\noS8Ljpda+LgOaLf3l0OHmJUgtWx8DFUt6MXypVuuFXmJy1l7SD1DAmXPh+ip8vN9jdbd0AOOWFZ6\nbOcbQT0SbLvOE9VufN4juJ7FG6Wuvfc89LiNH2514pL50pr73gd/7MT5ybCb/OELsEb706PfEe/h\nXistDfg/ubdK6+zQ93Ff686jb03pjbJxAWsmM6+CfrTLsiDd/H1YObaSFdyp10+KvCEaw3lz7zK+\nBFu7D9RLjaO3mcY72aaPWL14Rkifzz0VwjKk5TZbYXMfidAYqXWtOg4td8pUaEmnpKDPiG3T3XEY\nusuiW3Bdx8Zk74WYJOg2ExZCe+wfJL9PbtwDHXDqUmhls2+Q97q3FjbOo/3QNXedkPbqAeFX1ta+\nj+xdY2bKWhmWinM+8xfYy09Ydrup06FVDU6ERrbjpOzRxNaEidNgxzhk1ccx0nkX3zfXiff8ZqcT\nL/3aSvGeiHzUZe55FHhR2s8OkbU7W0FH5su63k42yp2d6J9Qslzqv7k/xNgAjjswUtr8Zt8pa4Iv\nwT003C9Kq1I/P4zPhKUYtwWbikXeENn5si15f41cZ/nzXGmYp9x/wBhjInJQuz3VuH7LfvBFJ244\nulu8J/cW1O5BOoa1LdNFHt+31h7UHtvy9rk/vIPPTkQ/jKIb5L1g62Gei/GLMkQea9CvBDppDxMc\nFyZei50JvXrrPuxVllw/V+T97tfo9bC6FNdz2U0LRd4Tj77mxPUdWLu4h48xxuw4AcvZx3/8LScO\noL5O8QukHr/xXfSd6qzDvc+/QVqRh9H4SSmBB2vD2E6RF1+MOXfhmY+Qd1Rq5nNo/RygvjWeajmG\nw5KltbYvkbwGe8rAo/Ja8lqYsAQ90TqPyjrZV4/xPe0f5uGzG6U16wD132ELeHu/yePWj3qaBVFP\nsfrjss/FyrvRU6H1Qzc+q0v2X8m/Cn1QxsdRd4fa5Nz2Ut8W7hcWni17kBTmYcyO0J6vk3pGGGNM\nXJysN74G98kquVf2kjnx8+ed+O5f3evEfU2y91JINNaUv33rKSfOtayN69/Gteca3bh7v8g7/sQB\nJ55B/dIe/8UrTvy1H98t3nPwCfR0nHc3+v7EF8p9cncT1o2iO7FXKQ6V+48Dj+5yYs9F7B1WfG6J\nyPvoKdz/uN0fOrG9zq7ZLOuSL+EXjPWgv9eyq6c9Qi1Zm8cVJYq8iCysYxFJmLMdFy6IvIRcXNuO\nNlyjjhNy3PrRfpGt4nlfG0XPPcYY423H3OHeRStXSEvr4Dh8XoALtaf+4yqRN/Xu2U5cugz9cZrt\nnq60zQvPwl6wfbd8Vg6Mseqcj9FOfan8rfHYcwr75QR6vo0skn1Za0/hmAPq8BlTpsg9Q8Yy3MfK\nF3c48ZhXPqde3Ik5F12I5+U+N9aaXR/JHjE3fHuDE4eH4/kudqbsz9VDfSwjZmM9mWrtW/g7Bu6B\n1FcjP89QXycv9W7l7x6MkfugT4IyZxQKhUKhUCgUCoVCoVAoJhH65YxCoVAoFAqFQqFQKBQKxSTi\nsrKmiTFQDb0dkl45QTTEiDxQ52x7sAEvqJIn98CGMsCiRDPVl2nUuXlpIi8qmiw6ybIqIWWVEzcN\nSEu8pFXZTlz+MqQohddOE3klZBXs9zGoj9OvlzTvORGgvla9BlsuYf1pJFWzbS/kMGzdZYwx3lZQ\nADM/2cXtM4GpVYtvldaMdWQDOboddLyMG+S1CSB6fdktoPd1WPZgoUS3Z0vE/R9LG7qNi2Hfyxak\nv3v4G07MNp7GGFNy181O7B+KoXvqqcMiL3sJqGlxPRh/QZb0gS39WN7S3CStQD1PHHHi5PmgwcZH\nSNtlmx7pSwSS7astxWEJR8sutxNP8ZffvV46iTE4+3bQ8/ssKQVbdLLNqvuNIyKP5Yw13bC3Gx+F\nnWTiLClni58KeUf1DtAYs1ZJmm7mZhp/5OZXb9keMu3U2wea80Brn8jzkJyI3SQzb5TjfKBJjjlf\nIygec//EayfEa3PuQF1huUNdhxyPc9eCovnhw+868YUmSeldSfa9/UTdD4yQ88CVAao7U1oLZoHW\nH5Mmadntwzh2tltkiYAx0h48KxtzZ/efpV1zfjpkJIXXYYx4Lshzj5wGSmsn2ZP6WXa9iSRj8DWY\nvh07O0W85inHGBSWxK1S+hBdBIkgS5JOPS3nmGcQNXT2VbAqteWCLHvJWQ2b1ilTcAxxJXniPV2V\nbieueBdrsy2jS4xETZ+5DuPg7A5pK33td65xYqb9DnfLvQMfa/KybCeufU1aXEYUSqq0r8H7h7Nv\nyPVpVtp8J46bAwlLr2UT/cB9kJmM0Dp7ettpkTc7F2sSW8o//OSTIu+XX/uaEzeeBu29kCTmrfuk\nbem+E7huvK/K7MwVeWPDqMvefNQKV6aUuvTUu50493ZYtI88tlfkcR0JScZaEFUipQpnX5R1zpdg\n6UneCrnWsDw5ZR2uRWiKlFm5y7GHqX4O9y3tukKR5zkH29cg2uvZ6+wI7TlaqJ5W7oQ0I2OqtFGN\nysdYP/0a9qhRls15VQ+kgxOjmKe2ZXLbAcgKgmnN6T4hJdvjXoyJwBicU1+PrFdFd1wBL3tCAkn1\nhoak3COJ7l05yXx6LBv6Vw9gLExLx+dlW20Jai5h7DfXQNJwy8aVIi+iAM81afOxb846hnERYskh\n80qx7hx6Cscz57YxkZc+GzLw8HCss031b4i87DKsmaf2nnfi1HK511x5J/ZPbbuwz2vfL/fncx78\nnLlS8A/CWpO6WNpJtx/CPEicgTUzcZFcp3ursE8LjsG9MZalc08H5oiH9q/eDjkmWK7KtvYs8Q9N\nlZK99A14COupxHqePH2OyKvbTfWQSgDbnxtjzEAT/u9QC+ZVVKL8v7HzSCrZQPsoaz3ubpD7dV9j\ntB9rN6/PxhgTR3Lfk7/B+fv7yRqYOR3j1kt7n9qtcl0MioU0LGcLnkk6K2pFXsxUrCldZ/H8ExiG\na735m9eI9wRFoJ61VGIuxuVIuW9y/kon7unB/qvm7fMij23o4+k6DNTJPW/NLjxHJxcjb7BG1nIe\nCxn55n9BmTMKhUKhUCgUCoVCoVAoFJMI/XJGoVAoFAqFQqFQKBQKhWIScVlZ07nXQEHKXSF5N0xl\n587XIcGS0rXkzkVO/LuH4e6yeKrU79x05xonZgmV7Z7iqURn5Hee2enEcbMhf4pMlnReT4DbiRNS\nQVXsPSe7vTN1rmgJKLLjo+MirZ2kPGkrQUlkOqsxkjrnIulXx8EGkZe8VroC+BruNtADwy5IKU7i\nLFDp2M3Bps3PLMP9Z8eZAYtGuHUXJEZf+9OXnDh3YIbI6y6Hew53oY8jF4SBZikxubgNlF52llr0\nnbUir/IJHIMfUdFcqdJtqPUw6GdMr5u+XNIX28jtqmr3RSdOSpefV3nc7cTS0+Ozo/VjHEN4rqQw\n91aCas8U5vo3pQSIpWmeKsyjEx9Lx5n0k6BYZ2+keWrRK9nVieVFoyRjqN0mO6inX43PiyH6u3uH\nlLlEEs07gOUhljNG2rWYpx5ylOsjeqwxxsTOAr1wbAid4Fs+dou8qOIr65zWfhKU6pjwcPFa607c\nY6beL9oo6fXVL6AuF85Brdv3nLzfcfMxlzwVGCNjsdKlrup5SDry74Sco/UwJI9Npw+J9/iTC8n2\nP8DRJTlajk3vCNx4klJwvrNWS2opu5o0kbySHdWMMcbQmGMHlqb3L4m0gHC5DvkSIUk4Dx73xhgT\nu4CctOjYO49Iqn7CXKxXvJamz5BOPDwORsmdimNjpDRtcBCU4PFxzMXgYCnBYncWrpOJaVJO1NaE\nWtF0EHKJ+fcuEnn97CLHdTdDjomIRMirRkfxnoAIec94nl4JsDQls1jKp/2Dse/oOIZ7Fz9HylG4\nxrY2o+ZEW3N79zlIwLZshqTh2aJ/E3lvfAjHmJtuXO3EbbtxT9s6LBkq/a+ymVinQ1PlWt99GnTw\nrirMlwDLkSNn+m1OfPa9PyEv0qbrY31m54kzL8iaX3qLdDnxJaZuQB1hBzRjpDS7/k1Q1EPT5HVp\nIQey0o2QCI8Oyjk2QnPu0lZJeWe8QzJtVwjG2D3/eL0TD1hypfbjGGMsKwxOkOMoNBH1oPYVyNnC\nLfe2M4fh4DX3Wuy9Whvkupg6DTUhZjpcjXgfYYwx1S9hj5Ajt3I+wYknDjpxRKis+TnkKse1d+7n\nPy/yEh7HHtuPJOsz7pN5bbVwNjrxJ8gd7LU/fe5y5P3qr0482I+98fzv3ibeU3Ar6oO3BW6lh5+X\n62fzB1jjcu/GBW3YKl2JgkiWk5+Ke9XeLcdP6jzIrvpob5e+oUjkjY5KubcvwfJV3h8YY0zUVOyV\nxwZR1wPDZCsIdmsKCIDsNDxFPoN1V+D5oYX2TTGzkkUeOyE2lWPvNf1+XK9OyzWJz4NdUtsvSulr\nwjys1Rd+j2eO5m5Zn0c+hKSNWx+EW1LE+q2Ys9k3QdrddERK03oHpUzY1wihGlP5xDHxWhztb+IK\nMF86KttE3gA59qVehz06PzMYI8dJ016skVmrlou8wEBcN283pI0BJK2Ny5d7yuBgjAXeBzUc3yXy\nMubg+bHqeenAy8i7DWsDr5kxlow3m5y7vPQcPWLJtOusuW5DmTMKhUKhUCgUCoVCoVAoFJMI/XJG\noVAoFAqFQqFQKBQKhWISoV/OKBQKhUKhUCgUCoVCoVBMIi7bc6b0jtlOXPe61NgGx0EXytrmkVFp\nGVdN2txlxdDRTd8irfm8ndALc/+BuhNSb/f1X/zCiXccegbHEArrtpAQqQtvrIZubswDmzD/EKmr\nTVyKHgYBZNFl99ro2ItjGs/G+UZamrIO6jPAPU1i50hdJPemuRLISYQmbqhZ9uxIWATLs/cf3e7E\n4SFSCzr/Ntj8hpGFst1n59o45LUehk6+55S0f77gRt+dpZ+HDWD3eWgX6/a7xXuiY/B/2eLtuX95\nTuQFkp3orFJo8Hvc8hj4tjadxb2qOSlt3Ng6PHom7l3XMWldPHWJtPL0Jcap/4JtCc7W2mkbcAx+\ngdKufmIf+kV0Uc+fSy3yugQGYP6d+wPsrvOT5bhNyIWO+Nir0FR7R3Gsq26Q1u39zdCics+C2Ony\ns9numudiYIjsjzBBdvVjw/i/UwLkuXOPHdYh8/g3xpjei1KT72v0ezFfFvzzCvHagZ/vdOKhRvQ3\n8Ld6QnDtPbzzjBN/949fEXnNO6mnEtmkxs2V/TWG2lETwsPR38Yv2O3EHuu6hFBPgtwk9CqITJG9\nD9hmdqQXtTdlrewL9vGv0bcmLRa9A1x50jL00AvQdpcswliPKpX9Asr/B3kZP7nR+BKjAxhn0dNk\n36kesv7u2Ica5yqKFXls/8k2uhnrpW46IAA1z98f/RZCQqx7aNnPOp8dBZ10/aVX5HvasOYGB2KM\ncU8AY4xJysI5so1nq9WvKetm9IZo2AY9tV2vpiRhTAx2ou9bkNULiS23rwQa34HGv75F9p+rOoNa\nmZWPXg/WVkDYqs/+EnrwtO6Rdtd3LENfOe518/uH/yby7rx1nRPnbYbuvn43xrP34LB4z4y7seYG\nkXX9SL9cmwcbUfdS12Bd9HbJXi08TtIXLnTi5tCjIo+ttLk/UFiwvN8TY7JfhC/RfQbrWPJqWVOG\nWnG+DQ3YVxSXyh4By65Fj7mKrejjUt8pa968OeiX1liB12xL5xvpmu2rQE+iD/8G69kAy3q2mz5j\nQQHqmr3HmDIXe9tU6rf2waM7RN6+89h3cw8MuydYbiJqCq+zF/dcFHlJ8bIO+xqVTTjPTV+9Wrzm\nof5xGZtwD7papEV72RduduJDP3nKiY/99nGRF8vXsIzi2fNF3sV30DMmMBpjOmkN5vK7P3hCvOdU\nDeb9LXehl8X1/3yryPvVvT9w4vM/xjqx/HbZxyu2DPui4A1ky9sn+1a2lqPPUzT1DnrlX2XNv/4H\nm5AX7dteUO69sJov2ijXMfdO9Ljq8GDfF23164jMwVrTchRjmGumMcb40z4w80b0luo5L+t4All1\ncx+i/nrMCfv5q+sM9sPhmeh7M8Wy8276GOc76EVNbuzqEnkhZK1duRf1ZUniPJEXU4I9zHAXepUk\nlslecdlpco/lawTTOpyyTtbU1j14NuL12VoWTWQJ7Rmo19mIR65dPU3onTTtHtThzlrZB7NtH/5v\n0vJsJw5PxbzsdJ/jt5i4HNzvljPUB22KvI+t1fucePaXH3Bij6dc5PXUYE/QuAfjmXt1GWNMWCL2\nepf+gv+bdVupyMvaJPvu2lDmjEKhUCgUCoVCoVAoFArFJEK/nFEoFAqFQqFQKBQKhUKhmERcVtZ0\n/gXYSsUkSipVGNkRRhSAlj3cKW2+hjtBz8rfAlqPt1vmxc4Adav7HCioiWmSDv7KE484ccdByIti\ncrOdeGxMUjdjS0ENjJ8BGUNQkKTCt50Dlco/CJem/aikjMcu+GQbVGPZhLmycRxRRfhfQ23Szq7j\nyCdT0n0FVzaoeUkkBzLGGPfzkEVML4HFad5dUnZ26VlQSC+QtWryVClHSSJrcWaP2fbhI2OQgzGN\nzkvW3C2WJV1iPq5h5+lmJ77+29eKvON/gcTGlY/xM2yNue7j+Iy8q2E56MqU42eYaI9jZK8ZaFEt\n97wL+dys241PkXsP7Bb7G3rFa2z313kC9GC2xDPGmJNEuV12FSSLm1IklfZvb+904pUloKeGW3T1\nfXth6fzLZ5914i1Xg5bsuWDJYeiYgqNx3/0tCVbbYcxtpqMWPiCPtbsS5+s5g/+VskbSMXvJ/p2l\nTCN9kmbpF3Blv68uI6nomFdKQBd+a5UTt5N94uvPfCjyWIISH4E6zDImY4zJvQHXangI59/0sczL\nuAr0Zn9/3JOgKIzvsSF5rCylC4+GxMnTJMdmFFljst1u7SuSgrri6zj31v2gj44Py/87fRUozElL\ns52YKcbGGOOKkRa0vkT/RdS/qCIpZQ0hmcAo1Y3BBo/Iiybb1vFRyD5cETkir6MOddeViDWy+ZIl\nMybb7sAgXPP2dsjFWMpojDG1R1EPCsjivq9Szlm+B0kzIQPoPddhZCLWv5S1WEsGW+R6V7cbdtFc\nT0OSpcXxgFXnfI2mNpxn6XpJOWbKduocyB16muV1D83Avoj3LWEZUSIvYRbuK1vU33qNlDZGk+Sm\ntwnzNG8t1riCdVL+VfHWC04cNQ3vd6VIyd20L4Li39eGPceAdX/iSnGPa3dBijPUJPN4bW36EPMv\nZ9M0kWfb6voSLGVq3n5JvDYxivE4527cw05LKnRoH/Z9J91uJ55fIGXK7XUYL4VzMb4vHXeLvEe3\nQg7z4J2QVEbPAP19998OiPekxmDOjtHeyFhSioBwSCS6aK3PS5LU+ow41KVGkmfFRcg59sGLuL8L\nZ+G+zf2iXGdbLJmer/G5X97hxIGBctyOFaJ2tp/Ccbz42DaR909P/KsTz30QG7BH7vm+yPvWA5ud\neHAaPu/8c1tF3hvbcG1qWlE7b65e7MSpcfL5JDES9YBt0E899rLIu+O7OIa2vVjvzr0j5Rze11H/\nN//sISc+8lMpVyr5CuTjgyTnW/fAapFX8zfs9zO+71u579Aw9lL2XjtlBp6ZchKxX7Dt6o3BXm/M\nC6lkTJ5cF7uq3E7MrRXstUvsjWn9S0+HrNOWjbMEnKW/tl29pxwSqrFxrOHL1kq5WONp1NplN0Py\n6Lkg10+Wf3KtHfXIazTKe9ZVxucIoXF74c/SSjucWlokr8I9ibKkou63sE664vB55RWyjnALCter\nck/ImPmNO+kvXKe6A7DFjsiVc7G3FdLq4FiMOf9g+awRl4K5c+HdF504fm66yDvzHK5F6jTsxex9\nCj/Ps9wt0BUk8upew/nmy+4PxhhlzigUCoVCoVAoFAqFQqFQTCr0yxmFQqFQKBQKhUKhUCgUiknE\nZfmmQUw5slwzXFmQfvS5IT9JWpYl8saIEh2aAEnD/8feewbGeVxZ2oXYGTlngCDAHEBSzEEiKYlU\nlihLsoJly3L2jGftGe96J4edsJ61x+PxyB45KIwkS7JyIBVJMecARhBEzo2MBtBoBH4/vm/ec25Z\n5H47bi7+3OdXkV3d/YaqW/U27rnHky0lF1whm6UteTeVi37+HKTHhYeQRlzz1C6nXfG5deI9bg/S\ndGteQFX7uQ9/RvTLW4D31b7zptMu2Fwh+l2+jHPilOAEn0yPC+4nVydylfFa1baz1shrFm1iSDJi\npzBHIkiZK1xe4rRtp4fczUgfzqZz2fXTXaLfcnLuYmeLhCSZ0pXQiWNKzkFK/flfwXkpJ1WOuZEW\nqvI+D2m8Nc+dFP3ONCNN9Oy/4x5sXCmlWqfrkGJXGkIaZnqlVUGeXLh6DiJlLWejTLXcVHbtHA1a\n3kKKXupiKSXLvRkp1rEJmNK9J2X69pbHkeLa9THOPW2ZrAb/ha+iov/Bt1BtfHDUkiL6MYe/94Uv\nOO0la6hSv2Vv4qOx309ppuPDUl6UkAwJVSLJnyJDUh4ySO5e8QGMMXaCMsaYqXHM2T5yDrNlmL5S\nKWmLNuwm0GvJTHpDmJszV+Ke/pZz2iyk2x+5AFeNY/ul5ILjijcd8yVljhzffj8kfSMjGBcZMyGl\na2rbI96z4xBSY6ManAAAIABJREFUPG9aijTeapp7xhiTM4iUz8JMpKsXbpsj+n3yI8hvCjPQr+zh\nBaJf5ycNTrvtI8g+7JTjeN+1c/opuAvx6rLlThjnxvxLq8K8sp0eGl5E+vq834e0pb+rWvTzZUL+\nNDmJMZ2cJyUXHccxTxNT0a/nkJSTMpW30jwlSZI7T0ofJkewRvDYcaVLt0NPEtbZiQmM5ZEOORfZ\nlWmoFvNvrFs6CV5r5t2BsTUxJNe7yADu6+hog9MONUmprZC4zce1YTczY4zx+TDH8ldhPZm4Tn7e\nZYqXY4N4bXIS8nCeo8YY4yvBupM9A3uYjotybR68gPhwfjecqhbft0T0C/fi3gXos4+8Jd1xFidj\n/MSR+1DTWxdEv1xLSh1NYuMwr+KsOZ9DEutmSpnP2iCP52aap8Uk5c9bKB3RWH7NUsSugQHR75tb\nIUFraUKM9xVD6laUIaU7LPMu2oqxUvumdAwpTEXsiSHJxtSUdMRi16DwOOZvT0ju/7Z99zan3fo6\n9hgdH0uZ6HCHfF+0iY3Fej8xId1u6l7AuCu8Def/pX96RPT71Td/6LTv+TPIhu68Wz4PsLPdj770\nM6ed6pNS2M/90d1Ou+8kJPCRLjyfjI9LZ7tZjy/F95ALWuGd0pmFJTuhTsTHBQ9UiX4XXsZ60NcN\nuf6SP7xb9Dv38+1Oe/teuKrd96Utot/C35euUdGkfBnm21i3dDDrq4WEx0cyl0t1sqTDikewfjbt\nxhgMd8q1wZ2Nz4glZ86R4bDo56W1y5+NdY2v/1iX/OwxkjKxFLvXKs0wQs6bGTOxTrdWy3Pi+JBK\npRTYadQYYxJSMQfcOdhbs2OUMcace/mUuZZ0kTNSwVa5z0gqw9rV8jbWE691jP4MHL+3ANe9cU9Q\n9JudjxgbmIOYONIkY2p/F86ZZXsZC0uc9viojFEJAezlI8P4vMtW+ZHBQcQXliIOt0m5Uk4Z1vck\nKuVy/GUp/Zp9PUnEaW6HrWeNbMux1EYzZxRFURRFURRFURRFUaYR/XFGURRFURRFURRFURRlGtEf\nZxRFURRFURRFURRFUaaRq9acyVwELW5SubQMnSAtH78WtrSGvgJo0QYuot7CWJ/UX7G9YTHVI4hY\nWvDhOPTrPwc9L9emGY9IHXfrQeg2M1fBTtLnKxH9+vuh28+/HvUWQu1SQ8h6xaxK6LU7zhwW/bLW\n4ruGm6FfG+uV12jgDHR4xbIUQ1SItyy8mGS6d5NhnFfXXqlrT1/C+mvovHOtujBJFdAN9hyFRvNo\n9UXR7/7vP+S0z/87LAyzaMzVHZC657pO1ApxH4Gmf/sJqYVnC+7vfgffU7NbHsPN/wWWz1zLIm2h\ntKXs+EAex3/A18sYY5IsK7doMjGEmiy9lvV6+gpYvnkyoLtnO1hjjJkYxpwteXC+0x6ql/aDIbL4\nW7QK9pq2NpdhK70Q2VanLckT/diWly2yIz1yTgRI09lJNq38HmOMyd2M2izedIy9yIjUrF56CmMk\nfTnGckycrAVia5ujzRTFDtZAG2NM0S2oNdC1C/NvWfkM0a+hDfOAaz2wLaEx0iZ8IoDrEbau9cUd\nsOXkWNF3FProX3+4W7zno6PQtW9egNodq1fNF/36m1A/IEL6/OFWeX/mk0V23T7UkimyrDY9VFtm\n6DzGaRbZoxtjTFzPtas5EybNs107resd1ADKXIf4339a1hfKJy335CTWuN5THaJfvA/nmDYfsbGv\nSdb1GB+E1r7tQ1w/D9XJOHlaWg0vDGFcJZAVt30tu8nW3kX1n9JK5op+9TtQ4ySD5n3yDLl3GGrA\nmMhYirloz+3GF6WtbLQJ1eE4EgJyjWw42OC0C9ahplK8X8bKJNLJe6lWT0aZrB3RcR6Wn3EefJcn\nXY6fuDj8mzXvsYnQ9yd65Jrrpto/w8PoZ1tLZ1I9wBlDaNv1cSbHEKOHmzFPqzbLuX3mY9RxWfEY\n7IUvvijrJkUGZB2IaMK1UTxW3alIP76X79OEVd+M60QVLMXYj/e7RD+usXTuJdSmSffLe5hHFrOu\nA9gDcb2mc5/UiPes+gbqogxQHbW0HFnLoa8a8eHobtSjCYXlNV5ONuAnyB581Wp5D6foXhd9BvO5\n/f1a0a/wFll3Mdq8/j1Y2GYny3Ne9BXYek+M4N65UuW4rSqlmie0xmVcJy1xR4O8JmF9ueP3bhb9\n/vlPnnHaW6own3kf+sD/+rJ4T9MHR5z2E0+86rT/+MlviH4//aNnnfZNC/Gs4cmSYynJR+dItTK4\nRo8xxuw7hrHwtZ+g/l/H7gbRb3JSPndFk/gAjinOJR8t06qwHpx4Gs9JZYWyfmKoHvcmZy5eO7RT\nxpQ5hZinvN//w3/+Z9EvuwD3/vduQ32lvCD2eQdq5Fy8cQvsruM8OI+k2bJO1BDZdrMNtl3/aWYu\n1m1+Zoj3yGsUotpsgUqsmfWvS4vpnJmyZmC0EXv0eJm/0fgyrNiLt81z2lx/xhhj9tN4XNRb4rQ/\n84WbRL8w1bIS9dsWynPkmpHJZRgXXUew17FryQxdxDFMjeK6py2TzyRctyZQhLX1wk/l83xgJp7v\n+PeP1b+3XvS7PInjSCrHe/qsGqD8jPNpaOaMoiiKoiiKoiiKoijKNKI/ziiKoiiKoiiKoiiKokwj\nV5U1jZOUov+ctMDylyL9ZzyEtOzJiJR6jJGdXNpcpJhNjMrUehelVbM1d9IMKRUJkyQog6Q2g3VI\nMWt6SdoPestgqRXIg2QlFJKpm2430s9qtu932smVmaJf/kxYEvd27nPafSdkSnospfb11uD6sbWh\nMcbMuEHalUWbCEnNBk50itcKt0FOMERylJFmaX964SDSsuffjHQ2n0umV7opJTXveqR537tW2k7X\nPInrW/oQ0jpbd0B6NPcuaaOb9j5S2H6zAzKLNbOkTaE7EWnj21+GBXBxpryPLa8hFa+ArA6bfyPT\nCNnibrwbc4JlI8b8dgpgNCm8B3q3GKnEETbUbMVqSy7ifbgunDptp3mnLkLa4NnXSRKYItONY8hm\nMDYR7dyNsIgbuNgj3jMZxth3Z8G2zp0pbSwvPAcZks+L2DA8Iu3tMim98HIaUh9b37PSsu/COGd7\n777jcs5mrJKSjmiTkISxFOuW0htOc/XPQMzqPimPMcmLVOcFN2IuDp3rFv18uUjz7zsPWY3bskB2\nzUS67skfI551ULrwa++9J97zL9/5jtNOSME5BcplvE6egzm382nMxdJsKYmZoLG55CuQSPSdkXIg\nPvaORozhgsuVol/7dtz/8mUmqvAc67fs0H1033hspVhSSZb+pVde2VLRX4jPY0lcqFHazcaQnaiX\n5tXZ05B9rLhpkXjPgR2YY0tWzDZXYmoC58trfdPJvaIf246GyAqT7ZiNMSaBpHNhss8eqpWSobFh\nKWmONmzHOnROxqnSNZB8nX3ifadd/gUpV2IZAst3Wg5JGaCHJIzBA7Cbj42XwXyK7FVTSCo6cAFj\nvfeotFKtqYPsbFYlpHSBSpmGf+hXWHNLSrHXseP/7p/h2Fk2WTZDWksvffA6p137EtLdZz8qrblH\ng9dOKhpLkqS2/VKKnTkHc47tbcuul/stlivxWB9tl3sgbz7uYf5irBOXJyZFP5YuBGYhdX3/E4h/\nFdfJOR+ma1SwDtfv3MX3RT9e/IdGIVHZdfq06LayCvN5zgTtuwflvT7yLOyZ+V7b0qLjz0OuM3Ol\ntLCOBlXrsL9hG2FjjBlpxZrPMhNPpowrmRuKP7VfzVPHRb/3TkKSdv/9m5122ztyz/Doo7c6bZZc\nlGRhXjbvlDa6BymmfvVrsLs+929SIrFlGeJIsAfrbK415jp68b2HvveS076uQo7hB/7mXqf9xNd/\niWP41y+Ifu/9KV77zI8Wm2jSeRBxLd6SWHOJh6L5GI+2TXTvYczT5jbEPFeC3Cv9+N13nfYDa9Y4\n7fvIxt4YaXfdNYhxxON767a14j0ukgJ370VsjWR6RL8L1Q3m05i9RMrQzx2FvHTFw5BM1b8hnzPK\n7sQcOPj0Aae97H65gYn0XTtpmjHGpC7E/t+bI6X3CRvdTvviTxETcm6U8Wxr8fVOm9cXW3qUtxnl\nSIbb5d6eiQziPnbsxBxjCVGwXu5/m7vx78WLIMtMX1Ak+vn9eParO4YSG8fqZTmLnF7sT+ZuxL1q\nflVKurzF2HdnLMVYZ9mfMcZ0bMe4mLnC/BaaOaMoiqIoiqIoiqIoijKN6I8ziqIoiqIoiqIoiqIo\n08hVZU1Z5Gxku5qc+LeDTju7BOmz+Vtkup0vDWk9w71IEes/L1OQOFWLXwtYDjixcfg96dg/I606\nawbS5wvukjKXiy8gDThrFVKTGvdJl5+Ku5ASl7cGaaF9tc2i3+AgUhk79iCVNmeDlO6EmpCumF6F\nNOLhFpm+1bAT6U1zZVZeVDiwFymvs/JkperWN1CpPGku7mNiulv0W3HLaqdd/QycWmZvk9KjY//4\ngdNOocrXpdtkCiUpA8ylXyDt9EQdUsmSj0r5xcQk0oe/9Kf3O+2//+7PRb95RRi3N92N4249Iu9j\nzk1IP2zbgZTWGY/K9P9D/wRJ15Kv4fPiLHcRruAdbfrPQI4WY8mnJsnRZpTkaIXWPOgnKZOh6+/N\nly4XY72YixWb8BnuTHk/gvtwPdOosj6ZeZlAmaxcH5uAkJOSh89u2bdf9GuhFMKqBZDuJA7I1FJ2\nZeg9Tg4aNN+MMaaL5qmdWslwCvW1wJOLNNHql2X8iT3S4LTnP4C054KNco6FB8klYALX13ac6dyL\nzzMUNycsOR7L3YrWIz1138+QOvzle+8V7/n697/vtF/88d857dNvSVeFyg2QG80rQ9r5np9K2Udv\nCFX7MwK4RqXF8j5e2AmXokX3I/1/sE7KUjx5MjU+mgxUQ8oU7pUpxqX3YayyW1o7OSgZY4yL5tLU\nFOZv8fVrRL+2I5AdsDtEwRbpnnLpl4ihqeRGsJi+Z2LEcpfzYC7VnsL8YFmjMcakLca/OfYkJss1\novcoUtJ965A23vymTPvN34pj7z+FuOYtlinuiZa0NtoMnqU9iBUTfIU4FpZWBw/LNYTfN1CN+Jq9\nUe4FTv4S93H+g5jbnK5tjDE7frHTaS/rw9xpaoBErntQxqj6LoxHdua5/K6MvZvJFWYgSM4gzdI5\nLT8N58vSRp91fzilfJIcSthRxxhjLr4B161KqSD4nXGR01R+ZrF4rZfc5hZ+HtIAW2rbS3L0PpKf\nl9whpX7tO7BPy1qH7xqzYkDDTuwl0nMhS1z6yPIrnIWUD4wMYB6xk5Qxxpz7AFKIlVVIra/vlHL1\nYZILnm3Bvjt/RO6nK1djv951At/rnyklQ3NS5b4x2tQcQnxccLtc7/KqIHM9/W8vO+2pCTm+2S2z\n+whcsi60SXfL21fjPuRtxB6wvkPKBTtP4X0zbse17ngR+/+0BTJW3r78Dqdd9zTW93lfl7oFduX7\n5FeYH/G/sRzrghiP9//VNqdtr3dN5Ohz/zchx9r+Z2+JfixdizYFm3Atg7uaxGvs9Okh2ZotqUxM\nx5rUV4M9wdiEXLu+vBlytLeP4X6sqpTyZl7jODY+8wn29F9Okg5C4xST3bmQvvZZrqb82RE6vgvH\n5Fpflo8x0l+NeZpaKuciS5l4DxQTJ+9Zzcd4Zpt/h4k6He8hzpV/QUpUB0gez46vPcfkHBu6QE6a\nG0qc9qBVHoWfkbMX4rmrt15Kvnrp87l8xOvvQiqak5Ii3vMPTz3ltJ/+kz9x2i3vybInM26D/HWQ\nnJOXlEmp1swvYt1mx1OWmxtjTB/tD2MSMJ9DF+X4yVwv1ysbzZxRFEVRFEVRFEVRFEWZRvTHGUVR\nFEVRFEVRFEVRlGlEf5xRFEVRFEVRFEVRFEWZRq5ac6buOWgwi+6U9SvYTjSeah1EhqSGejIC7eHk\nKFlzWxa2bMeaVArtWP2L0iIwnjST+VWoZ5O2CJpY22qY9YBcs4atP40xpnHXx047QFbhrhRZ52Kk\nEzq5cAd0kX2npe6X7cb7TkOHNmDp7tyWTVy08ZK1dFKh1OVNUp2UofPQCWbfIDXzbHla9VVogM8+\nKS0CZ9wNi9zEJNQkOP2jT0S/PLJbPvkqtLk3PrbBaR978Si/RdjijbRBM2/b9t32rZudNtthhsJh\n0S/SD634YBd0/A0vyTEXIG3pR9+HteX4pLTQTCaL48J/2maiycApjJ/MddIKLlRDtrwrMSdEjRlj\nzOQozQOqlxPpl9eF7Q17aZ7GxMqJVfkILOXHRnB8Qw1UE8Uq7+LJQsgZ6oFt+jBpT40xZsPj6z71\n+Njm0BhZq8pXgrHd8YG0wcu/Bdr6XtL92pp+vkbXAr4elZtkTB2lWNK9nywcB+T9YTvptDJ8RnKO\nrAEyMoJrwLrYvjMyTo0P4vP3vwp7xPVzoLP3ZUir87PNqL2RkIzYPecmaZE9FcH31jShDsDqh1eJ\nfgefQw2zuWuhG89YIu17m/8Z42yc1hq2NDbGmP7j8hyjCdeZcSXJaz5Uh7HPx+CvlPryIZqzw43Q\nmnOdGmOMiXVhnsbRa6efOCj6pZEd+oX3odcuqSJdszUZ523GveIYEqqXNt0JdI7xPhxD4/Ya0S93\nBeyF2Uo7zjqnrn3YE8STtXykT47zjDUF5lqSRZpvnnvGGNP+NmJTO9nZhsdlXbEVD6GWxOgw5kQH\n1ScxxpiBEWjUB2qwzj7yjb8U/W6+DvbUsacQb2NpU5MekPamS5cgBnB9gsBMOeZ6DmL+8fpux/+u\nAdy7NV9b77QHa2Wdi6MvYO1nq1v7Ws773FJzrajdhfsUcMu5WPEQahj0HG9HvxnyuvgKUHMtZ92V\n6wDw3jZCMdObK2MP71HZ6pvrJiRVSJvzeBf2aD4fat1c7JRWzVlkAewrwnFX5ss4yTWArr8dY2py\nTO5ZUubAFprrgqRXyRoz/We7zLWksADHkb5A1hk78cPnnfZHJ1DTrOBcg+h3z//8mtM+exQ1nu75\nH/eIfkd/iHpnXDsi/1ZZxyubavmFGrE/8dM4s+srPffHsLt+9J8ectpDjTKmujKxnq5fjDplKQuz\nRb8KP2J02/uoZVR0u6yHVLsDtdhK7sXnrf3KOtEvubDQXCvGerAusq25McYMUZ0nTx7WtPqPpX35\njC2IZd5jWBvsmjOps1BjtKQFY+eFPXtEv2+Stfamrag1dEMYtVSy15WI9/DeuPck4kZOltwDcW0a\nfo4K1sl6qp5CxGs33Xe7VlXVnajLeeZtPIMMWvv4uXfKmkzRJo1q1vWdlfuo1Pmon9N7AtfGmyfX\npNS5ZDf/OsamO0dew57DWJO4FlFKsXz+dKVi39/0CmrGFGdiHPit+P/iv6AWIu9bxgfkbxRNn+xz\n2hyvC+8sEf34+d5Fe/CslZY1Nz33J5fh+ILWswbbxpvrzW+hmTOKoiiKoiiKoiiKoijTiP44oyiK\noiiKoiiKoiiKMo1cVdY042FYL7a+LVOYS9fCNm2UJCZnnpVpmBl5SPGJo9Si7l5p39hRh7TBFB9S\nnzKTpM0vW63tegcp+AvPII0uc6VM3ctbgDQtTi9kG0ZjjJmilM84D441wecS/do+Qipe7mbIc+K9\n0sqWU0GTZyGNtfmYtJlb9NiVLRajwYptsJHs3tsiXvMWIB0ta20JXpiSNoXB/UjZ7iOpS3O3TOEr\noBRpTrEu/YyUO4yTne/M5RhLhylVetbSGeI9299F+v9IA8bLY5+V/uP7fw6L9YU3IcWzpEKm6rZ9\nDNlHajFSnYda5Ngsvg2plik1ON+G4/I+2jKVaMJypXD3iHgttQqphmytHG6X6eVJlRiDLCPyFkqL\n1IlhpGimka2ubV1Z/cN3nHYu2ZK70jCveo62ivewDClUh7mYMj9L9HOTjKZrJ2x+UxbLtF+2pmY5\nRkyi/N05eADjl+2APfkyHbN3vzzeaJNcnu60W7ZfFK/1XET66kgE88NXJqWIrW/ifRdHkeadXSVT\n28eCGCdJs/C945aVdv3zkBVu/tYmvJ/kVJ0fSpnYt38PVvaHP8QxeBJlDIwjOcbGP4D95Yc/eF/0\nW3k/YmAMvceWyZYvQpzna2nbTfZ1XztL9ByShAxZtryBGTgmXzHu22CN7MeykgSS/Zz8pZSJ5i/A\nPWW5bj7HamNM9btIg664DmtSHNmkD1bL9OjhBsS5rPVIzY1NlNsClq/MXIzjLrWshsMki3ClIsV4\n8JSURBRug1xu4Bxec2ddO/vzT6P3CFl/l8g5xqnoi29GbLOtX1mGlj4PsfL4TimNLc1G3DpK8+Uz\nGzaIfrNInpJK+yBO40+zrM6Pk0132Urce5YxGWNMJIy4zin5NR9Iq/NZKyEBZVkirwvGGHPdoyvx\neRQrhi5Jy9Djb5102iU/uc9Ek/L1ONYkS67E8sPRZsQDf5m0ieZ92xjtX048I+di0TyswRe2QzqY\nP0OuSYkk8eIYwPN3rEeu4a0fIaaPdSEelz+6SPRr+wByORetkSvWzpf9zkFywDKNIMm7jDGm/zz2\nMxMk0044Kq1xG45hDV54r4k6Mz8P6VvwiNxXpS3Fvu3OuZgH6Qul/OknX/pbp52binu8KEFKKVb+\n17ucdl8drud4SEq+WDabuwbjLIMkX6/+2WviPV/56fec9p6/eRbvKZJjM3sD4ijvq3xFMg6xlJD3\nLS6PHHPMhScwbuPipeS/aQLjdsNfRdfXPmkm1r62t+XehktfMLnz5D0cbsSaNGs+rtGZk1Imuu9D\nzJH+Yaw733nwbtGvpRHrS/gMYnfF/Xi2bf9AfnZ7Hd6z7wIkObMLpMx2zedX4xhOQfIyaT07eUjy\n070b+9DUZfLcw7RfW3C3nPfMaMfQFV+LBsMk4RvrltKrED13sVQoISCfkQdJ3p26GOvVxKhcQ5Iq\nMGa4VEXLmx+KfoV3Yq+RswlrnL8c88p+nh+nWJ6QjP0IlwUwxphuinWXx3Hv7H1yP1lklz6AeFv/\nfLXoV/YgxtZwO65X+iL5/BkokzHBRjNnFEVRFEVRFEVRFEVRphH9cUZRFEVRFEVRFEVRFGUauaqs\nqfVdpKZ5rbTfBD/S1AaoSnf+4itXA+85DTlM0RJZzXvhfEhvLj4Pl6jCrbKC+ghJTmblIU2IUzK7\nSIJjjDFpC5ACeHmKXKZ8MtUueASpm/0nkKY2FZHpjv3kvMBV97v2Nop+AUq7D+5FqmblrVLiw2lR\nxX/1GRNtBigdK8ty+kmhdOmmN5De7C2QcrJzZxuc9oavwMEh90YpPeLq280fIV0wKUvKR8b7kTKa\nfzvucVUmKpb/6p9kyuhjfwQHpElyn+k9IlN1N3wb0gxO6fWXyHTmvueQGnmhusFpL7tXukvsewrV\nvGeWI7Vx4WeXiH6nnoekb96tJqpMjWMMuq2q8b583KsJqhp/2XJn6aWU5okhpOwlpMgq50nlGNPB\n/Ri3dur/OFXQ5/ueQvPNdmBhCRVX949zS0cXlg+wHHLwrJTR8Wteug4jjVLWUnArHIB6TyEOJVpu\nO2nLpTQo2nCqdP5mOXdyr0ca72QY13asX6aWtvUgZfS6L8L1iCVjxkjpQh/FsyzLkWTxMkrX/zkc\n0uZ8DVKj2JtlenQ8VZ5P2Y95nuaX0pS02YgvLJHY+ue3iX6GUv5H2nHvDv3ygOg2dxPSW4/+BPMy\nLSC/91o64MUm4FpkrZLxlKWs7GJlOwjyfB4fxjy1HQfSFiIlmB3/bInh0ofgyDLciuuXQOnkuVvk\neBvthOxxnOLBaJuUYM0m9yxOZbYlXex81kUxOe/WmaIfXyOes+EuS4ZJ6+e1YJhchVhmYIwx8bS/\n4TnbvrNB9EtMJPeqTpxXRb5MYXaRS0UapeHf8HVp09BLKdbubIxpjgcH/22feE9JOb6r9Qj2PqWb\n5HU/+QbkRVOfQKY4Y2256MeyZT/FfI/ltHHmheNOe/5DWAvtfVWg5to5p10it6ayKXkeE5SWzq5g\noXrpDDgwCrlf2mJIDSpuqBT9eG31ufB5hw+fE/3YUSmH5LUsabBlmEXbENcmKTa0WZKL9KVYnwZ4\nHhXK/dqi1Yjxdf+O+55tSf6HLmAOu2hf4bOkzoUjcjxHm/oXcYxzPneXeG3XXz7ptFnCsm6ulEJf\nvwJygqMnUYbB7ZbHvusvf+60azsw1h/8X58T/bpPNTjt5779jNOemYsxwvIpY4xpPQQXvQRyES26\nc47ol5QKx52JmzBOG188I/olkoutl1w0e2ouiH7pmXitox33lMepMcYs+IZ0SYwmlyexJrEs1Bhj\nkuk5g5+FbFk57xfHqb1ks5TtcYwJBzEm+i7I/WEfjZfZmzHHOt6vc9rVF6RkuygD+9+1s/GewmVy\nre89ijVurBPfU7yiRPSLI5mwvwJSFrvsQCqt9V276VlSLvUmeaEc99HGT3KbWJfcR/OexleAMWc7\nGvN+jh1Q+96Xz2pchiFjCeZp+rwS0a/xTaw1vRdxj70+7JfsfQa7IUXoWSM+Wc6J8ofx28PJH8Cx\nOb5WrmMF5ObGa4Ht+lzzM5RbKX0Q43agVo5N4cL6KRUxNHNGURRFURRFURRFURRlGtEfZxRFURRF\nURRFURRFUaYR/XFGURRFURRFURRFURRlGrlqzZk00oB5MqXeuPZZaERnkK0U2xcaY0z3HugLE+Lx\ndYlWnYv27dDWelzQetW8Ji0p85dAM5tF1pU9pL9NtOpXeEi7zbUsuHaAMVLHn38L9GtxHqk9c30E\nvWKIbMfSq6S29fyz0MkVrof918A5aWmat0VqpaNN+jLolG1d/xBZKoeoVoGtYR4Zg+6+azfu6alq\nqYkeG4cW74bPwmpu4KS0Ux2nGkGdpONvaoQ+/eEvy8ItbNHZVA1LcNu6LoXtWenes9bVGGOyydos\nJxbXqO3DOtFv+X3XmU+j6xNZY4jrHkWbMbLPtmsxcE2k/jM495R50m5xYgRjP5Gs5djCzhhjQk2w\npI7zkF6xfon0AAAgAElEQVTW0qEH8jBGuIbQ4FmMb7tOTc9+3DdPLt2bPfLecC2jZLLPHGmVxxrv\nxfGxlbZdb2eUxj1fL66T8f9+/rWzYDbGmBGq8xETJwuRNL8NnfzMR2ClePrXx0W/5V+iecXW7nvl\nuJ19D3TtbBsc75Hxka/V0Cji93gI97TbquPVXo9xVvUQNLtsw2iMMZnLEa/rnsaaEZ8kYyrfE9ah\np1s1bIZqcY/nP1jltG17ebsuUzRxp0Ff3fJWjXgt72bE8lADjjVEx22MtNhlq3i3tS5ybOR50L23\nRfQbSMCcc2fDKjIxSeqrmZhY/G3GX4y5PGrNMb43LqpFluCXnz1A857tsmOtce4vRZ2G4WbUkBsf\nkLbpnRRfS2TJgahQdBtqioxa6yLbuZ94DbXJSoql/WnOJtSqSWlFvB2qkXbSsS7Embl3ozbGiaek\nXXPxYtQ1iND1SJ2HOgPzffJi9J9A3YyC6/D+4QY5FyuWYQ8SQxa7sfHyb3ThCNaJ+rdQh67oRqnp\nL1lJdsA0RjhuGGPMoseWm2tFxY2oCdF7SNo/e0swVuPcON/mY9Y+oBg1Jk49i3oBc++VdrYuWlJm\nL8I4yK+VtZdGO+RY+g94RfIWyf3V+Wdor7gRa58nV9bk4NpVrSdR523+52SdvIP/uttp56ajhkTD\nLrlf8yRS7cgg5n2+ZX080CjjV7SRtUfk2r36e6g1GOrGOmTXqctcjbGfeBZ1RCYnh0W/6/5ws9Ne\n0Iv4U/OL/aJf4Z0oBMHxoHIb5p8vT97Hn/3+007720/B2rtp/y7Rr+HMc05790HUnOR9tjHGPP6P\nDzvtXd//wGm39cn7wfvprfetc9plmzeKfpGIfPaIJlwXK2Db2tP6PEI28pcn5L1ubcXxealeTnah\nrAlW8wqeC7muTmplhui3cgX2H2yN3N6GfdPqu+X+vvkT7KNy5+IZYeicnOehUdQMqSRr7l6Kx8YY\n03II8SbJRzbOVmoEW2RPhXE/826RcbfuJZz73JtM1Gmn5588qy5icC/mX/Ag4k96lVwX+Zmb68SW\nP1Yl+p39F9RoYutrf5ms5ZRA+5iZD2Bfy78beHPkXEy/Ds90/NzP49QYY5rewvyb+1WsVbxXN8aY\nIVpPk2mcsXW2MbIeDe8rfPny+clrxXYbzZxRFEVRFEVRFEVRFEWZRvTHGUVRFEVRFEVRFEVRlGkk\n5rKd/68oiqIoiqIoiqIoiqL8X0MzZxRFURRFURRFURRFUaYR/XFGURRFURRFURRFURRlGtEfZxRF\nURRFURRFURRFUaYR/XFGURRFURRFURRFURRlGtEfZxRFURRFURRFURRFUaYR/XFGURRFURRFURRF\nURRlGtEfZxRFURRFURRFURRFUaYR/XFGURRFURRFURRFURRlGtEfZxRFURRFURRFURRFUaYR/XFG\nURRFURRFURRFURRlGtEfZxRFURRFURRFURRFUaYR/XFGURRFURRFURRFURRlGtEfZxRFURRFURRF\nURRFUaYR/XFGURRFURRFURRFURRlGtEfZxRFURRFURRFURRFUaYR/XFGURRFURRFURRFURRlGtEf\nZxRFURRFURRFURRFUaaR+Ku9eOzZHzptd7ZPvNZ7uN1phwaG8YFxcaKfKzHBaeffUYkXYuR3jQ9F\nnHZisgvfc6JD9PMXpzjtWBe+KyYWHxjvSRDvqX3+lNNOKU932kN1faJf9vpip+3OwPnWvlgt+hVu\nnIF+Weg3cC4o+sXE4bevgVNdTtuV5RX9JujcV/+3PzXR5uBP/t5pp8zNkt89jO+ODISddmBGmug3\nGZ5w2j2H25x26uIc0c+djnNreeOC047zyKHmouuWmOJ22uEujCVPjl+8Z+AMrm/ezeVOu2tvk+iX\ntwn3p/sYjnWkcUD0y91c5rTrf3MW77++VPQLlOJatLyNc8rfMlP0Cx5qddpVD/6+iSa1h55x2u07\nLonXsmjcnn0VYz27IEP062jpdtoLHqjC/39QL/oFg5gXc+5e6LQnhsZEv8Q0j9OeGp9y2pH+Uaft\nyZL3kMfYeAhjj+evMcZEevEZPHb4e4wxJlCW6rT7KFY01LSJft7ERKc99yGce3CPHDvxSYg9Sx75\nAxNtWi694rS79svvTpmT6bTdmbhuY32jol+4G3Mk0jPitKcmL4t+yRWIdfx5w61yHgycw7iIicN9\nyFpR6LQ79zTap4LvoeOeGBkXr40FcaxJFRiPfdWdol/uBsy5zr34rpS52aJfHMX8xADiRmQwLPrx\nOc7e+MUrHvt/hpp9TzltX16SeO3yFO7Bnh98fMXPWPmVNU57pH3IaQ+clWuIm2Jg8ixcv4YXz4h+\nRXfNdtpTkUmnzXF73Jq/7TT+Zj+21Gnz/DVGxuSYBKxpcW65ziZRnBwNhpy2J1PuHcS6WIOxFyhN\nFf1O/st+p73l7//eRJuL+5922pNjE+I1T3bAaXd8XHfFz4h0Yf55ijAWRhrkHEtfWeC0fQXoF+eW\n62JsPMb35SnEOncy5nLwlIz/6fPynfbev93htNd8b6voN0JxveklrHf+CnndY+NxfzimFGycY31e\nr9Pm+5ixJF/069iJ61f1cHRj6smXf+y0E2jfaIwxQzU4vqI7MD/iXXJNGmrFusH70LRZRda3YV61\n76lx2r6iFNErluZI+3u4V7zG5d9SId7Tcxz76aRyzKPOnQ3yEGIoPq/B8Y1Zc3a0FTGl8Bbsu2t/\ncUz081diXOWuwX6o84D83gitQUs+919MtGk895LT7j8j14YkWse6aL0u3bZA9Au1YXx3H2hBv3uW\nGgnvIWKv8P/G9JzGd6XMwho3WEfj/kyXeE/+FtzX7qPYDybRc4cxxox24v5kLMB1Hwl2i37dR/AZ\nlydwfGmLc0W/8UHEdhfty7zZyfLzTuK6zNn8uIkmB3/8d07bUyDXxYY9iAG5s/DMEGroF/14Tz1Y\n0+O0Y6w0gslRxOt4H9YhO54yLnqmC9VjrAxbsTq1CsfH+1BzWe6vfPQsOtqB9c5XJK857wmGm/Bd\nXWfks232gjwc3wWc+1BY7m2yKvAMt+yL3zHRZvdf/LnTjkTkfi6R1vxcegYbOCvnQUIy9mYJfuy9\nYxPk7wNTkxjTPG77T8vPS6/CtWl+7bzTzlqHGBjpl9fJk4s1nO9d98FW0Y/vcWI6jsEeS7zP5T1M\n+9sXRb9Eer6PBPHZrmz53B9qGXTaN/z1XxsbzZxRFEVRFEVRFEVRFEWZRq6aOdNVjV/zC9NniNcu\n01+wKz+7yGm3vy//qpM0G782cQZKbIz8S7k/B79yTQ7j17qcG+X3tr2FX6ky1uIvu1078ddWb5H8\n1TZAf93kLJW4WPnbVMcufEbGEvwy7XElin6cLdPyOjIpkufLrJSeI/jrPf9l0/7rspmSv8hGG/71\nLiEgz4X/2uTNx3U6++/HRb9FX1vptOvexi+XuRllol8v/QUobyt+BR+q7RH9EgL4Xs7A6DuC9/Nf\nCowxJnkerm+oEb+4819WjDFmuBW/SHafxOeVbZsn+rlS8UvmzIcxhvuq5S/aHU3ILMm/GefU9Mo5\n0a/wzlnmWjFMv7LGeeVfrIOf4C88Cx6iv4BbGRfZG0rwD/olOW9ruegXT/OAs2U468UYY/pP4i9c\nfEzBZtzr8clJ8Z4ZqzGfqz/CX29TfPKv66WbcJ1PvYlsoAVb54t+/Et8/QX8Il46q0D0S6K/EPJf\nZCJ9VsYF/QXkWhAZwvfxX16MMcabg/kXPNzstPlXemOM8eYhVvL9SZ8ns0z4r6xD9Nc+/guFMcb4\nKF5ORWjOUYjOuE5ez0T6ywhn8ly2YlnaIsTRrn04p+zV8q/SnDHAmR/jIZntcXkCS9ZoJ+6Vv1Be\ny9+KsVEkUEzZWmflX3n5Xs2/FWN1LDgi+vVfwF9IOw/jr5nZ9BciY4wJUjzl+Fz2gJwH45QBydlq\n1T876LTTy2Sc5GyZ/nP4S5Uv31o/KYuS/2pVah1D1wHEocv0F7EpK44z5984jeO5R/4lPHdJgd09\nqlx6DdlHy/7oVvFa2z4cV/GdyBjpOtQs+hka7v20xi38g02iW9eRWqftz8U87a9rEf04m7flCK7n\nsu9scNouyjQ1xpi+C1ivCimLJhKSsYyzg/JuQcw//+Ip0S8yTvuvYuzfYmOtzBSKKSm0zws1yb+G\n1x/FelL1sIkqnBmWu06uY5xpO9KB9TPBL2NKP/XLXoW41HWsVvTrO4rrXP7oYqfNWWLGyLhU9iAy\nTzs5U9La8uXfgIyL4FH081p/hfdTdhn/tbrIWhcvL8Z1aXoT49ydHxD9OKOj/sWTTpv/gmyMMTnr\nZDZxtJkcw5jLXF4oXotLxNpQdDv20ZPjMsbH0V6g9J4qcyVC7Yi9/Nm8jhljxPo32oV7OnQJ4z59\nmcwSCzVj7PNnj/XI+M8xuq8GMYUzQ42RmcGRAYzbnsPyr//8nNW5G/MtMVXGivyNleZaEUuZBmPd\n8nw5W6b/EuJk5iKZAXTpDewJvS7Em4zVci3gbId4yswIWlkRPtorJaZiTI9TlkXKIrlvCtP8nQpj\nLxLnk/tu3mMM1+O+95+X2U/51jPsf1C8ScYrjgk8DsZpD2CMMeGWIXMtSZqLDF173KYvwf5EZKrY\nz/MUt3rpOcFlxZWB04i9+bdgz5+QJNeaIMVOoTzhjHvrGJpexfPZBD2HuN3ys935mIuRnk8fV8bI\nzMfOj/BMmLZSxoCevVjTWS1kK2sSvfLzbTRzRlEURVEURVEURVEUZRrRH2cURVEURVEURVEURVGm\nEf1xRlEURVEURVEURVEUZRq5as2ZivugAW969bx4jfVhrGXOuUFqU7nuSi7peRP8UvfV/iGqeacu\ngAaQa4sYY0x8ALo/dwa0ZyNj0GPGNA2K97C8N20pNI4Ft8qK+S1v15hPo+BuWUuEayKws0G8VQsk\ne12x+TTsui8tr+DaVq7/1Lf8TrD+n/V/xhgzSPrZJNK3puVIrfMg6ennf+k6p81OI8YYk72mxGmf\nffIwPjtX1jGIJT3u1BiuZyrdn6SZ0m0oLhHXOkRVz1s/kHWO8smtKZtqZdS9fFr0m/WFJU67az/V\nw1gr7xtrePvPQzeYe5PUkg5epLo6UZb2sjacK9UbY0zjkQanPfYKNLu2c5q/HPd3pA7zqnCbdOEY\naMe15bGTuUbWCWFHkgTSNnu7MLf5Xhgj5/mqx+FY0/qGnHun38a94ro1tqsKj7+CbIyXjBVSoxyi\n+gg1e1C3at5tUqsf3G3VlIgy8VTtPi5Rht/WD1DjgB3r3JbbDTuosDOKfW2mxnHdWMNrV6GfINcs\ndh7h+inxHqnnZZc3drZjzb0xsv5ELrmgcV0GY4wZHyHnLvpe1u3br7FDAjuqGWOMr0DGr2hy8adH\nPvV4jJHON50nsPaV3iLXkNOvoL5DeoCcgY5amvkkrHF1pMef+/h1ol/MKPTvQ/UY6+V3zXXaPYfk\nZx9/Am5IXO+l+bULol/lV5Y57eS5VEPuSen80jdMTnvkjmaZXJieU6jdwTGqfbuM42NcU+IzJuqU\n3Y64F+qQ7m5p81EjgWuK8J7DGGM6DiJecG06riNhjDF9R1E3gPcJgTI5brmWU84arEPs7uK11tK6\n51AzhmtMsOuZMb9d4+o/qNwmY2D7O4hDvE43f3hC9OO6CL0ncH4Tw7IWyHVfW2OuFbwXGxuQMWWK\n1kmuL5dg1RLgGlx95BTEboLGGOOfget36SnU5MtcL/cLKbNQG4/HDq/h7jRZ+2W0h+4v1cmYjMjx\n5qFYO+zDeYwNyn0Y10dImY/9NNdbM0Y6uF2mdcWdLR2tGl9C3Zr8P7rLRBt2YeQ9tTHGhKm+yAi5\n8KUvkLUeJsK4Buwk1vGRdFvzUd2eCappNjkm6+NdpvUzfgHiAV+ncFDWqXGRW+kkzY+wVbuDnWa9\n5MjXc0zGoXRa3xOScKxpVn25STrWJIoptvNey3vkdPPQzSaaDJMbarxL7jH6+nFvildjHyDckIwx\n2fOx/285gdodsQfkdWEXoZRK7PvcqbKmiTsT94Pv1STVkomNk3ub9KW45uyWlmi5AI+24Zyy6Fnv\n9KsnRb9sWptbT2ENzpuQ9XaSKj+91kvmUlmHzpUmY0K0SSZnsqFLMl7wM87gObTtOq/dVBMpMBNx\nz3Zl9ZV9+n7TXyIdBBmuYTdK9UV91nvCtH+ouBdrnB3Xed/MNWfstZ7jA9fvtJ1Hed/CtaGSZsnn\nWbumjY1mziiKoiiKoiiKoiiKokwj+uOMoiiKoiiKoiiKoijKNHJVWVPwAFl8bpCpmyytGO1Aele4\nXaaWjpFVLacjTVpWp/4SpDexPWLj8SbRLzMN6eoshUjORCpo8pxM8Z4YSpP0kq126w5plZhFsg0+\n1ovPS6vJbEo1ZKtvtu4yxpgZD8FGsfl1pBP6SmTKvcdKCYs2pY/gOOy0MrbqmwhTquBcaQs+0ob0\nsdpfIb15xucWiX5sfevPQLqmJ0+m8booPbfrQ9iS8bUY8Q6I93AKOEuZxieknIOtDv2lGFdur5TS\nDZCd7RSltrGtrDHGZC6HRIbTgIeb5fHx2Io2IZIquDJk6ibLfvxkg2vLV9jWmC05J0blXEwiS+eL\nF5Ceb9trskzq7C5IIXxupNaffaNavKegEsfQQXZ0rhyZQjh/FeZY3zHIIMYHpQ3qeD/+nboEn932\nzkXRLxRCuuLcLbBUv/DOWdEvI/nazkWWxdlW8Swh4Bh4NblSiGRnLiult5skpbHxmPcsXTLGGBfJ\npgIFiJ3d1Yi9mQvKxHvGxxDzI9Y9Ydh2up+sBEfbpPTUnYP4kL8ZFpMDF6UtJc9tD8234AG5Triz\nZFp+NBkcxVhKjJdzrJissMfJ+tSOuzNW4npOjOD+th2R0h6WL116CnG38cUzol/5F2Ad230AksAE\nksfZabWeXFyjbpJ18nuMMab+Rczhzibcj4WPLhP9un95yGmnkYQjeFJagXLa77yHl5gr0fSbc1d8\nLRp0vk9yByu1PWcz7k+giOxsrbEeyMa4DZSTREl+nEmkmN1NlvI8l42R6wuvkRffwP2e/+hS8R43\nySK6TmHOVz4o1+aUQuxVWnYfddod++XcKSXrcF7j7HHRexj3NX05xv3EiJzbxhr70YT3kbHxUgKZ\ndwtk663vYq+YsjBH9GOL+i6SMLOk1xhjvIXox3au/VZau5fGBEu86l7HWpO/Vsr/Wz7BWGS5Xf9p\n+dm83qXMxx7N3rOwvCbUAHv2ZCsG+Asxtnks+qy9jDf72sVTY4zpJTmPv1CuT4kBjLsISQHGh8Oi\nX7gLspUYWu/suMf7okySsNjSoyaKsbkbMXdiF0JS1HdaXvehi1ifePxEuqV8J56OYeAMPiPSI88p\nluRBqSRlCvdIOVVwP57VCm+Fpj42wbLmniFllNHER/MjxpKmZbGlN1ked9dIe+EispdODWDM+cqs\nZyaSM7JudmJAxmeW6HR+grkd58Z1ad0n5Z+BFMTdeJKDh60SDokkhxygfV2sZenMz8oxV/h/Y4zp\nI8vsYCPZjReni35xrqs+tv/O9J/FeGSLcGNkaQN3Fq6TLb3nZ+bMlYVOO9InxzfLiHhPYz/jpC7G\n3p6fF7M3IY7a8To5HXGY121hAW6kA3dXB+avLTviMRNjzStmxn2QUAX3YG31WHtSW75po5kziqIo\niqIoiqIoiqIo04j+OKMoiqIoiqIoiqIoijKNXDU/ypuPtCA7PS64B6m5cV58TIKVWn95CilnnE7I\nKdXGGDNG6U1cgT+vVMprUiklNd6H6tnp5bOd9vi4lJvEUN5S4ztIDXdZMg12QenaiVS31BkyrSye\n3JYuvoj0rd6QlHRdfhZVu5MonTBlrqy0PmClpEYbllTlbpbyBJaksbyB75sxUgaTtVy69jBD5Irj\np0rcdoVxdngpexTp1wle3JNISKaZctotV2gfqZf3+9AepPUv6kE6qq9Upsv2HUEaIafHRazUyJpn\n4MyQNhvjMXWeHJsTVppiNGH3hOEmeb7FlUjNHSC3nNI7Zot+l17AWC28CW5rp547KvplZeJe+0mi\n1HdBSkwKtyBtfObiEqcdS45E3ac7+C3m/EmkJPJ8WVwq07x76yitcw7miy3VOnsB0sRSSiG3JVgz\nyEXuxK9xvqXzCkW/cLtMF442PK88uVLq56H5x252PdVSFsKpobE0Vm3nA3aFS67AfPFmyDTv8ADm\nbO95VJdPofc0vCGdecaCmJssd3BlyfRWlm7xucdaLkwcy9s+grTHlr+ykwLnCAcsJ5oxK3U1miz6\nykqnPTEiK/+ztCKP5Fm2fMWXjzTt4CGspcVFUnLRugPyvMy1GKu2hGPgAtKqyx+AO85wN8aOL0O6\nQ3g8iOMxMbH0/9Lp7Mgv/tFplywvcdpnnz0u+i18CHKbSB/GYtBKXXcn4F73HMPx5VnObnlbys21\nxEeyzLyN8rub38SaOUFjMGA5QnRT2nIi7X26PmoQ/S614DwrZ0Mi7rfG7aWnsWcouB3yhOK1WLeb\nLefMYZJslt8DyWbHB9Klxvsg4k0q7UFCtb2iH0uTWfITGZRzquhurC9nfgkHs6w5cn/TtQ/XqDDK\nt9RNcul+a5yFLkHO4ynAedhy0ssTcm7+B65MuWfhPcwIOYKmLpJztu19rEksqfH6sJYOWy6k2YsR\n1zhOuq14ymPMS4508da66M8scdoD5z9x2qH6PtEvtQw3xJuDmN57Sq7b7PZn5pqok0Gumj3HpTNP\nKknsWW7FEkBj5FjleNtzRLrUeUgGePETrGu240zJQ3CwayMZffJsSGXsuNG+E/ubLJJzdO5uEP2E\nliIWsdeVLcccS/nD3dibjHXLvXH+zdjPxXswztp3Stl20VbpzBZNuBREV42U4+UvxrUIk1NjaqGM\np03kWFl8I84pznJK4uczfv60GaHnm3HaN51vhAysa0Dup2fkYD7HduA+Ldi2WPRrfIek/EmYl7nW\nM2s7Sa4DHvSLsaS0vVS6oHBlCc7B2u8PnKY4t9VEnSSS59oOxOyyya53sQnyHiSQC+NQHWKOHc/S\nyYlKrC+Ww+MklV4IzEFMZee0Kau8hb8C58G/AYw0yNjLzwrFVdgTTVh7T5bgZczCGjdhSZ3ZfZjj\nf9ceKZ9jxzbzKYaGmjmjKIqiKIqiKIqiKIoyjeiPM4qiKIqiKIqiKIqiKNOI/jijKIqiKIqiKIqi\nKIoyjVy15kxCMrSLdo0AhnVfaQul3riX7MHySUNoW8H5iqBX7DlMdQ8WyM8L7oU+v4w0oQPt0FcH\nsvPke6pho8iWpmkLpQZ/fBj1A1KX4rWat6VuM4dsbnOXQitb6JPWW0Ok5War5olhWafAk39t7XuL\n7oI2fNKyTc5YhuPvJm2ubY47SDrHiq/B3rXPqinC9mPcZntJY4wZH8Y3dJ+BPjVnbYnTjvTLGhps\n65lPlnsDtbIWynyyVAtUol7QuY+kVj9IWtN13dlX7Df/Nuh0uTZSkCxRjTHGnS31lNGk7wSuc4pV\n64bvTd8w5pX7HWkVX0QWi3E0n0NhWUtgxkzogD35VOvmktRqjpK1YGM1NLwli6Hb/Mn27eI9X9i4\n0Wm390GLGmvZrbb0Yu68+xzqRG2aLzXTKV5otNkS/IWPPhH9vjnvQaednw/NeNoSK1bskbay0SY2\nAb+HT4bHrRevYDk7KQW4mTRn2VaR55QxxsQl4jXW4HcelTbjsXE4Jq4t1k91TDKW5Yv38OcJe2FL\nK8zjNo30xVzvyRhZc2CMaufEWzF1tAua5ziqbZQYcIt+dj2CaNJGuvhEq8Ya1z0IUf2tS0caRL+c\nDMyx4s+giEP26hL5eQHUShrqxn3rOiBjz+B5xMDdz+5z2qvvW+60O3dLzXPhrZjPre/hs2fdc4fo\nx7ppHisLquTcYQvO9EV4bcUSaenceQK1r068gro1XAvCGGP6T2FdmLnSRB3W/B/8/k7x2oJHUD+H\nLeoTvVZtI1rLq1/CuZSvlrUoVqxFTIwMIN4m+KQ99fxv3eS0JyZwf9rfxv2J9cht28z7sA/y5aEO\nSfXzsk5UZiPiLevp86hehTHGDJJ9Pde2CHfIPVsCzc3UPFyXrFWyJt1wq2WtHUWyV+C76qmmmjHG\nZK7Ga/1nEctyVsn6Zp0HGpx26b2oKxFqlfuKwYuog8Z1BY6+eET0W7AFa9T7v9zltMcn8Z41axeI\n93AdnIkQxlT2qmIjwZjtP4/5lrV0veg1NIQ9awbFXW+2tFK++AKOj2vn+IqkdfH/zvb1d4XnBFsj\nGyPXIbajtethRGisspWzXa+Ex7Sbal/aVvG1v8J8LrwNeyeudZaculAewyKsXbx/nQzLehgDNB45\nviZZVtfdh7GvcmVceX/Jtc/aP0R9HE+e3HeP9tAeLtNElTSyO7ZtiPmejlFdv6R58iBcHVjfx2lf\nYdfYSUzHes+1+4ZjrD1qG/aoMbT3mlWKGjhpQbnu/N3LLzvtn/zFt5z2UI2MB1xXZZziafFn5ol+\nhbTO1D9X7bQHm+Sxel0Yf6ELiDX8LGqMMc10f68Fg/TcOnxJ1qjKvxV1JvvIAr5nX4volzofzyiu\ndOzR+47L58W8zVgnOz9CvSa7ZmRXLeZL7gLEs256BvNXytqwl2mPyrW2OHYbI2Ovl2qr2rXJAlSL\np/8k9ib+mXLOBvfiGcI/A5+XmCHrSf3v0MwZRVEURVEURVEURVGUaUR/nFEURVEURVEURVEURZlG\nripr6tmPVKXMdTK90pWFFJ3M5UhJ7z0p05ZS5kEuEqFUc5HGaIxp3k6WoWSXOmnZE7PMoo8sqEca\nIVEZypfWkGwD2E/p3wErhfDCK0g5m5xCStOJhgbR7661SMXi72XJizHGTNFnuNOQptV9QKaAJaRS\nSv4qE3U6ycKL75UxMnVr6BxS6ZLmyBQxtrtu3QGZGEvVjDFmrBfph0l5JU67v1naerJVMKeT9pyE\n3O11qGYAACAASURBVGHgtLQYT5qLFMiWd8nGzrIjjaO076d++qbTXj1rlujXSbKmXa8edNrrbl0q\n+rHtd1IZrostpxIWd1HmwqkGp716hbyHLGVa++0bcDwX5fGxBIZtVivnl4h+bKk+QZaf+bdXiH4h\nsqTb8Cf3OO3hIGLAX/354+I9aQuQollF88OfLlPNW/74F05728oVTru1R87t8iq8r/McvnfzQplu\nvOcZSD1W3gtZHts6GmNMZ5O8ZtEmnc5/qEGmjLJkJHgUMcJfJMd3YgCxd3wYMYdlf8ZIiRLLfGLi\n5G/ycQGkfbP8kKVLMZbkiv/tySLrdMu2NHcjLIA5DdZbIqWcIySRS1uA9HpbhsmSpzDZZLLFqjHG\nuNP/z1JI/09gC9vEFCmnqn/zHI4pCcdQsUZ6CIfqMHdcKVgb2j6WcXLGVqw1YYqtmZbMLEzp4Fsf\nv8VpH/gBZAs5uTKmd3yCNOJ8sv0+/oNnRL8Iye9YInHmxROi35xtmHOhFozF3j65J2jbi/WopByf\nlzJbprinzpHyzWhTsGk+teeI1xpeJ0trkv1U//AD0Y/tcstICtK5q0H0i6c9yOA5xJjWvbJfUhbG\ncbwf84pT220pHcuLWC4++3YpAW15E+t2bQfuSXFGhuhXfCvWSZazlG25QfQ7+0usrUlkb9r8xgXR\nL0y26rM2mKgSGcI+0mtJcfqqkXqeNBNjv/eslFQmzcSxx8WRVXWujClDl7D2jJP0KD5OSv57DsEK\n+rplkJT7KGW+a7+UJfoL8V1xZLFq27kO1mGPllKJ+dHTclT0C9G6PWP9XU67bs9rop+XLMZ5Txay\n1qZIP+3Xq0zU4XXYnS1lJmNBjGlfPs0xS4KcMgfxI9yF94z3y2cNZnwA6+Joo1w/s0iK2HME95Ql\nF8OlNeI9gVzszZp3Ij4mW7Fs99N7nfYckvzY+xEvjQuW6BRttaSiB3EchbdjzA1ae9TBWowfI7fD\nvzM8RkK1cvzkbMQ+zU/zwLaTZon+hZ04J1t6P7MQ68ZwM2STiQEpTbuwH2vNrHkln3rcc1bJOLn3\nH/7SaQfbP3TaA3ztjDFZq+mZmE7DmypLcfTVYZ1t7cD9KJtXKPolpn26zXb/KfkcxLbQ1wKWVSak\nyf1NN80DlrqnL5bSq3iSEvZSHM5aIyWvzW9ireA1rvrNatGPyxf87BdvOO1Eir2be+SeP7MIMf++\n3/+e0/7Bt74l+sX3YPxwaRJbNsnW15Nh7I0DpfJ3hEQqB8OyfrvshTtLxjkbzZxRFEVRFEVRFEVR\nFEWZRvTHGUVRFEVRFEVRFEVRlGnkqrKmcAgpf+GgrNQ/TCmAXNmdKxobI902wkGk7HG6jzHGpFBq\nKachJloV1JtOIB2U00ln34c0v55DMrW+5SLSWHMLkfpoO3rkLUJKIqfTj0aku1KQ3KTGJyC7qnhA\nplWxZGiEHAtGO2Tq4tWcsKIBp5xdlgWozVADUnXTVyJNLRyU1dGDB3Hd8zcjzfvcvxwU/VgqNBxG\nCjhLb4wxpjeEa3D/5+FQ8cy/ve2079q4WrwndBHHmrkKKYG2G4Q7D+liLGUqqJSpd5nJSBkNDuAz\nuo61iX4spUiqwDjtPybH8GC/PMdoEkepjJd+LVP+csqQMttHjim+ApmW3foOpINcTb/wNpnf2nea\n0sErcb5uyy2AU7sHWyDDSSuB+0xBxd3iPZySGROD34Z7evaIfhv/9FanXf8yJAYL18hU0L2/xvgL\n0zwdHpNz+46v3Ijjpnnvs5zSEuOvGhJ/Zzr3IxU7QOm9xhgzQjIdM4VU546P60W/gluQbsmp6HZM\ndZOLgZtkqBkLLVncebxvklzl/Nlyvoj3XGpw2pzGact82MUgdS7G6XCbnLOcEj1J77HdmthxwUNS\npt5qee4ZlpNQNLlMbnC2RHXu45DMXfgFpAaT1VLymLoYqc8/+/qvnPYXf/iI6BcT8+nSNNtJIG0J\n7lXtk3DpOd+Ktcrvlvfmge/+idN+fNs2p33L3WtEv+a9iBuJZ3E/cmbIVH2WwY0PYS6mzJb9OJ66\nKJWbZW/GGBMk6UfeX99pos2R7+9w2ku+vUG8VngL3FnaPoLULNuSd9e9j9R73guUrpAyzUvUb95D\n0IXkxcq/j8W7EX94jrDzo42fZHZd+3GsHLuNMaboLsR5z36skfY59dD6N95PcdSSNubdBCmcKxXx\n5fKUdNuRYqPowrKfdGvO8561iyQwpfdLGQPLPNv2nnbatkMMp/unUQp+fraUdrPrSM4NkHWy1Kh7\nUMa/hA7c9/J7se/x+aSUOJCOtXl4CPfaLieQQPKOpuPvOO3B81KaMUxy0owq7P9aLWlafMBy34ky\nGeR6GmqWLjZcfqD1XcSiOMu1jN20+s4h3qZacslwJ8bFiVq5tjJLU3AN2dUxUIJ1u/GNk+I9cSSF\niKO5bKw5kZ+Gcyq5D+OR1xZj5Pjm56KBevmM4yYpergb5+dKl3s2W6oRTRKpPEOy5cLU8h4cDgu3\nkGuv9ZyRvBBrhbsH+5dwq3xmGg5hDTlDe8/KPBkDZi1AHE4iNx++h+l5y82VyC2Ec2FmrpyzfX37\nnXZGBiSfoZB0w2T3o4qVkCm7s+S94bnZ14T3lGypFP3SLEfMaMOSqqFLUuqXT+5KbfQ8kVqVI/qN\nkARvpF5+BuPKxLqRXI71KidFSvnPNmMvwM90LHdq6pYSPn7m/K+PPuq0+61n0aqNcNdiaVlwt5Se\neouw30xdjPO1VWauNBxT9gaMPy75YYyM0Z+GZs4oiqIoiqIoiqIoiqJMI/rjjKIoiqIoiqIoiqIo\nyjSiP84oiqIoiqIoiqIoiqJMI1ctsODyQRPVcVDqr2ZSfRWuU9BzUGrwW2qhha3cBK3YxfPy82Yv\nhZZtgvTqx185Lvql+aGVHqEaE42vwcLU5ZH62KxU6NdcGdCUXb4sxXs5a6C9bn7zvNNe/93Nol9k\nAHrHppfOOm3bypZrdIwPQrudvUZqvH9LtBZlWI9s17dhK8XL42RtXCyV4v5CXMOaJw477YERqaMb\nG4dGtqIIGuaH/vQvRL/Fi1AjiC3zbl0KG+uM5dIulo8h1IprbVvL+cug55042uC0AxXSSpZrJZ17\nBRretl6p759J4yRzBWqejA3LWkSpeVInGU0qlkC7nmDV9eg/AR16zoYSp92xs0H04+vEmknWKBtj\nTALpy1mPH5cow0VyOa5nvAtjPRLB8dQekPM3QLbQXCuo40Op/U5fgXs/RLa8dq2NWcXQqieRzplt\nJ40xJkQ2qIP10LTHrpbzoXCtrBURbZKpDsSIVSspgex2hxtwzgW3yLoDbE3oJxt5/wxZw8aTA802\n124ZH5G2lByn2II6Lo7qSFixcoruQ/NriJWFd8r6RWw/G6KaKWxta4wxnWdgeZm5GnaLEbLhNcaY\nrLmocxEbi3Nq7Tkl+vWcRJ2xPOne+DszRLWvfFacDDVhbPE1y9sirbQPPHPAad/+2euddv95WXcl\nY/16pz37hsecdm/vftFvpA/n+w87dzrtiUnUgbH1+L/4Huwlv/6jHzntpqCsj5NMuu7KFTiPSI+8\nN1x7qOcA4unp7adFv/lbUWNh8AJ04nbtq8Fz8jiizdLvbHLakWFZ06DmSdQLqvwS1qQz/yprrM3/\n/DKnzXOi9nlZi4KvYfMrmC+5N5aJfkN1WE+5th3bih9645h4j3cH4sbUFI5h5riMlbze7T+Ae7LS\nSHjd7TuFWGPX6IuhGjQTZLfONXCMkbbq0abvFPY2XC/AGGnLm3szxm27ZVfPtWVS5uM6J6bI+olT\nEcwlrvFx8Ml9ot/Kr6512rt/vNNp814pM0nWOit5EHPC50ONiYkJuUYMBlELpuaXWFsDJXLvMUDn\nnrESa6Rd0yR5Js6x+W2MS1eOrIeRuVzWKYs2fWcxznjdMsYYfwHW9dzN2I/8ls04xZJY2usc33VG\n9Mujei8Vuagd5PXJfZW/FNfUl4dj6jlG9V6svSev7+Ee3G9vnjynPKqxM1CDe5W1SNYXMfS2ltdx\nf8as2Ouhz/eQFbldJ3BCbtejSqge9tn2PRyhGoCX3sSzWqx1/Rpo7Unx0b4kQdbKOV6P/eKtt6FG\nmq9Qziuu1eUvxv4onp5tJybk/ndyEvujhAScx/i4nIsDdVirI6G3nHaMVZsrkfZ1qXNRa86Oi7FU\nTy+WapFxLTdjZC2UWdebqMPP3/wbgDHGBHehdlfmOmys/EUy5nOs5HXHrknI96v1PaqJadWTWrwI\ne+DWesQKvk7rt60Q75mkY/jgN4jRXVa9r5QDGEtZmRgj/nK5n+Z6umkVeE4YaGgS/XgeBGifaz/j\nlN4/z1wNzZxRFEVRFEVRFEVRFEWZRvTHGUVRFEVRFEVRFEVRlGnkqrKmxHSkIOXdPEO8NnAe6Wdx\nLkgD2HLOGGMSUpFqyvKLkmxpr8nWvgOUCs+Wy8YYs+hOyGFCdUgfKr0bqcddx2rFexKTcB6dlFo0\ncFHKVzgVq7cZnz35gkyZHx9E2lfWeqR2sdWiMca46NwNpTfVPHtC9MsiC8jiOSbqcLpcTLz8PY7P\nmW1NU4uklGKg7ZLTLtyGg2y3UnrnLEX6MKf3sVWrMcZEyHY0n+zNWVqVPluOuclJpB8GinEeEbLx\nNMaYoTrc17wcpJnakhi2e1tYBXs/HovGGJM6D2OV5SE+K1U1/yZpqRlNRptxrHaaI6fGj5EMJGuN\n1HMMtyCd762fvO+0N94hrQTdlBYrLOUt+dMEybr8RbjXXSSBTEyWaZEeP9J5J9IbnHbOZpnez6mg\nOatwHnZa9sG3kNqdHMR97+iXdpwlmRhjbX2Y2+mhbNHv8jW2KewjSVL+Jil1mZrAfU2gMcjW5sbI\n+cxWzp58OR69ZKXN0rWxfnkN2Y6brZtbD0LakVUljzXOhaWjvhGSmvDTUjKVdR0kEiONGH/xfjku\n2huxniSQPGbCklJkLkY66fg47jFLwoz57VgcTVoacT9WWJKzxl8jhX7WF7Em7fjbd0W/pVtoHaN1\nqOgeuQBUv/grp52+GCn4bHdsjLS//PJntjrtn7+8HZ89R8pEd38C6c3T34et9v944nnRj+3l/WT/\n/uxvdol+j6zA3ObzyA/LuMjj2Uspz+EeGV/yt1y7eGqMMVNTGCNnf3pIvObPRAzsO4f09dSZ0p46\n3oN0++onIFXLWSJlIEWbIH/qPAZJEctGjTHGnYG17CxZxPrJJnRWpZRFB0iakrYActX2j2Uadd9R\nzNOtX97otBNTpBwouA9p2qmL8HlHnpHXKC8VYyHvFtwrlkIZY0zqfBljowlLmH35UtIQIct2jqcT\nlhy59P4FTjvUiLUhtbxE9JuYgAyhZQdS8Jc/vkr0q3++GsdH9vX//V//1Wl/84EHxHtW0zhwuTDG\nejr2iH5t72MflksSZt6XGCOl85/86GOnvfi2RaLfGElviu+c67SDh2XZgWtpwWwj9s3GmLadkHKx\nXHlqTO6DEsj6mkse5KRKeULRDdhXenMxZtyWLM4bKKF/4f741+P/W/YcNow3D/GMZdv956VEk+9X\n9uLZTjsxUT4XtZ+GfHX+1+922s179op++auw1kQiiFdDzfIZx5awR5PQBXxXrPWcUbQc47H3JOJD\nsmVzPnYczwU+F+4ny5iMMWbjQszZQBnu75glg85ea5WQ+P9gGZ2xnrk6dkH2yLbrXksyFefGnOCS\nASx5NMYYD+/DaI1jCbkxxiSQdJCf0+K9cm5z6YhrwXg/9lxxXvkTQfoGXM8RKuNhy/Zi6TeB4G6s\nJ2lLckU/3m/7CjF3YmdISWmEyoIsI4kqX5tekrgaI6XAG4aW4LgbpKyp9GGMJUPHw+VajDHGn41j\nj4SxTrB03xi5R7o8iQ9kyawxxtQ+h98Viv/mPmOjmTOKoiiKoiiKoiiKoijTiP44oyiKoiiKoiiK\noiiKMo1cVdaUufLKNhcuSr/l1N5uy61pqBNpiOxekbu8UPTjtPQgVVNeslCmjXMKbvm9qHAfCSNt\ncNamz4n3NJ76Db6HUh/dXr/oN3Shx2nPvAeVlCMDMlV/KgJZALswDddLKcVIK86d0/wKLfmLy0qn\njDb9VLnflS6/q/cYUp2LyGllNNQq+o204Z5w2p7tM/Xxh5BC3PHVG5325uuXin5TYaSMxZJEwlWE\ncTU1Ja/7wCWkawb3Ie023idTbj25uK9eclPhe2WMlF3x+Gs5Iccwp9s1vYqK+dkbZMpkuJdK4UtF\n1u9M3q0YM3ZqKt/DwttxD0/8RDq65MxDWt6cfEgcEq30yjg37ocvH+cePCRTnWMTkLqYEMD143gw\nSHPKGGNcaUhRzpqJMdF3WUoH2QUhowrH2lPdLrqtexSV+jlHMv+gHL/Jc5A+m0rp/bbrQZbtpBZl\nApSuGTxqjTNKyx+jlPzUeVIW4ElF2nv7ZTgfTFmyPZYsppZhQLbtk04yPA8ySI6RvhByy8iwdBbo\n3o+xUJKH4wuPyDl2fDtS/CtmYz1p+UQ6pmSmYJxNkuyAx6IxxjS8DkkoS+YyrfXEXEN5Wm4m7uGJ\nJy33nkeQPtvwAuQrt/3NvaJffw1kSeyuYTviFN6INS4uDufb75LSkRaSIWTPwv14aN06p11/Ws7f\nzfdCjtFJ6/Z3H5YS1PZmSGp2/OwjvH/RQtFviFwK4igGJFqSMy+5+Yx2Qrbcc1hKtYrvmWv+b5G1\nREq+eDw1vQpHxqI7Z4t+u7+P61H1AOKZndrOzmclq7c47Yb920W/xh1wLlx3x3VO+xc/fcNpr31s\njXhP7ly4AzXs2oHvuW2x6Pf6f3vOaWeuR5yrfU7Gg8pHq5z2/h9/4rTT/XK/FJiDONTxPuazO1ee\nO68N0aZnP8ZttyV5DcwmZ7y2T9+LGWNM428gRUxZgLkzNiLT1d0+vFa8FbF6clKmyWeuwth58i9/\n6bSvX73aad/7x3eK97gCcAbq7sY1T81aJvolPQQNRvXPXnLatlMf7xHiyNGk9oMLol/hIsT73jOQ\nBaQvluUJrmU8NUbusa4GOyjZcrzG7Zg76QW4HrYcJX0+9kF95xBHUwqltHpkqMFpx9A1dHkgTyhe\nL+1yWFI0XI+1b7RL7tnyboI0Y2wEeyS/X8aX5DJ8F7sTpsyWEolQL9wOXQFITHy58tztf0eTtOsw\nZuzSACzfzKXYaJcacJGElt1z505IiUn6SsRrlgB5cmSMqiOJYSJJyRLSIDe0nT3ffHW3015dCfes\nKcv9rqEO61VxAWJDyQPzRb/gXsh6UhZCJtr65kXRL2MNSf7JManzfblXSimRcz3acPxmWY4xxnR9\n1OC0kxdiDPJe0xhjfLTGj1ViL+srkq5yUxHc11GSkI22y3sSIGfYokrspRpO/9pp245Rl6fIZZfW\n8+ECuZflUglTE3hP1z7pwuS9A9e9lWStqXRPjTFmkp5t3STRD7fLEi0FN19dtq2ZM4qiKIqiKIqi\nKIqiKNOI/jijKIqiKIqiKIqiKIoyjeiPM4qiKIqiKIqiKIqiKNPIVWvO9BxB3QZfsdRzcf2OBtJJ\nZ1ZIa7TsfOgQa/fCBjB0qU/049oC+RnQl5lYWdUkUATdV2wsdO05ebc57YGBavEedxr03hkroT07\n+/xx0c+TCE1iw2uo5eBNkzU5Tp2FBrAyD+eXYFmeuaiWQIIfx2rXUeg5jOtcusBEnfLPQ3vOGn9j\njGl/F7bj3hyqedEva3EEyLJykiwM59wk6wJkkbUvWz6HWqUuu+JzOKZE0uUxQ81d4t9cm4evocey\ncWvbB/1tDtUSYA2iMVKfyp9h1w5ie77cG1G7w7ZebH4deu5yKRX/nWENebxb1tgJkE07az+Hw7Jm\nD1+/ys/CUrNrj9RWsi0va80Hz8n6MTmbYGs8WIvXWMPrK5Ya09Y3ECt6cjHu8y395cBF1LlIKsP5\nFayQtt/122Hn66LaOXEeOcdayB6xZAt0xAOWxWX7e5gPJfNM9KFLy7VGjDGm/yyOJZNsFUNNcjy6\nUzAX+TxjJ+T4ZivP0S7Me9t2mo/D78d8Hh2FfaUnNV28p3gbxuClpxBHS6yaHDmktT/8Jvo1kTWw\nMcYsL4cGv60HtR7mbJwl+rEtZaAY16GF1iBjjMnbGOWiT0QuWTm2WfbCLRQDkuZiLdz1N2+LfmGy\nw6yYg1o8sdba0Ew1rljLzjVdjDGmN4T723UQmuqF61CjoqpC1m9jXXcCaf3tegELH0Qdnd6fYr75\nyuSe4MJe6LA3rEdsaH2/1lyJy7RGjFg68+BBxKWcO674Ef9pOnZjfF+ivYkxxow04RoOBXFth9vk\nOpZB9R3q38CeITlfXhv/g5jP9Xvecdq2HXDxZsRBrsV271qqD/ShtJVNn4l4xveu51yj6Mf27XGJ\nqBfW3CPjeukg1o2AB2uGL1XWkmk6jM+fsw31h8JBWV8jeAC1jgrLTVQJzEZcinPJuTNM9zCD9gFp\nc2R9qraduG8pFahT03tG1nWaKsa9GmpAjPJadTyOv4m6WLcvw0agfBnmhCfDqoOSvt5pDw6iBs7I\niLzXQ23YX/G4tC3ZhzowThfdjb1WpF/uCYZrsQ8voL1c8GiD6OfNpz2WdImPCv48XPdQm1wbfFRL\nwptN+7RWWTuieCvmQTfVJBwfktbpHXsanHbBDbJuFtNzArXp0hehTk3wHGJyWoWsy8lzjmuhDI/J\nWmJJtJ/mWnnDw7K+yMQo7teIwWsZebLuVEICrlFPD2oWxSfKvfFIj9zvRJOEFOzjJ0Lymo+0YDxO\njmDt66iXx5OVj+syeO7Kxzp0EfMvgWrPefPlvEqaic8b68Y+/p0dB5z2TetkPczOfuy3Hvvbv3Xa\nf/+Nb8jP9mK/mX8bxp69X0tdTBbM9CwRmyjnbPdujFlfOZ5z/eXSVpqfq64FAYqBje/IGlWppTiW\nANW+6T0pbazHaN+XfQPtBd6W+7T4ANYrrofqL5PnnDMP+/6pKYwttru2ra9b38F+JKkC6wTHPGOM\nid2EtXC4GeM03GLtR040OO30pXju52caY4wJVOLY+6uxhrhz5X7f/h3ARjNnFEVRFEVRFEVRFEVR\nphH9cUZRFEVRFEVRFEVRFGUauWpezcAlpI75S6V9V3IlUrbZHvbIzw+IfjMolbN4AdJJj+07J/rl\npED+MO8hWDn2HpX2momJ+N7BDqT5TU7CxjgmRp7WOKXRcbpd+RaZMv/mkx867c13rHTaoy0ylXnF\nTUgPPr8HqVOLN1eJfhGSBrGMq9uyDI1YNnHRpo2kGmMdMuU4m6Qp9c/Bzjg8KNNfPWSdHu7GtU5f\nkiv6sdUhW2jO+aqUo7i8SDNzu5EaOj5OKYH5Mi27+wSu2xjZrr3w5sei3wpK30/pwrH2NklrzBm3\nI+V/uBHf658pU+o6DyOVePZjSIGcGJapm+nXWfaT0YQs7RJTpAwszguJQ6gZ51G5TsoY2OLNxVK/\n5dJGtq+a7CCbkTrsnyElSs1vIOVxxwmkcmfRXF4WlHnsniKkncbGQ+MTapYpyrHxSDVkOdrIkBwT\naQsx/nqOY3wkVUoZDlu3T5J9X1+9HBPJuf//LD3/s4RJVpgyR9phZizFfWDr11HLgi9cjFgST/aQ\nniyZNsnyt/7zuKc5S6R2cjSE9O3Oi/uc9v/D3nvGx3VdZ78LdQYYzKD3ThSSYO+9iKQoUaKKrRLb\ncpPlxCW248RJbpy81/eX+96b/BKnOE7yplh24shFVmSrF8rqIsXeOwmQ6L0P6mAA3A+5Ps+ztil+\niIYvvqz/p03OnsGZc/Zee58z61lPbhXiWUKClvCNk+px3iP4vIm+MdWPx+Z8SgGvW6ZtS4dp3K59\nDLG3+z19vTmO8hhmGZiIltkV6uH9oel4FfF08+9pK9Uuss1MJQlWaZW2W+y4jutRvAfzNDLkWLtv\nxDkbJqnfs//xhurHEkZOt048gDmacVLLc4uW4sSkL8a6WrC1UvUbuIDU3M/8r7/y2uee/nfVrySf\nrIu7MH6VJEJE0sqxl2DJS+XHtAVpxJHWxpoQpW9XTOg1OJMslWuKcO0Gr7Wqfou+st5rX338uNcu\n2q3jXjSK9ap84+30/zruTU7iXF97Ep/HtqUL93xavef0T/7VazedxPhb+5Utqt8gpZ77SQK6YL6W\nZow0Yi4u+S3YeR/87ruqX+VyWN3OkCVuYkBL7kI1OXKrSCR5X2qRljSwDezkAOJS59lG1a/sDsh+\nBq/j/A1f0LIKjq+jdI5e+v6bqt/WrdgfXjmDv3XlCPar1fft1l+E9K6pqTivo6NabnftZ+e8Nu9F\nRhp1qn7mSqyLU0OIDfFJ+vfY2s9t9dqRcXxG3modn+t/DPnmrZDeD17FGjRyTa/JWSQpSqT1ZLJf\nxwclf6IyDK5NN+9pJoYQU3NLtqp+gVKc+0AIMtmEasSspCS9zyhajliRUYvrndep7yFaXoA0Kn0R\n5nbq0grVb5YkT/HxmLNqnywizSdf8dqRAVzvTGePEReny0TEkoETuIYs5RERiScZJcvmU5O1hJat\n7Nm6OsGJKSw/SaRxMNGu90rdnRhLP34PFtlf2bMHf2dcx/6tdbgvSCQL9cJMfQ/MMmNlXe9Kk2mf\nHCBb95zNOu52k1yVv3typt7vD1/Ssr9Yw3LnjHL9nXNpP8JSpqkhLdtT9yTXEVeCtfreKnctngnw\nnj8hQe8ZZmbw+Zff/A989jV89vv7dTmT1YsgEU6rwD3JlCPt5ON7a98xr33vb9+h+rW8TOVbSNbE\nc/S/Dh5jZpzG41CTjtHKfvwGZTAsc8YwDMMwDMMwDMMwDGMOsYczhmEYhmEYhmEYhmEYc8hNZU2p\nlPra9rpOr0yvurFjSM1G7ZIRvoK0ss5epPUsLNG55sX3odr1xZ9AInGsQf/dXSRTKf8N2KkMtyHd\n2O+4K3F6dN8xkhQ56UhLypCydfwNpEhV5GoHKk69G6b8/kvPn1P9yteW3/A9k07q//D5W5umB78j\n7wAAIABJREFUlrWKHLOe1qlfLFFKDCHFML1AOzOwlCZI1cPdFLuaz0C+1LIPrgOuS8DI9Uv0rwM4\n1pUkDXKuz0QnOc5kQDL1W7//oOrX9ibSSQOUzhbp0eedZUldhzF+clfrsVlIqXyXf4BU85Lbdep6\nWpmW/cSSqTDS+g7+63712qqHkd7cQvN0+e9uU/0mB3H+rv/otNf2FWg5zIUjkOoNjeGcLSsvV/0m\nyXHmnk1If0+tQBrx6HUnbZ+uYW8vXlvgnLsoSRH96UitHG7pUP3OPIE0RE4v7BvR6a3VBUg3bqXx\nUf2QllJcfeqM3EoyFyEORCduImcklzpOERXR6ZBp5ArDqcMiWo5SuBoSpWhUp1hP9uMa51VjLI2N\n4TyFQlqyyY4BXCXfl6HlTyxt7H0XkgFXdjZNqcXsjsbV/EVE0ilNu/8M0mpnnEr9uWtvgaXI/0/J\nvVirXIeAjtNwIEuieOrL1WtSVq9O2/U+L6KdGNpewlzMXo+49MlvPaD6PfVnz3ntzSvguvIvz7/q\ntW9brO3HKml9P0+xetKJk6klONbTP/q+11748EdUP3ZPrH/tea/tZv12kVRtehzzvJdcC0W0e8Ot\n4NS/Hfba8++qU6/1HCS3l0WIvQ0vOHLsFbgmmSsQYw78/Tuq37L74QozEyWHRMfpp7AWMrn87STN\nq91BvbQ0IZncSpLJdSuQpdex0c4T9BH4jGh4SvXLXoE1eGoU3716g97b+fOwR7j8HPY+NXdpxzaW\nrpXrlz402STNmxrVe4wxcqtLJ7eOdCf2NL2MNX2CJKQs1xTRjkjXTiOWsaOViMgIyeAXbUGsaDmO\n89DXqPdh4/mNXjszE85c/dcuqH4ZC7EXHTiL+Fd22wbVr+MEnPGSyA1z1JE/tb2N9Y7lw6klelzy\n/vVWECIXGJbViYhEaO/Da3zBhvmqX/vbiGHDF7Av7T6lywgsfBTuc74QYls4rK9J5bKPe+3paRxD\nNIoxEgrpmNrb+zY+rxnnOtzgyKdJylT/Aq5x95uNql/JR8gFqAl7u/6Teg+YSy60LOPqOqidOHk9\nLtWq9w9NHEnmZknmKKIdUDOWYSwVORLa/uPY3xXsxGvxPr23mXWcKX9Fznq97l/7Pq79Nz75Ua9d\neDtimbuGz7yIY9/th0SxP6zdewIU17JJRniJ7l9FRIrW4Nqwy6Ir2+0dQtwonkRsbSXXIREttboV\nsFPhTERfxwhJJNmBmPc6IiJhcnadpXUiVK1jry8F8SwhAfchkYiWlEYikIEPnsG+tvEaxsvpxkb1\nHr5vz/dVeO3sNXpdZAetBcV4bdQptZBJsZfLo5Q9oPcObSR/KqHnGu59P8tub4RlzhiGYRiGYRiG\nYRiGYcwh9nDGMAzDMAzDMAzDMAxjDrmprClnI9Kxul6/rl5LpxSfzn1It0vK0pWlQwtRqT9yEumz\n09M6XaqPXJly5+E9q0XT1oF0xZT3yRmjGGmYKblapsFpSxPUTk7VqVi1DyONNeVZyG4Kd+t03r4j\nSL/2JyG1q+q2GtVv8BTSr7j6tlvZejyiXX9iTRxJJPxOdfR+qrAeT+lyoTrtsHD1LaRqVW3C+fA7\nkpjjf/U6/i6lTpfcpqv/p82DVKWb5A7REaS8Z6/R7kfBGqTERYtwzvj9IiIJ9D2C85AuOxvVkoG0\nckhpinfi+AIlurr/4EWk2BXdhlTLnne0k0ziHi1ziiWNhxu99sYvaVeBrrcxNzntd/Bql+rX8y6O\nd2wY8+B8gz5/Zdk4z/svIo3/5HUdA774yF58xgnEgOGLSNvvGtQpyns3Q/7U0ou5PM9xB5uZxLXq\nO9/otSNOv5LFSEP87vd/4bU31Oqc3fcvo2L+Qkpd7HpDf6esSp12GWsmSEIUn5Twgf0CRUi39mfp\ntPkekuBxFfpZJ6b6c5FOGolgLIx1a1lTZjnO1fW34ALE82Ameli9hyWBCT4sI9NTeo5xGmzJR+CO\nN96tZWfsFsTuIq4zWVIa0rLzSLo046RRj/eQK50O3x8adinIWaPTqMu3Io6Mk4Qva7l2a6rcgznM\n0oW0Ui3vyyYntYxaSqsd11KU3BDWP5a9feHeO712T5eWNMzO4JyVFNI67cialj32qNfuboRcJylJ\nOzkMDR1Fm6S64SHtEFi+E3EyZzn2GAOXO1W/GWcsxZqNf7TLa/ee0JIq3t+00/4mPK5T0UtIcjhO\nDmurP7VW9Xvne3A62vV1/N02cv4SEckqR4p0ad09XntwEOe24+Al9R4fzfO6R+A8lJmpHRJTc+Eq\nlLEEsorRZp2+3fBDpOWnL8K4aDysY2XVNux3UmgfNNqkPy84T4+TWNJ3lmSEFBtERMrvheSk4x1I\nA0LztUy9aCcCRBs5W7a8dFn1Y7nI2t+E9OjcfxxX/XgNzl2H8V2wpcJr835QRCQuDnuW9sv7vPbF\nJ0+rfiPkyrb9T+AmMjGmx29yCOdimtbSqnt3qn5Nb0EeM0txI1yvZTjRMO1Rd0jM6TlGZQkcCWiQ\nHGNYejU7q+UoU8PYVwdJuhZ/Tcc9jt8Tnbje+dsrVL9AAHvj5GTsI1NScE37+rS8KCkJYyQuDvc0\n/hz9naYnEL/zF5DUeUTfCySRG2OE7hviE/Xv6ix/rfgYxn3BZi1F5/EdayY7EOev1mtZSoikf2Mk\n+wu36liRko5+vYcxpqcdCThLnwMkweN7PRGR2mUVXttHMl52ees7oWVvs+yURDLRsUl938b7rQ5a\nI1juLyKy7+co27BtC2RSjZf0nK1Zi71DAsm4uuq7Vb+q3VrOF2t4nCU5knp22uK44srK826r8Nq+\nTFxTlqKLiITJmY3HdNv+RtUvm/Y+LN/PS8d8u3e1flqQlYE9dGoB2kmp+p51qBHHtOBhyI+zqvTG\nseEXuI45tPfs3q/vA/l+e4zG92ijHussrbsRljljGIZhGIZhGIZhGIYxh9jDGcMwDMMwDMMwDMMw\njDnEHs4YhmEYhmEYhmEYhmHMITetOTPRDQ1hOKx16L7z0MFNUS2PnDqt5x26AO1hiGp8jLdqW7KG\n09Btzd+ka7eofl2onTB9CJq/jV/a4rUHL2u949tPHfTa8/Kh72xp1jbQ6a3QV/syUevg13SgZF25\neDPqKLCVnIhI9kbo0vykd3St2xL8H1x7IhY0PA2byzjntfJ7cPxs19x3oFX1S/PjfLCt3fBFfQ7D\npInODEALn5Csh9p0BOcgVAs9L+sJ3ZocrOULlGAsJd2lteas5x6ux/FxDQgRkbQKaJlZj9r1TqPq\nl0j6bdY8l/2GtlGcGtGa1Fgy/27UIhi8oDWoo/S9uKYQ1wUREcnZDEvwwz9BDRG3jkLxpgqv/eVV\nGMNHXtP693ffQW2CdfNRt2QwjONZtUDX4ZmgmjH5GbiGwQpdl6Cf7PImqH5ISpG2IB48Dr3o7cug\nF12wXFs0plBNquHziA9s4SwiUnTXB8eeWBAg69xws67H46P6Kp00BvO3aN14NHzjcTblxCm2pWTr\n+VCtric1nkE1tHICciPYlltEJJG18KTzdi1YufbBwDl8Rul2rQ/uvYT6Dr4KaJRHnHPUdxzHmkOW\niG4NFtb6yhqJKUlk7936vK7/kTYPY7r1PI51+Lque9CeDO3/NK2fdV/dpPr1va/j8K8IOLVptv0W\nathc/U9YwnI9s6IqbYf7ztOHvPauR7d57Z73dA2qlpOw4y5ZjoITjUeeVf0yalEjbMlv3++1Lz/5\nqurHcZx/HwqW6e/E1sW3gqZnYL1b+cAK9VrLq1gzF35lvddenKDjz0+/AWvxdRthYc71L0REUigu\nN/wU1+cfX3lF9fvbvYijCcWIBwkJWJ/6jugaCfnbER+4PsfEhNb3J1M9wEtkfb3sUV0fp+UkLGIH\nDiOWpwd0bMhZiet9/T3UXAg5684A1fiQbRJT0qkWQc/hFvUar9XpC1Fjh+sc/FdH9IvnPdys3n+w\nJbU/G+di8adXqX5xiXjfwHnEvHk7UP9psEfb7Y73oA7HiR9gbS6qyFP95lFtrnAjvsdIk46TXP+o\niGobnPj2U6pfJe1hwmSznbPasZt1bH9jzQTtYeKceipJtIZw7YjW17TNeP7WCq/NdbcmnH0f1wpJ\nofUqo1Sv/VzTpr8fNaP8/jL5ILgOF1vxDp3T9yTX2jAnOEZX5esY3Ul1AovpOg45e8CKjy/x2jy+\nA856XLZX2/7GkuBC1PnJySlVr7W+jvgQP4jYGHJifqAMNUTeexrzYH6Rrj85RucsQvMgIUXfZ2Qs\nwfkcPIu52Pleo9eOOrE6rQbXMI7qhLi1ZPrr9b3Pr8gv0/ur49eu4RjIXn3BVl0XkdeM0QbM5+wC\nZ12Md+/iYksZ1QZMSNE1Soece+tfkbFYj9t+quPDtvFc51NE15lpfQZ7qaZe5968COPCR9bcAYrx\nafF6bc5ed+OahD5foeo3PY51I1CMvxON6hoxNQ9i79N2+JjXLtih66m2PIfv0XsU5yFYlaX6TTjW\n2i6WOWMYhmEYhmEYhmEYhjGH2MMZwzAMwzAMwzAMwzCMOeSmsia2IV7gpCOxXWBaJdm5UpqRiEik\nF+mQiSQHSq3QdsVlaUifuv/jv+O1H96zR/XLTIMNVktf3w2P200pritBelOoBt+pNFtLH1reg1Vk\nxwDSz1Y6qYGcrl69A6lpo406tTS9DulcLBniNE0RnS57K0jLwTlL8OtLznbX6dVIS3TlHpfeRKpW\nHr2WUqRtyerWIv2QrS2HL+s0tbbzSPcqXY7rw+Pn1X9+Q71n1RKknWaSNW32Up1m2vIq0tXzN+G1\njAVacsfpgaOUBsxpcyIidIrU2IqO6nHmy7h11zGO7MEnu7U1LVvCZ67CeUkK6nHW9jLsFuPpSy0p\n0+fPT9+fLQyXrdRpv82XcQ05nTQnHXPs736ipQ8PbNjgtdmaMFCgU0F5nA5eQirluf/U6eDnW5CS\nuHsH9CvNF7RN4eL5+PyCXZj3rqVp71G8r0Kr1mJC/1mkM2fU6ZR1thnk9N4pR8Y0RVaH11+FHKjy\nTm2x2NyCNN5gL9lx6xCtLJVZrsSp4R1vN6r35K3HnB2+gLk92a/T31ku6M9HrOg8cVb1S87A8bHN\nZXqNHhccH3hs9h/XUo+i3bdOnpZWibTnU6+dU6/V0jyo3o5jcG0U2baVJQlDDTpd3VeIucgSp8DD\nev3seA2p04s+j3lw7YkzXjtjmbbzXklWmO88AZvImkKd9ptRjX9feeU5rz1ar6VabH3qz8dxD1zX\nMhIeY++9+DL+jiObqfuytoKONQHa0xz+y9fUazX3IP3/wt9DFu3G+Lu+tttrs/Qj4syDAMmC6zsx\nz4+dOKH69Z+CFJHlnKNkP3u5XY/1I49DIrdjFyQ2o0uHVb9E2mNx7D3++EHVr7AEcy6Jvu9Ag95v\ntb5yxWsv/xykUZ1vacvtoju0tDWWjLRg7oy3aal8/sZyt7uIiISd8ThCcp76I5hHFYtKVL99/wor\n8u0PQurmWnhnkFX3wj2f8do9Xa977bFOfaz9x3BNc9Ox32TrWhGRgVOI6TO0D8tYrmUFWauwD+s7\nhfFWdv8C1S81H3Og5zDiS/xS/bttHx3fvJUSc3g/N+JIQFnezmsDr4MiIr20BoxcJamLYwfcfRpz\nLJTHUgi9F7j8/DNeu/JOlE2YnMTfmQzrPT/LDyf7EAMylunr861v/anXvm/XLq9d68h3WNIcpfWO\nJb0iImPtWF9Ydqs2ryLS9gbmbN7H9b3Vh2X4PPYBE44EKDEB1zBnA+ZVSr6+fxglOXJFLuZR9mp9\nXgIkVeN7zJy1Wk6VSPtILmswRvdqzY1asl1B8tymDqzH5Xn6/uFyG8YBn+XBFi2v3LpwodfuGiKZ\n1KFG1W/B/dhw8h7cvV9sfw0SsYW7JOb0HKJ9hnPfz/dQ9AhArv/kjOoXrMYeKX2e3ucyk0O4JgV3\nQrYXaNASoPdfwzrZG0bs3LsXMvB4n763ZTtyvtfrb9J7Ty6p0EtyrLQyvcdKTMXfDVXhXnmKSjWI\n6PWunyS9047cV90Tb5FfwzJnDMMwDMMwDMMwDMMw5hB7OGMYhmEYhmEYhmEYhjGH3FTWNEnVhN0K\n6o0vQuZSQtWK45w0uvzb8RpXZu47omUHF66iKvkffgapoMGUFNWP0+VygkhJDFMqZNZSnb7ty0Gq\nYcerSAlzJQ185DXFSG3zOzKXinWQRQydRtpb5hqdDj5LFaKnp5BCzi4qIiIFO3W151iTvQbfxZWd\nhRuQ/jl8BWlWfZd0Ve4kSks8/SZkQ9lBXSG7iFLL2t5GenMkqmVSnObYfgapZJlZ+LxrXTrdcNen\nkfuVsxTnrGWfTqkroKr9Q1fxnfJWaKlDairS6II5GD/tx4+qfuzWNTWMdmKqrmQ+O+3oRWJIz344\nqGSt1Sme8eRq0vMu+l3t0OOskpwARimtPduRew1fQfo6u6rNe2Sp6sfzKnwR70lOw5z94h13qPcE\nSVaYTCnzcXE6FLGzT5BSCNk1TETktZMnvfYWSh+tXKMliz/8a6Qo37Od5BJO5fvhTi0FiDU5K5GO\n3HdaX58Emjss2ek5qB17krNxfudtQ9pz5+taTsBuWCfIMSC7UKeqXngB0pxhcu7iOV9Vq1P8r78N\nKQVfk/KHF6l+LNlJp+uYlKTlStEo+kXJ8Y3T2EVEZkiK03MI6cMpBTo9Wjmy6EznD00KOVrd9ns7\n9Yu0/vlCiGVTy7QU8dL3UO0/OQnXPTk3VfXj3GFeS4MF+kt1db/vtXMpfbu9H+fhve9eVO9ZWIyx\nmOpD6nSwQo+PqTEce+FmxNCJOi3V6iBHjtI7MA4m2rVbSmIA1zQ5Ed/dXSPe/zZkJA98516JNXGJ\nuFZFy/X4ZtfAuq9Citn4tJaxtT0HWWHxfZAVuk5TLJOOTmMMf/6BB1S/Hzz+gteeoWvP7iR8zkRE\nvvkPX/TaLPMpW7ZX9Ttz5nGvzU6K+Su0RILHHKe1u3MsZzXO2Qi5kORu0jJZd58VS8ZI7uXKp1iu\nGR3DvtFdp3l955jpOgPe8QW4daTk4vwVzdPneXYW17e9/iX6f/TpP6Fj/0tvwJnmru2QiE10a0cP\nlvvmbsF5DpTqFPwZ2m9OdGH+peTpa1j/xHGvzVLLiJOqn7f5xhKxWDHegX1GnOPSGSzFnqH1Ncw3\n1+U0VI1+s/T9A44jUAK59vS3YNy27j+u+qUW4vof+vMnvfaaP7zHa6ek63uNqSnsN1mSNHBGO6fd\nvxtyyD3Ll3vtpCQ9t3uPYu3n/VbLGw2q35IvQWbXewL3VunVep2dLNRjOpbw+sSSTBGRsWasFb4s\n7F84zopox8kh2ouErmgpYg454XKsvfRDfQ2zSRY9fB2x8emDkHKurqpS7+E94Yq9cADlOSUisoDu\nZwdJnlORp2U8bbQGV1ch1vZ2aklcLzsz0vIxMajnYv6mD3YLiwUspZxwSiikFiJ+DJJTb+ZS/Z0j\nAzjmaz/FHr1kr3aoYscijsM9Z3V8LMrC3F6/Fc5k/Fwi6rjlFtZib9bfg+s90qz3LYFSBGYuz5Cc\nrp89hJsQKyJ0TVKddeLcT/B9Fz6Ie6auNxtVv4Lbb37fb5kzhmEYhmEYhmEYhmEYc4g9nDEMwzAM\nwzAMwzAMw5hD7OGMYRiGYRiGYRiGYRjGHHLTmjM9B6DpTwrp+hrFWyq8tp/0t4l+XSNgkuwlx8iu\nOClT147Y9HFoJvsOkWZysa6H0bwfdRWSqSYC10Bg+1YRkWvPXfDaSm3crOtLZFWiJkKwFu1JRz/J\n1rEFO1HbomXfVdWvkM5R+Cpqcvjy9PGNtdNx3AL73mA5rMKuPK41mZUfwx9kC8yKe7Tlop/O6cF/\nfM9rp6fpejysG+RaRPz/IiLRUWjAzx2AjpgtPj+ydq16z2s/fNdrr1uNmjhc20dExB8kK9Bl0A1O\nTejr3dUO+9iMUhzreIeukdByAnVc5m2Drn2yX+vBR1ugZSzTp+9D0zeAYw+N6jkh0/j+oUX47ivr\ntN74tWdRl6K6AFrpo+/oOgorVkIXyrrIC/9yRPUr3FbhteOS8Jz3uVdxXqvytYVkPtUTqbkXdSma\nXj6p+k32jN2wneVYK3/jvvu8dqAcuvvf+dZ3Vb+9a2AvnJSJMTF2Xet+az6m6+rEmug4xr1r1TfD\nNarIxjrep3XZs1FEsXA99MzxTv2co/WoM8P1PH788luqH2uk//6nP/Xaf/7lL3vtixca1XvY9thP\nWvjouK4bkkznmus+jIV1fZzcebg+fT0Uo5waZlGyI4xPpho9k1oP7ndqK8SS1/9sn9fe9ce6ptKZ\nf4C2OW85akPlrdc1YrjuSAnVynDrYbS/gWu4YDE8bK/+XFs/V6xEfYMnv4O6JZ/4fcyPxb16HWvb\n34i/QzVRUktDql/PcVqPa7Auuhp8rvkxM4PrlLlS12VgS+fFn4L185RjNenWpYs1bHkcv0jPsbEu\n7FXi41GPZ7RDWyDXPrrCaycG0K/vhD52rumz4i7EmBMvnVb9NtQi9h68AttbjqMNTi22WYr/pRs2\neu3x8WbVb7QJa8iixzDf3PoiXIfuje+97bVv+4z2+3zzf77itbd+A/r+IadeXfp8Z72KISNk5x4Z\n0PbllR/Ftek/j3gz3q6voY9qeJ1pQu3DHRt0HSKu1xLIwpju7X1D9cvJgb+tPwsxnusxnjp+Rb1n\n8wJsGJoaUG+hZq2uS9B/ATUOg/NQhyHRp+sjDF7FZ2QuxtgZqtd26BUPY/83eBGfHb6qa3wU36nr\n9cWarGWo1+jWRewiy+GkdMyj4Qv6OmZXo+ZcsAxxqun586qfn2onpXQhJrp71IPPYR2apYJBK6LY\n5/n9uv5H9xnU9cpdgrk8EKfn7NIyvO9qJ+rRFGTo+jgVYayzvDYUb9E19XqO4F6Na/Z0vKvXWbce\nZyxp34d7sOI7df2nCZpzXK9j4Fy36hcowdqz9D7EyXRn39dLa1IP2byPR/Q1vHT8mtyI3ctQS8a1\n/Wbb5TSqudVC9cVERNJqMf/irmP/29+ja5rMX4S1mWsJVu+er/oNUw0X3vMlOXsq11o71qRV4n7R\n/Vutz+IccO3DwDw9buvPII4u3IJ5MOPcq11/DvMlqxbrRJZTKymb6gq1ncO1n78X9xBu/aKeZtwv\npmRhj5u9TO8puUYTX5/xHn0fyHvPt59FjbDt96xR/bjOzGQf1qSCXXrOTg3pddfFMmcMwzAMwzAM\nwzAMwzDmEHs4YxiGYRiGYRiGYRiGMYfcVNY0Qyk+SaXaLoptBjkVKDmk5Uqcmhycj1RD1/rPR+nv\nbA086KS9RSgFLUgWrjWPwI4ukJ+l3rP860jTuvCPSEdiSZKISO8hWJkNkNVh9lptNZlLFsAzUaR2\nl9+rtSxsYZi1Cinug2d1imPWcm2NHGsa/v3UB77WdwIpgZE+pFm1vawlWj66rgu2Ix3PtRG79DRs\nrdlCNWeLTuufoHTS9Z+EpG3gNFI8pwa1NVp+OsYM23MOd2u5UsdBpLEWbkDa27Toz4sny7jhdkr/\nnNGpd6UrcOzTJEsZa9PpkKklekzHktLlOIbr+7WNYm4+xndKEVJ2+y7oucP25SW1SCNOuqbDQFsD\nxueVC0iNr8jXdnkd7zTe8Fi7h5DW+cAD29VrV44izXRmEnEj37HqHO/G2Gl4BtczlK3H2+/87d96\n7f/z85/32n/zzS+pfpOdGG8hsvPOWa3nnptSHWvYPpu/v4hIPNkC5q7D9eZxKiLiy4KMiNOARx2r\n27vIbpJToi+8qtO891+65LU/TTIxZtkmHdvYYrf/CGIIW+qKiORQbMvMhOSiv/eA6jczg9iTkhui\n/9fSmeR0xKGpeMznOEfSNT2p52YsYSvjt/5cy4uCKVjHxsnmd7hBywnS0nENee1LCuo04uzlSENv\nehNpukMNWnbAqdmP/eUnvPYz//fzXnsDWVCKiPSPYI7VkMyx/6CW5CSkQqrMYzExoKXOfbRm8rqQ\nPl+nKF98HDbifNzVd+oxVn8F6/EGiT0D5xEfI4NaEtPnrNG/Imuhluj0HsO54jk764SR274Bqcv7\n333Haxdn6b1KShDje/cOSpemz5txPryV0u3HN5Lt+coVqp8vB+Ps0r9BssHrgohIxUNYM7cGsTZf\nfkHHjSW70e8SXdOsRVrK6s7NWFL2AKQszT/XVvHt70E6xMcQrNbnnNPhQzR/3THB8rFQiGQRE9r2\ndXQU8o6+s1g/D/4MsuA/+8EP1Ht+4667vHZmGuJ45YiWVvlSMOc4pow48tzi3ZCVDF2BXCLNsZUe\nugIJ2gxJabNWFqp+7b/EdypxnIdjwcA5zLeMhXqfwWUK2N46Z4Veu5OTEWd6LmGssgW1iEhmHT6f\nJRxjbXofWVeB+XzqKvYtox3Y34zFaUl4/jLMiZE+ssF2Si0sqIasiWUwHYP6Oua2kJydZDRTYb2X\nZfkNj1OWEouIJN9CSUweWTxHhvTx8T1U52s4lwW7tWwvrUSPz1+RkKTLJ4x3IOYNj0H2npeXqfr1\nXoPca3AUsXFdLWR645NaCpVSjDE2SdKTrDV6Tgyexpjl/VXZ+grVL54k/8m0d+s73Kr6sYTIl4fv\ny7JLEZHhy5jPskliTkoB3ds7e9Syh+q8dvg69npjTVrKtWgX+nUdxjW4dkjL7IprsO/wZWHtG23U\nn9fZhDj15P79Xvv363BNXFkTxzq+Jxxv03LItCqMmdFGzL9rB7UkrmQB/tba5bgHbiTZpYhIbSbW\nJJbacmkTkV9/ruBimTOGYRiGYRiGYRiGYRhziD2cMQzDMAzDMAzDMAzDmENuKmtKLUd6OctQRERG\n05F2xCmjrS/qKvR5W5Dq1rMf6U3527SMIVhG0oxFkD/5nZRElm1wJWR2CFDuR6KrIg9QKneRI2Eo\n2oNU0K63G+nvaFee4YtITyrei0rUY606FYvTw8bI5YHT/0RE+o4hva18ocScik+gIv/2dkyGAAAg\nAElEQVRkv07V7XgNEhl/IVLp3GNsexVprf2Uvh4m5yoRkXV/iPTtnmOo2J23Qlcmn52BlGKSXERS\nSaYx1K9lOfM3IRWRJSBpTqXwIKWqDjQ0eu2KlQ+ofoklGFsDA0g5npnWsqb2lyDxyl6PNOOmfXqs\nl2bp9MNYkrkUqeIXD2nJWQKlxRYV4BpGprUkZNsOpLnvfxsuIZkBnTLa2IO5dM9H4NDRdLxJ9btO\n/XKCGOuP3gnnjkRHptHWDzlGystwUWOXLhGRyiqkLAezMOdd56Lnnvw7HA+lTCY4/RrbkYIaaMF4\ncavRc2p85TKJORmOxIPh9HN2uRt3Yq8/G9dr8CKuAbtyiIiMtCBF009psmu/uFn1K3sL5zqZxnCC\nH8sDu6uJiIxTPKv9HHJre05pyZ3Ph8+emkJcTk3TktL2E5h/iSSjGXfcccYoJTVAbleuvPJWSinm\nLUa6e856LTtIzaeYT7LWvqM6hTlnEz4jQusTO76JiIw0IHU4ZyPek5ykl+4RckGrJxkru1dMOanm\nO7+1h94Dt7Rwv3YpWPEluOY1v4D5UbFRy5AuvQSXqKII0pXdOVu4CWt/63uYs61v6LGz/es75FbC\na2Gc8zPV/EfhjMUOZF1v6bTs8gchYxi+hthWvFFLirrPIq16+5/s9trsOiKi1z+W+BZsxXwp3KWl\nABO92J+UrYJ72MiIXp/SqiCLqL+EvRg7SYmIRH6KtYFlZ7lFWg7ErivzHsIeY6RRSxt9QS01iCUJ\n5NiWuUI70bDkfPgc4mTNY9oFsv4/IMlasATnuXin3rNMjWG8tF56yWsXVN+m+sXH45gSUhDLVu6C\nrLDu/UXqPT97+WWv/fT3vu21Oy91qn7Fy5AK30v7aY4nIiLRMcz7/qOQnfYd0nEoRI6O7JgUdq6h\nv+DWud+JaOnkRJ9e71JpH82y4673tRtZ5r0QP+YuwHjsS7yg+vkzMY7He3EO3bXGT/KW8FmM9atP\nQrq/8NFV6j0D17FPZmkPr6UiWtKQNY3zXuXck4yQdCSd5FgJjoRjiCQTBRRf2WlORGRqTJ/bWMLy\nHVfyOtGNv5uzmSTbzvcIpmOOhIfOeu3eM1piwg6tlRvIFdaRe61bRHGc3Hb4elQ4+6ZRkiMnpeH8\nufeB7x2DpO2ex7DnZdm5iJYtj5J0Li7xg3MjZskJMXxVz0XXwTjW9B7CnGCpo4g+5v7rGHOhPO3w\nyOUfCjbgXjLoyC9ZVnjsuRNee36dfj6QRiVMfu+xB712+0XExwX3a6vjjrcwZnifnxjQjtLsRBym\nfWOSI/ftv4bvW08OayuXaCe7Tnp2wK6ceau0jMl1h3OxzBnDMAzDMAzDMAzDMIw5xB7OGIZhGIZh\nGIZhGIZhzCH2cMYwDMMwDMMwDMMwDGMOuWnNmew10Eh1v6vrTbQeaPTahSvRL92xmuRaNSn5qHvg\n1lEYSGBbMugJXeu/yAC0nyNkezVANmlrv7JFvYfrN6yoRj2b3iNaf1t+P+y/Ukup3k63PlbW6R59\n/H28v1Zb+02TXi98EfUkXAtdibt19RFEtO1e5xtaM19wO/SaftZKOjUb/HTtuC7FAFkxioiMdZPN\nYDs0vM37Tqp+A2TzXEA2ynztU8q0jpFtFCf7of+MS9DPGFlPmlGCIj7Xjz2t+oUqoT3m41FWdSIy\nHsaYmyRrtFS/1vO6xxFL2p6FdWB2UNfXKN+JWkmsxV3wG7poyv7vvee1K/OgX27u1d+XLXaffupN\nr72sokL1W1wK7XAe2VompeO8sDWdiMi2HdAAP/GzfXhPog5FbCm5ohJ1AAY7tYXwKdJ3bpqPGgFu\njRSuiXP+PZzL5WQRLyJS9mCd3EqS08lquUfX9mAL0aGruCauLjs+Cf/OWY3Y239aW7r681AnIDUf\n7YGLupZT8Z3QzPLf5VhbsEVrgLlf71nEFK5tIyISjSIe9NVD+59drWsuZC+CLjnchuNztesZS6AP\n57oybj+OPbEmfRGu00iTHt/DV6BLvv4+NM+rv6Lr/Fz/MeoWZJJtbcE6XXSs8wDqKrD1pr9Ex4Ce\nw6grkVeMuHb/V+/02sd+fES9Z/TvsK6V7cXc6XxKx+rRNnzH3PVkL/s3v1T9ylbgGvK1CdfrOdt4\nHt+jeh18eeMT9ZpzM01+LAjQGt/yqq7jxfV5xtsxTxd9TdfB6b/U6LWT0jAGIxE9x7juABOq1TWo\n8kq3e+2MUtTgmRjF3G544jS/RYrvwvxtPIjaJdMTep/xxs9gX79553KvPXxVXx9eDxZvQE29yS5d\ncyGf1u0uGqfJ6XpdnByhmgkfXHLrv8V0BN8xUKL3C1H6/hzLOg/o2kYD3agDkZmDz5ie0jUBuP5C\nZinm6UDvwQ88vnGKQzwn/vhBXf8u8Eef99qjDZhv2YW6Xk8K1dbKpBoxna/r7xQoRT0uP9VpdNeS\niR5c0+QA1XPs0XvjdMfeOtZk0uf3HNN/m/evU8Nos02tiMjICNaXQbJQ9js21i37EHt9uXjN59QM\nTKQ6FavmYZ9csBZ1xvyZOg53nEXNGb5vcNdFrp0z1ow1crhHr1vz7sN+JCUHn9HxtmPzeyfiN9da\n6jmpx0X6gltXryTehz2cW9ty4DhqdKQvxTEkpuj6H80HX8fn0VjNWqzrSflzcS663mpEv9X6Hozr\nWQboXpLr4zQ+qe3QhWyxp+l+JLRAB6/tmxFDZyZxzt3bOa4px2M2WJOt+vFeOaVYxzImOd3/ga/F\ngiGqNxXI07WmuAbsgk9hL993ol3145MwFUYcnYnqep5c52nRGtzH/OK5d1W/NVXYJxRXYS6OkNX8\nRI++T+d6NgGKm+6xTlHtl8qH8Z0SXtLjovMC1uAFxdh3T4/qdTYSxb8z6R6z26kvFyyga7xbfg3L\nnDEMwzAMwzAMwzAMw5hD7OGMYRiGYRiGYRiGYRjGHHJTWROnxbL1m4hILlkttzwDW+TpGZ22lJyK\nVF8/2/z26hTZFHrt3Z8iTXTtrqX6gCl1OGcNUthSGpEa6AvpVMNBstmOjiAtsvqhTapf/1WkCg6e\nhMwqMaRT5hMqcNqy0pD2NdiqU9zbG/AZ1TuQHuza6t1q+k/jOEruqVWvceov2z6e/Uedqrv4C+u8\ndlwCUtbGHGu0YZI7FGyt8No9R3VK1wyNk4QUnI8xsrHj1EMRkTj6d+YSpDn2kPWbiE5Ti4SQXn7t\nWW2pWHkPUpNP/hw2bsvu03Igtnlki7uMlTrV8lZS8lEc63inTn1lmzgeWwNnulQ/ttVdsglpsLWF\nWkqxg1I5WZY42aPn7CyleQfnIYWQJYu5G7TF58BZXI8HNsD6smNA2wV2DWE+d5HEyZVgbazFeC7a\niDT7i69fVP0KMpDSunwLZFK9jrXoGFkZV+rQExMmB3AO4x3ZBssi4uLxWt7KatVv6DrmUvgazpsb\nVzJqIAFiuWGgSKfMRkj2mUwyrySyQU9K0e+ZCiM1NERS0Vkn/g+3IhWU0/qHOupVv8xijMGReMRr\nv5NWO3geYzo5A2nos44FKceoWHPtecSRmoeWqNcO/xvi5upHYNnLUjQRkbZusqGcRJp398nLql8c\npQcX7sY4GK7vU/12fgVyG07vPf0zxLWt39ip3nP9CaT3d/0S0rTN37xd9bv6PVgNpy/BsVZ+REsA\ns2swF6/8+C2vXeb0u3y60WsnBWk9X6n3GD1HEddLtHt0TOC0+fC4TsNPbsdcSs7APOg6ru2pEyiV\nn+cvW5OLaPlE0S6kaKdla7lgZz3S+nn+TZCMt+RuvYYHKXW6lyQh/Ud0+jbLUC8cxvxbvEVbRvu7\ncKy9JIEMhLQ8pOlpzIOiPZBWuXbjLJEurpCYMkR7u+lJbfuavRyyn1AtYlRiqt7PlZCMoeaue7z2\n1JTe20T92JsMtmOeDpzRctKkDMTQbJL7nv8eZIW5Swr1e9Kwx8jfWYG/OabluSomk5Sz5F5ta8/y\n5qxl2Kd0H9D20zm0r7/+c4zZYK2WXCT4dPyKNeEmrGOuRHWYSgKE5uO4khx5R+dhXJPijbC4bt1/\nVPVjiVHOcsyJgcvatjx7IYLOWBPWz6yluHYpKRXqPcEqSAT52vcc1fuMSdojJWfie5TWadmRK8n6\nFUU79Z6g5SW6B6Mxw+UIRG5tBYW2fYgpGU55C04DmKWlOjqux3egBHK8ocs9H9hP6DNKSJLrT89S\n3brHIFfl+Nz4n+e9tis5ZVn+RAckrRHHSvuFNw557ap87LXqFlWqfqlUnmGU7pfSqvWxJtF95rXn\nEFtz67TVd+/7WBfnb5OYU3E/9mKTjnQw0Y84xWMp1ZGUssyLLcjd8dh1FrEzqwzn42OP3qH6tR9C\n3Dr3AizWucRD4wG97iz/Tdyz8v4wWKXPew/dA7Acj2XPIiJVdB35+7mSxb5jWHcnu/Hdy+7S6+xM\nxClv4mCZM4ZhGIZhGIZhGIZhGHOIPZwxDMMwDMMwDMMwDMOYQ26qr+FUbK6SLiLS9BzS6NIprX2y\nUzuQsCSE5SvD17SMoawaqVSrt8LJI+RUtI4MovL1zBRSN+sevddrR6OO1OYS0iLZaWioRad4jpKk\nIbUcKUyBcu0YdeUVSCaqdyNV6cwLZ1S/vHSk6HVT6lRaoZZdualesYbTt91q/R2/wHUs2ovU5KVf\n3aj7vYmq79mrUa2ez5OITi3ueAsyMbdKPDt38TVtOIrUtKrVFeo97Lgw0YVxxmm7IiKj7Ug/HiWZ\nVDBLSySiY5D5VC2BTC859MHV0MeoOvh4hx7r7HoTa8LXkC47dFY7gTR14N8LViNlPlCWrvqt243q\n8uN0XhKcNOIQpVuyrOnoaS252LgZkg5Of+QK+Z0HtMtb7gpKCSYXidxpnZJenEdSGZrnwRSdgppH\nVfw7DmI+z1tRofpxqm+YHHXytpapfn2HtPwu1rDkjivfi4j0nUZadS65MI126uudMa+U2piLA/Va\n3hedwHxJycW5TkrS8czvxzkYGUG673QEMT86qaV0qVT9fuAcSY1C2qklnqRWPkr3zyzWUpf+JqSq\njlzH2jAzreVKmYuR4utjdzndTaZG9HoVSxZ+GhX9XeeEpXdBC8dOLSwbEhGZtwjXkKUxHF9ERPrC\n+AzfK0jRZnmviEjhZpr3hZg75eSU1PVeo3qPLx/nj9fF6QmdQp6/E2na7KaXWaXTt8cGkc47NYxx\nfuRv3lH9tv8uJFjsdhVu1K5BKQV6nYw1mdUY94WVet4Pd+A6pFdgzAXLtXvOcAOOmfcjydk6TrHz\nVHo24vC1119W/XLXYlyMkzztO3/wb157fa2WNW35ndu8doRcpvJ2VKh+F5/DHFv3SaR8TzouF8zK\nb8BGYrRLOzP2klT5zA8hHdn0zftUv/qfHJBbBUsq217VUklON+c5FijQ6yLHpa56uG8W1t6m+sXF\ncSzDuC3YpjV37MY5SG6WtZ+AXPrCj7TsLX8h1rGMRRhvzT/XUuzCOzDPO8mxJzGo4y6vJTWfwngr\n2q3lMCxTSEjFOuM6lCY58SbWsGtPdFS7ZKWT1IfdW8PXdbwIkjtLJILvn79Ox6nRTly7uDh8r8z5\nWj4SncL9ADvrZBWu9to9jYfUe9ixk6U47jrBEl+O+X4n5oXJOYf3v+7nJQZw/gq24/v6QzpeTU9/\n8Fz/sOSswt4uwa9dmHhPOUxrUvebjR/4eSzD7z+uJWcZJK/NWs4SQb0RmB4n6QjpcOJJNs5SORG9\nFvJ6F+mbUP0e+gRkwh0n2qiflgJlr8NejmWJfY7slP8Wy5ld+R47Vd0KOl7BvV7Weu1+NXwVe2fX\nwZlJJLlyoAJzNsO5D8xeic/n+dL+snZPTKDrdbUDUigeI4s3adkQ7y3S6B4+3KDjBsuM2U3q1PcP\nq35pflyHEdpbZ2fqe+DkXIwfXx72WFw+QERkvI321FpxLiKWOWMYhmEYhmEYhmEYhjGn2MMZwzAM\nwzAMwzAMwzCMOcQezhiGYRiGYRiGYRiGYcwhN60500h61+I7tFY1k6zSolRHISGgtYYFt0H/eP4J\n2HoufnSN6jfeg/odbOHNbRFtG8wa77P/+HP0ydQavbE+6CynR6BrG8nS/cJXoEUrvhv1Q1z9W80d\nsC3kujyLdmpL4pEG6EWLqB5Jx+sNqt+ko1GMNaEa6D17DmtLv9Ex/O1xqhfk1o5gm+04eqRXskfr\n/FpfQV0SH2kjWf8nIpJO4+fs86jVk0+Wx6yxFRFJJZu9cBt0ur39+vydPoRjWP8R6INZ0ymir10K\n1dBwrRynSUPOtod5m3S9koGzqL1Rpp0tPzRN+6EvL6jV2ujiSVzf3PWoWTAT1XVcWLvKVod9x7X2\nte152MUW3YV5X3Fa60WTqWYK14VR2uhEHWImyFoudxOOtfWytiMtyMrx2uUPoD7JtR+eVv2EtKiR\nKK5TzyVtI549D7ritFKcL9eqMmdDidxK2FYwzrHS5tpLvSdwTfJWa818YiLZTbYjNpWvvEf1C4fP\nee1gcLHXjo/XczsxEeeg6+p+/N3q9V57fFzri+MTdb0l7/8dO2+uq+PLRHtkQMfUtEKM6aHLqBGW\nv1FbDUepHsrMlB7f/7s49C+ooRFyaiCt+Ppmr/3On//Say+9V/uyT4VRGyRC9Zp6L+v6QqsfwzXg\ndcKtyzDWhfjK5+/oIazh2x5cr95T/ybm+eqv4LjbX9e1O1iDz3r39/7fX6h+q76IOmWsH5+3tUr1\na3ke8Zk/u+2crvtStoau/QaJOZf+GbVw3FpsGRWo1VCyDdfu0uNvq36p5ZiLfScRw4av65p6i7+G\nL9B8EHbZQ2d1HZeSrVivplJQQ+uTD8DefLJT143oO4lYUbEHtWQuPf666rf6t3GNuUZYqCZH9Wun\n2l2X/vldrz3/C3r8lN2Nc5RLlsxTE3qtz1ii16tYkpKL81+wQ8dJHoNck6P7iI5lAapjwjXzmo/v\nU/1SqVbgGNW1Czv1E9lWNiUPtb54/5tboc95L69X5DUc53gfcw2NONq/pFXq2iK8T+k5jFpkPN9E\ntA07/6lkZw+t6jSslZjDexDew/zXazeuA+fWpOJagXxvEJeo7yG43kv3CcS6JGffxzbmGfOx97n4\nNO41XGvq9Lo8rz1CdQJdS/RZqqWWuxHfd3bWKZ5GFsDRUXxGmlNPMCW3wmtPjSE+zM7q7z7UgJoh\n+TGellwDjq2LRbTlfRrF1mlnHfPl4jMGaM+bWantj8eoXgfXAxq+ekX142sdn4B22QO4V+M6gCIi\nCbQWzEyQZXKBrvXCa0bxen0vwHS/1ei1I/R9ExP1mpNaiWuaX1WB97+ra6MGa/RcjzWJ6ZgHI/VO\nbCN76UgP9rJZVFdHRGTgJGoEhS9jzLm25YPnsd/h2JS7RZ/Pln3YL07P0L0G7fnZAl1EJGMh5iLf\nw2Us1jVKuw7g/M7SnrJgXp7qx3E5ZQLHmurMxeFzGOsVn0Bdzv7T+h6H6/HeCMucMQzDMAzDMAzD\nMAzDmEPs4YxhGIZhGIZhGIZhGMYcclNZE9tXDZzUKTkjnUgrK7sL1o59R3QKYscvIeEp21JJ/69T\np6fIAjL/tgqvzemJItqqrnMfPjuP3tO0T6e2JZG0Iv92HMPVZ8+rftnFSBdrfQYW05EpnRrIaeic\nEusSWoDU1aGLSN9yZUyhWp2yF2taX8D5cNNkS7cj5bznfaS/pjsW5izHaP45rMQnR7VlbTHZkg2e\nQarulCNRSib7ypIypI+xbSJbYYqIpH6AtWrQSemd6EBaZ2QIf7fkPq01Gm2FVSKfl/qfaOnM/M/C\nOpct5Vtf1OOMJXPy4A0P9b+NPwkpcFkrC9VrLCNiu9yZSS37yFkPyU4ipdQVbKtQ/dLzIIGZmEDK\n384//YLq134KtqNFyzd57f6qUzjuTH3NhpsgueAU7VWf1ynznDLqD2JMLPjyVtWv/sewsqz7OCxD\n2eZVRKT9MtIss9ogyel2ZH4s17wVJFNapz9LS6pm5yHWsdwq3KKlLnGJSBNlecvoqJZLxsfjb3Ve\ng8QhmK/T/0f6kOYfKkGK9WAPriNbeopoWU5KAVL33XTm0WbMMU47D2RoudJgK9JWC0kGM9zYq/qN\nkZzRn4+/G67X9ojxSVgnYi0xLC1BvJoc1nGN5SJL9iKl1U/yBhEtnYzQZ+Qs0Lnm410YqyzDHGvV\nltsT1G+gHuNjRR1kiSxbFRHJTkeK8sXvwQo5s1bPAZYPvPdvkL2tuXu56tdOa/3kFGJh2/taRlJ1\n/yK85xXsA4rrdFy7tB/xdcXHJOZkrsHfa39bW537KQ361N+86rWj0zqmzn8MUqFj30a/8ju03XX3\nEaytnOadtU5blfZdgeTr9E+Pe+0Fu5GG79ohc7r1UCu+R+3ndKzsPIx1u3A9rsHsrJZcrP6Du732\n+CBiD9sOi4js/7MX5EYsuHuR+ndk+NbZ2o/3Yh50vqmvYWoJxi3vL9lqWERkpBkyrIHT2LMk+D94\ne8zyen++3qdcfAFy0rxc7E2SEjB/cxwZQNn9uL5sZd/ywmXVL0iSEN7/snxURCRrGcY2x2Q+DyIi\nYZK5jLdiT5/oWGdPkhz5VpBCkrHomJaZFO/GXJrox3HMRPS+fLRtiNoYF4ESx+qW1qE0kspPOdKj\n1AysnyO0V0zwkewlqtc7lrsl0R43b4Ne7/pI4sB764AjkWD5Dsvq+s9q2XbeelyvMEkqU4v0OeI9\nuWyUmMIy+ohTaoDnUv1LFIeW6vg3E8Fn1NyJhXvgmL7/ZIviwfOQkbBlt4hIWinuz/rO4jN4LWUb\ndxGRBB+OtYjKefBaLKJl1Vx+I7VYj7eRa4gvvgSMiXifljXxfn2YpMlpVfoeM9EpORFr8rZgrIZp\nLyEiMnwRxzUexr5lvEOfm+QMHON4C8Zw3zFdQiGlGGM6lUpLtL2m97Jp+Xht9Qz2h6EMxN6gK32j\nuThJ43HwlLZlz92K78uxsn2ffkZRshdxqPcQ7hsyF+s9WxpZh7e/hs9gyZ6IllDdCMucMQzDMAzD\nMAzDMAzDmEPs4YxhGIZhGIZhGIZhGMYcclNZU9YqVDUebRpSr5XcjnSvAUqVy1iuKyGzkxNXrndT\nkFpIKtPyClLcfSk6vTJ/J1JSxyaRonn9VaR/lm3X7hBM56tIlypZo6vCc6V+dp1K6Nep62NNSJfq\nIqeEwnX681huM9GL1MXkoD6XPed1imKsYdnBUKt2UuA0R05Fb/zZOdWv9H6kGLY57lUMyw6GOvA9\ns51UeU5fzCXXo4leSJKSM3Rl74ELSLFmuURKvpYMsMSN0wMv/vC46rfws3DGSCKZD58vEZHeD3AL\nyF7jpGTeQveYgg04R+0v6vOfkIZjHyL5yWRUp7R2NyNFsfZuOCCxBERE5OQ/fc9rZ+chRa/4Hj12\nAsVIwW16902vXbQBcofh9kb9nkKkfPYcRap/gpPiyfKQBB+uYdPTWoroL8S1anuJzsu0TjcuqkVc\nYjeNzvd1JXzX9SLWhCjuRccdl4AUhGNOrZ2Jamknp72ze07bgWOqX/ZyjE9O3R+6elT1y10Fudvg\n9UavHSjC9U3J1an7nCaaXg0J5EiLjm0DJ5BKzDKk2ZlG1S81D38rOvnBMghOH2ZJlystSK/Wbiix\nJJscvVxXu8YnETd9OTd2ORIRGbqIVOwucmopddLfQ1U4t51vwb3ClTZefApSzIAfqdPBBXi/KxPt\npxg81ow1Lq1Sp1FzfN3+5e14jyOtyl6N8dbfDJlZrhP7hyiOs/OEz3FOW16hZVOxhiUigWwtHRwh\nh8fUAM7n2GBY9RuoRwzLXwGpSvfbWsrVO4xztfbLkEKxDFVEZLYEcSvgw9g68hycftbMrFDv4XRw\n3mdMOw5rLGWdGMb4a37uourHDjH55LbZ+fYJ1W3r//io156aRHyZndHxynVDiSUsf3XXMZZSsMSk\n/4xOax+jvQR/xryHtaPoaBfOGcersQ49JljKVPt5WBuFm7GOdb3jOEaR6xc7JZXs1W6YPceQTp+3\no8Jru/FupAXXY/Q62q5zVjI5OLJRUMYCx5nR2YvFGpb2uLKQ9rewZ2cpdGKqvn2ZCmOcld2D/WrL\ny1p+3n8F17H6YUhP3dINZfdBasblFFhC5jp1pZUjdqblIx62Hzir+vHaxS6kQ5e0jDdrGfYt/kzE\n4RRHJit07aZGsH5Gx7Xr1qyzl4glLK/3O3ty3s/46Z5jvE3PneRscu87jrFec2+d6seykpyNGKv9\np/Q1DFXiNT5n7GgY77hmth7BnrCGJLiuDImdtUYbMcfa9jeqfpX3YBzxdXel2AGSw8SRs1TTa3q/\nX7j61jqK8j2Yax6WTXJMVSLDcS3j68331T5XfrkU47vhR9jDXOvS98TBYYyL7iHE6zVFmOfjXXos\nsXSNnXpZEiciEixHvO6lMTfvkWWqX/8p3OtzvO49qksjRCkOZdL87XNKLeRs0M8LXCxzxjAMwzAM\nwzAMwzAMYw6xhzOGYRiGYRiGYRiGYRhziD2cMQzDMAzDMAzDMAzDmENuWnMmiSzn8jY7Fm/t0HfN\nkt01a1hFtG0V26FNTGnbukAGdGDBArTzN2sNPmuqi9ajDkd0FJ8XGdQ2bl2kFcuZDxvU0Hytq239\nBbTXU2QLl16rbaW5jk7ZStTeYXtZ91g734DNY8YS/Xd9+VoDF2uK7yTrzVe1PRhrBUuW4Ny4+n+2\npI7Q9ywnC0gRkTGyHKwhPW/nW42qH2sPuYZN4W7UC5roGVXvCV9BzRQ/6ez7Tmh7NrbxS6H6InlL\ndJ0GtmycpBoDg+cd62LSG3O796DWGirN+06JKRdfx9gsKde68QDViAjOx1gdPK619XGJNz72iGNd\nWbQUutLGE9DGJx/SYyJK4yApneoj/MUzXjvXOedca4gFrUmLde0Oji/DU9Dm5m3V8YDr7yRQTQV/\nkdY8t53C9w2SznnGEdUOniOt6yaJOVwLIOLYMGcuxHWdpBjm9mNtd+QC9PNs09zXrM8AACAASURB\nVO1+RmoR5kHvET1uWaOeWoB+g5fx2Xw9RESC8zJv2M+10i4k29+RJujzZyZ1PaSpEI6Bv1+cU0ci\neyV0/ElpGDNuXShXRx5Lml5GfbP0Ul2fJW87xifXR3Br9vReRoyJJ+12Hq1pIiI9ZMHcT7aWGY59\nY8kq6Jf573YchH6+a0jXA/InYb6sozoonY6tNFuNckxmvbiIyNG/e89rV+2A7STXOhERaSYNfcXd\nqKnh2mzmbry5JvvDwutzxjJ9Pivr8O9Df/WW1677qNahs169m+qIlNyna4WMPXXGa3M9rfaLOkbP\nr0H8zizFZ7O99aG/0BbWfB1HqV4T16wRESm/F/r89jdQxyMuXhcM4PWkgyxN06p0Pa6Tf/2K1176\nddh295/X13GI1tNY29oPX8WcKL6zRr3GMSGZ6g8ESvVedoqsvrk9O6v3c4NUG5BrTaUW6hopQz7E\nw8gIxhgvNVWf1ONogvYsLc9grc+g/aqIriPGtceaX9B1g3j/xnV5Bk7r8RZagFo1BRsRq6cjes3x\nZet4HWuCZIGckqNj5QTtFbkGF9tbi4jEUWxi6/oEv64VUvsIalmxHXeyUw+jn643WwhznTvXuplr\nW0yO4j25a3SdkHE61uQgxlL4iq45M0BzZ3oU67a7P+f1ufzexV57YkCv21mrdZ3EWMLjrPdAi3ot\nay3+LtcKzV+s17t2qtdSuQvzmS3uRUQyqeYa338Ga/S92uV/OeS1czfjb0120fnP0vesVXchSPVR\nbRvXwpr3+1wvZrxL37fwnqj+NewdsnN1HOo/grgZT2M2s9ypz0o1cZY9JDGn6z18fqpTpy6d4gXb\nZ/sdm2i+1+AaWhOd2nK74QzqzExN495gx5e2q34dv0S9vZwg7v1CdTieWafOZD9Zp+fRtXfv00fb\nEUe4VtK1H59W/dIX4r6dazdlLdf3OF1vN3rtKMXorFV67vG++0ZY5oxhGIZhGIZhGIZhGMYcYg9n\nDMMwDMMwDMMwDMMw5pC42VnXLMswDMMwDMMwDMMwDMP434VlzhiGYRiGYRiGYRiGYcwh9nDGMAzD\nMAzDMAzDMAxjDrGHM4ZhGIZhGIZhGIZhGHOIPZwxDMMwDMMwDMMwDMOYQ+zhjGEYhmEYhmEYhmEY\nxhxiD2cMwzAMwzAMwzAMwzDmEHs4YxiGYRiGYRiGYRiGMYfYwxnDMAzDMAzDMAzDMIw5xB7OGIZh\nGIZhGIZhGIZhzCH2cMYwDMMwDMMwDMMwDGMOsYczhmEYhmEYhmEYhmEYc4g9nDEMwzAMwzAMwzAM\nw5hD7OGMYRiGYRiGYRiGYRjGHGIPZwzDMAzDMAzDMAzDMOYQezhjGIZhGIZhGIZhGIYxh9jDGcMw\nDMMwDMMwDMMwjDnEHs4YhmEYhmEYhmEYhmHMIfZwxjAMwzAMwzAMwzAMYw5JvNmL18/81Gv70lPU\na+GmAa8dn5TgtXsPt6p+s9EZ/LG0ZK/tL0hT/XxZ+PzEAPoFCkOq31h3+Iav9Z5qx7Fd6lPvmffx\n5V77+lOnvXZwfrbqF77a77XLP7rIazc/d0H1K9wxz2sPXuzx2vG+BNUvZ3mR1+470+G1/dmpql/3\n/mavvf5r35RYc2X/v3vtUJX+zjORaa/d/NxFr527sVT1G7mO6124rdpr951rV/3G23F9kkI+r51S\nGFT9wvW4RpGBCa+duTTfa4+2DutjnYx67fK7V3rthp8dVv3SF+V67ZzFuFbR6IjqN9o25LUnuke9\ndtaSAtWv+Xmcl7j4uBu2RfSYXnLvlySW9Pcf8Nr//MW/U6998n8+5LXbXrritZ/c967q97kv3Ou1\n08rSvfZ416jqN9o46LWbLrd57RUfX636TdP1CM3Lwvvbcd0me8fUeyb78O/WM/jszsFB1e90Y6PX\nri4sxHf4h2+oftdefMdrXz1yzWsv2Fqr+v3yF+977YKMDK+9988+r/q1Hznutet2/6bEmmd/7/e8\nduXmKvVaYiDJa0/SeGw80az6lczH+Zhox5jO31Wp+vGcjUtEbJqNTqt+0ZEprx1amOO1r7162Wsv\neHipek/7K/Veu/BOxAOOJyIira9c9doFW8vlgxjvxPdILUFcj4vTcyw6NiU3gtcPEZErz5zz2nf/\n5V9+4N/973D+5X/x2snO3+VznhRE/Jvo0rEnKd3vtYPVmDt9x3Q8TavEWBU6F5H+cdUvtRjnLDoW\n8drjHfi7vP6K6Libu67Ea4ev9at+0xOY5ylFiOOz07Oq32gz4mn2CozRvpMdql9CMn4TSkjFMbnX\ncOBMp9de+4U/lFjTeu0XXruf/paISOfhFq+9+g8QN49/+3nVr2wP4gzHw4JVS1S/7tPYQ0yFJ712\n5qI81e/C48e89uIvrvPaLS9cwmfv1HFjpBFjLm81YkC4tUf1S/Bhu9f1XiOOYale7zpfQxzNWos9\nTHBepurH1zWjDmvuwNlu1S+lIOC1F+7U8fbD8vzv/77Xzs5NV69lry322p1vXvfaiT697Q0tQsxr\nO4RYm12p90oca9No79hxuk31S/NjbieFML5zaE/Fc0VEZPhCr9fOWI49UMdhHfvLdiHWtr6J6zQw\nqtfweUvLvHb7RVynnBznHG3AvI8MIh5wbBARkVnM9dWf02twLDj2g7/22sEafd4Hz3R57Vw63ob/\nPKf61X4S+/yRJtpPJOg1ZDaK7zLehr0KX18REV8hxm2oFmOk/yhidIj2miIiAVq7Wp/H+pm7uUz1\na6S1teYhxIqxNr3nTc7CvcIAzbeZCb3OFuzGPjcuHvE13vnuM3Q/Vrns4xJLTvzoO147ITVJvTZ8\nvueGr5V/tE71G+/GNeB4Oumsd3H0vXJXYUx0H2lR/YKViFktP8c+vvRB/N2B03p9yt9SgdfOI5Zl\nOXGyn97Hr83O6HUxMox4HyjA/As36/vU/lNYgwpvQxzvPuh8pyrsF2o2fFpizZF/xn7J3c91NSFO\nrfrtTV576JJea+L9iLF8P5GQomNvzirE6MgwYs6pHx1T/ZY9gnuPzn0NXjs5B3uGgtv0/nf4Ks5v\n/Zu4L1r6KX0fw9+RxxzfE4qIjDTwMw/MsbE+fY8TyNPPNn5FGu3zREQu/xLj8YHvfMftbpkzhmEY\nhmEYhmEYhmEYc8lNM2d6DyELJs351YR/FZyZwpOnqk+sVP2uP41MlUA5fgVMLdaZFPEJeE40Q7/I\nTQ7qJ6b+bDzN5kwPXx7+P3eTzvqof+KE167+FB+ffqqcXo2n40OX8SSQfy0UERk4hyf5WUvxC2HH\nGw2q36AfT4jH6JeSxFT9C2b2mmK5lfSfoCfDTrZHagG+W9Fu/Coz0e9mPOA6DDXg3CTTL8AiItP0\ny3aQsin4ib2IzjrJXoVf55JC+Lz0mhz1nqGreGo7NYFfGMruX6j68ZProUaM4cSAT/XrO4ZfvAq2\n46lrx1v6OvKTVX46OzUSUf1GGnX2Ryz5Hw99y2v/xbP/oF67+tw+r132EfwisL2lV/WruXOv1/6n\n3/xjrx0e13PsS//0Oa/91Gff9trLonpu5y2d77WbX8ccy16J6znWon8hTF+IX5rC9XgSXblF/xq8\nshfXtPL+VV774J8/qfol0K9ETT0Yl+vrNqt+D9Tc47X7T+MXihf/+HHVLzMNT73rdkvMKVmMuZ6c\nrsdjdBRzp+scjnHVb21U/U5+76DXXvIIzs3wFX29s5YjNjU9jV/uKz+2WPXjX/ii9Ku+Pwnxy82S\nyKMsmLYX8KtE5kr961IF/UI1M4UY0PiMzkYM5CB+8y9D4+36l8TpScxF/qUzb7vOypm3W2dOxZLo\nKOZ9aon+JToaxmv8a1qoWv8azGtIzwH9yxjDmYjZ9CvTFP0aJ6J/dUrJxxhOoV9x3AyWUC2OqYcy\nXlW2juhfvjg7NKVAr4v+XPzK20m/6rvMUGZsaD5ivPtrvXtuY80wZW9ypoyISOntWAv7ryJLLL1C\n74PyliDDdjyMX9Snp/Wv8BM9+BWuaHuN1+451qT6Fa7H3iU1He3qj+NaXfj719V7Mldjnveewee5\nWYuc0ZKYhK1fW+tV1Y+v4/QEYlLfCZ3V5aMMYM58mxrQ6wlnSsWa4iW01jTqWBGhvWNfGPOohDIx\nRUSSM/HrazCI7+Rm7nJWb3ImZb759R6oaC+uL8/TQ08c8trpqTp7mrNtOunX/+iM3jclZ+BYQwXI\n0qhYs0D166Lsp0gUvwbHJehrkUC/cA+cwJpTcPs81W/ovM6GijV9V7B2cwapiEjB9gqvPdyArL7E\nBJ2pPkTrH49N/jVcRGSQYm+4nzJPKdNdRMRPcXTwLN4TXIC5ODutr08f7bXTqhErOKNSRKTyblyv\nIcq+nwrrPWX/cVyTYA0+z1UecIYk/6o/dF5nNPD6VLlMYkoBZZy4920ZFOcnKC5d++Ep1S9A5yx/\nE9Z0VlOIiIzSvrLnKObLuDNn/bnYV6SUYL1Kof3GVJXOaOg/i3PO863JydRKoXtYzuhtf61e9fPn\n429xluPQOX1tkrMRA8Z5vXAyJfvP6SzPWMP3O4EKvRdYS4qSQ3/9ltde/ug61a/nIDL+pgYRA9MX\n60xR5vovsCdcsEdnVEXpXmskjPFT9xD6dfxS37cNtOBcr/oS9tATzroYoKxj3qP2HdEZkTnrkaEV\nn6xjD6P2YjT+eCyJiCRSNs+NsMwZwzAMwzAMwzAMwzCMOcQezhiGYRiGYRiGYRiGYcwh9nDGMAzD\nMAzDMAzDMAxjDrlpzRnWX3H9EBGRjtcb3O4i8utVtVmnG74GDVj2Cq3vnCSd8kQXub306IrJ8VRp\nn2vBKLcPxxkoUA7tetPz5/FZSfrZVBrpyZWjQp3WyXH17JGWD65EzbV4pqm6etDRrbdzrZoNEnPY\ngWX4sq4QPkAa2bhEnI8MRxvIriSs0es7qXXouetQlT4yhGs6clU7gBTdBl1231lo+xKpkrvPp2vx\nRMdxrIk+1tzqiuKD9ejHFbuDTrVsrqPEziCue8VIM67xWCe068OOnrfMqTwfSz55x21eOxoNq9dO\nvQut5jy6vrf9X59S/SYnoZu+67EdXpvHqYjIk3/wlNf+9Ofu8toJjhtZQgKuwcFXUHNmO42V8ts3\nqff8/A/+yWsHSGef0q411I2XMCbY6SstRev7XziKqu4P3L3Va/O8FBEJFGHMlu2BO8KFQ7rewvyH\ntCtRrAktwFxM9Ot4wXWdJqegYe533ASK5mN8nv0x3KXyCvT47iIHuwWfXOG13doRfX2ItykjiJWp\npNv35+gaCc3Pwj2m9H7UHhpr12OT3frY9af8Hl0joZEc0WbeRd2M6XFdL4DxkQsM1wQQ+XXHj1iS\nSW5uE716fUon15pp0m6Pd+vaS1z7i+u4uPVeGHZhctdjrp+VVoa4NjkAfXWG4ww0SXXFAqWYHwmO\nm03WaqzVA+QowXXn3H9nk/sT1+gREUkmF7+bXd+x1qEPfC0WTI9jjtV8TM97dntpo70O10YSEbny\nU+juKx6AHj/cpmt0pFXc+LpOOPsb5vKPUVsmbwvW1ZwtuqYeO3cFSjF/3ToNJTvxHRufR9wo26ud\npfrOol6Aj9xiuFaHiMjAcXKPiWCeZ6zMV/1mnXpzsYRri7h/Z/gi1kJ/Ms7FhdO6HtKm5ZjPmauo\nHs2srrPFLjNDF7D2lz3kOM7QNR1tQWxNohopHN9FRGrvQo21eHLWGzynx9F4h46vv6LzVb0fL30A\nn5dDbiIj13Ttk0tPn/HaU9O0R3XcpMItt3YuZs1DvOY6VCK6Zgw7w+as0/vDobO4Jr4cfOe4JL1v\nmaS9fVIiYt14iz63g7S/K74L+1Wu5dTtuNPmUqxsJ+cvX5Kuo+Ojuk495zGv5j+yXPU7T/UySxdj\nXl34yUnVr3IHjq/7Xfzd3M06VozewrqIfB9TsK1Cvdb4U9RrKb4H9eDmfVZ/X65VM9yA+evWzhkl\nV6dUquvh1jLtO4p1MXcTYmjrPuz78rfoenVBWj+v/Rg1U/Mct0leI8JUUyiH1j4RvXdid9+8bfrz\n+L41MQXjJTquY0WwUq/9sWawDd/Lde0d78F5X/wb2FMOntdrwwzVBhyn+8CQU0OL76cmqTYW12oR\n0XVo06gu2OV/x/wIOs7OpdtQN4vP57mn9NxZ+zXcN7TRuHBrwXa8jnWjkGpyuTVsWg42eu3cCsSy\n5it63125VJ9bF8ucMQzDMAzDMAzDMAzDmEPs4YxhGIZhGIZhGIZhGMYcclNZU4gs41zb4LgEpGWz\n/RvbEoqIjLUhrTNKtoLD9dr2VaVEL0ZqYMOPTqh+uZuRmuajv8VyqvFOnZ7Iqa9s89v5TqPqx9bh\n/N3Zvk9E23oNnkY6lysP4axYtlNjyZSItry9FfC5LdiqU+JaX4KdV+VHkd4cndDHyOnN7b8ka1FH\n8hUfjyGl0lGT9VDrPorUy/Kt27z21edhC+2mZecur/DaPacabvj/Itrem62b8xesVv2a97/rtdmm\nNt6xm0xKw3GMkXwuy0l7Sw5oaU4sOXIWdse101vVa3f9KWyi2W58uFOnOtf/CCmaa//os177O49+\nU/Xbcw9s515+er/Xdi23P/Yo5naqD2Ps4FNHvPYG7dwuh69SOmkGUv03f/021e/J5yEX2PP//JbX\nTko7qvr90df24Pg6MaYan9S2h/HbEDfe/V/veO3qSn0NlTxmjcQclhFyLBMRmSA7zNo9SEvnuSei\n5UHDlFrLMh8RkUyyJJ0iaUnmMh1v2Ho+KQ3viYvHeOZUexGRgp2wlB84g3PWfkbbD0YpVZ7TVpMc\nG9S6vbD35vjo2k2OjGAMlm+DjKT+J2dUP2VJqqfLh4ZTcdn+XERkmqRHbKMbqNRS1lA1Upi792Pc\nulIhlroNkp3t1JCOzyzZTCCbx9R8/J3+M1oex8c+Q7E6a5WWHIdJGpq3GanYrjwupRDjZbQJMojU\nUp1uHJ9EFsxdkIDEJepgwVa2t4I4GtPdB5rVa1UPQ1+cvx5j/dx396t+i76KfuEm7BN4DRIRiZBE\nfLwXcZPXHRGRpqcguy68Exaq3e/h+CI9Oo16dBzWnWxHnrHEkRfN4hpzKn/725dVvzQaq2y9PNak\nbWpnaYOTnIO92NBpLcXxF+q4FEt4v3n8RW3Lu3wXYkpwFt8peFZfGx7fbDWcsUzLm3nfx9KFzjev\nq35sHRtPNuKrPoEFZeS6lpcEKzB/O0gekuLINOJJep5PFtNTjnSQYxS/xx07NXshyeJ44FpEF91W\nKbcSln9F+vQ+I5ckfSzxiDr3JCwTYXtql6KdkCScfgZjZtX9C1W/KbLEHSJ5GUuSUtL1/U6gDHua\n6YOQ5xbdru2QJ0iWk5aJ+RG+pu81QgGydid5/aJPrlT9zj0BmWJGOuKmK/Uba72xLC4WTFIsv/T9\n4+q1ui+s9dotLyLelNxdq/r1kkwsj6y0WQYsIlJei7V/guS5XW/ruciW9wGSvbBk1l3HKu/A/cj8\nxzD/fD69LkYX4DOaXjvktQvXaYnsUAuOqf0AxsTy39UbEy65kUvxJTKs13p1Tasl5tQ8hPtAV6ae\nTXvHnuPY6yU4Ev2hdpybDJKJpeTpNZ2l3zX3IhbNOOOWZUm8ngxcJFlUi547qWWQ+F5/8qzXrlyv\nY9k7fwX58JLdGFc9B1pUv7qv4r5otJPKmTgycB9JJZNCuHesWKTlbkOOxNTFMmcMwzAMwzAMwzAM\nwzDmEHs4YxiGYRiGYRiGYRiGMYfcVNbETgp9x3XqV+EOpOl1vIk0zKHzOqU1g9yaJjqR9ua6Oo1Q\nGjQ79mSv1Wm/GfOQGtR/maqSr8X/j1PKoIhI0QqkI3VdgiyCU95EtHvTNFWb5irwIiI5VAF9egxp\nlq5cieUHAUqxct1XVDX5W2AWww4baY5Liq5gDgeWgq069YudQjLIzYhdcEREpiPoN1xPad4hna4/\nQHKwxuibXjtCzgI9h3VaWQZJqOLikObYsf+K6heqhiSNHTmmpnQqMTsfRKhKvCstyKHUc18Gxgyn\n5ImItL2F85f78O0SS9atQspt90mdht75DlIl1/wfj9Ar+tlrxYM4F3//2J947dJs7WyTSDKuzABS\nCKvydZo8S042fArp/aMtPJe1NG3XUgzw00047qantAzp81/7iNdOSkKq8Iv/+rrqd+9XMXd4LLKD\nkIjIBI2rjY8iHkSGJlS/knW3wC6NaGvAuO9p0s5pRcsRwyZIPhdxY2UDxnHxLsTh9Cp9HVtewHjk\ndNIBp7J+3cMPo18KjmFoCFKh6WntKhPIQLo1p5fXOY5ArO0cOEup4Vlu7MV1HGlAumfmCi0tKCSp\nSy85FJXuqVH9HKOVmMJOAhGfjvkRkuYkk5yWpRMiIuEr5CRDafKuTIq/CLuWuWnEHPNYchyh1Pzh\n81pKnLUWadqz5IYw6bgPFG5D7jSn82av0PK4LnLZYhlvyHGW4jmXlI5Yy5I/kV93x4g1EyT9yN2g\nnRNmZkgqFMb5yF2jU9uHGkhGSk552Sv1uel4GVJgdtLpdda4qs8s89pn/xXy0NwFiL0DI3ou1j2M\n97Q8j7Xh6ulG1a+E4nzBHYgbOY6MbZqcl7opDd/vSGwq74VMp+kVyBjynevmy9SyzFhy8mf4u0u2\naFmKj1xS+o9h/5pWq8fj4CVcw3zaD005cgJ2uuG9ni9Pfz92x2wnmYVyynRdS7owFgsppg9d1nO2\n8S2MoxC5llR9doXqF76OvRdLPNlVS0Sk/wjOSxxJsKKD+rvnbNUS3FhTTo5X/Sd1HGBHs1AVrl2v\n45QUpvIDvmzIjZTEVfT+JCeIMe1KuViK33YJx1SZib3x8fPa7fHya2977U/sgVT71M+1Q8z5Fsz7\nj34M/Q6/qPstnIe4xGua6/JWvAL9Mmj8DTguhmlVH+wG+GGZJGldoePWlODHPV1qGfZprpMf33OG\nihBH0ov1Xpb38im5WO/yHKk4l0Y48w/ve22+fyjapOPV8W/DrTREjq5DDXrvWXYP7THp8wabtBtc\n5xv4d4oPxzPaoe9HRii+ZJIkdWpEz8XBE7ifm79NYk7909iLL/nyevVa8zNw1UzKwNrNzwNERNrI\nqYydf9te0vMlSLH4/2PvPQPsrMq14Xt6nz2918xkUia9kxBSIYHQO1JEwYIiWI969BzFV88RfT32\n3hCRLtIhEJKQQjrpdSbTe+8ze+r343w+13UvJd8Pd775c1+/Fuy19zz7WWvdaz07Vzl/ALVyyceX\nq37nn4Isie0VeqgdEqSlb7/7+d+89j13bPTanDwsIlK6DrUnPAGvJS/R++LxH0PSnEayswSyzhAR\nmfs5DMq53+zz2u7zYkSMfs50YcwZg8FgMBgMBoPBYDAYDIZJhP04YzAYDAaDwWAwGAwGg8EwibAf\nZwwGg8FgMBgMBoPBYDAYJhEX9JxJotisgUYdozg+Cv1UVA40hBMjWrcZQRou1uLmLNPeDn4/NJ1j\no9B7p+evV/3qTr6O12ZBZxsSQpFziWfUe/p6oMNmv4Cec9oHoJ28GA5WQCeYFq99VTjajyMRw5O1\nlo19W1r3Q2PaX9Wt+mU5fgmBRjBFfbUf1t5BkXQ/ItLQbj+i+w1RBGN8CbTrHN0soiPPBmrwPaMW\naf1eLuk1m3dB186xvq7vTccxaC3ZlyjJiQYeIC+ZXvK9qX7jJdXPlwP9bf410O23HtFxfN3lmCcc\nU8ueOiIiI13avySQSCJ/h5xFOna6essvvfY73/it1551m9ahs9fDpTPgPRRfmqL67XoZvkyhFHmc\nlaY9TRIXwA+EoyvDyUfCjbRc8Tlc+4YkeFkEBenfictffttr//JjX/Ha66/XGtif/sefvfY9t2/w\n2nnXaPOm/nr4YoXlwO9kz2N7VL+EEuhH4+NnSaCRkY172Fin104iaXOPUzRm0eU6bjKUIrLZp4M9\nEUREUshH49RvMaZJU/V4V+97C9c3D3Om6i1obKds1HOu8Qg+L3/JJq/dVr9T9UtIRyxjZAqiItkD\nSEQksRDxpqxDP/iy1uCv/CTiJznyt3WnjkJOWqq9ygKJHoo7ddd8TD5p+lnXvv6DMy+5lo2PaF1y\n3Rvw0/JNx9zkyGQRkT6KBm2jCMjuHngTxERojXPyXNTk8HDMif4O7eXg78JncH0PCtZrNol8ViIo\n4jghY7bq1zbwPv5uPNZi5HqtW2fvnIuBWPKvqHhOe17NfniF1+6thgdSVIb2XeGaGhKFfXagXp+X\nSj+D2jTUi3OG6zEUnYh5O+cB1Lo2insNce77UAvGh62W0nw+1Y9fO/M3aPgXfnqF6td5DF5OHOnK\n+6qISNNB+A/wXO9v0N+97QA+L/OjElBEhcPDofKA3rczGzGna2vgd5XYrv060uZjHRx7DT5b+YX6\nXPHE6/DGW1SEuZocp+dEfBTmfv612Gd7yUsrZaH2OOIobF5jCdO1n0ESedCkLNPRrIy4fNRGjpGt\nbNIeJItuRCTzxChmSO3286qfr/vinW1ERJq3V3ntwRY9PgmluAccsRsap/3sUhbjfrDfY+te7evE\nXkRJ5O3RvEXPn0PncA+qWjB/Hv7hD732Pdddp97zwJfg38b+KUWOz8UQeTO2HMEe7q5tfqbop+jd\n7ma9xjIW4ruHUU1tPaXHO2mKPsMFEnnX4kwf7tOeclXPYQ5mUCx7X7U+sxTcjDNX2ZPbvXb2VfoM\nxH6UqUuwloYcv7SYKIoyvhLX10XeqIdePaLeE0375JGtVV77x3/5i+r3dPK3vfYr2+EtEhelx/rK\nG1Ff+fmmaZueb6H0nMZecXEFiapfbI6u64FG6ccQe955WnvIRmaQ3x6dfVy/1eLrEUnNXk4jo6Oq\nH/vbTVlY4LXZT1BEpKkTc5/r7fTrcbY48NR+9Z4k6nfTfV/02p++/XbVb04enuf3lcPT66oN+lmj\now8+kElUr8Mc7xh/F/rFkMdTz2n9e8OUuy5sMGvMGYPBYDAYDAaDwWAwYDD7FQAAIABJREFUGAyG\nSYT9OGMwGAwGg8FgMBgMBoPBMIm4oKyp5oVTXpspuyI6epIplGGxmuITFIrff8Io1qyt4pjqN9gM\nKhBLC3p7Nd04pxSRWGVbnsPfoRhspkqLiHQehRwmphA0o9bjOrKv5A5IW3LaQUPf+rim6nM0NVNL\nI5J1pOIwUb2YDs0x3SIiwaEX9zeykEhIUzgWWkSk9SAo7EzDzF6jYylbDkLm1bYH7wm6wLXn34SI\nsqBgTVE//ou9XjuNZEnRJJFjaqqISMMO0ADPNZKcw68pdeuvAi1PUc2dft3nQBXP7sF4d+zTki7f\nbMzHcKLrDzvSDI4lDzSYhhkas0u9No3mbfXzWLPHnn5f9RsZw7y77MuQC0bHFqh+f/jdq177oe/c\n7bWf/7+vqn6fevg2r+334/omJnCfX/368+o9xTeu9dovfeUXXvvyr1+p+r33NuQsBam4/688u0P1\n++ofH/TacQmYs02nNcXx2d9v9tp3feF6r33ZZ7Rcp+5NyEiyPiEBR8py1M3EAR0TzTUwl2jv4069\niJsOavJgHejNg7VadsDyySSKWs67WstMal5Dje3LxTof92P9nSdKv4hI8SbINJrK8BrTdkVE+qIh\nKY1NhHQpJFJTzRv2YD8o2wJZaulSTWduodj4nKtBUx6aptdi7dugp85YKwEFR5tHZ2vJK1N9B2ox\nNm4sbzLVvK6zkP71OlJb/nze49x62kV70tYjoJBXt+KzV82cqd7T9l+Qs+XkQ1KX5EQrx1NEO8d6\n+ju0/IDlaFx3G49q6WBMNmjZDTROqct1/ew4iBqfexGUv/GFkDWVOpGhw90Y46RSrNPRQR39Gktn\nn9qXIfMp3nS56nfwUVDiWfKV7Mh9B7po76Hs3FiSy80s1tKEbT/D+nvkt5C1Pvrgg6rfzHWojwkk\nD2ncrun1ORtwsyOjcX2pjiSipxNrNoTkRf4ePS/SF06Xi4XEWNDsx5wo5IQ5FEfbg3GLcOTno30k\nMenBmn3KOffddAmk+AVpvF50He8j+dK232G/WnEjosddOXjje5Blstw6LEGfZQdJBlD5EuZbdJz+\nTsMD+E71HZBhrvvyFapfP8khOZ65rVfvJcVZus4FGgkkL4pzzn1RmbFee7AReyTHJIuI1L2KvcZH\nUqjQWN0vjORQYfF4XqneX6X6LSjCfhURinr2sy98wWvzmUpE79W+EsjqBpr0/VyzfJ3Xbt6JPS1t\nnpbSsURp/4uQOhdn6X5RmXi+OPFbnH2yFmv5HM/NQCMymWwR3teylPiZGI+a5zFvky/RzyPlf8SZ\nNec61I3TJMsWERmm+15F45Y3T3/ftl04Z1S3Yc0tuglyvgW5em77SPa9cBCy0ys/slr1q90C2dum\nFVjbWw8cVf04yn2gBvWFY6RFRHqbMUfa38P98xVrGXrrUTx/5ZdKwFH+GM7evpn6b4/Sd4nJxT7u\nnkdqX8M5muPIEx2Z5vmD2HumZuAZLLE0TfVbSNKuXrKZ4DPq/GvmqffMpOezdJL4Hq2uVv1YGruk\nGNdwaO9p1e/G70KyGB0NWWtfr7ZRiUkhefc6zC3fdF3zd/9gm9e+5cfXiwtjzhgMBoPBYDAYDAaD\nwWAwTCLsxxmDwWAwGAwGg8FgMBgMhknEBWVNWRtB8al79Zx6jdM2wog26NL3/EQBZzqhS9UKCYP0\nhqUyQUEOXeoY0pqyLkGyyOnfgqI94dBbgyPw2eWbQX1kqqKIyOs/hPRh/kx89w2fWqf6sfyHXfbb\n9umUi7hi0Nb4GrLWTlH9Ok+RI7ZmngcETEVzZQdMvU8kGnDFs4dUP6ZYc+oWU/ZERHKvgGSCE3iG\n+7Ure1wKqKqRlBLlb8d8ad6t6WdMtc0nqYubQnJgO2Qarx086LVvXr5c9ZtWmo/vQakZofGaBhtL\nlLq4bNAw3USO8Dh9HYFEFiWZPPEfz6nXmIrX0g2acn6epltP/chSrz1MzuOnfv+K6vfIM//ttb94\n3ee89uf+/U7VLzQUVNpTf3rRa8dNA/3dTbI486c3vfYV39gkHwQ/ubpXkTQjMyFB9YtPhOP5Ew/B\nPX9WSYHq9/Hv3eW1a/4K6VfSEi0raDjbJBcTgw29H/ha+S5IPPJmYp51ntSJV3EFuAcpi9GvP12n\nwLHMkmmmVS/odIKoLIwR1/XwJLx/tE/Lcvb+12Ne+1Q9KLilOTpBJI2uz98K+idLDkS0DGbmjZDp\nhTpy2g5Kp+qtAl2f74mISPV7WqoRSIxTImGYs+b9fP9IPuGbqiUh/ZR+GEIpDSzrFBEZJjlUxXbM\nj77BQdWvlGSol7aDDj6D6lW6s3Z4Z+WklkPPHlT9Ft62yGsPkfTOlZ36ZoKKzPt5n5OgwXtm4jzU\nKDfxgSWkFwOchKVStkTENw17XOUzkO9woqGISH85ZAKcXtfVdFL1K7gF/PO6F3EGSS7ViYT9VOtS\n8yG1qjz3htdmeYOISGc/5CgP34kaPW2F1oLlroLct/EgqOvJC3QNDI/EuaX1NL4Hp8SJiLTswP7M\n8puCqxarfqOjWuYUSLR0oeb1OGsivhVjmLYKkrl3HLkSn4hO1+EM94kNG1S/DJK3vfDCu1573bg+\nb6aR1D21FlT2UVovtXuq1HvONyNVJ4rmgLuP9QxgLbEEq/qU3iO2HoW04pePft5rDzvySpZb9pVh\nLk+dla/6vf8XyEqKl94tgUbLtiqvPercz8JbsXais7FXuUln1TshyWW5Upojl2T505lzkJNNdaRC\nY5RIu+7jq7121zGMVbiTwpRMyV8JyZBZtMo+1S86GXMz/1p8p/5GLTvi5K756yg9ckKf43soFTM+\nCWdr10LBlXgFFLShuJKzlu2oFcUfwXNbyz4tb44nOVrZU5jDzd36bDN9AZ6h/vNHj3ntr8bdqPr5\nRzBH1n4JUlN/J9ZR0iw97hN0b6OSsS+M+bUNRiLJfTvPU6Krm6ZXhzNfMp03eT8XEZl1F6RWbE9Q\n+dRx1a/k/iVyMdFOz1kjx/QeP/MT+Ntsx1H+e52q6ZuKPSR1KaRmFX/RdibFi7H/pVLaWuWftTQs\nlqT8549izea0oebn3aQfnjtJ8rTyJjz7XD1NP3dwTeyrxPqbNVfvYzExkNgHB6O+TIzptXj+Bci4\nxwaoRuluMv8u/fkujDljMBgMBoPBYDAYDAaDwTCJsB9nDAaDwWAwGAwGg8FgMBgmEfbjjMFgMBgM\nBoPBYDAYDAbDJOKCnjONW6DhjMnTWvjgcGjKO4/DMyUoRHvExBbCryOK9Nq9VVpbOUCRfplroCcM\nD9fRW74CaCgH+6ABjMyCzlIcn5qeM9D9dpE+e/YqHRcddBTvCwrH71bt+3UsXNplBV678xg8Kti7\nQUT7zLAured8h+oX6+jdAw2OPR9q1/rv2CKMD/vHTLlV6+EGWnEPW/dCJxqVrb/z+Sehrc3eBI1e\nWLTWoCbOh347Ng/fn6+BY9JEtH9JVDQ0fzEFPtVvNnkV/Ncf/uC171y1SvXzzYJHwihFT7Jnioge\nrwHyDHFjdFnLnPt5CSjO/QmaznsevV29dua38IhYcOtCr+164vzqgV977Rs/hkjN7fu0DrShBvrl\nr/7gY147JFJ7Djz/he947eJieFuMD0MzrleiyNd+8ZjX/lg5riHF8abxRcPvpJBiS8Odazj74ste\n+7IPIeo0MjVW9WuhOVtyP/qFhESrfs/+At4O/xhu96+j9wy0yWEJ2q8kbxY0t4lzsT5CHP12N+nL\nZ92JuVDTs0X166+Bz1PqUozPEMWRiojE5GH9cBQoR87ufkFHkzd2on5fuRY65LEBvWbr90IfnJCO\n9fLCj15X/TbetIKum3yw5mvfpEzyXjr3B8RuRjqRs1M3Xrz43vFh3KO+au2lxf5UvBe6+11fBf6b\n45Q79jeofhGZ2DOzStEvKl17n0TnYAzjiqD3jiMfNN6zRbR3WjTt76VT9H7Evjpcn12vktAozNPW\nQ/i7feV6v2PfFvXZFEP+v69dRH8EEUlaAK+BXmdPjknEeklaRBp85xrDyWeG/Sbe+56Oni9Zj/mY\ntrYAf7dBe1yND2NMujswv0cp0nVqrr7v7Z1YL3mL4K/RdFifWyKSsIcUrrzKax9//C+q30gHPNuK\nPwofhPN/1l5V7DPD3iXnn39P9Zt6a4Cz7PmzV+OMEeH4fxx4Gj4pfO6bN61I9evrxmvr71nptdt2\naj+MnjLMkfseuQ3//1y76hdHXhSLSlDXqp+Ff8+ec9rDkevpdYtx9gpxfH4SY7GvZRbDtyu1TO+f\nHO0bRP5PMRl6bbPPU1QuPsONxi3dNEsuJlIvI18Y52+3H8I5f5Sv1zlvl96Nudq0FZ5jzbuc6Fzy\n9briBvgKtezVnpG+6eytiL8bPwPPJJWv6rjdMB/q2cHNP/XaM2+dq/q1t1V5bfYcc7/7+Aj2mvgS\nzKvdv9ml+s1ZC78N9kzpOq29iIrumC0XCyPkS5c4W+/boVTn+aztnvEH61Frg+k5LjtJx04f3Yez\n9re/9FGvXX6oSvUrmE6efOTzFkZnqgnHv4cfH7ur4C/U6+xjTWdQuxto/c7J135Ne85ira/OwN43\nNKz9OoX8QNNWYD2wD4qISNtR1KW0yyXgWPIgamD3GT1/+umZIpx8nWKn6fHhZ9oDv9rtted+aKHq\nNz6KZ4XKJ/Ac0tWnn1NHTmAdzL4Gczh7CXzZBvq0z2DyXOzvTTvwWkyy9kWMTMB5OH8uTv19fToi\n+9RTL3jtePIQjEzVZ7HMNfDRqXwCfkGR2fqZpPMweRj9E/sZY84YDAaDwWAwGAwGg8FgMEwi7McZ\ng8FgMBgMBoPBYDAYDIZJxAVlTXEloCqNO5FsTO1OJwpW03ZNLeKYbaYGJpU6lGiib4ZGgK7Y1axj\nxPydiM7qq4EU6tmnQennGEERkVySRXzjP+7z2mlLclU/pnIONYHqVH1OU805mjqT4sZZRiAiMtqH\nfgkUMzrQpGUFLoU00Og4StRpR/LFNFGWMfTWabr1UBtoZtG5JOdx4sFyrp7mtZmu2UzyBhGRZJJt\nBIeCdrv3VVC5XbrhnNmgI8cWgjbnyouiskA9f+6Xj3rt9JWabhhKUquBZtApO/Y4MjaioccVYk0M\nNGrZUMGtF4/6W0gxccPdmlo/7aOgCoaQlK5la5Xqd+937/DatS+BspeTrGVcC+8DVbDjCKh3ccW6\n392/+IXXbmp61WvfsuJhr/2ft96q3vPHlxF3/cd/f9prz/nkRtWvJA9xiyyjG6jS93zP26DqX37/\naq/d7NSh2fdB/nP0l6Dxl5/XY50QoymKgUZXN9b+rOu19IbXafcpSEUndLKoJFH88Pg45A7RGZo2\nGU4U65rnQb8+26Drme8E7i/TgDl2070vs2dCetpaDVp/4Vod3xtchvkYTtHeK+bo2EOmQfM843ov\nItJ2EOOVvhz1e7BZ02CDIy64tf1LCE+EnINluyIiE0TTHR9De8yhb7Per5nWKUdGioic3V3mtaPC\nMR4zps1R/ToOY0z7zut96O8Ic2JU+ztxz7I3Ytz8Xfqe8749UIs919lKVAx4VAb28PPbylS/IqLn\nc1RsRIKWpXQev7ix9iz7HHEihvs7IHFImY49fmxM96vdDCr2HpIyFSzUe832ZyH1KcrAXJ9+53zV\nL306am9UFOjXTX5IUnmOiYjkzMGaPbfnvNfOL9YRsUmz8Hd7eiBRCg7XayWC6sixH4GSXnhjqerH\n459agtjg00+8pvqdfeJtr730QU1r/1dxdhvkDTmF6eq14mmoD41VqKch0fr77tyHvdBH0svCe7QU\npeU9nGEG6jB3Ip149eBQ3JiqpyERCwrBv4XWt2spFEscdp1GrZ7qRAirGpCPa42P1vJcPjux/OD0\nz7TkLGMdKPind0F+MXujPst07KU9QyeMBwTtJOdMXamjrzk+e5CUAP1Vus4FUbTvmdOQMsVGasnr\nzKswj4faEKk8WKfPFgOV+PyYIpw3e09j7PLWF6v38Fl2wQOQT7PkU0SkpxISGX5uCHPkud0nISsZ\n7cYcKczRsqH2I6iVsVSHfSV6P2nZjTmcr5fzvwyW+PZWaCkOPwtx7Hd/rb7nDR24L1NKUP/Ck/Xe\ncOl6nD9YIlw0V8+dwusRoTzix/WxRNONFx9uxZzwzUNNGXSutW8I5/ANn4NEv+mdCtVvzVQ8+yXM\nwed1VOoa0LgZtTskGvti7nX6nFjzIknpLoKsqfMEpFyDZOMgIhJBZ7jOk6ipLJEWEWkjOfWMTZho\nrbv0c+C+w6i9Vz+EwtLznLZaYPCZoa0c/bJmatuKwUGcaxNmYUzj47W0z+/H92ApU2eNlp62lWHe\n5m7Cc27rAS2HZJuAuOl4Xhzp1meHxHl6Dbsw5ozBYDAYDAaDwWAwGAwGwyTCfpwxGAwGg8FgMBgM\nBoPBYJhEXJD7nTgTFKyBJofeRIk4g82g6jN9TUTk7NOQGE29GXSiyue09IhdzoOJnphSrKml1Sd2\neO2KneVe+5ZbkAjw1GuaVvuD++DmPUTXGhOnKfi560BR72sCfT4mX6cBDdThXoQS/axyp6azFV2O\nJIHus0g7CndSBVyZSqDB6VdhEVoC1FsPnijLkCISNU22/iXQh4s+Cip2v5MI1HYQFK/0FaB2J0xL\nUf34b7F6acUtSH7xE71QRKT2MGhqKctAecydc7Xq190NaRRTiUMi9XRnB+/khaCGxxRrqUIMJaGw\nBI0/W0SkltKaMj8pAcXJJyHf6R7Q96WyBbS86z+8zmunry9U/epfB03vxa2gN9/5kStVvxs3IGpq\nZxlSAU4/+6Lq1zkdCT5RUaCQ//d9H/basz+tM486a0HJnEuu9o//+CXVb2ERJGzrvgE5VkREmuqX\n8M5mr91+ENToog9puUBQEOjG7x+HzOLW79+h+lW98MF0ykCg5AbQxf3tehxjiI7MFOG+Cp0SkHsd\nKJU9XZB9DrZqaU8f0bKzrgL9Ouqolj+dO1rltfs5jYxc6NkhX0TkyIugBVe3obaNbdGSi7JG1JdL\n5iIdr6VV054TKZEgiGQBAy6VmL5TCiVQJS/UMtkTjyPBbNpKCShSqFb01WpqPe+LTVtQX+JmaHo5\n1yKWlVTt03K8/EJQX6OJLjvgUPBZY+IrRa1tJrlTTVWbektJKdbfxDjGLdSpk73l7dQPxbq/Vksu\neD4PkcwsJUUnxLQfwDUxpXzQSRFLnK1lKoFGmA8SguzL9DnD34971d+OORzh02uH7/uUlSRxdmj9\nNzyCOjg2BAp4lCMp7Wqmc1E6yeIGIF+sbG7ht0j6EOjSU5dgr09brin+CUnYWzvbkKqYtW6K6nfm\nN1g7U++EXCk4zPm3PNq3h4Ywpi5d29+m61wgUTgH+05khk7v4bSv0X7cvy273lf9RkYxHk21GPfk\nBr3GIlJxJkqcgX2o7nVNfx+mRK+EuXSGpjX74H03qvfc9NEveO2xRYu89u23a91Cfznm1WAd1kvu\nVSWqHyfncMKkb5ZOPx2leTXveoz1+c1n5f9PTIxgrnOaj4g+c8WXoLZ19Gp5busBnNkXrMc+W3fA\nSd0iqRAnU6Yl6zoVRGu7gupyJEnLet7SY59OEpacxdh4Go5pOVlaKfbTsHn4u1U7dOLi1Lsu9doD\n7ZCbsKREROTo25DPLV5T4LVduUnXMf2+QCJhOuaWK0ceI1uMGErZGmjUz5W5kTjbRFHi5kvf1OfD\nTV9G2lzCNPzdzpPNql9ICD6j7DmcZdV8cyStYSRb5gS4MScVdg4l9bGdQEyhnkfxUzFn/Z2ohf5R\nPTYhPbhnJdfiPriJkJz8ezHQvA/rpfh2LZ+ufw1nZz5nJDl79bs/2+61M8kywpevn60uWYZ1ys/9\nS76k6153BWR7fD9Krr7Wa7dU6jXGSVC+fJwPW+rfVv1Yxv3OzyBNXrJJP0OkTsPa7qe9ofuETrQa\nprk/UIkzUne/3gf5t5LiJfIPMOaMwWAwGAwGg8FgMBgMBsMkwn6cMRgMBoPBYDAYDAaDwWCYRNiP\nMwaDwWAwGAwGg8FgMBgMk4gLes7015Fe6qzWq8dPhVa6nbSecU50G0egRadB/9cTr+PLwilCrv4V\n6NrC7ohQ/ZIXQO9/+E34LXSdgy7+xg066y8yC383ewN8ZrpbTql+cSnwuYhMgd+CG4MaS3HKrP2c\ncZPW53FcKsd/uRmknUcpH3CRBBwtexBf5sZOc2Rv/AxoNzlqWUQk80ro6VlPGj9Fj/dwD/TWXWeg\nxeNYWRGRxFiMa9POKnwezx9HWzlOvgi+KbhWjj8TERlow1wIJ1+BiHitd0xZgs9jr4jUpTmqH39f\nngvsHSAiUnDjPLlYWPn1O712R+Vp9Vo++QFlXoLYuo6z2r9i2t3wZbqNPJ4Obtb+Ty/v+pnXDg2F\nzjZno/ZoevJziNIupnjYOZ9Z7rXL/qr1nSU3IzL74R8i3vrbDzyg+i19AFrr+l3w2wmJ0iWLPUni\nqCb11WvPhz8++m9e+/b/hN4/IkLHzeZerfXHgcbxZ/FdWLsuIjLrI4u99q4noJ9ddf9lql/3Wczv\n6EysZ/alEBEZIS+r0X7oW2PytCY6vwVa2uBwaKe7G1H/k8nfRUSkdA38YziRc6hF+95wpGsURaLm\nJurI0LNvYU73+zEGuY4nR/x06JzrdmJ+51+h52bmjAvHFP4raDuE/W58eEy9xp4sSUugc3a1/5G0\nF44OYtzSMpJUP45W7a+gyNUkff+GyAeN4z/3nIMnwvJp09R7onMxd9rfh39D2iXaq4QjII++j715\n5R3LdL9ezLFo8hQ7u0tHaYcG49+E0jh63Nlnxwb1fA40+qsxv+t7tNcUx/TmXoso05pXTqh+w+1Y\nYynLsW8M1Gg/npO/hj9XJnnBJGZrL6ehbtSt2Fj4iITR/pSVqPexo9WIDV5FuvjKx3Vdb8qFJ15M\nAWpAZKr20Sm+C/47rNtveU97d8TSZ3TSOSLdmT+hJfq/Awn2XRkf0WeMqlPwv8vOxnkhJFj/m+TV\nCxHvzT5ycQX6PvvJS6b6+ZNeOzhC70kdh3CeSyCPl5EurKMnX9qq3rNpLfbmhBicPf/059dVv9Wz\n4NGQNws12Y1XZ7/IriCMzaizR1Rtg29j7iXwoEpM0P49Z6t1XGygkXM9atO5p/S8LboBO0zNKzjr\nFN6qs6CzY7Cf9lZhHY2O6RodW4RxjWvF/Mm+Rvv28PkuIwTPBgcfh19TprMWi29BnG9oKOprbLb2\nK2k5gXqTPAOfnX2JfgAYH8fZk5/H2g5pv52S6VhjtVsQyZy5LFf16+rUHi+BBO99MVn6OaPjGDxD\nqp5CvWpu0+e0S76wxmu3k1/atd+4VvWrew37mm8m1ljyHH1Oqdm+x2vHzyTfS3q0OPOGfg689vvf\nxvXVvoX3O886NS/hzMLnMNcnz0c+SYPk0enWoaERrM3GLajVmVfouHbXNyrQ6BnEnOPnIhEdc8/7\nc8sevTesfABn1o7DqIeu3yrH0nfQGSSpUMeHRyTjviWXoFbUHkAd3f/MAfWegnTshdEF+OzoXL0W\nw6hu/HUP5ot+SheZmolnBT7PZW4oUv2qXsB8Co/Ec39qgfZdzb1Gn8dcGHPGYDAYDAaDwWAwGAwG\ng2ESYT/OGAwGg8FgMBgMBoPBYDBMIi4oa+I4PjeWkencGWsQ2TvkxCb2nQdtre5NUNFyrtKUHo7q\nzr+dpBks+RGR9qOISmMa2L4yUKdvXrVcvef0YVDEkpeA9sbxiv8L0AEj4kHZ9Xc0qV5ZiyE/GBsC\nPTGpWNPPxsZA8W94F9Ibl/rPVP2LAZYycey5iEgIRYFHJiEqMutKLRNg6lfjNtzP2EL9XWJzcd8i\n6PNCQ50IUkLmaswfpke7EeMpPnyPtiOg2WYt0fHK8Rmg51a8sttrhzj0Y45uCwsD1W14TMcAppWA\n9jw6Cmrp8LCOUKt+GXMh7f4rJJDgvzXiRP/FToMUovE90K0TZmj6Y8UrkMowZXfZDZpK23YA93Zi\nbJvXjknWlNHyJqyLw5WQmGw7Aer/0ql6Hp05+HOvvWXPn7x27as6knLXT7d77XMUx+xSQT/0FUTU\nfuWBH3vt//v4v6l+7b2oLw1volaE3hCm+pX9ATGrmf/nOgk0ii5BbG3sFC1hGenFfC+dhX495TpK\n209rmGt01wkdkxlP8fX9NaCF9jkxv4wski/y+qtzxmfKHZBj1LwAem+MEzeZFIt1nzwftNDjjx1U\n/TgevjgTkqSEhVqexDU7MR/3LypN15eWd2vkYiEsDpJAlm2J6NjXHpICJzhRk/2O7OXvyL3eofMm\ngAbMeyT/HRGRrnjUhyCXj/v/4mPf/a76759+AfG9U6+CTK3h7XLVj+nq85dg3w4ODVH9OGK86V2S\nnBVr6WAYSSpj87Ff/EM8ePAHfJEAgeOHWaomIjJKEpSav2F+Z16uY6fbD4IuXfcm7pvPlXe3kzSW\npCX1h3T8Z+Z81OLKY0/jPUSjzr1Syy/ygvDfR55F/Sq5VNfexFmYgy27IC1wx7F1Nyjqycuo5jtz\nPb4I64+leV1n9b7Yuh1rfeU310ggEZUL+c2Zg+fVa/OvgcyY1+J1965T/epJVh0VRnLfH+1U/aZu\nmum1Wf4UkaKp+iOdqJsVe7EOilaA/n7fTL23HHoDUp5pUyFFYfmZiEgwRfayNKO/RsftRlNccTRJ\nTFr3avnB1GvxnXi9dbyvz7wr771ULiba9uHM4e7xIZE4tyXQWTksRlse9NE94DNSWrbeZ7sO4xki\nmeKfh1r1WbZtJ+4Vy0PzUnANpQ+tVe8JC8N49ffjnBHt0/KiqHhIXtvO4tkg2omDZ2nPMM2rKJ+e\nc/WV+E4la1Gjm/bofTA6Qt+zQKKLzu6D9Vo+lXc99pc4OveMP3lc9RshW4Tcy5AvXL/nkOrH64Lr\nUPljul/Kpbjv9a9jPJIWYE+65nuPqPf4/WT1kIL9uOmEls2ExuFa8BT+AAAgAElEQVSZKCkf6ygx\nTz/bjoyg9vREQcaTmKTHOiIdcsZBOq8NNOizQi/J2kU7eAQE4aFYb0d/vke9lnNpgddmGSmfNUVE\neshmpLtMn18ZBTfhvvnbcQY894yOlE+/DM+IA13Yq/tIvsjXLSJyogp73OI8nFfd50CuPUtLsJfO\nLC1U/f78yjte+8GvwJKhba+WfFa2YP5s/ApsHFg6LiKqfv8zGHPGYDAYDAaDwWAwGAwGg2ESYT/O\nGAwGg8FgMBgMBoPBYDBMIi6c1kRpBhHJ0eq12Cy4lLcdBa2HXatFRIJIOsI0nraDmgqUMBPSlMQs\nONI3vKkp1unLQVP70Vdf8dpf+/iHvPb4iHZnj48CBTCION9MTxcRifThOwUHIw2D6VYiIn4/ZBap\n05DQNDzcrvrxZ0QRzXSoWdMn+ys/WGYQCAxT2lCsS5MlSjNLyLLWaHp9+eNIm5hyF+jCrQc0TZZd\n2cNiQftLX6odrZOTQQetOvaM1258t8prR0TpNJuUlRj7pFmQO1Rt3q36sSN40bVwDQ8L01Tzyu2b\nvTanUviy9LV2NUKm03MeFL3kuZqun1Cq5VWBRAclT/z6u8+q1772xL977Yq/7vXarnzOR5Tg4DBK\n5TmjaeiRGZCIRCXiPfsffVH14/SXnEJQ5p/fDDp4c7emZG54+HKvzfTCGQ8sUf1iXwXVNz8Hn53t\nOJwznf4b37zfax/+raZjbpiHOcvs/I7jmr797HuQGayWwIMlIj3Ofe8rQx1IJ/kEJ6qJiDTXoc7U\n/Bz3OjdfS2dCSbI4UAnKN8vRRERWUxpUTA7qQ8H89V47Y4FO0DjyA9Te1GVIqYlI0ftEOtFgGZmz\n9NrJDALN+5UX8Z1GDh9R/a5aBolh4iJ8RvlTOm3H5yStBBL8HVl2JKJTNBLnokYxJV1ESyp5nKKS\ndH2OjETNG08Btb6/QUuAslZDwtJThXnFssLke+5R70kvpCQZkrC5EqweoiVXH6zy2jMdKjMn2SXR\nd+9y5u8AJUu50lWGW78CDX8X9sWu4/oaSx+60msf+Z9XvXb9y1reFxSC80QqSaZjnfk33IG/5SMp\nRWqRlpRGRWEtTeThHFP/MlJqMlbmq/e8+i1c3/xl2LezVmuZdcXTWEsspfZN1eOYPhe18uD3nvPa\ncz6rU+Oa90DenL1ygdcOj9d1rfecPhcFEuGU+jZtnqah126HzCl7RYHXVtIgESm4GvcshF5LbNIS\n8Jq3IIvI3wj6e1+1lhRFZkKeUFBI8gtKE2SJoog+o8ZMwdzpL9dnQ655LG3kfUVEpHlHldcOp7P7\nhJOayWt2x5PYMxcun6H6HX8OKYMlKz4sgUbqJahzbD0gItJxFPtVxmUFXrvmBZ2yMzFKyYAkd+NU\nOhGRtiP4vL5TJHFy0jffJ6l2arz+DO/azlWr/y5cjHXAktfgYH2WrTu43WtzkmLSVC2brN+L81zG\nPOyRI33Dql/xpVjrDe/hmnLW6M/rPqrrXCAx5ke9SnNq1JlfQRLEzyAln9Lnvu5zqB1xmTjbZS7V\nSbj9HZC28DrgNCERkdEB3KfZn4XVQEoKatn4uL6X3W0466RmQQKZUKyfWTnJyO/HnGo/oZ+JeG9N\nX17gtd3kUX4GyVyLcat7Xe857nwONLiSJKTrv8XJUzV/hdy394yu8ZwoVXAzpEvjfv1s3kvPU3xW\nHOnV1g3VT0H+xs+BiXNwzli3ab56z5H/QVJsMsnYRp0UyMR5+IzwXRiT2z/3NdXv2Z9DFv7OE7u8\n9qoblqp+i9MwVxsoOc09V7Xz87ZeLiJizBmDwWAwGAwGg8FgMBgMhkmF/ThjMBgMBoPBYDAYDAaD\nwTCJuKCsiWk4rpM5y5pS5oJmNDas6UhFt4Hyc/6ZfV67YN1q1W9oCK7idfshU3HTMDoOgAr03e8/\n6LXLNkMGMeOG2eo9OZTK0HECNMaUBVmqX/0O0CSTKNlg+nW3qn4Np7d6bX8sqK9umk3De6DHMQ0x\ncb5OIOk5e/FovyKaOu7v0ElE0TmgrSXOAfWr8d2zql8cpU9ERqJfdJaWrfjyMRda3sdnTExoymhX\nF2iOWdNBHexfAopwdI5OfkkrAWW0qxGpRG5yCcvVBvtARRwK0W7Zxetu8NpjY0xh1p8XGgMKZdoi\n0Ed7anSS2JhDiw0knvnpa1779mt14sV/3/3fXvvWTau8NlMjRUR+86UnvPYV80FdHx3R182ypte+\njsSQ6x/9lOr36N1f99pnG3BvH/wu5BPspi4i8qk7v4PrS4LL/qfvv0H1ay4D/fbto1hH90/X0rQk\nkpbtfwy07Ku+c5/q11mNufj4t5732jeWrFf9Hv7GXXIxMVCF9RI3Q8sJMikpqfENyDnHxjUVPSEG\ntPkUkhQdeU1Lj97dD6nPlHTUs7mLddoL19j29ym1Zh5oofEJc/U1lIK2GpmO+dJ1TEumWM5TQzKD\nT37ve6rfF0lys2YWZK3HqjVtPCINFH2W5mWt1pIGN9EskOC/23ZQp/zEU51k6VLqQk23bj+OuhST\nTUlxfVpKER6OfSM+Aftax9G3VL+QKeDFxuaCtltyC96TdlLTalOXoVaHRkJaNe5IHwZJ3jH7Q5CV\nxedrGWdvDdbsSC+uOzxRS7+Cw3H/+imhyeeky7lSjUCj/g1K71ioZXbn/oyUuqz1qKNpc7TcY2IC\nNO2TP8aYhMVryXTWFVjbnNoQ7juh+oVnEW18GySWxffjvlf/9aR6T0ocJBwxeZhLnWebVb9+Tnnr\nxvpw98+8S7D+Rsfw/VjGJCISRJLo3mZQ+QebtWTHPcMFEhMkBRh1pB5pszGmTLtnKY+IyNAA7kVU\nDGRSuTdoaXfUYdQ2XiNZ67QMupf2PL63J/6MJJmCVfo9hYtRvziZKyhc//vpqZdB78/IRK05clon\nVa28HnIRltQlL9RnXoZK8nEi34I+KAIuQGh4C9cfmaalsQNkr9BdhuSbUGeNlR2GDCmpHXNwzJl/\nfkp5zZmOORJXpFOdko5gX1t8E9ZfAic8OZYH4+OYS/rMq2VNBcuu9toNZ5BM035GjyMnVSZkYm27\na+o0ndcXfxjPXMHh+hGvZefFSzHk9ReTqWWdnI4USTI7Hk8RLbEsf3aH1w52EnZSFmEeD5DEN3mm\nPgcMdmHdR0Rg/6stwxkwNqVAvadxO+pc8BW0V9XrZx0egrBYrDGWKYuIhPtQU6pfRO0uvFFLWs/8\nAt+X5/xIh5b+5l6j61Kgkb+swGsnO8/I3ZR6FxJNY+Ls1cnzMN5vfvt1r106V9e9/fvxzL2Ukp45\nDVpEJLYEa5PTRsvexHN/8RXa8mBwGPPRT9YeyaU6Oe38k0gTvObO1V57eFTvE03ncb5JpDM4j5WI\nSGUZzoQLbkHdcJ8P3e/owpgzBoPBYDAYDAaDwWAwGAyTCPtxxmAwGAwGg8FgMBgMBoNhEmE/zhgM\nBoPBYDAYDAaDwWAwTCIu6DkTTppOV5dc+Sz8DZIXw2uF48BERHzF0OzFk19ExZtbVb9oippmnwL2\nVBARmRiDtm3Pn+ExUTIdmv7QGK3vHKZYLo4/c7XHERTBHJMCzVx7o47ljc1mrwjoxtpOaZ+WgXpo\nITPIEyHMub7uUzp6MtCIp/gzN5Y3ZRZ7qEA3nnaJzvaqpxjJ2p2I1Q6N0vpKycf481j1N2ldXkIu\ndLvtjdDWZ69EHJp/QN+X6nffxX+QBtrVRY5QNOFgC3T2w44PReQ8fN+uWny/0QEdtdZJUY4cDT/m\n9AuN0+MaSHzip/d67fYj2jvnC7/6hNc+9FNEvIXs0tdz+RxEvEXlwWto1Lkv5W9hHl/2KXjYfOv2\nL6t+hWnwnGgnr4yffeVxr71+jo5A/OYDd3vt7I2I+eUYexGRY7uhJf34wzd57TFXp0nC36pWzJc/\nPfQj1e3en37Ba3/sh7iGDscjxVesfWACjfBUijV1aiXPs9TLUM9cT6pd78FLZg7pYvn7i4iEBGOu\n5hVAb81+PiIiSeRDEF+MGh0SBq10/bHt6j0RpBtPLsY4tu3RMZI9p3FNkWGoFT//4hdVvwE/5uCO\nU9AhT83UXiAx+YjhZC+U2HwdQd28g7xqbpaAgj1nEp14xN5K6KGjyIsnNFRfX3gCxpTrVWRSnOrX\n24a6FJOEmpw4W/uW9TWhJvAezLr45IXaEy0iAWMYFISxiY4uUP1aunEvE2ZizYeEaG+IUfLKGOnB\nHh6RGqP6hcaiLo1RrOVwp/ZDc8c00EiYhe/CEaEiIp3vYy02boEHQfdJvcZKPrTaa6etLfDa7tpm\nb4qs9dhz+6q1J1dvHDwJuo/hb4VTZHvOJu0ZlRsCD4L4xFKvffgHT6h+cz4LrzJ/D84mZX98X/VL\nnAkfHPbriHHGo+kt3Bf2GIhO0f0y5mm/qkBiqBX3tapCe8ANnsG6WrgR1xBXqPeaqDSs08bt8C2R\nYP1vl7VNGI8kP2qmL1FHuE6MwVuGfQbylmL9uj4FPpqLA+TDdPJkpeqXQz5tsVNwn2MrI1W/vnOI\nqA1PwdzpPq3n70A1/taC6+BD53di7F3/hUAjY02B127crH1Xsq7C/lLzN8T3uusguwbf5a97cGbP\nSNTjPSsPe+tQPfYQf6P+zrxfCT3/nKZY6NLPLFPvaTgL/5i0IrzG8cwiIv3kk8J7Jp8vRUTykrEf\ns5fFjJXaXyMzE75YzVurvPZAl/bECQ6+eP8eHxyGz/b36HvpJ8/S1EXYh3qdGPq+OqyL8ETM6Uha\noyL6jM6eLp1l2lMnJhvn3KEh3L+mbVhXKcv0OT73SkQ/+7swP8acGOi4fMyrlj3YI12vzNBo7Hcp\nS/E8e+xH76h+ETF43mY/EvZoExGp+RvOR1kPXSeBRpgP13H0V3vVazHkS5UwGzWLx0pEpHU/PPVi\nI/FazTn97PLnrfgd4GhVldf+9AM3qX4Ve2mvIY+1orWoAftfOKTes2ADnj2GyG+tZUB7pxXfucJr\nP/9vj3ntlTO0v1z+tdhnq1/G84lvtvbey6d50nGIzmUj+kyQsU77I7kw5ozBYDAYDAaDwWAwGAwG\nwyTCfpwxGAwGg8FgMBgMBoPBYJhEXFDWxFGg/g5Nj0u7rMBrt1Oc6D/EYZK0JXk26ISjfk1hbjsI\nGhTLcBrfKlf90lfj7y66AdHKcQWgmHEsqIhITwUonjmLV3rt+sO7Vb/wBNCvWk+c89oRThRo5VOI\nM4wjqVZcgabzxk/D9+il+K/xUU2P4797McBjl7tRx4xPTID6yzFpPeUdql8sUYGZUsjSAhGRxvdA\nO+VYz55yLc2IywItPywG97evBfMgKlnTUVMWgA5Z8QRooqmLtPQtiKibAxTr6Urz+tpJ+kAyKaas\niYjMfhhzhuMRu53vFHYRZU1RMaBE7/rri+q1GXtxX3IWYY1lXKqlacd+BqrvrjdAV1w+TVNkOar5\n7F+OeO3cFE39X3ElYuIObIHU5nAFaINMIRYRCab73PQLrL85H9axgrOXgq74+X/7ide+bcUK1a/7\nBdSRJcWQCxTdpuf5a//+G/S79xKv/fpf3lX9El7Ed//4766RQIMlHUPNmvqbsQY0xxCKjmzdoam6\nLPWpacOa7e7Xn3egDJIYjuO+8eNXqH59TC2miNiSq0HL7hjRkdFMvW+NwXppqNSSqeJVoKRzHGZK\nrpbYsKQlMhz3KHO6lu+ExYFWG50FynLdS3rNjoxdOKbwXwHXspicePUayxhY1hqXr+UEvnzIIkJC\nQNPtbdEyhqRsyDGCgnD/Wqp0BHPyDKz1sTHMA6bShoTrfSYsDPtVYiKid/v79TUkzsEYcKKuv1/H\noA4RdT00Etfq1l2e2zE0hrxPi+j4y4uB2ncgn8hYqOWXITGQds69f53XPvo/r6l+/Z1YFyzfqdt1\nQPXLWrzYa5954k2vXXTbUtVvfBz7Mcc1M208Kl6vCZ8Psprq4y947VkPXa36DXRDPsGS7umfXKz6\ntR7655R0V8KcuRGxqHVv4LwU4vTrL8O4rvzmQgkkWD42Y6WWuXCEO8sE2g/oWsaSovgSnOeGu/T8\nS0/AeuG43OBg/X0TU3E/m8oQjxuViXWe4pxZeipQUyZo3CtbdD3lGOizr0DGNTdf7/UnzlV57Z9+\nD+eFXzz4adUvvpQk78fxt2qqdQx7ybJiuZhof58io+dqqSifMWNyUS9ad+t9MXEB1kX+eYzp+hsu\nUf2SqJ4NNOF8OOLIu5vexr54/EWcN3Ny8NkNW7UEi+f+SA/OFhwRLSLSRFLJzm58v75BPeciSFoV\nEgJ5S1+ZrpX95Xi+CI5EvxhHDsTPY4FGCsmV+mq0XCkyDeeqxm347jF5+plpkMYjdz3q2kCnXgft\n70Muws9PU9fcqvr19uJ5ZGSEYqDJWqL+1TL1npxrUEdGKB48YaqWr/TV457zvu/v0GPYT/ei9zTJ\nmR2p4JRNs7w2P1MX3jpP9Tv7C22zEWiwDGvUOUflXI17ExaP+87jJiJKT73gTtTDb33+V6rb9+69\n12s/sQO1cu/mw6rfjBzUy9gCPFd+/ks/9tohjmQvPgr1PzUedSNjo47zHh7EOM5fgO/nrpX2g5hz\nfO4O2qrPNzkkwwwOwTWVvaDPbCmDF5aKGnPGYDAYDAaDwWAwGAwGg2ESYT/OGAwGg8FgMBgMBoPB\nYDBMIi4oa+qkZJ8ghzI03I00hnSSOPWc11KPBqKwxeaTzOWc7hc/HbS/kT7QC/NumKn6RRA9KSoV\ndMDIOFAhx8c1PTE6C1TQkRFQmBKnaXpwTzWoSskzQX0aaNcUz/yb2c0bFDZfvpZw9Lci8aH+TVDn\nCm/XFOqu05qyF2jET4HDf/3WU+q1JEpZYNfzoLAPHu+0Zfie/XWavhidAepuWCTGqteRSY2OgAbH\nlMC0AkiIOlr3qfdwsg5Tqv2OI/1QG/47mqjEXU5SVeMZUFJTluXiPU66SO0buGcpS9Cv46B2HneT\nxQKJs0+BCn/5Z9ap11hOwElnoRH6e4yStCWOKH8Hz2tq7uAwqJxDRKP+yNdvUf3Knoe87zu//73X\n3rwV7V8/+qx6T1E61mkLJYaM9A6rfq1nMVa/fuo/vHZi/nTVr6MStNWuk3hPRIKWIs6jJIq//uBV\nr53nSLUKpuh0oECD6cc512k5Wf3rkAbkXI3XgiN1mc6ZSvThvag/Vy5YoPrdcecGr115AFKVXc/o\ndbVwJerZQBWlSMyF9M2V7MUVoaYMd2HOsYxJRCSS1lLPKdTX8Dl6fIovv95r52xEekwFyepEdAJS\ndxk+LzJL07fT/z+c8P8VjJDcZjjWSQak2pN/M2jKA009qt/4MOomz1Vfhp4Tg4OQXo6N4D5HZ+jv\n23IY8l+mJSdMxXxmWdT/ArTdgQH8nfHxIdUrJhNSD5bBuslpGSsgreipRL0fqNXJNGG0z4RQEkVQ\nkKYHd58h2dSlEnDM/Sw+tOnwcfVa8hJKFGmGzKfobp081LgV55u0Sz44eaq9EilMCXNQA3sbdMKQ\nSumgPbjzGM4gTJUWEYmNRU2My8aZpqdRp1J0n4W0jlO8fFOTVb/WfaDUT/0w6mbbQS0HYkkRJ4qM\nOymYSUt0mmIgkTgf87vxLb2PpV6Kvbp8K2rrzJv1GLbvx/eads9ar1279aDqt/SrH/6n19DepGUG\nyRmQ3qYU4v6VvYg9fPefnfdQAklyKs7JjZ06zWuCBm5eQYHX9s3U+9jsZNSUv2x6xGu7+2wfy2Gi\nUB8SonUS28VGZDr2iUFH7hscirrAEktONxQRGSSp7RySU7sSIN6v6k5i7Pl8JCJSshJ7Wd1+SKjG\nSI4w2u8kdtJ+UPEKziZzPq2lVSF0r9OTYAVxcItOx9mwbME/fU9Emj7bjdD53EeJevz/Rf7xXB9I\nsAwzwUm/CwpFfWjZi3vJ6ZAiOr2vuxr9VPqiiEy9a7nXPv2zbfg7wc/pi6ItJSYb62qoEc8fbmpO\nxxHU5JEerJdw50zZ+Cb23LgZ+L7pS/QZyN9Dez2lXIY7z8DB4RjfcEoODgrSaU3i7JOBRttuyF8X\nf/Yy9droAO7HKKVMumlNUTQ/t/wICWa3Ll+u+nWRFP+jmy732nd8+T9Uv+888IDXbq/GXNhIZ97k\nWH0mWvX1G712SAiuzz+on+dHhzDnKs+iHnQ5NgHpPsyfJPpbqUu1RN9PZ8DqndiDU3KSVL8o5znT\nhTFnDAaDwWAwGAwGg8FgMBgmEfbjjMFgMBgMBoPBYDAYDAbDJMJ+nDEYDAaDwWAwGAwGg8FgmERc\n0HNGxQWGad1bXyW0qqydGvdrHXpCKfSUTe/A96DoLh0P1vY+tF4T49DVtmzXWsO8m2Z47aF2aLvi\nZkOr39t5Vr0nKRuRbOffeMNrs9eJiEjiXOhZextwPalTdNTk0BA0eUGhuA+uN01MKj4vJh9+GA1b\ndDx4rBPBHWg0kV6TdasiIo0U6RdD1xGbo6+p5nlo5oNCoHn0OdrS8j8iAq300/C8yLxMx5clJ6/x\n2h0du7x2dzd03qw/FRGJziY/G4rCa3hba81zr4YGPz4RkcrdZ99W/Ti6uP4NeAIlL9YawsQSaNdr\n30SkYt71M1S/wTatUQwkIslj4qdfeVy99pnv3uO1sxYjknrnt/+i+jV2Qfs6mzTZqZdorxzfdKzZ\nmET0O/PHzarf4Uqs5x9/7nNeO5E0zxkJeh4NU3wg6+ljnUjF1Gn4jG0/h6Y4P1XH0fUMoAaUbMR4\nVD55TPULJw3+ZUtoTjRrL5BXtsOP5ZLPS8ARTTGAHNMoIuKbje88RHMp1/GmicvEmCTMgn9F01Yd\ngczeD1NXIyJw6WwdVfrejxH5WXIp9NJ9dfAKYX2xiEjnAeiyfbMxX0adeED2sYrMwD7hru3aw295\n7dhczIWCW3UkenQc1uxwOvT0fee1N4PrBRBIJC/GenFjojnWs6ccnikcIy4iEkExvwMUFRsWr+Nh\ne6vgl8D7Yn+19vryzcAY8L7WVY5xCo/XunAReJAk5kILzz43//uH8XfZDy44VJ8JuigKO4R8kvLW\na7+F7jrsfxzpzPdORCQ6V8eUBxoN27Bv9Ffo+5l7A2pJdAp8EUJDtU68oR/fpes07qc7/wabMcbs\nGdO2X8eRJ1Csc8I8rNPY/ERcT7qulSee/ZPXnnrdlV771NPbVT/fLMyR1CWYw/31ugYmz8O5pe41\neLXwfiki0nkc5x2uNUU36vHub9O+OoFE2y6sF3cf47U5TnN4oE5/X47P7ijHOSAmX9/niQmcbcPD\nce7JLrhB9evuxhlhdBTeFrVH4F0UGebEb8dhf29tJl+yZO3JsenyZV57127scUM79HwrKoDPj78d\n/kc8v0RE/C3YZ9hnqeZp7efio/l7MRBXgPntenuERKDO8HdpLtceghz7+8zu3V57Rm6u6je/EPP4\nnePwmvrovTp6PorOXJlzcD8H6zGm+deWqvd0V6AGpEwnH8wR7WdTfh7PFyXTsZ/PzNFz+N1DuL66\ndniU8PlNRHsWRZbhvoSH6BqdXKTP64FExTM4m8Wka/+PIKp57KXFvlUiIqO0d51+GusoJU/7dVS9\nhOeE8BTMlzHn+ZP3yWZ6lkygs1aI4+kXTntzxuopXtv1Bk1fi3k0SueZ6GhdJxvefQ3fg+LG23bX\nqX7sv9ZfjbNXa2yV6pe2Ol8uJnJvwPNT6159HklegOtv2obrSlqovRojknCeWP2JVV77+JPvq34F\nSwu8dig90z33y0dVv9gi1IeOffD6jMrDGaHo2lXqPeyx13T0kNcOcc5ifKYpXY993/XnGiIvrKoK\nXIO7tkfI02rK5Th381lYRKTnPHlhaStNETHmjMFgMBgMBoPBYDAYDAbDpMJ+nDEYDAaDwWAwGAwG\ng8FgmERcUNbUXwP6pyuHSaYIw6hk0D8ndIqYdB4HPTJ2Cvo1v1el+jHVqI/oPqExmv45SBRwjmmN\njATtMCpLU/6Yily4AVGJbeePqn4phYjlCgsDjaqpfJvq13USdN7EORTl+LaWK025HX83aS769Vbo\naL/44otHNRQRSaToztbdmqbG9zdjKeQTp36yVfUbIcoo07YO/eo91S+nlCJImyD/8mUVq37BwaCw\nxccj2rK1bqfXZhq/iJbMjYWjPeXmJarf6CjmSNW7kEtEOfGzTdsgA0kgqUfbXk037Kco2ORFoJ1y\nBJuIjrANNNootvuhR3WkZ2rRQq8dFIRrWPWfH1H96g8gvpMlCUMtmrIck8iyLtznMEd2cN1H1ntt\nljl2UmT5/T9/UL2HY3r938fY/OSB36p+C4sgg5s+DTTOU2eqVL9Zs0E75RqSskJTmX//6PNe+xOP\n3OG1R18tU/2++NhX5WKi9xzWfv95LaWInQbqbusurJ20y3Q9i07DeKUWQ7IZm63rSOdZzJnWnVj3\nUQ7leMpcfH50Nmii3STTOLz3jHoPx2/HTsF1+/J1bG7t26Dep63A33Gppf4u0NX9HZCqpUzR8eBV\n21GXkmZDfsG0V5F/pCoHEl00vyOdSNMJihNlWYXfiVYeIMlY5qUl9IqWSTEdXCbw2XFTNM07hGTH\nHe9DRhJHMclDrVp2mTAD1O7qrTu8Nkd6iogkkMyRr6f1gK6TcVMwBizrqX5bxwZHkMQwjKRWYwOa\nRtx7lqJGN0jAkbWGKOtZreq18RHQ63vrcIYJc6LTWYqYNhfjeOR/3lT9kui81LoHa7ujQdeAoUas\nbY5TZSnFqQpNDV/7yMNeu7kc++fsz16l+oWF4fw1MoJ6HRGr5TuD6ahRLJHrrdTSQY6FZVr/mT9u\nV/14LeaWSEARW4w55+/UscEHt0ESkknyWvcsO9CAe8tnDo5cFhEJi8HnNe+o8tq+Ui0VSpmJvWt4\nEPcyo4ikFFH6XNt6BmfK3HnYu6LC9XxjGchlq2ANEBKtPy8mF/LZmByKEG7XNYDH5swL+H5ulLZ7\nbwMNlsREJmpZU0whxi5hGva4aTdoyWvzFpznjpxGjPXdq3Rm4uIAACAASURBVFerfgfKcU6Pp+/Z\nd06fy8cGMKc54j6Ioox7qrQsseYVWCpkrirw2k3bdax9J8X0Hj2G6ynOyFD9+FoTYrDXlGTpfZZl\nRBxL7krzKl48JRcL4ZGYg5nrpqjX2DYgcS7O0FXPapl6WEKE1+7oQy1Mj9ZSbI4s76LnxbhpWgZY\neDOeLXoqqcZfII2a69ownUvC4iNUv54y7E/8PFz26iuqXyJJz/ncnbJCS9h4bym8DXPb79Sheppj\nopU8AUFoFK6DLQ5ERDpPYC+sr8E5KHG+nredx9AvKhNzc/FDK1W/AYo076/BXhgUqnkj1WQFEhKM\n17Jpz2UZk4hIzQ5IG/vKMEfip+tzctdR1N6WFuxx/MwrIlK6ERLGGVn4Tqe36bMxR263nsU9cqfc\njHsWyIVgzBmDwWAwGAwGg8FgMBgMhkmE/ThjMBgMBoPBYDAYDAaDwTCJuCD3m9Nx+io0pTUqDa/1\n1oEuFpOlExaYNlmzC7RD1317kJyQzzeBEjVrnpbDhCeCBh2dis8o3/EcOgVpAlEi0bdjYkGDypx+\nmerX3w/qYVAQ6GcRjns8U197ykBrZPqliMjYMGiRnHbSeUQ74SdM17TYQINlORlrNd0wNgN/u3k/\n6HJZV2t9GlN/mf6ZlqHHcYzo7JVPgSZbdI/+HXB4GFSytDQkTAz3gsIXGulQdUlyERYJOnNEhKbe\nRUVBBhOymNJTqvV9H6zDd0pdDsmF6zweTnRGTu7w92pKuitdCCRaeyAxjN1bq15j+jVLrVzpCEsN\nyrYhfeva739H9Xv7a4947dXffMhrpy7TUqGffOGPXvuzP7nPa9e+jHn09mPvqvfc9v07vfYV3/ma\n117l1074dQdAzx8levFsR66ydQco/jOrQRPNW6SlQB//z9u9NstNgiN0msG2bz3jtW/6kU4dCQQ4\nbW6gqVe9Vr8d9TE+A3O986BOO0mbj5o4NITUB573IiI15Zoy/Hd0ndT3OmcjamJ/I+ZZB6UNLds0\nX72Had6cvFSzWadkcRJdbCqo2O3ndMIaJ6gUXA6ubneL/g7DHVhjbQfpu2fFqX4sGwo0WL4z0utX\nrzFtmV9jmYGISONb+P4piyh1MEHb9veFY28dp3nbcahB9YtIBRW7vwrfnaWccUW6VrceQB3pOox6\nHDdT035ZCsF7Ye8pTelnCUy4DzXTlX6xbDmI5FhKwiUiqSv0Gg40us7R9TtnhnqSOxbdA/lIxV+0\nFHrqR5Z67fJnIPGtbtUyqaw+JHicOol1Pmex1vlUnsCYRHRh/8unVItZly3it0jd0Xe8NqeTtDgS\n5rxrUXtCwrAvNu46Jx8ElkVwyoqISOp00Lybj2Hddx9xUivz9dwPJM7tAt295FJ9Vlx4Ga6v5aTe\n+xnNZ3G9sZSS4spJBxpQo7qrif7uSH4iSP7L8qU+SsViyYuISDoltQwR1T99vpavUOiUqkMNjjw3\nLA7SBJYIDDjJXFw3Bs/hjJqS5pxlnRS+QCPvGkjqq1/WMoFwlrqQXGKwVu+fLCn9wze/4rVf3Kql\n9+kkcVtair/LqYMiOoUllMax7G1cX/Xjel41d1PtPYZa6SbPcYplC73nXIOu6x/9LJLAKt7GOuWU\nShGRzBkFXpuTcjgBSESk6EadLhVIsFywgs7+IiJFd0NexEmrcQV6T+LU3gV5qLvNTi179j2MaQQl\nn91VoOXNjNp3sOcWUi3sPFav+rEs7NgzOF+mxjvPtmQJcfwoPoPlWCIiSQfJ3iEGY5O5ST9jcTrm\nSA/ODkml+nmE5XYXA/5OzK3613Vd4WcITpwLdvZuLlQ8H92E0vb9uG85VAPCY7X0Pq0N+1rNcyTN\no33b55uj3jPcscVr8/rj3xpERJqacR5p60VNmZqp7zv/BsK/AcxYpdNUk+ZA4sXPY2zJIiIS7KxN\nF8acMRgMBoPBYDAYDAaDwWCYRNiPMwaDwWAwGAwGg8FgMBgMkwj7ccZgMBgMBoPBYDAYDAaDYRJx\nQc+ZUNIGFtyo9VztxyhGk7TwQSFaux2TB71xSj78OnrrtSdAwlTo3NfdNstrR6dpDeH4KLR4/h58\nRhDFa8UV6vdERJKvyqn9Xjt7zlrVb2QImrKWw/DNGOnVOrn0FfB2CIuCPnFkSOtA696ERpT1/mkr\ntTdEPUVwZ+r044CA/SE4BlxEpGVXtddm7XT+rVqb2kt6u5BYaA0P7j+t+gWTBpB1ta2OT0o8RSK2\n7P+V144rwhxJzl2s3nPiT/ADSZwLXV9iiR6f6pePeO3G09AEl1yjv1PO9dAKcmSe6yORMA1a5Mbd\n0BunLspW/TqPkDfIQgkoVn5pHa7P0W2+88O3vfam/3Ot146L01GTZ1960WuXNeJaG8pfU/1Wf/Oz\nXrv20GZ8nqMPnpkDj5e9P4NHTPEy+Bpdf9216j2RkbhnL3/pG167ZI32XnjuMXynK1fCYyHMidks\nSkdM4Zl66FeXfE77SQ22QWfa8DrWW5hPxyNOm609PwKNk09Awxwdof920c2oexzTyNHDIiKxsZjH\nw8Pa24JRfAN5tzTCT6u3QkeGnvkVamLSXNzPwmugy+45167e03QK8ydrBGOac4XW3/q7yK8kAhre\n9Jna06CDYmonJqDTnRibUP0yVsG7o7cKNannjPY/ceNyAwn2LOqr1L5TyYvgERFFXitutHfSYvTr\nPI4a1Z+k98VQisjtIz+Rzko9hknk3ZK0GPc5IhXX0LC5XL2HfSQiKRqSfd1E9BgM92CPiMjUXjLx\nU3WM6d8x2Ky11gmkyeZ5lThLe6+1v3/x6qmISCRFVUemaI07W9CERlCs8Liej2d/gbjO9CtQ90o6\ntA/JOEUgz1+Ndc57s4hIvx97zyWfQQ0Lj8e1th/TvhRCl9RxHH5SMY4PUy/5pPgo1nnK5Zerfn19\nOLd0ncHnxRa6fg44c3EM7MyH1qheDbv0GSGQmLlhptfufF/7fwSRR045+Rj6t2nPhoJlqCkvPr3N\na19TrL8ve5zkkU/XqRe1z9bAk/AlGhjGXl20lmJfnXNy8jysiVDyWuo8oc9r7fsx9rHkB1TygD4r\n1byMez5EHgs1p7S/RqLj7fB3RGTotd11tu2f9gsUKiniOSZR/+1eqrG8+oIdn6iUZTiPHHkNY3Dt\niqWqH3vTcDvUiTePnoL1s+/XWOdZGTi7Hjqja+r8Qsylxjrcs8r3dYR1DO39c/PxPFDfoeu6UO3N\nX4HPbj2oa0BoNNZfO3mxsQekiEj8DO2rE0hkbZz6ga+17sPzYvZ6eEON9OuzdjM9J6QtxrnCN1Wf\nPT+ScQXeQ3HmscWOBybtcSUfgodNPfkipqzQXoqtu+BvU7S8yGuf2am9uSY6MDZTZuIz8nO1r2d4\nPPbTA88c8Nphe/Q+y3tBKHlGDXfrvSRxsfahCjQ6jqJW5t+in5nYd8tH/lUtO6pVv6J7tUfh39FX\nrb1ruxtx3skk78Kjv92m+s2l83zpZ7BfnfkD+g21/k69x9+K5/HWVtTuKscPjp+Fbrsee1d0jvZK\n4zNmdwu+e7Yz7/30LMk+eu3v1al+EUn6XO/CmDMGg8FgMBgMBoPBYDAYDJMI+3HGYDAYDAaDwWAw\nGAwGg2EScUHud1Q6KI/jo5oex9GgHI3WdkjTJv1toBYlEx1ruM2JHaboreOPgfqVkqWppQlzQLtn\nWmd/DaiPLoVcJkAB9LfjelqqdMTeCFG24wpBj3Pj6JjW3ltLNOJsTdXn+C6+l27EcZhPxxsGGmkU\ngexS5LpJPsESNI4RFBGJTAG1O5gouXNLNIXPTzTFOJojbtTtyWcgPcqZCzrqUAsoha17dHwe3/e0\nUsjsBro1pe7gblBIV9253GuzLEBEJJSo2IkzQfOecKjrLftAtYwnedqYX8dLpl2q5WqBxHc/+jOv\nffncueq103Wgy814ChTr8ERNw8xaBzrpehrffkdi+PX7bvbaRRmgW3/mt59X/XKSIWMIDcEaGajB\nfG4d03K2Rx/7pde+8ypQCP2ODCAqHGMTRtGk6U68rp/i6ZZ8fIXX3vOD7arfjGsgJWBpQlyJpsHm\nL18vFxOZsyA5iS/RkcU9FO3L9TVxWo7qd+r5J712wVWgs5/86duqX3AkxoRjCsPitZwq/2ZIA7qJ\nuhlFkpjOI1oy4IvHa1GZqG0+n6bXlx9+wWsnkQqw4f19qh//raFB7CENb+vI7QmSh2RtJHq0U9cq\nduB98++QgGKYYi7Hh3QNYHktR9jWvqTjYTlGMWkh9sXe85r2G0sxxJ2HMQbRcZoSG1eEfZLjcpu3\nIrbZpbiz9CuE5FM9p7WEIX11Aa6BKM8sexbR33ecamNMjo4gZQp+OK3t4FD9b0Uc0X4x0EmR8gkz\ndM0fonNLxZGDXjsiQ8tAEmZCJsB05uxrtEyz+wyo1P3lJC+ao2UGy25b4rVHKTK1maj2SSSBERF5\n8Qeve+3lS0BDD/Np2nxCMUnpzmLP6ArW0hlei3EUTTvqjMd4NK052psbd2sZU8qCi0fDZwnyuRp9\n9lx6E+Sws6hftDOG0TQ/c2lP4/OGiEh/H8Z3aDMiZpPj9NlmZAzyhNLbQe8fbAK1vvuklq8cewn7\ndm4eziKJzlj3DuIauk9jTjW9VaH6JSzAOXncj+vJmerE8lJNKCFZYcdxPSeiU7XUKNCIjMaeFJmt\n7ydLQLlmHX/msOrX8Dru4fTF2BtSl2nZSnQKzukNJFWJdL5j9TMnvXbhHJw7RuiskuqMfSjFK9dW\n4my9bJaWS+88is/meZaXraWd57dinhVcirN26mItqfeTbHukC3N92JHoZzj3NpCofw33MjhM1/IE\nmsdlv0E9Lb5/geqXVIp521eB83porJac8XNgKp0JG17T0c9x07GeBxqxL7q1gvHcDkjYpp3HfV60\nZIbuSFsGP9/0O1Ln6OWYf7PX4qzF9hgiIkM0hl20tvnMIyLSwfLNTf/sG/xryFyNecax2iL67Fj/\nMvaQ0GA93vVUH4fbUbNcG4G8KyAJCiFZ4bzPa6nt4f/B2bbwOozDBD3HDLXqa+1oxnPNjlNaVsi4\n+fJLvfahvdi7lq7Tz1nNJFOc/SHorE/8/oDqN+8zeObsqcReH+PIZN1ncRfGnDEYDAaDwWAwGAwG\ng8FgmETYjzMGg8FgMBgMBoPBYDAYDJOIC8qagsgNveOkprWPDxOdiNIY4qdrqn58MWhl9W/C2TzS\nSXrgRJL0qaD2nTlSqfrlUaJQp49o3iQh6jjcqN7T3FXltbOuAt2x85juV7Bhpdf2+0F762/UsqOE\nPNC+grNxC8PD01W/8HjQGsdHQC0Nd+jGKfMvrvu2vwv3jGVdIiIZKwq8duUzoIWmLNRSim6SXHDS\nElOvRUQiRiB/ii/B2DMFV0RkymVwQY/KwtgNd4IC175PUw+j89BvoBc0b1fGxgk+B54/5LXT4jW9\nPv9yUOq6iHYena37pSwAHa39sJOUQUhbdvFkTVfMg9N8R59OP7nnk9d47YxL8J32f/8t1W/bZtBJ\nr7gFEqDXfr9V9ZtbUOC1r7x3tdf+yf0/UP3u/NL1Xpsp77/53nNem9MLREQ+9W+3ee30haD6fuO2\nR1S/hx6522tzEkiLI3VLpoQGXzauO2e6lrqx9LLgDqRYhcdpivuJx5712ks//WUJNJj+eu5vJ9Rr\nGaWg/ta+AVrouENrbaPEtch00DWTlug60kVSJHbZb9utXePzKJmN5Tb8d0e6NT069wZQS8eGMPYV\nO19U/TiBoK0K9E9OURARGWwFpXeog+QhjhM+zzNOAXJlcdmlF6+mxlB9cL8HJ2Ukk1wpe5OWuTRu\ngQyhvxb025RF+rq57p5tQO2ZU6rlpBWvQTbV3gv5RGEu5lR1m5YrTZtb4LWZWu/K3hrfwL7N495X\n68hEiZbcTUlayQs1BZ9lo5yW0lOuE8Ei0y6ulILrSqMjn8u/BTLIsVl6X2fw2LF8JCIpWvXjPSV7\nLT677E9aWp1AaWks8xomynYXybFERJbNx5ikXYY9iJPhRHRKCqdkLbj3YdWvofIlrz3YgjU26sji\nIimN0ZcLaYErsWHJU5ZWpf7L4GuKidTnqmBKykhZgjl4aouWXe3ag6S4WbmQIJzdp+cEy5Wm5EIe\nFJWjpSLddG9ZAh4citqae42WuaT3FHjtpndw/1heJyIyQGleB3Zi/xif0LK8NcvxfbleudKd5ndw\nvj6xAzVEC7pEii6yrCmK5DaDdfq8HUHpcTVvYV+c92EnzZPmO0v/wmK0JGZkAHsN1283UZSTVjrP\nY0zPU/KXL1qv8yiSyF29dgOu7Sm9Ftevg+RugsbuH1L9aFh57Cpf0XO45A5IMKp3YUzDQrQlQ90L\nGONCHcD7LyNhNp7bIpz5Ek22Di3bcTbzd2p7i5AIul5Kqiq8cZHq5+/F3sPPIPGl+vmzrwz7UFgS\n5tEPX4Dc+hObtDZoBqWQsqyf5WIiIslLsVdzomGOs9d3077GcvX2I/r5s/MQ/rvgQzijuoltSUv1\nfhpoHP/5Hq8dFaGly5ziFkK/D0y5fqbqx3YmLPXzTdPj009rvfLPeP70zdXyviT6HeHNX77jtTd8\nHInLg4296j2xtB8kxOC6+XwkomVxKwqxp/We0eeRwktw5uLnVLZgEBE5+CMk1879GJLiepxn4KGW\nfrkQjDljMBgMBoPBYDAYDAaDwTCJsB9nDAaDwWAwGAwGg8FgMBgmEfbjjMFgMBgMBoPBYDAYDAbD\nJOKCnjPsP8D+MyIikanQWk6MQovrdzSyrMXLux7a6Jq/6miroDD8LY73Y22viNavsR63qR46y07H\nk2PJtYhrK38G+uKUWTqm8Mzjb+Lv3g6Pj9gsrZNrPQndJnvJ9FVoHegoRa76SI/JOnuRf9SnBxqs\n5Y9I0hGsta+f9docc9Z1Vuva05cVeO1hipRMWay9aU48Bl8T9qbxN2p9HWtIuyvh0xBFMZdRTgTr\nzFvhV3Ly6WfwgqO3jo7Hd1xxM/T91X/T48PeGzFToAV1o+s4Hje2EP4zHDssItK0E3Mw/WYJKJLS\nKbre0RFPWQdts98P3eqab35a9Zt6eLvXPv6cjqFk3P3DD3vtb33oe1776098VvVbmgmvmyvXIBb7\n67970Gu/+MhL6j08/wY6McceeeYbql/rcWjLBxqgEZ3QQyMv/wYRe5/+Ha5h6q2rVL+6ndB8t+6G\nb01kpvaceeddeBQt1bcvIKjZAv+OOMcjoeYINO8pCRjvMcfXiTXq5ZuxfvNpjYqIpK+F38+p5456\n7Smri1W/hjcoApNqvp/WYsIcrQGeGKeBoL1hfEQPUPt++KSwZj4oRO8n7K/RWwGdeG+Z1v36ZiB6\neIxirDlSXURHdwYaveSnEhKp12IyecYMk9fXSK3Wq6eQV1JIBLbhoVZdJ3tP4/vzfGmu0/clezr2\nyYFT+Fth5NcQUqfvOUdX1h9BLUxK9el+FLNd8wJqaGS63re6jmE9J84nrb4T56q+L+mu3bobnqjX\nR6DR8h7WW/GH56nXKp+E/j2a4sxz189W/aISoIWveH6/1x7M1vORfVdaDqC2zfnk7apb2auIxY7L\nx14TloC9ecrVurZVvPqu1/aTX1PeUu2Bdu5X8Hya89kbvfap13+n+iXPw1zqPY/I58xV2ueoaS++\nR3wx9nrXT1D09hxQnDsEf5bMRB1VGhZH3kk09Weu034vReRXNVSPvaaiWXs9zJ2FuslRwV1n9Tkg\nNhP+KW0HyDeP7gN7T4hoDyrfDNzLXX/dr/pNSUMd3nIMc/TSGTrmt5PidjluNuVSHSvd2Y/1N28j\n5jbXVhGRugPa6+1igvctEZGRHoxP5iXwh+B9QkQkNQvjH5OF+9t1Rp9lua7kXI771lOlx/vUs9gz\np10LX7ak89iDGk5qD8Kx/mGvzeeM1NQE1S+KfID4+anrsL6GCFpL7JEVl6LPLT28TmdjDxqs0/4a\nMVP0dQQSfvIDTZyt91/2nhujswN7domIjJFvV9wM1Nbazcd0P+dM9M/+joiuRcG07/zy8w+hj7OP\nnaaaEh6K92Rfrb1k+AzEHl4uEmdSPHh15wf2y9gAH8428q7LWq199+o26+eYQCONPFBHnb07eRH8\nbvhZvPrlM6pfPnlqsSeQ61GaQn50o7R26vdoz8jqVvi1bHxgndfmOOrs1aXqPSP0/H3r1XhW6avW\nXnlc60JpjaWtKVD9+Ix65Ak858ZEaI8+9j57/9fw71n6+dWqX9vhD45zFzHmjMFgMBgMBoPBYDAY\nDAbDpMJ+nDEYDAaDwWAwGAwGg8FgmERcUNbUug+0X6YIiWjJSnA4PibGkaIMULzVONH3giM0HTxr\nHSiz5/90xGtztKSIph3JcdAVs0hmlTmqZUgDtRTX1YL3+Do1tTRuGlGUn8I1cDyliEhYHK4hLBrt\niEQtGeIoWo6S5thSEZGoNB3FGGgwTTkkXA+5jyLK6l6HvCEyRVOT24+BguUrwf0dGdU0wpzFoM3W\nvfn/sPeeUXKd15nu7lRd3dVd1Tl3o7uRupFzIAASIEEATCJFSrQCLUuWbI1layyHWTMee2bZa83o\n3uvlsWVbTpLGkmxRNCWKpBhAEiRBEABJAETOodE551Cpq9P9oavzvvsTiLuWVZj+s59fH9DfOXXO\n+eKp2u9+Efac49hT9x3HZ7HdergdIWezCR1ae+Zvv+uVZybxt/qnVqt6PYcgL7r0DOQ7i/YuVfV6\n30XoXNlO9L+uN26oenGyE431oFyyTfuCskwg2fzLfthdb1y4UP1tbBhSvcGTkCdU3q1lAtxv+8cQ\nTurP0Nf9wh9BMlZGoeKpqbrvPHIfwgs/s2+nV4504tzZTshf9yt4tlWPI/Txn/7r36p6j33pftzH\n1vVe+doP3lT1HvkiruGfv/KnXvlTf/GUqhemEOiT59D36nv1/PKVb/2R3EkKF2Ls9FzXIcyllRgH\nAZJSdB5uUfUqKLSbpTMssRQRGaKQ+spVCB9lqZGInvfSfPi+fv8/vOWVa4uL1TGbfvdurxwbRGi8\nmp9FpHRXrVf2k3zTDQOeuIGw7KlpjO3cMj1v3HzxklcOZCF8lG0yb3UdyWR6AuG3bpgu20T7Cylc\n2pEFj5CN5hSdL3dxoXwUxUE8i0C+np/Zoj2nGc8ii2R7Je16vfPloR6Hb+cuKdDnLru1/ftUNKHr\nkWyNbdzTHWvuHLKr9JfiGP4cEZHM0J2VNWWTbK/16Qvqb+lB9J85GldNTx9T9XgfU3wX1r7uV/Ua\nUv85yKZayLr5SucLql75bszto5exV1nxq5/2yv0t2n6bw7LZNrlguZYWFG/G9V3+7iteObtSP/c0\nH/YxFffies5/4z1Vr+YBhPnnlOCzunquqXq1D22RO0XjDqzpV47oz02jNpicwjhtGdCWplsehuw9\nMQSp/Ip6ve9rb0WfZpm/z5EZN51BveV1mKsvtUDmUufIG3JL0QaHfoRQ+A0btVzpr/8V/eW3HtqH\n60nTv7OyRP3Uccgg8vu0BIulYD0f4PomYtriuOEBbZWbbPwlmAcirfrZZNA8xbJoV0IbacJxsQHa\np63SUsRgEP9OS8uk/9fyp5waPJvBUyRBIDkLr6sioiT2NXsgg+P9qohuL15Dut7Xco7UUczLfYda\nvfL4gJYrTY1jLi7egXE+68jTOG1Asim7u9YrD53Re4zJIfSnBY9h35dVrK9nkI+jtXThI/eqerEI\nnlO6D+coKNim6nU1vYRjaB9fRPKcwQ871TE7fw+fFSzB/DJw9ayqN3gMx6VloZ0mnP5btKrWK8/N\nYp/T956WClbtQ39JkDx16Ly+vow7vC7mLYN0cjqm9zf870za32Tl6ms68wxkP+UFGEeVu/R8du3b\nWMtYNlS1rVbVW71mq1fuIAlVxV56ZrFxdczkAKVYoe3XzfdvqnoLVmOO9pF8OLdO74NafwBpXcMe\n3If73pdFc9nwBezxI11awsdyt1thkTOGYRiGYRiGYRiGYRjziH05YxiGYRiGYRiGYRiGMY/cVtaU\nQeHI+St1CA47JXHm+Ui7zoRcuAaZn0euIMQnd7EOGRq5hJDCcgrvSndChkYv4RwJCpXLLEGIVd5a\n7fDEcqo92yGX6Hm9SdVjyU9oBcL4AxU6tJ5Du6K9CC90Q/Wr9yH0KSMHzzLshL0lKBv9nSDdj2fo\nhleO0PPkLPaum0piBM+aQ7XivTq8smA92nuWnLp8twnFa36awsV+e7NXdsO+hi8hXDi/AaF3HS/r\nTOEsJytfgnOkZ2upw+LPr/XKvYeQob3snlpVLzOEMLXWFxCSnpmvs7xHunXYWjL5nz/+M6/cd0rf\nL0vBKnYgY/n+//aMqrftN7Z75Z2/ivLL335L1XvsNxHWmVOFsX3+G4dVva8//9deOTKBUMEWas/d\nf3C/Oub69yEz6/wpwtB/+9t/oup9+7f+b6+8/G2M04qN2m2Cw6HvfmSjVz77lwdVvaWfR+j6c28c\n8cquXIedT9Y9tVaSTbwPEiA3y3vRVtxbGskl6h1nD+7H/YdbvXLVw1q21/yvcJtgF6ay+7XrytBx\nhM2mk/StIAfhwpXLKtQx3QcxXnovQ6ITS2ipy+on8dzbyS1tzglJ11IXfG68T7vehMrxLLJrUG45\nqkNVizZrF7lkwpIB1ylu4hrWgLmF+JsrHSnegraOkWNRYlTLCbit2GUgPVuvixNN5NZB8hV2/3BD\nj1nWlFeN0OOmw3pdXHwv5CsFZXjmmaVOiDyF+wcWoD0jjjsCw/3SdXXy5Wa61ZMKS6ryHXevvnda\nvXLuEkgp2K1PRCRGsm0Oc+c9jIhI+0/R9zl02pW7dR/As697AvPPled+7JWbPtQyx91/CsnT6b94\n2SsXr9Njlh2GWPaX6tfbwJkE9iPsQLjxP2sLwrFujLmZGXJw3Kbn6Kmpj3Yy+WW58T6e1/onN6i/\nsdRg5DzGQaEj2ckuv7WsnNcWEZGiGOYUlqLwmBcRc2XuJgAAIABJREFUWUIh710kSa0gCVF2rpbA\nT4+i769ZijHPaQFERP74v38B/6A9Wv8RLZFgd73V45CmlezUUq2hDyEjmaXPWvG4lop/+G9w+lq+\nV5LOAI2dzKCepwo2oh0G30c9f4Wef8r34T4nbqJN3DQCvWewLvL7RY6zzrJcl8lZiHcXV04WJUk3\ny2XyHGfYWC8kGOyIVrZOy6QizZg7y3ejX4ScfXfnWxiLIyexHmdV63eX283FvyychsBNb8FytD5K\nJ+C6LpXvQRvyO2bHEUfKSe9gPpLXDPv1OChdjjl0ZhIOweyYW3mvlto0PwvHzvTH0D8ynPXIV4TP\njZAsO9Kh5TU51eSQRduF+k9puR27FRWswzusK9/LqdVrULKJUd/ilBMiIqPXIAllt8OiTbrf1n1m\nlVfueBX7/OYfnVL12PHJX4ZxHnPmvdNHsN9s+CTOnV2AcZWI6XmY32f5/Xur45rEY5jfpVKdsT08\ngb3owhV4r2z+gXYS6+tHX6hZhucy67g0j1zGmlSlM1X87PN/8b8MwzAMwzAMwzAMwzCM/1PYlzOG\nYRiGYRiGYRiGYRjziH05YxiGYRiGYRiGYRiGMY/cNucM27R2Xriu/saa1hjlBXC1huOt0F8NkxYy\nb2WJqse5UNIycVmswxMRCTUiR0RKBvTq8V5cQ05NnjqGNaejV5DbJrNU5wxh/fvcLFndOXZirP3n\ney/ZorXWPZQHoXw79KK97zSrepOkbV1wBxwL5ygvwoxjT+0jLWhGDp5b12vaCjRvBdqLz5fp6LIn\nbkD3l1mIc7OVsYhI6d11XplzAnW/ic9d8KDWkE9chY1uyTocn+PkLwrfxGeV7UI9n6Nl7j6I9skj\nDeHoFW21mb+c+kJY9wUm0kla000fWe3fxQ9//zteecPqJepvfP//z+f+3Cv/1v/4rKo3ehn39f6B\n0175oc/vUvWOP33cK9/7n5Az5sC5c6reojZoP8eo3ROUO2LsmrbujJOl6dY//pJXbj74hqr36Fdh\nE/r6P77tlTfteljVS0ujXFPV6Nucd0hE5MN/gA3sF3//ca/M1ugiIsElH21lnAw4X4nbb1nTzJr5\nqKNh7mnBHFbViLwSna/qOToeRTuUrcL8M3ZJW4b2duGzSorJ9rAA1zfcpNsxOolzr/w08so0v3BZ\n1Zschm58oA/jsrSmSNULLcO8fv7f0Derluj8YazFHqP+XLe1TtVji+Nkk0ua77CTYy3UgPtgjTFb\nbIuIJCJ4fjxn+st1HgW2Qy++C5aP4zd0e5RsI3v1MazbZZSHwc3fE27FtWeQdXTtep2XIpMs0NPX\noF6ak6tk7CL6FWvGC53cJ5ynjXM+pAd0TjD3mSWb8nuQFyY1Va8NwYU0D1BemPR03T6t12AZuuAx\n5OkYudKl6pVsxzPNplw9Y047Dp3AcV0Hkaemai/yIlTv0/lALn7jNa+8/Cuwrc7w631Q1yFo4xc9\nsQPX2qJzDPEege1I4/EeVY/X7ZkE8rj0vKHzP5UsXyF3ipIQ8oT0H9Y2xLlL0Yb+YvTh/BzHvpdy\nbl2+iBwxi8p0nhDujRUPoO9Mjeqcge2HcP+lq9D3u8/ic9w9ZU495hTOp1G0vUbV47xBHa9gvvf5\ndQ6qaBetGfQT7IVnTqt6VcuRE4FzvXCOGRGR6iI9Xyeb9AzMJcFl+rPYspdzcDX/+KKqF76Od42C\nTXju7jwyeha5C3nPH3PyuGRTvr00/61zY3W/p/tc1S5c32wC42N2akbV47GTSX1TnCkvMo5xdf0H\nsHJOzOjzNX5mjVfufB45CVPS9e/vo1f1fJNM+j9ADhLOZyYiMnwCuY0qHl7slccpV4uIzlnKls7x\nYZ0nKq8Rf+t6nd4ZPq5foNoPHfXK6bS/4pxt3Qf0fFVKOSc7XkG+FB57IiKBWsyv09QnZhz7ct4P\nD53Ec5ga0znWOB8U5zzLKtXvWL6deq+TbCbpWR//a51nctNXsW7wezW/f4uITMcxhxVvQa4ufrcX\n0XmFet7Ce7F7z4WVmB/5c0/9xas415SeU0vrsRdr/zH2pTlL9b47uxLfWQQpp1zf+zp/UY4ffZrX\nbd47iYhUZKNvVj2IPJAdr+pcoQVr9N7WxSJnDMMwDMMwDMMwDMMw5hH7csYwDMMwDMMwDMMwDGMe\nSZmbm7uzscOGYRiGYRiGYRiGYRjGR2KRM4ZhGIZhGIZhGIZhGPOIfTljGIZhGIZhGIZhGIYxj9iX\nM4ZhGIZhGIZhGIZhGPOIfTljGIZhGIZhGIZhGIYxj9iXM4ZhGIZhGIZhGIZhGPOIfTljGIZhGIZh\nGIZhGIYxj9iXM4ZhGIZhGIZhGIZhGPOIfTljGIZhGIZhGIZhGIYxj9iXM4ZhGIZhGIZhGIZhGPOI\nfTljGIZhGIZhGIZhGIYxj9iXM4ZhGIZhGIZhGIZhGPOIfTljGIZhGIZhGIZhGIYxj9iXM4ZhGIZh\nGIZhGIZhGPOIfTljGIZhGIZhGIZhGIYxj9iXM4ZhGIZhGIZhGIZhGPOIfTljGIZhGIZhGIZhGIYx\nj9iXM4ZhGIZhGIZhGIZhGPNI+u3+ePnNb3vlNH+G+ltoYeEtjxlvHVb/Hr3Q55Xnpma9crhnQtXz\n+XD+kl0LPvKa5mbnvHKgKoTry8St9B5qVsekZeHcvSc7vfKyX9+g6qVn+7zy7NSMV07N0N9hxQYi\nXjkjgGMycjJVvcmxuFfuO9yC86Xr82UWZXvllY9+RZLNlbe+45VDS4vV36ajCa/c+w6ucXZyRtUr\n2VHjlX0hv1eem5lT9UYuob1TfWiT0BLdX1JS8QwGPkSbTIdxPdUPLtU3koLiWNMQ/jstRVWbTeDa\np8YnvXJwkb6GkYu41pRUnIPbQ0QkI8d3y3qjl/pVvVRfmlde8yv/UZLJ2Wf/xivP0jgSEfHlZ3nl\nlndueOUF2+tVvUjrqFe+eR3PfM1Dq1W98/vPe+VVD67yyhdfv6g/Nx3tW7e5zisPnOvxytX3L1LH\nxLrGvTKP5enIlKqXU5vnla+9edUrL39cX2vfmxjroZXo2ynOGON/T1xB3ym+u0bVu/oc7v2Rv/gL\nSTan//WvvHLpjlr1t4xstGPX29e8ctH6SlVvvAVzbEoK+mOeM7YHz3R7ZX6egfKgqpeejnl0vBP9\nIs2P9vXn56hjet/HXFG+rQHHpOk5sOsonie3d/6KUlWPx+zo1QGvnFmQpeoJTTcz8Wmcb1mJqjZ2\nE23ceO8XJZmc+Kc/98r+koD6W2YR/p1J43KiWa+Lk7SGlN5d65V7321V9ar2LfbKnfuve+XCTbpP\nDJ9CW09NYA7NoLl6JqrHWP5qtEGUxqWk6Pk02j7mlUPL6TnP6bk/qwx9JJv62MCJDlWvYHW5V277\n0SWvnLdG94loBz53wxf/UJJNX98rXpnHlIhIbk2+V+54BfNPdnVI16tDve43mrxy0ZYqVS/cOuKV\nsyrwbHKc843dGPTK3I6BSnqeH+jnyZ81dhljx1+qx2zBqjKvHOnEsx2/MaTq5dbjnjIL0Z/HmwZV\nvdFTvV55ZgZrUt1nVql68YGwV1569xckmXQ0/cQrj9G8IaLHZqwX18D7l5/Vw3OaHI56ZV7PRUQi\n1IYFa9CH3THL+82SLdVeeY7GS2ZQ7zES4ZhX5j1G1+s3VL3irTgf7zeHaK4X0WsGjz++NhGRvEas\nGRm5eC7jN3Wf4LlswbInJdmcf/HvvfLQSX0vOTUYIyXbsF4Pndb1eO4do71ZYIEeY9n03sB7ysFj\nnapexV7MvWmZ6AsdL17Buevy1DE9x/Gs6x5p9MpXnj+v6q349FqvnB5AO87N6L3d2BXcx8AZ7Kvy\nFhaoeuFWjOe6T63wytG+sKoXaaM59Qu/L8nk1Pf/0itPNI2ovxVuqvDKg8e7vHKgWu9FMoJ4Frm0\nXx93xjbXyyrL9cq8xxARSYziHWxqAu8CYxdxPr42EZHu99q8csESjI/MAj1vhG/iHod6sLdOT9V7\nz5IVmHcnbuCYiVhM1cuk/XTpZoxzv/M+MnwK/WDL7/6RJJs3/wjnLKZ5TkSk7USbW/1n9Sp0f5wc\nwb1V3L/QK1984ZyqV1GL/QSP04mrev4JLMSadO4g9gx3ff4ur8z7QRGRYZpHmptR3vyrW1S9tpex\nvlfR+0r7AT33ltCzmBzAOpG/pkzVu/oi3pOq1mBtvnasSdVb9eBKr7z8wS+Li0XOGIZhGIZhGIZh\nGIZhzCO3jZxJjOBbx5Hz+huz2Er80hZtQ7l8n/6lvHgrvunmb5/dX2KnY/StJv1CkxF0vq2kXyA7\nD+CbqMKV+NUtx/lWOW8RfTtHv1SNXtGRD5ND+Lav/F5EHXQ6v16Mt+DbT18GHuGi31iv6vlyEXFR\nsRvfHna8fE3Vm2jBt67yqCQd/tVo1vlmPtaJtsuhX8w4GkNEZOQinhX/Alu2s07Vi/Xgs+am8Vmh\nxTpqhX8hCDUUeeU0irYJd4yqYzhCJj0bvwDxr8YiIuX0rPmXJ/dX7tBSfC7/MjQ5qr/RjtIzitCv\nue69JyhKJ9kMX8Dzz8jUw/bmh4hiWNCIX8wGnV+gKvfgueStwJjopogpEZENn9nklTkyZe0n1ql6\np3500itH6JeS2ocQ8XThubPqmPwcjPsS+hUw1tGr6oVncb6yKrTTlRf0L1B5AbQp/wIqqfrX/9ZX\n8e34gn1LvPLIWf25hSX6l7Bkw/NhuE3378Q4rqVwHX7NSUzofjU5iP5ZvWe5V57o6FP1CmhOHD6P\nc0+N6fOlB3AdwQX4FWBmCp8zdL5LHcORTj1H8Uti2bbFql4h/dowS/MBRwj87I9cxq9fMSfCkqMB\n8hrwq9boNf3LWtmGlXKnqKb+3fOOjtIs3oQ+zb9m8xwion9NSlCEJZ9bRGSc1rts+mXJX6B/TSvc\niF9oOBqSIyADTpRGfAi//nB/4zlYRGSQIkezK/ArpRvBUbgG55imNcJdS1qfxS9L/nJqz0Yd/RR0\n1vFkw32Qf30VEYn2od/xuhgfjKp6UxE867pPoc+lpDhRFxSZNBPHs2n+np4feQ/RS9G2vD65Ua1M\n1QOY25q+e0b9beQkfnFNC6CN81briKW8Jfj3yDXMKW7EySyN00WfRyRA95v6F0Jej5PNyAXMa/5i\nvb4Pn8b95lLkbmhJkaoX6cKaznuWCVrrRUSKaYxxtG/pDh3pPdGMtYsjlPjX5BL6ZVxER2pzRAzv\nQ0VEor3olxwlkOdEDnKUjooscKLdOGoqnaLA4/064sKNHk82+ctvvUcXEek9cJOuA+OqYK2OeOD3\nC45o43XHrTd8Fn3EjbBJoVs+9XfveeXVn9/olc9+94Q6pmY9+kLfQYzfxsd1NNngCaynIYpeyi7X\n89B0DNEAHC3TfUXvW9b8xmav3PM21qTC9foZxdp0n04mo9fRl+JTOkozj+6D57IZJ2I6n6L7bv4E\n60TdxxpVPV5POSpxOqqjJ4KL8cy6aD6dmqHxdk1HaeRQtGBaFuZJjngUERn8EOt7w5OI6L7x3AVV\nb+Qq1pnZWfTFxQ8vU/UG3sN6On4Zx6Rv0NErAx36eu8kN96/qf69dBf2J6xKiLXr/Q33Y45aL8nX\n++sMeke+8g7eixdt0O9W59+5jHOEME6vP48+UrtTrzNNNzHGlq6s9crNP72s6gXL0K4cfePP0FGG\np9/GZxUHcUzuUv1um+3DPXWcQZuueWyNqnf5FZxv+YPyC1jkjGEYhmEYhmEYhmEYxjxiX84YhmEY\nhmEYhmEYhmHMI/bljGEYhmEYhmEYhmEYxjxy25wzvjxojBt/e7P62+W/O+6Vl38V2Y/P/OURVS8n\nBP0eu6ncOKa11pmUsXzhr0Gb1fSd06oe50wJUHZ2dv8YOK6zrk80QbfP2ripuNY7LngcukbW9nJm\ncBGRAsrXwc4WPYd07o7ijcj/kRhHXgHX4SjL0UonG77+FCcXR/5qaDw590G8P6LqFZF2lXNlsObb\nPV+YcvP0H9P5CXz56FvadQt64HCr1vfH+nBNxeSCUODoajteQn6R2k8ic/14k9ZqppH2dYgchrId\nbekMOcnMTaPtRi7oHB9xyu2zaKMklfEonsXiHQ3qb6Nv4nPH29E2JZu0Y8gE6cv9pEPPc5y02MGA\n9aKuG8aqB5BjgTPhh0nXXL9Fa+bbTrTiH5SzIs3JcD9H+a74+Tc8skLVa3kdOtWuN6GPLXTyKBQt\nw79Hz6Pd2JFIRCSrWmu+kw5p/guW6bwD3e+i33L+olCtvhc205mZRh6DhJNLJiUNzzSLNMBuVnt2\nqZtOoJ/1f9Duld3nlLcMc3mE+tzcnJ5Th0jTX0g5AhLDOq8TO8nwOM1dpPOO5FQgl0Dnm3AvSnF+\nZoiN4XMlyalLhsmRruwerY0epnmkYCW547RrrX+U5oqZGJ5ZxMlzkU/n4Fwl3LYiIuPXoVEvobxG\no1eRq2rsms7zk+rDOWK03rk5TbitOKdO+X16bMcGMT8PUR6w7Eo9pvJWYv3k5zLhOCZxPqiq5Jrf\n/eyzKW9BtuNgxvnNhk7gXmo/peefqTDGXMu/IddA3io9Zjkn1+IvYL+U7+TZufl97IsyS5BXiNdP\n99yheozFcCeeYeXDOv8TO5dMUpv6nLx+N3+IXDW8nrNrjohIGrkZtf8EOv5Fn9e590Y4P4ZOSfhL\nM0N91c05E6RcdkFyF3VzCM4mMB9yjhfXxYrbmvdDU05OMHZ7VLmCKK/M0PkedUysG/NBPrVvmpNf\nzl+MHE3hdvSpTCevE8M5n2J9OodXbj0mR3YhzXSepbtmJB3aEkc79RyY24C242fY8cIVVS89gBwR\nOZRrJN1xqBql/IkVe9Ahh045edVoXl64C2Op/cfo65XL9N6z7WSrV+b8evEBvZ+eCePcnEdz3Jmj\n2Qkm2o22y3LyYbT/BM8iuAz9vo32wiIiAcfBLZlkF6Lfzw3q+x06hzmgbDvy8kScvHtjlJ8lQI5m\n11/QTqE5fsxZ+WvxjEau63E1SetsDblv3dyP58LHi4gMHEJ+VXYedZ0jKx/E+YYoh1BOjq43NIJ1\nZtkTyE3DDpUiut34Pa3HcYNb8qheg5JN2V3YP1Sk69xpp1/G+rRqF96Xc5boTdZl2suWU95Ad5/P\nLmNrnkDesqEP9VhcthHjlOeACdo/dLyr8/9V5GOvmE2uYOz4JqL32vyOVLZP57AJdWOtPnUAuS8D\n7+p8vJnkPB2i+XXskn5/Wv6ozkPlYpEzhmEYhmEYhmEYhmEY84h9OWMYhmEYhmEYhmEYhjGP3FbW\nNE4hZq4dZtk9CE0bOIkQpPpHHMszCsXj8OAQ2VOKiJTtQjgph2xXfmyJqsfnq9iKsKDYGMLmSrdr\na8OWHyLcmEU9y766VdUbuYJw9Syy5Z0uSKh6gx9ANjU9iXDPAkdKEabwzATZltb9ig5Lc+1Yk01W\nGd2LY103Fca9ZVcgbJlDfUVE0vwI1eJQ2PGbOhQ9lWQwbL9YtEFLbFi+1EWW6DlkgZjl2ApmkY0r\nywdStFJL1et8DdKHzELdh1MpLJvDaicc+ZP6ACry54hoWVOy4XDAiav6+qIJtGFBMdow6tgm+oq0\n/e7Pce+Dwy1TyUrQ74TE8niufATjdOwKwvcycnXIfM1ayCIOH4BksaZI25sWF+A++sZwH/lOuOzN\nXoz7lQv0uGcme3FcyU7Ua/qJDpcdjyHcf+2nP/J0/254/nI7bh5ZarLjac97Ogw/uxIhmr5MjEVf\nSNsZclh+2Q7Ib+LDWi4YKMa8NRVHmDHbK6c419r8L+dw3etIUvqhY6+8GjaQMbJnTQxpWRPbxwYW\nwG4xu0zLTUauor3Zij3crsOjIz30LLTy6I7CFtIdL99aXnm7Y7re0G3d2YJzlJEl8aATgl+0ARLa\n3iOtXjlIsrCIY+edvxztO0ZzXmJStw2HAfcfR/vmLNC2mCzPqtqHkO+Bk1pmzGvQ7WxkIx36epMN\n2+22PXdJ/a32SbQXy4MGT+rnPnEFz23h5yHHnpnSIesFyzEOWPrHFtsiIsFGSDjYFjZMdq+5zt5p\nbg5S79xqhF77/Vo2mZGB9uq7+e5HXkPZLgwYlsLl1urPLX8AoeYsbex8Q0sp4iRHlnskqbAFM8tQ\nRLR0aySGvV3eCi0lU7JCGiOFG7RkJSMH8k+WJWY7Nuw8NlkOxNeXINmuiEjuQjzbj9pDiej2YBmX\nKzsdIElqiGy285YWq3ojF/FceM1x91Qh57hkM3ACcwTPZSL6GllSL9ohW/LXYYzF+0jqfVHLCdg6\nnsezK1uZpD1700HsIyuWknS/Va87Sx+EPTLbfrvytAgdV7AW1+1KT7mfFJLEMLhQy0gGSQai5rWj\n+t2iqEr36WTCdvWu7LZwE9qUJUp5+XpPOT6KuSK/EvNVVsSn6hVvx9w2OYB2Go3qvU0myb/aXkcb\n5hVizGbm6T2qvwLXVH0XPoeto0X0PjmXZD39h9tVvSX7KF0GvROOXdJtHajD/bJMOzNL3/vYZcjy\nZIcknbFzOH/hXfq9rbYUc8m1I9irLNqkJc5rH4dEqek1rAdV6/Wa1EppDtIOQx50sVlLhdasxhrM\nsuu6Ty73yhnZ+jlFujGX81rQ84a2Bx/sx1gMZmEOcOfeC+8hhcL6+5HSwZWADhxB+3dewrisbNCW\n6HNzOr2Ji0XOGIZhGIZhGIZhGIZhzCP25YxhGIZhGIZhGIZhGMY8cltZU+5ShKmxm4OIzn7f9RrC\nm6of1U4yba8iFMifjdD1SJsOpe2jUOxQA0Io2fVBREtRJqMIV+RQUjcsMpUyX5fsqvXKV755TNVj\nF4mxyzh38RYd2lW0DaFZg+8hzLv9uA7FKl+GMKaK+xEC3HtU18tbqeVQyYbdodzQTT9lWGdnFZZO\niIj0HW31yhwm6zpxsDNWnKQkY9d0aOmNt9AvWLJTSeGf3W/rkMy6JxHCNkiypoYvaHcIDqmMdCGM\nUMmYRKSkEaF3mZm4p0RChxv2X4H8hl2muI+I6PGSbErqMCaynGee0YowxOLtkCCwvEhEJI0kSiMf\nYlzFJrVsLyMNzylIrgczTtg4jysO1+R6RffqcEd2HakrwTNf9bkNqt61HyIrfOO9mFPa39OOaJt3\nILywhyQvGS1a0nWjGWHTaTkIdY1P6Xsqy9NSjWSTSeON3T9E9Ngp3V7rlQOlOqQ8PoJ6fafh0pC/\nQrsOsAMNZ7h3P9dffetQ5+ko+tXkuA7DL9hYTvXwDGccpx+WwfDck56rQ1C734K0MURShfGbWsLH\nocRxCjtPD+jzuSGpyWTsAj0Xx9WOJTtZVXj+7jNn+USMQvCnw3oslt0LiUliBKG5E9f1c+EweXbY\n6TvY6pVnJrVUlWVJo+SMVPGAlhJHOnHuKLkjTI3qPhEgN59JulbXRScchssMO/X1Hm5V9QocF41k\n0/0q9i1le7UzA8thiym0ned/EZHCrdhrTEXQdh3PaycZXnvy1mK9D1Tp+WaWZBuz1F68b3Gf59hN\nrFfcJolxfQ08dliyWLFJz72R0VavzG59ruSOZT/cb1MdCYfrTplM4oOYA1zXpGn6d8lmtCG7Uopo\nGXMGOVdNOXPeNLmDsqvOpCMTZfkTO6xFWtC2uYv1XiGNHIV638Eax/cnIrLya/d55a5DkOIFHcdF\nlsqwG0nb85dVvWKSLI7TnOIv0RJolqSKHipJIbgUsuaet7TswN23/Rxeg0RErr2M51FYiHklUKdd\nxliuxHMW74VFRM5970OvXFyMcTo1jH4RatBy7Ne/D7lgPe1vrvdoF6Ht67GX7X0L7Z1dq6+1ifbJ\n1UPowzdO6L3xst2QzvC6GPA789Vq/cySSecR3IfPcZPyUfqDmm21+IPjHps1jvvPJrl94Ub9TtdP\nEpjoKO63ul6vGdMTmJcqNkDO3kf7UCU1F72G976F55xZrPuHn9JFFK3Gud30BuFmclUrwRwScNp6\ngp5R1UNYg9Mct7FJZ05INoGF6OvnXtCuynWNeBdOG8HakOHs53g/tnDvUq889J6WOLPrVojevzfV\n6PfPQA2uid2Hj3/nfa+cF9Droi8d61BWAdrOX67rTXbhPekUjdNcZ8xu2gOnLb6/dmddZCld9SqM\n2aDzftjxKvYYjffKL2CRM4ZhGIZhGIZhGIZhGPOIfTljGIZhGIZhGIZhGIYxj9iXM4ZhGIZhGIZh\nGIZhGPPIbXPOsEa5i3KOiOjcCZzLItw2oupxPpBr30PujkCR1n2x5SDnmXHzvfiLofOL9kErmEd5\nUBKOVrh0N3T7bJFd+eBiVa/5p9DjlpH186yjmX7vGeSq2fzIOvzhjKomgVro5OJDyE0QbdH2ewWr\n7qy2nrXYczPaf5BzH8xQe/uCWqvK9rZTpNke/lDnBKp+vPGWx8R6tK4zOxO6wZx89IVS0kDPRHT+\nBbZWrX8Cmt2EozXnvpSRi89xLbIniqH5E5IOj3ZrK1C2GuU8AGX31Kp6rl1iMskn+8fTz55Sf1u0\nDv27+SX04doHlqp6nH9idhb94Hq3bsO7dsMS1kdazdZDTape+QrolwvXIP8A515QWnXRelHOM8Nt\nJiJS/7FlcitWfWmT+nf3G7imqjUYs62ndF6nhpV4RpwnqcrR8zafab3l5yaLSAdydqRn68/msZme\nDs1tIqbn1Gl6VmXrkXNn4LLut+kBnD9YhbbyF+pn3XMBul3W97MVaFnjXfpGGvG9fuepd7wy5xAR\nEek5qLXxP+fKcd2XFq+AZnvsEnK6zMR1DptgIwYqa68D1fpzOe9DsmGtecCxkx46gdxnc7NYN6Zj\n+pnzvDtLeSk4x4yISN+hVq/MubQq9i5S9VgDfeXbyJUQrKY5eExbZA+Sfe1QD9aktHd1Xicf5Qoa\n7UH/rVpYq+pxThy+Htcimy1Jub9lleo9weyU45WbZILLKc+FY6/J+cN4zE5c02sI2/mGluB8KU7O\nozLag4xcRP8ev6zzmwmlYOD+k0W5CkZofIjwU5VUAAAgAElEQVSIlG9HEpCUFDz3cI+ux/uq7teh\nkw836PmF93NTY2grtnoVEcmtwTPqeR3Pr2CzzmE1E9d2uUmFnhfvAUVE+qgfj1yCHbObO61sB9pm\n9BqeWaRd55NKp70E53hh61QRkeAy9IOB95HbYvXv7fPK0ZE+dcwQ5UyseQx7qK7XdT6D1FS0L6+l\nRXVrVL3sbOR66255xSu7eac4z0XFLhzTsf+aqqdySmyVpNP1MvZi444d8qIHkHOOx8Twcb1vqd+J\nOTG4CG0QH9B7kDbKJ+W/gb4/NKH3qJyvhefeZ98+4pXvXbFCHdPah3aNxLFPznRysFy9jj6T5cOz\nfe/AIVVv31rkRUwMYX6tW67fi/hdLZWudcHHG1U93uMnG95vJpx8ZH6av1peQi6sYJnOLcL9jHM6\npufo55dP+ciC1KfDN/Vcdq0Na1xGF/KqJaZxTF6/zgXiy8O44txNvjydr1PotbD3fexnijbptmn+\nwXmvHGpE/kD3faGJ9p7ZNFen+h0bdidHTrLJovV6yRa9zwhUo704/9pUWM+pc7O4xpxaWLtzvjUR\nPWezjfzwVZ0vs5hyhkUov2VFAXJiBhbovtR9hdq7H+399gf6RX1JBdaruzbivTLivLv85Idve+V1\ndVgzikL6c5t7MQcsyeP3z2FVj3Ot3gqLnDEMwzAMwzAMwzAMw5hH7MsZwzAMwzAMwzAMwzCMeeS2\nOgy2CWUZiogOG6/Yg9An1waPwwEzs3BMd7sOW5qaQbgd29nOTuvQ5uxcspP79oteeW4OMWZT045l\naCnCtGoeRZifG2698rcRrzl8HiFRTc9dUPXW3KVDBX+Oa+0XIrvx1h9fxLU6MqmeN/HMFtxazfFL\nESNrtxwnDJ9DfAvXIrxr6IwOGc1dhPAxtppz72VyGKGXbK+c6cjYcooQ6ly4CTZ5KSmIUy7bpUP8\nh89RmBpJq/KW6nDmmQTan8Ng8xyrYZYaZGWhX/WP6bC3vEac30ehzSlp2gZw0gnlTCYtr0CyUpSr\n+y1btCXIRvHSi+dVvdIihBcWkKXipmodlsdtxf2lLl3LAPOWIkQzIxshjsEijI+BptPqmIbdX/DK\nqamYfqJRHRre3/yBV+4ji12W6oiIRGmOmuiBVKR2XY2qF+9BPbZ7vunImGqX3NpWOlnkUVjrwAlt\nK1i0EeGw0SGERvKYEBGJkZwzMQIZW0ZIz9H+fEjSeH50ZZ/5i2u9Mo+DaBShuqMD59QxoSLIqYqW\no18MXtJh+Bwim+rDWrDu42tVveEPYVs4m41+MZfQ8z/LFPNWoY1TUvTvDO4zSyZsv5qZp+WfHBJd\nRPNphmPzGNiDMTs3h3u88s2jql7xDrTHxHWExbY8e1HVGw5jjl9A9o1sJep3pKpN5yH9+9d3YQH7\ntYcfVvX6z2NcrdmHdnelZCzhyAjhsxKOzfnoefRttoXmY0REho5jfCzaKElncgBzZem9tepvbD2f\n5idrzI81qHqtz6AdeFzlr9NrzcAx3MvJEwjrX1mj5ylux7IFmCtuPI3xx/sZEZHhS1irea1yraBj\nJKV76r//mVf+5h/8gap3uRPX+tCv7vLKLHMUEWl/FfeRTZKneJ+WA0XbxuROESL5ysBJPZ/mrUAI\nfS6F1ke69PWEOyDp6zuEMZG/Su8rWM49eBH71+4BHa7e2ICxXfMo+ksihnr+UL46pm4frHPjcayF\n1Q9rafLsLMZz6Xqce2ZGS4GmpnBPwWLMz2lOG8bJBjzciWN4jhMR8TljM9lUPYr7HHhP7wVS03HN\nV1/CeGt4bKWqxzLhjhfQN4vu0jKTQBDylKPnsH66MoO/feYZr/zALoyD+1bic5c8qN8F1nxpCz63\nBrLt7vNHVL1p2ndHSTZZVaqtuacdGdrPOXNCy852fm47zteNcZ67sEDVO/sdpGRY8L8+ectz/3sZ\nPYd53bWJZglyTgj7knRHfsz7tFySB846cqzBo1hrQisxT7Y396p6q+ldbYzSGkzT++a/PPO6OmbL\nEozF6k7Mx7Wf1f1NaE+VQ+Nl4Lieh9JJvtRN73puf1t2L8bzGM0vJfcsUPXyV2lpULLh/pjtyNTZ\n9p3fd3lvIiIyS3vsYtrX8h5BRCSf3sl4b+xKTydJMt1DUu8RWi/TB/W7QdVa7INYLnf8ht6j8k6x\n7Sb2oZu/pKX80X/F3HuuFdewKlW3D3+XkUvyVzc1TPkWvfa7WOSMYRiGYRiGYRiGYRjGPGJfzhiG\nYRiGYRiGYRiGYcwjt5U1sUtDZrEOy55oRlbskk0IHyrcWKnqZdFxHBo58rQjd9gLPQ+HVfUf0q4r\noTqEQfWNIgzzShey3S8s1WFf+YsQWtTxEuQh+Wt06HFKOr6rOvUypC2h7GxVjx1dNn4RUqjOl3So\nIYdG1/4KQuJ6Dmrpl+v4kWyK1iO8ftxxLEolV4k+CruadrJvl9+NUL/+E3BgKdyq29tPLl4sKYr1\n6czX5ffDYYJdQ+K9kGz4S7TLw4Ld27xyIoHwxVBog6qXSOAeWZoxcsVxuVgLJ7GBLjjOpPl06G+o\nHNfKEoR4VEu/UtPunJQitxih7B1t2ukh9zRC8cp2w3GhbK5e1et7ByGJ199GX61u0FKejkPon3UP\nItSSQ8NFtItVUSPGUtOrB7yyK0MaroZsY3oKbT3RqrPss0NKzccQmjp6XcshwzcxB+SRvOvDQ1r2\nsen+1V45TjK/xRu1dK7rXJfcSeKDCNstWq/HTiAfYY5DNxCWzRI+EZHCVWivSDeeU7hVu8DlVpKD\nXQT12LlJRKT7CGSb6TnoF2Xr4UQR7e1Rx+SXoF3D/fgbz6EiItXbERoaHsFYbHvukqpX8QCksfEB\nPKO+w3r+5zl1nOQXGTla0jXRjDDbgj3bJJmMX8f8kl2hJSY1jyDbf7gbfTo2qKUepQ2Ye3ovwl1p\n8RfXqXrs8pe+BqG5eSu05CLYhrYPLUU4eMfLaM/rPboNWT68YxnWX1+63hYsXVXrlSu3r/LKl/7m\ngKrnr8B8HSe5YdEaLSvIX4f+x7LnqbB23XP3EsnGT2039IEORa94COtdlOa50VE9/9T/GuaV4399\n2CuXFOo1vWgb9kg76HN/+J39ql4d7V0uUuj+E/9hr1eO9eq+VLQS87zfj2c9HHtH1esh+c0iCt1v\nHdD39Ik/hKwt3EJuNsf13JhdAzlsdgXu15W73UmGzmINZgdREcd1ihwEXee0THIkzCIntuNvaCnn\n2k2Q3gTqsRaudRzWSlfAOSlGct2s7FqvzHOhiMjAWay5uQtwbpYdiYgULMYaN96FPptbofe8o6OY\nU8ZvYr4qX7VF1QsWYs+SkoI5faRX7899ufrZJhvuZ/lr9fo0SzL1dV+m1AMX9T4oQdKZ6ARkELxm\niIiMjmD9v2crxm9vmx4H+/f/k1fmvsQuQgu23q+vlWRnAy0nvLK7D2IJVvk6zPnXfqjnVB/toTPJ\n8Wh5REspet/G3q7yYcjYRi/qPW9xud7DJZMxcvJzZU3s5JdH713+Yt2vUlLRH9nRkPdsItr1J9ZF\nzkB+Lb9jd1WWMvF+OprQrrDL7sY451QPfseVJyMDkrEb7xz0ymmOjLfmE1hbB09iDt3/0/dUvYpe\nvNPUldDezdn/pU/fOSdKES0hO/fCWfU3XxrejdIvYkz4CrWTVfYytD+ne3BlmkPnsScJUhqQSIuW\nnl49AilSaQjnLsjBfF2wUb/HcIqHg88hTcL9m7Wknl0sax76aMex2u1YZ394GGt9cVD3i2VVWIOf\n+2eM50Vl+vuGqfcwZlc9Jr+ARc4YhmEYhmEYhmEYhmHMI/bljGEYhmEYhmEYhmEYxjxiX84YhmEY\nhmEYhmEYhmHMI7fNORNth+YvPag1/bmkuWXrYrZPFhG58SPY+bLFVNzR+cXI/o1zwfgc+88b3z3u\nlRcshSZ9KeVE+WC/1styTpdIBz6n7fXrql5OITSdixZAvxZaqfX949eg4WXr6MFhfe+LNyMXynQE\neno3l8oA5dVp2ClJJ5MsdQM1Wn/Lmn/We05HdPtE+6BXj7TjPkNkfyYi0n8MOvmqvdC+urrfDNJl\nFm+BHp/zvYTKtE1hejp0ovE4tJuTk1pXO9SCPhcoR9vPOFrz9kPQfC7YdY9Xno7qfCWdR6EdLlqH\nPjfRou3jWDddvUSSSniQLP2W6lwMqZl4ZkMn8FxCTl6KNNI5F5Idd1+Tfn6cc4L1rvw5IiL977Ti\nGMonxfaNXEdEJNoGK8eCDRhjrMEW0XmSOK9Kml9PWWxdzOO8qrBQ1Ws+hjxJ4zGMWdasivyiZjnZ\nZBXj88Zu6vxPY9cHcR2U36dwsR4Hk5PQJmeTrW64TeecmZzAXJdTAI16z0ltFc82iFmUN6T5xfe9\n8pJP7NP3kYX8OKV1eGZD/vdVvZkZ9Nsw5RHyl+tcLWNXoeOPtqIet5WIyOIyHMf5s6bGdb6SuJPj\nKplwLjbOUSEi0vU21hRfHurl1H601j+NxpVrV8xz99g15K9Iy9LjRWn1KUdK9cegoV4YXK2OySnB\nGCv/EeZCv3NPQRrPHW9jba2g3AYiIiNkkV12d61X7jvWqur58vFcZuLIbRa+oefTPEefnmw4V17+\ncj1XppN9dvdr0Lu7lq6ch2uC+up0v65XOIs5u+UI8ot89ssPqXqX30SuqTXrsYiwFW3pNm3ByWOx\n5xLa8fprV1Q9zi1TXYx1+657db/gfEHXj1LOtojOdbOL8kRxHxbKkyEiUrF7kdwpijZA399/TFsw\ns30q25yPX9W5RULL0Pal99R65SVOnosCWpMy8zDnzTn3OzODfhAbwDlSy5AjJuLskzlX3yhdH7eF\niM4hMkU5EYq+vEbVm55Cn+W99WjJBVUvKx/5qQYvYo2cHNCfW/z/Y/v6yzIdxTwwfkW3T38T/h3K\nw9w0MKDz1E1OY3/XSO8DY5f0+TIob0bOQoxfnRFC5OobsNle9gjyr1U9gHNzjhkREZ8P4yqnjOcU\nnY9w+Br2/E0/edsrB5fofQtf++gFtH3RFp3Hi62ceS+Vu1ifb4L2GMkmEEQfdvM68d5shHIkZpXW\nqnrDZ/A3zrHTdUNbZAfase+ruR/zS9HWalWP9wGJYYyXTsrbuKxaH8P7Ic5puPBzep7MzcW/i+gd\nhtc0EZGxG3jmRw5g/czN0nlaeE8en8I5piP6fFNOLpRkk0rvYKkput/ydZXsrPXKvNcRERm7hn47\nN4M8nXNzeq6M0vu4+lznXaOiEHuQmieR12+8Cc82UKFzv3Du2mJ6tpMTeq84THbcFfTe239Erycl\nOzAH/uFvfcorjzh5MA9exPvjvp0bvXKqk8u0YJ3OreVikTOGYRiGYRiGYRiGYRjziH05YxiGYRiG\nYRiGYRiGMY/cVtZU/THY6Lb/1AmRfQ0WnSyDqHmsQdVb9AlYSLOUZaJFhyQWrkZQIYeJdr/drOqx\nXVbnmwi5zaAw0+Y+bbE3/r8RNrj3k9tved0iInmrYc82m0AoVtlmHV5dvhXHjXdBxtP4sZWqHkt5\nhk7D8nH8kg4tTHHCnZLNDNnJuWHZkS60QxaFEU5N6HDNvkOtXllJSxz36LnpWbkVbuhvguzL/CQn\nKyzb4ZXHxk7oYz7CHrHrgLYfzF2EELjUVG0Br+rVo95YL/q3awecvxz9IpX6TIYj9fOXajlAMskO\nkNzGCQ0cvIGwOg7ZzXRsCjm0lMv5MR02GWlGn2B70ogjm8ltQMjsAMnZpoY/Wgp1/TJCBWsH0Z65\njTr8dnYa91i2HZKcgRMdqh6HsXI4b3qqY+lMduHcR13p1/ApbTecbCIUYu6OlexKsqYtwvOYm9Pt\nw2Gz6VmYUyOOlXa4CeG5tU/ieRx+5gNV763zkAFua8D8zc/Q7UtF6yDNKCzGnFpQtknVS0/HPSUW\nYt6rXr9L1bvwz8945fK9sK4vdsKjRynkPUQh4DOTel7Lb3CD1JMHy2+KN+rw8oH30T8DNRhj8QEt\nkWhrhhUj91t/oSv/xPxVfT9srOPjev1kOWiGHyHuWVkYO9Foi2hwTMNnIK+JxXS94QsIKa/Zvdkr\nX/m2nnfZLjojC3NhzgJtKx3rx7PIX0oWwE4I9exHrCXJYphsPCeHtGUxh9Tn1NNcuUr3q1P/CBnf\n5l9B3487spDxq5DgVa9DePThnxxX9e5+As+XJd2D1K8WPrhHX2smnmHzC5BiNPU6UoBMrFcJkoA0\nnWpV9ZZsxfhbuAn2oYMX9flYysTr+41/0farlXshOyhL8rBkm2i3n+VUQLIyFcGa5K7bHGrfcwB7\nyuCSAlWPpYNsD5vuSAzHu1pxDPXp2ADJTBdomeMkWQ3zs3RlLr1vYWwWbERYfNvhd/X5qD9zCoIu\nkuiJiCz+LBqErWMnh7SctO9oq1eu+LQkndk4+mPIkRhymoOe17DuVCzWnSk9B2thz0lIyGr3OfJI\nckgv2VSLz11SpKplncMcFm7B2jp6Du8Xm373AXXMxMQlr9x/Gn2pYIW+Vt6/ZlVhjRy/qt8Nnj9w\n1Cs/8QD2xnwNIiLn92MNX3YP1nBnSpVY552T++avwTwUH9TzKb93lO6C9bwr70shWS/Ld9w0GMsf\nh6QopwrrXdcB3b9nSBL043ch+XyR3hm2bd6sjikjq+aGLZi7/AGdTmB0FO8n4Tasxxk5en7h96Ut\nm5fLR9HXQhbt9+FzuV+LiNx48ZLcSXjfUtmj01ZkUBoBfk8aPqf3zQGS2Y1ehhwvzxnbFfdjreEU\nCpNFev7h9/4U2toXrMS4cq+B0ys00NwddMb58b98BdfwIuahe752r6rX+Qq+88hbhb7+3/7XP6t6\nD29AOpMXD6DPffFPnlT13HdxF4ucMQzDMAzDMAzDMAzDmEfsyxnDMAzDMAzDMAzDMIx55LayJg7B\nj/TrcLiKuxAuPRPXoedMKktEKMau64gOnS7ZiFDfs3+FkG83W3QZZdOv3ge3iB//7X6v/Oz+/XyI\nPPuNr3vlQy8ijPjjf/yIqjdFWZwLFuLc3SfOqXpVWxAG1/M6wizbO3SoYcN2nKN0G56XKxmq3Ktd\nL5JN5344iOSv1eGV2eSakkPhbBxmKyIyOYgwbc6sP/h+p6qXWYSs3ZylPFinQ4Q5pDxYo7Ole3Uu\n6TC1SDtCS9nxKjHshOC+6Ybv/384cqD+9yCx4ZDlmkeXuQfi3OQ8kr+iVNXqv0HZvXXk+S/N3Ayu\noeVal/pbVTlCD/3leC5u+HZqOkJGozS2OYxRRGScHALY6YGlgyIiz33rDa/82f/yca8caUWI5zsv\naWlaKBvymIx8nK/vTLeql1eNUOwxysjuK9TyGh6zHGbJWeV/9kcUsyrJKUh3CRno1o4xyYbDmV1Z\n03QU80JKCqbmkRYt7eSs9KOUKd51ZuAs+We+CfnF5U49Zm92oT/95u7dXvm9awjjnHVkQ+k+tMNQ\n/xGvXFhyt6o3O4tQ1VD+Oq8ci2l5WhpJXnl+zGvQYbXtL1/1yvnkshIo1JnvJ6N3zpWC3Wh4HIno\nMcLtm+24U6XVQQrR/z6cO7jNRHToa91OdsxqU/Xy8tZ75dRUlllQmPiU4+Y1iTEXCiFMfGLIcTEk\nR6KW/ZDE+Qr1fKAds/CMwu36c7lNOw+gj+Wv1PPp4En0y+o7YPjD0qPJPh2GX34vwq3bfoIw8nCT\nlndnk1TolW+/5ZV3bNPOHoEFCPNmt8cdj2kZIDtzJEYwdorvxv5hrP+yOmYohv1JObmGvHFWy4uW\nVUGC9zufeNgr9ztz3sUjaJOSIOaa8s16nZ6dQl+daMY58hp02Li79icTdl4KOnPFRDuec7Rnwitn\nhHS/ZQlQkK497MhEWZYfJjmG31mTxulZTNP6VLkD8x+72ImITAqugZ0PXbldxyDmtaGDuKc0R8a7\neC+kLTyfuk5ssVHsWbMrMEfNOe6aztYp6bDbjevcyHKHgi2QN7j9quNFrA1+H9qK96sieiyGu9BW\nBXVa/pR5D/o+O4WKoN/H43rf0noA6yyPj9Fr2tHl+qsYw0sfhROUK+X89FPYSLJLoLvn3UxS4JQ0\nkt859eqe0tKcZDIVRj+bdtwTU6hvXf4h3CLLGvScz3NebxfG78Ll2i1slJwB+d2k57p+B6vbDllm\nZQH6y1c/DW3euvp6dUw+Sd2LN2HODAQWqno5OXhvS92M98rxVn0Nw6cxZkc7sDfuHNJuncqtiVza\nstL0O3Dlei2lTjbt5GJctkXP+akk0WLnuML1ev/V+TzG4rKvYk/Ze1yvXfydALujzczqcVCfqPXK\ns3WYm175FtbcbRu0ZKzvOPa5QXrHee3v31L19j68xStnV2NumHIci6sozUuY3nEWl+t7byNXxHxy\ng51yXKJGTkMmvGS7/AIWOWMYhmEYhmEYhmEYhjGP2JczhmEYhmEYhmEYhmEY84h9OWMYhmEYhmEY\nhmEYhjGP3DbnDOdpyFuo9Z2sGx+7Ae1c3NHItrwFa7OGT8AKdPV/3KbqjVyF/mrxp6HXnk3ofDax\nPmh1J8gq9vHfhDZzvaMhLNgAneqeFbju3kM6N8niJ++RW1G7fbf6d9/1Y145qwa61LVbtJ5z4DBy\nkEwO4LnUPblG1Yv0kC3qHZCEBhuho550LO44b8oQ5f0ILtL5KwrWQFeXQrlLXIvYabJljpHO282z\nU7oVdnqTYdKGDx30yq4N87F3YBc4MI5cD3Ul2p5t0ydhZXbiB9CCZvm0Jd0ysj4fvwJdaOtPLqp6\nqWRTW042gAPHdd6Mwk13Ts8bi0OvuHij7t++EPIesM4yu0rnuWh6FfkS8grxN3+JthsPkPUm67Wj\nHTq/xn1rMZ67XoZONWcRjuecDCIikTg0xTy/ZGZonfnUGO639i7YVY4On1L1ut9qomNw7hWfXqvq\ncQ4lzi+kbOFFJDcrS+4krAEvu6tO/W3oAnJs9J9G3ofS9Y2qXnwCmlbOa9L8jraRbO6D9vmvfvAD\nr/zNP/gDVW872WcXrcY4f5TKPiffUGwIc1ZNwye98sjISVVvtAPtk1PO9uB6Xuc8AGwdOTmqNfPZ\n1ZhvZyk/S/ubul+U79RjJJlUP472CDv28nztbI1eUL5O1etvwhqSTrksMnKdPFEZ+P0kO5vyjgzr\nPGjDw8jTxvmK+k4gX9G1N3W+lLW/hnwnwxee9srBhXruz87H/Fq4Bu2WVRxS9QZOYb3rfhf9l+dW\nEW1FXv9ZrPWRLm2reifbUETnHgku1XlSOl/DfMZ5hELLdF6TTJoTs8i6OkJrn4i2dC3cipwBKief\niEyTzr1oda1X9vnwua1vH+VDJJVyEvA97VyuNfhjUaz9fB8pzjUURdHGvgKcb/i0ttLmeTTUSPvB\nKzq/xnTcyf+VRGYoFxav0yIiqWTLy1bGk2N6Tol2og2HP0Seu4x8PRZ5DYnTPrRopc6HEVqM5xkq\nwBo5O0s5DQu2qGPiI8955aFmrAOpfr0ubvw0xuwM7bXc3CJ8T7EO9MVIVNfjZDL5qzDfB5c6/Tz/\nzq6Lzc9e8Mo1jzjW15Tvhm2Kw44NcyHtvwffw96scI3OCRGnHCVsgz49rcdstB9rXO0KvF+0Xfmx\nV77xjh6LlZQHk3NtBar0XFlMNu/Fy3G/pSt1rqrhZuThCC3A/D94Sa/1UXoWeY2Yr7v3N6l6bn6k\nZMLr2Ghfv/pbCq1jC8nafOgDnT8xPRfn6B/DPYW69HVnFeDfYxcx3xTkObndMrEWLirDHBCZxFic\nmdH5lUK0FqTRnOLz5at6PZ0v4VpPoL/l1Oi25nkphXKsrFyvc412XcPcE6DcJ+78nO5YdSebMO3R\n3fe2mwexrjfuQW7O6z/U+xHOGdn5Dv7m7gUW/hrehTfSe4ebx3b/XyG/ZfUltE+A3i+izncPSz6H\nd4DBD/FetOuTW1U9XjMLG2u9cmamzs86NYX5gHPOVBbq/VJZHvLbZKSh7cPNI6pe8Xa9brhY5Ixh\nGIZhGIZhGIZhGMY8Yl/OGIZhGIZhGIZhGIZhzCO3lTVNkzUaW0yJiMxROGRwESRPM47laskihEfG\nyI47q1Rb+rHFLFvKzs1qDz8O+y1Yg7CjGbIcXfppHRrY/QpCAIvvQWhg8VYdVtR59LRXLt1c65Uz\nMhyJTx3C2vvegW23K5EovhvnZyvV8984rOrllOJvdfrSk0KIwtQn2nRo1ehlhB/GSXoV7dISluqH\nEIrI1txsFygiUrID95yzDmHpfr+2f0skEN42MUTWkySjOfb0MXXMcBj9h6Vr/P8i2oZu2V1LvHLP\neW172H4A/WL5byBcuPtNHQqaoOcSo3Ozza2IDjNONmVk6ZcY1ZZskVaEf2akow+mpOnvXoMBhIL2\n9eKZX3tWy7PGYwh9Lg1h3Dds02GYLSdavXLPCPpVI9ng8f+L6JC/3laEo9bv0DaFuSSjTCQge5tx\nQuTZGpRDdhOOleOlVyBVq6ymkO0UbVMYcKxGkw3bhI46to9so5u/HHLD8U7dPmwBz7KIbEe29/Dv\nIBR700qM34wCLVFiqZ661gBCRuemdV/Pzq31ylNTmCsiI+2q3tgVzC8RCvMOLXHsduvR3hwOnl2m\nw5QDleiPw+chs2C7ZxFtZ1uq3Tp/aSIUQj52WUs46mntSZB8ov3Y26oeh7mzXW6aYyNbtREei5fe\n+JZXzluiZQfxIcxLzT9CX+fQ8Ooyfcxzf/6yV37qzz/llV17cB/ZQU6OIuSZ+6GISB5ZYReSJK7v\nlA5dz6F7ZOvY7LKgqqckszrCOCmUkDU0S3REtE0vW/lG+5y1pgf/vvcptNXgUT1mfcWYm3IXYA7k\nPZGIyIK7MGZ7r8KivnQp5seFe/aoYzpOYD9Ru+VBr1y4XNugdh2ErO38fshI1n9qg6o3fg1rc7QN\nfaF0V62qx2HaRWTvmr1Tj9nB01h3k22JvuAxhNaL04Y8tbPswJWYJKhP5ywhSa8T0j90EveRuxj9\no/+klscv3PWYV47H0fdjEVyD368l0CHS4uwAACAASURBVLyfrtyHPQvPcSIiQvthllZlVeqxw/15\n4BrmYNdyO3xj5JbHsG2ziN53i+5WSSFYh+c+67xDBKpwbyOXcC/5y7WcPVCAPpi7AOcbPK3nn973\nMW8t/TzkpoMXmlU9tqT+7pe/7JVZHl/XqPe1/R+gjavuRztGerT8lSUYA5cgFcl29h+zM2jvC9+A\ntCOnVvdh7uxtz0EKVXK3Y0FN+31J8rvGHMmMcxfp9ZilPWwVPzCkn0vDVkgxlwxgTbvS2anqVURx\n/tIqStswomV7WfQ8Gx/CuXl+Lt3jpgnA9WX40fficb1f43fW3FrM6V0vXVf1RsK4D56hcur1M6ov\nwhrR+hr6RD3PcSKSVarTECSbJfdD5u5z5Izl9K4xRlbaS5/SaQQGKeUDv8PHonpfHqM2Zjns9eM3\nVb0///73vXINvfuN0v7mTz7zGXVMEfX1IKVhcS2tu9/A+x6Pv9RCvU+ejOH6Stet8Mrb1/aoegN9\nmFMLQ+g/Ny/o/dJikt2KzvLys8//xf8yDMMwDMMwDMMwDMMw/k9hX84YhmEYhmEYhmEYhmHMI7eV\nNY2eRRjXzKTOnswZwTnMm0MBRUQGbiJEdpzCehYP6MzKFbsRtjtCofDFa3VYXkoKQgoHziD0iWUA\nmVk6fLvka5CsRCJXvXL7T7V7hZ/CxQbPIoyu5i4di5uRgZDCTApXzqFwZRGRgfcR2tVG7g9Zfp1t\nu8rNTp9k4iN41q6cjKUUJVsRrzpyWWdbn6bs2Ys+CVer1FQd9hYNI8TX50MfiUa1VGj4IsJ1J4cQ\nijhyHn3OdVe6exnC+7qGIHVZu2+VqsfhzIdfOOGVKwu049jCRxCaxlKmTMe9KEThs5ylO9dxtAq3\n6hDNZHLlHYQ5VlfpcF4Oo6sjeVDvQR1uPUVZ6eu3QMriStNYzpi/GnoCV7aXfRZh3qFsjINCkhve\nm64dNFi28TfPIdv91xboMcvuZkOnOIu9Dt/ufAehyEGSRXAGdhGRXD/+7SeJ4eX3rql6q/etlDvJ\n3AzLQbW0J9oLCQGHubsSwzlqrwwKha19TLs6TdyEtCe3AX21aF2FqldQDDlGWhpJmebwOeGwnis5\nQPfS89/D8Y4sh11wUjikXi8TSt6iwp4/1OHMZXchpJVdN7JK9Lw2N6v7dDIJLcY95TmuJvFh9NtI\nB+aDoON2mKDQWu7rmY6bxsQwnjs/F5Z+iYgMHUfo/q9//eteeRk59rjOaaEA5jmeM8uWazeDgZsf\nemV2S0zJ0GOb24MlbDV7tRzy8k8hqQmSQ6ArpfAX3DlnERGRsevYm+TU6LWbHTImaM7PcmR27GbE\n47Tuc1oz0PEi2pH3N6Xrl6h63ZcgUVq08SmvPDuLOTkS0fKL2q2QMk1MQNLmOqJxePnSrWiTqYiW\n77CUafFvrvfKcccRaJr6cNN34JbmzgGhlXq9Sibdb2PdLnBcedjZJ5dkan2OSye7ZnQ+j/1hzlK9\nvmeRK2KgGv2FHdVERK688IxXLt1e65U5nH7cr91NfLnoR1NR3R4MP9usCvRFdmcSEek6T3KqBM4X\ndNwI/RWYN4u34DkMn9Oh+q6LXNKhvunOgWNN2OuxlK54g5YUxcLYU/I8LE5qhMYvbfTKPW/jHaJs\np5b3nv8O9o7L12Ffxe8qEy1atl2yFnv51lfhXJi/Smtrl/823Lo6X8e7gf82crKC9ejfPce0RKKS\n+hnPXZd+ovtZWbXecySTBEmKwjf1+lT5EOYbTp9QXKjnXf5bAT2zDY7c6+I5tFt9Hd7PhnudPTgt\nbGOXIEtJy8E4yq3R8qIwrdtDZzEOSjbpMdZzENcwSnutbGfdKsrF+XmNmwrrcR7vw/oZLMHYdqXT\nLLdcqBWpSWGMHJXSHMfcigfxrDtexN556LROGXHhBFJGcGqD1bW1qt7Rb0O6++5lyPEe27RJ1asg\npzLmW//197xyelDPUTOUIqNqJaTAA51HVL2G/4DPmqR35VBIS7XGBOP55nM4R/kenZJh8AdYCyse\nRr8vn9b1Tj2NfdWtmtEiZwzDMAzDMAzDMAzDMOYR+3LGMAzDMAzDMAzDMAxjHrmtrKnus5CL9B/X\n7gMcVp2ehdO4EomiGoSTrtyNcMIJctMQEckvRmBP99s/wvlW69DcsrJ9XnmqAWFm/mxIKTIzdXjr\nzbde8coFq1Cv/D4dZjTWROFcJOHIzNRhudFoq1dmaUvJYh2cxC4AvkKEs81N6Wz0rutPsmE3kNEe\n7Q6RSWF2vqD/lv8vIhIsRjjbxBDC+dIydRcav4kQ1Ghgwiu7srjsCkjDJprQF1IoDPH4jRvqmEc2\n4PmyRGf4lA7Bbe6DNCqXwngL87UkZiqMMONAHcIri9fWqnqz0xSOTE4W49eHVL2ZyEeHI/+yzJJM\nw+dkES8PIvwzfBMhhOycJSLSReHcQyQfu9Gjn19xEM8pMYw+7EoW+yhT+roHEcYfpvYMrdHhvB+8\njJC/e1dhfvnjv/+eqrd7zRqvzBKfR351l6pXSBKTSx8ixH3j4+tVvdh5zF8ZQcjl1j++TtVLONn+\nkw3LW2adMZFVRLJKChN1r6liL8Yij79BxxUnuJjmpqWYe9uPvqs/dytCpAMByIampzFvTPTrMOoZ\nkjk2H0O/Knfkaf5i3NMcSZdkToegslMPy2NcOVC0D+sOu9FMT2qZ7HT0zs6pPyfiSM7GaH6YJscw\nnuNERGo+Bgladg3mwvFrek5hBxU+x1j3mKr3D2/AyeOR++7zyq8dQfjtf/rsZ/W5aa5NzUA/ise1\nlCyV5EtZJPlkpzARkaaDCM9ffB/C+4tXaunO6hySJpP0t7JB9x2WAtU0SNLx5WEenXXW5HSSqgyQ\ns0f+Wj2fle5AuPX57yJMuWCtI7EhSUzhKvyt463zql7RekgOWb7U33TcK/e926qOWfHrT3jl8XbM\n62NXB1U9dhPMI6muKwnk8Pq+99q8cq4zFlNpj1T7FOZy1w2D9xXJhiUwmY6zCEsisyswv/B4cxmJ\n4N7zAtoibILWe57XBo/r8cKuZRwmn56Nfh/u1XM1u6CdfRZrZHmxfuYrfgcStq73z3hlx3RQFmyp\n9cospWjar+WpabR3HyJXo5w6/bl3UiYqIuLLJynrMf2u4ac5p/aTkKK718TpFbr2Y+8YWqalPL2H\nW70ypyUYb9JzL8sxCiLoMyzBdaUpI004d8kWrE/xIb0+jVyFtLHqQcyVve9qyeLxA5Alrd1Ec+oK\n3TfPvwap6KoHMRYXrNdyEFdelUzY0TfdkcGx4x1LXvPX6fvg1ACJfpL7lutUA8tXYJ/C7yp5IT2X\nsbS7YCPmVpY88nuAiMgoOYKl01rl7q+ySB7ffA77I1dezvc0eFbvtZmah9kRlxyGt+l9/OTond2j\nFm2FXLD/YKv6G/f32CSeW0ZvRNXLSMOeYRVJkk436/7dNYz22d6ARf5cq/7cuxrxTB+/G7JrH8n6\nQw16nJc0QJbUcw1uma4DtN4H4bovv/K/Vb3mw3jv3fZHD3vl6JBeZxfvw33wmut+N7LioRVyOyxy\nxjAMwzAMwzAMwzAMYx6xL2cMwzAMwzAMwzAMwzDmEftyxjAMwzAMwzAMwzAMYx65bc6ZbrKZK9pQ\nqf7Wd6TVK9d+HBrHSI+2liu+C7rLtn+DzWPVx7WIfKgbmupFH9/plYdbr6p61258D5/VDo1pVil0\nX1Wbtd0l5y0YPg+7vdpdOn9FsBh5FFJToUm89MK/qHr1+3Bc/uJarxyPa01i0UrkhhhKxbOMdus8\nBSr/zh3Q1ofIsje7XOdd4ZwGsUHko0l37DDZFjszF5rM8XZtuc35baYo54JrMz52DfZwKWn4jvBH\n77//EXchMkMa43t/fzeuwdEKFySg6R8jO/iqR/XD7XkTbRJqpGeUXavqRSLQf7LduItrNZpMNjwF\nu7emFy6pvxXWI7dIjCwkc+M6p0n+QtTrv452W7GoVtW73goNfV4EWt9Fn9X2sEVDeBa9b0JLGlqO\nZ+laPjZWYh7xFUErfOjiRVUvMY1r37wI4+jiG/reu0kXXhqC5nmU2l1EpI6sw7spj0LN7kWqXvtx\n/G31JyXpcN6B+LDW6bLWuXgTdL+uXp2tHnk8pzq2h6y3zi6D7WFOrbaO7HwPlqEZOWe9Mlty1qzf\np445/vW/88oVtZgbRrsdC808WAlGujBfx/r1vbMlaQbpvP1FWmvOOXa6DiJ/Qu3eHareyLC2SE8m\nrT9GHyzdWav+xutkehbm0MEz2mpyoo3smUm7zrkXREQuvIxcAjX10OePRXWf2E6a7IvtGHMP79zp\nlSsLdB6JsiXIP5CRgfmZczyJ6HZje8oZZ36pWQttfArlbIlPaCtQtpzOXYRr6n6jSdWr+fgyuZOw\nft61q+d1rHATchXE3X5L+QTq70NunWjXhKrXfQX7jsq9qFdzv855FRvFHDA2jLafm8Hat+Bx/Vx6\nr2D8Fi7CGhfr0ddw6gjGSzVdd+NvadtSzrcXWoq53LUN7v4Ac2XgBPp3aIXOHRRpQ/+p+pokFc57\n0/GqHvOFlL+H89Fkleq8FB0vYY9Zvhhj4spBvfccCWN/lN+K9SWe0HlHGmje5PwzgTLMuwMn29Qx\nnYeRt2uWxl9Xv97bpH/3Ta9cQPdXtF7vz5ufRq6SabaU3aDzV/jIfraAciENfKjzviRGsZerXyNJ\nZ/wy7jM95FN/m6T94TTZjGeG9NrAbVxMeTPefOaoqrd183KvnEvP0N1HLq3BM52JYq576evIYXnv\nU9vVMcE6tHffB5jPpiZ0HwlQ3qPut1Av2qpziVUVYs/GOZ+i3Xpsc57AEOWaO/utY6oe55OqWyVJ\npfNN3EehkxMnzYe9SdFGPNfEmM73wu8jOQ24j2knt0/uEqxXo+dor5eqky/xXDZ8EnNUHuXeySrV\n74udl/Aet/bXN9/yXCI6v1x+AH2x6xWdK7NvlPLk5eKz0tP0fo3v0U/50PhzRETmZvT6nGxmJ5F/\nzc2Hyu+FRUswz7v5VDIzUO8s5Y955Ml7VL1hyn353lXMt5F4XNVbU4f9e2wCf8ucQs6ZypW71TGR\nCNYDbrui6i2qXtuxA145I4C5J1Ctc5MVV2D8te3HPjm7Uvef7DL8e5LeCTn/jIjIiZ+e9srL98ov\nYJEzhmEYhmEYhmEYhmEY84h9OWMYhmEYhmEYhmEYhjGP3FbWxLZrIxe1TCCnDiGa02SplVOhQ1pb\nnkfoTj5ZmeXVaBvrQQppmmiDRWC0Q4f5dV1AaNrSR2FF1X+o1StXbdahbfFBhCj7QggXG2w+o+p1\nvogwqNW/9wlc9wptP5dIQC4wFUfI2kSrtktly70gWRO6lsRueHiyYau4vqM6nLb0boSLpaTiu7pA\nhQ7pmpzEc09NRfgoh8yK6Hthu8kBx25ylCy3r3bj3K8ePOiV6xZpyclXfg86k1QKk5x0ZB8cwlb+\nAM7R+9ZNVa94G2Q5bFMbDl9X9cLtCOd2bUKZ0OKij/zbL0vXqwiVZBmTiEjfDYTCs4Wd2zZTZIvN\nVnXVRfq6s3wI7StcjfDUYHmtqjeTQBgrS5miHZAIHL2qQ8P3bYXFdS6F335quw4P/uHhw1750V/Z\n6ZXzHCt4oQjSghyEq7MMQEQkMYJ75/vjuUFEpHx5hdxJEtR/xh17ZZYy8XybEdJSl/xlmI84JJrH\nm4hIZiVCnc9/E3JBvn8RkcqPQWbBYcUlSxDS233lbXVM4WaEJufWIsS40ueE6sYwH8xQufLu5are\nZBhjjOVA0T7d3iwBzV2E/pNIaOkMW3cmm7xVkHGNnNfrYmKA+hPN8xV79HrHEpGRk7DXLKRwfBGR\n+lWQIYzTMRw2LKLDqv3UvntWQ4pYsU6fu3wn7EjDA5iD3ZD5QBXaN7cU42MypmUAQtHWviysd65t\nMIeeB6kNXbvxoXN4LlX68SWFmTjmx/SAHhOhpdjHsMVw31Xd3vXU90dO43rTc/X5iqsoJPp5yOIq\nH9Q24+FWGgd0TbymjTfr51TQiHVs4DLOffT5E6oeW4YOjmOOZlmxiEgh2YB3H8CaefVCi3wUZWxH\nelX3i7I9d6Dxfg7ZopZs07bB4zcgB5gcQXh58Rp9PXO0T/OVYQ2pW6bHS0UfxvZTf/pnXnnHFh0m\nz2OzcgCfG6K+Xkq2yCIi0xFIGoIkiQst/2iJGFsSi2OlzRbR3HciN7U0LV1J0PAscxfqPcbt9j3J\ngNeg+IAjHaR5gSW+Macey0JYsrjr0c2qHu8X00gKnOrsyysfgiT30D++65V3PLzBK/cf1rJt3mfk\nr8Te6dS3tFx/5kP0uZrFGG99g7p9BifQF+KvQPrtSmLiU5jLhsiueeFe3c9uvK73Y8mk/gms6e47\nzdhlrM+83s06tsbl+zA2W16CDLNvTL8Hri4gS3WSAZ65pvf4GwMYi/5yjG2WfI5d0nuH+h14Z4hS\nvQzHHryH5PH5JPHJKtX7sOA49sbDF7B+pDl7pY6DuPaqXVibeT8kIjJ6QaeSSDbq/elB/Q42Su2Y\nSRb37lqzfjNk1rzWxJ39O0tF79sCveRsXMupSnZibud3+Jxy7EfS0nT7FBXt9Mrd0Re98vj4OVUv\nj9qum9rATzbdIiIZIZw/0oRxGlys58rT/4wULeXVaPusKp1SZMev63ceF4ucMQzDMAzDMAzDMAzD\nmEfsyxnDMAzDMAzDMAzDMIx55LaypkA5pC29bzWrv4Wvk7SHXHncrPH5qxDaV9SAELvxXi2vGbuM\nUC02i0hxwjXbBxBWlUcOMbWfWemVh1rPqmPyGhCG3vLsea/sups0fGWbVz72fz2N4xdod5OCtbhf\nDpF0HYlGKcv2SBThbMUbdPgty8LuBOxQlVWmnQpS6Ou5CMlRfE4IX+8ZhIKxo8jspA5f/Kiwzpw6\n/Wwun4Qco59CFr/0xBNeeXm1dkYaOAZpFIcYhpaVqHqZlOmcM5unOtnWOfSSn4vfX67qSRXOMU0Z\nt8eadBb1MEvwtCnCL006udRwO4mIlC/D9cba8bfwNR3+PhZBX93zAEKx0/x6HPB4ZseekRadhZ5D\nhycHEb79b28gBHjnihXqmNOX0e47ySGrYpl+5n/Y+KRXPv4GxrMvXbchS5kKl6IfDF3ToZ+F1L4V\nFK7sSuLGHJeVZJNTgjExeklLJHy5CKP0k6NI3JH29FE4rZ/u6+prl1W9zV+9+5bX8MF1Ldvb14rn\nxmO769QRr5zfqN0Xxm9AuhDtpTB8R9rnz8O4D5RhPWl6+gNVr3wPwmfHSfKYU63njQTJE0rXw5lm\nZkaHuIecsPxkEiPZT2CBln9W7EZYdnwQ19T1in7mRSSpDK2BTC3TCaVtP4Qw2x9/gGdWnq/XpI5B\nzEX3rcRamEYLaG69Poalfwka88F67erEMprMfITzDnyopaoJXgvJWWTGWSNKNuHeeX52JT7szHIn\nCLdAFuJKYgZPQcpUQHuYnpP6noePox5L+PzOOssOGGPd5Fr2PS2trnwAc1PzTzGe86rRdg1Paee0\nRALjZeQMJAMVjjtX3d3UN3sxp7BzoohIjMZzcCnG0cqQ3hNw/+H5PzzohK6z9G+9JJVcktd3OW5f\nVdSfYv24ponOXlVvhkLosyvgtNF3Wsvx8kjex/uU8216L8vza80w5sOiK+j3wTo9JljCxnulmCMD\nYMkBO6RkFuh5g9dwdgzJbdDzIs9lfVHcR8FqvR5HRu+cTFRES7QyHYe+UZKVJ4ZwL4m4lm2X31Pr\nlQdJ2lO81rkX2j+l+fA8h0huI6Kf/UgEc3kOzY9ld9erY2an0Zfe/p+ve+UVOxtVvfGLGHPdNzE+\nApl6jL1DLpaf+8Qer9x1TV9rVSWkGdz2A45L4NJHtJw4mfS9S+PAcfxLI2kOpxpI/X/Ze8/wyK/r\nzPMgVEABKFQhxwbQ6IDOkR1JdmKTbEaJlCiSSpboka11WHs96xl7Zj2PvfuMZz3WWF7NMzNr2rKV\nrECRIkWyGZvdJDuwc84BOWegCihUIeyHWf3f91yRvc8zrF58Ob9Pt7tuFar+995z77/qvOf16fwA\nPlPmRTEP8gt1PI1dx5504iLOpewGKiIS68H87mjCda6owfVqbdbxoLEYMZglU66jX8MXsM8OkzTq\n5Kv6/nP5FsQhLjtQurNO9WPpIEucah/Q+6K/KEfuJJd+jnu9RQ9rZ0B2HPKTpHfTA2tUv+wcrKt1\nmzD3J3v1eXv5k5AyNb8OyR2PvYjI8AWc5yv5rNiO/XimUp8BfT6MsS8H86frkD6L+cixjqVMRWud\n7zKWI2ZPDiMODZ7R84cl5i1NeGzJPH1WHL1G949aeSkiljljGIZhGIZhGIZhGIYxp9iXM4ZhGIZh\nGIZhGIZhGHOIfTljGIZhGIZhGIZhGIYxh9y25szZbx/02vPuX6geGzwJLSNrtro/0HaLbHkcng9d\n3kxKW2XVPAJd2jt//rrXDjkazM27oFF76cUDXvsbX4CWctbRO7a+Cku2su2wjh46q3WbPcdQw2bR\ns7AgHTyj+7Eubegs1XOpyFf9WOOfUwzN24X/66DqF4xCQ1j5R49LuileD+1cxxu6bogvjBoTbC9X\nulZb8AWKoLHLLYdueXJAWwn2N0P/7iM70d4LWpdXV4o6Fx2D0I9uX78Sz+nWNVOqHsIcDJXhWrua\n+ZHL+HfpZhR/YZtgEZHYLWiZi8nG2J0/k2TLy/M2dkPbHiqL9K2SVrLDuJbNnbpWySxdv01fRi0Z\nZbUpIpNnoRcNktVm24d6zQbJCjSPNP1sDS8iMnAMmvyzF6GR3U32vb/7rW+p5/zDn/yJ1y5aAxu8\nW9/TOl22ot3+G/d47Ssvn1f9WBM7dg1zb2pGv9cJsiDtIzvcyvXaLtXVSqebkbY2r124StdxmU5S\nDR/S1kecmkpZVH+o402s58o63e/Q3x7w2skp6GULQro+weX3r3rt1DTmdy1ZrLPlsYhIQSMey6tA\ne6xdr8XwQsTl4R6MXfWjOr6wRTavy/K1K1W/jPVYY71noR0OOnUKRq7gfZQ/JWklsgzXORDV15Lr\nq3Bdnug6XfeAazmNt2JuDp3WcXJsAvPgSbLsbe7VNZWefGqn156lugclG1HnIjukLTlHb+D9cZ0R\nV1ufR9ry1pdRB8W1S+1rxxh2Hcaeu/0r2jKy6aeYB0V3YW9y45Wyt9bTIC1w/Y5Yk2NPTXVmBumc\nULZG69BTtDeMkw1204lm1a+0CNewcAHWi1tTj6196x7CGimlOkJ913QMjLfgulU+AD2+75iuTRAk\n69Mk1RDJytHHwJxKWH4OHIGmn2vMiIiU7cRZqudAs9fODeu/69alSyeZPlyv2id0PY1UDDUcihbi\nfBkK6fpCOaVU32sAdQsqNuqad4EirPXHyrZ57ap39Hj8zUsvee3/8ru/47VHr6DGQL5Tx5Br3oUq\nUZtgolfXQOvZ34y/S+chrnckomtz8fl89JKuk8d20Vzzgu1qRUTG27SVcbrJzsNav/7KRfVY3S7M\n6fb9OKNnOovnlX9412t3DCC2fbF0p+rXR9a+Ybpfudalz/lb78b4PzgP9dui9ajdND6k6xKN0Vo8\nfhNnIo7jIiJnqU7Rb37pYa995YS2gua6UTlUD2nmiq4lw7GsaC32mvAivW93UZ3Oxu2SVvj8mx3y\nq8dCVJuNayBlOPblyU+obeQv0fusP4I5nXMdfys3ovu1tWOfnKEz4XQMZ+GJpK5t1kN1eqq3oaYQ\nX38RkY6X6dxEe+60c/aM38Laia7DvtJ7QNeqCpYjPufmIYa6+3ZyUM+ldFNSgdh08ucn1WNlBRhH\njlnjLTo+FNJ558JJ1AJzz56jr+I8cegKas48tEEXJ+P6YV0HsGbL763z2qlxPXdyinA9B27gtUPO\nOLa8gsfya/D5hk7ps1jeIqzFgkbUsxm/pc8tPpr7S9dj3+H6XiIiqcHb1/GyzBnDMAzDMAzDMAzD\nMIw5xL6cMQzDMAzDMAzDMAzDmENuK2sqWoL07eY3r6rH2NqsZR/SlpY/d5fq1/k2Hrv5Q1h0xR27\nxQVPI2+5h6yVKyLaSvWj9/Aan3sa6Yp9JLHgVCcRkYWf2+W1b7y4z2tnBnW62CRZn05QavdIs5av\ncHpb8UbIIjiNXURkgCy2ostxLes+59iTJe5c2q+ISD9J0HIdS+vx9o9PVx3rcNI1SXZQUI105pJV\n2uYttxppYcGoTh9jEmSptnMrbNjOnsN8WbdVXye21Z0gi7xYs04rkxlIU7o/aPbaPFYiOqUy0Yex\nnxzUacoszRs8gWtZeo9Oj1Zp+GmmaAPS6QvXV6rHWl/D2pxwbJcZtppMjSCFuXKj9v3mtMn3f3zY\naz/wP+9W/UI1SH8vasVYx8ka/t8895x6jo+ssAcofbRok5YLjFMKYIzmXsjvXGOSIWWS3Gfx51ao\nbizBKhjHunelaZPxO2vfOxVHOu1UTP+tJI1J+UakQw7f1OmvnIYfJZvQmaSWipaT7IDtNSd6teXg\ngZePeu2aIqRBJ1J4r+NdWurCcs6srbjukVptLdp1AfbPkQasv/5zt1Q/lvkESH7R/sEJ1S9F6chZ\nfjwn6FhQ15D8Nd1MkmSAraBFtCQydg3zdt7ndSxrexmptComz+jXm0+PXTuJa5bjrIOLhxADVj8A\n+/pL/4jrt/wb2q9x4DjWBKfFV5AduIhIx17Ix8rpsQvf12Oz8EFYmxcew9rOcWylM7IwZ/sOQRbr\nXsu6LyyXO0nlfZBLdO3XcoKu93CtR9uwv5Q5UperhyBTzAtCCnL4qj4vPfXIdq/9/nunvPbOhzao\nfrzH+XxYixf/616vPf+LWuPlz0eKf/8JjKlrU8trdpri0PSkjhuxJsTEgV6yOPY56fUk6Srdhr0w\nM1v/XddqNJ2MXIdMh6WgIiLhhbh+o5MY34k8bYfOazY5hM8Uqgqrfj7a3znWzi8rU/3+7bPPeu08\nsq4uXsv7tp7rLEsaIgl43jx9KlIzjQAAIABJREFUXqt8EHN2rEnvXUxqjCyJydbeHRthVQnJhDr3\n6fVQsKRE7iSxmyQxr9NSnGw6p7PFbkeHltCynOQrn4ft9NSYI1uh+4uS61rOyCR6sE+OkGSalc+F\nK/TYsyyniiRJk1P6jJ9PseJnL773if3mkbT4lR+g3+JKfQbMJukan50mB7R1sT+i5WrpJERWwd3H\n2tRjWbR2yunczDIwEZE+kq1V7ybL7Sw9b3tJ3rekFueKDEfqtmAtSS8vY11l52NO3fdH+lzb+Q7m\nPl+v8S4tS+kYwNxZ87m1XnvidT3f+D4jiyRKmSRhFRHxF0LK1HUJErtKZ82yLfmd4Op1jB3PPxGR\nAirVceEdSJJ47xMRufUS3v/ydRhHltaKiHR8hP1/z124hpE1WvJ/8K8x99c8s95rx+k+3S1bMXz5\nQ6890Y37opazuhQHyyOrGnG++eCHh1W/9bXYD1j6nZWvz2IJlpSSXPPcBX2Od/dTF8ucMQzDMAzD\nMAzDMAzDmEPsyxnDMAzDMAzDMAzDMIw55LaypsqdSPGpeVBXwp+aQLpcz2Gk63BKmIiIn9LN4yQh\nyK/QKaODlHK7cRlcClw3g/fehCxpyUWks80j949sJ+2LpUzsqDRyQadF+qgC+K0LSO1asrNR9WNH\njTC5lkSdFEf+N7t4DF/UThvsmHSnCc8vVP/2R6gquB9t13WldBOkLyNtqJadW6FdB/JLWSKDtL3y\nbfWqX04+uyPh2lQNwD0gUKBT4AbOcco2XjuvQb+HcAPSYjnVbei8Tq/mdG5O63fTo0tYUrQO6aTT\njgtFsEi/33TS/xFSsX2Ok8K8hzH32UXNrQZe8ySkMuffgSRh0WN6bYcpDbroHFIAR65op4fOU3hP\nS++HbGPoBFIaZ/r0cwLFmGOcGh5eqdMYp0heFFmGdZTo1pIcVxr0K1zHGZamBajyP0uhRERyPuH1\n0kUeyf4mR/Q8Y1eNzEykQ7rptOwYxnI8lkyJiATLMB/97MrWrq9NYR5kJ+XViGfFm7BGew/qVNCG\nZ5FaOnwD451botdEuB5zafimlhMwkcVImx+6BDctt8L9vD2o4t9OEtdEv07fzg7iNYp0lvynhlOn\nk6N6jeXXIRZlhTC3XMlriuYZO2q0H9fXOdCH12hYhtjqxgBfHva88XZcM5YYdr+vXdlyyYUpTm4L\nbeReICKy6OtwiWr5Ja75vC06pg+dxTUPltEay9bp2xy71Vr0634sH5M6STud70JCy46GIlpml30I\n5xt3PpaSewW7pDzkyi+JjUsgBR5v1rLiQACvkZWFdbnsmw/hfR/RDhpJkiyy/CRQoF2TppNYm356\nbO+f/VL1YzlG45OQULnjww5NFbtxVuw/ptd5Rtad+w2QHQRdWTHLkNQ6dQ6V4QrILLIb8ZzJYR1T\neN37SErW8FUtoSwgaRn/qakJkpI5ElSOk/FOchY8quUhLPksWYN4EO/WEqdEH977LF0jdsITESla\njfnGn49dGkW08+adgN18OD6IiITozM5yvPrlWmI4rwGfJd6GPS5YqNdBL8mafv91OMNuXq5llOvu\nxbmIHVWTt5G18r3Bjl3Yq0YdCVonOWw+8QDc7Nw1NkYuWZHF2JvZMVBEJEDym+YfX/Da43G9P0Uc\nl7B0wmft0lXanbCXHO/4DOjKkIbHMW/r6D7OvWea9xTGhqUj7F4pIiIkdWPpzewUxs11sGUJ+I2X\n4RxWWKOv3YLViBt8L1CxQn/2UZI3z5JsOVStyz7EqTxD/Q7cB0306DPv6M1PluKlA3ZILnIcRScp\nrgzH8b4WrNQlHobP4KzRcx1jVxnUcryWPtxnnvgI3x08k9AOj4dIJlx7Eq9RQOug/5COlXkLMV7s\nnFzvyH35HuL15/Fdgeva+87rkP+vrqvz2rlhLann61JDc3Pzc9rCd9Zxv3WxzBnDMAzDMAzDMAzD\nMIw5xL6cMQzDMAzDMAzDMAzDmEPsyxnDMAzDMAzDMAzDMIw55LY1Z1hHlxzT2uiRK9CRdZ9BnYvG\nL2r97XvfgQXWhkdhlTV8ukf1q30CNStipLOMOVZrf/yXX/favQegBW99FZq0mke0vXOMdd2kcZxw\naj4cOHHOa/vJ8je+94zqV0b23kG2CdUSNQmQTpX181xDQ0Tk5k/wd5c/LGknn2qIsNWmiEjZ3dAK\n+gKoA5RfrbWGiRFoZlmLl4rrazhAdSXyanGd8oq1XXMijvdRUf241471veC1MzIC6jlco4RrhWQH\nP9mSbOAU5mZBo7aDDBZCK9hJdvDhxbpIRff7zV6b7e7KNuvP5Fq5pZOpYehgs/O0/pvrzHQ1YV0u\n3LVY9eM5WFSOsXG1miVki7r59+7F8wf1WFeTReDxV0977QWV0Nxu/Npm9ZyzP0K9hChZOrtr4sir\nsJt9cPEDXpu16SIiMynoNpOsh73u1LrJwTXLJ4vVG3svq36Ln9AW3OkmRra8bt2BqTGMcVEd3ke+\no/+PzEN9h1QK+uOhK13ySbDWOeDYGa4oRy2iscuojZJNto8Vu7RFNmvFK1bADrjniq6H0X8Yc6vk\nbqyXYIl+D4NUD4rHNLxYWzlynRm2CuZaPiIiwai2oE0nkSXQObe/ri2T+XOFlyHeuDGKYyjXkxoY\n0zVNCkKIUYu2o8ZL64uXVL/qx1EXjWtmNWzBXCnZUK2e00e1QVj671pDTgxizsZbUMvh8iH9Hjbs\nWuW1p6m+Rv8JXYMkuhxrnXXX+U58Hr5Edc/WSNrhvS/Wqs8ZBQsw7wrJrt7ViWedxpqbJjvkpGOJ\nG5qHvbV8B8bx+g/12WKsD1r93sOoP1S5C+OYW6PneojW9sApvJ/sXD3nQtV4DxzLa5yiTLWPYi7F\n6bo0H21W/cI0N8dvY2laRZa46WaG6sZpq2qRTrJDr6Cad76QrnfYT/UMuE5NQbWOeanUx8dunusi\nIgVUQyoQxTXiGmPJYb2XjlONo9wqjG+WEzcmemEJO3AO62rG2UtyqN7YwDGctcKOJTbvC1wTx+ec\nMUbJSlq0k3taGKcaMaEaPT5cs6ipF+eb5Q06xgcrcBZ//wj2ibdPn1b9akpwDZ7bs8dr5zt2wDGq\nkcn1QdrPfPJ1H53AuL7/BuLjyRs3VL9//cXPe+2maxifBavrVL8UxZHye/HY5b87rvo1fAHnhRyK\nNdM3nDOGU5cunSR6MDdzKnU9lYIKzGmur+SegZY+QPeBdO/HZzsRUX7m7XuveW2usyciMnYF8za3\nHvPlnTdRPySaq59z95Mb8V7HUY8kOaTr92RQbaThM7ifTdI5TkQkfyE+b8KpH8NwraVb+1EHp6xO\nn4G4/tGdoG4R4mjf6U71WOU9dV777hqc+/a9oG2nN29ETaDv/OgVr/0b/h2qXw1ZdfP5Ye/LB/Xr\nLcI9fS6dh0+/iPuERRsa1HMGzyNWNNCZY/C0Pie/8i7eey3Fho336e8yfv5T1KOJ1mFM3TlXcjdq\nYQ1RLd3kgJ4/sRGq2bNRfg3LnDEMwzAMwzAMwzAMw5hD7MsZwzAMwzAMwzAMwzCMOeS2sqar30WK\nesl6nTLKqavLvg5b1dYXtUzA70NaZqIbaW+Dozp9myVUY2QVlhXQ1nLFjUiRzSLbuZsvwvKsd3+z\nek7Zjjq8NlmaTiS1bW6Q7C/nlyJ1vSisU/SKtiI9nK1T+45pydDIZaRlV95PaclOCv7KP9gud5LR\nK3gfIScluuNNpFuWbcMY5JTkqX6j1yAT8VNa3UCTTntjSUKE0tQHrun0/5xSvH5nG9LexpqRShqM\nOlKFMjwnk9KAB8/oNDWW/UQojXfkmpa6+NZgThdSu+tdbQdfRHN/OoFrNJXQKaLxG3j9cr1cPjV5\ni5FG56bSjpE8aNFupKT3f6TnI6fbZZN0ga+rC9uNhyp1unGAJF5bq/BYmFL+3Gu06Q+24X23YKyn\n4joVdOUKrBdOfR04p+3Qlb1pFuJB8WptZzh2Feu+9W2kjBaW69Toyy9CYrhQK7LSQnIYqY3lmxrV\nY2Od+Gzd509+7HNERGKteGx6HNe37O461Y/nyUQ/5kjVzoWqH1vU5z+M+MpzPceJG1OTSDO+uf9d\nr/1r8ZrsuDn9P9Gjxzt3HsaBpQWd7+h08PonkP/ZdQiWoeIoCtvfxX5Q8sx9kk7i7ZDJuhIxlr2k\naNySM1rGUPXgx0s9VkZ0aj1LU7reQVwq2qStn4doXfjoNUbPI/ZHHEkDWw+PD2A8q+7T6cE3fwCJ\nQP0XYDd74Vva9juXZDNd70JSMjWt41X5PZCYlJK0yLWlnXLSw9MNyzzzHYvZ689jjeVUIz5OtOlz\nS9l9+Cw9+5q9dteQts71HcG64HkRzNPj3fZL7JMsoW0j+dzUmD63+KN4jRKS2oYrtCyn6zjkHXxu\nqXbGO5Otrym+Vi3Vm1r5dpYKYS71z+hxnGQJj1bWfWry6HP0fqTludGVSGUfugjZQXSZ6qbkm6k4\nrm3fZX2WZXlQHkkkKrYuUf3iPUinn+jDmTebrIFLVutrPkPxYfgqnp83T+9PyREc2WO3cE4uWKqt\nlVkSUkeSFz5ni+ixibdDWpQa0vGqZIu2yk03MbIRdm2nh04itlVEMd6pER0f+FzKctDHNmrNQDmV\nJSgNI2YFHLlI0QbE2Mu/wLmgYRtid6BYx3+OD/xeWcYkInL2MmJ5hGQ1bOsrItLwGUzWCZINVZC8\nRERkis4B/Br5jkSfraXTzcAtnLHqFhSqx/raSBb3BpqVD+h9cIrWX6IT1zKySsveU/R52d7ZlW0V\nk5Q60Ycz0NbFkPwXrNavPXIOsWKS3o9rrVx+L9bEEN1jBQJaEsgy1Iuv0DzarOPzFIZXqlZi7nVf\n0Pc3If+dtbUPN0Jq5O41fE/RMYAx3fX5Larf6GXcC/3WA/d77UznfBikS9pJcsGiPH1PUlWE+dR7\nBHGepbXufVGE5n7rzxHLOwe0FXk5rVOWWU3FdHx5eDO+50iRxG24RcerMZI28hi7Ur+mN/S9jItl\nzhiGYRiGYRiGYRiGYcwh9uWMYRiGYRiGYRiGYRjGHHJbWVMppaR3HdYpzBFKJ42TGxJLiEREJl9D\nalDPdUrXdCqjN/0A6V6BCqT5JTp1WtVYN9KqRkmiFE8gzah0jU6/jVPK5LxHkYJaNanT+0veQNXv\n6Cq4FZ3+qXYgqYzieeNdSL2r3q3TW7lifgu99uIv6SrQA024tqW7JO0kB3FtitbpdHiWpoySw03Q\nSdcs24Bq2X1nkJJZvlWn5/YchdtEdoCcCga1O1fvQXxmlihVPYy/M9qsn5McwefI8mPqsvxCRGR2\nGqmbnLo/cq5P9fPlww0qTm4B1Y9ol6Phy5i37Mbiuhexc0S64Srv0zGdulm2BXKlRD9SPLk6vYjI\nVXIPWLAD13nohE6brHuWHItILpIbrlf9JgOQtOUWYV4Nt2AOFNbra8kvGFiGFMLxIT3W45SCmiBJ\nTqhIz0tOi+0gx7ZQlZZg8TwoptTK8U4tUwj06X+nm4rNkIW079dOLVXbYYPRfRRpmK4bSMW9+Myp\ncczBX3PsKEAMi3ch/ozc1Ougdstu/K1pzJ/BVsTkiT7tMhCpRbpm5XbEkL7Tzapf74dw1AvNQ3ov\nr1ERkWyS1UwOksTmQR2jk+NISeWU8sxsnS5bfq+eq+lk5CriZNEaLZ/r2AvJXFYQMap4s6PnoHRe\nlpjk1+t0cJbepEaxF7JMT0SkpxnviffWsnuQ1j3pyONCVUizjZArVtObWoK6+Bm4KPjyEDPXb9D7\n3cBx7M1l25HynenXx4yuDxAf2GGn/TX9d905knYotvUd145SufMxV9ndrepB7QQZ76R947OIdZmv\n69+9ynZhPrJsO1gWUv2S5Mp38SjW7MrtcDE5fkS7ZF1sQ5r3N4uf9Nqu404Guet1snTXcZnsb8Hc\nWvIsziojV7QsOJvmd/ubeK8stRQRKV6TZo0vvweSJIUXagkHy0BYGpuRrceG936WYicGtUNM9UMY\n+wTFK59Pu6lk+nH9CkoRHzIycL26j+q5zucwlve5bk0hcgcdItcRljiJiBSuwt/teAsxKc85E6RI\nthAmKcroDf16d1IOIyISn8S8r9+hpS48XqU0p1NOPBsix5y1GyAZvnauWfUrISlTLjlDudKwD79/\nyGuv3ozXu7Tvyse+lohI5yCu28qVOBuzRFFEJOsa9qtskmPnO3KgODnXJmkvqHlYS6JZnpaiGML3\nMSIiPe82yZ1i0VM4v3S+dl09VlyJPS47jD1kxnW/I+mfUOmMWUcqyURWYtzGrup5O0wSJZbBdQ/j\nnrDjPf2c+oU4y470QrJSu1a7s7a+hxha9wCdp09ruQq7qbLMxZWwsfMvx9ZIkZbDuFLqdDN0Cu8/\nZ54jZyepTwHdc7OjmoiIvwjzPUBtt4TCADlV5gYwL946o8/GIXqsnkqOlDTQueWc/o6CSx4s2obx\nGTykz/js0saxZ/9PtQPVylqcaQpozkXD2lV44LA+S/wKPg+KiGx5buvH9vsVljljGIZhGIZhGIZh\nGIYxh9iXM4ZhGIZhGIZhGIZhGHOIfTljGIZhGIZhGIZhGIYxh9y25kzRSuhWXb3U6CXoj9lirP+I\ntjNc8tsbvHbPwWavnetYsw6egn72xjnUKSiLaI1s93uw6AyUQK+9cBf03qFqrQMdJ4vAgTPQ/7Ge\nU0Rkhq1jSdfn2nr1vI/3l50HjeTgCW0rzZZktQ+RHj2gr2XKsStLN8EKvH+/q487C01ldDks5QZO\naRvmbKrPwnVNut7X2tIE2drFasm2nGzURUR8BXi9vPnQo7JO0LU35SIB02TRHHD0vGwjyfaQkdVa\nU8xa8zKy3Mt2dN48L7gWj1sTgedwupkex3so2qLrVwyfgUY0n2pHsN29iEhpL/TMXUegzyzfoF+v\n/wTGnu0p+0/sV/2K16GWQLAQ3/PmV0O3Pzmpr0nvR/i7efUY3+afXVT9bnTjM4WbEAPYkl5E5PQ/\nfOS1p0gXn3VCj+FoN8a6cAFqE4zc0jZ4+SVa35tuJkZQvyiyTFs4jnWQpfV8jFVOkY4/oRCuQcqH\n95+TozXR/Z3QzLI9dUGN7sfPGx4+7rXZdrWgVlupZmVhXtz8+Ydem23nRUQG43iNyu2IgX6/rg+R\nSuFzzM5ibfcea1H9uObTeAfGdNqxbHdrt6STRBdi2WS9rnvAtWW4BhDb8IqI1D+11mv3HIFdeEGj\ntrvmParkLmjhXVvP4jH83UAU++Lgeayj6k2b1HOG2lDXKLwI41GyUceD5Ch05jNTVLsjS8eX6GrU\nNwgU4j10vKLra5Tthu6+82189trPa4/j9r3X5E7CltHF6x1r8guoVcD7eqZP1zbielC5FTh3FG+t\nUf1iZA+cousZqtbnIMnEe1q8BGsudgV76Ywz9p/ZgDMW7+H+kH7tAirfNNGNGlKTbj0pqnHQvY9q\nyOXqmNq1H2exTB/ed9Kpvdb2Gmp0lH/jUUknE92oH8C1fEREiqieEderc/dtrrXC6yW8QMeognLU\nWCqqxjXquvSB6se2xlwro5/mUU65rhvx3t+/j7+bg9i67tm7VL9ABI9V7UEdBWVXLiKhIsyDmodx\n1nJrh010Yn/OLY98bFtEpP0tjGGtY0WeDqZp7w46NTWuv3Ae/WjuD8X0mZItqeuoJsSK4qWqX6AY\nsSlBdYl4PxERWb8bNVSycnBmr6nGa2dk6xi4fhfsdvNqcQ2v/P0J1a+C7mv82XjtXMc6PcuPeMP1\nWXieiogE6V6ohGKPu2bL79f2zelk8PQnn3+nqF7a1BjWR19Kx4pEF+Zn7gKcD3PKnXuwA81eO38h\n1m9/77Dq17Aba+TEL0557apCOgsP6+dwLbIlj6H+Is8BEV3zbvQS6vhFHdtvvt/j2lDTE7pWZveV\nZq9dvxPBmmtQiYhEV+rXTzehOuwblz/Qe3fjVryvcO7HryMRkcgyrJGrL2H9Vq7WZ4vpBMY/rw5z\n/8/+l6+ofscPXPDaAarlevM87ifcWDlyAWdtuq2UQSdu5FG8HTyGGL155yrVj+tYtu9DvaGi5bqu\nU+WjmHNdb6FfJFfXgOO6TA3r5NewzBnDMAzDMAzDMAzDMIw5xL6cMQzDMAzDMAzDMAzDmENuK2u6\n+Y+nvXZWvk7JWfBl5OGM3ET6kJu+nSK7ME7ZG72i7VwrdsPCyh+FtZVrvTV2Y/BjH8uk9L+e97Rd\nHNtTFpB9L0toRLSNM1uzuinkyhaPHqv8jLYAnOhF+lT3O0gBLrlHywoKV+q0qHSTJMtnN62V0x5T\nY7hOytJORCbIMpxTwHs+aFb9Ssh+fYxS+GYmdQpfLlm0de7DtVn4ZVh3drDdp4i61lNxzKt8x0Iz\nUIR0u+Qo0pmjS510QHq9GMkHUjGdHs3yk36yXJ11bABLnXFNJwUrIHe4/OoF9RinBC8gCVtOuZbo\njA1iPlZuRsq8P6Jt7QdOIj215jFIUboPaYkJp4OPXIPMMUZSobLtdfJJcGpqc5+OB8uXwHqWZX+c\nni4iUrv+418/f76WxA2/jNTVlvMYQ06FFhHJa3CldOmFZRHBsP5bbe8i/ZMlY1lZOgayBCjWj7TO\n3m5tsVvYiPlYVoN4nUzq+d3b+7rXZlvYkoV4Tmamjv/dV4547WzaG8aadYpw+QNIo54YwBobHdXW\n6Rxj463ox9dBRFR+Kssri1bodFmf786NY+m9JDdp1rI4ljIlSDqS7eyf/WexlqZJNtnzoV5j+Q1Y\nYyxdCES1lNNfgDU81ozxrdu5zWtnZWnbZpaCFS2CVM61tWfL3pItNKccu/KBU0gJziW5Tv4SHZ9z\nSJqWQ1bpw9d0DBC9PaedvqOIAwVLtZyM51kRycnG27UUenIAYzJKVtMsORERGe/E/jkdJymUI+/m\nVOz8xbhufkpl/8yXVqrnBAvwGs2vwIK0YKlO3+b0+EQH3k/pdi1Z7Cd7U5aOu2n4LMGapLT2ki1a\n0pXo12eOtELjVHa3/hwjN8jSegHiWnZQr4MJ2ntYphat0XbFvZchi2ALb1fqNpPEHnX2+aNeu4ik\nQhOteh4trcM1q6K0+OHzei0GSYI8Q5KQkUu9qh9Lq/ick1+n42LFTqz7qUnss3Fnnrs20+kmQNIe\nljGJiBSUQU7ApQIqhvRZIJMkRhO03oKOJIbPOyUrEH+ys3U5hNlZXN+Oo5AlVT+OM9HgGS3lGbuO\nOReqxPlr2f+kJaUH/sPbXnv9lyBL5LINIjr2+MhGnGWEIiLDFzH+k/2ISb0dA6rfqq9q6Uc66bmK\nubr4iRXqsZZXIYsbT2KeLXtY3zPx/aLQbVfzLy6rfvWfg7aObZyXVugzb4ikpo03sF913IAsbNnW\nxeo5badwpopTXKumvUpEjzWXaTjx0inVb/GqOq/N8qyO87oMBls6p+i+JW+BXrOTg+NyJ7lwANf6\nri/o+TJJdu59w4gRy3bo2NtDctg8+lwszRYR6aN7F47lFTu0/G5ZCySHQZI13fPgTq+dGND7DMdA\nP82lBZUVql9kLfbWscsY04xsHdfjVC4jFMb568LBK6rf4uE6rx1eingVd87GrrzWxTJnDMMwDMMw\nDMMwDMMw5hD7csYwDMMwDMMwDMMwDGMOua2sKacGKWITnTpFdqwVKbxjlD5a9ZBO/Zqmyv3NVLV/\n8VfWqn5tLyIl31eINKgMn65Cz65R7MLEKUJFjttEvBXpRCz1cCujt5OrRBbJfap369S7odNIiStc\nhxSp0Rs6hTCf3Gg4PdiVwzT/M9I4q//tE5JuKu/H+2cXChEtD+K0ZbdyPaeScboYO+6IiPjCGLvk\nIK5Tsl+PI0vD2NGL31+wVKcf51YhfXuIqtVzSr/7/qZIEtP5tnaWqnqAK6JjTKbITUNEZIDS+qMr\nkALncyrhTzsuFXeKhi065S/RQ+l8lBp47XUtc5mgdNJykl9MO5KzeZ9BOvfFnyBNfuEenebdT7KA\n4s1Iyx4+jTEcOqtdBZiuJqTirt2t02CFnKZSlEopjgMVV3i/9jLkXtOUmiqi5UuTU/i8sYTjtpO6\ns2PI8zY7X0tiSjfhGgbzIbNg9yIRkWSSXYrwWSYd+YDPh/Vy44MXvLYrWZQZTnvHOhjuR4p1YZ1O\n/Q2SdDBnC1JaR673637kaBAIoz18Qc8Ldini9G1/vitBwGcv34j0/5kZvWY7DmPeRh/eKOmE3eCm\n4npsOJWdXRocBa3klCK9ObcSqdepcf164VpIWwIBpARf+odXVb9M2heLSArWdRbuW+6+4yPnvv4r\ncE3KdpwZV371N7x26+k3vDbvvyIiPpJu8V7I7igiev7xeshxUtJHLjgypzTDsdyVQjf8xhqvPXqT\npAqOu9I4Of6xpK3HkYBGyb2ih+R4ySG9L9Z+Ds4yvBf6KW3eF3JcHygNnedf15taFlz3DGJsfiPm\nFUvCRUQysvGbHUuEww1ansZ7JkvuWOolIhK7rmWU6SRMrmw9h/U1ZzkP73Fdp7ULGDuVscys58IZ\n1S8rgOvEr+fL0w6Yo9cwX0pq8Nrs5JbtjOFED2Q4oTKMoesoyn83SI5o7ll29Cri8LxH4TLV8e4N\n1a+MZIrsvpXnyILdOZJuFjy53Gt3v62lPUGa07z+ZhxZwNhVcjQjF5jWS7rUgo8kVI2fRbwtXqL3\nuOY3IEkrvwd7XDAPZQiiDy3Xz9l/AP2ieN+jzTqWrXsGchE+I5Vs1dL4kct43ngT5kLVo/o+i13B\nijeQRE40s1N37nxTUg8JR+cbep6V0zzjM8vQOX0/EqGYzPuVe067+pOzXrt0GcYj4shTO97Cmb/7\nFs6btWvo/cS1W+6KL0HO3foSYmvf+47keDFiD38mVybFzmxXXoMraWamzo2IT+IMM01zIhTR++co\n74u7Je0sXov7C753FhHxU8xZ9lnIa1laJiKStwjXpvc05FvXvnda9YuSTJFjzoAjF8xtICc5ckFr\n+gHmwcLf1hKs3ErEirFQLMpEAAAgAElEQVQWnLXZbdOFx9Td691r8StmW3TZE3YmHmzF3peXo+9T\n+TN9HJY5YxiGYRiGYRiGYRiGMYfYlzOGYRiGYRiGYRiGYRhziH05YxiGYRiGYRiGYRiGMYfctuZM\n6VboLCd6tE5r4AR0ZPMeg6b1xne1jVioDrqtUC40V1xjRkRk3uehtWZdWs6Y1gOy/TVbUk8OfLKO\nu5LsAvn9TTnWkBUPoB9bGE72a+syfwQa49wq1AvoP6mt0dg2ja3vfE6NlIo9uqZNumH756mYvp5V\nD6JuQxvVBHLtIQsWkQU51f2YcSxi2U6V9aO5D2iNLGsUO96CBjxEmu8pRws6TPbrXN/Fl6vfA9dA\nKqM5PDmsdat9J6BFLl6LOg1sOSqi7cZzqIbGdFLPn+TonbMMZT11bp3WKnLdi+wwrotbI4ZrRHAN\nDLduRs/5Zq9duRQ1lWaSWuOdGsT1vPxT6PPZMtTVojadwGs33o+4wetXRCRvPrSfTQdRO2HyrK4l\nU0i1ZMoWoq5DhjN/uR5GgGxks3J0COw6gbWy6vOSdkrWI2bFu7WGdaIXMZat3UOuFSjVdfLlIxa5\n1unNbx3y2sEyvEZ0obanzsjANRi+RVbxtA4mYu3qOVx3JUn1Jmb10pG+j9q8dhXV7gpTPBHRNVj4\nM4226DpeYzeh4R2kGF2wWL9exaalcqeoJJvH1le0xecE1X+q2AHrzsGzWkPNtdM4nmY6NY/6z9B4\nTGHuN3xJ12xjkjGMxzDVLIjd0LU/omtIq78Ya6f3qF5jveEP8B5oTrh1KPJpzfYdxmsULNc2vGNN\neB+8R844n73qIW1HnW547dc9rWteDVItnBDVBOp8U9ctm//FVV47QTEsM1vHvVQM9QS4PhDXiBER\nSdGeF29BDBhvJ2tgqv8mIlKxDeuq7U3s4Yu+sU7163q/2WsXrUFcZ0t1EZEwWXj3H8T8Szr7J9eb\nGzyF+c22siIigTIdv9KJqjPj1CPjONJPe71beylOdYP4HNBzRK8DrinEZ4JAVJ8D+PVrHscenCR7\nXK4RIqJr0AxQjQb3vMZnnSTVxnPn0QidlcZaUW+hcleD6pcaw3uK0Dqdca4Rx13R0yotZFMdquhd\n2uqWa/oMk2V4QaOO+XlUd4f7ZQ/p2ljVq1H7p+MNrOfBE/r87qNzfmoM13omhX7xdh3/B47jMXVu\nLNVrIDWDcWXb4EvfPaH6FS1CDZWKh7DOR67pfTFIdb1mUpiP/cd0vR2em3VOmb9PC9/XRFeVq8fG\nyZqdz4T9Vx0LeJrvfP/ANQNFdP0mrvEx5dRs676COL78WeyZg3SvNnBT18lLDWOsqx/T9WOYKz9D\nvZOiKsTCvAZdr2nwGP5WzUrUA3KtlIOl+Iy8nmOtuu5UbrW2fE83BUsw59w6hjm093zw/Ide+56v\n36369VPNmEKaw8lBfW8+TPc1XNe2t1ufVaqXIC53v4OaVH6qSzrWrJ/Df6vnMM6hYaee1jjtszlV\nuO6tjn175f2InWfeRn3L+lJ9vkmkMAcjFVT38Zo+Qy+M6u8BXCxzxjAMwzAMwzAMwzAMYw6xL2cM\nwzAMwzAMwzAMwzDmkIzZWTcR3TAMwzAMwzAMwzAMw/j/C8ucMQzDMAzDMAzDMAzDmEPsyxnDMAzD\nMAzDMAzDMIw5xL6cMQzDMAzDMAzDMAzDmEPsyxnDMAzDMAzDMAzDMIw5xL6cMQzDMAzDMAzDMAzD\nmEPsyxnDMAzDMAzDMAzDMIw5xL6cMQzDMAzDMAzDMAzDmEPsyxnDMAzDMAzDMAzDMIw5xL6cMQzD\nMAzDMAzDMAzDmEPsyxnDMAzDMAzDMAzDMIw5xL6cMQzDMAzDMAzDMAzDmEPsyxnDMAzDMAzDMAzD\nMIw5xL6cMQzDMAzDMAzDMAzDmEPsyxnDMAzDMAzDMAzDMIw5xL6cMQzDMAzDMAzDMAzDmEPsyxnD\nMAzDMAzDMAzDMIw5xL6cMQzDMAzDMAzDMAzDmEPsyxnDMAzDMAzDMAzDMIw5JPt2Dx759r/32hX3\nNajHxrtGvXZqLIkHZmZVv8LVFXgoOe21M7P190L9Jzu8dqi6wGvnVoZVv6GLPV47UBzy2hMdeD/Z\neQH1nNGr/V67/qkVXvvWP59V/RZ8ZZ3Xvvb3x+n1fKpfXkOh147dHMRrf2Gl6tf6yiWv7Y8GvXZu\nXVT1Gz6Pz7T+638k6ebyu3/vtQsWFuu/fa3Pa89OYex8BfoaRhdWee2Rpi6vHSzOVf1GruD1QlUY\nu4nemOrnj+R47URv3GtHGku89ljToHpOVgjjECzC2Aej+apfrH3Aawei6Jcd0uM4OTThtYfOd3vt\nWT2FpWrHEq89M5Pw2t0fNqt+fM2W7v4Xkk4uvf28184pz1OPTfTg2uZWYe3w5xMRibcOe221/rL0\nWpwam/TaBUtLvXZyWL+eP4w5Haf1N9mH8azYOV89p/3Vq16br3PQ+Ux5tfgcsZYRrx1eUKj6hcox\n9kOXer12dp5f9Yu34jVyqzEvEwPjql94QZHXrl/5tKSb7s5XvXbX+7fUYxmZGV6bY6AvX3+WmdSM\n1+a1kzevQPXrP9nptcu2zuO/pPr1Hmn12sFSrOf8esSpWSeu83uYpGvIc0xEJDWCuZRLr1e4slz1\nG7mOGJ1fG/HaQxd7VT+O+TyH3f2E40v1/CcknRz7b3/ltXlPExEpvRvXeYz2BneNyTSuX+Eq7JEd\nb1xX3QqWIx6GKjBvea6I6LGepdcOL8J8nugaU89J9GDulG2r99ozKf2Zeg+2eO3IMsSD6ckp1W86\ngX/zewg5e/jodcRnfn/DF/tUv+jKMq/dsO6Lkm6aL/zUa6co5omIZPowXj3vNXvt6scWq37j3bim\nY9fwuaYn9LUpWIHrxvvQePuo6hcswfrLKUNMTPRjrIYv6DURong2TnG4fHu96td/HGes3BrECh4P\nEZGcCsTUjGzMs+yQjkMhen/9pzD/MvTUVK+3+N6vSTrp6XnNaw9e6FaPlaxa4LWHb7bh/xv1Oa35\nnQ+9dtX2ZV57tL1L9cutwDXrO9HutYvojCsiMnwV85jjEq+PwhU6/iVHcK7IL0MMSaX0GcjnQzwY\n7byJ/6e9WETEn4M5kUpgTuTk1ah+Le8d8dp5FHdnp2ZUv6wczNk7sS+e+dl3vDavARGRlreuee26\nPVh/Y7eGVL/IMlyb8U6sy+J1Vaofn0U7X8Vr5zUWqX55dbgeCTpjxZtxlijaqF87vw7nk57DiJuB\nwhzVL5f2dz6/tbx2RfWr2oHzU9f7zV576Tc3qH6d+zAXYjexB9c9vVz16/kAr7Hht/9Y0smhv/wL\nr32tuUM91rik1mtPDSPWRu+qVP2ycnBLOj2e8tp8zhERyaXz4aVXL3jtkrDea2qexNn94g9Pee2K\n5VizrWfa1HMW71nqtVv23fDanYN6LZZFMD9q78U45Vbp93Dye8e89tIH8Nojl/R+d+sWYmhtBfaL\n3gF9pmKe/Pa3P/Gx/1GuH/m+186r0WfKVAz3+oEo5vSkc2/go3vwrv0451bs0PcDYy1Ywz3vNHnt\n0p11qt/Rfz7qtZff3ei1207h7Lrs6TXqOTx/eI2VbtIxcHYaZ9u+Y5gLvM5FRPIWYm3z/jl0Wu8T\n/Tdxlk1OIeZv+MNtql/rK5e99sbf+VfiYpkzhmEYhmEYhmEYhmEYc8htM2cqduFbruwc3ZV/ueNf\neIbO6l8v2l7BN8H1TyNrpetAk+pXuqnaa7e/jm+z3b+bGcjy2oEC/FoQWYBvGicGdJYG/6I1NYFv\n/iru19lAfSfxrVlkFX6141+QRXTWUIB+aU7FEqpf1Z5F+Af98tz+xjXVb4q+jbwj8K+szi+uk/34\n1Zt/zXazLiZH6deXUow3fyMpIlKyHr/W9Z1u9tqhCp3dwr/EZ+fiV5mBs/gW0v31seo+/BI2eB79\nxpr1Lyj8/gbOUPbAllrVj3/d9VMmjs/JukgM4ZvrKfr1K9/J4uDsjHQTa8JnzMjSY8hrkcfNHZtM\nH9YO/4qXqT+uznjqxLiP3dDXOVCMb86LN+Db6Hg+rlf/Cf0LyswkfpUv3krPca5dXg1+lcjOxRv0\nO78QjlJ2VWQJfjnrfPem6se/tHBmgPsLoZs1kG5GbiIW8a+R//3NYE1MjSMm8NiL6F/0CijzICuo\nXy8riNiZiuNXhOlESvXzhfErB/+tseu4tlV7Fuq3SpeNs/HCDfrXxzjFyqk4PhNnyoiI5JRwHEW/\nCGVuiehfmCe6Mb+nJ/Rnklm892r9Y82nJp9+QRk6qfe7rBzM1dx5GKe+Q62qX+UDiGU9lIFXvEX/\nqhOIYL5znHPHmtfiyAX8IjfM2ao+57cYCiOcmTHertdi4Vr8ypgVwJzKTGSpfpl+/HtyEHGo+x2d\nIZYzj+ILjaHO7hLp4Wu2TtLO5CD2Ps60EtHZQpV7MFZx59pwNhLv4xW79dligH5d48yZHGdf5GvI\nYxJvw98toDgnIjJAGTGF6/BL9BBl5IroLK9Bej+VDzhrm/bFHjqnZYcDn9gvk/Ykd812vUvjf6+k\nlcxMvCfOlBER8fkQi/wRrImmtz5Q/Sq3Ixtj+BYyYjhTTUSkbS+yPuc/vtFrx3o7VT/O/EtRzMsp\nwbnEjX8FCxBDu0+ep/et97vkCO2nlKJUXqnn21gPxm2QzlRFa3WcnKb3x+eeUJGeY8O3dHZBuuHs\no9GbOkOhks5tLW/i7Fy+UcfK0z864bVXfHaV1+Z1JCJy/J8+8tpL7sUZPViu1+LVFzEOFSuwrvrb\n8f6iq3UGVNcBzPU+uu41u/T4XHge2RTFDRj7BU/rrC7O7A3RGfXa351U/WZm9DnmV0w5+2LPjd6P\n7ZcOuntwXbIy9V7DmdGnLmJu3rNbb85nf4bsllgCe305ZamIiLRfwDpY9Sw2B/esxJn8ix5HVlz7\nm8iIKS7U2SHjFGs7KFtm3U6dhZRH94Xdb+K8yffDIiKREMZtmmJwdK3OuFtGGZAn92Hu5QV1DKgq\n1mesdBOjc8Zb/22feuzhP9rjtV/44xe89oO/c5/q1/oCVCOtXZhzkeV6b+CMtPY+xMSCfh1/Zuls\nPEAZkmv+xSav7d4bHPmP73ntxocx9i0vXVL9IpTVmkMxoHqXXosjzdgb8udhzfI5QkRkBa11VgQ1\n/fS86sffh3wcljljGIZhGIZhGIZhGIYxh9iXM4ZhGIZhGIZhGIZhGHOIfTljGIZhGIZhGIZhGIYx\nh9y25gzrnGNNumJ06T3QgbLeuGi9rr7NOrCb3zvjtaNrtFZzgGrV1D4BfVjX+7o2TRbVnMmgSvjj\nveTW5NSpKafaOVx7ofs9/dqsh4s14/O6DjFcL6VsM3TyLb/QWray7XVee+wGtIvzHl+i+s1Mfbxe\nNF2wo5IvqCvhs5tAqJS0jBla9ztLmtZRqpIfXVKm+nV9AE1w0RrMhckhrcvjavphcr8qXIraQ/1n\nW9RzOt+DTpT1nvm1uiZQ33FoA7lGAtf7EBEJ1+PvsqsT1yUSERkgJ4rwYmghMxxdbYA0wemG667E\nW3Tdg/Bi6B+59kauU2md66lwNfWJbu3iwm4JXaewLuc9qectO8TEWjEnCsjxaMRx+Ul0QWPqy8d7\nSA7oGkcpqrTe9Tb0vG69nepHUC+g5ecXvTZXYBcRCZbhM3F9CXaL+bjnpRteb1l+XbODXbj42mT5\ndTyLk8NLHs19t44BOy/x+nXrSXHdDK5TE6C4MXBS1w6KUn2qlpcR9yrv13UfeD6yY8V4h55z4/Qe\nuD6VWzeJ1/ogzb/MoL5GUUfbnE6maG6WbtN1rLreQYzKpjEs26Gdc7gWQAntIZ1varemfFrb7AzI\n+6+IdgyYIocsdnua6NTXkp2XMrLYVUbXXeIYynVMpka1wxG7GXAtJ1+h1oLz2PDe1/qi3j8r9ui5\nlG5GqRZddIXex4o3wIWFx2rorK7jUr4T48ra85lpvaeHqjCn2aFp6IyuWVSwFOM1nURdMK5NE3cc\nnrh2Xs/+Zq/N9flERKoeRG2Z5p/C4aTXcR0MOzVtfoXrdsj1AqLLcf24tpmIvkbpJiMD76nrkJ4/\n5VvweRNUW8+t8Td0+eNdrLhWi4h2A5qextwfOKP7zdI+W0ROQT4/6mbMpPQ8CuTg+pWsxj4wldRr\nlmP3NNUl6zpxWvXjejnsXtp7WNe+qiFnmvEenHlnZvQekRW87a3Cp6b5n1GPoWhrtXpsegzroP4x\nnEG4Lp2Irr2XR/W+2n6pHZC4zkzxXfhb3eRkJCJS3ogxCVVi/S1dCVcY10WIY2LxMjz/yusXVb8x\nqqcSaMUcLnfcLQvorMIx1XV/GibnH45lsRZ937b8K3egeNf/S+0KXMuLx2+ox7j+TnYW4sPRHx1V\n/RpXI1ZcOInXKCjR9YDK78N1Ovd91Bpq2Kb3jJGLOBMNnUftkxS56JTdo2udjV3BvrBuF+qCuDUw\nR8hJcnAM6zT7sK7P1DmEs3FJEvdEXINPRCRB90Rbn0EtFTfuus6C6ebYu+e89mN/+oh67J2/fttr\nL6xAzZwm5943QrUH196NOffLb72h+m3ehDo+RfkYY67X5z5WQGfA08+jflRhRM+Rug11XpvPuMlB\nXRs2Tvf6OVT356P/83XdbxLXfeXjqEfDLmoiIv2HcP9ZuA7n5IYvrVL9bvwTYnbFv3pMXCxzxjAM\nwzAMwzAMwzAMYw6xL2cMwzAMwzAMwzAMwzDmkNvmKnL6VPHGKvVYqAwpRC2/QMoeW/SKaOvc3Hqk\njMYcuzyVEk0pwa6kiFPeZ1KU5kfpfxkZOq124NTHy2Hc1HCWK3Eaoy9XW0imKG1cSWgcOVWQpDIZ\nC5FyyfZ4Inc+ZZSt0WaddOtcsn0cbUGKdSCq0yZjJHFj++3B8zot2x9FCjung8868pa8OowDS4qG\nr0GqkBz85NRatsvuOaJTdbOpH6fHzUzpdH22NC/ZiJRMloGJiBQ0Ip2Z04rZQljk169tOim7G3PV\nXWNd78G+ka+/a0+dRemRxWS5ypIpEZExsiOMrEGKbOuLl1W//MUsY8D48vxmi2QRkak6zAmel7Ee\nLXPpfAvyjmmSImY6UqC2V5CyXHgXPpNrkc3Pi1Oqr7v2OMWx4Q5kAPOamHTiQJTSoDv3QcqV7Vi7\ncwycnsRcyHasudkut3ANUlDddPCxq0jjzSQJFdt0Dzqp+937IQllKRNbgItoGVJyFOmkbmpueCHZ\n3pIU1rU2H76G9G0lZZrV8YXlq+lm9BJSpRM9Oq2d59kUfcaRq1pyxtLbCI17sELbcPI+6SfZJK8d\nET1HWMI3Q7EivFhL+DiO9OzHfKt5fLHqx3akvK7y5ms5KcsZk/TZu504NHod8228BRKd6s9o2eTA\nCeytslrSTmoY85El0iLa+pylRi6ccp4VxPmmz9mTSskmPDMbc2Tslh7HVAzXLVCI8U6RXMJfoM8j\nnG5fwNKbSb122KK+bEcd3utB/V45PhaSTJ1lIyI6vsRojHOrtQU1Wz6nm95T2CdcO/SeY9gXq7ZA\nihIs1nJplimOd2I+Vm1do/q1vQ/74kQf/u7CRx5U/eJxPBYM4lwxPtbstWeSen8auA6bbo4heZX6\n/Fu+DjKknjPY+5LOXpK7GlK35AjmOVtWi4hkZCBu8NlmzLEknrftbrmTlJA81J3fIxcRf3iduudt\n3stbXsA9iWtZe+g/7ffa8VaMd/mOOtWv41WMY9dlnHMrluIaRhw55EvPQ/axcxOCVuVCXcYhOxdx\no4QswWOtWoY0cBgxsP5LkFK4+2emD9eFLdHPvn1B9VuyHvOiXjsFf2oiJHVe59hJ3zqAe7AtX93i\ntXkvEBG5ehT96koQy/Id+fkEyeMbH4U05vSLp1S/lQ9h7LmUwltvQU6VSOmzQt8o5sTwUezv2+/T\nB0K2Xu8+jLNxphPvUtOIwxMkSc2t1+ewzlbM8ytXEZO3fXOb6uee89LNXTsxMYYuauv1LU9v9NrR\npZj72T4tKWrfB2nU+V+c9doPPrdD9WNZYGYH9pDeD3WMnkhi7yqme7Wye+u8trvn3vgI8T8UQExZ\n9uW1qt+VH0JetOwevF7j5/QCidPaHKUz87yH9XmJ99PxNoz3SLGe64FSfW/kYpkzhmEYhmEYhmEY\nhmEYc4h9OWMYhmEYhmEYhmEYhjGH3FZPw5KXKSdN/MZ3keIZXYc0P1ciwel2XEE+N6yrkk/Em/Ea\nfqQH5zbqfh1HkY5WtREpVrf2IlWxZEONeg6nb09RCvB4h3Y9SJJcx0eyni5K+RYR8YWRIpVDqW2u\nk0wHOXfUUOpTu+PIUbROp5qmm5kku/To8eG0tbx57O6jP0tkEVIMS1ag2v3srE7PHbrR7LUnepF6\n6C/Qjh0pkjiwvKNi7XqvPVx0VT0nSGne7NIQd1LD80kix7KP2C0tpat9FNWzh2+Q85BT4T6D5jCn\nwrsSG1cOlU56KWWPJSAi2oVj+BLGs2SDdj0YvkzyBHIlcqUjLJvhz+g603BKKju/XPgRUks5HVFE\nJOTH/Gvuw/tZMU9XzG9vgptF432NXnvkfJ/qV/0o1tXkMNKyew/otMhAMdZz2bY6r80Sg//e7845\nbolop5BCN8WcUrZ5zbqSQE6JbicninCjltklyJ0ncB+vHb22+e+y9GWCnSic53A6aU4EsSHuuJCw\na80YSXFK7tJzM5CPvWZiGOu050Cz6lf3FNKUU5Su78qL3DiXTqJrkb4ddBzausktJ3ce9rvkkHYI\n4PfHl7ZorXY7ZLcqXrNxJ/2d5TFtA1iXa/YgNfejH3yknrNkDfbWoRj+TsSRHPPfTXTjOruSHHYU\nGiAnLVfCUbAEsYL3apa9ifx/p/1+WkopDriyuNw6nXL+K1wphdDTEv24NoEiLbG5+QOkdgcpxpRs\n1mcVjmEJ2j9Z1uSuxeb3cT4J5+Dvcjq9iN5n2Z0rr0HL01giFyN5S9CRqHIcmehmFz699tj1s265\npJXcKpJQOdeFXQiHmnEWc6UU/gjOJg3bPuO1R0ZOqn7LHn3Oa1//8EdeO5nUr8dnk+lpjKePZG/h\nBn2eZqegyvsgPWl7U0uJ+TzN+3s8y5HlnSaHQ5KjZTryPXaDCs9H7Hflqe2Hj3jtgj1aJpQO2t7G\nmbjx61o+wu/58n7sd4snHWdAcpkbHybnNEfOvvn37/Xa7BLLjl4iIpG1kG34W+l+4BLkfBOO6+CN\nLjy2p3iz1w44Z0OWT7f/Eudc3vdFRDKDOJ9c/rvjXtuVUoQXYe/vJHfLXX/ygOrnnvXuFJfe1u49\ntY0oi3HjZUjOKtfrc8CClThjDtzCunLvH1h+2EtOUEvu1dfl0Eu4Zktq8LdW1eqzLPPeeTiH/cHX\nnvDaE216rCf7MF9Wr8U9UbJfl2Oouwf77Pm38dkXOC5MfFauKcJadF2iXPemdDNC9wkLfkNLO/f+\n5V6vvYjcmlxpWGEt7sEa1td57ZY3r6l+eVGsi8bncO/38l+8ovrd8+hdXrv/GKR+Jz9CfNz1m9vV\nc6J0jinfivEeuqDPqOv/V8hS4z24f+J9S0Tk+NuQau38Jv5W74daTlX7ebhNx9vxGiOORCw1envX\nLcucMQzDMAzDMAzDMAzDmEPsyxnDMAzDMAzDMAzDMIw5xL6cMQzDMAzDMAzDMAzDmENuW3OGLbv8\nZdoqi3XJrGMsmK9tJ1Pj0JH7c6C5HevX2rM41X8pWQ79ZO/lM6pfuAFatlQKmsRiqmEQa9N6/CLS\nNYaKSUvu1HIYI4vUqTHo/4o2a13k0Z8c89qTU9ADPvBHWt8ZIC3zwDnoIit36To6PYeoPkaa7e1E\nRHLIFrz/RId6jHXkrENPxbUejutKcJ2ZxKi2iC1cWO+1B67Aysy1f2bbw9nZqY9tTzj2ytEq2EgO\ntkAXOv/ZVaofv3eu2ZA3X9tSjjRDb8z1h9zaQTmFuH5c/yM7pLX1bEWZblhffjuLVLbzdsooKCvt\n9tegc656aJHqN3ASc6RoHbTCna/rWkm1T6OAwFWqQXWrB5pOX5au6fJX3/uefBy7771X/bswD1aM\nSx+ChrPYWYtc12iiC/OlYLmOQ0kaG57nbqwYuUC60O0f+1Y/FVNx0vI7NRJaX4F+tuYRaKczffoa\ncu2WyEro4n352oK0ZBvq+HA9jCynVhLbbLfSvOCxy12g61K0vQztf9lOxHiuTyKiaxcUr8FcCubq\n2iqpFPTBHCsWfHmD6te6F+ue65u59Z98uXeu5gxbHLs1car2LJSPw7Wmnabr0nukDa9domvYJKiW\nR14dxoD3JxGREMX4NRtxnblWXO+I1lDv/fsXvHZLL+Z99i/1tfybP/2m1+7oRrxv3K71/WM3sB9P\nkz3xrTZtw55zBu+VaywUrdU1mIZOIj6L3lrTQlYAe1B2UB+FeB6naM1WOHv3ANlJ55O1eJZjd1r9\nMNdpw2tzjRkRPa6ZAYwD1xkYu67n0tVO1PdZXIl19cElXfdh1zRqhczQeyhu0LWqTr+KmmH3PIu6\nGXFnDrNmPrwE8XbUsY13bcrTySjNucjSUvVY9S4cpmZnMR+jdbpWSSqFPSAeR72OgoL1qt/EBM5p\nFWtQFyUzU9fDyMjA5x1uxRkoWovaafHOW+o507ROJ/oQq0udmkQ8FzP9mLPRJVWqX7ybzsb1sI6d\nno6pft2XUAuJa++w7bCISNGqO1sXsXo3xoRrpojomDo9jr3h4oe6JuGilXVeO5dqWcSc2hExqkVR\n/5lNXvvC376t+vnCH7+/LHoU55FTL+i6RAmqG/Jn3/onr/2FrVtVvx9/+KHX/txmrLHtv71dPhFa\ns5d/elY9tPI3sU8mBxFTjn/7A9Uv6EMcqf4PT0g6OfQPB712Q/UnzxeurTLl1FPhdbDo84hXV352\nTvVb+Q3UG+V7iXd+flj12/Eg1jDXMAtQzR+ulSYi8m92IVb3HkI9kcGYXjsD9O+uIcTGe5YsUf18\nYayruvmIz259obSd2G0AACAASURBVE1fpVhL9yO8r7rUr/rEh/6HmZ7BPcSt7+t5Nr8UMbZoPT7L\npFOvKTWCvYHr1OUXa4v1gydRg4fPPp/988+ofoPncRaYGsH8eeRPH/baXFNTRNfBqdiENTt4Xcfe\nnBzUozn/431eu/gufUadpNd7+T+94bW/8u1vqH43/vmQ1z53DrFs0qnLs3HLMrkdljljGIZhGIZh\nGIZhGIYxh9iXM4ZhGIZhGIZhGIZhGHPIbWVNAbKTHnXsNTnllu1EB85r2UzFOlhxTU0hVSsU1WmY\nLBEZbm3y2rNT2oZzmmw5m3+J9NuccqRLuSmZLPXoPw4brmLHzjVCFqnNBykd1bGfW/9ZpInOUAp+\n3JFItP8SqVjVjyBVruPtG6pfRtad/Y4sQdKeEFtPipYQsGSHbc9FRCbjlCZbDglKMKjnRUYGplTZ\nckjIpqe11e3MDFLTsrORbuj3w0Iu13mvY4OQwiXHkDbHMgMRkXGSt3DqYLhBW1D7/EhDn0kh/cy1\n4eX0d369HMceMTGoU/vSCac65zpjM3wV6XycJsrWqSIi115Hmvuyp1Z77fFuvV4KKD08Qa8RrNCf\n98LzkPdFKiBZ3L4aKbau3OS+57bj9ej69R9rU/16L0EaxZaF8Zt6jVXsge3oBUpzXrRUW3P7ydq2\nl2SE4cU6pT/rDsphRHSKK8vHRLQ9dZIkA7MzOgayVK+ALDTjHTp9m9c2r2d/WKfh8/PKt+K6TbEU\n0ZGAjgzjPRz+W6R4bl29VPUr3kR2r12I/5NBPTcnKRW7ah1SwBMJfY3qHoGlIksgm17W6eU9lI5c\no1V7n5phsmLMcmwtO15DjArV4pqPXdFxsmw35J8BsgmNtesx5JRglhi68zS8CLGtcDHSdG/+BPbZ\n931ms3rOk42PeW2WgU1N6PTb1p8h9bg8gpjupmVz2v3JU1iLd23Wc6KA1hxbog47VpP5jTpep5tE\nH+Ywy79ERCboDBFdjXNB39F21c8fxdgV1GN8UuOjql9iCPO97yDmJssSRbRtMMsZR7sgFVr43Fr1\nnIYpxPJ+iimPhnW8ziNp4ghJuAuWaTnQDnpPLb+EfDGvXKf/s0U6WwOXONLTaXeepJHqeyFbGGrR\n56pIOT5H60HISFKOZXtkGfpVLIRcaXpax6im95DyXr/zPq89Pq7/bqwTEge2G48PN6OTIznmOdbz\nHs6/voiWqi58aqfXbj8Im+DJXn2+8tOZfPD06167Zo9ei/kklfTnkdzQOfMOkiy/Qg9vWsitRKx0\n7b6zAmRNTnLJu7+ppdBDFD98JNHqP6jPFnXPQI49dAPXettf/IV+vSGcb7pPQVZTtAyxO7L3inrO\nb91/v9cencCeNhzX4/PZTZBT+bJxvux8VZd7yKnBmCR6MB8D2frWjWNFVx/2mspSHUPd81g6WbIG\nks+CRi0r7z+MMaisQ7zxF+j5zfdTEyTpXf61u1S/1hdxli3bifGYdbT8iV5csyP7INEZGcf/1xTr\nM2A4B2dFlmDNX64lhsnziOP1i3DIaPii1hp178e95JKv7/baTa9rCdbJH2E918zDNXKttKsf13Li\ndLP897d47Vs/0rKm8rtwrXkuTcW0zHqUJLDxSZxlGzbp+/49i7CG/+avf+y1f9evJXd87p//VVxf\nXwjrPDOgz1jr/xCvHeuB9JfnoojI0Nmfe+2CRsyF4dPacntpNQJfksqZJMeds922Oq99/06siemE\nPmPs/c47XnvDb8mvYZkzhmEYhmEYhmEYhmEYc4h9OWMYhmEYhmEYhmEYhjGH3FbWxKmNAZIFiIgM\nnUcKYe8ByASKt+icx66Tp7124XJKDz6jK7Jf3Ys0tZVfQapq19u6svJLR4967Z3LkZ44dQ7vdcHW\nBvWc8XakGLOLgpu6WbMNf/f6AaQXjlzUVaDZeWHwDNI9r7ynq8dXlCGlkCtJpwZ1Wq047kDphl0+\nRq/ryt+BQowru724LjYsXWs7txcPOI4zVct24TlBpAtPTOh08JkZpLpNTSF9cXwcc8l1Q+LxiixA\n2l8wqCUsQoYaI9eRvs3OPiIi2VWQ4rBEaeSadpvIJ5enGKXrhSq1vMh1wUkn/Nrtb+rU19kppHLm\n1uIz9b7fovotuA/pkHFyMAiW6Qrq7MIxSteicrd2uah7HPKlsQ6k09evesZr83iKiGRlYR7FYlgv\nE7VaWlVJMovocsyjttM6JbGSJIGLlkPO0XtLr9mqKFJSAzSXsx1ZykxSp5Cmm6zgJ88RlhexU57r\n/MIppDnFmIMzUzqeBUnul5OHNdJ+8Kjqx/GNnb9a+vD/C+odGWomrntdCaUwO/KnW5T2XbkR74Gd\nQUR0WnbfLUiUyhZol4v20/u9dmQhYkBWQF/Xks1OTEgjZXdjng2c6lSPcTp9dCUcK1g6ISLSfwzx\nkKVRPNdFRErW4HMkx5AaX/vICtHg84/3Y9xWfP1Zrx0K6WsyPY11HothnLpOa4nYkt/bTs9BOnjP\nYb22C1dif7+PJKkpx1mKY8/oZcSX0ntrVb/kiLNPphmec9MJ7ZqUWwv5Fsu73XnL8aPnGNzs6rfv\nVv3Ge5HCPv8LOGdMDGoHJH8B/tY0ycsKFiDdenrScTihf4cXkCx4XoHqx3tc3YNYV0Mt1z6xXyAH\ncTi8RKf/T3Tp/fRXpByJmCsTTiftBzFXc6v15+25gsdK11N6+ZQe60gUzi9DAxinbL9+vQhJNZr2\nISWd9xMRkbx5mDt8lmC3pkTYlXXi35HViAGupCE+BClFyV3Y0yYHtGyGpYmZdH4Zvq5T9eOtOOfV\nPoDrMOvE8UCJlsilm56DiCWuQ9WRbyHm1yzDPuTG3qrdcHXi82uJU76g6YeQKEXW4Fq//Sd/ovot\n+RokbjzXB/zNXrt6i45ZmeQc1PTiCa/9588/r/r91e/9ntdmiUTFHn3G4nFg2UZmp/5dve8ozkX3\n/muKPc6thStTSSejLbjml0/r+7Z7v7nNa/eTNNR1Hi0lWXXTTy547ZYP9OtVrMI8+OB5OFKx7FZE\npK8T14yd7CIUJ12p1wdvIW489kd7vPb7//V91W/dg3CD89MewQ6VIiL1n4MM5+bLcLTis7qISP1S\nzNPyHZAPsTOmiMgYlxi5A+6+LS9BxpzXoF06+Z5n7BbeR9583Y/PSN/9lz/y2tGT+l4jpwqyvf/9\ne3/otTvf0VLRBc+hPAqXj4iTLPq73/6Fes4DqyH3XfwVSIHDjXof6yWZUwnJ8BN5+tz983cgEf/C\n7nu8Nt9jioj48nAfnV+H2HvxO0dUv3mOnM7FMmcMwzAMwzAMwzAMwzDmEPtyxjAMwzAMwzAMwzAM\nYw6xL2cMwzAMwzAMwzAMwzDmkNvWnImRNty1IZ4hW6j6Z6F/9+dqTRnXmLj6fWj2XI3a0icgnrv5\n0/Ne+3sHDqh+95OOrG8UerM1dy/x2hXbtNVYKAT9HmvmJyZ0/YrJCehxK+d9ch2Fw9+BxrG6Arqx\n7mFdp2Xtl2H/NnIFujRfodats9X3nYA1866V9ngHrmGkETUcJkXrsqfi0FEmyNqYtdwiIl1XoQ9m\n7V1eUZ3qFxts9tr+PLy/QIDsSBNajx8qgBa5/QPYHJZph1iZnsTcnLcR+tv2M++pfokR1GZgu8/2\nD5tUvyKy9IuugEZ5JqXHLdZEWtA02/cOXUCNJ7dGDNu+xluoloxjfc3WhFNUV4Ytl0VEkmRrnFsP\nDa9bUyc5gfGpWAyLz+lp1IrIztb2q8kkah71XyJdqWMtmlOB57W8AA2sayF54nuon1JBeuPKlbpG\nSsuJZq8dCmBe1uzU9alyyvW1TTdcR6l8W716jNeYP4I10efYjFffT7WDujAGxfPXqH5c12m4A/V9\nyjbqz8x1KrguU8a7EKzPOLUPMqnW1JL7EHvz6rTmO0q232yX2n9S1wsoUJbmeO2eG9puMkA1P7oP\nY52W3V2n+qn6UlrG/6npO476SoWrKtRjvR82e+1sqj/QuU/XWCu7B5rs1hfIFnSLrgtz68eo2Vaw\nHHtScFWh6peZieviL9D7y68YGdH1BngtxroQX+Zv+azq13X9bf5DXrPI+ezX//GU1+baAVHHqpnr\ncGRQzahBZ05kBm57PPnUZFNdK9eKuGgNPhvvY1xbQEQkIxNzdew64j+vPRGREao5138E67nhmY2q\n3+wsYkCsF2t7cgB7bsPOx53nYG323DzktfOrylW/wcuo6zEyjbGfGndsxGnNFq5HnYbhs7peSTlZ\n2E704frNTul9keuaiA5Rn5qKzYg9LXtPq8eiyzHvfD7EuOnpDtVvchKfa/BCt9cOlug6aDGqqZGg\nvZTrjIiINP8MtTJqPoP3l0ph3nM9MBGRTB/WAdcbG7mq6xlwTTC26Y7WLFP9Ok/hfJRbiXjg1iuK\n0NrMysJ5IViszw59H9EepF2N08LAdayPpnOt6rEZskdmq1tfWMe5w/8R57sNv4eaEIk+vbbfPIV5\nsicLtSjiCV3jKkmW64lO2sdqUCvErRHGdbIut6O2yhq6bxERqanF836xD2u24f1K1c9fgnnSdwXz\ndOETy1W/vkO4ZkOX0W/0iq4xmb9I38elk1AE73WjU5+wcy/qcQXKMLfcWnHH/g77fe8IzrIr5ul9\nsYNqD67cjFpO4lhp8x7y85/u89p7/AhEWU7dQT4fDp/HtVzcoGshtR5u9tpLv4jXK56vrbSb3sK8\nLFqH8eU6UyIiIy2I91kf4X1zbBD59fN/uim6C2fn7nd0rR+ugVS8Bp/lx//mBdVvz1e3e+2VtVSX\nybnVLbu3zmv7crGeFz+9R/XLysJnLinHOehvv/oNr33yhq5TE83Dc7J/hHnW1q9j6oanENBiN7CH\nHzx5UfXjGjGz07gOySEdN9rfxVmvfRCv9+D/9pDqd+LbH8rtsMwZwzAMwzAMwzAMwzCMOcS+nDEM\nwzAMwzAMwzAMw5hDbps3nBxGuk7PIW2byelivZTyWLWzUfXrPomU7ZrH8Nhr/8drqt/UNGQlDeVI\nx31y0ybV7+h1pMdtXAjrvIk2pKBmOPbOnLbKKcCxFi2b4dThtmY8Z+n9S1W/qgTeK0uUNmzQ/QZP\nwWa7lKzF2l/R1mg1TyyRO8nAaaSL59VrORnLEHLDkDskR3VK1/BFXA8/2W+377uk+hVQ2uQ0Sd/G\nR3WqavcBSBI4Bb6/FTKV6BKdDp+ZiTT02h33eu2md7XFXR7ZoCaiSC3NcVJ1eym9nNMhixeVqH5h\nstAMsqWkm0J5B620WfYx6/zd8Vakf1bej3TSVEyn1rsyrF/B1rYiItWPQDYTyIcUZfimlh1EGjgF\nF2uOLbKDQW1jmUhgTbDF6qhjX87WlWWUPu++1wjJEfpakcI7c11fo+wsjE3xUqQUc4wTEZka09cs\n3bB0KeX8rZ73m702j2N+g5awTPRBili+aLvXnp7W1rZjA0ivDFcg/vSc1Ws7h+Z0wULMs/4jWDtX\nbuj1W1+Ga8jylmC+TvPOr6Q95Bgse0OVWu7GdrRs0eja1bNFbD5JY921p+aTVo58aoKluF6uJLWQ\n0paHryFV37VDHziNdRCsRPptliPlqX4E+sjJIcgNp1J6rDOzcJ17P8JYZd+DFPxwWKfCT4yjH8eK\nVErvixnZ+A3HT1KCK//lmOoXptgfpHR8f64e6+kEpCPRddjrWSoiIlK6VdvUppvhi5ByVT6g0/B5\nfEo3IZ09XK/XYpLWcOFarIPBtvOqH0t95j8Ni96srIDqN3gdkptIA2JnwVrIL3w+bcE6OYm4x9LT\n1MSo6sfW4ckJzJcxRzrD8ZZlWxOd+vUSdF4aI/lE2Y461e9OyrbHOjGXyilFXkTbrPZegKQv27H2\nToWwX7FVOsdqEZEAnXsGT2J+JPu1BPx6G/bJju8gBqz/Os6yKee1eS8MFSKGZi7XcW3wHD5vwSLE\nar9fn1lYsjfRjz1ysl9LKWq3Q/7Tsh9yfZa6iohEV2qJXLqp3IQzYOm4ll7x+ouxRM7RQvM9xN5/\nv9dr3/2U3gCefu5Br50iefdKx8aa90Uu3eALYv1lZ+v9af9//oHX3rkCz1lSrc9BfHZk2VbFg/o9\nDJGspmw5xuC1//y26rdxHe4heIyz8/Vcjy7T+3M6ia5H/Ovcp+UwMZKMzV+J9+DGBi4NUVqA69w5\npPekZbtxr8Wx58K1ZtVv/TbI/WpLsEaaeqhMgE/vzTl+XLP9b8IO/e4t2rd61RNYz1weouPER6rf\nJJUJSPRhj3vrn/R9Sxl93toGnMG7bupryWUH7gQsx656RNdnOPJ/Q4qzle7Pnvp3Wgp9+u9wDTb8\nIWzUu/ZreXdpDR67+sbPvHbjQ/q+3+/HWa/txotee9t92Es/+y8fVs9hSSifD4//TMuf+j/AOahs\nN8p0PLPjSdXvw2+jZEeIbNAvv39V9dv1Z7gW3f/u516764AulxGfvP29hmXOGIZhGIZhGIZhGIZh\nzCH25YxhGIZhGIZhGIZhGMYccltZE6e0lm7Ulaqbf4K03VAdUnxGbnWrfpxKO00p6SsbtcvP2CDS\nvd49d85rf/GrD6p+5TVI5QwvQZpa7BbS3iIRnRI1M0Op9U0H0K9Bp03HQkhHXfPMeq994kc6fbuH\nqog/+NwOr51TptO3xzvQj1PSG762VvWLt2uXp3RTtgWfs+NdnVZWsBjpqyPdl722K7kIUwrtEKXW\nsquOiEjby0jxmp5ByuKlNu04U0bOOgf3n8HfyUHq8Jod2oGgeD3mzxS5xxQ6KbehKNLtpqZwbdkZ\nRMRN10d6OX9WEZFM6seuFPnztEQsUKwdGNLJ8CWkR2dma9le/kJy26H313/YcSOjMZ33GNImI0u1\nfGzoAqXSbsJ45FXrdPpUAn9rdBZOLRMDkBhOT2oJTX4V/ha7iKVG9HyrehCSxY43IWWcmZxW/QIk\nMalcAUlJXp0eG/aVSQ5jLY5dHVT9SnfUyZ2EZUMjN7WTQtEGVMnvOwZJUf3DW1S/ruNI0R/MRfoo\nxxgRPW+FLkfVOv16nB4+3IXx4vmybrdO6WV3m873kHYbXqhjGbv8sVPIRI920GA5QYocL8SRNaXG\nIAfIIdeCWJv+uxm+OycxZImK634ydAZyB5Z/+vJ06nTsJvYrlpG4cofsHJIn0Np2JYvh0jqvXbcL\nEoGMDGzxLSe1lDhI8WqU3AQD0ZOqn1AcHyMpcN0XtExqJoW1mRXE5+0+fE3185GbFJ8PUjn6M91J\nxy0RkTDFTXZfEJH/h733Co/zus79F8pgBnXQeyNR2XsVSbFToqrVLdmWLdtynDjHieN/7JMc5yQn\nsROnOYkdl9hJXCXZlmR1UaJIsYgUxd4rAAIgeu8Y9P9FHn/vu3YkXkSDBzfrd7Up7Jn55tt7r72/\n0XrXK2lLEUv6SGb33yQ69DKWDAy1aKcfH8kL2o5ivaQt1u4sUZRS3nUV6dZDaRiflFy9FsfHcc7g\n9O22dx3XG5K1sksPn/NERPrJsaLvEj43KlYfF1MWI6omlCDAhBzpjOuWE07SijEHWy+eVH/j82bh\nargJtl7TsgN25Zkk18bqly+pfiwr6RrA3EwY165BKfHYk4pXY22z49HUuJ5vKUvw3q0nIHvPW7VS\n9Ytbjz2C3ZU6m7WrHcvbesjpMesW7XoTGYlzTyLF6mCeljM0n3BiQpjpOokzZaEj86/6MdyVckh2\nEJupz55LPwbXldoXMHYsQxUROfrv73rtkgW4H53HtItXEjlD8bpMr8BY1b55SL1m6WdhHdpO66/+\nsJYOstPZ79CYuKUWUhZgnU7QmXfdqHYEYsehwZqe9/3vIiLXn8KzVf7X7pNwcu4FnEuK52kZV+s5\nXNNQA+IVSwVFtCPO7jN4v7uWL1f9+Gwz2I34khynz+ChZvxt3QOQt+3c+Tmv/Ycf+5h6zRunMN8W\nFRd77ezN+pmVz5H8PaIc97auY3iuHB9ETFq5SLsKN97AGZ/l3OmrtfPoUJPeW8LNJJ1vuk7qUgZL\nH4SMqOYXGJ/Kz+s4VbAUczrUxTI7LeNlKRO7xp758Y9Uv5IHcGZ945u7vPamz0EW1XZQl155+xCe\nK/NSIUf+3Pf/WPV7729wDYlUEiMiUj8vDo/ibHb+AGL0ou36HHRjF+7L3NV4jpl0zor8O8L7YZkz\nhmEYhmEYhmEYhmEYM4j9OGMYhmEYhmEYhmEYhjGD2I8zhmEYhmEYhmEYhmEYM8hNa86wRqrvuq7N\nkFgJfWoc1aIYcfTFbMk3QFpDrjEjIhITjUtZPxc2aW4dD9aJc/2B3O2wge7vP69ek5oKHSi7EEdG\naj1mRDR0ulxnJiGgNcWlC1HDpf8q6ka07a1V/aKToDPPWAcNXst+bY2mnJG1tDIshMhKkWvMiIgk\nFkLj2Xkemtt4p9YDWzj2XMF3PvOOtgUvIYvdT3396157y/r1ql8c2dVtIcvB0Bg0mWyvKyISSeMz\nWA8N7/jQmOrX7cO1cp0Zt7YK21Nz7YOBWq37Zd1ucineo3HvNdUvb3OZTBdJNG5u3ZVEqq8y0g19\nZ/aWWaqfqv9E2vr4LD0nhqleQvVT0N8mz9f3T9WOiMJ6js1ELRBfhrb49PnwWax3T1uu6xTwmuDP\nyVip9beJOdA2Vz+rdffMENmqcg2mkFP7xLVbDzes502u0Pem6S1Y/I20435MTOhr5LoIHaQJTq7U\n75ddssVr+3zQ0nZ07Fb9xoagnQ6kQJubthja+tTFOeo1XN+m9yJqGjTu0jaFw4swl/I2QZt77efv\nqn4tuxETc3diHXEtKBFdH6L1QK3XjnWsud06VOGEa3fEBPXewLWTuB7SWJ+uJZO9FftVSiHqOzSf\nPKX6sZ1r5hzUGWi/fFb16w6hVlDT6xiDhDLEhkMvHVevifPj3q75OPbIpjd0XAvOw7xiK+1hp64K\nWw9nrUHsSVyv69UNdmGf6bmEueNzLI57yEZW3DJJYSBENW3cehOZ6xEjhhrxPaNi9P/P4j2FrZvP\n/ULX6CgkDX4k2aXX/Oy06jfUh3WVVIA1Gx2PPejseV0DL7sSe248aeYTSxzbb7IN7q/CHp63Sdev\n6G9CTOHzlltfiWtHsHVzqM2tJ6XrSoST0VGcSwfrdN2p1EWIWaEQvtNoT0j147NOVCbGJne5rpvB\n54wLVEPvzvv12YZjAtcAyliJ93NrEuXMR53EgX7U7eu4pi3ZA2mIBzEJ2GfdGlRsc56+nOoa6fJC\nMj6OOTtCrxkK6npFuctXyHSSSxbSXHtCRKTkE5ifrVRXovOoXrMcY8s/scRrV/38jOq37DF8F657\n1+bU6ON5zHtuOpUKSZmvral5vH/1PKx3Fxbp+pZNu1D7Me9O7HfdrzerfuMD+E71xzEmmQX6zHb9\nLK59iCx61z6uA+el5/S+EU5mL6JaZ07Nt94hmlsNmPuj7bpOHltp37kM9U0Kt+qiYzf24P6lU62v\n9Ggdn9l2et8vcT6MpuePkTH9/HDvKtSmmZOH8+b4oF5jE3QO5znb9rJeO52diJOtLYhXHf06Bixe\njnPAuR+857XZ2ltEpG94eq20A6l47vKl6NjddRxxdPZjWJdn/kXXXiraQWea3RirxFJdC/K9V3De\nmVuBNZLmnPND/ajHw7VfBhsQv4acfWfHnYipRTux5hve0fvn0j/a7rUPfuNlr33LV7eqfgVUD6lg\nS4l8EFzjis+DR54/pvotq7x5IT3LnDEMwzAMwzAMwzAMw5hB7McZwzAMwzAMwzAMwzCMGeSmsqap\nSWgL4si2VETkxhGkFI72IHUnbalOf2f7T04fDeZqW964Qvx73lpYll3/tU5JnPuJe7z22BhS4CYn\nkerl8+l03lAI6dGc/tneriU5V19CavjsuUjFPnJE2wHPJvlKkKQJZ36gLRpTgkgbT8hHunHSLH19\nLPeaDkYojTc+T8uVxofxN7YJbX1H25JdOoHUtLIK3JuygLYCrW9Gmvq2DRu8NsvWREQmSbeSnoqx\nH6fUaVf2wdK6+AK8hlPbRESiAkipDJAsYHxISwtc62Hvv3fp/55Mc3+0H+mZ+Vu05WPLu5ATZN79\nvm/9PyY6FmntUzE6ZZS/V3817lGoXUuFCu/B9XKKe0+1tssbrMd8TFkEechIh04brCcZThLZWubf\nXem1E4JaXuLzIa2xqxbyQzf1PYpS/2NSkCbee03bTzO9JEeLiNL526OdmOdDrUgn9QW1bIalCaJV\nYWFhkNY6S3RERBJJAsoW9YGATq9PXwY5xjjZxQ416zTZ6GjM/ZYGpGtm5GxR/XojkVo6Oox7GE32\nvzde1LFykmw9Y9IxdulOOmocyY36myA35Hklom2Yef25tpGBDKTc5t+O1Nm2IzqVWGtFw0t8AWIo\nS5xERPx0fX0XIb3Mv1Nb08ZnYZ8cG8Oc5vsgoqW2fe1YbwFH7vvcX7zotf/xZz/z2s98C9LSeEee\nm5+mU+N/S85WnbLL5wDeI1w5Kaf+txyCTC1nnbYMbTuEvSV9BeZ2z+V21S/gnDnCTQylbI/16ZT1\nlj24frZG1d9YZCgF87PtAOagm3r+q2fe8toVlCrPafwiItUtWCPpiVg7Td1Yl5V5eo1lFGEcWVqW\nPEfLUEd7sTf7aV+s/pWWGE5Sir6PLO5jHNtb3oP5/k048yJujt7Hw8mNtyALy7pFS0d6r2I+cWzM\nXDRX9bvy4z1eO5UkQIN1+lyWsx1p6E9seMxru3IvjuvZcyEXbLmE82F8jj6H9bbjjBmXjGuoO3pR\n9eN7m7MN63TKiXfc79pTZHF8tz6ztB3e77XTV+JcF+3XUoqpKR2Xwk3SbJyJ+x1Z+XAr9rsIkq1E\nOtKZnNtwP078ABKWxFg9b0P0fmxPnTxPz9O2A4hTAdqPR4axjhKz9VpkaTWv07EJff/YLrzjOJ6l\nsrZpu+aJEMax+Bb8bdg585auwXdPW4K9xZ2b+Uu0xDScJJIEMtqx8F6bhHoNUyTt7j3bpvqx1HaC\n5nTXCS33HsZ0lQAAIABJREFUKqK9v/s0YibHKxEtxd9Uijm2qBz38ujFq+o1Gx6DFKyH3pvP4CIi\n7SSD238Ya+y+L+5U/dJpDEbpmSOvUZ9tEstwfQcP4v2WztIH0cIVhTKd8PPo2bf0s++2r93utaN9\nWBOrvnq/6sfxgm3PR3v1mZctrjPIUj57/irVr57i1Ko187x21X5IsAvm6bU4cA1xpOMizk7dx/Vc\nGmrEWppzF6T3h/7mLdXvRifOaf4DmAtj43qNsaRytBvfN8mxefen31zua5kzhmEYhmEYhmEYhmEY\nM4j9OGMYhmEYhmEYhmEYhjGD3FTWxC5MnSe19CFnB9LoOC2odX+t6jfrYTjxtB1FGhinCovoNLjB\nZqQjxRcnq37tVSe9to8cAjIKUTF/aOi6ek13IyqUB4uRTj/Urh2oWHoTEQlZxB2/v131Y3eS3vNI\nnc0s1WmRXHF6oAHpy0M3dLpsxqrpSzUUEUkuQ2pf10Wd0sUOGcnldP2OKiD2HPoNd0Auw64FIiK5\nKZCtPL55k9du6tT3umwl0gr9lC7N7hAx8Xrso2ORBth+BJ8bdFyY2g8ivXz2x1FRvIXcXf7rs5BS\nV0eyjex1Tno0SWmCdH3jw878SZk+V4rOE1h/rnSEZWuc3Zx9a7Hq130R8r4UJ+WdGarF/DxxCGnV\nS1ZqeUJCkCQmJGWKYuerXp0y2nEKKbzsMtXytnYwK7xroddOprR4lvGIiDS8gvcfCOE+5M3SVeFD\nrfhcdtNw4xA7VkwHCYWY06P9WkrBadrsVHN9WLsrZa5G+mfzXpKPbNIp0S03Xvfavjh857NP/0i/\n31q8XxRJ5npO4xrYLUZEpJNidKoPv/G7acUsOUyk1HWWX4iIdJ+i9GGSU2Vt0Guxm+7LWCHeI3Ot\n7jfaM32OBtFxuL6mN7U7VS5JgsYpJb2T0qNFRNpHyRmvCPusmzrNjkJjNF/6LneofmvWIh33E32Q\n/o6To+Hqj69Wr2ndg32S14Er9xwmSUiMM77M9XfxfhV3IvX4wr/sV/1yKHU/kuZOfL6Werhy1XDj\nIycwV6LFUspo2iP5XCAi0ryv1mv3k5SpcrFORS8phlSF05nLO/S9/v5Xf+W1792Oc8f8QqzR2x7+\nYHcgni8tB2tVv/wtkPO0n8ZYpS7RUvSeCzjfcFo2zyURLWMbrEY8SHLkIS1v47NmaWOoDw3LHDuO\nN+g/RmCs2Hm05gXtLJK8CG4vLDvobNGSs1g697GEKmJcz4msOSu9NjsS8lxPSNFOHc2n4eThT8Qe\nMeuBJarfxW8f9No8Z/3O2YNlsSl0ruP5IaL3jJ4rOMv2XtZyk/RliD3JyUsl3LQcwBzh/U1EO26y\nK87Z4/qcX1uFM1JxKdbbpYu1ql/aMJ4BTu3CfZ+zRO+fWRuLvTbf67gErO2REX2fWHa1/lPr8Joc\n7SbIsZzn0t6/03v94h2I6wdfhMvM4jJ9rckLMYdjgpgLre/Uqn7X3kN5gqWPSVi5+Bs8ZxUs1M80\nXO7imW+84LXnF+h+i2/D8+Kp1/F+iz+/Rj6IRCoTEROr95CpKcyXzgt4ZohJRcxcNlvfyzGS3qSt\nguy28XXtYnj+cq3X3nHfLV67+gUtBUpKw9ifvID3WLtNr+2q1/EMwpK46tZW1S+hF+fzxQ9L2Ekq\nwTPO0judgE0xteY5zEeWuIqIDNRgP2DHJ1eOl5CAv3HJjXf+6j9Uv3w63xXfh2eDvEGUGOk4od3b\neN9++lsvee277tX7Z/0pPC+WkNNS0WI9N5v24nmP9/Bk59ySkIk5w+Uakp21WPyRZXIzLHPGMAzD\nMAzDMAzDMAxjBrEfZwzDMAzDMAzDMAzDMGaQm8qaOL3Jl6irt3ccRQoRp8UOVGmpR+u7SBli55yE\nIi1ZiSRXikmq5p2+RLsBsdtSUhalNDUiVdWfpFMI2c1mPAGOM11ndap5+aOLvXb1M0ipm5rQGp/Z\nDyGts+Mcvp/fcTOIzYDbROMbSGdz3Qza6B7lTkMh7tYjtV7blXGMU7V6rpLff02PY2oCvkt8Ntpl\nY9p1JTEZY5xzO1J3s0O6onUgFenIfE2JKZDOREfrdLGxfKTEDVN6bt8VneKftbkY/yCnkQxHDsSS\nkCSSwYw5chNOEY4mKV3PJe0ukr5Mv384YbnXkJsaSGmdnJY91KKrwceRQ8S1fzuB11do15a8ezAG\nWQNI4WUZgIh2cRmmz0qtRArilX9/R3+POelem52Rxgf1mmg/Ueu1B8iBKsVJwR+hsUqjde/GoZJP\nID2THXAiXXmlIysJN+yq0XtJp0RHkkNVKqUBs2uEiEhsNr4np3yf+t5h1S+jEON67TJSen1R2uUi\nnpzy2vcjFo2MIG6WOW5DszIQK9tP4DVJpdqJbrgN8baP0uZ7zum1k7IEadm9Z3BfOD6JaPkrO5O5\ncpv2Q7im4gUSVlo4blSmq791k/QhuRJygqgY/f9BOs9j72m+gHT8oFPR/3ob3i8ziHEq2KBTsdmB\nZAm5O/T0krPXazotu4gcQ2KzaO3UazlHsALfse0g5mJvo5bn5lbQXkDzPKFYpzyzExvT+nat+nfW\n5mmwSyNYspOxWqcwh0jeyM5YTa9rGVstjc+KO5Gm3nRYr9moSIx/+mqkPUdEa2eaf/7DP8Q1jCEm\nFs3CveW4K6KlmKmLETf4TCUi0nTwitdOmQdZ64X/OK76JSbi+6avw33pPqkl0bwnsWxItMpHyUPC\nDe8b/jS9djLmI2bVvwU5fIIjea3dhfsy+25Iv2ZtKlP9UucjRvWQ7Cd3hZb5tF2BVCZ/wW1eu3jh\nQ167s3Ofeg27XTXshYvhpOO2k7URe+uNVyHpzb5VyzqTKzG+kUsx91ypYCCBJE+ttV675C7t6Hd9\n19teezrOqAPViDmurKm/FnGe53rvkJYgb/wU5ApdxxFTWWovInKJ1sGG373Va7uOV710vvMl4uxz\n7JtPe+3Sx7Tso+pUrdeeR5I7971bd0OS5c9Cv2X3aqkLyyiT43G2LvnkYtXvKp3njv8K63nS+dxF\nm7VTWThZ9IkVXvv6s1rac/Eo9p67Po5yB+5zYNdZknNTbO1xzkqF6+EEGxWF+9fVrGNZfglchIJr\nMcfqApC5RPr0e0cFcMbg+89ubSIisXnYMy8dwJxa/BE9NhdfPi/vhyvtnpjEc28COSsuWKI/9/ol\nR74ZZq79APcwuFBLVH/9lV977exkciC+rs/b838Hbkt1z6E0wvP79Bn1s3/8oNfuPIP9pa1Xny3q\nX8L87nn6gNfmUgaP/+kD6jUD17G33v/4Vq/dX6X33AWPIH7z3tp3QT9XPvi3uNbeKpS6GKjV56WR\nIcwn/o0hf5sex5f/9Bmv/cS/bRYXy5wxDMMwDMMwDMMwDMOYQezHGcMwDMMwDMMwDMMwjBnEfpwx\nDMMwDMMwDMMwDMOYQW5ac4a1nmynKSIyRXVhuEZH3k5dm6D1HWivr+2DRtbV1hfdBSvelreg6S96\naJ7qV//cJfyNJGbpBbBa62o5yi9RdRna2ILZqReQUohaGwW3Q8vWcVjbRffVQReZsRC65Jrnjqh+\nAzeg7y37BHSIrF8V0faA00Es1Yhh23MRbf/M9rNpK3Stn0AD3qOFLNHTK7Qlc2IJak74Evzv2xbR\nekuuPRI9t9ZrR0bG80skIQn3ui8IzV8gXfdTc5NqFE06tYNytsD2tpVstpPKdQ2WMbIQ7SOt4YRj\n69x1DprJbF2K50PD1sqpy/TYTJBlr6of8q6et3FUqyT/Pqy3iAhdJIDXcwvZ7ZY8rrW0bE3uC2J8\nn/nhj732xge1BWKkH3UQhmh9pJNloYhI9jy8rqofltAjXVpnnrcdY8g2lm5dp84z0H5OsbbX0Ty7\n9XzCDdcBivDpmhAZy1GziG1NWdssouMFz8G8JbpuBtc/6RlE7Zf0RP1++3+Gel0bHsV9D1DNrCin\nFk9MDLTIKfMxX9qPaT30BK3z2Fx8bkyyjgeX3oZmexFptnuduk45m8mGmeL6gFP/pOCeOTJdpFHt\nKne+xJEdZMdxso0v0bV48inuHnsOeurMWVrj7e/GfU+iel7OkpUb53DfM9NoTpNmfnRIa9zHqF7H\nWDXimmsX3XsZYxAViyNDllNjq/cs5huPNa9LEZHRPuytXEMo07FNj4ye3v93NDkOK2jXPrz/Gu4H\nX8eoU4+sMB1niL5L0Ki7MXVoFPeea0jFz9b1MAqX4R6EWlAvKJrqfWU5tvExMbiG/ma8d49TdyuR\nPmu0B2OQkqtjYGIZ5mr7Prwf15ATcc4SVFNnqE6vxQGqXzdbbyEfmvz1qBcwNqY/t51sa/M24RzZ\neaFW9QtmYc12HsOanXTqXZ1+9YzXnr8R8aX2TV1HoWAL6oaMjGDfjozEXE9M1IWwIlajll39LtTH\nKb5D7588r9IXIhb2N+j6iXy+4nHi2lT/9X6YV1yvqHbPAdUvZUGYDzQO+XfhuaFpT7X6Wxqdd7ge\nzWKqGSUi0nMe97q3GXMha6mOU0lN2IP5PHf+rYuq38pP4t5HxWCvTqAahIPOvrP4Pow9xxDXSptr\nxlz5IWp8uLF3oB7vXzYX352fY0R0zbbCEszNjiN6P850Ykc44WfE3C26JlrORPH7vqbjmLY//s2L\nmHcfuQd1Zdy6Htc6d3ntNNqH4jP1/tnbizXLa7HhFTyLpi7KUq8ZJSvtYXo2KXtgm+p37qcYt6ER\n7As/+vvnVL+FRbjny5bgGdOtk5czG89STdVUe+e0romzbFuYi+g5RAYw1zNW6jPldnrWSqnAugwE\n9Bo79PWfeu0asgL/3P95RPWLpvMEn8Vj3tA/TXDNNq4zU0D7b/cpXRON187FBqyDjCRdyzSGasXm\n3444NLpUnwm4mBqfSydHJlQvXwDv33gQvwmkzNJnQP5O74dlzhiGYRiGYRiGYRiGYcwg9uOMYRiG\nYRiGYRiGYRjGDHJTWVP3aaRKJi/QqV8s9eDUbn6NiEiAJDU5+UhBSijR6bxP/f2LXruMNCEN396v\n+rHFmDyLNMShdUipYytuEZFRst9j69x2R67ki0Nq6VADUqIK73NS5Cm1tP000uMy1mgLwEAm2W3R\n+8VmJqh+oQ5IDmQa3EMDaUhFC87SVsQDTZSeNYr71k2WdiIi0Qm4N6mzIfvpvqbtxniecDrtUJNj\n4Ui26mkLcd8yM7d77b4+bcfXehFphOnzkGLdcvyS6ucnm+6YINmbO1KAUbKv5NTZXseam9MPOT11\nKluP49iAlg2EE563UX4th+l4Dyl72RsxgTLW6JTEzpOwl4xnOY9We8nEKNK5szYVe21/kk5/96fi\nvvRfQep6RS7u5ZW3LqvXFC2AfCllEdZ5sFinRfZ1wn4wjeyzW9+pV/3YVnrwBtbY8A3HbpzjDX3f\nLide5WzS6bjhhu17XdnGB1mLD9Xq1OkTZLXKEqWGzk7Vb4JsNBvpb84ykBKKtywBzSq9Be81Mahe\nU/8O0o+7jmJeZW3TAazuZYx/GqVxJlZoSWllMeaWsq90xoOtCVliM+zK0dhuWC+DD00MyVIn0rU8\nt4OkhLE5iA/XX9IxKmMh7vnYONZbV72WorBdbHIPxkCvRJGlT67F+5FsSKX6X9GShld/8JbXXlkJ\nyWjRI/NVvymSg157BXvu5Uadkr56bsX7vsbVYMXnIu23nWXGc7VEtpuknKIdZsNC/1Xca3+GHkdl\nSU2SBrY7FRHp6Me5o5JeM1Wlg2rhGtxfTonOXq9lBvW/wTzJ3oK1xLGt/kUtv+A9l9eOLzFG9eP0\n626Secbm6n0soRixMsKHNTvuSEVjaS/kz50a12neI+1aihpeSLbXr6X3nDI/0g9ZRJ+zv+fehrGp\newax1Y2nkTSPn396r9e+paJC9YvNwv3kc5M/BdLNxteuqteM9eAsEk3j1nFR7598/ggEkSafUbpM\n9evvweuCFZB65N+yVvUbG8N3TM7HmSqlQJ95R0f1eTDcDNRhfNqvaBkHS7X5LHv1bK3q10r2u0tm\nYe248hGhfTGdJDHpR7UE6PhP3/PaC+9e6LWjSIrZ9V6Tes3sT8Bam89RiYV6v2t4E+OTvanYa0fG\n6EcylouzNLb9kH52YSlK7nrIXvw7YlW/PV+HHOhj371bwglL1ttIDikikliGmHL4rdNeOzZGx6hN\n8yA/fPZ52LfPLdCb+Ir7Md/9yfiOkZH6/Vjq2H6i1mvn3wH5Spcjh6l4FM8gPO+H+vV3aqf5dqUJ\n8+DB2zeofhfOoUzH1cs4v65cuEL16z6Hec/PuXF+LQEfG9BxONwE52MfjozWzxrJ5YglzQcQw/I3\n6f1z9Vfv89qpT+/z2r0X9NoepHP63N9fj9ck6D0puRDzp5Se73saETcmHBlqsALPqYvo2X5kUEuT\nmy5g7EZprypwnvtZBj1cj+su/92Vqt/YCPah0oexFnkPFxFJd+RVLpY5YxiGYRiGYRiGYRiGMYPY\njzOGYRiGYRiGYRiGYRgzyE1lTZz/3n5Ap3SVfRopWY17kN6Uu61E9euhFN74IqQnfueff/2BH7ug\nEDIXt6JxcgLSGvt7keYdR5WZ3XTeG0eRSjZrK1JYowL66ze8grTTuAJKvT6q07dzyeUnaylSwAc7\ndVqknypbj5NTxuSoTr/yJejrDTfj5OgS5dcpxgO13V47qQypl5E+fd85tTuGXK6S5ujq6DHkKtF2\nHilsnAYmoqUanCY6Nvgb/HdnfNjlqvMKUgXTFmipVkg5+iCFtWlPjeqXuhjSgmFyMRjr0S4AkyMY\nr5S5SCEfbNJpakmztctTOGHHrZhknarK7j1j5NLQ+vZ11Y9dUwKUej01pVPw+Tt2nUHKZ/M7Wpox\nRrKwnB1YE3wvG547rl4z0oEK6CyNDPV2q35K6kdEBXSaJVdoL3kAaZFXf/626jdIDiLZG4u9Ns9r\nEZGRbpo7YZbDiIiEyK0peaF2wBiogczCl4S01sxNxapfMrkL9JMTysFLenye3YUU5n/50pe8dvkd\nc1W/OJoLPEeioxG/QiEdA1n6MDWBNNMbr+p0/dwNSC9nN4e4XO1ewS5cnLo/3K6lOFF+xAR2H3Pd\nuVjaGG5a9mFdJZbqNZ9Fc0vJV1bpyRQdj5jH6fiL1lSqfnM/udxr++g1Y45rUASFa5Z7MSyfEhFZ\nUQYZw8Qopey26XvObl63Pr7Oa2dX6bhbdRL3Zc1H8D2uk1RERCS+AOcAlsbwXiQiMtrluiWEF3Yk\n7Dym5Qn+NMRYnnP527RjUQa5PLErUdoq7ajHMTZIe6Z7r9mZbZxksjy/OXaLiPSTKxPvs5OjWl7E\nErmidZALuve5/zrGgc8B/dVacpe9ofh9rzW9yBXdTR+tpzG3Yp37klqCORgaRPxKmKUl9c274Q4U\nQ+PeUqP391vWIEX9yFXEuTfPnFH9PrsDkonBeqTdc3yPdM42GesR01PmYF+oe0lLu1MqIAse6oQ8\nKzZfy+N8AcTu3ibskV1ntQsTr0V2LIvP12MYn6FlOeGGJXMpefqz4/JwjSwVWrBZ72PrSCp74Lso\nh5A5pmOvPw17w7F/Pui1lzy5WvVreqPKa0eR3ChvO54hXCe6o3+/z2uv+AOcR87/yzuqX+WTy+X9\niPJrV8TM+ZBWdNKcy92h41DTm7jW6l+967WnnBIPm/4/7TgUTjiOdA/ouBbow3xk2Xtckj7L/nIv\nxqOc+pWVaTdPlsNw/GNZv4hIfAb2KHYGTKvAeZUdXUVEBntqcd2JiNVtZ/Ra3PAExvfZz/6t197S\npN2UWPq6shTj1u5Iv9JXQWIXasb9G3VcyXqrtNwy3LCjW9d5LfliR0J2xGw/p899fCZ859BZr73z\n05tVv/qLiMvX/h3ORrPu1OeghELEhOu/wPvl3VLstdOW6D1371+/4bXZoSl/g54jF9+ATJifY9yy\nA1E+PKdnbcP++e4396h+2UWYM0UfQYyKdhxPm186KTfDMmcMwzAMwzAMwzAMwzBmEPtxxjAMwzAM\nwzAMwzAMYwaxH2cMwzAMwzAMwzAMwzBmkJvWnEldCg3XSJeuVdJXS9qzbfC5nJzU/Vrfga7u8Dvn\nvHZuaqrql50MTRnXTnj+jTdUv1tWrfLav/eRO7z2FFmnjjo1Q7jOTKgFerqMVVrHGBWAJiw6nmy1\nW3S9lNbD+E7xedBnx+cHVT/WrHJ9kyinH9sITgds4eXqK7l+CdcKYY2fiMhoL+4pW5aNOLVBuObM\nONUkic3XenB/JjSoIx2YM2yLF5+ircknR2EfODkGPX1ktLaaG+2FBjUuE/py1gqLaD3uBNmMuuPI\nGvyJEWij3boPQ1yDRpcT+dBw/Z1Qp15jfrIlH6G/5d2uv+841aZhO8nq57SW1kdz30fjOejYU7N2\nu+8adLBsk775f2mNafXTiAGsx0+br8ea9Z6sM08o0jWtoqIC1MbcYZtuEW2D10Z2xwnFep67NWjC\nTVIl9KiOw7BkrIQ2vv5FxMCE2bpGAtvWco2K4kxtRfz1z3/ea+fNhfY6a7HW87ZfuOa1S9Y88L7X\n3dfk2EiSBXLHNdRWySjXNagmqF7TNapJUuLUw2A74C6yf+aaCCIi2Suhc+64iFoRI526bsako7UP\nJ2O9WPduDOD1wnU4es9qK9rxCXz/nBSMr6uZD2bAWnR4GPdvwrl/8amY7y3HoaHO3ghttFNaShov\nos5KZjb24z6qlSMiUkZW6/4UrLGqS9qGvrELcXeE9ovgXF2vovp12MjOpvocyfOyVD+Z61xwmBkk\n+/WsDbpmh9qT6TL6Lmsb5jiqoxeTgljkzke27G17FzXwuJ6ZiI5bfH0ca1Oc+9R1DuPQcRHzLCGo\n6y4VLiz22j0n8ZrBET2Hg1TjwJ9O+3GhXosNZAftxigmkJnwgX/7sLBVdV+1rsXAdctSKnFf4wt0\nzE8qQd2o+t9g7axeqOMk16N57N6tXvuhL3xV9WOL1Pu/uNNrT1Dtv6QKvSYSczE/hjowhukr9Rm1\n4xzicOYirJ3RUT0v++rxHmnlsPoebj2h+9G+nb2+2Gu3vONYIW/X1xFuUuZh79q7R9eoaqvHNWbk\nYp65e/W5vRi7ZXfjmeTyG9p6fv5HYHedmoi52etYrLPd8snvoY5LejbmT3CB3nPTMrBGLn//mNee\n9dA81e/It1ATZ/Uf3Oq1T/2jrgmUtQTzomg77KOH+7QlMZ+nM1ZgrN785i7Vj2ud5X1awsog1bvi\n/UREJDgP54KEUoxhqFU/P5RRnRm2z+5r61f9plr1WfS3fOHr31b/fmIbauz4ojBf5s7B3vfuSV2r\n7/ZPbfTatUdxXmWrcBGRU1Wol/LYBthn8z4oItJGNeVaerCvLL5vierHNXvSluM+tLyla0emzNVz\nLtxwfbMq2qtFRPIWY26d+jZq0QWTnec72jfm5eM12Ut0PZ7uk6hpU3Q/1shAg6731XMZZ5KKz270\n2nWvUk1L54Bz+18+6rXHRvEM13NFn28qNiE+cl0it+ZMRASewbj+X16lrr031oP9tPsy1ul7Tv3N\n2/90p9wMy5wxDMMwDMMwDMMwDMOYQezHGcMwDMMwDMMwDMMwjBnkprKmKErjmgzp9FuWufTUIAWy\n10mJnppAqtGKuZBZjJDlr4iIj+wq55cWe+3bl+jUr/5hpH69ewbpaBuCi712zubZ6jXDlN46xBZs\n17V1J6fIZi5EqlPfkE6XzViOVMMBkgw179PpZwV34z04zbnHSZ+c7jS1yBj8Buemag01IV0wWIb0\nXtcikC0/J0kCxHbKIlpuFE2W5hmrtZ1hw4tIl2Mr7eJNkMEMD2vr65h4pEoGEjE3u6p0v/wlG/G3\nFqTxjg3oORdIReodS6uCxVoSw989kiwVE4t16uZQ8/unWoaDYUr/5BR3EZFQI8YwndIhWf4iIuIn\nadT1p5CuGXRsMyOiMPZjfZi3Q9e1/G4kjsIHfVbNIchNUhO1ZbIvGuOWuRZSppbD2oqPLXZZ6hYd\nnaT61b2G8S3aiRjg2glHR2Eu+tMxD1zZTMMrdB0bJOyMD+Gz/cn6u7Blb6QP92mwVt/3oTbMBbas\nXDpX22umrUSc6r2A9MrRkE67LV55l9dub9nrtYOpiL0TjvwibSlSOTkeRPh06i/LfEoWYLxdO9tQ\nO77TYBXiMlvIi4h0XsFaZ2tavgYRLc0LN2mrKcV/UqfSdp+FXGT4BtYl22mKiORlItYuIplKn2OT\nGRmFPY7T+IcadazhGJWzYqHXvvIzjGf6GsfOm/a73E2QCza9Xa365e3Evt1P0pFgUrzqd2sF5ssA\n2S6nkaRHRCSeJLNqXva69uAUvxZJ2OE08nHHip3tqntoTOOdecsSsN52jHH+umLVr/+6XnO/Jc6R\nCrG0eoLOXOODuL6IaH3G4n7ZJI3su6D78V7N6fWFJTkf2G+knSzAK7VkMTYXMXqUbJjjcnXMnxrX\nazOcsD1p2kL9PTh9fbgT6yOtYLHq11l/ymtXPrHJa/c1Nah+jS9f8doscfjBH/+x6pc5H+eH1j04\nE5Z+CusjJX2Nek1HIyyEe6/ifJi/foXqFz0L97b10lGvHZet73nOHFjeDw9Dgsp7u4iILwlSvBCV\nLmCZkYhIbwPO+Kmp+trDwZEfQCKx+kH9nWt3Q3abSueb+Dy9f/I6CGTgjFS+pUL14zNq7yC+c8se\nLeHIOAbpS9ZszP2+G1g7Y4f0HElbies79jLm1cQz51S/FZ+/xWu/90+QON3yv7erfqP9uL4L/7rb\naxfcqyV3yXNxffv+4S2vvf0rO1S/4/+K+/z+Zt7/cyJ9mFvBxTpWsDS0dg/KPcRE6fNCTSvkeF10\ntplfoPeuM3WYjz954QWv/Wef+Yzq9/9+9COvvWQx1n00fW5Osj7/9p4nmfatkLsOu3vuRazt83Q9\nj96ppfyV5Tj3XKvCfGnao59b+Iww8Tbm6KQj11m5dqVMJ1kkrW7/iT6P8HPhnI/ifqbO0mus/m3Y\nYudOXMFqAAAgAElEQVSkYuyiovSzS/HDkDn98A9+6rWf+OuPqn5RFOfbzyIeHD+AkgxzqvU5+dAV\nxOuPf+Nhr82lN0REXvoB1tXWO1A2Ze4Dj6p+Pd3vee2aZ/G5iU4ZjBGSusfSOaJvWEud+bcDKZb/\nhmXOGIZhGIZhGIZhGIZhzCD244xhGIZhGIZhGIZhGMYMclNZU+cxVKNOJMmLiIiPUqI5BT84R6ez\n1VD1++xVSG/Kdar7B9KQIj1OVe27z2uXi8QapLx3DyIVPo7kCSM9On2IyduBFO2hJp2mFkjHNQx1\n43PjsnTKqD8e92I4QOn4NVomxXKTwvvhMjLSra+v7RBS4gp1tmJY4FRWrs4vIpK3pZz+hXHsrdFO\nHJxWnURzwXUr4TRjdiQY7dMOWllbkDoXE0Rqbf3BfV7bdaWICyJduOs60v2Tih2HmAl8FqfGD9Tp\n8WHnKpZfsNOBiEgcSWxYusTSPhGRYJl2YAgnI+SkNeqkjSeUkYMByYb6ne/L85vTYofbdcX8rhNI\n541JRxpiouO6cnU/JECzFmJtF1B7uEGvsfhirNMBcmtypVoXf3XGaxetLvbaaUv178mBLHyn9rNI\nE52a0G49vkRy0aG5POW4+hTdN1emk/5rkDckV+rU8fqXMKfZ2SPgSHu6G3HfgnG4b90d+l5nxiIl\nl527EoPaOcLnQ1pvSvpqrx0ZSRILR9bUX4XvwffalYllLYbERqZOe82ISD2OXSfgYJO6DPKElDIt\niek8j34sq4jP05+r8qjDDMcUVyYwdB2pqrxecq9oieFoCOPr62O55YDq19yMPWSA0nZTl2npZe46\n3Oe+plr89x2QuvVXa2kNu0mxC93AFd1vhGR0meRq5MqQ/CQTHazDfXAlZi17sU5ztkFOxfFARDsr\nTjeuiyFfv9Bcdd0Jx2nsoqlf+3uNql8ynYvi8iHHGHa+41A9PjeL3HMmSR4eatOv6b+MPT2F5oUr\n7WQ5R34+Yk9MakD1SyfZHo8p7+0iIsJTmqznWJ4pItJ5EvtJsTbr+NAE84q9du2uI+pv2Rtwxhgl\nqVZkpJ6PSTl4j4gI7J98xhURWfiFB702p+ePjOjzQs8NzG8+N7PDWnvDQfUaPosGyxE3IiN1Cv7k\nJJ1tKPaMOvLykURc0/UXcF/ydpSrft2X0I/jQ94GrSPsIEe/6aB8LeJUsEKf5yrJ/ZGfE6p/elr1\niyvEuuI5OObEqVOvnfXac1diXzyy74zqV9WCM3DdIUhdlszCvIp29rG+fZAh5aZ8sINZ7dNwpFr9\nZUjp6l/VzkF523Ff0lZhL+w63az6sYPqrX8IWU31T/R3qrhj+s43wfmIKRw3RESqfwlZ18gYnb8c\nyc6tc3F9hUshB3ru12+rfrctgaQmg9zR9l/UzlxfI5nTvvO45wkBxLyeQR3TA9mYYzEk+3Olg2sp\nHq6ZhJNW7QEtC84qw31haUtsqj7zpk7iHFVN8q5V27UMs/0gzkDl6yTsvP1tkrbH6WusOYLYlknn\nhGvDZ1W/HX/zN177ve9+02tXvfSW6ld9DNIwdrBcV/Gg6rfv9FNeu/s45n6I5tKu0zoerC5HrNvz\nd2967flrtQTr9o+ifgGP3ew7tWRx71/B+WzpAxjv08+fUv3KliM+HPkhZISP/sPHVb8X/uRXXrti\n/SfFxTJnDMMwDMMwDMMwDMMwZhD7ccYwDMMwDMMwDMMwDGMGsR9nDMMwDMMwDMMwDMMwZpCb1pzx\npUA3mOzoQIdayRqU9MaufW862QqOdkKPGXLsrBJyUF9kbAAaarY4FhHJuAU6xEX0HonFqJvgS9Dv\nPUQaba470uHowtPXQGvd8Bo0tsX3a51mVADvcfmX0HQWrpul+g1RvY2mt6BlYwthERF/utb1hRu2\nz46O07rxrgvQ7/nTMN5RAT01CraipkH7aVjhufrguER8t7pL0NslleuaRSxY55oESaVk5x2l51JE\nBK6J9Z8xMfoaupugf+whq9Mxt0YMabtZT+/WkWg/Bu1h4mzYZ4859VRi4t26F+HDF8Sc7nfqBrGu\nnevMDDpW8QNUJySe1gvb3YuI7N4Pe+qFRagxUX6nXgf5s3RNoN9y9TjmekGmHpvdr8KOjvWst9yj\njR390RjrywdQ26bEGcN0qmM1TDGJazeIiKStwNpOXYSYNOl894bX8Vl5vythh2tytRyoVX+Lpro4\nGWv5e+kaE+khsvWkMb7cqONZQQPGjmtDxSRWqX71R6AxTpqNuZSZv9Vr+1N0jJosgD44nuKZG3uH\n+7B2uEZJQpG2ryz/LDS8IarrEerRdUj4XiTPpZo9ETpWNO3GHMwvkbDSexExJbE0Vf0tcQ7uX/sp\n1NoI+HX9Ch/X5aBLH6zR87a7H9+X10tsrraR7WvEfW4/DE16dDzimvvekTGIc21HYLcbFa9jP9cz\n4PoN6bSmRETaDtZ67eSFiA1s0SsikrIENYW4zsV4SNc1SnbsfMNN+kpc/3CLtjpPI8veIar7ExWj\n7w3XPWItfIRP7yGd51G/gusxRPm1lWwgA+uCrdM7j2J82epVRCRlKZ2xuhEfAzm6RsI41dWJTsJ8\nrD1Zr/plNeD75uygxeOssRDVIuLvO+TYknPtuXAzMgwr9qId2mK29nVYTc+5736v3d+v61IkJaGm\nA9d0iU7X96+FrKsLF+302lFR2lI+pgTxueksastEB5yaPQTX9MqahZohVXufU/0yqZ5BHNm0+gKO\nxXsL6hjy3ueeqUY6UQMjbzNqNHRe0ntE2twwB1EHrnPVc75N/a2Izt9cl63s08tUv91/8arXnjqM\nfXzNp9aqfqVNiKkpFKeSj+lxXDIX9V4SZmNd8j7mS9RxvZ1qwZR/YqnX7q/Rdbyu7Mb3yLqOvxXs\n1PUwLn77Xa8dX4CYH+fY9wboGWKkB3PYrU3Wvh9rfc4WCSuXXkZNl4WPLFV/K74HNTcvP4vz+azN\nZapfQiG+F9snP7lE2xrv/ifULinKwHorz8lR/X62Hzbln78Xa3awB3tSQ5cem6E6nOsjqJ5q3wUd\nd8dpzU5QvZjscn0u5jW34R7EqPde07VK1j8Ki/rqn6PmDNd5ERHJL9VjGm7i/DjDJcXq2kELvggL\n+N/8b8Sme79xn+p37N/+Du9RgTNRxqJS1a94J6yrt0Wivk/6/9Lnm1M/RuzNzsd+cveXb/far/3j\nG+o1KUHExxV/iLoye76+S/VroTPm2mWox9hdf0X1u+MbT3rty7/Ae9z6la2qH5+l1n8R9aQa3rig\n+iUGdK03F8ucMQzDMAzDMAzDMAzDmEHsxxnDMAzDMAzDMAzDMIwZ5KaypgBZ2Lm2vB3vIs029zak\nKnWd0qlfmWuRWl//AlL5YkcmVL9QN1LLkrJm43Nim1Q/TmsPZCCVL0SSKU7rExEZakA69zDZWwfn\naslF3xXIRSo+g5RJvm4RkZgUpCOV3Y2Uy0FH5hJHaYjpS2CDN9yuZQqunWa4CZE0LDZL2/KyfInt\nbRNytAwpEEBqbEJhh9d2bcEnx2CNlkVjP+xYkLIEJbkA4914Bql+cTn6WidGIDVj6UPUbJ2OyrKk\n5EqMsWvn3bIP15qzGdfAUigRkThKXe+5iJTb3E061benCmsiQ0+tD03WrUhnbn9PW7xNjmMtsa19\nxhotn7vyM9xbtjAcbddjeO/jyHcdbsI49V/VcipO6T+3j9J0g0hN7RvUkga/D6mquamQhFzcc1n1\nK67Aekn1UVrk6gLVr5ckXqNd+B5pK7QF8wRZFw/Rd0pdoFNQWdo3HbCcx5X28FqamsT4JJXotZhc\nTnP6GVhUxsboFOtze5G+X5yPVFi2WxcRmaRYnJKFdOTubqRURzrp8ImzkEafmIp0eJ9Py3zqjrzu\ntXPWIYW5/4ZeY7xmB0iSlr9Bp0cPZiHGdpDUw7VET/xvMsrw4SM57eSo3sdYthZD8pWhBi2bCVYi\nNbfjXaTBJi/V8zG2A3tI5xXEnu5T2kq1h1LjSx8hW21aHwkVemwaT+BzE0oxnkOODCmVvlPvZYxb\nlCOR5WtgMhwZb3QsxZ5utAeu6PgyyfbtehqEhb6r2MciXRnScZw7staRPHBwVPXjdRpP0oeuc1qa\nUXg71kj7O7jvro31BEm7+DzSfh3XmrMgV72mj2ROoSFILuo7OlS/+ctwTmMJZVuvlruVbkC/3it4\nj+Ebeg5nb8OeOU5SJtfWvucCWU2vlrASHYM9aGJCn6OClE7f2YS0+P5aPU8T19IZbhCp7BkZ21S/\n7DmYI8PDGEPXmrujBpau8SQ/4RgXGan3mbyVuDFX34DFas7aOfJBjJLEt2HXUfU3lpINUjxNuk0v\nJJaGDndifAdv6DnhT0G8SZ8GlVrGBsSIyySPEdGS85EWnPve+PNXVL+SQkhaqupIUpqmJbljA1jD\nx34Mm/GKxbosAc/pi/sxL5pJBlGarSUm8x/D/Q3ROT+5Ut+0NfM3ol834m1vlV6zFxtIzngV/e54\n5FbVL6EQsafmKciGZj+6UPXzZ+izcjjJK3l/mbuInquFa3GfWa4vIlL9NM4zsx6ExGS4Ta/teJLe\nTJKk6HRtrepXmY/nlsRy7H+NbyNmFqbps0IEyX1z1uGMzxJhEZG9T6Fsw9bHIZuJcUp2sBy0+XXI\nBVds1WMTSfFh7d2Q+cck6z3i4ovnZDpZ9tgKr+1K6pnsZMy5hte0BOj6ecTHNRsx3rv+7Feq3+xi\n7GWRJPH9+D99XvVrPQVJEEujmg/juWPVrfp+Ft6B2Hnor2Gl3T+sn3dudGKf5fkYn63P5+e//5LX\nnkXr6uL3dOwdHMEeHKJn+5SlWnJX4OynLpY5YxiGYRiGYRiGYRiGMYPYjzOGYRiGYRiGYRiGYRgz\nyE1lTUmzkAY2MaIr8AdIchITRIpm3nZdfZvT0So+iVQ8lsmIiERFIXVrchKflbNRpxr2VVGq7yGk\nTg30It0x4KT3pyxCup1KQy7Q6bcs27j+FFLH2MVJRMukBsgtxXUl6K/B3xp2oXp8UplOoyu8+4NT\nV8MBS12SS3VKdH8j0q/jMpHaHhurU9E53ZeZmtRyAn8ipRmPIZWR3WJEtPvXUC9cZnLXLMK1Ndep\n17BDWGIRrrXuZV31nNOvfSlUedxJLY0mZxkl/XJcLqLIWSWFHER6r2lpRshxFgsnnBoeatbpcJz+\nn7Ycch6WO4loSRFLmYo/Ol/1i47Hfekkx5mBGi1trD4MR5zhUaQKR0dhviVmaGnasjjEiokJzJ2Y\nKC216WtA6nAeSc7Gh3UcGqd5pVyrnGsVknEN1mH99jtSiuyts2U6aScpDru2iGinu0Am0o9Zsiki\nEkOShNQVWM/zBrTkgiVaHJtGHccrTpvl2BsI4L1jc3Q86KyDS92gD/NgalK7fHAqMMcD1zWk5QAk\nhnHkROTGAI7ZseTYxuMromVs4Ybd9RKcPaSNJErRCdiHWJIkIjI1hrWZTPtTTFCnMPecxLrPWIC0\n2KATy0LN2P8mSGrFjoGzHlqgXsPOfZxSnH1LkeqXtgif23ka8aDzqHYHS6C1HkEOgU27rql+7BTH\n86CQ0thFtLPidMBuQ66bYEwyxSm6n278iSZZMMvYsm/V95DPHbk7kZbdX6UlNqFWXFPyAuw1EwP4\n3Pwd+ozFbnt1L0DKuG5nuep3/RVIR1NLMX8q87QEtO8CpBUD/Yg9ebcUq36Nr+BM48/EmmCXFRER\nf9r0uVE27MU5LViptcS8B8Rv+GA3z7YayBPis7AW+/u1nD0igtZLJJ0dQlp6n1ECSfzoKPaXrmrE\nychoLRvKLEN8Lbx1ndfuadJy38kxck7rR7x3HUB7r+BsEpeHODnQoq/VT46sfdW41rwt+kzq8+kU\n/3AzQnvckk+vUn+78SLuQdmTuLf57Voq33MesXJBPlyP2t+7ofrl3o71F/V2rddOdWQHTSRBYanC\njo9DwjJUp8exgyTnLVWI+Wu+slP1mxjDtfMzxFifPienxOMcsPNLO7z2lV+cVv14X+Rz7qV/fU/1\n6+jH2bF87eMSTlprETcSyrSE9tobGMPeIYx1xVwdJ2PI0eziL3CuT8vXbmTp9JzRQ++38zEt96o/\niHMFu9zxeEY7Z0926qt7CRK7/lrtHLlyJeSQiSRRr3tWu8EllODao+KwX4y06fnLZyU+B9TRs6OI\nyOi4djUMNyz3dR0Zx8jxL7cckj73PLf043Cl6joDSWROih7Hi9dwvlt9L6RcUVF6z0gl1+euK3jN\nxbcQoxfeo2VNtb/B3nC2Hi5lPme871uFeJO3DbGhr1ZLDIsfwnPStR/C0Xbxl25T/a794h2vze7S\nifnafbLmRT1PXCxzxjAMwzAMwzAMwzAMYwaxH2cMwzAMwzAMwzAMwzBmEPtxxjAMwzAMwzAMwzAM\nYwa5ac2Zml+grkD6aq09Y43jCFlvDjVrO+nc5dBz9bWhbknvQL3qF091BkapjgTrYEVEIsiWrKsL\nn9U9gNo2cxbruhGszfWz/bZj7xxBdppsLepL1DVsBmuhM827iywyD2tta+E90O2yVp3tMkVEmvbW\neO3sxyTsRMVimBv3ap1bzkayLT8DLV/qPK19nRjFNSdkFHvt9ksXVL+pKejz2ebSn6zrZiSm4N70\nNEMb2Hoa75cyR2v02Ma0jXTEiSVa3zpCuv34WdCCjjk1OZLJSp01k3FZuuYMzxN/GjTAgTRtS8ja\n/3DDto5u7Zxesm2doPozfseCL/NW6B8DVB9i2NG+jg9CA8166OT5ejx89P7ZZNeZsR6fw1bt//Xe\n+B5s583rWkQkfT7qKrSfg+aW74OISPYG1KRS9tOztLa1rwa1HbgGQiDdsZZ0riPcpMxHTQN/sq45\n0/gGviffGzdeRFF9kIbd0MW3OJa488pxD7m+jVtzhi1ebxzZ57XnbP2M1+7tPcsvER/VUxmmWlCj\nvTpu8PgPNiFe87wS0drmfrJkHnPGO47qRbDN75Bj/equkXDCa8yNKWz13nEM9QdK7tP1VLi2gD8V\n87Hngq5NExWP+8f7kLsO4mdjP56kejbFD0InPT6srzW+EK/JKFnitUMhbdM9MY74EJeL2Djao+dR\nUhm0+gGybHXrjXWfbfHaaUvxmtb911W/lEXapjbccDzrPt2i/sY24Ylcz8gJ8aNkQ8+Wv+69iY7H\n2I10od5XtHO2iKJ5wTWoEitRE8c9t3B9HD5zcH0+EZGS+zEXWvfiXrOVqIjIws2opZAcQLxyYzlf\n+2QI94Ht5EV0zA83CRTnuVaCiEjhVtQwaDmB2hHpi/RZNjISc5X3od42XXOGxzfKh9dMTel1NTiI\nGktc+yqW9hpfvI791W++4bWT6dzjd2pQjQ3hs7jGXXKerhGTnFfptbtv4Hu4dTO43hjXYIqYp/+/\n7diYro0UbgJZOI/UP6/ve/xsjPFIN9aOa5EdR88kPI5p83TdypP/gHs9EMI6LU7V75ezHTbKRUHE\n7+M/OOy1h0Z0bDtbhzP0HctQH+eZL/9E9csK4lpnLcR5aczZP1d/9hav3XMRNVPy1hWrfr0X9b7x\nWyadWmzLP73mffuFgz6q/TLape2K01PxfRd+AuuSa6KJiPRdxhrOKUINILcOZNpK1Mna9b09Xrt8\nRNdZXP2Vu7x2z3WMTcYAWbe/pK3b+Rw5XI/rCzp1dDou0bn7BdTUmRrTdTi7z6AWUiZZxk8M63Md\n26Hzma+tT9+jNZ9aK9MJ18rrOKFrVFW99/51Jt3z+60rcQ5KW0Y1zaJ0XEkdQaz7yb++6LU/l6HX\nIte3K3t0o9de8QRi8u5v7+GXyF3/F2O/g/Yn19Kaz2Lv/MNevPdn9FppeBW/X9S1Yy3Gv3RM9auv\nwvkpeQH2z4ksvSaWfXmH3AzLnDEMwzAMwzAMwzAMw5hB7McZwzAMwzAMwzAMwzCMGeSmsqYisrZ0\n05aa91EKMtkpu+ln1a8gTajotqVeu2r3YdUviiyzWS5SvVvbiCXHId1p1q1IO5x7E1vVEUr/rNmL\nlNP5i3V6UyylbLN96KAj1eK0qJ5zSFlLcKQUtb+EXIetx1MX6c9NKJ5em0KWBw0k6LTWtqOQB7Fl\ndOc5ndrO1teD3ZCkceq1iEhfHdISMyuQKt/RVqP6jWThvo1T6m/ByvX47+M6fbs3hPdmC1PXxi1n\nB+bFJEmN3GtNyMN43XgdqbShPEfmQ5K0DEp97TiprWSTSrUdazhhi1XXqpRtcDvJyjHRsYcNtQ7I\n+5EyJ0v9OzoGczVxFlI5R3p0Wh7bz+bcivXrC0CiOD6uP3OcpGksU0su0KnHAx2Yl2nzkAo64qR4\n9lxFemFiMcYz1KnHkKUjnSeRqhlyJF3xjjVyuGFJwviQToefoNRLvt6BOr1mQ2Qhmkr2sYNndEp0\nZAzmxZGfvOu1s5N1vPHHIo01kIXY29l50Gu3n9V2yKE2jCvLPEs/uVT1a9oL2VXKAshUXBtJtoNP\nLsd3anBsJKPWIF2W4zyn4oo4tu8bJaxwHOk6reOkj2QInKofateyzvgCrJGuU3gPlgOJiGSuISvG\ndNg8tpw9qfrx3sV7NcsAUgrmqtdcP7HPa2eVQWYRE6NlKVM+khX4MR6uzJHTg3meR0br/wfEciWW\nyoz26PnbdgBp6CXLJeywHMidP5Nknx3pwzpypRTNJEnO3Y7xGWrUcapwA+yRO2uRRu/GgJS5ZKse\niznSebHWa7OsTkSk9xpZn84nSXeklqJMkBQuk6y+E5p0uv4ExeWkMsR4TvcXEZkax7kvksaR5TYi\nIinz9DwJJwGSa0bFaIvUzquIWWkLyQ7+nN63YzOxTllSP+yMYfF22PR21mAMeX6IaDlxJ9nIZq+B\nzDQhQcscOxKx38WmkSV9hN7rYzMQD3qvHPHaje8dUf34vBZJcn33bJw1H2e0kTK+L7pf+ymc+TJv\nno3/PyKRJB2Ta7TsjGWAja9hTDvbtZS1ZDPuL8/V5sNaJsVWxCu/gPMmy0FFRK49jzFuI8nwgltg\n0336oH7vJ//sEa8dnE1yjm/vU/2KH8b4D9N+3ri7WvXrOQ/pTPb6Yq99/SktMy55HOPYeRrnmyxH\ntu3O1XCyYCu+0413a9XfKh+AzTFLmhuP6PIWbLM9rxz71ZXXdDmGvmHMiR2f3eS1+awuItJyHOMz\n2g0J24u/2ue1Jya1DCnnPGIwz5XRK1o2mbUU4ztM8qzkxfo8zRLk8y/jmXD2kmLVr+s4YgWX1Rif\n0POyg8pnlK6QsHNiF+aWazPOMr75pdhDujp1rOyg58osmrehZv08wM/Fj//u3Xi/U/pcFUcS7P1/\n+UuvPUr3pjRby6C7SD49SXK3957S9vJ+H2JsO63zzuNa0hVPz+nryCLbLYNx9l1I3KpfR7twQJ9v\nxvqwz2Y8tllcLHPGMAzDMAzDMAzDMAxjBrEfZwzDMAzDMAzDMAzDMGaQm8qa2g4j5SypQrtfFOyE\nS1HVfyDF2pU1cRplx3mkuOfdVqa69V6GPKHhRaQCzVqvnZeClK7ZTo49XEk/QGmqIiID1yELWPFH\nSE2tf1GnJHJK/1ALHEgmnQrgMSlIW02laszdjtNGBqU+CSlqXHnNaLeWi4QbTjGPzdD3hqUPyo3A\n77rsIAUrNgMpZq5zxDDdt04/0uPY7UlEpOMc5kJ0PD63uxmvYYcdEZE4kq5xOnxUQKf+TlGa4kAV\n3oNdq0RExslppeB2OFkMd+p0Wf5OUdEYe3eu99eRlKJSwkraCqRQDjj3peBeODVwijvLDES0Iw6n\nb19/RqfIxqQjdZ/T/QPpOqWf0405Lbm/CemEA7XalSeGZB/JlUh3H+rVKYQ9FA9iM/E5PedbVb/M\ndUit5HkQqtL3yE/XzuvXn6JdM9y02HDDEg+/4w7BTnK9l/D9UxbqNNm2dxCXE0qQ/lqeqx072KWu\ntBJyIHZWERHJvR1yDJZ8sZQpJuhXr2EJWZBkk13ndToqzx+OFZkbilU/Tu3uq8bY5d9WrvpxHOF0\n4dzNJapfyzu1Ml1wyrwrQ0qg+9JzAXPV3T/bDpJMYD3mMMcaEe3yMz6OuOSL1zFvkuJhViU0QF31\ncFz0+/U8CmSShK0BjgP9NXrNJpP7zgTJffquaZcfTu1OotfcLO6yK1IWSW1EtIvYdND6NqTZ7Oon\noqXGvBf2OK4ovJ47T0AWwpI2EZFQCGeV5AKcafqaa1W/qQnsXT3VkKiyTCpxtpYhJZAUs/UYZGex\nWXpucnxkaVTqfD0vuuk78lzvOqljdN7tOMN1ktuVK/2aThfDhDTIYWvePaD+VrwTOf+9DVhvrqOc\nLxGxLYUcx6Lj9BobG8M5MqUYcanx8AnVLzoWaz0uj1xIB7C2r+z9tXpNxirE5/pXcS7Nv13Hv8aj\nR702r99YR77CUvzkEuz7wfX6/Yb6a712xynM33HHhS5YMX3udyIiXbSvX33rsvrbmj+CbKWJXGyW\nPqilYae/B+nugidWeu2GF/Q5f/HvwIXl2n/i2aXgrgrVr/RevH8aSSTYpTI5Xt/39nexzrup5IEr\nnWk9CMlmbB7OkUV364Mjy2b5HvmzdXzpJVfb4y+dQj+fnsNlKxB7ivRx4cNDsSs1S8vD+awYT2fF\n2JPaJa/wVlwfz+/Ku+erfiz/euX7b3ntgjQt5Z+zDV9ysAbr9+77Nnjt1148pF7DZ+04GpuhRr03\ncxmLQ68hBmxy5L4T9N2Xf2q113b3t26S6LOjaGmuLoPR0TC9zmnMtj/bqf4dGYnzyJt//oLXXvvk\nOt2PvlvtU5ByVXxuvep36K9f8drxfsTh8o8vUf2u/fy0185Iw/wp/TRk9Fe/p12T+BkxIgbXU1qq\nZZPlj8P9qv4NPAud3q+diDf9HuIQr233mTomGp9bvAln6+EmLf2Kd8qguFjmjGEYhmEYhmEYhmEY\nxgxiP84YhmEYhmEYhmEYhmHMIPbjjGEYhmEYhmEYhmEYxgxy05ozbG/qalr766Hfi58NDVjakp79\nThAAACAASURBVFzVr42s0ri+Sb9Ti2KkExZquTuhZXb1XH010Fay3p9rG4z1hdRruL5NiD6H61WI\niASoBgTXLXHt5/i78/dgbb77Wa37ar127o5S1S9YPr16Xqbb0czHkZWZj+ob9Dv2vRNUi4MtkFnX\nJyKSVALNZzdpZJMcW+eJYcwtrnXDdQzGHN3zBFmfsobVF9R6Xq5NwxbPHY5mnq+96wL0/a6dMn/3\nUA/qPrg1XQLOGgkrVLuJbbVFRAYbcE1cA6H/qtamJtE847EuekBrt2t/Da1lYgnqG0yEdD0Wrv/E\nNUO6yT40xbGN7zgCTTbr8ZveqFL92P5zcoy0zEt1fOEaKWztyjZ1IlrvGUfjG+fUDRqZ7vpPfJ/O\n6vo5bIccS5pynusiImnLcA/YctCtZcV2wKlLMQ59V3WtEJ63MaSnH7yBeTXSqbXr47m0N1CNr/FB\nPUdGOnHt6Uug5e65ouMQ24gPN0Pb3ebUAJqgmgPZtLbbj91Q/XjOhBteY7G5en8ao1pOE6O4BteW\nMY6stBtfQZ0Qrv8jIjJwA3G44zC024luPKW12ZWAfr1XUYOq9eCP1WtiKfa3U7wfcyytB6gGkJ/q\nAAQrnf2uBTaZSaWIGx0n9HdPp/lb92tYpGZvnaX6jfXrfTzcpCyG9abfqZPSdQa1EGKz8Z1T5jn1\nWaiuUFwuxrTnYrvqx+siIhJzdbhFW4vGF+I9uKYS75duXSKuZ8e1QZp265jKcYNrfzW8fEX1C1LN\nBP4efqe+kkRiHUyNY/1GO/WQOo6jlkmRdnP/0ExMIJ76U3X9sLo3UQcig+pIuNeXWIS5GhFBtbWc\nUjmtJ1ALJYNscNMWaQvXxjdx33M2oYZG6yHUGclcU6hew7GaiYlx1vkQztPBxaiz1fyOrquSthhj\n3XIY1+3WY+R4ql5zoFb147k4HXDcLFpcoP7W+CZqnyXMRp2G2mfOq36VDy3y2h3HcJ4rekjXK4ny\n4zxf8STqc0VE6v9X/c7f7fHaCz6C9778Ej63cqee0APVeB7gOmO+xBjVT40Drd/m1/WaTV2FedtL\na7Hgbl0fp/55jH/l/GKvfe2itqrO2ahjbDiJTsDaiXHi6ZHnUQ9k0Wpce77zPZp34ft3dOH8Me+B\nxarf8CjOd3d8bqvXPvSzw6pfDMWEvDvwHMh17TavWqReM9KB57bBWlzD+fM1qt9yqmO49QnUMuXz\ni4jItWN4XQFZSfuSdR2/cXrm7KWzYdqaPNXvyq+PynSy4UnU42k5cF39LXtdsddedNsCr52Ur8/5\n/Y3YP1NXIq5c/q6uC7b8C6hVw8+B7lm25BF81uANnOX5+ip+b5V6Tc0vUKeGf3vobta/Pbz6f2DN\nvXgrYkVxpq4dtPc7e7327X92p9eOitFrOzcV+0nGMsT5a2d1TRy2GH8/LHPGMAzDMAzDMAzDMAxj\nBrEfZwzDMAzDMAzDMAzDMGaQiKmpqenzOTQMwzAMwzAMwzAMwzBuimXOGIZhGIZhGIZhGIZhzCD2\n44xhGIZhGIZhGIZhGMYMYj/OGIZhGIZhGIZhGIZhzCD244xhGIZhGIZhGIZhGMYMYj/OGIZhGIZh\nGIZhGIZhzCD244xhGIZhGIZhGIZhGMYMYj/OGIZhGIZhGIZhGIZhzCD244xhGIZhGIZhGIZhGMYM\nYj/OGIZhGIZhGIZhGIZhzCD244xhGIZhGIZhGIZhGMYMYj/OGIZhGIZhGIZhGIZhzCD244xhGIZh\nGIZhGIZhGMYMYj/OGIZhGIZhGIZhGIZhzCD244xhGIZhGIZhGIZhGMYMYj/OGIZhGIZhGIZhGIZh\nzCD244xhGIZhGIZhGIZhGMYMYj/OGIZhGIZhGIZhGIZhzCDRN/vjwb/4c68dm5+g/pZYnu61u081\n4w9TH/x+qctzvfZAbY/623BDn9fO2lSMC4yLUf2a36zy2oHcRLQz49FpUl9E1wlcX2JFmtdOKE5W\n/abGJ712qHMI1xDwOe/X5LVztpd67bpfXVD94mfh/VMWZHrtgevdqt9o74jXXvGZL0u4qTn9lNce\nbh1Qf2s5UOe1kyswphGREapfYmmq12545arXzlxboPolz8X3vPHSZa9ddN9c1e/6U+e8dvb22V67\nja4ne/Ns9ZrGV/G5aSvzvHZCYVD1663q9NqxGZgX15+7qPqVP77Eaw93DHrt2pcvq35564u9Nn+/\nwcY+1a/vSofXXv7EH0k4ufDaD7y2Pz1O/a35jWqvnbGu0GvXv3lN9SvYUuK1q9+44rUL1xarfuOD\nY1578Lpep0zRg/O89pkfvee1i9dj3ELtQ+o1aRQDes614nqO16p+8+6Y77X7LuO+BudlqH7Nb+N1\nsx7Cawbr9XVH+PA7NK/npt3Vqt/Q6KjXvuNv/1bCzdAQ5vffPPYH6m+rysq8dv4KrKvMNYWqX8+V\ndq9dsGqj146O1jH68ku/9tpxFCtf+f5bql9jJ9ZL//Cw1/7Gs3/utf/PQ/9PveZjW/G5hffP8drf\n+uK/q37/95m/9to1L+/z2sV3rFT9/uKjeP/f+9pHvfbP/+FF1e/3/+33vfa3n/y21/7sNx9T/a78\n+KTX3vqNb0g4OfGTf/Taacvy1N96L2Nspiawn0yOTqh+vMZyt2EPaT1Up/rFU2zrOo59J3VZrurX\ndRJ7XF8b4tK8z+I+X/vxKfWanI3FXnu4ud9rx9JcERFp31/vtaPisXZSlmSrflMT2HeTaL+o+6Xe\nFwN5eP/xPux9SXPSVb+mfde9drjHUETk8N//ldcO0v4sIjJQhT06g/a4MbpeERF/GmIx70+TIT3e\nBfdVem0+W4wPjKp+AzX43MiYKK8dFYujWiBTr/OEIpwz2t7B/Ank6H6R0Xg/f2qs1+6mOCwiEhP0\n4x8RdA6Y0ucqfzr21q5jmJuxBXr+pC7EPCma97CEk5e/jPNSaGxM/W3dH2/x2oMNvV67/VC96jfe\nhzEofAh72u5v7Vb94v24L4vuXuS1T7yg19WcFVjPozTWUXFYO0mVeq7HBAO4niF8j/aD+lpnf2wh\n/kFjs/+b+lrn3lrhtSfpXJs4O1X1m6IxbXoNZ+uaVj0nZmVifWz8y7+UcMNrUc050efygW6c0wo2\nl6h+ATrrDbfhnHtl1yXVb+EjS732madPeO20RD1vA3TOSl6Y5bV7LyHGnz9VpV6zfAfmRfcZ3MNi\nmlciIi17EdsG6VpHx8dVv7ZezNvsZKxzPsuJiETQPat5E3EovThN9cvaUIxrmh/etXjm+X/12vEF\n+kzeX93ltX2JWEeDdfqcVnAH5u0NOoe7+10/nfGDdCbv4mdREYnNRgyMoZjHjHYNq3+H6BkpflaK\n1w44526el+3vNnhtf4bux/G5k54dA9k6Po+0YW7zvq+ebUWk42ij1171u1+RcFN7/pdeu/rps+pv\naYsQyzNXY1/sPKPve+IsxJmRLsTAWGfvGhtE7OW91f19gPe/xhM3vPayL67z2lf/7YR6Te7tiMPd\nZ1q8dk+dfv4ufXiB1657Fs+IBXdXqH6ddN/9NCb+ND2vRrtDXpv3vpYDtapfBt2/91uLljljGIZh\nGIZhGIZhGIYxg9iPM4ZhGIZhGIZhGIZhGDPITWVNEVGUXhipf8cJUIpY9qZZXnvKSX298SxSCkPt\nSNvyJWq5UsItSPFhKdPkmE4PDs5HClt0AvqxRCKLZCgiIpE+pPOOh5Ay2rLnuuo32oN0pJztSBsc\nrNVpUHEFSV67vxrpdZGOFCiCblnr3lqvzanhIiIJs7S8KtzEZSFds7+qS/0tg2QmnG441u+kb6dg\nvJPKkLLW4qQIT1Iqfw6l6w9S2ryISM5tuL89F9q8Ns8l/kwRkdzbIfvg9MDJcT1HWELAKeSljy5U\n/RpegbQn/26knSek6TTCEUpT6zqH9LhgmU5NHs3SKXvhJL4Qc8RNNZz9MOQ8nL6XvUpLziL9WO7F\nGzE2/dc6Vb9QB+5ZRz/GrfzWctWviSSGBSsgvRlqwGtiUgPqNREUR2JzMC/nbNeyN5ZZZJH8QkSv\nsYI7cE3Nu3A9mZuKVb9uJ931txTdrz+38aWr79svXLzxp//ktb/4oy+pv534+9e89rf+Gamlv9N0\nh+rHMbH2zR967RePHVP9ti3EfC9dh/EecdL/P/HETq99Zi/SOiMjEaeWl+g06pTFSPOu+Tnm47wC\nPef2/+XPvXbBEvwtLk6/35f+6TNe+zt/9J9eO8anYyVLt770n3+Ga3hlv+p3oqbGa2+V8MLp8xMh\nfS+DJA2t+eV5vCZJr4P42VjPAyTB4/cWEWnfB5lK6krEapY+iIhEJ+A+xfUijo9Q/Ctx4l/ja5jr\nOdswHr0kzxQRSVmR47U5ZZf3VRGR9vewFwzdoHT8bVqeynKdQeoXciS30w2nnw9c0/ti8gLM70aS\n8cbmJ6l+LJ/M3oK9KyJKn5f43wMkFWU5t4hIFr3HBI1x5xGkVHM6vYhI70XILKL8uLcslRERCZAE\nq/ktrA+WCP/X+2E/ZkmMK1mfIvk47+fNb2qpqCzU8rdwwjLMzX96m/rbi197wWvv/MrtXrvlhp7f\nRcuKvHbTLkiBC9P1/l76ENLf43IwDyrre1W/s+9CjjE2gVi9oAJjO9ys53obrfMu3nO3z1H99pF8\nadOf7PDakc75/NzbOHev+fQtXvv6c1pimJgP+UTJ45DkxL6lxzAwjWcbl+zNs9S/O96DZGSoBev0\n3CvnVL/iSszjcSoV4O53fXTeKVqIPan5oj4jdF7HOFy6WOu1F63HmGz78nb1mkPfxj40ZwNkEQ0v\n63PFRAjypXwqjRDr3Of+7x702ixl6nfiVfZG3LOKBzBPQySVERFppnEtni9hxUfPY2O9IfU3ljnx\n2S44V8vUx4cxVgkleM5w5UrJ8/AcyPsQnylFRCaGSDbTg7MjX0P2Rr0/9VEM5XXqxt2oWJYpQj4W\nl62vofcq4k1UAGfwpFItORui9xtuwr7Ae6SISO5WfXaaTiYm9XduP4XnrhF6Tiik5ycRkY4T2K+S\n52CsIqJ1nIpLwL2qoX1jfFjL+1KWYD+ufAhxqvUwzhyZG7T8n58DWXI9+yP6zB+XjVg+TvF6yClb\nMUbyVy6P4kqdo+OxDrhsgith7qZnyfdbi5Y5YxiGYRiGYRiGYRiGMYPYjzOGYRiGYRiGYRiGYRgz\niP04YxiGYRiGYRiGYRiGMYPctOZM3l2o59B5Umv+2kkHyvq/oSat08r/CLRoUWRhO9avNYkj3dAO\nd5+GFostR9/v37+F9d5c20ZEpOpV6G99UdATps3R9pnB+aR/JD21q7dl/VrvOeiz8+7R1ltcA2OM\n9OM5q7XG29Xuh5umvdCXZ68rUn9rOYC6O1lr8bcqx3a1+xTZAj4CgdzkmNYkDt3A+I+QjfKEUyOB\na8uwVfAA6Sv7a7SutnAjtNMtpJ2NcXSro1OYW1wXpu3IDdVvvJ+uicZ7clR/p0GyN2U7+A6qeyOi\nbTPDDdu0lzyyQP2NayIkzcX3dXXJ7cegAw3OhkVge4PuV3E3bB8LSAfL9oUiuvaSj+obxObiv7t1\nJNpJI5qxFuMeHatDUQvpPcdIqxnr1OQYboF2mC16eTxFRGJScH2sFW7ZXaP6cbyaDs7fwBzMfeaw\n+tuqrz7qtVknn1im7U+zV2F8YmOxZk99Utu3b/2LT3ntrlrUkvnc97SFd9c1xKn2Ptz3nnrUQdjy\nhc3qNd/56k+9dnM31seffO1Tqt/sTahnc/Fp1NEZGtI1DTKL13jtRx7GPRpxrNj7mhCvfvbnz3rt\nz333SdVv3plGmS64rsyoozeuonpQ2TS/B+u0btxPtpxcu2PYqc3FtrLjZDvp2oKmkMXlRDn02qxx\nb9mr53rGLbg+3n/rj2o770VPaNtz79KcGmsxZCkZV4QaA279MraYjad+3Zd1LZCyxxbJdML1cwJZ\nOq50UqyMzcX+n7YsR/XjGl+9dP0xybreC49dJllzD7fo+MjWsknlmGdxxWRN69T1y6B6fROk1W97\nW49j0SOIGymLMV9ikvVcSl2KPY7r8HGNPxH93flM5FrJdtJ5rkg7Cn9oVn8WZ4L2Y3p/X74BH3b1\nJzjPzH94ieoXTftB1TNYv8F8XQuw9jnE0ASqPVR4j64Lc+4o9uNFC1FPhGv7cM0REZF0OlcU0Fmp\n76peE75orGeOG7Pn61pf/FlvfWev1166Vl/riUP4TrG52D8jHDvrqNibPip8aAY7cWZnG2wRPe/Y\n7jqhXO+LvMYam3HfkuL0fKw7gXUx9yOow5W6RK/t3d/Z47VXbn1/C/Nz/67rvLHFevP+Wq+du0XX\nNTnzm9NeO1uoFpHz7JJF9tn9V3FOi/TrZwauu8jx1q0B6s7VcBJH9V6cj5W+K6iLNdaPcXJr4nCd\nkGA56nokz9FnfK7T5qMansmVul/PJTyfJZC9M9c98yfpOmJRAZyBIqMx1hPD+hkmPo/OuXT2///Z\ne88wu6ojC7Q6d9/OOXfflroltXLOKIBABCGRg8EkG4yNbWw89jjMeBjHcc4EBxwAmywySCAkJKGc\nc+ycc87dej/em7NWbUDf+4bbn/7U+lXi1rn3hL1r79OsVavL6UHFVtohEzCWWxz76aRpGH/cs83t\no1NL63iubgMZENRSL0numSUikpSFa+muwV6ldpPu3xocBt5H5cvoweX2gmyhd6i+Lozb8ffMUnnc\nx6WjBO8hiVOwjoU5vVzLnjkiH4WwWL02lzx90IuLPoX52+z0OeK/D3DtjUjW9UX3FcKYK31S9wqt\nP0Dvj7d++DyNOWMwGAwGg8FgMBgMBoPBcAFhf5wxGAwGg8FgMBgMBoPBYLiAOC9Xsb8FVOdzjqV1\n6gLQKGvWgQbFdFkRTRmtJptCl5YdlUnU4TmgZB78116VN245eFwsT2Aqn0vBTEjEd5dWkn1VoSNh\nIKpS0w7ItrJWFqq0uvdA4cq6EvbOA459XOoSSA7YctWlg/c1aWpfwEF2aEMONY8pWQNMP3dkIYND\noOF2V7d/bF7mxaBvhpN9bPnLx1Qey7yYYpg4PouOOaiOGR7u/chjYvI0/ZilWkwfjnZsUFNpnAWH\nY8ykX+xXeSP9GPtsFT7k0PXzrw8wZ5vAVLmOs1qGlH015HQdJD1iqrALlqP5wjVdXVlpE+2wrVt/\n3xCNq7wxmPcJZHfPVFwRkcoa0EyPHwA9c/aamSqPrWzZSrBpe5XKS1vMFt6go9a/p2mWHW0497Gr\nYaUXXZio8voaR9fOd0oezvevL65Tn32H6kyaH5KGfkcuV7MNFqJZCzH/Pv/4N1TeyAjJNsge/uwL\nW1XeM2tBe3/w1/d4cVQSaMXP/tvf1TF33X+1F7Ml5Nr/eV3l3bEAEsgn/vmWF685ren6k++f58VB\noZjbEz97pcp76RuPefHVNy3BMUG65idl6JoQSLSS1XDCeE2jDifZAduH1m/XkosgokunLwGtvWL9\naZWXRVLTlFmoV65Vc+Mu+n5aXuLIjjT7Ss2BHiQacckrqM9dZE8sItJIctD+esyj/Jt0vcu+HGvh\n4cd3enFSnpYfsAynhNaF+Mx4lVf16kn81iiU1vSlfi92rcl7q0HZ5rWGafciIhEpH22r3naoQeXF\nkgRD7ROcvQDLks7RWsOyYD5vEU3xZ3vTrFVFKq/tOKQFfB3DA1pi09+M5x9B+zS22HbPLySC5TYq\nTcJ8oyeJqSaL4rqmVvXZvM8v9mJeP2NydW3Y8MO3vZh3M1O+vFDlVb2J8chSm8bdek1adDskmmyf\nuv5x1Nlr/muNOubYH3fhd1qwZs69RtP769vwrKvX0X46UVP1tz4OC2aWMh0km28RkSW34lxb92Fv\n3Fjv3MvVoyeHEdES0Lgxul4M0BwLCsF8GWjR++0Bel9Z8OWlXszzQ0Qk1If3hnWPQrp02X1aunvR\nLfO9uOM41iuWNLh7p+3P4zkWZUKmcuI1LbFY9i1YcJ99EhKnsIQIlcetJbgGtNNcFhFpPQSpKEs0\nhx1L4pKnsKfO/s9rJZBoJ4vyJNq/iYikzMnxYpbQjjjvlZH0PsJ797aTer+QNBX7Ta7driyM5TAs\ngec1sq9dy5DYBjxxMq6j8pWTKi+e1n4fSfk7zmr5fzdJ9GNJWsVyJxGR1kOQ0YSxLFYvEZI5ylba\n7fU43xlf1DWQ9x38HJv3ahl5P8lh06nlSANJ/UT0OxO396jfpiW5WUuxZ08eT1LoM/i+nlrdUmX8\nZ1ADDv96Pc7hA/3dvS1YM1mON9iq6wuP4Q7avwbF6DnL94VjV4aZlKj/BuLCmDMGg8FgMBgMBoPB\nYDAYDBcQ9scZg8FgMBgMBoPBYDAYDIYLiP/ffFNXhlT7Dtw2zpFEomW3drBhSn7paVCfQkJ0t3Gm\nUnNHen+qpo0f2wBaZgZ1Mk+eB8p31bvaCSSOaKxxzaDNsQxCRMRH3epT5oPC1FmqKZ4sc+EO8Uxr\nFhFpPwLqYVAo/g7GtG6RDzs2BBosYelv05R17jx/7M/oPJ+zVHeXz6Ou00xZ6wnV95Ap/8nkIOKO\nH6ZIJ5M7RGstxsi4my9Tx5w7B5pj3jWg2Va97UgBiPbHz+RDzlLkjJI0Adfb2l6v8pKngp7Kzlcp\n83JUXsk/QE/N/NZqCSSyroTkpcVxTit9BjIX7q4+5tqJ8nFg6nrKXO0exjKiqCTMl96BAZV3+Czm\n2fEqULsvG4JEqbSqTh1TNB5jv7oU95m7movoMcbU1HOOrKCZZFcsq6h1akACuRt0nMC8DPHpDu8R\nyVrmFGjUE4X2tiUXqc/a6bxYgnKUKO8i2vHp7kXTvTgszHEdCEE9++XdP/bi+37+aZWXtxXj591f\nvOPFn/rt97341l/eq46Ji0NX+3984SEvnllQoPJKX4O85fvPPezF7eUVKi85A/T66k7M55LXN6u8\nFHJWqN+HZ1+yTTsRzbx3gYwWqreWeXGoO34yQCmv24BzSpyonQEj0zCvWDY01aERs9tGWATWsZIX\nd6i8WJo/veSiwBLa4FD9/2LY+TBtOmpw8XTtWhLGLj20XlS8fFzlpZIL0aR7Zntx2dOHVR7LDxJy\nMd9G+jUFf6Bb15tAg6XQkSnarSntIsjJ2P2xflOZyuN1nfcFyfOyVF7LHtRsdisJd2QM8eQ82EFu\nezH0fEPC9baN16ey5yGfqHZo+DFFuNdl+zD/sou0FH3fbuyxphVjLQ1P0Wt4fx32duwEFuO4y42m\nG2UaScfPbdDreztRz9kdbdvP3lN5y79+qRe/9zPUv6q3Tqm8996FxP7aB6/w4pY9zp6XxktfLeKL\n70C9f/67L6ljbvnpTV5cSMez9FBES2XY6cyVdl+2yO/FQ70Yb82ntBwmmORoKYsxf6Nr9Pdt+iEk\nuLf8bpUEGuwY1rBNrw0l+yBDSIzGPM1dqWV7ypmO3GP42YvoOngJPROWTIloN7dzQxhbPM9/88Yb\n6pi0eDyTJZ/Bdyc6rkTrv/+mF8+5EbWy6p0zKu/MIVx7P7UWmLlyqspjiQxfhzv3YsfquRlIsFSy\ncZeWuaRRG4xzH9M+QkTEl4f7F0uOomnz9DsTS554r8jurCL6uQ3SehJGe8r2M1oyxe08+L0l2XHZ\nbScHqmAae67TWXcJyero2l3HNh+5P/Ge13Uf5rGdqztuBATTvgwHvGFnTe4hiSCPLVc+FzseUneW\ndvJ9EhHpcBx5vWMcmXF/B36X703LAayr7G4oIhIaivs57SHI8DsbtKwp+zLcxMad2ItlX6Vl4NFJ\nWCejktlBS++rSp+HMyBLozKv0A9LSbyukg/BmDMGg8FgMBgMBoPBYDAYDBcQ9scZg8FgMBgMBoPB\nYDAYDIYLCPvjjMFgMBgMBoPBYDAYDAbDBcR5e870VFHviWzdz4B17eGkSXf7elTvhaZwwnxorob7\nde+IwXZoa4cozlipbcOK8qFD7KxAL5iuUmjSEgq0rjKENGo509EnxLXcZnvE7gpcu6vVLymDxjhu\nEjTicY6ek7V2sWM+xkpTPtz7JuCgvgWuBjVxEnoh9DWg9039B1r320X2zWPJYjBr0lKVNzTUQTHG\niH9lvso7/Sx036xrZHv0sg3a8jeELE3jiqBpzF+l9bf9nTiH039HH5jsy/RYatyCa+wqx/POWOJX\neZ3lGGch4RgL3JtFRCRn9XgZLfB8G3b0mClz0N+giizoXN1mxwloa+vPoOdPRJjum5EyGdpKtmXM\ndHoOXFEAjec7G/d4cVgc+ihEOt8dXQBt9OQZ+J36LR+vA+U6VHiPttzuJA1s61H0sOHeDSIiw06v\nmv9FeJzu+VD+Aqx9x0x3sz85tp9EH4i5K/S4LVi+0ourD6LXyos7dH+RB758oxf3deM5DgxoC8ee\nOsyD5ZNhaf3kt59Ved9+7jkvPrn5r15cd2aTF7ce0X2YKnav9WLWWKdcpLXhmbNxjYd+BX0+9wgT\nEdn47K+8eN6/X+PFJ57YoPKKLp+A35rm9+LTf9X3iHui5X9866X/EybfB9vvA49tV59xj5gxl0Kz\n3Fuj+4pVU4+O/FW4popXdR+XzEvQC6vlIMbm2Bt0Tx3u4ROVFoPfJb16yz7dGyNlLtZClsl3nNHj\niC2TGTEFjhXoYYyRjlP4jrBIpwaQxXjl+9TDa4K2X02er3t6BRpdZagdffX6+XScwPn7b53ixbFj\nk1Ve2xH01Go5iOsPc+w1Uy+CVTD3JGk74NpTY/xEU/8FXqvOvKnHSNoY1LpoP57JYJvuV7JrI3r/\n9FD/MMepVQaobxlbvp/ZX6byEnzo5RE3EfelbZ/uM8bXHmhw37iQaD3OmndhvOffiCKQka73aa9+\n71V8Rn0MYwp0/7GL5qCGhvqwVyw9qftrlNRjHNz4EPqzcG+aG/5b2xhz/yPer4U6PRpylqMe5C9E\nr5yy99epPKG+I920N57w6Rkqbe+fUTfnfhE9UngciojMvmOejCromo/u0D0EZ11NfdXI9LhOVAAA\nIABJREFUYjg8Vs+x7hqsd/u2Y45kJ+nnXXwLvu/Es7CWjvPp/c32k+g5tHQxjolIw57oOw/cpo7h\nvjfcj4z7T4qIVDWjvuRvwt5n4n1zVd7mX2D9C6Yi7dowN+/BGEyagb5E+1/Yp/LGTMT6PFa7tH9i\nhFBfP7efCj9fXmu4T5mI3rNy7xfuESMi0kV7b7bfHnH2ebwe9zWh7nZX4/j4QqdXCb2DJBZhb912\nRvd67DqDd6KSI+hVEuz0nMkbj+/gdSWuWP9uL9WyIHpP82XGqrxz2XpuBhrN+1GnKreUqs+KrkcN\n5H527n6bLdLrN+A7cq7R70hVL2M/zPU7+0rdT6ryNfRBS6X+RcmzcG+7KvT7WFAQ7mF4OM4vPkPX\njaod6IsYTvbWVa+eUHmJM/H9EZQXn6vXt7w1E+hfuEd9Lbp3UMJUvd9xYcwZg8FgMBgMBoPBYDAY\nDIYLCPvjjMFgMBgMBoPBYDAYDAbDBcR5ZU2+HNBqO05puzG28WNqbtwUTW9KIYYXU4aY9iQiUnsC\nVNjEGNAGh3u1NKNhF+hjKWTB3HkadLGM5drO9QhZRMdEgRYZ7Mia2g/iOpiK203SCRGRzETQXWvJ\nVnW4R1t/Js3A+ZU/A4vLFMdKO2GKtlkNNDqI1urKybJXQj4SFAoaWOocbQVashkygeG/f+DFvpxD\nKo+fcSRZGIbFRaq8bLJBZMtKpnKz5EpEpJeo593VoLC+9dO3Vd6CVZC+dPdBQlb/rqbo/e6tt7z4\nq7dASlFPz1REZKiT7dJB1+xr7FF5THPMnyQBxYn1oOkWX6W/vK8edLmCK0AbbD+mqbR8b3uOQW6Y\nEB+j8moO4LPcuZgH//r7uyrvkimg+7N8ie1Dxy3W9nFJUyFlYsmFa2NZvQ7U5v4G3OfyD/QznHr3\nHC8uJQvOMTdMVnks52MqfNNmLd/z3xjgB+fg0Xee8eIXv/Yj9Vn8+G1e/Pv/esqLW7s1HbJ1P2pl\n6izIg+5e8U2V95c3f+DFc795hxfnHdup8rq6cK/ZNjmjEJLFgXZNm581F3aLTCXuOKutEUtewzV9\n8x//8OInV31f5S341s04hzBQtv/4sp7bMw6B1p8eD0r6pQ/frPIiIkavpla9ASru1M9oGnob2aGH\nU81r3aulHvlXg/pavx7SnrAkXSdZ8jlCtqB9nXo9Ti1CzQsKwlysOwrZ1fibrlbHtDdgTfKR1KjP\nsX1NKMaazufTU92p8pLIgtuXDSp220EtiTv8d0ggC5ZjHVDSDtF06HHaYTwgCE/EvWbLVRGRpLm0\ntyjFmGapsohIFFHORw7gGVe9rm2YMy7BnqSnCvcte42262w/jvHD0urQGDzTFJ+WaZw8XObF48Xv\nxX09+n4uvBo6BpafuxbmaVXY3wx14Hpzs/TejiXd/U2o0a4cbaBNy7gDCd5j7Fi3X322+r9We3HL\nQUgSMi/XaxIpH8SXi+fZsLFM5dW343ls/+nHy2bu+S1qbX8L3Zc5qNW7f7dFHRMVjro7kWzok7K1\ntrYzDb8bFoZWA/ET9LMZaPtoSUhfs96zTL4B3z/E+9cRLZ048wIkcYVzJODoKoV0fNICPScatmHP\nH0nWxuGORXZYLK7Tn4r7MTis97zla3EP4xOw9zlboWWfBWlYQ7gFAtc5V+7LLRAaSIoYV6zlkDmV\n+HfSLOyJXFvnpBicX3QcrtdtT5B1Kcb0LhpbbD0u8uE6F0gMdeNdzbXsbtqLexs/AXKeZsdyO24c\n7ktUOuZisyPJZW0U/y7XdBGRlAnYD/P4TinAejk0pOUw3TWQD9fvwto8MqDrJNfQKauwF17/5GaV\nl1aHtTVtGdo7dJfr300imX9nCeaDK8l322IEGsn03sqtPkREIsjyfqAD59G8Qz/HfNpHt+xB7e10\n9ofhyfi+qCyM9ZNPH1B5eSswvvl9vIHGxdCIHtuhkXhPZVnh+h1a6nfjvZd7cRu1Rjh9Wtu8F9Ba\nmEBzdsPv31N54zJRH/icchypVgO9exSvkA/BmDMGg8FgMBgMBoPBYDAYDBcQ9scZg8FgMBgMBoPB\nYDAYDIYLiPPKmlhGws4OIiIdJCMaHCTqtUORZVpU4w7QhFzaW+5syCe46/c5h16ZvYToUifR5TyR\n5BKD3Zp6HBaC7xt7N7rVDzpuNrXvnPHiGnL7SHPcBvLIKYhpjE0ORa/2XXzHQB9+q+Okpi6GJ+ku\n8YHGOLrmo3/arT5LI5p2MnV5HxnSVLqMalA844iWyHIyES2xeX8/qN3sgiAiMmYRnJNiCzEWmraC\nwhri0+4LOXMgpSh/f5MXz1qk7VgGWkG3a+8BjTchVst3puaDYthYA7rdW29oh5jpfr8XR0eCNrnk\nAe1UNTKKlFFfBDqMt+3XVNqYcbh/Z99Eh/HiW6apvDqiac++E+4L/Q7VWbZjHO9cB+nIqvmaz1zb\niHt20SL8Vu1ZnF/OON2dnedzdznoiemL/focBHlM44w8rK89hJxgIiNxj5jWLSLSTNfkI5eZuKla\n/uI6swUau3/8Ry8eN9WvPtv5BCQo33/hF158/G9vqLyEaejy/ov7H/fiq2Zp+4Wjj0K+NOVBlPrX\nf7de5cVFgQZd1gj65833YS5venabOqa6Bc/+0w9CPnDrnd9ReYumwq3prQMveXHNrr36XB/HNTY3\ngu67crqm9Z8lJ5S0OND6n/rqH1Ue07nvePRRCSSyyEmMZUwiIj5yNax/F5RoH8mARbTjWmsX7nOK\nU/NYOhSVgfo10KElK90RWLtYHhQ/BjW9re6wOobX9yGSDx9Yp/OWFi3z4i2PgrJdVKT3BKdIepk3\nHdLdrkbthFRIjltth6hWXK1rRV+dPi7Q6Cf51mCns2eIR52PIJe6MMfdrWkb9jQp07EHCXZcdthB\ni5998x5N148gqUbXWVDbS86ifo2c03uiBBrr0eTi8iHHul7szRInYc0453zf0JSPdkxJGKfdRYLD\ncI0tRyHpcuW0obGaGh9I8H5h5YOXqs/2/R609ryFkJVVO5KzonshI2ql63CdXyYXYL+wdDKo/417\nK1VefDxq1uFX/unFf3sO0tDoCD2OZhTg/Ni58MAJLUG9+OH7vLinB7K/dT9+S+VNnITvy78O+6OI\naC2vGRnB2lrxJua9z3FnzVkyRkYTNYcxD3oH9Fycey80jZ0kf9r9upaxLbodDnbsmDVtsiNjo31a\nP9XK4un6GkPJDSqB5lJ0OuLmvXrPnzQVNbG+qcyLeS6LiBypIElDPX532l33qrz2o494cS7Vx9Ao\nPafY5a/4aki6w1xHqzJ9HoEE1x53T8nvdJFJqHFpC/W7FctKWF7r1tMRas8QnYOxyo5MIiJdDZib\nSdRroLkcshl2e3L/zQ5KkalaItZxHO8+bQdw3suvna/yus/gnvdUsguwlvKzU9UQjcsRZ82JTNPn\nEWiwOy27BIqItJMMids9BIfpfXNPHe5bZRXahRRl6newQ4fxjjypB2Mh0a//PhBB78h8/ZEZJJ92\n3g1Y+jZA97OhXcvJtjwPx7rj1ZjP/YP67wM9/fiOqbRPa+nS+5Sc67C/adyK+9d+RDszRvv1ntCF\nMWcMBoPBYDAYDAaDwWAwGC4g7I8zBoPBYDAYDAaDwWAwGAwXEPbHGYPBYDAYDAaDwWAwGAyGC4jz\n9pwJJ62bq+VLmIheDSTtUlptEZEI0u/5sqAP62vU3zdAVoxJs6Hnjc7WuqyaLUe9uP0QtM1s4V25\nvUwdExcFvRpb9KY4lo8JU9DLIZYsk7tLtZV2yHhor0+9hR4fHT1aZznpkmIvPjcMXXdotO4r4H5/\noME63dgkrfk7/QyssHNXoA+ML0vf9766j7Y9ZitREa3TLqyFBn/C3bofxom/oudEwljooPNvhi40\ntUD7p547Bw0g27tKse4b8sLDa7344uuhQ/7tr55VeTfMhzb0ZC3s3t7auFHlLX3gAS9OicX1Bkfo\n6dN2HN8hut3LJ0bW7JyP/Yx77CQk4/zYblxEJH4yWeLS+N7y7A6VN4YsJBeswXPb/oruEzJtOrTc\n0dRTIy8BNWDI6evEvS24p8TmX+o+P3WkC51JevxwR0PdUQLdb08v7sNpmpciIv5F+I7eGvxub4Xu\n3THYjn8H2g5dRCQoBH8P53ojIrJsFbSqX1v9JS92e0xM2AFL1m89+Q0vrtupeykM070uew79BHac\nPKny/rIR86L2GPo0cN+eaeO0Hr96B3rOVFFvrfUH/qLyXvwO+swkJMC+sqx1q8pLnotrankDz56t\nREV0L5nUSagvq6+/VuVt+V5g+8wwGj5AT4jUhfnqM9aRx04gu9RpmSpvsOujNdCTb5+p8nqqMId5\nzrJNt4hIRiZssqv7Uf8iI3FfgxJ1vWJ7037qFZafqnuV1KxDP5u8FKx9h46WqLxZizFh9m6BHanf\n+T4frenck65uY6nKixuve5wEGkmzsM9oP+H0gaN9DPfJGmjRvazSySK7iXrq8bMSERnp+2gL8uEe\nnRczBjbWMWMRZ7Xid6c8uEwd09+B8ZOSjb5sLY26X0lK+kVeHBKCeVRX8abK47GVXIBnGh2trUAH\nB1EDmgah1Xf7DwyOopV2eCr2l9yHQkQkn2o+70tTFui1tKsS+6/Dr2A/lJOn9xWJ07D29LdhvnDv\nNBGR0i3o//Lgj9Ez5NGfPOTFjzz6kjpm91nUUH8+akVMpJ7nAwN0z4+jjoeF6rmdvszvxb449H9q\nqzqj8pLz0R+n/fT7XhyZputu2Cj2DRIRyZmFc4xzehsNUl/EI+ux/59/o+6Bxz1K8qjm9LbofXkK\n9VbcsRZ93ip26xqwaDx6vBSSJS7bWD//vLbRvW/KrV487pZLcA5d2pb3CpoTcbSXLd/3qsoLoper\nxl34jt7KTpXH1sVbfolzCgnWc3HG7aPgg/7/gee9a/88TH1Amw9gn+xaNfN+kceg+77I75LRmeh1\nE+r0bItLgy17wzH0mYkbg54m3I9ERKTqFewdI7PxO26v0PhJGKc129FbJKpfvxO1N+NZRZD9dBzV\nehHd75Dfmwda9ZqTMEnvGwMNtjcv+NQU9Vk/jVv++8CeRz5QeWfO4DumXYYeSANOL6K5l+FFqXIX\n9lX+yXrPkFiAd42qrbDCjsnHPSy6ZYk6ZqAPz6tsI+redfPmqbzNx9GvKd6H+16UqfdsU5fjff7o\nJoyR5Zfod1vuX9dSiXfvaV/U77P7f6fvmQtjzhgMBoPBYDAYDAaDwWAwXEDYH2cMBoPBYDAYDAaD\nwWAwGC4gzitrYltH19Ja0cyIqs+UXRGRlj2gsCXPB8XatSn05cIOzUf2WMN9WhbBdmYDuaBYdRyC\nTVVzpz6HlBxQ2GLJBtu9ppQpoO5XbQC9le+DiEh3BWisKXn47qg6TdELIdlLXPHHU7Tji1M/9rNA\noP0o5F9suywikuADRc6XiWdw5K/acjt9PCi+0X7QCLscSVZ7CWi3BdfCwvHVH72u8havBr3ywHpI\nLlLngXLc3qqtEllm0U/2yiWvHFN5C+aDRle7A3TDz3/mGpXHVqolB0B5fPwb31B5CVm43sE2UCCr\nXtXSGZbjBRpM8W9zrEqrj4BCmJwMyUDZ+2dVXjBRXIeGMf9mzNEWtgMtuLdD3Zh/XX2anp48B/OZ\n7VgbiN4fnqBp2X1ksbd9JyjKbFMnIpJCNsmJMyBfYSmGiIgchH1eTDzm6cTrtb16/VZQJhPJijoi\nUdvYlz97VEYT7WSbnOtIQN/90dv4jOQjq2/Ulu1Fqy734h0/+psXR8Xraym4FZTU038GFfSx9Y+p\nvO5ujOOUIty3F78OaRCfj4hIWQPqbfAU/E6vI3+959HvefHOR37ixTlXjFN5LE8rWAYKq2sFuutZ\n1KXhI+coT9uNF981W0YLTENniZOISCJJ1bj+D3ToucMU/IU3zfXishd0LYvNw3xmOenIoF4/a+NA\nh6//ADWvLRHPqe2gtprcfhjP/arPgoIf7ozLjtN4Nlz/TlRrG9mKl0EjXlIMCnDaDF0Xa98haQUt\nwcGRISovOEL/O9Cofw8yqjhnDWYKO6//uSu11rFhN6RdLM2rfk1LDFn7nXMVxv5gt7YNbtkPK+e4\nIqzVc795lxePjOhaeS4W0qjeXtTejOyrVF5/P9aNvj7U0RBHnhsRCTr34CAkU/39daKB9SSW6OWh\nPr0PcmtsIMFrQ/Ubp9VnY++EZGfX77d4cT7ZvIuIjJmFvHmfR73pcmyHe0mG21mCz2Z+9gsqr7UV\nMuHf/scXvTjnkqk4t7Xb1DELJ2ANPl2CZ7joM4tVXk8rnlsEWRJPu3Syyqt5E3OsdwbOO9mZi8f+\nDgkk15q4sXqfyHLk0UB0Ln57oF3Xyk6qP3m5qK/Bobo+dJdhL1p4FeqP+30sib8sDDLAks16v+Rf\nhPeBhAk4Zv+f8XxvuP5idczZ5494cV0i1ZeJev0spLHJdvU9NVqK7r8Jz7VxF2yhc9boPdvu32F8\nj5AEi++XyIffuwIJlmC544fX8ZaDeCeMztHtEwbpWfGYCwrWttMjw7jG9hLUNff6uqv34PtoLzuU\nibi7Slsrt7VivsSR7Xqs8+6UvgD7lPAE1LjhAS1VDSfJYRS/U9N3i4j01GBvzNbrGcv9Kq/9FMmr\n9DY3IOiowxhkCZ+ISF897s0QrV3zvqr3qCx/qn4V8sv8m/T6ye0tZn8FstvuWv0OX7ub3sdJ8hWd\nQfbtPdqq+gztead/Hu0tyl/Ue3zeqxwii3vXSpvt3FlGeminbhMwi+ReUz4HCVX7Sf3ell6cIeeD\nMWcMBoPBYDAYDAaDwWAwGC4g7I8zBoPBYDAYDAaDwWAwGAwXEOeVNXWchkQlblyy+owp1s37QFOL\nyYlTeUlzQJFlilTmMu3+0XoUlOv4FNDkO5qPqLx+6lwdEoXTD08D1eno7kp1TClR8K/NBg2RJVIi\nIm0lOC40BtQkplWKiAjJoaILQKtyZS1MXY9iB5teTXtjuuxooJckaB9yKiAnp7hCPOOUfP28uQP1\nIXI0yEhIUHmhIXjGR56BLKl3QNO3n/4LHCKGiYa5iOmzTpfyoR58B7uYtPfqvDHTQRdj14xdGw+p\nvB46p3vuhdvJyc2akh7bg3GSeQUcrWrXaRps41aMn/G6cfgnRuthjOGoTO2kMPnWGV7cvAe054GG\nFpU3fgXcgJp3Ia+9XNO3E4tAwWV3Eld6xNLGIOrUX3w/ZBqNe7RLAUvi1nz9Si92KZ4D5JrE0qhY\np8N9ZDLNYZJWVaw9rvJiSSLATgJDjqtKcPjoSinyFvq9+Luf+6367MHP3eDFh5+FXKbjmHYJaJqM\neTXpC3Ac+90X/qzyvvvgfV6cMBXP4b3/flLlXfLwXV78g1u/5cULya1i1r9picSMhy714oO/eteL\nH/vO0yrvO/9ELe8k+vBT39LOaexK0kd00tPkoiYi8svX/+bFLXWgLB//k5ZhPvZ7uKE8suFGCSSa\nSbaXtbJQfcZji022Tv3roMrrprk04Qpwk1kuJiKSR7Ux+xKsmSz9FRGpeBlyKHYB6yUZYUuzpsz/\n7l//+sjzYZqviJbhhJG7xk1JusidG8C5Mr3cdSNkij9TlCte1/TgCGd9DjRiClETXDeanFUY+z2K\nYq3rA58/1zBfnt4H1e+FBIz3TsrqUkQikkGPT5qA5x0SQvOjT9fUoCCcU1wcaOPBwY5cKQJrekcH\n6ORxCVNVXuVeuBVmTUd9aWvUYzg95zIvjs/E2lK36S2Vl7GsQEYLLKWIdxw+yv4FuXTxVbgvIZHu\nfcFxQyTxdCVApx7Z5cWTv4K1q/zAyyovpQg1r+iG5fQJ1sjoCC3X3HsW8riocIxFdnAREQmPxfio\n2QgZlyu9TyDp7iBJKhu2axkmU/V57LkypnW/eceL73/iVgk0WErZ6zjzjPShlnS0YK985CntdsIy\ny08lrPDic8OOfKQC61DRp5Z58dhL9Rp38tVX8A8q5qmp2MOwO5+ISLwf+5NTB8u8OLlZyzQSJ+P5\nsMtbqFOHKl7BPiaFJP9Vr+s9KrsaFl6C2hXiSEWbd1LtWCQBRUQSxk/rES2h9WWjHkbR2tV2TK93\nI4NUQ+ldMipV73ljU7Du9vVh392wq0LlcU3uOI73uOBwzKuKd7WDWQjVFF7PUxzH1O5afF8XObal\nztV5iSSjS1uQh3Nw5nZ/O/baKbMgke2p1es2v/eOBmISse427tTv0ux613kG7xeuo1RPJUmjaE/N\nTl0iIpERGO/lL2IPkzhTOyUdfxNSpElrsF417sfz3vuyboOxtwQ1dVk7zmfc5Xp/k0wy3OQqzMtT\n2/X7XRf9PYSdmZNj9V6M15ce2n8NOq5gwz3nl4oac8ZgMBgMBoPBYDAYDAaD4QLC/jhjMBgMBoPB\nYDAYDAaDwXABYX+cMRgMBoPBYDAYDAaDwWC4gDiveC0qA9qzhs2OZShpWovugC1c4y6th+a+LvG5\nsDB07SDjx0PbFxwc5sXRCbo3TU0D9IFDXdBsHT9W5sVXzpypjgkmDeEQ6bxcXS3btQ3TZ6mL8lRe\nMGnGWWs47PSSYQ1m43bclyRHT8favdEA9+k4N6ztw1nzzte8dZvuz1KYgT4uaWRzzNo7EZFBsmjm\neN54bZ0bOwF6/+g8aHhbD8Cuk+2ZRUS2bYWGnHtUDA7p+37qZfQpypyMe73sdi2y5bFZux76wjHT\n9PMOp+fYeZb6ME3SGveuk05vogAihnob9Tua7HbqRzPYgXmVNzFb5Z3agJ4O3BuoqUNrWtlOjvOu\nv3+lyuOeSqzPb9pLY32KtnIc7EKfH9YXu/a9I6QVDo1CPWAbRhGRET/GGPfXSFuSr/LYFpWHVdkG\nbV2cPO389nafFPHjMWYeXa97v3R3Q0f+WeqHEZWie29UvYk81gA/8Ju7Vd4/vvgdLz5Sjvp992eu\nVnlrZqPXzTPv/xLnmgg76trj76ljXvv1Ohz/DWj1j1bp+l+7b/dHfraweILKm/AFWMaWPId+GEvC\npqu8+y9Fv4Pv/PizXpw0Qc/F/3zgQRktcJ+GEbefAdlhRlIfiMw52r63t5os5V/APcpM1D2VMhdj\nHDdtw/3LXqXrKWu0K9/A+Hh1D/ryuP3Bfvkg7lHhYmj4k5w5UL+5zIu5n82OV/aqvLlX4lmdfh/9\nMFLjdP+VBJoDw/2o3RkLdd0dcfpQBRpcK7ucNTiM+lxlLEXPlIEubbvKFulcw3y5+ppZh55QnObF\nfY71PPfaCgvDWAgORo+SoSHdo26wE+dQWvICPnDsZxMKcH9DQtDDYXhYWw2HkIV5U+kBL2bbUhGR\nhlr0muK+JmHxup9K9dsYC3l62n9i7HkafWDyC/S+KuuqIi8uo34Gk760QOV1dtJ+YSIsYZurdqq8\ngjumebHPh31p6DjdcyAsDPdpYKCF/jvGxPU/vE4d8z+fecSL5xfhvDucfofxeXiGPEZ3v6Dn4rhi\n5MVNQI+nmk2lKq/oNlxTB+1tjj2t+zdc84NrZTSx/fGtXjzvHv18Ks5izZ//AOx2c517M68b1zJI\n84j3lyIi6XO4dmL/4PPpPcMQ1Ye698u8+Ew5+vUFV+r/v108Gz0JV/43nnHJ8/r5cC/EjItRX9x9\nEPfYZKv4cZ+do/JqNuG9iPtn7XpG92JjLPjYT/5v4D5j4YlR6rOoNNQb7gHU49hYR2VhjvRU4rNQ\nX5jK6xRcL1tLs2W3iO7zkbEC93nbX2Fl/5+PPaaO+e1DD3mx/wr07+G+qCIiqXOxpscU4HfaT+se\ngRkX+b24bjPmX9pCPd54P9zXjHWBexKJiKSPYg8vEZHMyzCG209o+2d+xj1leD69FfodIjwVe58Q\nH9a+/ga93sUWow/ai//CHnNlt36Hn/8g6nJ/K945a99Bn6k/rV+vjslIwh46hN5jeP8hIlL5CvqM\nNVfjPWHy5dr2O4TeQ9Jr8d5f16Z76mVSvx3uxRMarftJ5a05/2JozBmDwWAwGAwGg8FgMBgMhgsI\n++OMwWAwGAwGg8FgMBgMBsMFxHllTSNkjZl9paZRs4Sgvw3UndixSSovjGyqQkNBWevvr1F5iRmw\nA+7oIPlKzHiVx5KE0tOgNCX4QKN6Y6+mEKYTnXtZAaj6LE8SEekn22C2u3RlJOlzcS8SC0BBHRjQ\ntnDlZG/aUQXqU8p8bbWWtljTuQONZLL4ZhmWiJYyBZG12+JF2l6T6WwxJJPKTtL0xZMkKZq4GpaS\nT/z8RZV33+W3eDFTD8NJCnDUkZyEETVtUrH/I48REUmazrR8PEfXti9jJs6vIRKyj6ZTmso3+b55\n+IwsUX1Zms7sytoCibLXQL3zX6XnRMlmSLKm3gm6a2+9tm8sIgvult2gCgc7dq5sy5g9AVTx3lqH\nTk+0X5YIDrSB4p7pv1Id09Ky3YvDwuLxXYNaVtBbj99q2AaZ1Y73tdxuEkklf/Xaa168Zu5clRcc\njLG95F5Qo7Mu1hTRCIeOG2iceRp2tBnfXa4+2/FTyATYFnTZ0hkqr+h2EJJ3/ASW9NGOfe/tv/1P\nL26phbyFaZwiItcuwPc17cPv9o/Fcyx/SVuTT6b7njMBsqaYiHdV3ttPwJZ3xS2QLv39D6+ovPYu\n1Ngpd6FGRyTpuf3wnAe82JeJ6336V6+qvPj1WAO+9vRqCSSSZmBOtB7SVOe2E6A0h9KYcy3B0x2J\n0f+CbXRFtBw273pYQNZvKlN5vmzUolxaq/NJzubO82c+gBXtN0gCGRyq7Vfzrp7sxWf/uc+LJ03S\nc4dlwUXLcA6RaVqW17gbY6x8D64jsyBN5fUwBfoaCThSyZq2+s3T6jOWJfW1gEYd6tgwM12/eS/2\nNEOdAyqP9xMs1+LjRTQtv/4wxnAsWfR2OVIAltKxdeyRTXrOzr0dazg/q9aDu1ReUAjGrbJodmTG\nfL1sl8qSEhGRhMn6uQYSExZh/5UyR++ryp7CWpFI59BdrfdAiQWQ9DVXQ8o0MjgCmweWAAAgAElE\nQVSs8qLTIenr6MA8qFqv6ynfC5Z4BdN9PfiKtiWfWfDRUgXXNndkBDWZrVgv+ry2td/8yPtePJHG\nbO7lRSqvuwYU/I6j2PdM/7wWvez/DWRHV/xEy2IDgWmrIUlypSnTb57lxQPtuP767drmt5Hk2ZNX\nQpLQXaGfd+RFGCdDQ50U6/1NxnI8k11/wPXnp0IWEebIbSLTMZ+P/GaTF0ckaLnS0b9iPZ72AO71\n6T/vU3kDg3jGaWSv3HJUrydRGfhdXjPHjtXS9vYGLT8JJAa7UfP4XUpEJK4A74UNVP8H27WkMjQO\nz36QamjzXn29SdRWY2QA++6WPfq9Mn4K5j3vS/kZPvL1r6tjfLQGN/P6e8NElddP6wLLV3hfLCIS\nHo19LsuC247r95HsRdj31O2FnJTrsYjIuZHRlfuWvgDb6nF36r1nK71DpVyEPWDlBm073XwW8+oU\n7X3cvWz5LuxPeP768uNVXvV6rM+JU/F+V1KO777loovUMT/9+9+9+Db6jGueiEjO1XifiiVJWm+N\nrgdD9J7a2o29Cb8viei9Q0Tyx6+fR/6ww4szf7xGXBhzxmAwGAwGg8FgMBgMBoPhAsL+OGMwGAwG\ng8FgMBgMBoPBcAFxXlmTK9tgMN2SaVwuhTkxCw4OnW2QqbiU0ZYOdIfPyL/Mi+vKdQdmpgxNSgHN\n7K1nNnvx/HFagtXQDhpweCLohf1tmlKXOBGUs6q34GyTsUw7RtXtwGf+ZSu8uPG4phGzy0MKUagb\nt2k6ZvpFumt3oMEuC1WvnFSfhSdDxnHib6BUpk7TzgfNh8hFiRyf9p/RncRnXgV66uan0RH9/h/c\npvIiyYGm/gNQ26r34t7ERGmJSQPR3o4eL/Ni161pRiue66R74DKQmKeplmXrtuAzcjspvkPTdqt3\nQ4rD9NGG97WDWbzj3hRIpEzC2AxP0Pdl3JWQO7D7R3S2pgbuehwyhhGHYsfYeATStDxy2Fk6Y7LK\ny6Cu7o1EMebxHBKiz5UdSJrPoh64Mo28a9DJvL8Z9NGa1laVF02uXXcuh0zIdaoKoU7pZWsxT/3X\naapqkCPpCDTmfxsOQ65jXTs5n133EKRCZ188ovJ6mkG9fGknaPifddxUTr7xGy/OGgcqaLwjM7jj\nbtSwmBjcj5JtcH7Jv65YHfPnh5/1Yt9v8Ttrfqzn+Vvffc6LsxeC0jp3vZYsJtG5p/ghSfva1Z9R\neQvHg4J60f2g8q9epZ3YWHoUaETRGtdMFG0RkYIbQacveQ7PLcVxLCptAD04LR7zdOytU1Re7YYS\nL/Zl4DvixqeoPHZsK9+JusROSWfr6tQx3/ryp7w4KhNrfYgj3elvA72X1/22Mj0XWQbAziIdR7RM\nNG25H8c0ombWlem8aXdpaWKg0UZOFLHjktVn/c1YK1jm1UCuLSIi0STxHSInuuBIXUei/Rjf7DzC\nbk8iIm0kLekpx76FKfll72sK+baTWNOfXQcXtV9/6Usqr+QVzLm4NHJFaday7cylfi/uPAFHnCDH\n/YklT3FFGI9VL+t9kCtxCCR8OZg7IRF63I65E3vPSpIFR8zTzmln126Vj0L+1ZqCHxSEZ3rycVDS\nQ2O1FDGWnPZCSdb/s//4qxeXOnMxnVzaHlgDKfC+N7T8Kext1JRZN0EG4a6fl37rci9mhxhXIuHL\nwLwfnggJzb4/fKDy0vy63gQatTSv2LVGRJQc4NwI4rG36FrZ+VfI83zZGN+uTKrkHcyRJJJIDA05\nzkGJqAmrf/Z9Ly7d9ZIXRzqS+pBwjMHWfZBcJM7QDniFUyDVOvRr7EP3lpSoPH8a1upxxaiV7rsL\nY9cf8exm3z1ffZbY3OOmBwzNu7AWcr1zkTqX5KRvaTlp1xmsKVmXYn/Jrn4iIj21kM10ncUxroNq\n53HslWIn4HkOkzRo8p2z1DHD1MKhtwFr34AjV2K30u5SSOcy6bxFRNpKcV+CwzD/shfp+hIejjk2\nRBKxiFQ9xkIjtZQu0IiMwXxhtzAX3AIgdbIe36d3YRyPJTlo1UktT4ul/fttSyA9aj6i6+Pcb6IN\nRl8f3jW4ncnLO7W73tp/wHk0czne4d09fsN27Jda90OmHuzUyrwbsAf234h3odAwLWsaHsa44Pvn\nthOIz9fOnC6MOWMwGAwGg8FgMBgMBoPBcAFhf5wxGAwGg8FgMBgMBoPBYLiAOK+sqfUwKD59Tufi\n0DjQNeOJbheXrSmjLGtgV6eQcE0t4k7fDdVw/Ah3KInsiLPtVXQ8z0sBJay5y+myTBS2rjNwhUlf\n5ld5vSQJSZoJhyM+NxGR3IsWenHZJpyrS5/sIUer4DDq4O/QYKtfP+XFfs3UDAi6qnDNY+/SVLqa\nd854MZOWWbokItJC97S6Bd83aa7u/p8yG5TFa+dBXhYbO0nl1Rzf4MUx+aBATp8DOYp7DoOPgH6c\nOwHP57W3t6m8xQX4vo5mUKyT0ueovKCwj3aYaCrRVOLEYtDyhvpA/e1MaVZ5Q+SeEGiwnOrcsEP7\nJReWKnqekZF6PLJshp1WDh46o/K4+/iyeZCpsSRQRCQ0CvRKduQ4RzTkgy/9QR3TUwb654bt6Eh/\ny9e1o87RP+324mSizC9wJIsVTaCtMn3S7fZ+bgjn1DuA+RzkOLb1NeraEWgEB+Oe/cd196rP+smZ\nofaXoOrG+zStdQrRWheRzCfvWi09eufrT3vx4Qo4Xn35L/+l8iIjIQE6+OQfvTh9MeRpj/7bP9Qx\nfE651+B3WbYmInLl92/14n9+9REvXnj5TJXHUprqg5CoXjZtmsobdwmut+04JCDhyfoevffoJi8e\n8ycttfqk6CNqeOJ0Tec98U+Maf9lqI3s0CMiMnYQn219CXT8E0/uV3l5l8JJhiWLw3261hw8DqlL\nD41vnh+FGfpcaw7B2SLzHOpp6wFNKY4Zi2c62IY6Of2r2iEmKAj1JjIT9OWIJLdu4FnzuhjnjPOq\ntaABF2jzwICAaz5T7UU0HbmH3B1cCUvqbKxXTST7YRdEEZGEcdgjDXbhd1v263vNDjy9nTiHXc9g\n7TtVox1JNu1GrRyiZ89zXkQ7AiWS20l2lpbcsQsJu6fEO1K6uk2Qy3SewloY5qwTyaMoMewjV7/3\nnnhffXbN92HxNdSF+7r1VxtV3sIvYRw37gBlvq9VOwj++sG/ePGKqRiQx05oaca4Klzv05tRy750\nPeTS/Z1aIpF1CWj3TeQQ88EJTYXn3z2yFvuUVEc22XIY4ypnJSTCPp8juWiATKrzNK638PIJKi86\nR6+ngUYGrTVxhdrx9f1fvefFY8agTtXv0O0BkhNxD9hxJn6MXpNS5+MdpYIkzjmrtAvmAD2j9mDM\nubRJ2KSffPodfQxJ+CbcD3fCoX4tJ1r3MJwlYyIwxy6araXjXG/YbfSFpzeovNVXQtY79TrI+djJ\nTUSkZCPGavEKCSgiz9MGY5gclbjmi95+ScIk7CN5T9B6VLsihsWjxmSswNwJi9b1md8z+xrxDCIo\nLzJFy1Laz2LNbNlBtdahMiSRC25NGZ5NToTeo8ak+3E+IZBE+3y6nUVXF8lBaU8f4TjisrRvNOAn\naTXvsURE+ptwD/k9tmKfXmu6+yC7431H0X2zVd6+32Jdi6V1I7EwS+V1NmF/034GzydzImrt1FK/\nOoadsRKS8bt9fVqKnjwDa0P8BIy/9pP62kufQa1MXYwakj1Py+KCg3EdbfWo3247AbcFjAtjzhgM\nBoPBYDAYDAaDwWAwXEDYH2cMBoPBYDAYDAaDwWAwGC4g7I8zBoPBYDAYDAaDwWAwGAwXEOftOROd\nB51pT5m2mRto+mhNtkzWerj2Vtgzx2RAAzY8rHs7hMVBp9Vdjd9inb2IyAjZnM2YCW3f9p3QmP7q\nqafUMf92xx1enLo4z4uTC3UflO7WMi8OJq0iWz2LiEQmQWsdRprsnuoOlddE9tPJZIXc7dzLmMLz\nW2p9UjTugIY5ebbW8nEPn6wl1Ifkdd13xZ8PbV/ibMTxRY6l6yno9Njasj+1TeV1nIJuMJw0lZ1n\noF1n/amIyOz70OtnZAjjYE2E7n1Q9UGZF2ctgn6y7tQWlVe4EnbFBx9Df474cfqaOivQ/4Pt8yIc\nzaDbIyeQqCOrzOBg/TdV1oj616D/R+tB3c9g3DCeWzL19pnt9FEY2nzYi1/dCBvxnGRtN5t2APOi\neAV+NzwBc3nba3vUMdMmQfO+eAJ07R2ntb4/iDS3bPOb7dgIRh3FuTd3Ql8d06DrBo/z7FnQizZ+\noHXrbBU8Ghgehmb3tttW6s/6cI5sx9q4SdefL1zz31785OZ/evGxJ19VeV95Ar1lTj2/3otr9u5S\neXyvw+jZPXTbT7x4zRzdr2k22bg27UZ9qWnT/YtOHSzz4uRYPMeK3fqaaskifdEafHfxKl2jRwbQ\nuyWVxvD/fO5RlZee8PFWnp8UnSU41+Tpup9GQibWzPL10PfXtun6509FD5KsJDzrpDF6ju15Eevn\npEXoidDtzJeIMMyLKUWo4ysmoGa+/Zyuf23dmCMpZM060jes8s5uxjMddynm7MiIzhvpx/p3bhCf\nJTo2m9znjNe+xrImlZc7c/R6lYjoOVa7UVvYRufiOQ71YF6696b9NM45dynGbcvZUyqP1yu2wQ2L\n133Besk+Oy4XY9hPGv7BIW0rm38lrJe598jmY9qu/pKl0MbzXmXQ6X/ScRTXxJbgLQccG9Sx1BuE\neke4ltYD7R9v+/tJEUdrddg6/btn/or+TWxlvHHfIZXX/TPUxsRorOlub4frlmEuVVdjn1PToudi\nZy/2xp9etsyL9x3DuJ87R/cHO/wy9luZqbiv697XfXTuvX2VF7O1ubuvq3wB/StSZqJOln+wSeWx\n1fcA9WByx0T9VtTrPN2OJiCo2ISeElMnaDtkro/ciyOpWOe9uhb17bKF6GlWdVT3aDq8C3WZe2Oc\nLdF5ubTfiSQ74/qNpfJxSL8EtTc5eZkX7/vrr1XeFpqb/Ix/89WvqryxS9FzjHu13P1fN6k87s91\nmtbcqVfoJpaJsbq/SiAxTL05U2cVqM8GOnCf67eiP0ncOL3e8bgLJlvyc87Wun5jmRcX0P53sEv3\nB+U9VcZSvxdzv6z207q3SC/tHeMmob5wvxURkcNvYp88/Tr08gyP1e8FHdXYY7INdkuXrs88/8Kp\np86I02OybxTt0EVEKl5G7Uiem60+GzyM59gdjLWqtVvvt5fci3cyXzrGXO3GsyovfyneBxq2k0U2\n9UQT0VbqR95A7xdfOOrXqtWL1DH17+EZd1GvS7YAFxGJ9WMPklWIPXlk0maV11uFNTMqDdfU1az3\nst3095COk1hLIzP03GNr7UK9vRYRY84YDAaDwWAwGAwGg8FgMFxQ2B9nDAaDwWAwGAwGg8FgMBgu\nIM7L4Wd6atI8TZuMJOvSEZJzlL+9T+VlLgW9racZ9LGMAu3jFh4OatGZiifx3QOaRsx21SODoHvN\nIJvIp7//sDpmgGxH+Zri4jRlvuEo0V2JputaCDMFOnM5bNzaHduxjAWQUDFFdsCxQe060yqjidyr\nwUPta9b0s/BkULz6GvFZfo6mlaUt93sxy2V6KrVEK4rs9AY7QTFMHqdpvCGL8RwqXgGNrrMK3xfu\n0M8GiA7OdMikGZo2r6nidN87NFW3ev8mnEMZrmnkX5o2PvXL13txsw+UuibHyjFtUZ6MFhImgcIb\nnaclGx0kJWsnSnpEmram9flB1W/dD4p6iE9LhUJINhVJtMF3D2k6+NfWwP76H4/BGvL6lRfhNyM0\nbT8qB7T7uAn47u4KZxz5cBw/t25nrpQ34tpzU0BBPblT0yczE0k+0QHaYU6BHuexRdrGM9D4xprP\ne/G4LF1T73v8h1584FHUwDF3Tld5/3joRi/+3KV3e/HDv/i8ymNb6xl34bPnv/LvKu+Rt97Cd6/9\ngRdfPh2/+51HtWxox7df8eIMymur0rayNScxr+Z8CeNi9++0xOamn8NWPCIC87li53sqr6sUz/+J\n36714uIcbYWcnTR6z7GnFBRZ1/a1l6jPaSTnSRnUEs3Kw5CC5U4GddiXqy1rJ0aA1j5EFsyxE7X0\nsoBkMyE+1Nauk5CJ5qXoY8bNwdr10kug1rv25YPDeg3+X4SGavp2+XrYiKeQXe2Zv2l78GCSJgy2\noqanF+l7FJ2t7YEDDZY0+nL1bwWFoQYOkq12jPO8Y/KprhzHOhaRoNeurgqMmXD6LDJF1+ihAjz/\nkCjU5aPv4VznFxWpY7r7MS4yx+AexjvW5CNEDe8nq++YAi2rTpxJ6yk9q+5yLc2Lzsc61LIP60mK\nQ4Wvf6/Mi8dqJ9VPDF6DF1ynueH9ZGscOxb7hbt/cqvKa9yFuVi2q8yL++r0XulHTz/vxZfSHOG1\nRUQkgaRRVc2Yf2UNsNvNOK3X8MmrIc04+/ZJL16zQu+TB8gOmOXMUXF6DxR8CyQwvhiyGp6tf3fz\nD17y4qxCfIcrTQsKGd3/j1t0PSykWcLggmXHiVP1Na8oxzPZvh9zcdll2uo2uUK3H/hfhEbrfdDx\nE5ArTIjF3q7gU7jvTfu1FCqW9mY1pVgje8r1b95x2cVePDUflspR4Vpivv01vE+Ny4TMMzxW76vq\n27F/WvA5rLPlzx9Vee5xgQS/45xzdEgjQ3hXiy/GOtRXr9tbsAS2pxb3zHcem+4hqmUsNxERCU8i\n++xY1PgIkqm1HW1Qx3RQnctYiOdedqxK5Y2ZhDWu8yykja40ni3BG3eiXsUWaUkXj79+WnNG+vR8\niEjWdT3QiMrEPew8oyWbmZdDhtTfjHOM2KuvOZjWz8gY7LHPndOSwFZaN8Z+aqoXN+/T84r3AvmF\nmAf8rhfqjG1+f8xfBplVaKgeI3WnPsD5RG3z4rg4ve/OvwFx1VuQLbOcT0QkfRn+FpG3ZqIXV7yi\nZWx9g/rvAC6MOWMwGAwGg8FgMBgMBoPBcAFhf5wxGAwGg8FgMBgMBoPBYLiAOK+sqeF90PqS5moK\nPkuZGt4v8+Lca7R8hTuMM0q3v6z+nVgMKmxvLVxX0uZrqUhXJShnzdtBM2O3jymrdIfyJHZKou8+\nveVplcf0M6ZlhUbq29RJVPEzfwbtMCJT07yDQ/EdvhzQldnNRkSk7WC9jCqIbshUXxGRJKKGnnoS\n9PO6di0zSRv2e3EqUdbjs3VX9uBgXFtbFailDUeOqLxhknZlrQBVru04KIZh8fo+sesUUwBd+VPK\nDIzV8HDIgSKTNFVOSL5TOBPX4cvRFMqeLqLiEV0zZZ6WUrjuDoFEPDkT8LwUEekhOdrY20DtHerR\ndLv6DbiOELp/oTGaSptHTjLjszEv5xQWqrzb//t7Xvz7r30N30cOZmOyNfWYwRLFiGRHwkaUyfaj\nkC4lzdTfN38OKI4sy8vO0OOyYQscAgqmg0YcnaflDOywM/Gyjz31/zPuvA5fun7jbvXZn+7/Dy/+\n7KNwZOrq0tTkyq2gYX7rO3d68Z5/ahempPGonWc3oDP8wi9od7NLH4Zsr7se849H8xPf/rY65vQf\n4cJV+FlQls+NaGeBSHIRWvdjyKfGZujnGBKC2nn0ScgHzhzWY33l9yBJaH3mDS++/sfXqzx2Mgk0\n8m8CBb95X7X6zH89aKyHn9rrxYUrxqu8lAqMu9P7y7w4o1TLDlLno8ZEkASmbl3Jx+ZVb8X3hYZg\n/R12nk0wSRdYKhPpyCFZ+MfOESMj2oVnuAc1/dQ/IXGKidffx7WHnfpS5mg5TM06uNsUzpOAI3UR\n1rGwaF0DmZXfTTK27IWa6ly9DdeZPA21qGmvpsCzJHeA1uBuR2KxdgPm9nUr4D5RkAa5Uk2rlnZO\nW44x11uN/c2Ua7U8jcGug+3HtBx7706s25NycY/YpVFEO6GkLkBePe0HRUTCk/U6HkjETYBE4oOn\ntqvP2HmJcXjLcfVvlu420L5n64kTKu8rV8Hdkd3Xxubp+xI/FTMmliRjUb/b6MUJjuSM18KJt2KM\npfq1FDGUnBV7aC976NEdKu9ULeQC1z+Med5ZpsfO9LvmejE7aJ5Yr+9R4WK99gcazbtQR08fq1Cf\nLf481qu2Y1ifGh1Z+SDtKcfQfOmr0dKZF7ZinHxqNeRFWZeOVXns7MpOPa10DnGFzvOJwHONioEE\nsuB2vTf853dfwHdEoQa+uV9LQG+5YqkXs7vc2//UTjLspMmuav6bJ6u8fX/R4ySQGOmH/LXq9ZPq\ns1hqQ8DvhK5crvUo3oVYyhQ/Rjtzhcfjnp2jNcl1a+ohh53OJDw3duwJDtXvqEf3QRJf+ybmeZYj\nX+TnEUOOPw3b9PhNmYO1md0wQ8L170al43rZEdJt7RGVNbpyX95nuM/n5NNY77IX+b14wnxdHxrJ\nkaszA9KoxKm6jQCvhez6nDJb7wWGaG/BDlI8L7MXzVTH+HyYzxERGH9tbXtVHrdHYb5Ka6N2mk1I\ngSNX4lSsE66Ujt0J68g5mPc6IiLxned/jsacMRgMBoPBYDAYDAaDwWC4gLA/zhgMBoPBYDAYDAaD\nwWAwXEDYH2cMBoPBYDAYDAaDwWAwGC4gzttzJroQOjru+yAiMtwNDVj0GLKPW39G5Z0jC7XBVlg+\nFtw+VeX1NkJj11sLjWjLUd2PZbgXOufj1dCpDpHdJ2sfRURCwqH1Co+FJrFvUOcFR0ADyDabmSvG\nqDxfPvrH+PIQs678/70OaIJZq992QF9T7jUTZDTR04D7GZOjrVq5z07+KpzHyGtac8yW2ayTj7hZ\n6+gysq/24lA/NJRDOZ0qr60aem62TmQ95ZBjUTbz6zd5cXsdNK1J2TNUXlsDLJ/PncMzDovRVmud\n5RhzbO836FhuB4eyfTvuQ9Wrp1Re2rJ8GS2wLXnSHN3/aXA9+k8078WcSJikrWkTZ6HPRxJZFla/\no+ds4Sr0jWqiebDR6RvElvWnK9HPp5d6aCx6aLk6hrXICROhI247ou0MucdVSDjGaPk6fc+TxkBL\nyrbNydV6nEelUv8B6r1R85629ht77SQZTUy95zYvfmvDTvUZ90jo78e1PPaFv6q8a25Z5sVb34B+\ndmy61vOWvQb9uv9q6HFrt+m5HZsBbf21l37Vi79/++1e/Oa+feqY5FjM7dQzGPfxY7U9ZOEN6P/1\nzFcf8+JFty1QeV9b/SUv/voPYA/+u/95ROXN/hR6JPz6dXz2y7u+q/Km+/1efM0vV0kgMUwa8ITJ\nundO5Vrc28m3oi7VvK4txoNIbz55JcZcP1nliojET8AcqX8fY7WjW+clkTa8YDXmL9ft6Dqtje6n\nviO8frq9s7iuZczA86zcpHsmcc+G9H6/F1e9ont3RPuxX4im9bNpl+7TEhQ6uv/viK1AXW19JOnD\nuWdFd4vuMRRBeZ0VWE+iMnTfMr6n3J+gr0E/x5uuQw+MuPFYkyLSUBsOb9X3s3QHxsXEa7GvSp7o\nV3kVb6FfAPcZ271DW3xO9eN5Jy9EvwS29hbRewfW2bt9BiNSP7r3SyCw/3nUpYWfmq8+q1iHORdJ\n1rmT5uj+CGHUI61yLfqR3HyNXrueeuEdL37wx+j1FeZYuOaNv9GL9/7jV14cG4l+E0er9FjP6cDc\nSaA5z/tsEZEn1+IcPnvfGi8uuFz3tIp5H7+17xHYw864T9+jHrIyTpqO3jmzivXe4cw/D+IfN0jg\nQT3CZl2ne0fw3nmgFePMtSxOuwjrWPe7ePaNjdoC/tO3rPTioU7s9bqrdf+nlCnY95cdxThrPEF9\nUSL0s391N2riFTNQ/2OcenDTt6/x4qq1mM9rd+o9Aff/4N4qS5bo3leR6Zhj3KuRe/SIiMT7Rs+G\nOYMshOs2l6nPYqnmNZP9uNuHg/uWtR7Gubs1ha25k8divRsZ0T01I1bgXvB7Rjetiz1O36+pCzGX\n2J45LFb3JeOeW9wvJdXpRck226mz8Fnz4VqdV4ZxyvchbaHuuyqj105PRPRa1VOte48W34G52Uf9\nYlr36GuJol6O3JuHe0uJ6LHKvVjPPnVQ5eWuwbsp28Fzb8Hh4W51TEsT+reFRWD+9TQ1qTwf9Yzp\na8X1hkTo+tJYin5NqUWYfyEhek6dS8S4qHsPvaUylus+mAnFuo+SC2POGAwGg8FgMBgMBoPBYDBc\nQNgfZwwGg8FgMBgMBoPBYDAYLiDOK2tStB6HSsUUO6ZBpczVFlh9RNNu2QU6W+2GsyqPabtDROU8\n86am4CfEIG+E5AlMs2cLNhGR6OhxXtzfBnssX7rOYxu3pFmgeDIdTkRksAMSk/I9ZV6cPUFbKkbS\nNbFlWMpCTXsb6tXU1UCDaVv127XNW8VuWNWOuwqWnFmLtEQnPAH0w8b9oLCxpa6IyNCncW86SkDn\ni0jQ9MWC2eDGDgzAmry9FVKMhKQ56pjgYNDZ6puR15OoZTk5Y67z4tZWnF9c8kSV10efhceBUufa\n1MYVQqrRVQrqesxYbXubME7bKgYSXXQvgxzrv4QZkLOwBaz+h0hsAeiFkZF4vnmXa7lD5buQhflv\ngYzh9sWaXtm6D+Ng2mLQDmPG4HdCozQVVIJQSNjOtam8WaeFIC+YJCCHK/T4nUs2qOOvhjyk9l39\nDDMvA0W55g2Ml2TH2o9lIKIZ4AFBQxlo89fcvEx91nkCz7i9CvMyNkrPnTGXr/Diyl24H4v+4x6V\nV70XtM6oKDy7l//xe5UX+vQmL75uEex7p9yD+VdQWcSHyPOPve3Fr/3pXS8+VqntTR/f8Aq+ez5k\nFW//ZaPKu/fmK704b/alXvzoTzTlOJ7mYmslLMa//Oevq7ygID1HAgle+3rrtFwz/yaMwUqS87hS\noa52jP1z+/B9+87qcXv1TKwpLPkck69rzwBJMTPmos6FxUA+UbZTW62PX0USPjo9tvsU0dT/uv2H\nvbivXtOI2WI2nOjKCdP0HCvdiPlXfAvowVGZej3uPK3neqARQ5Iqp1Sq+5yPV3IAACAASURBVBlM\n8on+Noc2T5asPTQWItI11bl3N+jcvBfIv17LKPtb8Vkb7UeSZ2FfNTtZf3c/fR9LwXrbWlQey6TO\nvoS5M2e+XhejaP908FXQy/Ny9XNMImvtSJIusUW5iLZBDTQiwyC1Ov7KYfUZ7wmffxz1KsGx2F64\nBFKw1Q9A8tLfrCVnDz/7PS+u34/7135Sr131W37uxeNvusKLR/re9OKw03rrzb9V9Saku0Hh+v+f\n5qbgGR7fDImwu0bsOoM5tmIK1vBjT+j92oyHIKPr78D4LX1G38uw0PO+KnxisGQuwhnfpc/jXsfm\nYs6GJ+prbtyKtae5E9cSFa73ICmzIZnmvUVXhZY/tZehdrKkJSkXEp1jh7Usmm3Z81ZBHuNL13us\n/Y9iH/DiDsgl/vOmG1Xe6V1YD8JDcK5ZRVpOe+w9rDXjF0K259bUrEt0i4ZAgt9jkmfqd6Fmsvdm\nqW6XY+3eXYb9VwLtzdjmXUQkdR5qTE8H1glXnpqeeRXOoRl7jugcqrP7dJsJH0ly2CbZ51hYR8f5\nvZjfYRr26feRoDCcU1cVxljiBC0dbDmC8wjNwO827tR7qsRp+tkHGtw6xLW0HuzCushW4M7yKQP0\n3r/18S1eHO7UkTN1kO/fNgvvba6tPcuXcouv9+LOTkhym04fUseEUk1pPIV72Fut92zBJM/NWOL3\n4vLnjqq8xnqM1VkP4LvDY3S96q5FHp93aLSuQ8378PeQ/I/opmDMGYPBYDAYDAaDwWAwGAyGCwj7\n44zBYDAYDAaDwWAwGAwGwwXEebmKoT5Qd3w5mtIl2SAy9TeBwnT6eU2HTJsKCmH6JX4vPvzCAZ1X\nA7piRw8oZ3nztLxmoB20qsp9oJJxF/KWfbpzdE/tW17MVKcPyYmI2xybB+pi2Qvapaa/CefHNMY2\nh6IXS/SwOHIDikjSNKg2orPJXAk4Oss+mmYlIpKajuvkjuodZzVVt2krqIM5l4I26dINmZYdTTTA\n5v36mfRNxjX39uK7u2tAa0xM1tKE4GA8u4RCUB7bS3RH+pCQrV4cFoZrqtq9VeWdo+e96y+gmcZE\nalp/EElxIlJIVudIGmrfL/PizNskoGCpn4xoF6uq/aDsJSXhnkc4nfDZVWJwEGOiaoOmA465YqkX\n93RCXtNxUj/rqGxQZsMTcc9CSQbQXau7vWcs83txxfOgJHb2arlAcKkef/+LecXj1L9jx0PmcvI1\n0BCTYjWNmKnnKYshK+xxKI4xjlxkNDEyOKL+PTiIesG1NypMu6QsHX+JFz90DVwfYmL0val/72kv\n7qmEvCgpRt+bhSvhKvHs03ADYYeEvroudcxnfw4np/5W1P/EAi1/+tN9D3nxXX/4jhc3nNJOPyx3\n6+8neYwzhuPjZ3tx9fp/eXHCai3NGB7W5xtIdJLE0JUrsTyBXf4atmqJTmIeaN8x+ahR6V26o39Q\nMP7/CX+36+CQnImFo7sbTiXxOX4vnv8N/dwH2klqOwXf17BPU/XZ5a6bqP/pF+m1eZDc9brLkceu\nSCIiM76w0Iub9kA6wLIbEZH2Hi0rCTS6yWGjt0rL54a6UG8z6DkOO3sGdoHrI+ebjhO6VsaRM90I\nuXy462zSeDyHvlR8X18TJGTskiQiMkD7r1Zaf7tTHBcJcqf0RaFeRyTrOcbPK5jGX1iCdqaJzv5o\nWVjDB+Uqz3U5CSR435e2SM+JeJIZZ9SDJn/wWe08x+6eHSfgSnpir5YYZiyATKXzDGqAKx0pWg1p\nVFsd9o6ZK3AOrjSBpTwVL2Jd3H9MSyTiSL7Ekq6ERMcdjB5I2sV+L27eqd1S3v/hG1487UasA/6b\nJqu8g3/TkshAIywG13LmOf0OkUv7TR+5Hr32kzdU3oq7sW8ZN2aWF3ec1fK+tuN4xm3kCBSdrx0e\ntzwDuZE/laQ4fXCMKm/ULraMf/3iVS++7q4V6rPiG6d58R203/zTO++qPH7e996Ptb673HHRWYK1\n/9RWjJmMpESV19yOOld8sQQUPTXYS4VG6z0L71+5TQS7xomIhNE+snEz1sy8G/X63knrS+J4vAtE\nRflVXnAw9jBxcRjf/XHve3Huddott6sC9zZz8kVe3Nur18WezjL8g/YvCeO0Cw9fb8shyHgGO7Ur\nbMIE1KvaDag9KY77E99n0aZdAQG7CXK7BxGR7ircG5bT5l1frPKa6R28MBzn78vVf0coDkZNrd9U\n5sUsrRIRmfPVL3oxv7vUH0Ytbzuq3wMjSUrYXYrx4ro5R8VjXQv1YTwmz9eSrt1/htw0ZyvWuHOO\n67OPpJf510GvdPZJ/TcPV/7rwpgzBoPBYDAYDAaDwWAwGAwXEPbHGYPBYDAYDAaDwWAwGAyGCwj7\n44zBYDAYDAaDwWAwGAwGwwXEeXvOtB36aGtpEa1/Z614b43W+vfVQh93lmzhKpq0Jjt/CnRpoZ1k\nmUx2UyIi/quhD/zMjJvx3dQXxrUCTZ6Ovjdn/wKNWvY141Ve8x78FluGZSzXfQBaqUdM0HFoxjMu\n1/Zf7cegR23dC63huanaQq2nUve9CDQSyLKt84zWuI+9E6LF6vXoVdBbpc8pYTo00u/8DXpN15Yy\npQTfP/OhJV5csMqv8oaHoaEf7IcecJj0+BX731LHsNY+uxh2ux3Bb6u84WGc+0Av9MYte/VYYo1x\nZiJ0lmlLtHad7RYbNpZ5cfoKPS5GhnQPkUAiKhP6yZIt2oZ+7DL0+SjbjM9aXtVWcHO+Av1sRwXZ\n8wXpPkSNJ9CDpm4DdLZR2bpnRdJ01AS2nUtZgLnc6PTaiEiDtj4qF/rxfbu1xefMMejzsO0EbCJn\njNFWkAkt0MAW0n1o2q2fdcVeaEST4/C7Q0NaL9p+CuN3/FIJONh6N3O5vhYe39zbYsV9y1XejT+7\n24t721Bjmpu3qLy537rPi9uaUfduuXK2yuvrQC1OeQ2a4F2/x/cVLdO9ZBp2UJ+oUjyDY61aV3v9\nD2F7+OK//dKLL35Ia/BzipDX3r7fi3/03SdU3j2X4Dlmk91iX58eZ7t/vsmLV/1sgQQSI6QhjyVr\nbxGR2reh9w9LwjrU79hOZ61EHwW2THZ7CQy2Yh3inm111N9KRKQtDeMgcRLqffN+9K/IW6694UcG\nq+hfqAGqv5WIdJ7AnEi7CLXRtS31ZVKPsV3obdHrXHv7aVr7qfaERuo+BWl5+t4GGpHU52OwrU99\nFjMmyYt96agXbSe1rr1uc5kX8/xNXaj15H3UF6abehoER+h7E0xW2JHUMyYqFetT/Q5d/4NCcA+5\nr8lAu76mytdgvTw0TP1nHH3/wW3HvXiYepfEjNH9K2rfw34udQGuN2Gy3t/Uva3PN5AYGMK5N2+v\nUp/5qCdaL/XMysrSvY2yLsM98yVhn5OxTNfnsDD0I5v5GfRAOLHuSZXHPbO4B59/5rVefGj7X/R3\nU/86HkeT8/Re5KnNm7348/es8eKeCt0zactRrMc3daAHTt51ujdE0Fqsra0HUYf27Tmh8hZeOVNG\nE7x3SvDrcdZVgh4TrdTLYukNup71UN+oAbrvMc73cd/FuELM80Gn7i3OQh+vl55AL7Z5RVgLL5kx\nVR2z99RHj/W6bXp9GhrB9b61D2vzwvH6neTie7CH5n1ok9PDMfNSjNWud/EuVNmge+KMn6vfUQKJ\nvgbMMbcnGvddaad+XLyHFBEZaEXN4nPP7tPPJiQC96JxD+5t9sJ0lVdX+5oX97dQDaZ+Y1lz9NiO\nz0FtbKnd68WxKX6VV7sPc4TH2FCP7gnZ14gaz+83fK0iIkFjUfv5nbPBGTvnRu81Q0RE2qnv1un9\neh9dsBr1I4p6ujTt1r2sItPpvZDWEHdvsWcLxuqyOxZ7cdxYvfZ3deFed9bh3YV7/vmvnaKOqfsA\n61NMEea5a6XdXYL1uKsQ76LP/Vb3tLpqzSIvLt+HZ5Icq/t95V2NmtC4v8yLc6/RvY1O/g3zftxi\n+RCMOWMwGAwGg8FgMBgMBoPBcAFhf5wxGAwGg8FgMBgMBoPBYLiAOK+sie34Gj+oVJ+xvWT1K6DL\nunaLqWRv2PcaaFy+CJ139iBR0zJAO01ybMlqiSKbdQWo4ZnzQat1aYzNB0DNSlvux28+qy37JtwN\n+z2WNcXlZam8VrLsSpwNWl7naS0ZiiXK5DDRuUKjtX1czmpNZQw0at8HvYupkSIiVesgZUqjezg8\nXVOdS54F/Sw1DvT19HhtPxhOds1s1XouRtMrq3aCLsiWZ8ERGJK9NZqqy7bH54bW4Vz79LmuexhU\nxhlXwbJwuFvnsS17RArkJomTtc1lB0m1+geJlqdddCVpkqZUBhJMxc0s1L/TsgcU1/QiUMr7azVl\nvuJl0NXLTmFOTFyhqc69ZAnLcyzEGTtM30xbClvdijdQD0KC9d9/Q9pxTGcLfmfJRG2V2NKFz+64\nBbRs13qRbevqSYKVcbGWnEXT3ExfjHOt36ptX3ksjga+e8vPvfj6+ZqWHRoS4qaLiMjbL2gL+Hsf\nedCLt/0WEsMbfvVTldfUtMGL07Ou9OLXv/FNlbfg3/EZyxQnXQN6ZvasReqY9f/5KI7/GmRXpU5N\nPTcMDu5F90FW98dvPKXyvvwnSAZ6GiFFvHTaNJU3QnTw9U9s8uLphfp5R4Sed2n7REiagfXgzN/2\nq8/8N8I6sW4jxmP+rZpyW/UqaLps7Tjm09obk2sPy2RZviIi0kFyVba7ZLlDUJCeO0zzbi5HPQiP\n02tz5EyscSEkPWJ5r4hIXBGoyEOdmOfpy/0qL4bmLH9H5ataSpE8V1tZBhpsmRqeqO2ke0lm0koS\nAlcynURy3yG2yD6j7XsTilGXh3uwhrDds4i2r6/bjPGTcznqUoRjLz9AkqzwBPpMq1UldT7kplVb\n8N3VhzQlne2z510N+1l338LrH1PhfVnaLjXvpkkyWuD1Zdzn56jPTv8Ze4wwGtPpy/wqr5mk89X1\n2A/FFmlqfV8S1tPwKdiXJk3V+4XeVuwPWw/UUYya6cvR92iIxkQUybGiHOvZO0NRa595FrbL8Y68\n/HMrsWby+FA2vCKSTjbblbSPn1as60v6Yr+MJvgeNu7U8rRwsldOW4S1u/VwncpjuWk/zcX96/Sa\nxO8emel4xvmOXXNDKeRUd/3PrV7MY73XuZ+Te7GHzr4E70i9dXovVkmyiJUzMMfCnD1A0zbci17a\nT7f39Ki8Db97z4uj6fpm3z5X5YXF6NoeSPBejPeQIiJh9F7AtsYsPxPREk3/GKyznSRtExGJzsd+\ngWVDXc3a7rr9JCRUvmzMpdTp2C+0lJ5Ux3SV4bcG2vCO0BSpx2XyTJxfcCieW1+jvnaWL/EaOTLo\nSupxrtE5uJfuOxuvraOBeGpT0t+kx1nderxLJs3F9Udl6H1zUBjq8sHtWNfTnPfFS78AP3dfBp5P\nd7WWd9ccQV1OmoXfDY9HbTjzt73qmKBQjCWWYLfVtKm8NppLMeV4Z7/iSi2HD6PfigrHWpjjtEfp\nrKR3XZKgue+pkb7zz0VjzhgMBoPBYDAYDAaDwWAwXEDYH2cMBoPBYDAYDAaDwWAwGC4gzsv99uWB\ngsSODSIiNa+d8uLYiaBBMbVQRKSrHBSi9m7Qz1KTE1Qe09Vr6/Fb8Z2a9pZOVLJm6hAdSbQqlmOJ\niASRIwR3gU6bqeVK3dWggEckgx7cUaU7o8cWQDbFtKquCk2XYvpyELkwcFdzEe3KMBqIG4drZtmR\niEhYDM6/uwZUssGOfpWXQm5d46aiuzl3TRcR2fjj9V6c3Y+u9q1HNQX+j39Y68VT/X4vTvDhXhyr\n0jTCrCRQziYRtS95nqa/L/8anGD4mfj8miKcMBnyoDCibJ/9u5YqxI7D70750kIvbjuppVp1H0Ai\nk36dBBTth/Fb7R2aIjvhZkg/+LmFztCd8LtpLk7yg8LLFHcRkdxloDSXvQi3l7ixSSpvZABz/f9h\n7z3D5Dyua92NyaEn55wDBnmQiUAARCBIgmJUpEgrW7LSsa3jY1/JSTq2ZMvK0pGsQEm0KFGkGEGC\nCSQAIucMDDA55xx70v3hR99au0TiPs9h486f/f4qoKt7vlC1q77uvfZKoLTkqCSkWNfX6mrviZOY\np2fq67327fdq2Uz7XqQiR2YgzduVNXUfhtwyugAxJTJVp1lefwmSLpYuscRJRKTxSZyv3CMBh2VD\n6778cfVadz3SMn/59094bZYRiohc/A5czPJLEcM6WrRrWXwyZJpDQ3Dv2PKPn1L93vrqz7z2rq/B\nAeQLu/7Zazd0/pN6z/e/AreSv3rgX7z25z/4HtUvNArXuubXcHL69Pc/ovr9/kuQORWlYV7e9+9f\nVP3O/+hJr71hKVynOBVXROTCYzrFNZCMkgNhwiLtTNN7FmtF+haktY8067Uh9dZ8r61Sux0pSkwB\n5lzrq5D0suxWRGTGjxTpcErfzn/vQq9d/+o+9R6WqYSTc5Gbbp26ELLH0X7MZ15XRLRbStZdpV67\n+TmdNu4vQxpxJElgXKfHnqMkt9koASeG3IemHcei8U7E2BgaW+PtWsbAbhHstDR0WbtRcuxk2XVC\nppbt9Xcg7iWvwLoWGoprHVPg3h98xtQUjq/uxXOq30AH7s+5BqxVruPi2l2IG93HcA+y7tSObekk\nD+K907RfX8vJIT1WA0lsLskhO/S9YSdKlsyx06iIyBA5bgrJKo49ox0Ed/7DXV77x5/8W6/9of/4\ngOo3NYK9Sd49kDN2nYKUpXiL3iB0tcCFKTIOMWWwRe+BeBw9RNIqdw8ZSuvkE9943mt/9HsfVv1G\nSX7SMYD9X0mplom6Eu5A00PSwYQlWiZ2+tfHvXYFySrdPeosOT4FR6Hf2oe0fJjlocGReATa8w29\nfu78n7d7bZZwj3dh/CRW6j1WSAyue88xxMqOTi1zXP4xHFN0Oub2cJuOG/yMk74d64kr81lGJRS6\njmBPNDWsJTBjtHbJQgkokSmII2Ndeo86S89CfM1HmrR8JWEx7clJiujKsRqfw3wufojinxPHw+mY\nBmtwD3h+sLxXRCTtlnyvPTmCMdZ7XsvoOkkSH5FOjj3u82cQy2vQHryg7zXLwkbbEE95/ysiEpRz\nc3MqRimWDzXr+5OxIR//oPPkcxQRiS9DbFq6Ac8aM460p+V5fI9Q8BBk9K7T4CBJ4Y4cwBq5+hZI\nZv/rlTfVe45ewZ4/lta4f//SJ1W/HLruCRWIvc17rql+XeRAmbkG5VpYOieiJXz8rDFUp+es697k\nYpkzhmEYhmEYhmEYhmEYc4h9OWMYhmEYhmEYhmEYhjGH2JczhmEYhmEYhmEYhmEYc8gNa86MkK4x\nZV2Oeq37KLSwg6SvTqjUelG2fWT7qWuN2r6xvgs60Lt3rffa/m5dc6buCOpjFG6EzW9EKjRlbF0m\nIpK6ClrNviroQKNzdd2b4EjoVKPT8dpws66348vBa70XoUNkq2cRkTSyER8mzdxwja4/EJmuNYWB\nJjIFurfOw9o6uO0k7mN8Fum3O7VmNCIWtWmajuAzslboccF1YQ7/+C2vPebX2teHdt2Gf5Bcsa0O\nNpRL8nQ9ELY849ojjWQHLiKStxP1DtiisuuyrnvDNWemxtDPV6JrqzBcj6H/gv68DLJODDQ590Kf\nGHVG10C6+Phpr730Y6u9duvL+rr4ilDrgG0Fc7Zo20x3/vyRoBCtKw2OgLay/RXUw2jrRdwIDw1V\n7+mjulP3fXan13avZWkGtNy9p3C+sQtSVL/gCIQwrtFw+j+PqH6ZpYhLbH/pWgDeTNtXEZHoCMyj\ntguH1Ws//RrqzHQP4Rh3rF+u+tVUI3aOt2HcVjyii+RcffoPXnuSbOOjsnW8SSnHPPjmR37kte9e\nCWvatn4dswrvhc1gxlOw7E5ena36dRzHuFj0ubu99uWfvaT6bbgHlp+vP4XrUnjhmOrH60vPYVwH\n9z5u/oePyc2C9dVu7OZ18RLVvXGtvYvfD31132msIf0XO1W/OBrv8Quhh+47r+cL15xhjfogxffc\nrdpWdXISGvzJEcz5kCg9Z0/827NeO3kBxsqFg9r6uqQQ957tPzl2iWir3PFzOPeklboGXFistq0O\nNPPIhtmtU8e1ZIau6/Wf6TmJ/UTcfNyr2IU6Tk1SHZKIRNQHqXp6t+rnI4vYUKpfMdKLsR4Wo6/L\nvHk4j7F+7KNi5+tjCKc9UirN51X36fgyVIXzjaG1sOtAo+oXkYk5l7wSsZct5EVEEpbqPWEgaa6i\nGk+bdZ2Uut+iNkH2LtidujUmztbVe+1tH7nVa3/lE79R/dY/jHpzd31mm9fuPKavy/U3Uaug/A7U\nWxi4hLldPfsH9Z6y7Q95bb6fwcHaNn2kD38rjGzdh+t1fB5vQy2Z7CTUNHHtXGep1mMJ7ZPDU3QN\nm+e+ghjwqZ/vkkDj78E+f9CZb6v+HM8DXOei95h+hmjvwzUIojqTBcH6N+gJeqbIeQ/GxZIBXcOm\n/UC91w6j55jiezd57Su/2CNM2haMQa5BlX23ttvtpPqEYQmYs3VHalW/+XejZhHXzox3aqxNU/yf\nGkCscdeTqKyb96zhpxpAoU5twOBwrH9j7RibSU5dxK7DGN+hNL79zr3JpL129wmsJz6qB+r+rVSq\nEzLajroq8WW6btx4D/aovBYmLdHHevx7qBOVH5WPv+k8B0akIe5GUG23NKo7JyLS+kq1105cgbUw\nPE7He97z3gx8VOcu0XkWmB7HfjOmEP3cumLDVEuIj/fKUf1MsvwBrD1dVF8pJFrvQVLXYG8RGorP\nm5nAuP/zz+o6Xo9QDDxy5KLXHqjXtV9iyN6c771bR4ePYeAC5lWwc6yzZJ8dRDVZh2v033X3rC6W\nOWMYhmEYhmEYhmEYhjGH2JczhmEYhmEYhmEYhmEYc8iN86MoPYflISJa5sQ20f1OujWnXqYvR1pQ\nXGuc6lfQjdQyTst2LeMmp5HGxNZ5LItgyYaIyEANUqcnupG2NNo4qPpxKlnjCaRBuRafJZ+AhSvb\nJkbn6XNSlquU2jt4TadthiXo1NVAw2m84x1arpRUgtRntt1LclKRB84jjSshDec5XK3vT007rnVI\nMFK6Fi4rVv3CEjAuwuJx/mfPIu1t+Zr56j2VJBOr+x3uTxbbu4m2YM25D5/h2qCOk40kW7dNj2ur\n0qxtOPaJfqTEDjuf1/w8LGPzAqyOGSf7z/pTWpqWvyLfa/sHcR7znHRetq3tPY10/PRNWo7Vvh9p\n6fl0/ToO6L+buQPWqk2nyNKapDuZlVrmkkBSsnGyW4xflKb69fpxfENkkRripG8zbW8gJTh7gZZI\nJCxFSmrn/nqv7aZjDlVD6pFXIQHnS49922sf/9efqtf+/onveO1vPvw3Xvvwqcuq3wNfhnzp2X99\nwWvXv6mtBNmKMoYsWMeccfujR5Gy/p3dkDV1XIJc7s2fH1DvmZ7GePz8f8AWm9NeRUS+/rVfeu1v\nP4/xsuhTD8g7sZkkhgkl+j7+6guPeu37/xfS69te0+ngY+2ve+2l79Vx5N3CVpMskXNZ8glIDPur\nutRrI2Q7HTMfabUsKRERmezHfOZ1reeYtthlK+gUkpb5exGv6l/REjGOwb3HMd9YkiSipYlR2TiG\nomyd5j1D63EEWZjKPJ0enE7p3DW/gt3z1IgeO7z2597YdfL/ir5zkMTwHkZES5RCyXLcleywJHde\nKD6DpZgieh/EqdjRBXrP4COpdVQ8xn5UFGL02FiTes+1J1712smUep2wQKfr95DN+21/udVr1//m\nguoXEoe44cvH8bD1uIhI92GMwebdkPLwMYj8qU15IImLgkzg6i9Pq9d4L3LxWr3XXlCk5dJbP7zB\na1/fjVj71Q99UPV76SeQb37gm+/32p/9wj+qfv/0L7Bq5fnLMrMgR5rQfAVxfIjS7uPLtTTtzE+O\neu2K98EqPG29Pqfm3diLxNM1Ovqd/arf8o/D0jmWpDIdb+hxvuLWAPsuO0SkI17EOed8/bEzXjsq\nHudS266fNYoLIK1LWoU2SwtERI7vRczJGIeku79Z7y14/5pI0oWXv4I1aN0XNqn39F/CMaWuxX41\nKFTf74k27H2OH77ktWOjtJwsjObikf886LUX37FY9TvzIs6pdAHGQowj0Y8r0XKoQDLSiOs3NaTL\nGMwLxbWMIMlc11Edy1ieO0GW5W7JgKFa7NMSSG7USVI0EZFpirUDySi/MUy22l2H9DGw1XcESU9C\nHKkWl+kIoTXCXUtmJrEusqxwuEGPt6zbsT8a68SzCdvdi4jE5Ok4HGiCyO47wpE3jtK+pfEPsKpO\n25yv+vnpOSme4t66cj3+zjx63GvnLsScnXXmLD8fpKzE+nL9p5CO87OFiJZd7aS1cOCq3otV7cb8\nK1iPcRblPs834dzzqPwB73tEREKiMBZaX4esv+B9i1S/usfPe+2SNfInWOaMYRiGYRiGYRiGYRjG\nHGJfzhiGYRiGYRiGYRiGYcwhN5Q1ZVGF+77zOk2Xv9YJDsPHJCzRcphBkglwypqb+tr5Zr3XnhqG\n1CBlrXYDCjmJ4+BK2kGhSD9j9yj3PHpPUfp2hE6d4grjnGKdUKnTt8e7kGYWPx/pUix5EdHp0OzW\nkEIplyLaKehmwJXc3Wr9nPaXsAz3LpLT0kWnunNqW/JqfS5jQ7gGseRqleLc78hUSNf8JC1ZuhSp\nfSyzEhHpOYs05fwbuOpwtXGWICSt0McakYxzHKaUzGAnpa7zKCrIs4whpVJLLliOF2g4da741hL1\n2mgDKqOHUfX7P7nXJE1kmU/3SS2RaLuMOcbSguy7SlW/UJp/CXGYf8GO2wtT81uk8k2TU0TZw5XO\nseLYM9chTbd+f43qF0YuOKMTGEfsziSiXbaaG9650jq7jtwMgoIQE9Z++fPqte888jmv/Ve/+hev\nPdSrXXHe+AZkDFeace82DOjK+hFpuCdX/4Drfts/f071+zQ5ZfzsudV8nAAAIABJREFUM1/32pUF\ncJ44eu2aes+dw4iB7Jbw+p7jqt/3X/q+197/1ce9dk2HTkn/7C8g6Xr1OThtvW+Rvo8XGzEX1++r\n99q+Qu28x643gYblIq6z0cAlpMw2PU/3zZH2zJDUI2kNxlx0vj7uwStYy9hQyFes09XZIaK/itwT\nF+P6BYXquMaS3Jx7oBtipyIRkeZncB6hMUizj12gU5SjspEGzPHKlQKxfIKdwxpe0WMsNvXmuhjy\nGp+2MV+91vwCZCEZ25DqzM4bIiKT5FByo/1NVCbOhfcZl39+Un8euZIkrURaf+0lOJi5jissTwsK\nwT12pejsHjNBcres92gnGZZBR6YihjQ+peWVabchPrDDzqyT5u139kWBJIXi9eW9V9RrWeRSVH4f\nUsonerRb0yTtMxY8hHXote/vVf22fQCuQWFhGMN//WdaojlMa6a/C+cemQtJ4ND1XvUedu4oeBCS\nlYl+LUPPWQGpDAeEepJ5i4ikb8W9GWjF/qB0l943nXv0hNfOXooxm7I+V/WLuol7GxGRpOW4j71n\n9bNGNI3BnF2IU9GnteyApWLdR7AmXa3TspWkGJwLS9tj03U5hNZ67BMKSGq1jmQVLFkREbm8F7Gy\nmCRtKWv0c0xkDo6h0of9nOsQU/Mk7muiD9dhxq/3dulxuBa8hsSV6hhdSzLSrH+4VwJJymqc48B1\n/QzGsZbLOLjOQ7HFmLOz0xjfLXv02sCSE17HMm/Xe+ORZoz9/nPYc8SU0t9x1jveK8aSHHywVs/Z\n3NtQ7oDnh1tOICgM/+48grGY5DxX8nMQy1tb92rJNj8XZWuj1YDQex7PWW6JEN7H5H8AMZUlOiIi\nCUsgMeokB67JXr1HzcjB+GTXJL4HIiJvfRuS/eXvR1mRzDtxv/m7BhG9B+TyBZ3VWtaUOR/3gZ/h\n3LEZTuOW75XrbhtN14zX6trHzqp+YY5kzMUyZwzDMAzDMAzDMAzDMOYQ+3LGMAzDMAzDMAzDMAxj\nDrEvZwzDMAzDMAzDMAzDMOaQG9acaSdrWtFSSEmgWgBsCcb6ZxGRhIXQ5zeQZjnG0cyzvSRb6Q3W\naB1ZSBz02qzbDUvE3w2J1ZZnzaT9j8yEbnOkRluZsfZ4sg+asvFOrfuNJN35zDQ0p2xbKuJYtJF+\n0q11k+hoDwNNx15o/qOd2gzDNdBHD1yExlYWaDtD1oKyptrVb+dshwaQLQz9g45lMX0G17BhOzm2\nIhfR+lm2lh6u02NkrB064uydqJPiHsNwE+4/19ThGj0ucTSe44qS9IvOHAkko03QzrKdrYhIxlbU\nRBhpQT/X+m+oGnUBUqmOS895x5LyDlgPj7XhWlY/c0n1yyPNLWvUG1+FHbpbk2i4CvdqZBTzZWpU\n1xdinW50LvTFiz6yUvUbqsM4GqJaG6wpFtG60MoP4zMm+px6CPNu4k0Ukd5OWKEmpa1Tr2UlIiaO\nj0MzP0z3VETX6vnY+3d67dGGQdWPde7bvvbXXvvRT/+t6vfID//Ra7P99uvPovbLR27bot7TfwWx\novwBaNdzdmrL1dlZaOPZknn1Al3nYmYG9/8zP/0Hr33x58+ofj9+/Wmvfeq7P5F3IiLF946vvVuu\n/Re0w5mbCtRrkTQ3xxpx3wad2hFJhRifPE+5Zo2ISDrN7U6yso906o6ExOAzJrr03/ojbOcsoutn\ncc2LiFRdVyV5I+b29ATu50iDHpcNh7DOJKVjncnYroXxvF/wkT1z+zUdh4a6tIVooIkmTTqfl4iO\n86MUA/k6i4jEL4C2ni1I297UdQKmKb7x/iZ5vra75roNbKcaT3WOuL6LiIi/G2thR0+9105cpvcV\nfI49x1u8tntO4634u1yPIapA7x3YPpZj9LxgHUN5DQk0PIbT4/XxlX5iudfmtX/EsbAdrsYa0n0S\nNQnjHFvjM7tRr+Paa9hT5i3XNtZXj2D9i47AnFv2YIXXrjpWrd5TTLWXOo9jnrvxIDwZdQ8Gab0r\n+IC2aWU739IPwnLbtRpOzUEc4hp1Rx47ovotWI19VLZ2NQ4IXPPP3Uc31KAGTVIb6vxxTTURka6D\n2G9z7UN3RS/fgrWHY2/NNV17r6gUtWX2/xgW5PkpmL+T03qvWLIasS5lNd7P66WISC/txfj4eP8s\nIpJK6zHXvOi/4tTN2Eg1hi7gb/Wd1PV76sh+fIMElvZ9iP8c10VEZqk2j59q8fC+VkQkguoLcY20\njG16Dek8jHvNNT5UYTbRdbbiFuK+8RgLCtePwWyl3b6/3mvzs4SIHrOz9HfjHSv4WXpGnCSL8ckR\nXROMbdN7zuG+pW/U8aXzqB6nN5PuY/pv+almjJ+ewfgZRETbWDe/iPptcYv0esc1bXh9Co7UtfyW\n3L2EjglrV/6DqKEV6ez5JkcQ87k2bKVTx7DxOV2r7I9MdOtn226KL+EZ2CPFOff7yqOw91746dVe\ne9qpLdt/XscEF8ucMQzDMAzDMAzDMAzDmEPsyxnDMAzDMAzDMAzDMIw5ZN7srJMHZhiGYRiGYRiG\nYRiGYfz/hmXOGIZhGIZhGIZhGIZhzCH25YxhGIZhGIZhGIZhGMYcYl/OGIZhGIZhGIZhGIZhzCH2\n5YxhGIZhGIZhGIZhGMYcYl/OGIZhGIZhGIZhGIZhzCH25YxhGIZhGIZhGIZhGMYcYl/OGIZhGIZh\nGIZhGIZhzCH25YxhGIZhGIZhGIZhGMYcYl/OGIZhGIZhGIZhGIZhzCH25YxhGIZhGIZhGIZhGMYc\nYl/OGIZhGIZhGIZhGIZhzCH25YxhGIZhGIZhGIZhGMYcYl/OGIZhGIZhGIZhGIZhzCH25YxhGIZh\nGIZhGIZhGMYcYl/OGIZhGIZhGIZhGIZhzCH25YxhGIZhGIZhGIZhGMYcYl/OGIZhGIZhGIZhGIZh\nzCEhN3rx4u4fe+3+853qtcw7ir12xxt1XjuhMkP1m+ge9drBEfhzIb4w1S8oJOhtX5uZmFb9hhv6\n3/bzItN9Xnt2ela9p21PtdeOLk7w2lODE6rfSPuw1y75s2U4hskZ1a/9jVqvHb8w1WsPVfeofmNN\nQ147dmGK1x682KX6Ja7N8toLdnxSAs2Z333Pa0dlxarXQqJCvfa8oHleu/dsu+rH1yokNtxrT49O\nqn4zk9P02pTXnnWuYeadGD9tr+J6Jq3O9NrjXaPqPTFFiV6761Cj147KilH9whIivXZQOMZIaIwe\nc8P1GEvJlfi7zXuuqX5p6/O8du95XJeINJ/qFxSMMVx260ckkJz+zXe99mT/uHotYWm6144txDWa\nHNLju+dsm9dOXZ3jtbvPtKp+vrx4r63mZbQzZ0ODvfZE35jXDo0OlXdipHnQa0/7MT5CfeGqXx9d\n57j5mDsxeQmq3+wM5nrXiWavPU5zWUQkPDUax9ox4rVT1uWofjwmljzw2Xc4i/97fvKxj3ntxYuK\n1Gunz2LcbXlovdc+8vvjqt/i1aVem2NMeEa06nf+5HWvvXLHEq/ddVrf76YexK2yElyP6THcn/il\naeo9PNabDyD+x+fo+xMah/sanoh5ef6lC6pfdloyjqcd8TEuWp/T4Ojo274nfnGq6lezHzH/nm99\nSwLJG1/+steOTI5Sr/kKcf5h8RFeu+21WtVv3jzE2phSzNmJzhHVb7AT9zc0BLEsebleZ+fRPG05\nWO+1UxciNow2DPJbJCwF92N6BHE8MluvEbz+9VzEvAwK0r/tzP/kSq997WenvHbSykzVb3IA8Wty\n0E//r+NVWBKu36pP/U8JNFVv/dJr955oUa8FhSG2BUfiuo936DWpvw/3JykDcVNoLRURGad90MgE\nzrPkrgrVb+Aqxr6vAGOp/UCD145K1XOisRpxPTM1yWvznkNEZJLW8JlxzO3Jfn3dO9t7vXZSAsZC\naKyO0e0NONaMYsQHf6e+RqPj+PwdX/+6BJJrh37ltWen9R6D7+HRXx/12vlpOla09eB8s3PxWkxp\nkuoXFofxyLHs6H8eesfjy0jAPQxPwnuuXW1U/VbcW4l/0NDx946pfskrsFe89ugZr130oSWq31At\nzqnvJMZH2m35ql/nPoyrYB/Wbd67iYi0tHd77fd973sSaK7s/ZnX7qXjFRGZGceeMjQBYzB+kV6T\nml9DzI9KRFwOS4hQ/aJpfzNc2+e12651qH5p+VhfxmjPkLSCYu88Pc/n0brYdaTJa6dvKVD9uui6\nRxXgeDqu6H13ZBj2XNk7S7z29ecuqX7Zq3K99gjtYWLn6xgwQs9Pqz/zNxJIjv3wG1470XkOHLyG\n8dN8HrF20UPLVb/6P1z22pNTGIPlj+h+ba/iXofQuM3eWab6jXVjH9h7BuMqeRX2OfzMIiIy2jzg\ntePKcf2qab6JiGTuxDNMZDJicrezv6o9irV/2cNYI6//Xu+Byj+MZ04eV22v1ah+kTmIyUvu+wsJ\nNC/89V977eFx/ayRHo+xmrkN+9cTT5xQ/fIoxiavz/bawRH62aB+91WvHRGK1/Let0D1a9uLazjU\nhn1M+i0Y9+5zP69XPM9HGgZUv/Z+zInSVYV4z/U+1c9P4zGDngn9zvcIDcfrvXZmGfZf/FwqIlJ/\nFPvmt9ujWuaMYRiGYRiGYRiGYRjGHHLDzJkx+vXZ/YU5NArf6CavxWvtr+tfCLPvxjeZHfvrvXbc\nQv3rBf8KP1SNb/35W2ARkdFe/CqTewd+QQ6nb8pHmvU3Y5wtw9kT7jfq6ltw+kW+/4qTNbQd3xjy\nL2IzU/qXm+SN+FYvlLIOfPnxqh9nHdwM+BebkEh9y2f8+NaYvzEOidL9fPTt/nAN7s+8YOeXg2n8\nOzgC9zS6Iln1G7iCX91S6TpN9OB6xpU576FfFZPX4NvYec6vlFP0K3AE/cLFv2q4/dr24VvMCeeX\nv0H6FWq4Gt+m8rfqIjoLKdDwL3UJi/Tc6Xiz3muH0bfFIVE608VP46xtH+Zp+q36V52+i/gFaZrG\nB2fbiIgM1iDjYoJ+4QtPol+t4vSvrbHF+DWy4Sn8+hPi/CqbtBy/tkdl4JeCyWH9LXXzC1U4vo34\nNjs6N071m6ZfivkX1cgUnf002jYkN5OKfFzDaCcORF7G/ZqdRfwpydS/QgXTOEu5Fedc93KV6ldR\ngtc4k4jjpohIGs25tqP4tY9/yeg82qzeMz6JuVN813yvXfviVdWvrQ/zZfX9K7x22Zpi1W9qBBkU\nOdOY93x+IiJXX7jotRNXYYxcf0X/3bI7dEZCIPHRL1eczSei1wPOuCj4wCLVb3oc149utVw9r391\nS0ijcUy/DLlZDBzb8nbg/nKGU8s5nR2SW465OBmCX8hSVmWrfld/etJrJy/GL0G+fJ0lxZlrQ2OI\nB6kRei0Jo1/fOCaFL9G/hEdl6IzIQNPwEuZLWIg+xp4hxIEEH2IE/5orIpJWglg80kS/6N2mY2rv\nSdzXiS7c+/6Lem/hp2xRvqdhFMtnnX1G2Qb8oj6P9lGtRxpUv246p+X3I1Nj4JLO5GUGh3A8qRk6\nVnIM4GyE/kb9i+OY3y83iw7KSItdoPcL0bk4phX34Xyjc/TaMPhz/OpbW4v7lO/X13l0CGM1oQDz\nfu2nN6h+7bSX4Mxi3rO4GeEtb+I8WilmrnpgherH61gsxZ4D339T9Vvz8Bqv3T+E2O9r1tlz46NY\nT8vev9BrH/ruPtVv2QOVcjMZa8MxJlSmq9d6jiJu8a/mvHcVEQmPpDlCsZKzp0VEek8hg6K3C3ve\n3FV6reFftlPTca3HKYsmMlPHKN4DJq3A+tR9qEn1C0/FHimCMuGyovUeq/E45nDt88gqKblbr2+c\nAcWf3X9GZ+LElOtssEAy2Yc1hPfxIiIRpGyIrsLa1fKc3rOk8x4uB/N3os/Joue1izLJR9r0+B64\nioydzss6M+qPTA3p+MT7w+uv4/iiwvWay1nc/VWIoVPD+vN4/Tj/X8gozV2m7/W5RxGHVnwOmdPz\nQvVzi5s5H2iKtuOZvfMtneFX9GFk6A3Sc2BKrM62DU/HGOygsZnozO20lYiJ07QHnHbmdlcjnjXS\ny/EZnG3rZh2P0hj00V4idUOu6hddj2MPo+8RYhfquJFE6oqTPzzotTPy9fNYahbGZvV5nHtBkc4g\nTs/Xz48uljljGIZhGIZhGIZhGIYxh9iXM4ZhGIZhGIZhGIZhGHOIfTljGIZhGIZhGIZhGIYxh9yw\n5gxrm0McB5Yp0sx3HYaeMjpf63lbXoRjSARplrsPaC1bdBH0hdOkx40p0Zr+jHzUexmogp6w9RVU\ntM570HFAuAw9IDv7hMXr6snsdNNGGmDXpWaoDprg0RZy03DqAHAVcK5W7nPqFERn6WsWaIZr6HhD\ndT2elDXQPXZQdeoIR18+SlrlaHKRiM7UWkM/OQQNU60WVw8YWw59ONcbCo7EOGNnLhGRqGxcp4Er\nuJ6hPj02w6lyOtddaaVq/iLaWYVrHyQ6TihdR5rf9jWugSMikrpGaxkDSRRpm0Od8VjwftSz4Ovv\nOiApd6VunO9Yh3Y24vofXJen+6SuO8JuVayFb3kF15ldz/67Hz4vbTPqMvDfFBGJzYM+c2oCc6zZ\n0Shn3fX2dafcOlFc1yllORwv2O1JRGTCcQgLNHHsoDKr//b6R9Z57b5z0Ionr9fa5FNPn/baFWtR\nb6LwjnLVj926OAaws4+IyBTVRQinOjOHqnCtb12pa6ZUk6tEAtUEyFqrdfvZ8/DvQaptEePUk+La\nDIOjNBfHtBtcMzlLpZLrXeEG7XwVfBPrP2VsRkX/3otax87uKjxnax4/r/oVPwTtNruozTpjIobq\npXGtg/hyrXMeqsf9HaR1MXUdYlLWUl1LhuuEcI01130gmdzgWI/fc1zXsOE6AKHBVEPumnYxjKJ6\nUKPNmNs8RkVEBsi1MVvf3oCQtxOxY8JxxclIwh/kdXzcWcfYMbKnBted9xwiIvFUT2dsH/4Wr0Ei\nIjV1VItthNy+OnANi9fqizHRg8/zU1yv79LHULkK8WHwKj4vpkzXoWC3TK6pdPlZPYYZrlfHtWhE\nRPJW5b/j+94tDZ04x3X3zVevnf4FHJoK12DOjjlOfmnluDclZXAJcfe8PK+4rtqZnx1V/bjeFdch\nqnsWNUP807qmQiHViQqhGnLjXXq8Vb2Ez0jPIxfDCF0/sesg9tdJGRhjMxO6ZlLhg6gz00MuMwu2\nO3toqhEot0rA4TVp4IJeu3lfPTGGfYLr+MrOb2mb8/GCU5OwlWpvlT+wGJ8Xqe93EdUMG6nFXjSm\nBPNl2lmfummvGF2I+Brr1HoZquI6hmjHOfUEU3PxvrgK2js4LlFtXfiMTKoD2d2r9/uh7XpPGEjS\nt9Ecc/aUCaU49nB67mp6Qe/n+HpyfUHeX4qIjNFzV/JK7OfGnVo3XJ+Fa1/x2jfSqK8R13eMo9d8\nTh3Daz9BLbZequc16cztW764yWvzM0PfWb13WPZJ1Ik68u19XjurwKnFVqKfuQLN1T2IMcs+slq9\nxjVGY2jtGn5F18Ep30g112hPMzWq9/nsBHn0McTRWxyXsezl2ANz7ReuL8v7IxGRENqDROXh3rku\nwFm3Yw/tJyfJ/it6/eQ6M8s/dYvXdutg8vcKwS/jGAZb9Dgb/f+oxWaZM4ZhGIZhGIZhGIZhGHOI\nfTljGIZhGIZhGIZhGIYxh9xQ1sRW06Ot2mI2KBzpOsPdSGEb69UpQ3GUFsvpZ1MVOm2p5wRSDcfJ\nyphtoEVEhhuRXpi0FBITTo9yU+rYco/TzlmyIaJlH0UPIG2p8dVTql9YAo6J05cTFuuU/mCy8Ish\n29Gmp6+ofq5dbKBhq2mWMYmIND0DC1pOqU+q1NIetgjsPIyU2dgCLdGaofufuhYp9TWPnlX9OM0s\noRzjYrAeqX4stxARmZ3GPWar5bhsfU4dZ3FOodEYw4nOOXGKevIKpPz3XtT2gxHJSGHuO43XUm/V\nMqbuUyTv0E6q7xpOuW16TtsGJ9K1YJvQmSmdXsk28rl3IW25r0qnV0bRZ0xQWrWbDsiSPh9J3co/\ntdJr957X17LvJCQcUflIzxyq1pKGmM/g8yZJ8hTsWLxzGmvXMaQU5965UPXru0p2nBRDBi7rFGoe\nVzeDYZIOjvbr63m+EfOqsgADaHZSW7oWl2O8swzr2vFa1S87DdKhaJLHuHKUgVakWyZXIIW2fAjX\nIixRx+EVG5H+P1yD63nouROqH6fvr70F92SQLC5FRKILkGZcWAwrR7ZRFRGJCMMYPnMBktlVcfp+\nu1LUQMISuRjHDj2IbC+7SLrLc0JExN+Pzwj1vb2Fuoheu9JJBlj7ax1P07ZSSnkT5mXLi9e89lCX\nXhev03jJK0ZsjM7T6dt522Dr2XYakrowZ20ODsPcnKbzcCVmw7WYA5yqP+bY2LP96s2A09nrT2nb\n6dLbytzuIiIyeFmP24FRzL/5JJE48/hJ1a+A5GAs+WraV6P6TdN86W/FvMotwf1x90RjJDmua0Us\nz0rUazPLdN58Gce3qkvb2kdk4roP0b3iNPE/+TcN23mO5GLMsW8OJAU5kNyNNOm08YIV+V6br9lE\nt467Dechy0+neJrzHi0THboG6cjldsgxVn9krerXvhcWzLn3Y50drcP9TFmm1xmWIMeSlH+kRku7\nMwohe1HS8Ah9b9iqm21o850yAf2XsP6FxWOvVL9fj8vEtJsrva8/hmuWlqElQDFlOGbes7uys+S1\n2MO1v4rYNjimJYvFd0D+xlb2WTtKVL+wWFwP3suznMq1jM57L62LJDXtPqQl4ambsOePLSJb6BEt\nkRik54vQOBwPrx8iIjmFmAe8T07N1Pc7NO7myZq4JMG4Ix2cLMQejks8hEboezh0HXPsyl7sc9Pj\n9Tqb9z5c536SG8aVarn0bDmuBVt98/5gvE0f62gD4sj0DD1z0POriMi8UOxt0/LzvTZLCkUc2TKV\nCknfqh8S+BmrYDnGB9s7i4j4+26ulXY6zb+xdr0m99N45z1hWqoeZ299/02vXbIA58KyKBG9v1n/\n5xvw/86eN3Exxvfr//Ga167cCrn9rGO/3T+CZ5epo5h/qav0fTzzg8N4rVTLCpnS2xE32vcjXoWn\nRKt+dY9jjzQ0jntVVKhjfsmOJXIjLHPGMAzDMAzDMAzDMAxjDrEvZwzDMAzDMAzDMAzDMOaQG8qa\nuCJ4dLauEM3pkAV3U7rPqzq1ntO82amFU9v++zVU446ktFqWGoloiU4XSaGic3B8btp+RwvSOkuo\n0npEqk5HYseezjNIqYtx3JW4aj+nOMbm6pSo1v1IfR2pR3pq9j3aVaDlJaSel94iAWe8jaQpjisF\npweyLKT5eV1FPfkWpIzGUurgxZ8cU/2KH0SaWd1vL3jtmHJ9DSPIUanzBFLEuo4gxbjgfVqqMEpp\n78GUJt584Jzqx9XWp/1v7zwkot2fpmj85W7UN6Gq5RWvzRKEqWFdbdtNlw4kzbtxP4oeqlSvdZ5A\nGuVgDcY6p8uKiMxQSmX3OdzrnsN6vvgojZhTh9M35qt+aflbvPbYGD5vsAPj2Y0bnDrN821e0Dun\nO3LKvL9Hp3RyWnHeXZAVzM7qex1fBvlEy6uQw8Q5VeEjU2+ulOJ6La7T4k3aEUNI1pR5O6QGl57S\nEhZ2A+B036X3a2esvb88gNconXResP5O/morXDryaL50kQNB5ph2S4hfiFh3fB/m+cb36hT/X3zv\nGa+ddL7ea89fraUU51676LXLKA02KEwf6wzJZVauqeAXVL8Wctur2C4BpecUrhdfBxGRhAr8OzId\nbk2cai6iY1kkyXfcCv4sHYwkZ7zBfu1MkM7Thy5ZI8lEi5fnq/dkJECWmbAAcjZO4RcR6b6Ge9Nz\nGOM3eZ2Wk7KzTHIeYo8riWMHjagMXKNxR47sSmYDzcVDiKkhQXqc8brOMp2o7BjVLy4Oa+GJx7AW\nFi3QktfLJ+Fgt+x2xKkwxykkqA0SoDRypWAHwqGaXvUedqnhVO5gR140SLKcJw4gNmQmaMeoEpK1\n+Sm+um5fo4041gunEFN9kY4LZrmWGgSSIHLUcZ1z+P6yXLCk0DkPmnN1DZAgJDSlq36ZOxGzBp7A\ndW54VsuM8+7F/u7ST4977QUfg7SxmfZ8IiKj9eQKU4pxH+w4CLWcxP5oagjH3dii5bkFpUjdX/Wl\nzV47PFyf05lvIj7nPYB4WrBFS3w6DmmpRqDJWYxY4u7LO0hGn7UNTmUtr2npVYQPsTKmAmMu1tlb\ntO3F2hC/AOt/z9lW1Y+d6TgGtL2EuZy4Ukvlh+owx/iZZsHndqh+HacvoZ8f/dySDJG0f2JHy6Eq\n7YAXloh9VRDF7yFHhjkRdPP2qDW/g5tb2UeXq9f6ST6esprWDW0GJEd+gLhUsQPPJizJF9HSYl4/\n2aFSRGQexfXE1YinLAvL3KnHenQ64l/Ty5jb4916zZ2kY5ghF+DEVVq+0ncCMWVk+O2PW0Q/m3VQ\naYWi9+h9Ijvj3Qx6u/D5MWN6De4jx80GcgPc8NH1qp+vHvvSCNpTX3vxsupXsBHzmeVa7hqXeRv6\nLVoFZzt+TghP03Gj9RqeK5ctw3t8zr6i7mms24Xb0e/iCxdUv/I0yFw7q3HuV/fr/fn2B+G6yq5i\nrjPjRP+N5WmWOWMYhmEYhmEYhmEYhjGH2JczhmEYhmEYhmEYhmEYc4h9OWMYhmEYhmEYhmEYhjGH\n3LDmTGwxtFnDjjaabS4nSCvn6u1YqxpNdtLzQvT3Qv4BaAUTlkEX23NE18OIKSctO9Wv4HoaUbna\n9m8xWZAO10LL1n1E69qmqSZJdCE0c75cbeOWtg41ESYGqE7NCV1vJ3UNdOd1ZM/WfULb6iWv1tZe\ngSb/g6jd0ndJa5Oj6D7GkTZ8vMPRV5K+eaIH5xwVGaH6sTUx1yvxO/o6rtfC9spxZbi/ra9Uq/eU\nPAKBav1zus4M03AQ9yFrGfStU44elW2I86m+zfU/vP6On52IkmosAAAgAElEQVRQibEZ42gXExa5\nvQNHwftRp6DtoB5nbHcdTWPVrXPBNn58P10bTj/f30xoaeMzdA2gsDCcf8Pp3V57tBU6y7Ovat3m\n/GWw/E1cBr0229OLiETFYe5cfmoP+iXp8cbnNNqF+dx7rk33m0bNgfiFqK/haltZZy66bERAmKJ6\nMZMDek5svR/1Wnb/n9fe9v9FRM6+ihog0UW439UvXlH9uB7NPDqv8T5dd2p5KfS8tS3QOi+qQNwM\ndsZIB9nFVuRgjvUc0bFt62KM25RyXPfOy9q+/VQtxvSCtdD99jZpi/XyTKwvXO+Fx5yIyLU23P9t\nEliiSF/u1rGq/RXiUs79qD3hWsqHkS0qu2fn5KWpfsmrUR+D31N4p7b57SfL1axduH7xDah1VntA\n12hY97d3ee3650557YYL+h5W3I3AlnkX9PlhMdqWNa4E60fHYVhTs+5aRCT3Pmjo2WZ06Lq+12Ot\nqL+Q8zcScJZsQzzzO/XC2l7HeOS6VOFOPYya/ai1MkW2q+01ep2tWIF6JTEF2Adx3TwRkfFJjKdp\nskNOWpjvtd2Yxfa92ROwAPc78aX+FdQ5Kc7CnuNkjR4XYSHYFnYNoq5MVI2+373DuD+psaiNUbKq\nUPUbuEDX4i4JKFlUL6LntK4Zsv6TsGY99UvUFYjM1XXQimgrOj2C+h89jv1xsA/7mYRkfEaKU3up\n+TnUuklZgP3Cif9zyGvHROh1jK21Dz8Pm/PK1XqeT9D4OHAWdUuWkpWviKg6bZPDGAfnv/OU6pa9\nFbF/muqK1e7VNXEWf2Sl3Ex8BVirRhq0ffgY1QTqP4d1I9qpDxeRgX8PVyOWTDj21Dxu4wVzmy2U\nRURmqY5ZcATmROwivGeA4q6Ifi7imiL9jXWqn1AZHK7VFV+ma5j1V2HuTFFNJff5ieNS/V7smyNC\ndc2i3hZd0yaQcF2nw9/br15bfDf2AVwvhu3GRUQW7sJaw2vr1ecuqn6LH6H6TU9j3+Of1LXxCt+L\nGF/zBPaiebswr4Kca1n7O9QQyaO1qvaxd37m+O2PXvTau3bqmpVTEzgmrskZ4VhkDzdi3OfvwBre\n9KKei2GhNy4V+24p3Ia/7VrFF38Y9s8t34Vdtjsex9sxpi/sR92eyl1LVb8aijM5yxFH09bnqX71\nT+L+c8wfrEbtJa7xJyKybBjnkf8AxsHMpLbc3vw+3K/+84gvyz60QvXrOYH1JTkHzz46QusaOxFk\ns83fcYiIdB9G/bCyDfInWOaMYRiGYRiGYRiGYRjGHGJfzhiGYRiGYRiGYRiGYcwhN8yP6nwLkqTp\nUZ2+zTaa0+NImwxP0mm/SZWQLrAF9RjZMIqIpKzH57WQ1V1snpYUcZrQpGNl/EdG6nRaJMuz2k8h\njbi9X/dbeT/s39r21b/tZ4uIDF1BKlV4Oo4nYam2Key9gFR2lmq1vaFTHGNLteVxoGmmtLjwZJ1K\nNzOFVMSO/UhFz3+vlrCMtCDlM5osXfvOa3kCW5AK2djVHNdSnIV0T7r78dn+qxhnGbfmq/c0vACr\nvkP7kWKY6NPprRkk5xinlPrTl66rfpWLkB431ID0yoTFWlrA1sOte5AyOuJI/cISkKqcrTO73zVj\n3UhHdW0FE0mmw9KHUceWkeUT/B6eHyIioT6kr4dEcFqstiturHrSa4fHQ5b07//rF177w7dt0sdA\n463/AsaOr1AfQ/Uz+7z2UBfuYfpyLQEcb8c5tpMUL80ZO/HZkBV0X0cabFCo/n6aY5SskYCzdAPS\nZE/u16m6a3ch/uSnIHU6KFRLispI4sAyLNcO+Ewz0vKzSxCHk5dr+8/e04hTBZkYF73tGN/pSTq2\ncezcdwnp9R/YqPMzOa16/+uQzmy9V0u1Eq5jbvKczdlQoPrte/KI145pQtzkmCwisqxCW3UHknBa\ng3qOaulD6uZ8rz3ShOvXf0bHyWCyAGappCv/ZJloNK2Foy16/Ywrx3ippvTtTJLgZs7X9/3y95CW\n3E226aWbS1W/2pch08ishMwqtkSvWwNXkKabQnKs7pNaulP/BMZ94YeQ7h6dreUmSmJ4E6g7CDmP\nf0qnw7O8aOgM7knxjjLVLzUdcevKKVz34mJt18yu1gMUY9iOVETklg8i6HAsajuImOXaK4fQWEot\nRIp2eLiWSITFQdLyhVwc99ULej9ymeJGZSEWsicOHVL97lxO8aoccbnnkh7rcfnaQjSQsFRoZlav\nT4kXMXf4froWtjyOQ+jajjsp/bzeN5/BWA+7rCVKWST96zmJVPjS2zB26vZpyfbuJ2EhvKoYsWu0\nWUsC81fke+34K4hDKY40ntfwsU6si0ev6z3QfZsQX+uexxhLLUxR/XrOQH6Yt0ACTjvJZDO2F6nX\n0iYhF5whe+qITC1jaD+Oe8LrU5CzLhYV4VrNI5vt0Dgt22s4jeef0u2QqA7XYa842qvHSOJyyNM6\n3qz32ixHExEpe7jSa08OIb4M1Gjra5ZWsczT3be07sP1y1qO2MP7exGRmGEtrQgkWZsRK5K63tmy\ne4bk9lE5ugRF/QuQwPDaVflpLRViOVTaVoxh93mk8yDuIcs1h2rx/oxb9R4jYxvmXxetXRk79Lh8\n5j9e8tqDY5BqDThSrYL7MGHc42OSV2Jcnvn5Ua+95q83q37jPbrkRKBh2e3koB4vLfQsufJByH6C\nnbU6bXO+186+C/uJN76pS0Ys3Y7nzOAoxF5+HhMRyboTsZNlSWlrca/6rup9RlwFYlj9U9hzZGzV\n9/HMbjxLVt6zDMcTodfZrNsprlPZhPm3aFlrzynE/FmKXa5En6Vrb4dlzhiGYRiGYRiGYRiGYcwh\n9uWMYRiGYRiGYRiGYRjGHHJDWdNkH9LtfGVadhASDWnF4FVKxZvRaXQ1byF9s3gjUpCmHElS9atI\nnW7rQ/rPljt1GjFXNueUq/SN+V576JpOce8nh6KCXUhPlBe0u0kfpfenrEB64nCNTkdK2470vcbd\nOO7oAi3B4rRkXxFSxRId2czNllJk34H0KZboiIi0vQm5Uf4DSL+rf0K77OTeCzlGxyHInxIW6dRp\nTgVjNyRXenR1N6QQsVGQWgVR/nfvce2+ELsAbiA+cjvoHNDyohdOwu3gOLW/8vGPq35vnUSq2yZK\nZx4Jd9LpaUwn34KU0bF2LRuKytRp+YGkl9KK2TlARKSXnJdY8hSZpq/5NFX777+KdPqUlToFPzXt\nDq89OQlnkNBQHQOiipEOevrRH3jtV/ajUn/fiE7B/NLHH/TaSSuQxhmdoVPfI0h+l0xzsfq351W/\nRHJSyd6Bud13Vbs1jSdhLEUkRr5tW0Rk2q8drgKNj1JGK8d1nfeBc4hTpVvxGktgRHRaZ2QGUruj\nq3R6/S1liJ2+YvzdQ08eV/3YaSWnBCmax19BCvylpib1npdoXv3t/fd77fZeHSuHKN33ff98n9fu\nvaDTeyfJxSr3fsSazqP67972MGRTZ5+Bq0LJcq0j7Lii3ZECSdXTiI0VH1imXvOTEwVLcPuHdKxY\n+iHIuqYpVT9jqz6PIXIjYDmL6xIVnoT5EpOCec+ObexuKCIySe4BJcshrTq2+4zq19iN9SmoGuv5\ngx/fofqd3Id4GnEI6+LqD6xS/UbqEK8v/QguOllOuvEYOXAVLJaAk5ZNsiySN7iw01vj61qOMkSS\n7qJ0XMPhbn2/n98DCVkh9eO5J6LdX0bYgYy2VWlOGn5IlJa5/pHgYC3TiM3FWj1NDiKryrQ8bQm5\nb14/hPNNi9MSBJaCVV2o99oVq0pUv66r75zK/27JyEH8Z1mxiHYQSQzFuR/6zRHVb8UOOJD0nkXc\nqGrV+48UjpPzsSbFztcSoEHaf6aS60go7Zkbnzqq3rN1PWQup85g7qy/W7skDV7A+IgmeRbvx0VE\nusk1b3IU+4PtW/TndR1EfM3bSS4tvdrRb7zj5rn8iIhk3o5ngytP6zW+YD1iIj83/Emphfm4x0lT\n5BxXpZ3T2OGRXWVC4/V8iQjDNe09BslEzyDmZeFGLZ+9/DzWBo6b87O07Oyxv/+919713o1e++jL\nZ1W/ihzszQZHcU98rtvXUkhWZ0hKUX+qQfVjWVygqaFnuPgYvffkPUzDy5AuzX9AB/ZCkgD1kjzE\nlSJO0b0v3HCv104sv6T6RUcjFlW9AFln5ibsjfqv673iWCskw+OdeIZh910RkdXzMV+2LVzntUdq\n9R6o+imMicQCxNrILC3LG7yO8VJxH2LSwX/bq/oVr6V18iasi2P0jD10VT9L8zNYDMlVm56/qvpl\n3YHrfupHh702u5W6n+8fwdyOLdHPGkefPOG1V9wBx6dZckhMXqDXneBg7ImmRhBvJ0f0dw9XWjC3\nV8fgAbz9DV2KI4RkV+Ep+OyuQ3qPynAsz0rU5xTpuM25WOaMYRiGYRiGYRiGYRjGHGJfzhiGYRiG\nYRiGYRiGYcwh9uWMYRiGYRiGYRiGYRjGHHLDmjOhpOF17VwbnkG9ljSykuo4rPVXqSnQpYUloL4D\n27eKiOSvhY465Dj+1lBNr+oXTjUiYoqg4Zoag/55sFFbZLPF4rmD0MZVLHH8jknX/eSvXvPad23X\ntq/NL6EWA1uoRZzS5xRBNtts0RhToLVnXEfnZjDchOsRHK5v+ShZmvdXQc+cdYe2+br+6Gl8Huns\nCzZrnR/bEQZ14j5GO/VPUnKg2a4/BBvApBTo2ltbta1gaAs+e2QC9RLWrdK23/Wd0Bjfs327167t\n0Nr3LQvxPtYQ9l/QGmWuA8E1XfodW7wZ0vHLagkoaaRdd61p2Tqejy/EsVxNWYN56iPL5Cm/1pOP\njuJ+zM5CIxoerrX1AwOoMcFa8IWLFnntOyor1XsGG3CsCx56wGs3HnlD9WPNexRZZkbGaK11+kbE\njerHYNWcuUNrwWt+DS23rxC1oZIqM1U/rtFxMxig+leurX3bNYyniDbo2qPzdK2H+IXQ1rMONiJT\nz7HkQsTeMfq8o9euqX4f3X6b137y99A3c9xMdepNfO/f/wf+zjJcw4kBXauA62GM0jG4Ncc+9Nm7\nvHZ0MvTzyx9+QPU79K//jH6kuz9/RGueU2JvXv0nvi4XHz+tXuOaWbm3YGyW3FWh+h3+HuoyFVTo\nmk8M180IT8R4ab6mdfKHDkPXfoCszbmWz59t1pacyx9BLZiW5zEmyrJ1fYSFCxH/6qtRB2Dar/Xj\nletwjq/ugcZ75aTul0XWmqNtWH9q9uh7GBWua0AEGrbibTml9y2l92BtaNiN44pL0+OqtwaxMzcL\nMXX3YV3X6fZlqE2Uuw7jIq5Mx9Qnv/qM146m8x+phf79Vqc+Tv69sLTu70IM9Mdpm+6+67h3fVRb\nJSRarxP9VDOlsBLrjrt+hpBFcUI09jqtl3StlozydLlZxJRiL3Vtb5V6rfKjqB8wTNasCb53ttI+\nugf1ljZ9eL3q9+av3/Laqe1kax+nbe15DT7zKGoqcZ2adXcsV+9pOo7aIFynbbJPx9PCh1GLovMY\nxuz5Z8+pfi+ewjjYtgTvmenWe6qLjbAaXjWI88jMTFb90rboOkeBhvf5IcH6WSOCazOkIPZeeErX\nZ+HrtnQtarYV3zlf9eN1aLIfe1mu/SUikrUWY7/1CO5PRCjmS8NBXZcihtakMT/WuOp2/Wzw06dQ\n/+T5o4iVn9+1S/V78hDqdWyhfVX8Ul230peL9dk/gHMq267Pfdh5ngokGRVYt1PX6fosfedx/kVb\n8MzA9vQium7UW29hTK91aqzxvB8bq/faHaf0GpK0BGP68n68xnM+tkjX3OJ1dnoCf3egSsfT5HXY\nT/O+rq5Gx7/CMqzvvO95+pfaVnpFEWrJTFMtlYwU/byY7OxZA87sO7/UdwZrwOAlxJK4xbr26Jvf\nwj5yxz/e6bXdOXb8uwe89tKP4qFpuEE/wyfTfo4/g5+dB66cUu+JX4A54qNn7uZn9BjZVIF9y8AV\n3OOyh/V+qeUQ4k3a6nyvPVKkj5Wfu7h+T/fQkOo30kJjXz/CiohlzhiGYRiGYRiGYRiGYcwp9uWM\nYRiGYRiGYRiGYRjGHHJDWRPb2/We02l5SZVIYRuuR1rP7KzOiYopQWp9N9n25d6v0+1CfUjh7aGU\n28SlOiV2ktLCjj6GdMDDVUhpvXeVtu6Mz8Ux7KOUb9eOrmAx0tTuex9SmsZadDpSyiqkfUeRpCS2\nQqeCvvU7HF9FEz47eUOO6heeoO18Aw3LdFy7yYIPIVVyvBu2cSPNOt2Q0ybjY5HC5spAuknWFkrW\nrWGOZXEdpYNymijbyy1ckaHe03cWKXUrFyI1fmZMp8olxuAztlUipTfSkX3ELcB5NO1GWn/+/VqC\n0PkWUlpdu3QmNC7iHV97t3QehTVmfIVOhe+/iFS8jG1IjZxx5ATRGTj2sR6krgeF6u9ox8Pxt0JC\ncC1nZ/W9Hh2q99pNtZizGQmYb5yeKSJyntKofT97AsfmXFc/yZpYyujOsWFKDUwheWXrK9rylsdV\nLEkJWpx+UTkkW3ibVMN3y5HDkIJtvGOFei05Hdeg5zruqWudXrQLsam/GSmaEY7dZM9RyN9iypG6\nyzImEZG2LqQ6byapXzZJxkJitMRkehzpvj3nILFxJRIx+Xgfpw+PtuqYOk1zuPM8YnnQUi39WvK5\n93vtmlchPW3drVNaY6P0+wJJ9mLEf/feDF3FtewmK9B0J827YivWP75mZ57WNtYs3WLb9NyFWgoV\nV4vzvdqM+fuZz8Dm3Jev51hCAdLLIz4KWcp476jq10+25/NvhQVpcJiWH7C88kP/9KDXPv/zY6pf\n8U5IDoarITcJDtJxKOdOLa0NNMPXca8Ktmp5bs8xXEO2qW04rq1pp2m/w/dxTak+9olJzJcR2i/N\ncyRKi/MgpWD5cEc/3pO+WUtMGvcg/T8yAzFgKEKnW/NYrfjw3V679ay+P75CpID3HEcMcfdL9V1d\nb/taY5dO/2d5hzZyfvfElWI9GN1zQb023gXJWSjFr6J12rL9/K9Peu1F83Ftm1/TawOvayNkaxzS\nrmXBsfNxTP0ktVlzO8ZYaGS0ek/WZsyJiG9B4tty2bH5bULcbO3F3Nl/SVsI+2m8FWRjD33skpZ+\nfeCDkH3HluG4a/5wUfWbfB7vKw70TRSRAZLS8X5QRGSkCWt8CFkyL7x/qep37klITFkO2nNMy8BZ\nEhQWi3ExOTSh+vVT6YXoqLffo19v0RKWSLLfXpSLmH+1RR/D1//iL7x2dhqu+75z+rq/h55lWnoR\nrwbOOvb0M4hD/LwSna/lyEFOzA4kWTswvvsu6eMb78KaEp+OdezSy3rcLn8Y57tpO6R/7nHPo7Wi\n4xys11179RPf3Oe1s5Ow/9j/Y8iKt3xxq3pPeiH2Vw2nXvTaaUu0b/WBr/3Wa3cOYIw2OtLBilsx\nt//3v//aaz+yaZPq10OylyXbsA+bceTD9U9gjOR8Rcu+AwFbzYfEhqnXfGmIW0FUImO4Wsvl8lKw\nx2549rLX5tIKIiKLPoR7zNbVCcv0sx/LAsuycG2GriNuXD1Zo95TTGOupxmxsvQ+vbGPTMGaGZXA\nkjF93ZOXYd/Xcazea0ck61h+6THEIS6xsaQgX/VTNuU75E+wzBnDMAzDMAzDMAzDMIw5xL6cMQzD\nMAzDMAzDMAzDmENuKGti2BlJRGSoGik5F84g/bMsVzs91BxGqlLZ7UjlHq7rU/1ii5FyxunMbnVn\nTvEKparuty9FiuMnv/EN9Z737tzptdMpNdVNn4zOQ9p3016kSCUW62reg1d02tofubbnivp3cTrS\nScPTkXY+4LgBJa95Z7eOQBBbiuOPK9eSGP8gUqf5niQt1/dxZhKpbpwm6qbwLdyIFL4oSsMfa9cy\nhtI7MBb8A0gn5TTvlCXacYfTx7qOQj7VdEWnlpZmICXuYi3S0DcuX6P6xeRjTGeSI5Obap5A0jqW\noLnpbHy+gSbUh7E6NaKdbnzkyjPeiRRrtwp931WkBrJrV3yRI5GIg8NSXx/cAtoan1f9es4j5bp/\nFCmEf/4IUubPOi462967zmuPNqGSftoanWo+PYlxWf8E0tWz7y5X/cbofIMp5dmdU5wa3foiJGyh\niTpVP3WVlp8EmsoijLMTr59Xr1XkI+Wz8G5I64Zrdcpo3SuocJ9EkgtXUlT6SbjMDTVBapC0TFf7\nzyGJ0mgHrmciVbufN0+nFbfsxTWcHkdMHu/UznNpy5BCOj2Nz87bph3wBtuwTqQXbfHa7bVvqn4s\nowwKxjzNT9Fxzb0WgaT1AuINp7GLiGRtxTiOycO8HKzpUf2iKVa0vYz1MzdDux5k3oVU8XnkBCWO\nfLj6bL3XZmeDtFswnqNitBymrwnrVWIu7tNw00nVL64Cx8TzaKJvXPVjiWznQcTdFV/cqPqNtOIz\nSj6A17ou6FgxM3VzndNCyFVnakjH1CSKHyx3GJ3Q0gfeg3Q3Y57WO9IeljiMkoMDu1+JiOQXY25O\ntmJebfkzXCdXEth1CXE9OwnxJWF+gurHQ6Z+3z6vHe/sCdiZc4RcM8p6dNw4XQdXv7RijBFXypqe\npz8/kLAzTVGR3rNMDuJesVNo3WHtsJOWC1lJHEmG8x0nreqfI129dxixLH+Jlt5Hkmxj619u89oh\nJP0a7dQxPaME8qI1f4exd+kXz6p+Vy7Xe20uIfDxj96t+v3gJ3/w2hw23P0a76fHKfarWCMiseVa\nThxo0kj2yY6fIiI1z0EWkVxEkrGzeh+dRHJ2lj+drKpT/cYuQKK1ZgXW2fYGPWeHSFaY+g7ufyvv\n1NKqrhOYzzM0DzbcoiUxHG+GB7B32rJc97tYjTi67j5droGZF4L7FZaEsR4Wr+VYIw26XEEgaXwG\n98nvrA2Jqyiu0Zxd9z+0I87r33jFa5cvwnqV/0CZ6hcdjXWxqxbzMjpby7ie+OWrXruyAJ+37Das\nd3EZ2rV3agr70rzld3jt84/9SvVb9DBk6c3PYe2amtZymLFmfN7/86WHvXZYvN57xh/H2Blvw1zk\n+ymiJfo3g56TOA5/v76PPDcTFmJ/2Ha0UfVLXYJ9ac42lJZo3qv3vOy2+vJpzEvfZS0ffv4YpLcb\nNmHOsYzNP6W/K3jtAKTuieTQl3RcSwy5lEHEBjwThoXpmFe/74TXvpEElPcEy8qxHwwK13toX5Fe\nn10sc8YwDMMwDMMwDMMwDGMOsS9nDMMwDMMwDMMwDMMw5hD7csYwDMMwDMMwDMMwDGMOuWHNmSCy\noxttGVSvjTbg38mk9Zya0LqvlHhoACeptsjwNa25ZRvOFNKfcq0TEZGIJKrdQnUuzpD++bff/Jp6\nT00NNGbzV0AD5mr32BI8sQSaMteSOKZM1/Lw+o071sWFOPfoXNSzmRrXdm+s45fVb/vR7wquFzTa\npvXqXF+F7eq6jmgNoa8A+ji2BV39kD7gCdLTs6bStVhPWpBLr+EeJyVBW1938kn1nm6yk45bCD14\ner+uAxCeilow8QvQj23YRUTi46HhHY2FLW/vWW1f2XgW9W0yi6Evz9iqtapurZpAMj2BscU1AURE\nfGRDHepDHQX/kNaLhpHVd8e+eq/tju+hWNggsl1ufKa2GB/PwfyLI+vi5FXQzK/L0xpgtkwuf+h2\nr9144LC8E1z/oeF3Wt+ZvI6s+SJRZ4TnsohI4mLoY7kOR8chrW2dmdTxK9Ckb8eY6XxCH2NVA8Z3\nTAfiT9r6fNWPj5nn8zzHijg4GPckrQz+p1NTui5M52XogNOpRsxoP7THvReb1Hv+5Vv/5bW/9DHY\nJp84eln14zkRRpboI879KfrgMq/d3faW107O1b6tA91nvXZoLMZz7lZdn2roul5fAknBJvytmAKt\nGx5uRizneNqwV9vyFlFNofRtGBNuLbYJspSf4tonzTqO5+UjLi17oJJewfX3+3WNhiGqZdR9bI/X\nLrzXqQfUinFZevt9Xruj7i3VL7cM4yC9AJ9d9fITql9yJeoP9Ddi3Y4p1HXtBq7pGhCBZnoY61j1\nQX1/Fj0AXXvvEewfwkL0lom17LzW7P2VtnVuJRtcro2x66Pa1p4tgLn+SS/Zsl+6Uq/ec6kJczPu\n+nWv/cG/eo+8EwWb8XfDw9PUa6OjiC+9cahnc6pW12oZHCM7abKqDnLikNy8ZVHVTPEVaqt4tipN\nXo+YnxSn64eEU02HfrIodudiN1nd5lfi89KXLVP9ap5DnSyO3SNt+Dx3zW268JLXHiNrbrblFhEp\npRqMB05jLfzd46+qfnevQD2MIKq/wnUQRUR+83vse9jGfceX71D9Rp2agYGG68UN1+m1ofBO1Jnj\nGkPt17RdM9eciGzE80lZpq6VxLa8g+3o59bZ4fqJ/m7sdZJWorbRxSfOqPdEhWMe8DMEz2sRkVmy\nvvYFYb86NjCm+rG1++wUxszMtN5Pj1zB2OJ1Z6RGX8uUjTevpl7WTtQK7bvsWH3T8Q5eRd2jkUZd\nAyeCarhlbsOz2rTzzDSPajDO+HHfIzJ1LNu8YIHX/slrGOt/vwU1bJoOHFfvKdgCa+3e7iNeO36h\nrgdX93vMvxGqT3T02jXVj+vS5fRiTEQk6FoycYsQ74eqsF5MR+o1p+Oqc20DTDQ9T/jPtKvXJjow\nD7g+YdH92p6aa9J2nsaalLYuX39eLz5vx2ewJh34md5bfPdfPu+1X3sG94Trxjb36Lp+v30RNui/\n+Lu/89rJq3U9ynD6TiE5eZPXnpzU33lkb0c8mPbjWTKpTI+L6TGM1fRNmL9hsbrGENfeezssc8Yw\nDMMwDMMwDMMwDGMOsS9nDMMwDMMwDMMwDMMw5pAbypqG6pEq13NCWz7GL0IqTxJJmVLW67Q5lkP5\nyKo6OEL/6az1SA2NiEAaYtOpN1S/KUrr3PTweq99F8mGTv9ISyTWPoI0bR/Zm3Ka4H//G6l3UZlI\nPZ52pFrjJN1hKUHqlnzVb4be17FX2/kxadsK3/G1QM3YmQoAACAASURBVDBC96Brn5ZxsOwgcS3S\nNUeddMOuJqS1ZqyBlCQiMUr1CyFpSfcxpMMPOZ/HKaTpS5GC298PG9fsJdvVeyb6n/PabAnoWi+m\n0Rhk21G28BMRGRyERCIqE/KbcUphFRFZuR7jbJjOIzhMj+HmPUhnzPyUBJSobKRi95zQVnAsecrZ\nhXTN6OQM1a/mKcyL9C1It3PPNykfKYq9DUjdrH5Op05zyvaWr9yDz+tHSmZojL43LDe59NMXvHbW\nzhLVT2heRSVjbsfkahlJ7wWkXY6RxCfjVm0bPHCdUmnJ2nDWSQ8eJxmJ3ASH+wO/QLrmwiXaPryI\n5HhjZDM+6Izv3NshuRhqhQQvIlFbuw+RHKXu+FGvnf+eFarfRA/u/2A75Iyx6biGE1l6jKwuwf16\n8NN/47W/88Uvqn7s38tWrT0tWjIQdaDGa2dtQiry+LiWU137GewRU9biBrmp8EGhN+93Bz6PiBR9\nzTkmcHprxSPLVT+2iW5/A3IRN+WWz4Njt5uefvgJWE2WknQwnuyA583T8Sp9LWJF1xlc/+uP65Ti\nuAVY6ztD8VqIs4Zf3P1jr515C2y1ed0X0Sn94XFI7W57o0b1Cwq/4fbkXdPTR5api/R1Zzl1SCzS\n0jNitL1y0krsVXgtZetsEZExSoOuXIy503PMsfXMpTh/FbIutuZ+7E1tL//5u+7y2mz1PdKo58RI\nHdYulrimFmoZW9fVc147eRn2BLePr1P9us8i9h7fi/esJutUEZHei1pOF0iqnsX6VLhFryE+kp/z\nfrN/aFj1u/gG5pUvEuOxYo3+PJawRWbhPv3np/9N9duwEusn7x2bn4HdbvL6HPWehIWQG7EE9cy3\nH1f9Ykoh/ctpwPmtXzhf9ZsmuVdiJfYBmfX6Xmx+EPd+uBYxmddLEZGIZB3nAk3/OZKTdWgJVXgC\nxuoM7XXc+33qBeznrlbhnq64Q9tdpx7EGt9DUrW8Ar1f4rg1SrKkyRGywR7Xe8pxkvynxSOmzE7p\n8gydLZibRe+BxDUo+J3lT1Oj+LvjnVqaPNSNMR1Me6f4Yl2Cgdf6QDPSgvgy6Vgwc6mB6ELs4Xif\nIyIyTTbUVb+ERXacI3md3oR+v/gqyh8szNHz6tvP4Zmhoxn7od/8J+RPd92iLcr7KiDz9iVB6tfV\n3qz6XWvFM/HxashiP7Ztq+oXMx/3gPfx7S/r9S4yHc+cbUex7yndqSXbded0yYlAc+plxPKyAr0u\nRhfj3p18CnuxdZ9Yr/rxvn+UynZ0HNDPn3HzsZ6GklQtPlrHm/4LWP9meE9J8239fB0DP/ixnV77\nypuw6U6q13vP9AVrvHZ3N9bW6OhS1W/aj7W17neQLQ/36LnIxxRGsUsc2eTAJZxTsR6CImKZM4Zh\nGIZhGIZhGIZhGHOKfTljGIZhGIZhGIZhGIYxh9wwbzicqknHluq0Mk639pXgNa58LCISGov0ppAo\npAf7cnSqc0hIDLWRPpo0P1/1m5lBSmJcHNI/r72C1LYVX9ig3tN1DCli84KRWhSbp6u4p6+GtGXe\nPFQ876/XaWTth/Hv+Z/AMXSf0GlvfC04FYtToUVEuvYj1atMH3pAiC3A/fE7aY2Dl1HhemoQaVvs\nZCGiJVucEj05rJ2S/PQZUeTUk7LWSePNRSpnXBxS4BsuwdkjskC/h8fPJP0ddrUQ0VKzGZKuJS3T\n132wHqm07PpQsGGn6jcygmrjjaeRmuw6tcQU6zkSSNjpLLZcOzhEpmG+jJHkrr/qvOqXtALnP07j\nwHWbaHjzgNfOXI974zo2+BIhy2k9dcJrs2MXu5SJ6Erw116+4rWnn9bSwYIP4u9O+THnfXE6lXko\nDimKsfm4/m37tbNIMMntUlYiVbP+Ce2q0vkW5mLBYgk4WYk4xmuXdVzJbMN4SqF7Vb3nqurHUixO\nH63dc071myB3n+zbkRq7/2vPqn4FK/K99ngX0qPrHkdK8O8Pa6no8kJIMbdthMPaE4cOqX47RjG2\npmeQ2p0er8dF4mKk9TdSWm3hXRtVP3YPY0cuf5eOa/6b6LrVdgVyjtT1eeo1ljn5+zFuWXooIhIS\nhfGYswsuAOGx+roM1CN1OmUT/taFZ/W9ZtlLzzDu4dQPcR2W/KWOa4MtWBfZPct1MWQ3wZBoHHds\nvnbGGLgAyUR4ElK2/X3agWSC/s3XYbxdpwdn3anTigMNuz3OXtKy7RxyxEvdiOvOMgMRvQ75KZW/\nYoGWVb5+ECn6J89B/lpZoVPWX98D5xB2QypIhbTs7x54QL3HF4n1ODz9neUnGTsQr/svYe0LiTqp\n+iWXYW2++IPdXjt+qb7fGZvyvXbKMOJVx3G9D4qK13vCQJKxAH/32ms6TuYsxv5hJg3zL3+jlpMG\nHcR+Ie9WvDZcox3feN198Wd7vTZL1lz4OgeFY0yFJ2qnlogISGrCwvB3iv5Mr83P/wNicm0HPnvh\nreWq38GXIDlIGsA1Ktuq+7FLUv57seY27dbXcvAy4svNWBcnyXEz6zYt8x+4iL+dsBTrhH9QS2dS\nYiEZiUtFu2b/ddUvmdy6Mmn8hCfrezJEMq8ZcgviWLn0Ti3hC6Z7fG0P9jf56/Q5+Xz4W4NV2IP3\nOQ51BfdiLgaTzNOVCkbT5wVF4Bj4HES0o1ygmRzCPEjbkK9ea34JMY+fCf09em1YcheuZzRJgI7/\nVO8/WCGyhiTWMZH6HoaTU9Jvv/FVr/3GCayf7JIkoktxRMZjjRhxruUtd0Mefu9auBhW/VC7PzG9\nJ7HOxC3WLj8sQ80gR9GoNO14mpV18+6hiMjqeyDB7j2u18X249gzrP3ILV57zHEB7iRnXZba1nRo\np6n4bsgnl2yBnH1yWu+XIrPwjPPRz3/Sa/fX4u+Exmg3pMFqfDa7OqXfqufixASOaawXc7Hqpz9X\n/To7cf/Ld0G62vPSFdWvvR/3MblF7+cYLg3zdljmjGEYhmEYhmEYhmEYxhxiX84YhmEYhmEYhmEY\nhmHMITeUNXEKr+uuFFuC1Msukvn4HUecOOrn88EdoqNKp36F5CGdaHoaadnJyZtUv5qT/+W1p1IP\neu3IDKRi95zVqVhptyAteYKOLz5eu5ZMTSE1a6AfacgzkzrFquCet081dFPXI6hCecH7kQbV8qJO\ns8x9sEJuJuxoM9Koq6OHJoS/7WtFH9HptF0k2eK0RJYWiIjEVyBViyUXLBsSERnqRnXz7mpIS1gu\n199zVr0nlmREXHW+as9l1S+zGKmvpR+8zWtHRjoOGnH1Xnt6GuOi4Zh2JUqYj3NKJScod1xMjWop\nWCAJ8SE9s/uwdrApegT3qv0NuILlvEenMA/WYI6x60HzwWOqXxQ5UfTXQebjOi9FRSF1P7YQMobW\naqSDDzmp4SPVSA3MIzlNqiN7CyNnjLEeyCqaLh1U/fLWoTJ+TzPS8zM26dTF2seQxhqdgzTRxJVZ\nql//BZ12GWi6yB0iilJuRUSSFkM2cJ1Ssec5Vd4nh5E+nFqJmMryExGRH37rN177s7FI+czI1rK4\nbkq9772MdOnrbXCCes/Kleo9SaVIrR2mtNW957TcJj4KkoaOARxf/iYt5/CTBIsr+Fc/rZ1pgkkG\nI6QwCY5xrmW2dqkIJJV/Adea9gPahc9HrhKNL8EhIDREr58sbeWYyTImES3jCiIpRG6xdhb5+lNP\nee1ycgoqzUC/qSkd+yNTMcfY8S7ccWZhyZkvCXP++lPaSTFtK+bccB3meepaHXcHqpC6z1KgvAf0\nOtjLc3GhBJyV91P69qk29dp4G8n7yDVp6V9uU/2G23CM88jRheXTIiL3fhzvmyUnKJaViIh07kP6\nflQ47snRa5AF3FFZqd6TQnPxtVchLy1M0zKkApLG+sgxpfEZnZbtK8J+wUdy9qkRLd+ZqMcaPExp\n7b40LYvz9+o9YSBpv4z7tvzPb1GvsUNO9ynMK5bSiYjExiBGjTRgP3PwqJa83vNFyAJZZpa/TI/v\n4Rp8RvYuzL+YIlxLlh+LiMwWYD1uurDHa/df0vKV1j7MKx4H1w9r55fbHoY+PopcYKLTdNx4638/\n47VzW3APefyLiPjHb97eRkRkcARjyf+GE1NpPzLth0xzwnEsylyJPcSJV7AOLVmp5ZF9ddiTpM/H\nWtjvSoVIlj9Grp9CxkvunAiOxFjKqcS4cJ3tEkm2HJmBOOyWHeBnsLF23BOWiohoh6aEcqx90bNa\nhjlcq/frgWSG7k0VuSqKiAyM4F5lFiEusbONiN7/n/8V9nOFy/JVv7qz2JdW3A45zKU9F1W/b/4V\nJDAnjuE5gSVwWeu0m9f0NI61ZR9KA/S06WtX/GFY7HCJjRCffm5JqsS9Hm7A/PX3akkXPz9Ekzy6\n42i96pewQs/hQNNBzxfR6T71Wmwm4h4/0/Ezg4hIB0l7FmzFut7zspY/NZKsaQHtAW/5rJazd5FD\nbUwM5Jdh5Vj7hnr0czV/9xDyFmJK7wW91s/48dltB+txrMM6Bla+D/uFQXKdXfSI/h4h/HHEnivk\nGrf505tUv863buy6ZZkzhmEYhmEYhmEYhmEYc4h9OWMYhmEYhmEYhmEYhjGH2JczhmEYhmEYhmEY\nhmEYc8gNa850HoBeKn2rth8crEb9CtZah8XquhQNf7jktQvfi9fi87UF6eQE2ZSFQetZd/63ql9U\nBrRtdb+DJjixEjq80SatrReShE2TdnZ0VGtbB7tQB6XmV9ANhoTry8RWdVwDwd+p9aLdl6FHL/0A\nLOJcu8vWl/F3c8sk4LCVqWuTGpWJf3cfQV0Z1vaKiIREo6ZDGFmWuVpDft9MLzSJk442N5zsuEOp\nngpreCN9uh5I12WMpXlB0PQX3artleNKoTWsexE1StzaB7PTEA/3Ua0NtosVEbnyA9RkydyJWhkz\nU1rPO+PUHAokU1RnJHuXHiSjrajlkbY532sPN2iNbMJ8aH2nxvB5Nb/SdUKy74ZGu+88xrBrdRud\nATvRyFjUpUhaifHWe0brO8v/Alr48T4c30izrpfSfAb1OnLvne+1Xcu+sTHEKK75FBSs72Hu/dC9\nNr0Am9AgsswVEYnI0BrbQLN0J/SyHUd07aCus7hWI6Qpn79cx962Y9CqptGYrj+q41kY1TnxlWjb\nd8b//7L3nvFxXVeW7yFCIRQKOedMkARAkGAOYhIlUoHK0ZJsybkdx+623W27p9XR3XY7tjXOtmxJ\nVo6kJIoSxZwzQYIkQOScC4Uc58ObvmvtI4nvvXHhhy/7/+mQdarq1sn3Yq+9KBeFJx/1li/AeNn3\ntrTbzZvAPA+h70mNk7leUgswLjxNyJly7k1p8845WbJLkDsgNEHa8LaRjXVdB+ZsaZbcT3wDM5cj\noZ10yWO9Mp9GONnap21ADpbad6UeOn8BtNs+ys9iWzWnLEU+qWP/jrwyoVa+oscffBCfRxbMWUvR\nLrUvyjZne/m7Hvu6U/7FN74h6sXloE89+bhWXpOMMSY0Fn11+inkPuk+2ybqRVB+ON6P2H7TmA/m\nKfM3Hfswj9zZ0q40PAP7Wlg71r0Rr7RTZdhWu/FwvXhtwSPQq5/+7RGnvPBhqVePduNsUED5gjh/\nTI+lhQ+5jHlw11ducsqjVv6KyWHM2Yb3cObIv7tE1GvbVeOUa5vQdwVFMi/YOOWSmSDr0/gV6aKe\nvWb7k9wbsFe998N3xWuLN+N3VRzCfrJkm8ynF0Fr3gTZAa8skTnbTj+NNbCILKmrd18R9VZ8fb1T\n7jiCNT51HfZtd5rMGeLxIKlSYwPmDl+PMcbc9znkvXn657A5v2GhtHRmr+HeCuzh4YnShjchAb+d\nz1RzAuXfbUMj5Lne3+TfjD2+08rFwNdVuwvraEy8dfak8c1z5NRRaQu+aBn6wVuJnBec78QYY7wX\nkGsqknLTTFPOmaE6eW4ZrMWZZpRyaETPlftiGJ27A+kMwrlojDGm5lXkSfEk4D12rpbYBKxffeew\nHniH5BoQEnTNW76/CM5N5j0r8/dwnpnay8jxYefOSfZh7UhfhPVm1MrRlBwDi2I+r5+4KnMvcTul\nxGCsl9yDNSAgQFowt51E3hrOK7npH78q6vX3n3bKDWcxF0csi3e+l3RRbrfse2QiNc5T1kN5ALld\njTHm2E/2OeV5G43fiaR8ZJUnZHtet2GdUz77e6xT+TfKe5Lceei7159G3sDyXJkLcv5inG19NHeG\n6uVZJe02fP6l1/FMIGl1tlNu218n3hNbhnaLDMfZ8xf/8byolxKLXGCNlAOnxyf3rfmbsEZVnaz5\n0LIxxpTehH1nXiH290DrOUL1ZewNK8wH0cgZRVEURVEURVEURVGUWUQfziiKoiiKoiiKoiiKoswi\n14xx45DjxhelXbFnPsL8eqoQCmRbQyavz8ZnvI1wsfB0GUacuBAhQ4GBCI8ebr8s6onQoEmEgIdT\nqHRq+XLxnvYLsHXjELjWU9LubYikFREU5nz1rAyzzMiiEON6suVbJGU40xfRLpefQWhb3h0LRL2e\nE9I+1d8M1UHm5UoIk6/V4zdzaHf7Afmbe68gxJOtiMcHZFgity+HpQsrQiNt5EapnLQGYfjh4dni\nPf2X9+J7yYK1tbFL1CugMNgRCkkPj5EWdEO9aHcXyawub78g6nGo+Ug7wmWD3VJaMNQgQ1z9SSTZ\ncNrSh76L6Jv0GxD+17HfljFg7rS+ibD2WMuaj90X+bvSt8nQxaa3Ec6dsgEhxTxH7VDh7gsYVzzu\nYxbJ0M3EtZDreElC2XtZ9vVwM0I841Zg/rFloTHGpKzE+uIiS+JxW5aSKmV//mYOWV6GhlvW5FkI\n044Z+2gr6MQS9FfrXkiZEhKiRb3P3XOzU44vR9tc/MUxUa+fZDBRIQh7DyT7z/I8GY5qKAR3zwXM\nl0fvvlFUG2jG2tNFYaIcYmyMMTXtCOPtrsJ4/uNv9op6969Z45RXboIFpitGhibbNqv+xEXyneTr\ncsRrHJo8RZbJpZ+Re9IQrSMRmei30T5pr1m7fb9THh6DxIFtzo0xZmE+ruOlI5DNbPz2FqccHiH7\n8K3v/NIpf+8LX8C1WaHmmZlY71n6mvuQlFJU/BLyzwCSVbD8zBhjbvgEQspHuhB2PzkipbRtlqWu\nv0lYg9DrvjPt4rXQRKz5fF2DzXKNZ/vdGAqjtvt7uAP9vepb1ztlb7Vcz265Gxai0xRSv/sthJC/\nXyHtYr9x++34HrLbbT8uZWKZN0L+G5WCPvXR+mqMMRXVdU5ZyCsjpLzSQ1KNxFDs+7xHGmPMwNWP\nloL9pRx9EVKjwmx5/jq3G2fWVZ+AzTbLX4wx5rkn3nDK7lCsI6nWGnXD32BtGyHJ2JLPrxb1JoYh\npWAb3bAwzNHeNikl9gbhLFp/EOPelqWUJGFcfuof7nPK/VWyD9miPnYh9ovxISn5j1uO64vMQ3+y\nra8xxrS8U21mkpo3IT0KDZaS5Ng8XGN0MeSgg03yt1QfhgSD9xdpam/MNN038BwbbpHjlu9xWL46\nUIPxHEV17M/gda98sTxj9ZzA+j1Vhn2i6X0pkYhKxTxtvAqJYVqalKfxn9mHac7yOmyMtNz2N2wP\nn3H3fPEar5vz03HOsS7PbH8G+/3aEnyGO1/ORfdSzPULL+LeatVceUaNi8J3Zd6L+65xkh6Njsr7\nr879kJukbMGad/mNl0W9jE3Yx1yRJCW+XcohRzoxh+cE4Qf30T2VMcaM0NodORfjao7VSPZ642/4\n3iqNJD//52KcoisQcjzvebnH5z+80infWYDPsNMIcGoJbx3mVZY9fihFQ3Qx9tnOE9jj+F7WGGPS\nab+b/6XNTjn3qpxjYSQR33IH2ra3Qv6m6Qlca2Q4zoCeUHn23P8izkFL1mDM2TLw+asKzbXQyBlF\nURRFURRFURRFUZRZRB/OKIqiKIqiKIqiKIqizCLXlDX1X0DIbVCUDMEfuAw5DwddubNkaP0ghbXH\nUNZpT5oM82s/jdD4sEQ4XgR75PeOkvNQxh1FVA+hRYP9MgSTw8ZbdyP0MWOLzJYdlgxJQ/VTCJUr\nXCnDeRtPIuyNQzBZBmCMMW19CMVa+imEeY1Ymcdn2pUi6z6EVvWet5wzliM7urcSYXYBLhl+lkiy\nCG8lOxtJaQ9LbIabIWOImifDPyNyEOo2OdxGZYTTzpkjryHzFoS6Hf8BMoBnlUkXiRCSrYSQc0Tr\n8fOiHmeUj1mMsZmcI0NGOYP+ADmrdB2VYePuHDn2/QmHSncdbxavefLRli3vw82AJYXGSLlS4eeX\nOuVhazxyRf5s24mNQxRDYxB+GxSEUFLXRhnyd/LHkGnkbETY4ZAVohwUjnHVSyHA8z+3TNRrfB3h\n0CMkZYkskLKg/ga0GTtRJF4nXX6CwmRItb9558/4/ZFhUmLYfwlr27ob4O5iS3baDkEaFk3zKKJA\nhqCypMwVjrGZd790ZxkkOV5sCebBEEkxgj1ynp95BevjfbdtcMqPP/GUqLdtKcbZgjy0tbdPhpBX\nNGJNXXozwoW/ve5RUW+YZIrnDqLvVz0o8937rvSYmaKG5lj1e1J2m16C9SZxFa1L01KK2LEHbj7L\n/vrLTtnrla5YvWewNoaHYP4tLpUhsXuOQibx+QdvdcqD5OQ2MHVKvCe7EOsa70EReTKEPJzC0EPJ\njar7jAwHZ2eMI1cgebyxrEzUa99X55TdOfgue+6Njs+c45Yxxpx7A7LPxQ9I1ySWb0XkYu64LTn2\nqechRxk8jXNHcYmUkLH7kycTv7lzn3R1Yse/Cw2YEz/7MxwqvkzOXMYYc7kF/bCYpMnhHrm+NOzE\nuE2i/dyWnkZQmHYQha4/9+J7oh6Hds9NxVhKiZPrUPINliTSjyy8DmeCEcsVKjYCY/Xcsxj7U9Zc\nbCCHDna4u+szUqI50gN5gieLxq1LSmHj49c75bqK55xyVx3Giq9Wrk91JzEWo6Nw3b/etUvUK79z\nsVMODMOaHL9UOmS1H8C42vWf7zjlDX+1QdSr2Yl5Wvwo1urTvzki6rH0daXxP1HkRMSyY2MsKQTJ\nKmyZAEt20kmO4cn76H2RJfr2+a37CM4Mrjhc01P7IKUuqJL3MVkJODsuvp6cGS2JYcoqkm1X4Mwc\nPy9R1GNHvfQppFMIts5inA6g7jlKH5EpHa1YmuFvRrsxRrqPyTNqdCmund23rrxVKept3gI5aOM5\nrH8RhbIPOQVFDcnHbAlQ2aM4Lw424n6M2zUqaql4T+FnIHs8QefVPktiGEapNNjhLu0W6R7risZ6\n2kUOnUOWm14UuSS5IvGeK7+R6Tc8dM7LuLYy5v+K1C24/son5XcHhmAuLvgk2s2+X6x/A05W7DgX\naDnh8n43Tetyh7UvcrqMtia0dVgq1kqPNUZe+MYLTvnBH33eKWfGy3vRXnJ2GyOZtS0BrDmIZweB\ntC9GL0oS9dauxFo8Re7FF4/L5xKcLmPxQ+YDaOSMoiiKoiiKoiiKoijKLKIPZxRFURRFURRFURRF\nUWYRfTijKIqiKIqiKIqiKIoyi1wz58zkFPSJEckR8jXKgRGfA42Vz7L0Y2LJAmtiXOqD2Vqusho5\nFcpWSGs01rxPDI5RGddjWxqz5WPyOtgZth64IurxZydSrhLOw2BTe6zOKfsuy99esq3UKXOukohs\nqen3zJUaOH/T8DJ0nWk3Sz3kSBdyOIyQDWBwtNS0Np5C7oPEDLSnO0tq8FlPylp9tkw1xphxH+z+\nMq6HjnqwE+PA55OWoVMT0O9Fx6Cv0rdI4WXzu9AGcq6H2DKpD3an4dq9l6D7DQyXush6ymsSQ30V\na9kjskWjvwkIwnPUyEKZT4W/d6hR5m5hWGfLn9dzWuaOYP0o53waaJTziu3+pqfRN0N9+LzOY43i\nPWxbV7sbORCutksr2/JG5HkKDMcyxTmsjDEmZhH6oGEH8n8kLpd5iIbasN5wfo32vXWiXvwKqd33\nNzd/epNTPvqstLTeuA166/07kHskOFDqectXIc9CBOmUB6plHoNQsWajv8OTZI4EdzI+Izw83ymf\n/vmvnPKOk1J7vKYI+b4GKF/QggzZ7t1kn80201GRblEvLwm6XbaUPHBA2sHHe3DtvD/Vvy3X8q5+\nXNMq41/i4qDjH7csZ8PI6pbzRM2x9MvTZLPd1Q770NgEmdEhcQ36NJzWWleUzEO0tAttlkC5bli7\nHhQq17VJ0nuz/XH6dTL/iq8D+u93fvK2+ShYy72xBPkW7BwfbZcw15No7Qq28toV3FdqZpL8RdlO\n+ehTR8VrMaQHd9FeWPsnOR5Lb8LvZPvhPa9bczsH/XrmZwedcupSOV/Y8j74dfTdb771LaccGirb\nKe8x5Gg68H3khSm7d7GoNz1F/UDF/U8dEvXclNsol+blocsyv1J5Htbo5Gjs9f2Dcq+v/eNhp1yw\n8hHjT4Job0i5QeYGjO/HGePqGzgD5d4srW6jKXfOp773Pad803bZftyeAUGYS6M+aRVeXYu8W537\nMXdCU7Aeh6fJXCC7zmJcsf3x1sXyGvjc1Ea2y3bOBxfNpWDKo3PhaZl3quQTyBsxQHlwCrfME/X4\nfD4TRFBuO9uKne12eymnocfKsVa+GnlXhsi6ufuYPN/wGZjzXAyc6xP10rfh3qP/CvISLSvA++dl\nyfNCYBjaOoLyaQ1cIwdadAnyzNi59yKyMa/4LGbnoZuidZTzrnBeFGOMufI25oFc5f9y2ikXXlhs\nuHit/zLar7sG90lljy0X9XrOYJylZKNdBqrlHOvoxL83340d3s4vxG2WmoF+G+zFtTaceFO8JyAE\nffjVn/3MKa9dKnPTPEO5h752K/K8cV5UY4x58qevOeXSLIxRzm9ljDGDlWSBTvM59yG5D/K5Yiao\nfhr564o/K/uHc1lxnqvgEPlbFjyAvGgDA7iPO/PD3aJeTD7uZcLcGNNhKfJ5wxvPo6357Pn89j1O\nmXMfGmNMehw+e98/P++U89bmi3p8z9pJ+TwT33av1QAAIABJREFUyK7dGGOixpBPKoaeCTS9KvMm\ntbVjrnP+ts3f3iLqNb1dZa6FRs4oiqIoiqIoiqIoiqLMIvpwRlEURVEURVEURVEUZRa5pqwpfhnC\neiatUKpxkgb4qhDGM2CF5WXehhCkSbKVsu3BIjIRsj2/KNsp73rnuKi3bhlCvKqqIJngkOocyyqW\nLTo59I7DmYwxxmXZdv83LSyTMdJWtvzTCFceHxgV9dgGNbII1zfcIcM2g8Jn1r7XUDhzSLS0KWQr\n7IZdsPrqaZCW22xL6WuHVIGtlo0xJigCnzdOFmrxS2SI2DCFrvpaYDMYTd5wzUelrWzsAoRYh5KF\nmt2e0fMRfhYah/DKsX7ZP1f/jFDi2GKEUHJoqjHG5N4Ly/XKZ2AhHJYqQ0bH+0bwDxkN+BfD8gm2\n5jNGhrFGUYhs90Fp3zhBMpAxCr2MtGR1YQlo29E+1OurkNKj9C0I+2XJmaFpNdopQ9yz70C49DPf\ne9UpL86VdquuBIzTWJIuscW2Mca00txM34xwxf4aKTFMXQJLRW8l7EnDM6Usr+ckhW9Ld2a/UPEK\nQkbLbpTr1P5XIYXoG4TccOPShaLeuBfj+E8/Rsjs+gULRD0XSdySV6JtIiLmi3qTk+hjtnvNWIkQ\n3Efzpb08SyDP1NY55ZIsaU3++nGs3xzGa8ufztThM0ZpLN3y2etFvd7TWJc6G9HHbE1qjDFVL0mZ\nij9hK3a2mDXGmEJaoxrfgBzSWBafKTehPzoOY08aSJXh27FFmBcZRXc65drTz4l68z6FkOvwmFR6\nBft043tS0pBA0r+YubjunhoZbjtO6+bilZi/zRelXCA6CVKNyRF8b8btUkbCVrbeK+jD6CK5DtU+\ndd4p5y4yfqf1IuY672/GGJO+DOOJ97jeYLkGGpLqjXux/ocGyz392Otoe7bQnLKsbVn6F7sE/RhY\nic/jc5kxxtQ+g30sPR3rv6UmMxdeQb3kNIR8z820Pq8FvzGCbNQ/uVXOxcYWSEyiFyPMO8Q6A5oG\nM2O4MyH7CHTJffv0S1hPkxIhMRm0pL9sF/61hx92yrkL5ZrC0ozOgzh7hiRICQfLneOor/hs1LFX\nWsUeIcnYTeXlTnm7JSctJMvyOrIQDrBkk/kp6I9ssne216v+KvymwXpIgUISpOx0cmTCzCR8fxFi\nWWnXv4P1iM8wQZYtL6/Lo2RTHJ4hz2m8FruT8Zo7RZ4FQkLQj4Ek27jOahsmdj7eExCAeoHb5Njk\ndALDLThPT1oy2e4TWGPZPpvHkjHGdB7BeGTZdqAlN0md+9EpGv5SCh+FBG9q9KPHC9snt1r3Vmyb\nzvU8BTIVxKVa/N6Lu7HPplfKc0pfL9p2+TfQ12k5d+Cz6n8n3jM9iT74h09+0in/6NVXRb3HNm92\nyrWdWAtP/6FO1LvvPqybLNc59cppUY8l/yPtGB++OnkmiJkvrZv9TXMP7udTrspztJvOy42vQM5T\n8Ekpv6za+YpTji3FmGMpujHGRORib50iqTenYDDGmBa6pjdPYS9dOw/nkSDr/j1nDaVGIJkY3/Ma\nY0z9Tkji09Yi7cnpHWdFvbRYXGvVQdwrF10vzzc1jTijFt9V5pSbd8mxbt932WjkjKIoiqIoiqIo\niqIoyiyiD2cURVEURVEURVEURVFmkWvKmjiMjt1djDEmsgBhsSMUQsgSBGOMaX8XGeXDKCQq2JIn\n+MhhKTIHoaolmTK09GwFwonW3g3dQdM+fM9I56B4DztIeei6bVkTO7dwOOpoh5RmuCjssu5ZZKIO\ntDLmM95phL1NeMfEa/GrM+zqfiX3Ecgi2vbLcNrYhQg5y7sL8h3zknRK6hmAjGF4DNcfWSNdB4JJ\nchNHY4HDZ42RYXscghqbBalH6jIp53C5ELIdsAVDNzg4WtTjcNT2y3CKaN1VI+rFlSI8kEPq2C3G\nGGM6ziL8vfjjCDlu3iHD/6ftOHI/0nkQseF2yHHyGkhJuk/jWlNvlS5WEeROVfMUQvY8N0pp2uUn\nEA4+No4Qz5w7pBxmpBt9GJeJ8L22i5CU2M5XIyRzWkJuH7EZMmyVHbhYWjUxJOcOh75GFSJMkJ3c\njDGmYR8cUthhLCRGhlBzCOZMkJKKa7RDjlNi0AZnSeYTs1heE4dv3zoH+rmm+g5Rr3gb5tKlJ/D7\nF3xJhnm3HoXcIX8jwn3nBLyP9x+VkphACqNPjEJ7Pr13r6i3MAdhopvvgAS0/qhch5q7sUZ/8Qt3\nO+W+c1JGUluFbPq8Jk3snhT1AgNm7u8O0WVYN9z9cu3xNcDxI6YM/RaWLNs8KBR9300OATGWM+CI\nF/tGbd2zTjln8f2iXkvd6065cQ+kEBFZuD7e+4wxJjIWMrgrr0nHCiYwhN3bsG/vPn9e1Cv1ZTvl\n9Z++zinbc3akA+sGu88MWS4t7EI0E0R7EGLe65PfzdLRtvdqnXJoklx7d/wBc4RDttl9zBhjOsk9\nLKMI0pSwJMsFkyQJ3kr0ffpWrIdt+2rFewZ6aS8lSWDTC3I94Neu1kAuMX+FdHDMocjz9/dg3pdl\nZ4t6eQux71TsuuCUy++XriZRJBn2N7zO27Lb4rtwfuB1vuJJKRVq78OcXUS/8eh+eQa68a/gtDdE\nUpQwy8nUR655fAbyVmONY3dRY6Ssd2kx+prXOGOMiaPzWloi9s/K1+Rc9JJjVtYarMFxoXLPOfYy\n2mLxjUgZ0HdGtmXm3XLv9zfsXjVuyc/5VFV4G9Ys2x1zqAVzjGWVLst5dHIEbc8Oa+4YKcmNjoZU\nIzgYZ6RgD/bLqXG574z2o907DlZSPSnniF8Gp5uufTjbxSyR908DVyFp6ayAXIJlxcbIewj+vR17\n5D6buF7+Rn9y4ucHnHLBJumy20tuX5ySICJPnvse/1s4RH7rryEx7Dkrx+OiNZCzBNKYdlmSuOAq\ntEXX2TrUW4rzr7dCrpN8Zo0g57qyfOnyM0Jn43Yv7l+3LJcSH5bphZFTZkKkvHda8GlI78e8OPM2\nvHJJ1HOn0vtm4NYxlc6hLisNBt+HsNTRll5N07wYqMf6WnCvdJ4KS6SxQGeVE/91QNR75DZIw9rq\nsC+O0Z7WXSFTcRQ9hnu1ph2QLtlOUAklmHMj5OqaEi3Pdkmr8Swik/qU28QY6Xbood9kn4PCriGP\nNEYjZxRFURRFURRFURRFUWYVfTijKIqiKIqiKIqiKIoyi+jDGUVRFEVRFEVRFEVRlFnkmjln2HKK\nbQSNMSaAdOid+2FrNjEpNZhRedBqDlNemfBMqbczdXhtkvJIZK2VFruFpJNvfQc5RJIXI0eM94LU\nECath+aW7a7tvBT5D6x2ykO9+IycB6Tlbecx/N7026Ct5NwpxhjjIp1zzylovBOuk3l0RF6F1cbv\n1D4NjWzS9bI9W99BDp/4lRAwZmzKE/U8p3GNc1x4pmdr8NkabYysRcNSZM6F2IXQ+XEOjc4rsJdL\nKCwT7xkdxTUMNEHHmFEiG62nB3pF31Xov4e90kayfh80inOX4fe6c6UONpSuna2c49dIwWewZW/o\nTxJW4bsCLd141ynkrGCNe4+Vr2OY9JThWZh/Y1a7xK/AXGL9fGCozB8zQDrTYPdFXEMBNPN9FzrF\neyLJlnbgbeQpSLV0+y27aW6vy3bKnjSZkyM6F+3CFtHdYwdFvYkBzPWEcui9h7ukdnu0R85hf9Pb\nBV18bFiqeI21qnetQD6tyWFpS3lhF9o6Khw2rlnzpCXuYB3mSMpWjO/qF/aJeqGU96KnCzmaolKh\nsU5ZLvux5Qh0tpy56wtbt4p6nPul/wL2kOBAmZ8rLQ75UJ558m2nvLlUapTZCjac2ivUJedeVoK0\n1PQnVTuhAS9+UOrLfZRXIiIb60jDCxdEvbgVGIOhNPYtx23TS3k0oucjd8eJX/9Q1OO92k0654h0\nlMPCZL6BtkrkhgpPwxpn27nW7YEFZE07XY9lP71wKeb9/t9iDS5bL/NVtJ3BXphchjkQGisticVc\nnAFtvacIa5FnjszH472I8Z64Fvu1PRfXLsfZgPNf+XrkupK/FGeQMMqvYZ8Zxii/VtpmzL+qX55w\nyvFrZWOkb8Ce3nWwySm/c+aMqJcRj3xXaxcjv1zdKSsPHfXrFOVRi0yUe/hwA9ayzDTO3ybPgHYO\nEX8ySPkM7ByCIXEfrunPuV7m2Bl5E3OTLYq5vYwxpnUn5kHMIuxDPFaMMSY0Ed9b9xzN+ym0ZWCE\n3Es55wzno7nn0RtEvdFujA/em3sHZZ7FggzMqzM7kTsnN0vmNOF8YSfewnhZ+4k1ol7z67D6zpFL\nsl8Y6cI8aDxcJ15LLvpw62A+2xkjzwlN25FjIjxdjtveMzj3xd2zzikPdMtcTtPTch38b8LcWLub\nDx0Xr3HOuuAo5K3yWGfKNrKQ7ugjC/NmOWYTr8OanUjDu+tIk6gXQPkuOb+NKy5U1LvyBsbj3HXG\nr5Q8iBwf43T2N8aY1Fsw5zj/U9fJFlHvu49/yinz/UO4df+QtCbbKdc8iXEbYJ2NG1twH7dmM85A\nTQePOOXYcnkOG+nA2s15ulYUyhyOBcnoa7a8b2yxzrzFOIt4K3E98x4tF/WG6Hx++RXkkCp+WNbz\nXqLPl7emfmGIcopWvShzWaWtwF441oP+GbByzoz1jnxoOSRRju+WN5G3s9eLdl/4cZm3LIjyANX/\nDPmLCldhj/TkyDnWR+3Ec9GdKXPJcN473o9LvrJK1BumcdGyE/fNnkJ5diih++i9//GuUy5/UP6m\nFrr3zpRu3MYYjZxRFEVRFEVRFEVRFEWZVfThjKIoiqIoiqIoiqIoyixyTVlTCIUChcTJkGMOqZwi\nC8lYyzax9wLbQSK0rfestL3isDcOT7XDiH21CJ8KciPUiaVQ7XVSghV8Br+j7xJeK/r0ElGveT9C\nuGLJ0tRXL0O2piYQnuryILR+qLlf1iNbTG6//ivdoh7bT88EKVsR+tX2jrST9sxFaHc/WY5PWKHI\nXO/wG7DXDLggQ4kDKC6frYFzb5ZxW63vI4R0rAehurkPIGa2+cRR8Z4ICkdj2/Kr+18U9dh+kK0S\nm3tkGCyHLIrxbWkLPNn43qF2hB7aYdQd+yH18HfoL/8O25aRLe+nJvGabRkXFIb5wiHBbe/LcN60\nLZiLMcUIKe46JUNQI6hd5gThOe/YGOZ8CkkKbYqux5hgSz1j5DzvPY+1IjxdSrACgjEORtxyXjEc\naj4nEP1mhwfPpO2rMcZ4QjHX9/5JSq8WL0d7dF3FOvXzH78g6j2yZaNTDqQ1MLJIhuH7aJ3h8cPj\nxRhjQuMx9tke0RWDz0tdK+NnOfz/8POwXm+y5tivXnsNv+PLX3bKLxw+LOpVNUOa9++ffdQpd7TJ\nz2NL4q23wJq746KU8KUuSTczRekj2DfG+mT4diDNsXPPYp3MmPfRodN9FZgvtqSIw9WP/Nd+p5y7\nWEqU2OI6kqSlQ21oL6/vhHjP1ATWCrYTtUOPj1yBRODWrQj1rTwt95JQWm9YbnfpYJWot/TjkOxN\n0zVwWLcxxoyS1MEsNH6nm2SffZYsJDEOa9uh3x9yytPT0r43mew2J+gclLpYjr+4MshJONyazy3G\nGDNUC5kOz8WoEoTG8375/1wTyiHxkAyUWtbX89Ihe+R1w/7tKamY9zfds9Yp2/IkHicekq+ffEZK\nPUpumYHY+/9DeAZkOceek9+bchFjOrEcv91D0lpjZL9FFOK1hLVSfs7zpfsw9o3pSbkfu2lfjCnH\nOXKkHe3cfK5ZvKdgJSQXB9/GurF+uZSqxpRiP+YQ/OtK1op6E8NYRyLaSEpcJdfT2GS0XwpZyrL0\nxBhp8T4T8PqVsTJbvDZG60D3MbQbS36MMWaE2iNyHsZw1dvSinjenWQZ3og1LDBESm1bjyMdAO+R\nriiy0T0szw+Xd+G7wkhqG9sk7w06mun+yVpTmM7DSKHQUYN1I3ezlNgM1ODzhurxXeHZUaJeZtK1\n7Xv/Etp34xyZcqNMi3Dy9zjLl9yBxTzYI88iA3Qurb2Mvl54m9wAdn7vLae8ZCvSH5x7V8qHCxdg\njEzQvSTbNvPZ1Rhj4osgww1PR/v9zy/+l6hXXJjtlFny9N55KQXKXQCZy+FDkBjemLhe1OO9pegu\nGqOVUiY12iHXa3/De3fqTdI+nO/HR8lK3O7HcR+kUScOok8KUy0pP0nqU2hsjlmyuADqo5v/9Yv4\n3mBIioaGror3VB7YhX9Q2/aek88eLpzC+9Z99jqnPNgq52zPabzv0hXc65VbkkUv7TurPo91ufU9\neV5iy/YPQyNnFEVRFEVRFEVRFEVRZhF9OKMoiqIoiqIoiqIoijKLXFPW1E/OEwFWyF/cEoRbjrYi\nzCqqSLpkcLiTl8KzQq3Q6boX4UASRA4fYVamdReFF05RiNWh95Cxe2GWDHccIicolt3UPVch6hU+\nBtef4R789pRFMlt2fxrCtNv21jllWwoURi4cHKJty5g4O/9MwBI0WyY23IrwelcswjXdGTIckmUw\n83MR7pt2i3Q+GKWQ66tvIsTz3EvSOYLdWtIXINSt5qmzuNZRea0causiaUZ4qrzWZgof45BRO3x0\n3cPo74kR9MFwi3TaYOkCS2KGm2UYfliaHKv+hN1Yhpq88jWSmAyQHMiWZ3GbJa5CH179g+ybjiMI\npWV3JXY8MsaY0BjMRc54HpGI/pww0jmNQzdZpsaSOmOMSduIcTXSi/4IjrAkOeH4rsEehBqO+WRY\nJLtsdZFbDDunGCPDpo1M1u4XvEMf7QbFUiZeA2vaZBjmjoMI3x8nad49IRvkd1EGfXcO2rruWJ2o\nl+YlBw+S6vlq33HKnhwpBah/F5nm139uPb7zkpSUXmzEWNpdgfV29dy5ot7GYrjHsEwg2i33iVSS\nSp45UOmUWZpgjDE5CfLz/cmVP2ONytk2T7zWdhhjsOgmhEfbc8dD0iMOb+07I+VZieuwl6VnQXLX\nZMkiWFrccLDOKUdFov2CIqWj1eWLcOnxhGFtLcyWbVdG8hh21rMdt2r2YExE0uflWs4LwbyWtWIN\ndafLddxuM38TtxCSk+hhuQezdDR5CGtb0mIZll25D5KveevQbrYM/M3/QBg+O4nZct/qowixTg/D\n8Wzci2tg6ZIxxkSXQOoyPYn1dcUt0kmMJWRX9uMMw65nxhgTvwqSLHca+qTlPRk2Xn8S4yeT5uzc\nVTIUXozpG41fcdFZqnSDdAXj8XPyHUhUNs2/XtQr/xjG5yBJ08OsM+qb/4Y+LCNnMj7/GmPMBO2F\nLCflfTp9oZQrtZzGfJ5D+3YHyVqMMab4y3BRYqcTO0Set352EYtbIb+Xx1X0PIzL/iq5jrsteYy/\nCQzBWG9533ZNwpiOIge8QUsqdHUv2iMxGetr9mrpUHrxJVq/V+E1lp0ZY8wkncu93VinPFEYFx1e\neRYbHEV7JqdAcvH8jr2iHrtrzU/HfEtslu0cEoe5nrMe88p3WZ6XwlJx9vTMw/e6ouS9Rt95eR7z\nJ5l3YC+05Z+ld0J61LgT/ZR3v9T/j3ahXTb9/W34/37Zzsu2YW3b+yKclxbmSxl9EMnl2PEnLnWZ\nU+5ulukTwsJwNn7+P77vlO2+3nMCa8oNW5Y75c8sldfwbz952ik/sAbz12vJlVhuzutaaILcS4L+\nX+QwfymhyRjfh5+U8vO1n4fsJ/cOrLcfSLVAa+/Wr29xyn0X5PmG5bBR2SwFluMnOhr95fVC9tlV\nB3ffmAx5Fpv3GDabjnOQmg029Il6y++GTJ0li1eflPdFLP/d8AWcte30Fnt/vscpL6TnH5l3yP3J\nvr+10cgZRVEURVEURVEURVGUWUQfziiKoiiKoiiKoiiKoswi+nBGURRFURRFURRFURRlFrlmzhlD\n+TWCQqVevfm1y0456wFYJTa9WinqRRZDx8r6MreV66Gf7ETHJ6CRjZwnc9iwTdXAMPJKbHoIWr7u\nI1KPH5qK3C+suw50y980PQ0NmPcKNLdT49JGMCQWGsDYMrLcrpGW25xLJjwdv7fTsu+Nt+wS/U1A\nMJ7BxSxJEa9x7h9uW5eVFydlI7S53Ia2/pGtQRd+DpapbXukjpjz27DWuesY2ubKMct6bBf+zTmQ\nQhKlJpNzy2RsgqWf9w2Z74Pt3MMzofV1Z8ixyflUWBvtipFt1HVQ9qs/cafimkKtfAa9FdBxRuZD\nbzzSJX9vgAvX3vAycjzZOQzYdq77BPKzRM2Xc7HvMuZsYCg+OyAY7eqOlZay3dXQGw+TdW7C8gxR\nb7gLr7GFadv70hYzsgjzlHMD8XpijNQes3Vi2haZH2GkXeYb8jesNWcbXmOMSV0OrXPrUeQu+d7f\nfUbUG+tGXqdz55EH4guP/0TU+9UP/gbfewp9wnp8Y6Rmto/shVM2Yc77aqUFa9YmtFvjq+iT3gHZ\nfmzLmJ9MtrJjMp/IyRrMbba8v26ZtOEtzUauBw+N9akJuUafeB620UXrHzP+JHU18sBUvSqtO/Nv\nge6Z82+x5bsxxgy1YHy3U14JzqlgjMwhMtqL8Z2cJy3fz59GvpeSMvRNey3mQcy0tKvPTUF/BEdD\nG924X67VY5TXqOkC9tbizQtEvQHKbdbahHnZ+la1qJd1L97X+DbWg4KHykS9oWaZU8Lf8Bph5+IY\nbEB+gVgaZ26rfxbG4ZqHKAfGeL88C6TFYs5lrsO8svXqmXnYn9NuxljvpDxgnEPPGGMmKV9ONK3R\nO3+6S9QrKUAuhGrKY3XnX20R9UY6sUbV7cA5z84jkVaEa+UcSHaeKNtW159w+/Wck/kM4pcgP1DZ\nddD7dx237I+PYQ0tWJjtlBtekWdZzlcYkYNxMG3lW9j3yjGnvPXLm3GtlK/p9B+OifeMT2L9Ygvm\n6KJ4Ua/7PK79aOUV81Esn4uxk0p5AW2LWt5bj/zyoFMuu2uRqOerluPZ33QewPgOcckzJZ/1+jiP\nWo/8La5gvI9zA57dJXNL5qZh3eOcQF31Mo/L0/v2OeVVlCMtbQxzOT1drsMDvZg7geE4E20skftY\nRCjOjrz3RZfIMxb3D89zO28l1+s9i3mQtCFb1LNt3/1J03asFZMjcj/mPFZZtyLPVtPLco7lfwq5\nZDpPYx/i9dgYY6KL0e4Z8Zgjda0yp05pEdZuTzzWv6kpyrWUXCze4/Uip98dn0Peks11y0W9p59D\nTr7De5F/ZtUmuY/dthQ5rUruw7wKS5T78aknDjnl1PlYWzlXlTHGDNZSzpRtxu/EL8NeyDlJjZH9\nEFOMXGfNlEfIGGN6ajCXKvfRuLByA+Y1U+7aXpyX2vfWi3pR89C+kQX0HIHui059/3nxHh4jnPs2\n/UZ5bvE1YMxc+i3OjeFxch9LovukCZ6LVh7M0vXYazhXaBPtpcYYE1su89fZaOSMoiiKoiiKoiiK\noijKLKIPZxRFURRFURRFURRFUWaRa8qaIsnuk8OrjTHGrEMI/nA7QrSTb5AhrK07ETI6PYZQt6E8\nGdIfQeFn3gsIN+6zQlXZrjrreoRvX9iO0MVLzVLWtDEIdm0e+h4OyzLGmOEehIuNkcXgmE9aZE9P\noS04rDbeClOqJ3vwOJIupW6WbdRzutXMKHSNthSng6zAOVRywrIWHSGLu4AghJmyHbIx0oo4cS3G\nSKQVntt1iEL5C/Gamz6vOEaGn1XvRhhvQhLCiocaZPj7ENkZcihxzsJMUS+K5FQsieEQOGOMiczD\nmOmrRAhcz7EWUS/7Pnm9/qRtH0I87bkYU4owXe8lCtW3bF9ZWhFHoYt2X/Mc27MXVnWLG6RFYPnf\nwOqw7RSs6sZJzudKlnNsYhAykPjFuIa6586Ler5OhFOmk6SOJXrGyLBG7muWMRljTARZgrNdY+8F\ny1rSCt33N/OXYs3yFMSJ11hS5Q7DXNy1/Yiod8NtK53ywAjG7ZYlS0Q9tgbl0PD+NjlfEkhyeXYf\n1iwPhY/aobUTg5Al+YYRjpqULud5cBWNOQ/sPpNyZfh2ZRPC9W96cJ1TDk2QoaVsI999HGtNV5u0\nRxwdl2Pan3TTvA93yXaZoj1utAPt31Ft2WaSDXW4B+GywVFy7al8HfNiyedXO+X3f/SeqFdcgjly\n5Cjm2O1/e6tT7jkr9xm2aR3pgASy+KYCUY9dLTtJdmr3zXAzzgErvoI+HB+UEjaWi0QkYUy0768T\n9Sa8M2ulHUt7si0T8NB86SUr6HFLFsLzIISkunx+MMaY4kcwN2My0b5NB46LeiFJaFOWoJyheTl/\ngVyHB+r6PvQ9trzo9GWcxbZ9YpNTti2Jx2kvbCf72Pkr5LiIpPWrpgL7uT33UmZwTR0lief4hLQm\n9VK/uSgkvadRSnRKbsC+3X8Rcry+XhnSX1yMOVaxHfOyYKU8z20kif25p0465fh4nG0SoqVl8tHL\nONsszccecfGQlC6xxLC9D/2+dr60aQ2KwrpU/QKu1R0hJczJN+A3zXdDklm9Q8pN3Jbdur9hWWHN\n2zL8f7wfvzm9BPKYwFApFQ10Q9bE582MPmvOkoVt01msZ4Mjst7f/u0juKZ9mDsZZbiG7ovy/BAR\ngzkXQfvnYJscS7GUXmAd3Qv1nZf7RCLdZ410Spk6ExoP+fB4GtbUsW75npiFyWamSFgLuW9AkDyn\nBZO8o/0gJNvx18kzeTelGpgThPuWtkttol4orZMslRmz1p4T70AOk30D9qQ5c3B9w8NS5njwe+86\n5apW7JmBAfI3sVyJzy/cF8ZISevVV7A3L/zSalEvJAi345wuY6Benm1iFs9cHxpjzMHfQt64+BYp\n0ap6FxL24bewrix9WEq+ElYiTcHkMObbU//+iqi36DZ8/vk38HmpsVI+HJGDOcKf9/r/fB3XurxI\nvIfPXxnX43vGhuX6P0lntmSSrNv9GBiG9aW/GrKt9uPWWhmJNZb3855aKZvsq8d15C81H0AjZxRF\nURRFURRFURRFUWYRfTijKIqiKIqiKIoIOxq9AAAgAElEQVSiKIoyi1xT1tRGkhcOgTZGuvKwe8hY\n17CoFxiGr4gsRfZkd4YM62zegWzPkXMRLsuhwsZ8MPz4v4mnkPn1C2X2bZZaTQwgDLnydydFPQ5J\ndOfg+oatkETfwIeHMtsuTLHlCF0Mo/DtZitrc/L1uWYmiS1BGFzTDhkmyzKnVJKJea/KECxfFZw4\nOLwrIkvKmrh9OZSRQ9GMMcadjfed+vVhp5y7FtfQe1qGMuatR1h1CIWc2fXKblrmlJu34/e682So\nHEtiWKo2UCfD3lgS4opBf8evlg5DnG3c34SQQ9PkqGzLaQrrnEPSJZ8VDhmehOzw4SkYj7bsIIDa\nZdtn4TZhu0RNTeF97ATlJjegi0+/IN6TthUuEl0nIUsJTZGZ69NuQj0fhf9l3CJDF3sprDjA9dEO\nXtxGSWuznfJgo3QBCEuS1+Fvxshx59RzJ8Rr/SQPio3Addz80Hr5IeQawuve0nwZXs+OaCyX2f7+\nUVFvKTknrfoYHNYmRzDODj95WLwnlJwxFmzFelv3vnTmSY8jSSA5VbmbZZj8F/7+Y0656wDCngMW\nWuHRUVivzl2E5G79w2tEvfQm2a/+ZJjaK8gKdR6jNYClTMWPyrjVYJKJcYjsSIfca8o+gbXs5C/g\n5lBYJMPBI+chjH/r4o1OeWII19plyZoyt2CO9VyABGTQch1MuwX1wsll0Zb4pN6ItXuKXEEqnpTj\nfOFnEALNTnhdx6UcubtDrl/+ZmoM49t23YqOw7ziM4ztIFV/BnKe4nsQOt11VP6WQBfGydVnEWqf\ntlHu/byXDZJDztJb4PJx6s2z4j1lmyDLmRxDu+eXZol682nPZCnrSKtP1IuhkPrlCyFL7dgjHTR6\nSUI7dzX25nN7Lop67Frmb1jSNf9Tco7x2PdW4lqjJ6RjyJX3cUZITsF6lbZE7u/sSJhDEpr4JdLp\nq/F1nO9KH4ac7cwfIWEr2FAo3pPagevzFGL/dPXJOZCVgjN0UT7WgN4uOS5Zupq6EvX6zkgZDp9t\nfZewDpV80mrL4ZmTiRpjzBDtwzFJ8t6A964xkvZElUinpDA603Qfxll8ypLVeUjGG5+OvrOdjDpI\nol94M2Rj9TsxXrK3zhXv6dyLvYsdqFyhlgMVndNG2/GbgtxWPUohME2usSHWWSyAXET5bGy7ro50\nf7Q06i+FUxr0NEh3x5LPYB8LS8bZhueUMcZEU4qDsz/DfmcLI32VNFbJAekDbmR0n9p+/pRTTi7F\nvKzffk68J7MYY2LB7UiJ0f6edDHka8pNwjrZRrItY4xxkftYCPVH32U5FwsfXOiUG1+EVCYoUkqn\ngyNnVmLoIScx+/4ua0m2U754EOvcxRfknuQdwjgruwHnw/ULLIdHuq9c+hjOnr5qOX4ayAksg+4h\nlm5E/wxctu5ZSaYY9j6uz36GcObVM055wQZIO/f/7oCoxy56afHYJ9qsNbooC/eZ7OpXf65R1Muh\ntvwwNHJGURRFURRFURRFURRlFtGHM4qiKIqiKIqiKIqiKLOIPpxRFEVRFEVRFEVRFEWZRa6Zc4Zt\n1ziXiDEyV0kdWUYnrpQ63d4T0LkPt0DbzBbUxhgTVQxrVc5vYlu4eklL6oqG9o7t1FLXSa11J+Uw\nCEuF3jEmJ1bU43wQE5QjZapX6hjjl8NKb6ABerPoBVIDOzUBvWPveWjJE1bLfAF2PhZ/U/sMLMps\nq9bIIrR732Xonses/CmhpBONyIQm2FcrtYFZ90BT2PAyxkXkPGmdy1rTguuRR4RzEOQ+VCreU/88\n8gKwNjfjNpmHhHX3geGoZ1unT1LOgb4K5FxIus6yKm2A9t+TDQ3hcKXMD+G2fqM/CaLf4cmRuXOa\n30K+Jp6XnB/CGJlbZrwV7RyZLy2d2Q645wRsg5PWZ4t6vTXIQcB67eGuj84Vwfk1BmtRLzxTXutg\nCzTzcaXI3dR2UOY9YB02/96JQamRT9sEbXjbQdhiuqJlTquwxJnNOcPzKKZDWt0WLkPOmOoT0DcP\nXJU5QFhHPX8Zcj3Yc9tQn3RSDow771ovqp3Zj3l6kvLgFJYjH0ZKtNQeh1DOmbE+ypWTLPMFZG+i\nPCScp8xaXzr21DllzsE1amnk+ygnx/gk6cnfrxP1ZtJuMioR4yzJ2muY0DO41va9Uq/O+ZFiF2N8\nD7fJ/B9Nr8C6MrMc3zU5+NE20+409EEf5QVJXJwq6vmuYu0eHMV6EBIm99y292qcssvKdcBM0Vzk\nfA0xsR5Rr4HOC709+L0Ft0g74JSNM5uLjedV0jw5XkbIFnzAi3J8slwf5m7G3sM6+Q6vzHkUeJFy\nR1AOjDmW5Wwg5Y7gXANDZHfN+aiMMaaa1rOcpdi7Rjvk3Kk+h7UzMhz9GJsq5zbnmpoTiOubnpSZ\nH4LJ+nWM8sqwTbwxH8xN5E/C0yl3Wr/8nnEf5shAFfo6IEwee7MX4TzG+4Z9RuU1K2kN5uJw56Co\nF78S58N2ytuYlo8xZuc2W3x3uVM+/Cxygq24b5mox7lZms9jb+Y8WMYYs/RR5G9o2421p6PX2psp\nVQTnfbv8h1OiWtwCOjtJd12/EEr7ridPnsu76QwSnoW1185Xwv0TkY8z0tCpFlGP87MwnHfQGGPC\nYjFHeH8ZIbvmoWa5Xg8M4RoS56PNuiplfpFQyvMUQTmG+DxjjDEjNLZGWlEetWy145YhT0oQ5Xps\n3l0j6qWsyzYzBedm5L3ZGGMqf4NzRWQ61ptx76ioN7UK7yv+LHKTTVj7XcML2EM4f0/tu1WiXtnn\nVuK76DMu/OY1p2yfm3rojBq/HPezcavTRb3IXPRbIOVcvPqHM6Je/ieRE6fu+QqnHD1X3i9wHlfO\nc5a2tUDUu/yU/Hx/w3vDmd/J/IRLvgD772jKc2fPHc7948lGO4UmyDMv58/sq8AcGWqQObT4fMLz\nnHO+Bllnvhy6H6/9E/IKhefI/a78fuTXqngJbWuvvSPtuN/roPx95bfKBZHvQzr2Y8/l/dKYD7aZ\njUbOKIqiKIqiKIqiKIqizCL6cEZRFEVRFEVRFEVRFGUWmTM9PX3t2BpFURRFURRFURRFURRlxtDI\nGUVRFEVRFEVRFEVRlFlEH84oiqIoiqIoiqIoiqLMIvpwRlEURVEURVEURVEUZRbRhzOKoiiKoiiK\noiiKoiiziD6cURRFURRFURRFURRFmUX04YyiKIqiKIqiKIqiKMosog9nFEVRFEVRFEVRFEVRZhF9\nOKMoiqIoiqIoiqIoijKL6MMZRVEURVEURVEURVGUWUQfziiKoiiKoiiKoiiKoswi+nBGURRFURRF\nURRFURRlFtGHM4qiKIqiKIqiKIqiKLOIPpxRFEVRFEVRFEVRFEWZRfThjKIoiqIoiqIoiqIoyiyi\nD2cURVEURVEURVEURVFmEX04oyiKoiiKoiiKoiiKMovowxlFURRFURRFURRFUZRZRB/OKIqiKIqi\nKIqiKIqizCJB13rx4ju/dspVOy+J1yYmJ53y4seWO+X29+tEvajiBKfce7LNKQeGy6+eGsPnDXUP\nOeWcuxeIesNtA0759BtnnHJCZKRT9g4NiffkL8t1yucP4HcU5KaLekN9eF9MEa7bkxsj6h175phT\nLl4/zyl3nWkV9TJvKnTKF14665R9IyOinisIbXH/z35m/M2Z537qlCPnxovX3ClRTnlqAn3greoS\n9QYbvE4555YVTrn16HlRr/NQo1Mu+eqNTvnsj94W9eIWJjnlMe+oUw4MCXTKMaXJ4j2+2l6nPCdw\njlNOWp4n6vVeaka9ANQLCJFjrudUi1POvWuZUx7q6hT1JkcnnHL1s+eccvEXV4p6wx0Ym7mLHjT+\npKX+VVxfu0+8FuBCm/Wdb6cX5LPXuMWpTrmf+pfbyBhjJkfwe6enpp1ykNsl6o204/eGpXic8mjX\nIN4/Ld5iXFEhTpnn/MTQuKgXkRvrlH1XcK0xC+WYGKBxGVUQ55S7jjWJemHpWB+iCzG3B1v65fVF\n4vqyS+43/qbmzDNOeaCuT7zG/cBtM9wi+9udE43XmvFa4posUS8oLNgpjw9ijrXtrhX10mmd8tVj\njoUlRjjlkNhw8Z6mHZedcuY2rIH1r1wU9RLXZuIaBsac8pw5csyFxIQ55bF+rI99FR2i3oQPn5F2\nM667/2q3qBdfluaUk5JuNv7E56t0ytU7dsnXLmKsFn/1Jqf8zP/4X6JedmKiU1785TVO2R2ZLer1\ntVxxyuHx2Iea368U9d58cb9TfuDbdzjlM3/AXrXk86vFe3rOYT9+/k/4HRsWyD238OOL8L1vVTnl\n1M1y3T35myNOObM0wymfPSSvtaIRe8RXf/iYU/7tt/8s6n3mBw875fS8O42/qT2L7+s63ixei6A9\nf6C6xymP0/gzxpioedhPJ2jdHKzuFfUCQrFGh2dgLRqokWvABO2FSZtynHLPSexVHmsP7zuLNT9x\nPdaA/kq5j/He33UI66MrLlTUmxOMa+UF3EVz1H4tJA7rg69G/vbRTpyrVn3928afHP7hvzjlsb5R\n8RqfA6/7DvbjUz94WdQ7eAlnwngP9rFPPPFPot653z/tlHkf6rbGTiSNidGuYac8/y7sJxVP/0m8\np+0S+jCtHHOn/bT8bHc4+iBhHdbW+OIcUa+rAmt83zl8dtJ6WS88CWt810l8V3CUHBP9l7GuLXns\n68bf8L1G91H5m9NuLnDKYUnon+7TLaJeJO3/PWextiWtyhT1+i5hXgy346wyVCvnYvQi9PE47Ulh\nybiGYI88E432or8n6Uxjn4Om6EzpycNZp+eUvIfwFOI3Ddbj+vi8ZYwxrmj0F+/7fGY2Rq4Va7/7\nD8afNFx+wSm37KwWryVvwLgLCsf1TY5Oinqdhxuccvwy3J/ZZ9TAUD7L4zU+5xhjTNNrOKek3YLz\ngisS7dVb0Sbe487E+So4Av07NSE78erTuKeb+8lyp9xfI88iE3Tu6TqOMZtzX7GoN0zn6YlhjB1f\npfw8VzzWgJmYi3xG9VXJ7/ZVYTzFLk1xyqNd8p6b4fuG0AS3eK1jX71TTqf+GR+U+yzf4/B7QpPw\neYN1XvGekATsSdHFOG+N98sxQsPHTE+ij/m+zxhjeo5jbkaX4B5ihNYQY4yZHML7ohfhPnfcK7+X\n98yiDY8ZG42cURRFURRFURRFURRFmUWuGTlT+eYFpxwcJKvGROCJ+5nf469z8dFRol7ldnxG2ceX\nOuW2d2tEPX4yFk5P1+y/8vJfqlY8usop81+aW3deFe+JW4QnfIvpSXfrkUZRL4WesPsu44lhUIR8\nOh7txvXxX4Xc8fKp4AA9tS59aIlTHvPKyJmTL540M0nyOkQO1T0nI11iFqNtuo/ir2n5jywR9boO\noK1q3ziM/6+Uf9lOLEN0RtcF/JU1c9tcUS+QoliCIxCtcOYX+OxE6y8e/NeBytfwO7xn5TVk3DXf\nKfeew9PO5LXyr0ZT4xgzY4P4q0RAsHxm6YrGXylKv4q/Pte9UCHqDbZx5IzxK/01+OttGP21yxgZ\n8RRXjogB/guRMcYMNHDkEX5jaIKMipgcxpPfAfprTXhapKjnoeiWjoN4ms1/TZJ/4TAmlKIx+Ik6\n/zXFGGP6LqJPE1ZiHHB0kjHGeHLwF+7eCvxVKHl9rqjHf1EZ9eKvW/wXQWM+GFnmb3rpr5hW8Ij4\nqzyvOZm3zxP1RvuwfkQV4noD+C/e1r+D52CO5X9shag36kMfJy7Kd8q+Flxr9yn518wgDz5vqA3R\nR1l3yaiL+hcxR/h3dFhrr/cS+iGNIjKCrWgtF/1Fd6gNUUO8DhtjTOcJrGV+Dpwxf/zSvzvlh37y\nP8Rr5y6/4pQPfw9/oa/vlHNxw33Yu0Z7ce07//kJUW/r47c65Ze/hUiPtNhYUe+xnyDKpPcC+i0+\nCnM2NCZavCckDv12ywZEv/JfOY0x5omvP+mUv/mn7zrl3Y/LSJfGbuyZPYcwT1fcVi7qrY3GGvrK\nv73hlO/79BZRr4v6MF0G6fgF/usk/2XNGGMC6TwSTFESre/IswVHk4zQXxknrUhAF62x/Rcw1sOz\n5XnJvQzrN69NwRRx2HtC/nU9NAXnjqFG/PXQUyjXsu4THH2D8ePOkNcwNT6F30HRQMEUVWiMMS07\nsL+HZWKcxZbJ6Mb6F2Q0nT/hKML8NYXitQs/3eeUL/7qTaecuDJD1Fsyjr4qvLfUKQ8NybNnzt14\n7d3Htzvlzf9wl6gXHIw96T8/8bhTHqdz34JHZCTY3Gm0eX832iuqyIqSuoB1JKoAr9W9cVrUy70N\n87ntPfyOqTH512CO6GjYizO5HX2+4Ib5ZibxVeF8E2KdR0Yokn5OEM4tdjRFUCjOEHzm77eiR4Yo\nEjWSIlOGm2QU7UgH/iI+RvvL5AjOW+4MeSYap715gKLngmNlJFLKRpxP+JyWdmOBqMcRBFH56O++\nK3I/4WiZFlqjpsdkZApHdfmbtvcxzmLpvsIYeQ7kaGdbaRFdhkiD5u2IGg2OsdrvemwI4z60OUcu\nGWNM7BLcj3BUdOdx7C0hsTIisO4lzD8XjSl7reZomarfnXLKdlRwUBh+e+btRU7ZjmriNootwRrq\nyZbKDY76mQkmrhHxFZ6Be6G+0zhnTE1MiXpJG7KdcstbiKJKu1Wu0YYi87tJyTDUKKPFmeTNmDu8\nT9vRZB17cU8SV45xMCda9s9QM+Z9/6WPvu/Pvg9nW56Xo91yzEUUYm8NpnNyoKXcsP9to5EziqIo\niqIoiqIoiqIos4g+nFEURVEURVEURVEURZlF9OGMoiiKoiiKoiiKoijKLHJN0VNaLvR/tVdkzoEM\nyigf4YXu0pMvtfDuVuj0al9A/plun9SUpSTQ+0i+Fr9aOioxV19CPoNkyrURECifObXtrXPKYSnI\neTE8JjNCtx9GHoTQCOj6QuOkBrbo3oVO+cjvDznlrBSpW58cgpaNs/sff+GEqBcaLPNt+JuWXdCG\nx6+SemvW/E2Rlvbsj/aKaoWPLHbKIZT3IbZMaktZd8r0sIuQMSaC9IF59yP/AruAzbH68fwryI5e\neleZU2Y3AmOMOfaLA045Iw/t7q2W+UU4J8dgK/rqyssyl8zir8BNhd1oMm+XOuy2A3VmpvBdJU12\nnNTI9l+hXAeUI4D11MZIrXWQG2Mu2GNrWNmZAPPFZTk4jHQirwSPb9c1dJbsaNJPumlb2zpNGtaR\nTmi/7Rwx0cVYo0LiMU/tvEEh0WgzH+XRiV4g56ytnfU3sdROdo6Y0T5oV8d6ybHIyh3EWd67T2Bd\nzrylRNQb7oa2ew41R/3rp0S9YMqbkbwafddNDjFxloa8l1yUYnKQp6b6hX2iXvY9uCaef3bW/qQ1\n2U45IABa35ZdF0S9+BXYD9hJzB5A01Mz14+8Xu/4u1+J19Z/6wanzDmtKr8j3cNObcdatumbeM+2\nf31Y1Os8D9397f+KPBU1T58R9UJC0T+te47i/ylnT3+9dKXIWLbBKUfPxZrXfrBO1LtlBXLFPfu1\nXzjle77/qKhX/fRBp8y5h5p3XhH1YhfiWh/+8WeccsVPpPNVzsfkePY3vMa0viNz4EXOw9rJObgC\nguS60k9OciNtWKdil6WKeuz0ELsCr/FnG2PMxBDOJOxsx2M9coHMG8G51HovYi8csHIa8F7Pe6u9\nRncdg1Y/kHKBsZOFMcbErcJc7D2NsTXUKs92qVvyzUzxzG/fcsr/sPVu8drUNM4wZV/8uFOufPFF\nUa+tD/vBxR8iN80Xf/dTUe/QP/3IKbtDsRfa6+mVUzgDhbkw/0ZpfNTseke8p/4g3pNchD0ia1up\nqNdOORjforw3pctlLoexMfR9+TfgVNV45ICo56XcihFh+E1rviPdQ45974/4x63G73A+surfyfbk\nM3ugC2M1MEyem30N6Ed3KuXasnKK8Hmec+rNseY238tM0DloYgD56xLK5NjuuYy5wznk7HwY7ftR\nb5TcXqYs9yJ2agyla0haJZ0Zm96EK5GL8rO4s2Wese4j8j7OnyStxTXZuV84Z2J/JdZM+5zG6+sE\nrY0x5TLvCucYDSUnyWArT8gg5RPhJH/y/CtzafGeybmC7FxITW9SThz6XnYdMkaOq/o/Y58Ny5Bj\ngnOE1fwJ5wPOm2OMMb4xtGWqHAZ+ofsYxog7S+bZmRjEHsC5zmwnP/6MiHz0HTstGSP7mPfC+JXy\nvr/ubYzvYco1GGI7CH4EdfTsIbJAPqNgB1AeV3wvZYwxw5yDivKHcT44Y4wZuIq1l/NYReTJ7x3t\nkXPERiNnFEVRFEVRFEVRFEVRZhF9OKMoiqIoiqIoiqIoijKLXFPWVFeFsPakaBke13UOYaxjJEXx\nWFKKULL9bT8CS62SLcWiHoc0cYjYWP+oqMdhbyNkgSgsH6NlmBGHRdbsh81c+gIZLjbaAbu8sHSE\nnE1YtphekhksvR8h31VvSMvI2CSEhLFl3JI7F4t6oZYFt79J2QDbubrnpZV29r3UD2RNGBQoJRfu\nBMhHRvoRlvgB2YoXIWItLQjlTymVbT0xgHrDfWjPhASMM5dbhv2lZSQ45dRFK51yYom0QMwew+e5\nXHiPr0OG1IXGoH/GBiDRKdgm5UrdpzEPCh5c65S7KqtFvfglaWamCAxBfwg5hzEmbjHZxFHoJlts\nG2NMINkCDtRTyLslCRntwjzgsHaWFxljzHA72oylCu4EhGVPTUnb+IlhfG/2RsgqehrluGRbvYE6\nvMcOZTbkijcxiHnafqhBVEsiW3YOhbStmscH5HrjbwYo9DrI+u6BGvzO6WvIq3zVPR/6/4Nt3db/\noHFa38ZYTb1J2nXymsrzJX0LrqHh9UrxHu6HE//xqlPOuVNaaUdEIFx9Ig2hun2XpVTLV4vfFJ2P\nkNbYRVJOxYh9oleOsw+MEz+y5iHIMG2reJb6uaIwzlYvke1y8ATCbI/8GPKL9d+V0oz4YkhW/vz1\nPzjlT/zX34p6h/4Fr7Fk+NZvftEpn/nhc+I9yfNgaX32p5Ak5d0hr3Wc9uCN113nlP/xgX8S9b74\n+ENO+Qef/l9O+TvPPC7qDfdjbvc3Y4/IfUhKOH7+tT845e9tv8f4m96zkABxmLsxxgw3ow0TKVy/\nd0pKaMNSsUf1kx0wy0GNMSZlK/ZgPk+EWfK+iHSEPg+2QZYYnkTnkWEpx2bb+NhSrL1XdsjzSFQ4\n2XmTdf30pFxrWBbhoVDsQbLpNkauV2kkXWp+q0rUYzlU4WrjVx76PDQ2l7e/IF4bGsW4fevv/tMp\nX/ftm0W97kpING/+p9udcmfTHlGvuQf9e9u/f8UpC8mPMaZ4M+bPPDqXRtHZuOu4lJes+OZNTvnU\nf0Ly1PGDd0W93BsgmSilcPrU66W8JiAA69LUFMZL/jq5vrzxDczNkzWQ9mXUzRP1lnzjPjOT9FTg\nfiLnQSlnbN6JvSs0EfNqcliey4fbsPbOCcTeN0jSJWOMiV6As2xEFs6b9hoQlYf+GmjEZ3hyIdOI\nj18v3hMWhjaMyMSZpr9a7s1nDl9CPZLILVot0w64SJLFEieWLxojpRXB0ZSSIV5KcZI2ZpuZgqWS\ntqwpkmzAp2hOhKdL2Qzbo3srcEZgq3VjjAkmW2wvSUsHa6SUM6oYsnXuA25LlqEYY0zCdVjv+awY\nmyH3pwuXXnHK6dtgke291CHqxZD0PpWspG1ZO59zQ5OwL0QWyHvq9n11ZiaJJdvpYI8lE6M9wJ0G\n6SCnTDDGmMS1OG+3vUupLgKljTXL2njcdu6V92p8r993CmOfpWEB1r3o8BDW/5gc7GNx5fI+zZ6b\n/81YtzxT9hzHuYWfMUTOSxD1oujfnGJl2rrPsu+nbDRyRlEURVEURVEURVEUZRbRhzOKoiiKoiiK\noiiKoiizyDVlTXERCCHMe0CGGh75JcKgF91f7pRtmQs7Viy6C3KeroONVj2E1oaTpMjOmDzuRajS\ngUqE2kfWIwxq07Iy8Z4dz8JBJCcRYW4nDsqw39IFCD3mcOWU8kWiXtMU3JY4fL7oHhn2xm4J5/bg\nWkuSZCizK9J2y/EvPpKwzP3EevEaS3Mi8hDiGU4hazYjXQjHat4uQ5g5zL/8awiBZxcKY4zpu4jQ\nPxe5Bc377GanXPHjt8R7Um+BHMPXg7BQl1tK7sa8CKms2Q4HEFsOVPTY9fi8XoRQ2k4y7BBU8eOd\nTjnzXhn+f+YXh51yxg/uMv4khmRDXcek8wu7evB8CUmUv8OdhhDShKUInx1qlbIwDhllqZvtghZO\nDgRj5DQ0nYA5P9InQ+HdiQi79/Uh2z3LtoyRcqooymJvu/Cw5GKoAd9ly4I6ydUotgRhpv1XZUhj\nSOz/t+zv/7eMdqGdbEkMh6/ydfRVSglQDDlMCYcJy/GKXZ6G+iBV6yGZnjHGVBxCP/iGcX0h5EpU\nskiGzXP4cRyFiQdYYas9LXDemKAw9JBYGW7N74uNhWxoPFeGy/oo9DcsgfenJaKePe78SdJC7C/T\n03JdG/KibZ/4yh+ccll2tqj3qSf+2imPjSFMt3GPdGGKojGx8T60y0C/dEAq/+stTvl3X/qlU776\nJta/0VF5rV0N2MfW/v0XnPKcOVZ4cBvCtyMysdYmWlLn3b+BPOubT0L2MTosQ/Df/OcdTnnr30HO\n0XFUngnuvf96M5NEkDyh35pjKZtxFmD3oRBLJsAuTLwejvZZMjua6xEZaLfQKOlCEhKC9TEiH+s3\nS1M626XbYzyFaQ+1YNwX3SHPbC5a13vOQkZiyyv7L2FNbDuFdTNleaaox+5P7IoSv1JKM+x1zp8k\nk0tRX62UCpXMxzpZ88w5p3z5l4dEvaKP41w6Poh+e+nx10S9Cw2QypYf3e+UQ8Jk+7EkbqAF7ZK8\nBnKJQwekjDcoAn2z5rufw/WMy/2p4gnMndStWJPDIqW7yfQ01tqJCVzP5Z3PinqRYdhn7n0IZ6/E\nvFWiXtPp951y1Gp5zvUHQSS5Hvxf2iAAACAASURBVB+UciV2VGRZRViSlA7y+S4qD2eG1FKppWs+\nhb6LX4A2HPNKp9GRHuyZaaWQYAcHY/4ODtaJ93RchVNeSuEmp+yr3SHqrX0E19RHTqbsvGmMdEDq\n2IN7nMbTcq1MysLvnRjCGdB3SX5e3LKZk97zvV5AkDzPdZP0MmEF1gfbsabjIOYYp5ZIWZcj6jXv\nxH1HLDlJDtXLfZ/PKS3kJJuwFO3gq5QOoCzXjynEtXo7LZloMeQrzW/ATYhTNhhjSfFG0TecPsAY\neZYNz8BZveEl+b2eQun642+6D6Ov4tfItbyfpGZzAnD2HKyT0kGW7mbcDskXy/qNMcZNv5NTGSRd\nL/s78CjW9oY67F1THbiegAB5f9LuxVjYctNcp1z5J+kGF52Ee93IBejT7g55nxW3AmNmkO41hprk\nmAtixzBak0L+f6Yv0cgZRVEURVEURVEURVGUWUQfziiKoiiKoiiKoiiKoswi+nBGURRFURRFURRF\nURRlFrmmGDiarOQ6j0k9b95C6I/ZllHorYzMA/HWAWilw0Ok3fXACLS+t6VBj/nEc9tFvVVzoR17\n7Ot3OuUrbyKnS2OTtDLLiMPvePUoNKHrFsicISHx0N/WvQNNY1yJ1FqHp0EL6UmjHBpNbaLeaDf0\nlGEutEuolQukg2zD8pcbv9O5D5/P1mXGGOPJhuZ9agya0aa3pU10EOUACXBBTxpdIm3EfFVkexwI\nfX5vrWybq++jfd2Ux2DOHOijM+6WltaXnj7tlDM3IidA2vIsUc8dj7GVshkaT9bEGmNM7XbkiGGr\nPrZeN0baMuY9hvxDTdsvi3p5N8w1M8VoN/SpnnypOWX9Y1QRtMdsT2+MtDpka8jhNpnXg/NGjZEl\nIve7Mca4yGaQteATgxg7tn1cMOUX4rwwk6OybzgvDGtb7ZxWDOupvZaOOJCufbAJeQA8ObIthUWl\ndLz3C6wh77sgc3FwPg+2n2V7XGOMGfNBm9zwGnIvXWmRuWSqWpEPI43WwAVW3p6kKOh+F9+CfCps\nozjULPMS8TrPOmTb0pUtNTkHF9uoG2NMSAjlAepHfohBS8/LuavGvNgzJoblGGZ7cH+z/e9+7ZQL\niuXas2PXEae8tgha63kfLxf1nvzyj51yYiQ0z6v+6jpR749//7xTXpyb65SjiuS6Oz6APthy7xqn\nnLwa6yTntTDGmIbnKpxyyGcxL7utnEQ8hQ/+ELkn7vzMDaJe2rJlTvnk92Fr/O65c6Le8Bj68O4Y\ntN9ws9TWFzyy0swkPKbDs2X+nClam3jdG7YsXadpz4xbCgvSkU6ZT2CK1reOWqy9saUyP4FJwV4z\nNTVMZbx/oF5av/I8iKb8XG0HpR1p+y7Y/IYk4wzSbtmW8pqdtIh09rZN7XyMwZEO5KELipA5Q0bp\ntTw5Df5ial/GmTLIsn2ddwfsn5+7irxJN96zRtRzRWHsX/0Dzhi3fm2LqPdIFuZSx3mM1Z4+ufbc\n+u2/d8rtrTi/tu5Dzotbv3KjeA/naOioxrnkycelPfhXfvtNp1z9EnKnhCXKM0tcwlqnfPAfYSP+\nCp1/jTFm29KlTrnmMMbH9OQrot5M5g2yP59zGhpjTA/lm0jckO2Ux6x8JRE0hxu3437AFVsn6gVT\nf3ecRe6ueOuc/1HUHHnRKdv5miIzsAbw/OW93RiZx4pzxSWtkfsJ51iLyMdZPTFNXquvGutSQBDW\nkMR18vP6KujeyM/La/N2tGV4jvy93svIfePJx1mk+U2ZszLtZuSV5NxcrXtkPqCUTdgL+2vo7J4q\n5wGf7+bTnlnzp7NOmfOMGGNM31mcy4JoXAZYeRH5syOy0DeNL1eKer2U3yt9K3JkXXqvRtSLJwvr\n8X6s6VnWfZB1pPY7nEsn2LqfD0mO+NDX7HuDCcobNT5IZzbLYj0smayw6czW/l6dqJd5D9og4F3U\n81G+zKgsmb9tfhLOX33n0Kej43J/8nUix9DkcdwzeYfkHp5M90/8e2MXyvN5P81FdxbO1pPD8ns7\njtI5a5P5ABo5oyiKoiiKoiiKoiiKMovowxlFURRFURRFURRFUZRZ5JqxignLYc9n2/dODCBEJ7Yc\nVmZmjrRSHahGWN4d9yCU/YlfvSzqFaTgMzqqEaL913/zMVGP7fNOPH3MKZfeBNvIoRYZZrr7XYS+\nPv79zztlDjczxpjBqwg3nnv/Qqc82idD+jlkq/YlfHbUPBkel7gaoYdNVyAxGPdKm03PvDgzk+Q8\nhN9y6ZfHxWscwhw9FyHRgyPyGn0c0kz2dLGLUkU9tuGcGEW42Fiv/Lzlf4OxwPKW4S68hy22jTEm\nbSVCNI+8iN+x2pK6sJwnaSnCCJt2S/tKL9kWhpFFKtuoG2NM5nrEf9Zsh11s0npp9zbYPHP2vZ4c\nhOyN9shwu9Ew/H6W0nFopDHGTI59uI1f6kYpRRkfhGwmNBLfO+KVIf0sr4mdj7Wi8wRCUG1JTlAQ\n5q+3qc4p2zKUmALMnb4a2EZGZss5FpWOf1c9g74Z75dygdgyXEfnYXyeK1qOsTkBM/u8msOZB2ql\nrWDCMtgWDndgHgQEy5DREbZ6pJDc5ooKUW89yTY5RNMO15y3CeGf7nRIbCJSsR5E5spw1OBQhByH\np8D+0g5JZ5v2ktv+yik31cj1PyAYIdHJaVud8lThqKg3NYUxHRiIsVTz2mFRL3ldtpkpXEGYb9l3\nFYvXPnMjwrL3/fA9p9z8lgzfZmvtjNshh4xKLRD1Nq2EjDKQ5nlYVKKoN9COEFm2D+04VueU48rk\nWn3oFayhcwMhJY6eLz87Kh57K9tF7/rFblEvfjvG36IHYW0eVytD0m/7MuQi9bvRb2xfbYwxY4O0\nnspp7xcGyP4z3JJVes8gDJotXUMSpJX2aDvG+3Ab5mWwR0rIuE9Y3jdu2a62H8c8GCKp6Ah9T22L\nlEOybJvlDX1VUtrJ47a9GvKGESvMu60P7TJQhXEbYJ3tynsgLfCkIXzbd0XuEyk35JqZYrwP64Pb\nkqa1XML4jApHv7353D5Rb/hP6IOv/OZrTvnyb/eKesF3kJSTpPwrviHlfV7vGadcTTKpyRHsvzlb\n1or3nPshZESvHce8/O6f/0XU67yEOcbdERO3TNRjy+zcBzB/P14gZbx8TQkJkLDlXL9e1Pv5p//R\nKZfe8QXjbwZIvpO4SkpxWMocnoS5GBQWLOqxBXLWNmiSB1rlfAkmeWd/Nc6A7UevinpJZNPeWomx\nwLLotI1yvQ4OxnnJ50NfRcbNE/U8sVhvhpowTjssKWJMWYr5MIate5zRNuzpQXmYB8GW7Gp6Ukqa\n/UnKFpwj7e9le3mWjEbNj5f16HwUnYczZVyZPEfu/N7bTrm4DN877pXnBZadBUei32OWoF1DSJ5v\njDwbczqB4SbfR9ZjmXHMYnmtLFm89BvcL4ZZ38vX7snDOGracUXUS9six5y/4XMpS7yMke3Ge1fy\nBnkv1Ea25YbWqVBLfsmS3Dl0DzA+LlMytLyDVAnD1O6Do2izzAXWmYj22aoLmFcZ8XLMJa7DvQaP\nzaDLcgx7L2DPjKLvCgqV6xCnPRmoxV7I48AYY4Lc8n02GjmjKIqiKIqiKIqiKIoyi+jDGUVRFEVR\nFEVRFEVRlFnkmrKmq89CBhKZJUNGOQTp/IsI48wokqHTwz6Ew1dQBuaitDRR78b7kEH/jaf3OOVz\n9TLML5BkBxyO63sZ4VErt0lLgDu+hDD5IXL/sJ2lsu9F+GfTDrigRBcniXpdByGL8MxFmGjn/gZR\nL4bkXsu+iDBWDpUz5oOZrv1N9a9POuWhURn2t+KbtzrlmpfgNJKQIaVW4WmQO3CYXfepVlGv4BMI\nw++7jDCw1HUy4/ix7yMsMdKNkOPoRWjrd159V7xn9e1wFuBQxvbddaJeJmU3bz2MzOlhKVKuFEXZ\ns+PKMR5tF52Lv33TKUfkYh4MtUi52/T4zIWMsoMKh2caY0wAhf1OT0GmxvI7m6TVCB0e6ZZSlJBY\n9MdgO/pw3ArLSyrCPJucxDyPW4xwxw84LzRASuiywjqZlv0XnHKAC78v2CNDS80U5nPGrZDntB+W\nc7H7OBwfElZCPtRf1S3quTOjzEziIdcGdkAzxph2Cml2xUBu5YqW7cRSrHGSll1fWio/j+QJZ+vq\nnPJ991wv6uVswr8nJhAafvmZXU7Zlu8MtGI8dhxAW5d++gFRrzsIYbxDQ6iXmL5R1Kt6D65EY16E\n+CflSfei1ktwCwp2o+/ZBcsYY/oqIY1N97Oqoo9kYe88vkO8tvUf73fKQYFY10OTpEPfMEkTWbb2\nrx/7jqj38S9sc8oX3sacyBqVzjksg6vZ97/Ze68wuapra3R1qk5VnXOO6m6plXNEEYkgRBYZjG0M\nPmBwOMYBjhNOGNtg42NMsskZRBIIUI4o59SSOqlzztX5fzj37DHmMuje76d0+2WOpylq1u4d1ppr\n7WKOMdCenz4JLbtP3/e8+M6oFKzVlXTs5mPS7TB+Ata7D96EQ8yCSWNFXuwMtKGHkQtDcKDcZrD7\nXQQ5d3SclnOxjVzAUh+8wvgaaZeAtmA7+fWloZ6xyx3TQIwx5mwTzjlyAGuXTZl2xWAOM8XJSKaQ\naHXm+8SOQHnZcu8UmoG1uf0o6Da7TkuaBjtdZsxCG/pfH3td5F0zEzTe4+QAl5Mg28ZjiP42RGtf\n6qWy7b7DcnnyJRIXZjkxu7sYY0zlh3BTXHQnaNRvPPK+yLvnSdAtj/0dFJOJ371Z5P3mhu86MdOk\n5g9J+5TiW1AD3tsKd6Rv//4WJ24uk44uT68FBfJquv+bHnpZ5CXl454zpaunR653uz/Annz8POyH\nXn71U5H389f/5MR9fRg7+x95TeTd8F9XmvMJdvAx1v3sOE3uJ7QPjcmSe8qeBNyDyjVwiBuy9mVD\nvZjDPC+DIuW+6tBjGAvs8BIRQ441QZIm1t2BNTwknOrrjs0ij2tAcBzWhripaSKvbnOZEyfOyXLi\nCsuNMiwb+xbeH3YT1dIYY1IWSeqoL8F0e7tOxs/Cnov3LHz/jTEmMh+Uk7Of4f1z/wbp5BdB8+/M\nMaxPaXHyvWXNy7jvs2dgD9PFFNQguT5xPTX0vllaKWu6pxH7j6J03P+mHdLZ2D8E63tkLsbL3m2y\nBozOwj2KJecme1z2WXIFvkYC7aUarH30AFGZ+BkPW3OW83j+2efO85mpwOGWtMTJw5hXOZl4rx5F\nbmQt++S7aMUp/DsrBWvzkVJ5Tc0fYG0tbcCeY+Fl0jqZ9+uDXtQDryUzEULvT37EPR3slXNC1Lwv\ngHbOKBQKhUKhUCgUCoVCoVCMIPTHGYVCoVAoFAqFQqFQKBSKEYT+OKNQKBQKhUKhUCgUCoVCMYI4\np+ZMNFlDd52SvOGqJvBAUxPAndqy5aDIm1oAbZBjVeDiXTld8rnC0sDZu+gK2Hoe2XxC5EW7wfdk\nHugJ4kbbVtWnN8AOMmMieH1mWPLkTvw3rLmDSI+m/L3jIo91b3qb6W/5SwJ55CjclxPP7nVil8Vx\ndBcS92yi8TlYx8XdbXHm1x1w4pyrZjjxiac2iDzmFEaPBe/Ztl3tOCNtNAHJ6a9pwXgadSW4oGxH\nmhYrOXnMFT5J1mjM/zbGmPcegUbMDX+8DecaNUXk1SSscWK2dCu6XNq315dD56JpP3iM8RMlf3fb\n76A/UXyp8SlY4ykyT1rBVX926gvzEudlibyyl8DhZb5jj8VL7q4FBzNuLDidg/3STtnlwrNvrIE9\naVAYNFFsm8KWw9DzSZwGDYTBQXkOUXnglQ4P47kP9Err2d4WnFMzHdu2smXL2y7WnbJ0X1yRX66D\n4wuwPpCtPeXJAx+ZLb29DfLe1Kwvc+L+AdybM3WW7SHVyqvIujV1ibROb6mlcREHgZZUsoVuK2mQ\n3zmIv1V0G6yRW2r3ijz/IFxHSx20r/o7pfYVa1o1kj5QYOg2kcfjiW0P2y29Evu5+hIrfg39k6pP\npUV2K/GZJ6yEJtMLf3hH5A0O4dxjx6E+sy6IMXI+X/DTpU58+sX9Iu/7f33KiRdPmODEp2rBk2db\nbmOMefwNaG/cTmMlplD6Vq95B89gYBB1PMCygmStg8r3sWYWpEgdusp3sabHTsVnPdVynCculPac\nvkbdWth9Ro6T65iw/KRl/cwqqX0Q4sI+YbAHc5HnsjHGdJLuSm8jalbmFTKvndbPqLG0bucgL8zi\n41e8gXNq7UKdy02UWnlHK6HNMIV0Fb5x1TKRF0BzZ7Ib823A4sz3NeE63GT9WvGetWcrlvfWlwgg\nG9Pw8ELx2bibZjlx+Z4PnNjW3XO5cJ+m33+fEzfWSyvt8ZlYC/OmYmyufk/WqKwrof21aCx0mVhn\n5MkHpJbMb57/vhP/+W7M5R88dafIK30N9swJ83A+PR3VIm/mddhfb3oJ59fUYWm20eD+w62/d+IZ\no0aJrMRmufb7Gt1V0O/z1sk6MNCO58X7tB6XpR1xBLUueT6eT/MhuS7ymlRO9TvzQqmVxGtrGum9\n8Px1u+WYCwiAfkz9MdiohyVHiDzWpWDNv64qqWMYQHbh7Wewxg1a+/jgPMzTs5tR16JSpA4Tvxsl\nS3mbr4yOEtSu2Cmy5td8cgbnNB7zLcbS82zYddaJQxJwL2fdNFPkseX2sU2oN36WfueoZOwja0ux\nh0nOx9/l8WCMMS0nkRc/EdeRkyWvKcCNZ+OtxzMMy5b3fIA0dlj3ks/NGGMG+7C2thzEWPbWSt3G\ntkDa68hXGp+g/A3oz7EttDHGhCRiXeyjmtByROrU8b7lzNs4XtI0OehYj6ybLOqbq1tFXlYi1pDh\nQbyLNm3DXrGmSb57pmXgOwePYvyFuqTWrCeU1jja3/TWy/ses+SL9Zq6KtvEv1uo3gyRLg9rhBlj\nTGSx3GfZ0M4ZhUKhUCgUCoVCoVAoFIoRhP44o1AoFAqFQqFQKBQKhUIxgjgnrclLVICaZklrGiZK\nUEgyWp1yW2WbWk83WnnykpKcOMBqPwsMITtgaldPiZFtv2xdmU60lyVLpznx8R2nxHfyxqH9s/0k\nWp8+3LNH5F0xH22wrlhQM86UyZbRvAJQo8LT0a7Iln/GyBblUbeipfzIM7tEnqtR0ht8jZKNaN0M\nDpKt6DGJoJOxPW7UhCSRV/4B2tRzV6JVd8eTW0Xe+CvQUt9P7agVqw+JvIX/AWvLk6+AWpUyA9av\nhVdLa2BuF5v77QucuG5TmcgrvmmSEw/2Ywx3dMhzcMejxa7yEFEuRsux3nIULXsJM3F+W3/7gchz\nh4SY8wW2pmPakTHGhGejpXx4EHPHbrcLTiSLN7JpZWtmY4wJDMVc7OvE32o+LK0EWz3v4pzob4WR\nraBtLx9D7a7NJ0FN82REi7zuZszzHrpeT5bMi0oHDSco/Kz5MniIFjA8gNbFvnbZash/yxR96eH+\nr8HUvGDLRtKdgmur/Ag2i/5WrcxYgVZqtjP0bHeLvMMny5y4i1rF/Sz6ZWrOChyPLNG72/B8bKvE\nmInULrwfFJt6y9Z+iNaJ40Rrtet61my0ofM96rFaS6Pzs/B3d4DOEWlRcYLCZeuqL7HqJ2878TV/\nuF189v5PXnDi4pmgBlx26RyRl3YRPnvvvzCPkqJkS/SJj3CNcdswvoOTpDX3E3/6Tyd+/inUpUsW\ngN7w1hpp5/rrJ+914jWPwmJ3UqY8h5lEcYidjZo5bFnUDvaAZtxSiRq6+bikBS8hy/f4aVhLm4Ll\nOuuxzsPXiJ1FLdbW+K5dAxvqxCWoMZ44OceayzCvQmkf1HFS0uyCqUWfbdWrPpG0OD+yVee28eA4\n1O7wNEmR6OzA/iEpF63cTLMyxpiWo5hLBz8HFaB/UFKOx2Rijdt5Euc3Z6a0Tm+rInootfgnkm2u\nMbIV3tdIysM+4O3v/0p8dvWfH3LitUTTvvqmxSLvxXthJ33733/rxDUbSkVeeg72RFUHUMvsdT8o\nCHX8n+tgx/z3+2FHPTlXtsjvfBxz854/3ObEzUckJWegDetVINW4wBBJ4w2OxXiZPG+MEy+84wKR\n196IdeaWe7EOxE+QlMKyd0DRMXONzxGahDFSs0ZawAfH41p4vWs6JK1zA4gyfHb1SSdm+p0xxuw7\njuNPmYS19NgHR0Ten997D/94A+HVsyG74Ml92zDSJuP+Zk66HOfasEHkDROtlalLMcly392XgTnW\nTzbEXVb97ziFd42iW0GndUXIsdl6UtKTfYkhouUEhsvxGJ6DWh5K9S8oTNYG3pdGFWBN72mQ+4Bq\nolW39+D5RhRJKYS+Pdg3sxwF0zDdGXKdCY7H+XWVgl4TlhUp8rw1qP28l0uYJutf+TtYw5m+x/sh\nY4wZk4HvxU1NxQdTRdq/vWf6Gmz/HJIkn08n/e3uclwLU7KMMcaf9pjNnbhPnlJJVxrowp6BLbeZ\n9m2MMeF5eF5BHtQ9plK7Dsux3kf0w6nzsXaFZ8jn2HoAY2n5okU4t04podBNVLquCpqXLVJGpfEs\n7hGPuUB/2QsT3CDlOGxo54xCoVAoFAqFQqFQKBQKxQhCf5xRKBQKhUKhUCgUCoVCoRhBnJPWxK2q\nGXlSWbq2DO1xnWVoVQqxaDPcnrSvFG2ixemy9avtZKMTp5Jq+kB3v8ibOB3tXu+/ABedi8eibTx3\ndIb4zp4daN3s8KIFKcRSbb75QbTF/v1733NidoUyxpiDh9AWmUGq0nEF0pVgeACt0uwekn2p5Eu0\nHZVK174GUwvi0iSdIJ0oEnVbQGNIukC2tTJtpX4j8uzWvPHD45347ec/c+LESNlKtnQ82jfH34M2\n0Y4ytIQ1bJWUmPF33uTEfn5o/w5LkMfurMIxmg5Q66u/bIPtqUKbGo+5nh7ZzhxJ7ZXhEbgvybmy\nXb+v4fzR07j9r7NM0q6ix2FusluW7RDAY7DsTbRatnfL886eiWvcuh60NdsVi5XNX9+KvGtmgR6Y\nlCzbTLsqMF9iJ4PiVLtZ3vNAcktzE73Bbp8cGKBxuQ3jMtyiP3HbL//dMKtts37Hl1OjfAFvM+61\nZRZnKj/GeGK3mIEu2V5Z+S7yEmaj1lVVyZblqYtBHxmkOhoZLV17hobQKt/ausOJ20uphfWsdJE4\nsg1t4xuPoB28vlW2rU7Nx7yamI1xxU4Yxhjz2VvbnbgoFTW+/rS8phn3Zzkx071arfZ/vn9Jcun6\nyrjyd3BzGxyUcyc5GuMueQHoMAf/tl3kxU3DNS75j4VOzO4zxhjTTK4NZ3bAcSA7T47vpr2obRE0\nT1fe9xMn/nTzP8V3dj+DZ324ArV27jUzRN4HH+Pc7/wGKKOuMNkO3l5BLlsBeDZXXjVf5PkF4P8J\nlTwBim9ounSG4OZtXzuLGGNMVynqqMuiGAYno7Wd6VoV5XKcRYUjL5DoCR0WpTSBHJaYosSOUcZI\nCkd1CdFIif1kO5ElTkA9278BdX2M5SY4bQnW5vKdZU48ZBWixEVZOEY3WsNDLTrVQAfqUngWxkJf\nm6SKtrKTx2TjU7x238+deMaNctwefuN5J150x3wnrie3O2Nk6/kjN9+D70ybIPIGiW75mzffdOKX\n3/utyNv18Convm0B6NvDw1i7bMeoa//8M5zfGTgfNm6V61E0OW8yNSYsTDrweYNBNf37Mzifa2lt\nNsaYzIvhDle9HmOxat0ZkTfx+0vN+QTPnZybxovP+L7301oYEiv3I+wgyG4xqzbvEHl1bZib7Aj6\n3UcfFXl5ROdkB7w9p7H/n7ZXujUFuVEref/FdB1jjOkl5xamqffUS6eqpp2oqezQFGbVyvTleI6S\n3iWd0+JmyPcuXyJ9Oe5FV7XcL8RPRQFnRyY+V2OMyb3wIidubYDcQd3GMpEXOxmL+pLs0U7sHygp\n4CFEUYotQj1kd1B2HTXGmLh0UIG7u/GsuxsbRV5fFt4lmT7WZjlHBsdhbdn9GaQVmMZkjDEhaXim\nDZ/jHsVbDkdua2/ra0SMhhtsRJ61fycqaz/Vf9sbk6l6RWNwPPt9nh2Mhqie5S6SbnHs3EWsK1P9\nMZ7P5gOSljh3POicbpJ+iC3KEXm8noanYM7alFJ2te0uxX2ImSo3mC5a31kSI/Ny+d5ft06u/Ta0\nc0ahUCgUCoVCoVAoFAqFYgShP84oFAqFQqFQKBQKhUKhUIwg9McZhUKhUCgUCoVCoVAoFIoRxLk1\nZ4iL5e2Qugepo8Fzjib9kBNvHBR573z+uRPfeeOlTsx2XcYYU7YV/CtXNDh6w4OSD83aCdc/AGvC\nj/+8xom7++S5jkkDZ+9bDz/sxP9x3XUi72uXXebEzH8bN71A5B3fCz7u23R9y/qklkOuhzQHHgcX\nNXOZ5NM1nJZcRl+jcCHOv2Jrmfgszw2u+FA/nkHLIWmbHDkauiur/7HWiecUSs7tzjd2O/GicbAv\nS7tC5jGP2NsMmzzmhdrc+obynU5ctxHnmjRf6uNUfwQr9c42HJu5+cYYs+5TnGvMduh4TF8+SeSx\njXD1R9Da6GqU9n6eFMnJ9yWixxHX3JoT/Z3gbTI3s/RVaR0eWQjuZ3UzFB3KGqSuB+syvbUd49bW\nk9q+C3oRX7viCifuofkXkiw1XUKTvthWdcCqLxGjcK7+QShTXZVS06TtOM49YRb0V7qqJOc5dQnG\nFeu+2BaNgWHnLIlfGc17YRfM2hPGGDPcT3o69LN5QIg8Jy9pYPUQtzujQI7vcLI0ZwtHr1daFg8M\nSGv2/wVbbodaz3Er2SPffAHsQ//+8ccib+0B8MaXzIPgxMp7fyLybly+3IndBdBPyLhqtMhrrwQX\nOzIfY8Tm9DfsllpYvkTFaug5DPVKDaTCW1E71v7uEyde/NNlIq/lKPjMQR7YQTZslxoTifMynXj/\nq7Dl7fRK+8aZt8x0Yjdpu73zPGyC20/IdWbzUeiTrJgKv05/l/x/NuHBOL/P/7zRief85BKR99l/\nQwPu0gdprQ+Qx2vaj/H3nVXCegAAIABJREFU/qHDTvyde38s8o49izXdnAfJCw/VGFsAangA63/9\nJujxNHXIuTJ6EXjkrK3S0C7rTyxZAFethoDM4cpKkTc5DHuDJrIgZV2UD1/cIL5z6S3QNZl+9RQn\n7j4rz7WJ9ItYE2jUijEizxWF/VcmabEdfFfu7UYvxrUPejEPWOfBGGNclm6BLzH3Dvg6N++TmnJj\nb7rViXc/+oQTJy+T+ixR47G2PvkYrJFd8bI+f7waa+Gvb4L+XcsBuVfafhJ7hPue/S8n9noxt3Ms\ny+TBQaxDNWuxv0xaJPc2bzy+2omv+Q7mn5+fXJv/+J2nnTiMtBU7eqSt9J5XsYbPvRfjKMgtrZCf\nvecfTvzDV+YbX4P3WLw3tP8dHAVtj+5aqc/SUvLF++iaFqnRdzvZ5ZbUYMy88ntpxX7/P6DRxfp6\nV0yb5sSxU+Sa20XabHWboIHnirbs1skCOGUu5l9goNRP7KnGHOb1/Pibci52lJB+VhSOHWbZBtd8\njL1x9jjjU1SQZbQrVmp48R6G96G1lu7GEO2BWLsqoihO5PVU49kfemGPExcsl7XMUFkv+wBjPXEO\n1tWIVKn90li9xYlLnt3rxDFUJ4wxJmoM/s17pegCmddKWkiT5hebLwVrg06BJp09FzvPyj2wrxFd\njPPv75DaWP30TFhjqLdZau/x93pbUHPC4+Ta4MmFBmrHGYzhgR6pTRNK32ujeR49Aee6fJzUDooZ\nhxob4kZct19q0/BvEU37UQ9sfcuAYKyZiUtQl9c+tUH+XQ+0gzJJq3fIqmvxc6Q2rg3tnFEoFAqF\nQqFQKBQKhUKhGEHojzMKhUKhUCgUCoVCoVAoFCOIc/bwc6uh3YLDFmhNu9BCbrdb3zRvnhPHTEIL\n4M5/SWvR+T+6ECcVjJa4lEnTRV75erRVR2eg5faCG9D+d2qNtI9zR6Il6mff/KYT29Qqbh1OGIdz\n9bN+wspJR4vUhGWg7nSeahZ5ez4FrSQ/FcerWFMi8rIWyTZbXyOC2v8nTZG2bEf+glb0cd9Fm+y6\nX7wi8ibegrb3ybmga725XdoU3nztEif+2WOwsvxV/tflOY1Cq3P1h7gfgVcTla5Jtsp1nERbcDu1\n9uXGS3vIyGK0vfXtBF1m52eyFfTyu0E12PIcrKBt22B3LmzYaitx7On3XSDygsLOH62JWwMHLTu6\nWKJr9TSg3TOyQLaTr3oLc8dL1KMxlq396Vq0ac8bgzbR/aWyBfX6SzBe8pLIGv0izAlXpGzn7SzD\nc/MPQpsg15r/+Q/4N9uDB3lcIi2Y7DRryAqUrfyMMSY8Fe29vc24lxHZ0lp+sEe2HvoaYdSa7IqS\n9yZ+Omqsvz/ZYa45JvIKb4CtZze1Pdt0lJOrQBnJXoAa09cnaWzh4aBS9Pfj+USOApWx8j15Drde\nttiJu8j+894bLhd5vU2413EzMc5e/eNDIi+I7gVTKMtfPSzyEhZkOTGPmYgM2dLqrZEt775EKlE9\n7Lbf13/xjhMvvwu18McrHxZ5xRl41hOyspzYFSiX5OMv7nNitjy+8IGLRd5jdz7pxP60jsWRDWeA\nSx577kFQxnj22XbeBSmoL7nzce3Hn9gi8lb+ETbER57+wIkD3fJ4aWTfu2whKALNp4+LPP+g8/v/\njrrKMda7TstW8SCiBgRFIi4km3djjKnaDuqCOxRjuNGiNXWeRA07UQ1aF1NOjDGmh9rD+Xm3EcVp\nco60Aq3YCBpMfAHmgU3zCI8DNTEuHWuVt1Gus0yzY+vTSTdMEXltR1FHoorxd2s/kTbMMdOI+uFj\nKkUHrSejrpHUwaojoBWWV2BNi6qXtAOuPUzhqzgoKWe3PHStEzNVr3GXpCJOyQWFtrMZ9+LgE9gr\nJY6TdJjyzaAsrtuCOZ98RNrmTs9DHe8kK/gqvw0ib0Y+5umc+0BXqt9aLvKee/EjJ3Y/iX23TQ+Z\nlnd+96g1nxGVa6GkcrUcAi2E6Ya8ThhjzPu7QVNvJ/rWjfQOYowxsZNANWjcgHkaatlTP/MCKGl9\nLXiv2fo26PVF/UPiOx0lmOdMeR32yLzanRgzvQ2Yf+mXSbtdpre0k0VzTFKUyGuqwVgYew3qOu8b\njTGm15rrvkRwIupLv/V3B4nW2X0WNsQhSZLmUr0atKshopV4iuReNoL2tvHTcI9sC29+Honzspy4\nr52kAHLl3iEonOr9XVif7LW+5TDGJVM5S57fL/LCicpfvR/PPTZVzu20i7EP623DeBvolpT/0IQv\nlgbwFWqJVsnroDFyrA5NxvMJjpI0Np7PoSl0vtY2n6k+6csw9ht2yzoVFon9Un8K7kdvK8ZZ2fty\n/xCWhjUuOBx/J35cvshrPoH3hq5jGJupS2XNaz2G9Y7HwoSxMm+gC2tmbyPOz5YnqHoP9NdRs82/\nQTtnFAqFQqFQKBQKhUKhUChGEPrjjEKhUCgUCoVCoVAoFArFCOKctCZ/F2gHPTVS+d9bD3X5ymNo\n040Ile1NuTePd+LuOrTmZmUni7xBL1qBEpKhpt7RIVuVUueOp3+BlsTOBPVtbYaRtxRt1Mu/CQpM\n5cfSzYaVqAdJLfr1t9eJvCsW4hhMTQiw3IWyE9AulzAf6uClq+U1DXnPL5Vi71OgkKWPlbSm4nvR\nen/4cWpxDZGUiyFyCDpcDvcKvkZjjKk9jla/75P7VdsxSaUIS0EL6RC1qrLa/acvbBbfmb8c1KrT\nR3EODYdOirzUOaB9uDPR/plwVtJ31j0Dmk96HKhfFSekm83UuXh22TPRUj5sOXw0H0UrXrxkPH1l\nsGK7Tb3prsPYr1tX5sQ1dU0ij1uTPy8BlSzLeoYh1GrPxL/cRNkOHuNBu2IEKaVzi6c7Xbbfcss8\n05psMG0ysgDPxlY8byUHGp6Lw4OyjbjBaj3/X4SnSTeDga6+L8w7HwixlOu95P7VTpQEb410lOqO\nxRzpo/bX0GTZlp05F2OVVfGZxmSMMT09mEvBwaCndbdCuT5uhqwbjKbdmC8DnfL+Fd09w4lbT6IG\nRIyRLelhSTj3zgqiVo2VefXry5w45zbM89odp0Re2iXyGn0KmvY99ZI+detj33DiR277oxM/8Oc7\nRV4fteO+/SToF8suninzaBx87adXOzE7tBljzI9e/IUT1x8FFWzLXzY4cWKUnIvpuXjWSQtAJaj5\n9LTIm/MTOGn97VuPO/F0i+owNIRzyr8FdORvXyxdmC7dB9eu4llYmz0ZsnW95A25Pvsa7BoSGC7X\nbqZL1m9EXbf3Fux0x/TQjHg5bnmtqGxCXWZKmzHS6S4xErVpbDHmckDol2/bIqhWtp1utj7D/XXF\nYJ82aDlj+BP9LX4qrqm/Q1LW469ciL9Vg/lnO6fxPtLX2PURKATJc3LFZ3F52CsmRsFJpqtUUtjY\n+eWS2dhjDFnrLLfuBwXhPnsukjScuClo6Q/24J5Hp2L+pS2R9JXDf9nkxEyvv+w3N4m8Dx942Ylz\ni+H8wvQuY4xJoLHzt/vgOvSdv39T5P18+S+d+OgTnzrxS4++J/KSqXbMN76HcD2Sw8ckzMAYLHsF\ntc12O7z2gjlOXFKJNSm+UO5bmPKanoMa6B9oudSR+2ZQOPZEsy4Hva+VKFfGGPPJVjgHXXkz3mN4\nP2OMMSHlWMODyRXMazmAsgsO06RsqmhCDupNdy32g7Zzmidf0rh9iY4TqGtR1rrN+//osXge7Scl\n9bKP3gMTZ+G5cz02Ru6d3vnlu07c2y9r2fQi7AM6y0D9CnTjeba27hXf4X2KK+KLKZ7GSNptF+1Z\nwhLkPQ8lek027cNCLDe4xj2QB2E5gJ46OSb6iJaf9n3jc4QS5dVYcgNM02k9BndCd5akaHny8G9P\nDq7Zdp7isRoYiD2g/bxr96POd1VgDa4/ArpqTIYc2+xO6U5Bvbb3v55MPDueb9brnXAPM+TmzLIX\nxhhTuwN02CyiKbKLsDHGJF90bqqods4oFAqFQqFQKBQKhUKhUIwg9McZhUKhUCgUCoVCoVAoFIoR\nxDlpTaHUas7t5MZIJ4HsKVlOvH/TUZGXSE5O7cfRZhQzWdKa2DGgNXoXTjBQtmI3HENrkD8p5geG\n4VImzCyU10Hq1mFhaA/2Czwi8sKz8Le4dermb14i8mo+R9tS03s4RvpU6WhVehRUir6P4CDV3Sdb\n/0s3ow127Arjc0SEoUWs9lit+CxlCVqfvd1o20qZlSny2F0rLRatun0DsvU3eyGUsLsrcQ89o2TL\nelwxWoGZenTkSSjhJ1tt+D3UjtpLf9emh5zdBLeDqEK0V9ZaTgVTZkPVvvkUWjKLV0hLibBEtAgP\nUAu47WoSM1rSpnwKmm92q6orEu3W4dk41+BmqVwfSO3SKy6b68T97ZIiUTQJ84cV88NSpRtVcAzG\nlX8gepHT80G/6OuT7dZ1XZ85ceNetB53npAt+LEzocDPriBBlvtTeAbOqasC19thtfQnL8K8D6JW\n1eaDcj6EWO2UvkZfK6gBDTsl1crPH/eQFd+Tl8l2/boNZV/4nZBEqeLP6vChMWi9rD+5U+Rx+ya3\nb9d8BnoL10ZjjPGSar8nH3O77lPp1NJ6HK2vHmp9tWlmkVNRD6o+BM2nz3IqyFiBscnUnkhypDPm\n350VfAn/QIwf2xWsbg/ogitvBGU0PFnOnSCiwF5zN5yXfvvTZ0Te9394oxOnjVvqxCEhkorY00Mu\nEAVoPZ75LXKfeVOuzdWleDbPvr3GiW9eMF/kVXx8wIkXTQZVJMVqyz382IdOHErzcmZBgcgbOxv/\nZveH9jLZ4h4YcP7oMMZItxt3tmxNZqpeeA4+S7JolWlxGPtBMahNQ95BkXe6DMe7+nrQHcLT5LgY\nJvowU6EicvF3gsNk+3b5x2jLD6RxFWatE2UbMZ9j4rFO8LMyxpiWPaiJ2Tecy14Jrd397ahrbssl\n0HY/9CVO1YB62VEpabyP/NdfnfjHL/7MiU++vF7k5d6KMb3rcTiQjSeHSmOMCQnBnqi3F/PNz0/W\ngPYSnEd7ANahvBtgyfHsPX8X3xmfiWNPzEYtbD4pHRK7yA316Cto9U8aLffT4bQWXH/7RU584h+7\nRF7iBfi78XOwf7nvzgtFnssl66uvwXvA5kNyTWY3ysBIrE9nt5aJvOgUHCMvGXSl5AWSdjbUj7kZ\nQnvMhv3yXod4iE49gFrJVI/uekk54fHoIhrcqdXS7ZBdwTqOY7wwBcQ+V5aWSJwj9+c9DTgPdjG0\nKfA2vcqXcJGzj8vaRwVTLeqm6/DkyVoRPR7jmF267L0NU4Bi3fgsK1POg+vvf9CJ770RaynTSePH\nSvce3g+7yV2z5XC9yEuchfe9mCTUigNPvSDymKLUtBPnnXGFpDbynq+Jrj1hmqSUn0+aqDHGDBK1\n3+8c0gP+wfjMdlZkOmzTAcwJ25U1kvaO3S245p5aKaMSOxE1gNfCUHLC6q6S30mYgefDdP3gYEm5\nC3XjXLPmY2/S1SVdlYOj8RwH6b3IZTlVRZPLKa/HtuxJb9O5ndO0c0ahUCgUCoVCoVAoFAqFYgSh\nP84oFAqFQqFQKBQKhUKhUIwg9McZhUKhUCgUCoVCoVAoFIoRxDkJiKxtEZwo+cuJ88B5ZCvkuP1S\nSyA0Cd/btwE2eK5T0lIrZhw4Yf1ecJTj0haIvIgZY5z45KYXcX7EcQwIk5ZnbDdbdQD2zGGWjW7b\nEXAKN28Bz376KMlJDCWrYU8cOG9sT2mMMaPJLpFt8Ly10n41YV6WOZ8IjcZ5RcZKjicLTkSk4n5U\nWXzevHF43sxjZa0gY6TWQwLxYl/71TvynOgeXvEzCO3w/Yx2S/7tux9tdeJZpGNw5lVpuRpNNr0R\nSdDrWPTrq0Te4Q/+4cQBZ6A/0HZIckur10JHg3UAoiy+LFucxl+/2PgSnWSVGTspRXzWXQ1tn74m\nstmbKDVw/OinWD5GjzUeWa+F9UQ8ll1eSBiO4UcH7+6GNTPbNBtjTEg0ON6xE4gbbdkUdpzCObCN\nc91nkhfOtpisT5I0T3Ky3RkY2x1kqRieLmuAzXX1NVjDhzVhjDEmhCwYvXW4rub9koOfcQW0ktpJ\nK8m2AWdebFAQnl10ttSYaCqBHlbdpjInZgvIkrUn+Csmk3TGWg+CKxyWLbVpmB/c04hrird41GdW\nYW5XVOF4aVa9YqvDMNJx6SD9EGPkmM4aa3yKzx+GJs70H0ptBrbITiTdLleonDun/wVdrMyVWNP+\n9N4jIu+N/3zKiXmNO/b2QZE374Hrnbj03c+dODwT4zssTVqtl+wCF/ybN0BXzc+ylI0sQj1NIJ59\nVILUI6nyO+nEzAWfmi+1aWoO4e/O/NEVTjw42CPy4sbLZ+prDHqxjjVsqxSfJV6Q5cSsNcB1xBhp\no8nrYuPnVebL0ErHC7FsV1lDivUhAkhnoLdb6mmxdXXXWawFtk4U11HW1HNbeaxpUL0WGn8xE6Se\nQ0c9anE465H5Sy/kVkvXy5f43rP/4cSVH0ldj1++Bf2m2pINTmzrHZ55Dnu9rOnQJ1n96BqRd+VD\neFaJKZj3J9a9KPJa9qN+5X99khOzzszKBy4X3+F7zjU40NIpmHHhBCfmsdJdKXV9NuxEfbj3n7/D\n8S6R43d4eJBirMG1JzeJvNOvwVp78W9+Y3yNs6tRO7jeGGNMRynGe/xM7Gni/aXGYwhp4PE+zdaV\nY0vkqCLESZNHi7zuFnyveR80o5LmQb+ObeeNMeaWwflOzJpWnV5pQ58xK8uJW/ZhvHRWSI2+s1vK\nnLixA3uT1KXynSQ8EWN6YABjgbWg/ueELZ9yHyKRtH3K3pL6ZuEpWHtSlmBPHmhptgntnEG8V9Z+\nclrkRU3C+2JZAzQJW7qkBlDeKNgmz5gAvbr4ORg7nbXV4jvNVLv3fgBdp6LJUvsvIk5qm/4vRt0k\n31lrdtFaTZorle8dF3msUxZHtdbWhLT1XXyNnrMYZ0kXymtuPwpdONb6ZK00Y4zpqMDY7yrHmE5e\nmCPyopKxOWsshXaabaV9+lnSEZ0IK/YBWnODY+X7d4gHeR4PnpW/v8t8GVqq8Kw6zsh1ljV2jB/m\n0aClQ8drev0WvP94W+T+JvL/5Tlq54xCoVAoFAqFQqFQKBQKxQhCf5xRKBQKhUKhUCgUCoVCoRhB\nnJPWxFZPrhhpYdvfiRb6JrLLzpyRJQ9C7T/efrQQNte1ibT2f6AVu+DGiU587KS0Fo0tBpUicXyx\nE598aZ0TM3XAGGNqKtGKlTkBbZG2DaonDzSa2H1ow+sfkMc7VYt2x4gWtFLZ9pkNTWjnOkkWe3On\nFIu89hNoyzPncq78v4Swsba6Gs+8iDau7g60XeVfI7kAbJvM7dZN+2RL4Oa38Bzb38bxjlTKtvG7\nroJ9rLCJJvpcf5ts57vpnuVOvGzJN5348gslteDmHPw7IgI2mbVVH4g8ttnuJhvmiCJpG+l3HL9h\nVpfg2RctkC16vW2ybc2X4Nbz7hrZwsy0wqhxaOWz6QkR2RjfTA9p3iOfIVPw7NZ4Rl8f7oXbjTHt\n54f2P7bHM8aY4AiMowaypO9rlPcuPAd/t5zaP6ML5LNhK8YWov+0H5e2vEyziB8PmsVAv6QxhSVI\ny0Zfg8e0Pb6Z5hQQhtbLvhbZmsw0zZ2vwxp1kUWxqd1c5sTttaDm2XSq+AK0yoenIG/j72F7HmTZ\nGh/aDApBNFlZFl4h6wZbgbJVZF+AvKaosRi3sSdRD882SXvczDRQgHjcx4xNEnneFNne7EvMuB+1\n68wb0po299qZTvzW/c858Q2P/lDkRU9F27IrAmvIsac+FXlLv4tn2nYSYzo4UD7Djx74pxNf+cf/\ncuLX7oOF8PSV08R3Rndk4XjxmJd5Sy8TeX19eB67H37Tiaf8UFIHc2/DODrzEtaV4ETZotx1FO3C\nT337MScOC5ZU51HJRD9ZaXyOoCjsaexayXPMQ9Sl5t2yVnbRuhFZiNoUEi+vOT8O/+a9lJ9FMwgn\nqjVThIOCcOywMElN6c7GOYQTNZlby40xpv0Exk/s5FT89xJZK6OoxjbtxfV2lsnjhSZjj9RNdNAg\nt2wb7yyTez1fonwVqPKhqZKu6fXi3B/57tNO/Ou3/ijyjrwO6kLxhZjbuz6T1MHqT2CtWtmD+rdu\n8z6Rd9c/fuTELRVYu9i+d17xdeI7T95/vxNHZ2GdfurBV0TeL99+2YlLd73txKOWrxB576y7y4n7\n+3H/tz70lMhrJRrI+GtAwQoKl3vjhKmp5nwidRloOg07pTRC1xnso7OIAtp2Sq4NwTSfo5KwDpX8\nS1obM9IXY8M9NCRpwR1Ex4gYhTlx+jk874PHz4jvjC8GDYQppfkB0s67lahMKRdjP1K9+pTIc4fR\n+wXtk20qRXcd9lJM2+qukntFT46k1/oSQeGY9/FTJfU+kGpCYCjizkpJ44rKw/f4OmLGy/WdKSfj\nyIY+NlVeX3sP9pXBRDfxC0C976yQ9SlhQZYTH/hX+Rd+xxhjOlpBxeP1wt9aSzJnL3TilGk4b29X\njchjm+kDf9vuxPlXyvfFthOyXvsayRdhPNpW7OmXQ06Cx2CAZe/NVKZQorTZ47apDHPJPwh7msNv\n7RR5/vQ7gt8R/K3QVOw9+/vl+/fAANak9nasEwEBkkrcVoM513oY7xC27Xfi+Cwc7zRqT/3GcpEX\nMwVjeLAHYzg8WdLKzZA5J7RzRqFQKBQKhUKhUCgUCoViBKE/zigUCoVCoVAoFAqFQqFQjCDOSWvi\ntjK7/bbyQ7R0nagCrSmlXDrsVDaiBSuG2t+bOiSdYGAQLUmR69AqyO2OxhjTsBvqx0FRcD3Iugat\nX6f+JdtMsyaj7a2HVO39rFasbmpvC6Q2/qEh2X9U04L23qQo0C9On5VtaqkxuBcXrkC7e0+lvHb/\nkHM+hq+MjpNowQq23CEiRqNdM70ANJ/4zBkir7VxjxO3HEVL5ql1J0Ve7wDa1i5aOdeJ55XK9kWm\nzmx5dAP+bgRak9OWSpcPdjRgKtMNKxaKPFbt9vfHd8I8sg1/3R//5cSzf4zjNR2UThtMZZrwtelO\n3GG1eXvryfVogvEpuB2Q6SHGSHpWcBS1+XVJqlBAIJ59ZCpa71pSJfUogtraPak4dvNR2W7Miuq9\nLaB3sJp861HpfBVdDPpKymI8X1bmN8aYVqL6hUbiebpzZH3poNZmNzkFuTMlHSvIA8pEXxfGYuNe\n+awDyB0jRQ4Xn8AvEHXUdnoIisA5spNMzlVyLlauRRv+qCK4Dpx5br/Ii5mJVvReUopPmyDnS0cH\nWj6r1qB1n+veqAulk0VnCdpzmUrnttyv2sn5K5zcn2rWyXbwymOgICRE4RiJE2V7dP12tG/HT4f7\nTH+XpIi1HiOq6HjjU/hRi+07qzeLz5YTVY0pWUNDksblH4S65O+P8X26TNJmUoYwR7glfe8aSblI\niMQ9O/wy3GMufBA0jZ1/2ii+M+17Fzgxt+k+dedPRV440Y2uevgbTrz+F9Klhmv//lI4+fz4pd+K\nvFM/ecKJr/5PUFW3P7NV5PUNyBZoX6P9MNUYy4WJKd0BIagJdu1lGq4rCs/RUyBdxoLJMbGNxmav\n5XYoqI1EH+5po72FPFXRfs1rc5/lDsFt+TWfoJU75aJRIi80Fn8gbSnmbMsJuU5E52Y5cfU2ahsP\nlnXNFSnpar7EmcOoBzmWe8+PrvyBEy8aC5rLob+9K/Lyl8LJ46XvwlEpOyFB5HF9LlwJGpHbooq8\ncO+jTjxzHv7us2vXOvF7b/xVfKfjOOZf8S3g8NWfbhB5NaUfO/Hxt1ADuiyXn7t+fZMTr/056JVb\njkuHmJ++CDrVkb+sd+JRd0wRebabma/BtAjboSqEHF+9NC9zL5BUrrpSOExV7UYtCbP2vPk3znHi\nzjrMK/sdh/cMTM+NngyKzeBRSUNiN6TYsVh/owrlWAq4CNSeyo/gbJQwX2462IExgvYEbSclpSuM\nqCN8LyPyZR0KsVxwfImy11AD0q8oEp+xo2rChAL6RI7bgADsXz2ZmFf9nXJ95/mSNgVSFZ2n5fES\n6H2itwFjx28MnpNNQa3+CM90YgFoavHTJLXv2BOg3sRNwJjIWSbp5fWnkOdJRV5gsPy7A72o18mT\nsbcJs+gw3dWSquZr1K3D2m2/L/Kef9CLtbD0XemUl0aSD8dpfEftlMeLLsa84P1NUpqULxjswDwI\nTsA58PNmypUxxrSXYb2KyMJeluebMXLNrdyF3xcm3CH33SeewDtOaT3eayYtlVokLfvwvph8Ie6D\n7YrbuJ3epy4y/wbtnFEoFAqFQqFQKBQKhUKhGEHojzMKhUKhUCgUCoVCoVAoFCMI/XFGoVAoFAqF\nQqFQKBQKhWIE8f/ZStu2X825Dlza1mdgx5czL1fklbwGTmfhLHCb6w5Kbv1nB8GfLcwBh/C7N/5O\n5K2YBjvQYjpeXzP4elETEsV3mN/f3wruv1+Q/G0qkKzgCiOy6TuS7xjnAQfwcAU4aosXSp7u+g17\nnfhy4nUPWxZavfXnz/bVGGNSSLeHuebGGFNN+iqjSRPC31/aYdZvx3XmXQIdA+bjG2PMmX/Afjea\n7G2Prz8h8kJdOH7RPL434M/XfVYqvuMiLZm7f36jE/fUSg2f+GkYP1Wl7zhx4x6pL5KYCj7u0b9u\nc+LMa8aIvDjSwKjfVObE/e3SejH1Usnd9yV4DAe6JTe6i+wSe0j3JqZQWn13NYCD2dsCDjmPe2OM\niUiDzkdrKXiRAaGyBjA3nO39+loxFyOL4sV32GbQEwlecvXBbSIvfgLqCGslNFrc95jJsNsVmi19\n0lbPdMpn9b8YHpR2eUP293wMtoxuOyr1BLpID4utIztqZK3k55UwDxz1YNK8MMaYxt0Y76zx5PXK\nedBVS1alK1DDmshit2pLmfjO+Htm4e+Q3W5giNSXGBrA32X9od4aWfOKr4JI06q/QVdhadEskcfP\n5+z70LtKXJAl8lK5L2c4AAAgAElEQVQXSq0yX+LhWx9x4uAgWf9KK8E3nlUADnRfn9QIKJh/sxM3\nNq5z4pYueV/+8ZOXnHj+GNQl1nkzxpi1tH7+/KpvO/Gpp7EGLf7l3eI7TZW7nTiULOTnXyYtt596\nYpUTz95HugJj00Re6QGsEWxvWr5e6vKUNWDcT2rH2sq6OcYYM/WHl5vziTDSqPLkSi2r3mbsfVhf\nqbdD7gWSssGT9yc9qbQZ00VeaxXWP7YWDQyV48dLe4EQ4vtHJ8LmeHBQ6hdF5qLGeltQ/9v75UbD\nS+tkJHH9B7plbewNRB2KTcVY8EwZK/JCQ/H8W5JgJ9pTI9djT768t77E3B9AP+vxu58Vn939vWud\nOJJ02SpXWfoI9KyWkxW5vedtL8EcHh5GHSrbcFrk8Vx0h8De+cZ585w4cU6W+E5PFe5Zdzf0uJIK\n5V42NnWqE/cNbHHiAWt9e/k32PfwfvW+P35N5B18FDo4rA9Z+ZuPRV5O7vm10mZNNFt/jjXsWDOl\nvmyTyAtwIS9lMsZt+4nVIq/sQ9Q91pnx5MlxynbArDXFtWLmYikuyOfqcuHZeQdkvQ4KgqZGzETs\nYdotLRmuFbx3CkuWtvG872P9oajRUuvGvre+hGcU7stAj9TmCo0jrZJBnGt0frrI83ZhjxoZAy2P\n/S9JfbOMq6GBd+RpaIFEJMj7EktjPzQVsYv0hOz3Ar6O41ugwRe4VtbqyDy8PyTMxHrXWLpX5qVD\nC6vlTJkTh1vP8NTT0PX0FOHYJU/L4yUuzDLnE8HxX65LxJbhg6RJG5kmNR7ffuoTfBaG43X3yvXz\nxBrc+5M1+K2A9zrGSE3aLTs+d+I5hdALC7HeDeLn4L7X78L6dHpPmchji3o+16qPS0TekUocvyAF\n70isf2SM1MhiXcl+a+8QO/3cNVU7ZxQKhUKhUCgUCoVCoVAoRhD644xCoVAoFAqFQqFQKBQKxQji\nnLSm6gNoOUqfmSU+2/fMDidupVbsrrI2kce2o5V70fbMNqPGGJNCttO9ZB/3rQulLVnqfNCNYsag\n9f/kk2hVzL1Veqcy5SJ+NlqdAiwr7Yo3YLEV4AF1oLddthGzfXZ5g6QmfFnezldgpzZqjLTL89ad\nX1pT/Va0dOXeNFl85v/mASfuJWrY0TdfEXnJZI3W1gBbvKhR0vJs2mhQe1qPoEVx1Gxpi91xjCyQ\nyR45JgdUgJMNn4nvRE9C+ydTmfo7ZEtv00GyR6TxF2RZehZ9fYkTv/6DJ504tjRZ5IWmoeU//VK0\n0dXvqBB5nWytLd3VvjL4Gl1RIeIzdwbGWTfdl+Fh2UbHrZwRSZgHrZWSPtbfi7Z2N7V5G8mmEnbX\nnWSZnHE56EpnV0ur9bgZaIU/vRutj6nzpFVzRzXoIa5IXG/kGEmTYmoQtwC7s2SbJVN+/APRnupX\nLC/KP+j8/l7dvAsUIPtaQoha0nII1x9qWSmGkn1v9QdovUxaImlsIYk4XmQ+5mlTiXwmkdkY7111\nmLP7y8qcePFFkurCdLDcxaA5dnZKygDTHpmOFW5RHXobUQPjyf4yLFW2/oalYTxyi3b9pnKRx9bz\nliPuV8Y1K+Y7ccF1F4vPOppxb+t3oA32+fueEXk3/Qm0mdLXUE9v/cu9Iq+3F+Pgxe+97MR3P3a7\nyGMaXzXZoftTq/+x194W30mgtfDEv9A6/elBadN9z4OgkL74Z9gQ3/VXSZFIvwS1sXE/9g5sYWqM\npIJFUGt46BZZTxuPgwoUPVPShHyB4BjUhI5TtjVthJ1ujDEm3mpFZqrLoBfPYGCSbOuv34zxGU22\nqy6Lipg0DrQVph82lKGVm+uhMcZ0lJJdPdVr25LYxddL9ImBNHmufpmonZ2dsF4eGrTsbDuwX/LW\ngaow1Cst0DtO4PyMdD/+yviU6DdR4dKm9ZWnPnLiu/50qxNnXVMs8777mBMv+BpRj8bKRbzsJczT\noX7YThffJunsD1+Gtax+E8b0gZOgK/1x7nfFd/72+H86ccNB5F31jf8Uebd+AIvo6fmgbjaclPvQ\n5SsvcOK0BaDe+PnJLf/Mn+J6N9wAOuRPXvmHyPvL11CXJNHUN6jfhvvUWy/rRVgmxjRTnIe65biN\nz4RFdnMd3k+yr5oo8hr2lTlxDFHvA4PcMo+eXcw00BiqPgWNLfPyQvGdlgOo12Wf4FmlL7LO4dgR\nJ+5rwftF/FRJFfXE4PhDQ9gD1h/d/6V/N/ECvCMx1dIYYwase+ZT0F7btuxOvCDLifu7cL2Nu6XM\nQiBR0wMnov6nXiIlA5r3Y4/PFGumdxljzMAq1Ky+RowrlgJImJEhvsN0xo6TqF2DPbKu5VyHZzrY\nj2fT3y7rpKElIyQG94Up38bId85w2tPbdujnG11kT516mbzvvN5107s+28sbY8zCqXgH334Ae8LM\nZMtSnqQSggIRM4XIGGPe3AIKZxPRn+YW4V3DTVbcxhjTU413IV6f+gas55iFue2ld/2S4/Ic8pJw\njW3dNJYsqlbBTMzhxp0kCxEsf29gGYYvgnbOKBQKhUKhUCgUCoVCoVCMIPTHGYVCoVAoFAqFQqFQ\nKBSKEcQ5aU1jboJDwM5ntovP8qehhT6JHAZaq1tF3uzpaCFlJ56jZ8+KPHbv6elDi1jG7CyR17wT\ntIDgaLTpxkxFa36fpYrsbSAHBGr17yhtEXn+1HbUWIPP4hIkReLTbXCWuXnpAlxDqqQf5HdBiXzn\nfrQH2zSmmhZ5Hr5G2jK0ppUSjckYYxrL0KaWe+1M5K3aKfICgtBKPehFu1hwcIrIG30nWvCCgnDf\nqnbL8ZM8H248NRvRxtv4OdwDbNXwxu0YM0HUApi8SNI5/Pzxm+PHv4FS/6SFsp35tzf90okXFuOz\nxl3SHcfbj1bQiFPkjGG165cdQhvc2MuMT+HOQGuvt0n+3QGiAbKbTfVG6ZDVVY42xKxrMRcHLWV9\nVmTn1kvbSYCdRdi5qo5odNHjZbsjt/B6a9Fq2NMij91JTgmsCh9stcuGJGE+RxfDHcEvQLbzBrqQ\n11VPdKxKWa/Cv4TO4CswrSsyR9LnKj9Bq3P0WLR/2g5S0TloW/a7BGO9Ybtsw0xdirb37lq08YYl\nyToVHIzzaKwtc+I549GeP2Q5v/TSGKmsQIt/91lJa2Wqh4faTk/vPCPySuvh5LRoGagdXWfbRR51\nTgvKk+3W1NvUY84X+F40npb19NgraDdPHov7OjpNtquzQwQ753z6s+dF3uKfw9UpmmgbLo+cB0MD\nmCOrN6B23/bgNU7cXS3v5Za/bHBippLd8m1ZvM6Sw5+X1uaaddKlhp9HyjTsHV77/n+LvLEZaCN/\n50G4ymRZ/LPQY0TVmGl8DqY1eS3HRG7fTlqEtYqpusZIel/KYuQFBku6UuxUtFIzLYldaowxpmzt\nBicOIFpSBFF/u6w5xpRFPh/bXW+4EeM2kNbP4X5ZX5gaUPsp5unwsHS2Y6c4dxa5VlnUUKYt+xoT\nl8JB6sxmOR7nPQC3pqrNoO3lLrlU5K38I+Zp5UY4ptiOlRGjsbfpprrUVSrXkE07QAuckJXlxMvu\nAY16xgJJmdr0KvZHfeRMcvuVV4q8Hzz/Byd+8/sPO/H0lZJ2mj4NLlZtjahJHeVyr/n6X+A8t2Q8\nzuk7y64VebdetMicTwx0on7Z7f5MBxiisWoNR9NUjX05rxvxY2VdiSrCv4NcGLddjTUij6lM/bTe\nJc/PcuLjr0sKaHQcUXJpzzY0JOd5fxveUXhvFxknx0V3N8Y005pc1j1iymJ3FerDYK+c20N9ROmQ\n5mtfGbw2lz4v18WU5XgHCQpH/bMp20wJOvPqPieOmy7Xz8wloDJ1NmO/GZEh3Z/aunGMbKKvMB0+\nPE3u+Rq3Ym0uvhu05dPvSNfBuu2ojS56F+1rlTIYZ9fhHNjpq3KV3J/n3IRn30uOpyWvHxJ5ydPp\nGicZn8OVgL2FX6Cs5X7kGhs9hfaNO6XjVacX92DWVDgvddZJJz9/L+Z9AL237TktaznjwW98w4kz\nisEZs+tBQAjO1UPUsNHW+tR2Ams9vzUUTZbvlaf2Y5ylp+A98FS5fF9sIHq2Ow/1xXauNdb52tDO\nGYVCoVAoFAqFQqFQKBSKEYT+OKNQKBQKhUKhUCgUCoVCMYLQH2cUCoVCoVAoFAqFQqFQKEYQ59Sc\nYWvgKbdKK8u6tbDfragED9u2qUqZCV7ym8996sQXzZX2gxVlOEZkFPQhguOlPSLzsFsP4TvM7xz0\nynOoOQwuadwUcNTcmVJLpo94oG9+sMaJZxdKu7wbF8B+sKcN3MCG9SUir+BiaDZMJd2IpibJ/c9I\nTzTnE2WvHXZid760Gxs9B8+n6Rg4lKxTY4y0H/TzBzMvNEryeXf/4UMnzr0CXEN/y0as9FVwdaPG\n4fr52dnczaQFWU584AVYp6ddXCDyBnrAzT3bDCu8SX5Sh2T5DGhbpFwEq++aT6QeRswo6KbUbwTv\nsPCOeSIva8V5IID+P2g7TvoLAfI3Vea/J83NcuLYwlyR19+H+RwYBK5vX5jkQ7MOwkA37qX9PBLm\nQDuCrb4HiUdq61x0luAc8r+GmtLXJS0QmRfecQbPkO2YjTEmOA782CA3eNhBIXJuGwO9Bb4+T5ac\nD7YGhK8RSnbZraclVzV+GnkuEh+17B3JTfa/gso2DenYqdLml7V/UhZiLETHyVo+PIx7kzgR1oT+\nLvydUKsOuxOIj5/45ZpZkWSV3LATmjiB/nIMT8qGjk4f6cXETJGaVk3EbY6diM/qtkgr7fRLZE3w\nJXKunezEr/3gBfFZUyfGcUID5qwrUC61U6dd5MRsX876VsYYU38IfPNxM7EOrX9otcgbGsIzvO2B\nq504MAzz5bFHXhXfmTca69P6I9A7Cjx+XORdeR101YoawP3vLpXaJ599BK2b4k9gKT7nSqmHwevu\nzKxbnPjIP1eJvFbL3trXYK55b6PU8WLtltbDsKm19eJ431H+BtbZvlapezdIz4ftd9kO3hhjAoIx\nTgaopnaTPldXhbzvp97G381ahnFv6wV0V6IWu8nK/sBHUtNg3IXQXwtJxrxnvQFjjAlNwGcDZDM7\naFlp+weev/8HmHsh5lHmQrmG9PaiVvgF4txfuOcXIu/2J/6E4y3BXqSldo/IS1+EPevqBzDvZ39r\nrsi7+Srse/o7MQ7KXsZ9Ds+T687k6ai7A5147h9t2S3yuFZf8tB1Tjw4KMdl2ZZPnDh77jInrnz/\nZZG3YBJ0Loq/vdyJV3TLdTBmstRH8zXCM6D74e+S4yxqDJ5JE2l1RRTEiTzWmmR9y/JP5HMMDMc7\nhLcGdSpyjNzL7nsTOkVsnTuuEFoUtiYm14e06RDKaquVNTVhCvabXbXQW2utl1otXA/qaf20tfci\nC3EvmnbhHqUsyRN59dsrzPkC69t4e/vEZ6yb19uKe+TOlPOg8n3cJ65fIXHyeo/9C+9n8bOxD23Y\nKS3GWcu0qwzaUHzsspdk/RtN2lCBgRiXqRfKe9lH+ji8z+V9iTHGeJtwvbyHDk2V1u2Vq3DtIaRf\nGpUm97L8Dnw+EEJanz21sqay1mfrQYzbmAlSWzKO5nD7sUYnDiW9IWOkNuRwA+bsD78uNa+6yBY7\nPAX3hjVkextlDYwiDcryd2Dn3dgu30mSonB/PUXYr575vFTkjV8Be/AztL/JtrTy/Oj9zEN6a407\npM5uGGsdTTT/Bu2cUSgUCoVCoVAoFAqFQqEYQeiPMwqFQqFQKBQKhUKhUCgUI4hz0pq4ZWjXv3Z8\naV4/Wf9NWzlVfMYtrpcsQjv9meOyxSenkKzSiDZT+t4xkVdNttNZ8bCm4jbiIcs+LrkYLZmtR9GK\nFW7Rmo5uBX3gawvQyr3LsvX6ZA9a52YVoI04ITVW5IUQFSCSqDvebbLlOSwr0pxPtDWhJcy2w0ye\ng/OvLQctq6tKtk73VOEYEdRC2d1SL/K4fb/1CD6z7TWTl4Bmcfx5tI8W3DgB581UHiMpIXN/usKJ\nIyNlT9ipjW84cWIk0d16ZLt1H9FvOqlVPP/rk0Xe1t995sTZ07JwvEHZ8tdMNqvxC41PEU/2eQOW\n9XX9NrS7cgtlsFu2/QYEYjwGBuK+uCKlFShTe9j2NXKRPF4LzaUQanHvJBpSz1lpnZdxDdnq1aDd\ncXhAtveHxOJ4vc1fTjUKcqPNcpBsIjsry0SeOwNznVtk+zvkXGyjMWtmfOmf/b9G3Ta0FQe45JyI\nzEF7ZGsJxlLKJbKdtmkP6FA9ZI8ePVW20zLFracBY3Wof5vIi4gDvaWzHsfOm3W9E5fueV18ZzAW\nbd61RJ/KXDhL5O36Pb4XlY0Wz7wFkjbpyUZ7cz3dI36+xhiTezPqQz9ZyNvW6dVk85x4vfEp9v9p\nrRNPGpMvPmusx1zKmg2qVuV2SbuqWo9W6hObUXfDg6VF6rp/bnLiuVdjQMZ5pAVpzkpQUdpPYf6V\nbsF9uOde2SrMtJSQ11GDU1Ol5SPTCpL3omX+lc1bRN637rrCiWt2oSbZa06QB9cYEIBz2LhNtvQX\nk+X2+YCXWrZtymZwLKxRI0ah7kUUyHvjJdvpxmrsTWyXzILlqHtcz3pqZH1kP9oNa0BpSYnG/Nh8\nTO6JPly3zonfzIfVcr91TRlXgDrDNb5wiqS/9rXge2wTHTlG1v+a9Wj7jh6PtvYei8rqH0LbzPHG\np6g9Dgtqmz6VmD/HiXvzsS5e+8i3RF5LC46x42Gs9Zc98ojIKz34ihMP0ZiOSJP2vd1NoMG98vO3\nvvC8F2VKWj/TPtIvA+3t1rmZIu+5ux9y4l6SEFhwidx3e2swLpvzMY7cudLWvGUfzjUsDH8re4ms\nawPdcs/ha7iIphOeIq2NG3aglqTSeXXbtry0BrA9cvRoKRvg8YDK1doIylPTAWmlPeka7APr15fh\n2ERJY/qUMdK+vvEU6llUlrTl7evF3ic6A7Xh7Fa5NjNlnfevYanWPdqOe+SKwp6tzaKGxk+TY9WX\naKT9b7pFp2rei3sbnoW9mG1jzYVzsAtjjvcExhiTtBD3s5Ps4Yf75bufJxX73OOHUK9GT0LNC06S\nlO1Tr2514pSluI7oJGlz3ukPGlJwDMZvyVOSijhIczs0Ge8wjWXy2SSPBy09muzfWTLAGGM6zjPd\nt6catcOdI+sFv8e1+X35u3TV+6D9xE7HddnrXVg6nn9UPZ5j+XFpzV20CDWRqVYslxGeIc+BKd35\nt2LfmGXt+VsO4zoGqc7lzZM1sKsca2FiAZ7PQKesjaF0TXUbysyXwTUu9Es/M0Y7ZxQKhUKhUCgU\nCoVCoVAoRhT644xCoVAoFAqFQqFQKBQKxQjinLSmtqOglUy8VlI9mqm1PmkBOW20y5YhblFsO4T2\noYxUqXAcNwO0pqr30BIVkyOpQp5WtIWt2oh21CRq+50xTrorndiJ1u6594Gu5G2SDg0zboO6OrdO\nxZCbhjHGrPj2UuRRC2/VHknVCj+J1kV2gkqaI1tVO083m/OJgpVoxwuJlwrhJc9/7sSuKLSbx02S\nzi9MUWo9iPtR1yAVrQvvgjMHUykq35Zq9YFEVyi8FWOr6n1Qy5obJLUq68ILnLipFA4V5R/uFXns\nJrXse3hWNk3Kj1rIexvQ9ly5Wrrj5M5CC2UIUav2/1m29Y+5Q7qS+BK1m0GLCIqQVA9WUGfKQPVW\nqUIfNRpzzkWUwMAQqYTv78KYDgiBMnxYlKTNdMeiRZGNsDzk0MMt8sZI5yWmO9gt6dwmGk2q673W\nnG3ah3ZZbrmMspwX+lrRxs/tjn5R8u/ajiS+RlQRqAG2M1R3Hdom+9tw37qtNsxEcskysxHWbpBz\nMW4y5rDHjfbegV7ZWjo0hLbZ5Fw4ewwMYBwMWbSz2h2nnDh1Htqy3/3RP0RecBDGT0om1onoQvl8\nmMoaSG4EQRFS3Z9bz203GkbinKwv/eyr4uP9oLVes0w6tqUUgd7x5vOgSKTGyPbg8ZNBURpPNSV2\njKSYvHX/c058ZA0clWpapEOWZzue72ur1jtxQSrGwNFXN4rvLJwDOujc+xc78e4/bxJ5LqIVHKpA\ne3larFyby3eUOXFiDupLZL6kw7jCca5v/eB3Tjxn4hiRV/TNJeZ8ImocxmCAS26FBthxrgrzgGkG\nxhgTTNSwxHwcL36mpA/UfIw9SEgKnnfDUbm3OE17DR4zZ+i/zy0qEt/JTcKY+/vz7znxdbNnizze\n77A7VfVRSefInJHlxHEzsS8LipCUO0P1m9fcbovKOsTuTUuNT+Elh45Bi3ozPLzZiatXo17l3Czd\nTt7/Oe7Z2NFY6++YP1/k3fl1UKkv/fVNTnxmlaT8f7oGrmVzx2NMx89F3bbb+wuuvcSJvV609B98\neqfIqyL3ydsfuMaJP3z8U5H39f9+0ImPvQwXtNepNhhjzDUr5jvxqY2gYOXMXSHyTn32tjmfiCK6\nYGeFpFkHk3tMRzmuv2V/rchjikPcVIzb+PhlIq+mAs/bn1y8UmdL2ko50QqTyc2T9zD91vtO9DjM\nxSMv78OxJzaKvK5TqN9RE/He0HFcUlaCYrD+Md1teEiux0x58k9ELYuyaZjW/smXiCLnJa4Hxhjj\nouvoo31PeLqkNTGVKTAS+7S6w/JZ879zV4CW3bJL1jJ235lxA2Q1eD+z9RU5fyeQKyK7gzUHyGNz\n/euk58luYMYYU9OA8TLxYlBl2BXJGGPaj+LZe6k+JMyT74sxE8+vc1pkMcaMLTfgRy5MLB/ClJ9/\nOwaNVZY/MMYYF+3vkpLxrCLGyHHbQrS44ASWJSBHwzJ5Do3d2LeMugPv9n1tUoqjtxZrSCTRyWz5\nCJZ5YdfY0ET5Ts0Oa8KlrF66SdXSnmCUVAMwxmjnjEKhUCgUCoVCoVAoFArFiEJ/nFEoFAqFQqFQ\nKBQKhUKhGEHojzMKhUKhUCgUCoVCoVAoFCOIc2rOnNxzxomHdks76fFLYd3Z+Dk4k8mLJGeeEUQW\nb8Fxkm8XlgzuYewM8OS7KqXuCOOiieDMp10Ka9aAEHlZ6WHgEHaUghsYni6tt2o+BS/ZnQP+ZGFm\nmsjb+By0Rpb9ACTqkm3yHrEFZx9pSAwPSvs91uw5H/AnPv2QZTWXcyO8LU//E9otLRYX3kMWjAnj\nRtMnklvaVAK9Fubj2pa4McTNjUmGDWTnWDwftzdafKdyCzSGmj4HF9Q/QP7GWN0EjmckcVO7+6Ql\nXW8/OIXZZPHsb+kPHP7nLiee/sOLnZj1Z4wxpqOUtIOkc+JXRijZ/XVZ3EpPPriaLYflc2M07YVO\nVEc08aYty9W4KRjvvS3gKLfXSjvDgU7czyCy3GY+L1usGmNM2UcYH/HF+CwgTPJ020rA0e5tAkfZ\n5ukyJ9aPOOedpVKTQ2qXgPvJehLGGJN8wfmdi407MW5t+0G2im89Bn2k/jbJa++kmhhJ+j6eUVID\nhOe62w0NjMqDUnvk+HqM74zLUSujc3AvOkosS84ZOF7pKnDzC8fJ+8fc8x7S64ifmCXyGnZDLydp\nHo7B9uj28eLGgotdXn5Q5FW+C7vhlLulfsJXxQVjUCvsehoQjnmaR1ogtkbMSz+BxfhNv13pxK98\n/xmRV5ACnafuXowDPrYxxnRUYEz84Om7nLj1OPjVUQVS5+fDX7zvxGmXFjhxSa3k96eMxTksXAx9\nsJQLpdUkr3GdxEG39Qe8Lag945fgXqbPl3bAAQFyrvsaLqpZHZbuW8cxjPcI4s/HTJJ8/44zeK7M\nSWdrW2OMCSI9t7P7sV8KDpRrDT/v0EhYbca4cWx7LOUk4Lny8cKj5P1rJcvQ3jrUwPgUuc6ybXLH\nSdyXpMVybjO3vp309aInyLHZuENq8fkSzPdPzJ8pPtv20JNOHFOEe8RrmjHGzLx0khNnL17oxI99\n+1aR11KPOhcUhFrLtdAYY8I2wEI5LAP7Wg9ZvZ56/6j4zqhLUTciIrAne+fzX4m8O29DLYvOzXLi\ni+5cJPI6O6DxN+hFDf31qhdFXsWB1U5cTfa3fgHvi7w3n/3EiYsvvdP4GvXbsbfoqZJ6PDx32o9g\nXbQ1xxJmQ9OH7bcbdjwq8vh51a7HNfP7iTHG5F4Kfcrq3dD+iZmAOeofKGtbHWkDJhXKecDwI308\n3i+54qS9rpdsjfs6SIfO0iyKnYZ3phCyJR/oknveBrrP2VJi5ysjdSnWg44yWaMii1BDg6NwjbzP\nMUY+61baT0enyr0SW2nXbSpz4gBL76XrNNah2v3Y/7rdOIexE6TtN2sclW3EO13WPPluW74Z78fj\nvwUNubIX5V5k6jcgKNJ2DDU4ZrxcS7z1qEtRxahXQR45LoOsvbKv0UZzLHmRfJGpeBv7qqjx0ILs\nqZbjMaKQtBVJ34zf+4wxpuIt1MHASDz7jhNSo0lo2ND7s5f+rjtXrmP+pB/Zcgz77kDrXdQEYA53\n0noeluYRafyOw5ph/e3y/Sk8HZp64RmIIwul9p793mpDO2cUCoVCoVAoFAqFQqFQKEYQ+uOMQqFQ\nKBQKhUKhUCgUCsUI4py0prgItGRmLZf21H3NoBpwO2A1UYOMMSZ2CloAw1LQJhQ/RbbIHnx0gxOH\nx6HFM9Cyb8y8Fm3QftQWxJZVq3+7WnynkFqFs24Yi/OJSxR5IUlo5y7dgOvw9ktLrYV3wNK54k20\nZWWPk+2t3K7YuB2tveFZkSJvkC27pJuoT9DfiXb4+i3l4rPEeVlOnHPzBCf2C5DtmvsfBZWrm+zD\nw9LktQTTWCh5C3bXcfnSGk1YriejTS2IWtuCY2SLp5vaglt2w1rN65W0jyGybsshm70mopQYY8xg\nJ9138oJmq0RjjInwoM3x0KOwx7Xb1Ozz9SW4lS+iUN7Lnjq0vnqycI+a9lq2gkRNc9FzYks8Y4xp\nP9NEebgmm8LB1xsSiznLVBS7bZVt0/upTbd+kxyX3LIcnokxFlMsW0GZgtZJzy00WbYkeqm1kmkW\nSXOzRF7jPu8LxEUAACAASURBVLS+pkgHQ58g8woajwfl82k7zVaKeKbRFpXCRXPk7EfUlm3VSrbX\nPLwJdpFpC2WrauxkHH+oH3Pn89/DcjR7WYH4DteRZDoe25QbY0xHGZ5JM43HzirZthozDufAVJyu\nSkk7y7gEdNr63WgrDgiRFuihKdK62peY/p9od289IW0ZeU2K9cgxyIgi+pMnFpTca357tch79r4X\nnLhvAM/zooXTRN6uXWg3bnsEYz17OtbZJq8cb0yN+uChD5y4sV3e8946HO9MGebHnm3HRN4UslSP\nn461sLdNtv1y230E0fJ2PfyOyItIwv5jxr3FxtfgdmvbEjcwAuOYrd1rPjkj8tgeue5TfBZqtUSz\nvTRbVXvrpL1m9EQ8k8ZtoGYwlSk/R9KsY6eD0pBHLdadJXIdC03FOTUTbTRujLUPIrtTN1EvW4/I\nWj5M60Eo7e16myVtyLa49iWYMnXohcfFZ7kLMa/C04helCLrqScF93xgAM+j8cx+kVdFtJ/TZz92\n4iv/8F2Rd/FdeAbJY0FpOLX6IycuuHqs+M7+x5934oQLsPDcfom0k8++DPP+0a8/4sTfeeo7Iu/P\nXweV55u/ut6Jzx75WOQdfgVU9lk/wt9yu0eLvOsDz+//x+W5mLZcrjWNu/CMo8ZhrHqyZY3vrkHd\nYirXcL+0A24jCh7TFNke1xhjGk6Anhbkxto62AOq0LBFgWc6B+832a7XGGO6OvH+FNqJucN0FmOM\nKTuFPQGfw5BX0oY6yaaXJQTsuhYQev4oMUy7arP2fbznip2KemXbFTOVKTQce9SosbJGMUV/gGjf\nQ5b1sz9ZPzOViWky9bvkewHXybTJtI41yGfoIgrpqX/BNj17pVyrjr+Iz6IzMWZtalpEIdbCs5/g\n/TN1saRTnaVxlXL/5cbX4D1M61G5v3HF4h4ytcce3w0NmM/+VDvaDsrjRU1C7T26FvuJrLwUkcdz\nk2lJnacxD1r2SDp2DK2LTFseHpKyIgGheI7BdH1bVu0SeeMKsc9NvhDPpNeyp++l30b4vYPHojHG\nDBLlMEsuB/+T/+//SaFQKBQKhUKhUCgUCoVC8f8X9McZhUKhUCgUCoVCoVAoFIoRxDlpTT3kbnPk\nDdniWbwSTkmd5JxTUybblsKz0RZbuRFtv6XrJf0pfRragweJZlG1Xyr9s0PMcB9a2LidjR0PjDEm\negpaF7f8dYMT5xZJGlJzJVqkIsPQeh3Ya9FmiEJVUon2ugKXPJ4ZRvtUZwvaviKKJB0mjFpuzweq\nV+Nex0yWatncVsjt2/VbpNvE+O/MduKKVaTYbbVEMwpWQg7enSadZLb8dg3ylqA9rpvUt7NWTBDf\nqVwDmlQ0XUfJ2hMib94P4Fxw5jm0pkZNlOfqzoK6t4soIWctOhC3GzYfgBvS6V2lIu+Cny4z5wtR\nRGVqOiDPL24ixru3CeMsiShrxhjTUw+qTBC1CXqypcr50CDmEs/FwFBZLnrq0MbaH4J5yY5oYaly\nbHsbcX59LWj/y7pWtoKy80sdUZ5qt5aJvEh2RDsHrcyf3BGiyLmjYZesL9yefz5Q+QFcNKInyPZ6\ndo6Kn41aYrdDdpObRdJ80FYa7fbcRNATEqdKKgSD70fXWbj+FH8D7jlc84yRbaLcYhxhOUYxuOW7\nz6K6cCv2MNXNILdswz675ogTJ87JcmIe28bIVlVfY+OvUbsW/ewa+XcD4B7D7bOFlsMCsShNdzfq\nSOsJ2Q5+3Y/RthzkQY16/Wdvi7yZk0BDcJHjxYdvbXbiq761VHwn50bU592/hCvF3X+9XeQFhqK9\nPN8P97WnWbbWc63ooRZwb518NowwctsZc4ekap398ISd7lO0Hca97uuQa3zK0i9uW/YPlnOxndr3\nw2ivw+3Rxki6YL819hld5LoVSvuC8el4vrazXf36Mid2F6Btnh1cjJG0wryV1EdttXk37cZ8Zsp6\naJJ0J+T6wq3wg73SYS140flz3Rr/NYzV0f3SxfDIc2858eoXNzhxZrykBafEEz2GWBE2Xbrwa6Dk\nrv0xHFlOvPmhyGs4jj1CfBHuM1N1XRHSgSWdXPKYPjz6jotFnh/Nv2/+7kYnPvXCdpF36RzMpVd/\ns8qJmzskleKBV37rxBWbtjnx2TY598r2YA0umGd8jr5G7AUGLBocO7t6aM/G64QxxviTe1jiXFDD\nGnfKNZ7dLvtavF/4HWOks9FAGzlTUn3tb7XqxsVwLAojekxXuXSdLbwSDmGBRDWyKReZl2FcVK0G\nrc6dKyldCbOwt207CSqUn+Um9W9ONecJNj0rLAn34uRzoPnkXi8toxp2kwsr7Xu6KuTcDibpi7gp\nqHOdlTIvhPL6WjHGmMrvTpR7vurtGOuuIDybAH/Zy1BwM96Bec97luiPxhgz5puYi+w+bD8Lpq2F\nRmP9iLCetSta1g5fY5j2/8ZyFIomWiFTdhJmy7nDx2Anv0hLkoHH+9hLUSvrN0tnWHZs7aH38bR5\noBp1n5VzjN+Z6uldw55jMROxD28jGtfUufKdxE3vSVXvkuvsfKtubMS5x0zFsZv3yPe2lIukS5gN\n7ZxRKBQKhUKhUCgUCoVCoRhB6I8zCoVCoVAoFAqFQqFQKBQjCP1xRqFQKBQKhUKhUCgUCoViBHFO\nYn7eIlgRdli2jLtf3OnEmdlkRxcgOdlsoVbXBk7Y3G9ZxFXij556A9oihVdJTiLzEFmjgfnQbFtt\njGX5RXakNm/T0LmWHsMx8iZmiTT+u0Vj8BnbQBtjTNtxcO3Ydq1kveQkRoSCX5g97nrjaxTfeyH+\n9oubxWeeXGhElL8FW/DwDKkV0kEWd2z3eeKlfSKv6LYpTlz1NvQ1sm+SHPzp9+L5h0aAn9paVubE\nJ5/eZgTo+dQcBC9+1o8WizQvWXlmXF3kxHWbpV1z615YrzEf3Eg3PhNRAO4i61zsI3txY4xpPIAx\nkyAdML8y+rvAww6zbKKb9uNehBK310i6sdBO6DgDjizzSI0xppM42WyD17JPciZjJkPrhjWf2OqZ\nrdWNkTarrHXTfKhO5PGcjZ2Kv+NvWXoOenFfmI/OdnbGGOMf8MW/Q8dNlroMdduI6zrL+Bypy1BT\nbX2RaNJvaiabbU+OrFMR+ZizQWRdbVvWdpJ+RR/xg21LyJixqN9SgwrHbjgsNajip0PDhvnW4UlS\nc2ZoAPzg6nXQNUm7sFDkdZ4FT5554p1npK4JawLV78CzCkuLFHmd5cQ9l0vIVwZrsb38vafFZ5PH\nQnMg/1YMoONPbBJ5caQpFJaMWhsYLvVEXJGYP8yVHp0mNYRqz2KtmbpijhP3vo8adeYTue4UXQ9N\nr/xk4l2XWDbnY1Hv3/spdDziI+QaccGD0MAYGMDYa3fLusH2rm88AO2c2//2E5GXe53UwvI14udB\n567qwxLxGVs0B5O1NNusGmPMMNW9yKL4L/zvxkitml6yvbV1BzpLaLzTehc5BnpNbYdk3Ugm7jpr\nLzVb2mmBpFnEttjBllZXL+l/8Hn3VEu9ki6aY2ylGuCR18QaSL6uqXv++oQTT/nOf4jPMi7H2p9x\nHM+TLemNMSb7BmgdtNKebcPrcv8xNgK6e7c9dJ0T122U2nNps6BB8MK9sLSef9UMJ/7Nt/8uvvOr\n137sxMf+ij1aaf16kcc26jsOYn912T1ST6rlAPY2l95wgRP7B8n9+fAwtDd2vY+9XH661G2ceJvU\ng/I1AkhbbKhPPh/WmSx/HZpjOTdLTUJD5YK10wIsi2zeq3hy8SXbNpjfKaIXY20uffGQE4ckh4vv\nVL0PLYrgBGjlZFvaKo17oK3C2oe2LS/P4YS5qFes4WKMXBt4PofE2XpP1qbQp8CxWR/NGGOa9uM6\nXC48664qqRMSQzWUbb97qmTtiSZr7c6y/8Pee0bHfV3n3ptoM8Bg0HsHCAJg75TYm0iqWpZVLEuy\nLTsuipPYvvGbmxW/N1nXuUlubt6buMV2nLjElizHtnoXKUoURbGLHewgegcGZYBBB94PWfk/zz4W\nedeKhxdf9u/TIefM4F/O2ef8Z/azH8TMSMug6sd7Ca5bEmlGP36eEREZaMcxFe5A7bGOvXqe99di\nzxqsxL5nxLHI5hpKvDduev6i6pe2GM9B+fR3ucaniEiYLOMrnCkQDSb6sD6Pdmt76iSqqcS1m+Kd\nmM9xhtd7rmcpou3meW+Xu1nXcek9iH7pxZgvSfmYo33H9Xo33IbrlFKN9dOtnzhK63GkGfcuqVjP\nsTGqW5Ozrcxr95/Rzy6c8jJFfyt3a5nqNifuxrkxljljGIZhGIZhGIZhGIYxi9iXM4ZhGIZhGIZh\nGIZhGLPInBnXj84wDMMwDMMwDMMwDMP4v4ZlzhiGYRiGYRiGYRiGYcwi9uWMYRiGYRiGYRiGYRjG\nLGJfzhiGYRiGYRiGYRiGYcwi9uWMYRiGYRiGYRiGYRjGLGJfzhiGYRiGYRiGYRiGYcwi9uWMYRiG\nYRiGYRiGYRjGLGJfzhiGYRiGYRiGYRiGYcwi9uWMYRiGYRiGYRiGYRjGLGJfzhiGYRiGYRiGYRiG\nYcwi9uWMYRiGYRiGYRiGYRjGLGJfzhiGYRiGYRiGYRiGYcwi9uWMYRiGYRiGYRiGYRjGLGJfzhiG\nYRiGYRiGYRiGYcwi9uWMYRiGYRiGYRiGYRjGLGJfzhiGYRiGYRiGYRiGYcwi9uWMYRiGYRiGYRiG\nYRjGLGJfzhiGYRiGYRiGYRiGYcwicTd68cST3/TaI21D6rU5c+Z47YTsJPRrHFD9kmsyvXZ80Oe1\n+092qH4528rQLznBa492D6t+8Sl+r917rNVr527C+2emp9V7JobGvXbPgWavXfbwItUvJgGXo23P\nFa+dWBBU/VIqcE7t++qpX7Lql1yc5rV9aYle++IPjqp+0zMzXnvbX/2VRJuzL//Aaw+e71GvpS3L\nxWu13V47c02h6tf9XpPXLry7ymvTof/7Z1zG50+NTnrt4NwM1W/gIvrFJeG6x6fh/o526DE3PTbl\ntRMycD0jTXrM5W4t99qTkQkc28Vu1Y+PPfuWIq890qn/rj8H97X7IK5DxvJ81a/ncIvXvvUrfybR\n5OqRJ722Lz1RvXbgO/u89vDYmNde+7HVqt+l3Re8dnhkxGsvWlet+uXRXDr5vYNee/7Hl6p+R356\nyGuv+dStXvuDXxzz2qs+fYt6zyTNRZ6/8Sk+1S//trle+4VvvCjXIzOIuRnwY+zk1+SpfuO9ON9j\n5y7j78bGqn7Lqiu89vo/+4vr/t3/LNdOPe21w1d61WujnYh1aYsxL/tru1S/tIU5XntyGNczwRkX\nM9MY4FOjmAdDdX2q3/Qk4mX2rZgHY324ZqlV2eo9zS9d9NpJxSleOzFPx0COAcM0T5Mr0lW/pFzc\nx4FLmKfjA6Oqny8La00CxdSpkQnVj8+9ZstnJZo0nv+11+4+0qJe41iWsQzxga+liEjoeJvX5us3\nMaTPg88r1o/P9ucErtuPY95kGONDYubwWyQuEO+1M1cUeO3m5y6ofgV3zfPa0+OIwW4can4RY2Ki\nH3Go7JHFql/LK5e8ds6mUq89J1b/VhSuC3ntZQ/9kUSbMy98H3/rgl4Xx2hepc3H2J8Mj+l+nRGv\nnbsD605MvI4rzLXnar12cpaeLzxOiu+t8dqjtCaFL+u4kUlrV98p7KvSFueofh1vYa8SrMYepuVk\ns+pXfc9Cr922p85rD43quZiWjDEYk4ixmbIgS/XjveKiu5+QaML3MD6YoF479fwpr52Xhr1Yao0+\nPh/tX8d6cP2P7j2t+i1dhDUpj9YndxNU96uzXjtYmOq1+5ownrOq9b2Zojl7qbbRa8+rLlb9OG4G\nK7CnGryix68/F+Oq4w3cw9TFOo7z3oZjLc9zEZFIy6DXXvvVr0u0Ofyd/+m1OSaIiIyFcE8izVhD\nJgb0XEyZj/vKe8fRrojqFxOHOJO9Htc30jqo+9Ec7jvV6bUDFRhLibl6/vYcwnrA82ByWMf1dFrf\n45IQh1tfvaz6BcowfjKXIUZPTznPOBSXeA+emK+fXfrPYS+x5on/KtGk7vhTXjsuoPdziZm4To0v\nnPPa0xP6PGIpjhTuxLoTm+BX/fovt9F7cP34ueLfjwOv8XMl75VG2sPqPXydW17DWpW3rUL163wX\n8TRvK17rOqTjadEO7K/7LrZ7bX4+FBHpPoaxU7AF5z7c0a/69Z3FWFzx6Fck2rTWP++1h5r13+Zr\n2Lkfcar84SWqX+8J7O37z2LMufMgay3Wrv4zOC9e+0REZmi88/cIdT9FjA/W6GfMWJpXOWswzxt+\nc071K9hZ6bXbdl/12qUPON8PxCAe9F/BOfE1ERFpeQFjpuAufHZijo4VQy2IZVXrPi0uljljGIZh\nGIZhGIZhGIYxi9wwc0Zi8N0NZ1iIiIx149vovI1lXnt6Un/jXvcz/PpQ8Ri+XXO/XWyiX9PSKMsi\n2cm4GKdflvjX5Z4j+Dw3m2OsA79I8y88zfQ3RUQyV+Ib02T6VYK/qRMRGeujb+IpS6eNsmhERBZ8\ncQ3+Qb9a5t+mv4HlXzpvBoFC/DKbXKK/rY104FvjBPpVek6c/t6Ofz0NncK3v5Fm/a0z/6qQsRTZ\nCx3v6GuTQr9e8a/Aw434pjapOFW9Z7gev/in1uAXIPfXev7Vh38lcX9FmJ5AP/7VaOiazizgXyOz\n1uEb2AnnV9S45Hi5Wbz7o/1ee9NnN6rXwvSLZnEmfhF946l3Vb+tt6/y2sF56Nf8iv615vxhZI3N\n0GQ6+/QJ1W/N42u99lgIc2Lu8jKvfeLnOkusawDfFm+6D/NjTpz+pbn5Bfx6f+sm/PIek6D7cRzq\nacN9czO14pdjDq+lX1h9mfrXf5mjswuiTWzC9UNu+grKtOiJXLffnHga05TVx5llIiKjXfj1MFCK\neTnSobMRc5ZhnnJm4hTNI/cXlNzNZV6bf9XgOSWiY0+YMnbGevX5zaH4OEK/enJGpIhI6CR+MYtL\nwn10M69G2nRciiYTlFURn+qsDV24thzXw062UuEdyD7k9cRduxJo7eF7MNarM3EilLHqy8KYTp6L\nX9r5eonozDXOFvQ7GaCRVlxLjnmhQZ39ylmPM5M4ETf7ieHXfuvX5YU5bveoMk6/yM9x4kpaMdan\noUvIVElZqLMu+hqQDRE6hrGZcIO4krUI8y0xX1/rzncavDavY5wJ5q7N4as4Ps6+a2zRcT2VfqmN\nTcBn5JbpcxqiNTilCutEdmaS6tfxPn45nRnDnIhQdqmISO6aIrlZ8K+W/mx9LQciHx5DfW36V/jj\n+/BLak0B9oCbPrFW9fPT+Y/3Y+w0v3FF9WvsRubf5vsWeG3+JTfe2SsESrHXWb8We4w++jVZRCS5\nDPfwjX94E++5d5Xqx79Cx1DGXUq1vtfHfoTs18pbkA2UvkjPvfH+68/haJC7BVlnQ/Uh9ZovG/vD\ngu34JVqcpXqkE3FqmOJhEWV6i4g0/AKZTYNX8bcCzn6T9/28R+VM1iRnT1lwJ47Pn4HxMtSk108e\nS8P0Czpn8oiIdO5r8NocA3LX6eyihGTEm/4LGH/p1ToDPvRBu9wsfHS+bsxv34/sLc5Uy9+g703L\nW+e9Nu89G186o/8WPask0R6oYKt+tuJr1vwKMjv99MyQvkCP9cRkxKuiO/H/He/pZxh+Pun9AGtp\n6e0rVb/W/XgGLt6CbPbmd4+rfjy3u442eO2A88yWt0Hf+2jDe7iUCr2PbqLs2PztuNbjA3o/klyG\nfUdKFWJO53uNqh9ngWZvKPHaPCdEdFYbZ1QFKnAP3CyskSuY2zOUHZ6xqkD1i1DmlI/med95HXvT\nazBO+Dm65VX9PUJSGfa8sX7E+ZbX9XocrNTX1sUyZwzDMAzDMAzDMAzDMGYR+3LGMAzDMAzDMAzD\nMAxjFrEvZwzDMAzDMAzDMAzDMGaRG9acYeeJiOPClJAO3e6VH6MWRXCeduFgTX431YWpfEw7v3Qf\nRaXqkRZowEacmia5O6BzSybNX+gD6L3nOHUjij82H59H2vqhel0HIEz/5jombU4F9ZRFqHfCrkGL\nv7Je9bv4vSNeO3MV6kn4nQrvSelaAx1tQlQzxXX5GCCHpvxd0ByHHDetKaqzwNrpxCKtuU1fhDpA\nzc+jbghXnRfRunmuup9AulWZ1gUYRskZo4v07q7LB+sLZ6bwGakLtFPBKNX1YG2q6yTjJ81zH1W7\nH76itdFJ5foco8n8mjKvfe7XJ9Vrt//JLq/d+W6D114omvQlqHXw2jehV89I1uOxsgqa2wi5paVR\n/QERkVe+g89g96fb1i332pfa2tR7MulvsXPY5YZW1Y/dNfKLcDwZS7QL0/N/87LXLs2CttWtfcUh\ngceB36mjkJByc+di9yHUY3Dr57ATRfoScgJztPVx5E7gT8fxu+fMjg6x5DwRE6c/MHQGc51rOcX6\nEP9dDXCYtPpZq3F/wtf0nOAK9TFUKydjkb6P/ZcRh9hhwXXQYOeOpCLMt8FL2qXB59zXaDJBevoJ\nx4WpYAdqDoyH0Y/rb4mIDFzF8bKziFsTou1NuAewA1LJQ3p2j1GtkcQCcn8it6apkUn1Hq7zwPUa\n0pxaL+xCFxtAjY+hBl1Hoegu1A/ge+jWzUgsJIe1Iszz0R5dC2ncqekVbfg43H3GZIDcmpZjTWMN\nuYhI2Z1w4lCOSpf0PIgMYyzkkItX856rql8mzb9+cuXgY22v1+5tST7ssTLJVS2+R49N3rNNUX0q\nrkkiomsf8Pjh+SsiMjmFz0gvgX4+qSRF9QsdozoX90lU6TuB2BVw1t+1d2AdSqB4MOXU+FtK9V84\nJrs1kCYDmD9d79D+w9lv5tLaxTUSU8gh6/CTh/UxbMd87noXa0T6Ch03eC4ursb8HXb251zPIFCO\n46n/da3qN0jrdpDqU0267neTup5DtOHagL9Vb42uL7utTo3peMbPGqkLyWHNOReun8hOSbVP6pp6\nKUGMmYI78R6uR+mudzmrsYfuoNp9XItMRCRALl495PiXvkzf7/Tl+Dc7JvY7zqOhk5hjUxFcl3af\nfnbhunbRpvO9Bq9detcK9VpGOdx3Gt+CA2jjS9oRjffrvC9x90oMx2TeR4jomFx8D46B67ex25OI\nyOgI9qKjIdy3oFN/JUh1VfrOIyZH+vR6F5yLeT85iXk60qrXHK6xxq5arhNlDO3LCm5C+ZnpqevX\ni2NH4pYXUWslUKmfmbiGID9bFe2ap/q17cX6x/UJeRyIaOe08/xcvRRrc+9pfd1L7sHazPe406kN\ny7Vq/DmY8+wsKyJy7SmM1Yw1qFvjPlcON2PP2nsCzz83qmn1YVjmjGEYhmEYhmEYhmEYxixiX84Y\nhmEYhmEYhmEYhmHMIjeUNXHaFds6iojkrIftVYDSuxrJAldEJIvsqWNikerEMiYRkdz1yM8abkNa\nUPd72pax5XWkCs57HGmrbBnae1RLKU7+CCmkeaVIQepr02nZyUmQKIVJclH2yGLVb4SkHiy9YUtZ\nEZ32y1IgNx3cn33zUvBFtM2sa9udu6XMa3MKs2vz1X8aKYac7sXpoyLahi1IabyuQ3H4CizUON2L\nrWRHnVRQ/oyxDqS+DgzpfoUrYUfYder69qacOsdpwUmFWqoVR3admZR2Gpuop48/6+bdxxmaf/O2\nV6vXLvz0A7z2EMYqyyBEtEXq7X+0w2u715ltQjllb9yRcKxZjOPo6cJnR8gm+aOP36beU/sm0qqf\n2w8bz13Llql+//LWWzjWEF7b4lhkr5gLmWNtI2JF3b/uU/0++sfwRLzwIqw0F39Cp9+yDeXNSBll\n2UunYznLaY7xJAthe1wRkdR5kL6MdCNtly0+RUQySD7R9T7+lmtRz3IotrjOXIIYH+PY9w7HIUZP\nDCL1ldNPRUT6L+F6slxi8Fqv6sc24Jy261pVs+yKr9eUYyPu2txHk853IWmopDVIRKThV7DlnR5F\nejmnwYqIJKQjFoXqtaSPmRjEefjyEF8i7YPX7aekxK9DBpDgXMuBsxgvBSRJGrigxxFbXHYfxOex\njElEp9YzWWu0nauPpHgTwzhuN317Tqy2/o42vjSynw0Pqdcy/BjHaWQr3PSalgmU3IUY2EF2qqn5\neo6ND5Dk6TKkENlLtcyg4yQ+g+VKnBpesbFSvad2L+xnv/Ot17z21x99UPVjaUrLafwd13K6pAlj\nK4lkyyxpE9FyHpZjzInViz3vg6JNXAqOKThPy26P/QT7viUfhYze3acNksShiOKzKxXiVP05JPEq\nu2u+6sexiGUzLNvLDOo9xuAF2m8+vMhrn/tXbbdbugnr3Xtk0XvPH+5U/YT2UW2va+kcs2gxPo9l\nrCNdej4kFujjjTZJ2VjX/Xm63ACvL7FUaiFna5nqx5byKSQl6T+v41kHrYU5FJtKNpSrfhmLSWJE\nQ3poCONljiP1Gx/CM1OE5pEb21iWVHgHpB7NZFXsvtb0HOZ5zma9OWFb4xDt1V0ZZh/H6I0SVbi8\nQGys3mtPTOCa8fxLdqRCXGpiehzrpz9Xl2PIWYF71VuLNcndf7C8ebQX848lvh37rqn3sKyX7cFj\ns/V+P3QW1zl9IeQ17jMWj784kpAmO1Kg2AS8VnoP4lX9c1puV+hIg6JN/dOwLU+p0TLrcdofxpNM\nlsuAiGg5GX8H0P2Bfu7n8hZjIXx2aqke3z3H8b75T8COPM6H+8OW3SJ6zQwW4Bh6A/oYMlchBnDZ\nk4gjO0uuwljNXFjmtaen9frJ+9LWl7BfSEjTJRNaX8F3GZVr5LewzBnDMAzDMAzDMAzDMIxZxL6c\nMQzDMAzDMAzDMAzDmEVuKGtiWQqnCYqI9FFKV/thpJWx24CIyGg70oRY8jLqVGRnqQxX5vblOFIR\nylB86a/g1BIbg++Zqgt0CnnNPUgTvfIqUgMXPqYlDa0voPp08QNIVe05rtPOWaIUvohUyuY3r6h+\nnCLLTUjQ9QAAIABJREFU58TyIRGR8ZCWi0Qbdmng9FkRER+5TQ2cR6pl2pJc1Y/dIjj91Zeu0xdZ\nWuGmujFDV5G+OJaMNLBQLSpudw/q1P2AH+cxdwel4b+lr/sQuSgFM3AMrktDYj7OKSENx8DnJyIy\nQNeMpUypjnuRO6ajSdnDkCvV/+KMeq38HoxVdrOZdhwWGt9D+mZkDHKCBTsXqH7jIaQR529BuizL\nDUVEkqi6+tx5kHd0HmqkPjodetmDmHPt/4wxMDyqq8IvKoGUYl4+Uv/3//N+1S87BceQkoixuLC8\nRPU7+OP3vXb1kjIcw+t1ql9jJ8bvsock6vTR/PA5MruhOlyPOEqNTHVSSzuo2nxiPsb3WKcef83P\nQmKatQFSvxRHGjZATkcj7UjlDMUh/TPOcTSo2AKZWDiMmBoo0vcxLgHxOyEBMaW/VctfOfU3bQHS\nikd79Tmxe0CMDzE1fbGOV/6MmycxLCOnJNcJhB3vWIbZ8U6D6sdykeRq3I+B8zo+B0ohj8lYjnnQ\nfUBL4lLmY4yw61fORsyDY899oN7ji8c9TanH+4fqtOy2h9LkC7YinXx8UN9rTq2fIklXzzG9fmZS\nmnP7bsw/15mGP+Nmk1Wk5wRfa14XU0rTVD/e03T047plztNztrEbn9Fdh3O+dUinqE9NI2bzmsTS\n54gji2ZZ0me3bfPa7JglInJyP+ZpdTniQX6Nvu5dl2kNn0F8GXfmYlIA6/Gl5yEVLViiZWwFNC6i\nTfY6jO+W57UkZOWjSH+vex5yWh73IiIF5FoWLIXUIKVcj4kZuje8txlu1vInlgmz8yM71E3067nD\nUqjvfO2nXvv+rdoB9Pzu8/JhDDiS1n17IYUYGcd+86579eexZDtEziJpjisiu8fcDFrewv3JuVWv\n3cMk4Szcjr1Ow/OnVL/8rRhnA5cRR1MdBzzep02SvIUlaCIikQ6sha2vYY/J936iT9/H0a7Ih77G\nkggRkTR6Tgo3YN1PcFwGWQJaSDLSMUdizmOQj899bus9pCUd0YT/bvM+LcfzZUGWVLAVMS8mRks9\nhsj9iqW/gxf1utgxRlI9WmeLN96i+g33Yy/KcqqxXly/+FR9DOzIOtaN+xmXrMdHKu1TOsmFM3ed\nluQUbMWeYHoC4y17ebHq17oXEpjEPOwPKh/U+rOYmBu7/Pyu5G4t89quE106SXw79uJ5wnUeYhn8\nIDl7ZjoyXh7HLfT8nfQF7fiXtxlzOxjE83xMDJ7HEsq0VH4kgnsSH499VMV9OgZ2n8O6wdedn41F\nRLr2Yyw1dGEv1X5Zu0QVU1mNhGx8huuUzNf5w7DMGcMwDMMwDMMwDMMwjFnEvpwxDMMwDMMwDMMw\nDMOYRezLGcMwDMMwDMMwDMMwjFnkhjVn/KR/HLiiNX/Zq6GrGulAXZlhR69e9fvQ/XINjHi/rkXR\n8CI0skGqidD4prauDGZB17h8EWq6jJB2bXjMsRAmjTbXLRm8rDVqbOt17ufQlLFmV0Rk09dhWzhK\n5555i651M0qW28P1OIb4NK3PiwvcXMtQtgTL2aT1kMNN0KoGyqGndy3p2FY9j+oODDVpvTXXCQgd\n05bmTCzp4bvPwt6P9fN+RxueHsS97/sAdRDc+52bj/oT8UFc26zVRfpYSec9MYTPGHFqq4zRPc4i\nW9nWV3Wtm+L7tKVmNGHLZL9Tx+WDXx7z2hXzMS+D87RVX91e3I91n17ntS89d1b1y8iGPvP4P6DG\ny+LHV6l+8aRXv/YL6L/LHoImtPuY1jgnl+OYlpWVee2S+/W1Kz6Be3X4XdTYiYvV4/JkPeqv3P/F\nXV579891bZq5uRgTwy24v+eam1W/Natv3j0UEYlJQIzhGjMiIkGqYRRLNar6zmpNawJpYftP4rXU\nZU7dlWxoXJOovhJbwoqIpFZD/957AvVBuOZC58FG9Z6+AsTHwTrE0ZI12jp9bKyd2hgLKfllqh+P\npaQUzLGEFH1/2skOnmvOTA7qGNA7gLFe8DmJKnz93JozoVOIS9m3YAwnFjj1t0jLzTahDUcbVLfs\nQsznAdLdu3bA/HfjyT61tw/3jWsyiYhcbMM1uvRztH/y3HOq37e++lWvzfbCsT49F+up9ldGLmJI\noELHoelxxN3CO6n+gLPmND9PdYm2SdRh23jXqnWCauD5sq9fv+jEbzAPKkux/r/y6kHVj7X7d+66\n1Ws3X9Br5NJPrPTaw62IU2O0l0hwalXd/Wd3ee2hFtwff5Y+p0V0DMm01rv7oDiq3+fPxbh1a7H1\nUP2Ksk2oq+DL0tdrrPfm1WKbHMZ9igvq/cL538BqOpH2Esll2uac93ATA4gjbo2Alt2ocxEfh2vB\n9aNERAYpRnFdCq5h0nxU14zKLMQc+cKfodhZmOo1iIiMXMP58vo5OaTj0G330hg7hr+VVKTPnfdr\nEwP91Na1VFLn67ot0WZmCra3jc/pujp5W8u8dv9lzJfiu2pUP66BxetdpFPbgo9RTSBeSy8e0M8a\ni3ahtljRPaj3cuHXGFelG3Q9pUGqGdbejXu38m5dW8qfgus5GsTx5G/Vdt5dR7H+nd+LeLjhq1tU\nP54HXAer6UVd223eF1bKzWKcnsG4lo+ISP4G7KsaXz6J/9+qrx/bGidR/Q+3XiTH56yVeE8krPcL\nCQHEr6u/wD45h/bxfO1ERNIWYD/E1t7lu7aqfo3vYI/JNskTTi22tHyMo7aTh712Yq7eE3Ds4XqO\nffXa6juG7NvT0nTd1GgwTM/L8Sn6WTVYhjjF62KC0y+W9p4tr2Nedb6v417WStSgqfnSBq891K6/\nb0gpxF4q1I41l23LC6q3q/f0t6KGTVo6/k5cnI7rCStwvzvOH8LfYdt5EYmh9e/J3+z22qkB/XlF\ny3Cs0xRf3fW46329p3axzBnDMAzDMAzDMAzDMIxZxL6cMQzDMAzDMAzDMAzDmEVuKGvqprTV0o9p\nu90L3zvyoe+p+j2dNpfgQ8rQpV+97bUDZdqSMm9Tmdc+92Okn5XtqlL9zryAlML525DWGEepqcsf\n2qTeE6pDOur0GNKMCrfqtMhwJSzUksg+s5AssUVEBiiNf9UXv+K1rx37tVyPbJLUjA1oG7zWly+7\n3aNKMtl/9p3REomZaaSTJhUgjZBTI0VEJgaR+jdIdne9R3VatpKn0Gf3ntApYmwjXHR3tddmW8GI\nY1GZfQtS/DmFNSui5Uos45qeQPq/K83LXIxUt+ZnkUo7NqLTHP1k9c1pjiwDE/ltqUE0GSR78IvH\nrqrXFm7E9dv9ItLy7nx0s+q36ffx71f+4Q2vvXyeTi0NVCJ18dBppMVmODKuJEoPHyEL7+9+6cde\n++7N2tqw4yhiSmoh3p+YrVM8jx+Ateba7cu89qn3dMrzfZ/Zgc+gNNF7/587VT+Wn0xRym2+OGnJ\nl/UYiTacFsrjVESnkrOtZ0yClnvwOEtbDinT+ICW9qTOg0yK04CnRnWKsD8T6ZZlO7d47aEQxtmE\nIxviue0jy8upKS1hSEws89qRfsQKX4a2r0zNXOq1+zqR9hy+ptP6fSS1TcpH6m84oqUZbsyOJrF+\nLJu9TuprKqVEs/xpyknzjk2M+9B+oxP63gzV4fzTVyBe+bK0tCWO5EZBuu9BkpRkrdIWxxVknctz\n55N/fr/qx2sGj8W4RL19KFlX5rUjzZDkHHxZ26puenit1x6ieD85rM/dl3Pz7NBFRDoPIgU+yZGw\nsCSQ09RnJnWMZ5n0BKVYLynV8uGhUXzG9CjW1rx8bXXb9DJSsfuHIXfg97tW0ONkC5tLsoiu/Q2q\nXwyN2zGK127qeso0yQkoLbtgwyLVL3M5ZFxdh5Gu3vFGneqXf8fNm4t7/2Wf1978yLrr9mtuwBiu\nXL1UvcayK46ZIyQlExEpuw974KvPQApctn6h6sfX+dnvvua1P/al2/F3kvV4K9gF2cvAJew9287r\n+BJLkrN/3o3UepaDi4j8l3vuwWeTtfn7Tx9S/VbtXOK183dAmtb4G73OxqdijMy7VaIOy0JkZka9\nllyEmJqUhPU6PKCPMXQG0k62dY5L1PMlsQjrxlgn7nFpmbYPr3sH+52JKczZzCDmR9P79eo92aUY\nP0ONmLMXnta23wseJWksxY223XpvF0dzc9WnsJfqO6+tzdPmQz7XRHvZhHS9zroy3GhStG251x5s\n1XL2zqO4luX3rvHaLe+cVv2K6TM6T2DvOe3srTPI6n2KnulYYi2ipbK8bp99GmU0Fn1CS4NaXsLz\nWMVjmB+JidriPW8d5uycOfjsoXb9jNW4H/KnWD+Oh+2mRUSClZCRs917XnWO6tfwzDmvXb5Eok7R\nnXieYEmSiH7uiqc52/62ll7xfqfyUdzvt//HS/pvZWNtCF3EmMldrE+s+V3IwRbf+yWv3dPzjtce\nHNRjaSKMPev5Z5722nydRUQGL2HPn0kSuUCxloCy/P+zJOlimZmISCzt3ZNJ0u1L0TE/Y7m2FXex\nzBnDMAzDMAzDMAzDMIxZxL6cMQzDMAzDMAzDMAzDmEVuKGsap9TX099+X71WRFW2uw8gPXjwmpNW\nVoM0rszVSBlyU/VHepBeeLkdqZzZjdqBpGYLUq4SUpFWNUXpet1ndYXy3mNwICkheVZvra7sPScW\n31VxWnxsbIrqV7ICaVp1R36Ffs458eelZiP19dqpPapf0Ueq5WbCriac7iminRXYGSDoOGzEkbtS\nQhpS6tOX6JS7fnKWyVmH1O70pTplNInS6IPpkEIlZ0CeNrpAp/TGxeE+hM4ghc2VE42QG09vN9L9\nC5fotP7YFRg/OdvKvPbghW7Vj50QUijt2ZXAdO5r8NrlOnP6d4bTWLd8bft1++2KXe+1WUIjIhI6\nhevJafe/fveA6vfgFD7jzs+gQv1T331Z9ftoGqqrv3gMUsSVFYgNR09dVO+5ZSXuNcs0Lv9QSx+W\nLUPKaGI+xkpJlnaN+Pn3kSZZXYA0+2KnX+WDSMlveQWpmlPTeuyk12TLzWScpEss0RERSS5BGiXL\nDV0pRRylmE+EIVdKna+PPa0IsS4uDqnYfR0fqH7peUjrHewnZ6wkOCjFOqnhkU5Isjh9tKVHj6X0\nBSS7on79I3pcsNRqguQtrltJFjkgBQvw2YOXnDl7E9O32Yki0qSd3SINiDcFd2INCZTqFNnOfajU\nP9KMa7n0IzpwsCSVz4kdEkVEctYj5XqMXDOy1+B6FZR8VL0nKfUojucUUqW1AEtLjgco5qUv0LGf\nj+/Ya0jjX7VWS6J5v5C7BXEobaF2vRm4oFP3o00KrXGufGSsB9cwjVzQJie05NVHrj2pCzH/Umd0\n/AlWIJX69C/J4Wn9XNUvfByp3TV34LoNnMO1qL3QoN7T34kxOEkp+cnVTvo2Ocnk0HVPqdD9Wt+E\nBIHlbmNDjrsl7W84Rk07spQ+kpvIWokqBRnk7LlHy27nPbjYa6fU4H5MObEhjpziximenn/6pOrH\nbmeDIxgf7JAlIvLsM0i1v9SKvefS1xDz8pdoZ88ffx1p97ctxnE3duu4VpyJ/UdWCvZDD67Tkq6s\nhRizf/53P/Ha7T16z/L9RVir22nspebreJW2WM/1aNN/BuObpSQiImP9GN+dhyDlCjrjtubeB732\nkb/5vtee+ykdUzOrsAcZ6m7AMTjx5tBJPEfcMh/lFXpCuN8n6rWsqeUIyj3wHmvbl7XdXO5cSMw7\nrr7rtTNWaKkDS4ZDtLd29wTDNAZZNll0py4LMRrSJRWiycQYJKozzr4qjfYm/fVY+3LXafln20HI\nBfkZsXD9ctWv6S3sN9ntNlCkn9VGusiJrQ97r69885te+6dJ/696T8m9KHfBsqjGky+qfrnz8Rx4\n/ucveO2Kh1arfrx3YtnVYJ3e22QsxjNSH43FSKfeYyRX6n19tGEpU9Eu7TLGz/dptFfOXKbjmS8J\nccrvx2vVG/TnFS7f4rXbz2Pv6PPp5/5kcg4NhSBxGurAdXIl8CxN5j1MuF67pFZ+FKURpqZwrZNy\n9HUON+Fv8Xh23ZbHQpCksSy4/3KH6sclNz4My5wxDMMwDMMwDMMwDMOYRezLGcMwDMMwDMMwDMMw\njFnEvpwxDMMwDMMwDMMwDMOYRW5Yc6bo3prrvjZCNQfmfpJsUGu1jRjr0J/9DmwF11ZpLSSTmAAN\n16mDun7M4uXQ8bM9861f/7zXHghp27oessxkXdrFV2tVv6qd0KJGOqFVHAtpLapvJfS3GVWwrkxN\nXab69fUd9Nr9ndD0B+dqrWzL87DPjHatEhGRzrcbvHZikdb1R1pJr061HqbGtJX2MGk3S6gOAlv+\niojEkV1dUjp0gxn52oYuKQm22D09+7x2aiq0paOjug5ATAz+Vmo1NOQ3srDO3wlN/1Bjv3ptgOw1\nWYees17rYMON0CiGr5HVt1NvovAuraeMJnMfhg7d1Q0P0Zhme9PD33tP9eNaAEX5uH6ZKVqn29iJ\n8d79KrTMDz6ia90M1kK/zrVg7v3b3/faU1PaLjoYXESvQQNctkqPo8lJjLezP4Eev+QOHTeqSUP/\nwTXY+ZXnas1qTALGZWiIxvICXYfItZ6MNlyOge3kRURCp6FJnRxG7QN3PPqo5tOFf0LdENa3iohk\nVuJaTU3he/jMAm1v7vNB5871aCZnMCfSl+jrGU86236qhyFz5qh+ycWIFYNXoVcebdc1U/jCxJPO\nPlCiax+wfXbPOej93ZjKtqol11/G/lOMksVugWMT3L4bNsJskTpOencRkZQqHG/aYlxbV4esLNAp\nRmWv1OPWH4QGOqsM9zM8iDVuelqPj7ERxL85ZOvZd0pro8eoHhzHl3CTjqdsobzliS1e263NVfog\naqlwbaUBpx/bcd8M2PJy/v26zsUonXPjfsQVrjsiIpK9EHUCuD5L6IReuwK0Zi78KP7W5JCuYZNR\nTjXNLuJ6hLsxXxLi9Latj+JZEdVw4JgnomsgcS0FN24IxSgec0mpesxNT+PYZ6ZQR8KNa5NhfY7R\nhKNNVpWuudX2CmrQlD6MdWeOY2Hb9ibsi4M0L5f83hrVb+AK7seP/nav146L1bUGt1PNmJ5BjOFj\nV/F3srv0nrKjD/uK2mbsV9du1uOS6+N8egHm4g+f1PXg7qD27+/a5bUzC3UdBX8e6jJUrMbnuWNi\nvFdbdUebmATck+aXdD2yvO3YwxVuxAbZ79d7yp4W1MWs+vxKr50Y1HVcwl1YN+bQepWYp/fGux7Z\nhL/FtRmfw14+2a/3C/esxN/tG0YM6TzQqPq17UEdoAWfge152/Ejqh/XD8tdi7nd/Kq+RvmbMLd5\nH9/4rLYbz1ita4NEk7a3Ef+Lduo6muNhjJ8Rsi8fdGrK5W/C89T0JJ5BRsN6TfLnYNwm0X1reemS\n6ldwJ/bk+6/ARv4nX/+6106r0fXBEqlWCcfCzHn6nNpO4Pmu8A78nXCrPtaOvRhvXLsza42Op5MR\nxEkeb/4MXZuw57C2KY82yeVYq8JNuj4LP/8MNWD9d+sdTqVgDMZkIWa5+2u/H+tn0eLbvHbd27q+\nT/YqjIu+eowz3guHL+uaaNlr8IwZH499ZOsVbVfvy8AeievYxvr0MwnXFOW6Tjlby1S/UXpW5rq9\n7t5OrUNb5bewzBnDMAzDMAzDMAzDMIxZxL6cMQzDMAzDMAzDMAzDmEVuKGsKk+2XK+Hw5SDVaobS\nddqPaHvq4UbIItZXIy3sWF2d6regCJafC8qQjuRablc/stNr9zcjha3jMlIam5/TKX/NJH34i3/9\nhdd+cvf/0sfaTpZ97yAVLVCmU+vPP4mUq3kPw0749FM/Uv1y1uI8psbIfrVVX8uqJ1bJzSR7I9I/\nfWk6raz7CFLk0hZCrsUp2iIi8UGkpnXsb/DaGct0yugwnZsvHSmLCQk67a2nZz/+ViKOr70OVomu\nNVraArLApHTU7kM6zY9lTn3jSDF0jzXSBslNYi5SGXuOt6p+LLkY7UJ6pmtpxymo0Ybt+PpqdUp0\nmCxSrx3GuC2dr9MmQ/WYzwmUer5rkx5/wRqk1g+cxt9Kdqy5p8eR2rdiGmmHDXshpyrctFC95/RT\nP/baSSSxCxSlqX6RNsSNmk/e5bV7rpxW/facxr9rKIa8cESnB98xgbGTX4A01p46LaXIdWzxos0Y\npYdPDGipSzbZRLftQXxkCamISPdhxFhO68++tVj1mzMH4Z0lCLGxem6Hw0h9TkxDDOira/DaF36t\nr3tPGMfUNYB7lZqkU3D3fv+XXvuPH70Pn3e+QfWrzEN66zTZhLKNuoi2O00uwZgZH9TXUhw732jC\ndp31T55Rr1U9ARvNeB+Or3tS2/yOU6yIo7k9MTmm+iVRHE5O5bRqLR+bmOijNu4HS4Umhl5Q70nP\nh2QiEoSVfaBMz8XwJXxG97E2r+2mg/OYmHwecuTMpVoSFyLZlJ/i7tSIllIU30BWHQ2GLtH65KRb\nn9+D4y/IQNy70KLXhkVkax+shCQmea4jH8nEvGAb9HFnzSjYAQlHF6WvZ1Ma/69/cFC9564VK7x2\ny0HIJxZ9Xsty+s7iuo/14u8W3KbtvHM3I5YLWeKGO7U0g6dYUiHmBFtsi4jE+PQeLpos+iRkJGOO\n3DcxH+tL33nEjTkxeu7UPHa71277APOg+Xktqec97+e2Q+L79IEDqt+OJZhXX/nTR7x2PI2VQL6W\nEm84iXn17JNvee3aozpu9JKEjW22P3PnbapfsBpreGwi1oGzr5xV/W7Ztt5rH/oh1u0ld2o51fTU\nzYunIiJ+uleuhIr3gVOjWMf9mdpmfE4Mxt1YP9aDOL+2Ouc9as5SxNTUPB33RkdxT8YG8J7ijVTK\n4LyWQpU+iP1O0/NYV3M3lql+fB6xsYg90045AV4L+y5Ahhqf4lP9YmLw77YDDV6bLdVFRAYvkfRD\nu6//zpTcDsnZULsub5FSiL1JdxgxtGTHCtVvpB/vi7RjPclb4thT+7HP7TmB+xSfpq/LMElvM5Kx\nlubwXuugjmtLHkaJjHAYMSAuTt/rESp94c/BZ7c4z5/pq/DckVSAz0jM0Z/HGire/7kyTF4zbwZd\nVAbDlezkb63w2gOXMf/yatarfl11kJB1noYMsGLjvarf6CjWpOlp7H04douINL+Oz2CLbN5PJzkS\n+E66r6y2X/zYY/qzT+GZM5CH/e/MjN6PBKsQU1n2GZeov0ZJLsfaH1uDz5vjpMJ0vqfHnYtlzhiG\nYRiGYRiGYRiGYcwi9uWMYRiGYRiGYRiGYRjGLHJDWVP2aqSiDeVrZ4aJQaQg5axApeqMJXmqH7sx\n9J6Gg8HHH9fORge/tc9rpxcgvbCrWVdg7r6AtMy0SqSmjQ1S5eiFOt362ttIlfvy3Xd77aYXdNpq\nUinSooLzkKLsppVxqv3VX0NOFePTl3OwDumYgWKkscY6DketbyGFLfdRiTqhD5D2l7pQy4s4BZml\nAbFOqlZqFa7pBDnJDDfrlNE5scgfG7yGexdb3aT6dZ2AA8ZkGNKAwQtIoU8s0JKGnsNIh8xYiXEW\n69dp0x3kchHoQprjWKdOl2Wnld6TGJvpi3JUvxFyZ5kYwLgfuqormcen3DynH3afuXxQVxuvpErm\n6WlIoTz2yknVb/MX4D5w/t/gaLbsibWqX+2/wAGI3Qxe/5/Pqn7Ly/F3565HajxXmmeHLRGRY/sx\nf2/7IkqUn/vpMdVv2e/jmBrfQbp1sFzLBf7ir5GC2v0e5D6BUp027qeK/jHxGPMZCdq9YKhex7mb\nSep8Pc7YmYclEv1nHbc4SutMoVRLN70y3IPU31iSh3ad0xIlThNlFxdmalpXmv/Ba3De+9p9kCtd\n69TpzEePQyZwZRXkcxdbtTykNYRYWVWAexKhuScikk5SmrQaxLJYRzoRH9TpzdGEU45LHtKyPY6h\noWakN487kovSnXDM6jiJlN1YZw3pJQevsVJ8dqRNS2PjSI7H8y9IUsShFh2rpycQA9hdqPOivofl\nO7C+d78JKXF6rJaHZAUxx4ofgCNT6yuXVb9IGNcih5zCslbqucjrzM0gYzX+dtu+evUan0tDF9K3\nb7lzueo3QfKJ3qMY05mrtaR0nPZL7LgT54xTXwruV0oVrtOVZxA3l5aVqfecI3efh76C/U3X+zpt\nOmuVPqb/IMbZ3wzVYy6yfMJ18EknyUQ3pZD7Hdebmykx5GPqflefL49BlpGwI4eISGoq5BgjNdin\n9DmOW2+8AalsWTZiz6ObN6l+r39wwmsvz4O0LLcKa9r4uI7pBRux11l9EGOxzomnDfTvR+7Z5rWn\nyKFHRGSUpHN8jfzxej2OUEzIS6d0fCeexsRrB66ow259jvTen01OSfXYc7kunVnz4JLV3YM9ZVaW\ndpns9z2Fz2uDdDC1SF8bdngZjyX3VpJSxCbpeN34HKRMLNtOydeOi921ePZoPwcJSLBCuw7yMwTP\n0yzHrW8khL125YNwJkvM1XPx2s+1k200aXodn+1KrDkPIIbWjZkZfQ873m3w2uxi2LRfO4+WbNro\ntQvXIo6HcrWkiB3rlj+C/Ue4DuOo8oFF6j2RCLlABiGtPfadb6t+iYW4tmMhjIn01bp8QvcRrAu5\n61HCYcJx6mN5cw71Sy/Re4xIWK9V0WbuZ7HGsWRMRCTej73izBRi2NiYjpUs2coqh3SNpUsiIq0n\n93ntjBrMEXZhEtFlVdKX4tlvgpwAz7+ox/byj+E8itZgvAwN6f1IwWKUJpmeRhztqdfPTz7aVw03\nIW66roj8nQc/aww7+6/RVsex1MEyZwzDMAzDMAzDMAzDMGYR+3LGMAzDMAzDMAzDMAxjFrEvZwzD\nMAzDMAzDMAzDMGaRG9acmRqHVnXgvLatS66APvXst2D9N/8PblH9xvpQM8CXDh1ZjGO3GPBDZzpJ\nOrJln9OfF0f1WkZ6qaYJafWH6nTdiFsfhA1bwx5YExZ/RFt1cr2A0z9DDYy8Ul2nJYZqnHRche4C\n1u2BAAAgAElEQVQu4NP68SnSzPvJCtO1B2d7tZtB1q1Um6dX1z5gC9FJ0i2H67SNNVs5c12KwVo9\nLsboGkbGcf5N3e+qfi1UY+Kpl17y2n/+uc957ZKIrh3Eemk+j7EefU5p6bieaWTjOnhBH+s4WRnz\ndRhx6lwEClC/hO1e2RpTRNtxR5sAWZUWl+haJZF6aBlrO6CnXLZZa1UP/QQWrKsegv627mdaq5mz\nGJrZ2oP4vOoCXRMiNw/66MbDDV67j+w+p2cOq/ds/gT8G/vIUjezUNeSGenCZyy85/e89tX3n1b9\nru3G8ZVvRQ0hV7vd+G+o65G2HGMidFRratNX6JpZ0YZrgExEtOY4gWoW9R6DTjmlWs8DrnnF9rED\nV3V9rkgjxoWP4k/BhgWqX3w8jqn7Mmpb7P3hPhy3X9cB+Mitt3rt4lJcz7JqrYXPScG4fesM6gDs\nXLpU9Rslq/PyhYhXgRJtbzpANvJDZJPJlqMiItMTZElaKVEli2w4XVte1hsnkg32eJ+2+p6aIttI\nsuF06yhwLQauM+Oux2lUJ2tqDDGK7UgT3FoOZO9c9hFYEqdUNah+vgz0K9+E2lLJjuV29hpcF67h\nlbNF11tofwM1e/j+sjWpiF6DyrWzb1QIHcMx5tKxi4gkkOY9Zi/qo8X59ZYpgerUcX0Ht/4T15yJ\np5ozMRU67sXFYZ766boXUP2/koC2vj75MtUOovpy/e1a4877omAV4uOws19KyMQ4SSCdfeYyXUth\ntAfr5BzaE7i25Fy3LNo0v4waSFzXT0RkjGzK2R42faWO8Z37/7fXTirG/XTn9v1P7PLar/74ba+d\n7MTG+x9ALbXkQsTuwT7E1ni/3vONklXzH/7933vtP/nUp1S/ijwc+zDNl0Curs/H9Q8vnkaNirkl\n+h4OXUPtjVMNDV67LEuvEfu+v89rL9j5eYk2eWQ13fhsrXqN40/mPFhfT03pGoITEziXvIVYn5pq\nf6P6Fa9ADZrBQcwdjskiIunpeG7oPI1jSqH6i+4+ebIZ9zFCbZ9Pj7mqDXiuOf5jjD+3PBPH9fRK\nxIDBJr1vmaC9+wjFfHHG8LzfWyM3i9wNZTieIX0t2w5h7U9bgHMaHexR/So+CkvmUB1qKyak6xok\nLUewly1dt8NrT47oulih91BDim3KAxVYdzr2XFPv4eezcBDPi8M9+rmgsR7717lLscZxHUARkbT5\neH4covGSvlzPRa4bN96P2DU1pdfFljew583/nESd1jdwziNt+m8XbKzy2uMUX+Pj9V4gJgYxse0E\n7lWgWNtdF6/EvTvz4ye9dvJcvX/P2YTr2/YKjs+Xh/VyzaduVe9JLsYxhftRiygrd6Pq11L7htfm\nuj/hOr2ffvEX73jtfKrPtdapYdZ9EDXgYuMwlvJ2Vah+hR+pkhthmTOGYRiGYRiGYRiGYRiziH05\nYxiGYRiGYRiGYRiGMYvcUNZU/wukouXv0qm0KhV7Gyx1R53UrxnK0xsnG+Jjz2trtNwSpAoW3wu5\nkUpPF5HeU0hFzluLfPWZGaSzFd83X73Hn4GUOE47D2bOU/1GA7DVW/JJyD5O/Vzb/E5M4Zgau5Fe\nnpiQoPpVT0MGkuNjmzCdBhVu0JbM0Sae0uVGu/T9GaN/h8keLGettsLjdPtzb0AiEkzU6YbHriIV\ncUMN7mNbnz5HlshsJInE4uW4pz0NOq0sORMpbJw6zbbu/36suMfdh5BiVrBTj+GGV5ESXXY3jrX/\nrLav9Gfh78YHcS2T8nVqsmuDG01YksDzSESkcwD3rSeMlNbinYtVP7YIH7yMdNLxSZ0KymmdLEtJ\nLdApiefPIV2ax/7SbZBTvfuKnjtP/ePLXjuT7GpzUvVnJ2TgfEMV+z/02ERENv63x7z2tdchnZvj\n2PweuoRU0C2UCtnZo8dlpu/D7WajBccfnpciIqEziG0ZZCvcRfaSIjptOXMV+rnzgFP0h5z0a6b5\nAKRnbFXOqZtXOzrUewYjSCkfIRvJol1aQ7QiE/GB73dKUpLq1zOIFPBMPvf92h43QDISJZN1xsVY\nv5Y6RhO24h1yYnekFedRcBuuRfwqLYGcmYGkLSkH59R9XJ9vIsUYto0MztOp04MXMZ/3Pom1de02\nyMfSqvV6F25kW1qMD5+TQj49ifWO7STbnXTwuABSgoPzkJbcc6BZ9cu/HXGY9weJeVqaITdPDSMi\n2ko7zpmLfWRhHiKZZlmRjlM9R7FnSC7FfBnt1ZKLIL0WG4vznErR63FkAHKF8TCkcJmUAj/irOHL\n78Y9niTb5Ml+HQ/iac1MJUv68GUdG6Yi+Iye04hJSYVaNtT0GtbPpBSMmeRyLdXqPYZrNG+tRBVe\nu8rWlqjXug5gLrHl/cAlLQlsOgcJaR5ds8Z6bQ9bSpKT+//0HnzeRf15qfOxzo7TepyaA8vemBgd\nD3poLV2+bJnXfv2ktnMNUZy85atf8Nrh9kHVr/4MjmlRTZnXTizS9/DEXkittn8MN4clICK/vc+L\nNs28F3tIWxt3HoQ0JZKL83TLAcQlYg43vAw785x1ei/bVQ+ZBce6UJ22KL5yGHGU122Wu006FuZx\ntD8svgcSrPFxvZdtP4/Pnp7A3rpwl47R/AzG635cso5XSWRfH09xOHRSr9tsAZzzEYkqHftx/XyZ\nen1n2+hALmJZQoKWr4SaIB/LmIv1c2JCX7+eU5izvJbmLNRjJ38J5GPtZ454bZbQJjpyyJRCjJfh\nbsSAkXEtQ7/1i7BgbnsTzz3uWjI9ijEy92HI+geb9LoYzMfes6MZluzhzhbVL8EppxBtxqlMRKBU\nX5uu4x9u4x2J6L1AfDzu62QE58+lJERE6q++5rW5zEjHe3oflLEYskAe+wULNnvt4WF9DB2HcQ1L\nN2/BMThzkY+Jn3MHL+h+8/Ixbi+1YZ2eCOt1ll/b8jgkVIOXtIQvbVGu3AjLnDEMwzAMwzAMwzAM\nw5hF7MsZwzAMwzAMwzAMwzCMWeSGOoysdXAw8DtpauyUwQ42ra9cVv0Cc5Hiyo5FK57Q+a3Tk0gb\nTE5HVePLv9qt+hXfg9SnoXakHQXIOcatFM5pfmmUctpx5rjqx1Xhm5674LWLqnVV7WxKk6y5ipTg\nKadSeMtJpK1xahenp4uIDJ6ndKcdEnX4b3NbRDs5xfggDWg/0KD6sbtSdRXSh0+c0fd78wJU+ef0\nrnvuWKf6TVE66Or74RTCLgMTIZ0CF5+CdD5/duBD/19EZLiJquRn4572n+1S/VILSfZRjxR/duAS\n0a5MEyQpSizUabX9JyCHKtOKot+ZwSs01kt1av2CHMhA1lFl+IFrraofSz2mKP29eIeWohz7DebF\n8CjuQaXjurH2YaSMRlpwzWPJqcSV+n3uv3/ca7/zg31e21Uw8Fzqu4JxlD5PpyhPT5M7WD1i0vee\n0nFjJ6WKJ1Fq9/BpnaaZMlfLRaJNP6XAj3boSvicrsnV+nNJNioiEiaHDZYypVXpNMmrTyK1O5ni\n8MSoToHPXoV02gv/iNTfFEpl3/kJXeF+hqQu7Jx2+SXttJFTBvlEZjquuysBLCX5TlI+OZN9VEtU\nu48gpvJ4HmrQjjPpC7WjWTRh95nBSzr1NbEAkhWW4LqpyG21SIMOVmLtGqrX58EuP83Hkd6fma1j\nwLeegePdA2uxtmYsR2xw3bxyF8MCqfk9uu+O01nH+0gxLtiI+8FOLyIi0+QSdfI5yDGyUnRq9NQe\nzLnJCbwnzhkTZZ+IchB1mKYU5o69Og4MkGwviVwYQ6e01KXy/k1eu+0onF8yl2pnu54TiGHJ5NgW\nT+6TIiKFZfd57d5eSB+CQchyGrtfUe9hJ5MMkjK6c2CUXAgv/wZylmBQ7+0SS3C//PlYZ3sP6fT6\n1FItX/oPWO4kIpIQH/+h/aJBDM3Fxt/o2DNNkrmxXpz7kCPj6uzHnPvbZ57x2t/8wy+ofs2NWN/3\n/CVi663ztBSFHXdSSH7YeAFuH/FBHQ/Ov4j78bnbbvPaJet17GcptZ8khjEJeu4UXcY6k1aNPUHH\new2q35JbIL3JWIz1w5UfuOt4tMlZjz2lK/NntxuWo/AeRkRk8BruKzt3HfjOPtVv3RNYy5pexD7/\nmZe1o+iquZBf5mciJp6pb/Da1zq1BP7h+7Z57eE2yJBa39ij+uVswPmyVDQh2XGzuQ/PO+zC58/U\nzqBHvw3pd/FS7OmL7tCOMEONN6+EQuEu/K2pEf2cEenEteg9D7e+cJ1+Bqt58G6v3XLsgNeeGNTj\nkaVDk5OY2wOtV1W/zFI8W/Az7ASN7wmnTIDPR/MgGWOqdIN22wnTeMu6BXuoUcd1MG8L3tfw4lGv\nzddLRCQuDmN2kpx+XYdAdsW6GUyNY29XdJd2NB7pwn3svIz9RMub+jkwuRROScklGNPs4iiiXZ97\nSUI75jjmDjUjRgdIWjxnDsbBQEOTek+Q9vId53DdEx1nO47FF/4Na7jrMsj7gNgY5LVcPnBF9SvP\nwbrbe5SewRwrNrfEiItlzhiGYRiGYRiGYRiGYcwi9uWMYRiGYRiGYRiGYRjGLHJDWVNCGtJlz/3z\nUfWaj1JVOVmn0HHEGbiA9Mor7yPlbOdfflb14+rOV1570Wv783UKEqcu9p1CJfLFn4FsprO9Tr2H\n08J6jiHNqGC7PtYOqu6fRJIVN+2t5bmLXjuWqrP7c3WqYdXdkPh070fKVf7tWkaS5MhUog2nYmcs\n1xKtzncavDZLHwZHtNtJYQbuTwK5X2U7LjuJJF1bv2a11x7r0e4V/nL0Y6lVVg1SWOMS9fDk1PPe\n40gT/630M7qeDQdQwXvuNp1+PEhpeVeOol9hjpa2sGNKOlXY7nhHp8IX3VctN4sRksC8/+5p9Rqn\n0XHiJbsKiIjU7kb18k3/FanTf/7o36t+f/DEx7x2Kt2PWMcRh2UBl15BSvmxOsy/L/6vx9R7Wt9A\nCmAdpQR/6ZuPq369JzBP2dXo8k/eV/1YlpexGlIC/zGdhn3wElLtd5Uh5TIjWceX+qeRXl749fsk\n2vBQ5ZROES3Pc1NjGU7PjU+BA0v3B7r6f+oC3LtEiqOtTgoqz+cwzfvyrZgv7JghIlK0EzEsfAUx\nuXBZkVwPP7lruJIuTu1myWzq3DzVb6wbcSR3HRzwWJYoIhITr8dqNOnY3+C12dlARJQ+z0/uQ93v\na6lk/g7M1K73cG1dqeR4CJ/fRa5sWXlpqt9f/AXW04l+pGyzpNeNB+9840mvnVuYSf30bzYx5HzW\ncQjziB1/REQ638X6GfBjXFY+pOVJIZL43JDpmf9zn9+BgbPYm2Rv0HLJAMk0hxtw3VNJYiEi0l2L\nmDpYS64906qbctsbI3ezMcdErU1e8NrBDKwnPZ2QOLlrKTtZDLXgWF0pOrvCnG0iB5wxvb/55B33\ne21ed3721Buq35ISSDOW3opjzVqi5+zQpes7xf2u5KxGvGk7omMUy5rOPYs1s3Kz3gd0HoZEiaVM\nP33tLdXvv/zpI1676CzGwZmL2iUkLwFjKURp/BxnE+L0HON70NyLfUmis46x9IilzqV3rFL90qox\nZ5NTcW9Sqq6/rrz5d2967fWfuFW9ljc/z+0eVQL5WAvr39f7m1iS2wvFpkuvnVf9KjZiPz9KctD4\nOL2PHCR55zRJON5ynLF+9RqcZNhB6/M7UHuAHQhFRC6dwp5wNcXHuR+/RfW78L19XnvhH+HzWvbr\ncx9phYwkYwX27ixxEhEpWgRZDccalh+LiPQchjSxUh/S7wzvKxIdJ1OWeTa/iuentMVaij0yguML\nkPx8qFEH1DTal/a34O+yk6KISHcd3ELTSzEPiqru9dqRiI4bycnY27R+AGmV6w4WKMDxxftJsh2r\n+7W8h2NInovnqIGr2r2ndxixYorc0vov6L1DxlL9DBdt5n0eUrC+Wu32xbL/InIja37hguoXW42x\nz86Fw3Vats3yrVPHcB+XrdaSr8vPwyF4waPL8XdbsCY1vKSPIWcFxtxoF46h/MElql/fWZxj+Vbc\ne3Y2ExHprUfc2Lkdz7b9jlSwbxhypeLbEJNCR/W+J2vFjZ1hLXPGMAzDMAzDMAzDMAxjFrEvZwzD\nMAzDMAzDMAzDMGYR+3LGMAzDMAzDMAzDMAxjFrlhzRmu1ZI5T2ut2f5z8BK0c6OOHjqWPmPVZ6Fj\nrX9D29axHWQc2Ute2nNR9WPrxPJ10O3v/8b3vHaeo+WaIe3x/I+jnsa1t7WGupWsr9MzoCFki2kR\nkdKHF3ntpCxoJntrda0b1kyyFrLleX1OZY8skpvJDNmU870SEQlWQUPYfRDnX7VVa/7YLrf/Cj5j\nwW3a6rbvOHSTXIMnzbH1jKH6JayNZxu3lFKtc/Y9QNaRpNnuPNio+9HnBan2gcTqmguhNugfM6n2\nSKBS1wJhy1jW+3O9ExGR8T5t93ezWFZWpv5d+RloMF/961e99vYvblH9MgK4H8e+BetFv2N1+t0f\nPOu1//SvUcuiYuPjql9H+8teOzQELftDn4SG+h+/9q/qPfVd0M/+97/8vNcebtH6zuO7z3jt/hdw\nze/96h2q3y/+9nmvvWk+xuJH7t+s+mWtgv508CpqIORMai2zWwcm2vA8yt/maIepxEZSLnTLM44F\n3wwd83AramMEy/WxT1M/ttHNd2ptTZJteeY1zIlxqo2R5dSquvQyagzlkl32aKe2B8zZSJahVMNs\nKE1rw9OqqNaUD3NxqF1blXLtHLbSzqH6MyIioTPQERfrUPY748vEeQRKtE00FxVii8b4ZF07ov5Z\n1EvwU90gv2PzKFQnZj3VLRi8qON4w7tYexY/Dj302/8bdTPc+ggpSYiTXG+M77uIyLyPYs61HEPN\nJ7Y8FxFJX454HerAOBpx6gtNDqPGWMZKzMsuqn8mIjJANTWifQ9FRAIVqNszM6XnGNd/Ynv0ibCu\nz9K8B3X0shZgjet6X9cxqCBbcN4LuPV9UtNXeO1wGPWvxmmsuza1XJtmIgJtPteYEREZI+3/mYYG\nr/3e4cOq3x3b1njt9GW4p48/fqfqN9KG+9p2AfMtt1zvFSOj+ppFk8EzWE9KNmur23NvIEbx+t5x\nRNfmevCLt3vtmFjcj0+PbFH92F665GNYaxLeTVT9Ig20r1iDvegM1VBKr9JW66s/gWs+NYr7G3Zs\nv1OplkOErZrfO6P6+Wg/3XQWa2TKfF0n6oNnUW9n5XaMUa51JSLSdl5b4EabkV6cy3iXjj8pi7Ld\n7iLy23URD7+KmjG7/nin1y7Yrms8dhxo8NqBcsSAr957r+p3pR3nzDa6Zxqx32zs7lbvuWsF5i/X\n59CVOUVW/gn2VZEIYjfXUhERKd26wWuPjCCmsKWxiK6FFa67fo2n0gcWXve135WSO1GXp+e0rsPU\n9g7OMZae74Yd2/TkQtSLjE/GNc9aquc215kc7MX59p/X9VkiVDdkoARrZuFWzNGxQV0HxefDtQxW\nUK3NRL2/6jqB+mtZyzDfYmJ0PSCuCdZXi/0M202LiCQtwLlPT+M5aOCSHmNcgyb/xmVL/lN0U3yM\nUO01EZHkEhxzXCL2NEll+lze/RGeL5ZvQu3Vq206jsy0Yl6svg21YKadmkovH4fl+vQ01rV8qoVV\ncrtrG4/72lWPa5jToZ81yrZt99pTU1jTejJ1TSsetzX3I1ZceeUV1S/+LO4P11Ot+twG1W9y7Pr1\nv0Qsc8YwDMMwDMMwDMMwDGNWsS9nDMMwDMMwDMMwDMMwZpEbypo4RSzk2H5lUjoy26G56ZCD9Ugh\nik0kW89Y/b3QuVeQwjt/B1JGT1H6rYjI5gVIkeo4Dtu1lyjt6VMFOsVqahQpUgnBU147LqBTzcu3\nIP2Rjy/Nsc/klPmUPEgE3DQ1thALk31fYrFOL2/8FdJvi//bAxJt0hYh3ZotqEVEAmVI1QsUI02d\n7XFFROLIMjybJA4DZ3QaYeoyjAW2y41xbJg5JbpgB64hp7JHWq6q96SRjXXaPByDm5LOKb0sqxjr\n0pKLil1Ig2MJAltsi4jMIQlVMqXv+TK0VSlLR6INz53YOH0t+84hVZJlXK69cFIayRhIqrd9Slvd\nBhNx/fKXQiIxMKBtHieGkK5enIkU3n0vHfXaLb36Wp44Q+nXJNd57vtaYrh9G+z8Bik98dXv7lb9\nagqR13miHjaWaZ1aDlNF0jRfNsnoRnX6pGjlW9RJSMf9aXes2GfImjyRbJi5LSLS/gZShPPvQMwa\n69Oxt5Os55PnYZ4npPpUvwGWOtI9aT6F+JpTrO3lk2mcjfci3X9iQl/PS88gri/8FO7pxKCWOrSS\nPITnWNFqnQoayMO5dx1DmveYs+7wtYw2wyRbcNex4DykQbP8zI2nE5O4TkG6H24MiaN530bjJXdd\nieqXSlKAkz+GTIUli7nVWlrKtrQxCdgKlN6prSa7r3zgtQOFWCPa39Gp6z6yCq76KKS6V16sVf0K\nV0IO6iN5m7tGDJyhOXyXRB0/xYGmPXqtyaiE/GOIUrsnh8ZVv1i6hof2Ij5u+cQ61S+YD9ldQgLG\nyPCwtrXnf/v9uE4x+Rgj6SVaSjwzg3GWVYJ4HWo7rvrxWn3XSszF9pAem1MRjE1eW1MdyUXTccy/\nuFjcO7b8FRGJib95vwHy2nx17+Xr9mNpaOXH9Xq357t7vfbWz2z02hlrtWZg4DSu39MvPoP3bF2h\n+r287wj+sQ/NJ/7uk147JkbLOg/8HHLBmkrMbS4LICLS+hLOcdGXITNrO6RtoPl98RRfLr+m7WZX\nPoBxkJiDdWaOsw4mODLUaBNPkoHqL61Vr02yzfiLOP6Ft2pLdJoG0ksW5umLdNy7chBzneXYq7fo\ncbFQsD8cvor9A0uz11VXq/fkbME8H+nCZ0+na0trnw/xeqgDn8fSXxERvx9zabAT9961+WV7ZZ5v\nXUdbVL++k3h2yf8fH5FoEh8PWU5ajb7mPE9bd1/x2glZeg8dGw/pfXw89gFN7xxS/QIkrxkfxP7D\nfVYLX8D+M1CM4+s6jjFQtuk29Z7mcygNwFLGnCVaEshr4XgYMrOrzx9V/bLWFnvt2ETMyw5n/xco\nxfFlLMH9DBSlqn6tb+L6iT70qJBzK46356R+Xuw53uq1C7djHeLSFCIiq3ZiD9HxAd6zbMsC1e/y\nIeznzu1HuY+AT+9RN9TUeO2uAYz9gnjE6HPP6+eT4hp8R1G6AbK4wcv6u4xAHvYxg/V4LbNKr7OJ\nOZB7JSRgnM27W8+j2v5fe23+PqS3tkH1Sy7W99XFMmcMwzAMwzAMwzAMwzBmEftyxjAMwzAMwzAM\nwzAMYxa5oawpxoeXl/2Xjeq1cANSYXvI5WfZlz6t+jUH4RYxh9xyLr5wTvW7TJXR495GiuyDj+9Q\n/d5/Eam684uQ9vvp+1GdPcNxFuGUK06va3xTp8FmzkXaGssPek7o1K4L72i3pf8gdFxXok5fgUrS\nLKFyzFdkeEin5EebObHX12qEKcVroh/po7EB7eDDLiKcmpd5q0795ermnKLPEhgRkSRK1WOHppgE\n3J8cJ3U/gVxNpsaRbphOsjoRkdqfIw2/bCtkH5wKKSIySmmnXEx/tE1X0S77OLlpkXvKwBWdHjdO\nMja5RaLKoT1IW85O0S4ph36JqvF3f3ab157j5Ca/9uwBr91JqYE7ly5V/RLicH/9fqQGTkzoVFp2\nZuO09iZyMKjv6FDv+dGf/InXDh3FvLptx2rV7w++8W2vvWUJUiTXU3qjiE4x/sx3/8hrd3xwVvXr\nO4HjSKJ0wpFWXY1+ZuLmyWFERGL9mFfJ5TqFOSkPcsdxcoUZ7dbuFRm34J4MN+OezInR9/tSI1Ka\nl+QgBra+ekX1G43gb8WQTCMjBcfTcFXHwNw0zKXEIsSGjCI9NnnOxlHciPXppYfd/7hSf6hFp6py\nmvHMJOJGfIqWfsUHtWQ1mrCM15VPhT6gdHpyLwpWZah+7GrF7k+cdi4iUvEYpQcfgEtI0HFHaCcH\nkqKFiMnpS3CsnY4bUlcH1vDsTHxewVrtHphUgPni9+Oze+boMTFEci+Op5392g0jrYHGeT/uZ9Y6\n7X7Xf05LZqNNO12PGCdWpi5A2rKSMk3rxTu1EnK/TeTel5Svpcu133nday/8MvYqLH3+d/Dv2HyS\nX05hvAw26evOcymlABLh2h8dU/3YcbM0BfPjkU2bVD92edvzk31ee92O5arfQATHWpZN18txk3LX\n02iStQEp+EnNen1imRk7FY506uPJo1j2zk/f89or1uq09lcOQK6wsgJp8n/2Dz9W/RJISvjwBsgy\nm56DJKf0If27aBat6ezw5MqJ6p+BRPDcd17D+9frucPvy16LfdRwnZ6L7/8SEsjtf4i9Q9dh7WjV\nchFxbf5NkFJ0kUOMK4Pj8Z25GteG1wIRXRqBpdmujHfFYyTVJte7hhPa9TM3BzE7kVz58icwvnM2\n6z1qxXpIHHq7DnrtrFz9/DQ2Bskmr4vZefri9nRDcjfSgxgwPqD30xf+CWOz+vcgVWNZrIhI1grt\nEhZNGnbjfMt2ajly49t4LW9jmdfuc9yVpqcRU3quIM6lVmlJEcuJWY437sil2Xm15wj2Qxzf3X1t\nehliaKgOe6W+a1qG1EGycZbKZ6zS15jLJATJFTHOecbKWoU5PNSEeTrgXKPie/QeONqMkltjYp5e\nx7g8B8OuRCLaubZoK2Jl3R79zL1gO87lJz94yWu76zH/++MPwF3p//vHX3rtQ8f0eveLv/6G1654\nAE7RmZl6LtYd/4XXTikn59Fhvc4OUGmXlCy8xg5PIiJT5EZZdCdkj+7+PC5BS8FcLHPGMAzDMAzD\nMAzDMAxjFrEvZwzDMAzDMAzDMAzDMGYR+3LGMAzDMAzDMAzDMAxjFrlhzZn0hdCrD7VorWrfWWgm\n535ymdcOh8+oflyfhLXMRcu0RjZCdnlXqU7F6G5tXdlDlmW+LKrZQFrw9Hll6j3nvr3HazGDdxgA\nACAASURBVJfcDx1xSrbW0739NmqVxFPdjfCIrgmzaT4+49xuaIBr1mtrvynSXo+SRtS1mkyp1PUI\nog3XdGE9s4hI174Gr522FPebbVFFdP2hPrIpDM7TFrsx8ag9wjVnXO006yizVmMsTJJer69Way3z\nN5V77bF+3BNXy5eeBX0w1w5yLbf573KNhMwlztjsxNjnY0p26j74MvS1iCZ3fBm1lzqc2hFzV5Z5\n7fT5sDAcbg+rfsM0xx7aBk1wcoU+j7l33OG12y7Dujp/ntZDj5IGmuvbcA2bZ97QFtk/3I3P4/om\njzp1D758zz1eu45ssRc/tlL1W52FWgLT0xgT/ae1lXbGKsy5hFSMifAlXTdowrHKjTZcU2nEvT9k\nGT5NtW+ynDnLY5W1yW3va818L9mEnj8By8LuQV1nZ3EJdPPdVB/kJdLwfu1zDzongvvddgHxujRF\n6/sjjdBzJ+1E/Sc3vqTNxZzrOgGbS14zRPS9U685hbx6DkNfPneVRJV+Wvt+Sze+FufB9WOSSWvu\nvi+GbG95fRIR6ac4yWvk2X/VNsk8t7MCqHXDNRXyd85V75l+EbV94jPIGn28T/XrJTvN3NWYb9mr\n9bjsv4BjPf4a6n1wDSsRkUAZathw7R3XRpxr8dwMUqsQr91YHiH77LrLGEtcW0tEZG4KrHMjTXhP\n5hK9xg+NQIMfqkOtgoEL3aqfPxvXd7AO+v7Bc+jny9P1ldiC/NzPsId564zei9X04H4tKEOtlury\nYtXv9SP4jGVlZV679ZS25c1NxX1MoL1YrGOJnunUQ4kmXPMpLqhjT3UBaj8EeJ0Y07bG+fOw78ns\nwd6h7rSOp/dsQ92ClnrEgOoifX5FmRhXXPtkaADjOyZO/y7KNRXq30ANuYq7dH0JXmfLHoX1c/OL\nug5icinGM9clK31Y15Ma/inGZaQD69HFU7q+xvzlFXIzSaJaZa5NdM5azLGz34bleFq53jdXLEO/\nGVob/DkB1U/t9agGy0SfrmETl4wY3XER97vyTorRTjnHS6//xmvznrdt909Uv+K7cV8HaA8yJ/ZN\n1Y/r6lx4FvO5fIO+H1z/qeVljJ/ij+jxw/beUiZRJVfViNTrdvoC7EuT0hBv/LfqWjJDnXi24Dgy\nMaz3ZVxLJ3QK76n6+HbVb3L4hNfO24Dxwfbb/c2X1HsCeThWfrZIzNXPi4FyzLGyneu9duNbB1W/\n0rvxfDwzgzW3eJXeT7fVvuu1k6k+prtGtLyK4y14QqKOPxPzZahZP/ePNCNGRLqwT8hw6n7O0PN4\n8Vpcm6a361S/qVFcj099Gs8dE07tIB+tixGqbTePYvyaRx9V70kia/K4ONy7uqNP6WOgGoexsejX\ntPuI6lf5sa1eu7fxlNfuO6efNfwF+AyOQzFO/ae+y7AYz9YO8P/e/7f/yzAMwzAMwzAMwzAMw/i/\nhX05YxiGYRiGYRiGYRiGMYvcUNbE9s+uPeI0pSOFaimtx7GaHDiPlKx4srTLdCzdtu1E+l3XMaST\nTjoWzEuDsBZt2IcUqfVf/4TXTkvTlo+BYqQnvfdP+712lmNJvH0n2flS+qg/W1teDdTinFbdtcZr\n9x5rVf0qHsZxdBy85rVde7u4JP3vaMOpedPjk+q1QAXS7TkV1pUTcPpwynzkYCWTLbGITo3la8jp\n9SIiE2Sh2n2o6UP/bsD57JlpvDZF5xGfrNOZhazDOUU2xkm3Zou7ojuqvDaPPxGRxFyk1KUvQvre\n9IROj54I3zxJDMtcWKolInL4HaS7Fp+FBCE2Rn/3+sDDsMo8+Q7keKnt2h7v8oHveu2lD63w2s2n\nXlP9fGRRf6kNfzdEcppffetv1HtY9sHSk6ar2oaeU8PPNWF8sB2iiMgY2Uyv/Npnvfa8T+txHjqP\n9732Xcgc19yyQPW7dgjzdNlDEnXYFnTCscPM2wrZHqc6xwf0+A6d0dfqP0gv02nem4sxt8dDkHxN\nTulxm1GJ1OLBs+j3hZ2w/H1zz1H1no//MWRnbIMdKNAxdeAKxhZLsJIdW3tO92W5V86KStUv0ovr\nEqR41XVUj4tAuZYRRZOsWzCGeY0UEen9AGsAp8kP1Wmp0DRJTVna03lIW9gOjeIzcgpwnY+e1qnY\nt6xEqv2el2CPu43WtI6919R7RscQryruQOp104vnVT8+R75Prt1uIsltFq6AhOrscce6nc6XU8NH\n27UlZQ6lod8MOs5hHhU7crzmo1gDWOJclK/T8H1ZiIEs6W3fp691bTOuVcIL+LzzLXrcZtOexE+W\nzPkVSLV31zG2jec4vK66WvVLIYnN+Cj2cwkJev+xi2SpebvIVvYDbS061oNYwTK9tjd16rqSOe2Q\nqMJr7liPtiXnuZNVCKlfoEjHqLFenAdfl6f371f9Hpuz2WvnkKSrOEuPiQ6Shs7Nw9/NXoC9w/kf\n6nhaeQf2v7t/hr+7vFJbEvccwnjhlHlxJNuxftwPtpJmKbKIyIl6yJfan8NxL9u6UPVznG2jDpcA\nKNiq5ZfNr0KyNf9ziGdqrykioeMYn+lUOsDdy/pIGttBsn5XojQ5RHOEYsDp5yFpWHSXlonlr8d9\nrH8O0tNUkvWIiDS9jHPKJOtlV1bd9Czs1+u7IBstjmgL70UPIH7zvjY+oPeKN/NZI96POdHXqC2T\nk/Iw55r2Yn1KcSyyfSQF473SgGPhXP/SOfSjfW7L+1ruG6R9wGgvxn4/PZemVOlyBIEAylPElOJ6\ndZ/R65h+PsHgca9xuAXyZpYYNvfXqn4szeb5lrVGyyaHW7XsL9r00fN813tN6rW87dijZpQgRoyO\n6nWMpYRXX37La9c8ukyux+DVkNdOzNPXcIT2BvHpWMc++42Pe21+thcRiYnDReyqxTOSe38ibZAj\nh9twHomOfLivCXsufq5MytdyN7YV57W67a2rqp8r7XexzBnDMAzDMAzDMAzDMIxZxL6cMQzDMAzD\nMAzDMAzDmEVuKGtit4ApR9Y0Semkw+TIkbE8T/XL34G09FaqMs0pwCIirW8jDS6Jqh2POqmL8SlI\ne8utRqpgIIBUyNo3/1m9hyvBr1+ONNHzv/r/2XurODmvK+t7q6G6mqqZWa0WtJgZLDLIljF2wHbi\ngMM4ocnkTTKZeZMJzEzi/CYTB53EzLYsg8ySLVmSxdRSq1vNzNVM+i7my7PWPrZ0Man++rvY/6sj\n1anqB87Z5zxVe+11VPULi8R3VS/vhBRq2x1XqH5ZW1ApfahzgP5fp+APdSMVa5TSFXucFL2Gd5A6\nlvuTmyXUcFq666TAKb18T3oqOlS/jBVIoxyg1FiWO4noVMS+C0jlj3ZSifl9Aw24Tr29OB7XCary\nAaSmZWwo9NrNh7SzALt4xeYj9TDSkSAMNNPfparkQ07qL1fdH2xH6nTfBV3JPMVxLwkldc9hfoRH\n6HuYmQhpQDu5mc1brSv1R5KbxZzFGKss6RIR6S4nCRqnWjoOEy/9GumKhyqQyr6W3MymfkhLDCsf\nPuK1X94NV5ARR2ozVg1ZwUe/coPXZnmXiIifJGfv/tvvvfb0zy1T/fpJKrN4Hs43OkunLhbE6XTh\nUNN5FCmuEfF6PHIs4XHLcUlEJGMV5B6Nb2Ls512n73fwAuZw10mkRM8OaKcHTt9Mqw687/9vydaW\nR8FKzO28rZCGdZZr6UMyyQB9sZDltJ3QKZ4jQVwXlrwOD2hnKZZG+WgtiIzT1zI2R8ebUMLxlNOU\nRUQyyVGuogJjPSZfH09vJc7jxAHMbXZkEtHyvl5Ky161eq7qx7KSEpJSqHVbTx2JS8P9bdpT5bV7\nqnVcy9mI8dLwJtbw9FV6rvTV4Vr4KPV40Uad+p++4v3n2MVSLc1gF4WJoPgazBf3b2XPxRgcakbM\nj5/lOPKRjLuX0rJZriUisnYV5NjsUJHY6TjJEBm5+Ftvv4M0/hifHuss30mJx96poVNL6bLSMP9i\nyDHLdcY4sB+ytoh3sGakr9MysxFyPOG084uOc9roBN7HAzsxx9IcmfqMayntntb6oLO3qT6G/VdG\nKmQQ25bomDc0ivOoIEfReQX6uvzm0Ue9didJfL+2BnIJ995k0H76jl98zmv3d2qpfOndcDQ58zs4\nISbM17IZ3s/UPw85huv8N5/cuGbeijHa+KKWpjW0YM+64DYJObz3nDJFyw56aZ91cQ0FMUeGFCiF\nRCaWniFe/uku1W/+WpKAvgEZjDt+9pfjunEcvvMfb/LaUcm65MFQD441lqS77r47gUoDsHtU54km\n1S8sHGv/sgWIV+OD+nnMn6qP42/UvqhdvFg6mvGta9/3Pf9bBrowRlre1nKYqR+AHI3jf+PrepyN\n9GAezP4ornPkLP3MNNqPfjx2XAdMdtLhkgThJG3pOqXdkFJKsIe5eBH7UldO2kXOrWmzMC5zVum9\nZ9s5xO6cNdgPlz/8puqXtw0y1NYDkMHmbdJxaLhHS8ZCTZBkccV3zlevjY9isJ7+0w6vnX+jdpkc\nCWJNYRnpcJd2RGN5d8ZKjItIn5aln38ELm3N5A6atQH7rbnr9TFw2QV2j+J9tohIYBrmdhTtW3Jm\nXqP6nXgEjmvF16FEROs57YoYPxXrLDtrTXG+84jJ1WU7XCxzxjAMwzAMwzAMwzAMYxKxL2cMwzAM\nwzAMwzAMwzAmEftyxjAMwzAMwzAMwzAMYxK5bM2ZINVGSV2itaqdVAchcTb0kxcdS7+mV6EpTChF\nv7FhXWMijOpZdB6BpqzwA1qvPkLW2kXrr/TaXV3QjvpTtY6bazY88zPYAf/hhRdUv9lToa3/+mcg\nrA2P0lqxhudRL2HmZ2CvONitdZH9TdB3Bqh+ilunYO5nVshEwtbdwUqtt2a9+WArahqM9WtNa/d5\n1CGJIbvc3hp9Lnx/xoZwj12by+FWqq9B+veL5dBuvvJnbY22bCk0hc1kgRjs0BasOWsKvTbXwOEa\nFe5rA3TuMZepjxOXBx1xxwFdX8O1qQwludehTkr7u/rvLrwer7XuhVZ1oE7rb4/uQS2BgjTMxY4T\nzapf5evQWi/8NMZmJ2lsRUQ23Y76TR2/wT2YNQMa/J4qreedcQe8VNtqMRYf3btX9Yvz416xLvXc\ny1pDPedWaHiT7tT1rpiUBbDW7Kb6HLuf2K/6Tcu89GeEAq4LM9Cqxy3HznGaO42va1veYaoTlUw2\nnMNdWkvL9vVsv+7P0HV2kkth1RhfjDgVRpb0vXV6nqfPx5jr78S4iMnQtoK+WMztgS6MBdd+MIJ0\nvwnJqKfS03lC9UucgXHLx+Rac7s2q6FkoBmfPSVcFz5oO4K5yTbE/fW6ds74AOpXFKajXoRrc841\naJq7cb7xg/r6sS177iyMib5a/N0wxw83huqixBWi7VpIso6/txy1Mtw6dI0nYE09+87FXnuoXcf+\nij+hTghfI7cWSEQ04nOBdrwPCax/b9qvbcFjA9Ce+1LQ7jyobeyj0qFrD6fj7TnTpvrFFFCNl278\n3bR4fR+jyD77/HnUG1lB9Sa49pAL1+6as7REvcZ173jdL7hBX9yhJnx+/HTo5zuP6XoYVSdwzcap\nzsyCW3SdsYn0YeZ1oqtPXxeuhTjcgdgYnaOveSe9L2cq6lLERml79eV3YC088SjGcNa8bNXv9u3b\nvXZCDMZH90nEv4FhbZkcQzWy2K4+IlYfQ2QkxlGA9t0jTi2HipdRl+LgeexXS9r1HrW1B/Gh7fcU\nK8L077bLP6zraIQa3vP3VumaV7O+gOveQTGm+mVtbZyYgxg2JQxjLilWPw900bq4camuqcEsWIQ1\n7kIZLHbjCzAnmnbrtXmE7LcDM7Cmcc0LEb1unLgftfd4vIjoWjXdLbg/C25brfpFRCFm+5Mwvt2Y\nmrY6TyYKnubTnOPrrkUNmqjES1sIc6wteww1TXKv0rHsItU+CVCM6nXqQOZejfUlIgJzbKQP869/\nit7bnH8Mzx1JC7AfTCzJUP34OW5wAOt++3G9RmQuQXwdGsBeya3/VEv1SXjsDPXrfXdCsbYfDzXp\na7F/73dq+PRSHdEp9FzdfU6vd2wJP1CPz3BrlGasL/TaHScRA8Yca26uy5SzWFuLe8cTptcZ3rew\nvXXaSl3zjp8LuZ5qbcsOuRRd9XgOSSjU44Lr8vH+y63FFpOr1yEXy5wxDMMwDMMwDMMwDMOYROzL\nGcMwDMMwDMMwDMMwjEnksrImtjR17ad8yUg/41Sn4U6dXpm6Eml0nFo05ljBFWxe6bW7GylV0ElV\nYovnsaF9XpstsMof1dZWKZQG1kQWhj//5CdVv7t/8hN89kdhac0yHhGRlLuRFtXfhlTVumfPqn6p\nq5B+xdauNTt0P5Zd5RRJyGl4CWmtri1vTB6OKzIBKbRp2Tp1jC2M2w8jhS8qWacocopY6kp8Rpcj\nnWltR/phNkkuojKRgjpjRKcLnzuN1Mgsso/OXKTTA6dQSm7bAaTHhfn0cGfL7QDZn7W+o6U40STB\nGKD01JxrtQV10LFIDyUsUWko1+nlb+6BJfyNX4bV5vNkdS0isuE62Bk2HULKfHyhloTM/zhSmB/9\nwVNe+5qPa0v50T7M4bn5mBO518IS0J+s7eIa9iGF1xeB+7FmlrbBW/tBpDK3vY176FpuszSh7AnM\n+2lXa1vp0ztgZ9jdD5nFkiW6X9U5LRkLNSx7cSUxPG5ZSpm5XgcFXyzG41AQaZNsnS0ikjQfKbkc\nH9meU0QkEICFakQErLmDTZAt5C7VacrsYzoSQ1anTupmXyvJIVMxzga7dCrxFMqJHhnBax3H9Vgf\np7RYtjEdH9HjYkr4xP3uwCnqcQV67rA0LUjrIsvKRESKbsc1ZwvqnnJ9D2fS+ln/ItL4S0hSKKIl\nY40kJW7owOctvEnLTUbIvrdhF94TKElW/VpOI3arz5uhbaVLtiN9u4diYZsjwyy8mdK8aV9xcVSn\nPDtDKeRwGnTKzDT1WjzJ7FiSduygtjFdtxXz4vAjiG1ZSdoKlKWI0dmQIGQm6fWTx1ZgGMcQGQ/7\nbLaBFRGJIinAUBv+TvNZveYWrINsO2UB1tamPRdUPx6bnOYdnanTsPn6saQrWKFtorvKEQNmrJWQ\nkkn7gNg8vU/j63zhaDXe06v3nkwsyc8WTNX3cO+fIb2dsxJr/ys7tTT21ts3e+2IWNy3ZpIcL1qu\n153KJ0957dQ5XE5A74Eaq7DnZfvk3l5th86yqRtv2eC1x51yAp10b/x+7P8yNus1Z7RPy7BCTeoq\nxDkucSAicu63B712wQdgjz7rY9piuJ721bWvIJ5lFui5nUBysCaSx7uS0qxSyDtm0l4xKgoS6YsX\ntayp4FrMnbZj+OzOo3odiyvG2GLL9zPPahlvViEkr8k0z0/9+h3VL7EYMXugFnKO1LVaxqQk8XoJ\n+btpeQf7tKJrtL08x/ZmstkOzNASnR6ycWZ5bcNr+jrH0/UbJttmLrEhItJBEqORXsSANCrTcfiv\nB9R7Zm3GXpRLH3Sc1utY8lzIWXxR+Ls5y/WcbT6GfSnv+Tg2iGh5aXgk7nX1jmOqX9H1EysxHGiB\n3D7o7Ef8dE/iqVTHFEe6yvvyqrN41lj04SWX7Jc4Hdewv0VL/rnMRu6mefQKYkURSaRFRMLCsE6W\nPbLTa/c4EqzAdIxBXzxiYM1TZ1S/mHysDS17ySp+vFr1i0pDXM7djmehuBz9LNS4W6+7LpY5YxiG\nYRiGYRiGYRiGMYnYlzOGYRiGYRiGYRiGYRiTyGVlTcrxwkkxnkKph5zuyg49IjpFMTIOaVzjTgoz\nS5mayJ2k9I7r9TFlIAWcU876KPU4b/1U9Z7jzyNVkN0vMhdrOcy93/ym1w7MQqrTqOtKsRupzexC\nlHPdDNUv3Idzbyeng3CnEv4oOXdMBCxBi4jVKdF9XN2cUtPcdP2OI0gP5BRr13WlvxnpaOEkofI5\n6dvTNqD6+kAj3qNStJu0+8Kctbi+ETSWgud06l3WFqSCxlEqmuuSFZOL1/geB5wU97Gh0fdtu1IK\nPo9Qk7qYJIbOdZl9MxwHOKXcH6nv9ThJLtj55ZHP/pfq9+Uv3fq+x1C9S7sjzP/iKhwTpe2H+2le\nNul7M0Syx0aSGI6P63jQW4nXOGW+eHGh6td5CONy+nVID3bH29TlSNPmNEZXWnTksJYthBqWgiXN\n1VXeOT5ymmhUnE6vH+zGNW3ZS6m6y3UKM9+HpjeRQpm9aZrq19uL9M1gA+IUSxTj43UafkP10zhW\nJSHSCwU7PnWcQdqzG/9jSTpa//LrXjtzXaHq17S7Cv8gCQhLnETeW7k/lLAbYOX9WkKbNB/3lNeG\nzA1aJtBK7kAJFG9YiiEiEp8BueDUD2FMjwxpV4qxQcQlHjtzr4TbITvNiYh0noYLRPpa/J2OffWq\nX1w0xkEKuQu5klZO3Q/MpDkmGnYF9CWQpDVV38M4R24ZaoJlSKF3XSTiCjHnyvYgJsydr1Onzz4N\nuWROKtK895Vp6fLW2ZBtDzZf2m0phWQsMbSvYneRaGfNHSb3p2iaR4lz01U/dq/oqcC5uzKplne0\nc9XfyFxbqP7dTXOb5XzutYwI126XoSR9HcatP0WPn0FyCWO5ZVSG7lcaDQmGj+LIoYcPqn68d0xe\nCGnLVQGtD2kmKXXJh7E2J83GfYpyjjXvWsTXcFq3Lzyu48tzu/bJ++G6DJ6pwzFMW4LYw/ur/3kN\nEgGWlFQ+e1r1m/6hS7sahQLtiKojRvHHIMc8/zuSRac6kvoUWq8iplA/fa0jSbrQO4h74qoog+ex\nzsZPg2yo/PHXvHbiHD3H+PdujiEJM/Sesv4l7KV47iTF6fiffSXWah7PyYuyVD+3nMTfaNurXW8y\nNk1A3YT/F362OP/Y6+q1RNrr5G2FfGfKFP0IGhaJcRDIwzl2lGnpSEQM9kpcuoCfC0S0nDhA0q/y\n3x+mY9Djjdcddg7LXbtU9WO5UiAb5zHYr+VPmQsg5ZkyBePjwkuvqX7hfly/6BSMUZani4iMjekS\nIxNJxlpHnkZx1H3WZ7iESQqN6b7qS+9b+Blz2ke0dCtlGuJjdDT2ud3dcGmOjNT75O5W7GvzySW1\n9V29v2H3zTZ6HnZd/ThGJa3CuuPuPfsb8GzF5UA6TmlpIzs4vx+WOWMYhmEYhmEYhmEYhjGJ2Jcz\nhmEYhmEYhmEYhmEYk4h9OWMYhmEYhmEYhmEYhjGJXLbmTPcJaNL9WVoLyXVHOqmeCtvoiuj6MbGk\n5Rvt1dZ8fWTxd5F0WlWvaV0eW03W7oMOsWgzapi8++wR9Z5ssrW8etEir12xV9uzzb4Juto6si1l\nrbGISFIydN1Ji6EH7K/XNU1Yn9dzBlancdO0Nq6vUuvwQs0g1UJx7yPrcVnv2bpX687ZHozvAde1\nENF1WLieANviiYh0HYfNZ0QA+kq2eA5kamvMhFnQ7Y5045642kAffR7reSMTtZ1tsBKa4oF66A5d\nS9fIRHweawi5Jsf/vFEmjLP3wy47OiZKvdZBdVcyN6HeUvYRfQ9jqf5OdSvGY2q8vn58r/i19Dla\n+3rwF3u89tKvrPPaFfdh/s38zHr1noadqN/AtZdm5+t6KS/ugj0p23TXndJ1bzbfhc8/8AhqBCTG\naB0on+/2Rdd67RZnnM8tKZSJhOvMtLIdn4ikr4G+d7Qf8bFlvz5Gfzpqnqg6M26dFRqPRdfCwzbY\nrC38upvJ7job9zucrOfb2/eo9wxRnYuxQeiLec6LiAx1QB/NNUkSHMvLMB9Zh6/DdRjq7Ff9Rnso\nFlOdotYOfY3C/VTDwHUB/zvhulMxTuxhy1mOVx3HGlW/pDkYB/1UCyR5tlOHKBK65O463LcxxxK3\n8nHUPsm/Gja/XSexhqcu0hafPoqHgSLo8UeDem1Onod5PyMRMZmtKkVEorNwjj1nMaZyt01X/XiM\ndJVhXsY7NWZ4/E0EKStzvfb4kK77NjaMfxfPRfwJd+xPEzsRK8trUWtg09VaMz9IdcKSF6OWAq8n\nIrouWhidP9ejat2t40YC1ZYZIuvr6rf1PJ/3ieX4O3XYc7CttohI1UOo0RdLe5UBx960k+/xFtTG\nGB/VY5NjSqiJjMNa2LpP19cYbkXsGKNY0XS+RfUr/QD2fQ07sb6kBvT+Y/oi1Ovopv1c0ly9LnJN\noNonUPcgeSVqHLr3vf5FrIsDDbjO52p0fYQ5tBaOjGKMvnNO10r7+MewxjUex7iM9+v4XP4Gznf2\nDag/U3zjbNUvWI56NLJAQk6wAnuxjFWF6rX6V8577YS5ZLdLezYRkZyrEGea38azwUiXrsdS/iRi\nJdep2/+wtlSefyXmy2Ar7kliKebbQLOeE+HhVM+mCnXzXBv6YarRl3UFxlX1O1WqH9eKS6I43HtB\n29Vz/USuhxR9pf677c46FEp4PXH3++G0vneStXKPY9XM+4ARssiOdWyI2YY6ezPqgFU9dkouRWwu\n1pfsaxCvZhTo57HKB1FLhmN15Q69B4rJRXxofBd73uh0fe6jA5hj/LxUsGWV6td6BscepJpgKQt0\nfSGf7/K1Sv5euA5p85u61k/pF1d47Tqqm5SzWdcx5Of7IYrDMTk6pnYcxnjkcevz6X1QbCyea8LD\nsbfPyNjmtVtaXlDviU/BMTUcwrMB759FdK0yrmWUNF2viyMDWFvbDiOmut9l8LOy0PNnqlPj9txv\nUS+neLG8B8ucMQzDMAzDMAzDMAzDmETsyxnDMAzDMAzDMAzDMIxJ5LJ5w2yXzTISEZExsspKJ7ut\nbkpTFhFJplTq9oNIZ2N7XBFtLZhLltSRsVrC0XIAKb3zP420w7gUpAaudFKPw8jSufGFCq9dcvMc\n1Y+tJpPICjTVke5w2iqnF+Zs1enbPReQmpaxodBrN+w8r/oV3T5PJpLYqUjnS5qtrf8aXsKxsIWc\na8PJabzpZCPWfkSnSfrTkDLW3wB78zHHLjz7KsjQWigFNYZsW90xMkKSBrZAHndSqktfOgAAIABJ\nREFU/FnKxP0iHMvQ+CKkM7KbXn9tj+qXSBKEvhqk/HUc0pZ57/GMDSHZqzHHDu7Qsr0t39zqtevp\nfpZsK1X99t8PqdCtX0I64K4/vKH6kRpP1n0OsqG+Gi3bm/1B5DezDCcwB6nHJ37xinpPoATyiUWL\nYZHZV6WlfdM7EDcCJFHacsNcuRQJ1C/WSd/eeDvsTh/6/hNee9sdV6h+rnVgqGHbPpYxiejU37b9\nkP2xPa6IyDjZD/ZcQFpwyjyd/tpDsr2RJNyfkV4dy3lMswUiW+LG5mv73+FOpGXHFSBudJ7SkgGW\nv077MOyE+9v0OsFyILYNZlmOiEgcWZry8bm2zpweHWpYkjDcpm0tk5dj3Cq7XEdyxnGT7cLZFllE\nJCoDsSezZIPXbq7crfqV3g0ZTSAVtpGR8YgV/U4KfsZ8rH99HZCEZKwpVP1YAsNjJ326lu40VkPC\nkbEanxGs0Sn4Q124Zmxv2nmiWfVLXarTgEMNr93Rjty3haRDQyOYE6Pjjk00STNL52APcjkr9+ZX\nIFVIXqZTp9kKtvM4ZIDdZZAQNXbq61lCstvGc7iGReu17fdAE2JP57sYf01O6noYLYZjxzH/2g/r\ntT5xGtLreVyw1byISNMrJB+/RkJK2ROQILjrXTfFogVrsVbVvKz3X4ceQMp7Xi72PTO367Wm5kmM\n71jaY7IMQkTLdbOuRmo9SzwrX9fy3N4BvLb2y1iTzv5My5o6griHcwqxfrT06D1L/VHM56IrsNfq\nr9NreGQ5JAccM8Mi9O+2+1865rXnf0BCDtu5V5FEU0RkrA/zz08y0rhiLUdhWMLdfE5LZxLS8Bks\n0V/7WS3Bbt6NeTr9ti04Bj/iUuu4lrqMjmKdjCR5fVKeHpsNERiDXTS3C9dMVf14z8p768BULW3p\nKsNY9yVgLew4oe17k+douUgo4WN9z7pNe+0AxQ2+/iIiCSV47hodwH0f7tHrYrAK93SwBdc8Jk/v\nlVhKwvsFlrJMCdNjPbYI+xmW+ybO1M9ELGGrfAzW3K7MhWWjLfuwrkQm6PWO38eyrc7T+lq29EDC\nnXjL++hh/k5ySBbt7kdYyjRC9u31L+t4xg9U/AwWlaT3aWyxzlK4sTG93+zvr0K7D+sJyxf5uVxE\nJCIG62TeMsj6W86/q/oN036Ex4Xfr0stVD/3vNfOpWvEY1FEJD4fY32wA/HVlQWnrsqVy2GZM4Zh\nGIZhGIZhGIZhGJOIfTljGIZhGIZhGIZhGIYxiVxW1tRP6WKpi3XKfG8FUoZa30aqVs41WtrDqTzJ\ni5HexalOIiLh5BR05ndIM81yUqzLXinz2oupQvnpp5By5B4Dp2gODSF1rP3gpWUpBTcgDbHiz1pG\nkr4Ssp6EEkg4eirbVT+u5D5I7dTVOp2p8zTS23J1JnJIGGyidCpH1pS0CPdVpSI6zkO+ZMhE2CmE\nUzdFtFMDyy9cmUEXpeqxDClnO+5dz7k29R5OQw+LwtB13UW6zuCzh0mOp66DiIRH4ZjipyPVMmW5\nvj8sNwmW4R5nbtU3y01nDCWcJt8zoKUUFX9GynFZPdKglzrOOeOUkj9OjlTbv32t6vf4vz7ttVcu\nwjyISnVSEmdhLDW9gVTDvGtnee22d/UcGyQnij2vYF4Nj2rZG0uUVn0RTlBKfyYidc8iHky/Fsfa\nvl+ngw82I5aV5uL+XnScRV74N1R8v/v3N0uoiUrGebnyonEa0yx56q3Rkq+YLMQ9lgMNdepxofRp\nBEsURURi85HGG5WCe8wufOzCJqLTbtlRwpVzsKR0sAfpn91n9TGw7CeW4npCqXZ14rjURTKYOMfp\nh49dtPrm72aM0q3DHOllDLly8P1tflk7A/pzkMLLciNXKjk+ttNr95wnmeyKfNWv4yTOd7D9kNce\nJiloUqlOaW8/D4eXlGm8Zjq/2VA4ZKeEMw8/o7plri/02n0NkE/0VmoZTjxL0yit3ZWm1ZOzW742\ngQwJ/eSS6MqafPFY15Knk4uEE1OrXjzrtZXcrUPPxeoKSIJ84VhPYtv1uGVHQZYCsKxp6nS9PkWT\nG1I27XWq3qxQ/cYpHvBakJGlJRLRefg8doFpP6BjKksIhsh9Jtil90E+576Gklm3Qa6070971WsD\nw4iNebUYg0VX68EUfwBzLioT0pEXf/6S6hdJ9235UoyJvO368/haPPIfO7z2+nlwBsos0fsw3kfV\nPY9xv+kLG1W/umcx3hpbEU9Xr9ASfR/F8d7z6Bceq6Xdsz8MafGhP8OtyHV1Wn9niC3vHNrehgwr\nUJqqXsu+BedW8VfsGbKvmK/6tR/FfeQ9qit7T6JnGY7l7U7szb8e+4mmo/i7o72Qh2cs188a3Rcw\nR9j5pepVLUNNWoBYPNQG6UPORn0fLzwJCcYISUyi0rR0kB1GO2ktiCNZjohIN7kAZYdYwd11Cmu6\nL0mPH14LlQPVXL0mRfkxLxrfxHXOdCTg8TnYF4yP47MjI/XYGQziWjTsrvLaOVshN+yu0M8ZvI+P\njMG6EKzVMqTwaNzfRHquis3TzlI8n2d8BPK43nbtptdLZQN4LWw7qOOun92AJoB6ki6xfEdExJeA\nOOUnp192GRTREqW8qyCzbtqrzzl/A0qT9HZAohRs1u6b7ITM8tA++h7ClY6nL4Msqe7gW/isBu3y\n1l+Nz86+Cs90DUf2qX7sCsYSufqdWtKVNA9jIZmctoJVeh/UsZ/izSZ5D5Y5YxiGYRiGYRiGYRiG\nMYnYlzOGYRiGYRiGYRiGYRiTiH05YxiGYRiGYRiGYRiGMYlctuZMFOmuh1r71Ws+spzquwDtdut+\nrRVjgmegd2RNrIhIBFmuhpG1matDX/F5WGJx3Zosqv/RdrBOvWe0F7rSXNIasnW2iEhkADrJqsdg\n5zdC9rIiIp1U02SUbP5YOyoiMlhH1txLoD0LdyydB5q1bVioSZiddsnX2vbgfuXeCG3g2JCuAcI1\ncwaodgtbcoqIhMdiSAVm4e+yRk9E18rgejS9pMuLcCzRWWcbRjWKRhy7N38G9I5s+ZuxXutWh7vw\nvs6j0KYmLchU/caHcE58H4PntbbePd5QMkI62Ou+dpV67Y1fv+G1r7gL8yPo1HoozsWxh4VTHaZO\nPW5jfDiPQbp+h4+fU/0i3sQcWbIGevoH/uEh/M0MrSlOWwZrw4IWHJ9bHaVwEWpqdJ+FJnjYqauS\nvAR1rLiGVP7N2rpyqB3nOES1tPrrdQwonapreYSaLrJ3TZqj6w6wbpdrcfgdfXmQ7LNHejAu4qdq\na1FlU0m1eiKduhlcF4ZvhJ90wxHROmaxrX3acmh73dpSbMXYSbaeSXP0HOsnm1+29vYl6vgfPxUa\nep6/vnh9Tly7I9R0UI2K1DXabpFrLKWvwmuRibo2F9uOtu1FDOb1RERkhCxEufZV67t6jeN6WnFU\nQ4jve2+trl3U+DzsXIdXYV659qZcs4H19FyzS0Sk/nlor+Nnprzve0REml5ELZSsa7Aeu2Pn4uj7\n10wKFf5c1FZpf0fr+lNX495Vv4S4l7FQ23v7InEfOVYmztB1XBbcgtoefO9PPqTr2WUWYc3sPoZY\nkb4WcckX0GO7aRfqGSVTLZSsi3qONZWhZsLM7aht0eto4VuOYU3PoHUiZam2/ea5HUN1b7g2nIhI\nXJGuqxNKuH7Wgqu09TWPu5MPwOp29/26Ns3qm5ai34unvHa0T6/n0+dg/zBAdQsGGnUtO65/tW4W\n6q9FpWPP3O7UJ5xx2zz8g+asW3cvYQ7Gx9hhzEteB0REUldi/JYdQU26wg26Tl4j1cLKK8Z4OXVC\n18iSnajtNmOdhBwfxcdkpw5J2yHEuqSFOEa3DhqvDVzrMmGu3v9G0rMG1zfzZ+h9UM0zp712zlbY\nkQ+R9W7nOf28E0E1yCJpPxjh1PrhOM9r1diIfhbgWkQJVOMvylnfLjyCvZifxpk7t929cijh+j0R\nOdrWmC2ym/ZUeW23zk90GvYcPjp3t17HxXHsgYJUUykyUKX65W9a4bULr8O9bjuJ2id9NbpeSvYm\nzJHeRsQXf6qzD6Nj4np/7jNr7jbUbWk5dcJrB5x6QJkLUUOppwnzT+3PRNe0mgi4RljN02fUa7wO\njVFN0a5juh6Pj8bn+Bj6DTj77fNPvem1B+k1jpUi2t6c9yO8z3drM3It19QFiIfRGT2qX+4W1Ayr\nfhbzKMOpc8T7V36emP4pbWfeU4Hx2PwW6vFGxOivW1LMStswDMMwDMMwDMMwDOP/v9iXM4ZhGIZh\nGIZhGIZhGJPIlIsXL+G3ahiGYRiGYRiGYRiGYUw4ljljGIZhGIZhGIZhGIYxidiXM4ZhGIZhGIZh\nGIZhGJOIfTljGIZhGIZhGIZhGIYxidiXM4ZhGIZhGIZhGIZhGJOIfTljGIZhGIZhGIZhGIYxidiX\nM4ZhGIZhGIZhGIZhGJOIfTljGIZhGIZhGIZhGIYxidiXM4ZhGIZhGIZhGIZhGJOIfTljGIZhGIZh\nGIZhGIYxidiXM4ZhGIZhGIZhGIZhGJOIfTljGIZhGIZhGIZhGIYxidiXM4ZhGIZhGIZhGIZhGJOI\nfTljGIZhGIZhGIZhGIYxidiXM4ZhGIZhGIZhGIZhGJOIfTljGIZhGIZhGIZhGIYxidiXM4ZhGIZh\nGIZhGIZhGJOIfTljGIZhGIZhGIZhGIYxidiXM4ZhGIZhGIZhGIZhGJNIxOVevHDsIa/d/m69ei06\nK95rt+yt9dppK3JVv8HmXq89NjjmtZMWZKp+w12DXjs2N+C16549q/rl3TDTa1c8fMJr+3yReP/U\nBPWetOV5XrvxtUqvHT89RfVr213jteNmJHvt2kO1qt+sW+Z57WB5u9cebOxT/TI2FXnthh3nvHZ4\nTKTqF1OA811w25ck1Lz+3e967aR5Geq1sEh8P1ezt8prh4fp7+2yFuO+xhUm4v2+cNXv9ANHvHbh\n+mKv3XO2XfUb7R7y2glz07z2UMeA1x6o71XvGRsf99o5V07De9r7Vb8Iur5jAyP02YOq3zC9L3E+\nrkt0epzq198UxD9wCNK4p0r1y982w2tPX/1RCSW155+gY7ioXhvqxDUbbMUY9KfHqn4DjTiPzFUl\nl/xbp+7Z7bVnfn65127ec0H1az3S6LWz1hR47VQaK7t/tEu9J2zKFK+dMxXXvK9Z3+uSOxd47Y5j\nTWgfb1b9pt42x2vHZeHzzv7hLdWvqRHjb/U3N3ntrrOtql8n/a2VX/mOhJq3fvRDr11erWPqkm04\n5/LXES8W371K9es8juvedBifkZiTqPqdPV3ttd88fdprj46NqX7f/dndXvvtP+/12vNWYTyf2X9e\nvWfOhlleO64oyWv3nG1T/WbceIPXvnhx1GsPD+v72HjwlNd+5DcveO3cFB2jV25f7LXz16/22mUP\nvKD6Fdw022tnZl4roaT61CNeu/HVSvVaRJzPa8dNxXVxY8pQB2JPyxu4TxI2RfUb7EXMKv4g1p36\n586pfvEzcZ0Spqd67dH+Ya/dV92l3hOdjXWn+TXM7Zj8gOo3Noj75kuKxjm06bibtXEqPm93FT6v\nQK/HUfQZ0Wm4LuV/PKz7paDfRMzFC8exvxEdUmV8FIF+Ct2T8Ci9ZTr/wDGvnbk632v7M/T9bnmz\nymv76LxicvW17jyE+MP7Ar7u9a/rMRcdj9fS1yMOt75Vo/p1tvV47WnbMH87DjWqflGp+LzYfMSU\nKeF6bI4NYVx0vovPSF2dp/r1Xuj02os/+jUJJWff/JPX7jiiz8OfgfVvqBVjdUqE3ttEpca8b7v9\nHR2feR5ERGMchMfq/dwg/a1I2ovwHI1KjXXeg3W7l/ZKcdOSVL9h2jcNNmLNzNmm1/OmVzCfR3oR\nA/i4RURSV+FedZdhLQyP1ufE13L2lXdLqDnz6u+9dmyuEy8SMR7DwnB/Gt44pfolL8z22uPDWONG\ngkOqX0QsYrSf7kMlzWURkbzr8azBn9G2vw7/360/O2V5zvu+Z6RnWPULi6C5RHsif5oeF2PDNOZi\ncNwXx8ZVv5TZiD1d5xu8trvujA1iP1ww+zYJJYf/+p/4h/P8MEJ71PR1iFH1z5WrfjnXYhy3HcD8\niy9OVv2CFR1eOzIQhT/rPI8M0/NE8qIsHE/w0utiykL0az+Ma5lQmq4/m85ptA+fN9Q+oPqN0LPt\ncJceL0xkAPeXr9GUcH0t+ZmtaN6HLvl5/1vqKp/02vXP631G4lzssfk5tm2vfkaOzsPaFT/10vtD\n3jvyvqDhJb3fDMzEnma4B9cwJhvfQ4z06Gvrp1jedaoFn0X7IxF9PXkNicnTcSjcj9gZrMCalrmu\nUH8erS/d53G+4X4dU+Po87PzbxAXy5wxDMMwDMMwDMMwDMOYRC6bOTPaj29Z01bmX7Jf1zH8Cho8\npzMk0tbiG8CL9GtU1bNnVL+M5frXlr/R26u/hayjDJQY+pY5nf6OLz5KvYd/4emuxjdegw361/qe\nAfqWNRnfgKek6F+3fAn4hi8qBd/OjQ2Mqn6c0ZG2AcfH3+qLiAy26IybUJO1Cb9oDrXpv8XfOmeU\n4JvhoRb9q2jZHlz3nLP4BSjC+dUoIQ73xJfox2fTL3oiIof+csBrjx/Hz5ZxRfilLjJB38ehNtyv\n8RFcw74q/c13OP06xN868zfYIvoXtIsjGJs8XkREju84juPz45xSs/WvWn213TJRnPsTflXuHdTn\nkZIUcLuLiMjFi/rn4MIPzfXag1041pon9Vzkb5z5l/dgeafqN/MTyGLgX3/GhhA3Zl87h98iaQuQ\nTbXvJ8977eJN01W/6GSMg6Q5OI/UxTmq3+nfH/TaiQW4H3X1OiMmLUBZAnuRqZCyKFv12/fwfq+9\nUkLProPILPvHB3+lXvvqtju99i9fQHbGwZ/9WvXLuwm/ej/4l5e89mc++BHV7+QJ/ML+3V9+xmvv\nuXe36heVhPudmYjr/qN7HvDa3/ny7eo9v7gHx/dfL93vtdsPPqL6le/c4bXzNy/x2j0Ndaof/9rw\n+d98wmvXvaR/WUtfjnWo9q19Xnvuxz6o+g0O6s8PJZ0nsd6lOpmiA5QB1n0Sv9bUN1aofnlX4xfC\nlBUY0+0HGlS/KTSvohIQezheiYj0ncfc5DjHmZLJ87PUe5rfwjzgOJ40T2e1cuYI/2Ib5vySyBmG\no/Rrfcc+nYFQeDsygNqP4nyLPqhjRe0zOms21PA67P46yXsfzv5NdM45/1pkl3WdwLhwszk5FI/2\n4bPj8nS2W9UujPe8G/HL/SjtLdIW6pjF6yTH7qi0GNWvdCtibwf9IjwW1L/qt7Ygw4bjY+t+PacS\nZ+NacDZQ+0E9hnO36dgeSjhrNNzJCumvwXlwRhHvQ0X0r+2ccZK+Qe9ZBpowDjg7rX6n/nU5Kgnz\nNJEyxDnrquukzhxMXYY44qP7OT6k94ph9Bkpi3Fvguf1vnuKD+M5aRGOIX6qzkBgeI/fuldnXQ13\nDrrdQwrvgTmzRUSklzIb+LX0lfr+1D5X5rX51/D863RcqXwIa3AaZXkV375A9QsLw30YaqfMsGWI\n16ODeq/I95h/yc/bOlf16zyHTIPEEsTlgTa9l41KpkyhV7GGZK0vVP2a9mIMjo8h2Pgo60hEZ3oW\nzJaQEkMZT3Uv68yH1PkYg/yclLJMx7LWfbguyRR7+ut7VD/OCu85hb1eREA/M8SXYLy7c8n7f2ct\n7aGsHM54ivDr+NJGz7pplIH2HmUEze2aR5HtNSXSyY2gw+irw/n2nNB7WaZo3iVf+l8z0II4F+1m\ndlJmefw0XNscJ8YHL+Aa8v6B1z4RkbZ9WFNyrsGe6OKYfnYJnu+Q96O3HP/PqhoRkVp6rkmgfVDn\nCR17p3ASG+1DeS0V0dm0g/XY63SV6fvTc4YyEGnMjDnjj1Ud2e/z9YplzhiGYRiGYRiGYRiGYUwi\n9uWMYRiGYRiGYRiGYRjGJGJfzhiGYRiGYRiGYRiGYUwil605Ex4FLW6Yo4/rOg09PWv5crfPUP3K\n/gp9Z8YiaDVnfGyR6tdbA60l67/TS7W7EDsvtZAu1k/aTK5HIqL13vnX4PhOPamrsw+PQgsZpIr5\nLS261sb449ANJlEF8KZzWsu2cDM03k3k1pC6ROssm3dXy0Ry/KmjXnvGWl3VP8yHIcDOEbGFWguf\nMEj1aMilo/q4rtKdS/pZ1tyyhlJEZOZG6AMv0v1qOwpNY1Ss1o8WXov3sGY70tGZtp3F2Eyfh2vd\n69SmySeNYvNrVV47fpZ2iJm9udRrd5/AZ7Mzi4hI8LSuRB5K5nwJjj2tB/U1763E+PQlkxNKpq7U\nz3PsGI2J8XGtuS1dhznii8O8qqzVbhjhOzB2uGZIcxWuQ9ZMXb+i+9Q7XnvWzRDMupriHf/0mNe+\n4gsbvXb986dVv6wViAfsIMe1pURE/FT/qOUQamBEOPrgNXetlonk2qtQyeZb2+9Sr/37DjhWfHTt\nNq/94999VfXjOkBf+hXqs7Q5jnqFaXBBG+5GzYDtP/646vfUt/B3t/3L9V576gm44aUt17VVfrH9\nl147IgL67+yt01S/f/7EPV77i6Ttrd6vY968j6IezVev/1ev/cN7Pq/63XP3b7320mLE18a3qlS/\nINVluuk/Q3tPW45iHqSv0GLhmEyMwQDVd6h86ITq17gL2v/8W1BDqPA2XR9hoBX6784yxJ7sax13\nll2oR5BB7gE95CbY+raOG1HkwMJrpltzi8+J3Q7demPsUDRILhmJc3SdlraD0JmzBj3McUIa6ru0\ns0Uo4L/tozohIiJ9VYgfvL60OLU4ON6ym0+U45QXQ3VNUpdgLnEtMRGRjLlYPzvJYSKc3u+uMzFT\nsVZ3n4TePTpbx392xPTTPXVrJOTMQD2VptdRg4Ude0R0HOqm65VQqGux8f3O12UB/m6i6Pq7NQIG\naZ/Cri3jjtNNHNUqC/fjOveU6evMdWG49lJskd4rcV2USKp/yK5VXI9PRCRIr4WRK9aUCO0+E0Z7\ncq4z03Na15zJ2Y4aEC20vxzp1rVjuC4Pz2euFSkiMtQ6sXUR2U3LJWcT4mN/M2pMdJ3TtR64Fkzj\ny4hTNTtOqn5ciy+hEPe0p07XSuLaKFw3IzLgp7Y+1mqqKZJ3I46ba8yIiIz0IrY1vI5aOWNODZsk\ncsdJX8F1ObVzGrtvVj+L55qecj2GkxfrZ49QwnuMqR/Q6xg7hjW+gHo0ebeUqn7s1spuSMEzznks\nxXlkUi2tysf1vU4iF9YeqlsySM6lKUt1HUOuBcP72iFn7sTkkGPxm5hjSQv1npfvNT9b9F3QNSo5\npgTInYrdjkREml7Rbn2hpvF53J+kJbpOXfoa7Hci4xDbuH6KiIifarHy8UY6cY/XKHbGcmvY1D6D\nOZK1BTVUOca3vK3X5qyrsReNTsXfaXLc21IW4BxVDTNnP9J+GHM4YzOcmPnei4hkbCj02v0NiK/v\ncQlM1vWgXCxzxjAMwzAMwzAMwzAMYxKxL2cMwzAMwzAMwzAMwzAmkcvKmsIikUJZ87iWE8SRRVnc\nDLRbD+jU+tJPLsU/KJ3w/J+Pqn7pZEXWfQ4pbINNOp2S5VVZVyC9qWU/Uo6yNkxV72k9iJTvZLLU\nyi7S6dZsDVb7JlKxcmbo1C62bOR23jKdCsrWykNkFXjm/iOq39RrQpzr61A0D6loQ+3amrzzOFKn\n2Rb21HM6DX/acqQOjpHNaNFifc4s9TnyHNIrw8P094BF05FKmLQQ1/d8E8ZFYqxOo04bJQlLNlIK\nXevFkpu3eu3xcZxvz4ILql8/pTZyqmvrfj2G0+m6BGYh5TtYplOJXTlUKCn/3bv4O6Wp6rVCSiEd\nJAtX1+Iz44pCr736i+u9dtmfDql+bIPbcvDSkrtkum9ndyCdt/TW+V67+4xjaU3zfJBSmXXKrsiU\nlzH+ekmilDhfyxyTZyOFdP+/v+G1E2J0ijunmqbRePGn6jF26neweC9ZISFn7p2wu/6KIxUaHkba\nbWrg/e3RRUQqn8C1TizGmOP4JSKy+v98zmv/+fPf89rLNmoJ2dxlSCGNi0OacQHJoirvP67ekzQP\n8sPO40977YqmJtXvU7deg88mmc/mbderfm/+83957e//9NNe+/c/1NbcI2OQ35ysRcy/44e3qn51\nz5bJRJEyE9el7bCOFf40jKeOQ5A/xeUnqH4jXUit7SApJ9tgi2jZTBrNke6zOs2brSfZxrmO1rH4\nZC1z8ZFcJyYH442to//n8xBDM9Yg3rNkQ0TkwiOYs2yfHKzQNpgJs3D9oul6nbn3oOo37SPzZSJh\nGQdblouIDDTgGgx34J5wDBXR151tPfnei4gMDCOmBsiG2V0XYwsgkRmglGiWo3QE9f2JHsPY8iXi\nnpTv0/btG76LudhdiXW/v1an14f7cV3iSxBfoh1ZE1tLs4yB5cwiWtIQavgYBhqC6jUetwm0ZvJY\nF9FyAraO7T2vpbFsD3spW14RkWaSvgWKIEngvzvap68J2+VG56Mf77VERKaQ5InHb/JSvUdtpRT/\nhDmYb+KM8/4qWgtIuuPKn6JS9HoaalhClDxfn8voIOJZB0lKM9cVqX5Vj0HSwtcmca7eM8Tl4550\nXYDkzo17/O8Zt0JmfP65XejTqN/D8aHiAex/A440heM6x0N/sjPHWjCm+ygecIwXEYlKwucNtWHc\ns9Rb5L1S1FDSW4H50vauloglzcY5Zl6FZwnXsj2SbORjsmme6mGrJCL8nBXI0etsG+3leR740zGe\nXTnkCM3NMLJCrnu+XPXLWIvnqtpKrOFxzj7MR+fUfBTXpWibfu5j2WN/E+57k1P2InGG3v+HGn6m\nZRmliEjnSawbmWsL6T16XFU9irlYcDP2lJX36ef+UZIT+1Iwhnmei4jk30DSxkbMA5ZjZ67X8YDj\ndQ/tlwbq9TrRQve77hTuT9ZU/f1A2mrc72YqU5K2VkvbO47g2Fmq7ZYzYSl6DF+8AAAgAElEQVSr\n6Cov//Pe9/6XYRiGYRiGYRiGYRiG8f8V9uWMYRiGYRiGYRiGYRjGJHJZWRNXio/O06mgyfMgEzh8\n7z6vveDjy1S/wTbIeYLkHLHw6zeqft2NSL8eoJSuqZ+7RfUbG0O6ZV9XldeO43TgZp22dGLPGa+9\nqhjphe9x26Fq3rM/ATlWj5OWzQ4vdbuosvVMnW7GKXqJc5Ei5W/T6eWDLTo1MtSwFGxsVDsVdPbi\nbze/BLmEL1yns8WRe9NQgK7bRdVN3n4aqenLNsKN59GHX1H9OM17OaUBspTpVK2ucB94Hmlv7OLV\nX6tlGoPNr3nteKp6zqmfIiKdx+D4lHUlUi1js/RY761D2uSBP2GsL/7gEtWv+dUqmShYdpW6SKfH\ndZxASuXBJyFRmjlPp/lFp1HF8j1VXrvw+lmqn0oHn4609uJC/XfV+CYZUUrJDGrrquunf4uU4Lmf\nRQw4+btnVL+8FEqnT8dxu24GjW++f+X6unYtOWt+Bvdw4QcXe21XzjDv8ytlIjn2u7/gOD59t3qt\n7NkHvfa3/vszXrvLkYYdqary2tOHICGIPNei+qXPw31YuATt3S9pGdudv4T8qf7Im15729eu8tpv\n/PoN9Z5df0XK9pw8yG1yU7S0L4bWjcyZuLanH3lc9Vv1Hci9fvyR73jtMEf20Uz39av/9Smv/YO7\nfqn6ffXbH5GJInE2YnnnCX3Nx0jukHc90pYHHLeTCEqX5hTeOCf9vYdcA8/+EffNH6MlRdF5SF9v\nP4TU3OZujPuGTi3TWL0a961tH2Jt5iYtCw7kQWZQ/wbWiFFHcpFCbinstJG7VTs4jg3jfef/ALei\njJVa2jjA66I29QgJ7F4VnaPT/zvbsKaUfnih12YJmohIPzludPfiHjd3aWfAnGSsQw07kR7f0KH3\nFuMvYX3m9S8+GmvX3DU6Hb6P5DenayHTmD9fO6edvOctrz3jk4iBqbfpzwu2II0+kSR8vAaJiPRW\n4xxb9uA9LTU69iYn0rXdJiGFpUKxeVrSMD6Mucjy2rEUvYawU2BMLj7jouPqNNKDPUv/BZy7L03v\nK0ZJesmSBn8a1shIZ57zXAqQlCzGkaXUkVQ5eSHW49Z39F6J3TZZMuQ6WyYuwj6KZYpRyVrqMezI\nnEJN5mbEnHC/fizhOMBDsPO0jr3JJBvoOIAY6DpBshSx5rmzXnuq45Q3SKUI+oLY5/OzT1eUlpey\nrHVoBPfUjS8siedx6l+lZU3scsrXJalUSy7YiZP3ZQON+lnIlamEEte1jGGZaM8ZnHtUip47CbS2\nsvSv46CWufT1QNYVn4Zry7J5Ee2yxec+EsRnu+6E7G4WRi55LM0SEdl53+tee+3yuV67+6Qel/4s\n7F8DKTjWt+/fp/pNz8f6yc65KfO1+xM/00wE8TMRf7qP6XPhsVrxJ5TnSFunpT1x5CDIDo9Z27TL\nJDs+tZOLqutm13qA1kI6/5w5eE7vrNZS9sgEfEbq/EIc90NaPs2ujfxc6u7FLpBL8/S7oENyJYYs\no2S3r9qn9fHlXKefjVwsc8YwDMMwDMMwDMMwDGMSsS9nDMMwDMMwDMMwDMMwJhH7csYwDMMwDMMw\nDMMwDGMSuWzNmbqnUasl29GKjVPtktz5sITtrdG2jKyN7Dmntcjq84ah+8tcuMBrs22diEjxtk1e\nOyoOurbuILSfidN0bYyt373aa7ccgCa7uaxZ9Zv/6eVeu+wP0PenOFZ8TW9Bk1j6WbyHa3+I6PoY\nrJVNcWqGTLSel607uRaAiMh0qtXTTPaL/oDW/PWRpvX1ndDsLSrSdU1WXIl7130K9yQyQg81tsQd\nJuvNfqqhcesnr1LvCfPhu8Qp4Wj3VupaCvFk2cs2nglFWrvJ5UZis6A1r3pM24hnXwntfmYirhdr\nl0VEwuMmzqZw+t3QVl54WNsas5bWtR9n4pJxHiU3QO/YWX9a9eOaO/54jP3ij+oxkZaGuZhWjDkx\nPIz73nRAf3YM2YRWvoDaQNPuWKr6tb4L2/NTj8J+r6ZNa7xLMnFPo2iM+eK1xrv0Y6gP9NK/v+S1\nZ+XmqH4520kHqmW0IWF8BHGz8dzL6rWZ2z/stcfGoGN99AffVv0WT4U+P+8aHO8j/7lD9St8B3aG\nL74Ki/CNC+aqfm1nUMcgtRT1Qfx+xKnTtX9V7/nGfV/x2ifv2e21I5waMTlrUHeqZj802uLUr2g8\nAqv47z/2G6+941s/Vf2+9BvUmYlPQI2A//voN1S/2Fhd5ySUdB7HutFRrsfj1Jtme222SmTLRxGR\nEdIisy2oWxMgjerC8NhpeaNK9Xv9JVy/rbeuwfurMd/i43UdiVbS1tfUQ1te80e9Lo6P4++u+sxa\nr91zXq/nbD2bMBPrfushXQ+DNf6BUujbR4KOBbPz71DDtbXYPlREpPQjqDPTdQLXg+uBiIgM1KGm\nA9evWrRJz7Hdz+P+rCjAGJmarGskjJBtd7QPtd0WX4fjGe3V1yU8Hv2W0/pbc0BbsC77h/Ve++I4\n5l90dKHq19YBbXzXKao5MK7nLO8BMzciJqUEdUx1rWpDCe8pXavv7tOoM8M1WFr2aPtergUzNoh5\nGp2tawPWvAZr8vyNqFHHdS1ERJIXokYT17njuiBu7bQA1XaLJTvg3lpdu6jgRhRf6q3HXjvFsWl9\n6ZdYW+aWYI9WU6/n9sKbeFxhr+TGq8EWXVch1HBNoASndiPXfuF6j1z7RUSknWp3ZWzCOXPNOhGR\nkR7MsQKy6G16RdevS1uDDQDbdDdWYU7Mu13XHeT6NqnFOI+BOl33JpZqcgSprtjwXD23u6guItt0\njzgxoLcK42SkG68V3qrr6PQ79ThDCddX8i3Qz0wRsYhRA01YJ9zaIlwjh2t51Dbo2icBqnHItvbd\nZXo95tpQY7SOpSzGHPWn6FoyXCtukI4hWKGfM0pz8dwbW4A5m7pYx7+hLqwzjbsQQ7KSdE2T8lrU\nSQqj9Sh5sbaWb6a1v3ixhJywyEvXJYovxZhOnoN77NYja3gJNZpyrsJ3Byf/oOu9REViPudtw152\ntH9Y9WNb9cxSPHO3lGNdTS2er95TfxA1faZMwfibfvsG1a+vDbVuSj6C/U3z4TOqn8+HY+Xja93n\n1EYlq3Pez4XH6OdD3kfKAnkPljljGIZhGIZhGIZhGIYxidiXM4ZhGIZhGIZhGIZhGJPIZWVNKSuQ\ntuVKOOpfRCp8/IxLW3vVklVdPqWLVb/2juoXkw0ZQstpyEoy12nZTH8v5A7jZHXItmv9bTr9rIVs\ngzsqkUJYsl37c3ZQ+jLbC3N6uohILKVJDlPqdZdjszk+jOPjY218q0r1c62MQ03Qkf0wnM7NNmKR\n/Tq1rXwf0vFayCa0pVvL2ALDGAs/fOQRr12UqVNQC9KQSshWoHOWIgVuqE3bz7K1ex+dk99JZ37l\nXsgnrvgY0tS6L+j7c/g4LE3ZPjbVsXTd9yvINvh8+3fq1LuizVr6F0p6aNyGx+r0uMQ5kBDEkkzN\nTcFn3/PWc7DBy5t3jeq1/0ewJZ731Zu8dmSkTnVuqNiJ4yOJA8s0ep25E1+C8cHp28d/8YbqN+tT\nkDnNpdhQXK/Tcuv3IB7kUqzwObbpZ/9Clr0J+Lt1bVqaoRNSQ89Tr77ttW/S2fCy+9ewsd7+Y8h3\nbvrWtapfxrTVXvvpb/zEaxema3tNThH+xl9/4bUP/ewPqt9bf8YxLd6C9OtRsmD9xDduUe8Z7kVq\ncgbZVx7bqSV3R75yr9devw0p4EPNem5zWn9bLdaGg+fPq35HP1PltVdORxrsmn+6VfWre3eP1565\nIbTz0peEVOyEHG3fGxaJsR+VgtTrsgeOqH65awrxGZQGGx7tU/26ziCdu+ptpN1zrBbREpgLexCr\nWSaaMlXHg/RVSNtPboYsIqlUp6QHazCH+2lMRTs2vwlTMf4GO9CPz09ESzq6yA63v0an/mdu0mt/\nqInOwTreXeWs8SSDiYjDtXXT5v0ZMe/bdu2AizNwTVsqIeHInK6vNaeNH9+z12vHvADJwMKbF6n3\nsN1rJd373Dk6mnWV4e+yTHnKFh2IBsm6mFO0w316TxCshA04y2BcOdqUcCfQhZDkBdhXDDmSbSEn\n7B6SWCfN03GS18yuU7hGo0E9x3JWFnjttrchj09eqmUHYam4TrXPQCLGNsHRGXp9YpkKn0fKDG1r\nHx5OEjG6vSOODOCar0MS3k9yw+g6PWd7SfbBtuTte+tVv4zNEzsXh9ogH+lzJEAcL3iPHp2tz6Wb\nZAIsnexv0J/XX409XMUZSBJSAwHVL/wIZFKpq1heirGeOm2ees/xe57w2tnXYN1hKY+ISA/FkcpK\nyFnizupnqcwtuP+8l2KLXhGRwUZajzfiXrUfbVD9lJxuhYSUxtervLY747k0wEWSQ/J9FxHZswOy\nl1GSIXE5ARGR0tshx+PSBSxxEhGJozieOhfXcmwM14vlwiIi8Yl4Tm1oRgxOLNXyp+bjuLZdRzD2\nhjt0HOqmZ5XMdYghxx/RMrq1t0CuwzF9yPm8qFQdO0INy5MLHXv5PppLXFqi9ildvqC/A/eV41ne\nWh1H4ij2smSxv1l/38Dzp3zHC157mGTAEdH6uYildM0HEYdnbPmw6jc+js9oO4lnwnC//rzkFdgj\n9dNzSGS83rPxsV6k5/6khfoZ2JegJX0uljljGIZhGIZhGIZhGIYxidiXM4ZhGIZhGIZhGIZhGJPI\nZWVNXC277mWdXp5JKdHcL3tTseo3NjjitfsoJTrNqWjN8qA+qkJf87SumMwynKR5SAkOnkOKLadn\niojkXw/5UhKlaFc8cVL324LUu85jkMBwOqqITlvjavzNLTo1Oi0Bx5GyDClRbppa2ztIkS0Jcaqh\niEgvVYNPWqJTcPl61nfgGgZi9P15+yzkaWHkShHr16lZDz/8itfethTSlJxkna55qIJkUiQV2hiP\ndMW2Bu1UkDYdaYWD/TReKvT1TKP01C5KdW2s1BXfZ+bgHMvJAcmtPD5jHeQTFY9BLvEeSdc+SgXe\nKiGF0xxzrtQyjQP/CTkMH7v/DZ1ut+hruFdNr0IOlFCo50EGpdK+8v0/ee1NP7hD9UvKRnX01DxI\nBN78ASQ0nX1avrKIJFhj7NC2ukD1Y2cLlpE8eO9O1c9HDk3L6dw5BV1EJKkI42/wHMZE6UYtKWyi\n1NypWj0QEmbQmNt9QLuCsfPZrz75I6+d7VT13/4jqgZP7kgrPrFS9Qv34dq89S+/9torv/Mx1S/9\nKKraH3wIrk7L70Qwevjnz6r3fOkP3/PavdG4V9f++LOq3yvfh4TqN/c+7bXv/sT1ql/+Ejjq/eUL\n/+S1P/q57apfzmrclOpdkD+1nzur+v3bd//ote976+MSSrjqfvq6QvUaO4FwnC+6SrtHcSpssAJx\nl6VkIiJRyVhfZt2EFPqBZp0mH50OaefJJ4557ZlrELsyVmn7sbSsjTjuYsQyTvMVEUlaiLkzPEyy\nj1EtF2DJRUQ61vrqXdqhgdPD/XTcYwMjqp8rpQ41mRsw3/rv13K8WNpDnCFJpEsyScVYMh0dFaX6\nsZNcI8mCoy50qH4X9iP9+orZcHVit8MLL+qxXnon5kQOOVD1Ven1iaWELI1tImmoiMgYSQOUPNRx\nJUqcjf0Xu9SMOvexv5aOY5mElA6SnqQs0XuWTJLidJ2BjIQlTiL6HMf6cewstRQRaX4F1yl5MVLU\nXQkbS0dSluKYBltx/Xscl7ehVuyhfeRuFZ+tZW8jIxgv7OQUl69lH6N0q1iGM+zISKIysG73VePz\nArO1FJHT8yeCNJKS99XruJKxEnGLnbH4eEVEYouxTibOwj6DY7KISMbyQq9dJNjDtDjuZuwC2kL7\nAnZgGR7WUnn9ftwr1+0qguZfYS7G0hRHD8TPGn66V52HG1U/dopjdzR3bLLsNtQUfwgOdVWPnFKv\n8XnxMVW9WaH6dfXjOq2agTUz3HGBbHwR74ufRU5nuVpmHEmS1KgozKWOWjwLpOTrjV6wCxKdjLl4\nrfmEXgcaOzE+Smcj1jiPDxIowrjsPIj7NrtAr8d9FCfry9CvZJPeO/jy9DmGmrRV2Dt3nWtVrw13\nYi7xviUmXx9T+lp8Rv1OSIX4foiInN6Fa817+fxF+toM07rWRc+FVa04vpRlOv6zI2EqOSRXH31a\n9UsoxN/iuRPpOBa37IPL3+XiIa8hvSQDC3NkwTEZ2kXOxTJnDMMwDMMwDMMwDMMwJhH7csYwDMMw\nDMMwDMMwDGMSsS9nDMMwDMMwDMMwDMMwJpHL1pyJJR1Z13Fdr4NFhGx3Xf+y1hBGk81x13HoMwfS\ntf1xH1n6jXSSPXVQa+sbSOe3cBha2owNhV572jJdG6O19WWvnTQV/Qqv0drorhM4x9gCnHtUcozq\nF5gJPS7X1Jl5tbbmbnsLNn18LQcatB2wa/8WapQtm6M5Zk3rsi2oaXD4VV2H5M4PX+m1D7yBWhl9\ng1rPe/O2dV77mRdh0Rvn1KbZtnix1867caa8H41/0WMuMAu1CupOwcbOtZXNTYUGlW2doyK1NRpb\noj/43Gteu2dA17ApPAf98tWbYXfHOkgREX/W5TWEfw9VT56+5Gsrvn6F1x4fxViKjNbHc/Z3sAVM\nXw9NqN+vLd4CU6F9Xfb5NV779O9fUP2i0jAvju9FHYTkOPxd1/b1wMOoPzFvM2oqZK4uVP2qn4Zm\n+dyxKq990w3rVT8f1eR47QnUTul+VY/z1V/E+1ib6k/Sc9ufov8daq771xu8dmys1hJ/ciMs/j64\nBtf9nXPnVL/BTtyfvFyMzdF+Hc/YenPBVzFG5gT0fPvdt7/ttSuaUY/n6hLUHuro1XH4mW//t9eu\naUP9hPbgo6rfF3+EWJyeBu31ffc9p/qV7IKem+2f2Q5RROS3n/0Pr33rd3AtW97S9QK+/PkPyEQR\nk4V6JMNdOgb0U2zn2iotb9WofuRqL2lk0+pqmbkGTX8d7jvrqUVEolKwnq74KsZ6QgpiemystuVV\n62LSKq89MFCn+tWfehH9ijBm28t17RM/HQPXvuo5retrXGTb5W7c6+Ql2apf234cx7TlEnroEkal\naHvS7nLUj0nMQT2PuKm6/hPbRhffgHj2/H+/ovqt3oDaFoWzUOfq4P37Vb8sqi+VGINYxPuelDgd\n19lKNoo08wXbZ6t+Nc9hDTm2D7Vt1i1bq/pFxqFeTsdR1D7oq9A1PnJvwFio3416LBmL9H0cH524\neiUxuVRf0Cn2wDWfxvpwjQJztCUuW+l219E5OvU/RkcwF3vKMD4Kb9V2s2xfHEM1MJIXoN7fYJuu\nxda4H3vFHKp3dOjnL6l+sz6GfRPXPnGLlSRlYt2NjMN959o2IrrmYPcZ1G+IL9E1AtnmdiLobwxe\n8jW2GU9fgVgZ4ddr9fn7UC9tlOZlhFPnImkanlfOP/SW1x5u07E8PA7nXFuHvWhuFvb/wVq9Ry35\nBO5PdwXGCNu1i4gECtOoHz7DHRe5q1H3reYN7KeL71ig+lWTlTHXn3HXiQj/xN3HHqpB4ta2CVL9\nHrZgHh7VNda4zkwWPdNxvSYRkbpDNF+2oQZj9zm91oz2YU/U7kMsy1yLz+7rK+O3SEQU1oLyx3d5\n7bxr9b5p6XWoj8m2yH21umbSINku9/VijCUV6jl2cRT3KqsQ+7rOd3V9ocyrdF3XUNNxDH/Prd8a\nk4u5xLW13PopQ914LkxZjv12x/561S/ah88r2oCar6d26eedudeintGpk7AgZ/txrv8qItJH+6Wm\nt7E/LNyk17v6A1iDU+YhRtfs0OMifhruV6AYz5hsFS4i0vgi6vP20vNxjlMrqL+JYp5eqkXEMmcM\nwzAMwzAMwzAMwzAmFftyxjAMwzAMwzAMwzAMYxK5rKzp7OOQr/jCtQ3UONngsiVu02mdgiWUncSp\nuZVN2oJuXgFkFv/4a9i+ZuTmqn6/+vYXvHb7BaQNZm9FSlRjnbZ9jYpBilhbGVKxXatOTvHk9PLe\nGm2Rffp5SC4W3QlvyIEmnfrfR+n5vWT7x3IQEZEhx2Yv1ESSFXGsY3nG/256o8pru9KeV15Ayujm\na5BKVn1Ep+tzevh1G9AvMlHLmrI2IsW+5zzuI8sC5t+xRJ8I2SiyhdromJaFnW1AWvHGcaQcJ2Xr\n1NLqCozVtARch49/Stv3Pno/0v+7aCzkb56m+vVW6bTvUOKnVPPc7VoO03UW14Kv/5l7tYVt+grM\nJU7Laz6r+7FUw5eIz2us0ymjbWfoXs2na0HT6t3H3lXvueLrm712OMntzt+nbQp5Lq7/Kix///Ct\nB1W/7TdBRneO7vuW251UfccW728MOGnEXScpTXm9hJyICKSJPvzVn6jXsshuvmgNUlc3fO8jqh9L\nRiLiICONTtNS0c6jiLHn/4L5e+83v6n6tfUgDfdT/wEZ0qGfw7b8jtuvUu8Z6UK65skXEANuWb9K\n9fvBFxHL15VC9vkPv/yU6lf5IKyMu8h+3ZX5bLoS8TZtKlLIH/rXJ1W/jWsWykTBa9+Ak47PNood\ndP1jcuJVv7aDGKss32GLVRGR6Cy8L4XkIr2OjezYAGQbbNPbEQ6ZWsYynQ5dTmPCn4mFeu8uPRev\n+fJWr13x1Jte243pnLo+2oO1z5eobaUDM1gWjGtZ8ZS2X81amicTSeUDGHMRUXorNECp6PEliJV8\n70VE2kiqzfdqelaW6hcZwDVImYE0/KLiWtWPlTlZm7FGBsoQ42Mcu1hO527dh89rjdKf3XYWsS0j\nEWvh2SdOqH5Tt8B+XdmRrtX3Y2wI1yKxEHKshne1LI5T10NNB6X8RzrjrI/2EgU3QJLANrwiIjGF\nuJ6xAUqNdyQh2Vswf7pO4VoOB7W0u7cC86D6bci9smZBPuzu+TIWIfV/mNLkMxdre1iW/xStwj7F\ntbXvbjvmtWt3Ys87GtQS8GiShflJIhwRo+9Z/bOQ1hY727JQ40piYtIx//pbIZ2pvP+46pd3I+SC\n3WW4P9lrtWYgPBznmbIce6KGHVo+fOwUxkkCSQxZFseyeRGRmDjM2WAkxkGgUFuTR0bi391nEPfC\nnDjUcBB7sykRtF/6o47R0z4OGVtYGObB6KCWOreTTDFvuoSU7pOIUamrci/5Gu/t8mbr8T1GMqSk\nOZgvbU5MGadAWfkQ4ldsrpbh8FrDduh9NEfjZqTwW6T5IP5WIUmZ2o/rZ9soksC37sEeaHxYP4/E\n0+fn34wxGu7c68q/Ys76ab/gxjX3OTPUZKzGs3jj65XqtTiyBR8lOW3rBb3WDJFEsOADmH+jfTr+\nHN6BPUjzM5AhJTvS3X2Pod/sOZhj4SS3dD/7HMl4h0YwrjLIKlxEJDoD17rtMPZlvGaLaGlnTDzs\ntwfbzqh+nW2IxWnZ2NN3n9a25DG5ek/oYpkzhmEYhmEYhmEYhmEYk4h9OWMYhmEYhmEYhmEYhjGJ\nXFbWlD4N6XtxxdqloOsY0qW7jqBdcp12LOIUzegDSJWMi9IpQyyjue+f/slrh4Xp74/KTiBNNJxe\ne+aHkDLlp+oUwkFKaSpZhdTUwHTdr+kMUpSDdDzuMbBbAqd2cVVuEZFccqAJo5TEmHwtr+mk6zcR\nXChDmt6MZJ2KzlXPOVUwPaDTA/NzMrx24wmkfmUVaOcDTvXL3YSK8oPdOqUrOoC076gFSPurbTvq\ntVkWICJy5l2kmeaQBOTg+fOq3/rZSKNrD+KehPVpCUtyLGQgY+OQT5Tt0emtVy9GymhvP8aFW5Xd\nTccNJUOUshcWqSWGvgTMpfZDSL2McyqtJ87Evap8ACmU/e36usQk4h6yS8GKT69W/fb9Bk4H7Ag2\nheRn2cm6Iv2vv3Kf12bZmxtf2HWklWQfH/rKdarfJ+/6V6/9qx992WvXvKZT1xOn49zHSc44JVy7\nXCQv0nKEUNN2GsfV2Knlkj966k9e+8cf/pzXHvj9TtXvlm3v7zxV9YCWJ0QEEG/TViMNM8MZp8VL\nbvfa3d34jA3/DMlY7Qnt1NVDbjaf/iFcpp7+j+dVv6XTIHfLpbFQ86iWsLx2Eu5wn/y/H/LaT/x4\nh+pXS85QIw/gb33/oW+pfmd/t08mijZyHBhs1nMn60qsLyz7cB36MtYhtTapFLLbCw/qe8gOOUFy\nw3CdIxrfwLoYIFeBLkqlPfofr6r3DJMc9HNf/67X/tkXv6j6PfZT3INVs/B3O8u1zDFjOWQvPkoJ\ndp02uk5gvRsbxDHkbdSyK5ZeTgR+khe31Xao1xIoRgxRfGV3QxGRQB7W8uA5cvDZWqL6Jc1Gin53\nXZXXjsnTMdpH62cnXacEcojMm7dNvafqwDNeu+IcYuXIGe1gxtKM/DnkWJep06t5DY8iqQvHdREt\nY0tfhfiSQONZRCRIsSLUhJGsJGNdoXqthRw6eC/hyg4aj9N+Zi7if19lt+pX/SL2BXGp2APWPq7T\n2nnPkZqA+3v0HciLMhP1HvDe5+DK9Kmrtnjt5MV6PeLU/cZzcASLy9KOi9EByEqyt5AUz3F14rXV\nR5Loxhf0norX94kggffizjH2NiLODJDDyYxPrVT96l7Ffcig8Vh+/17Vjx3X2DnIdfGaQXtC3mMu\nIol5bKbjwhTA3nN8JuRuIyN6re+uxz6ApSJxzrNBYgZk+cPDiFHxRbqcwDg54LXRM5LrYMb7qlAz\n0o+x2XGg4ZL9WmoRDzKn6VgRW4Tzj4wkx9wUHZ/n3Qlt3fG/QDofF6Yln3/42eNeu74Dn/HlO2/0\n2oFpep1hyTaP++792pnLR9eS5W0JjkwqcxXcwUYHIfftOKWf+1LJtZGlX8NdWjbJUuCJYKAFsinX\n3Y2fcQs/CAcldlQTERmiY+4iF7iek/o5kJ85M6i0xLgzbvkZfqQTnz1Ee4uM+do1L2ceYj6vY73V\nei6G+3Gt0xbjHow5LsB1L5Z77RhaM32O/KloC9Z+dqN0ZVLte0mqd5AXBdwAACAASURBVL28B8uc\nMQzDMAzDMAzDMAzDmETsyxnDMAzDMAzDMAzDMIxJxL6cMQzDMAzDMAzDMAzDmEQuW3MmOvvSVk9s\no5l9NTzZap84rfq1tkMz30k1P/JStC7v4bdQv6KftF6lOdpqrYZqDkwhbWpBGvSiKelat9nRCu0w\nawgbdparftkLoNONjEe9htYD9apf1oZCr8065LzNWjMfGQ+NWQtZrQ05uvXEBRkykfB1OrG7TL02\ndx1qCPTXoIbKYL3WBrKd25HDsDBc5OiDB9qgUYwha1FXR9xVBc3tENclyoSW262tMpX0j28dQc2K\njXO01jCG6hnFzYP9bNk+fb9Zg//hf4Dob7BFW9XFkg740Z+ittE1y/NVvwGnBk0omX4XrIFf/uku\n9drqO2Ff3FYGHWv6HK1Db94DDX6wFdrRqEht3xs/C3Mzm+pmtB/WOuLZW1Ff6v9877de+7tfgPXz\ng3v2qPfwvcrainokR/+4X/XrHYSuNDICYSruuK6Z9MMPoT7Jg3+Bbv+jn9d26GwJyJrzw48dUv1i\n/fj8Ei1pDwm5izZ47S/+fr56rWofaqjceNsVXrv5iI4/RR/A+8r/AIvB5d/5sur3x8983WvffAfq\n+zz33cdUv+g0zLk/fv0Br715LWotdTfo+gvrf/A1HMPLT3jtPad1/P/NC/+Cf5CO+Nef+6Pqd/11\na7w228Ve/9WrVb+EAmiCT9+Dmgt/+pL+vP4haH3XSGhhHTFbY4ro+ips85i9eZrqFxGBeleNb6NW\nwlCP1pezTXLSPMzn4AWtwR9uR2xsoet3thw1xTqdmltsoR5BdsejY7omB+u/Y4sRC2udeNq8C3WD\nCtKxHjd1atvvhbcv9dqVTyKOu/WeOk8iluXpyxcSuL5LTpquxTBCVuCdpJkPd+rPvXjkiNcuTEf9\nhM3zr1D9YmOxNxiNxf1OX6nXEH8srsHYPNzTsDDEpe7uI+o9o2TfzrHyQLm+Px+94xqvfTm7VF8S\n/tbFEdTdiHH2gz7S8Q8HyTo9cGnr9FATlYl5NNyl91VjA1i7Ygsxbl27+gSqF8H3PXlFtuo3fola\nD4NOXYbxk5hXT76Dde3N49g3tTdqW97VyxGfK+tRKyFlud7/8rVNzENtg4FebTUck4w6FwM+vNZZ\nputmcN2L7A14D9vCi2gb2YmgpwJ1SNiKXEQkfS3GKtcL6ijT6yLv7WufxT43aYHeB7VTzbB2ejaI\ndepgci2wD92BNTeQASvf+HhdY3NoCLGC52xXhd47dRzG/edz8qfFqn71h97G3yK7+pT8hapfRATu\nV9waxNtzT+oacOM0n2WjhJSCW3Atmt+oUq/xM8i0xTO8dkSctmxnRoZwHmxdLyLK5j53HubIaJ+2\nDmfm5CPWJs7FM5cbrzJpHowNkAXzFUWqX/sh3NO5d9/ktQcH9dweHcLzRBPtwTPXaEtntuoebaAa\nk45de79T2zTUDND+Ie96Xduu8wRiE9fUq3vmrOrX14tYzDW4ikv1erdYMJcGaM+Wu1Zf66QDmBfp\nm/Ba13HEr+ZjJ9V76o4h7jV1YSxNTdd1jiLCETeyt2Kd5usgotc7Znx0XP2b60Y1US1AXqdFRHzp\nl6//ZJkzhmEYhmEYhmEYhmEYk4h9OWMYhmEYhmEYhmEYhjGJXFbW1EBWhCUf0in4bA09Noh0ndQ1\nearfO79FutPyGZA//eDBh1S/u6+88n2PIWOhTuvM70Yaoo9SeFnKsvPtg+o9N14PS9hnH3wDxxqv\nUzfnx+Dzus8gLSvnSp1T3XsBaZd5W/Aap1iJiKSvQQpX5kayU3PSm5pfprTimyTkzL8JltYdh3TK\nHdtjsvwrMlxLijqqkUa//TZY+bopveFReF9KAVIvm8/qe1L7NNJOZ3waae7+WKQbXnTs1Pg6bbkO\nmpP77ntO9fvgFhxffDFsZaf16TTCXpIh+RKQgpo6a7ru14L0uKkZOD6WHIiIDNRNnKwpWIUxl+XY\ncHL63YIvQ8TRvFdbqYb7cT1bSNKQ49hds13ssfNIy1uZr2PAJz73I6/987vu8tonDiCd/o7169V7\n4kuQmnvf9x7x2p/82e2qX9shpB6z1WSHI63y0T345DW3eu3IWJ0uu+dxpJevTFyM9qe16IXn9kTw\n1Dd+6rWPV+v787Gv3OC1n3n0Da/9pd9/U/VrPwcpZTpJLNuadqt+V9yFuNfbgHTrM3U6Bb73e095\nbU75PH0S974kT6f4N51/HZ/3MmQav3n+h6pfTyXS1V+69zWvfapGW4GGP4/fCTi99Su//bTqV/sy\nJB2cEn3XPR9X/VoOX5CJIn465gtLMkW0FDM6Fam4fB1ERCJjMWeH2vEZvE6IiIzRWtFK0lhfipb3\nJS3Met9+bF/e3a9j9VxK8+7bsMFrP/HOO6rfFSRFZEnXmBOfWaqcvBLrduRZfayscC0kS3A3dT1l\niR5zoYblLWxdKiISKMG5jA+R7IBktyIit5XC9pjTnsfHdKrzwADkZbxG/j/tvWd8ndWV9r2tdtR7\n79WWbcm9d2MbG2MwjoHQAiSkkYQkT0LgSYbJJMMMmZCQJyGTMkNCCr0GG7AN2BhsbGxccLcsuah3\n6egcSUfSUXs/cV/X2sF+fu/k6NX7Yf0/bXP2fXSXvdfe92Fd65pgyaRGRpDOHhYGOdDwcD+15XNk\nmXRWOo6ZNyTtvNk2uG4L5myfJbMe7MTfytqAtdAVJyUX3ovYE7Dkp79FyoLHEl4bWnbKOR87DbEs\nmmRNbfvqRL/MNUhl91RCNt/fImWAfI3VpxFD88vlnje3DPL4wVNItXeRdHDj6tXimAyap5NnItXf\nVyflpB1kXx/xZYxFV4zcEzSceB/nTePXtsbNugp/q+MA1tyEuVJi6PdIq9xAw3GFJSvGGONrpH1a\nPOZYb7Vcq7ur8O+sDXLsMywVa9mCMRydKW3t644ijkaQfC40Cs8+Lk7Ki1rrICPqOoN4xjHeGCll\n8pEUlo8xRsqQPCSvTF4gn2NPNWQbLO1Js6Qzfu/YPUd+r4kvk9IRtitu3YP7mrwwW/SLL4UcdpRi\naPY6+TxZitnfhPvX3CTX2Qh6L5xThHnOUqak9MXiGHcH1j8+B5ZuGmNMVC6sn3t7YLXuPiufoY/e\nC3jta94j41U0vavET8J98DVLeU1f09jGV34nZFmOMcakLECs85zDeOSyF8YYE0q/CeSQxDkyV86x\nlMVkH057p2ZLFsd7PTdJAmMmYp32W3ux7j78OzcZ62LafBmv2Zo8cTI+C5sux/CFN7DnZUmXbXUe\nlYVrDE9DjPZb6yzLhz8NzZxRFEVRFEVRFEVRFEUZR/THGUVRFEVRFEVRFEVRlHHkirKmcHJxqXru\nuPgsdQbSHnsp9dJvpe+lkQSjoR0pZ498S6ahc8po4mykM/daaZ2zN0Ci4zmJ9LG4aZCbnGuU0oen\nXoC7zY1LIIdhyYYxMr03PBYpR91VMlVulNIuD78MtxdOnTJGViz3dSINMWNpvuiXMEemkAYadi2w\n07fddA8nbSp32kM+v+jHrg2cppdz7STRz0NV96vfRxqY+5B8JuwA0teONL0BN+5TSKSUphR/CXIU\nTtH+SuJNoh/LyzgtMWNloejXTw4nIXRfejukC8CZPx122mXXIMXfdjBIXijT5QJJTD5SHgvWywrq\n1dshHeyuoLEaJB2yYsmFid3Rvn3ttaLf61vw2dUL4Nhz/ki16PfL+yA5+c9XIS27Yd48p737lKyg\n3r4fY+czCxY4bU4TNMaYMHKDa30ff5cdGYwxpuYgPut9H+mFU1dJF4V5qyDJurgXKagxh6U0bZCc\naso3moCTTvFwwd3SDoqlWCyfq3hyp+j37I73nHYEpcp/8/F7RL+ESfiOkBD83c3XLhP9Ykowtny1\nJG0kqd/wgHTwiU5HzKrvRGr4K99/RfRb9w2k77eRlO6RX3zDXA5OY6/678Pis6U/+rHT7uyEk0Xb\nqUrRz32I5Jufrpj9H9NxDI4Fg0Ny3KbPRsp8Tw1Sze1YkbIKYz8yHWmwvhaZwjzUizicdlU+vrta\nOiAZS2L0CcW3TnPa5akyfTsiAvGq4M9Ix2+qlmnZ+fPwd6s+hMvevFvmin5uui+eU+RaEir/H1DV\nSyeddnIpxqhl6Ge8lRTLZpiAMzqIMX3hA+lYFBP+6SnHvJYaI9O0g8OwhjTtuCD73Q0JNTuXtB2S\n8r6hbsRydhjKmb8C5xYj43/ENZCnXdi6y2mXxMlUc18N5nYwSbhbuuRYKszAuIgimWPNNukSFUsp\n5SwVst1F2usRH6ZtMgGln1L+szfJ+zJIMoRQ2ksEh8s1pKsCY9XFDlRWunoKre91Z7GfaTgj9zYs\nsd9ELkzleZCY2LJxdlIbaCbnNcvpbMp12H/4PTi/nppq0Y/lIX0km0kpl5LtAR/m2ADthzzHZQyI\nnzm2jqIcIwpvl5O9/Rj2Y7wXt1238m/F/tVDrlS266f7MNYGDjn23pid2aKyIGGp3wHZdv/cF8Qx\nsdmQ6UQswrr6iy/8H9EvNQ7f19CBa9oYtUD0i8xDP5YK2fGf34XybprqtHsb5XoSkyflb4GE5XP2\nPs1TATleKMWl3lp5HTwGI7MRW8Pi5D4tgqQj5w/hPW7SCvk+Ukf3NpbW2YLpcPns6joqjhkl950e\nev+0713SREituPRBw04Z+10RiD2VtRjLk0vzRT92tetrx5wNsST6cVNSzP9XuJKlo1DdK5DDhqXg\nmbC8yBhj0snZqmE75kvCFBlHeurw/DsPI46yG7Qx8j0ukeTOjduxlw+19liNbsgcF3wejrYsDzTG\nknGRA2VQqNwTpC/Ld9qRMZjnsany7wYH477UNWM9n2Cti8ERV3bA08wZRVEURVEURVEURVGUcUR/\nnFEURVEURVEURVEURRlHrihryqSK5+wIY4wxPZeQjpS2PN9p224q82+DxOHi60iJipssU7Nsp6NP\nSJiWLv7NKYqc6uSrR/pZfor8bhfJs05cqHbasZEyZWtkBN/Hjk/sQmGMMUnk8lTThhSpwhx5riN+\nfB/LeOwU93Ovn3baZRtMwBmh9O36SunWVLYZKaQuSiWzXWv2k0vKmntWOO22I1IC1HH001NGT9dJ\nh4T5S5GC2vYBUruz1pM7hOVA4LmEv5Vaiir5F08eE/1am5FGHVaBFDP3cTnGcq5HGnTdVrhH2S4h\nLCOq3QH5ROHmqaKfSJeTGf//MP2U5ti+X97L8q8hFdZzHmmc7z31gei3ajnSqvNojoRHyvT3pZMn\nO+2T55AyumCdTDfe8QpkJfffhzTRo+9ByrR22RxxDKeM8rO2XW9GhzFfJt9ztdN2X6oS/Y4cRdpg\nYjQqo7/1krz2z3x7vdMuzUC/mPwE0W/Xo2+bsaToFoz7/nbpuLD18bec9ud//U2nPdAnx23/6+84\n7X998d+cdstRKSEbTEJa/29+8LjTXjtDPscJwZipLNtIJxlgsEsuFZ5qzNllqyB9++lvpQvf6l64\ndZXlQBbQsktKSmvakfY89yaMmRSrsn7Vgb867cxyOG21vv+O6Ff6VSnhCSSxhRgzmauLxGenfgdX\nsKTJSEO3Y0/aYsTJ7hrEWp/l+NZJUqHsazFfwlOlc071NsyD/GuQ2p2Qi7a3RaZb99SccNrBJBFI\nTZfubT3nEE8zkugzS4fkayXXDEopLl9XJvpxynsIyWt6L8oU9/QV0rkq0PQ1Qk6bmChdJFj6wunI\nbbVS4hxOsWTHk5Dxrtw4X/Srfh5zk92+Tuw+I/rNvg5zMzwF3z00xI4fck74eqqdNqfGt1nrRDg5\nznC6ev9Z6RrHsoPuRoy/nvNyT8CyA3ZjicyWLphx5dL1IpDE0Ryre1ney+RlkHs1vYsU9ZLPXiX6\nDQ5ifHecQFxjxy5jpHKQZW+x2XKfUnka97OHHEPYIbEkXe4Vee2KKsL3FYzGiX6h0Xg2PeRWlDhd\nSuMb3kG6fyKVIOjvkSn9ETH4bKgXa6vtlDnYLWXugaavAe8XLfurxWfsMJWyCM/UlnI2bCMXw6Xo\nZzslxU7FHInoxhgOjZX7oJlfhxSC3ZW4nVosZUgDA5gvnZVY4555/XXR7wufgS3r9Px8p525Tq4n\nvbQesMzOlnQlzMR4anwLzz5rvXQ58l7AWM/MNQGl4wCkPSGWpJKda3tJOh3kkvKnxt24Z0n03jI6\nJOPuqf141mWLaF1Mku90y9ZjLxFbLNe1T4iKkveont79WG534S+ytEfaSlxH9Q6sv7tOnhT9ZhVi\nH1VaiNh9pqJa9Dt+Cs9t3krIke24y++pk6XpW0DgvQXLhowxJnUF3iH42dn7w86T2O/M/PrdTtvr\nlfeQXakiM7BuhMVIWdMQuT+xxN5PsvJQI+fEkpl4P3vxZ1ud9sZ75E2LzsV+bsSP77NjoPskrYWx\neCbFi24T/c5/iD0wu9DFlsr1JDhSZU2KoiiKoiiKoiiKoij/v0V/nFEURVEURVEURVEURRlH9McZ\nRVEURVEURVEURVGUceSKNWfCyE46LE5qwFjHOUw22DHFUlcVEg0bsKQS6MtsPVd0EXRfrKUNbpa1\nblLmQbPnI51qwY3Q6A31DIpjkmOhK2UtvLdPalFrqe7BzXehzgVbbhpjTP1hso0k3b27U55r0Vro\n/SOboW+fYFmLxkZIm7hAw/bKOaWynkrPRWhQu07ivvksC74VN0N/e/FN1GfJW1Us+mWTxpVtD1O9\nspbCsA9/K+saHMP22XFxln9qAZ6Drwfa1GBLf1u4FOf02GPPOu3JZHNojDHrqV6Atx71Dk4ekzrL\nSVm4ZwkTMYYP/ulD0W/OrQEuNEOExkDD29DULj5LJ6vMnosY30OkTbX5yr3wNN3z+iHx2aJVuO+P\nPPKI0362+Mei33X3rHLau55GjRfWgQ77pPVs7BTovVv2VjvtGEvf70rCnAgKwrU3vSPt7XgOzyzD\nc+8flDHg0FOoBVJQArtjV4Kce6seuNqMJT/55n85bdaaG2NMMtWyevWBJ5x2RYOs6+QbgI61fg9s\nIKMtq0e25v6nZx5y2m//y/Oi34UD0NIWUy2EBrIM5edhjDEjQ4jflYdRy+Sh798t+iWXYW6vm3n5\n+eH6K6zYn/rlFqc9OStL9GNrzDv+Hdrov+zcLfrNOI/48I2/rLns3/2fEJZAtbksK9AUqv2QPBtx\no/ZjaZnMFpJcc+tclawTMmc9LOCjslF/IjJGFgxIn466P77uaqfN+nnbKjZ7Lmr2dJ15E+e9UMZJ\ntrl/6fc7nHZpR6foF0b2wGWrYWXvSpR1ALorcdygG3UUer1yPa55EbXYsr+/2QQarrWUvkrWt2l8\nE2O/ux/nyGu6McbseQ5rwLwZqE12bKes/7TgNtSgOfsaahIUF8t73bwPY6HgRmjmh4awf+jq+kgc\nk5CEun6XnvuD006cLdd6rokTTnX4Pjh7VvSbUo578cZj2532vHlTRL96qmvC9uC2DWp4arQZK5rI\ntjbzOmkTPUR7jCEvaqa4aypFv8R8PLdsqnHVcESu797zVK9jGe7R7uf3iX5n6lF7IzMRdS4K02Aj\nyzVmjDEml/ZRTe9X45jPynpNsVk4v9AY1He041B4CmJj+0c4n6RZsjaN+zRqQHAdE5dVZ3FkWO7X\nA0001wOx3g2y1mENaTuMtbCnSsafFKozE56E67ettDs/xt6Wa6xxXDfGmHqqYTNC7zjJZKnu6Twh\njrnwZ9RmPHURtYeeefhHol9FDZ5JFo0Ru07UQCvq7fCeJipWrseZtO/urUEtlP4OWdfO3tcHkpRl\nqEfCsdUYORe5rlp8ubRWDiL78p5K7GXbuzyiX0E6jvPSemLbE0flYM3sp5poPh+eTXCwrN8WmYV9\nGL/bdlvvi3zmVc3YQ6XEyTpR//s3v3HaX735ZnM5uCbfQDPONSxRjksf7ffHArZpz9k0WXzGdV7Z\nVjsiV9Zsm3TzOqfd14exHhQkx23H2WqnzZbhafkrRb+6E9h3+Kk+ZdpcrJ81+2UdQ/6NYQq9+7mP\nNIt+AzQueDwOdMrnnTwb39F+DHHI75exNyINsX3iF1CTqvmAfK/kd7VPQzNnFEVRFEVRFEVRFEVR\nxhH9cUZRFEVRFEVRFEVRFGUcuaKsqXU/Umyj8mSqlq8aaWZs38h2WMZIi9zEGUiZP/uCtNTKmY+U\nOE5Ny1k1U/Trbmr41H7Vf0OqcNI8mQrvOdPqtCvPwG5xzVwpm3nqnfec9vQepHPFTpQpnqlkabdx\nNdIJWUZgjDFuskEdpLTa+DJpLemy0ikDTfxMpGrZMo6W96qdNqd1Js+X9zCOZCdP/w62gNdGy+/j\n74guQrrmjJtnmcsRRimaISFkbRgqbY4vvgQJRxKlbO/dJ8dSE0nX4sku3ZbS/fUJSClWliF9ePvR\no6LftDl4xoM0nqdfO030sy3SAwnbuBVOl5IGTvNjd9sN371G9Guj+czpmvPmy3R1dwXsNv/93nud\n9ocnK0S/HJJXzZqCtGy2in3juffFMaVtGFdlN2H+ec5Ii88zh5ECuPnnSA3s7ZJpup998HqnHZ2N\nMZrnkzbnbzyMZ111DqnDaSvzRT++L2PBgolIvb/t8YfFZ9u//x9Oe+W/3OG0v3P9/xL9MhIwL3KW\nz6ZPZPr20BBJ3IaQunmwStqRf/UHn3XaefNgOT48jGOe+Oq/iGMWzsf93fCTrzntpmNScvHRo4gV\neasxRmp3yhTP8q/iGS8jieG0+xaJftt/jOe47SfbcA13XS/6sZw20MSVIn4P90v5XBythU27IMEr\n+6xcxwZ7sB6cIkvN5XdKC3BOMe48gRgwPFH+3YgEjH3vJbLYnYY198KTH4tj4kown0OjEbsGvQOi\nXxjJVOYV4xnasuAQkjX1VOEcwuLlGhFTkkif4btzM2VqdPUz0pI00ETTedS/IaUucVMhX02iNY2t\nMY0xZulNGLd7XzrgtOOjZKp867vVTnuE1qHoQilF5NjJUvLk5GVOu7NTym3aG/c77eFexK8//uxl\n0a84A5KWiDDMj4I0KS2orYLNewJdx9a394t+16/F3GTZIz97Y4wZaIEkq2ShCSi85vaRdNwYKcfj\nPVBUhhxn8fHYmzQ3Il7Z63nmKtgct32ENWT5ZmmnPP04bGR7ejBHYuNxLyeEWVKbjyBRmnQPYnp4\nbLLo19eFvewIye3ZntgYmaofNxXxiuUlxhjTQ9bK8dNwjzqPNol+rhQ5ngMNS6psW97QCMgEOF7Y\nc4f3213BeAaZq6X0ProA6ydL83I3lop+oyTlavkQe6e4IsTU4GAp2fR2Y3/y8SXILE7WSlnrndfD\nzjeMbO09Z+U+iGU+LpIiBlkS1VAuH0HvP627q0W/hDlS1hZImt6CxHBoWJaCiKb3wohszD+WyRhj\nTBy9a9Udwxxr7pLSkYIFkBV2ncI9C0+TckFfPeYFP/e2asjce2rkd3PcaD+MeTlxo9xTsrX5VJIk\nvXbwoOj3m/vvx7n2Yl4WFct3rHh6P+a53bGvXvSLiBvbMhh+kvM075JlBNKvwn1PvxoW4e4TLaIf\nW8r30HtCzpQNol/CEsTOwUGsG6Ojclx0HsFzqDmL3wDuf/xxp/3PX/yiOGbqVJxrVD5ihd+S+kXl\n4rP4XPwO0RspY2DzXsznFJK/Vn/4hug32IM9gvcUpNnpVxeJfn3/F4mhZs4oiqIoiqIoiqIoiqKM\nI/rjjKIoiqIoiqIoiqIoyjhyRVlTXx3SboKtFM/IPKSmcRpYT71Mr0ygFPC+dqSdJiTL1FKuLj9C\nqW4+t0yX6jiClKbMq5BWVb8Dacl/Vymc3JtYvtLWJtPZrp4OZwx2Pmm2HGKY0Fg4yVTvkqn6M7+O\ntN9+N1KpGrbIFOqs66XLQKAZHUF65r4/SmeBxfcgjb6H0uFP7pBuE60vosL64lKkf77w/gei33cf\nu8dpJ+TB2SI6WrpchITgebPkouki3CFGRnaKY9w1SMF9fiucJ+wU8oJUjLmjlFq6apmUVu3dj0r7\n7Daxaf580W//B0ivn56HtLdYa5ydee6Y0y6cdbsJJCODmBOpi/PEZ70NmHMpi/DZxWek3KuVHLMK\npqDy+FCvTHWuaUOa6BKSWVRukWNi6m2QaoQn4xnUvoYq7rf/6EZxTC05sHAqdtXHstJ6UTbSb+sO\nQhoVEekS/Vg26fci9dFOjY504bhZGzDPhwdk+i3L/PKk2isgsJPVzz/3DfHZ5q+uxXkNI16kxspY\n+dk74CjVdhr3OnOGlACNjiK98ud3/9RpP/zyf4p+p//6Cv0LUqGcOUi9vvNXXzPMzh8957TjjiKN\nt2KrHCMx5ESXMAVp85XbpUOMj1z5Jt4GuRs/X2OMufpBuACwm9STz2wT/W6YBwcbc3mDhP8Rl55F\n3EhZlCM+i59MjoRDmLNte2Rae/IizL85K8udtu2KyOtLfCkkDq0HZKpzdD5iaNdxpBR3VyKlODhK\nzom6LWfpM6TFe09LNziWYETRPMpaKOPQcB/iSCRJlDgl2RhjkumecQp14w4ptwsKG9v/d8QOLOHJ\nUp6QPIekAfvg7LF3p5SGzSDHtQRy4OH7ZIwxxy9VO+3pBTgmZa50a6p78xydINbthDTEx4gIOeaG\nhykG+vEM4qx1cfYSpOXv24216uqZUt797gmsd6XklrakVMo+WIrCcq+oIik3sWVygSQ8DdcYnSul\n9/VbcC9H/IjzfsuFY3jBa05bOPtYBkVDvZAisnuiLZeOn4b9R24J5mz7IczZuuNy/k6/C052PI98\ng3L/y9ItlvhwnDDGmCGSTfI8sqVaXSQhZRci+/vMFZwfAwHLrUKs8gDdDZByRVFcibCkVmlL8G8h\nSdpXLfpFF0I6WPI57GFa9ssYnUOulUHBkNjwXjE4WEpM3D14PizzzEmW8rQjH2NslpDcMDpBXlMs\nyStH/OSCae1bav+GWJ5HLm+udPl9wZacLpCkLMH4seXhUTQ3kvQTSwAAIABJREFUW95FLLPXO98l\nkiGFk5x2RbnoNyGInPZIauOynOLiiiCTmhCMedBxAmtSkOWee4nOb+od9M4wQe73K7dgL1uwEtK5\n6625knst3n34Xfns63Kv5G3FHighH2M00SoxwXFoLEhblu+0h/3yOXaR7I4laekrC2W/87i/8cUY\n3+zcZIwxMTFYU9iVteH830Q/lqn3+XH9uYX4u1NK8/kQ423G+w7Hg5zr5buoeIfoxzsmx3hjjMlY\nhmfcvB+/CYRaEnpXEvYSGdfgmAFLTjXSL+ewjWbOKIqiKIqiKIqiKIqijCP644yiKIqiKIqiKIqi\nKMo4oj/OKIqiKIqiKIqiKIqijCNXrDnjSod2ii1CjTGmm+qThJE+tWnHBdGvtwYawp6LOCZhmrST\n5roobrLx67IsuqKLYIfmPo3PCj4zx2kf+8U74pi0+VKj7XyXpYWOJ8vBdtL0s67ZGGOaKvF3Mwph\njxV3QdawufQ8tNusa3SlSX270DmPAayxjouUf3uoD5rCEdLl+fxS11iaCevq/3j1Vad958qVop+X\nrBnzp0HP63ZLezm2IOxuR60etpBr+UjW+mHr1oVkSbzNsr6++euwA55/HjWGLp2qE/0SqUZA+lTY\n2J3ecUj0m0ia4E7SFIeflbUZ+LNAU3sUemh/h9TMe5owx0JDMKVjC6UV+VAV7m3FcehqWz2yTtTy\nFXhucaSZL71RWofv/e+9Tps11WHh0LXb1u3Zm6AxjUjF/Q8Kkb8T51wFO9Gat/E84qdL21e/G3aG\n3ZUYeyOW5pktYdk6zz6/4OX5ZizZ9JPNTjssTF5LRxV04x89Cns+W6/eT3UHHnrkD077extl7J34\nRdzDDUtQgyUsLEn0S10Ca/Z/+vKvnPajz0InbttNlixE3OPaKjO+IOs1XXgO9VmefeAFpz2roED0\ny5qOOPL0N3/stMNDZY2EssXQC1+qQIx+7I2/iH5/u/8nZqzI2Yhz8Nl2iFR+YrAL60vKclmfhWs6\nBJMtKsdPY4y59AGeKa+RJ/fKmj2h+7GGJFONoswl+Tgfywaa6wJEZMHqNCxBjssTb0MbXzIFYyWx\nPF30Yw36oA/rh8uyN/VWdjjtmGJo602Q1PSnrsw3YwnXbQiNl/ryqj+jtkwKWdMuXS0t0QfaoCPP\njsQ8DbFqdqQWo3ZE7nWTnTbbbhpjTMnNK5w2a/D9ftTdcF+Ste3cp/BZwhTsYTYtzhX9IjLxjBM+\nQjzkGjPGGPMkre/PPoK52OuV607VYawh2Rm4vglWLI8pSjRjBdcnsUq/CPj5Jkyz7IRp3LXsR30h\nrv1ijKxBwHUNk6fIegscBGrexDjiWgR58/LFER1Ul4nnYtrsEvnNFGv7qYZBjLXWR2YhBvi78Nw6\nDsv6T1wDjW2Hr3gzxwAet74WuY9q3YNnwvGV9z3GGJNFsS6G6srYtUI6j+IeFHwG8zlypayVFByM\nOZK3BvXcOqtRL2agvUYcM2kWxsLjr79uLsf8EjzXJjfeiyamxYh+XqrxwRbUzR83iH5FG1Egr+Zl\n1EJJXSbXHa5dGGg6D+O9LXGunGM87tJX4x51W+td2hrsC7g+0uEnD4h+OYVYe4KoviCPdWOMGaH5\n0nUacTK+jN4/R+RYz1+BOiG85va3yXE59/7lTnvCBKy/3eflNfVcxL8TpuO8k2Pks/b4MJ/5PXeC\nNX5Hh8b2fbHxLawvaSvzxWdROdgT9lGdwObd8l1t9pe/7rRrjm9x2iGFsn5ifz/q4/F8i0ySewtX\nCu7hxRa8f2+k+qD1NfK3gpm34jeBtr14f+q3ar+ERGCctR3CO2LXsVbRr/Au1KocpffUIKuOE9fF\n4ng1YtWJ4mf8aWjmjKIoiqIoiqIoiqIoyjiiP84oiqIoiqIoiqIoiqKMI1eUNYVEI43Tc05KOGoP\nIZ0v8STSs7I3SZsqlgelLIRtpG2X56Xvz1yHlL/+tl7Rj1NNgykdqWYrpC2TvzhHHFPxxyNOu/Am\nyFzYXtEYY5KKILmITMc1NeyQ1tepOVIW8AnJi6V8amQI38+SrpgSebxtFxtoBlqRxpWcKlM3fQ2w\nG6v5qNppj1hprYPDuJY7Vqxw2j9+4gnR75l8pEFXvPtHpx0UJodabAFSuloPSLnRJ/TSPTPGmMLp\nSNO+eBxpam1kEW2MMcNky3jiEJ5dVqJMr+bUyKFupOGv3bxY9OOx2l2FlPy4KSmiX9iFJjNWlN8O\niYqXzsEYY/x1+HfZV5Hmd/5Jafsak4F0u70VFU771vs2iH517yCtseHRd5320n/aJPpd9R2kaUck\nYkx3VuLZpGdcJ44ZTMazaqyEbXrSzEzRr70Cz42fp51CyGmrnGru7pVxo2AJUmkHuyElGLVSWrsp\nBdVMNwEnJgbx5+Ajcu7M+/4XnbaH0pnn3L9W9Hvhfkh4ntnzJ6d98pdbRb8XH4JF9uLluJgnv/pd\n0a93APfjoYfvcdrxqThXz7n3xDH+TsjJ9u1A7K1slGnzP3jqW067uAOyuMEeKZv0+SCR4DTv7/z5\nEdHv/JtvOe1NP/8hzs9zWPRb8eAaM1Z4OW3ZipP12zBueTwKyYAxpnYb0nkvtiJ9dkquXEM47g7R\nuGWreWOMuVCP2JNQgDh35HXEgDkbZ4ljjmzFZ8WU7d7rlnNn0ZeXOO0gsiMNj5Nyu+otHzntxFmY\nz03HZQr+tC9BYtf2ET5jeZ0xxvS1jJ1M1Bhjmo5gbzI0LPcC+csg2/N3Yaz7auVaU9OEZ5dCcrIY\ny5717Dnsl7LWYn8zZElnmo9ABpg2C/Kn9grEZNsOmW1qG96BDM5eF+fehbVhwe1ox7xyXPR79L77\nnPbB0xjPEbbEMA/Py5WKtSA8VcrA+9tlGnkg6TiA8WPv59hGmOdi11mZrh5H+7HM5dgDthyU8jF+\nVhyfIyzZHl8vj5do2vNEZEhJA8trXTHYo/V75R6ouxry0gvv4tmk5cm5yHsTthAOtsZOzjzIXiJo\nz+s9I/f7E8bQgtkYY8JiMH7Y9tYYY8JIDsaS3ogw+Q7B9sreC9gTJZRJmWZEMu5vUtJVTruj413Z\nLwL3xt25n47H8+b3G2OM2b8PEsE1sxBvV5VLK+gUskfmmNp+QMbK5AXo11tLNtPRUo7tq8NnxXci\nvnovSamHbfsbSFhK3mfJfaMLcM87jmCtCo2T8k9+9izDXfrAKtGv6b1LdAwWL9sC3luJcTxIZSxY\nYtJ1St6j9krM7Um3w07dlWjdc1qfotJxfUKqa4zxVuAc+H02bbWUdrtInupKxJjn2GXM38ebQBNN\n5z/UK9cnXpNZFm2fI0uZWIoZFCTLatQfRwmSpIn47cDfJ6VhIVQq4ZpVWLu89YiHuesmimP6W2n/\nQOfXuE3G9Z5+rO+Tb8E+ueWgnNss7Y8nGWZvo/X+SXbpLXux7odZ48eWmdto5oyiKIqiKIqiKIqi\nKMo4oj/OKIqiKIqiKIqiKIqijCNXlDVFUXXwSCsNk6sVc3V+rohtjDFpy/KddnA4/pydusiVn71V\nSAPznpbplQmzkc7NaZjsemAXmk+ZiWN6Kf2PU5OMMablOFKKE6cgpbF4s3QkGhmh9NZ6pNfZcpOk\n2UhJjMpC6nHV08dEv1E64UlLTcCJmYi03ZAomdba14T7nj0VqeieQzIV+b3TqAD/xe/d6LTXVlWJ\nfiHR+P4RP9LZOg7Win4sp+J0/Y8PoRJ+pEumKMZ7kKbGaeibFywQ/Y6+iTTtFV9BRfXtv5YuXssX\n4RlzFfveaulMw1XyDx2BHGimV0ozisplWn4gOfs8xkzmjGzxWSw5cNW+BheXqPw40S+SrmNTKsZ0\n63vScSBlGlXCp7l98RWrYv71SLu/9CpkJUU3wtng2AuPi2MG2iHhi8hEembiNFmdfet/Qr6SnYTx\nW7pUpi5mroT8oOY1jNFob7jox9I0jldnnpZOX7lLZappoPH7Ec+4Or8xxrRe+NBps3NcVFSx6Dd7\nOu5BZCTkWlHFsvr7+jWrP/UclubI+fKzh//qtIf+uMtp30iptT/9N+mG9MVVSDPmebpk8mTRb6AT\n19iwHbHC1ymv3eOD9PTme69x2g/e8DXR795vIfbcuwbOV49v+4Po98oPf+G07/r9DSaQdFH6cdHn\npPaN3ZvYaTDcSkWOjEWK69Kr8Dwqtp0R/cLIfe30Ady/0GApM5gyC/MgmMZ6US5ienS+HB/zbp7r\ntNk1I2+JlFb1Ujpv8hzEntFRmZbLksNL5BhSuFbO2db9WAt6yeEwrlRKM9zk/mHGQKUWl4T9w4Qw\n+f+p2kluxduJuna5H/GRJHD2ZsgYXvn9W6JfeS7WhqZdkB711cn0/zCSB/VUIx7Un8b5LHzgKnFM\nUAjue+oCPJ+SEnk/WQLath9S4hO1cm0uSZex+BPmLJwi/l11vNppz1qBtdTXIK8pfqqU/wYSli65\nkmTaeAhJONg1NMKSXfWR1IBdSNnxyBgpZUpfjnXC3vexpCP7enJ2oz2P7ejCLi5+L9Ls263U+tbz\nOIeStZBgNZLMwxhjBt0Yl8Mkr69okLKZOYvxTHl8uNKteJUt9/+BpuFdxLbUBTL+8L/dpyAHtffv\nncfxGTuT8f00xpioVOxRBwYQy8PD5f7N78e9DgnFXso/iGdXsFmWUGDJYhfJY7yWsydLU3pozNku\nR0H0zhQ3GfMoZK6UJ7WSfKL2TbjrsdOcMcb4mi13wQASkYv5wvffGGPa3keMyf4Mxi2/jxljzAA5\n6fSThMZ+/2R5HkuZGnZJ1yCWBadMxP2r3oJ9cky23CdzvOd1MTJTxgM+91Bacwfccrxlrcf617QT\nsT8yR34fyzIbtuA9KH1tkejX9gHuZb5UywUElomFxcuY2t+OWMkuw5mr5Tk27UY8mnwL9l/ezlOi\nnyE11IVX9zhte7/UTHuGSZ/HOjv4EvZLbftkeYymFsTldpL4zpguHfCSgnCNHMvjLZdBlnSJ3zyO\nS1kcExaP9xB7DPutd3EbzZxRFEVRFEVRFEVRFEUZR/THGUVRFEVRFEVRFEVRlHFEf5xRFEVRFEVR\nFEVRFEUZR65Yc4YtnnvrpV2U5xy0WWnL2I7P0oqRFjY8DVrfuIlSDz3kg/1UUim0gYnTpQbTTbZn\n7hPQpLtS8N37fvWeOCY3B1Z65ffe5LR7u6VFNusYfa3Qiw54pJYtcxqslhu2QlseEiN1oK446M16\nm3D/kmfIa7KtJwMN2wX/nRUx6RyjyOpx8lCh6HehBfedrdE+u1jaTseRvtx9DMekWHUMql6HVrCz\nB1q+qQXQ/RZ/cbY4pqcW2txzL8OysGSi1B6zNrd+K57x6ruXi35sBWcM2v1dUjM6SvVo0uKgTx0a\nGBL9+i5JHXkgyVuK53F0m7Q+nbUedS+Sqc6RbQHPz57nVVicrM/C45FtBnOuKxX96rfj+ws3L3Ta\nh3/2htNe+IO7xTHdbmh9PVRbKilT1kFZvRHaeLYgjcmTdTPq38I5pCzE2Jl6x3zRr3oP6g25SAda\n+llZM6T7vKwfEGiO/wIWgzERUs+7+z93O+1pC1CrIChsv+jnIj3uwACez4c7ZS2rjATcqwXfxtg/\n9Phe0e9Hv4d1bscR3Pf4fMR1/6C0VMy+Aef3+6+97bTXzZwp+rlPog7AxLsRK15+4CnRb+O/Qpf8\niy//3mnfvlrO2WSyaP7REzjvS7t2in6u0Cvref8Rsq+FhtyuN8F2p4lzcK6sEzfGmMS5+Kx9H+pK\n2Oc9QPedrZpzr5Ia754qxJ60ZfTdI2QzatmoTqC6AFyfIypDauHdR7HOuiMx3jLnyvjM35FzDXTd\n7QdlnYsJpDOPnoR6Umxxb4wxUUVyrgeaZFqTmndcEJ9xjOCaba6zsg6arws1EjoOwkb+hruk9av7\nY6qHQbW/xM0wxvQ3Q9Ofuxn1m5LnIq4PdF7emtpzsu2yn7F1Z8oiXPsmq/bBntdgib54QZnTPvux\nrOcwZQ7GYAc94z5Pn+gnigDOMAGFa+jZVtqjQ/i7XO9w2Fq3I1IRTz2dOHeuBWKMMamLsL607kON\nD153jDEmOg+2uj0UD8KTUU/o0m5p5xqVj2O4PgnvmY0xJqZBrhmfEBwk/z9rWBLGL9ctmWrt/7jW\nTfM7eL72XpbrS4wFdg1Khm22h3yIh+Hx8aJfRDr2kTzfcm+QddD6PYiVw8OoOee9JGN5y068u7BV\nvDjvEXneKTRG2Pbbvn/JE1HrJ7EYtQu7quUci83FPO26iDHHe3Cb1IU4xt7ve+m9zcgQ9Q/jb0Nc\nirRqznCc91NNFrsOB9uhh/D7mFUrZ6gH92yE5nOSVbvw6C68JzR/hPpm5fOwPtljr6sXMTixieqM\nBMlYzXWs/BSTM1fJGoGtH+H9MboEdUy8p2WsDs9AHBrsxD1qeVfWk4oqkOM+0HCsHPHLWJkwBe/S\nNS+ifszIoIy9KVQnamgI776RsXmi31Af4uDEm9Y5bU/rOdGP6wrxbwApSzHf2t6XtTPjqBZn0Ty8\nPw1Q7Rhj5PresLfaaUe4ZAxs92CNK1iAmmOpS+U18ZwLicR3dB5pFP3ip6WZK6GZM4qiKIqiKIqi\nKIqiKOOI/jijKIqiKIqiKIqiKIoyjlxR1tRHUqYJofJ3nCSytI7ORZqVr0mmn8VNgcQkPBkpmsNW\nuhRLKUKjyRptu7Rq5hS29NVIVWI7ycXfWiGPoXRXdyPssiOTpLQqNg9pdJ6LsNjzW9ZozWdgcZlA\n1nexRUmin68F96L1/Wqnbael9Vwi62Z56gGB0wO7rTT8QbKD9nfimtle0hhjPnMLrJc9Z5COV2tZ\ni3a/ibTgs2TbGH9KpvGWlyAtLDocKbicpta0W6aapy1G+tj0r0AG098hz5WtbpPmIcXfVy9t++LL\nkVbWQ/bZGSvzRT+2mExPwpirea1C9GN73EDjJ4lheJhMt0tfiDTKAz+FzC61UFqYtu2FtCKR7kun\nJTtIW41nU7QRz71h/0eiX9xkzJ+qpyGVYWnGuRdfF8dEUcp3bx1Zi5afFv1y10AyMTyMlFFvbavo\nl0GWpm2UPjoyaEmByGa17QD6+Tvl3E5ZMnZ26MYYEzcV96y/RY5b04Z5FVOCWGKn057Zh5TPKJJI\nhIbIcJ4SDwle1zl89ysHpCX6MElfZn4ecrDHPv+o0/6vd6RV9cnfvOa0f/rU/U5767+/IfqxhXnN\nNsiubv/V90S/lgpYaX/uyxtwfKSU+XSTrTPbvE9cd7PoF1MoZU6BxJWIsRRi2SGGk7y26W3Er7Sr\npEW7txJxOKYUqc4NH8j4PO26aU6b7RsjLelRcBiePa+fiTMxz72WZI/XbZZwXHhF2l3O/A6kZb1N\nuP99vdLml6XK4clI0WYLYWP+Xn7iHJMkpQMspxoL2M54aETKBBIo/fzYDqTGJ0RJmUkExWKWyVbu\nkmnZRYshAarehbWwqkle44z8fKfdRLawGVdRWrZbyoaCXdj7lH3tWqc9OChlOaGhkInVvIsY0GdJ\n1lfcBIlqaAzGUlmCXN849kwIxbjg1H1jjBmy5GpjRWyJ3H81kywlPAvyiY4P5XrHaej5t0DGxenz\nxhgTnYj9R28e9hL2nrfzEL4/luzhT73wsdPOnSll3gPtWOOSyQ590CvvXcpSHNdL+8aUhfL72A6X\nJTWpi2UKfvO7GGNxlGbvt6TdPmuMBJrsNZAeeWvkGl/zPvYGoSQ3nDBBSnbSymGxG56M+WfvD10J\niDNdFfhbvbVdol/2DZBxN7wJ+XRbC+ZV0XIpYYmgd5zMVVJ6yjR+BDkV32uWxBljTP0urJmpC7A3\nufjMCdGP1yEet0kkAzbGmPzNZWasSFuFNc6We4VR7BB72WQZ89s+xN4smaQxtryGpTf8t+yyGtMX\n4hnyutPXCGlL7FS5Ty4qw32uP4f4PLlUvi9Gk9Uyv1t0nJQxPWUOJKlN9B4YXSzjJL8Ds5V0sCVN\na9gh36UCDcd8ts42xhhPBfaRGesw9mteOSP6DZDEzZONd8SSdRtEv5hUxKOgIMztYJfcy1ZuRQxI\nSscciczCGjTYL6X3aXMRR/n7es5Z78C0PmXTOlu3S75/pqbjeb31N7xfbLjrKtGvh+zXB1pxH1Kv\nyhf92Db+09DMGUVRFEVRFEVRFEVRlHFEf5xRFEVRFEVRFEVRFEUZR64oa2KCI2T6dkwhUnyERElm\n4Ju6HZAlJU5F2qQrWabIps+H+8dAN9IGI7Ksqt9U1X6AKutz9XJO1zZGVvr2ViDFKnm+X/RrfAPn\n6kpHul2o5WbD1975MVLYonPk3+1rReocV2YOT5Wpd3al60Bz7g2khEVYkpg4Omd/B+7nxRaZ0juZ\n0hLPVUIeE2s5zsRT2vfQMK5r7rJy0Y/TbhtO4PtK6NlxhW5jjDn+G8jJ0spQld1bKV2S0pYjVa5t\nD747aUGW6Mdp7Zza7K2QaW/tNfg3S7CSZsjK8GEJcpwEEq4ov/IhmRp45teQFJXeCBmEK14+m87j\nGKvDfZizqSvzRT9Oz287i5R+ex5wqmAC3YvW91A13d8l07InhGIuHt4L+UT+dbNEv4tbDjrtNKqG\nfqW5kroI/exUZh+lZ7L7k6dPVsxv2o6U0SJpRhMQ8tcuddoP3/oD8dl9P7vbaYeSHOjB2x4V/R54\n4A6n/di//MVp33PTNaLfpQrITjLikGL9v74hJUDpy5COfPFpOIEdPIfUcJYxGWNMSyvmThKlgw8O\ny+cTQ/f6xz/+o9N+4voVol9QMBaOxHKMpX7LmWbn79512vPXwGnrxPE/iX6Tb9tkxgpO7Y0rlSnR\nLNXLvh5rGqdhGyNTsUPJGWW6lebNKcaD5FDRfVHGPE7N7fgIsopUclJMmzFVHHP2SUi/LlzAMVEu\nGXe91Vgz+1sxj3rrpEw0bT5crDorEHdtWTDHCu85fHfDNilhNiOXd3AJBBzzczdKJzqWEi66By5j\n5186Kfr1k5tWIUnXBnbKlOiuE5BP8BrCbWOM6e7DGpy3GI4uQ5SyPdgjY+roKMaPrxtzfsAt505s\nFqWrk5NM7GSZrt++F9ICvg/JluNiD0kM/STLSZmXLfoN9cl080DCe5b2Q1KulLEOMa9tP67J3gfw\nntBLKensAGqMMZd27HPauWvgStdxVj7rkQHEQJYiJkZHf+p/N0bGg7Z9JD+eI2Up8RRveEwFWfID\nhsf5QIftwoTzCI5AjAoZDLX6ja1bU1clnEzcJ+TeMzIX8tyEqXDmrN0u3QmjaV/Ochm/R86X6Azc\nQ5bj9dVLedruD7DWTF+C+BDhxr12JcsxcuDncFycuA5SLVuuxBLQrjN4jmdfkk6cmeV4/h20fwtP\nk+tE8nzMTc9ZfJ8dK1imknZls5j/11S/BifOCZYLXSKVEPCQS5E9x3g+8zrb1yifTSS9FybNxj1q\nJtmQMcYMkmQshhyj+L2S11hjLKkyyZrsvSc7NEXRe0vOwkWi39AQ1smhHuypYi1ZE8eEIXKMGmiX\nki52ixwLeF233b6SSCZ9/q+Yfwnl0jGX9zuDPYj/bTWyNEJvPcvU8bdiC+W9mfNt7JsnUD9PJcZI\nDu23jJHvP+f+DBlhlPX+3XwU68auk1jfi9Ll+93cKXiHvWnNdThvKzZy6ZC0NZBJscOYMcb0VEnZ\nsY1mziiKoiiKoiiKoiiKoowj+uOMoiiKoiiKoiiKoijKOKI/ziiKoiiKoiiKoiiKoowjV6w54yNd\nctasDPGZ+0Sz02a7NltrWHLHDKd98VnYv/n8Un91fCu0lqWLoKk7f1DqeadeAys471nozRpr0Z68\nXmrru06ytTL0xnZNjliyuY2fAg0d2w0aY4yvAZq8iAxoF9sPS80zW7cl0f2zbpGwMTVjUOdi6s14\nBkefOSQ+K5wNXfvpF6EhLLQEqZ3N0AZOmQYdXbRlC95K2u6lk6G5bT4j7eUKr8YzLsvBM+WaF8fO\nXxLHzJuPcx3sxviJSJO6Vda4t3dDqxrXK8dcx3Fom2PJFs/Wlk6+Ffdv/xMfOO30VGmPy7bBgSaG\nzq/9eI34rIOuseXZw0572qYZop/3NLT19R3QRU6/dprod+Fd1H6Ij4S2OWWZtJluP4D6Bjyvsjbi\n2UZnJohj9v3kbae9YC3O75nvPCn6cS2jbqoDYFsvnq3HZ3yuEdmyVlXasnynzbrrrkuydkfetVK3\nGmie+tYvnfaNVH/GGGMe+hI+++N7sKT+w+6Fol9rNWoMTctDTZGwpMtbuUem436EWbWDTvwatoDb\nPobd65fXrnXak75k6agff99p58yH1fLiS9KO9PH7/+y05xbDevHF+38j+k0pxNhKI8vBtg9qRb/O\nHqxJNYcwD2xL01NPvuS0F3zz+yaQ9JNNZNcxaQGfsxkxr/MYYl7cZFmbhtcArv/EbWNkvZY0ssG1\n7dXZhrK3BXM7Lgt1NxoPHBXHjNL6tOrBq83l4PpNCWVYF0Ij5Thiy3u2E85cK59NxVMYYzFkuW3X\nmImdImuhBBq2kOaaCMYY46caPmxl2uWTdVxysrFPOLkF+5uSRfKaIzMx/7jW2SoaL8YY09eC8c1x\nqq8Zbdu+PYTqAZ5/Apb02TfIWDYygnUxheyaw5Mse3CycT31V3xfZrxVc4xs7gcpLrcfaRT9XFyL\nbaYJKGkrsAYP+eT6zvWfYidhLHnOyDpj/g7MsVGyVPeckZbObAd84WXUv+N6cDa8XrHV8JnXpBVy\nUgzGB8e47iZpYZ29BuMqcTb2lIdePCz6TZyCeBo7BbGn3rLhjSd74IE2jLEoq0ZKx0G5tw00IdHY\nOyXNlTWBojJgl3uJ3iGSFsraRmxNyzUow6xx2/geaqPUH6JaRNlyrzJlOtnqHsNep/hqzCueK8YY\n4x9C/O4ji/XkGdLCvKsKa4OLxsgwjT9jjMlYiXOofglrjf0O4aJrjCB74ah0eU2jo3J9CSRhIXid\nDLZi1LAPsSf7OuwPW60aMWx5H071aOIsG+vWPVTXkOxBDWXVAAAO10lEQVTmuT6hMfI91U81ShtP\nIkYlJsWKYyLpnaZoKeZbSKTc3ycsQ+znuqs9HvnOOkzvI2z1bY+dJnrPdNFeruN4s+jHNRPHAran\njrBqArUdxHwJDkJuR/JcORdrX4a1dlQxzrenWtZZ4evspRpmrmmyrk7dLuwZhF06TYShXlnbjOt4\nRVFtKK5hZf87rKLCac+YXiL6ReWg3xDt01relLXyCm7H+xTXQBpolXXBuAbSp6GZM4qiKIqiKIqi\nKIqiKOOI/jijKIqiKIqiKIqiKIoyjlxR1hSVg/SmLsveruMSUqcjKd3Htt5qegcpXpGUjuSvl+nv\n06+HLWr1LqReTlws04MZTwtSPmd8bq7Tdh+TEpqCW2CB1deGlNGWD6pFP7ZDY5vI9JVSvjJM6eC9\ndUg5c1fKdNmEEkqlrcT9slPXIzJlelug4VTpsuukpXXrXqQHsiQt0ZKxhZD9nY/SNYNc8nlzeiWn\nPTeelvIRTnNs2I9z+PX27U57XolMK+MUuF1bYbW8epOUfVTugl3dwSqknNkWsdnLKW31PYzTHPrv\nxkgL26nLYKk4IVj+tln3GlLiAm3D3LQTKY8Za+T5lazAfeJ0O3suTrwXc6T3l5Bn1b0vZXsJcRiP\naWQP+5dHXxX9Nq6HxWzlFthis+1dzVYp+5jx+flOOzoDaaG3rCgS/VhKcYFSmXvJnt4YYzwkMyhc\ngVjRvF/KYWwbu0/I2yAtdHmujAUsQZt050rx2Vc8OMed//xTpz3zvsWiX3gi4u2X/vsxp737hz8T\n/ZLIuvWpB5932hs+f5Xo99T7kCj9etuvnDbLVC68eFAckzwfqefdHqSJs42sMcZ84duwtP7L41uc\n9vKlUnIXS2nL6VMxRjil3RhjkiuqnfaC7+H+uc/I9eml7XvQL8CypszVGKve8x3iM06tZ5tamxCK\njQOUbp02X84DljC27EM7fWm+6OeuhOwgkqS2fj/Wp9wlUkY3PADb1wlkZd5dK9fmIIpzIyQX6Dhx\nealD9vWYV+6TMi07oQASzZQFsICte+Ws7FcmrSwDjbcNczGpXcqVWArR8l610559+1zR7/DTsAbN\nL4a8m63hjTFmeABxOboQad6nn5ZSs8R07EH6yKr1w8pKp71uvVzvOM3bS1bcNg3vIkYHkxTKZ9nU\nes9A/ppWghht2z9fJFvxCFpbE+fKvUM1ra1T11/29P5HcOq6v0tatvvduBcsy0m31s9Wer4sfYgv\nk1K3ILr+ARovw8NyPxdVhOfbT/1aSIqRPVVKd3gv0XkSa1BHj1yPskdxvf2t+G6WMRljTChJsPwU\nk3IsG15hs03jbbBbWjDHlEhr20DD0rC4fGkfPuBFPCq+e47Trn9LxotQmrMsJ+u35jaXIpj1zSVO\n22tJnHnPMOtq7C1aKQ4bqUIy2SRzTJiO+NX0/jnRj+No7yWUSSi/bZboxzKSvM2Q9bOU0RhjgoJw\nvQklVGrhhNzbsSQ37RYTUFhKHpUvZXH8d3k/PeiV+7KMNVj/+B6xtN0YaTEfQdbI/ZalfP7VkFyf\n+u1rTjt3Efa1XNLAGGNCoxHL2IrcLoPRcQLvmWzH7UqQ/SLTaQ9D71ieynbRz0PXmFWA+5BgSaK9\n5+g4uRwFhNbd1U47NF6+M0WRpKrgTsQcT5W8lphSSHY8p/DuaJcb8FDJkagC7GubD8r3Bpa18bv5\nyCDGyKAd/9sRy11kPW8/n8MvQRJ61wOfcdq2dJz3dk1vIwYklsrnw5LKZJJo+j3y/FyW3NJGM2cU\nRVEURVEURVEURVHGEf1xRlEURVEURVEURVEUZRy5oqyppQopRyHBUiKRvwZSivq3IUPKXCElQKFU\nqT+R0vwyIywHhz/BFcBFVb9tOYKb0qCCqFr0hZeRslu0Wbo12SlXn+CrlZXwOdXcRVWqPVUydZ3T\nWzvO4XzSZ8tUVf6OlnernXbujdKhoe3DOjOW9FYjDSxlUY74rKUB11awAM+uep9Mh4yPwrUkzsBz\ntFOJXano13Ya6ewFJfLesPPBlC8gVfU+6pO5UFZeH+5H+vDK9fNwDUdken35TbCESP8A6XXx5ami\nH0v12G/BTt/urUXa6bkPIZNiKZ4xxoyOXt614R8lYSbuefNO6WI16Wu4F/0k26t4+mPRL3sZ0rln\nf3eF0z7w6C7Rr70JY7ogHZXHF06UKdHh9KyzojGu2g7B2WCgWaaZtuzGuYduwHy7+Jfjol/6OqR1\npi/DOAi20nndL5PzSxGetfuwlDaye8BgJ8Zs1RaZPpm3TKa8B5rNd6122qd+uV18tucs0rTvfPhm\np/1vdz8u+rV5EbfuWLbMaRcslZKYwtX4WwtGkWr5k9sfEP1+s+O/nPYPb/4e2s8+5LR/9+zr4pjf\nvQOZ1OnnXnDalaelk9gqkrc89BykWj+/659Fv/vv+DenvfvHTzjtPsvV75oH1zltTjstWHyd6Of5\n16fMWOFrhgzETpnvozWlz4O0WnZdMsaYKHIIYPcYO/Z0HEBsc6UiNberQkpoWcrEUo+QEPydcy/L\n8RZNqefVL2MexJfJOMlCta5TiJmJM6V8hdPVm3ZCysJpvsbIdHV2DuPrM8aYjuOYw9lyaAeEwWFc\n2bnXZRyY+eUFTjtlCdK32YHFGGOyM5DSzNcVbDl78DOx3YIYlqwe/zOcFTffi3HfeUi6IXWSRLhg\nNfZl3RelM0b3WZKiUwq5r1rug6InIc2fJU62E2dSCa6d3cjqt0v3isxZ0skjkNS/ipgZlizT1VPJ\noS80Dun5ttNN5nrcM3Zo6rDcN9NIShhTTO6J++T+TcifSM4xMIjnlJhoOYXS98VOxDpmf/cE2vNy\nqr/XihvD5EwZTK5qzW/LfV14FiQh/HdtR7+/u2kBhmN5v1tKWGrI+SWdHK/6m+TeInst9v1tH1c7\nbdtxxteEPVL9NsiNUi2pqIdkDB1HMedYFsV7a2OMyb8VZQMatkOKmHdDmejXtAfxMWk+JDqxeVLS\nFZsHaV3lH+AQVninlAVfeJ4+uxV7toSpUhpa84qMc4EkPANjqceKPbxWtJIDY/IC+V7A0tas67Hf\nZLmhMcb0NeIZspTaLrPgbcUzmPwVOBJ2UrkD2521aReeTRw5nXmt90BXEtartr24puyNUirva0Z8\nte8Lk7E832k3v4t9cs5G6brXcVjG/0ATmkilKaz9dnAE3s2rn4OsNdqSPfZUkYvqNOwnwhLlGh9G\ncZllzO2H60W/6hcxbtNX5DttdyX2I0MeKcWMK8ezc5Fb0+iw3I/EkstrO72L+63vy7gam5CCGyAx\nHOiSY7OGzpUdoJPnWOvg/+V9UTNnFEVRFEVRFEVRFEVRxhH9cUZRFEVRFEVRFEVRFGUc0R9nFEVR\nFEVRFEVRFEVRxpEr1pwpvoZsg4Pk7zi+BujoJt6JGh8Xnzkh+oWRxVh7P3RkqUtkPZHwSPQLofoQ\nE0KtWjc3Q1fqqYAeeoTtreulhjqGrCtZ79jnszRqpNvta4amMTJT2n+JYzKh3Q5Pl/16yfKLtZVn\nrFogpTdPM2NJRz10jlENceKzgSHUcanaD61lySIp8h/shoY5iqzTWX9rjDEfv4DaQZFh0N231Mq6\nP6wx9lHtktRp0NzW7a8Wx+SvRJ2iMzug65t993zRb8SqcfAJtsQvZhI01hm50Pqff+mU6Mdqa9bd\nR6RJC/TUpdLOMpDwGLat4C4+fcxp11Sjzo9vQI7vlA62dqQ6UVOlzrmM6tvsfmyn0y6dIetJ+bvw\n/X7S1nOtjZER+SzC6SG0fID6JKwvNsaY6BxcbxfVdYolKz9jjFnyPdhCH/wFLKE7LQvSjD4cx7Um\ncmbLGkyX3sN9KdtgxpTf7tgh/n3/vfC2PPDbvU77n/7wDdHvTw8867TTC6Hn3f78HtHvNrKC/clX\nfov2q78Q/brbcc2lmRgLUVF4Jv/x4oOXuQpjwmke3PDT+8Rn39v4daf9nYfvctrrV84T/UJDEVPK\nboed6JlnZazsPAmNcfsRaK8/qPiT6PfdH37usuf7j8I2uvGWzSXXcelvQ02E4HC51IZTHYQeqlsw\n1Dso+rHFdRLZh9a8Km1kE2dB08/fbajWSViCrCPRQHVhougZhkTJein1b0K3X3gb1ipbq995FDVi\nBjoQA9jq2Rhj+uj+sb6f9ezG/L3FaaDJX441rsWq+8b1w2r+hnudsTJf9OvrxnUOuLGWuqz6JxG0\nh+isgR6/aK2sJ9DfijGTORFxeITqraUuk3snz1nUsAmhWjfBYdaYIxvTgRY8g+QlUgvfdRxzLHYy\n1sjzz8u9XR/VUIkuwLiPsOqpRGXHmrEi8zrEqHbrGXYew3hkq+aBdlkjgGuncW2g0FhpI9u6H3tH\nrqVm10pKoPoaw310j4qxBrE9vTHSHtZzHOvdhFDZL4j+3deCNc4uCRNTjOfWShbe8TNkPSmu09Z1\nGs99gnV+jTuwRhSMwXZ1gGzPY7LlOYaTDa6ohWP9r2VfK/a5iVS/onmPrNGXtiTfadfXoZ5gj2Wl\nnUY1D30tXGsKY2R4QNqod52lvcok1JsYGpC105JmIZY3bEN8DQqR7zu9dH4uiqNNu2XtIK5VFRTC\n9ZXkwIgli+NAwxbUPf2ytgrXSeG6l2zlbowx8bPw3HgM2jXb2HK77QDmfXSh3B/20xxp60ENqe5z\nqB+Tc4OMwd1UY5Jrztj1NXtr0G+ULJ37mmVdMo4j0UW0rz3aIvrxufLztC2Y+f14LOB3c+95WWcn\nnOrsROZhzzbcJ+dB8kKsKd3nMa/s98WoPKwbXEfPfu/nd/DILPxdN61VifNl/SJ+x2yj9/6ILHkO\nCXGYVyN+rocn43841a3hOGzvgxKphlRfI8ZCT42cE2J9+ZRXR82cURRFURRFURRFURRFGUf0xxlF\nURRFURRFURRFUZRxZMLoWPr/KoqiKIqiKIqiKIqiKFdEM2cURVEURVEURVEURVHGEf1xRlEURVEU\nRVEURVEUZRzRH2cURVEURVEURVEURVHGEf1xRlEURVEURVEURVEUZRzRH2cURVEURVEURVEURVHG\nEf1xRlEURVEURVEURVEUZRz5fwCDNDhJoqF9BgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "kL8MEhNgrx9N", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The first hidden layer of the neural network should be modeling some pretty low level features, so visualizing the weights will probably just show some fuzzy blobs or possibly a few parts of digits. You may also see some neurons that are essentially noise -- these are either unconverged or they are being ignored by higher layers.\n", + "\n", + "It can be interesting to stop training at different numbers of iterations and see the effect.\n", + "\n", + "**Train the classifier for 10, 100 and respectively 1000 steps. Then run this visualization again.**\n", + "\n", + "What differences do you see visually for the different levels of convergence?" + ] + }, + { + "metadata": { + "id": "C3y6OC2Rgstg", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 973 + }, + "outputId": "e10d9fa1-67b1-45a8-eb1c-8b2e6c29363f" + }, + "cell_type": "code", + "source": [ + "# 10 Steps\n", + "classifier = train_nn_classification_model(\n", + " learning_rate=0.05,\n", + " steps=10,\n", + " batch_size=30,\n", + " hidden_units=[100, 100],\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 26, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "LogLoss error (on validation data):\n", + " period 00 : 25.84\n", + " period 01 : 29.39\n", + " period 02 : 21.55\n", + " period 03 : 26.47\n", + " period 04 : 20.18\n", + " period 05 : 18.98\n", + " period 06 : 16.91\n", + " period 07 : 18.15\n", + " period 08 : 16.22\n", + " period 09 : 16.74\n", + "Model training finished.\n", + "Final accuracy (on validation data): 0.52\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAFnCAYAAACLnxFFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl4VOX5+P/3mSX7OslkJ8mEPQm7\nyCKbAkJQaxUrlJ9Ybav9tFq1+qnKpy5oW7VobbGLG9X6tbViqVVUNgPIJlvYCQQSICEJ2TNZZ5LJ\nzJzfHwMpliQkkJnJcr+uy+uSmTnnuefhXNxzlvu5FVVVVYQQQgjR42m8HYAQQgghOkeSthBCCNFL\nSNIWQggheglJ2kIIIUQvIUlbCCGE6CUkaQshhBC9hCRtIbrB0KFDKS0t7ZZ9FRUVkZqa2i378obF\nixczZcoU5s6dy5w5c5g3bx7vvfdel/dz+PBhfvCDH3R5u9TUVIqKirq8nRC9gc7bAQgh+p6f//zn\n3HrrrQBUVFSwYMECTCYT06ZN6/Q+Ro4cyV/+8hd3hShEryRn2kK4UXNzM8888wxz5swhIyODl156\nCYfDAcC2bduYPn06GRkZrFy5krFjx172DLGmpoaHH3649Qz2rbfean3vd7/7HXPmzGHOnDncfffd\nlJWVdfj6BVu2bOGWW275xmu33norW7duZc+ePdx2223MmzePjIwM1q5d2+U5MBqNzJ07lx07dgCQ\nl5fHXXfdxZw5c7jllls4cuQIALt372bhwoU8/PDDPPbYY+zevZvZs2dfdh63bNnC7NmzycjIYMWK\nFa3jNjY28sADD5CRkcHMmTN56qmnaGlp6XL8QvQkkrSFcKP33nuP0tJSvvjiC/7973+TlZXF559/\njsPh4Mknn+T5559n7dq15OfnY7VaL7u/V199ldDQUNavX88HH3zAP/7xD7KyssjNzWXdunV8/vnn\nrF+/ntmzZ7Nz5852X7/YpEmTKC0tpbCwEIDCwkJKS0uZPHkyv/nNb1iyZAlr1qzh9ddfJzMz84rm\nwW634+Pjg9Pp5IEHHuDWW29l/fr1LF26lJ/85CfY7XYAjh07xsKFC/ntb3/b6Xn8xS9+wbPPPsva\ntWvRaDStyfyTTz4hJCSEtWvXsn79erRaLXl5eVcUvxA9hSRtIdzoq6++4s4770Sn0+Hn58ctt9zC\njh07yM/Px2azMX36dMB1H9jpdF52f1u2bGHRokUAhIWFMXv2bHbs2EFISAjV1dV89tln1NbWsnjx\nYr797W+3+/rFfHx8uP7669m0aRMAmZmZzJo1C51OR0REBJ988gmnTp0iOTn5kmTaGYWFhaxbt47Z\ns2dz+vRpqqqquOOOOwAYN24cBoOBAwcOAODn58ekSZO6PI9TpkwB4Lbbbmvd5sJ+t2/fjtPp5Lnn\nnmP48OFdjl+InkSSthBuVF1dTWhoaOufQ0NDqaqqora2lpCQkNbXo6KiOr2/i7cLCQmhqqqK6Oho\n/vCHP7Bu3TpmzJjB/fffT0lJSbuv/7c5c+Z8I2nPmzcPgBdeeAF/f3/uvfdebrzxRtatW9epOF9+\n+eXWB9EeffRRnnzySUaOHEldXR1NTU1kZGQwd+5c5s6dS1VVFTU1Na3z0973bm8eg4KCvvH6BRkZ\nGdxzzz0sX76cSZMm8dxzz2Gz2ToVvxA9lSRtIdwoMjKyNSGB6550ZGQkQUFBWCyW1tcrKyuvan8A\nEydO5K233mLHjh3ExsbyyiuvdPj6xaZOnUpOTg75+fnk5+czceLE1vGefvpptm7dyjPPPMOSJUto\nbGy8bJw///nPWbduHevXr+ef//xn64+AqKgoAgMDWbduXet/27dvb7133dXvHRoaSkNDQ+vr1dXV\n39hu4cKF/POf/2TNmjVkZ2fzySefXDZ2IXoySdpCuNGMGTNYtWoVDocDi8XCp59+yvTp00lOTsZu\nt7N7924A/vGPf6AoSqf2t3LlSsCVoL788ktmzJjB9u3bee6553A6nQQEBDBs2DAURWn39f/m4+PD\nlClTePnll5k5cyZarZaWlhYWL15MeXk5AGlpaeh0OjSaK/9nIz4+npiYmNYz9urqah599NFv/IBp\n73u3NY+JiYlotdrWefz4449bv9+f/vQnVq1aBUB0dDQJCQmdmmMhejIp+RKimyxevBitVtv651/9\n6lcsXryYwsJCbrrpJhRFYe7cuWRkZKAoCkuXLmXJkiUEBwdz7733otFoUBQFVVVxOBzMnTv3G/t/\n++23eeSRR1i6dClz585Fo9Fw//33M3LkSJqbm/niiy+YM2cOPj4+GAwGXnjhBaKiotp8vS1z5szh\npz/9KX/9618B0Ov13HHHHdxzzz0AaDQannrqKfz9/fnyyy/ZtGkTL774YpfmSFEUXn31VZYuXcrv\nf/97NBoN9957LwEBAZed2/bm8Ze//CX/93//h4+PD7fffnvrvm699VaWLFnC22+/jaIojBo1qrUM\nTYjeSpF+2kJ4n8ViYcyYMWRlZREcHOztcIQQPZRcHhfCS+bPn8+aNWsAWLNmDQMHDpSELYTokJxp\nC+ElWVlZPP/88zQ3NxMYGMjSpUsZOXKkt8MSQvRgbkvaVquVJ598kqqqKpqbm/nJT37CsGHDePzx\nx3E4HBiNRl5++WV8fHzcMbwQQgjR57gtaa9Zs4bi4mLuu+8+iouL+f73v8/YsWOZNm0aGRkZvPrq\nq8TExLQuFCGEEEKIjrntnva8efO47777AFoXedi9ezczZ84E4Prrr79kOUUhhBBCtM/tJV8LFy6k\ntLSUN954g3vvvbf1cnhERAQVFRUdbltRUd/t8YSHB2A2d1wTKq6ezLNnyDx7hsyzZ8g8uxiN7T+Q\n6vak/eGHH3L8+HF+/vOfc/GV+M5clQ8PD0Cn0172c13V0YSI7iPz7Bkyz54h8+wZMs8dc1vSPnr0\nKBEREcTGxjJ8+HAcDgeBgYE0NTXh5+dHWVnZZddbdscvLqMx2C1n8OKbZJ49Q+bZM2SePUPm2aWj\nHy5uu6edlZXFO++8A7jWVbZYLEyePJn169cDsGHDBqZOnequ4YUQQog+x21n2gsXLuQXv/gFixYt\noqmpiWeeeYb09HSeeOIJVq5cSVxc3CUtAoUQQgjRPrclbT8/vzZ777777rvuGlIIIYTo02QZUyGE\nEKKXkKQthBBC9BKStIUQQoheQpK2EEKIPuGrrzZ26nPLl/+Wc+eK233/yScf7a6Qup0kbSGEEL1e\nSck5MjPXd+qzDz/8GHFx8e2+/9JLr3ZXWN3O7SuiCSGEEO726qu/4fjxbKZOHc+NN2ZQUnKO3//+\nz7z44vNUVJRjtVr5/vfv57rrpvLgg/fz6KOPs3nzRhobGzh7toDi4iIeeugxJk26jptumskXX2zk\nwQfvZ/z4Cezfn0VNTQ2/+c3viIyM5Pnnn6a0tIQRI0ayaVMm//73Go99T0naPdzRyuMYAyKJDjB6\nOxQhhOiUjzblsTenvMvbabUKDkfbS1yPHxbFnTcManfb7353MR9//BEm00DOns3nz39egdlczbXX\nTiQj42aKi4t4+uknue66by7qVV5exiuvvMauXV/z6af/YtKk677xfmBgIMuXv87rr/+BrVs3EReX\ngM3WzFtv/ZUdO7bx0Uf/6PL3vBqStHuwnOpcXj/8LgNDk3l03E+8HY4QQvQKw4enARAcHMLx49ms\nXv0xiqKhrq72ks+OHDkagKioKBoaGi55f9SoMa3v19bWUlBwhhEjRgEwadJ1aLXd3x+jI5K0eyib\nw8Y/cv4FwOnaAhpbLATqA7wclRBCXN6dNwzq8Ky4Pd219rherwfgyy/XUVdXx5/+tIK6ujp++MPF\nl3z24qTbViOr/35fVVU0GtdriqKgKMpVx9sV8iBaD7U2fyOVTdVonf6oqORUn/R2SEII0WNpNBoc\nDsc3XqupqSE2Ng6NRsOWLZtoaWm56nHi4xM4ceIYAHv27LpkTHeTpN0DFTeUkHl2Cz5qEJacEQBk\nV53wclRCCNFzJSWZOHEih8bG/1zinjHjBr7+ehsPP/xj/P39iYqK4t13376qcSZPnkpjYyM//vEP\nOHToACEhoVcbepcoamcaW3uJO1q09fTWb07VySv7/kRBXSHNJ8bhrI3Eb/RmggL0vDT1aTRK7/id\n1dPnua+QefYMmWfP6A3zXFdXy/79WcyYMZOKinIefvjHfPDBv7p1jI5ac8o97R5ma9FOCuoKwRyH\nrjGaG65NYGOFkUafYorqz5EYkuDtEIUQot8KCAhk06ZMPvjgfVTVyU9/6tmFWCRp9yDmphpWn16L\nxulD45mh3D1zMCMHRvDlh5FgLCa7KkeSthBCeJFOp+P551/02vi941prP6CqKitP/ptmh42m/CGM\nMcUzfXQchhA/onSJqCocrczxdphCCCG8SJJ2D3Gw4ihHKo/jrDMQ2GTinoxhraUEI5NjcDaEk19/\nloaWRi9HKoQQwlskafcAlhYrH538BJwabPlp3HdzGsEBPq3vp5sicNZEApBTJaVfQgjRX0nS7gE+\nPb2WOls9LcUDmTNyOGnJhm+8P2RAKJqGaACyq6X0Swgh+itJ2l6WV3OG7cW7cFqCiHWO4PbpKZd8\nRq/TMtg4ANXmS3blCZyq0wuRCiFE73fHHbdgsVh4//2/cvTo4W+8Z7FYuOOOWzrc/kL7zzVrPmPL\nls1ui7M9krS9qMVp52/HVoEKauEI/udbI9Bp2/4rGWGKxFEbSaO9kcL69vvACiGEuLzFi+8hPX1k\nl7a5uP3nvHm3MH369e4IrUNS8uVFX+ZvpqKpAnt5IosmXUtsRGC7nx2RYuCj/UZ0xmKOVuWQFDLA\ng5EKIUTP9v3v/3+88MJviYmJobS0hCVLHsNojMJqtdLU1MTPfvZzUlPTWz//618vZcaMmYwePYZf\n/OJxbDZba/MQgA0b1rJq1Uq0Wg3JyQN54olftLb/fPfdt3E6nYSFhTF//gL+/OflHDlyCLvdwfz5\ndzJ37k1ttvWMiYm56u8pSdtLyhrLWZO/EdXmS6rvJKaNiuvw8zGGAMLUOKzqIY5V5nCTabaHIhVC\niK75OO9zDpQf6fJ2Wo2Cw9n2Ip1jokZw+6Cb29122rTr2bFjK/Pn38m2bVuYNu16Bg4czLRpM9i3\nby9///t7/PrXL1+y3fr1a0lJGchDDz3Gxo0bWs+krVYrv/3tHwgODuaBB+7j1Km81vaf9957H3/5\ny5sAHDy4n9OnT/H66+9gtVr53vcWMm3aDODStp533rmoy3Py3+TyuBc4VSfvHP4IFSc+5SP5QcbI\ny3aKURSF9KQYHPVh5NcXUm+7tIWcEEL0V66kvQ2A7du3MGXKdLZs2ciPf/wDXn/9D9TWXtqWEyA/\n/zTp6a5Wm2PGjGt9PSQkhCVLHuPBB++noOAMtbU1bW6fk3OM0aPHAuDv709ycgqFhYXAN9t6ttX2\n80rImbYXbC3cQ5H1LI7qKB6cNpMgf32ntks3Gfh6txFtiJnj1Se5NmasmyMVQoiuu33QzR2eFbfn\natYeT0kZSFVVBWVlpdTX17Nt21dERkbx9NO/JCfnGH/84+/b3E5VQaNxnTQ5z5/lt7S08Oqry/jr\nXz8gIiKSxx9/pN1xFUXh4g4edntL6/4u1/bzSsiZtofV2er5OPdzVIeW6wyzGP5f5V0dSU0OR601\nAnBMun4JIcQ3TJo0hbfe+jNTp06ntraG+HjXss9btmzGbre3uU1iYhI5OccB2L8/CwCLpRGtVktE\nRCRlZaXk5BzHbre32f5z2LA0DhzYd347C8XFRSQkJLrrK0rS9rQ3sz7CodgIrh3Jd6d37cnFAD89\nyYZ4V+lXlZR+CSHExaZPv57MzPXMmDGTuXNvYuXKv/Oznz1AWlo6VVVVfPHF6ku2mTv3JrKzj/Dw\nwz+msLAARVEIDQ1j/PgJ/PCHd/Puu2+zaNFiXnvt1db2n6+99tvW7UeNGs3QocN44IH7+NnPHuB/\n/udB/P393fYdpTWnB3199hB/z/s7amMYv5j0U+Ij22+/1p7VO87wReFn6KKK+N9xD2IKdd8vuqvR\nG1rs9QUyz54h8+wZMs8uHbXmlDNtD7Hamvgw59+oToW5cTdfUcIG15KmjlrXkqbZVdJARAgh+hNJ\n2h7yx53/wqGzYLSlccvYEVe8n+SYYPyao0FVOCZJWwgh+hVJ2h7w9akcztgPodgCeWTaHZct7+qI\nRqOQnhSNoz6cgvoiKf0SQoh+RJK2mzU0NfOPE/9CUeDWpG8RHhRw1fu8uOuXPEUuhBD9hyRtN1u+\n+VOcfrXEMITZw8d0yz7TTAYcF0q/pOuXEEL0G25dXGXZsmXs27cPu93Oj370I8LDw3n11VfR6XQE\nBASwbNkyQkND3RmCV315+ATFugNoHD48NHVBt+03PNiXuKBoqmx+HDtf+qVR5PeXEEL0dW5L2rt2\n7SI3N5eVK1diNpu57bbbMBgMvPLKK6SkpPDGG2+wcuVK7r//fneF4FUVZgufnF6NEuLg24m3Eup3\nZU+Lt2eEKZKN5ZFYfIrIryskJTSpW/cvhBCi53Hb6dn48eNZvnw54FrD1Wq1EhoaSk2Na/3W2tpa\nwsPD3TW8VzmcTpZvWgchFcToE5k5cEK3j5GeYsBR47pELqVfQgjRP7jtTFur1RIQ4HroatWqVUyb\nNo3/+Z//4a677iIkJITQ0FAee+yxDvcRHh6ATqft8DNXoqPC9e7w3rpDVAftR6Nq+b/ZPyQqOKTb\nx5gcHsAfPokCVeFkbS5G4x3dPsbVcvc8CxeZZ8+QefYMmeeOub1hSGZmJqtWreKdd97hpz/9KX/8\n4x8ZN24cv/nNb/jggw+4++67293WbLZ0ezzuXnEnr6iW1XmfozXayEiai7bJj4om94w3ND6SnLpw\nTitnySs6R6hvzznYZWUjz5B59gyZZ8+QeXbx2opo27Zt44033uDtt98mODiYEydOMG6cq/XZ5MmT\nOXr0qDuH9zhLk53XM79Caywi0ieauabpbh0vzWTAef4p8uPyFLkQQvR5bkva9fX1LFu2jDfffJOw\nsDAAIiMjycvLA+DIkSMkJfWth6f+35fHsEQdABS+P/JOtJruv7R/sXTTf+5rS722EEL0fW67PL5m\nzRrMZjOPPPKfPqTPPPMMTz31FHq9ntDQUF544QV3De9xO7NL2V+zE328henx15EUMsDtY8YYAjD4\nRmCx+XOs+gQOp8PtPxSEEEJ4j9uS9oIFC1iw4NLa5A8//NBdQ3pNRY2V97dkoRt6mlB9KN8aONcj\n4yqKwghTBDvMkVh9CsmvK2RgWLJHxhZCCOF5siLHVXI4nbz52VGc8YdRFJVFw2/HT+frsfHTTBGt\nq6NJ6ZcQQvRtkrSv0mc78iloyUYbXMPYqJGkRw736PjDk8KhPgJUjXT9EkKIPk6S9lXILarhs705\n+Aw4iZ/WjzsG3+rxGAL8dAyMNeCoC6ew4Ry1zXUej0EIIYRnSNK+QpamFt5afQx94nHQ2rl90E1e\nq5NOT4nAWStdv4QQoq+TpH0FVFXl/Q0nMWsK0BrKGBhqYlLceK/Fc3HpV7bUawshRJ8lSfsK7Mwu\nZXdOMf4pOWgVLYuG3e7VLltJMcEEKGFgCyCn+iQOp8NrsQghhHAfSdpdVF5j5W8bTuKXlItTZ2VO\n8g3EBEZ7NSaNopBuisBujsRqb+JM3VmvxiOEEMI9JGl3gd3h5O3V2dh8KlGMBUQHRHFj0vXeDgs4\nf4n8/H1tKf0SQoi+SZJ2F3y2I59TJTWEDnXdN140bD56jdt7rnRKmsmAs86AomokaQshRB8lSbuT\nThbW8PnOfEKSC2nS1nBd3AQGhZm8HVarsCBfBkSG4agzUNxQQk1zrbdDEkII0c0kaXeCpamFtz/L\nRvFtxBl1khCfYL49cJ63w7pEusmAvUZKv4QQoq+SpH0Zqqry/9afoKquiZhRp3CoDr4z5FYC9P7e\nDu0S6Re16syWpC2EEH2OJO3L+PpoKXuOlxM7uBqzeo70iOGMMY7wdlhtGpQQht4RhKYlkJzqXCn9\nEkKIPkaSdgfKzBb+9uVJ/APtNEcexUfrw4Kh30ZRFG+H1ia9TsPwRAO26giaHE2crs33dkhCCCG6\nkSTtdtgdTt5afYxmm4PkcUVYHVa+lTIXg1+4t0PrUHpKxH9WR5NL5EII0adI0m7Hp9vPcKakjtSR\ndvKbckgMTmB6wmRvh3VZ6SYDznoDiqqV0i8hhOhjJGm34cRZM2t2FhARpqMmdB8aRcOiYXd4danS\nzooK9ycyOBC13sC5xlLMTTXeDkkIIUQ36flZyMMam1p467NjKIrC8AmVmJvNzBwwjQHBcd4OrVMU\nRSE9JQKbOQKQ0i8hhOhLJGlfRFVV3lt3AnN9MzMmBXKgZg8RfgbmmWZ5O7QuGWEy4JSuX0II0edI\n0r7I9iMlZOWUMzAhmCK/nThVJ98dejs+Wh9vh9Ylw5LC0bQEoW0JIqf6JHan3dshCSGE6AaStM8r\nq7bwwZe5+PtqGXltPYUNxYyPHsvwiCHeDq3L/H11DIwPpbkqgmaHTUq/hBCij5Ckjau8683V2TS3\nOLhtViybSjYRqAtg/uCbvR3aFbu469dReYpcCCH6BEnawCfbzpBfWs/EtGhynduxOWzcPvhmgn2C\nvB3aFRuREnG+65dWHkYTQog+ot8n7eMFZtbuKsAY5seIsc0crcphSPggJsSM83ZoV2VAdBDB/n7Q\nEEFJYxnVTWZvhySEEOIq9euk3WBtYcXnrvKuu+el8OmZz9FrdHx36O09dqnSztIoCmkmA81VrtIv\nWR2tY28f/jtvHnrf22EIIUSH+m3SdpV35WCub+bWKckcsmyn3tZARvIsogIivR1et7i465dcIm/f\nKXM+BysPcbjqCCWN5d4ORwgh2tVvk/a2wyXsO1HBkIRQhg53suPcHuICY5iVON3boXWbNFMEanMA\nOnswOeZcWqT0q00f53zZ+v8bcnd6MRIhhOhYv0zaJVWNfJB5En9fHffeNJQPT36MgsKiYfPRarTe\nDq/bhAb6kBgdRHNVBDaHjVM1Z7wdUo9Tbqkg35KLszEY1aHlUNVhVFX1dlhCCNGmfpe0W+xO3vrs\nGLYWJ9+bO5Qs89eUWSqYljAJU2iSt8PrdummCOxm1+V+aSByqdUnN4ECRtsINPUxNCv15JnzvR2W\nEEK0qd8l7b+vO05BaT3XpceQmAjrCzYT5hvKLSlzvR2aW7i6foWjUXVyX/u/1NsaOFh1EGeTP7ek\nTWJY8AgANuTt8nJkQgjRtn6VtI/nV/PxV3lEhfmzcNYgPsj5Fw7VwZ1Dvo2/zs/b4bnFoIRQfPU+\naCyRlFrKqbJWezukHiMzfxuq4sC3ZjBjhxi5cfgY1BYfTtQfw+F0eDs8IYS4hFuT9rJly1iwYAHz\n589nw4YNtLS08Nhjj3HHHXfwve99j9raWncO/w12h5MVXxxHURTu+1YqB6r2c6o2n9HGdEYZ0zwW\nh6fptBqGJ4ZjqTAAUvp1gc1hY2vRTlS7npmmiWg1GgbHh6GvT8ChNHOo/Li3QxRCiEu4LWnv2rWL\n3NxcVq5cyYoVK3jhhRf46KOPCA8PZ9WqVcybN4+srCx3DX8JVVWJDPXjR7eNIDJC4ZNTa/DT+vGd\nIbd6LAZvSU8x4Kxx3dc+Vi33tQG+PrcXG02oFUlcP9r1LIOiKIyOHAXApjN7vBmeEEK0SeeuHY8f\nP56RI0cCEBISgtVqZfPmzTz00EMALFiwwF1Dt0mv07LkrnEYjcG8uPl1rPYmFgy5jTDfUI/G4Q3p\nJgPqhgB8HCGcqM6jxdGCXqv3dlhe41SdrDuzBdWpYazhGoL8/zMXs4ansydrPflqLk32Jvz66G0T\nIUTv5LakrdVqCQgIAGDVqlVMmzaNo0ePsnXrVl5++WUiIyN59tlnCQsLa3cf4eEB6HTdW4KVVXyY\nA+WHGRqRwm2jZ6FR+v5tfaMxmNiIQGqqIiHqNJWUMdI43CPj9kQ7C/dRb6/BUTmA784f/Y04jcZg\ngnaYsPhnc6z+JHOGXOfFSDunp85zXyPz7Bkyzx1zW9K+IDMzk1WrVvHOO+/wne98B5PJxIMPPsif\n//xn3nzzTZ544ol2tzWbLd0aS5O9ib/s/xCtouWOgd+mqrKxW/ffkw1LCmNLngHfqNPsOL2fWG2C\nW8czGoOpqKh36xhXQlVVVh5Yg6rCAEYSpNdcEuc1UaPZasvm86NbGRs+0kuRdk5Pnee+RubZM2Se\nXTr64eLW08xt27bxxhtv8PbbbxMcHExkZCTjx48HYMqUKeTl5blz+Et8fnoDVRYzs5NmEBcU49Gx\nvc1V+mVAS/8u/cqrOc056zmc5mjmjm77asP16UNwNoRSZiuktrnOwxEKIUT73Ja06+vrWbZsGW++\n+WbrJfBp06axbds2ALKzszGZTO4a/hJN9ma+KtpBbFAUc5Nu8Ni4PcWwxHC0ihatJYoySwWV1ipv\nh+QV6/O/AsC/bghjhrS9xnxUmD/hLSmgqGwv3OfB6IQQomNuS9pr1qzBbDbzyCOPsHjxYhYvXszN\nN9/Mli1b+O53v0tmZib333+/u4a/hK/Wh+8OvZ0npv64Xz6E5e+rY3BCKI1lrh9Q/bH0q6SxjOPm\nEzjqw5g1fARaTfuH/+QB41BVha+LJGkLIXoOt93TXrBgQZtPiL/22mvuGrJDiqJwXfwEjCH9955J\nmsnAiZ1G9MCxqhymJ0z2dkgelVmwxfU/5SlMmx3X4Wenpibx+YZIasLKKW0sJyYwygMRCiFEx/r+\no9OiVbopAtXmj58zjBPmU7Q4WrwdksfUNNeyp3Q/TmsA4+NHEhzg0+HnQ4N8iVEGAfBVgdRsCyF6\nBkna/ciA6CBCAvTYqiNocbaQW3Pa2yF5zFeFO3DixF5qYva4AZ3aZrppLKpDS1bZQen8JYToESRp\n9yMaRSHNFIG1dUnT/rE6WpO9ybVkaYsPKb7DSYzuXB3ohGFxqDXRWNU6ztQVuDlKIYS4PEna/Ux6\nigFnQzha9P2m9GvHuT00O5uxlyUx+5rkTm8X4KcnyWcYIMuaCiF6Bkna/UxasgFUDT5NUZRbKym3\nVHo7JLdyOB1sOrsN1aElyDIu8EHLAAAgAElEQVSo3TKv9swYPArV5sPR6qPYnXY3RSmEEJ0jSbuf\nCQn0ISk6mPrScIA+f7a9r/wQNbZaHBXxzBxl6rDMqy1jBkdBTTwtNPX5uRJC9HyStPuh9BQDLWbX\nGWd2H+76paoqXxZsARXUihSmjeq4zKstvnotQ4NTAdicv7e7QxRCiC6RpN0PpZsM0OKHvxpOrvkU\ntj5a+pVTncu5xhLs1TFMHGS6bJlXe2YMTcNpDSSv7gRWe1M3RymEEJ0nSbsfGhgfip+PFoc5khan\nndyaU94OyS0yz7oWU7GXmJg57sobpKSZDGjrEnAqDg6UH+mu8IQQosskafdDOq2G4Unh1Lcuadr3\nLpEX1p8jx5yLo87AQEMiSTFX3u5Pp9UwyuDq9rVFLpELIbxIknY/lW5ylX7p0JNdmdPnFg/ZeNFZ\n9qyrOMu+YHrqYBz1YRRZC6hprr3q/QkhxJWQpN1PpaVEgKrBzxZDZVM15da+U/pV3WRmX9khVGsw\nIc54xg4xXvU+ByWE4tuYCIrKnpID3RClEEJ0nSTtfioqzJ/ocH/qSl2XyPtSOdPmwu04cdJSksz1\nYxLQaa/+MNcoCtfGjEZ1KtKuUwjhNZK0+7F0UwTNVRFA37mvbWmxsuPcbhS7H0pNHNOvoMyrPVNS\nk3DWRlLVUkZpY1m37VcIITpLknY/lpbiKv0KwkBuzWlsDpu3Q7pq24t30eywYTuXxIRhsYQEXlmZ\nV1sSo4MItiUD8HWxnG0LITxPknY/NiwxDK1GwVkbhd1p56S5d5d+tTjtbC7ajsapw16RwMxrrv4B\ntIspisLkhFGoDi27zu3vcw/vCSF6Pkna/Zifj44hA8IwnwsBev8l8r2lB6iz1WMrS2BQTCTJMSHd\nPsbktAQc5mganXWcrpXOX0IIz5Kk3c+5Sr/C0Cu+ZFf13tIvp+pk49ktKKpCS2nyVS2m0pFoQwCR\nzkEA7CjKcssYQgjRHkna/VyaydX1K6AlhqomM2WWCm+HdEWyq3IotZSjmuMI8w1h3NCrL/Nqz1RT\nOqrNlwMVh6XzlxDCoyRp93MDooIIDfShobX0q3deIr+wZGlTcTIzxsR3S5lXeyakxuKojsGmSucv\nIYRnSdLu5xRFIc1koKHC1aozuxcmofy6s+TVnEFniUJrC2H66Hi3jhce7EuCbigAO4rkKXIhhOdI\n0hakny/9ClEiyas5TZO92dshdUlmgessu/FsEuOHRRPajWVe7ZkyeBhOayDHzMel85cQwmMkaQvS\nkg0oAPVR2FVHr+r6VWGp4mDFUXzt4TjrDMzq5jKv9owfFo2zOg4nDg5WHPXImEIIIUlbEBzgQ1JM\nMFVFrk5YR3vRfe1NhVtRUanPH8DAuFBMsd1f5tWWIH89gwKGA7C9UDp/CSE8Q5K2AFyXyO11ofgo\nvhyrOtErSr8abI3sLMnCVw3CUR3jtjKv9kwdPghHfRj5DWek85cQwiMkaQvAtQ45aAhyxFHdZKbU\nUu7tkC5rS/HXtDhbaD6XSGigH9cMi/Lo+GMGGVFqXA+9ZZUe9OjYQoj+SZK2ACAlLgR/Xy2N5Ree\nIu/Zl8htDhtbi75Gr/hiLYlze5lXW3x9tKSFp6E6FXmKXAjhEZK0BQA6rYbhSQZqzoUCPb9V566S\nfTS0NKKpTkaLnhmju6+bV1dMGZ6MszaS8uZSSqTzlxDCzSRpi1bpJgPYfQnTRpFXc4amHlrK5FSd\nbCzcigYtNflxjB8eRWiQr1diSU8xoKsbAMCekv1eiUEI0X9I0hat0k0GALQNUThUByd6aNevQxXZ\nVFqrCG4yQYsvs8YN8FosOq2GMTHpqA4tO8/tx6k6vRaLEKLvk6QtWkWG+RNtCKCi0FX61RPva6uq\n2rpkafnJGEyxIaTEeabMqz2TU+NxVEdTb6+Vzl9CCLdya9JetmwZCxYsYP78+WzYsKH19W3btjF0\n6FB3Di2u0AiTgeaaEHw1fj2y9OtUbT75dWeJIAlnU5DHFlPpyNABYfhZkgDYLZfIhRBu5LakvWvX\nLnJzc1m5ciUrVqzghRdeAKC5uZm33noLo9F9XZjElUtPMQAKoc54zM01Pe7hqsyzXwFQlRdPSKAP\n4z1c5tUWjUZhYmIqqs2XfWWHpPOXEMJt3Ja0x48fz/LlywEICQnBarXicDh44403WLRoET4+7l8f\nWnTd0AHh6LQK1grX/e2edIm8tLGcI5XHMWhjsFYHM2N0nMfLvNozMTUWe1Uszc6mXtl0RQjRO+jc\ntWOtVktAQAAAq1atYtq0aZw9e5acnBwefvhhXn755cvuIzw8AJ1O2+2xGY3B3b7PviQtJYJDZ5rw\nN0JufR6LjLdc0X66e57/lf8pAPZSE1qNhvmzhmII8evWMa5UZGQQ4V+m0EA+B6oOMSt1osfGluPZ\nM2SePUPmuWNuS9oXZGZmsmrVKt555x0ee+wxnnrqqU5vazZbuj0eozGYior6bt9vXzIkIZRDuZUY\ndNEcr8jjbEkF/rquJcfunufa5nq2ntlFqC6c0jMhTEyNwtHcQkVFS7eNcbUmJA3my4bd7Dt3hLMl\n5fjr/N0+phzPniHz7Bkyzy4d/XBx67XFbdu28cYbb/D2229jsVg4ffo0//u//8udd95JeXk5d911\nlzuHF1dohCkCAL0lBqfq5IQ5z8sRwZaiHdhVB361gwHF4+uMd8bEtBgcla7OXwfKpfOXEKL7ue1M\nu76+nmXLlvHXv/6VsLAwwHXWfcENN9zA3/72N3cNL65CvDGQsCAfKs4GwyDIrsxhtDHda/E02ZvZ\nVryTQF0gBcdDMcUGe73Mqy1xkYFEK4OoJpdd5/YxOW68t0MSQvQxbjvTXrNmDWazmUceeYTFixez\nePFizp07567hRDdSFIU0k4HG6kD8tf4cq/Zu6dfOkr1Y7FYi7cNQnVpmjktAURSvxdORyUNScNSH\ncarutHT+EkJ0O7edaS9YsIAFCxa0+/6mTZvcNbToBummCHYcKSVMTaCkOZdzjaXEB8V6PA6H08Gm\nwm3oNXrOHokgJEDP+GHRHo+js64dHs3H2XFog2vIKjvIrMTp3g5JCNGH9Ix6GdHjpJkMKEBzlXdL\nvw6UH6a6yUyifjiWRg3TR8ej1/XcwzYi1I8kvyGoToWdxdL5SwjRvXruv37Cq4L89STHhlBaEISC\n4pWuXxeWLFVQqMyLRatRmDEm3uNxdNV1wxNx1hoptZZyrqHU2+EIIfoQSdqiXekmAw6bnkifGE7V\n5mO1Wz06/glzHoUN5xgYOJTSEoVxQ42EB3unm1dXjBsWhbPK1Sp0b9kBL0cjhOhLJGmLdrmWNAUf\nq6v0K6fas6VfFxqD2EtNAF7t5tUVIQE+DAkbgurQsls6fwkhulGnk3ZDQwMAlZWVZGVl4XTKP0R9\nXUpcCP6+OqqKXOVVnryvXdxQwvHqkyQFJZGTo5IUE8zA+J5X5tUeV+evGGpbajlVk+/tcIQQfUSn\nkvYvf/lL1q5dS01NDQsXLuT9999n6dKlbg5NeJtWoyE1ORxzmR8BugCOVeV4rPTrwll2cMMwVBVm\n9eAyr7aMGWxEqXHdf99bJp2/hBDdo1NJ+9ixY3znO99h7dq13HbbbSxfvpyCAukb3B+km1xdvyKU\nAdTa6ilqKHH7mOYmV7lUtH8U2Yd1BAfouXa497t5dYW/r44R0UNQbb5klR6mRTp/CSG6QaeS9oWz\nq6+++oobbrgBAJvN5r6oRI+Rfn5J05bqSACOeeAS+ebC7ThVJ4maUViaHEwfHYfeDY1j3G3i8P90\n/vLEvAkh+r5OJW2TycS8efNobGxk+PDhfPLJJ4SGhro7NtEDRIT6ERsRQPEZfxQUt7edtNqt7Di3\nmxCfYE4dDUKjKFw/puetM94ZIwca0Ne5Yt9TKpfIhRBXr1Mrov3qV7/i5MmTDBw4EIDBgwe3nnGL\nvi/NZCAzy0K8bxxn6gqwtFgJ0Lung9X24t00OZoZGzaJjRVWxg+L6hVlXm3R67SMTRxEluUgRyqP\nu3XehBD9Q6fOtI8fP05paSk+Pj787ne/Y9myZZw8edLdsYkeYkSK6xK5X3Osq/TLnOuWcexOO5sL\nt+Or9aHqtGup0lnX9M6z7AsmpsbgqIrFoTo4WHHE2+EIIXq5TiXtX/3qV5hMJrKysjhy5AhPP/00\nr732mrtjEz3EkAFh6LQazMWuWyLZle65P7u37CC1tjrGRozj8Mk6EqODGBTfu2/DDEsKw9+aBMgl\nciHE1etU0vb19SU5OZmNGzdy5513MmjQIDQaWZelv/DVaxk6IJTSYh2BukCOVZ/o9gVDVFVl49kt\naBQNVJhwqmqP7ubVWVqNhmsHJuOoCye35jTmphpvhySE6MU6lXmtVitr164lMzOTKVOmUFNTQ11d\nnbtjEz1ImikCUIjSJlJnq6eooXvbrGZX5VDSWMaYyJHsOVxPkL+eiak9t5tXV0xIjcZR5eqQllV2\n0MvRCCF6s04l7UcffZTPPvuMRx99lKCgIN5//33uueceN4cmepILS5raay6UfnXvU+QXFlOJtKXR\nYG3ptWVebRkYF0KYPRnVqbBbLpELIa5Cp54enzhxIiNHjuTMmTMcO3aMH/7wh/j7y1Ow/Ul8ZCDh\nwb4Un1FRUl2lX3OTZ3bLvgvqCsmtOc2w8MHsP9B8vsyr53fz6ixFUZg4bABfVhop0ZRS3FDild7k\nQojer1Nn2pmZmdx44408++yzPPXUU8yZM4ctW7a4OzbRgyiKQprJQGODQpx/PGdqC2hssXTLvi+c\nZQ/zv4az5Q2MHRKJIcSvW/bdU0xIjcZeeb7zV6l0/hJCXJlOJe0VK1awevVqVq1axccff8w///lP\nXn/9dXfHJnoY15KmEGCLQ0Ulp/rqy/4qrdUcKD9CQlAcJ3NcF35mXdM7unl1RYIxiBh9MqpDx97S\nA9L5SwhxRTqVtPV6PQaDofXP0dHR6PV6twUleqbUZAOKArUlYQDdsjrapsJtqKhMNE7iwIlKBkQF\nMTihd5d5tWfisDgc1dHU2Go5VXPG2+EIIXqhTiXtwMBA3nnnHXJycsjJyWHFihUEBga6OzbRwwT5\n6zHFhlBYoCFYH8yxqqsr/WpoaWTnuT2E+4ZRWRCOU1V7XTevrpiQGo3jwiXyMrlELoTouk4l7V//\n+tfk5+fz5JNPsmTJEoqLi3nhhRfcHZvogdJNBpwqxOgTqW9poLC++Ir3ta1oFzZnC9PiJ7PtUBlB\n/nom9JEyr7YYw/xJDk5Ctfmyr0w6fwkhuq5TT49HRETw/PPPf+O1U6dOfeOSuegf0lMiWL0jH7U2\nCvTZHKs6QVJI1+9Btzha2FK0A3+dH/oaEw3WU8ybmISPvm+UebVnYmosH52IpSk2n+yqHEYb070d\nkhCiF7niZc2ee+657oxD9BKm2GACfHUUn/FHo2iu+L727tJ91Lc0MCVuIlsOlKEo9Kkyr/aMHx6N\ns+rCU+RSsy2E6JorTtoXemyL/kWr0ZCaHE51jZP4gATy687S0NLYpX04VScbC7eiVbQk6UZwtqyB\nsUOMRIT2rTKvtoQG+jAsKhGnJai185cQQnTWFSftvvqwkLi89PNdv4Jb4l2lX1VdK/06UnmMcksl\n42PGsOtgLQCzxvXubl5dMSE1BkdVHA7VwYGKw94ORwjRi3R4T3vVqlXtvldRUdHtwYje4UK9dn1Z\nOITD0aoTXBMzptPbX1hMZbxhIq+cOEWCMYghA8LcEmtPNG6Ikfc3x8GAk+wtPcB1cRO8HZIQopfo\nMGnv27ev3fdGjx7d7cGI3sEQ4kdcZCD5ZywYokM4fr7rl0a5/IWb07X5nK4tID1iGMdOtLjKvK7p\nu2VebQnw0zNywACO1oWTi6vzV7hf//nRIoS4ch0m7RdffNFTcYheJt1kYMPeRmJ9k8mpP8zZ+iKS\nQxIvu11mgesse0b8VN7Yco5AP12fLvNqz4TUaA7tiEMbYiar7CCzk2Z4OyQhRC/QqZKvRYsWXXIm\npNVqMZlM/OQnPyE6uv/9o9vfuZJ2IZr6KMC1OtrlknaZpYLDlcdICh5A1blA6i0tZExIxLePl3m1\nZdTACHTr48F5nD2l+yVpCyE6pVMPok2ePJmYmBi+973vce+99zJgwADGjRuHyWRiyZIl7o5R9EBD\nBoSh12k4lx+ARtF0qlXnxrNbUVGZmTiNjfuLXWVeY/t+mVdbfPRaxqbE4aiJ5Fyjq/OXEEJcTqeS\n9r59+/jtb3/LjTfeyKxZs3jppZfIzs7mnnvuoaWlxd0xih7IR69l6IAwSsptJAYlUlBXSL2tod3P\n19nq2V26j0g/A8EtiRSU1jNmsJHI0P7b4nVCajT2Kun8JYTovE4l7aqqKqqrq1v/XF9fz7lz56ir\nq6O+vr7d7ZYtW8aCBQuYP38+GzZsoKSkhHvuuYe77rqLe+65R55A7+UuPEUe6nCVfh3voOvXlqKv\nsTvt3JA4jU37XEufzuxHZV5tSU0Ox785Dhw69pZJ5y8hxOV16p723XffTUZGBvHx8SiKQlFRET/6\n0Y/YvHkzCxYsaHObXbt2kZuby8qVKzGbzdx2221MmDCBO++8k3nz5vH3v/+dd999l8cff7xbv5Dw\nnLSUCNiUh6XCAIGQXZXDtTFjL/lcs8PGtqKdBOoDGBY0gr+dyCLeGMiwxP79xLROq+HaobFsr4qh\nRltEXs0ZhoQP9HZYQogerFNJ+4477mDu3Lnk5+fjdDpJTEwkLKzjf3DHjx/PyJEjAQgJCcFqtfLs\ns8/i6+sLQHh4ONnZ2VcZvvCmuIgAwoN9yTtlJ+yaEI5Xn2yz9Gvnub002i1kJM/i68MVOJwqM/tw\nN6+umJAazZbVseiiithbekCSthCiQ526PN7Y2Mh7773HH//4R15//XVWrlxJU1NTh9totVoCAgIA\n1yIt06ZNIyAgAK1Wi8Ph4IMPPuCWW265+m8gvEZRFEakGLA0OUjwT6GxxUJBXeE3PuNwOthUuBW9\nRsd1MRPZcrCYQD8dk1JjvBR1zzIoIZRQJRZsfuwvP0yLQ54REUK0r1Nn2k8//TTR0dEsXLgQVVX5\n+uuveeqpp3jllVcuu21mZiarVq3inXfeAcDhcPD4448zceJEJk2a1OG24eEB6HTdXw5kNAZ3+z77\nq8mjEth6qIRAewJwkPymM1w7yNW5ymgM5uuzWVQ1mZk9cCpFFU7qLC3cNmMQCfH9+9L4xa4fm8jq\nU7EQe4azLflMbOMWQ0fkePYMmWfPkHnuWKeSdmVlJa+++mrrn6+//noWL1582e22bdvGG2+8wYoV\nKwgOdv1FLFmyhKSkJB588MHLbm82WzoTXpcYjcFUVLT/8JzomniDH4oCZ3N90MRr2Hv2CNdHz8Bo\nDKa8vI6Pj65DQWFS5ETe/GcuigKThhnl7+AiI03h/Ht3HPrYM2zM3clAv8Gd3laOZ8+QefYMmWeX\njn64dOryuNVqxWr9Tzcii8VCc3Nzh9vU19ezbNky3nzzzdb736tXr0av1/PQQw91ZljRCwT66UmJ\nC+FMsQVTcDIF9f8p/cqtOcXZ+mJGGdNoqPEhv7Se0YMiiQzrv2VebRkQFURMQDSqNYijlcextHT/\nj1UhRN/QqTPtBQsWkJGRQXq667JndnY2Dz/8cIfbrFmzBrPZzCOPPNL62rlz5wgJCWk9Sx84cCBL\nly69wtBFT5FuiuBUcR3hJACnOVZ1gpT4WL483xhkVuJ0vtxS5Pr/fl7m1RZFUZiQGs3neXEoA05y\noPwI18VLExEhxKU6/fT4ddddR3Z2Noqi8PTTT/P+++93uM2CBQvaLQcTfUt6ioFPt5+hqdIAPq7S\nr5E1g13JOzSZcG0Me3O+Jj4ykGFJ4d4Ot0eakBrNp7tj0Q84yZ6y/ZK0hRBt6lTSBoiNjSU2Nrb1\nz4cPSx9g4WKKCSHQT0feaSfho0I5Xn2ST3M2AK6z7K8OFEuZ12VEhweQZIiipM5AHmeobjJj8JMf\nOEKIb+rUPe22qKranXGIXkyjUUhNNmCus5EcOAiL3cq2gj1EBxgZHj6Urw6eI8BXx6Q0KfPqyMTU\naOxVrh/GWaUHvRyNEKInuuKkLWdM4mIXljTVW/6TmGcOmMa+E5XUNdqYMjIWX5/+182rK8YPj8ZZ\nHQOqhj1l++WHsRDiEh1eHp8+fXqbyVlVVcxms9uCEr1P2vmkXVEYgC5aR6Den2tjxvJS5iEU4AZ5\nAO2ywoN9GRpv5LTZSIlSRnFDCQnBcd4OSwjRg3SYtD/44ANPxSF6OUOIH/HGQHILG3nohntIjInk\nbKGFMyV1jB4USZSUeXXKhNRoTu6ORWsoY2/ZAUnaQohv6DBpx8f3z17H4sqkmwysryhEbYggxZDE\nPz7ZBcDMa+Qsu7PGDY3ib19GoTj1ZJUd5NaBGZes5S6E6L/kXwPRbdJNEQAcPV2Nua6JvcfLiY0I\nIFXKvDotyF/PCFMULZXR1DTXkldz2tshCSF6EEnaotsMGRCKj05D9plq1u3Mx+FUmSVlXl12bWoU\njvNPke8pPeDlaIQQPYkkbdFt9DotQxLDKK5sZPW20/j76piULmVeXTVmkBFdUyRKiz8HpPOXEOIi\nkrRFtxpx/hJ5g7WFqSNj8fPp9Po94jxfHy1jBkdhq4ihydHMkarj3g5JCNFDSNIW3So9xVX6pShw\nw1h5kPFKTUiNxlHlenI8Sy6RCyHOk9Mg0a1iDAGMSIkgITqYqPAAb4fTa6WbDASo4ahNwRytyqGx\nxUKgXuZTiP5OzrRFt1IUhZ/dOYqf3DHK26H0ajqthnFDo7CVx+JQHRwol7X+hRCStIXosSamRuOo\njgVVniIXQrhI0haihxoyIIxQn1BojOBU7RmqrLJ0sBD9nSRtIXoojUbh2uHR2CpcZXNZZXK2LUR/\nJ0lbiB5sQmo0juoYFFXDnrID0vlLiH5OkrYQPVhyTDBRISE4a4yUNpZR1FDi7ZCEEF4kSVuIHkxR\nFCamRmOrdNVs7y3b7+WIhBDeJElbiB5uQmo0zhojGqcPWaUHcapOb4ckhPASSdpC9HCxEYEkRoXQ\nUhVNra2OXLN0/hKiv5KkLUQvMCE1Gnvl+c5fcolciH5LkrYQvcC1w6Jx1oejdQRwsPwoNun8JUS/\nJElbiF4gItSPIQlhNJdF0+Ro4qh0/hKiX5KkLUQvMSE1Gvv5zl97ZVlTIfolSdpC9BLXDItC0xyC\nzhZK9vnOX0KI/kWSthC9RHCAD6nJBqylMThUB/ul85cQ/Y4kbSF6kQmpUdirXE+R7y2Vp8iF6G8k\naQvRi4wZbESvBqC1GDlVm095Y5W3QxJCeJAkbSF6EX9fHaMGRWItjQZge8EeL0ckhPAkSdpC9DIT\nU6NxmKNR0LLx1HYK64u9HZIQwkN07tz5smXL2LdvH3a7nR/96EeMGDGCxx9/HIfDgdFo5OWXX8bH\nx8edIQjR54xIicBf54+mKpkKTvHS3uWMixrFzSlziAqI9HZ4Qgg3clvS3rVrF7m5uaxcuRKz2cxt\nt93GpEmTWLRoERkZGbz66qusWrWKRYsWuSsEIfokvU7DuCFGth+xc9+kqWwt+ZJ95Yc4UHGEKXET\nmJs8i1DfYG+HKYRwA7ddHh8/fjzLly8HICQkBKvVyu7du5k5cyYA119/PTt37nTX8EL0aRPSXPe0\ni0758fNrfsr30/4/IvzC2Vq8k6U7X+Kz0+ux2q1ejlII0d3cdqat1WoJCAgAYNWqVUybNo3t27e3\nXg6PiIigoqLCXcML0acNTwwnJNCHjVmFBPpqmX1NOqON6Xxdsoc1ZzJZl7+RbcU7mZt0A1PjJ6HX\n6r0dshCiGyiqqqruHCAzM5M333yTd955hxtvvLH17LqgoIAnnniCDz/8sN1t7XYHOp3WneEJ0Wvt\nPFLCHz46SL3FRpQhgHtuSmXKqDiaHTbWnNzEpzkbsLY0ERlg4M70m5mWNAGNRp49FaI3c2vS3rZt\nG8uXL2fFihWEhYUxc+ZMvvjiC/z8/NizZw9/+9vfeO2119rdvqKivttjMhqD3bJf8U0yz57hH+jL\nXz87SmZWEQ6nyqD4UBbOHExKXAgNLY1sKNjMlqKvsTvtxAZG862UuYyITEVRFG+H3qvI8ewZMs8u\nRmP7z6Roly5dutQdg9bX1/Poo4/yl7/8BYPBAEBeXh5Wq5Vhw4bx7rvvMnbsWNLS0trdh8Vi6/a4\nAgN93bJf8U0yz54RHhaAKTqIianRmOubyc6vZuuhc5RVWxgSH8G4uFQmxozDam8ipzqXrPKD5Jjz\niAqIxOAX7u3wew05nj1D5tklMNC33ffcdqa9cuVK/vCHP2AymVpfe+mll3jqqadobm4mLi6OF198\nEb2+/Xttcqbde8k8e8Z/z/OJs2Y+3JRHQWk9ep2GOdcOIGNCEv6+Okoay/js1DoOVWYDkB4xnG8N\nnEt8UKy3wu815Hj2DJlnl47OtN1+T/tqSNLuvWSePaOteXaqKjuPlvKvLaeoabAREujD7dNSmDIi\nFo1G4XRtAZ+eWkNezRkUFK6NGctNphuJ8Jcz7/bI8ewZMs8ukrQvIgeFZ8g8e0ZH89xsc7B+z1nW\n7C7A1uIkwRjEwpmDSE02oKoq2VU5rD69juKGEnSKlqkJk5ibNJMgn0APf4ueT45nz5B5dpGkfRE5\nKDxD5tkzOjPP5vpmPt56iq+PlKICowZGcOcNg4iNCMSpOskqO8jnp9dT1WTGT+vLrMTpXD9gKn66\n9u+r9TdyPHuGzLOLJO2LyEHhGTLPntGVeS4orefDjbmcKKxBq1GYMSaeW6eYCPLX0+K0s714F+vy\nN9LQ0kiwTxAZybO4Lu5adBq3rnbcK8jx7Bkyzy6StC8iB4VnyDx7RlfnWVVVDuRW8tHmPMrNVgJ8\ndXzrumRuGJeATquhyd7ExrNb2Vi4lWaHjUg/AzenzGFc9Cg0Sv+t8Zbj2TNknl0kaV9EDgrPkHn2\njCudZ7vDyab9xazefo13c7QAACAASURBVAZLs52ocH++M2MQY4dEoigK9baG86uq7cKhOkgIiuNb\nAzNINQzplzXecjx7hsyziyTti8hB4Rkyz55xtfPcYG1h9fYzbD5QjMOpMmRAGAtnDiI5JgSASms1\nn5/eQFbZAVRUBoelcOvAeZhCE7vrK/QKcjx7hsyziyTti8hB4Rkyz57RXfNcUtXIPzef4mBeJQow\nOT2G26cPJDzY9TBaUf05Vp9eR3ZVDgCjjenckjKXmMCoqx67N5Dj2TNknl0kaV9EDgrPkHn2jO6e\n52P51azclEdheQM+eg1zr00kY0ISvj6uHgC55tN8emoNZ+rOolE0TIy5hptSZhPmG9ptMfREcjx7\nhsyziyTti8hB4Rkyz57hjnl2OlV2HCnh462nqW20ERbkw/zpA5mUHoNGUVBVlcOV2aw+tY5SSzl6\njY4ZCVO4MWkGAfqAbo2lp5Dj2TNknl0kaV9EDgrPkHn2DHfOs7XZztrdZ1m/5ywtdidJ0cEsnDmI\noYmuldMcTge7S/fzxZkN1DTX8v+3d+fxUVf3/sdfs2aZyUwmy2QhIStkD4SAFVCkBXcEhSqggHbR\nWqq9td7e8uPWq/dhbS9qlyvuVlsKVaDgWqtUr6C0spN9hSwQE7Ink2WyTWZ+fwyGRARBku9k+Twf\nDx+Emcl3zrw95JPz/Z7vOT5aH66Jms/8iLnoNfoRaZOnSH9WhuTsJkV7EOkUypCclaFEzs1t3ez8\nuIx9BXUAzJgazK3fjCPE4h5V9/b38Un1p+yq/Ai7owuz3sSNMVdzedhMNOrxsbWu9GdlSM5uUrQH\nkU6hDMlZGUrmXF7TxtaPjnH8MxsatYoFmRHcNDcag7d70x97XxcfnNzD7qp/0ufsI8Q3mJtir2N6\ncOqYv01M+rMyJGc3KdqDSKdQhuSsDKVzdrlcHClpYPvu4zTaujF4a1lyRQzzMyah1bgXX2ntsfFe\nxYd8euoQTpeTKL9IlsRdT0JAvGLtHG7Sn5UhObtJ0R5EOoUyJGdleCrnPkc/Hx75jL99WklXTz+h\nAb7c9q14psUFDoyq6+wN/K18F0frcwFICpjKkrjrifSbpHh7L5X0Z2VIzm5StAeRTqEMyVkZns65\nzd7LW3sr2JNdjcsFSVEWln8rnskhZ37onGir4u2y9yluOQbAZaEzWJmwdExNVvN0zhOF5OwmRXsQ\n6RTKkJyVMVpyrm7oYPvuMvLKm1ABV04L45YrYzEbz+wUVtx8jDfL/k5VezWx5mh+mH7XmLlFbLTk\nPN5Jzm7nK9qaRx555BHlmnJx7PbeYT+mweA1IscVQ0nOyhgtOZsMemanhBIXbuJkXQf5Fc3syarB\nBcSE+qHRqAnyCWR22CwaupooaCqmoKmYacEpY2IL0NGS83gnObsZDOf+NzFxt+0RQgy71NhAHvnu\nLNZcm4Bep+aNT8pZ/9J+9hfU4nS50Kg13Jm8gqsi5lDTWctvjjxLg73J080WYsyQkbYYEZKzMkZj\nzmqViugwE/OnT8KFi6LKFg4VN5BX3kx4kC9BZh+SAxJApSK3sYAj9TkkWqZg8jr3KUFPG405j0eS\ns5uMtIUQivPx0nLr/Hgeu/tyLkuyUnGqjV9vOcqLbxfQ63ByY8zV3Dp1Ce29Hfw+63mOt1Z4uslC\njHpStIUQIyrY34d7l6SyflUmMWEm9hfW8bvtOXT1OJgfMZe7klfS09/L09l/IL+xyNPNFWJUk6It\nhFBEfISZ/7dqBjMTrZRWtfKbbdl0dvcxKzSDH6TdCcALeZs4WHvUwy0VYvSSoi2EUIxWo+YHi5OZ\nnRJKeU0bT7yaRZu9l9SgJO6ffjdeGi82FW5ld9U/Pd1UIUYlKdpCCEVp1Gq+tyiJ+dPDOVnfweOv\nZtHa0UOcfzQPzLgXk96PHcfe5m/l/2AULyMhhEdI0RZCKE6tUrH62gSunhlJTWMn//OXozTZuplk\nDOPBzLUEeQfwXuWHbC99E6fL6enmCjFqSNEWQniESqVixYJ4Fs2Jor6li//5yxHqWuwE+QTy08y1\nTDKG8Un1Pv5U8BoOp8PTzRViVJCiLYTwGJVKxdJ5cSydF0tTWw//85ejVDd2YvYy8ZOMe4kzR3Ok\nPocXcjfR0y/37wohRVsI4XGL5kSzYsEUbB29bPjLUU7WteOr8+G+6d8nNTCRwuYSNma9RGef3dNN\nFcKjpGgLIUaFa2ZFsua6BDq7+nj81SzKamzoNXruSbuTWSEzqGg7we+PPk9rj83TTRXCY6RoCyFG\njfnTJ/H9Rcl09Tp4cms2JSdb0Kg1rEm+jfkRc6nprOW3R56l3t7o6aYK4RFStIUQo8rs1FB+uCQV\nh8PJ77bnUFDRjFql5ttTFrMo5hqaulv47ZFnqWqv8XRTRzWZdT8+jWjRLi0tZeHChWzZsgWAQ4cO\nsXLlSlavXs0PfvADbDY5zSWEONvMRCv3LU3D6YL/3ZFD9rFGVCoV18csZPnUm+no6+T3R5/nWEu5\np5s66pzqrOO5nFf46ccPsa/mkKebI4bZiBVtu93Oo48+yuzZswce+/Wvf81jjz3G5s2bycjIYNu2\nbSP19kKIMW5afBA/uTUdtVrFM2/kcbCoDoB5EXO4K2Ulvc5ensn5A3mNhR5u6ehg62nnteKdPHbg\nt+Q3FdPv6mdL8V95p+x9WaRmHBmxoq3X63nppZewWq0Dj1ksFlpbWwGw2WxYLJaRenshxDiQHB3A\nT2+bjk6r5oW3C/hX3ikAZoZM597076BCxYt5f+bAqSMebqnn9PT38l7FhzyyfwP/rDmA1TeYe9Pv\n4hffeJAgn0DeP/ERfyp8jb7+Pk83VQwD7YgdWKtFqx16+PXr17Nq1SpMJhNms5kHH3xwpN5eCDFO\nTI3052crM/jttmxefreIXoeTb2ZMIiUwgfsz7uG5nFf4c9E2Oh12vhV5paebqxiny8n+U0f4W/ku\nbL1t+OmMLI2/kTlhl6FRawD4WeZ9vJD3Jw7XZdPS3co9aXdi1Bs83HJxKVSuET5vsnHjRiwWC6tW\nreKuu+7i/vvvJzMzkw0bNhAWFsaaNWvO+b0ORz9arWYkmyeEGCMqamw89MKn2Dp6+d7iFG6+Kh6A\nk63VPPbxRlq6bSxNvp7lqTehUqk83NqRlVNbyObs1zlpq0av0bEoYSFLEq/BR+d91mt7+/t49sAm\nPq06QqgxmP837z7C/KxfclQxFozYSPvLlJSUkJmZCcCcOXN45513zvv6lpbhX0ghONiPhob2YT+u\nGEpyVsZEytmoU/MfKzN44rUsXn67gOYWO4vmROOjMvGTjB+yMfslXi98j/rWZpYn3IJaNXxX/0ZL\nztUdp3jj+LsUNZeiQsXlYTNZFHMNFm9/Olr76KCPnt5+3t1/gvzyJu64Zipx4WZWxt+Kn9rMrhMf\nsf4fG7gn/U7i/WM8/XHOMlpy9rTgYL9zPqfoLV9BQUEcP34cgLy8PKKiopR8eyHEGBcWaGDdHTMI\nNHnzxt4Kdn5cjsvlIsgngAdPr1f+z5oD/LHg1XG1Xnlrj40tRX/l1wd/T1FzKYmWKayb9W+sTroN\ni7c/AC6Xi4NFdax/aT9/+7SSytp2nngti/zyJtQqNYvjruOOxFvp6u9mY9aLHKrN8vCnEl/HiJ0e\nz8/PZ8OGDVRXV6PVagkJCeGBBx7g8ccfR6fTYTab+dWvfoXJZDrnMUbiNy75TU4ZkrMyJmrOzW3d\nPPFaFnUtXSzMjGDlwimoVCrsfV08n/snymwVJAVM5fupq/HWel3y+3kq525HNx+e/JgPT35Cn7OP\ncEMoN8ffSHLA1CGXAE7WtfPqh8corWpFq1Fx7WWTiQg28vK7RbhcLr63KInLk0MBKG4+xh/yN9Pl\n6GZRzDVcF71g1FxOmKj9+YvON9Ie8Wval0KK9tglOStjIuds6+jhya3ZVDd2Mm9aOGuuTUCtVtHb\n38crBVvIaywi2jSZH077DkbdpU2+Ujrnfmc/n546xLsV/6C9twOz3o9FsddyedjMIaf9O7r6eGNv\nOXuyqnG5YHp8ECsWxGO1+AJQcrKFp3bm0t3Tz8qFU1g4MxJw38v9bM4rNHe38I3QTG5PXIZWrejV\n0i81kfvzYOcr2ppHHnnkEeWacnHs9uHf1cdg8BqR44qhJGdlTOScvfVaZiVaKapsIbesifrWLqZP\nCUKn0ZIRnE5TdwsFTcXkNxUzLTgFb+3Zk7QulFI5u1wuCpqKeSnvz+yvPQzAddHf4jupdxBjnjww\nInY6XezJqubp1/MorbIRGuDL3Tcls3huDAYf3cDxgsw+pMUGcvRYI4dLGuh3ukic7I+f3sjMkOkc\nb62goKmYstYK0oOS0Wl0X9oupUzk/jyYwXDus0NStMWIkJyVMdFz9tJpuCzJSsnJVvLKm6lp7GTG\n1GC0Gg3pQcl093eT31hEdkM+KYGJX3vErUTOJ9s/Y1PBVnad+IjOPjtzwy/jnrQ1pAUlo1WfuYum\ntKqVja/nsTf3FBq1e2vT7y1KIizwyz+b2ejFjIRgco83kXWsEVtnL+mxgXhrvZgVkkGdvZ7C5hJy\nGwtJCUzAV+c7op/zfCZ6f/6cFO1BpFMoQ3JWhuQMOq2GWYlWymts5JU3c6KufaBwJwVMRaPWkNOQ\nz5G6HBIDpmD2Ovc8mnMZyZybu1vYXvoW20vfpKm7hZTARO5OW8Oc8MuGXI9vbuvmz7tK2PbRcdo6\ne5mbFsqPl6WTGhuIWn3+a9IGb92QsxLVDZ1kTAlCr9WRYU2j19lLXmMhh+uyifePGZjcpjTpz25S\ntAeRTqEMyVkZkrObTqtmZqKVE7Xt5JU3U1bTRmZCMDqthnj/WEx6I1n1eRyuyyLWHEWgT8BFHX8k\ncu5ydPH3ig/5U+FrVLVXE2EM587kFVwfsxA/vXHgdX2Oft7bf5Ln3srnZF0HMWF+/GhpGgsyI/HW\nX/h1aG+9lsuSQiirtpFX0czxz2zMmBqMXuv+5cakN5LdkM/B2qNYfYMJM4QM6+e9ENKf3aRoDyKd\nQhmSszIk5zO0Gnfhrm7oIK+8mZKTrWQmWNFp1USZIgnxtXK0PpdDdVlMMoQSYrjwBUaGM+d+Zz+f\nVO/jD3mbKWouxaT347apN3Nbws0E+wYNvM7lcpF9vJGnduZypKQBg7eW26+eyh3XJBBo+nrX53Va\nNd9ItlLd0El+RTP5FU1kTA3GW68hyhRJlCmS7IY8DtVloVfriDVHKTqzXPqzmxTtQaRTKENyVobk\nPJRGrSIzIZi6Fjt55c0UVDYzM8GKXqch3BhKtGkyR+tzOFyfTYC3PxF+4Rd03OHI2eVykdtYwIv5\nf+ZQbRZqlZobYq7mrpTbiTJFDCmOp5o6eemdQv726Ql6evu5emYka29JI36S+ZKLqEatZmZiMLaO\nHnLLmsk61sC0+CAM3jqsvkGkBCaS3+SeB2DrbSc5IGFYF6o5H+nPblK0B5FOoQzJWRmS89nUahUz\npgbT3N5DXlkTueVNZCZY8dZrCPYNJMEST1Z9Hkfqc/DWeBFr/upFni4158q2k/yx4FU+PPkxXY5u\nrpx0OXenrSE5MGFgnXCArh4Hr39SxsvvFlHX0kVKtIX7l6UzOzUUnXb4CqdapWJafBD9ThfZxxo5\nVFRPSkwAZoMek5cfmSHTONZSRn5TMZVtVaQFJaFTj/zMcunPblK0B5FOoQzJWRmS85dTnS5KnV0O\ncsqayD7eyIwpQfh4abF4+5MamERuQwHZDXk4nA4SLPHnHcF+3Zwbu5rZWvI6O469Q0tPK+lBKdyd\ntobLw2bipdEPvM7pcvGvvFo2vp5HYWULgSZvvntjEkvnxWIy6M/zDl+fSqUiOToAXy8th0saOFBY\nx5QIM4Fmb7y13swMyaCmo5bC5hLyG4tJDUrER+szIm35nPRnNynag0inUIbkrAzJ+dxUKhVpsQH0\nOZxkH2/kaGkD06e4TwP76Y1MD06loKmY3MZCbL1tpAQmnrNwX2zO9j4775Tv4s+FW6nuPMVkvwi+\nk3I710R/86xdtspr2njmjXx2Z1XjcrlYPDeae25KIcJqVOR6ctwkM1aLD4eL69lfWEdksJHQQF+0\nai2ZIdOwO7rIbyriSF0OU/3jvtbs+wsl/dlNivYg0imUITkrQ3I+P/do0oJapeLosUaOlLiv3xp9\ndPjqfJgRkk5p83Hym4qp7awjLTgFzZdcv73QnPucDj6u+icv5W+mtLUMf29/Vky9hW9PXUzQF2as\n2zp7efWDUrZ8UEprRw+XJVn58bfTmT4lGI1G0W0hiLQaiQkzcai4nv0FdQSYvJkc4odKpSIlMBFf\nrc/AzPIwQyihFzGJ72JIf3aToj2IdAplSM7KkJy/mkqlImGyBb1OzZGSBg4V15MaG4DJoMdL40Vm\nyDTKbScobC6h0naSacGpZy3p+VU5u1wushryeCl3E0fqc9CqtdwUey13Ji0n0jRpyIjZ0e/kg8NV\nPPtmHuU1bUQEG/jhzalc940ofLw8t5RoiMWXpCgLR0rqOVhUj16nZkqE+37tGPNkIozhAzPLfbQ+\nRJsih/1MgPRnNynag0inUIbkrAzJ+cJNifDH6KPjcHE9B4vqSI624G/0QqfWkWmdTk2n+/ptSctx\npgWloh90zfl8OZfbKnkl/y98VLWXnv5e5kfM5ftpq0kMmDJkkhlAfkUTG3fmsb+wDi+dhuXfiufO\n6xMJ9vfcKmSDBZi8mRYfRPbpsxI9vf0kR1tQqVSEGKwkBySQ21hIVkMenQ47iZYpwzqzXPqzmxTt\nQaRTKENyVobkfHFiw00E+Hlx6HThToi0EGDyRqPWkBGcRnN3q3u98sYi0oOS8Tm9XvmX5Vxvb+TV\n4p28cfxdWntsZASncXfaGmaFZgwp+AD1rV288m4Rb3xSQWdXH/MzJnH/snQSJrtP3Y8mJl89MxOs\n5JW7J/A12bqZFh+IWqXC7GVihjWdkubj5DcVUdVefXqZ1eE5QyD92U2K9iDSKZQhOStDcr54UaF+\nhAT4cKiogQNFdcSFmwj290GtUpMWlExPfw95TUVk1eeREpiAUW8YknNHbydvlb3H5qLtnOqsI8Y0\nme+l3sGCyVdh+MK63T29/bz9rwpefLuQmsZOpkSYuW9pOldND0ev03xZ80YFX2/t6TXdW8gtb+Zk\nbTsZU4PRatT4aH2YFZpBVXs1hc0lFDWVkBqUdEkbsnxO+rObFO1BpFMoQ3JWhuT89UQEG4mwGjlU\nXMeBonqiQvwICfBFpVKRFDAVnVpHdmM+R+pzSLDEEx4QjK29k4+q9vJywRaOt1YQ6G1hZeIylsYv\nIsDbMuT4LpeLQ8X1PLUzl9yyJsxGPWuuS2DFt6bg73fp+3srwUun4RvJIVSeaiOvopmSqtaBZU91\nai2Z1mm09XaQ31TM0fpcEizxmLzOvaXkhZD+7CZFexDpFMqQnJUhOX99YYEGYsJMHCyq50BhHZOC\nDIQHGVCpVMT5x2DW+51erzwbFy5eyd1KVkMeXmo9i+OuY03yciYZw86ajHWyrp3n3ypg18EqHP1O\nbpgdxb1LUogONSm6JOhw0GrUXJYUMrDCXG5ZExlTgvHx0qJWqUkNTMJL63V6gtpRIvzCsQ5aivVi\nSX92k6I9iHQKZUjOypCcL43V4suUSWYOFddzoLAeq8WHCKt7s47JpghCDSFk1eeSW1dMX38f35x8\nJd9PXcVUS/xZE7A6uvrYtvs4m94vpsnWzfT4IH787XRmJoagVfgWruGkVquYkRA8sFDNkZIG0uMC\nMfroUKlUxJqjCTeEkt2Qx8Haoxh1RqJMkV/rvaQ/u52vaKtcLpdLwbZclIaG9mE/ZnCw34gcVwwl\nOStDch4eZdU2frs9h+4eB3den8i8aWfWJD/WUs7xzmPMCpx11r3WAE6ni4+zq3n9k3I6ux2EBviy\ncuEU0mIDlfwII87lcvHOp5W8ubcCP18dD9w2jejQMwutVNhO8Hzun+jo62RB5Dxujr/homeWS392\nCw4+92UGGWmLESE5K0NyHh4BJm9SYwI4XNLAwaJ6DN5aYsPNAAT6WJgTlwG9Z08cKznZwtOv57E3\n9xQatYql8+L43qIkwgINZ712rPv8fneTQT+welpcmHsSH4DF258MazpFzaXkNRVS01lLWlDSWbe9\nnY/0Zzc5PT6IdAplSM7KkJyHj7/Ri7S4QI6UNnC4pAGd9sziIl/Mubmtm03vF7N9dxltnb3MTQvl\nx8vSSY0NRK0eW9etL1ZMmIlJQYaBwh0W6J4LAOCr82FWyHROtFVR2FxCcfMxUoOS8dZe2OS7sdKf\nbT3tFDWX8q+aA+z+7J9M9puEcdAe6JdKTo8PIqdflCE5K0NyHn61zXaeeC2LlvYeFs+NZskVMVit\nJhoa2ulz9PP+wSre3VdJb5+TmDA/br96KnGnR+UTSVFlM0+9nkdvbz+rrk3gmxmTBp5zOB28Vvw6\n+2sPE+Bt4Yfp3yHcGPqVxxyN/dnlclFnb6DMVkFZayVltkoau5oGntepdfw4425izdHD9p7nOz0u\nRVuMCMlZGZLzyGhs7eKJrVk0tHZz7WWR/Oi2DD74tILX/u8YjbZuTL46ls2PY25a2KhbHEVJlbVt\n/G57Du32Pm6+Moab5kQPzJB3uVzsOvER75TvwkfrzfdT3avEnc9o6M8Op4OT7dWUtVZQZquk3FZJ\nZ5994HkfrTex5mhizdHEmaOJMkWi1wzvtqVStAcZDZ1iIpCclSE5j5yW9h6e3JrFqSY74UEGaho7\n0ahVLMiMYPHcGHy9PbdO+GhS12znN9uyabR1s2BGBCuvnjLkF5nDtVlsLtqOExcrE5YxJ3zWOY/l\nif5s7+ui3FZJue0EZbYKTrRV0ed0DDwf4G0h1hxFnDmGOP9owgwhw7p065eRoj2I/JBThuSsDMl5\nZLV19vLk1mw+a+ggOdrCyoVTmRQ0/iaZXaqW9h5+uz2b6oZOLkuy8v1FyUNuczveWsGLeZvo7LNz\nTdQ3uSn22i8tfEr05+buloHT3GWtFZzqrMOFuwyqUBFuDB0o0HHmaCze/iPani8jRXsQ+SGnDMlZ\nGZLzyOvp7afL6cLspRlzi6MoqbO7j//dkcvxz2ykxATwo1tS8dafORtRb2/guZw/Ut/VSKZ1GquT\nbkP3hdPKw92fnS4nNR21AwW6zFZJa49t4HmdWke0KZI4/xjizNHEmCfjo/UZtvf/uqRoDyI/5JQh\nOStDclaG5Hxhevr6ef7NfHLKmogJM/GTW9Px8z2zeUpHXycv5m6izFZJrDmKe9LuxG/QrOtLzbm3\nv5fKtirKWisHTnl393cPPG/UGQYKdKw5mki/8GHb7GQ4SdEeRP7xKUNyVobkrAzJ+cI5+p1seq+Y\nf+XXEhrgy4PLpxNoPrOZSJ/TwZai7RyuyybIJ5C16d8hxGAFLj7n9t4Oym2VA6e7T7Z/htPlHHje\n6ht0esKY+3S31SdoTJwtOV/RHn2/YgghhBiztBo1370xCT9fPe8fPMmvthzhp8unD8wF0Km13JW8\nkmCfQN6r/D+ePPIM96StYYol7rzHdblcNHQ1nrkebaug3t448LxapWayX4R70tjp0bTfMN47PVrI\nSFuMCMlZGZKzMiTnr+e9Ayf46+4yDN5a/u3WacRPGno/+/5Th3m1eCcAq5Ju5ca0qwZy7nf2U9VR\nPVCky1srae/rGPheb40XMYNmdUebIs/ax3yskpG2EEIIxV3/jSiMPjo2vVfCk1uzWHtzGulxZ9Zk\nvzxsJgHe/ryYt5lNhVtp6m+kv8dFWWslFW0n6XP2DbzW38tMpnXawCg63Bg64rdejUYy0hYjQnJW\nhuSsDMn50mQda+D5twpwOl1898YkZqcMXR2ttrOOZ3P+SFN3M+C+9SrMEDJk0liAt/+YuB49HDw2\nEa20tJS1a9dy1113sWrVKvr6+li3bh0nTpzAYDDw1FNPYTafe/k/Kdpjl+SsDMlZGZLzpSutauV/\nd+TS1eNg5YIpXD1r6Pad7b0dlNpL8HL4EmuOwlfn66GWet75ivaInVuw2+08+uijzJ49e+Cx7du3\nY7FY2LFjBzfccAOHDx8eqbcXQggxikyN9GfdHTMwG/W89n/H2PlxGYPHjH56I9dNmU9qUNKELthf\nZcSKtl6v56WXXsJqtQ48tnv3bhYvXgzA8uXLWbBgwUi9vRBCiFEm0mpk/apMrBYf3t13gk3vF9Pv\ndH71N44SvX39NNm6qTjVRm5ZE//KO8WerGq6ehxf/c3DZMQmomm1WrTaoYevrq7mk08+4YknniAo\nKIiHH34Yf3/ll4gTQgjhGcH+PqxflcnvtufwSc4pOroc/GBxMjrthe+7PVz6HE7a7b202/tot/fS\ndvrrz/9s7+ylvauPttN/9vT2f+lxDD46ZiVav/S54TbiE9E2btyIxWJh1apVXHfdddx///3ceOON\nPPvss7S3t/Pzn//8nN/rcPSj9cD/SCGEECPL3t3HY388SO7xRlLjAvnFd76BwefSdsvqczhp6+zB\n1tGLraPH/V/n518PeqyjF1tnD/burx4hazUqzEYvzAYvzEa9+2vjma+DzD5MmxqMRqF91BW95Sso\nKIhZs9w7vFxxxRVs3LjxvK9vabGf9/mvQyaUKENyVobkrAzJeWT86OYUXnynkCMlDfzHU5/wy7Vz\ncXSfuc2r3+mkw95H2xdGwp+Pjj8fAbd3uv9uv4DT1Bq1CqOvjgA/b6JDdfj56vHzdf9pGvjzzGM+\nF7DmfHNTx3mfv1ij5j7tefPmsXfvXpYtW0ZBQQExMTFKvr0QQohRRKfV8MMlqWz5Rwl7smv46e8+\nJsDPa6BId17ASFilAj9fPRaTF1G+fgPF1s9XN6T4+vnqMBn0+Hppx/StYyNWtPPz89mwYQPV1dVo\ntVp27drFk08+yWOPPcaOHTvw9fVlw4YNI/X2QgghxgC1WsXqaxPw89Xz7v4TNNm6MfjoMBu9iAg2\n4mcYWoAHF2KTAH4M5QAABwhJREFUQY+vt3bI/t3jnSyuIkaE5KwMyVkZkrMy/Mw+2FrsqBW6Pjxa\neeQ+bSGEEOJieOu1E75gfxUp2kIIIcQYIUVbCCGEGCOkaAshhBBjhBRtIYQQYoyQoi2EEEKMEVK0\nhRBCiDFCirYQQggxRkjRFkIIIcYIKdpCCCHEGCFFWwghhBgjpGgLIYQQY8So3jBECCGEEGfISFsI\nIYQYI6RoCyGEEGOEFG0hhBBijJCiLYQQQowRUrSFEEKIMUKKthBCCDFGTJii/atf/Yrly5ezYsUK\ncnNzPd2cce3xxx9n+fLlLFu2jH/84x+ebs641t3dzcKFC3n99dc93ZRx6+2332bx4sUsXbqUPXv2\neLo541JnZyf33Xcfq1evZsWKFezdu9fTTRq1tJ5ugBIOHjzIiRMn2LZtG2VlZaxfv55t27Z5ulnj\n0v79+zl27Bjbtm2jpaWFW265hWuuucbTzRq3nnvuOcxms6ebMW61tLTwzDPPsHPnTux2Oxs3bmT+\n/Pmebta488YbbxATE8ODDz5IXV0dd955J++//76nmzUqTYiivW/fPhYuXAhAXFwcNpuNjo4OjEaj\nh1s2/syaNYv09HQATCYTXV1d9Pf3o9FoPNyy8aesrIzjx49LERlB+/btY/bs2RiNRoxGI48++qin\nmzQuWSwWSkpKAGhra8NisXi4RaPXhDg93tjYOKQTBAQE0NDQ4MEWjV8ajQZfX18AduzYwbx586Rg\nj5ANGzawbt06TzdjXPvss8/o7u7m3nvv5fbbb2ffvn2ebtK4dOONN1JTU8PVV1/NqlWr+PnPf+7p\nJo1aE2Kk/UWycuvI+/DDD9mxYwevvPKKp5syLr355ptMnz6dyMhITzdl3GttbeXpp5+mpqaGNWvW\nsHv3blQqlaebNa689dZbhIeH8/LLL1NcXMz69etlnsY5TIiibbVaaWxsHPh7fX09wcHBHmzR+LZ3\n716ef/55/vCHP+Dn5+fp5oxLe/bsoaqqij179lBbW4teryc0NJQ5c+Z4umnjSmBgIBkZGWi1WiZP\nnozBYKC5uZnAwEBPN21cOXr0KFdccQUAiYmJ1NfXy2W1c5gQp8fnzp3Lrl27ACgoKMBqtcr17BHS\n3t7O448/zgsvvIC/v7+nmzNu/f73v2fnzp1s376dW2+9lbVr10rBHgFXXHEF+/fvx+l00tLSgt1u\nl+utIyAqKoqcnBwAqqurMRgMUrDPYUKMtGfMmEFKSgorVqxApVLx8MMPe7pJ49bf//53Wlpa+MlP\nfjLw2IYNGwgPD/dgq4T4ekJCQrj22mu57bbbAPjFL36BWj0hxjqKWr58OevXr2fVqlU4HA4eeeQR\nTzdp1JKtOYUQQogxQn5lFEIIIcYIKdpCCCHEGCFFWwghhBgjpGgLIYQQY4QUbSGEEGKMkKItxDjz\n2WefkZqayurVqwd2TXrwwQdpa2u74GOsXr2a/v7+C379ypUrOXDgwNdprhDiIkjRFmIcCggIYPPm\nzWzevJmtW7ditVp57rnnLvj7N2/eLItbCDEKTYjFVYSY6GbNmsW2bdsoLi5mw4YNOBwO+vr6+K//\n+i+Sk5NZvXo1iYmJFBUVsWnTJpKTkykoKKC3t5eHHnqI2tpaHA4HS5Ys4fbbb6erq4sHHniAlpYW\noqKi6OnpAaCuro5///d/B9x7fS9fvpxvf/vbnvzoQowrUrSFGOf6+/v54IMPyMzM5Gc/+xnPPPMM\nkydPPmtjBl9fX7Zs2TLkezdv3ozJZOI3v/kN3d3d3HDDDVx55ZV8+umneHt7s23bNurr61mwYAEA\n7733HrGxsfz3f/83PT09/PWvf1X88woxnknRFmIcam5uZvXq1QA4nU5mzpzJsmXLeOqpp/jP//zP\ngdd1dHTgdDoB93K/X5STk8PSpUsB8Pb2JjU1lYKCAkpLS8nMzATcG/LExsYCcOWVV/Lqq6+ybt06\nrrrqKpYvXz6in1OIiUaKthDj0OfXtAdrb29Hp9Od9fjndDrdWY99cQtKl8uFSqXC5XINWYP788If\nFxfHu+++y6FDh3j//ffZtGkTW7duvdSPI4Q4TSaiCTFB+Pn5ERERwccffwxARUUFTz/99Hm/Z9q0\naezduxcAu91OQUEBKSkpxMXFkZWVBcCpU6eoqKgA4J133iEvL485c+bw8MMPc+rUKRwOxwh+KiEm\nFhlpCzGBbNiwgV/+8pe8+OKLOBwO1q1bd97Xr169moceeog77riD3t5e1q5dS0REBEuWLOGjjz7i\n9ttvJyIigrS0NADi4+N5+OGH0ev1uFwu7r77brRa+TEjxHCRXb6EEEKIMUJOjwshhBBjhBRtIYQQ\nYoyQoi2EEEKMEVK0hRBCiDFCirYQQggxRkjRFkIIIcYIKdpCCCHEGCFFWwghhBgj/j+lGHka7NI7\nRQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAFnCAYAAACM3c9QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XlcVXX+P/DXYXUB2eSiIGjRkEUy\ng0tmqCgDopaOmSllmEWTuIxpaSISoAlKUzmTYeFkmoS5ICblXhONyxU0S5RGSy1GNHZEWUSW8/vD\nr/cnKhflcO49597X8/G4j8ddz/sDKC/en3PO5wiiKIogIiJqIwtjD4CIiNSNQUJERJIwSIiISBIG\nCRERScIgISIiSRgkREQkCYOEJBFFEWvXrsWTTz6J0NBQBAcHIz4+HleuXJG03Xnz5iEwMBD79++/\n58/m5uYiIiJCUv32tnPnTlRVVd3xtXfffReff/65gUdE1H4EnkdCUvz9739HTk4OPvjgA7i5uaGm\npgYJCQn49ddfkZaWBkEQ2rTdhx56CHv27IGXl1c7j9g4Ro4ciXXr1qFbt27GHgpRu2NHQm126dIl\npKamYvny5XBzcwMAdOrUCbGxsXj55ZchiiLq6uoQGxuL0NBQjBo1CsuXL0djYyMAICgoCBs3bsSE\nCRMwePBgLF++HAAQHh6OpqYmRERE4LvvvkNQUBCOHj2qq3vjcUNDAxYtWoTQ0FCEhIRg1qxZqKqq\nQnZ2NkJCQgCgTfVvFR4ejtWrV2PSpEl47LHHkJaWhlWrVmHkyJEYPXo0zp8/DwA4d+4cnn32WYwa\nNQohISH46quvAAALFy7Er7/+ivDwcBw9ehRRUVFYtmwZxowZg127diEqKgqrVq1Cbm4uhg0bhurq\nagDARx99hNmzZ7f3j42o3TFIqM2OHz+Obt26wdvbu9nztra2CAoKgoWFBT799FMUFhZix44d2LZt\nG44ePar7BQsAR44cwaZNm7B161Z89tlnKCwsRGpqKgAgNTUVgYGBLdY/cOAACgoKsHv3buzduxcP\nPPAAfvjhh2bvaUv9Ozly5AjS0tKwbNky/P3vf0e3bt2we/duPPDAA9i6dSsA4O2338bw4cOxa9cu\nJCYmYtGiRaivr8eyZct0X0///v0BAFqtFunp6Rg1apSuhp+fH4KDg5GSkoKioiJs2LABMTExrf4c\niIyNQUJtdunSJbi4uOh9T1ZWFiZOnAgrKyt06NABY8aMwcGDB3WvjxkzBpaWlnBzc4OLiwt+//33\nu67v7OyMs2fPYt++faitrcWcOXMwZMgQWeoPHz4cVlZW8PHxQW1tLUJDQwEAPj4+KC4uBgCsWrVK\nt2+mX79+qKurQ0lJyR23N2jQINja2t72/Ny5c7F7924sXLgQM2bMgEajuevvB5GxMEiozZycnFBU\nVKT3PeXl5XBwcNA9dnBwQFlZme6xnZ2d7r6lpaVu2ulu+Pn5ISYmBqmpqQgICMDrr7+Oy5cvy1K/\nc+fOuvfc/NjCwgJNTU0AgP3792Py5MkIDQ3F6NGjIYqi7rVb3TymW+uMGjUK33//PcaMGaP36ydS\nCgYJtdmf/vQnlJWVIS8vr9nz9fX1WLFiBWpra9G1a1dcunRJ99qlS5fQtWvXe6pz8y9rAKisrNTd\nHzlyJFJTU/Htt9+itrYWa9asafbZ9qh/N+rr6zFnzhxMnz4de/bsQWZmZpsONCgqKsKXX36JJ554\nAh988EG7j5NIDgwSarMuXbrg5ZdfxoIFC5Cfnw8AqK2tRWxsLH766Sd07NgRw4YNQ3p6OhobG1FT\nU4Pt27fr3e9xJ66urjh16hSA64fR1tXVAQC2bt2K5ORkAICjoyPuv//+2z7bHvXvRm1tLWpqavDI\nI48AuL5vxtraGjU1NQAAKyur27qlO0lISMDLL7+M6Oho7Nq1C//973/bfaxE7Y1BQpL87W9/w8SJ\nEzF9+nSEhoZi/PjxcHFx0f01HR4ejm7duuGJJ57A008/jWHDhjXbwXw3ZsyYgXXr1uHJJ5/E2bNn\n8cADDwAA/vznPyMvLw8jRozAqFGjcObMGbz44ovNPtse9e/GjVAdN24cxo0bBy8vLwQHByMyMhI1\nNTUYOXIkwsLCsHPnzha3kZWVhYKCAoSFhcHOzg5z585FTEzMPU33ERkDzyMhIiJJ2JEQEZEkDBIi\nIpKEQUJERJIwSIiISBIGCRERSWJl7AG0JDFlg1HqRk97zuA1SyQuud5W+aWlRqnb/777jFJ3Rdo2\no9SdO/kpo9Q1N7+0sE6a3P4g44rObV0929AH4yo2SIiIzF1bg8TQOLVFRESSsCMhIlIotXQkDBIi\nIoUSBHVMGjFIiIgUix0JERFJwKktIiKShEFCRESSqGUfiTpGSUREisWOhIhIoTi1RUREkjBIAFRX\nV6P0/9ZzcnV1RadOneQsR0RkUsw6SE6cOIGEhARcvnwZTk5OEEURxcXFcHNzQ2xsLB588EE5yhIR\nmRSzDpLExEQkJCTA29u72fN5eXlYsmQJ0tLS5ChLRGRi1HE8lCyjFEXxthABAF9fXzQ2NspRkoiI\njESWjuSPf/wjIiMjERwcDGdnZwBAaWkp9uzZg0cffVSOkkREJsesp7YWLlyII0eOQKvVIjc3FwCg\n0Wgwa9Ys+Pv7y1GSiMjkmHWQAMCAAQMwYMAAuTZPRGTyzD5IiIhIGgYJERFJopa1thgkREQKpZaO\nRB1xR0REisWOhIhIodTSkTBIiIgUi0FCREQScGc7ERFJwqktIiKShEFCRESSqCVI1DEBR0REiiWI\noigaexBK4uLiYfCa3xw7ZPCaANDb3d0odTtYWxulrrH+qavlr0pSHje3nm36XFFRfjuPRD9ObRER\nKRSP2iIiIknU0s0ySIiIFItBQkREErAjISIiSeTcR5KYmIjjx49DEARER0fDz89P91paWhoyMzNh\nYWGBRx55BIsWLdK7LXXsySEionaTk5OD/Px8bNq0CQkJCUhISNC9VlVVhTVr1iAtLQ2ff/45zp49\nix9//FHv9hgkREQKJQhCm26t0Wq1CA4OBgB4e3ujsrISVVVVAABra2tYW1ujpqYGDQ0NqK2thYOD\ng97tcWqLiEih5NpHUlpaCl9fX91jZ2dnlJSUwM7ODra2tpg5cyaCg4Nha2uLJ554Avfdd5/e7bEj\nISJSKLk6klvdfLJuVVUVUlJSsHv3bnzzzTc4fvw4Tp06pffzDBIiIoWSK0g0Gg1KS0t1j4uLi+Hq\n6goAOHv2LDw9PeHs7AwbGxv0798fJ0+e1Ls9BgkRkUIJgkWbbq0JCAjAnj17AAB5eXnQaDSws7MD\nAHh4eODs2bO4evUqAODkyZPo1auX3u0ZfB/J5cuX0aVLF0OXJSJSHUGmExL79u0LX19fhIWFQRAE\nxMXFISMjA/b29ggJCUFERASmTJkCS0tL+Pv7o3///vrHaehFG6dMmYL169cbsuQ94aKN8uOijUR3\n575efdr0uV9/O9HOI9FPlo4kLS2txdeKiorkKElEZHpU8keILEGybt06DBo0CBqN5rbXGhoa5ChJ\nRGRy1NLNyhIkycnJWLp0KWJiYmBjY9PstezsbDlKEhGZHLMOEh8fH6SkpMDK6vbNR0VFyVGSiMjk\nmP31SDp27HjH528+m5KIiFpm1h0JERFJp5YgUUffREREisWOhIhIodTSkTBIiIgUSlDJpBGDhIhI\nqdiREBGRFJzaIiIiSRgkREQkiVqCRB17coiISLHYkRARKZTZL5FCRETSqGVqi0FyiwuFvxm8po+3\nn8FrAsCRE4eNUreDg4NR6hqLsS6o1djUZJS6VpaWRql7rrjYKHXvv8PlMtoLg4SIiCRikBARkQTc\nR0JERJKoZWpLHXFHRESKxY6EiEih1NKRMEiIiBSKQUJERJIwSIiISBIetUVERJKwIyEiIkkElZyQ\nqI6+iYiIFEvWILnTGkOFhYVyliQiMh2C0LabgckSJPv27cPw4cMxaNAgLFiwAFVVVbrX3njjDTlK\nEhGZHEEQ2nQzNFmCZPXq1di2bRsOHTqEvn37IiIiAleuXAFgvJVQiYjURhAs2nQzNFl2tltaWsLR\n0REAMGnSJLi4uCAiIgIfffSRao5CICIyNrX8vpQlSPr27Ytp06bhn//8Jzp06IDg4GDY2tpi6tSp\nuHTpkhwliYhMjlkHyRtvvIHs7GzY2trqnhsyZAj8/f2xc+dOOUoSEZkcsw4SABg4cOBtz9nZ2WHi\nxIlylSQiIiPgCYlERArFJVKIiEgiM5/aIiIiacx+HwkREUnDICEiIkkYJEREJIladrarY5RERKRY\n7EiIiBSKU1tERCQJg4SIiCRhkBARkUTq2I3NILlFkxGul3LqzHGD1wSAzjctqmlIxromjVr+umsv\n5vb1ero4G3sI7U4tP0MGCRGRQqklSNTRNxERkWKxIyEiUii1dCQMEiIihWKQEBGRJGpZIoVBQkSk\nUOxIiIhIEgYJERFJpI4gUccEHBERKRY7EiIihZJzaisxMRHHjx+HIAiIjo6Gn5+f7rXff/8dr732\nGurr6/Hwww9jyZIlerdlsI6kvLzcUKWIiEyCIFi06daanJwc5OfnY9OmTUhISEBCQkKz15cvX46X\nXnoJ6enpsLS0xMWLF/VuT5YgycrKQmhoKKZOnYqff/4ZY8eORXh4OIKCgvDdd9/JUZKIyOQIgtCm\nW2u0Wi2Cg4MBAN7e3qisrERVVRUAoKmpCd9//z2CgoIAAHFxcXB3d9e7PVmmtj788EOsXbsWFy9e\nRGRkJFatWoXevXujtLQUkZGRCAwMlKMsEZFJkWtqq7S0FL6+vrrHzs7OKCkpgZ2dHcrLy9G5c2cs\nW7YMeXl56N+/P15//XW925OlI7GxsYG7uzv69+8PjUaD3r17AwC6du0KWyOtOEtEpDZydSS3unlF\nblEUUVRUhClTpuCzzz7DTz/9hKysLL2flyVIXFxcsGbNGgDAxo0bAQCFhYVITExEt27d5ChJRGRy\n5NpHotFoUFpaqntcXFwMV1dXAICTkxPc3d3h5eUFS0tLDBo0CL/88ove7ckSJMuXL0f37t2bPVdW\nVgZ3d3ckJibKUZKIiO5SQEAA9uzZAwDIy8uDRqOBnZ0dAMDKygqenp747bffdK/fd999ercniMa6\nypBC1Vy7ZuwhGIy5XdjK3DQ2NRmlrqWFcU5Pq29sMEpda0v5zqJ46qk5bfrctm3/aPU977zzDo4e\nPQpBEBAXF4effvoJ9vb2CAkJQX5+PqKioiCKInx8fBAfHw8LPT9XBsktGCTy4z85w2CQGIa8QTK3\nTZ/btm1FO49EP56QSESkUFxri4iIJBEsGCRERCQBOxIiIpJELUHC1X+JiEgSdiRERAqllo6EQUJE\npFAMEiIikuQuVjtRBAYJEZFSsSMhIiIpOLVFRESSMEhUyhjrQNU1GGeNoIrqKqPUJZKDs6PGKHWv\nXOFlxBkkREQKxY6EiIgk4VpbREQkCTsSIiKShEFCRESSqCRHWg6S9PR0vR+cMGFCuw+GiIhuopIk\naTFIvv/+e70fZJAQERGgJ0iWLVumu9/U1ISysjK4uroaZFBERKSeo7ZaXRJMq9UiODgY4eHhAIDE\nxERkZWXJPS4iIrMnCEKbbobWapCsWLECmzdv1nUjkZGRWLVqlewDIyIydyYTJJ06dULXrl11j52d\nnWFtbX1PRbRa7b2PjIjIzKklSFo9/LdDhw7IyckBAFRWVmLHjh2wtbVt8f1ffPFFs8eiKOLDDz/E\njBkzAADjxo2TMl4iIrNhMueRxMXFIT4+HidOnEBISAj69euHJUuWtPj+5ORkODo6IjAwUPdcXV0d\nCgoK2mfERERmQi0721sNku7duyMlJeWuN/jVV19h1apVOH36NKKiouDh4YH9+/dj1qxZkgZKRETK\n1GqQHDlyBMuXL8fZs2chCAJ8fHzwxhtvoF+/fnd8v62tLebOnYtz585hyZIl8Pf3R1NTU7sPnIjI\n1KlkZqv1ne1LlizBvHnzkJ2dDa1Wi9mzZ2Px4sWtbvj+++9HSkoKunXrhh49erTLYImIzInJ7Gx3\ncXHBoEGDdI8DAgLg7u5+1wXGjRvHHexERG2hkpakxSA5f/48AKBPnz745JNP8Pjjj8PCwgJarRYP\nP/ywwQZIRGSuVH/U1gsvvABBEHSXnv3ss890rwmCgNmzZ8s/OiIiM6b6o7b+/e9/t/ihY8eOyTIY\nIiL6/1TfkdxQVVWF7du3o6KiAgBQX1+PrVu34sCBA7IPjoiIlK/Vo7bmzJmD06dPIyMjA9XV1fj2\n228RHx9vgKEREZk3tRy11WqQ1NXVYcmSJfDw8MCCBQuwfv167Nq1yxBjIyIya2oJklanturr61FT\nU4OmpiZUVFTAyclJd0QXERHJRyW7SFoPkr/85S/YvHkznnnmGYwePRrOzs7w8vIyxNiIiMyb2o/a\nuuHZZ5/V3R80aBDKysp4HgkRkQGo/qitf/7zny1+aN++fXj11VdlGRAREV2n+iCxtLQ05DiIiEil\nWgwSLvtORGRcqu9IjO3G0iyG1tDYaBY1AeDZp4zzx8I336w3St2r9fVGqWtrZZz/ZpW1tUap69y5\ns1Hqfplz0Ch15cQgISIiSdSy1larJyQCQEVFBU6cOAEAvEgVEZGBqOWExFaD5KuvvsKkSZOwcOFC\nAMBbb72FLVu2yD4wIiJzJwhtuxlaq0Gydu1abN++HU5OTgCABQsWYPPmzbIPjIjI7KkkSVoNEnt7\ne3Ts2FH3uEOHDrC2tpZ1UEREpB6t7mx3cnLCtm3bUFdXh7y8POzcuRPOzs6GGBsRkVlTy1FbrXYk\nixcvxokTJ1BdXY2YmBjU1dVh6dKlhhgbEZFZEyyENt0MrdWOpEuXLoiNjTXEWIiI6CZq6UhaDZLA\nwMA7fjFZWVlyjIeIiP6PyQTJhg0bdPfr6+uh1WpRV1cn66CIiMiEgsTDw6PZ4169eiEiIgJTp069\n6yINDQ0oKiqCm5sbrIy0XAQRkdqYTJBotdpmjwsLC/G///1P72eWLl2KmJgYAMChQ4ewaNEidO3a\nFWVlZVi8eDGGDBkiYchERKQkrQbJqlWrdPcFQYCdnR0WL16s9zOnT5/W3U9OTsb69evh6emJkpIS\nzJo1i0FCRHQXhLtaxMr4Wg2SqKgo+Pr63tNGb27HHBwc4OnpCQBwdXXl1BYR0d1SydRWq3mXlJR0\nzxv95Zdf8Oqrr2L27NnIz8/Hrl27AACffPIJ7O3t732URERmSM5FGxMTEzFp0iSEhYUhNzf3ju95\n9913ER4e3uq2Wm0P3N3dER4ejj/+8Y/NlkbRd6ndWy/T27NnTwDXO5J333231UEREZF8O9tzcnKQ\nn5+PTZs24ezZs4iOjsamTZuavefMmTM4cuTIXS2J1WqQ9OjRAz169LinQT766KN3fH7MmDH3tB0i\nInMmV5BotVoEBwcDALy9vVFZWYmqqirY2dnp3rN8+XLMnTsXH3zwQavbazFIMjMzMXbsWF5yl4jI\nSORa7qS0tLTZvm9nZ2eUlJTogiQjIwOPPvrobad/tKTFfSTp6ekSh0pERGpw86XNL126hIyMDLz4\n4ot3/XkeQkVEpFByTW1pNBqUlpbqHhcXF8PV1RUAcPjwYZSXl2Py5Mm4du0a/ve//yExMRHR0dEt\nbq/FIPnhhx8wbNiw254XRRGCIHCtLSIimckVJAEBAVi5ciXCwsKQl5cHjUajm9YaOXIkRo4cCQAo\nKCjAwoUL9YYIoCdIHn74Ybz33nvtOHQiIroXcp1G0rdvX/j6+iIsLAyCICAuLg4ZGRmwt7dHSEjI\nPW+vxSCxsbG56x0tRETU/uS8tsi8efOaPe7du/dt7+nRowdSU1Nb3VaLQeLn59eGoRERUbtR+5nt\n8+fPN+Q4iIhIpXjUFhGRQpnMMvJERGQcDBIiIpKEQUJERJLIedRWe2KQ3MKuQweD1zycd9LgNQFg\n4xfJRqlrLLZGuhbOlJdijVI3de1bRqlrLNV1dcYeQrtjR0JERJKoJEdav7AVERGRPuxIiIgUilNb\nREQkDYOEiIik4FFbREQkCae2iIhIEgYJERFJopYg4eG/REQkCTsSIiKFYkdyi/LyckOVIiIyCYJF\n226GJkvJ7777DrGx19cX0mq1GD58OKZMmYKgoCBkZWXJUZKIyOQIgtCmm6HJMrX1/vvvIyUlBQCQ\nnJyM9evXw9PTExUVFZg2bRqGDRsmR1kiItOikqktWYKkoaEBnTt3BgDY29ujR48eAABHR0eIoihH\nSSIik6OWfSSyBElERATGjRuHgIAAODo6YsaMGfD390d2djaeeeYZOUoSEZkcsw6SsWPHYujQoTh0\n6BAuXLgAURTRtWtXJCYmws3NTY6SRERkJLId/uvo6IjRo0fLtXkiIpPHtbaIiEgSs57aIiIi6Rgk\nREQkiUpyhEFCRKRYKkkSBgkRkUKpZWc7V/8lIiJJ2JEQESkUd7YTEZEkDBIiIpKEQUJERJIwSIiI\nSBK1HLXFICEiUiiVNCTKDRJjtXQNjY0GrznikT4GrwkAtfX1RqlrLMb6N5W69i2j1O3TZ6hR6p44\n8R+j1K1rMK9/z0qi2CAhIjJ7KmlJGCRERArFne1ERCQJg4SIiCThUVtERCQJOxIiIpJELUHC1X+J\niEgSdiRERAqllo6EQUJEpFAqyREGCRGRYvGoLSIikkItU1uy7Gzv27cv3nrrLZSVlcmxeSIisyAI\nQptuhiZLR+Lr64uRI0fi9ddfR/fu3TF+/Hj4+/vDyooNEBHR3VJLRyLLb3ZBEDBgwACsW7cOJ06c\nwJYtW/Dmm2+ic+fOcHFxwerVq+UoS0RERiBLkIiiqLvfp08f9OlzfZn04uJilJSUyFGSiMjkWJhz\nR/KXv/zljs9rNBpoNBo5ShIRmRyzntqaMGGCHJslIjIrZt2REBGRdCrJEQYJEZFSCVBHkjBIiIgU\nSs6prcTERBw/fhyCICA6Ohp+fn661w4fPoz33nsPFhYWuO+++5CQkAALi5ZPO+Tqv0REZiYnJwf5\n+fnYtGkTEhISkJCQ0Oz12NhYvP/++9i4cSOqq6uxf/9+vdtjR0JEpFByHbWl1WoRHBwMAPD29kZl\nZSWqqqpgZ2cHAMjIyNDdd3Z2RkVFhd7tsSMhIlIouZZIKS0thZOTk+6xs7Nzs3P8boRIcXExDh48\niMDAQL3bY0dCRKRQhjr89+aTyG8oKytDZGQk4uLimoXOnTBIiIgUSq6pLY1Gg9LSUt3j4uJiuLq6\n6h5XVVXhr3/9K+bMmYPBgwe3uj1ObRERKZSFILTp1pqAgADs2bMHAJCXlweNRqObzgKA5cuX44UX\nXsDQoUPvapzsSIiIFEquma2+ffvC19cXYWFhEAQBcXFxyMjIgL29PQYPHowvvvgC+fn5SE9PBwA8\n+eSTmDRpUovbY5AQEZmhefPmNXvcu3dv3f2TJ0/e07YYJERECsUz21Wq9Mplg9fM/E+2wWsCQF3N\nVaPUnfPsU0ap29jUZJS6xlp479+HdhilrrE0Nt1+5JHacdFGIiKSxKyXkSciIukYJEREJAmntoiI\nSBK1dCQ8IZGIiCRhR0JEpFBq6UgYJERECmWhjhxhkBARKRVPSCQiIkl41BYREUnCfSS3EEVRNd8U\nIiIlUMvvTFkO/z1w4ABGjRqFyZMnIzc3F08//TSGDh2KkSNHIicnR46SRERkJLJ0JMnJyfj0009R\nWVmJ8PBwrFu3Dr1798aFCxcwf/58bNiwQY6yREQmxaz3kVhbW0Oj0UCj0aBLly66de49PDxgaWkp\nR0kiIpOjlqktWYLEwcEBK1asQEVFBby8vBAbG4shQ4bgxx9/hIuLixwliYhMjlqCRJZ9JElJSdBo\nNHjsscfw8ccfo3///jh48CC6du2KxMREOUoSEZkcC6FtN0OTpSPp1KkTJk+erHs8duxYjB07Vo5S\nREQmiyckEhGRJGrZ2c7Vf4mISBJ2JERECqWWne0MEiIihWKQEBGRJGrZR8IgISJSKHYkREQkCYOE\niIgkUcsVEnn4LxERScKOhIhIoXhmOxERSaKWfSSCKIqisQehJI1NTQavaWlhnBnGCxXlRqnr4eRs\nlLrm5nJtrVHqdunY0Sh1O3WyN0rdmporsm37XHFxmz53v0bTziPRjx0JEZFCqaUjYZAQESkUT0gk\nIiJJ1NKR8PBfIiKShB0JEZFCqaUjYZAQESmUWs5sZ5AQESkUT0gkIiJJOLVFRESS8PBfIiKSRC0d\nCQ//JSIiSWTtSERRREVFBURRhIuLi5yliIhMjlo6ElmC5Ndff0VSUhIuXLiAgoICeHt7o7KyEr6+\nvli4cCHc3NzkKEtEZFLUso9ElqmtuLg4LFq0CF9++SW2bt2KPn36YN++fRg/fjzmzZsnR0kiIpMj\nCEKbboYmS5Bcu3YNnp6eAIBevXrh9OnTAIChQ4fi6tWrcpQkIjI5FkLbboYmy9SWj48PXnvtNfj5\n+WH//v0YOHAgACA6OhoPPPCAHCWJiEyOWk5IlOXCVqIo4ptvvsFvv/0GHx8fDB06FABw6tQpPPjg\ng4regcQLW8mPF7YyDF7YyjDkvLBVW3+Ghv4ZyNKRCIKA4ODg257v3bu3HOWIiMiIeEIiEZFCqeWo\nLQYJEZFCKXk3wM0YJERECsUgISIiSTi1RUREkrAjISIiSdRyhUSu/ktERJKwIyEiUig5z2xPTEzE\n8ePHIQgCoqOj4efnp3vt0KFDeO+992BpaYmhQ4di5syZerfFjoSISKHkWrQxJycH+fn52LRpExIS\nEpCQkNDs9aVLl2LlypX4/PPPcfDgQZw5c0bv9hgkREQKZSEIbbq1RqvV6lYfuXGZj6qqKgDA+fPn\n4eDggO7du8PCwgKBgYHQarX6xyn9SyUiIjnI1ZGUlpbCyclJ99jZ2RklJSUAgJKSEjg7O9/xtZZw\nH8ktjLWAojFw8UTTZqzFE41FzsUTTZ3UtXvN57cmEREBADQaDUpLS3WPi4uL4erqesfXioqKoNFo\n9G6PQUJEZGYCAgKwZ88eAEBeXh40Gg3s7OwAAD169EBVVRUKCgrQ0NCAb7/9FgEBAXq3J8v1SIiI\nSNneeecdHD16FIIgIC4uDj8zCPKcAAAJ4UlEQVT99BPs7e0REhKCI0eO4J133gEAjBgxAhEREXq3\nxSAhIiJJOLVFRESSMEiIiEgSkzv8V99p/3L6+eefMWPGDEydOhXPP/+8QWoCwNtvv43vv/8eDQ0N\nmDZtGkaMGCFrvdraWkRFRaGsrAx1dXWYMWMGhg8fLmvNm129ehVPPvkkZsyYgfHjx8teLzs7G6++\n+ir+8Ic/AAB8fHzw5ptvyl4XADIzM/Hxxx/DysoKs2fPxrBhw2SvuWXLFmRmZuoenzx5Ej/88IPs\ndaurq7FgwQJUVlaivr4eM2fOxJAhQ2Sv29TUhLi4OPzyyy+wtrZGfHw8vL29Za9rckQTkp2dLb7y\nyiuiKIrimTNnxIkTJxqkbnV1tfj888+LMTExYmpqqkFqiqIoarVa8eWXXxZFURTLy8vFwMBA2Wvu\n2LFDXL16tSiKolhQUCCOGDFC9po3e++998Tx48eLW7duNUi9w4cPi3/7298MUutm5eXl4ogRI8Qr\nV66IRUVFYkxMjMHHkJ2dLcbHxxukVmpqqvjOO++IoiiKhYWFYmhoqEHq7t27V3z11VdFURTF/Px8\n3e8Pujcm1ZG0dNr/jcPa5GJjY4N//etf+Ne//iVrnVsNGDBA13F16dIFtbW1aGxshKWlpWw1R48e\nrbv/+++/w83NTbZatzp79izOnDljkL/MjU2r1WLQoEGws7ODnZ0d3nrrLYOPITk5WXfkjtycnJxw\n+vRpAMDly5ebnXUtp99++033f8jLywsXL16U/f+QKTKpfST6TvuXk5WVFTp06CB7nVtZWlqiU6dO\nAID09HQMHTrUYP8BwsLCMG/ePERHRxukHgAkJSUhKirKYPVuOHPmDCIjI/Hss8/i4MGDBqlZUFCA\nq1evIjIyEs8991yrax21t9zcXHTv3l13kprcnnjiCVy8eBEhISF4/vnnsWDBAoPU9fHxwYEDB9DY\n2Ihz587h/PnzqKioMEhtU2JSHcmtRDM5svnrr79Geno6PvnkE4PV3LhxI/773/9i/vz5yMzMlP1K\nbl988QX+9Kc/wdPTU9Y6t+rVqxdmzZqFUaNG4fz585gyZQr27t0LGxsb2WtfunQJH3zwAS5evIgp\nU6bg22+/NdgV89LT0/HUU08ZpBYAbN++He7u7lizZg1OnTqF6OhoZGRkyF43MDAQx44dw+TJk/Hg\ngw/i/vvvN5vfG+3JpIJE32n/pmr//v346KOP8PHHH8Pe3l72eidPnoSLiwu6d++Ohx56CI2NjSgv\nL4eLi4usdbOysnD+/HlkZWWhsLAQNjY26NatGx5//HFZ67q5uemm87y8vNC1a1cUFRXJHmguLi7w\n9/eHlZUVvLy80LlzZ4N8n2/Izs5GTEyMQWoBwLFjxzB48GAAQO/evVFcXGywKaa5c+fq7gcHBxvs\ne2xKTGpqS99p/6boypUrePvtt5GSkgJHR0eD1Dx69Kiu8yktLUVNTY1B5rP/8Y9/YOvWrdi8eTOe\neeYZzJgxQ/YQAa4fObVmzRoA11dFLSsrM8h+ocGDB+Pw4cNoampCRUWFwb7PwPW1lTp37myQruuG\nnj174vjx4wCACxcuoHPnzgYJkVOnTmHhwoUAgP/85z94+OGHYWFGC7e2F5PqSPr27QtfX1+EhYXp\nTvs3hJMnTyIpKQkXLlyAlZUV9uzZg5UrV8r+y33nzp2oqKjAnDlzdM8lJSXB3d1dtpphYWFYtGgR\nnnvuOVy9ehWxsbEm/R8vKCgI8+bNwzfffIP6+nrEx8cb5Besm5sbQkNDMXHiRABATEyMwb7Pty4j\nbgiTJk1CdHQ0nn/+eTQ0NCA+Pt4gdX18fCCKIiZMmABbW1uDHVxgarhEChERSWK6f0oSEZFBMEiI\niEgSBgkREUnCICEiIkkYJEREJAmDhGRTUFCARx55BOHh4QgPD0dYWBhef/11XL58uc3b3LJli26Z\nlLlz56KoqKjF9x47dgznz5+/6203NDTgwQcfvO35lStXYsWKFXo/GxQUhPz8/LuuFRUVhS1bttz1\n+4mUjEFCsnJ2dkZqaipSU1OxceNGaDQafPjhh+2y7RUrVug9OTAjI+OegoSI2sakTkgk5RswYAA2\nbdoE4Ppf8TfWsHr//fexc+dOfPbZZxBFEc7Ozli6dCmcnJyQlpaGzz//HN26dYNGo9FtKygoCGvX\nroWnpyeWLl2KkydPAgBefPFFWFlZYffu3cjNzcXChQvRs2dPLF68GLW1taipqcFrr72Gxx9/HOfO\nncP8+fPRsWNHDBw4sNXxb9iwAdu3b4e1tTVsbW2xYsUKdOnSBcD1bunEiRMoKyvDm2++iYEDB+Li\nxYt3rEtkShgkZDCNjY3Yt28f+vXrp3uuV69emD9/Pn7//Xd89NFHSE9Ph42NDT799FOkpKRg5syZ\neP/997F79244OTlh+vTpcHBwaLbdzMxMlJaWYvPmzbh8+TLmzZuHDz/8EA899BCmT5+OQYMG4ZVX\nXsFLL72Exx57DCUlJZg0aRL27t2L5ORkPP3003juueewd+/eVr+Guro6rFmzBnZ2doiNjUVmZqbu\nQmaOjo749NNPodVqkZSUhIyMDMTHx9+xLpEpYZCQrMrLyxEeHg7g+tXo+vfvj6lTp+pe9/f3BwD8\n8MMPKCkpQUREBADg2rVr6NGjB/Lz8+Hh4aFbZ2rgwIE4depUsxq5ubm6bqJLly5YvXr1bePIzs5G\ndXU1kpOTAVxf+r+srAw///wzXnnlFQDAY4891urX4+joiFdeeQUWFha4cOFCs0VBAwICdF/TmTNn\n9NYlMiUMEpLVjX0kLbG2tgZw/eJgfn5+SElJafb6iRMnmi2d3tTUdNs2BEG44/M3s7GxwcqVK29b\nQ0oURd0aVo2NjXq3UVhYiKSkJOzYsQMuLi5ISkq6bRy3brOlukSmhDvbSRH69OmD3Nxc3YXIdu3a\nha+//hpeXl4oKCjA5cuXIYriHS/w5O/vj/379wMAqqqq8Mwzz+DatWsQBAH19fUAgH79+mHXrl0A\nrndJCQkJAK5fSfPHH38EgFYvHlVWVgYnJye4uLjg0qVLOHDgAK5du6Z7/fDhwwCuHy124xrvLdUl\nMiXsSEgR3NzcsGjRIkybNg0dO3ZEhw4dkJSUBAcHB0RGRmLy5Mnw8PCAh4cHrl692uyzo0aNwrFj\nxxAWFobGxka8+OKLsLGxQUBAAOLi4hAdHY1FixYhNjYWO3bswLVr1zB9+nQAwMyZM7FgwQLs3r1b\nd/2Pljz00EPo2bMnJkyYAC8vL8yePRvx8fEIDAwEcP1CVNOmTcPFixd1K0+3VJfIlHD1XyIikoRT\nW0REJAmDhIiIJGGQEBGRJAwSIiKShEFCRESSMEiIiEgSBgkREUnCICEiIkn+H1P92NAQVpg0AAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "1BOooN6rjN-M", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 973 + }, + "outputId": "ba7b3ecc-6ca8-4578-d4a5-17e4e654faa4" + }, + "cell_type": "code", + "source": [ + "# 100 Steps\n", + "classifier = train_nn_classification_model(\n", + " learning_rate=0.05,\n", + " steps=100,\n", + " batch_size=30,\n", + " hidden_units=[100, 100],\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 27, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "LogLoss error (on validation data):\n", + " period 00 : 19.45\n", + " period 01 : 12.77\n", + " period 02 : 8.68\n", + " period 03 : 8.80\n", + " period 04 : 6.65\n", + " period 05 : 6.29\n", + " period 06 : 5.43\n", + " period 07 : 5.51\n", + " period 08 : 6.11\n", + " period 09 : 5.44\n", + "Model training finished.\n", + "Final accuracy (on validation data): 0.84\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAFnCAYAAACLnxFFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd41eX9//HnGTnZi+RkAAZCwgp7\nCUFkCMiwKjgAqXG0/WlbaKnaVrH6LZbWUautoy5sHVgVRUFUhiIKiAIm7BFC2ASy907OOb8/IpGY\nQYCccxLyelyXF+Uz37l7yOt8xn3fBofD4UBERERaPaO7CxAREZHmUWiLiIi0EQptERGRNkKhLSIi\n0kYotEVERNoIhbaIiEgbodAWaQE9e/YkPT29RY518uRJ4uLiWuRY7pCQkMCoUaOYPHkykyZNYurU\nqbzxxhvnfZxdu3bx85///Lz3i4uL4+TJk+e9n0hbYHZ3ASJy6fnDH/7A9ddfD0BWVhYzZ84kOjqa\n0aNHN/sY/fv35z//+Y+zShRpk3SlLeJEFRUV/N///R+TJk1iypQpPP7449hsNgA2btzImDFjmDJl\nCkuWLGHw4MHnvELMz89n3rx5tVewr7zySu26f/7zn0yaNIlJkyZx2223kZGR0eTyM9avX8+1115b\nZ9n111/Phg0b2Lp1K9OnT2fq1KlMmTKFVatWnXcbWK1WJk+ezKZNmwBITU3l1ltvZdKkSVx77bXs\n3r0bgC1btjBr1izmzZvHfffdx5YtW5g4ceI523H9+vVMnDiRKVOm8Oqrr9aet6SkhDlz5jBlyhTG\njx/PQw89RFVV1XnXL9KaKLRFnOiNN94gPT2dTz/9lGXLlpGYmMgnn3yCzWbjgQce4C9/+QurVq3i\n6NGjlJWVnfN4Tz/9NIGBgaxZs4a3336bd955h8TERA4ePMjq1av55JNPWLNmDRMnTuTbb79tdPnZ\n4uPjSU9P58SJEwCcOHGC9PR0Ro4cyRNPPMH8+fNZuXIlL774ImvXrr2gdqiursZisWC325kzZw7X\nX389a9asYcGCBfz617+muroagH379jFr1iyeeuqpZrfjn/70J/785z+zatUqjEZjbZgvX76cgIAA\nVq1axZo1azCZTKSmpl5Q/SKthUJbxIm++uorZsyYgdlsxsvLi2uvvZZNmzZx9OhRKisrGTNmDFDz\nHNhut5/zeOvXr2f27NkABAUFMXHiRDZt2kRAQAC5ubl8/PHHFBQUkJCQwLRp0xpdfjaLxcK4ceNY\nt24dAGvXrmXChAmYzWZCQkJYvnw5hw4domvXrvXCtDlOnDjB6tWrmThxIocPHyYnJ4ebbroJgCFD\nhtChQwe2b98OgJeXF/Hx8efdjqNGjQJg+vTptfucOe7XX3+N3W7nkUceoXfv3uddv0hrotAWcaLc\n3FwCAwNr/x4YGEhOTg4FBQUEBATULg8LC2v28c7eLyAggJycHMLDw3nuuedYvXo1Y8eO5a677uL0\n6dONLv+xSZMm1QntqVOnAvDoo4/i7e3NnXfeydVXX83q1aubVeeTTz5Z+yLavffeywMPPED//v0p\nLCykvLycKVOmMHnyZCZPnkxOTg75+fm17dPYz91YO/r5+dVZfsaUKVO44447eOaZZ4iPj+eRRx6h\nsrKyWfWLtFYKbREnCg0NrQ0kqHkmHRoaip+fH6WlpbXLs7OzL+p4ACNGjOCVV15h06ZNREZG8o9/\n/KPJ5We78sorSU5O5ujRoxw9epQRI0bUnu/hhx9mw4YN/N///R/z58+npKTknHX+4Q9/YPXq1axZ\ns4b333+/9ktAWFgYvr6+rF69uva/r7/+uvbZ9fn+3IGBgRQXF9cuz83NrbPfrFmzeP/991m5ciV7\n9+5l+fLl56xdpDVTaIs40dixY1m6dCk2m43S0lI++ugjxowZQ9euXamurmbLli0AvPPOOxgMhmYd\nb8mSJUBNQH3++eeMHTuWr7/+mkceeQS73Y6Pjw+9evXCYDA0uvzHLBYLo0aN4sknn2T8+PGYTCaq\nqqpISEggMzMTgD59+mA2mzEaL/zXRqdOnYiIiKi9Ys/NzeXee++t8wWmsZ+7oXaMiorCZDLVtuOH\nH35Y+/P9+9//ZunSpQCEh4fTuXPnZrWxSGumLl8iLSQhIQGTyVT797/+9a8kJCRw4sQJrrnmGgwG\nA5MnT2bKlCkYDAYWLFjA/Pnz8ff3584778RoNGIwGHA4HNhsNiZPnlzn+IsWLeJ3v/sdCxYsYPLk\nyRiNRu666y769+9PRUUFn376KZMmTcJisdChQwceffRRwsLCGlzekEmTJvGb3/yG119/HQAPDw9u\nuukm7rjjDgCMRiMPPfQQ3t7efP7556xbt47HHnvsvNrIYDDw9NNPs2DBAv71r39hNBq588478fHx\nOWfbNtaOCxcu5MEHH8RisXDDDTfUHuv6669n/vz5LFq0CIPBwIABA2q7oYm0VQbNpy3ifqWlpQwa\nNIjExET8/f3dXY6ItFK6PS7iJjfeeCMrV64EYOXKlcTExCiwRaRJutIWcZPExET+8pe/UFFRga+v\nLwsWLKB///7uLktEWjGFtoiISBuh2+MiIiJthEJbRESkjXBql6+///3vJCUlUV1dzd13302/fv34\n4x//iM1mw2q18uSTT2KxWBrdPyurqMVrCg72IS+v6T6hcvHUzq6hdnYNtbNrqJ1rWK2Nv5DqtNDe\nvHkzBw8eZMmSJeTl5TF9+nTi4+OZPXs2U6ZM4emnn2bp0qW14yi7itlsOvdGctHUzq6hdnYNtbNr\nqJ3PzWm3x4cNG8YzzzwD1IyPXFZWxpYtWxg/fjwA48aNqzfbkIiIiDTOaaFtMplqRyZaunQpo0eP\npqysrPZ2eEhICFlZWc46vYiIyCXH6cOYrl27lqVLl/Lf//6Xq6++unZ5c3qaBQf7OOV2SVPPC6Tl\nqJ1dQ+3sGmpn11A7N82pob1x40ZeeuklXn31Vfz9/fHx8aG8vBwvLy8yMjLOOR2hM15IsFr9nfKC\nm9SldnYNtbNrqJ1dQ+1co6kvLk67PV5UVMTf//53Xn75ZYKCggAYOXIka9asAeCzzz7jyiuvdNbp\nRURELjlOu9JeuXIleXl5/O53v6td9vjjj/PQQw+xZMkSOnbsyLRp05x1ehERkUtOqx7G1Bm3SXT7\nxTXUzq6hdnYNtbNrqJ1ruOX2uIiIiCt99dUXzdrumWee4tSptEbXP/DAvS1VUotTaIuISJt3+vQp\n1q5d06xt5827j44dOzW6/vHHn26pslqc07t8iYiIONvTTz/B/v17ufLKYVx99RROnz7Fv/71Ao89\n9heysjIpKyvjZz+7iyuuuJK5c+/i3nv/yJdffkFJSTHHjx8jLe0kv/3tfcTHX8E114zn00+/YO7c\nuxg2bDjbtiWSn5/PE0/8k9DQUP7yl4dJTz9Nv379WbduLcuWrXTZz9luQtvhcLAzaw+DfHsBHu4u\nR0TkkvXeulS+S8487/1MJgM2W8OvWQ3rFcaMq2Ib3feWWxL48MP3iI6O4fjxo7zwwqvk5eVy+eUj\nmDLlJ6SlneThhx/giivq9lrKzMzgH/94ls2bv+Gjjz4gPv6KOut9fX155pkXefHF59iwYR0dO3am\nsrKCV155nU2bNvLee++c9895MdpNaJfbKli0ZzGDcvryi963ubscERFxkt69+wDg7x/A/v17WbHi\nQwwGI4WFBfW27d9/IABhYWEUFxfXWz9gwKDa9QUFBRw7doR+/QYAEB9/BSaTa8dLbzeh7W32oov/\nZexI30tBt0ICPQPcXZKIyCVpxlWxTV4VN6al3h738Ki5m/r556spLCzk3/9+lcLCQn7xi4R6254d\nug11pvrxeofDgdFYs8xgMGAwGC663vPRrl5EGxE5BIfDwXcZ291dioiItCCj0YjNZquzLD8/n8jI\njhiNRtavX0dVVdVFn6dTp84cOLAPgK1bN9c7p7O1q9AeEj4Qs9HM5tOJzRr7XERE2oYuXaI5cCCZ\nkpIfbnGPHXsV33yzkXnzfoW3tzdhYWG89tqiizrPyJFXUlJSwq9+9XN27txOQEDgxZZ+XtrN4CrV\nNjuvfrKPik7fkVK4n/uH/paogM4tdnypS4MkuIba2TXUzq7RFtq5sLCAbdsSGTt2PFlZmcyb9yve\nfvuDFj1HU4OrtJtn2ja7g6QDWYSVh4AVNqcnKrRFROS8+Pj4sm7dWt5+ezEOh53f/Ma1A7G0m9D2\n9DDRPyaE7ak2QiN9SUzfwfTYn+BhbDdNICIiF8lsNvOXvzzmtvO3q2faw+PCwWGkgy2GkupS9mbv\nd3dJIiIizdauQntAbCheFhPZR0IA2Jye5OaKREREmq9dhbanh4kR/SLJzfQkzDOcvTnJFFXW70wv\nIiLSGrWr0AYYM6jm5TPfsmjsDrv6bIuISJvR7kJ7YA8rft4enEgJxGgwsvl0ortLEhERF7nppmsp\nLS1l8eLX2bNnV511paWl3HTTtU3uf2b6z5UrP2b9+i+dVmdj2l1om01GhvUKo6jQQBfvGNKKT3Oi\n6JS7yxIRERdKSLiDvn37n9c+Z0//OXXqtYwZM84ZpTWpXfZ3Gh4Xzpfb0zDkdQbPg2xJT+Qy/+vc\nXZaIiFygn/3spzz66FNERESQnn6a+fPvw2oNo6ysjPLycu655w/ExfWt3f5vf1vA2LHjGThwEH/6\n0x+prKysnTwE4LPPVrF06RJMJiNdu8Zw//1/qp3+87XXFmG32wkKCuLGG2fywgvPsHv3Tqqrbdx4\n4wwmT76mwWk9IyIiLvrnbJehHds5kA4Bnhw+YMB3iC/fpW9nesw1mIyuna1FRORS9GHqJ2zP3H3e\n+5mMBmz2hgfpHBTWjxtif9LovqNHj2PTpg3ceOMMNm5cz+jR44iJ6c7o0WNJSvqO//3vDf72tyfr\n7bdmzSq6dYvht7+9jy+++Kz2SrqsrIynnnoOf39/5sz5fxw6lFo7/eedd/4//vOflwHYsWMbhw8f\n4sUX/0tZWRm33z6L0aPHAvWn9ZwxY/Z5t8mPtbvb4wBGg4HhvcMpK3fQxdKT4qoS9uYku7ssERG5\nQDWhvRGAr79ez6hRY1i//gt+9auf8+KLz1FQUH9aToCjRw/Tt2/NVJuDBg2pXR4QEMD8+fcxd+5d\nHDt2hIKC/Ab3T07ex8CBgwHw9vama9dunDhxAqg7rWdD035eiHZ5pQ01t8hXbTlOWXok+MOW9CT6\nW/u4uywRkTbvhtifNHlV3JiLGXu8W7cYcnKyyMhIp6ioiI0bvyI0NIyHH15IcvI+nn/+Xw3u53CA\n0Vgzvab9+6v8qqoqnn7677z++tuEhITyxz/+rtHzGgwGzp7Bo7q6qvZ455r280K0yyttgMvC/IgM\n8SElxU6kTwS7s/dTXFXi7rJEROQCxceP4pVXXuDKK8dQUJBPp041XXzXr/+S6urqBveJiupCcnLN\n6JjbttX0JiotLcFkMhESEkpGRjrJyfuprq5ucPrPXr36sH170vf7lZKWdpLOnaOc9SO239A2GAyM\niAun2uYgwtADm8NGYsYOd5clIiIXaMyYcaxdu4axY8czefI1LFnyP+65Zw59+vQlJyeHTz9dUW+f\nyZOvYe/e3cyb9ytOnDiGwWAgMDCIYcOG84tf3MZrry1i9uwEnn326drpP5999qna/QcMGEjPnr2Y\nM+f/cc89c/jlL+fi7e3ttJ+x3UzNecbZt18y80p54OXN9OzmzUnrR3T2i+T+YfNa/JztUVuYYu9S\noHZ2DbWza6idazQ1NWe7vdIGCAv2IToygJQjZfQI7M7xojROFae7uywREZEGtevQBhgRF47DAYGV\n3YCaebZFRERao3Yf2sN6h2EwwPGDPviYvfkufTs2u+3cO4qIiLiYU0M7JSWFCRMm8NZbbwHw3Xff\nccstt5CQkMDdd9/daL85Vwry86R3l2AOp5XQJ6gvhZVF7M9NcXdZIiIi9TgttEtLS1m4cCHx8fG1\nyx577DH+9re/sXjxYgYNGsSSJUucdfrzMrx3OAAeRTWv6W/RPNsiItIKOS20LRYLixYtIiwsrHZZ\ncHAw+fk1o8oUFBQQHBzsrNOflyE9rZhNBvYnO4jwCWNX1l5Kq0rdXZaIiEgdTgtts9mMl5dXnWUP\nPvggc+bMYdKkSSQlJTF9+nRnnf68+Hh50D8mlFNZpfT270e1w0ZS5k53lyUiIlKHS4cxXbhwIc8/\n/zxDhgzhiSee4O233+a2225rdPvgYB/M5pafxKOhPnATR3RhW0oWpuIoDAYDSVnbuWHg1S1+7vak\nqb6G0nLUzq6hdnYNtXPTXBraBw4cYMiQmgHZR44cyccff9zk9nl5LX+LurHO+9FWXzwtJr5JyqP3\nyO7sy01h99FDRPiGNXAUORcNkuAaamfXUDu7htq5RqsZXCU0NJTU1FQAdu/eTZcuXVx5+iZZPEwM\n6WElp7CcrpY4QC+kiYhI6+K0K+09e/bwxBNPkJaWhtlsZs2aNTzyyCM89NBDeHh4EBgYyKOPPuqs\n01+Q4XHhfLMnnZyTQXh7ebE1fRvXdpuE0dDuu7OLiEgr4LTQ7tu3L4sXL663/N1333XWKS9a7y7B\n+Pt4kJScw+UT+/PN6a0cyE2ld0gPd5cmIiKiEdHOZjYZGdYrjKLSKsIdNUGtYU1FRKS1UGj/yPC4\nmoFWjhw2EeYdys6sPZRVl7m5KhEREYV2PTGdAgkJ8GJ7SjZDwwZTZa9mW+Yud5clIiKi0P4xo8HA\n8Lhwyitt+JZ3xYCBzaf1FrmIiLifQrsBI76/Rb7nQBk9g2M5XHCUzNJsN1clIiLtnUK7AZ3D/OgU\n6suuQzkMDB0IqM+2iIi4n0K7EcPjwqm22anODcPL5MmW00nYHXZ3lyUiIu2YQrsRZ94iT9qfy6Cw\n/uRV5HMw77CbqxIRkfZMod0Ia5A3MR0D2H8sj75B/QHdIhcREfdSaDdheFw4DgdknvQm1KsD2zN3\nUV5d7u6yRESknVJoN2FY73AMBti6P5PhkUOotFexPWuPu8sSEZF2SqHdhEBfC3Fdgjl8qpBY7+9n\n/jqtYU1FRMQ9FNrnMDwuAoADh6voHtSNg/mHyS7LdXNVIiLSHim0z2FwDytmk5HNe9MZHjEE0Atp\nIiLiHgrtc/DxMjMgNoTTOaVY6YbFZFGfbRERcQuFdjMM713TZ3t7Sh6DrP3IKc/lUP5R9xYlIiLt\njkK7GfrHhODtaWLrvgwu1y1yERFxE4V2M1g8TAzuYSWnsAJDcQgdvILZlrmTClulu0sTEZF2RKHd\nTGeGNd2anMnlEYOpsFWyU322RUTEhRTazdS7SzABPh58tz+ToWGDANisPtsiIuJCCu1mMhmNDOsd\nTnFZFVkZJroFdiUl7xC55XnuLk1ERNoJhfZ5OHOLfMu+DEZEDsGBg63p29xclYiItBcK7fMQ0zGA\n0EAvth3Mok9wXzyMZracTsLhcLi7NBERaQcU2ufBYDAwPC6cikobKUeLGWDtS2ZZNkcKj7m7NBER\naQcU2udpxNm3yCOGArD5tPpsi4iI8ym0z1Mnqx+drb7sPpxDZ58uBHkGkpSxk0pblbtLExGRS5xC\n+wIMjwun2uZge0oOl0cMptxWzq7sve4uS0RELnFODe2UlBQmTJjAW2+9BUBVVRX33XcfN910E7ff\nfjsFBQXOPL3TnBmLfMu+jNqZv9RnW0REnM1poV1aWsrChQuJj4+vXfbee+8RHBzM0qVLmTp1KomJ\nbTPoQoO8ie0USPKxPLwcgXQNiCI59yD5FW3zS4iIiLQNTgtti8XCokWLCAsLq1325Zdfct111wEw\nc+ZMxo8f76zTO93wuHAcwNb9meqzLSIiLuG00DabzXh5edVZlpaWxoYNG0hISOCee+4hPz/fWad3\numG9wjAaDGzZl86QsAGY1WdbRESczOzKkzkcDqKjo5k7dy4vvPACL7/8Mvfff3+j2wcH+2A2m1q8\nDqvVvwWOAQN7WNl2IBMPiy/DOg3g2xNJFJpyiQ3pevFFXgJaop3l3NTOrqF2dg21c9NcGtqhoaEM\nGzYMgFGjRvHcc881uX1eXmmL12C1+pOVVdQixxoUG8K2A5ms+vowA3v259sTSazev4GZPUNa5Pht\nWUu2szRO7ewaamfXUDvXaOqLi0u7fI0ePZqNGzcCsHfvXqKjo115+hY3uIcVD7ORzXsz6BXcnQCL\nP4kZO6iyV7u7NBERuQQ5LbT37NlDQkICy5Yt48033yQhIYHrr7+e9evXc8stt7B27VruuusuZ53e\nJbw9zQyIDSU9t5S0rDKGRQyitLqM3dn73F2aiIhcgpx2e7xv374sXry43vJnn33WWad0i+G9w0lM\nzmTL/gxGDRvKF8c3sOV0IoPD+ru7NBERucRoRLSL1D+mA96eZrbsyyDCN5wo/07sy02hoELPZURE\npGUptC+Sh9nEkJ5W8ooqOHgin+GRQ7E77HyXoT7bIiLSshTaLWD4mZm/9mcyNHwgJoNJfbZFRKTF\nKbRbQO+oYAJ8LXy3PwMvozf9QntzqiSdE8Vp7i5NREQuIQrtFmA0Gri8dxgl5dXsPZJbO4nIFs2z\nLSIiLUih3UJ+uEWeQZ+QXvh5+JKYsYNq9dkWEZEWotBuId0iA7AGebE9JZvqahgWMYjiqhL25iS7\nuzQREblEKLRbiMFgYHhcBBVVNnakZjMiYiigW+QiItJyFNotqPYW+b4MOvt3pJNfJLtz9lNUWezm\nykRE5FKg0G5BnUJ9uSzMj92Hcyguq2LE9322EzN2uLs0ERG5BCi0W9iIuHBsdgdJBzIZFj4Io8HI\nltOJ7i5LREQuAQrtFnZ57x9ukftb/OgT0osTxadIKz7t5spERKStU2i3sJBAL7p3DuTA8XzyiioY\n8X2f7c262hYRkYuk0HaCEXHhOICt+zPoG9obXw8fvsvYjs1uc3dpIiLShim0nWBorzBMRgOb92Vg\nNpoZGj6Qospi9uUecHdpIiLShim0ncDfx0Jc1w4cSy8iPbdUfbZFRKRFKLSdZMRZfbYv8+9EpG84\nu7P3UVJV6ubKRESkrVJoO8nA7qFYzEY278sAYETkUKodNpLUZ1tERC6QQttJvD3NDIgNJSO3lOMZ\nxQwLH4QBA5t1i1xERC6QQtuJztwi37wvnUDPAOJCenKs6ASnSzLcXJmIiLRFCm0n6tstBB9PM1v3\nZ2J3ODTPtoiIXBSFthN5mI0M7WUlr6iCgyfy6R8ah7fZm63p27A77O4uT0RE2hiFtpMN733mFnkG\nHiYPhoQPoKCykP25B91cmYiItDUKbSfrGRVMoJ+FxORMqm32s/psa1hTERE5PwptJzMaDQzvHU5J\neTV7DufSNeAywn2s7MzeS2lVmbvLExGRNkSh7QLDzwy0sj8Dg8HAiIihVNur2Za5082ViYhIW6LQ\ndoGuEf6EBXuz/WAW5ZXVDItQn20RETl/Tg3tlJQUJkyYwFtvvVVn+caNG+nZs6czT92qGAwGRsSF\nU1llZ8fBbIK9gujVoTtHCo+RUZrl7vJERKSNcFpol5aWsnDhQuLj4+ssr6io4JVXXsFqtTrr1K3S\n8LPGIgfUZ1tERM6b00LbYrGwaNEiwsLC6ix/6aWXmD17NhaLxVmnbpUiQ3yJCvdjz5FcisuqGGDt\ng5fJiy3pSeqzLSIizeK00DabzXh5edVZduTIEZKTk5kyZYqzTtuqjYiLwGZ3kJicicVkYXBYf/Ir\nCkjJO+Tu0kREpA0wu/Jkjz32GA899FCztw8O9sFsNrV4HVarf4sfszmmjOrG+1+lsi01m5uv7sVk\nRvPN6a3syNvJlT0Hu6UmZ3JXO7c3amfXUDu7htq5aS4L7YyMDA4fPszvf/97ADIzM7n11lvrvaR2\ntry8lp972mr1JyurqMWP21zdOwex91AOBw5l0cHfitU7hM0ntnN9l5/gbfY69wHaCHe3c3uhdnYN\ntbNrqJ1rNPXFxWVdvsLDw1m7di3vvfce7733HmFhYU0G9qVqRFw4DmDr/kwMBgPDI4ZSZa9ie+Zu\nd5cmIiKtnNNCe8+ePSQkJLBs2TLefPNNEhISyM/Pd9bp2oyhvcIwGQ1s3pcOwOURNbfFN2tYUxER\nOQen3R7v27cvixcvbnT9unXrnHXqVs3P24M+0R3YdSiH0zklRIYE0yM4lpS8VLJKc7D6hLi7RBER\naaU0IpobjPhRn+0RZ/psp6vPtoiINE6h7QYDu4di8TCyeV8GDoeDgWH98DRZ2Ko+2yIi0gSFtht4\nWcwMjA0lM6+Mo+lFeJosDLL2J6c8j9T8I+4uT0REWimFtpuMiIsAzrpFHqlhTUVEpGkKbTfp260D\nvl5mtuzPwG53EBMUTYhXMNuydlFeXeHu8kREpBVSaLuJ2WRkaK8wCoorOXAiH6PByPCIIVTaKtmZ\ntcfd5YmISCuk0Haj4b3PvEVe02d7+Pe3yNVnW0REGqLQdqMelwUR7O9JYnIWVdV2Qr1DiA2KJiX/\nEDllee4uT0REWhmFthsZjQYu7x1GaUU1e47kADA8YigAW9VnW0REfkSh7WbDfzTQyuCwfliMHmxO\nT8LhcLizNBERaWUU2m7WJdyf8A4+7DiYTVlFNV5mLwZY+5FdlsOhgqPuLk9ERFoRhbabGQwGRsSF\nU1ltZ8fBbEB9tkVEpGEK7Vag9hb5/ppb5D2CYwj2DGJb5k4qbZXuLE1ERFoRhXYrENHBhy4R/uw5\nnEthaeX3fbYHU26rYGfWXneXJyIirUSzQ7u4uBiA7OxsEhMTsds1sUVLGhEXjt3hICk5E4DL1Wdb\nRER+pFmhvXDhQlatWkV+fj6zZs1i8eLFLFiwwMmltS+X9w7HwA9vkYf7WOkW2IUDeanklee7tzgR\nEWkVmhXa+/bt4+abb2bVqlVMnz6dZ555hmPHjjm7tnYl2N+TnlFBpJwsIKegHIDhEUNw4GBL+jY3\nVyciIq1Bs0L7TH/hr776iquuugqAykq9INXSzryQtnX/mT7bA7CYLHx5YiPFVSXuLE1ERFqBZoV2\ndHQ0U6dOpaSkhN69e7N8+XICAwOdXVu7M6RnGCajofYWuY+HN9dET6S4qoQVh1a7uToREXE3c3M2\n+utf/0pKSgoxMTEAdO/evfZ0i8NTAAAgAElEQVSKW1qOn7cH/bqFsCM1m7TsEjqF+jKu8yi2nE7i\nm1NbiY8cSnRgF3eXKSIibtKsK+39+/eTnp6OxWLhn//8J3//+99JSUlxdm3t0o+HNTUZTczsOR0H\nDpYcWIbNbnNneSIi4kbNCu2//vWvREdHk5iYyO7du3n44Yd59tlnnV1buzQwNhRPDxNb9qXXvksQ\nGxTNiIihnCg+xca0zW6uUERE3KVZoe3p6UnXrl354osvmDFjBrGxsRiNGpfFGTwtJgZ1DyUrv5wj\np4tql0+LnYqP2ZuPD6+hoKLQjRWKiIi7NCt5y8rKWLVqFWvXrmXUqFHk5+dTWKjgcJYzt8g370uv\nXeZv8eO6mCmU28r5MPUTd5UmIiJu1KzQvvfee/n444+599578fPzY/Hixdxxxx1OLq396hPdAT9v\nD77bn4nd/sP0nFd0vJwuAZeRmLGD5NyDbqxQRETcoVmhPWLECP7xj38QFRXFvn37+MUvfsF1113n\n7NraLbPJyNCeVgpKKkk+nle73GgwMqvndAwYeC9lOVX2ajdWKSIirtas0F67di1XX301f/7zn3no\noYeYNGkS69evd3Zt7doPt8gz6iyP8u/M6M4jySjN4ovjG9xRmoiIuEmz+mm/+uqrrFixgg4dOgCQ\nkZHBvHnzGDNmjFOLa8+6XxZEsL8nSQeySLi6Jx7mH75fXdvtarZl7mT10bUMDR9IqHcHN1YqIiKu\n0qwrbQ8Pj9rABggPD8fDw+Oc+6WkpDBhwgTeeustAE6fPs0dd9zBrbfeyh133EFWVtYFln3pMxoM\nDI8Lp6yimt2Hc+qs8zZ7c2PstVTZq1l68CM3VSgiIq7WrND29fXlv//9L8nJySQnJ/Pqq6/i6+vb\n5D6lpaUsXLiQ+Pj42mX/+te/mDFjBm+99RYTJ07ktddeu7jqL3HDe9fcIt+w81S9dUPDB9IjKIbd\n2fvZpTm3RUTahWaF9t/+9jeOHj3KAw88wPz580lLS+PRRx9tch+LxcKiRYsICwurXfbnP/+ZSZMm\nARAcHEx+vqacbEpUuB89Ogey61AO+47m1llnMBiY2XMaJoOJ9w+uoMKmCVxERC51BseZYbfO06FD\nh2rHIm/Kc889R3BwMLfeemvtMpvNxu23386cOXPqXIn/WHW1DbPZdCHlXTJST+Zz77/WExXuzzP3\njsVkqvs96+1dy1m+fw3Tek9idv9pbqpSRERcoVkvojXkkUce4c033zzv/Ww2G3/84x8ZMWJEk4EN\nkJdXeqHlNcpq9Scrq+jcG7YSgZ4mrugXyde7TvPBFymMG9SpzvoxYVey4chWViR/Tt+AvkT6hrup\n0rraWju3VWpn11A7u4bauYbV6t/ougsei/QCL9CZP38+Xbp0Ye7cuRd66nbnxtHd8LKYWLbhMKXl\nVXXWWUwWZvS4HrvDzpIDyy74/xcREWn9Lji0DQbDee+zYsUKPDw8+O1vf3uhp22XAv08+cnIrhSX\nVbFi09F66/uFxtEvNI6D+Yf5LmO76wsUERGXaPL2+NKlSxtdd67uWnv27OGJJ54gLS0Ns9nMmjVr\nyMnJwdPTk4SEBABiYmJYsGDB+VfdDk0cehnrd6TxRdJJxgzsSGRI3bf3b+5+Hcm5B/kw9RP6hvTG\nx8PbTZWKiIizNBnaSUlJja4bOHBgkwfu27cvixcvvrCqpB4Ps5EZ42L597I9LFmXyu9uHlBnfYh3\nB6Z0Hc+Kw6v55MgaZvTQS2kiIpeaJkP7sccec1Ud0gyDe1jpFRXErkM57DmcQ99uIXXWj48azZb0\nbWw4+S0jIoYSFdDZTZWKiIgzNOvt8dmzZ9d7hm0ymYiOjubXv/414eGt443lS53BYGDW+O488vp3\nvPPFQR7pEoz5rC5gZqOZmT2m8eyOV3j3wDJ+P3QORoPmPRcRuVQ06zf6yJEjiYiI4Pbbb+fOO+/k\nsssuY8iQIURHRzN//nxn1yhniQr3Z/SAjpzOKeWr7Wn11vfsEMvQ8IEcKzrBplNb3FChiIg4S7NC\nOykpiaeeeoqrr76aCRMm8Pjjj7N3717uuOMOqqqqzn0AaVHTr+yGt6eJj74+QnFZ/fa/IfZavExe\nfHRoNUWVxW6oUEREnKFZoZ2Tk0Nu7g/DaBYVFXHq1CkKCwspKlJHeFcL8LVw7choSsqr+ejrI/XW\nB3r6c23MJMqqy1iW+qkbKhQREWdo1jPt2267jSlTptCpUycMBgMnT57k7rvv5ssvv2TmzJnOrlEa\nMGFoZ9bvSOPLbWmMHdSJTqF1u4CN7hTP5lPfsSU9ifjIYXQP7uamSkVEpKU0e+zx4uJijh49it1u\nJyoqiqCgIGfX5pTh7C6lYfJ2HMzm2Q920Te6A/fMGFDvZcEjBcd5KunfRPiGMX/Y7zAZXTeO+6XU\nzq2Z2tk11M6uoXaucdHDmJaUlPDGG2/w/PPP8+KLL7JkyRLKy8tbrEC5MANiQ4jrGsyeI7nsOpRT\nb310YBRXdLyc0yUZrDux0Q0ViohIS2pWaD/88MMUFxcza9YsZsyYQXZ2Ng899JCza5NzONMFzGCA\nd9elUm2z19vmupgp+Hn4svLI5+SVaypUEZG2rFmhnZ2dzf3338/YsWMZN24cf/rTn8jIyHB2bdIM\nna1+jB3UiYzcUtYlnay33tfDh2mx11Bpr2LpwRVuqFBERFpKs0K7rKyMsrKy2r+XlpZSUVHhtKLk\n/EwbFY2Pp5mPNh2lsLSy3voREUOICYxmR9Ye9mTvd0OFIiLSEpoV2jNnzmTKlCnMnTuXuXPncs01\n1zB79mxn1ybN5O9j4fpR0ZRVVLN8Y/0uYAaDgVk9p2M0GHk/5SMqbepbLyLSFjUrtG+66Sbeeecd\npk2bxvTp03n33XdJTU11dm1yHsYN7kRkiA/rd6RxMrP+gCod/SIYd9kosstz+ezYl26oUERELlaz\nB6aOjIxkwoQJjB8/nvDwcHbt2uXMuuQ8mU1GZl7VHYcD3vniIA315JvadSJBnoF8fuxLMkubnlpV\nRERanwueTaKZ3bvFhfrHhNCvWwj7j+Wx42B2vfVeZk9u6n4d1Q4bSw4s1/+HIiJtzAWH9o8H8pDW\nYdb4WIwGA0vWpVJVXb8L2EBrX+I69CQ57yDbMnW3RESkLWlyGNMxY8Y0GM4Oh4O8vDynFSUXLjLE\nl6sGd2Jt0knWJp1gyvAuddYbDAZu7nE9f9v6NB8cXEFcSE+8zV5uqlZERM5Hk6H99ttvu6oOaUHX\njYrm273pfLzpKCP7RhLoa6mzPswnlEldxvHpkc9ZeeRzbux+rZsqFRGR89Hk7fFOnTo1+Z+0Tn7e\nHky7shvllTaWbTjU4DYTo8Zi9Q7hq5ObOFl0ysUViojIhbjgZ9rSuo0d1JFOob5s3HmaY+n1B+D3\nMHkws8d07A47S1KWYXfUf/4tIiKti0L7EmUyGpk1vjsO4N1GuoD1DunBoLD+HC44xubTia4vUkRE\nzotC+xLWJ7oDA2NDOXAin6QDDffLvqn7tXiaLCxPXUlxZYmLKxQRkfOh0L7EzbwqFpPRwHtfplJV\nbau3PsgzkGuir6akupSPDq1yQ4UiItJcCu1LXHgHHyYM7Ux2QTmffXeiwW3Gdr6Cjr4RfHN6K4cL\njrm4QhERaS6Fdjtw7ciu+Hl78Mk3x8gvrj87m8loYlbPGwB498CH2Oz1r8hFRMT9FNrtgI+XBzeM\n7kZFlY0P1jfcBSwmqCvxkcNIKz7NhrRvXVyhiIg0h0K7nRg9oCOdrX5s2p3OkdOFDW4zLWYqvmYf\nPjm8hvyKAhdXKCIi5+LU0E5JSWHChAm89dZbAJw+fZqEhARmz57NvHnzqKysdObp5SxGo4FbJnQH\nGp8FzM/iy/UxUyi3VfDhwU9cXaKIiJyD00K7tLSUhQsXEh8fX7vs2WefZfbs2bz99tt06dKFpUuX\nOuv00oDeXYIZ3MNK6skCtu7PbHCb+I7D6BoQRVLmTvbnpri4QhERaYrTQttisbBo0SLCwsJql23Z\nsoXx48cDMG7cOL79Vs9OXW3GVbGYTQbe/yqVyqr6L5wZDUZm9ZyOAQPvHVhOlb3aDVWKiEhDmpww\n5KIObDZjNtc9fFlZGRZLzeQVISEhZGU1PODHGcHBPpjNphavzWr1b/FjthVWqz/Xj47hgy9T2bg3\ng1kTezawTS8m549l1cEv+Tb7W27sM/WCzyXOp3Z2DbWza6idm+a00D6Xhp6p/lheXmmLn9dq9Scr\nq/5Y3O3JVQM78vnW47z/RQqDY0II9vest834yHF8cyyRD/etIs4/jlDvkPM6h9rZNdTOrqF2dg21\nc42mvri49O1xHx8fysvLAcjIyKhz61xcx9vTzI2ju1FZZWfpV6kNb2P24obu11Jlr+a9lI+a9SVL\nREScy6WhPXLkSNasWQPAZ599xpVXXunK08tZrugXSVS4H9/uzeBQWsPdu4aEDaBncCx7c5LZlb3X\nxRWKiMiPOS209+zZQ0JCAsuWLePNN98kISGBuXPnsnz5cmbPnk1+fj7Tpk1z1unlHIxGA7Mn9ABq\nuoDZG7iSNhgMzOwxDZPBxPspKyivrj+amoiIuI7Tnmn37duXxYsX11v+2muvOeuUcp56XBbE0F5h\nJCZnsmVvBvF9I+ptE+4bxsSoMaw+to7VR79gWuyFvZQmIiIXTyOitXMzxsZgNhlZuv4QFZUNjzk+\nqetVhHgF88WJDZwqTndxhSIicoZCu50LDfJm8vDLyCuqYOXmhmf4spgs3NzjeuwOO0tSlumlNBER\nN1FoC1NHdCHQz8LqrcfJKShvcJt+oXEMCO1Dav4RtqZvc3GFIiICCm0BvCxmbhoTQ1W1nfcb6QIG\ncGP367AYPViW+imlVS3fh15ERJqm0BYA4vtGEB0ZwNb9mRw8md/gNiHewUyJnkBRVTErDq9xcYUi\nIqLQFgCMhh9mAXt7bcNdwACuuuxKInzC+DptM8cKT7iyRBGRdk+hLbViOwUyPC6cY+lFfLO74bfE\nzUYzM3tOx4GDdw98iN1hd3GVIiLtl0Jb6rh5bAwWs5EP1h+irKLhGb56BMcwLHwwx4vS+Dpts4sr\nFBFpvxTaUkeHAC8mD4+ioKSy0S5gADd0vwZvsxcrDq+msFID/IuIuIJCW+qZMqILwf6erNl6gqz8\nsga3CbD4c123yZRVl7Ms9VMXVygi0j4ptKUeTw8TN4+Nodpm5/0vG+8CNqrTCKL8O7E1fRsH8w65\nsEIRkfZJoS0NGh4XTkynABIPZHHgeF6D2xgNRmb1vAEDBt49sIxqe8PPwEVEpGUotKVBBsNZs4Ct\nPYjd3nAXsC4BlzGq0wjSSzNZd2KjK0sUEWl3FNrSqOjIAEb2jeB4ZjFf7z7d6HbXdZuEn4cvq46s\nJaes4atyERG5eAptadKNY2KweBj5sIkuYD4ePtwQ+xMq7VV8cHCFiysUEWk/nDaftlwagv09uWZE\nF5ZtPMLH3xxlxrjYBre7PGIw35zeys7svezO3sdV1uEuqc/hcFBhq6TCVkGFrYJyWwUV1d//aaus\n/d9nltduY6ugvLqidt/y6gqiAjqT0HsGvh4+LqldROR8KbTlnCZdHsWGnaf5/LsTjBnYkfDg+qFm\nMBiY2WM6j333L95P+Ygrug9q8Fh2h51KWyUVtsofBWxF3YA9K3B/CNi6wVzx/XEcXPhUoR5GD7xM\nnhgNBnZn7+OppH/zq/4/w+oTcsHHFBFxFoOjFU+OnJXV8oN2WK3+TjnupW7r/gxe+mgvg7qH8psb\n+ze63fLUlXx+/Cu6BUdhcpjrBXKlreqiQtZi9MDT7ImnyRMv0/d/mj3xNFlq/m7+YfkP675f/6N1\nniYLJqMJqPky8dGhVaw9vh4/D1/u7n8H3QK7XHCdrqLPs2uonV1D7VzDavVvdJ2utKVZhvUKY13S\nSbYfzGbf0VziunZocLvJXcezI2s3h/OOAz+ErJfJkwCLf6OBWzdga9b/OHA9TZ4YDc55DcNoMDI9\n9hpCvUN4L2U5z25/mdviZjE4rPEvKCIirqYrbWm2Y+lF/OX17+ho9WXBncMwGRsOUJvdRkAHT4ry\nKp0Wss60NyeZ/+x5iwpbJdNipjIhagwGg8HdZTVIn2fXUDu7htq5RlNX2m3vN6q4TZcIf67oH0la\nVgkbdjbeBcxkNOHj4d0mAxugT0gv7h38a4I8A1l+aCXvHvgQm93m7rJERBTacn5uHN0NL4uJZRsO\nU1pe5e5ynKazf0f+MHQunf068vWpLby063XKqsvdXZaItHMKbTkvgX6e/GRkV4rLqlix6ai7y3Gq\nIM9A7hn8S+JCerIv9wD/3PYieeX57i5LRNoxhbact4lDOxMa6MUXSSc5nVPi7nKcysvsxS/73cGo\nTiNIKz7Nk4nPc6LolLvLEpF2SqEt583DbGLmVbHY7A6WrGt8FrBLhcloYlaP6UyPvYbCyiL+ue0F\n9mTvd3dZItIOKbTlggzuYaVXVBC7DuWw53COu8u5aAUllVRV2xtdbzAYmBA1hp/3vRW7w85Lu15n\nw8lvXVihiIj6acsFMhgMzBrfnUde/453vjjII12CMZta/3dAh8NBVn4ZxzOKOZZRxLGMIo5nFFNY\nUkmAr4V7bh5Al4jGu1sMCutHkGcAL+16nSUpy8guy2Fa7NQ2+6a8iLQtLg3tkpIS7r//fgoKCqiq\nqmLOnDlceeWVrixBWlBUuD+jB3Rk/Y5TfLU9jQlDL3N3SXVU2+yk55TWCecTmUWUVdTtvhUS4Emf\n6A7sO5LL429vY+4N/ejTyOAxANGBXfjD0Lm8sPM1vjixgZzyXG6Pm4XFZHH2jyQi7ZxLB1d56623\nyMjI4L777iMjI4Pbb7+d1atXN7q9Bldp/QpLKpn/yrcYDQYeuzseP28PwPXtXFFl42RmMcczijiW\nUfPnyawSqm0/3PI2ABEhPkSF+xMV7kdUuD9dwv1ra/4uOZNFH+/F4YBf/CSO4XHhTZ6ztKqUV3a/\nycH8w3QNiOLu/rcTYGn8Kt0Z9Hl2DbWza6ida7SaYUyDg4M5cOAAAIWFhQQHB7vy9OIEAb4Wrh0Z\nzXtfpvLR10f46cQeTj9nSXkVx9O/D+fMmivo0zklnP3102wy0CnUj6hwP7pE+BMV7s9lVj88LaZG\njzusVxh+3h48/+EuXl6xl8KSSiYOa/zugY+HD3MH/oL/JS9la/o2/pH4PL8e8DMifJsOexGRC+Xy\nYUx//vOfc/z4cQoLC3n55ZcZOHBgo9tWV9swmxv/JSutQ1W1nTlPriMjt5Tn7htLVERAixzX4XCQ\nW1jOobQCDqcVcOhkPofTCsjMK6uznbeniW6dgujWKZBuHQOJ6RxI5zB/PMwX9pz5yKkC/vzKt+QV\nVXDjuFhuvyauyWFMHQ4H7+/9lKV7P8XXw5vfj/olfcKc/+VFRNofl4b2Rx99RGJiIgsXLiQ5OZkH\nH3yQDz/8sNHtdXu87dh+MIvnPthN3+gO3DNjAGFhAefVznaHg6y8sjrPn49nFFFUWnfUtQAfj+9v\nb9fc4u4S7o812BtjC48NnpVfxtNLdpCRV8YVfSO4fUqvc75ot+V0Ev9LXgrAT3vdxPDIIS1aU0P0\neXYNtbNrqJ1rtJrb49u2bWPUqFEA9OrVi8zMTGw2GyaTrqbbuoGxocR1DWbPkVx2HcphQljjV9vV\nNjunskvqhPOJzGLKK+u+IBYa6EX3HkF1nj8H+VlcMnmHNcib+QlDeOb9nWzak05RWRW/ur5vk7fX\nh0cOIdgriFd2v8mb+5eQXZbD1OiJrXayERFpe1wa2l26dGHnzp1MmjSJtLQ0fH19FdiXiDNdwP78\n3628uy6VMcNq5qKuqLRxIrP4+4CuCem07GKqbY6z9oXIEN+acA7z//4ZtB++Xh7u+nEACPCx8Idb\nBvHCsj3sOpTDk+9uZ95N/fH3afwt8R7BMfx+yK95Yed/WXl0Ldnlufy0102YjepdKSIXz6W3x0tK\nSnjwwQfJycmhurqaefPmER8f3+j2uj3e9iz+7ABfbksjLroDeYXlpOeUcvYHzGwy0tnqW/tyWFS4\nH52tfnh6tN4vb9U2O6+tTObbvelEdPDh3pkDCA30bnKfwsoiXtr1OscKT9A9qBt39bsNHw+fFq9N\nn2fXUDu7htq5RlO3xzWftrSootJK/rRoC8VlVXh7mogKq/v8OSLEp00MwvJjdoeDpV8dYvWW4wT6\nWbh3xkAuC/Nrcp9KWyVv7HuXHVl7CPcJ49cD7iTUO6RF69Ln2TXUzq6hdq6h0D6LPhTOV1Bcga+/\nN0a7rcVfEHO3NVuPs2RdKt6eZn57Yz96RjXdbdHusLM8dSVfnNiAn4cvv+x/J9GBUS1Wjz7PrqF2\ndg21c42mQrvtXfJIqxfo50lkqO8lF9gAky6P4v9dG0dllY2nluwk6UBmk9sbDUZu6P4TZvaYRklV\nKc9sf4ntmbtdVK2IXGoU2iLnKb5PBPNu7o/JaOCFZXv4cnvaOfcZ3Xkkv+x/BwaDkf/seYu1x9fT\nim9yiUgrpdAWuQB9o0P44+xB+Pl4sHjNAZZvPHzOEO4b2pt7B/+KAIs/y1I/ZUnKcmx2W5P7iIic\nTaEtcoGiIwN48NYhhAZ6sWLTUd5ccwCbvfHpPQEu8+/EH4bOpZNfJBvTvuXl3W9QXl3uoopFpK1T\naItchPAOPvwpYQhRYX6s33GKF5btobKq6avnYK8g7hn8K3p36MHenGT+ue0l8isKXFSxiLRlCm2R\nixTo58n9Px1M7y7BbD+YzVNLdlBSXtXkPt5mL37V/06u6Dick8WneDLxeU4WnXJRxSLSVim0RVqA\nt6eZ3908gGG9wjh4soDH/7eN3MKmb3ubjCZu6XkD02Kmkl9RwNPbXmBvTrKLKhaRtkihLdJCPMxG\n7r6+D+OHdCYtq4RH30riVHZJk/sYDAYmdhnLz/veis1h56Vdr7MxbbOLKhaRtkahLdKCjAYDsyd0\n58Yx3cgtrOCxt5JITTv38+rBYf2ZN+hufMzevHvgQ5alford0fRLbSLS/ii0RVqYwWDgmviu/Gxq\nb8oqbPzjne3sSM0+537dArvw+yFzCfMJZe3x9fx3z/+otDX9bFxE2heFtoiTjOofyW9u7AfA8x/s\nZuOuc79oZvUJ4fdD5hITGM32rN08u/1liiqLnV2qiLQRCm0RJxoQG8rvbxmEt6eJ11Ym88k3R885\nCIuvhw+/GfT/GBo+kCOFx/lH4vNklDQ9XKqItA8KbREni+0UyPxbh9AhwJMPNxzm7bUHsZ8juD2M\nZu6Iu4UpXceTXZ7LP5L+zcG8Qy6qWERaK4W2iAt0DPXlTwlD6WT15Yukk7z80V6qqpt+0cxgMPCT\nbpO4tfcMym0VPLfjVbamb3NRxSLSGim0RVwk2N+TB346mB6dA/kuOZN/vb+Tsorqc+4XHzmUOQN+\njsXkwRv73mXVkbWabESknVJoi7iQr5cH984cyKDuoew/lscT/9tGQXHFOffr1aE79w2ZQwevYD45\n8hmL979Htf3cgS8ilxaFtoiLWTxMzJnej7EDO3I8s5i/LU4iI7f0nPtF+obz+yFz6eJ/GVvSk/j3\njv9QUnnu/UTk0mFwtOL7bFlZRS1+TKvV3ynHlbrUzufmcDhYsekoH319BH8fD3538wCiIwPOuV+l\nrZLX977Dzuy9+Hp4E+4TjtU7hDCfUKzeod//GYKX2csFP0X7oM+za6ida1it/o2uU2iLU6idm+/L\n7Wm89dkBLGYTc27oS9/okHPuY3fY+fTI52zP3kVWSU6Do6cFWPzrhLjVJ5Qw71CsPqF4mizO+FEu\nWfo8u4bauYZC+yz6ULiG2vn8JB3I4uUVe3E4HPzsmt7E94lo1n5Wqz+nM/LIKc8jqzSbzLJsskqz\nySrLIbM0m9zyPBzU/yceaAmovTK3+oTUhrnVOxSLyaOlf7w2T59n11A712gqtM0urENEGjGkp5X7\nZg7g2Q92s+jjfRSWVDLp8qhm7Ws2mgn3sRLuY623rspeTU5ZLlll2WR+H+rZpTlklmWTmn+Eg/mH\n6+0T5BlYG+K1V+neNX96KNBF3EqhLdJK9IwKZv5PB/P0eztYsi6VguJKbhoXg9FguOBjehjNRPiG\nEeEbVm9dla2K7PJcMkuza0M9qyyHrNJsUvIPkZJfdzAXA4aaQPcJ/eFW+/fP0kO8Q/Aw6teJiLPp\nX5lIK9I5zI8HE4bw9JKdrN56nIKSCu6c2huzqeU7eniYPIj0DSfSN7zeukpbFdllObW3288Ee1ZZ\nDgfyUjmQl1pnewMGOngF/fAM/axQD/HugFmBLtIi9C9JpJUJDfTmwYQhPPP+Tr7dm0FRaRW/nt4X\nL4vr/rlaTB509Iugo1/9Z+sVtsqaQC/N/uE5+vfhnpx3kOS8g3W2NxqMdPAMqr3d3sk3kv7WPvhb\n/Fz144hcMvQimjiF2vniVVTaePGjPew6lEN0pD/zbh5AgE/dt75bWzuXV1fU3GI/c7v9zK33suw6\ns5UZDUZ6BscyJGwAA6x98fHwdmPV59ba2vlSpXauobfHz6IPhWuonVtGtc3OG6uT2bQ7nfBgb+6d\nORBr0A8B15bauay6nKyybFLzDpOYuZNjhScAMBtM9A7pydCwAfQNjcPL7OnmSutrS+3clqmda7Sq\n0F6xYgWvvvoqZrOZ3/72t4wdO7bRbRXabZfaueU4HA4+3HCYT789RqCvhXtmDCAqvOYfdVtu5+yy\nHLZl7CIxcwdpxacB8DB60C+0N0PCBhAX0qvVdD9ry+3cVlTaqrB5leFR4dPu34FoNaGdl5fHrFmz\n+OCDDygtLeW5555j4cKFjW6v0G671M4t7/PEE7y79iBeniZ+c0N/enUJvmTaOb0kg6SMnSRm7iCz\nNBsAL5Mn/a19GBI2gF4durv1F/ml0s6tSWlVKYcKjnIo/yip+Uc4XnQSm8OGxWShe1A3egXH0rND\ndzr6RmC4iB4UbVGrCVn55akAABY3SURBVO2VK1eydetWFixY0KztFdptl9rZObbuz2DRx/swGOCu\na/sw5cqYS6qdHQ4HJ4tPk5Sxg6TMneSW5wHga/ZhYFhfhoQNpHtwN4wG106boM/zxcsrz+dQ/hFS\nC45yKP8Ip0rSa9cZDUYu8+tE15BOJGceJqM0s3adv8WPnsGx9AruTq8O3Qn2CnJH+S7VakL7lVde\n4fDhw+Tn51NYWMhvfvMb4uPjG91eod12qZ2dZ9/RXJ7/cDcVlTZmT+5Fvy5BWIO8L7mrEYfDwdHC\n4yRl7mRbxk4KKms+T/4WPwaHDWBI2ACiA6NcEuD6PJ8fh8NBRmnW9yF9hEP5R8j5/gsY1DwGiQ6I\nIiYomtigaLoGROFl9qxt57zyfA7kpZKcm8qBvIMUVv7Q9mE+ofQK7k7PDt3pERTT6l9ivBCtKrS3\nbdvG888/z6lTp7jtttv48ssvG/1lU11tw2w2uao8kTbj0Ml8Fry6mfyimmk9rcHe9I8NpX+slQHd\nQwkJvLR+kdntdpKzU9l0PJHNJ7ZRVFkCQIhPMCMvG8IVUUOJDo665L64tBU2u42j+SfZn5VKclYq\nydmpFFb80FvA1+JDr9AYev//9u49pq377uP42zbmZsCYO+aWAAmUkECTdlrT3J4n6Satj1Y1WUuW\nlu2fp9pWbdKmbhrK1mXTpklUmlStrbJO66Qu0xS2pOs2de26G2mejSRtWmhKIAHC3WBzMeZq8OU8\nf9gYQy5LEzi+8H1JkYl9jH/+6tgffuf8zu+XWUp5RinFpkJidLd3ukNRFAYmh7hkbedDazuXbVdx\nun37vUajocRUxNbscrZml1OWURz1s/apGtqnT59mdHSUL33pSwA8/PDD/OpXvyI9/cYLJEhPO3JJ\nndeeY2aBq5ZJLnw0RHuvnRnn0vra2WmJVBSZuKfIRFlhKsmJ0bNAiMfr4Yq9k4vWFppHPsLpcQKQ\nmZDOjuxqdmRV3fD68rsh+/NyCx4XPZN9vp70RDfdk73MexYCj6fGGSlN3UiJ0deTzjFk3dYRkdup\ns8froWeyn3Z7B1fGO+ie7AssmKPX6ilN3Uh52ibKTJvIS8pR/VTKagibnrbVaqWuro5XXnkFh8PB\nwYMH+fvf/45We+OiSmhHLqmzOhbr7FUUBmzTtPXaaeu1c6V/gvkFT2C7gqwk7ikyUV5koqwglYS4\n6Bid6/K4uDx+lYvWZi6NXmbB6wLAbMhhR3YV27OqyErMuOvXWe/7880GjS3KTsyiNHVDIKTT4k13\ndNTjTursdDvpnOj2h3jnsnPlSXoDZaZSytJ858TTE9I+dptCIWxCG+DkyZOcOnUKgK985Svs37//\npttKaEcuqbM6blZnt8dL7/AUl3vttPfa6Rhw4Pb4eiNajYaNucmU+3vipXlGYvWRfxpq3rPAR6Nt\nXLS10DrWjtvrO/JQmJzvD/BtpMWb7uh3r7f9eWLeQedEd6AnPTRjDawWtzhorCR1A6WpGyk2bli1\n2e1Wo86O+Un/+fAOrtg7mZh3BB7LSEgPjErfbCohSW+42yavibAK7Y9DQjtySZ3Vcbt1drk9dA5O\n0uYP8WuWSbz+j36MTkNpnpHyIhMVRWlsyE1ek7nO1TTnnuPDkcu8Z2umfbwjcPi02LiBHdlV3Ju5\nDWPczb8YV4rm/VlRFGyzI/4BY76e9JhzPPD4zQaNrYXVrvPigLjFXvhVe1fgdIoGDQXJZsr8o9KL\njRvCal6Am5HQFmtC6qyOO63z3LybjoGJwOH0fut0YNXtOL2OzQWp3OPviRdkJaHVRu4Ar+mFGZpH\nLnHR2kLHxDUUFDRo2GwqYUd2FdWZWzHoE2/5O6Jpf/Z4PQxODwVGdXdN9DDlWho0lhiTQEnQoe6C\n5DzVrpFf6zp7vB76pgYCo9KvOXoDh/ljtDGUGDf4R6aXUpCcF7Lz4RLaQaLpwxfOpM7qWK06T8+5\naO+109bn64kPjc0GHjPEx1BeaAocTs9NT4zYUdqO+Uk+sF3ioq2Za45ewHe4tyJtM9uzqtiWuYWE\nmPjrnhfJ+/NaDRpbC2rXed6zQOdEN1fGfQvdLM7MB765ATabSihL20S5aRMZCWmq7fcS2kEi+cMX\nSaTO6lirOtun5mnv8/XC23rsjE06A48ZDbGBQW0VRSYyUiPz8rKxOTvv21q4aGuhf2oQ8PW2KtPL\n2ZFdTWV6ObE636j7UO7PHq8Hl9eFy+v23XqCfg6+XXa/i6mFabometZs0NhaCPX3xtTCtG/p2fEO\n2sY7sM9PBB5Ljzf5D6WXstlUuqar1EloBwn1TrFeSJ3VoUadFUVhxOH09cT9/yZnlnpqGcb4wKH0\n8iITqUnht+DHf2KdHeF9awvvWZsZ9s/GFauLZVtGBfdlV7N783ZGR6eDgnN5aLq9LhY8LtxeNwve\n5bfXhazHtSJwl+6/0fMXz8ffCa1GS36S2deTTt1IySoOGlsL4fS9oSgKI3Nj/gFtHVyxdzHnngs8\nnp9kpiytlIq0MspMpav6h4+EdpBw2imimdRZHaGos6IoWMZmaesZ911e1jfB7PzSNeK56Yn+EE+j\nrDCVpITwGNxzOxRFwTIzzEVrCxetzYwGDchaS3ptDDFaPbH+W71Oj14bg1674nbZ/UE/6/TEaGOI\n1fpvdXridXEUJOeH5appwRRFwWafo3PQwfSCh9KcZIrNKWHT+1/kVbz0Tw3SPt5Bu72TaxPduP1H\nMP63spZ7s7au2mtJaAeRMFGH1Fkd4VBnr1ehzzYV6IVf7Z9gweXrHWqAwuzkQC98c4GR+NjIuEZc\nURT6pga4aG3B4rSguDXodYvhujwkbxiyNwrYG2yn0+oicgKQOzXv8tAzNEnnoIOuQd/t9Jxr2TZ5\nmQb2Vpl5oDIHQ3x4/tG34Fmgy9HD4PQQO3M/sarTqUpoBwmHL7n1QOqsjnCss9vj5ZplMnA4vcvi\nwO3xfc3otBoKs5MpyDKQl5FEXqaBvMwkUhL1YdezChaOdY4EiqIwPjlP56DDH9IO+m3TeLxLsZOe\nEkdJnpHSPCMb8lN5+1wvH1wdweNV0Mdoua8si73VZjblG8N6H1lNEtpB5MOnDqmzOiKhzvMuD50D\njkBPvM86texLGyApQU9+ZnCQG8jLMJAYJr2sSKhzOHC5vfRZp+jyh3TnoIOJ6aXxDzqthg05yYGQ\nLskzYkpeOny/WOfJmQX+9dEQZ5ot2Oy+88i56YnsrTKzc2tuRJ1yuRMS2kHkw6cOqbM6IrHObo+X\n4fFZBkdmGByd9t2OzDAyMcfKLyNTclwgwBcD3ZxhIE7lGdwisc5qcEzP0zk4GQjpnuGpwMx7ACmG\nWEr9AV2aZ6QoJwn9LRaBWllnRVG40jfBmRYLF6/YcHsUYnQadpRlsbfKTFlhalT2viW0g8iHTx1S\nZ3VEU53nFzxYxmaWwnzU97Pdv5LZIg2QmZoQ1CP3hXlOWuKazeQWTXW+Ux6vlwHbjO8wt8VB54CD\nUcfSpYAajW+O+8UedGmekQxj/McK1VvVeWp2gaaPhjnTYgnMI5BtSmBPtZkHK3NJMUTPojgS2kHk\nw6cOqbM61kOdZ52uQIAvBvrAyMx1g5d0Wg05aYlLPfNMX5hnGhPueka39VDnlabnXFyz+A9zDzjo\nHppi3rV0vbchPoaSoIDemJt814MMb6fOiqLQMeDgTLOF967YcLm96LQa7t2cyd5qM/cUmdBGeO9b\nQjvIevzwhYLUWR3rtc6KojA562JwZHrZYfaB0Zllq5sBxMZoyc0wkB8U5HkZBkzJcbfdC4z2OnsV\nhaGx2cBh7q5Bx7JZ8QDMGQZK81ICIZ2dlrjq4fhx6zzjdAV634MjvjXWM1Pj2VNlZtfWXIwROGcA\nSGgvE+0fvnAhdVaH1Hk5RVEYm3T6g3wmEOqWsdll51oBEuJiyMsMCvMMA+ZMAyk3WHs82uo8N++m\n23/ZVeegg2uDk8uutY+L1VFiTqHEbKQ030ixOUWVS6/utM6KonDNMsmZZgsX2qws+HvfVaUZ7K02\ns2VDWkTNny+hHSTaPnzhSuqsDqnz7fF4vYxMOAMhPuAPdOv4XGC1s0Uphlj/wDdD4JK0itJMHBOz\naDUatFoNOq0GjYaIGASlKAojE3PLroseGJkm+G1npSb4etD5RkrMKeRnhmaRmNXYn2edbs5fHuZM\ns4U+m28hlPSUOHZXmdm9zbxstHq4ktAOIl9y6pA6q0PqfHdc7sWR7EsD3wZGppcNsLqV4BAP3GpY\ndt/KbbSa5dtrNCufv2L7GzxncZvrX1Pr3953qd01i29k9+Ts0vl/fYyWjSsuuwqXQVyruT8rikLP\n8BRnmi2cv2xl3uVBo4Gqkgz2VJvZWpyGThuek9pIaAeRLzl1SJ3VIXVeG84FN5bRpTCfcrqZm3Ph\nVRQ8XgWv/59H8d8u3rfi/56g+1Zu5/EqqPHtm5YS5zvM7e9JF2Qlhe166Wu1P8/Nu7nQZuVMs4We\nYd/vNyXHsXtbLru3mUk3Xr+yWyhJaAeRLzl1SJ3VIXVWx1rVeTHQFWVF0HsVvIrvsP7K+5b/UeC9\nwX2+36f1T2SSlhJegXQrauzPvcNTvNNioal1GOeCBw1QWZzO3moz20rSw+IPmluFdmRMAiyEEFFI\nq9Gg1fnOHUf3HF/hoygnmdqcMh7/r1IutFt5p9nCpWtjXLo2hjEpll1bc9lTZSYzTJecldAWQgix\n7sTF6ti9zTc4bcA2zZkWC00fDfNGUy9vNPWyZYOJvdV5VG/KCIve9yIJbSGEEOtaflYSTzy0mcf2\nlfDeFRtnmi209thp7bGTkqjnQX/vOzstMdRNldAWQgghAGL1OnZW5rKzMpfB0RnOtlj416Uh3jzf\nx5vn+ygvTGVvdR7bN2eijwlN71tCWwghhFghL8PA4f2bOLS3mItXR3in2UJ73wTtfRMkJejZWZnD\n3mozuekGVdsloS2EEELchD5GxycrcvhkRQ5DYzOcbRni/y4N8fa7/bz9bj+bC1J56n8qVLtsTEJb\nCCGEuA256QYe/+9SHt1TzAcdI7zTYqGtx86wfVZCWwghhAhH+hgtn7gnm0/ck43H61V1ZrXwGccu\nhBBCRBi1p0KV0BZCCCEiREhC2+l0cuDAAV577bVQvLwQQggRkUIS2sePH8doNIbipYUQQoiIpXpo\nd3V10dnZyb59+9R+aSGEECKiqR7a9fX11NXVqf2yQgghRMRT9ZKv119/nerqagoKCm5re5MpkZgY\n3aq341bLnonVI3VWh9RZHVJndUidb03V0G5sbKS/v5/GxkaGh4eJjY0lJyeHnTt33nB7u3121dsg\n6w+rQ+qsDqmzOqTO6pA6+4TNetrPP/984OcXXniBvLy8mwa2EEIIIZaT67SFEEKICBGyaUy/9rWv\nheqlhRBCiIgkPW0hhBAiQmgURVFC3QghhBBC/GfS0xZCCCEihIS2EEIIESEktIUQQogIIaEthBBC\nRAgJbSGEECJCSGgLIYQQEWLdhPaPf/xjampqOHz4MB9++GGomxPVnnvuOWpqajh06BBvv/12qJsT\n1ZxOJwcOHOC1114LdVOi1h//+Ec++9nPcvDgQRobG0PdnKg0MzPDV7/6VWprazl8+DBnz54NdZPC\nVshmRFPThQsX6O3tpaGhga6uLo4ePUpDQ0OomxWVzp07R0dHBw0NDdjtdh599FE+9alPhbpZUev4\n8eMYjcZQNyNq2e12XnrpJU6fPs3s7CwvvPAC+/btC3Wzos7vf/97Nm7cyDPPPIPVauWLX/wib731\nVqibFZbWRWg3NTVx4MABAEpKSnA4HExPT5OUlBTilkWf+++/n23btgGQkpLC3NwcHo8HnW71l1hd\n77q6uujs7JQQWUNNTU088MADJCUlkZSUxA9/+MNQNykqmUwmrly5AsDk5CQmkynELQpf6+Lw+Ojo\n6LKdIC0tjZGRkRC2KHrpdDoSExMBOHXqFHv27JHAXiP19fXU1dWFuhlRbWBgAKfTyZe//GWOHDlC\nU1NTqJsUlR5++GEsFgsPPfQQTz75JN/+9rdD3aSwtS562ivJzK1r729/+xunTp3il7/8ZaibEpVe\nf/11qqurKSgoCHVTot7ExAQvvvgiFouFL3zhC/zzn/9Eo9GEullR5Q9/+ANms5lXXnmF9vZ2jh49\nKuM0bmJdhHZWVhajo6OB/9tsNjIzM0PYouh29uxZfvazn/GLX/yC5OSbL+Yu7lxjYyP9/f00NjYy\nPDxMbGwsOTk5sj79KktPT+fee+8lJiaGwsJCDAYD4+PjpKenh7ppUeX9999n165dAJSXl2Oz2eS0\n2k2si8PjDz74IH/5y18AaG1tJSsrS85nr5GpqSmee+45Xn75ZVJTU0PdnKj1/PPPc/r0aX7729/y\n2GOP8fTTT0tgr4Fdu3Zx7tw5vF4vdrud2dlZOd+6BoqKimhpaQFgcHAQg8EggX0T66KnvX37drZs\n2cLhw4fRaDQcO3Ys1E2KWn/+85+x2+18/etfD9xXX1+P2WwOYauEuDPZ2dl8+tOf5vHHHwfgu9/9\nLlrtuujrqKqmpoajR4/y5JNP4na7+f73vx/qJoUtWZpTCCGEiBDyJ6MQQggRISS0hRBCiAghoS2E\nEEJECAltIYQQIkJIaAshhBARQkJbiCgzMDBAZWUltbW1gVWTnnnmGSYnJ2/7d9TW1uLxeG57+89/\n/vOcP3/+TporhPgYJLSFiEJpaWmcOHGCEydOcPLkSbKysjh+/PhtP//EiRMyuYUQYWhdTK4ixHp3\n//3309DQQHt7O/X19bjdblwuF9/73veoqKigtraW8vJy2traePXVV6moqKC1tZWFhQWeffZZhoeH\ncbvdPPLIIxw5coS5uTm+8Y1vYLfbKSoqYn5+HgCr1co3v/lNwLfWd01NDZ/73OdC+daFiCoS2kJE\nOY/Hw1//+ld27NjBt771LV566SUKCwuvW5ghMTGRX//618uee+LECVJSUvjJT36C0+nkM5/5DLt3\n7+bf//438fHxNDQ0YLPZ2L9/PwBvvvkmxcXF/OAHP2B+fp7f/e53qr9fIaKZhLYQUWh8fJza2loA\nvF4v9913H4cOHeKnP/0p3/nOdwLbTU9P4/V6Ad90vyu1tLRw8OBBAOLj46msrKS1tZWrV6+yY8cO\nwLcgT3FxMQC7d+/mN7/5DXV1dezdu5eampo1fZ9CrDcS2kJEocVz2sGmpqbQ6/XX3b9Ir9dfd9/K\nJSgVRUGj0aAoyrI5uBeDv6SkhDfeeIN3332Xt956i1dffZWTJ0/e7dsRQvjJQDQh1onk5GTy8/M5\nc+YMAN3d3bz44ou3fE5VVRVnz54FYHZ2ltbWVrZs2UJJSQkffPABAENDQ3R3dwPwpz/9iUuXLrFz\n506OHTvG0NAQbrd7Dd+VEOuL9LSFWEfq6+v50Y9+xM9//nPcbjd1dXW33L62tpZnn32WJ554goWF\nBZ5++mny8/N55JFH+Mc//sGRI0fIz89n69atAJSWlnLs2DFiY2NRFIWnnnqKmBj5mhFitcgqX0II\nIUSEkMPjQgghRISQ0BZCCCEihIS2EEIIESEktIUQQogIIaEthBBCRAgJbSGEECJCSGgLIYQQEUJC\nWwghhIgQ/w9RHEXI9DlD8AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAFnCAYAAACM3c9QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XtcFWX+B/DPcFUBuXpAVLR0SSMp\n1DJCRVkQtXRdM8UMs2gTL5mWJiIBmqC0lrslFpZlkSaKtFpe0Nps1RA1S5TSUosVlTuiXEQu8/vD\n9fxE5SLDnJk55/PudV4vzm2+Dxjnw3OZZwRRFEUQERG1kpnSDSAiIm1jkBARkSQMEiIikoRBQkRE\nkjBIiIhIEgYJERFJwiAhSURRxMcff4wnnngCwcHBCAwMRGxsLK5cuSLpuPPmzYO/vz/27dt31+/N\nyspCWFiYpPptbceOHSgvL7/jc2+99RY+//xzA7eIqO0IPI+EpPj73/+OQ4cOYdWqVXB1dUVlZSXi\n4uLw+++/Y/369RAEoVXH7dOnD9LT0+Hh4dHGLVbGiBEjsG7dOri5uSndFKI2xx4JtdqlS5eQnJyM\n5cuXw9XVFQDQoUMHREdH44UXXoAoiqiurkZ0dDSCg4MxcuRILF++HHV1dQCAgIAAbNy4EePHj8eg\nQYOwfPlyAEBoaCjq6+sRFhaG7777DgEBAThy5Ii+7o37tbW1WLRoEYKDgxEUFIRZs2ahvLwcmZmZ\nCAoKAoBW1b9VaGgo1qxZg4kTJ+LRRx/F+vXrsXr1aowYMQKjRo3CuXPnAABnz57FpEmTMHLkSAQF\nBeGrr74CACxcuBC///47QkNDceTIEURERGDZsmUYPXo0du7ciYiICKxevRpZWVkYOnQoKioqAADv\nv/8+Zs+e3db/bERtjkFCrXbs2DG4ubmhZ8+eDR63trZGQEAAzMzM8MknnyAvLw/bt2/HF198gSNH\njug/YAHg8OHDSElJwZYtW/DZZ58hLy8PycnJAIDk5GT4+/s3Wn///v3Izc3Frl27sHv3bvTq1Qs/\n/vhjg9e0pv6dHD58GOvXr8eyZcvw97//HW5ubti1axd69eqFLVu2AADefPNNDBs2DDt37kR8fDwW\nLVqEmpoaLFu2TP/9DBgwAACQkZGB1NRUjBw5Ul/D29sbgYGBSEpKQn5+PjZs2ICoqKhm/x2IlMYg\noVa7dOkSnJ2dm3zN3r17MWHCBFhYWKBdu3YYPXo0Dhw4oH9+9OjRMDc3h6urK5ydnXHx4sUW13dy\ncsKZM2ewZ88eVFVVYc6cORg8eLAs9YcNGwYLCwt4enqiqqoKwcHBAABPT08UFBQAAFavXq2fm+nf\nvz+qq6tRWFh4x+P5+vrC2tr6tsfnzp2LXbt2YeHChZgxYwZ0Ol2Lfx5ESmGQUKs5OjoiPz+/ydeU\nlJTA3t5ef9/e3h7FxcX6+7a2tvqvzc3N9cNOLeHt7Y2oqCgkJyfDz88Pr776Ki5fvixLfRsbG/1r\nbr5vZmaG+vp6AMC+ffswefJkBAcHY9SoURBFUf/crW5u0611Ro4ciR9++AGjR49u8vsnUgsGCbXa\nQw89hOLiYmRnZzd4vKamBitXrkRVVRVcXFxw6dIl/XOXLl2Ci4vLXdW5+cMaAMrKyvRfjxgxAsnJ\nyfj2229RVVWFtWvXNnhvW9RviZqaGsyZMwfTp09Heno6tm3b1qqFBvn5+fjyyy/x+OOPY9WqVW3e\nTiI5MEio1Tp27IgXXngBCxYsQE5ODgCgqqoK0dHR+Pnnn9G+fXsMHToUqampqKurQ2VlJbZu3drk\nvMeddOrUCSdPngRwfRltdXU1AGDLli1ITEwEADg4OODee++97b1tUb8lqqqqUFlZiQceeADA9bkZ\nS0tLVFZWAgAsLCxu6y3dSVxcHF544QVERkZi586d+OWXX9q8rURtjUFCkrz00kuYMGECpk+fjuDg\nYIwbNw7Ozs76v6ZDQ0Ph5uaGxx9/HE8++SSGDh3aYIK5JWbMmIF169bhiSeewJkzZ9CrVy8AwJ//\n/GdkZ2dj+PDhGDlyJE6fPo3nnnuuwXvbon5L3AjVsWPHYuzYsfDw8EBgYCDCw8NRWVmJESNGICQk\nBDt27Gj0GHv37kVubi5CQkJga2uLuXPnIioq6q6G+4iUwPNIiIhIEvZIiIhIEgYJERFJwiAhIiJJ\nGCRERCQJg4SIiCSxULoBjWntrrFSKbGITamFc6b0MwaAawoto7W2UObXjAsyDUPO36PWHtvQ//aq\nDRIiIlOn1B97d4tDW0REJAl7JEREKqWVHgmDhIhIpQRBG4NGDBIiItVij4SIiCTg0BYREUnCICEi\nIkm0MkeijVYSEZFqsUdCRKRSHNoiIiJJGCQAKioqUFRUBOD6dbc7dOggZzkiIqNi0kFy/PhxxMXF\n4fLly3B0dIQoiigoKICrqyuio6Nx3333yVGWiMiomHSQxMfHIy4uDj179mzweHZ2NpYsWYL169fL\nUZaIyMhoYz2ULK0URfG2EAEALy8v1Cm0lTcREclDlh7Jgw8+iPDwcAQGBsLJyQkAUFRUhPT0dDzy\nyCNylCQiMjpaGdoSRJmugHL48GFkZGToJ9t1Oh38/Pzg4+PTsoaZ0EWXeGErw+CFrUgOcv4e2dk5\ntep9V66UtHFLmiZbkEhlSh9yDBLDYJCQHOT8PerY0blV77t8ubiNW9I0nkdCRKRSWhnaYpAQEamU\nVvbaYpAQEamUVnok2og7IiJSLfZIiIhUSis9EgYJEZFqMUiIiEgCTrYTEZEkHNoiIiJJGCRERCSJ\nVoJEGwNwRESkWqrtkSi1T5CFhZXBa5ZXVRi8JqDcHlBa+SurrXDPK8Mwxv+vtPI9qTZIiIhMHVdt\nERGRJOyREBGRRAwSIiKSgD0SIiKSRCtzJNpoJRERqRZ7JEREKsWhLSIikoRBQkREkjBIiIhIEgYJ\nERFJwlVbjbh8+bKhSxIRaZLQyv8MzeBBMmvWLEOXJCIiGckytLV+/fpGn8vPz5ejJBGR8THlOZJ1\n69bB19cXOp3utudqa2vlKElEZHRMerI9MTERS5cuRVRUFKysGl7fIzMzU46SRERGR84giY+Px7Fj\nxyAIAiIjI+Ht7a1/bv369di2bRvMzMzwwAMPYNGiRU0eS5Yg8fT0RFJSEizucOGkiIgIOUoSERkd\nuVZtHTp0CDk5OUhJScGZM2cQGRmJlJQUAEB5eTnWrl2L3bt3w8LCAs8//zx++uknPPTQQ40eT7bJ\n9vbt28PM7PbDe3l5yVWSiMioCILQqltzMjIyEBgYCADo2bMnysrKUF5eDgCwtLSEpaUlKisrUVtb\ni6qqKtjb2zd5PJ5HQkSkUnINbRUVFTX4o97JyQmFhYWwtbWFtbU1Zs6cicDAQFhbW+Pxxx/HPffc\n0+TxtHG2CxERyUYURf3X5eXlSEpKwq5du/DNN9/g2LFjOHnyZJPvZ5AQEamUXENbOp0ORUVF+vsF\nBQXo1KkTAODMmTPo1q0bnJycYGVlhQEDBuDEiRNNHo9BQkSkUgLMWnVrjp+fH9LT0wEA2dnZ0Ol0\nsLW1BQB06dIFZ86cwdWrVwEAJ06cQI8ePZo8HudIiIjUSqY5kn79+sHLywshISEQBAExMTFIS0uD\nnZ0dgoKCEBYWhilTpsDc3Bw+Pj4YMGBA080Ubx4cI1hYWDX/ojZWXlVh8JoAYH2H5dmGoNRJVtUK\nnQxrZW6uSF1To5WT9+5Gnz6+rXrfL79ktHFLmsYeCRGRSmklHBkkREQqpZUg4WQ7ERFJwh4JEZFK\naeXCVgwSIiKV0srQlmqDpKZOmRU2VdWVBq/p0dXT4DUB4OLFs4rULas0/M8YAOw7dFCkbl19vSJ1\nr9bUKFJXqQ+/DlaGX3EpNwYJERFJxCAhIiIJOEdCRESSaGVoSxtxR0REqsUeCRGRSmmlR8IgISJS\nKQYJERFJwiAhIiJJuGqLiIgkYY+EiIgkETRyQqI2+k1ERKRasgbJnS6+mJeXJ2dJIiLjIQituxmY\nLEGyZ88eDBs2DL6+vliwYAHKy8v1z7322mtylCQiMjqCILTqZmiyBMmaNWvwxRdf4Pvvv0e/fv0Q\nFhaGK1euALhzL4WIiG4nCGatuhmaLJPt5ubmcHBwAABMnDgRzs7OCAsLw/vvv6+ZVQhERErTyuel\nLEHSr18/TJs2Df/85z/Rrl07BAYGwtraGlOnTsWlS5fkKElEZHRMOkhee+01ZGZmwtraWv/Y4MGD\n4ePjgx07dshRkojI6Jh0kADAwIEDb3vM1tYWEyZMkKskEREpgCckEhGpFLdIISIiiUx8aIuIiKQx\n+TkSIiKShkFCRESSMEiIiEgSrUy2a6OVRESkWuyREBGpFIe2iIhIEgYJERFJwiAhIiKJtDGNrdog\nUepaxbX19QavmfXrMYPXBIC//nWOInXT0lYqUveLI0cUqTu2f39F6tbW1SlSt2P79orUramrVaSu\npbl8H6PskRARkSRaCRJt9JuIiEi12CMhIlIprfRIGCRERCrFICEiIkm0skUKg4SISKXYIyEiIkkY\nJEREJJE2gkQbA3BERKRa7JEQEamUVoa2DNYjKSkpMVQpIiKjIAhmrboZmiwV9+7di+DgYEydOhW/\n/vorxowZg9DQUAQEBOC7776ToyQRkdERBKFVN0OTZWjrvffew8cff4wLFy4gPDwcq1evRu/evVFU\nVITw8HD4+/vLUZaIyKhoZWhLliCxsrKCu7s73N3dodPp0Lt3bwCAi4sLrK2t5ShJRGR0tBIksgxt\nOTs7Y+3atQCAjRs3AgDy8vIQHx8PNzc3OUoSERkdk54jWb58OTp37tzgseLiYri7uyM+Pl6OkkRE\npBBZhrbatWuHUaNGNXjMy8sLXl5ecpQjIjJKWhna4nkkRESqJV+QxMfH49ixYxAEAZGRkfD29tY/\nd/HiRbzyyiuoqanB/fffjyVLljR5LJ7ZTkSkUnIt/z106BBycnKQkpKCuLg4xMXFNXh++fLleP75\n55Gamgpzc3NcuHChyeMxSIiIVEowE1p1a05GRgYCAwMBAD179kRZWRnKy8sBAPX19fjhhx8QEBAA\nAIiJiYG7u3uTx2OQEBGplFw9kqKiIjg6OurvOzk5obCwEMD1XUhsbGywbNkyTJo0CW+99Vazx2OQ\nEBGplKHObBdFscHX+fn5mDJlCj777DP8/PPP2Lt3b5PvZ5AQEZkYnU6HoqIi/f2CggJ06tQJAODo\n6Ah3d3d4eHjA3Nwcvr6++O2335o8HoOEiEil5OqR+Pn5IT09HQCQnZ0NnU4HW1tbAICFhQW6deuG\nP/74Q//8Pffc0+TxuPyXiEil5DqPpF+/fvDy8kJISAgEQUBMTAzS0tJgZ2eHoKAgREZGIiIiAqIo\nwtPTUz/x3hgGCRGRSsm528m8efMa3L+xJyIAdO/eHZ9//nmLj8UgISJSK57ZTkREUnCLFCIikoRB\nIpGFubkidUWIzb+ojbn8b7WEoX3xxT8UqWtj46BI3fLyUkXqKsVGoWv/KPXhV1FdrUhdhw6q/Rg1\nGP4EiIhUij0SIiKSpCX7ZqkBg4SISKXYIyEiIkkYJEREJIlGcqTxIElNTW3yjePHj2/zxhAR0U00\nkiSNBskPP/zQ5BsZJEREBDQRJMuWLdN/XV9fj+LiYv02w0REJD+trNpqdkuwG5dkDA0NBXD9gvHN\nXeSEiIikM9SFraRqNkhWrlyJTZs26Xsj4eHhWL16tewNIyIydUYTJB06dICLi4v+vpOTEywtLe+q\nSEZGxt23jIjIxGklSJpd/tuuXTscOnQIAFBWVobt27fDuok9fP71r381uC+KIt577z3MmDEDADB2\n7Fgp7SUiMhlGcx5JTEwMYmNjcfz4cQQFBaF///5YsmRJo69PTEyEg4MD/P399Y9VV1cjNze3bVpM\nRGQitDLZ3myQdO7cGUlJSS0+4FdffYXVq1fj1KlTiIiIQJcuXbBv3z7MmjVLUkOJiEidmg2Sw4cP\nY/ny5Thz5gwEQYCnpydee+019O/f/46vt7a2xty5c3H27FksWbIEPj4+qK+vb/OGExEZO42MbDU/\n2b5kyRLMmzcPmZmZyMjIwOzZs7F48eJmD3zvvfciKSkJbm5u6Nq1a5s0lojIlBjNZLuzszN8fX31\n9/38/ODu7t7iAmPHjuUEOxFRa2ikS9JokJw7dw4A0LdvX3z00Ud47LHHYGZmhoyMDNx///0GayAR\nkanS/KqtZ599FoIgQBSvX3r2s88+0z8nCAJmz54tf+uIiEyY5ldt/fvf/270TUePHpWlMURE9P80\n3yO5oby8HFu3bkVpaSkAoKamBlu2bMH+/ftlbxwREalfs6u25syZg1OnTiEtLQ0VFRX49ttvERsb\na4CmERGZNq2s2mo2SKqrq7FkyRJ06dIFCxYswKeffoqdO3caom1ERCZNK0HS7NBWTU0NKisrUV9f\nj9LSUjg6OupXdBERkXw0MkXSfJD85S9/waZNm/DUU09h1KhRcHJygoeHhyHaRkRk2rS+auuGSZMm\n6b/29fVFcXExzyMhIjIAza/a+uc//9nom/bs2YOXX35ZlgYREdF1mg8Sc3NzQ7aDiIg0qtEg4bbv\nRETK0nyPRGm1dXWK1BVg+H+4OoW22RchKlK37HKxInUdHDopUrektECRukr9+97YVsnQ7Nq1V6Su\nnBgkREQkiVb22mr2hEQAKC0txfHjxwGAF6kiIjIQrZyQ2GyQfPXVV5g4cSIWLlwIAHjjjTewefNm\n2RtGRGTqBKF1N0NrNkg+/vhjbN26FY6OjgCABQsWYNOmTbI3jIjI5GkkSZoNEjs7O7Rv//+TWO3a\ntYOlpaWsjSIiIu1odrLd0dERX3zxBaqrq5GdnY0dO3bAycnJEG0jIjJpWlm11WyPZPHixTh+/Dgq\nKioQFRWF6upqLF261BBtIyIyaYKZ0KqboTXbI+nYsSOio6MN0RYiIrqJVnokzQaJv7//Hb+ZvXv3\nytEeIiL6H6MJkg0bNui/rqmpQUZGBqqrq2VtFBERGVGQdOnSpcH9Hj16ICwsDFOnTm1xkdraWuTn\n58PV1RUWFjyZnoioJYwmSDIyMhrcz8vLw3//+98m37N06VJERUUBAL7//nssWrQILi4uKC4uxuLF\nizF48GAJTSYiIjVpNkhWr16t/1oQBNja2mLx4sVNvufUqVP6rxMTE/Hpp5+iW7duKCwsxKxZsxgk\nREQtILRoEyvlNRskERER8PLyuquD3twds7e3R7du3QAAnTp14tAWEVFLaWRoq9m8S0hIuOuD/vbb\nb3j55Zcxe/Zs5OTkYOfOnQCAjz76CHZ2dnffSiIiE6SVTRub7R64u7sjNDQUDz74YIOtUZq61O6t\nl+nt3r07gOs9krfeequ1bSUiMilGM9netWtXdO3a9a4O+sgjj9zx8dGjR9/VcYiITJnmg2Tbtm0Y\nM2YML7lLRKQQzV/YKjU11ZDtICIijdLI4jIiItMj52R7fHw8Jk6ciJCQEGRlZd3xNW+99RZCQ0Ob\nPVajQ1s//vgjhg4detvjoihCEATutUVEJDO55kgOHTqEnJwcpKSk4MyZM4iMjERKSkqD15w+fRqH\nDx9u0fWnGg2S+++/H2+//bb0FhMRUavINdeekZGBwMBAAEDPnj1RVlaG8vJy2Nra6l+zfPlyzJ07\nF6tWrWr2eI0GiZWV1W37bBERkeHINdleVFTU4ERzJycnFBYW6oMkLS0NjzzySIszoNE5Em9vb4lN\nJSIiSQx0zXZRFPVfX7p0CWlpaXjuueda/P5Gg2T+/Pl33RgiIlI/nU6HoqIi/f2CggJ06tQJAHDw\n4EGUlJRg8uTJmDVrFrKzsxEfH9/k8bhqi4hIpeRateXn54f09HQAQHZ2NnQ6nX5Ya8SIEdixYwc2\nbdqEVatWwcvLC5GRkU0ejzsoEhGplFyrtvr16wcvLy+EhIRAEATExMQgLS0NdnZ2CAoKuuvjCeLN\ng2MqUltXp3QTjJ4IZf7pBShztq6zk6sidUtKCxSpWy/WK1LXwsxckbr1Cn2UmZvJN7ATn7Sh+Rfd\nQeS0p9u4JU1jj4SISKW0skWKaoNEzpRvihJ/1Vy5WmXwmgDg0MFGkbqV164pUvdi4QVF6nZyUWYZ\nfUnJRUXqKjXIodRnhpw0v2kjEREpSyM5wlVbREQkDXskREQqxaEtIiKShkFCRERScNUWERFJwqEt\nIiKShEFCRESSaCVIuPyXiIgkYY+EiEil2CO5RUlJiaFKEREZBcGsdTdDk6Xkd999h+joaADXrw08\nbNgwTJkyBQEBAdi7d68cJYmIjI5c1yNpa7IMbb3zzjtISkoCACQmJuLTTz9Ft27dUFpaimnTpmHo\n0KFylCUiMi4aGdqSJUhqa2thY3N9Z1k7Ozt07doVAODg4KDYzqBERFqjlTkSWYIkLCwMY8eOhZ+f\nHxwcHDBjxgz4+PggMzMTTz31lBwliYiMjkkHyZgxYzBkyBB8//33OH/+PERRhIuLC+Lj4+HqqsxV\n6oiISB6yLf91cHDAqFGj5Do8EZHR415bREQkiUkPbRERkXQMEiIikkQjOcIgISJSLY0kCYOEiEil\ntDLZzt1/iYhIEvZIiIhUipPtREQkCYOEiIgkYZAQEZEkDBIiIpJEK6u2GCRERCqlkQ4Jg+RW5maG\nXxFta93O4DWVZGmuzKpzS3Nl/ncvKbmoSF0zBf5fBoD6+npF6ip1rSOtDD/JiUFCRKRWGgkpBgkR\nkUpppbfDICEiUikGCRERScJVW0REJAl7JEREJIlWgoS7/xIRkSTskRARqZRWeiQMEiIildJIjjBI\niIhUi6u2iIhICq0Mbcky2d6vXz+88cYbKC4uluPwREQmQRCEVt0MTZYeiZeXF0aMGIFXX30VnTt3\nxrhx4+Dj4wMLC3aAiIhaSis9Elk+2QVBwMMPP4x169bh+PHj2Lx5M15//XXY2NjA2dkZa9askaMs\nEREpQJYguXk75759+6Jv374AgIKCAhQWFspRkojI6JiZco/kL3/5yx0f1+l00Ol0cpQkIjI6Jj20\nNX78eDkOS0RkUky6R0JERNJpJEcYJEREaiVAG0nCICEiUimtDG1x918iIpKEPRIiIpUy6VVbREQk\nnZxBEh8fj2PHjkEQBERGRsLb21v/3MGDB/H222/DzMwM99xzD+Li4mBm1vgAFoe2iIhUykwQWnVr\nzqFDh5CTk4OUlBTExcUhLi6uwfPR0dF45513sHHjRlRUVGDfvn1NHo89EiIilZKrR5KRkYHAwEAA\nQM+ePVFWVoby8nLY2toCANLS0vRfOzk5obS0tMnjsUdCRKRScvVIioqK4OjoqL/v5OTUYPuqGyFS\nUFCAAwcOwN/fv8njsUdCRKRShpprv3l/xBuKi4sRHh6OmJiYBqFzJ+yREBGZGJ1Oh6KiIv39goIC\ndOrUSX+/vLwcf/vb3zBnzhwMGjSo2eMxSIiIVEpo5X/N8fPzQ3p6OgAgOzsbOp1OP5wFAMuXL8ez\nzz6LIUOGtKyd4p36NCpQV1+vSN2rNTUGr6nU99reylKRumaCMn+//K7QJQx6uboqUleJ/5cBIHDY\nJEXqbvryA0Xqujcz7CPF1ydOtOp9gQ880OxrVqxYgSNHjkAQBMTExODnn3+GnZ0dBg0ahIcffhg+\nPj761z7xxBOYOHFio8fiHAkRkUrJeR7JvHnzGtzv3bu3/usTdxlgDBIiIpXime1ERCSJVjZtZJAQ\nEamUVnokXLVFRESSsEdCRKRSWumRMEiIiFTKTBs5wiAhIlIrXmqXiIgk4aotIiKShHMktxBFUTM/\nFCIiNdDKZ6Ysy3/379+PkSNHYvLkycjKysKTTz6JIUOGYMSIETh06JAcJYmISCGy9EgSExPxySef\noKysDKGhoVi3bh169+6N8+fPY/78+diwYYMcZYmIjIpJz5FYWlpCp9NBp9OhY8eO+s3AunTpAnNz\nczlKEhEZHa0MbckSJPb29li5ciVKS0vh4eGB6OhoDB48GD/99BOcnZ3lKElEZHS0EiSyzJEkJCRA\np9Ph0UcfxYcffogBAwbgwIEDcHFxQXx8vBwliYiMjpnQupuhydIj6dChAyZPnqy/P2bMGIwZM0aO\nUkRERosnJBIRkSRamWzn7r9ERCQJeyRERCqllcl2BgkRkUoxSIiISBKtzJEwSIiIVIo9EiIikoRB\nQkREkmjlColc/ktERJKwR0JEpFI8s52IiCThHIlG2VhbK90EgxFFUZG6J3JzFan7Jzc3Reoq5be8\nPEXqfvefTYrU9R8yQZG6+/enynZsLv8lIiJJ2CMhIiJJ2CMhIiJJtNIj4fJfIiKShD0SIiKV0kqP\nhEFCRKRSWjmznUFCRKRSPCGRiIgk4dAWERFJwuW/REQkiVZ6JFz+S0REksjaIxFFEaWlpRBFEc7O\nznKWIiIyOlrpkcgSJL///jsSEhJw/vx55ObmomfPnigrK4OXlxcWLlwIV1dXOcoSERkVrcyRyDK0\nFRMTg0WLFuHLL7/Eli1b0LdvX+zZswfjxo3DvHnz5ChJRGR0BEFo1c3QZAmSa9euoVu3bgCAHj16\n4NSpUwCAIUOG4OrVq3KUJCIyOmZC626GJsvQlqenJ1555RV4e3tj3759GDhwIAAgMjISvXr1kqMk\nEZHRMekTEhcvXoxvvvkGf/zxB5599lkMGTIEADBlyhTcd999cpQkIjI6Jj3ZLggCAgMDb3u8d+/e\ncpQjIiIF8YREIiKV0sqqLQYJEZFKmfTQFhERSccgISIiSTi0RUREkrBHQkREkmjlConc/ZeIiCRh\nj4SISKXkPLM9Pj4ex44dgyAIiIyMhLe3t/6577//Hm+//TbMzc0xZMgQzJw5s8ljsUdCRKRScm3a\neOjQIeTk5CAlJQVxcXGIi4tr8PzSpUvx7rvv4vPPP8eBAwdw+vTpJo/HICEiUikzQWjVrTkZGRn6\n3UduXOajvLwcAHDu3DnY29ujc+fOMDMzg7+/PzIyMppup/RvlYiI5CBXj6SoqAiOjo76+05OTigs\nLAQAFBYWwsnJ6Y7PNUa1cyTmZsw4uSm1tLDv/y4xQPIytZ/z/v2pSjdBs0RRlPR+floTEZkYnU6H\noqIi/f2CggJ06tTpjs/l5+fUGpBCAAAKLElEQVRDp9M1eTwGCRGRifHz80N6ejoAIDs7GzqdDra2\ntgCArl27ory8HLm5uaitrcW3334LPz+/Jo8niFL7NEREpDkrVqzAkSNHIAgCYmJi8PPPP8POzg5B\nQUE4fPgwVqxYAQAYPnw4wsLCmjwWg4SIiCTh0BYREUnCICEiIklUu/y3tZo67V9Ov/76K2bMmIGp\nU6fimWeeMUhNAHjzzTfxww8/oLa2FtOmTcPw4cNlrVdVVYWIiAgUFxejuroaM2bMwLBhw2StebOr\nV6/iiSeewIwZMzBu3DjZ62VmZuLll1/Gn/70JwCAp6cnXn/9ddnrAsC2bdvw4YcfwsLCArNnz8bQ\noUNlr7l582Zs27ZNf//EiRP48ccfZa9bUVGBBQsWoKysDDU1NZg5cyYGDx4se936+nrExMTgt99+\ng6WlJWJjY9GzZ0/Z6xod0YhkZmaKL774oiiKonj69GlxwoQJBqlbUVEhPvPMM2JUVJSYnJxskJqi\nKIoZGRniCy+8IIqiKJaUlIj+/v6y19y+fbu4Zs0aURRFMTc3Vxw+fLjsNW/29ttvi+PGjRO3bNli\nkHoHDx4UX3rpJYPUullJSYk4fPhw8cqVK2J+fr4YFRVl8DZkZmaKsbGxBqmVnJwsrlixQhRFUczL\nyxODg4MNUnf37t3iyy+/LIqiKObk5Og/P+juGFWPpLHT/m8sa5OLlZUVPvjgA3zwwQey1rnVww8/\nrO9xdezYEVVVVairq4O5ublsNUeNGqX/+uLFi3B1dZWt1q3OnDmD06dPG+Qvc6VlZGTA19cXtra2\nsLW1xRtvvGHwNiQmJupX7sjN0dERp06dAgBcvny5wVnXcvrjjz/0v0MeHh64cOGC7L9Dxsio5kia\nOu1fThYWFmjXrp3sdW5lbm6ODh06AABSU1MxZMgQg/0ChISEYN68eYiMjDRIPQBISEhARESEwerd\ncPr0aYSHh2PSpEk4cOCAQWrm5ubi6tWrCA8Px9NPP93sXkdtLSsrC507d9afpCa3xx9/HBcuXEBQ\nUBCeeeYZLFiwwCB1PT09sX//ftTV1eHs2bM4d+4cSktLDVLbmBhVj+RWoomsbP7666+RmpqKjz76\nyGA1N27ciF9++QXz58/Htm3bZN9u5V//+hceeughdDPwth89evTArFmzMHLkSJw7dw5TpkzB7t27\nYWVlJXvtS5cuYdWqVbhw4QKmTJmCb7/91mDb2qSmpuKvf/2rQWoBwNatW+Hu7o61a9fi5MmTiIyM\nRFpamux1/f39cfToUUyePBn33Xcf7r33XpP53GhLRhUkTZ32b6z27duH999/Hx9++CHs7Oxkr3fi\nxAk4Ozujc+fO6NOnD+rq6lBSUgJnZ2dZ6+7duxfnzp3D3r17kZeXBysrK7i5ueGxxx6Tta6rq6t+\nOM/DwwMuLi7Iz8+XPdCcnZ3h4+MDCwsLeHh4wMbGxiA/5xsyMzMRFRVlkFoAcPToUQwaNAgA0Lt3\nbxQUFBhsiGnu3Ln6rwMDAw32MzYmRjW01dRp/8boypUrePPNN5GUlAQHBweD1Dxy5Ii+51NUVITK\nykqDjGf/4x//wJYtW7Bp0yY89dRTmDFjhuwhAlxfObV27VoA13dFLS4uNsi80KBBg3Dw4EHU19ej\ntLTUYD9n4PreSjY2Ngbpdd3QvXt3HDt2DABw/vx52NjYGCRETp48iYULFwIA/vOf/+D++++HGTeM\nvWtG1SPp168fvLy8EBISoj/t3xBOnDiBhIQEnD9/HhYWFkhPT8e7774r+4f7jh07UFpaijlz5ugf\nS0hIgLu7u2w1Q0JCsGjRIjz99NO4evUqoqOjjfoXLyAgAPPmzcM333yDmpoaxMbGGuQD1tXVFcHB\nwZgwYQIAICoqymA/51u3ETeEiRMnIjIyEs888wxqa2sRGxtrkLqenp4QRRHjx4+HtbW1wRYXGBtu\nkUJERJIY75+SRERkEAwSIiKShEFCRESSMEiIiEgSBgkREUnCICHZ5Obm4oEHHkBoaChCQ0MREhKC\nV199FZcvX271MTdv3qzfJmXu3LnIz89v9LVHjx7FuXPnWnzs2tpa3Hfffbc9/u6772LlypVNvjcg\nIAA5OTktrhUREYHNmze3+PVEasYgIVk5OTkhOTkZycnJ2LhxI3Q6Hd577702OfbKlSubPDkwLS3t\nroKEiFrHqE5IJPV7+OGHkZKSAuD6X/E39rB65513sGPHDnz22WcQRRFOTk5YunQpHB0dsX79enz+\n+edwc3ODTqfTHysgIAAff/wxunXrhqVLl+LEiRMAgOeeew4WFhbYtWsXsrKysHDhQnTv3h2LFy9G\nVVUVKisr8corr+Cxxx7D2bNnMX/+fLRv3x4DBw5stv0bNmzA1q1bYWlpCWtra6xcuRIdO3YEcL23\ndPz4cRQXF+P111/HwIEDceHChTvWJTImDBIymLq6OuzZswf9+/fXP9ajRw/Mnz8fFy9exPvvv4/U\n1FRYWVnhk08+QVJSEmbOnIl33nkHu3btgqOjI6ZPnw57e/sGx922bRuKioqwadMmXL58GfPmzcN7\n772HPn36YPr06fD19cWLL76I559/Ho8++igKCwsxceJE7N69G4mJiXjyySfx9NNPY/fu3c1+D9XV\n1Vi7di1sbW0RHR2Nbdu26S9k5uDggE8++QQZGRlISEhAWloaYmNj71iXyJgwSEhWJSUlCA0NBXD9\nanQDBgzA1KlT9c/7+PgAAH788UcUFhYiLCwMAHDt2jV07doVOTk56NKli36fqYEDB+LkyZMNamRl\nZel7Ex07dsSaNWtua0dmZiYqKiqQmJgI4PrW/8XFxfj111/x4osvAgAeffTRZr8fBwcHvPjiizAz\nM8P58+cbbArq5+en/55Onz7dZF0iY8IgIVndmCNpjKWlJYDrFwfz9vZGUlJSg+ePHz/eYOv0+vr6\n244hCMIdH7+ZlZUV3n333dv2kBJFUb+HVV1dXZPHyMvLQ0JCArZv3w5nZ2ckJCTc1o5bj9lYXSJj\nwsl2UoW+ffsiKytLfyGynTt34uuvv4aHhwdyc3Nx+fJliKJ4xws8+fj4YN++fQCA8vJyPPXUU7h2\n7RoEQUBNTQ0AoH///ti5cyeA672kuLg4ANevpPnTTz8BQLMXjyouLoajoyOcnZ1x6dIl7N+/H9eu\nXdM/f/DgQQDXV4vduMZ7Y3WJjAl7JKQKrq6uWLRoEaZNm4b27dujXbt2SEhIgL29PcLDwzF58mR0\n6dIFXbp0wdWrVxu8d+TIkTh69ChCQkJQV1eH5557DlZWVvDz80NMTAwiIyOxaNEiREdHY/v27bh2\n7RqmT58OAJg5cyYWLFiAXbt26a//0Zg+ffqge/fuGD9+PDw8PDB79mzExsbC398fwPULUU2bNg0X\nLlzQ7zzdWF0iY8Ldf4mISBIObRERkSQMEiIikoRBQkREkjBIiIhIEgYJERFJwiAhIiJJGCRERCQJ\ng4SIiCT5P7fn2f+ioy4gAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "4NZv8F_FjRag", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 973 + }, + "outputId": "13e1c964-3755-424f-bed6-f0e0c130915f" + }, + "cell_type": "code", + "source": [ + "# 1000 Steps\n", + "classifier = train_nn_classification_model(\n", + " learning_rate=0.05,\n", + " steps=1000,\n", + " batch_size=30,\n", + " hidden_units=[100, 100],\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 28, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "LogLoss error (on validation data):\n", + " period 00 : 5.66\n", + " period 01 : 4.27\n", + " period 02 : 3.50\n", + " period 03 : 2.97\n", + " period 04 : 2.86\n", + " period 05 : 2.80\n", + " period 06 : 2.43\n", + " period 07 : 2.49\n", + " period 08 : 2.27\n", + " period 09 : 2.27\n", + "Model training finished.\n", + "Final accuracy (on validation data): 0.93\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFnCAYAAACcvYGMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8leX9//HXfVZycrL3nmwChA2y\nd4LiApVaqaPW1lFR/LbVWi2O2lqtqz9H1TpbWye42CBTCIQZICGEhCyyJ9k5Oef3RyBlJQQ4K+d8\nno+Hjzw4Oee6P/l4yJv7vq9zXYrZbDYjhBBCCIehsncBQgghhDibhLMQQgjhYCSchRBCCAcj4SyE\nEEI4GAlnIYQQwsFIOAshhBAORsJZiEvQv39/SkpKLDJWYWEhgwYNsshY9rBo0SImTpxIcnIyc+bM\nYe7cuXz44YeXPM6BAwf4+c9/fsmvGzRoEIWFhZf8OiF6A429CxBC9F6/+c1vuO666wAoLy/nlltu\nIS4ujsmTJ/d4jKFDh/LPf/7TWiUK0SvJmbMQFtDS0sKTTz7JnDlzSElJ4S9/+Qvt7e0AbNmyhSlT\nppCSksKnn37KiBEjLnrGV1NTw+LFizvPSN9+++3O77388svMmTOHOXPm8LOf/YzS0tJuHz9t06ZN\nzJs376zHrrvuOjZv3szOnTu54YYbmDt3LikpKaxcufKSexAUFERycjLbtm0DIDs7m9tuu405c+Yw\nb9480tPTAUhNTWXhwoUsXryYRx55hNTUVGbNmnXRPm7atIlZs2aRkpLCu+++23nchoYG7r//flJS\nUpgxYwZ/+MMfaGtru+T6hXAkEs5CWMCHH35ISUkJ33//PcuWLSMtLY3vvvuO9vZ2Hn30UZ5++mlW\nrlzJ8ePHaWpquuh4L730Ej4+PqxevZpPPvmE//znP6SlpXH06FFWrVrFd999x+rVq5k1axbbt2/v\n8vEzjR8/npKSEgoKCgAoKCigpKSEq666iueff57HHnuMFStW8Oabb7Ju3brL6oPRaESn02Eymbj/\n/vu57rrrWL16NUuXLuW+++7DaDQCcPjwYRYuXMjf/va3Hvfx8ccf549//CMrV65EpVJ1hvby5cvx\n9vZm5cqVrF69GrVaTXZ29mXVL4SjkHAWwgI2btzIzTffjEajwd3dnXnz5rFt2zaOHz9Oa2srU6ZM\nATru05pMpouOt2nTJm699VYAfH19mTVrFtu2bcPb25uqqiq+/fZbamtrWbRoEddff32Xj59Jp9Mx\nbdo0NmzYAMC6deuYOXMmGo2GgIAAli9fzrFjx4iNjT0vNHuioKCAVatWMWvWLHJycqisrGTBggUA\njBw5En9/f/bu3QuAu7s748ePv+Q+Tpw4EYAbbrih8zWnx926dSsmk4mnnnqKgQMHXnL9QjgSCWch\nLKCqqgofH5/OP/v4+FBZWUltbS3e3t6djwcHB/d4vDNf5+3tTWVlJSEhIfz9739n1apVTJ06lXvu\nuYfi4uIuHz/XnDlzzgrnuXPnAvDcc8+h1+u58847mT17NqtWrepRnS+88ELnhLAlS5bw6KOPMnTo\nUOrq6mhubiYlJYXk5GSSk5OprKykpqamsz9d/dxd9dHT0/Osx09LSUnhjjvu4NVXX2X8+PE89dRT\ntLa29qh+IRyVhLMQFhAYGNgZPNBxzzgwMBBPT08aGxs7H6+oqLii8QDGjRvH22+/zbZt2wgLC+PF\nF1/s9vEzTZo0iczMTI4fP87x48cZN25c5/GeeOIJNm/ezJNPPsljjz1GQ0PDRev8zW9+w6pVq1i9\nejWff/55Z9gHBwdjMBhYtWpV539bt27tvLd8qT+3j48P9fX1nY9XVVWd9bqFCxfy+eefs2LFCg4d\nOsTy5csvWrsQjkzCWQgLmDp1Kl988QXt7e00Njby9ddfM2XKFGJjYzEajaSmpgLwn//8B0VRejTe\np59+CnQE0dq1a5k6dSpbt27lqaeewmQy4eHhwYABA1AUpcvHz6XT6Zg4cSIvvPACM2bMQK1W09bW\nxqJFiygrKwNg8ODBaDQaVKrL//UQERFBaGho5xl4VVUVS5YsOesfKl393BfqY3R0NGq1urOPX331\nVefP9/rrr/PFF18AEBISQmRkZI96LIQjk49SCXGJFi1ahFqt7vzzs88+y6JFiygoKODqq69GURSS\nk5NJSUlBURSWLl3KY489hpeXF3feeScqlQpFUTCbzbS3t5OcnHzW+O+88w4PPfQQS5cuJTk5GZVK\nxT333MPQoUNpaWnh+++/Z86cOeh0Ovz9/XnuuecIDg6+4OMXMmfOHH7961/zwQcfAKDValmwYAF3\n3HEHACqVij/84Q/o9XrWrl3Lhg0b+POf/3xJPVIUhZdeeomlS5fyyiuvoFKpuPPOO/Hw8Lhob7vq\n4zPPPMPvf/97dDodN954Y+dY1113HY899hjvvPMOiqIwbNiwzo93CdFbKbKfsxC209jYyPDhw0lL\nS8PLy8ve5QghHJRc1hbCyubPn8+KFSsAWLFiBQkJCRLMQohuyZmzEFaWlpbG008/TUtLCwaDgaVL\nlzJ06FB7lyWEcGASzkIIIYSDkcvaQgghhIORcBZCCCEcjMN8lKq8/KRFx/Pz86C6uvvPVIorJ322\nDemz7UivbUP6DEFBXU8MddozZ41GffEniSsmfbYN6bPtSK9tQ/rcPacNZyGEEKK3knAWQgghHIyE\nsxBCCOFgJJyFEEIIByPhLIQQQjgYCWchhBDCwUg4CyGEEA5GwlkIIUSvsnHj+h4979VX/8aJE0Vd\nfv/RR5dYqiSLk3AWQgjRaxQXn2DdutU9eu7ixY8QHh7R5ff/8peXLFWWxTnM8p1CCCHExbz00vNk\nZBxi0qTRzJ6dQnHxCV555Q3+/OenKS8vo6mpibvuuocJEybxwAP3sGTJb/nhh/U0NNSTn59HUVEh\nDz74COPHT+Dqq2fw/ffreeCBexg9eix79qRRU1PD88+/TGBgIE8//QQlJcUMGTKUDRvWsWzZCpv9\nnE4ZzifqSyhuLyRMHWnvUoQQwml9tiGbXZlll/VatVqhvf38HYtHDwjm5ul9unzdT36yiK+++oy4\nuATy84/zxhvvUl1dxZgx40hJuYaiokKeeOJRJkyYdNbryspKefHF19ix40e+/vpLxo+fcNb3DQYD\nr776Jm+++Xc2b95AeHgkra0tvP32B2zbtoXPPvvPZf2cl8spw3lF7lr2lR/kd6MfJMqr60saQggh\neq+BAwcD4OXlTUbGIb755isURUVdXe15zx06NAmA4OBg6uvrz/v+sGHDO79fW1tLXl4uQ4YMA2D8\n+Amo1bZdC9wpw3lixDj2lqfzedbXPDziXhRFsXdJQgjhdG6e3qfbs9zuBAV5XfFuhFqtFoC1a1dR\nV1fH66+/S11dHXffvei8554Zrmbz+Wfs537fbDajUnU8piiKzXPEKSeEDfDvy+iIYRyrPc6esv32\nLkcIIYSFqFQq2tvbz3qspqaGsLBwVCoVmzZtoK2t7YqPExERyZEjhwHYuXPHece0NqcMZ4CfJc1H\no6hZlr2C1vZWe5cjhBDCAmJi4jhyJJOGhv9dmp46dTo//riFxYvvRa/XExwczPvvv3NFx7nqqkk0\nNDRw770/Z//+vXh7+1xp6ZdEMV/o/N4OrvTyxrmCgrx4d8dnrMn7gZTYmVwTP9ui44sOlrg0JS5O\n+mw70mvbcPQ+19XVsmdPGlOnzqC8vIzFi+/lk0++tOgxgoK8uvyeU95zPm1OzHRSi3ezLn8j48NG\nE6D3s3dJQgghegEPDwMbNqzjk08+xmw28etf23bBEqcOZ3eNG9f3mcuHh//LsmPfc3fibfYuSQgh\nRC+g0Wh4+uk/2+34TnvP+bRRIUnEeUezt+wAWdXH7F2OEEIIcVFOH84qRcVN/a4D4Iuj39Busu2M\nOyGEEOJSOX04A8R4RzEubBRF9cX8WLzT3uUIIYQQ3XKJcAa4Nj4Fd7Ub3+asprGt0d7lCCGEEF1y\nmXD2cfMiOXYGDW2NfJe71t7lCCGEsKIFC+bR2NjIxx9/wMGDB876XmNjIwsWzOv29ae3pVyx4ls2\nbfrBanV2xWXCGWBa1ESC9YFsKdrOifoSe5cjhBDCyhYtuoPExKGX9Jozt6WcO3ceU6ZMs0Zp3XLq\nj1KdS6PSML/vPN488D5fHv2WB5LulnW3hRCiF7nrrp/y3HN/IzQ0lJKSYh577BGCgoJpamqiubmZ\nhx/+DYMGJXY+/09/WsrUqTNIShrO44//ltbW1s5NMADWrFnJF198ilqtIjY2gd/97vHObSnff/8d\nTCYTvr6+zJ9/C2+88Srp6fsxGtuZP/9mkpOvvuB2k6GhoVf8c7pUOAMMDhjAIP/+HK46woGKQwwL\nSrz4i4QQQpznq+zv2FuWflmvVasU2k3nL1A5PHgIN/a5psvXTZ48jW3bNjN//s1s2bKJyZOnkZDQ\nl8mTp7J79y7+/e8P+dOfXjjvdatXryQ+PoEHH3yE9evXdJ4ZNzU18be//R0vLy/uv/8XHDuW3bkt\n5Z13/oJ//vMfAOzbt4ecnGO8+eZ7NDU1cfvtC5k8eSpw/naTN99862X15EwudVkbOnYXmd93HipF\nxZdHv6Ot/coXSBdCCGEbHeG8BYCtWzcxceIUNm1az733/pw33/w7tbXnbxcJcPx4DomJHVtADh8+\nsvNxb29vHnvsER544B7y8nKpra254OszMw+TlDQCAL1eT2xsPAUFBcDZ201eaDvKy+FyZ84AoYZg\npkZOYEPBFjYUbGFO7HR7lySEEL3OjX2u6fYstzuXu7Z2fHwClZXllJaWcPLkSbZs2UhgYDBPPPEM\nmZmH+X//75ULvs5sBpWq4zam6dQZe1tbGy+99Fc++OATAgIC+e1vH+ryuIqicOZOFEZjW+d4F9uO\n8nK43JnzaXPjZuKpNbAqbwM1LRf+l5YQQgjHM378RN5++w0mTZpCbW0NERGRAGza9ANGo/GCr4mO\njiEzMwOAPXvSAGhsbECtVhMQEEhpaQmZmRkYjcYLbks5YMBg9u7dfep1jRQVFRIZGW2tH9F1w1mv\n0XNtQjKt7a0sz15p73KEEEL00JQp01i3bjVTp84gOflqPv303zz88P0MHpxIZWUl33//zXmvSU6+\nmkOH0lm8+F4KCvJQFAUfH19Gjx7L3Xf/jPfff4dbb13Ea6+91Lkt5Wuv/a3z9cOGJdG//wDuv/8X\nPPzw/fzqVw+g1+ut9jM69ZaRFxvTZDbx17S/U3CyiEdG3k+8T4xFa3AFjr7tm7OQPtuO9No2pM/d\nbxnpsmfOcGrd7b4d625/nvU1JrPJzhUJIYQQLh7OAAm+sYwKSSL/ZCGpxbvtXY4QQggh4QxwfcJc\ndCotX+espMnYbO9yhBBCuDgJZ8DP3ZfZMdM52VrPquPr7V2OEEIIFyfhfMqM6MkEuPvxQ8FWShvL\n7V2OEEIIFybhfIpOreWGPtfQbm7nq6Pf2rscIYQQLkzC+QxJQYn0803gYGUmhyoz7V2OEEIIFyXh\nfAZFUVjQ71oUFL48+i1G04VXmhFCCCGsScL5HBGeYUyKGEdpYzmbCn+0dzlCCCFckITzBVwdPxsP\njZ4Vueuoa3XtFWyEEELYnoTzBXhqDVwTP4fm9ma+Pbba3uUIIYRwMRLOXZgYPpZwQyjbi3eRX1do\n73KEEEK4EAnnLqhVahb0vRYzZj4/+o3F9ugUQgghLkbCuRv9/fuQFJRITu1x0kr32bscIYQQLsJq\n4Zyamsq4ceNYtGgRixYt4plnnrHWoazqhj7XoFFpWH5sBS3trfYuRwghhAvQWHPwMWPG8Nprr1nz\nEFYXqPdnZtRkVuVtYE3eD8yLn2PvkoQQQjg5p7ysfSS/mg1pBRYbb3bsdHzdfFiXv4mKpiqLjSuE\nEEJciGK20kyn1NRUnnrqKaKjo6mtreWBBx5gwoQJXT7faGxHo1Fb5Nh/+WgX2/af4LVHphIX7mOR\nMbfm7eS1He8zNnI4j0y4xyJjCiGEEBditcvasbGxPPDAA6SkpFBQUMDPfvYz1qxZg06nu+Dzq6sb\nLXbskX0D2bb/BP9ZlcEv5g22yJj99AOI94khtXAv27L20s+vj0XG7e2CgrwoL5eFWqxN+mw70mvb\nkD539KArVrusHRISwty5c1EUhejoaAIDAyktLbXW4c4yNCGAqBAvUg+XUVHbZJExFUXhpr7XoaDw\nedY3tJvaLTKuEEIIcS6rhfM333zDP//5TwDKy8uprKwkJCTEWoc7i0pRmD+tDyazmTW7LHfvOdo7\nkvFhozjRUMLWE6kWG1cIIYQ4k9XCefr06ezatYtbb72V++67j6VLl3Z5SdsaJg+PxM/Ljc37T1Df\n1GaxceclJOOudue7nNXUtzVYbFwhhBDiNKuFs6enJ2+99RaffPIJn3/+OVOmTLHWoS5Iq1Exe3QU\nrW0mNuyx3PKb3jovUuJm0Ghs4vuctRYbVwghhDjNKT9KddrkYeF4uGlYl1ZIS5vl7hFPjZxAiEcQ\nW4q2U1RfbLFxhRBCCHDycNa7aZg2IoL6pja2pVsuRDUqDfP7zsOMmS+yZN1tIYQQluXU4Qwwc1QU\nGrWKVan5tJtMFht3cMAABgcMIKvmGPvLD1psXCGEEMLpw9nHoGPi0DAqaptJyyy36Njz+85Draj5\nKvs7WtstN+lMCCGEa3P6cAaYMyYKRYGVqXkWvQQd4hHE1KgJVDZXsz5/s8XGFUII4dpcIpxD/DwY\n2T+Y/NJ6Dh+vtujYKbEz8dJ6siZvA9XNNRYdWwghhGtyiXAGSBkbDXScPVuSXuPOtQkptJraWH5s\nhUXHFkII4ZpcJpzjwrwZGOPH4ePVHC+ps+jY48JGEu0VSVrpPo7VHLfo2EIIIVyPy4QzQMq4jrPn\nVan5Fh1Xpai4qd91AHx+9GtMZsvNChdCCOF6XCqcB8f6Ex3sya7MMsosuAsWQLxPDKNDhlNwsogd\nxWkWHVsIIYRrcalwVhSF5HHRmM2weqflNsQ47fo+c9GpdXxzbBVNRsvshiWEEML1uFQ4A4weEEyg\njztb04upa2i16Ni+bj7MiZnOybZ6VuSus+jYQgghXIfLhbNapWLOmGjajCbW7bbchhinzYiaRIC7\nPxsLt1HaUGbx8YUQQjg/lwtngIlDwvDUa/lhTyHNrUaLjq1Va7mx7zWYzCa+yP7WomMLIYRwDS4Z\nzm46NTNGRtLQbGTzfsvvKjUscDD9/fpwuPIIBysyLD6+EEII5+aS4QwwY2QkOq2KNbvyMbZb9qNP\niqKwoO+1qBQVXx79FqPJsmfnQgghnJvLhrOnXsukoeFU1bWwM6PU4uOHe4YyKWIcZU0VbCzcZvHx\nhRBCOC+XDWeAOaOjUCkKK1PzrbIn89VxszFoPViZu47alpMWH18IIYRzculwDvTVM2ZgMEXlDaTn\nVFp8fIPWg2vi5tDc3sI3OSstPr4QQgjn5NLhDJB8akOMFTssu6TnaRPCxxBuCGVHcRp5dZZf+EQI\nIYTzcflwjg7xIjHen6yCGo4V1Vp8fLVK/b91t7O+scrlcyGEEM7F5cMZIGVsDAArLbwhxmn9/BIY\nHjSE3Lo8dpXutcoxhBBCOA8JZ2BAtC9xYV7szSqnuLLBKse4oc/VaFUalmevoNnYYpVjCCGEcA4S\nznR8LjllbAxmYPVO65w9B+j9mRk9hdrWOtbk/WCVYwghhHAOEs6njOgXRIifnh8PllBTb50z21kx\n0/B182F9wWYqmiw/O1wIIYRzkHA+RaVSmDM2GmO7mbVp1plV7abWcUOfqzGajHx19DurHEMIIUTv\nJ+F8hgmJoXgbdGzcW0Rjs3WW3BwZPIwEn1j2Vxwis+qoVY4hhBCid5NwPoNWo2bWqEiaWtrZtL/I\nKsdQFIWb+l2HgsIXR7+h3dRuleMIIYTovSSczzF1eARuOjVrdhXQZrTshhinRXlFcFX4aIobStlS\ntMMqxxBCCNF7STifw+CuZWpSOLX1rWw/VGK148yLT0avcee73DXUt1rn41tCCCF6JwnnC5g1Kgq1\nSmFVaj4mK63o5aXzZG7sTJqMTXyXu8YqxxBCCNE7SThfgL+3O+MGh1BS1ci+oxVWO86UyAmEeASz\ntWgHhSdPWO04QgghehcJ5y4kn17Sc0ee1dbDVqvULOg7DzNmvjgq624LIYToIOHchYhAA0l9Ajl2\noo6jhZbfEOO0QQH9SQwYyNGaHPaWp1vtOEIIIXoPCedupIzr2E5y5Y48qx5nft9rUCtqvjr6HbUt\ndVY9lhBCCMcn4dyNvpG+9InwYf+xSgrL6612nGCPIJJjp1PdUsPLe96kqrnaascSQgjh+CScL+L0\n2fMqK20n2Xmc2JnMjplGeVMlL+1+k7JG601EE0II4dgknC9iWJ9AwgI8SD1cSlVds9WOoygK1yWk\nMC8+meqWGl7Z8ybFDaVWO54QQgjHJeF8ESpFIXlsNO0mM2t2WWdDjDMlx05nft951Lae5JU9b5F/\nstDqxxRCCOFYJJx7YPzgUHw9dWzad4KG5jarH2961CRuHTCfhrZGXtv7Njm11p2QJoQQwrFIOPeA\nRq1i9uhoWtra2bDHOhtinGtC+FhuH7SQlvZW/r7vHbKqs21yXCGEEPYn4dxDU5LC0btpWJ9WQGub\nbXaSGh06nLsTb8NkaueN/e9xsCLDJscVQghhXxLOPaR30zB9RAR1jW1sO2i9DTHONSwokV8OvQOA\nt9M/Ym+ZLFQihBDOTsL5EswcGYlGrWJ1aj4mk+2W2hwU0J/7h/0cjUrNPw/+i9Ti3TY7thBCCNuT\ncL4EPp5uTBgSSllNE7uzym167L5+CTw4/B7cNe58lPEpW4q22/T4QgghbEfC+RLNGRONAqyw4oYY\nXYn1juah4b/EU2vgv0eWsT5/s02PL4QQwjasGs7Nzc3MnDmTr776ypqHsalQfw9G9A8ir+QkmXm2\nX2Yz0iuch0fci4/Om6+yv2NF7lrZzUoIIZyMVcP5zTffxMfHx5qHsIu54zq2k1xh5SU9uxJqCGbJ\nyHsJcPfn+9y1LD+2QgJaCCGciNXC+dixY2RnZzN16lRrHcJu4sK8GRDty6HcKvJLT9qlhkB9AA+P\n+BUhHkGsy9/EZ1nLMZlNdqlFCCGEZVktnJ9//nkeffRRaw1vdymnzp5X2unsGcDP3ZeHRvyKCM8w\nNhdt518Zn9Nuss1nsIUQQliPxhqDLl++nKSkJKKionr8Gj8/DzQatUXrCArysuh4Z5oW6MmyLbns\nyijl7uuHEBpgsNqxuhOEF88EPsKfNv+d1JLdKFozD469E43aKv9rL1yDFfss/kf6bDvSa9uQPndN\nMVvhZuVDDz1EQUEBarWakpISdDodTz/9NFdddVWXrykvt+zl4aAgL4uPea7th0p459vDzBgRyU9n\n97PqsS6mydjMWwfeJ7sml8SAgdydeBtatdbqx7VFn4X02Zak17Yhfe7+HydWuaz9yiuv8OWXX/LZ\nZ59x0003cd9993UbzL3V6AHBBHi7s+XACeoaW+1ai17jzv3Dfs5A/34crMzgzQPv02xssWtNQggh\nLo98zvkKaNQqZo+JotVoYsNu+2/tqFPr+OXQOxgaOJgj1dm8vv9dmoxN9i5LCCHEJbJ6OP/617/m\nxhtvtPZh7Gby0HAM7hrW7y6kpdX+k7G0Kg13J97GqJAkcmrzeHXv29S3Nti7LCGEEJdAzpyvkJtO\nzYyRkTQ0G9l84IS9ywFArVJz+6CFXBU2hoKTRbyy9y1qW1z73o4QQvQmEs4WMH1kJDqNijU78zG2\nO8ZnjVWKilsHzGda5ESKG0p5ec8bVDXbfkUzIYQQl07C2QK8PXRMHBpGZV0LuzLL7F1OJ0VRmN93\nHnNiplPeVMlLu9+krLHC3mUJIYS4CAlnC5kzJhqVorByR75DLaWpKArXJiQzLz6Z6pYaXt7zJifq\nbbcftRBCiEsn4WwhQb56Rg8MprC8noO5VfYu5zzJsdNZ0Pda6lpP8sret8g/af/Z5UIIIS5MwtmC\nksdEA7ByR56dK7mwaVET+emABTS2NfHa3rfJqXXMOoUQwtVJOFtQTKgXg+P8ycyvIbe4zt7lXNBV\n4WO4Y9BCWtpb+fu+dzhSlW3vkoQQQpxDwtnCUsZ2nD2vcNCzZ4BRocO5O3ERJlM7bxx4j4MVGfYu\nSQghxBkknC1sYIwfMaFe7DlSTmlVo73L6dKwoMH8cugdKCi8nf4Re8oO2LskIYQQp0g4W5iiKMwd\nF4MZWLXTfttJ9sSggP7cP+znaFUa3jv4b1KLd9u7JCGEEEg4W8XIfkEE++rZll5Cbb1jbz7R1y+e\nXw//BXqNOx9lfMqWou32LkkIIVyehLMVqFQKc8ZGY2w3sc4BNsS4mFjvaB4a8Su8tJ7898gy1uVv\nsndJQgjh0iScrWRCYijeHlo27CmiqcVo73IuKsIzjIdG/ApfNx+WZX/P97lrHWoxFSGEcCUSzlai\n06qZMSqKphYjm/Y5xoYYFxNqCObhEfcS4O7Pity1LD+2QgJaCCHsQMLZiqaPiMBNq2ZtWoHDbIhx\nMYF6f5aMvJcQj2DW5W/is6zlmMy9o3YhhHAWEs5WZHDXMiUpnOqTLew4VGrvcnrM182Hh0f8igjP\nMDYXbedfGZ/TbrL/XtVCCOEqJJytbPboKNQqhZWpeZh60SViL50ni4f/khjvKFJLdvP+4f9gNDn+\nvXMhhHAGEs5W5u/tzthBIRRXNnIgu9Le5VwSg9aDB5N+QR/fOPaWHeCd9I9oa2+zd1lCCOH0JJxt\nIPn0kp6pjrukZ1fcNe7cP+znDPTvx8HKTN448D7NRsf+7LYQQvR2Es42EBnkydCEALILazlaWGPv\nci6ZTq3jl0PvYFjgYLKqs3l9/7s0GZvsXZYQQjitHodzfX09ABUVFaSlpWEyyQzeSzF3XAwAK3c4\n9pKeXdGqNPw88TZGhSSRU5vHq3vfpr61wd5lCSGEU+pROD/zzDOsXLmSmpoaFi5cyMcff8zSpUut\nXJpz6RvpQ0KEN/uyKyiq6J2hplapuX3QQq4KG0PBySJe2fsW1U219i5LCCGcTo/C+fDhw9x0002s\nXLmSG264gVdffZW8vN53/9Sbq5loAAAgAElEQVSeFEUhZWzH2fPq1N559gygUlTcOmA+0yInUtxQ\nypMb/sbxut778wghhCPqUTifXiVq48aNTJ8+HYDW1lbrVeWkkvoGEurvwfZDJVTVNdu7nMumKArz\n+84jJXYmpfXlvJj2Ol8e/ZbWdnlPCCGEJfQonOPi4pg7dy4NDQ0MHDiQ5cuX4+PjY+3anI5KUUge\nG027ycy6NMffEKM7iqJwTfxs/jjtYQL1/mwo2MKfUl/iSFW2vUsTQoheTzH3YPHk9vZ2srKySEhI\nQKfTcejQIaKiovD29rZYIeXlJy02FkBQkJfFx7SENqOJ3731I82t7bx431V4uGvtXdIVCQryoqik\nihW5a1mXvwkzZq4KG8MNfa7GQ6u3d3lOw1Hfz85Iem0b0ueOHnSlR2fOGRkZlJSUoNPpePnll/nr\nX/9KVlaWxQp0JVqNilmjo2hubeeHvUX2LscidGot1/eZy29GPUCEZxg/Fu/k2dQX2V9+0N6lCSFE\nr9SjcH722WeJi4sjLS2N9PR0nnjiCV577TVr1+a0pgyLQO+mZm1aIW1G51mzOsY7it+NepB58XNo\naGvk7fSPePfgv6hrde1/HQshxKXqUTi7ubkRGxvL+vXrufnmm+nTpw8qlaxfcrk83DVMHR5BXUMr\n2w6W2Lsci1Kr1CTHzuCxMQ8R7xPD3rIDPLPjRVKLd8v2k0II0UM9StimpiZWrlzJunXrmDhxIjU1\nNdTV1Vm7Nqc2a1QUGrXC6tR8TCbnC61QQwgPj7iXm/pdh9HczkcZn/L6/n9S2VRl79KEEMLh9Sic\nlyxZwrfffsuSJUvw9PTk448/5o477rByac7N19ONqxJDKa1uYk9Wub3LsQqVomJq5AT+MOYRBvr3\nI6Mqi2d3vsTGgm2yR7QQQnSjR7O1ARobG8nNzUVRFOLi4tDrLTsT11Vma5+puLKBP7yTSmyYF3/4\n2SgURbF3SZesp302m83sLNnDl0e/pcHYSLxPDD8dsIBQQ4gNquz9esP72VlIr21D+tz9bG1NTwZY\nt24dS5cuJTQ0FJPJREVFBc888wxTpkyxWJGuKCzAwPB+QezJKudIfg0DYvzsXZLVKIrC2LCRDAzo\nx+dZX7On7AB/3vkKybEzmR0zFbVKbe8ShRDCYfQonN99912++eYb/P39ASgtLWXx4sUSzhaQMi6a\nPVnlrEjNc+pwPs1b59WxgUb5QT49sozvclezt/wAPx2wgBjvKHuXJ4QQDqFH95y1Wm1nMAOEhISg\n1fbuxTMcRUK4D/2ifDmYU0VBWb29y7GZYUGJ/GHs/zEhfAxF9cW8kPb/WJb9vSwBKoQQ9DCcDQYD\n7733HpmZmWRmZvLuu+9iMBisXZvLmDsuGoCVqa61mYiHVs+tAxbwYNI9BLj7sS5/E8/tfJms6mP2\nLk0IIexKvbQHez+OHz+e1atX8+9//5v169djMBj4/e9/b9FJYY2Nlj1jMhjcLD6mtQT76dmdVc6R\nvBr6R/sS6NN7lr20RJ8D9f5MCB+D0WTkUOURdpSkUdtSRx/fOLQquUIDvev93NtJr21D+tzRg670\neLb2uY4dO0ZCQsJlF3UuV5ytfaYj+dW8+N996N00PHn7KAJ9e0dAW7rPx+vy+XfGF5xoKMFH581P\nBtzIkMBBFhu/t+pt7+feTHptG9JnC6ytfSFPPfXU5b5UXED/aD9+Oqsf9U1tvPblAZpbjfYuyS5i\nvaP53egHuSZuNvVtDbx14APeO/hvTra6zv14IYS47HCWpRgtb+rwCKaPiKCwvIF3vj2MyUV7rFFp\nSImbyaOjFxPnHc3usv08k/oiO0v2yPtOCOESLjuce+OCGb3Bwhl9GRDty96jFXy9Jdfe5dhVuGco\nS0bex4K+19LW3saHh//LGwfeo6q52t6lCSGEVXX7Oecvvviiy++VlzvnkpP2plGruO+GITzz4S6+\n/fE4EUEGxgx03VW0VIqKaVETGRI4iP9kfsnhyiM8m/o3rk+Yy8SIcagU2YBFCOF8ug3n3bt3d/m9\npKQkixcjOnjqtTw4fyh/+ng3732fQYifBzGhXU8ccAWBen8eSLqbHSW7+fLot3yatZy00n38dMAC\nQgzB9i5PCCEs6rJna1uaq8/WvpB9Ryv4+5cH8PVy48nbR+Hj2fW0e3uxR59rW07yWdZy9pWno1Fp\nmBs7k5nRU5x6CVBneD/3FtJr25A+dz9bu0fhfOutt553j1mtVhMXF8d9991HSMiVX3aVcL6w77cf\n58tNOSREePPbn4xAq3Gsy7j27PPesnQ+zVrGydZ6Ij3D+enABUR7RdqlFmtzlvdzbyC9tg3pc/fh\n3KNFSIqLizEajcyfP58RI0ZQWVlJv379CA0N5b333uO666674iJdeRGS7vSN9KGsuon0nCqqTzYz\nvG+gQ03Gs2efwwwhXBU2mvq2Bg5XHWF78S7aTG3E+8Q63Vm0s7yfewPptW1In7tfhKRHG1/s3r2b\n999/v/PPM2fO5J577uHtt99m/fr1V16h6JKiKNyRMoDS6ka2pZcQGeTJnDHR9i7LYXhoPbht4E2M\nCknik8wvWJP3A/vK0rl1wAL6+sXbuzwhhLgsPbpGWllZSVVVVeefT548yYkTJ6irq+PkyQtflmhq\namLx4sXcdttt3HTTTfzwww+WqdgF6bRqHrhxKD6eOj77IZv0nEp7l+RwBvj35fGxjzAtaiLlTZW8\nsvct/ntkGU3GZnuXJoQQl6xH95y/+OILXnjhBSIiIlAUhcLCQn75y18SEBBAY2MjP/nJT857zYoV\nKygqKuIXv/gFRUVF3HXXXaxevbrLY8g954vLOVHHX/69B61GxR9+NpKwAPtvPuKIfc6tzeNfmV9Q\n0lCKr5sPP+l/I4mBA+1d1hVxxD47K+m1bUifLTAhDKC+vp7jx49jMpmIjo7G19e3xwWkpaXx2muv\n8dFHH3X5HAnnntl+qIR3vj1MiL8Hf/jZSAzu9t0YwlH73GYysub4Blbn/UC7uZ1RIUks6HstXjpP\ne5d2WRy1z85Iem0b0ufuw7lH95wbGhr48MMPSU9PR1EUkpKSuP3223F3d7/oaxcuXEhJSQlvvfVW\nzysWXRo/OJTC8npW7sjnra8P8dBNQ1GrHGsGtyPQqjRcHT+bpOAh/DvjC9JK95FZdZSb+l7LyJAk\nh5pUJ4QQ5+rRmfOSJUsICQlh7NixmM1mfvzxR6qrq3nxxRd7dJCMjAx++9vf8s0333T5S9FobEej\nca4ZttbSbjLz7HuppGWUcu3keH5x3RB7l+TQTCYTK45u4L/p39Da3saw0IEMDu5PqGcQIZ5BhHgG\n4qHtHbuACSFcQ4/OnCsqKnjppZc6/zxt2jQWLVrU7WsOHjxIQEAAYWFhDBw4kPb2dqqqqggICLjg\n86urGy+h7Itz9ksmdyb3p6jsJN9sziHAoGPSsHC71NFb+jzWfyzxo/vwyZEv2V+Swf6SjLO+76k1\nEKgPIFDvf+prAEGn/uyj87b7mXZv6bMzkF7bhvTZApe1m5qaaGpqQq/vOLtobGykpaWl29ekpaVR\nVFTE448/TkVFBY2Njfj5+V1C2aI7ejcNDy4YyrMfpvHR6iOEBnjQN7Ln8wBcUZBHAA8m/YLSxjLK\nGiuoaKqkvKmKiqZKKpoqKThZxPG6/PNep1VpO0M76FRwn/5zgLsfGlWP/hoJIUSP9ei3yi233EJK\nSgqJiYkAHDp0iMWLF3f7moULF/L4449z66230tzczJNPPolK7o1aVIifB/den8hLn+7n9a/SeeL2\n0QT4XHwegCtTFIVQQwihhvNXtTOZTVQ313aGdfmpr6dDvLih9PzxUPBz9z0V3OeedQeg18j/DyHE\npevxbO3i4mIOHTqEoigkJiby8ccf83//938WK0Rma1++9bsL+ffaLKKDPXnstpG46Wx3795V+mw2\nm2loazwjsKvOCvDa1roLvs6g9TjnjPvyLpe7Sp8dgfTaNqTPFrisDRAWFkZYWFjnnw8cOHBlVQmL\nmT4igsLyejbtO8E/vz/Mvdcn2v0eqbNRFAVPnQFPnYE4n/NXaGttb+0M7HMvlxeePEFeXcF5rznz\ncvm5l83lcrkQru2y//Y7yGZWgo7g+OmsfhRXNpJ2pJxvtx3n2olx9i7LpejUOsI9Qwn3DD3ve5a4\nXB5dHobSqsFD64GHRt/51aDV46Z2k3+MCeFkLjuc5ZeBY9GoVdx3QyLPfpjG8q25RAQZGNlf9jl2\nBCpFRYDejwC9H/3pc9b3Lna5PKs6m6xq2Hai+/E7AluPQeOB/tRXD60ej86vegxaD/Snvp4OeK2c\nnQvhkLr9mzllypQLhrDZbKa6utpqRYnL4+2h49fzh/Lcx7t557vDBPnqiQ7p+p6GsL+eXi5vd2vm\nREUljcYmGtsaaTA20djWRJOxkYa2ps7HK5uqaTe39/j4WpX2jLA+P8w9NPr/namf832VIhM8hbCW\nbieEFRUVdfviiIgIixUiE8IsZ/eRcl5flk6AtxtP3D4ab4POasdy5T7bUk/7bDabaWlvpcnYRENb\nY2doN57559OPtTXRaOz42mBsotnYjJme367Sa9w7w/p/Z+z/u+TuqfMkMWBAr1syVd7TtiF9voIJ\nYZYMX2E7I/sHccOkOJZtyeX1Zen85ifD0ajlLMcVKIqCu8YNd40bfu6X9rl3k9lEk7H5rNBuPOfM\n/EJhX9pQRqup7YJjalUaxoeNZnrUZII8LrwAkRDifHLDyUldc1UsheUN7Mos419rjnB78gCZJyC6\npVJUGLQeGLQewKUFaZvJ2HmZ/XRwlzaWs7nwRzYXbWdL0Q6SgocwK3oKMd5R1vkBhHAiEs5OSlEU\n7rp6IKXVjWzeX0xkkCczR8kvRWEdWpUGHzcvfNz+d5luCDAtciJ7y9NZl7eRvWUH2Ft2gH6+CcyM\nmcog/37yD0YhuiDh7MTctGoenD+Upz9M47/rswkLNDA41t/eZQkXolapGRWSxMjgYRypzmZd/iYy\nqrLIqjlGuCGUmdFTGBWShFolm94IcSb10qVLl9q7CIDGxlaLjmcwuFl8zN5I76ahT6QPPx4sZt/R\nCkb2C8JTb7k9oKXPttHb+6woCoH6AMaEjmBo4GCa25s5WpPDvvKD7CjeDZgJM4Q4xMIrvb3XvYX0\nuaMHXZFwdgH+3u74ebmzM6OMw8erGD84FK3GMhPEpM+24Ux99nHzYnjwEMaGjsCMmZza4xyszGRL\n0Q6ajS2EGkJw13T9S8vanKnXjkz6LOEsgOgQL5pajOzPrqSgrJ6xA0Mscr9P+mwbzthnD62ewQED\nmBgxDne1O/knC8ioymJT4TaqW2oI1gfiqTPYvC5n7LUjkj5LOItTBsb6kXuijoO5VbQaTQyOu/L7\nz9Jn23DmPuvUOvr6xTMlcgJ+7j6caCjlSHU2m4u2U1hfjL+77yV/LOxKOHOvHYn0uftwtv8NHmEz\napWKX103mGc/2s2q1HwiAg1MGBJ28RcKYQM6tZZJEeOZED6W/eWHWJu3kf3lB9lffpAEnzhmxUxh\ncMAAWZlMuAQJZxfj4a7lwQVDeebDND5clUmovwcJET72LkuITipFxfDgISQFJZJdk8Pa/E0cqszk\n2IFcQj2CO2Z4hw6XdcGFU5PL2i7IU68lJtSTHw+WsD+7kjEDg9G7Xd4vOumzbbhinxVFIUDvz+jQ\n4SQFJdLa3sbRmhz2Vxxi+4ldmMwmwj1D0Kos9+kDcM1e24P0We45iwsI9vNA76Zh95FyjhTUcNXg\nUNSXscSn9Nk2XL3P3jovhgUlMj5sFAoKOXXHOVSZyebC7TQamwgzhOCucbfIsVy917YifZZwFl2I\nD/emqq6F9JxKymqaGNk/6JJncEufbUP63EGvcWdgQD8mRYzHQ6OnoL7o1AzvH6loriLYI/CKN9qQ\nXtuG9FkmhIkuKIrCojn9KalqZGdGGZFBnlxzVay9yxLiojy0embHTmNa9CR2lexhXf4mdhSnsaM4\njcSAgcyKmUqCT6wsDyp6LQlnF6fVqLj/xiE88+EuvtqcQ0SggeH9guxdlhA9olVpuCp8DOPCRpFe\nkcG6/I0crMzgYGUGcd7RzIyZytDAQTLDW/Q63e7nbEuyn7N95ZWc5M//2o2iUnj8tpFEBvfs0qD0\n2Takzz13rOY46/I3caDiEADBHoHMiJrM2NCRaNUXnzwmvbYN6XP3+znLPWcBgK+nGyH+Huw4VEp6\nTiXjBofgpr34ZgTSZ9uQPvecv7vvqc02hmI0GcmuyeVAxWG2Fe/EaGon3BDSbUhLr21D+tz9PWc5\ncxZnWb4lh2+2HWdAtC9LbklCc5EZ3NJn25A+X76allo2Fmxj64kdNBmb0al1TAwfy7Soifi7+533\nfEfpdbupnSZjMw3GRhrbmmg89bXB2EjTqa+NbU00G5sJ8ghkoH8/Enxie3R1wBE4Sp/tqbszZwln\ncRaT2cwbyw6yJ6ucacMjWDSnf7fPlz7bhvT5yjUZm9l2IpUfCrZS01KLSlExMjiJWTFTiPD830p5\nluy12Wymub25M1Q7QraJxrbGU187QrfhvMcbaW5vueTjaVUa+vjGM9C/HwP9+xFmsMwa+tYg72kJ\nZ3GJmluNPPfxHgrL61k0ux/TRkR2+Vzps21Iny3HaDKSVrqPdfmbKG4oBWCQf39mxUyhr28CwcHe\n5/W6tb2t88y10dhEwxkhembInntm22RsxmQ29bg2N7UOD40HHlo9hlNfz/yzXqvHoPXAQ6Pv+E/r\ngZtaR8HJjo+UZVYd5URDSed4PjovBvj3Y4B/Xwb498Vb13UY2Jq8pyWcxWWoqG3imQ/TaGw2suSW\nJAbGnH/5D6TPtiJ9tjyT2cThyiOsy9/E0ZocAKI8wwn2DqCm4eRZ4dtmMvZ4XI2ixuN0gJ762hmo\nZ4Tt6e8bznieWnXxeR4XU9NSy5Gq7M6wPtlW3/m9SM9wBp4Ka3tfApf3tISzuExZBTW88J+9uOvU\nPHHHaIJ99ec9R/psG9Jn68qtzWdd/ib2lx/EjBkFBQ+NvuNM9QJheqHHT4ewVqV1mEvJJrOJovoS\nMk8FdXZtLsZT/9Cw9yVweU9LOIsrsHn/CT5YmUlEoIHfLxp53hrc0mfbkD7bRmNbI4GBXtTXtDnl\nZ6Nb21vJrsl1iEvg8p7uPpxlERLRrcnDwikoq2f97kLe+fYwD8wfgspBzgqEsDQPrQcGnQeNinOG\nhk6tY1BAfwYFdEz0PPcSeGrJblJLdgOOdQncFUk4i4taOKMPxZUN7MuuYNnmHOZPSbB3SUIIC/B1\n82Fs2EjGho284CXwwvoTrM3faPdL4K5IwllclFql4lfXJfLsR2l8vz2PiCAD4waF2rssIYQFqRQV\nUV7hRHmFMytm6nmXwDOqssioygIcexa4s5BwFj3iqdfy4PyhPPtRGu+vyCTEz4O4MG97lyWEsJJL\nvQQ+wL9vr1sIxZHJhDBxSQ4cq+DVzw/g46njyTtG0zcuUPpsA/J+th3p9cVZYha49FlmawsLW5ma\nx+c/HCMuzJsXF0+mtqbR3iU5PXk/2470+tJdzixw6bOEs7Aws9nMu99lsP1QCVNHRHLrjD4XXYNb\nXBl5P9uO9PrKdbcQSoRnGAP9+xEbFMbJk5e+RKk99fNLINQQbLHxJJyFxbUZ23n+k73knKgjxE/P\nTdP6MLxvoMzgtBJ5P9uO9NqyursE3tsMDhjAfcPusth4Es7CKhqa21i5s4BV2/Mwmc30i/Lllul9\nZKKYFcj72Xak19bV2t5KTm0ear2Jurome5dzSeJ9YvFz97XYeBLOwmqCgrw4kFnC5z8cY192BQDj\nBocwf3ICAT7udq7Oecj72Xak17YhfZYVwoSVhQUYeHDBUDLyqvlsQzY7DpWSllnO7NFRXD0+5rwl\nP4UQQnRPZvEIixkY48cTd4zi7msG4uWhZcWOPB79x3Y27CnE2N7zbfOEEMLVSTgLi1IpClclhvHc\nPeO4cXI8rUYT/1qTxR/f28m+oxU4yF0UIYRwaHK9UViFm1bNNVfFMmlYOF9vyWHT/hO89uUBBkT7\ncsv0vsSEynJ/QgjRFTlzFlblY9Dxs+QBPP3zsQxNCCAzv4anPtjFO98epqqu2d7lCSGEQ5IzZ2ET\nEYEGHrppGIeOV/HZhmy2Hyoh7UgZc8ZEkTJWJo0JIcSZ5MxZ2NTgWH/+eMdo7po7EIO7hu9+zOOx\nf2xn494i2k0yaUwIIUDCWdiBSqUwcWgYf75nPNdPiqOlzcRHq4/wx/d2ceCYTBoTQggJZ2E3bjo1\n106I4y+/HMfkYeEUVzbwyucHePG/+8gvde3FCYQQrs2q4fzXv/6VW265hfnz57NmzRprHkr0Yj6e\nbtyRMoCn7hpDYrw/GXnVPPX+Lv75/WGqe9nC+EIIYQlWm4WzY8cOjh49yqeffkp1dTU33HADs2fP\nttbhhBOIDPJkyc1JHMyt5LMN2WxLL2FXZhnJY6JJHhuNu04mjQkhXIPVftuNHj2aoUOHAuDt7U1T\nUxPt7e2o1WprHVI4icS4AAbd6c/W9GKWbc7hm23H2bTvBDdMjmfikDBUKtn5Sgjh3Gyy8cWnn35K\nWloaL7zwQpfPMRrb0WgkuMXZmlqMLNuYzVcbs2lpbScm1Iu75iUyYoDl9lQVQghHY/VwXrduHf/4\nxz9477338PLqelUo2ZWqd7JVn6tPtrBsSw7bDhRjBgbH+XPLtD5EBnta/diOQN7PtiO9tg3psx13\npdqyZQtvvfUW7777brfBLMTF+Hm5cdfcgcwaFcVnG45yKLeKPx7fycQhYdwwOR5fTzd7lyiEEBZj\ntXA+efIkf/3rX/nggw/w9bXc5tTCtUUFe7LkliTSc6r47IdsthwoZmdGGcljo0keE42bTm6NCCF6\nP6uF84oVK6iuruahhx7qfOz5558nPDzcWocULkJRFIYmBDA4zo8tB4pZviWXr7fmsnFfETdOimeC\nTBoTQvRyNpkQ1hNyz7l3coQ+N7UYWZmaz5qd+bQaTUQGeXLL9D4MjvO3a12W5Ah9dhXSa9uQPnd/\nz1lWCBO9nt5Nw42T43nunnFMGBJKUXk9f/t0Hy9/tp+i8np7lyeEEJdMVnUQTsPf252fXz2ImSOj\n+OyHbNJzKjmYW8nkYeFcPykeH4PO3iUKIUSPSDgLpxMT6sX/LUziwLFKPvshm037TrDjcClzx0Yz\ne0w0blqZNCaEcGwSzsIpKYrCsD6BJMb7s3l/Mcu35LBsSy4b953g+olxjBoQLHtICyEclvx2Ek5N\nrVIxbXgE4waFsGJHHmt2FfD+ykw+Wn2EvpE+DEkIYEh8ABGBBhRFZngLIRyDhLNwCXo3DfOnJDA1\nKYJN+0+QnlNJZn4Nmfk1fP7DMfy83BgS78+Q+AAGxfrLWbUQwq7kN5BwKQE+7tw4OZ4bJ8dT29DK\nwZxKDuZWcTCnks37i9m8vxi1SiEhwqczrKOCPeWsWghhUxLOwmX5GHRMGBLGhCFhmExmcovrSM+p\nJD2niqMFNWQV1PDlphx8PHUMiQtgSEIAg2P98HDX2rt0IYSTk3AWAlCdOltOiPDh+knx1DW2cii3\nquPjWDlVbE0vZmt6MSpFISHCm8T4AIbGBxAV4olKzqqFEBYm4SzEBXh76Bg/OJTxg0Mxmc3klZwk\n/Vgl6bmVZBfVcrSwlmWbc/A26EiM67j8PTjOH0+9nFULIa6chLMQF6FSFOLCvIkL8+baiXHUN7Vx\n6NR96vTcKn48WMKPB0tQFIgP82ZIfMcl8JhQLzmrFkJcFglnIS6Rp17L2EEhjB0UgslspqC0ngM5\nlRzMqeRYUR3HTtSxfGsunnotiacmlSXG+ePlISuUCSF6RsJZiCugUhRiQr2ICfVi3lWxNDS3cfh4\ndecl8B2HStlxqBQFiA3z7pwBHhfmLTtnCSG6JOEshAUZ3LWMHhDM6AHBmM1mCsrqOyeVZRfVkltc\nxzfbjmNw1zD41L3qxPgAWfdbCHEWCWchrERRFKJDvIgO8eLq8bE0NhvJyKsiPadjFvjOjDJ2ZpQB\nHeuBnz6rjg/3Rq2SDeOEcGUSzkLYiIe7hpH9gxnZv+OsuqiiofOsOqughrySk3z3Yx4ebh1n1afv\nV/t6utm7dCGEjUk4C2EHiqIQGeRJZJAnKWNjaGoxkplXTXpuFenHKtmVWcauzI6z6uhgT0YPDiXY\nx53IIAPBfno5sxbCyUk4C+EA9G4ahvcLYni/IMxmM8WVjafOqis5UlDDlz9kdz5Xo1YRHuhBVJAn\nEUGeRAYbiAzyxMegk2VGhXASEs5COBhFUQgPNBAeaGDOmGhaWtspr2/l4NFyisrrKSxv4ERlA/ml\n9We9zlOvJTLI0BHYQR2BHRFkwF0nf82F6G3kb60QDs5Np2Z4/2Ai/fWdj5lMZkqrGykqb6DwVGAX\nltVz5NROW2cK9HEnKtjzrNAO8ZdL40I4MglnIXohlUohLMBAWICBUQOCOx9vaW2nqOJ0YNd3hvfe\noxXsPVrR+TyNWkV4gMdZl8Ujgzzx9ZRL40I4AglnIZyIm05NfLg38eHeZz1e29DaEdZlp86yy+sp\nqmggv6weDv3veQZ3TWdQR5wK7YhAg+xvLYSNyd84IVyAj0GHj8GfwbH+nY+ZTGbKapooLDv7LDur\noIYjBedfGj99Dzvy1OXxEH8PNGq5NC6ENUg4C+GiVCqFUH8PQv09zr403tbOiVOXxjvvaZfVsy+7\ngn3ZZ14a77i0/r/JZx2h7eflJpfGhbhCEs5CiLO4adWdu3Cdqe7UpfHOy+KnLo0XlNUDpZ3P83DT\nEBlkICrYi3GJISSE+9j4JxCi95NwFkL0iLdBxyCDP4POvDRuNlNe00RhWcOpj3nVU1DewNGiWrIK\na1m/p5B+Ub4kj41maEKAbKEpRA9JOAshLptKUQjx8yDEz4OR/YM6H29ta+doUS1rdhaQnlNJVkEN\n4YEGksdEM25wiNyrFlHG7FkAAA9WSURBVOIiJJyFEBan06oZHNsxAa2grJ5VqfnszCjlvRUZLNuS\nw6xRUUxJCpdZ4EJ0QTGbzWZ7FwFQXn7SouMFBXlZfExxPumzbThDn6vqmlmzq4BN+0/Q0tqO3k3N\n1KQIZo6Kws/LcTb3cIZe9wbS544edEX+2SqEsAl/b3cWzujLvAmxbNxbxNq0Qlam5rNmVwHjE0NJ\nHhNNeKDB3mUK4RAknIUQNmVw13L1+Fhmj47ix4MlrNpZwNYDxWw9UExSn0BSxkXTN9LX3mUKYVcS\nzkIIu9Bq1ExJimDSsHD2Ha1g5Y68zs9SJ0R4kzI2hqS+gTLDW7gkCWchhF2pFIUR/YIY3jeQo4W1\nrErNZ192Bf/vq3RC/D1IGRvN+MEhaDVqe5cqhM1IOAshHIKiKPSL8qVflC9FFQ2s3pnP9oMlfLAy\nk6825zBrVCRTh0dgcNfau1QhrE5ma4srIn22DVftc/XJFtalFbBxXxFNLe246dRMGRbO7NFR+Hu7\nW+WYrtprW5M+y2xtIUQv5eflxk3T+nD1+Fg27S9i7a4C1uwqYP3uQsYMDCFlbDSRwZ72LlMIi5Nw\nFkI4PA93DSljY5g1Koodh0pZtTOf7YdK2H6ohCHxAaSMjaZ/tK9suCGchoSzEKLX0KhVTBwaxlVD\nQjlwrJJVO/JIz6kkPaeSuDAvksfGMLJfECqVhLTo3SSchRC9jkpRSOoTSFKfQI4Vdczw3pNVzpvL\nDxLsq2fOmCgmDAlDp5UZ3qJ3knAWQvRqCRE+3H/jEEqqGlm9M59t6SV8vCaL5VtzmTEykukjIvHU\nO9cM7+ZWI5W1zVTUNlNd30JCuA9Rcu/dqchsbXFFpM+2IX3uudqGVtb///buPaiqut/j+HuzN4hc\nBRSNEFB8ksBLppjgJedJ81F78kkzjKT6p6nj9EeNdXIss6amGZzpTJM6dp9xaBopLfOK1vESBV5S\nDyrHKw+KchGJrajc3Ox9/kA53jJU9l6L5ec1w7jXYu21v+vrGj6sC+u36wSbdpVT3+QiwN+P0YNi\nmJDam+7duv7l+83Q6yvDt+Zs46XXDW3T5xsuXveeB/p157H0BPrGhN1gjeZjhj4b7WZ3ayuc5Y6o\nz76hPt+6hiYX+Xsr2bizjNq6JvxsNlLvj+Yfw+OI7/XnPxR90evbCV9oveYeFR5I9yu+grv6U7Cv\niqPlZwFISYjgsfQE+sdFeHUb7pT2aYWzeJH67Bvq8+1ztbjZeaCa9duPc/L0BQCSEyKY+FA8yQkR\n193h3RG97sjwbZ3uSvfwQMKCA274OFOPx8OhsjOsLjjGgeNOAP4WG84/0xNI6RNpyrvYtU8rnMWL\n1GffUJ/vnMfjobi0lvXby9oCLC46hH+MiCM1KRq7nx/Qvl77OnxvRUn5WdYUHKOo5A8A4nuF8s/0\nBNM9p1z7tMJZvEh99g31uWOVVtaRt72M3w9V4/FAVFggjw7vzZhBMcTe240T5c7bDt8/C97u4YGE\ndkD4tlfZqXOsKTzOroPVeIB7ewQzOS2e4Uk9TfGnZtqnFc7iReqzb6jP3lF9poGNO8r4dW8lzS43\nXbs48Hf4UXeh+YbLmyl826ui5gLrth1nW/Ep3B4PPSO6MmlEPGkDeuGw+xlWl/ZpA8P58OHDzJo1\ni+eff56ZM2fedFmFc+ekPvuG+uxddfXNbNp1kt/2VRLYxZ+IkIBOE77tVX2mgfXbjvPr3kpa3B6i\nwrowcUQ8owfdY8iIX9qnDQrn+vp6XnzxRRISEujfv7/C2aLUZ99Qn33H6r2urWskb0cZv/xPBc0u\nN+HBAUwYHsfYITEEBvju0RdW73N73CycvXZOIyAggM8//5zo6GhvfYSIiNyiyLBAMsfdx4L/SGfS\niHiaLrbw7eaj/OeSQlb/Vkp9442vp4tvee3XJIfDgcOhB5CJiJhRWHAAT45NZOKIOP7795P89PsJ\nfsgvJW9HGX9/MJbxqb0JCwowusy7ltdvCFu4cCERERF/eVrb5WrBYcB1DxERgfrGi6wvOMbKrSWc\nOd9ElwA7E9MS+NfDiUSF//WT1aRjmebQ1ums79D16XqGb6jPvqE++87d3OsxA3sxIqkHvxRVsH57\nGSu3lrDm138zelAMEx+Ka9fjT9vrbu7zZTe75myacBYREeMF+NsZN6w3Y4fcS8H+KtYWHmPznnJ+\nKapgREpPJqcl0CsyyOgyLc9r4bx//36ys7MpLy/H4XCwYcMGFi5cSLdu3bz1kSIi0kEcdj/GDI5h\n5MBe7DhQzZqCY/y2r4qC/VWkJkUzOS1BI2F5kR5CIndEffYN9dl31Osbc3s87D50mjWFxyg7dR6A\nIX9rHQmrzz23PhKW+qzT2iIicof8bDaGJUUztH8P9v37D1YXHGPPkRr2HKkhpU8kj6XFm34krM5E\n4SwiIu1ms9kYlNidgX2jOFh2hjUFxyguraW4tJb7YsN5bGQCKQnmHAmrM1E4i4jILbPZbNwfH8H9\n8REcvTQS1t6SP/iv3CISLo2ENdhkI2F1JgpnERG5I/3uDeeV6YM5XnWOtYXH2HXoNAu/30dsj2Am\npyWQmhRtipGwOhOFs4iIdIj4XqHMemIgFTUXWFt4nO3/e4pPVxWz8tdSJo+IZ0RKT0NHwupMdLe2\n3BH12TfUZ99RrztOtbOeddvK+G3f5ZGwApk0Io5Rg+4h5p5ut9Vnj8dDi9uDq8WNq6X1dUuLu23a\n1eK+NO/SMu5Ly7Utf/X0ld+/ar3XLO9qcTP8/p48lNyzw/qju7VFRMTnoiOCeH5iEo+PTCBvexlb\niyrI2XiYVQXHSO4TxYX65qtCsjVQLwfitSH5/8FrlK5dHB0azjejcBYREa+KDAskc/x9TE5PYOPO\nMjbtLqdwX+VVy9j9bNjtNhx+fjjsNuz21n+7+PtfNX3l9+1+Nhz2K5e/PM92xeur57etx+6H3c+v\n9TPb1nt5+pr1XJoODvRdZCqcRUTEJ8KDA5g+th//GtWH0PAgzjgvtAWh/vTqagpnERHxKX+HndCg\nABovNBldimnptjkRERGTUTiLiIiYjMJZRETEZBTOIiIiJqNwFhERMRmFs4iIiMkonEVERExG4Swi\nImIyCmcRERGTUTiLiIiYjMJZRETEZEwznrOIiIi00pGziIiIySicRURETEbhLCIiYjIKZxEREZNR\nOIuIiJiMwllERMRkLBnOH3zwARkZGcyYMYO9e/caXY5lLViwgIyMDKZNm8bGjRuNLsfSGhsbGTdu\nHN9//73RpVjWqlWrePzxx5k6dSpbtmwxuhxLunDhAi+//DJZWVnMmDGD/Px8o0syLYfRBXS0HTt2\ncPz4cXJzcykpKWHu3Lnk5uYaXZblbNu2jSNHjpCbm4vT6eSJJ57g0UcfNbosy1qyZAnh4eFGl2FZ\nTqeTxYsXs2LFCurr61m4cCFjx441uizL+eGHH+jTpw+zZ8/m1KlTPPfcc+Tl5RldlilZLpwLCwsZ\nN24cAImJiZw9e5bz588TEhJicGXWkpqayqBBgwAICwujoaGBlpYW7Ha7wZVZT0lJCUePHlVYeFFh\nYSFpaWmEhIQQEhLCe++9Z3RJlhQREcGhQ4cAqKurIyIiwuCKzMtyp7Vramqu+g+PjIzk9OnTBlZk\nTXa7naCgIACWL1/OmDFjFMxekp2dzZw5c4wuw9JOnjxJY2MjL730EpmZmRQWFhpdkiVNnjyZiooK\nxo8fz8yZM3njjTeMLsm0LHfkfC09ndS7fv75Z5YvX85XX31ldCmWtHLlSh544AF69+5tdCmWd+bM\nGRYtWkRFRQXPPvssmzdvxmazGV2Wpfz444/ExMTw5ZdfcvDgQebOnav7KP6E5cI5Ojqampqatunq\n6mp69OhhYEXWlZ+fzyeffMIXX3xBaGio0eVY0pYtWzhx4gRbtmyhqqqKgIAAevXqRXp6utGlWUpU\nVBRDhgzB4XAQFxdHcHAwtbW1REVFGV2apezevZtRo0YBkJSURHV1tS6H/QnLndYeOXIkGzZsAKC4\nuJjo6Ghdb/aCc+fOsWDBAj799FO6detmdDmW9dFHH7FixQq+/fZbpk+fzqxZsxTMXjBq1Ci2bduG\n2+3G6XRSX1+v66FeEB8fT1FREQDl5eUEBwcrmP+E5Y6cH3zwQVJSUpgxYwY2m4358+cbXZIlrVu3\nDqfTySuvvNI2Lzs7m5iYGAOrErk9PXv2ZMKECTz11FMAvPXWW/j5We7YxXAZGRnMnTuXmTNn4nK5\neOedd4wuybQ0ZKSIiIjJ6FdDERERk1E4i4iImIzCWURExGQUziIiIiajcBYRETEZhbNIJ3Xy5EkG\nDBhAVlZW2yg/s2fPpq6urt3ryMrKoqWlpd3LP/3002zfvv12yhWRW6BwFunEIiMjycnJIScnh2XL\nlhEdHc2SJUva/f6cnBw9BELEhCz3EBKRu1lqaiq5ubkcPHiQ7OxsXC4XFy9e5O233yY5OZmsrCyS\nkpI4cOAAS5cuJTk5meLiYpqbm5k3bx5VVVW4XC6mTJlCZmYmDQ0NvPrqqzidTuLj42lqagLg1KlT\nvPbaa0DrWNMZGRk8+eSTRm66iKUonEUsoqWlhZ9++omhQ4fy+uuvs3jxYuLi4q4bYCAoKIivv/76\nqvfm5OQQFhbGhx9+SGNjI5MmTWL06NEUFBQQGBhIbm4u1dXVPPLIIwCsX7+evn378u6779LU1MR3\n333n8+0VsTKFs0gnVltbS1ZWFgBut5thw4Yxbdo0Pv74Y95888225c6fP4/b7QZaH3F7raKiIqZO\nnQpAYGAgAwYMoLi4mMOHDzN06FCgdVCZvn37AjB69Gi++eYb5syZw8MPP0xGRoZXt1PkbqNwFunE\nLl9zvtK5c+fw9/e/bv5l/v7+1827dmhEj8eDzWbD4/Fc9YzpywGfmJjI2rVr2blzJ3l5eSxdupRl\ny5bd6eaIyCW6IUzEYkJDQ4mNjWXr1q0AlJaWsmjRopu+Z/DgweTn5wNQX19PcXExKSkpJCYmsmfP\nHgAqKyspLS0FYPXq1ezbt4/09HTmz59PZWUlLpfLi1slcnfRkbOIBWVnZ/P+++/z2Wef4XK5mDNn\nzk2Xz8rKYt68eTzzzDM0Nzcza9YsYmNjmTJlCps2bSIzM5PY2FgGDhwIQL9+/Zg/fz4BAQF4PB5e\neOEFHA79OBHpKBqVSkRExGR0WltERMRkFM4iIiImo3AWERExGYWziIiIySicRURETEbhLCIiYjIK\nZxEREZNROIuIiJjM/wGo13/Ytee1BQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAFnCAYAAACM3c9QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XtcVHX+P/DXmeGiAnJ1QFC09Esm\nyQZaZqgoC6KWrV8zxQzXom/iZU1LU5EAS1C6+d0MSzfLIssLUrp53zb7qiFqliitllqsqFyGq1zk\nen5/+HNWVAbkcGbOmXk9e8zjwcwwn/dnDObF5/M553MEURRFEBERtZPG3B0gIiJ1Y5AQEZEkDBIi\nIpKEQUJERJIwSIiISBIGCRERScIgIUlEUcTHH3+Mxx9/HBEREQgLC0NiYiKuXr0qqd0FCxYgJCQE\nBw8evOvXZmdnIzo6WlL9jrZr1y5UVlbe8bm3334bX3zxhYl7RNRxBJ5HQlK8+eabOHr0KN577z14\nenqiuroaSUlJ+O2337Bx40YIgtCudu+//37s3bsXvr6+Hdxj8xg9ejQ2bNgALy8vc3eFqMNxRELt\nVlZWhrS0NKxcuRKenp4AgC5duiA+Ph7PP/88RFFEbW0t4uPjERERgTFjxmDlypVobGwEAISGhmLT\npk2YOHEihg4dipUrVwIAoqKi0NTUhOjoaHz33XcIDQ3F8ePHDXVv3G9oaMDSpUsRERGB8PBwzJkz\nB5WVlcjKykJ4eDgAtKv+raKiorBu3TpMnjwZjzzyCDZu3Ig1a9Zg9OjRGDt2LC5evAgAuHDhAqZM\nmYIxY8YgPDwcX3/9NQBgyZIl+O233xAVFYXjx49j8eLFWLFiBcaNG4fdu3dj8eLFWLNmDbKzszFi\nxAhUVVUBAD744APMnTu3o/+3EXU4Bgm128mTJ+Hl5YU+ffo0e9ze3h6hoaHQaDT45JNPkJ+fj507\nd+LLL7/E8ePHDR+wAHDs2DFs3rwZ27Ztw2effYb8/HykpaUBANLS0hASEtJi/UOHDiEvLw979uzB\nvn370LdvX/z444/Nvqc99e/k2LFj2LhxI1asWIE333wTXl5e2LNnD/r27Ytt27YBAN544w2MHDkS\nu3fvRnJyMpYuXYr6+nqsWLHC8H4GDRoEAMjMzER6ejrGjBljqBEQEICwsDCsXbsWBQUF+PzzzxEX\nF9fq/wcic2OQULuVlZXB3d3d6PccOHAAkyZNgo2NDTp16oRx48bh8OHDhufHjRsHrVYLT09PuLu7\n48qVK22u7+bmhvPnz2P//v2oqanBvHnzMGzYMFnqjxw5EjY2NvDz80NNTQ0iIiIAAH5+figsLAQA\nrFmzxrA2M3DgQNTW1qKoqOiO7Q0ZMgT29va3PT5//nzs2bMHS5YswaxZs6DT6dr870FkLgwSajdX\nV1cUFBQY/Z6SkhI4Ozsb7js7O6O4uNhw39HR0fC1Vqs1TDu1RUBAAOLi4pCWlobg4GC8/PLLqKio\nkKW+g4OD4Xtuvq/RaNDU1AQAOHjwIKZOnYqIiAiMHTsWoiganrvVzX26tc6YMWPwww8/YNy4cUbf\nP5FSMEio3R588EEUFxcjJyen2eP19fVYtWoVampq4OHhgbKyMsNzZWVl8PDwuKs6N39YA0B5ebnh\n69GjRyMtLQ3ffvstampqsH79+mav7Yj6bVFfX4958+Zh5syZ2Lt3L3bs2NGuAw0KCgrw97//HY89\n9hjee++9Du8nkRwYJNRuXbt2xfPPP49FixYhNzcXAFBTU4P4+Hj8/PPP6Ny5M0aMGIH09HQ0Njai\nuroa27dvN7rucSfdunXDmTNnAFw/jLa2thYAsG3bNqSmpgIAXFxccO+999722o6o3xY1NTWorq7G\nAw88AOD62oytrS2qq6sBADY2NreNlu4kKSkJzz//PGJjY7F7927861//6vC+EnU0BglJ8pe//AWT\nJk3CzJkzERERgQkTJsDd3d3w13RUVBS8vLzw2GOP4cknn8SIESOaLTC3xaxZs7BhwwY8/vjjOH/+\nPPr27QsA+OMf/4icnByMGjUKY8aMwblz5/Dss882e21H1G+LG6E6fvx4jB8/Hr6+vggLC0NMTAyq\nq6sxevRoREZGYteuXS22ceDAAeTl5SEyMhKOjo6YP38+4uLi7mq6j8gceB4JERFJwhEJERFJwiAh\nIiJJGCRERCQJg4SIiCRhkBARkSQ25u5AS9q7a6xUPIiNLIW1/Sw3men9ajXy/T3e3s9BU/+/V2yQ\nEBFZO3P9QX23OLVFRESScERCRKRQahmRMEiIiBRKENQxacQgISJSLI5IiIhIAk5tERGRJAwSIiKS\nRC1rJOroJRERKRZHJERECsWpLSIikoRBAqCqqgp6vR7A9etud+nSRc5yREQWxaqD5NSpU0hKSkJF\nRQVcXV0hiiIKCwvh6emJ+Ph43HfffXKUJSKyKGoJElmu2T5lyhQsX74cffr0afZ4Tk4OkpOTsXHj\nxtY7xt1/iSSxtp9lS9z918HBpV2vq6oq6+CeGCfLv4AoireFCAD4+/ujsbFRjpJERGQmskxt/eEP\nf0BMTAzCwsLg5uYGANDr9di7dy8efvhhOUoSEVkcq57aAoBjx44hMzPTsNiu0+kQHByMwMDAtnWM\nU1tEkljbz7IlTm05Obm163VXr5Z0cE+Mky1IpGKQEEljbT/LlhgkXbu6t+t1FRXFHdwT43geCRGR\nQqllaotBQkSkUGrZa4tBQkSkUGoZkagj7oiISLE4IiEiUii1jEgYJEREisUgISIiCbjYTkREknBq\ni4iIJGGQEBGRJGoJEnVMwBERkWIpdkRirn2CbG3tTV6z+lqVyWsCgI1Ga5a65vorq7GpySx15dyL\nif5Do5K/3u+GWkYkig0SIiJrx6O2iIhIEo5IiIhIIgYJERFJwBEJERFJopY1EnX0koiIFIsjEiIi\nheLUFhERScIgISIiSRgkREQkCYOEiIgk4VFbLaioqDB1SSIiVRLa+Z+pmTxI5syZY+qSREQkI1mm\ntjZu3NjicwUFBXKUJCKyPNa8RrJhwwYMGTIEOp3utucaGhrkKElEZHGserE9NTUVy5cvR1xcHOzs\n7Jo9l5WVJUdJIiKLo5YgEUSZriBVU1MDe3t7aG65qE9OTg78/f3lKNkheGEr+fHCVqZhrovDWRs5\nf5779g1q1+vOnTvRwT0xTrbDfzt37nzHx5UcIkRESqKWEQnPIyEiUii1BIk6znYhIiLF4oiEiEih\n1DIiYZAQESmUIOOkUXJyMk6ePAlBEBAbG4uAgADDcxs3bsSOHTug0WjwwAMPYOnSpUbbYpAQESmV\nTCOSo0ePIjc3F5s3b8b58+cRGxuLzZs3AwAqKyuxfv167Nu3DzY2Nnjuuefw008/4cEHH2yxPa6R\nEBEplCAI7bq1JjMzE2FhYQCAPn36oLy8HJWVlQAAW1tb2Nraorq6Gg0NDaipqYGzs7PR9jgiISJS\nKLnWSPR6fbNTMdzc3FBUVARHR0fY29tj9uzZCAsLg729PR577DHcc889RtvjiISISKHkGpHc6uaT\nVysrK7F27Vrs2bMH33zzDU6ePIkzZ84YfT2DhIjIyuh0Ouj1esP9wsJCdOvWDQBw/vx59OzZE25u\nbrCzs8OgQYNw+vRpo+0xSIiIFEoQNO26tSY4OBh79+4FcH3bKp1OB0dHRwCAj48Pzp8/j2vXrgEA\nTp8+jd69exttj2skREQKJdcaSVBQEPz9/REZGQlBEJCQkICMjAw4OTkhPDwc0dHRmDZtGrRaLQID\nAzFo0CDj/ZRr00apzLXBnsYMJwC5u3c3eU0AKCy6ZJa65trE0FwndzU0Npqnrpl+h8ylk62tubvQ\n4QICQtr1uuzs7zq4J8ZxREJEpFg8s52IiCRoy3qHEjBIiIgUSi17bakj7oiISLE4IiEiUii1jEgY\nJERECsUgISIiSRgkREQkCY/aIiIiSTgiISIiSQSVnJCojnETEREplqxBcqdtvPLz8+UsSURkOQSh\nfTcTkyVI9u/fj5EjR2LIkCFYtGiR4RKOAPDKK6/IUZKIyOKY6sJWUskSJOvWrcOXX36J77//HkFB\nQYiOjsbVq1cB3HmUQkREt5PreiQdTZbFdq1WCxcXFwDA5MmT4e7ujujoaHzwwQeqOQqBiMjc1PJ5\nKUuQBAUFYcaMGfjrX/+KTp06GS4iP336dJSVlclRkojI4lh1kLzyyivIysqCvb294bFhw4YhMDAQ\nu3btkqMkEZHFseogAYDBgwff9pijoyMmTZokV0kiIjIDnpBIRKRQ3CKFiIgksvKpLSIiksbq10iI\niEgaBgkREUnCICEiIknUstiujl4SEZFicURCRKRQnNoiIiJJGCRERCQJg4SIiCRSxzI2g+QWjU1N\nJq9ZWHTJ5DUBoJuHt1nqlpYWmKVudV2dWep2sbMzS91GM137x97GPB8r5vjdBQCtRr4Pe45IiIhI\nErUEiTrGTUREpFgckRARKZRaRiQMEiIihWKQEBGRJGrZIoVBQkSkUByREBGRJAwSIiKSSB1Boo4J\nOCIiUiyOSIiIFEotU1smG5GUlJSYqhQRkUUQBE27bqYmS8UDBw4gIiIC06dPxy+//IInnngCUVFR\nCA0NxXfffSdHSSIiiyMIQrtupibL1Nb777+Pjz/+GJcvX0ZMTAzWrFmDfv36Qa/XIyYmBiEhIXKU\nJSKyKGqZ2pIlSOzs7ODt7Q1vb2/odDr069cPAODh4QF7e3s5ShIRWRy1BIksU1vu7u5Yv349AGDT\npk0AgPz8fCQnJ8PLy0uOkkREFseq10hWrlyJ7t27N3usuLgY3t7eSE5OlqMkERGZiSxTW506dcLY\nsWObPebv7w9/f385yhERWSS1TG3xPBIiIsVikBARkQQckRARkSSChkFCREQScERCRESSMEiIiEix\nkpOTcfLkSQiCgNjYWAQEBBieu3LlCl566SXU19ejf//+eO2114y2xW3kiYgUSq69to4ePYrc3Fxs\n3rwZSUlJSEpKavb8ypUr8dxzzyE9PR1arRaXL1822h6DhIhIoeQKkszMTISFhQEA+vTpg/LyclRW\nVgIAmpqa8MMPPyA0NBQAkJCQAG9vb6PtMUiIiBRK0LTv1hq9Xg9XV1fDfTc3NxQVFQG4fskPBwcH\nrFixAlOmTMHbb7/dansMEiIipRKE9t3ukiiKzb4uKCjAtGnT8Nlnn+Hnn3/GgQMHjL6eQUJEpFBy\nTW3pdDro9XrD/cLCQnTr1g0A4OrqCm9vb/j6+kKr1WLIkCH49ddfjbbHICEiUii5giQ4OBh79+4F\nAOTk5ECn08HR0REAYGNjg549e+L33383PH/PPfcYbU+xh/9qNebJuIbGRpPXtNFqTV4TAEpK8s1S\n18Ojh1nq6vV5ZqlrLuY6KfrmaRJT0l+9apa6ns7OZqkrRVBQEPz9/REZGQlBEJCQkICMjAw4OTkh\nPDwcsbGxWLx4MURRhJ+fn2HhvSWKDRIiImsn5wmJCxYsaHb/xgUIAaBXr1744osv2twWg4SISKG4\n1xYREUnCLVKIiEgSBgkREUmikhxpOUjS09ONvnDixIkd3hkiIrqJSpKkxSD54YcfjL6QQUJERICR\nIFmxYoXh66amJhQXFxvOfCQiIvmp5aitVs/6u7FLZFRUFIDre9i3tu8KERFJJ9eZ7R2t1SBZtWoV\ntmzZYhiNxMTEYM2aNbJ3jIjI2llMkHTp0gUeHh6G+25ubrC1tb2rIpmZmXffMyIiK6eWIGn18N9O\nnTrh6NGjAIDy8nLs3LkT9vb2LX7/V1991ey+KIp4//33MWvWLADA+PHjpfSXiMhqWMx5JAkJCUhM\nTMSpU6cQHh6OgQMHGr1+b2pqKlxcXBASEmJ4rLa2Fnl51rVhHhGRVGpZbG81SLp37461a9e2ucGv\nv/4aa9aswdmzZ7F48WL4+Pjg4MGDmDNnjqSOEhGRMrUaJMeOHcPKlStx/vx5CIIAPz8/vPLKKxg4\ncOAdv9/e3h7z58/HhQsX8NprryEwMBBNTU0d3nEiIkunkpmt1hfbX3vtNSxYsABZWVnIzMzE3Llz\nsWzZslYbvvfee7F27Vp4eXmhRw/zXH+CiEjNLGax3d3dHUOGDDHcDw4Ohre3d5sLjB8/ngvsRETt\noZIhSYtBcvHiRQDAgAED8NFHH+HRRx+FRqNBZmYm+vfvb7IOEhFZK9UftfXnP/8ZgiAYLpv52Wef\nGZ4TBAFz586Vv3dERFZM9Udt/fOf/2zxRSdOnJClM0RE9B+qH5HcUFlZie3bt6O0tBQAUF9fj23b\ntuHQoUOyd46IiJSv1aO25s2bh7NnzyIjIwNVVVX49ttvkZiYaIKuERFZN7UctdVqkNTW1uK1116D\nj48PFi1ahE8//RS7d+82Rd+IiKyaWoKk1amt+vp6VFdXo6mpCaWlpXB1dTUc0UVERPJRyRJJ60Hy\npz/9CVu2bMFTTz2FsWPHws3NDb6+vqboGxGRdVP7UVs3TJkyxfD1kCFDUFxczPNIiIhMQPVHbf31\nr39t8UX79+/Hiy++KEuHiIjoOtUHiVarNWU/iIhIpVoMEm77TkRkXqofkZhbo5m2nrexopFYdV2d\nWerq9ea5yJmrq6dZ6uYXXTJLXXsb8/x6m+t3183RwSx15cQgISIiSdSy11arJyQCQGlpKU6dOgUA\nvEgVEZGJqOWExFaD5Ouvv8bkyZOxZMkSAMDrr7+OrVu3yt4xIiJrJwjtu5laq0Hy8ccfY/v27XB1\ndQUALFq0CFu2bJG9Y0REVk8lSdJqkDg5OaFz586G+506dYKtra2snSIiIvVodbHd1dUVX375JWpr\na5GTk4Ndu3bBzc3NFH0jIrJqajlqq9URybJly3Dq1ClUVVUhLi4OtbW1WL58uSn6RkRk1QSN0K6b\nqbU6IunatSvi4+NN0RciIrqJWkYkrQZJSEjIHd/MgQMH5OgPERH9fxYTJJ9//rnh6/r6emRmZqK2\ntlbWThERkQUFiY+PT7P7vXv3RnR0NKZPn97mIg0NDSgoKICnpydszLRtAxGR2lhMkGRmZja7n5+f\nj3//+99GX7N8+XLExcUBAL7//nssXboUHh4eKC4uxrJlyzBs2DAJXSYiIiVpNUjWrFlj+FoQBDg6\nOmLZsmVGX3P27FnD16mpqfj000/Rs2dPFBUVYc6cOQwSIqI2ENq0iZX5tRokixcvhr+//101evNw\nzNnZGT179gQAdOvWjVNbRERtpZKprVbzLiUl5a4b/fXXX/Hiiy9i7ty5yM3Nxe7duwEAH330EZyc\nnO6+l0REVkgtmza2Ojzw9vZGVFQU/vCHPzTbGsXYpXZvvUxvr169AFwfkbz99tvt7SsRkVWxmMX2\nHj16oEePHnfV6MMPP3zHx8eNG3dX7RARWTPVB8mOHTvwxBNP8JK7RERmovoLW6Wnp5uyH0REpFI8\nhIqISKFUP7X1448/YsSIEbc9LooiBEHgXltERDJTfZD0798f77zzjin7QkREN1FJjrQcJHZ2drft\ns0VERKaj+sX2gIAAU/aDiIhuJeM125OTkzF58mRERkYiOzv7jt/z9ttvIyoqqtW2WgyShQsXtqkz\nRESkLkePHkVubi42b96MpKQkJCUl3fY9586dw7Fjx9rUnkq2BCMisj5ybZGSmZmJsLAwAECfPn1Q\nXl6OysrKZt+zcuVKzJ8/v039ZJAQESmUXEGi1+vh6upquO/m5oaioiLD/YyMDDz88MNtXidnkBAR\nKZSpNm0URdHwdVlZGTIyMvDss8+2+fU8IZGISKHkOmpLp9NBr9cb7hcWFqJbt24AgCNHjqCkpART\np05FXV0d/v3vfyM5ORmxsbEttscgUYCb/xowJQd7e7PUNdf71RdfMUtdu5t2zTalxsZGs9TVmOnk\nB63G8j7O5DohMTg4GKtXr0ZkZCRycnKg0+ng6OgIABg9ejRGjx4NAMjLy8OSJUuMhgjAICEiUiy5\nMjkoKAj+/v6IjIyEIAhISEhARkYGnJycEB4eftftCaK5/jxsRWNTk1nqajWmXzYy1/8Cc22/YK73\n22SmutY2IrG2n2c5pazf1K7XLYqO7OCeGMcRCRGRQqklHBkkRERKxSAhIiIp1LLXFoOEiEihOLVF\nRESSMEiIiEgStQQJt0ghIiJJOCIhIlIojkhuUVJSYqpSREQWQdC072ZqspT87rvvEB8fD+D6vvcj\nR47EtGnTEBoaigMHDshRkojI4phq91+pZJnaevfdd7F27VoAQGpqKj799FP07NkTpaWlmDFjBkaM\nGCFHWSIiy6KSqS1ZgqShoQEODg4AACcnJ/To0QMA4OLiYrZ9eIiI1EYtaySyBEl0dDTGjx+P4OBg\nuLi4YNasWQgMDERWVhaeeuopOUoSEVkcqw6SJ554AsOHD8f333+PS5cuQRRFeHh4IDk5GZ6ennKU\nJCIiM5Ht8F8XFxeMHTtWruaJiCwe99oiIiJJrHpqi4iIpGOQEBGRJCrJEQYJEZFiqSRJGCRERAql\nlsV27v5LRESScERCRKRQXGwnIiJJGCRERCQJg4SIiCRhkBARkSRqOWqLQUJEpFAqGZAoN0i0Gus5\nMlktw9eOYq73qzVT3cbGRrPU1Wq1Zqlrrvfb2NRklrrW9FnVEsUGCRGR1VPJH5kMEiIihVLLbAWD\nhIhIoRgkREQkCY/aIiIiSTgiISIiSdQSJDxujYiIJOGIhIhIodQyImGQEBEplEpyhEFCRKRYPGqL\niIikUMvUliyL7UFBQXj99ddRXFwsR/NERFZBEIR23UxNlhGJv78/Ro8ejZdffhndu3fHhAkTEBgY\nCBsbDoCIiNpKLSMSWT7ZBUHAQw89hA0bNuDUqVPYunUrXn31VTg4OMDd3R3r1q2ToywREZmBLEEi\niqLh6wEDBmDAgAEAgMLCQhQVFclRkojI4miseUTypz/96Y6P63Q66HQ6OUoSEVkcq57amjhxohzN\nEhFZFasekRARkXQqyREGCRGRUglQR5IwSIiIFEotU1vc/ZeIiCThiISISKGs+qgtIiKSjkFCRESS\nyLlGkpycjJMnT0IQBMTGxiIgIMDw3JEjR/DOO+9Ao9HgnnvuQVJSEjSalldCuEZCRKRQcm3aePTo\nUeTm5mLz5s1ISkpCUlJSs+fj4+Px7rvvYtOmTaiqqsLBgweNtscRCRGRQsk1IsnMzERYWBgAoE+f\nPigvL0dlZSUcHR0BABkZGYav3dzcUFpaaryfsvSSiIgkE4T23Vqj1+vh6upquO/m5tZsH8QbIVJY\nWIjDhw8jJCTEaHsMEiIiK3fzRrs3FBcXIyYmBgkJCc1C5044tUVEpFByndmu0+mg1+sN9wsLC9Gt\nWzfD/crKSvzP//wP5s2bh6FDh7baHoPkFg2NjSavKeL2vwZMock8ZWGn1ZqlbmNTk1nqao0c7SKn\n2ro6s9T18rrHLHV/+e1ns9Tt2rmzbG3LtUYSHByM1atXIzIyEjk5OdDpdIbpLABYuXIl/vznP2P4\n8OFtao9BQkSkUHKdRxIUFAR/f39ERkZCEAQkJCQgIyMDTk5OGDp0KL766ivk5uYiPT0dAPD4449j\n8uTJLfdTvNPkmBXjiER+HJGYhrnebw+fvmapa4kjkn/+3L73FNq/fwf3xDiOSIiIFEotmzYySIiI\nFEotW6Tw8F8iIpKEIxIiIoVSy4iEQUJEpFAadeQIg4SISKl4qV0iIpKER20REZEkXCO5hSiKqvlH\nISJSArV8Zspy+O+hQ4cwZswYTJ06FdnZ2XjyyScxfPhwjB49GkePHpWjJBERmYksI5LU1FR88skn\nKC8vR1RUFDZs2IB+/frh0qVLWLhwIT7//HM5yhIRWRSrXiOxtbWFTqeDTqdD165d0a9fPwCAj48P\ntGbaZ4mISG3UMrUlS5A4Oztj1apVKC0tha+vL+Lj4zFs2DD89NNPcHd3l6MkEZHFUUuQyLJGkpKS\nAp1Oh0ceeQQffvghBg0ahMOHD8PDwwPJyclylCQisjgaoX03U+M28rfgNvLy4zbypsFt5E1Dzm3k\nf8rNbdfrHuzVq4N7YhzPIyEiUii1LLZz918iIpKEIxIiIoVSy2I7g4SISKEYJEREJIla1kgYJERE\nCsURCRERScIgISIiSdRyhUQe/ktERJJwREJEpFC81C4REUnCNRKVsrGibe7Ntc1aQ5Pp9zMDAI1g\nnplcc30Y1Jlh3zgAuHLlglnqOjo6m6VuVVWFbG3z8F8iIpKEIxIiIpKEIxIiIpJELSMSHv5LRESS\ncERCRKRQahmRMEiIiBRKLWe2M0iIiBSKJyQSEZEknNoiIiJJePgvERFJopYRCQ//JSIiSWQdkYii\niNLSUoiiCHd3dzlLERFZHLWMSGQJkt9++w0pKSm4dOkS8vLy0KdPH5SXl8Pf3x9LliyBp6enHGWJ\niCyKWtZIZJnaSkhIwNKlS/H3v/8d27Ztw4ABA7B//35MmDABCxYskKMkEZHFEQShXTdTkyVI6urq\n0LNnTwBA7969cfbsWQDA8OHDce3aNTlKEhFZHI3QvpupyTK15efnh5deegkBAQE4ePAgBg8eDACI\njY1F37595ShJRGRx1HJCoiDKcHUjURTxzTff4Pfff4efnx+GDx8OADhz5gzuu+8+1SwgWTpe2Mo0\ntBrz1K2uqzNL3c62tmapa4kXtqqoqWnX67p27tzBPTFOliAhdWCQmAaDxDQYJP9h6iDhCYlERAql\nlqO2GCRERAqllmUABgkRkUIxSIiISBJObRERkSQckRARkSRquUIid/8lIiJJOCIhIlIoOc9sT05O\nxsmTJyEIAmJjYxEQEGB47vvvv8c777wDrVaL4cOHY/bs2Ubb4oiEiEih5Nq08ejRo8jNzcXmzZuR\nlJSEpKSkZs8vX74cq1evxhdffIHDhw/j3LlzRttjkBARKZRGENp1a01mZibCwsIAwHCZj8rKSgDA\nxYsX4ezsjO7du0Oj0SAkJASZmZnG+yn9rRIRkRzkGpHo9Xq4uroa7ru5uaGoqAgAUFRUBDc3tzs+\n1xKukVgxcx1aaKvlj50pdLGzM3cXTErOPa8sndR99zgiISKyMjqdDnq93nC/sLAQ3bp1u+NzBQUF\n0Ol0RttjkBARWZng4GDs3buKaHQVAAAKG0lEQVQXAJCTkwOdTgdHR0cAQI8ePVBZWYm8vDw0NDTg\n22+/RXBwsNH2uI08EZEVeuutt3D8+HEIgoCEhAT8/PPPcHJyQnh4OI4dO4a33noLADBq1ChER0cb\nbYtBQkREknBqi4iIJGGQEBGRJBZ3HKax0/7l9Msvv2DWrFmYPn06nnnmGZPUBIA33ngDP/zwAxoa\nGjBjxgyMGjVK1no1NTVYvHgxiouLUVtbi1mzZmHkyJGy1rzZtWvX8Pjjj2PWrFmYMGGC7PWysrLw\n4osv4r/+678AAH5+fnj11VdlrwsAO3bswIcffggbGxvMnTsXI0aMkL3m1q1bsWPHDsP906dP48cf\nf5S9blVVFRYtWoTy8nLU19dj9uzZGDZsmOx1m5qakJCQgF9//RW2trZITExEnz59ZK9rcUQLkpWV\nJb7wwguiKIriuXPnxEmTJpmkblVVlfjMM8+IcXFxYlpamklqiqIoZmZmis8//7woiqJYUlIihoSE\nyF5z586d4rp160RRFMW8vDxx1KhRste82TvvvCNOmDBB3LZtm0nqHTlyRPzLX/5iklo3KykpEUeN\nGiVevXpVLCgoEOPi4kzeh6ysLDExMdEktdLS0sS33npLFEVRzM/PFyMiIkxSd9++feKLL74oiqIo\n5ubmGj4/6O5Y1IikpdP+bxzWJhc7Ozv87W9/w9/+9jdZ69zqoYceMoy4unbtipqaGjQ2NkKr1cpW\nc+zYsYavr1y5Ak9PT9lq3er8+fM4d+6cSf4yN7fMzEwMGTIEjo6OcHR0xOuvv27yPqSmphqO3JGb\nq6srzp49CwCoqKhodta1nH7//XfD75Cvry8uX74s+++QJbKoNRJjp/3LycbGBp06dZK9zq20Wi26\ndOkCAEhPT8fw4cNN9gsQGRmJBQsWIDY21iT1ACAlJQWLFy82Wb0bzp07h5iYGEyZMgWHDx82Sc28\nvDxcu3YNMTExePrpp1vd66ijZWdno3v37oaT1OT22GOP4fLlywgPD8czzzyDRYsWmaSun58fDh06\nhMbGRly4cAEXL15EaWmpSWpbEosakdxKtJIjm//xj38gPT0dH330kclqbtq0Cf/617+wcOFC7Nix\nQ/btVr766is8+OCD6Nmzp6x1btW7d2/MmTMHY8aMwcWLFzFt2jTs27cPdibYfqSsrAzvvfceLl++\njGnTpuHbb7812bY26enp+O///m+T1AKA7du3w9vbG+vXr8eZM2cQGxuLjIwM2euGhITgxIkTmDp1\nKu677z7ce++9VvO50ZEsKkiMnfZvqQ4ePIgPPvgAH374IZycnGSvd/r0abi7u6N79+64//770djY\niJKSEri7u8ta98CBA7h48SIOHDiA/Px82NnZwcvLC48++qisdT09PQ3Teb6+vvDw8EBBQYHsgebu\n7o7AwEDY2NjA19cXDg4OJvl3viErKwtxcXEmqQUAJ06cwNChQwEA/fr1Q2FhocmmmObPn2/4Oiws\nzGT/xpbEoqa2jJ32b4muXr2KN954A2vXroWLi4tJah4/ftww8tHr9aiurjbJfPb//u//Ytu2bdiy\nZQueeuopzJo1S/YQAa4fObV+/XoA13dFLS4uNsm60NChQ3HkyBE0NTWhtLTUZP/OwPW9lRwcHEwy\n6rqhV69eOHnyJADg0qVLcHBwMEmInDlzBkuWLAEA/N///R/69+8PjcaiPhZNwqJGJEFBQfD390dk\nZKThtH9TOH36NFJSUnDp0iXY2Nhg7969WL16tewf7rt27UJpaSnmzZtneCwlJQXe3t6y1YyMjMTS\npUvx9NNP49q1a4iPj7foX7zQ0FAsWLAA33zzDerr65GYmGiSD1hPT09ERERg0qRJAIC4uDiT/Tvf\nuo24KUyePBmxsbF45pln0NDQgMTERJPU9fPzgyiKmDhxIuzt7U12cIGl4RYpREQkieX+KUlERCbB\nICEiIkkYJEREJAmDhIiIJGGQEBGRJAwSkk1eXh4eeOABREVFISoqCpGRkXj55ZdRUVHR7ja3bt1q\n2CZl/vz5KCgoaPF7T5w4gYsXL7a57YaGBtx33323Pb569WqsWrXK6GtDQ0ORm5vb5lqLFy/G1q1b\n2/z9RErGICFZubm5IS0tDWlpadi0aRN0Oh3ef//9Dml71apVRk8OzMjIuKsgIaL2sagTEkn5Hnro\nIWzevBnA9b/ib+xh9e6772LXrl347LPPIIoi3NzcsHz5cri6umLjxo344osv4OXlBZ1OZ2grNDQU\nH3/8MXr27Inly5fj9OnTAIBnn30WNjY22LNnD7Kzs7FkyRL06tULy5YtQ01NDaqrq/HSSy/h0Ucf\nxYULF7Bw4UJ07twZgwcPbrX/n3/+ObZv3w5bW1vY29tj1apV6Nq1K4Dro6VTp06huLgYr776KgYP\nHozLly/fsS6RJWGQkMk0NjZi//79GDhwoOGx3r17Y+HChbhy5Qo++OADpKenw87ODp988gnWrl2L\n2bNn491338WePXvg6uqKmTNnwtnZuVm7O3bsgF6vx5YtW1BRUYEFCxbg/fffx/3334+ZM2diyJAh\neOGFF/Dcc8/hkUceQVFRESZPnox9+/YhNTUVTz75JJ5++mns27ev1fdQW1uL9evXw9HREfHx8dix\nY4fhQmYuLi745JNPkJmZiZSUFGRkZCAxMfGOdYksCYOEZFVSUoKoqCgA169GN2jQIEyfPt3wfGBg\nIADgxx9/RFFREaKjowEAdXV16NGjB3Jzc+Hj42PYZ2rw4ME4c+ZMsxrZ2dmG0UTXrl2xbt262/qR\nlZWFqqoqpKamAri+9X9xcTF++eUXvPDCCwCARx55pNX34+LighdeeAEajQaXLl1qtilocHCw4T2d\nO3fOaF0iS8IgIVndWCNpia2tLYDrFwcLCAjA2rVrmz1/6tSpZlunNzU13daGIAh3fPxmdnZ2WL16\n9W17SImiaNjDqrGx0Wgb+fn5SElJwc6dO+Hu7o6UlJTb+nFrmy3VJbIkXGwnRRgwYACys7MNFyLb\nvXs3/vGPf8DX1xd5eXmoqKiAKIp3vMBTYGAgDh48CACorKzEU089hbq6OgiCgPr6egDAwIEDsXv3\nbgDXR0lJSUkArl9J86effgKAVi8eVVxcDFdXV7i7u6OsrAyHDh1CXV2d4fkjR44AuH602I1rvLdU\nl8iScERCiuDp6YmlS5dixowZ6Ny5Mzp16oSUlBQ4OzsjJiYGU6dOhY+PD3x8fHDt2rVmrx0zZgxO\nnDiByMhINDY24tlnn4WdnR2Cg4ORkJCA2NhYLF26FPHx8di5cyfq6uowc+ZMAMDs2bOxaNEi7Nmz\nx3D9j5bcf//96NWrFyZOnAhfX1/MnTsXiYmJCAkJAXD9QlQzZszA5cuXDTtPt1SXyJJw918iIpKE\nU1tERCQJg4SIiCRhkBARkSQMEiIikoRBQkREkjBIiIhIEgYJERFJwiAhIiJJ/h+3viL8jVwjaAAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "vYjcx8n4jcSX", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1172 + }, + "outputId": "74dd7bce-e7f0-4c66-af3e-c9226dacc8d6" + }, + "cell_type": "code", + "source": [ + "print(classifier.get_variable_names())\n", + "\n", + "weights0 = classifier.get_variable_value(\"dnn/hiddenlayer_0/kernel\")\n", + "\n", + "print(\"weights0 shape:\", weights0.shape)\n", + "\n", + "num_nodes = weights0.shape[1]\n", + "num_rows = int(math.ceil(num_nodes / 10.0))\n", + "fig, axes = plt.subplots(num_rows, 10, figsize=(20, 2 * num_rows))\n", + "for coef, ax in zip(weights0.T, axes.ravel()):\n", + " # Weights in coef is reshaped from 1x784 to 28x28.\n", + " ax.matshow(coef.reshape(28, 28), cmap=plt.cm.pink)\n", + " ax.set_xticks(())\n", + " ax.set_yticks(())\n", + "\n", + "plt.show()" + ], + "execution_count": 29, + "outputs": [ + { + "output_type": "stream", + "text": [ + "['dnn/hiddenlayer_0/bias', 'dnn/hiddenlayer_0/bias/t_0/Adagrad', 'dnn/hiddenlayer_0/kernel', 'dnn/hiddenlayer_0/kernel/t_0/Adagrad', 'dnn/hiddenlayer_1/bias', 'dnn/hiddenlayer_1/bias/t_0/Adagrad', 'dnn/hiddenlayer_1/kernel', 'dnn/hiddenlayer_1/kernel/t_0/Adagrad', 'dnn/logits/bias', 'dnn/logits/bias/t_0/Adagrad', 'dnn/logits/kernel', 'dnn/logits/kernel/t_0/Adagrad', 'global_step']\n", + "weights0 shape: (784, 100)\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGcAAARNCAYAAAD/4C04AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfWWYXNeV7enuquruamYGqVHULWZG\ni4wxYxJj0EkmDk9oEjuTTBIndjJxYkjMlpkkWZItlixmbmaoZqhqfD/my11r30h63zcuvf7x9vq1\npdr31r33nLPPvtV77RUwPDw8bBQKhUKhUCgUCoVCoVAoFCOCwJG+AIVCoVAoFAqFQqFQKBSK/5+h\nP84oFAqFQqFQKBQKhUKhUIwg9McZhUKhUCgUCoVCoVAoFIoRhP44o1AoFAqFQqFQKBQKhUIxgtAf\nZxQKhUKhUCgUCoVCoVAoRhD644xCoVAoFAqFQqFQKBQKxQjCcbkPn7n/fste9JVF4rNB36Bll755\n0rJzbhgn/LyN3Zbd1+617MoDlcIvY2K6ZUfkxln28JBU+h7qw/dWb7pg2S1dXZYd4nKJY6Z+fZ5l\nd5R4LDs41i38Dj2z17ITo6MsO2FhlvAr+fCMZY+7c7JlH3x6r/BzORwXtcNjwoRf8pJRlp0z9Q7j\nb5zb/XfLDggMEJ81bC6z7Mq6Rsueed+cS55vx39vt+xZd8wUnzXtqrLs4ETcZ1hGpPDr7/ThmAO1\nOCYUYxc5Ll4ckzgz07IDAvG7orelR17D7grLjpmYYtlHnt8v/GZ8FfPi5F/xWeayXOFX/tF5y06Z\ngnnacaJJ+MVOT7Xs8WseNP7Ep0/+yrJjJiWLzwa9A5btbcA6cITLddDfjmcemhph2QPdfcLP14Tn\nyecOjpfrpa+117Ld6VgvbUcbLNsZKa8haSHmOn9vUKgMRe1nmi27t7rDsoco7hhjTBKtnd66TssO\ndMnzhWdFW3bHBcSAnqoO4Zc4D3NsVNGtxt84uu6Pl/ys8lPM29yVhZYdFOoUfkGuIMvurmq3bGdE\nsPDr68B4Dw8MWXbnaY/w8/kwDnETkizbFR1q2VVbS8QxEbHhls3xa7BPjk+gE9c6PEjXUNIq/KIK\nsdZ7ajAmgQ7594PmvTX43mWjcb4LLcKvn+bmrG/+wPgTpYdfsuy40XK/O/aHtyx7/f5Dlr1mwQzh\nt2XPYcueW4ixPlxeLvym5eZY9qi7ii175+8+EX6Lf7TKsv/2lWct+7YfXW/ZrqgQccy6H75p2df/\n8GrL7iiTz7Kd4lzcVMS4yg3nhF/GijzLPv/+Kcs+WlEh/KbnIr7m3jzBssNTY4Tf0199zrK/9+qr\nxt84ux3Pyb4vGvq3Owmx0tcq95pQ+qxxD3KauMmpws9Ba9hzGPtdWGaU8Oul+B1dkGDZvMe1HmsQ\nxyTORsxyuhFvfW29wq+7BrHC58FnqYtGS79arL+2E/iuaIoN9mtlRI6KFf/2enDtebPuuugx/1uc\n3YYx7K6WsTwgCGOYugjrqPlQjfDLmDPbsvf/6mXLDg6T8TS6GPcfTfGqZv154ReSjNhYubfcsou+\niBgQmSxzyrIP9+DcY3Duroo24cfjlkZ5SmhkivA799JWyz5zHDne6BSZO9R5sNa7fdgvVv1srfBz\nOpGTx8bOMv7G2R3PWXZoosyPK9chlkQVJVp2j228+bnH0/oreeaw8IuZIp/BPxGZJ/NNzhM4Bg73\nYx9LuSpHHOOKRozta8P7Dq8jY4yJHIO13fhxuWV7e3zCL20x1mYUxYPyl48Lv5BU3HsfzRFntJzD\nw4N4n5r6hW8Zf6LsKNaOO1nm+zWb8a4WQ3EkIlWOReMhrCVnJK49Ll8+5/5+5A+BgchLB3wyJvFe\n1nIQcTeZnuugt18c01mKcydMS7Psnnp5bs63hvqR90RkxAm/2k+wTwZS7sa5tTHGxBZjDQc6kfd0\nlstcKXnKWBwTe+n3tP8tDr/yB8tOXzJefNZ2odqy+zowv4NjQoUf75ntF5DLR2TLPZ7zw6Z91fSB\n3I8zFuI9u+IjvKtF5GCvCQoOEsdEZ2CMuzw492CvHO/ItGzLbrmA+Rc16uJxwhhjelsoLsufKExI\nLO59aADf1Vkhx5Hjw7iV9xs7tHJGoVAoFAqFQqFQKBQKhWIEcdnKmeI5+ItezfvyrwNBIfiVytuP\nX4e8TfIvS+H0S1njbvxlKcQp/xqcvAB/fS35+xHLTl0pqxj4F+jITPw1PL0QfvzrpDHGDPTgL8P8\nF+TQBPkLvTsYv4QmLsq27P2vyoqLOQ/Ot+xP/7rbsid+bpLw89BfeVNW4Jdfp62ioX5bOf4x1fgd\n4Rl4Tj5blUnCfPzVLSsZfwV2uOU1tp7Gc8/JxF8l7JVNo27FX0K9zaiaGhqUfoHBmHo5txZZdidV\nNnWXt4tjyirw14LqMlzPlHvkX6UTZmZYdt2WUssuvm2K8Guj6ozxD+IcnWXyF87UaThfdwWuyf7X\n1qjCBHOlEJaNMQyxVXy1Hq+37NBk/GrrTokQfvws4ukvAr1U3WaMMSG0Ltror7RcfWKMMQ766w//\nhS9+FlUXnWsWx3D1HP+C3Xpc/mUpfjrOERRCVWe2a+in6huuqrNXzvBfN8Oy8NfqQNuv7RwfrgTC\nKGbVbZDVKIND+O7GbRQrk2Sc4sqpgS7cfz3/5cEY4wzCvXV58dzjkuUzjM1FjHaEYd0HODC/E8fL\nvyJwpRRXy5xcd0T45cxHXG47jDEOTpb3xJV0XM005JN/XRqiZ8Rxvc8j41ry4lHmSiFuNP6a9Icv\n/kx8dtVyxBHeT46euCD8vvq371v2Uw/92rKXrpaxLJzWfcWrJyw7LVH+de6t771u2bf/9EbL3vzb\njyx79i3y3FNoz/RRpVHJJlkRw5WnF/560LJT5mYLv+NvHbXs3j6MzVf++j3hNziIsfKcxRr46Cfv\nCb+1dy02VxL8l8v+DvkXa44L7iT8VTosXa4d/qtrElWwdJTK6iOuguH10nZKVl9G5WNcu6mCLJzi\nhnupjOs1mxDb+C+JvBcYY0xYGtZsdCEqEBr3VQm/aNrHXLTX+Dz2qiE8l87z2Ld9FOONkX9V9jcu\nfHDasps7ZCUFr7+0xchlu23VKM3Jxyw7hipieN8xxph972Duh3yI/HVUjqyS4nmVVox9lvOhrkoZ\nJ53hTvoMOUZ/p6xqLbjpKsvu68PcOf3MZuEXQTE9qx7jOebLC4Vf+68+sOy82YgHNZtkvAp0ofom\n9ib/V86ExGM/6KntFJ9x9UfDXszVwi/KfK5xDz6r34brjRwv8zLO03i/9zbJPIiRugrPpuJ1VPI0\nbC0Xfmmr8y27iyoeQm25WAflnlz9G5YqK056GvAsuugv70Hh8v2JK/XaTjVe9P+NuUiFoB/RRGOT\nsbpQfBZK+33N+9hfYqfKsU6eiqqQ8y/tsOygYLkWuyuxhoNp7thjVMJ05O5ccextRBWMfZ1zBUsz\nVdvY39vC0jBWXB0YFCRzm7hJGAOuSuQYbIwxneXYM/jd1Nso76ns/X241rv8XzmTOAPPrOmwzFG5\n0iV2HCqghm3VI22nMQfdNKdbTzYKP0cY5nE0nc9zqFb4VW05YNkcy51O7Gl9ffJdo60KMaDjLGJl\n8nxZKdp4DOuZmT4hcXIcuVLITXtru+0dh/d3fp9NXzBR+PV2yGdhh1bOKBQKhUKhUCgUCoVCoVCM\nIPTHGYVCoVAoFAqFQqFQKBSKEYT+OKNQKBQKhUKhUCgUCoVCMYK4bM8ZEwB+YvbNUpXio19ttOxp\na9BrpXZ7mfCLyQe/00fcuegM2bW5mThmuV9AZ+a9v5GqFBnjweENov4I3Pk4YVq6OKbyLXDKAolf\nOGwjynEfnPL1Z3Hd/bK7c/U7UGtyUV+Hmo8kP2/Mg9Mt2+sBl23X49uEX2yY5Lb5G8z5bj1WLz6L\ntz2rf6Lq/TPi3xlrwfPz7EYvnYr1sj9B1qoCy27YhB4nduWg2GngYZ59Ad30k6fiekJtCk8D1Jdi\n2lIoLDCvzxhjIkntK7oIPMY9z+0Rfst/vNqymbefZlNrOvEHHJc4HfMvfqp8dl1VxGWXp/jM4J4c\ntRslHzwiP87uboyRagPGyF4r7WfAwQzLkIohrAAUkYdzD/TIddC8Fz1O4mfiWXAfhcgCqYDQQspc\nLlJ/GuyW52betIOUnDyH6oSftw7c4bQ1UItp3C4VYkIS8V1e6rofbFOG8LXJfgn+xiD1UEldLSdJ\nIK2XiEI895DEcOHXTT0JuC+TPZ4lzkEPjAjiOtvXYucZcJ1TVqI3FitmtZy28WNpb2CFilCbUh4r\nLvQN4N77qmU/qZhi9LTpJFWZ4GB5vvgZWH+sttflkf0Czr+G/lSjJxu/4i8PPmrZX/zdneKz6g+x\nb9z4VSgoxY2VahM1u9HH7OoHlll22pTZwm/bz5627FPVWG8rrpd+N34ZvSi2/BSqGfmZeF7p0yU/\nPb4IcbzpCPbtlHypynP8ScS/jMW4j6PvHhV+YxePsWwfcbdf+7c/Cb9V31tlLoaCyZIL/vcn37Hs\nX69+4KLHfBYEkBKYI0LOs/BM5CftFEdjxspnw/3JWGUsbkqa8Gs5iX5LLloTHNeNkXOaY0XLUcS9\n2CLZ/yl1CeJIdx2ugdXRjJH7U1wx9t+YsbL3QdtpxO8oit/9XbL/CcehxFmINb2NUtUkPP/K9WLj\nvlrjZxeIz7gfV1AQ1ESix8v7rae429mCa+e5bowx8+9Dr8HWo8ijXFE2VSd6ntxjoXoDcoxo277Y\nfg5zLP/zCFg7fy/z36M7oaQyrhjXFztFqjUlFaMv1tGNz1n20O9lb5r5P7rHst//HtbpmHnyWXad\nkz2U/I1+6ufQ3yXXxADlBtnXIMZUvnVa+KVehf2f1W4GbQqPAbR31VAulU3KccZI9bXBXqxF7gPG\n32OMMREpWPfcC7DloMxbQlKwp3OvG1YKMsaYqALkAbwfZ149RvixEgyvxW7bPuuh/Cvty8avYDW3\nPltcC89CPE2ciHeJqi1SSWt4GDGLezc17ZZ9seLo/YGfmdfWr6i7HDEvZSnWC/cqtPcoraV3mlG3\noB9mkFOqHZa8hD4o6WuwXno8sn8i7zPce6ynTvbI4p5g3F8o0pbfN3KP0isAXn/Dtl6hASFYO62U\nE8YVyfjDvZxYyckxTsZez2GsC77/GJsyIF+TtwVz2kH5e3etnOvcl4jfQ3oa5HP30fqLp33b3mMo\nOBLvo4GBmAsBQbb3LOrp6KDfG9psqpV2hSs7tHJGoVAoFAqFQqFQKBQKhWIEoT/OKBQKhUKhUCgU\nCoVCoVCMIC5La0pZCIm3jb9YLz7LTkR5UmgySvQ6enul3xiUE7F8bxPJahtjTCRJQPY2obS0cO14\n4XfkTZTBzbgXpd0tJHnGEqvGGJM4L8uyWR6r+VCN8IvMwzX0taLMcsX904Vf+3mUFya4UELIcpfG\nGHPyT3stO4bKqoquKRJ+LQdkyaO/0duA5xk+StLJDvwFUuBMi5jzyBLhd/5pyEhm347yT5YLNEZK\naiYsxHMPDJK/AzJFpuAO0OJKXwEdIShQHpOyHGXvLF9mLw+rXAcaWwCVLEa7pQR1+Tp8F9M0vC1y\nDo+mclemUNnnTx8fN9P4FYFBuL7QVElzGRqgst1ejGH7SSnTyuWVLB9ol532NoF+yBKz3aWybJD1\n87iUfZBKRgdtVKgQklQMIFk+pp8ZI8uFuZw3aowskY8eh38zzcrYJCNZyrK/A9cXbTtfww4qPbwC\nSr5cas9zzhhjYomy46U127hNlkMmzEPMCWFqmK18u51K6ruJ9hNnozEE0Nza/jfIVxbPRek0y3wb\nY8xQP/7dSzQx+5r1ebAmwpNIfrBOzqXaDSgvz1iB8vTBPiml3X4c9zRE95uxVFIQGrbKZ+ZPzMzD\n9Q10y72Gy4B5vZW8slv4ZV0PmvC+34LmmjZFytRO+hL2uOStoB41H5H01LbjH1r2oh/dYNmVGw5Z\n9qnn3xXHfPQxqFWFaZh7nk5ZGn7Tb+6jf2Hcee4ZY8SaS5uP+0teJGXNX/zBa5bdP4gxXDytWPiF\nBku6iL/B8dpeOt68H7EkOBb7C+/9xhjTT7LRHLNcEfLavc2Idb1EMRwekmXjPXWdF/3MR/lIxRun\nxDG8fsMpj2L6lDHGxE/EGHOO1HZG3pOL9tOBXsRv/h5jpEQs7+ftZ+X5WBo6+VrjV/C6d4bL++X1\nV/0xpKvtlLPce5DfHfqvLbDflpSLqx/7kmXXfQjpeqftOTP9a4hkVcd9FWvbc1hKxe7ZQtd3CHth\nQ7uMkyvvx6ZU+h5oPUzbNcaY8o3IPRd/Z7lln/nrAeG377EXLTtvEtZpULCkeuTdJ2Wr/Y0Oyufs\nVGhepzwfe1tlnta4EzGfafhVb0rZ8sSF2ZbNdJQyyj2Nkc+UKTYpi5CHhkTJa+1pBaUlPBu5dqBN\nCnqYWg3ETQQlxB2ZIfwqNoNS2kd76dm/7Bd+kflY9xyHWP7XGGNSl8l90p9wJyEvbdpXLT5LXwqJ\n7M465M1878YYU/rWp5adugJ0zbBkmbPU7sDcT1/CFC85b1lq+eyLktL3T+TeIinCvIdzjh+eJd/v\n8u9caNndzfDrtL0ThWXguEZ67w3LlO0EQhPw/Bopf2EpeWOMiZksn5m/4aP1Zs+P3VGInWUfIKdp\n2CPf55nq3rAL95K+WL7PxxbjWYfGYIy97XIPYYpSCFF/G4+CRh4/QbYJYLqgKwLX4wqXzz04Budz\nBGPvazogW7SEj8IaG+xFjA8lWW1jjKnfDZqsm947okbLcbNLrtuhlTMKhUKhUCgUCoVCoVAoFCMI\n/XFGoVAoFAqFQqFQKBQKhWIEcVlaUxd1+p64SKo1Ve5HqVLbcZTyZRXJsjwuPe8bRImdO10q8VS9\ngTK12OlULuuVZe0zvogStEAHStjSSSUoJFSWrfZ2odN35Tv4Hne6LEfqKkHpVFg2Sp9e/dEbwu+6\nb11cbcJjo7mkL0eZVRCVNYalynvf+xpKFKWehn9Q+g7KoAtunyg+yyT1q6QFKGstfUEqcfD1N12i\ni70xxrhJEejcB/je3KWy+//5TVCDaqYy+ilU9tZbI8vrYwtBk/KlY6w8RyQt7GwNSobn3o5S4tb3\nZTl4zCSUmTE9ofRFee9Zn0NJZvtR0CqiJ0vVjPjpcu77ExFUrs5qSsbIdcAUp6BQubydVGoYS+o4\ntR+eF37BSSi3az8LGpfDVpobSZ3XeR70t1Fn9SapouMmZajaLSj/47VijDE91HWfKQeth+VYs5JD\nxrUoZa6jcxtj/oXm9E/0dUhVgZDEK6uc5vOAMmYTVzIdRC9g2llwvKTtVZAiUGweyqp5jhhjjJeU\np4JI1cRlowGyWsHYSHSoZyWsuDxZ3lp3Emus8HOgacZNTRV+e/+6y7KTolHem2lTROs8DzUQVtpi\n+pQxxnT04Pll51DZuI2aF5Er6Zv+RPZtoDkyLdQYY6bch3hz4jlQCIofmCH82s6BcthO91Sxfbvw\nS58zzbLzrkc5/ZkXNgg/VrHynIRq4Jk9WNsbjsjy/ocfutGyP3wH42SnsPX3Iwbsfgy0j4wJUq0u\nfDSe+YanQF1a++iDwi+K6KXXP4ZreOKBp4Tfg7+/21xJME0nyBbbUhfjWTNlx16y7k5HPAuOQnxt\nPSUVO9y05ztJGapha7nwaz9F9I5CrO2Tu7Dm8wrkPsNxvfwT0ANHu/KFXwdRjoPcUKaMLpTUDPuz\n+Cfqd9oV8ChWUjBjKo8xUr3I3+D439cuY3kc7XEDRLlosN1H5krQ6aY9ssayW0ul3/Aw7sudjfG0\n77Nx+aBZpBeDglrx6QeWfeCdQ+KYhTcibgQQBXz2XKkgVP4B5sGo1djvkookJXBwEPtuwyHkWnaa\nQvbKqZa95adYswt+sFL4bf7pe5Z925NrjL/RQWpQXeflGht9N+6tm/MCG0W/uwJ50cknQeuKSJc0\nhrr1WCNZt+L5Zl0/Vvjx+4+L1/YJUEoj82T+ywprTCni1g/GGOMkpdkTfwaVxx1xTPglzMFar9uP\n9xgee2OkImsb0dnjbCpediUsf4JjY9LcbPFZ/W7sQ0z3CrJRV9OI0sxxpGGfzFGZEe5w4Hw+n6T7\nVm+WVLV/IpJUsM49v0N8Fkx0XVYyZfqLMca0XMA8Yur9v6hhlpIa5kLsK94WmRtzO4+CB/Ce298j\n/ewUOX+D6bROt8wVBweRq/B+32drBcG0Jqb29DRLulJILNaF5xTylg4b1TaKFPaYchwUin2s+YRU\nsY2dQPGf6JB93fL9KTgc9xEeTutqqsyDBvvxjtjRTAprpAhmjDEZC6G211mPNdt6VlL9HLQHx8ZK\nOrsxWjmjUCgUCoVCoVAoFAqFQjGi0B9nFAqFQqFQKBQKhUKhUChGEPrjjEKhUCgUCoVCoVAoFArF\nCOKy5LUa6kXhdEseXdFd4KpWvI5eHulrJc/5+Mvg1nb7wHf0dHUJv5wkyAdGdMLPzl9uOwU+5fYN\n4PQvv3O+ZUcXymP6iZccSdLeFz48LfyqPeBkZ9O1zpo0Rvq9Dd4vy0rbpWydJKfJnEQ7R5nv/UqA\npVGHBiSPLmMN7q35IDhxSYuzhR/LVLJ94PeyR8K0q3G+yBzwOoNcNok74sbP+hz6KjB3MX6m7GnQ\n3YB+Lx7qPeKMkrzVsYW4duYAz3hkufDzHEfvnDaS6B19u+RvM0+3uxc84ozRth4fzZIb6k9010B+\nNThB9kVp3gle4/Agxjd1tVyLbadwj017cUz8bNnDoGkHnksCjUGgTV6T+0k548DHDY4DT/XIW7LP\nRUEgpBwjSEowOE7yeTtLwNOt3wxJu+xbpBRfRDJ6bTidmG9deZIHGlMIzmpPNZ5laJKNCx5xZeV7\nuYdKy6eyR1Xa1Rgv7kdT8sYJ4Zd1FfwOrYPEvXfvWeGXn4lnEzUBvQZYKt0Y2XuLe93UUm+pOFvf\nm7zV4OeHJuIZ2jntOWMwtxLnZ1s287CNMcZH1xQ/C3Pu7IeyT1RqAXjELQfBL4+fI2NF7XH0xPG3\nCOzOP2617DWPPiQ+e/Yr/2nZNz36Ocve8Ssp4zn/e8sse9XPb7PswUHZZ6vkHXzXeZJ2DA8JEX4B\nDpDwM6gfQRftY3fMny+OSaO+P60vbrTsbzxxr/BrIo739K/Nv+j/GyP7f6z5JeS3j//xLeE35xrk\nDq2nMYadvZK3HhYtJbj9jUv1VjHGmEaa+zFFmHN9bVKaNroQ68pzFHtSd5mMP62HcZ/h3CvJKWMq\nr0WW6c7JIRnsTinfHjcdn3lJ1v78+jPSLwHxlvdWj62Pl68Za9Fbi/NFT5J5SjD1FWD56ACHvKcr\niSMb0FNi9hdlx76Df0I/qPQi2YeQUbqOZIkp7k576FvCr7YcUvTjbr7Dso/+7Rnh51qMvKB0+zuW\nzX21ln3/KnHM4SdwrUHUUCOxSPbw6vZS30bq5eApkbnssReQG0++d6ZlX9go94jRq+dZdloa5rKv\nTebny35yg7mSCKI5k7pa9iPj/nHREzAHE2bImN9Wgvw9NAL7lV2yOH0l9s/aLehzMUi9pYwxJoXi\nY3QqjglLxnppOiwlhBMno6dIyyHsQYE2GeZ2eo9x07UePCP7Zkxz4e/nrd3ILyP3ytyB+3Ry7sSS\n3f9zIZhboycbv0L0fbM11Iuk3ngN28stO2qs7IHkbcQ9il5VtvPFT8F6bjiKPj2xY+V66alErhdH\nfdm4r4rPI/cdzl8Z3TWyV0l0DuXNtGYHbX1S2ynvDqe52LSnSvglzkFPzZ4m9O/h3mjGGNN+DPMv\nee1FL/UzIXYc+hTV7yoRn/EYJ01HLu9wyPnNY8JjmjFL5iBlm5EXcX+f7Otk1tZ6lt9J8NxrN9H6\ntT133t9bDuGZ2fsieqkPZOAo9IGJipom/AYGMP7OMdSPbIwcn6EhxJHBPlxTeIZ8Rq0nZV86O7Ry\nRqFQKBQKhUKhUCgUCoViBKE/zigUCoVCoVAoFAqFQqFQjCAuS2tKnAcZQHuZbnAsaAgBVNLlOVAr\n/FJzURLM8mUtB2UpbaATvxPt3QgqRE2LLH+/89vXWfaKexZYNtN1uGTNGGPKX0bp6y9ef92yf/KF\n24Rf5gyUlbUfR9mhvfSOKRi1G1CG2Fwtr9URhhKpw1tBTZgWNkn41bfJZ+tvjFuIMvcLr0lpubxb\nIIMbW4RyttbTsuSqeS9K2B0kBTrmZinN3XYaJXwlVFYdmypLuvoHUO71X794wbKvmojzufbL6Tnt\nqyjB7SlHiVncbFneWleFseMy9M4zHuEXORallq5YlDK2HJFzmMv1m4gilnpeyr21n8D3FswzfkV4\nFkrh6z6Spa+ZN4BiwnLujTukFKih6ruGUlxrWLYcm9RVKOflcvUum2QcSzcP0/qr2oxSw4RIKRvP\nss1ndp+zbLvUZDjJZMZNQRlih+2ZhyUivnS2Yr4xpc4YY/o6MQ9SFoIuUb+tTPgJGcQi43e4YogK\nYJPx5tLYirdA58lYkiPcmrahxDMjGbGpq0uW55bVYg03nsaznjRK0kXaL1A5OMlsp8xA+WhPVYe5\nFLoqMS+GbGXUFeewlgIoxrtt8qYsH8ty48lZMvYOeXH+2GmIV3aqR8oYKXPvT8RFgE5w4b0t4rM2\nKj2veg/zceUvviz8mstA9/U5MTeZKmKMMZmrQJtNno9x+8W9Twi/sJOg491C1LTsBDy/5BmSvjg8\niH3yprULLbvDRjl74b/ft+xJo1G2Hxcu1+yR8nLLHr0Z977tlKSm3T8NFAl3Kp7l9/7xsPD74PuQ\n1r7tySeNv+GMxDMbttF9Q4iq102SupG5ksradADxtpfokoE2Gi/L9PbRXHVMkXucrw1rmKWvmbob\nnS/XBH+XgyR641plPOipw94VQZRcjknGGNNHVE8+t738n+O/k+Km/RkN2Ogi/kRONvaGuBwphTz7\nu6BFdNfjWbaebBR+ISRpOvZayLf39cl1wJTNk6+9aNn2fLO5ElRTpr2lzZhh2S6XfEbFD2L+Hf8L\npJWfe+594TeroMCyy19ELneyUlIkFt+L3Hj7k9sse+r1ksvSUo512kftBHb9cZvwW/g9SQn3Nwb6\nkQ9WvSOpV/zeUL8RuYV7lNymD7KdAAAgAElEQVRDwhMwb10kh9xsow87SRY7gGg+Tlvs7anDem45\nstWyUxYgBkaOkuN44XmMHdO+B71yX/Q2YJ947M03LfumOZKa99Fu7BM33L3Usvtt+x1TsqJILn2g\nU+YYsZOktLY/4aa4wRRPY+T9clsH3oOMkVROjj32VhCcL6ROnm7Zvb3lwi+B3mETxsj2FP/EQPel\nnyWvX6akG2NMYCBisoMkncNSZM4bW4hraDqC+RuWKfPu3nrEZ6aX2+kwrkg5T/2N1rPIG1Pnjbuk\nX0c1crv2M3KPd9B4ZS7EnK7aK9tg9LWy3DxygcoPZTuEiDzEAHcscrvoCaBfdpxuEsd4G/FZVy3W\ncuM66ZeQgXMn5oNy3d0t5duZct5ejmcUmyPz86AgtJ3weZB3h6fGCz+75LodWjmjUCgUCoVCoVAo\nFAqFQjGC0B9nFAqFQqFQKBQKhUKhUChGEJelNcVNQAmcXTWJkfk5lJMefW6f+Cw1HyVIXK5uV345\nfgId2acvQim3z6YswnSFdqI4ROWi9MsRKpVfIvJAkSjOzsa1npSdqD99G2VMX70fpdd2hSNG1ASU\nztpVbxxUmpZF5eXBMbIbeEqCLI30N7yNeIbjH5ohPqvZgHv2lOB5Zq2QSj8+OgeXWNvvxUWl4gOD\nmDNDvbKT9td/9zvLTkoHLem2uXMtOyxRls037iX1GKIypU2dKfwOvo6y4tQVKDmz00j6ifLE5Z/B\nsbJcdtO7ey37qptwffbS0sQFWeb/BcJtZeM1GzGGQVRe6c6Q5ZVMx4ssRIkdl1AaIxvjh8SjRM9p\nK8Nj5bQL+7B+s8dibHwNcv0yfSwvD34xEyQNpZnoAmHpuA+7UtXQEMplQ8JxjthYOSfa249atqfs\npGWnLJIliX22MmB/w0XrpXyXpFQlDqP8lZVrkmwqcLUelNtPuhld7YNPSCpi7CDmSd0OlIlG2Ghs\nIUl4ply620tKLfsPSuWXomZcnzMS86KnRY53aiLidRSpL/TWSppUI6kTtLWifDTnqgLhx3OYqSj2\n0vXw3BhzpcA03qbjdZf0Y1WAoCC5J735K9AV0mIxTukpkrJCX2VOliD+NXXI53fNkiWW7TmDdXmq\nGnRUVvkyxpj+bsz1u7/zH5admSH3sWl5eZYd7cZ9jLXtJfndoOtWf4By3jvGLRN+XKYdEIi/D617\n5BXhNz4z01xJ+Ij2wyXVxhgTTuoqTfvwDF3Rcr9jKlNwItZRgBRwMPU7yi07Y1kR+TmF32Af5hPT\nJ8R3NkklHZcDZe4co0PjZayMyMaaaD0O9SiHTaGuuxI0rt4arMUA20310Gcx46GiM+iVNCZWw/A3\nCu9dRP+SedrZv+6x7OQloATmrVkl/EJDsQ/VlmJddlfLNXbuA5TuMy17zGpZ+s/0p5QczH2nE3lF\nW9tBcYwjBPOAn/I7m6XKW2I05mVWJva7a395vfD75D82WHYttQZImChjQEAA1t+o23ANubb8vG47\n9qrkW4zfEU57EtPljDEmnOgfQ9OguNO4SyolpZE6JVP4mOZjjKSPDFJeGjVO+oWlIe/gud+4DxQy\nu+JbdBHWwR8ffdmyb7HRlU5TXC6k/JdpqMYYU9YICl5/F9YVqxAZI5VuWvaBbpK4RFKYPZ/ie3Ol\nGM1nRssxxJTUBZJi2LAPOWoIUc4iR8n7jZ+A6z379E7LTluVJ/ziEtA3YHAQ8aVyxy7hF0Ixua0K\nOSqHstyl14pjGktBvSl/Hbli5TnZ7mDiLci94gqQR/a0yjys8l2owY27C205ag7Ja+UWDN0VoIpz\nCxFjbK1DFhi/g+lpvS2yjUDzQeRZmctBkbS/W/G6KN+0w7KZSmyMMRH0LuNtIqWu8VIZMCKD3p+D\nkUc6IxAD0lfJ2Fb2CmifX/jlLy37ppUrhd9d89ZYdlMJ4nJkumyXMTiIewyh95jhYZmfR0RgP4gh\nVSeHQ+YYTM27GLRyRqFQKBQKhUKhUCgUCoViBKE/zigUCoVCoVAoFAqFQqFQjCD0xxmFQqFQKBQK\nhUKhUCgUihHEZXvOlPz9sGX3dEgZxQ6SDQ4k2aykdClhy/0MBr3gd8ZMlD0mUmvQc6DkQLllH6uQ\ncsBfWAIeds6sGy27txdcytJNkqf74bu7Lfu19est++Vf/1z4TZ0FnmT9CXC/+/olh7r4LpA1vWXg\nyaVPmy38SjdCZjWHJKs9ByV3MTRd9gbxN5h/O2jrHcQymq0kAzvGJgfnzgan1U381raTkl/JEp1u\nF/HfM2Ufl98/DNlUlkvfeAS9Me7/kSQ3M9+/cRfmRdAMya2f8wD4qO//FtzrcbZeCsnz0SOG+6xs\nWrdb+IXSfbAct88mwVd7DHzMgvnGr2jaDW5l9PhE8RnzODvP4fpctn5ADZvBGw9OAo/V3nOA5QyZ\nCx4/JU36kcR4YRh6gxzdBJ5u/njZhycsFfOK5ZntcqtRBeiJExKNuZOWc53w6+jAfAkIoN4nPTJu\neEpxTSxR69kne5WwBGfWxZUXPxMGfYiByXlyHLnHQSzJFNt7XmVkgY8b6MDv6yw/bowxPVXoHbF0\nFeQmg229KJr3IHamXAXudPkucLRTY+S5T1RiPk4aD+l1l0NuKeHU74t51PZrZXnqtLXgDofESb41\n96/wUX8bR7js3RH4f+HzfhY0U7+X7NGp4rMVKZBi7CrDnvbGM48KP46NSVHUL6BF9hLIWYJncfU9\n6Oly7M5y4bfrLORnr791sWVnrgBXv+Os5I/zmnv73cct++z7J4VfQgrGKnFBtmWv/5mU+b3jCdxj\nWTv43km2Xlyt1BspiqRKr/3xNcKvhfqiXAkMUT5iny8sn8091npq5PiwHCb3fbDLKydNKMYxDqzt\n9qYT8pqo55OX5rc7HmMQmSp7RrWWleOYRuzh9r5Ohvr7RI/Fc++keWqMMSkL0PehkvryhNt6gQTH\nYX9pIelcl02S2C5B608EBCDelL4nZVpjpiDHTCtCbxruUWGMMdVn37Xs2AzkaV2VO4Xf2Bsxhrue\nRb8Ie4wKIUnnE689Z9k8j2LGyZ4K3HPGR/1sXv/rr4UfP/OofOyRZ/8kez1OvhH9MPIp7r7yraeF\n3xjqqzD9u3da9vof/En4TaTeZlcC/S3IORzFl5aY7ab1lzBT5nPHn0Zvj8gIjIk9v3aE4VnHTkFf\nTXsPiNqP0JOSe5hxP424iVKa+tSTkNLmZ3vnz+W7xt9/+EPLHp+bbdnuLJknLw4Yb9ndpVin9jV1\n7j3E7PF3YaxajsgYyn2x/I1Ikjuu3WaTVo7AmDpIur63qV34eZuxNoPjMdf77XLXg5gvrY0Y94Sp\nMkcNDsb+3FKGvnm8Bznce8QxLOVe14Bc0REo58eBF7HmptyKeG/fZ7n3Y8NZXGvihAnCr6UU39tF\nY82S7sYYk33jpeWt/QF3HOJm4xHZazBhOuZ0VyPmll0SPWo0zuGmnL+3oVP4+Vqwv7Bcek+1nBfp\n46+y7MBAyp3y8M5dc3SbPDf18Ll19WrLvunmJcIvZQ7WWFgY8qXeXvkO0VOLa3In456cTrkfBwai\nX1dwKOJD9c79wo/7514MWjmjUCgUCoVCoVAoFAqFQjGC0B9nFAqFQqFQKBQKhUKhUChGEJelNQW4\nUJ4Tky8lz2KJltR5AaVfw7K6yVSQXGzRF1Ba723uFn4s+VndjLKwJUVFws9BUsEsA9hWhzLq0h0X\nzKXw8wcfxPGBUhry7BFca04+yrcG2mVJXcUbKNlLXYGS/sO/fln4JS8HBWt4AHSiUyQrZ4wsa78S\n4LLyIJeUSAwjmcJAKttrJrlAY4xJmodz1G8rx/lskovtJON6ksb0wn5Z0vXQN0FJO/ksaGg334CS\n/OFBWbrpbYSEaBiVfzaclzSk3lqUzk3MRYm2vRR0x6uQyD5JNI3ZhYXCb9JNKBNlyTi7LNyhVw+Y\nK4VAKqW101x8JEEXkoySarvMecQYlNE5wi5eZmqMMV4nUWVIfrWNxtYYOdaBTsyDwsmY9y0XZInn\n8GZcO1NReF0bY0xAENbmYD/KE2vL3hF+Hi6np7LxxIlyDBPzQDdxhh+z7LbT8p689VKm1t+o3YoY\nE54gpeKH+xEj+qi0nalLxsgx7qU10VMhS0GjxoE25SM6EMsEGyPLkT0klViwBuWzJetleevGw6C8\nhjgxdpMWyJLboQFsCGnLECtLXjgq/PLvxxoLcmHeRkYWC78Lp96ybKbtBWXJraz3Co4jS9jm3inL\n/b0tiD1/+95Lln3nI5KOx7Fty9Mox517/XThlzEHZbsvf+N3lv21n90p/LjEmuPc4dcPWfZ3n3xS\nHPPuG09YNtMlZn93tfD7x8OgQjz32O8t+9lffVf4MV1kwsMrLPuvX/qj8Pv8H+627N4mpjbKfTZl\ntlzD/kYoSeX6WiXVhaW1g4jm6QiR88wxAXOhm2hELtve4CXadR+dL8h2vrgszHdPBdZI4yFQDH1N\n8lr7PCgNT5wH+XEeU2OkdHg3UR4TZ0h6SGclSuqDaG9gWqIxxrQRZSJ2GugDfe1SVtVONfAnOuqx\nb3eXy/iXe81yy37jW5BSLVomYxRL1XoGQZP9zjflvJ07FrT3pWtmWnbNezKfG6Rcb/zXIaVduR4y\nrRseXS+OyUtB+Xv2zGzLrt5vy8PGYL6dewHXGpNrK5Gn1NZbh1i46uvLhVsZ5bKHfo14VbhYrj27\nPLq/EeDABbcdk1ScJKLZcZ5x4CmZ9xWuwPgEk9RtxzmZg2QuhQRw82m8K4QmSnoar6WtT2617Iw4\nPOtNL+3gQ8x8khdeQrT5wSGZs8UUYW8OpJzcvnZG3QLKReMezAV3qpTljSfbcxA5EVNFjDFmoFOe\n35/oo9y425aL8DtIcAyec7BbUrt97aD2xBBlrJkkwI0xJi4flJOIWFDqme5kjDE+H1pI1BFNLWwU\ncqD9T8gxTEwGfTOR3s0i8iWtc6AL+xVT5ZLmZws/filmSn1l2V7hxu8TmdeAU1/xhqQZx4yRlEh/\ng/dx+3e1nCC59OmY685wOT5NR8otO64I49i0W8YzJ1Fgs1cjR+/xyHYZ/f14bn19yNmrtyEGthyS\nccPhpHcmGoOBbhnLuhuwXpzpmBd26euQOFACQ9zY7/r7JS246sIblh0cibmeNmei8GurKDOXg1bO\nKBQKhUKhUCgUCoVCoVCMIPTHGYVCoVAoFAqFQqFQKBSKEcRlaU2GOjCfO1AiPsqsQfn2ECkAhdtK\nv1LGofyHqQo1H8nzzSpEaVpXD8oJl/3iR8KvsxPl9Q21H1n2pt/ATrTRhPaQkkU+lY8G2egc876K\njv5M60lbmSf8OsupkzZ1j09aNlr4HV2H0v8ZD8217MmrZam+vfTQ34gZg9LBTx79SHxWMB3qLJNv\nnWouhYYdKCPk8bZTj3ZtRplZYSrGntVnjDGmqwwl0vPGoITP24CSuuxrpMrHQD/Kc8MjMF92/Fwq\nECRPpBJrKseNK5YKYV0lmIPT8zDG0784S/g1bC23bFYVYCUaY4xJipZ0EX8iNBXPLzRRPktW6IgZ\ni7FuO90o/IRa2niUK3bZytUjRuO+hqhE2/OpVDZyZ1HH8kiUJw704plHpcq1uHsfSjQnZmfj+Cip\nYLbpTZQss5KPI0jS6LjEuI3UxuzUr6hcPIsgUsaInyxL7vuuYNmvMcYkTgNdsuOYHJ+uUoxD2lKs\ny8HeAeHH4xOdi3hWWnVI+LlT8Nw49pa8dEz4Jc0GrSGeri8gAMdkzM4Wx/wo9w7L9jWDLmFXqUkm\nOiTPiwn3f074NZ0HJTA+F/Snri6p+pA6G7Gzbj+orFdSnckOLot9+/uvi8+cND9vvAeUhkaKIcYY\nEzkWhehrf7jGsgf75Lw98dTblt3Zi+fsTpYlt7MfhEIdx4fu81DC+8sjj4hjmO4QRdS2V//t78Lv\nOCkmvvbKY5adNn2m8HO7sW+X79qIa/DJNfXW9/DMrn/sVstuPSfji9dTbtnxfla/M8YYHymDuG3q\nOTxXmYLNtApjjOkjumAkKcz1d0qKVn83xoHnaqBXnq/VhzkdQqpqjTsxBqyAaYxUPgtNoljpkrSm\n/mTcRwBRmFkVyhipqMel+0M2pccBUnocojxgoEuONyvU+RvHnwGdj6mgxhhTuQNqS+PmIV+wUy5C\nKU4+9+PXLPv7X5RqkV6ikzkjQQtuapPn23wM8TV5CSg5J3afs+zRSXK+RVAu8fqLUPl86PF7hF9I\nBLcXwBh2NUlawfl/IA/jvGfAK59R5lo8l3NvQjksxabq44qUClz+BquepSzJEZ/xXu4hZcHx18k8\nuu0k9lPeh9zpMgfp7YBfaALus6PEI/wat4Myx9TdeKLbOGpkzPrNk69a9g9+/AXLXvH5hcLPSQqZ\nHqLsZFwjJSIHey9OJwuOlxSslsOgZrSWIdaEuKTy1ajbpUKQPzHUR3PLpt7TcQHXFEbUkZ5WmfcZ\nOqyFVG05fzHGmJAQ5G0DA1h/F976RJ6O4xLt2/s+AmV0xgo5jwzlPaFEH4svzBVupW+DltS4DfE5\nZZmcv0wJTJoO9UWnU1IRmYJV8zFiRd7dUgW44n2s7eTPG7+D1Yf6jXw3SJyM96SmM8jlI7Lku5Cb\n1H6biSrP69wYY+Kn4F2tp/Xi69cYYwYG8HvDMFGUmMLHqr/GyHzplttA54zMlb9R8PuApwT7L9Pv\njDGmrwPvfl3ViJXdlfIZJc3NtuzWM6BaJU6QrWHs1Gc7tHJGoVAoFAqFQqFQKBQKhWIEoT/OKBQK\nhUKhUCgUCoVCoVCMIPTHGYVCoVAoFAqFQqFQKBSKEcRlm51EFIITN31Rtvhs21OQ/xyTh74CETY+\nF3NV6z+BdFRUvuTbnd4LOcL8YnyXwyH7awwMoN8L8zGzEsDn8nR2imP6iYs8qgi8eHdGpPDzNoGD\nH8HyssTnNMYYH/X4qCmF5Je9H8YE4sQyb7Zpr+QHs2TflcDBx8G9zp8i++KkLMS/q9eD5xhmk9vN\nWA1uMt9Lw85y4Tdn2STLfuXlTZZ97SLZx+XIIXxXbx947YtvgF9biXxOuTMgH9vQ8IFlT7h/hvDr\nKAV3OJr6ALSfkLLJS65BzwTm8NZ+KKXYExdifvdTT5K9r0t58FU/XmOuFFj2vf7jUvFZMnG0e+ow\n9wNdcnk7abqzbG1UQbzwY4ls5n5m3jDWXArMq+X5wX0tjDFmWgF4u8EkXXnwI9kHJYc4+Q//HvK9\nt69dK/w+OQHu56RR4Pc7t8gxTKIeWSwL37CzUvgNkBxklqR/+wUN+zGno9LlGmNZQe4z03lWSoEO\nUc+Z3nqso+wbpERs+3kcx2MSYusf0LwXnGDuv8Dy4+1ueQ21Jfh3XRs4t6N6pTRm9VHc75zvXYPj\nD0sZ1FEz8ZnLhT2ko0Nyj4OC0CMgLBU8784yKWfY19JrrhS2HAcveV6hlJzlqx3owZoIGy3HumwH\n1vArz6A/y6JxcgxPVKH32XXfgsR18wHZ62CI+nq8+BL6ii2k86VOSBXHcIwvfw388WX3LhJ+12dC\nBvy/H0Y/mm9Mkf0LKs+us+yeSvQBWLVIyoNzz5QXv4nzTZ9QIPwa6hDHC65Az5noMcgZ2i/I+R0c\njX4t/SRvG2nLW6LyEDs9R9AzICpfxtRhaiXkJN69XcK7pxZx6vjT2F+45xP3CzNGSnNznyg7uF9O\nF/Hkg2NkbxruERMxGmuR5beNMaaf+tHwOULiJFe/t5H2AD+nOgOD6IMz5T6ZY5S9jHWathq9EkJs\n/VQCqAdQYRp6WZw4LvfZJV9dbNkfPb7Zsru8Ur73xy9907Kr3j9t2Qu+shA+D0iZ7ll1mPuf/8lN\nlt18SK7zIDf6MgxQXyNnlOxfkHUtNq9AJ+6vs1TGyWHaF6Z/G30ZuKeHMcb4fDJ38jcSZqHvWf02\nKTHL48Nzk3uSGGNM+ho8Q+63198l+3hxLtX0KeIr924yxpi46YiXrrN4vhWfluN6huX+dNUk5L8l\nW7A3T3tYBjAek9gc5G9DQ7LHzHAIYk/uDegrVvahlGHmfleJs7HI6rbIOewMu3yfi8+CYeozk3vP\nFPFZYCDWXMlreyw7bYXs58kxhnuCJs2V/SeP/e0Fy+Y+kE3tHcKvpQuxh3uRFhXhmbcdl3M7mnqD\nhGdwfxwp1ewiuXbu59i0R+aUgdTTZKgfczE0SfYqcbpxPn4vK3npU+FnzyX8Dc859Gi19wvjtRiZ\ng73Q5ZL7Ykst8nJ+v+g4J/s6DXIfM+qDNtQv+5uFhmL8+/pwjpSleE6ZETJh533RQXPJ3uM10EHf\nS3N4sE/eO++ZoUn4XcJpy6fbz2I+BYXguzobZVzzUs87I9sU/c91/et/KRQKhUKhUCgUCoVCoVAo\n/l9Bf5xRKBQKhUKhUCgUCoVCoRhBXJbWxOV/vqZu8dmC+1Cm109UAC4HNsaYTf+FEuvFX0FZ6L6n\n9wi/dJLETZoPekJLiyzfq9uJUsHgWJTPhpP8Y8s5SaX4yT23WXYbyeWNvk5KgZ5/YYdlj7qlyLKd\nYVL+K5jKBuNqUf7JksbGGNN6BGVwwXF4Ljl3SOm27X+A/Nu4FcbvmPAFlJVXvSGlaVuO4xrTibrU\nuLtC+HEJM1NYzu2S9JEpd4NidP+/Q4rS1yZpBvV7IDN++3euveh1x+fLEv/y469YNpc/BobIafyf\nP0Wp/OdmodQ5e4GsHTu9CSXH41aPt+ykRdnCjyUaWYZzydeXCr+BS8ge+gMs+5qyVN5HyzEqt6Qy\n2/ip6cKvdjPGKmMB5oTn/GnhF56N8l6mP7FtjDFhyShXDEvB3Kk5hvkcGCypfsNU1tlVhRJUu9xu\nM1ETr12OcmsuYzfGmBUTJ1r2GZK1nJAp6+crjxOdiOgM/e2yJD0kWdIo/Y14kjq3ywU6IxBngqlk\ntq3HVl55jmQpczFWPfWSzln+AcpTU0neL21NvvDj+dOwrdyyB7ox3nYJxMQilHzHdiJ2+5okTSO4\nD2uzdidKXcMzpbzpwABiZ1sbZLU7yhqEH5cPu0jKt3KnLBnNWSnpRv7E/b+BjHj5yyfEZ8dLyi17\n3wWst4f+++vCL2s55DEnNuDa9//3LuF3/Q+vxmd/lp8xJtyIcvrb77jKsr312As/+lCWR69Yg/3v\nvQN45g+tlfOD6XF87/39UroyLh00ON9YxPuEMTKOV22H/PHE7GzL5rlsjDGhHjmf/Q0u0XZFydJk\nLueOpjUbnixpew4H5nHQdMS6gAAZ90JDkdN4KiDjapfcbiKaZeZcHMNr0dioFAl5iIGDgxjvruYq\n4ReVhDUxmAQaeXetpAJEZMbQZ7TP2mJ5EP2bpVPbzjQKP7vMqj8x+QHs70wZMMaY+JnY/xLHIOfa\n/6tXhV9EGsawogkl6bPy5TqIzUKOsOJh5MZ2men4+CWWHXpjtmW3VoM6+JUvXMeHmEO7sQdv/dNW\ny176rWXCj+dBzR7sd3n3TxV+z34DtI8bvr7Ksnur5FinLAfNuKMC+0BPqKQfRKdfuXhqjDFekqRn\nGqExkraSex/oMm1nJR0lgOgJ7jTMR0eoU/iFhGP/T16A/++y0fY4JjAlsKoZ8bDHlrdMziGaxY2g\ngQ/b1mzJ85BDDsvC/EtdKKkZQUHIR5rPYj/Pv2aV8PP5sE+ee367ZWeslePmOYoWDSkyPfzM4Jyl\n7HVJU3fSs2QqXUiUpH8GBmFOD/bjmdVuLhF+6auxNqvew3MpWi3pVE/95GXL3k3P7we3PmDZZ149\nKo4poFwpgKg2MfGSnuttBrUxlPJGV5R8Bx4eQM4angJZ+8BA255DsdvXSnufjakamSufmb/BFHG7\n3PMA5V99rdjjuytPCj9+33XHIFfMuuHSlCKmgUenSoqzz4fY5PViX2MKreeQpDkmzARVMjQWe5B9\nbw4LA7WusxJjGpEr4z9TAruqQXFKniH9+r2IsR0lyJFajkpanD3/t0MrZxQKhUKhUCgUCoVCoVAo\nRhD644xCoVAoFAqFQqFQKBQKxQjisrSmhj0oH+Ku18YYM/fboChV7AVV5vyGM8Jv4YMLLbvkVXTP\ndwTK34UKv4SSMaZTtVXIbuMJ01CLd/SPUPyobUUpVvEcWcoXkoiSsxNvoKS68rt/F35TloHKtP83\nW/H/X58n/I78EeXlM4iSU1kh1XuGfChnu7AfpetOWwl1dqpUX/A3uKyuuUWWblauRwmy4yOMY3yk\nVLJiikz5qyhhm/31hcJv9+NbLTs9HSXgrc2ynLY4C923y97C9+bcDAWQ1spz4pikXFABupNBGVj/\n7+uEX04ySgdrWlBWFntKUilmfgXjWrMeZd4JszOEX/0ZlKPlrkLZaWepLOtn9Q9/g6lGnRVScYHp\nHUwbGhqQFKC05Sjfq9gEWuFAlyytjx6PcWs/jdLh5AWjhJ/bDXpVRzvKdLkE2K5uMkTd2Z1UIumo\nkfFgVCKuYeOhQ5b97WslBS6MOtyHOFG+zAptxhgTEwa1gKZdoA4E25Q7wjLkHPE33HT+5t1SjczX\ngNLutkOYc+EFUgGPu9/Xb0ZcaT0syybDot0XPaZynSxB5e7/WaT41EdURI7JxhhTdYqoflTanTom\nWfgl5IBe1vBxuWVHF8q1UrLpPcvmck+e9/9zDtyvUIdYI8vB7SoD/sSZpw9a9rZTkia6ejFonVG0\njr51zXeF32/f/bVl83oOsu2LTL1Z/vOHLLv8k4+FX1whqU+cwL7YVIsYxQpoxkgK2mj6rHGrpLSG\nZmIvYAWNXhuNt7oEZeMfvoM98pZH5D1lLQQlOigU18rUTWOMqWiWCkr+BtOVgzKkAkYvKTcODyGm\nOp1yLTqdOC4wEGXPrVWS7uZKw7PyUTm4m9TRjDFm9J2g37AiF88DVnQyxpjWk1DOLFx1q2V7u2U8\nCAlBeXlYBugs50pfFH4dRP0OprJxb7Mcb54LTLX6F6W0K0hrYspK6RuSSjHmAeSoHU3IFzJXyTJ0\nZpyMKUOes+mYPF9WNXxE5k8AACAASURBVGIjK1BVrpMx4MwQKIJJcxD/OJ6G2sY9ORrzKHsuqDGP\nP/yM8Juehz28lXLyAscc4Xf1PaBW8Z6bc5ukPzXsQ349PIh5njJb5tBvPvIny/78X/5i/A0XKRUO\ndMh8pJ/ymLqPQW8JstHZu2iPii5E7O2qlPnSqT+BupC6Cusg0CXpDh1ncVx7HfJmplznp6SIY+Ln\nIXdsP4f41X5UUv0SF2dbNtN82kpsClTFoLXF5uE5eL1SxavpGJ7LQBv240pbG4Psm8ebKwUXtbRg\n9VNj5NxiSlLlxsPCL4wUdFnVjmlvxhjTR6qp7jSspZI3ZNydXQB6zGu7sde89/sNlj1rlnwmQQ7k\nhOefJVXJoCPCz1D+ETUe+QzTQo2R1NC6XRgPR4SNMkSURVY5DU2RVHu7kpG/ET0W9xKdIVsoVO9A\n7hM3EXOfVf2MkS0e6vbjvT88XebXYUlEEw6lmLp1p/BLnIn3RZcLuazXA5pe4hyp6NVxHvtY0178\nlhFpU1LsdGOfjC1Em5LeLqnSzEq9HHs8J8uFX1IxfkfoCEQMyVgySfhVfyznvh1aOaNQKBQKhUKh\nUCgUCoVCMYLQH2cUCoVCoVAoFAqFQqFQKEYQl6U1RRMlIWpAlmpx2VIalYlmBMnfe2o2gi7S0Yuy\nzsmfnyH8mg9S5/llN1p2f9c24VfyD3TWZipTVgJKsZjGZIwx7cdRUvjsZpQ03rNkifALH4V7jKPS\nYWeILHlOm4lS1YEBlKz12DrhBzrxLKbfB0pOxwXZCZ+7ul8J9DagXGzKQ7PFZ80HUUbJHe67y2Up\nKKs6RU/As654XVIk4iJQYlhegbKwSdfLkq6uMnS7jpmAknpW/sqecbU4pqMD9JaW06CEsMKCMcYM\nUZ3y/Fuh5mAvgz31NMqPR1+LMahdLxWoEjKxDuLGozR892ObhF8oKVxlPPY5409wiafDph7W3wE1\ng9bzpG4TIKkorLLFnfXDs+X8jskBfYkVMILDpZ8xeM6BQSjRDKLy4K4yWQofQjQipq8sLJJl2b0N\nOO5XRffhegakIkc/lfAmRaNcMSRZ0pW8dD43KQV1npVrcYioVkZekl/QcgDrLYlKm42RdIDSjxE3\nE9Ok3yDRJbfsQ6ltUrQcn2g3SotjK7HeUlbIUlUu/2TqQhPRWu0qVsHUud4RhPEOGyX3CS4F5Tlc\n9ZZUCPN4EDvP1yFuLF4jFRKiihArOk5i3TcSZcqYf1X+8Sc8RCe44xvXiM+a9yIuJRZjXxyTLqUx\n3v/BPyybKXh3//lx4bfv8d9Z9lM7nrfsmHA5HoHrUH5dRJTR3CW4hogcWXpctwWUhmyiEUaMkVRE\nXjtpxaCCXti4XvilL0cJ+SLaCzvOSnrSX378bctePQXqGn02KuLyr0k1PH+DFQgb91SKz1wxiI8c\nRhNGy3L99hbkI6Lc3EZP83oxp0UstynJcExMnoc43Hoacd2zX1IamF7EqhaJKVL6saen3LLb6lD+\nHzNW0t2CKJb3ehA33MmSisN5RQ/ZAbYcsJeVPiWj6LODKElxM1LFR/v/E1RJbz/2vvTxacIvbgqO\nSxqN3OZLD88Xfmf/Ato6qwbm3SlzGwflGd11WAcRFBsjkiRFmOdOztI1lr1yn6S+PvMx6Iy/eOph\ny37+G5KiH0Wx/5pf3mTZAQEyByrfilxn5nfWWvauR98RfsXzJG3U3+gqxzwb7JO0jfCMSLu7McaY\n4Hi5x/O64lzHvsbSSI0uKBjP4/gzsi1BZASeoTsMtCumytiEdIyHqMqR45CPxE6T9KfeOrxfsLKN\n/Vor94F+U7Dg85bd2SnbRwwPIl9gGpi3VVLEepmaKFkgnxkeeoezK265iOYUFIJ7DAqV8zG5GPtB\nT2e5ZbOSjzHGHP07xqqJaGaJtnYMm4ma+J1/g9JgCynpJi/IFsdUbUBMz7gO9L4jf5HKwUznDqkH\nfZhVw4yx7SUOSZ1jOInmxO+Sg30y57Wr9fkbg73Yh+2KjNy6oZvncLRs1RGXivcpbxrtV7ZrH+jD\nvhHiRlwOHyXfG6Kipll2WytUJ6PysMaYimyMVBfMvRb0wMBA+f7k82FvHhjAOSJjZMyrPI3fIpKn\n0v11y/xmaAhrrrsCcS0qV75Th6ZePK5Z13nZTxUKhUKhUCgUCoVCoVAoFFcU+uOMQqFQKBQKhUKh\nUCgUCsUIQn+cUSgUCoVCoVAoFAqFQqEYQVy+58x4cJFZHtcYY04/A0mtXJI/rttYIvyiJ+IcNXvQ\nn2RJtuyzcuGVVyy7/fiTlp1zj+TznilDHwTm/aYuAof3qd+8Lo5ZQ7z2Z/72Q8v++AUp15VUCD+W\nHzz6u43Cb+tJ3MfdJA1WXialt/68AXzRjNfA1fvmfbIfCfd8MAXG74idAHnbDpv8c8J09EJop94A\n7bZeHNwvaNrX0HcgyC35e7270HdlzFxwe0s3SllstwvHpV8FeciIaMyLsj2S91y7GT0SUpdCbtId\nLCXp1n5puWW//vgHlj2/aJzwczkw/TtLwAdsJJ69McbkF+E+tv0CY5qWIeWAM66W8pP+xNDg0CU/\nY462m6UII1wXczfGyH4L7jQpb9degTHkHgi1O2WfkEAnxpTl2rlvUOLsTHFM1TvgSsdOBde//ZTs\nG+RgGcU68E/D82Qvkd4acERrazF/c2KzhV/MRKwBlswcskkus3TslYCQn7WB5Z+5R0LZB5JfnnMd\n5vGKpejJ8vaHMp5dvQT9lrifDfPsjTHGRf2HfCRZGTcNHOC+VimPyz19zh+CvPX63x4SfvmpGOMx\nhSC5v7Jph/C7bgZ6kE0ahVje1+IVftwXK2Ee5la9bd+x91HyJ4qvm2jZbSelROqnxyEnHfAsOhIs\nWy17rCXMgORq+avo/3F20wvCL3YyehV87a4vW/ar/yb95q2BRO7JrZgvnVswbpt+e1Qc09aNdfXw\nvTdY9oH3pWToyp+iF8XBXz1n2XZ59Qh65s9u2GLZ03Jzhd9dD+F8qbMhY9rXK/emC89CanJUsfE7\nWk+g70DKwtHis4Zd5ZadNCfbsjvbpDRt2xnELe4pwv3mjDFmoBsxMTIDe25HlewpwhLNrkjw+HnN\nDnbLmBU/C3PJ5cKe1Ncn9/CICOxPQUGIc42le4Rf+znEf95DnDbpV+4nxc03eG4bY0zTfnmP/kT9\nTlxriq13ROsR9OlJGYW5Wb1XSsUHJ+BZZF2P2Fq7RcaUhLm4rxiSarbfH8fTMIpXZ55DbJz+Hbkm\nMhfMtexDv3/WspNt++c1XYj3zdSP5u7H7xN+VZuw1jlWzFxQJPyiY9BHyOVCr6kAW7+6UatnmSuJ\n3hr0r4ifJftzNexCP6joQuorZ5Nr5hyp5RjWdusBmZezFHbhSuSbuWvlO0njFuxrEWPxvbU70d8l\nZ1K2OMYVjTXSfBDfGzshUfiFZWE+th3DPB3okj1i0udjvM/tQl+hVuqZYowxrZWInfEF+K4Lh8uF\nn4xy/oWvGXtN7i2yt6XnDHJ3ZzDWROo8+cJTdwh9IOPGY+77WmWfrfzl6AeSXoP+LP22fOGBRdjX\n1r+03bLveOxmy3aEyn4pYdm4j3U/fRv/b3vP8NA8uuErKy2bex8ZY0zMKKz17ljcB/f3M8YYVxSu\nIyoXa5H3BGOM6SCJdnMF9sXIUZjrfV1SwrzlOOZqOsWSxsNnhd9AL/7NeW1sjuy15TmLGNsfTz18\nYuXabqrE2A1T3xr+XcJ+TEgcctTudnxPZ4V8v0uagIcYGIj8vGL7J8KP76P5NHp1+VrkMxoeQFzm\nPLSvQ87NgR651u3QyhmFQqFQKBQKhUKhUCgUihGE/jijUCgUCoVCoVAoFAqFQjGCuCytSZQJ2TTj\nGtshIZ1BJfOxU6VkXF8rSnmmTUZZ7fafPy/8Cq4HNWqY5HtLnjss/JZ/C5SV9b8GxaR5J+hO937t\nOnFM5wWU/P3x0Zct2y492+FBOXjpuyhfDnOHCr+b773Ksp1EU8hKl5KUTzwGqUMuNefyP2P+VXbO\n32ih8u2GrbKkN201KEVxxRg7UbJsjOk7hHK8rhqMfVeJLEXnMtzdb6NE0RkkaXEsfV71AUrg0q9C\nyVqoTRKdaWw83nNmjBd+3SQbfMt3IXXbWSqlzIJIttARBjvkqCxLrN+L72J5Yrs0d1c1nou/JUN7\nqlG6aZcVZMQwhe2ClHhjagvLxredltQMLsus2ILyvc5eOW8LF6EkleXrfVRayrQoY4xJXoLC2lYq\nkYwaIyliAySFGZELCWBvoywFTV6CMslwKlf8lzVFl8Glw+4MSekaHrg0fcwfCCSZRZYPNcaYrjOg\nIYxfi3h4+gMpV7//eZISDEPp5upZU4VfOD03dyrK15PyZwq/I0+8aNkss82ynu2n5Bw5fQBlommx\n+J6M+Hjhx3KTv3oedNOVkycLP54lkaMxN9tt8SWMykQbSeo782pZHt3XLktI/QkvSQO/s2GX+Ozu\nb19v2RHZuI/t/7lZ+NUcRTwdfyfotJ022umOdZDvnLYAcY7lso0xpnxvuWVPvR2l8IEka1zfJufb\nqu+iFPvss6BczPvCXHMpjL4blC7PUUkXYErzionwS8uUJf3bXsc9rSA53C5bufG4L0spaH/DRflN\nN+1pxsg4yvcZaZMjZypTI8mo83ozRtKD+rsx9nZ56sgM7MHl7yH3YcnZqCIZKyNzUALf0QFKWlSU\njAft7aC6BAaiRD8sSUqnt51EXB4ewMq07ztMa+NYZqdNhiZKyWN/ovYIlZCPkvlcZAHui8dj/Z/e\nEn7f/zIoGBVvINbaKSYZyxGTW8+CahNiu7+/PbbOslmifvYKUPQfu+NH4pj7/+M2yw5Nw17atFdS\npoquRQm+rxnl9ExnM8aYnnLM53EZoGMxpdeO1irQK8fdMlF8dmEdaAXT7pcUTX+gqxb5TUyxzKPz\nP4+9gqkF9nkWEoW9x0UUvPAsOS/iSfZ90DtwSb+oYoxdSBLGZNJNuB6WxDbGmC6ix4cS7cppkxrm\n/Ykp184wmXt6LuC9wUExwJ0pZXjTViKPP/4X5Af5M3KEX9165HM5U4x/Qe+IPS0N4iOmRHY34DM7\nXT97FmTkWTI5bY6k45V/CCntyHyi49lkrE+9jpg3fxbO0Xy41rKZTmSMMUNE0S+mffYLv/yl8PvD\nN79p2e4UxJdBn5SCHxhAvlD6d8TncV9fLvz6+xFDh+m52FuKdJXKfdLf8LYQtdb2bIKJstlRg33M\nnueHp2At9vfgfPUHJC2YaZ/caqHlqKTtMT0ogHKahFzEZKdT7s1tLZg/EVHwMwGS3t1wHP/uovzL\n1yTpSmGUl3LrhtjxyeZSCIlEXO6orhKfcfy+GLRyRqFQKBQKhUKhUCgUCoViBKE/zigUCoVCoVAo\nFAqFQqFQjCAuS2va+Oh6y85NlqU7Y2agA7WPyrxPbZddmyddh1LOjpOgWSRkylLa/jaU+YVSiVi6\nrVy9iygrKx8BvWj/n1Fe3rypQxzz1r59lv3tR2637NLtsht/O3XBThiH+829ZrHw6+kCNYgpQycu\nSMrQsqvwjGYVoFTc12KnNV25EnxjjAl0oCwufLRUu2GqSxuVeHK5pzHGNHXgmY6jUmznwmzhV0rK\nI0x3GH+PLLHmDuSDvfguzxGUG3ackWoTl0LUeFk2v/3F3fjecpQlersk1aWEyiuv/hnoT62vHRB+\ncx6cb9ktVA6ZvEB2Hj/0BObgGDllPjMGe1FSHlUoqSN1GzCPuRx/yFZeyVQfpmRV7i4TfpFE3WI6\nWlqK/N56UovIugo8Lmc46DDNB2SX/fSlUMPoLEMJsCtGUgcNVW4ylanLRk2Lnwllh9jiS5cXNu5E\nGTqX37IikTHGBFym7NsfaC5BjInPkc+TS3IrNkERgul8diSMxjmCbeX1Q31YV9FZoJO11EpFpcQF\nWCPdRC1p+BTja7+GxEiUozoCL/0bf5cXsS0rMfGSfv0DuNZPtx+37GX3LxJ+A90ofQ1PxzW0HJYU\nm/rzoGGNXXbJr/1fISgYcyQxStLiWNWqnUrw23tkCWsuqXyceQmlznWtcn6nxCBeZ63GXvrmd18U\nfmNHg07KsfulJ6BWd+f3rxfHlD5/zLKLHkaMay+RFDZWI+glSkCXTdFvwpdx/riD2HN3viTVgK79\nMWJtG9HlRl01T/gd/s0blr3oP/yvFsMl270Nkp7A5dtcYl6/VcbKsEyMf0QOxsplUzbisv4GUjQc\nypPryp2M72LlF0PqOYG20n1DJeWOYOzNXCZvjDE+H/a77nqMnV1xLCwTJeSdF+DXelbSZJNmIPbG\nT0Uctas6tZ6QFAd/oodok3EFksJx4WWo17EK3yNPPCD8qt5HzhqahufHlDVjjNnxy/csm/OhCWOl\nBs7sAuSsB0qhUvPx+1gTN92yVBwTnYlcIiYLeWPJ21KBr4NUDac+BNr87p8/KvyKvoG16CkFVav+\nYzl/09Zg365Zjz0nokDm52E2ypi/kXs76FrV78l3CP7uBqLXp8+X+VfZfsSz7FtBAY1Ml+pP7mSM\nXd1W5E7B0VLtJWacpFf9Ez6K8dX7JVUheTxoiUz7Y/VXY4xJnA6q2fAg1m9MnIxzVUfwDta4G9+V\nMFeqeLHSasY8PJeoApljOBbKZ+ZPMGWuzUaDTrjE/bpCJRWl+iiUcdOKsPfXnd0u/Jrovav7AvbM\niDFy3g6Rsk/BnUsse3AQOeXpJ7eJY4LCkBu/fxCqxC/8+N+FXxQpETMvm9sqGCNVmVJWYW2zKqox\nMofJuhrUueZSSW2MHCPH1N8IjsE6CAyUNLs+ek8PIUqynU7W04h9wxWNvTRlmqSnMV2S300L1twk\n/Eq2QTWLqcBeL9ZES/VxcQxTxHtSsOZ7G2RrBKa8dtJcSl4s10pUHim2fYy40RMjqV9Mu3JHY1+0\n04J5z7wYtHJGoVAoFAqFQqFQKBQKhWIEoT/OKBQKhUKhUCgUCoVCoVCMIPTHGYVCoVAoFAqFQqFQ\nKBSKEcRle87kZ4IT1dwipSZHzSZZsoPowzHlZtlbhLnSOZ+HPF/JM1Iim3lgbUfBUY6xSXN7PqUe\nFtQ7YtQ08MMGbL1FvrvqHstm+ar4RMmjZUnElGngwLLspDHGnPkzuMMsAcx9GIwxpuUQnktwAs4d\nN1Hek5BgvgLoID5qcILk1fI9134AmT1Pu+zbExEK3uCO335s2VNukeOdthS879568Pib90veZPQ4\n9J9gOcLsqyDz60k5J47Z/w9IozHX/KM/HhF+8woh2R49GX1IWNbdGGP6qM/FySch77r0RyuFH3NG\nuW/Lub8dFH6jFuaaK4VI4g4PdEvuYtQEPEvPATznmCLZg4XluIdIrj6A1qgxxuy/gHnAUsjL50j5\n4xAnesvwWDceAXc2oVjOdW8r+LgJU8EF7++6tPQ187XjZ0j+OPfVGeS+DE75uzPLqnLPpyBbj5kO\n6jtlbKHMH0ifjf4u9p5KzNnu6UNvlSqP9JtLspIsBW6PexnLpll2RMQYy3a5JC+72YceNA43xpRl\nQZ//4GNxzJTR6LMwvhhrflKkbQ2QUuYHuyB/aZdlj4iFVOm8mZCCLnlHSi9mLsD38jqwx7XCa8eb\nK4Utr6OHyuy5E8RnsbTmKl5Hr4dQl+RuM0avQrwqeWar+KyX5sGR326ybO4FZYwxu4+ftuxr56Mf\nwYr5mMT23iLHifNe8WP0shgelrKYPFYs4S29jHn93/5g2dNWY6+/+hey143DgX23KwzxoKddcvA5\n9lwJ8Fy3S4EGUB+l0ORw+n8ZKzvOIF5wTB3yyh4TcbOJe96JMW0/3ST8SknK+Vwd4mhyNJ7ZnO8s\nEccMUD+y3mb0FHFF1gq/PpL/rHkXe2vMFBmj244j/zpyAH5t3ZKrP496DkTmIw/ivlDGGGOG7TPF\nf8geh/3A1y174qSvRu+X0Cjskc9+9U/Cb0Im1ouX8tATm04Kv8KZiG0JJFV96JjMU7hn26Jx6LFW\n9DB6Kl0z/SFxzA+O3mjZoxZDFnnYJjUcRXlTY91H+P9i2c9raAi5TkQ6ybmmy2cUSnkpx9CUWWOE\nX3uF7B3nb9R+hJwjIEiuMV5/SZNpHdn6IrLEfFAo7WP1ch3wcRlL0cfL19Mi/MITsnHMAHKnngb0\nr8taIPscRdP7AAdIe58o7j/R14GxCgjaK/y6qAecOwt7/YmXZN84lwOvclEJ1EPjnMwdUpbT/ixT\nqc+MzLXYx+q2yd5GfL8OGpuBAdmfJTYP+3tzFZ5Fw9Zy4WfvN/RPtB2Xe9zEu6bRvzAG5/+BvpTt\nXTKunTqDHNrXT7m2bV6yxDXHYI6zxhiTMR1xaP+v0UMoe1me8IssxNw5/w/kGPa5Y+835G807sP8\ndtik3WMo/rgi0WvFHqe4n9tAD/aD6oNy3vKc5ndRT90u4ReWindr7vlUX4m4EVck97HQJOqJQ31g\n7D1fwyiHTl+LHlx2CXNHMMWhOciDXBGyX2bLKezbTSeRv3ZXy3fqmLzLj6NWzigUCoVCoVAoFAqF\nQqFQjCD0xxmFQqFQKBQKhUKhUCgUihHEZWlNEQWQOQtulzKtXKbGUlQsc2WMMTse/8SyO6g82tsv\nqRkrl6BUl+WdY8bIck2mpgzSNSTNRonQqaf2iWO2bwPtZcFiUDNCkuU9Od0XLz0/8l8vi39HkOQX\nl04x9ccYYw7uRql5YRrKMVl+0xjzr/XhfkbJcZSpzX1YStOeeApUodHXjLXsxtck7YwlcXOzUi27\nwyavyaXdwXF4HhnLJgm/lnMoexy9aqFln1uH0v2osQl8iJl4Pc7h2Ysy2+KhLOHH8nmlm1ByPO52\nScvh0ruj7x+17PA3JZUi7SqUH4aSfG/mNbL099PfQ5Jv/BrjV7BcduJCeb+8/vjnVnspaOwklP01\n74EEXcH1kpqR7UGpLstY99nKAXkNB5xG+WzeLaDd1G2UcvXdSSgNHOpH6T9LEBtjK6ckKkF4hlw7\njSTnHUJyqZ2lsoSQ6ZUcN+yli1caIm5mShokU+YuHIZU5OLl04Sfi6T7mFaRtEDOi44a0ESGU1HK\nPTAgaZQsDd1xAZ99shdr4oOPJa3p1oUo0Y+ZjHn18d+kLGUCUT1vugPysae2SbnUwV66vk48h4z5\nUqa2q4xoMB7MTXe63HeYKulvZMWDYuhOl/PxzF8PWPa6PShN/sW6nwq/pmOQreXxXPvIKuH38y+B\ngnHjf95i2dNDMoTfuXUol37hv96x7GXFWIu9zVLOe+13Vlt22cuQoRwckiXKhfeCGlX13hnLfuLl\nd4Xfl27A+VoPktRpuY0STfEhbSqkY+3Sz1MeltLa/kb7GVCK7FRj3sd66yEfzuXRxhgz0IGS7bAc\nUI/CsiRlursK8eiDDZgX52ol5WLXp9iP773hBsuefx2ofj11MrbxPsYM1eYDkorSXUqUUqK+Va6X\ntBwnUSQmzQRVwX7vLPXtOYjvisyXtElH+KUpfZ8VTI/e+zsZe5iON3kVaOqJUXLNRqYgRpWdw31M\nuUXG3Qga04BFeNDZXrl/hkThfBXvQd7Z24p59ObOx8UxR/4ImkUlyTsz5dEYYzY8jXx60fWggKcv\nmCL8St4GLSCNqCwshWuMMReeRZ4XXQxp4JpPpCztya1Y9zlTbjf+hjMSc4ljvB1MP+wh2VtjjAml\n/bR+KyTMQyjnMEbSGdurkAcxRdoYY8LH4LmFhCA+1DYhr48rltRxlu/tOMc50Vzp14B1z3nLoE9S\ntQa6EF84n05IlRLUpSWYt8kTkZ/3tcjxrn4b45jtZ+Zv2auYM4HBMq+qJrl6zhc8n8p2B65Y3OP5\nQ3hHGL9srPBLmYmL724GjSRxmqQKNe7HPtt+Bmvi2EnMj7RY+SwjQhBPb5o927LTrykQfoEO3CPH\nv7Tl8hp6mrHPsMx5zcelwi+WKHF5d2FfLH9HUoGCo6V0s78RFIz477atnQ6a34G8H9jovsGxmNPt\ntA7sctKjF+D5djRirLweSTVr2oV1Gj8TfLyeCuQWcTTvjZFS39xWo88j8yCmSTE9q7+zS/jFjUac\nb2/GeHfb2pJ0V+LfGVchftup092NoODFX0QdXStnFAqFQqFQKBQKhUKhUChGEPrjjEKhUCgUCoVC\noVAoFArFCOKytCYHlRpGj5fle4O9KLdr2IzyM1bAMcaYJFIZYNWRmHBZLvXJs9ste9HdKGd2BMty\n9f/D3nnFyVVdWf90rO7q6pxzUEtqqZVzzggJECByjgaPzWAbjAP22IyNsbEBYzA4AAbbZDBBgEAS\nEpIQyjlndc7VuTqn72F+c9faZyQ9mNLXL/v/dKTat/rWvSfdqr32yluywGn39iJ1/fDzq5z2mVpZ\nsTs3CamvneU4prJBpkUmTEa61Kl3kSKbd8c4EVexGulXNRshHYgfnSzievuQJhkzDq9xyrQxFz5N\nLa8QKfB2Ve1uOscSSlkfddVYEVf7RbHT7qHUtPL9pSJuxv1znHYvSRXK10lHJU417epCWqKHJGOe\nTJka/vljSN3nlOUp0wtFXGsZ0srSZ+U4beHEY4zpIdeMYRMhn2g+Lav2V6zC/U5diLhTf5Pphnwt\n/U36Zagi3lknU/6aSdrSVY3XgjwhIo5dNFgy5oqVcrz+3rOn9KcvlemadTuQ2hdGTg/t5NyUeZWU\nfoVGYk45/RpkM21eK4WwEOPFk4s+YacGRg1BSmrAedIsRSozOaT8HzeMAiml8zcsy+QUXmOMqTwB\nKcis8ejTRfuki82wuegL7LDhipWORc3H8Tm5Qj27sRgj00S5j7S0I/3zV9+S7iKefNwTllbZrkQp\nqZA4sFTNdqBihxND2b7tZVKexFKwjiKca3iqXCfs9H1/Mu/nkBfVn5CSkPHfhywp/QDkgX/6ppQx\n1DVjjrp8MuQTrnB5/R59/ftOu+wzyC3jxsvU/682YCxNGoK/u7+o2GkvvE3KhNiFbuIPb3HaG3/5\nkoir2YI5/qO159CXkAAAIABJREFUkORMGzZMxGVfgz5buxXHHNt8UsSV/Rr9PC0N+byF35Ra0I5a\nmhPSjd+JGoq+2WbJ4MIoLZslF7bTQ8ZVSFtmVzlfqUx1/nIV5G6Lp0FeO6JcWqZMGYo51u3C32Vp\nUHiy7OutJdjHJBTgnkSkWK5scbgnlWsgnUmwHfVozmfXm4RJMm2cJaE857PMyhhj2tsvnMQwnqQn\nff1Sij1uMdLQ2UVt6QwpFervh4wy9iji3n12pfxbtGe97CeQ8HVZklx2AJx45wNOu7kZ5xcSIqUU\nBTfjPcrfh2wmJFLOB1nxuKdxo3GuZ1ZsEXHJsyFx5XFkux12VOG1zJkznfbplWtFXOF8uY77m6Bw\nPIokW7LtyGysNSy5EM5IxpjKVXBu2X4QMppQy9lu3HDMjwO0Fw+Jla6sKYVTnTbfu4h0rEF1O6Qs\nJ2MR5sC0yZAidrTLNbziU6wbeTdC5tl0XK7NceNwj2u+xHuEJcuSDJNpDWkll8Vur+yb/dZ+x5/k\nXo/xZjvQ9pCDUfwIcrqJktfcSzKn2Q/iWc/e95Wsxnw6dBnGIj8TGmNMZB7GWcN+PGeMKcQ+Pm6y\nXFxGRmDOY2lMeKSc/8o3wa01gByVxLpljAnx4DO6ErCuxFtuqqnzcE4nXoYEKzhC7uNbi+i5VZqF\n+YWoIZhjmq1npuTJmDvZwSw0NFbEVW2H010XyYgi7LIER7FviSB5qV1uoKoYz/SpF+FDh1FJh74O\nKZkKj8PeIn4C+k/jETnGOirxOVLn4b17fHIPyetEJ0nEXdY+PnUepGsd9dQXLFfcJpJVZ0vVnjFG\nM2cURVEURVEURVEURVEGFf1yRlEURVEURVEURVEUZRDRL2cURVEURVEURVEURVEGkfPWnInKhV6P\ndc3GGBORBn1YwizUNAlLlFrI/f/c6bRnFEKv5kqS9RG2bj7ktEOiodFrLasScdve+NRpZ8/KO+sx\n05dJW0G2AI4mnWq+VdOk6QRZnl2Gcz38/DYRl0Z1R2JJN3jig0MiLrkAdTMayRo3tlDagw/0XVgv\n7bSLoMtmi0FjpG1c5jJYxflKZE2D0ATo6tzZ0A16aqWG8MNffey0r/zZ5U67YrfU5k75wWKn3e2D\nTpT7VXeT1MsOHwmtKmtQuc6KMcYkT0d//PhVWE8GWpq/8bnQBnri0W8DrDjW9254BpbC+flSvz3n\n3kXmQlG/F+Mg3LKAF9buqbKWE8N6bbaxtjXz3i1l5my0W3UZYsegf7M1N2tCT/1d1gFgu2e2EO60\nziEsCZ+R+4SvTGqZwxLkPPK/sB2zMbLmTOIU3LceqrFijDFtpdTvpUOqX+C+GpYi71VKDuampgqc\nR8FCWSPh0BroecdejtpQ9hwdSLUPytdAj59o1Y7g2lDBVOPgysWoQcC1lowxpvwTaOa76FqPmi7r\nkHiPQivcuRk1L4Yky/pcPVSrjGsl2bWI6vfi/mdNgh0w6+yNMcaVIHXA/uTk26hH1lkpz68hDeM0\nYQq07CV1dSLux0/e47QPvYnaVXUt0ia58neo/TDtP2DH+uHjn4i4FKrt1ky1giaMRg2TlqNWzS2y\ngY4Zjv4x4T9nirjQCMzxS8m+trJe1uYqeg22wfHT8NlPVMk1/O4nYMVb9iHqa7z/wz+LuKWPyBo0\n/qbxANZku6Ye1wngfVCHR95vXivaynHv+i1L3CSylG9twHskW7bOw2dirQ4Kw3zdcgw1mmzLX14L\nS1bvwPmclmt4ayv6Rf8AjnGVyz4XQPW6Aujnu5qNxSIuddHZa3e0Vcj3ix0px7o/CQrCOB+xWAr3\nw2ndjojJcdoNRUdFXNNhzFE8Z157v7S159oJvD9KnST3m11dqMUWQBewrQnzX5BLWqjXbEDdxthJ\nqAG0/eWtIi5/DNbP6CTUgWmIkWMsJhlWw80BWC+4FpQxxtQfRv2FtGlYS1Lm5Io4V/iFrcUWSHsT\nroNjjBG1Gpr2Ub2qpXKtOXoKn43rpS2eKe9P9AjUogih+khca8MYY6oPw9ZePNfQ9pDrhBhjTHT0\nJKddeWK10674+LiIS7sU83L5Z3gtMl+ew9G3UJNjgMZsvmXhzfUTRW0oa60vXyHPw59wDbO6zbKf\n9fpQDySc9nY8zxpjTCDNeU1HMC5jRshnpq5a3N+603jGjEiVz3QtpzBvRg3HfR9yyWJzLmpPoJZM\nYCjOp3TdDhHHNfTSF+LZqeGIHNvhSdjnuVO4RopcI2q34ZrFTsD95RpgxhiTOO4CFJohetupNuUw\n2R9bK/HZOmrwPBAYIuu89vqwJ+Rn7j7LSjuxADWauPaokY9gZsaPFzrtsDDs+3ro73j3yOueOgd9\ni8eOd3uFiMu7GfNe3S48p8ZbtdhK1qCuF9emDA6XNYG6qb4S17SMH5Ej4oJGnf3Z5X/RzBlFURRF\nURRFURRFUZRBRL+cURRFURRFURRFURRFGUTOK2vilKGm/dJ+KiweKTmcCmqnvo69DRZvtWQFZ1uf\nXnzXPKe982XIiKLDZXr6iOtha122AtbPbNFrW+xFpyD9cfcT7zrt1AUydXPve0gvH798vNN2W1It\nZvVf1jntK366TL7fC/gc4SFIfaq1ZCM9zbDsOpul1tel+stip83phcYY09ePtCuWrdh235xaeno9\nrFGHLhouwmYtgU0op3aPuEFac+/7Pa5bGqXQstwmYYK0uNu/H6n3F90Hm73T70o52bp3kH629GpI\nAVj6ZoxMt674jKwNb5HW6VXrYTs6YiJSCtmO2hhj1v8Gaaw3PX+58SfxE5Ceyjb2xsh0+rYipFsH\nWRZ8QS6M015KL2wrk2noWcuRLl35Ce51myV1Y7viJLLu9O5E2mDWlVKSE5WNdM0qH1Jss624xoNI\nk2Q7xNhhmSKu4QjmlOjh5069Ln4fNsQRlGbK6Y7GGDPQe+GsJo0xJmY8+pyw/jbSFjufLE8b91eL\nuHHL0T8b92FeDk+Xc2oM9c+MxZBLtFfK+x0/AqnZLWVI60yfirm7o03OWdGFeO+iDRiXsS65pESn\nQbbx2kcY84mWnGP5rUhbraP+E2ulecfTWsP2nAPWfNVupc/6k2Baa0q8xeK1AZIvjaRrMSRFpqE3\nHUL/HncXLFu/eHadiGP5STmlxl/76FUizlcBudeTP3nFac/+9lynffrNA+KYlFkYs80ncd6N+2R/\nqytBavgnu5HyfdslC0RcVAHSxms2YlyGBss+sfOPm5x2BMlqp1xhyZHp/l4IK22WA7WctCRftD/h\ne+W2xhjPFywHYlmmMXI/cWYN1pqUMTJdP2oYriFbskbkIF2/w0pzjxmNOaXlCD5He5u0Ao1JhrQq\nktPVLRlvKK2TfWQPHr9QSiQ66jCP8HrSWSdlxp01ON+UG41fqd4L2UdojLTwrvmi2Gk3HsA8mTxL\nWjXHkMz88OvYAyYPlfcmlqQkFSuxLoanWH2C+lV/IvZAiWkYi/V1X4ljxt5zh9NuacEYm2jZtLJE\nPzgYfSIoTK71Jz6A/J8/H1v+GmNM+nzM/SWf7zhnnCsW/Spu/nTjb5p4HUuTct8munfxJBVtPCjn\nqYkLoUOeHIQ+fXzTSRHXXIt+m0xyxjZLMl1Pssfcq7Axj0jH2tVr2ffWlkP2zvKQyAK5jrWcIJki\n23lbe1QXzZ1BgbgnDbulhIOth1uP415F5EqZT2e7lHv7E3cS9gT93fKaJ5GcvY/2+OGJUSKuqxZz\nRw/tL+05Koyk/a1nIK+172E4Scf5GZHlhqGhCeKY3PHXO+2WloNOe8Tls0Sczwd5ZFwcxkRv54ci\n7tjzGFepF+P5IcSyEW8+ijXYnSmvC1O+DueUcP38c8b9u3TRdfeVNp8zjksFROZIK22e81tJWpZ5\nkXwO5Pk7hvbvYXFS8hMRgefM9nY8j7liMD/2Z8k9YHAozSOB6FfZV8uH7E5aZ+NGYS0N98iyFbGj\nqT/Svqy3U8rTvDuwh85ahmcpX5Wcr9im/Wxo5oyiKIqiKIqiKIqiKMogol/OKIqiKIqiKIqiKIqi\nDCLnlTU1U+pd+iVWZfR/IPUyZylSjnKuKRRxnVTh/swJpPsMsdImG0uRmjb+eqQ3f/ZXmead3Ywq\n525KWUueB2lM83GZolyzCSnWw+6C7GbrMxtF3IRr8Xer1sLViF03jDFm29tIU8tJkqmv4lynIpWv\ndDvOIW2BrPBuSyv8TR850gQEyfTAoVSpmlPYuhtlSnQKnXM8VYBvOiJdSNg5iFN/9xyWaY7T5iAF\ntfUk+lm3F2m7CRPldZ+2FKnhbz2+wmlffd9SETciA3KMrkb0P5bfGWNMD7nMcPX3M6/tE3GcMpp+\nKcZBzcYiETfjW3PMhaKK3HZC42T6dmcVUvbc2UiH5Or0xshUWE7RbiqWTjfs6lTwbTi39Ha1i7jq\nr9CnY7LQP8KTkeYdEiLlK92d+FudNTjvoq+ki9joWzEWWTpQt++0iIsfg75YvQn3w3aNy6V5qa0c\n/dxtyStDImWqqb/hvtRyTM5TdVW4NoUk5Qpyy5T1hh24jxVVeA9XpXTPObABUq7MBPSF1Pk5Is5X\nhfdLLUCabFAQueZ55f3xkTtS3kKMCVvS8O5nXzrtOSORThocJMdiw25U6q9vhbwyY9hQEVdLUgVf\nO7nwJcr7GGe5VPiTYDfGx7Jf3yNe2/zrN502p1QnRsk05ezLIE3zHsC1nXW7dEqq3441k2Vrf/7u\n30Xcf/zhdrS/caXTbia3rIwl8loWfYK07PSZOU671ZK9rdmH+fDeu69w2pmL5Vr/+oP/cNq3PI3r\nUvmI7JczH4ZTxtHn4Ebzr7+tFnFZ1GfveuFa42/iyI2BXRWMMaa1CP07ndznKlbLdYzH5gC9hZ2y\nXr0Oc1PWLOxVQqPlXB6Zjnk5OBzrIjsgpVr7B5ZHBkfDQSR/kZRtd5EkJiID8zK7jhhjjI9c39pK\nMFf2+qScNtiD4wJJMhtjyX2FPM3PpIzH/uXwXz8Vr8WQm2D6dLjoNJWdEHEh9DkW/OLbTrut7ZSI\nO/5nyKWH0j7SlrawM097xcs4H3L4iIyXY3HPH1502uyYV3jH1SIuKAjp/t3d2HtFZMp1lmV13Lfj\nxkh5ZXcL9nk8X/VZjmCH34LrYoH/lRQmfir2ep4s+Vl4X8rrtb2fC43CWCp9H3MbO9kZI8fL/q9Q\nGiEhUq4hCWnYy7JchmXkLME1RkqP+Hq2Vkh5SNxIPDfwODrx5n4RN/pb05x27TZIi0Ot+aWX9vi+\nM5Cfx1mOM9HD5J7Qn/B+IXWxdBSKTMN5nH4L5R5a0+TeM34y+gHPrdE50vHtzNt4/sy+CuuQ2yPn\nvP5+jE3vSbiW1XfjOifnzhXHNDXBpavuIJU7mCHn3frjWAsCR+Ae+srlvR76DcwVgcHos6FhcSKO\n9+ftNO/acnVbwuhvuhuwz7ddsvj5kV1ebcfh/l78O2VOjtMuXSWfrTIvHuO0K9bj/mQtmizi2ttp\nbx8GuZErGXNbeJzcZ1RtxRzQ24Z+wNfWGGPCM7A34/1rX2exiGPXKTc94zQdl05VecshUw8IIOfR\nPvl3Gw5B5pQih6kxRjNnFEVRFEVRFEVRFEVRBhX9ckZRFEVRFEVRFEVRFGUQ0S9nFEVRFEVRFEVR\nFEVRBpHz1pxJIPveyrWy1kMi2RC7YmFn1XRc1iApXgNd3rgroLOPsWxvw3ZAT+kiS8RZC6WtsXcz\nNPisr64jPWZ/t9TLpl8MfS/bgw+ZIjWErVRjJ24CRGBNe6WNeGY8bPHY6rTf0t0lTUfNGTdpvBuP\nSI3atvd3Ou27X1xu/E07WW9mXCprB9Xvgc6xoxJxdTVSC5oyN8dpH3oPVm7xGdJCrY/ss905+Mxz\nR0wTcaxR7PVBi1dMVrT5lq1xGdXtufWx65y2K1rWF+lswOfoIZ184mip867ejpocNV7S2XdJjXxa\nLD5j3dZSp81aRWOMaa+iWg2jjF/hGhrhlk1r7Vb0fa7j4rHs7QKo3kndl/gcaTOltWhrEbSbkanQ\nAPf4LCvtemhO2xqhvXZF4rq4XFJM2duLe812rqzjNsaYFqob1UV1iBKnS3s7XznOyZ2Ov2vXjqnd\njL4TQnUebP0u18i6IJAlJNuPG2NMyEGc1+F3oM3NmizjzpRBq5oeB93y4TJpd+0hm+II0r/b9aT6\nOjFfNh56x2mHko2r76TU86ZfgrHURBaQ+zYdEXFXL0QNFba7jhwhte/tVFdgLOnV2ywrx64ujOdk\nqjdUvKtYxAlr7XnGryRMQh/s7ZVjguuHse1yUa2c82v3oJ5F2hSscSfeWC/i4ibiM7Il5ff//nMR\n5z0OvfaQZSgK0dYErbZdo4HrzKTOgJV9ULjcFgTtgb1wLNk2H35W1my7/dn7nXb1XqwRk26U+vFX\nvoPaNN/8y4+cdsgLsvZJS32ruZC4YlG/g+cRY+R9rFqPmkDhVo2qwDBcK7YPjRspax51kz0pW25z\nHRJjjOlsxjgLCsfclD5pBp2b3N/UHsP9SZiCvtl4QFp3RmSj9kZgCH6Xaz4h92xcT4r7X7tVS6Gf\n6pJwLYvWErl3sG1W/cnqn6MvTbhpkniNrUo/fwRxWcPkvSk+jrUrIx11CtKW5os4VwrZu1Lpvr0v\nbRNx4+6c4rS3/AW28WMHUF+hprFUHJO8ELUy0kdj/DZ6d4s4l5tqkVH9Ga6bY4wx8dmoxXPob+87\n7dzrR4u49mqMMTdZgjdb1vKFN4w3F5JYsvs+9uIu8VrKHKx/7TTG3JaF+dEXsY/OvxGf33JhNhWf\n4pmE68yMuVPOU95d6BdcQ4pr6jUflPN6wsxMHE97rEPW2jx/PPZFiVNwjD1H8znE0zHB4XLfwvtc\nrhfEtWiMMaa9iuZUWTLsa9PRjGsRYtWx6mrFnDDkBsxlLWXlIo5rmrRX4Fz7s+TniMjBXBYVg/Uz\nOFjujUv3rXTa+VNuddo9PZjLqkvWimNiUzBOh8+dScfI9SiI5v7yzeizIZHWZ6e5n+fkzmpZX4jn\n+95WfF7e0xtjTO7VE8yFJCwJe8VmqgdqjDGp09BpQjxYM/m52hhj0ubj2br0I7Icnyjn3lOvY+5M\nmIa1q80r+0V4HNaX5lrU9Gqg62nPgdFDcUwL7Z2iC+Wa20713NIWoi5i0zE5tjto7IhacVbJ2NLP\nUZ8rMhdrX5/1vUSI5/z1LTVzRlEURVEURVEURVEUZRDRL2cURVEURVEURVEURVEGkfPKmso/hY1Y\n5rLh4jVO1Wo5gRTImFHSqi9zDtKb2km6YKfvddZBTlC9sdhpx42Xsgi2q4yfyK8hHa5hX5VhWk4j\npYlTbNvOyPTb2PE49wBK+/UMk2m5IWS73FaLNMtNf5Qp6VNuQnoryzZsK68JC2Wqqb+JyITcw7YY\n3vU6bMHzCpBWNvaOKSKugvpCcgFS29mS2Rhpw8ypoGv+8oWIu+TBJU77s7dgt7vsroVOu6u5Qxwz\n5GL0wYF+5JIFBko70uYTxU6brSMbTkjra18x0vISyOo2rl/KqRrbkFY4ci7Sj7c9LdP6C68aay4U\n3m1I84u3rN3Z4pRT5hv2ynHAcgWWBNo2smIs7oBMha1YjTHGnYVr1kHpxiyL6qg8KI7xkEW0oXsY\nO1pa9kVkIW2VnebZ0tIYY0LjkNodFo92m2VdyTK6aJJTVayUtqqhsdSXZhi/007nf3LtMfFa1vgs\np52/GH2dx5QxxqREQy4YQTKLixZKS8jedtgHtpE1cOVOmWKdRjIdljh9/hpS8kdmSDlZNqVk9pBV\n7sLvLBRxDfuRdtrlRb+ypVWNFRiL4alIq+0kSaYxxqQvxHrSRCnlySnSltKTJ+1T/cnnj312ztfc\nLlyXVx6BROyW+5eJOE49f+ehvzrtU1VyzM48DblRzjTMPSxpMMaYfpKA1p+BxOnd337ktAszM8Ux\nMx6GTW/dYfRF2zL53h/CxjqYUrnjJsq1ubsb94P7RKdlNdzdC+nr1t+85bQnPXSRiDv0zAbz/wvb\n0jrYjfmx8QDuSYeVYh5P8ueWI5AHla06KuLSF0Ei03IG+5GAALkP4n4R4sE5NVUdOue5szUwp2j/\nH1lrMOJ6O3APeC01xpic5ZAJtJbjM3ly5RhrK8WYrSHZqCte9k1eG4xUkn9t5v4Etuwn/yrlMN4m\nzLUZudiz9LXJ/jj+OrK6JelvZ62816mUqt9B+75ZP7lSxIWEYO4ZfxXiOM0+zCNT60vXQprWORRz\n5g5rjzH1wXlOOxSqUxMRkyPi1j3ygtNOG4Y9UPmnx0Wcm2yrwyJxTjW1UnaVMvHC7lHrtmNNyr68\nQLzGUhcefz1Ncg1xx5xd5sXSfWOMiZuEMdu7kSx2q6VsheUd9dvxHnw+yQukdXNwBKQpQR60514i\nJXcuktxVfA6Jq/28w3+LLdubT0jZmYv2QWzNzdJNY4wJCJbzjT+p23F2eb0xcs/aUYcxYcuWI4fQ\nHEMbv+Bgaa8eGIr74fNhvavZLvf4OfMWOO0ja2BXHz8W8hreJ9l4vXimc7vl5MXS+dAYvIdtc161\nDrLYANLY2RIflknVbih22mEkSTfGmOMvbnHaiT9ZdM5z/3fpJovsnlYpV2oqxjwfmwv5ed0xKdFK\nnIT7nUzy/WBL7sbW6QO0hxHyO2OMKwbjJZSuu4fmr+4Wea68rvGYiCmQzxq+ROyN2Q4+Oj9exNXT\nXpblgi6S/xtj2XFTmQ8eo8ZYZTDOgmbOKIqiKIqiKIqiKIqiDCL65YyiKIqiKIqiKIqiKMogcl5Z\nU+JMpNnbDkN9lApWsRuSC07XM0ZWSk+ehfSmIy/LFNTYHKSz+VgCVCnTm9xpSOPn9KFycpPq6JFp\nalMWId2fUwPPVEg3g1Ek0yjei7TOCJdMUxt5J1IUOZ2885+ysn7jfrg8eUuQylxw3RgRx25XF4LU\nhUg/s1P4JlyPz8IuQHxtjZGpdSmzc5x2+SopCwlPkxX0/5cps6R90aqnVzvtG34Ghyp2HuI0bGOM\nOfIJUrvzZ+IzdaZJh50ISnXjdNmavTK9NWNO7lmPsckll4tKSkHts+RPbSXk+DH7nG/3b8EV4Fut\nCupJNE45tc92deJUwYg09PXqDTIVtI9S3gNDcQ/6O2Xf6SeZVNNB9PXmYqQJps2Tab99NP7YwSQk\nSsoKOD2/m+UwRtJBspdekkJ1eWX/Pdf9jZssU0uFhuoCwJKR3OkyTdZD/ezAW0hzDwmSqcipI5Cm\nHkmpl1Vrz4i4qGGYUxvKcE96+mTV+L5u9GN3Bsbv7IuQ7t90XKZRb39yg9POmoT+V7dVSqaiRyGF\ntHI/nCdiO+Q8ERaCFPDGA1hrGn1S1tRci36ROBzvze4zxhjTXnb+lNGvw1VPfM9p73j8VfFaeT3G\n5s0PXO60bRlv/BhICKZSiuzVC241Enyuzb9Z4bTbit4VUe5s9O8DGyBFHJuNNbepXc6Tj938C6d9\n7ZI5Tjt5Xo6IY1ld42GM87XvbRVxhduwZu44de558u7f3uS0t/wRktaGI7LvlHpln/M31ZuLnXaf\ntS4mULp1Cq0TlWtPiTh2bmH3tWZrvPSeY95rPCb3IJxSHkjrnysG83VLsXSPdMWcff9guyuxTIOd\njAKtdbar9ewuWaGWA14zX7PzzJvdlvzEn1RvxJyXdpl0YyzMxfx64OlPnfaYB5aIuPZG3AOWIHiG\nSFlYVDKcLtf+6WWnnTtR3utOkr2Xl+BepSZiPm5plWMxKhIp7y2jcA6p+cki7tTfsC7UNmK/Me5W\n6TQ07SE4Ph3/C1yMAgOlddGB7di/JayG5Gnmw1Kq1ViE/XVcnHTe9Acd5MzjzpRrdc0a7E9CotEH\nYy0JEN8vH0nu+L2Nkc6DOdfDfaZi5UkRFxiGOZvnVw85BdnOPFy6gd0OAy1pMu/N2BnOfhbobsHY\nqfgY9yr/LunYU/IvSHvSlkBC2XRcPrdF5khpoj9Jmw852gnLwYwddFvJDS7eksY27CMZNMkKe9v2\nijiWx7cUQXppr/tl27C+sBtSd+u556TD/4S7WdRw7K8adn0lz4H6G5eLaDktnS1ZOsj7P+9W6Ujk\nGYJ+FTcF+1KWrRpjTPL8nHOeuz8IdKHfc183Rjopd3dj3ouwxixL9ZLJDdaWHvHzQNxo9IX6/fJZ\nrekE5tHwZKxjDXsgOU6ckSWO6aF9VU8z7nd/d6+I43IPNTsw9yaMl88GvMeMTMe51h2QTtap8/Fs\n2niY1ndrjbQdZW00c0ZRFEVRFEVRFEVRFGUQ0S9nFEVRFEVRFEVRFEVRBhH9ckZRFEVRFEVRFEVR\nFGUQOW/NGbblbS+VWr7QeGgjo6Ogtyv/XGqyU0gHtvmPsAUcuXCEiGPL481/2OC0u6z6MRNnwA6U\n7S8zFkHntfXtHeKYGtKWt56E3jEvVdpAc72cyd+a6bS3PPeliCt5G/pO1qvZ2vrYcXj/xlLoEPu6\nZc2HC1zmQtzH4nekJWf+7bDN7KTaHnYNkMrV0NUlz8px2na/4Ne8u6CpDEuW9U8W3QtNdMUq9Bm2\nDvRukjUIsseiL9WSPWKiZQXK9R2OboJOd/QSWfdGWIuSFjJ1zhARV7O92GmnUA2VsBRZN+PQKlzb\nCbcYvxKWevZ6AcZIi+v+HvStllNS++ojLax3C+5NdGGCiGMLVq75FGlZy/moxg5rstlePdgdIo5h\na+UEstuzrfO4rg7bU/Y0S80qW+k17qX3niGtnyPSUbOBtagBlgY/NPrC1n/yVuOaZVl1cDrIyjN9\nCGoN9DTJz9xN/xb64DxZI6FkD2qAJKfj3tm1nAZ60WfaikirX47zyVo2XBzD2nrWidsacrZL59o5\ndq2fluO433FkTxxv1Q5iS3S2Xgyx7Cu76qXtuz/5/Oewvi5YOlK8lh0D3f1nz6912p4wOZ9e8yTq\n1mxf/S+nHTNCWuzy+CmjGiw502UtJ66jMHom7tXHH0In32vVGrrzP1FXonEXtNtcR8UYYw49C+vO\nKT++2WklUoWNAAAgAElEQVQXbpfzs4vqBl3/IKzDX/zV2yLOu5tsUDtwn9ju0hhj8tLl+uxvuF7E\nQI+8NjwvDPShn3ly5RjzlWG8CP38WHnutVsxFtOoBly/tRcwZFddvYHqqVyEeirB4XJO5fWOrU/Z\nLtsYOV/zMbzmGmOMi+pjsBXogLVR4b7JFrjtlXJPEBBw4X4DzFsKq9yuLmlD39eHelWd3ZjzS1bL\neoe8hxl2F/Z97bV1Im7df7/itGc9DAvb/X/YLOIKvznFafe+jPuRcQXmhsb98lw7qzDPtZ7BWI7M\nlzVC0m9GvZej//gE7bf2ibj2LvzdSXfhGLu/uY+hpkTaAtTo6WqTdXSqaP83ZKLxO4FkI+yjNcgY\nubdInIp1vb9H7rf5ecBXhGuYfbWcozvrsc/tYttgn6xol3clakNyX/fuObuttjFy/EXTXN5ZK2un\n1WyCJTGPxe56WYuI68ElzUXtjqLXD4i44CjMZS20d7Ktqtup/k6G3OZ+bYKDsccquFcWXWw8hbUi\nZ9l4p1215ZiIC5CX02HA2uPzXBY3GnulrCvkc2UbzUVhZGVc81Wx0w6Jlmtz/vUznHbFl7jOBd+Y\nJ+KO/vkL/J0zOJ/khXJtjqXaVy2VWAfqOqVdfcxI1NDjPX6HVf+z5bicl/xN9FA8D3Q3y9o8oVQb\ni++3r0uOWV5beY2MLbCeuanGUlvF2dfS/3k/7O9CItB2Z0TR/8v9gzsJ80bcEHT2rg55/Vy05++h\n50A+b2OM6azD2OQ6M3y9jDGmfg9qK/KcYj9TR+Wev/6TZs4oiqIoiqIoiqIoiqIMIvrljKIoiqIo\niqIoiqIoyiASMGDnqiqKoiiKoiiKoiiKoij/39DMGUVRFEVRFEVRFEVRlEFEv5xRFEVRFEVRFEVR\nFEUZRPTLGUVRFEVRFEVRFEVRlEFEv5xRFEVRFEVRFEVRFEUZRPTLGUVRFEVRFEVRFEVRlEFEv5xR\nFEVRFEVRFEVRFEUZRPTLGUVRFEVRFEVRFEVRlEFEv5xRFEVRFEVRFEVRFEUZRPTLGUVRFEVRFEVR\nFEVRlEFEv5xRFEVRFEVRFEVRFEUZRPTLGUVRFEVRFEVRFEVRlEFEv5xRFEVRFEVRFEVRFEUZRPTL\nGUVRFEVRFEVRFEVRlEFEv5xRFEVRFEVRFEVRFEUZRPTLGUVRFEVRFEVRFEVRlEFEv5xRFEVRFEVR\nFEVRFEUZRPTLGUVRFEVRFEVRFEVRlEEk+Hwvlp3417lf+/CY044ameC0Q2PDRVzTwRqnnTQzy2kP\nDMj3aznhddpd9e1OO2Verogb6O132lVrzzjt1EV5Trt6Q7E4JnpkIs7nQI05F+lLhzpt755Kp91R\n0SrigsJx2WLHpTjtYHeIiGs90+i0o/LjnHZIRKiI62nrdtq5Y2485/n9u5Qee9dpn35tv3gtegSu\nzUAfrm3Tca+IC6f7Ghob5rRdSREizneywWmnLR3mtLubO0RczRfFTjv9MsTVrC9y2klzssUx3Ef6\ne3CukXRtjTGmhc49ajj6pq+4ScQN9PQ5bXEd+mXnLFmBvp44Kc1pd9W1i7iAoACnPenuh4w/Obbh\nZafdbvXHxKkZTrt2S6nT7m3pEnEZlw532vX70L97fd0irqcZx8WMSXbajfuqRRzfH+7TEfGpTrvh\n1BlxzDtPfuy0L712ttPuapD9Y+vmQ047OwH3MDU/WcQVHS132ot/cZPT7myV47zD2+a0fSXoB3kX\nLRJxq/7rT0772meeMf7m1M7XnHZYnPucccVvHnTa6cuGideaj9U57aTpmFPr91aKuOBIl9MOT8Q4\nta91L80/rgScE8/dQdaclTwT9775JMZbZE6siCv94KjT9gzBawEBIsyEp0Q67Ub6u2GJ8hoFhWOO\ndcXjtbqvSkVcWAo+77jrv2P8yR9uvdVpTxySJ17rp7ljw+HDTvubz90h4niOqd1S4rQjsmNE3Id/\n+Mxpx3k8TnvJzy4VcTWb8R5F2zGHTrxnutPe+Mf14phLf3Wz0173i3ec9vyfXSnidjyxymmPun2i\n065YdUrERebj/gZTfwlP9oi4uu0Ys+EpeK3HmodS5+HapqRcZvzNwRUY64FhcivkyTp7Xw0MDRJx\n3U0YSyFRWBd9JY0iLigM/TaMxlinV64hDbswhhNmZDrtUBrLXU1y/EakRjntphOYGwKD5bkGBOO3\nuIbd+DvxU9JFXGct5srgCJx3X3uPiPMVYR5NprWgt6NXxLlo75A98jrjT6qrP3HalWtlf+Q5yktz\nY0R6lIjrqPE57WAP+q3b6rc8Znmv13ikVsQF0xzVXom1OnkWzof3scYY09+H9/aVou/wvG2/X2gc\nrmuQ1S85rpfu20Cf3NvEFCaeNa6nqVPEhcSgbw+bcbvxN3vfetZpt52SYyd1ab7T7utC32rYKde7\n8HSsIX0d+Cz2mOX7GF2Az99Z1ybieN5qr8b15H1fW5HcUyYvpOcV6xmH4T4XNQT7V97jGmOMi+5/\nW2mz07bXzzCaR8MScIw9pwbTs8uQSbec+wT/DXy+E077qdsfFq898MovnfZDl9/ntB9//3ERd+zl\ntU67m/aho767UMSVrT3gtDtKW5z2pj2HRNyDr/7VaQcGYg7d/xb+v/6Q3Nd6W3Gv80ZgDvbky73N\nW3/+1GkHB6GP/fA1uW8MCsJ8X3V6ndOu2yr3LPwMkjRyvNN+43u/F3G3PPtjpx0ZOdz4m7e/g/1S\nwTz5/sWbsZ/PnoL5bNfagyJu9m0znfaGv29y2hNnjBBx/BwXEIhOvWvrERG36JvznfaqP+MaRoVj\nDkyKjhbHNLXROkb3J9ot95Tl9fVOe95/zMXxR+pEXOX+Cqd9oqrKaS+7b7GI824tc9oumkN4TjLG\nGHcm1qHCi+81Npo5oyiKoiiKoiiKoiiKMoicN3OGfxHorPaJ15Lm4luzQBe+leJfDYyRmRX99GuB\nHRdEv1zFT0wz54J/aYocim+cO+jXntC4MHGMOw3fqHu34le72IkpIs7Qt9GReef+lTdhEn5p4m/+\nqtbJLAF+v/Ckc3+b3XoK2Sa5Y4zf6WrEL229fX3itU7Kwoigb4ZjCxJEHH9OzkbpbZefhbMpmugb\naU+ezG6JGZPktKvoF9i6GvxqErzPJY7poj4YTRkd4UnyFy7+BYh/teMMAWOMadiBX1681NdzLpXf\nFgdQB+BfFVPny1/Ne6xr4U+Sx45y2uUtu8Vr/Ottw1F8jgCr43ri8AtUQzDuTc6lU0Rccxm+0Y9I\njXfa0UNln9j4m8+d9qwH8c329t9+5LRn/vQ2cUxmwlan7aJfeEq3l4i4MVnICOHPMdAjf3HMzEA/\nqj9x0mlXfy7HYuriIU6bf5mrTtsu4uxv3/0N/wLeXtUiXvNkImsi7RLcq+5m+SsmZ/JVbUCWhCtO\nZi1GD8G9azx27rm8j37p5jES6MKcHBpljUWaU3ju7u+R80tIJH6Jbj2OXyhybxgt4orewi8vUSPQ\nz7rqZZZAdz3mSs7ECU8796/c/uamp5A5Exgo15on7/id055RUOC0g0Pk+RWvwBhOW4R7HRoh58mx\n2ZhPh90yzmnveHqjiNtfgvHT1on+MqYNmS55manimE2Pve+05/3XUqftq5JZZzN/coPTLl2P8bv7\nwAkRF34M93r8LPxCxv3IGGMKrl/mtLc89orTnvB9+evott+udtrLnvR/5kwY/arlTo4Ur1Wtx/zB\n4yON5hFjjAmNwZjr60Qcr+nGGJO6AGtF3Tb8shY/Qe51OPuyi37JD6e5sr9LjrGqjZgD+JdxPh9j\njEmenYPzpvFcv6tCxPW0Yg7IuAxrYcVKeb95H9BWhl/13VZmSsMBrDXZI41f4YxcT47MOuNsMs6e\nCPHILEBXLH6x9u7GtfBkyrUgxINr1uPDr/p2xjRnovLek7Nag6xMraRpWO8MZbeERss5PdiNc+fz\nsfdhnZR9njoFv/53NchMrWbK1OhtxWfitdmY/9uX/A2vSalL5BjrqMJ613wQ61jCrCwRx5mejJ05\nk0CZYi00TtvOyIyd0NmY2/vp8/P79XbJ69JRgTWdrxlnthhjTNM+nCuPxajhiSKu9YycR/4XO2s7\nJBrn2lGLa9lVK7OBOCt6yKSzvvW/TW8vZSd3yHV77SMvOe37v3+90975uw9FXGwu1j+eexpOyP1h\n3lLsNz0eZBZnnv5YxO19GRkyuVchG2XnF8i8mbZknDhmymJkT3g8UFM0Nsq94tU3Yp3NuRhZ4H+9\nV2YNXflDZLmueALZNtf9+hoR19uJ55avHnsV57dYnl/daewdIsf5P3MmfxKyvzxZcg5MPIM9Fz/T\nLfjWPBF38PU9TnvuLcii4XnTGGPWvbPFaXMW8pwbpou4us1YMycUYH6ILMAe194ruksxrjIuRx/Z\n/7p8fgoJxlzM3y/YipkR14912kV/xDxkz70h0fi7IR6sDVvW7BFxF31jvjkfmjmjKIqiKIqiKIqi\nKIoyiOiXM4qiKIqiKIqiKIqiKIOIfjmjKIqiKIqiKIqiKIoyiJy35ozvBPSO6ZcOFa+xUxLXfmm2\nKhx7yEmn6RB0lv1W7QiuTRAQhO+MmqxK+NHDoHMeoBoLfIxddd27EzrizCtIQ225TYSR+4evCPrT\nPkvjzS4I7MLQ1yarMacvw98KDMH52bVP2G3nQlD5GT5nZ488xyg3ukAdac9zlktxeBDVFeIq6rYW\nmZ0a3KTZtmtA9HXjmvoacb9iI6B1tt0hAuga1lFF7OIN8j6Ouh1i2totiLM16YmzoVkO3IHP3m05\nFQy/G3Ubukjj3mfpjcveh6tTnpSJfm32/x5a2rQl+eK1Vc+hwv38m6HvbNgu3QwCAnD9Sr7E+LXd\nVHqpH8eQ5rR8m9RMXvzLO5z2gd9DOxyXhTF/6IUPxDFDh0P/3rgXFc/jU+S9YUcwLvrUfFpqsLk2\n0qG39zrt8XdPE3F1pPdPmoc6Hq3W+428f7a5kHC/t2sVlK6As1GvD/cg72ZZiCqE6ta0lcItoqNS\namSrqO4AuzoFhkgNPtf/Yqc8rodRTbVt/ufvosZEONVV6LLmXnc2+k8wzfG2w0nqxdARB9H5NffX\nizjW0Lcew2uh8bI2Q3+3nLP9ye6n4BYw6h5Zr+kbj6A+C1/XPU+tEXHtXVzfAetO+ZatIm7SQxc7\n7dBQ9PUj5e+JuLxk1OCacx80863kUFdULl0pLnkU7mbP3fu00/7eyz8XcQeexRjOuRG1ghLWyTot\nyTEYw5lLUXPm5Cu7RFzJp8fxHiNx3h310vlk9n/dbC4krFFvOiT7YyzVNBP1Qaw6XlzfjPcq9hjz\nUU0W4TK2Q9Z7iaL5jN2VXJHQ+ndGyDGWOAX7hw4af7ynsl/jOhehVq0qN835ogZVmPxMsSNR74vn\nrs4aeX79ljORP+G1OmaYrN9zrppZjQfkOOD6KjGFyXSMrCdVQ65qLnLai8yVdaIa9mNdY9eyjMWo\nQdVWLft6ew3mbu4fXIPIGGN6GjFvhMXhPtl7keSJ2K83nUadRfv9EsbjmvVQX+6ql/ew7wLOp8YY\nkzgd+4JScoI1xpicawuddjvVdGk9KdeGniZ2mUTfbNwr7zevDexGFjk8XsTxc0RHFeq4sIOly1p3\nOI7/TtN+WQ8n/TLcH55DWk7Jz8Q1E7sb0deDrbpJXAuxrQRzje3iJdyk/Mz2x9922r/95CPxWksL\naspVbN3ptCMT5RoSSc5VXnKU+9ML74u462agj4SF4B4OvXeiiKs/g+uZ2oTrcs+Lf3ban/7op+KY\n7mas1flXY43Y93u5hr/x1VdO+5lLsE4v/7Gsj1bzFeYNdh6tWC1reLEj5pBLMFfkzZDuiU/f9m2n\n/aO3bjL+pqMcc5Fdr4md/apWosZjqOWqmTMtB+9Bz46hQXJODQ7EGre/qNhpL7G+b+B1sZae/Y5/\nBvfh2XfNEsfw817zcTmuGK7Rd+wzuERVNMhng+kJGIsTx6CGTfMh+Z3HyeM4v8x4zCnzrpV1dDqr\n5X7dRjNnFEVRFEVRFEVRFEVRBhH9ckZRFEVRFEVRFEVRFGUQOa+syTMMKWYNlk1dL9ktRhfA/s1O\nf4yh1zjdM8BK++W0+6qNxU47kuxSjZGpuUGUtjowANlMhGX/xdaT9SSlYNtnY6Q9bEQ2UqJs20NP\nLFKuao9C6pFryQ9ayAYvIBDppHbKPdt7Z/3E+B0fpW2ljZapv16yXs6YCyuzxv0yFbT6GFkvz4EE\noXFXlYjLprT3lhNI92o+7BVxyfNznHZNM9INNx1BWtklEyaIY0ZeDSuzPrKdK/1cypqOvop7EhmN\nlGXvMdmHk8fhWsSMRapqX6e8Py1FuI8sRSn+RKYlhllp0P6ki+RotkTsql8td9psoRmaKFNu3/je\nU067IB3piSzhM8aYzEXyuv8vXisF/6sP/ui0Y0iOVk+2vraM7q7nvuO0j70EOZadFunOQLpr4rgc\np91wTJ5DM0kJFvz3XTjXUwdEXHQh0pw5JT0uX0rEmsuL8Xelq6VfYNs92743fSmlotPnslPWxfuR\njDB6pDzhuk2QcpX8C+Mq+xopWazbjjTM2LEpTpvTce00au6DPrIgtW1+0y9F+ifboHdYdt7ifEiK\nmHllgXithVJIkxchRdseE90N0lbRnyQMxXUOi5brU9E/kWZb4sWcd/F/LxNxVV+exvtNxFiMn5Au\n4rwHID8MCsd1Wbp8pohja9XdL21z2jz3z7pXSvYOPL3KaS+aAh3mG9/7g4i7kuaXp++FNWl6vJQB\njFoM+cG6X6502vP/a4mIO/kXpLWv+2yH0/7mFYtE3MHnIaea9ZPxxt+EkNSlv1uOsZBIzOUDfei3\nLZaUosuL/UjSTOwnajYVi7ieZtyHuDEYY+GWxW5YItl7R0LqUXsEsgB3ipw3Wk7jnCKz0R8P/22n\niMu9DFKzdrJ7Tp4h90HefZATCFnOkmEijvdcoSTF8eRKieqFHIsRZNvdaK0N/T2YizyZOKck6/O2\nFmP+YhlJa4lcF4WUKQfXuem4TGtPnIz75t2Dc3LFkXQpxtorsHSX9k22RN93GucUHHFuK21XFK4L\ny6QGLIkZS7VSaf/X1yXXbXfkhdvbGCPluSFhUu5bT/IWli5FF8r1jqWIJSSNCrXer2YjPnMUS5ms\nNYTt4dke11eEc43IlLbxbfxaHvpIzBj5TNLTQp9jKCQb3fFSUs/PKxFZ+FudlkU239cIkhL3tkjr\n4uCw8z7yfS2mPQwZakPDFvHas/dANvvTt15w2jv3/lnE/esvWJMuXY71atowOffwvrKM1tmxkTki\nbtz9aL/3U0ij5t+APX13r5z7fSQFfvKOXzvtKy+Vspmhp1Od9n1LsPf8wQ+lHHfTl9gTfOfvf3Ha\nQUEuEbf75WeddhhJLSuOSTnVFd9cbC4kniGYK/k52BhjSj46ZocbY4xJmyr3Lbv+iXWdZWejbpTr\neHgo1pdMkny1Fcu5t4FkgbGjsJdf+wb2+eOstbntNO7jyUqMozl3y30QrxO83vX9XVqnd3mxjh0/\njb1YepyUteZlYn0/U4bnZtcp+TxWX4HPOPZa83/QzBlFURRFURRFURRFUZRBRL+cURRFURRFURRF\nURRFGUTOm+MWloTUKk6RN8aYEHJT8ZLLT3tZi4iLHoq0QU4LYocnY2RqaAylK9rOOewSEkFuQHVf\n4vyiRsp0a05559THmMw8EVe5DelncUORMh8QINMiOzqKnXbSCEhAgoNlimNdPRx2+DqUW3IYdiq5\nEESG4V5VHpQOPmPugtsIO0pxGqcx0lGK3Z88Q2Vaf/0evH9HOfoCp8oZY0xPK9ItCybgPgwZgvS4\nn73wT3HMwnLIv8bm5Djt+Ax5Djt3I/VujAspzFFWZXjfKaSVtZfiXFsapOQiOh7HddN55986VsTV\nbS83F4psSin3kuzDGGPiCnDNgsOR7hlgOYvkkE6H03Fzl8wVcb5GSCnW/AZppiFBUoo451o4ItXQ\nOY27CqmLtuPWyTc3Ou2Y8RiLH/9tnYibOQop+CyVyZg1VcSdWPG60z724z857VEzh4u4TpLReEgq\nWdsq57UTOyA3yX3uRuNv2mlMRKRbqc7kBMZudj2Wu5shOUEfyZrCEiNEWGA4pne+huWfHBdxtRUk\nvyS5aRw5eVSulHPWkNtxj8+8hnkzdnyKiPOVILWU00dNv0yvZ9eMFHKUaD4m5ZChVDG/bjP6nHD3\nMsa4rXRzfzL0mvlO214bMq5EvyvImOG033zoDRHHVfy5b+ZeJ+eUkjVwRJj0g6VOOyJVfr5Df0UK\n7tib4VjB8rH3n/hEHHOiEnN1BK0Rw9Ok9LXhEFJzCzMh2RiSJeN4Pb7sN//ptKsOyPRgvoe33Qu3\niVMr1oq4ymp57/0NS2N7LafFZtqP8Liy18UgGmMsf0qYkini4jIg9+XrkTxK2voFBuI+dHUhFTuU\nHdrKm8UxCWOxxgUGoj9mL5aOFyx9iBmOtYClsMYYkzQBUs/aPVjreb00xhgPyTaiyJXTlmGeT8L4\ndWmvwXtHDZH7Pnaaqt6INS3YI+9hGLmlddaR244lARLuPfR37bmnm+ZxPgeWqqbPkRL42v2YXyNz\ncC27W+T+N3M2HD/aW4udtidJzrvNZZgbg0LRR9lBzhhjosj9tIquEbvmGGNJvC7AdjVqOM4jJFpe\nT3aT5DHWY43Z+l2YzyKptEFTkXRdCQ/E/LPvU8gihgyTrqlhyRj3UbR/3/kPjN8hbVnimI527A9j\naa7ossYYy1BbTkCOwa5VxhiTRP+u2QQ5VtoieROqN8JNMZQkc+Gpcs9bvRZxeWdXr//buN2Yh06u\n3yZeu+UHcByqPI69Hjv5GGNMELn35C9b6LRHX3eHiNv+xDNOOy4Oa+HJf30u4qqplMHiexc47YPv\nwtnzrc2bxTFPv/Uw/vEKmq2lct6N86BfXj+TZMbWvnsUrZlvffdHTrvQ2qNOvOsBp93RgfH78JX3\niLhn1qw2FxJ2Az39wWHx2slq7AWySIZ09O39Ii6UnhVYNmaXRohyc4kBjLGyHXJf3tKO8VL0BebR\nbHqmWX7bg+KYFW9DJpbVjbmC5wmbxOmYA1IS5HOlJw/PsN59KBPQ0iFlu0N68VwzfGwOHS/fr6Va\nfldio5kziqIoiqIoiqIoiqIog4h+OaMoiqIoiqIoiqIoijKI6JcziqIoiqIoiqIoiqIog8h5a864\nSPsZQ7VajDEmIgM6P7afKrVqznC9hMxl0NgFWlbaletOn/W1EMvCtaMcdoRsE9dNmrKD64+KY1jX\nNoT0dMFuWSMkkjRhtXtRl6F+m9TJ9ZKmOmEqtIHx41JFHFtIdlI7wrKarNsMfd2QicbvJM6DFtRd\nZFuUQdeeMBl6O+9Xsq5JkAda5YSZpIuV8krTchRa/XiyV2s+Iu0mW8haO2EW3q+b7Mx//Z27xDEf\nrYE9X+IQ6B3fXbFBxDW2kTa8G/1vTJbUB6dOxb+LvkL/a26X+uAIF/rMkNtRI4Ct140xpnw/+pO/\nb6N3C97btkLmOgXGQBebd/U0ETc6AuNv/0svO+3ao1Iv+umfUPvh9me/67Rf++6zIo4tOpNn4lpW\nfQFdM19/Y4zpo1ojO3ZAt8nW3sYY40rCe7ONc0+PtMvLmoH6JMHbMY5si9qUOTlOu5vmjbL35Fwx\n7+ELa1PY14F5qm6bVceLtOKxozHfNh+TYyeSaivwHFO+QtaSaW9CP+Y+XXilrHeQOAv3ruU4xiXX\nhUqYIbXwnfUYY41ezPlxobIOSQ9Z9saNwmeq3yt1v61kgxhEdvUdls6bz4OtTmMsG3G2JPY3AQFY\nNnc/8Y54zUO1bj546lOn/Y0//UjEnf4IuvvsSyY57Xd/8IqIu/yRy532l4+tcNojLisUcYmjsfb8\n7Zc4p6uuRD2pwED5W8wv3/y+024+gfseXyjrGax/9D2nnZ+LcVpeIftlaj+O6+9HP3/nD7LWzeQh\niEumfrRj/QERN2W+7Kf+hi3gU+fL+nNVX6D+Rj+t954cqRsPikRf8FF/DAqV+5u2aNQO4hp49UVS\n099RhVom8WNxTwOCcO9s2/jm06gDwNbS9hjg+ie+MtSCCnbLOiSVG3BO7gzU7uiuk+tiEI25WqqH\n4Up0i7gw69/+hOt2iZpWxpi6ndi3RVKdsY6qVhHX48M8V7cRc3L29XKMNezEnJWyEP0l3Kr1VUF1\nohKnYb4Ki8G+r6VC7inZwrvxCOpk8P00xpi6YxgjySMnO+3QUFlvJ2Y0agl6vVjPPR65d2gOwtof\nEITNXEiE3HeHJ124+dQYY4rfQZ9LWZArXvNSLT+uF1e/VV7DHqohxc8nYWGyxlBgKMZSGtngpi+R\nNZpqt2IPzOvYiDmo/+fJk7V5Asmqmutjllg275HhuN+pE7HvDgyWczSvwSlzcylOzi8xhUnmbNj1\nnhJmZJw1zh80NHzptD/7xwbx2tLb5+EcCrAP3VEiLbfzU1A7KTgY9XI2/eIJEeei57gJ9Jzwwjcf\nFnFX/vgyp/3qI+867VseucZpT71fWiuXfUw1Kx+42Gkf/9tGEXfZ3XhvnkMfufH3Iu7eO5c5bU85\n5sLwVDmmdr34FF5Lw2d/6tP3RFzJYXyOnFHXG3/DfeZQmXwOXHQFnikiqUZMr0/u80+txL66rgE1\nn1Jq5RqSmYf7vfLTrU67qlE+p2ZQjb6x2XiejUvE/D+yUM7X776Oee/m+3CvKjcUibgwN/pS9fpi\np23XT9zx0R6nPSUfddlcVs0xKglpoguwRlatPSPiAq3aRDaaOaMoiqIoiqIoiqIoijKI6JcziqIo\niqIoiqIoiqIog8h5ZU2Nh5BeyVZ3xsgU0pbTSEl3kU2mMcbUrEMKUdxkpLxHD5Xvx6m6G/8Ja7O+\nPpmqOioHKU0lJ5BmmpGFtL7gFimtSkhCOmmnF2lVvZ3VIs5D9nttZAEbECK/w0qZifRCTnXlFERj\njF6y4TEAACAASURBVGk6hevSQ1KKiGxpoRszWkrG/E0L2dEmzZLSnsb9uAZHXtrptHMukTZvA324\nP8c+OIi4WTId3EX26yyRyLxMvl9ENFLbw8OR+lt1ao3Tzh55nTgmcQbsaNlO9JrLpBX03l2QdxRm\n4/OGJsq+uW0l0tR2n4as6aKx0s42LB3ph5wCHRwmh0/+YvkZ/Uke2XazpMQYY9587CWnPWMRZFfl\n+6Wd4YwfQyIx4Zv3Oe3Kk5+JuDv++JDT3vDLfzjtJkvuxRaXTSRby7wUab9nVhwRx8x4GPc0ZwMs\nKRv31oi4jRtgdXjTxTim4ZiUIrKF6/oP8Hn7Vksb1JC1sITlvl14/0UiruEUpR5KpZVf4DR3nl+N\nMSY6H3Ni9aZip508M1vEVX6Oz1JVhutuW/oVjCCLXS/msMZ9ct5zUwp4JFmGhsUhBTfEsp/l1PvU\nsbhQERlybvMVYR6t/rIYL1jSDJZ6NuyE1LLTJ61kAyjtm2UaQWFSmtF6huxTpSLra9PqxfVPsqxP\n3ZSOfC2loff3y7TfdLI5bi6BlOKSHy0VcV6Sf2WPx1yWNW2hiFv58NNO+5F3IY2qPA5r0Rss+9WU\nVKRbn3n9V0676aDsl75O3IOs5bC4jymS6xbLzD579kmnnRYrpUDps3KctisWfeya390q4kJD5R7B\n3yROx/Vsr5ZSl9hxSGnuoj1De6XcW8SNgfTInYx731Yh5XgdXszZLJPqsqQ4TTQ2eT9S/gmslnOu\nHyWOaS1GCnjNZsiLDm+SMsfcbJwrS0Xjp8iJrmE/7n/xtmKnnTHGmhApKzt9KfpzV5Mcs7z38TcB\nlBrefFJar6eRVM27B7ISluMaIyXXyYswZtmm2xhjkmajv7BdeNknx0RcKL0/7zdDIjCH2hKsYDfu\nR9acWU677tg+EZc6ChKM3l70WXusdHXBbjY+fp7T9vlkn4hNhKSythX7bnecTOmvJglyeo7xO5lX\nFDjtrga5z0iYBilO1Rrs00KtZ43KI9hv1x7BOHUFy31aQgjWmmCSetbw+mSMcdM+vZIkCTznN5M9\nujHGVB5AP0vKg6Rh3PVS6F69Gp+jqxZzQ7clY+M9dDTJCHmuMcaYyEw8/9TswLmyvMsYOUf7m5N/\nw3566R3zxGu1X2KNO7zykNO++Jd3irgdv4Ukd/Ojfznn38q5DnNgyTZYS9trTXzWeKedlwRZEj9v\nhkVLSeBnG/Ec9ObK9U77rnsuF3EBgZh7it7GM9GDv7pdxHky0d/iEqc77R9dIde7h56DZXaQC322\nvb1ExEWmSum4v3ElYP6aOnyYeG37GsggE7aiD3K5AmPkXnTcZLzHC2+sFHHf/gYs1vOSsZ+Yb0mU\nGnyYi1/8HHuaoWm4Fj9avlwcU1KHef3JX73qtC+fNEnE8f6mvhVz6gxL1lRUi7FeOA57qVir5Msb\nv//IaU+vw/vxextjTHq87Hc2mjmjKIqiKIqiKIqiKIoyiOiXM4qiKIqiKIqiKIqiKIPIeWVN/d1I\nvWw6JNP3eih1NXlujtNmVwFjjPGdRlo7V8kv/vykiItJRvpdKlW1Tx4qq5AP9CIdLaEHxzTUIF1v\n1gPzxTHsqsPpo1v/9KWIS4pGGuOZGqT2jpkkq7jz+w30UTqXVX2ZHVLiqQp5R4VMb7JT8v1NkAuV\n3TnN1phzV3lnKZQxskp+3nxcj5KNp0Vcdw8q5o9cDreNvs5eERcUhwrXAwN4LbPgKrxXd5M4JiYb\nKceedFzDijaZVjxl/minHTsW173ys1MibtIcpM4VDoEEZNsh+X4xxZSmXIH0uh5Lcudm14aLjV/Z\n/xyq2nN1f2OMmX/DTKfNabDTfrhIxAUGou/39uJzJOXOFHEH//m602ZXgeV3SQnQwT9DRtRKqYHZ\nlPI97KZx4piBAaS4Z8zFa+4MWUH94HNI5Ww+hc8UM1y68rjcSCmcmI9Uw9xbRou4jjqkDodR2vmR\nv6wTcUlzpYTI39TvgUylr0v2n64mcnTLxFzUdFTOvZySmxgl05YZrvjPssS48dJVjt8vOBxzEZ+P\nK0Y6kvC5c5p340EpmYqfiLTT/m70i07L+cWQyikkBun/tjMZ38eEyZBZ1G2TrgLRI2Q/8SfttI7Z\n8+TelUj7nXT1BKe976W3RFwOSWPdlMoenSKlkSm5GMNvfgdOFJ7sDSJu6n9ACrH2Z7912tN/jPn0\n1LtyvQu9Gv9uI6nk8UrppHXN43C2+NWtzzjtu8iFwhhjVn6wyWmnUnp5TbNMpa/bBmlizrwFTrt4\nwxciruTLVU770t/9zvibnhbMWd2WFIednNjFpa9brmOdJFfqJSe2kEgpA+ymscTOL1H5MrU5k2Rj\nPO55/a3eKOfKAdqCfPUF5KC2U14rpZpnJWJ82E4bXkq/DgvBfFBxUPaLoedw7PSVyHU7eviFG4s9\nJHuMHSnTywd6MUexlKlhT5WIY5cinid7LZm6m2S8/bTvS5knpd3s3OIKw/6KHczCk6QMgF16Wuog\nYUsbPUeegxvrU3s7pCK8nv/P38K5NzVBytTutaS0qdgbJubCiaVk6+ciznYp8zfsWJo8x5Lx0r6t\nvg5zSXuXvD+FF2GtOLga0pkKq8xB7gzcr9523JOkGVLyX/4Jrlv0MIzTpr1Y47jvGCNldglTsU9r\nOizX8PAMrM38nGXL3Xj9ZGmx13I7zJyHtYblNjZtJRdO1jTxgbud9qm1H8nXfniz067cC1eeg8+s\nEHGZC7GHW/ky1oNFV04XcS899JrTnkTuf6GWhO3J2+CSeOejcDbifUTVqq/EMVkJkAiyK09HuexH\nlW2Qjw27ZZ7TbmuQ98a7C+tdfTCcl+66R66fMSl4HinfDolh8Bi5liQm+vnhwoLXPnY2M8aYubfi\nWYHnOdt9meWHEVl4nr95tnTG6qjEvDVqNvY+K9+X92T+BOzn//sHkMJFkPT3+UffEMcMScU+NzcJ\n8/DuM9I1adowyK5m34l9VFe93KPe+gPIpgZ6MX9/8NwqEXfZMrzH1g3YD7LLlDHSkfZsaOaMoiiK\noiiKoiiKoijKIKJfziiKoiiKoiiKoiiKogwi+uWMoiiKoiiKoiiKoijKIHLemjOxY6HZajwgawkk\nkiVz2XtHnXbGVQUiLmok9HtsMzokV2pYGw9ACxsTCW3vpi/3i7glN0ODGxSO048kDZgrUtrMcY2A\nmg3FTnvoZKkVPrAZtUZW74OF4aMvvSTiPnrvOaddWQ37vrLDJ0TczBnQyXVTrRe2gzXm/9rd+ZuQ\nKGgWA6y6OGzZxvVn9r+6S8RNI/vh9mpoL0ODpNZw3LehDeXrHpMqa4C01B922qxXbK/FMdGZ0qa2\n6ENYL5/ZD41yCtUoMkb2i36qUdRlacjZorHhGGzXCtKlZWgm2d6yFSFfV2OMiT1H/R5/MPx61O+J\nzJTa+r4e1BI4vgZjcUyEHIuHXkHdizF3w8avrU322/SL8Xlffgj1Z+57UNr8fvR31Gu58+lbnPaX\nj0OvbtvEd7ahRsemJ3A8W5kbY8ydD0Lf2d2M+3b4T9tFXMxQzC+F90OLe/JNWV9j6I2wW2+rhwb4\ndKnUB8d3XQD/bIJrtcSOsvoLDc0+ql/RdEDq1UOi0e9ybsK46vrHHhEXPw7zd/IM6F1rNheLuITJ\nGAfNNA64zkD9IXmdsmZDVxsQgPEbNV/WTKnat8Npx43AeI6ySvvUbEddgTSyfG6i8zHGmNBY1ECq\n34VzSrsoX8SZc8vuvzZsQ5x381jxWtRu9McmsiSe8O0ZIo5tdXc+ucFp7+rcIeLiPFgLxy/BHHDk\nwwMiLntSjtPOvxR1S6p2Iq6vrYcPMSf/iRoxWUuhu65/V9av2PkULEj/67Xv4YUBaYc+Zg/m5NG3\nwjq2YoWcX7q7cR5HXv/QaWdeKvvO+ne3mgtJRzU+Z9QwaUXMdRt8paihEpZk115CDZp2Whu4loUx\nshYf13xiO3hjjInOw2teXznF4f08eXLvdGIV5vzhZC2aOFzOLzXH0B+jIqF39zW2ibis4XiPPvoc\nuw/KOoEj3OiPnaTPD0/xiLhaqgeVId3cvzbB4RiLtn15RDrqEYRRPbj4SdKKtuYL1PDpIEv1sGT5\nOfppjxmRij1HSIisG9TRQnXFQnBdavdijkueMEIcU7QC61rqAuxL6yt2irjyug1O21eEfhmeIvsl\nf95Oqq/Bn8EYYwYGMDajU/F3Q6PDRFzABf4Zl/dSXNPRGGNSL8J59X+E862orxdxp9bjNa4HOP2i\n8SIueSYWn8q1uCdcg8oYOc7ay7DnLa/BHmb4TFmPMm4y+hbPIXWH5fNT7qXYm9XvgP12eKK8j41U\nq6aL6rTFTZB143y1mCu6m/E5Wk/Ka8R16PzN3udfcdpZy2WtuP5+zHObXkX9xDl3zBJxW1/FnD8x\nD/c9ZXaOiLtz7A1Ou+x9zH+Tv/8dEXf4lnud9se/+9RpL/8FLJwzJsm6Ti2Pvui039mK83lu1Wsi\nrmgjao28+wM8IwYFysHS1Ibxd+cfv+W0//4dyyr8A/wtrpFy+bwbRBjXmoqIyDH+JnEmnu23vbJF\nvNbfjfkjYRb2jSc+PSriCi6H1XnDXtT4sutJcV2Xo19h/C6YKvdVyfNRo6+nBc8Dpz7B371x6Txx\nzJGjxU577qWwz24+LOsEpizEe3u3YhyZPrm/aQ3EWNq6F3/3ym/JGkDvPf+Z0x5DdWa4LqcxxjQX\nW3UXLTRzRlEURVEURVEURVEUZRDRL2cURVEURVEURVEURVEGkfPKmpoOIw3WFRcuXutpRZpadw9S\nezlV2BhjumrJapLSkfh4Y4yprUDKENs3zls8UcR5tyEFMOsapIayHWxHg7RyDEsgyypKVXriuTdF\nHFtpN5D93u1XXinitn8Ku8pasgldvGiyiEuYgrSvypVICQ4Mty57wAXMwTfGRJA84dg7UiYWRVbJ\ngaGQJ6TmypRolmKx7WjBnfL+RMQgjcu7B2l65W2bzLkopdTSrEWQJ+x48xMRxzZ5Iy7CvY8eKlPS\nP358pdOeHIv0SreVkr7/PdzHMVfB1rmvQ9ql7nsfcT5KTZtx7RQRx3a+mTLb9WvDcrzWHNm/2Y61\nqJbSYLtkKm0GyQYOv/W20w6JDBVxNbsxxmYVIP320B9Wi7gbfwab3tOvQgaYPxlpgk0HpXVnKKUv\nZ2ZD8rRih5RzNB3E53jxfaSPPvbmQyKudAXSC8u+2O20R9x6qYjb9TuSdH1vsdMunDpMxB3/BHK7\nEQuM32H7wR5LZtJN6dycVp5ykZRfdlGaekct5tv8G2UqaMspzKkpU2HTmL5AzuVBQUh1bovAfNZa\nBEvF0FiZ5l57lCRUlL4d5JIyR55TOhvRbyMSpB18wiT8u2470nbjxsj07YrVmEdTF+K6dDbIFNFm\nsrhOzzF+JTI9xWl/+rN3xGvpcXFOe+rDtzntY29+LOLCSPqRMw9zXslGKe9j28fb/2Mq/s5sKRPt\n78e81FyMMbfnXYyJBT+TssQzr2PMfvYibEuX3D1fxPHaeuS5bThvy+Z8bxHkIa43MVefrpFzwKTJ\nmLvDU9H3Gi3L+DnL5Hrqb2SKv0xhdpPUuPJTrE8xY+S6yDKnxGlShst01GCcsiVz9VclIo7X2eRZ\nOWf9f7blNsaYoRdhjq78Evdg11eHRRyvn7EJ+HxdzXK9ayxpcNrpM3EOE6w0b7YA5s8XPVTKfJIt\ni2J/MkDSOtsSvJquRdwYjNn63VKi6cnH/shDcvvYPCmV7O/HdR8YwGfvbJPW3O0kjepPhAyAJeWn\n3pRWsa2V2G92e/F3tuw7IuJYwt3Zg/Wjr1/KlbLJDnjdwYNOe3xuroib/k3ISiq2Yq6IGSHtz5tP\nkhRAqg/9gujfjTL937sJ+6peske3ZQL9jVivUmNxHyMyZdmAAbJB5zHWckZKgILCMF6OHyrG+fVi\nvNTsreBDTFQ85hR3Dp4nKhoaRFwira2+eqzntWQpboy06naT/TZLoYwxxp2FzxhHUvKKlVKK6Dvd\naC4Uh44VO+08t7UXqYFk5bqnvuu0T320VsQt/91/Ou3QUPTh4x+/K+IaSDLc3o1x//OrbhFxbLd+\n7QOXOe1df8T4G3+PnP+iknAtf/LkPU67ZMsaEZc1C1J58y/IEneclNf8T2vxHPP9S6922oVW2YbL\nf3mF0z7zGp7TKo6vFHG1WzEeJn9D7of9QSvtGydePUG8xvJaLkdhzz/b38J+Po3G4o49x0Scx4Xn\ngUUPXIT3DpX7yIZ9mGPjx0M6OOdnsG9vbZTSqoF3sDaIZ9b7poq417+P7wHmX4ZnOk+OLJdR/gn6\ncIwb3yl0W3LIiy+d5rTZRrzBWnd4fjkbmjmjKIqiKIqiKIqiKIoyiOiXM4qiKIqiKIqiKIqiKIPI\nefNq2ouR4t4dLVN3UuYhPTLvelRmrttSJuI6SNaUcx3i+nv6RFz1a0ibjElHKpCd3hSejpRgL6X2\nxY5BKl/jGZm6FxqDlPydh5CaNHmo1J40tyM1fs4onCunSBpjTFIU0t4CKVW1+qRMy+aUbXc2juko\nbxVxlauQBpczyvid0hVIJXMFy1seMx7XLTwF52unYLUWIS0zf+61Ttvnkyl8jaW4vpGUIpw8bJqI\nW/vz5512cR0cWYLX435nLZDWDvs/QqpfShBSpUvfl+ls+SlIYeYU4eixMiU9tBh/l6UiXfUybbxg\nNqQvZTuQht60T6br22nV/sRNKXbZC6TzS+0hXJc58+FM0N0pnW4iYnOctisekqeSTWdE3Pj78P5N\nR/EegSHyu9weH1JGR9yzyGkHBWGMBgaGiGPKt1M6N6Wk//zxe0XcxfORrvj+359y2iEu6TbQVIqx\n3n0G5xo//rg8V0pFLvoQKZfr1+0WcQsWSZmev2E5Z3+PdBcZoMzQNnLiSL/k3Bq52vXFTjtyhJQT\nJE3BGOnuQKpqTPwkERceDoeqgDG4xyEhGL8NFfvEMT3kfMYOVLasKX4YxvDAAKf4y3koKAhpommz\nINmp2HRQxLG8yktz1IAlubD7qj858Ae4jLEriDFSusDSh9yrZCptwzGMuU5y8kscIiWay+ZAunX/\nVY867SdfkenM7z0O2dTi6yBVmHA97rXbLWUaeTej7abU/3p2LDDGZC6HDGno7ZB/7vvrNhHnIjny\nuAdmO+30nXJP0FkFCUwg9Zek8bKfBwVJ+Z2/6aFU5/byFvkaSbBD49Hn2EXNGGNaTmJd7O/Ea+GW\nA2N7Cca6ixzH3KnWfHYIa0pAMK5NeDLkU8kT5CbBV4r5P5okzNPGS1cilk2yo1Jrg5SiD70O469h\nH0lj++UY6yIpYSI5vrUUyf1XEDtXSVXN12aA3YcCpTw8ugBjiWU50SOlZIddtlhe03D6lIgLpNdC\no9AnPPHyQ7UHQ4rk3YU9ajy5dK17Vcq8ed7Yuh5r16ZtcozdcvnlTjs8FHJkltoYY0w0pd17SLqe\nky1lolVrIKPkOaDH2stEZss9sL/pbkDfjBuXIl7jubxpH/bYc6aNEXFfbIb8fPwozHV1X8n5x037\n3KhkzDmR8XL+qS8+5LQz4rG23vnYY07799/9rjimuRyf4+ROjMtp1rPGu+9CRjp7JOShtqS+ugR7\nGpYvBlrrbGcN9q8s4XNZLl5RluTQn0y9BHvPM6/L8gnxU7DHqNkMedC+LXLvnrWEygv04TONvvrb\nIm7L8V857Vk/wPNIxJP/EnGh5Gzp3Y51be7PsPiVfL5ZHJN9Fe5HVzPuZ8LYHBG39wk4mS55aInT\ndv9xvYirOgNZ/vd+d4fT/uAJKVfaSC6n076F9TMtf4mI6275wFxIoodj3tz8krw2E5bh/rDr1qyb\npos472aMudSlGIudb8n1M23s2d1R+3ukTIod1lJSl+H9Omm9tOb/grsgz67Zh2fgVY9IiTk7HBZt\nhxS2IE7KtpNmYz8duJn2l3JZNMGR6HPN5LYWO17OawPWemqjmTOKoiiKoiiKoiiKoiiDiH45oyiK\noiiKoiiKoiiKMojolzOKoiiKoiiKoiiKoiiDyHlrzqQvg2ce288ZY0zNpmKnzbVV2itkPZW4sahp\n0lUPjXJft9RWjrgMVq8NO1BLoKJM6t/ZynjSrbC9aitnK0LLVpVqgyRG4lxPVEkLxHmFOIc9ZGHK\ndl/GGDPuTvzdM29Dl+qKkJbErSdQ5yGILHTD0jwiLtzSnfub3OvwuTqpBpAxxoQlQpNavwfXo9ey\n+WXbTLavjIiQdWEGMshqLRDX48RHUudX34p+kkwW5uFx0EoHu+X1HDYJf+vQKtiEsh24McbkLIa+\nt+UY2QlPkx6QkaTPdyfjHOoPSptCD+mtWatvaw25Doe/4Rok7c3SfrXxAPp3wc3Qp+619LeHSvHv\nKx+Bbd/qt6T+fYob19OTjVo3j37reRH3+Hu/cNqHn4fN9ohvzXPapatkrZK+Toz7YLLw/vyVjSJu\ndx002S/f/4LTvu0iqd3OmIuaHL1UA6foDVmrhC3aN7wOHe0Sqs9hjDGr3kFNnEl3G78TGAxdbF+7\nHGOxY6FJDaK2r0zWpuF5JXYi4mwNa0gI9OXlW2F93Tda1klJzkK9oLoj0IBzPZvmFjlvtHZAi124\nGNrcxv3Svr0tG/NyXxfufdrsESKu24fPGOTCsmTb8jafxGfn+h8DvfIzdVprgD/ZdBTXyBMmLcaz\nLsMcU190wGlzjQpjjDnyPl6L9WBOyb1JWmRzzbUMssf96b3PiLjH/oraB+GJeL9Tf0cdBtt+deTd\nmCvS5mGNay+Utq9rnkKNgLFT8fmGXiY12bFbULOCSmiYhp1ynU2cDQvRgV702Y2/+lDEjbsVVtqx\nE2XNHn/Ade9iRsp6ZLWbMccmTIYuvnaTtLoN9mBd7/WhP3ZZ62wU1T/xlWAub7PGdlA43s+VgHk4\nMhcW7d6jsp4W13lqLcX7hTVZ6xHND2wjnnOJXBe7qBYPf3a2yzZGjrGgUPSfKDpXY4yp2VyMf/jZ\nHb3Di+ts17viOlQJE/A57HWa9zZJ+ajRVF+yV8S1kd110lDsARur5BrXS/M6W3NXrcOecsl9i8Qx\nxR9iTpk2H7VU7HqHXEuG7Wv3nZF142YOxz2NicAez97HN3lxT+Onom4Q15MzxpiA6Atb/8kzhOqb\n7ZXzRUcZ9opB4Vgbmqvk2Fm6fKbT7qa6gQnTZK2H8DiM9d5evLddB62FLIVT5qLmxTPtDyCmQ9Yn\n5PuTnYjaRmEeOf9fs3we/kGT5c5Nh0Tc7Ksx73mtWmAMz6mtVPPJHhNGluXwK1XbMTeOf3C2eK1s\nJeashCnoZ7fe9P/Ye6/4OKur7XtbGmnUe2+WJRe5CHfjbtlgU4xtYnqHdCAkEJLAQxpJeCAkJKQR\nQhISOqEYDCamGIN7wb3JTZJlyeq9j/p38H3vvq61Az54M/p0sv5HS7/ZM7rLbvfMutZ1m2hXsh1r\nwIu/e8fGX3vkRtGO65ic+XCLjUffPkW0O/pX1Bec+FVMPv39mLui82QNqpQsrIsVp2GD3XBUzv0X\nfPdKG397+T02/uWr3xftvnbFT2z89Os/tvHVP14l2j3xLexzV4xETbktD/9StDtTizomY+bcavxN\n01F8/ujRsibMuc1UK48szD0R8lktcgLWO15np3xT1qap3IC6XuFJGKeV2+Q4yFgIS+9dv3/Mxrk3\nYnxUb5PPRX2tqH8aQjXb+PoZY8zLW9B/fvNL3Ee2sTfGmJIP8HlZ81BnjGuRGWPM8Y8xl8fS3NvX\nJut4heeev46XZs4oiqIoiqIoiqIoiqIMI/rljKIoiqIoiqIoiqIoyjByXlkTp9+GpUopTuIcpNGd\newcpa3HTpVVf036kuTe1w6Zq0g3TRLviNUhjYkvr5k6Znn7Zg5fZuGYrpTFRimevk84bQvbbY0dB\nppEXPFa0O70btoK+XqSm5k7IEu3aKXU4+yqkdp9dUyjapS2FDIflQ42HZeq/axvmb1j2Ek4yFWOM\naSCrx6BopF72NMjrHkSWdDVlsJKNS5X3cWAA1+3YHyF1OV0hrbmLa3BML737ro3X//sv+CzHbv3M\nQdzvpnak4069Ttoft5cgLT96IlIW+7plWraHpGatZ5HCGposZWaVHyH1Lo7sMFmmYYwxIclyjPiT\n/K9fbeNX7v2VeO3iu5bY+NjfkYaZdpm0zh2fCzvz7ibc30VL5D3sakCqb18nUvE4ZdcYY4r/BZvP\nuFmwo2s8ifvkjZPp0N4ESvudClvQqlM/F+2aimDFt3AO0ryjY6eKdiWFkIccPobxe9XjN4h25zYi\n1bCjG/PDoCNNmz91ohlKOkoxd7hzZTulI7Ola9xk2W7U3OU2PvTs8zZOv1RKvqr3QdqVMhfyrxqy\nCzTGmNAYXMNukgmw9fzH/9wg3nPkLO5xJ13PmctlWnH0WMiSWNrTeFymoLINIssCEqdmi3YsDQim\nvpUwK1O089VLWYk/uf6eK2xc8XGxeO3dP2HOu/Hxa23cfKpetMuYhHThmIm4zhFJGaLd8b99bOOb\nVl9kY3euiUiDfPiBqx628bfvxrzxj79Lael3KFU/aRzkHI/c92vRbvJItGPr4g7aHxhjTCJZTa59\nCHafl9y7VLQ7/PxeG+8+fdrGiyZImVRY8tDKfaPGIPW6uVCmOseSHW3zcdy7yDwps6vchLF0shJr\nHFvvGmPMmASs/yxlclOdOcWepd/cn911h/cPoWTT3dko1/AxN022MUs22kgqaIyUHTSRtXdYurQH\n94Rj/eyqh+SnyhkTacvkOuRPgqOwL2l3+iPLrkLo+vd2yGvOttH9/ZjLgiKlnD0iE3unjg5Ys4bH\nyzHrjcZxjBhB6f602Lh9O3k25i/eK950m7TR5Xt9Zm+pjS9ZIeUCvkrsdeJav3hfkpAFCVpoEv5v\nZ6UsTzAQKvucvwml+Sw8M1q8xlLorgqcV0yG3MuGkkU2W+8GeoNEu/qj2M/F5GHuTUgoEO3iVdPm\nnAAAIABJREFUp2A8e0huOIakmF0kdTPGmOP7sD4lRWG8xM2Ua/hW2jvNXAwp69zL5V6M90vh9OwS\nNUZKB3ta0G991bh3kWMTRLtGKl1gZhu/suAn37Bx6Wa5X+C+n5SDf/zTq6Ss6ZZ7sCf82iPYw7ny\nz64qnOPEG6+z8SvfkfvIWZdjPxKTgr3dwADG/OuPviPec/FyPJ91leP+NjXKMbHxechhWMJW/A8p\nh/zpXTfb+Nx7eFZOWjBStFs6mebnVuzJPjggP+8Xbz1nhpLju7AmJ0XLsZixEHKe2HL0wRGOXI7H\nMEvrzrwoLdbTV0F+2VGDvsmlSIwxpmz7Ghtf8FWSlJ7Gc4LPmbOSl+BYj78C6WleupRqsZV2yWbM\nDdXNcj1ZcB367ZZ/7bTxFT+8QrSbkYZ2rVSCoHDzCdGu7jj+15RrzX+gmTOKoiiKoiiKoiiKoijD\niH45oyiKoiiKoiiKoiiKMoycV9bUVYGUrtiJ0s2gpxVpdAlzkNbZQ5X+jTGmuQPpuJlTkLrZ56SW\n1rXif+XNRBps1FiZHuwJQXohO0GxU0ndjnLxHnaEiJqEz2srlq4U2eOQ7jRuHo6hvVimN3Facc3m\nUhuP/YqU13RUIBWPU30jcmSVZm/80FbCT5iB8yp+SaaVRWQjVbKT5FoZV0gHh55W3Nf4NFQ9rzuz\nU7QreRVSihCSHcy5XrptDLyKtM6vXnWVjet3QWaVctEo8Z6gQKTHXXwnpDwsBzHGGG88UkETJuE+\nVu08JtqNCMB3k6c+RspZpOPAklaA4+C+FeFU227n/uRnVwpm8ZcXir/ZBW3S11AB/vX7paPLqCSM\n4enfh9yhf6ZMWa7+FKm5TWdxTtNzckS7cTdfgmPoRgpw8UtIIfzLW+vFe/70PirSDw4iRXvSjTKd\nt2ZTqY3jZ6H/9vdLd4TWWswbi26ca+Of3fC4aJdFaad3/vVhG598XUo9EhdKCaO/Sb0U/dETIqdf\ndpxLnI65svWMlMTUDcBtKqUg28axKfIaJqSjHx9/+zW8Z6EcV+Ufw8kpNA2p2MfewlwRHynT8Pfu\nx3tmjMY59bZLB6qQGKS+nn0X74mfKVNLe0newWtIWJiUamVfi3Wn6B/4PHbnMMaY9OVSsupPzn6I\nqv0RseHitaseXGHjPnKTWv/sJ+aLGHUE47KqaaN47ZK7IGVqPY2x2HlWpnlv+hSp2StnQKJUvgcO\nE6tnyzz2wy/vs/H8hyDj+d6fvibanXkRKdZnCuEYMv+7i0W7o3/ZbeM5K7AWcr82xphgmsd/8MIj\nNi5ZL69RZzW9TypH/AI71/DaZ4x0TYqdhPtz8LnPRLs2co/MTcE1TJooHWK2voH1bmIWxvaA47A2\nIghrUkgkOReSE6Qr32GpSyTJHcJ7peyjj+QhLItz3SIb9mMujxoHWQRLD40xJqAL95FlYalLpYzJ\nlSf7E2805qveOClnD+PzIllFaJKU+QQE4TxqjmJOCXIcSJpIjp66GGthaJSUJ9SWYo/QSXtAQ9ev\nqUnK6BKmYz5k9yiXmNFpn9tuwJVYkyNoAckhO87Jfs57lp4W9OWuaikRCI6VeyJ/4zo0MbxfZjey\n7lop26upLbVxL+1Xw7PkOEifjn0CO4p6PLJfBJOLXnQ05rPqtldszLIjY4yZ91U4RnG/8jhOrrOW\nQsLCkpCqvdKRKeI09raZV+bZ2FcnZbvsXFh2FHvoMc7xDeWzRtlOzN/djXI9ZifKnf+LPeC9f/2G\naBcajrHU1YW1q61E7vGleyz6/rSCSaLdx2vwfHJHATblQUGYJ+dMkM86WZdCClV7ABKf+g/k2PnK\nX1BeYM8v4WRa6DgMT/LinLJvgITt4J/lsxO7QM73XmPjrz54jWi394mn0e5HPzX+Zvpq7CPLPi4S\nr53+GLKsQHp+ai+Xa3ziTMxTG97YYePlX79ItOP5qIFcmsPS5Zo0Kguf9+mT2COlx+E+jlyRJ97T\nsBeflz4Da25A0BfnpJzchL3d9PmyxAG7iIaRg3PbGfk9QsJk3G9+XuwbkOVLJjjyKhfNnFEURVEU\nRVEURVEURRlG9MsZRVEURVEURVEURVGUYeS8sqZgSolrcdwm2qgKcSq5ErU76WepYyA94ir0IfEy\n3W7qFUjzS5wBacGIEbLSOn+fFJKIVNXydyFLcatgB5DzSUQq0uuanFTKoBikbrITSEinTBkNJuei\nhCvH2zgmcbJoZ0ZAFsApjk1HZCXq9mJcszF+rqBujDENB3GeHq+85fEzkC7GcoLanVIaVnyg1MZB\nd+I6Vbx/WrSraESKV3890rjmzZNykZmX4Fo1HES6cNQEpFE37KkQ7xk1B3IMlkxFjZQV6TuqcD27\nmutsfHZLiWgXG4fUuThKYa1qkn04cCvSKzNIlnJy7VHRLv/2odMytdbDCYzdqIwxpu4Y+tPuNXBC\n6e6VEpNUksBUkSylYYdMw/SmYJxe+OBqHEN1mWj31g+QXvlZEdIfQ4ORwvvku7+Ux3oakqe+zj02\nrv2kVLQLzUK6enI+3JpOrpEypLQ5GOuH34X8Yvl0KTH89Cju1eE/QeIz/hvLRLuDv4Xb1VCMxU5K\n4+xpkhLQHkoFjqRU7uBomVKekI4Dq6+AXKKvT6bdVhzcbONecnM48+ph0S56AjnEUHo0ywjX79sn\n3rOAJDJLFiINNjBYft9ffwhjLoqcaJoOScc6L7mpROfRHFC+R7Tj9PBRlCLcUiTXp0520fCzWcy+\nEpzTqjsuFq9x6iu7CWY67j2z715g42JyMAhwbA9YsjnYh1Tu/k45tlNikbr/8patNl4+Dfdm/xnp\n0rVoGcbIwd8iVfiNnTLd+u5vQQI54hjub7fjBsTHfmYrZLyu68HyH8Jt7N8PwZ1v2jVyzJatxZqe\nO8P4HXYiSnT2DEHUz9roHgR55Po5OhepydUV5MywS66LAZQCHhiJzx7RJfcWvFfpqoYzTdocpNrH\nL5frTGszxnN7Ga51b7uU+bBMh/8Py3uNkX2YHQ3r98r1OG0JBhZLl3yNjuSie+hkTYODkEO60geW\nnLAUnd2ZjJHnGzsW+6GWEjlHZS+HS4ivA/NNe/tx0a6V5qIIktREpGH+87XIubq7ieb+VBwDX39j\njOntQp9IWYT9UCnJyY0xJnw01o/m45BQdZTIsRg7Bfth3v/FT00T7XzOWPc3PnJhip8nNYwdJOFM\nuwhysoZdsj/W1eH+e8/S/t1xtmNJi8+Hz6itfd85Ksxn547gtfgpcF5yrwvv7dnxjff/xkgXS18N\nzj0yTh6rNxF9uIGeV45uk84vM6/G3Jl/HRwty9adFO2SZg+BPvT/Y/QiuCZVnJRy9go6jhiSSlZs\nkPPkO2v/YeN54yA3SpkuJSAssaw7A6lp7hVSanv3D5+08dKtkJw99zQcYm+66RLxng5ykv3tIy/Z\n+KL8fNGu6hTWzMnfhfQor1vOG91t2IskpaMcw6Tb5DxkYLxpgoKwX2DXOWOMiRwnnbr8Dl3b3Kuk\nTIz3HXtew94sMVPub3jMrroXjnMla2RpiZAwPEsfIgfQ5kK5hlyyEBuAvn6sJ5HpcIWq+bRUngat\ncc3F5MYbKaV9XJalicqwjHSkooVrsc7mZmEOCHFksqf+gT15xhWQ1w86rsyRY85/HzVzRlEURVEU\nRVEURVEUZRjRL2cURVEURVEURVEURVGGEf1yRlEURVEURVEURVEUZRg5f80ZqsHS7Vi3seVjB1lu\nh6ZHiXasc67dAk0Z2/YZIy3eOqqhV0vMkWLzqqOw5YodjTomgaE4lZA4Wc9mRCA0dG2V0G2mXybt\nVlmj1kh69Lgp0haTP6+3Dbruioqtol0gWeUOkpVjSJK0Xz2fdaI/CAiG3jVlqbRDPvIiakkkpUMD\nF+DUppm0HNrD2q2lNn7BsT+954HrbXyOLJn3vLhbtOsnW7GcbOibE6Yh/vhTqU+cPhrH541CP4uI\nmGAk0F+3V6I+ywGn5kJ+P/pPYjI02qEd0vYwLh9WqkGR0EhO/qq0B3f7tD8JCsdYdPvL0XLUB7r6\noZVf+BneePS7c+/DMm78ndLe7ujvP7Lxb+94zMbZZEdtjDFsArtsMmoILXgIdsIDA7I2Blua8viI\nmy017tU0V3Q0I64/Li1IT1TCLm9eAY4h90vzRbvpvTjHg09+amNfh6z/VNko6/n4G753vmo5p0ZQ\nnQDuS746qTkOS4BOOySaagtUSH25h+bElMWoT9BWKmsz9JGNde0+aPA/oTo9p05LbfhP7rjDxtET\n0S/CHFtetv2NyIQ+uK2oQbTro/oYFe9Bs528JFu0K38b9R3YljwwRNZmcK1G/ck3/3KfjU+/ukW8\ntn8daiotvh/1aEaumCra1XyG68n1hda8sku0uyoMa9m070PXfuxvjgU81RKYX4s6Wyl5WLtmfb9A\nvMfjwf2oL/y3jcc5Fo8xEzD/8Vqy6S+bRbuCby6yMVtITrlIFm/idXbl4/fauKnqkGgX7NjP+huu\n5dR6ok68FpaBa9PfifHBdcqMMaa8DPNR7hTUrTm1T9Y34/U/OAZrSECK1Kuz/SfXAwkPh6V8X5/s\n255g7J0aD2B8xE1NFe3YcptrnNTvkPXl4mfh/nvIUtytf+LxYA0OCMY5NR45KNp1N9D85eeybI1U\nby0oyite45o9fVRnJu4CuZ8L8KBPl7yBWmxci8sYY2r249qmz5pj48BAuZ9LmIr/W78f82nLSdSi\nca2vMy/F/qp6L/5PWIrsbzx2uI5O1jVyD9TTivm0m2pWcD/8fz9Q1rjC+4duL/N5hGbgPFuPybHY\nTbXZosaitkVYpnNtGvDcwHuLjjJZ36cpAzW1ImNgl9vbK9fF4GD8r7YRWK96O9CX3HUmLANjguui\n1GwrFe3ajuPzuNYG13kzxphZ6ai356uCvXlMuOxzbaexb+mqRP+LHS/7cG+rU+fEjxx4FjUI825c\nLl57YuPfbLxqJiaBmFGy7sbC8ajh+cq2bTaOPSTP9+ZbUcekdjvVKomR+7mVF2KPHjsJ9U9/9d5b\nNv7kRz8X7+mj+/vgE1+zcVzuKNFu26Nv23jjkedsPGesfK7MJWvlkCtxvhl5cq/eOg994tjza/CC\nM0Rn3fl9M5TseBV7kKwEWc+zi+pYTrkcfbNul6xbWUJ1exbOxHoy6W65F6j4CLUqV1+H6/HGz9eK\ndqGZGFdTYtBHuuuxjtXUyr0718A7VYXn/vlTpUU215C97MHL8D9j5NhJacA5cX2umEz5TN15Ab4P\n6adabKkXy3aNTu1ZF82cURRFURRFURRFURRFGUb0yxlFURRFURRFURRFUZRh5LyyphCyN+1rk7aM\nMROR6lxOdsrJczJFu55mpB2FpCKFN2W+tK6s/QxpUXGTSH6xR6aNj110m43ZwjB1MVKGKj6UKfhZ\nq5DyGZqAY3DtV2PGIY1poAcpo2wTaYwxHUVI1Wf5jydcpv0GepGi2HwYKUzJC7NFO06THAo6yGLS\nGyttxJLIAs1DErSuslbRjq14PyuEJObG+VI+8uIfYVG3lKQuiVFS7hZMlqQpy3Dv2slqeGyOtP2L\nn4w0bY8HUoC2Nil/CgiAFKCnCWniV1y1QLQr34d07tipSHUOqZIplJziXkv2uK4VMqf8j5aKp/+a\nk39GquGU+28Qr3GmcuNhSEJO7igS7SZR6nTWcoyJk89uEu1yb8N9G3wOHz71e1eLdi98+7c2HjUr\n28a1e/F/k2fKFM89z0PeVteKPjZvqZR9jL0df1d8gPEc66TBJrYh1fcYSUUO75ISn5WP4ppxliiP\nc2OMyXTSOP1N5GiMN1c6GEQWuyzTCQyRqc6VW9Hfg2Mwngf65DyVOAVpuJ11SPkMTZT9+9gGjOf3\nDxywcbgX6Z7XLF0q3pMSA4vY0vdxrdPnynk9YQbGMM/LnP5tjJRA+ih1tuENKXUZNZ+sVPdhbCfM\nknMFW5b7m+e+/RSOx5H6RYXiflRuwDgY+SUpO1j/0iYb3/57SMQeWV0g2rU3Yr458SLsXD87JPv3\ndTcgxXj5/37Zxpt+/rKNzx2T1rPNnZA7fEj3/ee/u1u04wmG5RiuRIJtzjOWwwb148c/FO3m3j7X\nxmfffN3GWc41yr1dzgn+huUSMfnJ4jWWwfT7cM6eaCmdmX4x7JWPvAKJ8PgF40Q7TmGOJSvePsfW\nuYvk4t5YrGO9vejP4eEyvf7sDlzf1CUYH/2O/JWlKm2nkUI/4Fh8Ro3GHMg2zCydMMaY2kjMG4N9\n+IyoXDlHd8fJPYc/YdmPK8Vhi2yWojeflLKZULJC5T3c4IDs32yH3HQOc7A3Rp6f+F/7sR6zRXTS\n1NHiPb0+rGO+GkhlIkfGinZ8jizb4r2bMcY07SX5/nJI4ty9LEtNeX5OdPbxA61y/+9voifheaL6\ng2LxWsYK7CE6SCYbRLJEY4xpofmseAvWjYkZcm2IInl87U7MqemLpW1wVxf2h+FpWK8CPVg/XVkT\nP0O0lmC81BysFO2KqtEvcpIx98TESplj2yl8Rjeti3lXymPtI4tj3uC0nJDPONnXSkmHP8lePcXG\nzZWF4rXbrocMacZXvmvjuy+W+4on179mY+8v0acj8+Sc8soLmPPyR2LPMWH2GNHunmd/YePQULQ7\n9u7fbRwSIuf0CJIZh5NM+60HnhPtVj+OdbbAgzX88VseEu0WPYhzPP70JhvHXCCv0TN/hNTq568/\nYuN1D8n/m1mGZ6y0kVcafzP7SyglcmqDtGxPSsK1qSCp3rFzUta0ZAXWxXaS0ftq20W7+BmQPNXu\nwni76Eopf2LreZ7XB7oxnwV55H46NgLjNDERx32iqEy0S5yP8hbNx/Ba1mWyzzXRsxWXb1nzg7+J\ndkvvw/2uoO9G+lrkHBqeG2POh2bOKIqiKIqiKIqiKIqiDCP65YyiKIqiKIqiKIqiKMowcl5ZU82m\nM1/4WhSl53tDkX7WeU7KYeKmw4UlfhqlMH0m06D48zh1M/ECKYuoKEaF7H5KaWLnhZQCmfYbFIT0\npPpipOI2H5XOL+GUqhRHEprgCOn+FJaMVLfGI0h1isiUaUpx6UgPq9mM9PLqzfK6hmefP73pvyVp\nIdL56nfK6x45Btf93BZIC6qam0W70amQ/fh6kIrtiZLptCsLkI5WeBIp+XO+JF232FmhZlOpjdlV\nJnGeTK3tboFEzhOG6169RV7P6PHsrkTHN0JW98+cjs/n6tuD/TKduZPcyIJIFtZYLqv7Zy6Q/c6f\n5N0NSVbZNin1Y1eOtmKkwV7y85tFO5Z7ffLwP2ycM1dWEf/1XX+18d0/vdHGg4MyJXrqGLyvuxYp\nxVHUp9qrZUXyY+Qstfq6xTb+0WPPinY3kFzuoh8iJTY+caFoF7UDqaBxEzDXuA4ap16Ek1oxVZIP\ne1OmlsZckGSGEnYCaDspHYtipiC9uZ7mx5hJ8pjiJtFYbMSYqNtxVrRrS8T8JqQLTrp+bBzmvYKJ\nSHtmFwm3av8IqoQfGYdUbJ7jjTGmrwvp1omzMd46KqTsKIPkGB1n8VrkaJla2k79u49S7d10fTfN\n35+MS0M/ayBZnTHG5C+Ck8D7b8FtYpGT0nrx5Uj7DQzEuPzwJ8+LdhMvwf04V4Q5b/HKWaJdZxXm\nqI4BXL8rfvUzGwcESNntnj/9DscQgN9p6jbLftTfBVkPrwvPfSKd+iJI0pUWj/s2+wap8Ty5Bm56\nfP36X5YSw8Awkr5+d4XxN5G5SHVuOS6lLiwtybgce5DiF6XMjrngpuk27qyU/SLnunwbs8uO+39j\nJ9PYrkMKeE8K2tWVSOfDhMnZ+LxS9BFPiNzeseNmCEkbw0fK/Uf5e0hlZ8ei2GnS/YmdC6NGYs6v\n2HhKtEt0JIf+hOcRj+PuxZKT8CzId0Y4cq9WknjVFmJtSOiW7cJG4jNayW2OP9sYY6IyMD8kkzsm\nS5T6+6UcJigE94DvjWuuxFKmlDmQzlVtOy7aZV6ZZ2N25kqdK2Ut9UchveS+FxAof7cNcaSw/ob/\nX9+AlNnVbsJ81NmMfUbcRClFHJsHeULPUexlyxvkOhu9DdKFYJJL9Prks0t0HGQ6Def22NgTh/vd\nVSXHOZcvSCdpZ8ZCuceKPok1t6eZ1rE+ee4pF33+nrLVkRiGkdtVJMkKvfHy2aW3fehKKDSdhHSr\nbL2U3e4uQj/Luw7zw8OvPiDa/f72e2x8w8+vsnGvU1bj0XfesDHLzzb9TEpMspdjD1RbtNfGZ7fj\nmWH6d2S5g9Zi9JfNj39sY5afGWNM1W6sY9Xb0Ee//uiNot1gP+7phQ/AnfD1e6X86dZrltm4cifW\nmQnTckW7dx5+x8Z3/tP/siZ+NsuamiVeC0tHP9v5LNZ/99rs3winz54+rHdX/FC6eNWTNL2f9ooJ\nM+Q+smoDpI7HaGwvvgvPEDWn5fM8y0hZktvb7+wVScrK636lM6fGTcW8vvVJnPusy6eIdnW7sXfn\n0iYDwbI8gRnh2HA5aOaMoiiKoiiKoiiKoijKMKJfziiKoiiKoiiKoiiKogwj+uWMoiiKoiiKoiiK\noijKMHLemjOhadCXhabKeh0N+6EVYyvkqvelDR5rMhtIixWSLDWsrI/uqofuKyhCaisjElC3IDYW\nWvYj65628YBPatcrqmBnlUS2WQmzpK6NLa1ZZx8eK3V3viboFWNJ98pWi8YY01QNa02un+JaV9Z+\nUoo/LjF+ZwTpeRNmS/13LelvQ4Kh2eYaM8YY4+vGtVkyDxanEU5NCLYmnkWa/u6GTtEuJBl1KtKW\nwVYyKhV9ya2R0HgWGsCi52D9OuqGfNGum+rHhMSjn9XvkvV2uBZPL9WvqNteLtqxJjGGNPgJVE/J\nGGNai2Vf9SfnNqI2yqhLpUa2+N1NNj68HfUCAoLkd6/vvoJ2tz12vY3P/uuoaPf9p79h491/QH2b\ngBEHRbvMfPQlrk2QOBYaTJ9PWkh+47e32vj334KdYXKMrHtQcP9FNmZ9f3+3rHMx8kLodAvfgA45\neZ4cs1HjUTPlihXQ4697ZJ1oN7aV7ql0DvcLradwLiOvltbBHVTbiPscW70aY0zzKdhjRuVg/I1y\n7Acrt0MTHeBBXwiOldavOTfDhtn7EbThuTOgd+8qk3r8BJrP2skytIossY0xJmcFbJNHjMD80nJq\np2gXOwF1dRr3wAbWrecQQBbjGQuybdzbLjXpEY4FrT/JnIN5Y95iec1rDh+28SXL8Vp7sazhlVKA\nee7Qkx/YeNFDy0S7vg6c19zJ0Fd7w6TGu74Q4z4wFNfosydQVyZ2uqwZEhyPfvAxHXdvn1w/L773\nYhu/cNefbfzMXx4U7aJyUXeEawTs/6eskVJItpuXXT7HxgGOJpstiYeCQPp/kY79c8xE9Ee+nsEx\n0r7XS2Oppxm1PQK88lx6qO5HKK19yQuzRTuxr6L+PTiIPUOwYyHcdg5aez6nrhppWxp3Ae5/y2nM\nIa5dc+x49K2gINzTxuIi0S5mFOb/rmZZ14PpGUIb5qAI1EcIc/aoXN8rJgfHWr7hsGjX04B7k1WA\n+g6Ro+R1aSrEdeb6PW67ik1YT6PGUv21cswBPG8bY0ztAdTo4Dp5rvVsG60fva04j+jxiaId/y9D\ndWuai2U9qVCqJeOrxx6tz9Mr2vF1HgpK38HeLiJF3scEsvWuWo8+WHlQ7ucyZqBd137c+85u2f9e\nWYc9xC1U56PiI9m/fTPQL4KontHJZzfTscn9NNcrrN2Oay1qHxpjOmk/3EoW4Inxch/UVY3np45S\n1FdqbpC1bkbTXttH437AqZ844NRb8ifJ+ZNt3FEma8qN7cB4aWukmlYJk0W7a3+IGipv/GytjSNC\n5JyXP6HUxuO/fLmNv/Wb34h2q49iLF4+Fc8towqklT3z8A/+YuOde1BraHvRm6LdWapXmDwX+83f\n3f9P0W56Dtb6uV/DvXatn199G/1y9Ww82+4+dVq0y3Tq//mbY2tQ7yYwUK5jFZ9i/ll1D2pBVn8o\nn/tTR2I+6qS50q2hFT0O58LPqWxBbYwxRUUY6+PHYf9VtxPPau0+n3jPsfdw7/upjtXUabKObc0n\neJ6PmYy1r6tKzr2v/AjPF3PzUE8qIFjex+N7jtk4JxPP0fGz5fcNm1/ZYePpt5r/QDNnFEVRFEVR\nFEVRFEVRhhH9ckZRFEVRFEVRFEVRFGUYOa+sKTIHqXJBUTKtjG2v2J4tMk+ma7YegwUkp1GzZZUx\nxpx5CSmaiQuRIjYiQKY2d/uQWtrVVfG5n+dNkPZxLKEKT0faYOPRKtEu80LY9JbtQOpiV5tMn2Qr\nzJBYpGDWHSgT7TpKkVqaNA+pWJ2VUiIQnCBlBv6GraADQ+UtHxB25Ehd9TXLFLHYMUg/Y+tmb4w8\n9vZzSGdsOoDrO+jY9zbSa9mrkNpYf4KsjZ2s9n6Sq0VPRNpcw0F5H4s3ISUuLgIp5KerZLsJlOLJ\naaYJU2X6P6e1l7xBKctZjgX6EGbhZ18CicTz335SvDavANdvDtnWPvfEW6JdqJfsy7ci5TYsW0pH\n2s5ApjLty/i8A//8TLSLykOfeOcPkGas+jbasJ2pMcYc+QDX785HbrIxj0tjjHn1e/+yMVvxfeVP\nd8nPe/4VG5cWYpzu2CglWDf85g689sv3bBzmlena3vChTd+OJztallEaY0wtWRjHzYK8qt+xdG3a\nj37MMkJPmJTORI1GSn10GtJ4R4yQqaqlH0G6xjbobGHqTZZzKss22s7g/6YtlbaPrVX0GXH4DDe9\nupPkr0E0DzUfkfaIiXORut58AmuLKy3oduYvf7L3faT9Htso7RYXPbDUxh1ncV1qW2SadwTJv3Jv\nwvjtbZPHfeivkASNnA+Z2Y8ffli0e+w337Lx8bchZ5t4HSSGIxx73Msu+bqNX/v9ozZmSZ3Ld394\ns41bnHvDa0n1DqyF3iD5eRfPn2bjkStw7i/e95xod+vvvvqFx+EPeE1yJVWtJyH7YXvwEl2UAAAg\nAElEQVRbtt41RkqZeJ0NS48S7VpO4PPCM8hG15H8pC5GCnx84nwcTyv6nCdEzlER6TSu+vB54aly\nTLRXYl4fQTLHkCiZJt/Xh77a2QyZVWxOtmjXWoGUcg/JDV2L0KDwobO1j8jEuuHKysMz8FrNPuwJ\nUhZKe+Jz/4akiPd2/T1S3hdF0rdmalezuVS0S1mMz+d5qJ32gyxXMcaYjEUkBe5AX2k8XC3apV82\nxsa8Jw+PkufUWofzraWxOG71ItGut7fJxp1V2IP3++Q9bC1C38nKM34n+8rx+F+npETOV4s9ROx0\nyARCqqXsoKsC1zQjDvcqc5KUE2zfjPMsPiL37ExgGFnsVuKzeX7sd0oosG6D54B2R/LOUqv4SDxD\nuNKH6k2l+F8kzUiZJPeonXR8PPxct15P6BfP7f8twcG45qmLZH8MisIc8Oz9L9n46m/Wi3Ys+Ryd\ngnudu1RKUQb7cJ2rD6DEwZbC10W7NrLFHrUYNSMqDuD5jp9ljTHm6Q//ZOPbCr5m4+gkaUP/4odP\n2Tj/OJ5ZXQnWhHmQwBx6ATKpsGA5L/7izT/auPiDD208x5HITr7nejOUpGRiPehukvuRUatn2bjm\n01Ibx86Q/XHHWtiWh9D6H7pW7pcCqZzJR5vwnnFpsmSErxf36MQpjFl+vpt48XjxnpYj2B9GjMFa\nWLhF2rznzUXf2vE6nnFKampEu8nZ2TZmm+7Oc3IuzyLZGZdHGeiX5Uzyx2Sb86GZM4qiKIqiKIqi\nKIqiKMOIfjmjKIqiKIqiKIqiKIoyjJxX1sRypfazMmWe8+UiyFEjKFKm3LIs6exupLgfOHNGtFu2\nYLqN2RGhZrusLp9zCZwjqk8hHZ9TDVmOZYwxLceR3lS7C5+XMF1WWm84i/S48Ayck5u6GEjVmRuO\nQlo16LgwJVEF76YjSE9tL2oS7WKnSmckf1O9E2lgMaOk7Ky+Hve1m+QjbspdKt3jNnLPObxT3seu\nHvSZDeQAMnusTEuckA15wme/3mDjLErdd697L6UIV5yAtCPUOdaEBKQzczpl7zkppaguR0olOw8l\nTJeppaX/gkygrQtp7Jnjx4h2rrOCP+ntxX268Te3i9fqD0MikTwZqZf3PSsdXXrJ+eWZ775gY06X\nNcaYVZfMs3HLUYydC26YJtp1UVpxQAC+5x1Bc8MIJ682MwVytOqP0XcmfmOVaLf0ZjhSJU5FXzny\nu49EO5a3Lf0ZJBfNZbJ6fHAwUg29VCV/0bcWi3YHnt1lhhKuVt9SWCdei56Ec2kixyJ3XklZgjHS\nTA4iTeUyBX6gB++rDEGae/ISmXKcVoB0UHZU6iaHGZZIGSNdYZJIauSOAXbtaT6GNNG2QpnOzLAs\noPoT6f7URynI7MbC6bHGGBMUMXRSikseuszGPS0y7Zf7ezK57bSclKn6vC6+/FO4AMxx5smETMzX\n7B4w1kn7jaD1KjEN72G3ukCvvEa3XQlnjN17kW684JLpot0fvvecjdPj0Q+WXjdPtOM9AUs+xziO\nRHxvSt+B/DDckRhWfIp5N+GaAuNvWGrkEjcFado1W0pt7MrxWB4URC5KLLcxxpjILLg/dVRD4hAY\nImUGLD0LDISEKiyM5YJyTu3owNju60KKdWRCtmjX2ASJUtr0mTbu6nKkHTRJcX/2tcr5KiYT619v\nL15LniOd8vp8UjbgT9rKsJfqrpeOkLyO8/1oK5X7r4TZmL94PPc4Kf0+kj7HsEunR/7GGZGcRu/B\nvWE520Cv7EeDdM15zoybJNfw4HCM8+ZiyHh7mgtFO5aJBseiX7a3nhDt2s9hXxGeic/2xkgZK0uy\nhoKydyE1yLxCzoEsDShaj3kqxJFLJs7A/U6mdbarXMoOokIxrsbOJtcex0pGOBSScxyXSTjxvrzu\n2TOybcx9ieVoxhgzYgP6DDu21e+RJRQa22nOXwJ5DLvEGmNM7Q481zTTWuO6eNWSnH30hcavnNkM\nKQ5LPI0xJmsF9hirAyH93ffWftHu6t/+1MYvnV1j4/zUGaJd4wHMZYc/w17vg4NSzv746w/YuK4E\nEuH48ZhPu9vl2rxyxg02/tfHT9i48Pm1ot3d915j4xi6zgkZc0S7wtdfs/GU2yELeutX74l25uFn\nbMhy+6n3XyGaPXErXBIffkuWLvAHLTW4d3E5ct+39z1c31RyWN30/EbRbn4etI/8zMSursYYMa7G\nncK8mbdEaidPfIJ5a+RYtOukZ5Cy7aXiPWnT8Ey3fyPKKUyeJz+79jD60gXTMU5jT0hH6fyrIT1l\nSVe6M1/F5mOt//jpT/HZxx2XxWZZ8sFFM2cURVEURVEURVEURVGGEf1yRlEURVEURVEURVEUZRjR\nL2cURVEURVEURVEURVGGkfPXnGmDpj8kKUK81k864tpt0CyHZkgLyUiuVUA1ZyoapM6v6BS0lonz\noFlm7bcx0uYxNBHHFHQhNHod56RtadRY1JsIS4FtnWvvzDbQXOeh6YCs5eBNhB63rwPXwa17wFZ6\n/Z1ol1SQLdp1Osfrb1JIUx2dJzV/rVRLKCkaWtxAx06VbQXrqA6EW1PkFNlV33nrSrzfuTYVB3G/\nU/JQc6dmF+w5w+Kl5q+3BVrs2lboItPjZB0dQ/f17CnoCSeNzhbN2Lbw7IenbOzWugnNxH3MvxhW\npxXrTpkv5Jovfun/hqIXYPGWMCdTvNb4Gc6xhM7DtYJr7oDG8Y6Hr7Wxq60/sQ76zPhonPvWZ7eJ\ndgV3F9h41gToLl//zTobX/YlWZciYR6Onf9P5Katol3qvAk2Pvp76FlDU+U81Eu67lMvf2LjvXul\ntn7havTz2f9zo40r90p78IKfDK1NYR/NA4P9cv6JzEE/9lBdjtMfyHPJnoOaLFyHJGay1KE37EA9\nrIiJmAPduhlNp9AuPg/9O5hqaLBlsDHGdJRjzgoh+8tAZ06NmQD9raGXmg5LG+aIkdAvs8U46/uN\nkVagPKfW7iwX7bh+gr8pfxf3I2m+rK/hDcP5tpSjptInR4+Kdt+6BzbRq2g9aT8tLVeTFozE55G9\nc2aCtD9+7M6nbXzTsgIbF/4d1p05V07gt5ibv4eaM0//4lUbR24+Jtrdcjtq7LSdwvFte0uOnQ6y\nh11yObT1IfGyfkXFR6jDwbV3UmJknZb2kqGtc5F4ITTpA32y3zbspf0Izbfu2tDdiHGRPAVa9ort\nh0W7lNmoFxGfPcnGPT2y7k1bBdbP5iBYi44YwTW95Np88m+YlzNWYB72+WQtGbabrz+N4+N9lDHS\nQjo8Htfo3BZZH6ItBrVbgqOw//I5tV/YHtffcC2ZznOyzgXvTbwx2Nu0l8t+1cO1tcZgv+paz4ck\noB97wjA/uxbe7TVYj7kGI9t0Bzj2uFxTrqcVa5o7dnq6cI5szRrq7M/byzA/ZxcU2LirS9ZwjByJ\nPuHxYM5sKpHtUgtknTJ/Ez2G1j7H7plr242/HnUfKtefFu18tBbyXjFxvtwvRbWQ1S3VZXOfNeq7\nsaZw3RveL3GNGWNkXcSgaNz7ntZu0S5yNM7XV4d9WfUx+awx9iLMG/x/Gw5ViXZR43BOQTQWQ1Mj\nRbvOs0P3rLF/HeqRLH/kJvFajw/rBteCWpAt64PWlWEfuGgi1quWE7LeVdxUqjuyDXWInvrgH6Ld\n4T/DWruzGfPSgp8W2Dg2dq54z4NX7bBxRxXGW32ZXJvjaf/2m1+9bOMvXbhTtBt9Me5hVAb64szc\nXNFu0r1YZ/v6MB/sflzWurnz6S+boSSEange2SvHWDKt0VwXZ8V1i0S7iGy0qyE7eKeskzmyDutQ\nRiL68M51+0S7QKpp6avFfeyhOqlc28YYYza+i/qR+VnYpx3eIa20x2SiL733Ie7d5QWzRLuBPswV\nXGfm7BpZdyqO9uEFt6N25qE35Po5fqm0/nbRzBlFURRFURRFURRFUZRhRL+cURRFURRFURRFURRF\nGUbOK2viVPOBPpkKz26OSQuReh0SK9Mwu1uQapSUhZTR5YPSrrOVUpJqyaYqMEweYtwMpACyVR3b\nhLYckylwJ46QZe8sWGU1npYpxR0+fN4FN8O6jeVJxhhTtx3pwrFTkMLEtsPGyFRalnu1nZL/15sg\nr5m/GSCJFtvPGmNMCknIGnZB3tDVIlPEwrJw/AmU/hnupBLfcNUFNm46iBTNV978WLSbmIn0vn3r\nIZNaNhd2zQFB8rvDhjZYIuYkQT4Qny/lHCzbyCM5R9Zimb549hOkL0bGIS0491onnW0A/aL9HFIb\nY6dJC/RW5/77k7Z6pOzG90lr5VE3T7ZxZAzS7ZLfWC/aeePRHyPTcf3CxuSIdjz+jpcjvZ9lUcYY\n851bfmnjq+bAPvDrf/6WjYte2S7ek1qA//XpY5B6zPzWAtGu8QSOYcr9X7Jxb69MLT30JKRMF/7P\nbTbOua5CtAsI4FRp5FbWbZap//U7cL4Lfuxnr0ljzAiyDkwhyYoxxlSTzWUISV3Y+tMYYyJInsDp\n8S1HpFTIE4lzHqAUXJZWGSPT/zsbIIVLmoy04vZaKRvyhCP1lVPv28ukZIDHYjdJo2LIbtAYY9rJ\n3rbtOEleA6Vs0psImVPyIqTau/LKmu0yLd+f5N26zMa/uvVn4rUVBegzo2/BmLh84UzRjlNk9609\ngPc/eodoV3sUKbMpZM0du+m4aPf1b0Ci1EVzMtvNfvBnOQeveGC5je9/6us2PvOSlOQkzcYaMXE1\nxtiYBilF7OvE2nLwaaQHc5q9MTIFv3Yrxt/u0zKF+oaFl5qhpG43xjpLlY0xJvFCrE9sKR/snAtL\nXWoO4J6wnMUYY1pKMB+Fp2Mdaz4p1wweV7UHkH7dWYn39DTKtbmHrntnNdq5cpsW2ndEk9S715kP\n+rvxd+lnZD87Ra53Xtrr1e3DtYxxpNOuzMmf8B4warSUN7PNNktIWaJijDFhaZB+1NAcnDxfzs9s\nTx07gfZ9RXI/FzMu6XNfixqF46vdLdcdtuNmWQ+fnzHGhMXj/7YPYq5lyZQxxkSTPKv6GKSNxpEV\nsKypuRzn3tsq/29/nFyD/I03IfwLX+M1k6VMnshg0a6fSgx09yJ25W4sKeJ+4auX+xves/PzRV87\nxlt3g+zbyYuybcxSHH6/MXKvzceQnOdYp0dBWtxdj3Hvyl+DY9CutRB9LmKUHBORY6SMyJ8sf+RW\nG6//0QvitWuexDp5egMsst29SHcdrmdIBsZle1GTaPeT//27jZ/59y9sfPC3r4p2UfmYi7KnQU5a\nX4F9aVLmEvGeiBBcy4Fu7F+mf3ehaHfod5CTsiR37HIpH44dj/kgPBzPnxO+LffxdUekfP3/kDFX\nzkN/+gbO/Rdrr3Cb/9dwOQRPoFxDMmZiL9BRjHtStqtUtMsaxDGHpuM+bnp9h2g3NQ/SLp6Xp0yX\n9tTP/OvfNt5bDOv0SiqP8oNrVstjyMRY+vd2zIFXXbNYtCs/gL3tJHouHeGRz5/tJTjf6uN4th2z\nQt7v0vVYt8MjMG+Ov1jKmKp3YA3IX2H+A82cURRFURRFURRFURRFGUb0yxlFURRFURRFURRFUZRh\n5Lyypr4upJz1O+lnXkpzHOFB6lP9gUrRjqs2h6RAOpLnpMi2n0HKEMtwuHq+McbsfwUOBpyynZiG\n9L19h6WLDld03r7pkI0vyJJOG6MXI5WK0xVbT8i0VYar9ifMyRCvlb2NlPT05fjsAMcFICJLulT4\nm/AsVOE//JKsgj3t60i95xTDs06aWgM5AmVfO9HGrvvTiZeRos9Cg2WTJ4t2CblIq76Q+oWPKvP7\nKtvFe1Iy8J4xt+K4+/tkOmqgB33T64UEa2BASrrYKWTk1UhNO/aHT0W7kJTPT7ntqZPp5YERQZ/b\nzh+kUWqj65wWHIpU1cbyIzbm9FtjjEmhlNveLlzb4+veFu3Cc9Efr/gKZGY8HxhjTPSvkdY++wbI\nORoKkXbY2yRdCljO8dW7IMXo7ZDtxs6/3cb7XnjSxq6DxsS7Z+P4yMmteodMEQ2nMZY4eqqNz9bL\nsb3ql3eZoaT2k1IbB62QqZucmszyhvTLxoh27JzUdhJpnV1Nsj+GREBa0U2OECxXNUY62HF6fCPJ\nTFyXmqhczLeNh5Hi6abh15BEjh3wovPlvNFWhBT9iHGfn3ZujEwtZZmA67znrlf+pOYIxlhmvFyf\n4mdjDTjx1GYbB4TKpTbIi2s+Lj/7C/9XyXuQysz43iU27h+QKdHsOMPHcOZdvP+aX10r3hMcjPm0\nbCPSfqMmSieosGisk+eOv2/jwGCZ8hxEDmPjr8N876aun3gDsqkpd2Ien1AspYhun/M3XpLjdTlr\nTRi5nLArTtNR6YAXyu6P1FdbHbnSIM17niWQdgZ45DU88hrWz05yv8rJhqNEXY1M8U9MxvzPkqf6\nGrku8phg5yZ29jFGynw6SE4Q4ki/WDYl3NacdadxPznLzDF+he8H7zWNMSaUJJBNhZB88jxrjDFB\nNNfyXqmnTa5JLAXzNWJ/GJUjpSM1OyEP6qPPiMjAZ49cImW8nW2Q3vMa5zpL9bYjFT5pImQavb2y\nT/T34J5G50BW0V4p5TBVmyEpZ1fTEMfBq7OGxoc0mfELPvr8wBB3XsE6xm6P7FRojDG+CsjOspZh\nzewiqZ8xcl7h9c5dazzkWMrrDpPsSJNbT2M9zrlkqY2rj+4W7SIn4FrX7IEksHSvlCaPJalHOPXv\nWEcWzGOMpc6tTgkF1y3Hn9QexvPOhLlyb1NTusnGxZ9iX5G3cpJo10aSrG3HsYdbeZuUHsWtxxx1\n3+pHbPz3T14R7VrqsVbff+1jNn7i1QdsvPd3T4n31JMTbBqt22888IZod/k9uL/xY0k+Nedy0a7q\nBJ4nYuNwbzrq5FrCLm28/qx9+kPR7o6f+NkK1mH+bXBY7aqUksBjm3BP2NVJisqNObgRjo8sy7/o\nNikNKyPnxrR5GEv7/31ItBug/Q7H31+NkgcvfbJZvGfVTEjJL5+NMiondxWJdnPvxFzcUYHzrdki\npfEZ9AxffgRjdvtL0p0rIQpyyIAO3NMjb0t3y9wU+R2Ii2bOKIqiKIqiKIqiKIqiDCP65YyiKIqi\nKIqiKIqiKMowol/OKIqiKIqiKIqiKIqiDCPnrTnDltGBjmY+kmrBcG0LrhlijDFxF0BXxbVkGvfK\n2jQBbIV9Djpb1045iKy9vB68x0ea+/Q4qQFOiodWMygOeuPEOZmiHdfDaDqEOgpunYugKGjtAkh3\n72rwY6eh3kkT1WUwju1rXQ209plSqukXTr4J3WWkY8vbWgSNbCNZX2fPGyXa7fsAdQLaX4CObswV\n0kYszAt9sDeB6hIFyHOuOgW95fFPUAenYP6ULzgLY9KWQexctQ21FDIWSVv27k58tq8J7ZqPSz0v\n100qXwf7s0FHmMu64qoNqKeSskxaUBe+KXWS/mTPe6hFkJ0k9cZpF+M4WEPdcE7qpBPI0jSILBrj\npqaKdmwB33AYWuZ1L8paPNmJ0Nmefg9647YujMWMRFm/grt+P9kU7nxmm2jXsgja48QLUUMjLl32\nj4YyXJdQ0oiHpkWJduVvQyub8D3YvV/8kLTrPbXmIxvPuEPqof1B2EgcV8U6WRsrbhbqSoTT8dds\nK5XtyMq+pgU1DUbfJOs6VbwPPW/WStj4tZXKflFHmneu28AWpq5u30c1bHqaMR8kOXNq6iL0zY4q\n6Hn7nfpFbJXZ70O/iJkk+3oAHVN3C/oZz9fGGJM0T9YT8ye9VFfn0vuWiddqSafMtXPiJssxdpzq\n0ew8gbmn4rQ8j8pG1IhI/hBzsLvGjbm2wMbN5ZijkqeiT3k80fwW03QG2uvcSzEOyndvEu3CwrAW\ndMWhr/D9NMaY6s2omzHYR3OoM59uPgY9+qwI6PaTouXxBYYOXQ0vY2RdubjJ0sLWV0v1WmjOCnAs\ncbnGEu8fAr1yL9BF9ck+/eMn+L8RsrZHWjb6e1Up1quTxbD7HDdGjrEbvv9jG9+6apWN5+fliXZh\n4ZjzeT3mWkHGyBosPAeEp8s5lW27u2jf53Vtl4ew0EXyHIxzt+4U1wriejts12uMMSFk48zrp2t/\nzDXXeB2r2SFtsZsOY/8RMxFrJB9f5b494j0hwkoa7RLGyjXI40G76mOoY+LWg+N72k7zPc/bxsh+\n4AnB+QaGDO3YcwkfibFfRXXKjDEmahTWpJ5mquGTK22hg2Kw9yx+H+t9VKSsldR2HHte7jFlTv25\nSQvG2bizFDV8QtIwZjud5534aek2Lt2Ece7WQOvrRD+LzsD5JUySdSi4ZhHPVxFZcq4MpTpR3VR3\nyn1+6qyQ67g/yZp1kY2bRu4Xr3366w02zk7DXHv8nSOiXdY0jOdVcy+28YaXtop2T30Iq+4/fPl/\nbHxyzbui3egrcUwvbscxVJciHn27fH4YTXFUFOoT3vP8raLd1l88bOP05ahxtP0XfxTtZj5wnY2P\nvPy8jbkOmTHGrP039sA/W/Oyjb/38lWi3cmNL5mhZOtzOI5pS+T8U92CcXDRlaj3yPb0xsg9oTcW\n68G5t2UtyNzVqF/qofV+ysXy/1bQPmjaKNqP+DA+br1U1iU6UURW1d9ATcycYDmv1+3FnqaBvpcI\nTZK1Rk+swf4rkL6HmLp4omi37QP0/Qvn4rX0XqdmZ+b5a81q5oyiKIqiKIqiKIqiKMowol/OKIqi\nKIqiKIqiKIqiDCPnlTVFUDqha1vXdgqpgX0dSNdJvVhKPdhWMYishn0ye9sERSMlMbwVaVB97TIV\nKP9apJk1HyEbRUqrSuqSFpwdpWTTSqmQzYXS7jI0FemKLGXqrpHp24lk5ycst8nW1hiZMhpL1uGu\nxKf5mDwOfxNKlmfBTroqp0CGUDpye4m0cEyLxXWLoTTM0BSZls2wjXLMFClPSCA7w6uvh1Tlo6c2\n2njOpVPFe1hSlLQQUqOaA0dFu/SZ8OscjMT/iU2TkpjKg0jf62vhfirTvEtew+dHZCC1m20TjTEm\nMGDovuucfTVs4YKivOI1tqod6IEkZOb3Lhbtzq6F7CqAUpjZUtYYYz78A1I+O8jOdeEFMn0vYgz6\nxM4PIC+6/AewEqz+tES8h4911KXzbezKIde9DtnH0mqkna4/+L5od+Ey3NPXfgFL8CnZ2aLd9O/h\nmI7+da2NOxtlinvsOCnD8je+KqSVp14qPUnbyK6T0+sTL5QyhvYyjM1osuSs/kRe65QlSP+s2Q65\nTXe9POek+RhLLM1kyaN7DGVrIRf0JqD/yPR8Y+r3I02UJSBsU2qMtJoOz8QY8zjSFk7T5rTgpHnS\n0rSthCxj841fGejFGDv3zknx2tivY5yyPTzbDhtjjDcF16wgGfPc8YPyHl72bcim2BbVnWv+8s3f\n2HjhNKQEp5P9Y3i4tGQPG4/+cep9jIkYZwxsefjXNs69HpLAxv1Smpy5HDKawqchuRh1jZw3Hrj+\nQRu/cO9fbbzs+vmi3bmtkEnlrzR+h+U3vA4aY0zHWYwx7lt9Prkf4T1Ib5u0kGaiyDp+xjSk9fsc\nu+uKQnlN/w+jU7F/OHFKymjWvvp7HAONscYSuT710pzCkp8GR2LeSbKNlKXYz9XtKhftDPXBhBmQ\nz7l24ybANVr1H521WDdaT0pZCksi0xaj77dXSFknS4ICaV1kK25jjGmh+ZDnSZ7/jDFm5NWQegfS\nuK+itTBxjpRdRqWgj/X34x621kjb17B49KOYXNqHtslzGiS72aBI7BfYQt0YY3y0f22jfXKvYyOe\nPHfoZKLGGNN8BBK+jMvlPFW/Df2O5UGutIfHcyuNX7csQSjt4Xi8JHRHinYJMyGn5s9oOYr9uruO\ndZ6D7COU7JAjs+V1r/4UcxvLz3uL5bMLW03303NN+VopD4m/EHIqfr5o2Fsl2qVdNtoMFZ2d6N+R\n8bI+Q1ocShdMv/+rNm5vl+tn1Xac1+8ehbTn3h/eJNsd3W7jWx691sbJWUtFu8J3IH+Kn4bnh0aa\nt02/lBeF07169onv2HhCRoZox+UPJozE+N1Xsk60uyiKNiCD2Fv/87UPRLtbV2K/3tGBYx0Y8Il2\nFTSPTJCqar+w8Cuwlq7bItcaLivCz36V750W7RIXYr7Y9Tfcq6lXTxPtgqMhtT1HpSXiaD0xxpi5\n4yAx3H0a/6uVSijkpaeL90yahr7Ozx2Nh+WXD51lGLO8Z3b3ySlhGOvd1Vi3D28+Ltrxatddjc8I\nDZJzRch5np2N0cwZRVEURVEURVEURVGUYUW/nFEURVEURVEURVEURRlGzitrisyBVMhNv43JR2qu\nWyme4Urx7BDDshRjjOlpRnoSpycOOClnnErGx8BpmD2OVCF5UbaNKz9EmqhjmmQG+5Cuzu5U6Stl\nih47OXhIAtPbLFNB2emgiZyQXMeHAM/Qpf0aY0w3VYkec6uU9pz4J9INwxOQZhU9IVG0i+hGql/s\nBKQL97bLcw5Nx2d4IpBO23xApjr30rVuLYIE4arHUdnc45FppoV//tjGnKpbs/msaBfohRPCYD/1\nlzx5TnxP2FnFJYrS2TgNr+W4lKMFe847nP4rfDVI3z74zkHxWlYq7kdbG/p+yyHpTlVTj7GYmYe0\nwaRL5Vi8acE8G2/86bM25hR3Y4xpoTTyjHi4t3VWIE0w/VKZoswOHy2nPsPxrBgn2qUeQ9qvl6qm\n8/8xxphwSlFe8RVU5ndTmSu3Q5qWQ65GJa8cFu0yL5PuY/4m80uQftR9ViFe4zmn6mOktQaGyXRI\nTqNnNzyWIRkj3UZiaa5sdJyNOspxv/iz22hchiQ7KZjkPMJuWuXvyXRrTt/vJke9sFQ5tluOYCyx\nbK/FcViLHE0ugZSq6iGpkTH/mZbvTxKmI33WNaIpXYN+VngI6cenq2R6+TU3IoU5hPr3l25cLto1\nlePzsi+FXPN45QbR7s5nfmDjjiakIrOTjDdmt3hP80lc2/p9kLZseHO7aHfVg2RspdkAACAASURB\nVCtsLNZM59xZipdzHdLxj70onTtGL0eadocPcVia7BPp87PNUCL2Fr1yDea9RWcV5qwBp59F5NIe\nifYFXeekFLqX3CsSZqL/9LZKKVTGRMzLXpLVsHwiI1G6MLGcJ34GPjtmopQSs2yyfhccKpILskW7\ndpIEBseQu+VcuU60l+HzGg+if0c5sjh2L/I3QbTHcCUmLLdvr8SxNjuyq9TFkJdGpJNUxtkgsmSF\n98bdjgMSu11xnETSINdFp7cX17y9EnGUI6VoKcV4Zpmo6yzF+6OQePSjwGAp2eb5i2UzsU7f4f81\nFHTVf3F5AD6uxAL0wcZD8j6y7CyA7l0wObQaY0xfK9aGcHIndB1naraU2jh6PPaODbR+umOMpe4t\nRzG/Bjkuhh66Pxmz0C9cibk3Dn9Xkvui29dZzs7HGp4ppV88XvxNcwnmlJqN0l0pcRbmpc5O7O0e\nveVXot1td0B+/syncLtyHVT3/eNJGx/aDTlMcvRO0S48BPc+bRH2dvlXwtWuo0NKBzva4aJ53/N/\nsPEHDz0u2h0pw1hM/RfWzFXflFqjo+uewfEtgmzmkS/9r2h38jmUdFjz/adsPO+mOaIdOyYNBY37\nMZcXnZF7VJZ2tVBZkCPFpaLdzFTMOeNmQ17E5VCMMSYiC+OPS3/sfFXuVaZfhj37CpJMFX+Ie89O\nwcYYU1qI/hhPa269I+MNo/3Xnjf22pj3JsYYc9FXC2xcSPLjCdNkeYIweiYp/gRjNm28dGLbtBbn\nOHn13cZFM2cURVEURVEURVEURVGGEf1yRlEURVEURVEURVEUZRjRL2cURVEURVEURVEURVGGkfMW\nyegim8KeJqm/CqUaBKzvdzXZXZXQa0ctghbZVyutc1kzG5qFz2bbWGOkJWkXacFjqA5KeIbUWVas\nh4YwKo+PQWqFvWQDG0266dod0k6s8yw0f6NuhLVoRG6MaMe1IviY6nZKS8qASKkD9jd5N8GqtbNG\nXvecq1EboPBV2CHHO1ZmbJt24K+7bDzxBml3zVr9svegB/R65TlG5aCGTe1B6Pe4pktosrSyTF+J\nuiSBwegvKYuzRTuuRdFN9Yd2/3qTaDfpJti6NeyBtjLUqX3QfBDa5hDSUladlprnKV+50AwVuSuX\n2Hj/lkL52h24B6wNby6U9TpCWnDsI1dCw/nuQ6+Ldiv+9xobL/oxagBV7ZH1WZpOQHNa14oaC7Gf\n4X7W7zwn3pO8ONvGPMZKnj8k2rFm/OR26DYnr5os2nXRGBb1V4qlttVDY/HcevTLjOWyntRHD79r\n45v/fKnxO0Lj79TqIvvTBNKos22rMdLutYvGc0ep1CJzzQr+DLfeAc/FXE8qwBtIbeRc2e+j+lwh\nuLYxk5JFO14PeqjuhjdG1gGImYz3cR8OczTzXEuovVSuDQzXD/M3FR9Bo751k6z/NG8ObDNHJeFa\nXnj1DNEuYTLu71/vRl2ngqlS4x07FX268IU1Np54h/y8+lOYEwZ60Y86iqjm2yVyrj7w1oc2nv1V\n1JnKT18g2gUEoO7Bq/fjWBdeIY+BPSQ7K7A2L/jRLc7nob/c/kvc3xbHCnko6yMYY0x7Ma5N7GSp\nB6/bgTWaa1HEjJd1ywbIzp01+AEhcmuVugT1ulqppktkjrTYZbh+Be+3arc59qa0ZrafwTnFT5Nr\neFgatPBNR1A3g2vMGGPMANVp66H6HG5tla5qzBtx01Jt7HPaubU8/Ekw7Z0ic2U9st5WrsmCPhfk\nzD31BzDmvLGodxg1WtbOiSAbap6Dub6LMcZ0U/3E8HRcc95P87UzxhhPONZPrmPYcLxEtAuhmiS8\nz4nIlHvPBtpTNTnWsQxfC67R09suayElzZT1hvwN7wfDMuT+i+2zPaG4j4Ehcl0Mo/Wug661r9K5\n1nR9++g83dpu/KzAe9nwJIzF0rekjW7yAtTD4DIpVR8Wi3Zcm7GjhCzMW2WtNF4LE+dhzeC11Bhj\n+n2oy8Olklx7eT4nf3PyzSM2nnTHTPHacz/6l42/d9ElNr7ty7LG2vtrttmYa1ZGj3VqDZKNer4P\nNT+qSuSeN572FS/ci7XrsttxP0Yvukq8h9enN777Mxsv/fFlot3WL//ZxslUQ7XLmf82vI56NN/8\n62M2bqiQdVUmfGWljXN8mOO3PSbry5XWynP0NyWF5V/4WmAA9l+H9+C5um9A1oYNpFpb+zaiXyy5\na7Fo9/bP3rFxdBjmtlmrp4t2oTTmil7H541dOdHGZ98/Jd5TQ7V5Tr+OZ5eYdDlXck1anht2bpbP\nOzyGR1+EZ9FgZz1hokKxnmzbJJ9xcpKT3eYCzZxRFEVRFEVRFEVRFEUZRvTLGUVRFEVRFEVRFEVR\nlGFkxKDrUaYoiqIoiqIoiqIoiqL8/4ZmziiKoiiKoiiKoiiKogwj+uWMoiiKoiiKoiiKoijKMKJf\nziiKoiiKoiiKoiiKogwj+uWMoiiKoiiKoiiKoijKMKJfziiKoiiKoiiKoiiKogwj+uWMoiiKoiiK\noiiKoijKMKJfziiKoiiKoiiKoiiKogwj+uWMoiiKoiiKoiiKoijKMKJfziiKoiiKoiiKoiiKogwj\n+uWMoiiKoiiKoiiKoijKMKJfziiKoiiKoiiKoiiKogwj+uWMoiiKoiiKoiiKoijKMKJfziiKoiiK\noiiKoiiKogwj+uWMoiiKoiiKoiiKoijKMKJfziiKoiiKoiiKoiiKogwj+uWMoiiKoiiKoiiKoijK\nMKJfziiKoiiKoiiKoiiKogwj+uWMoiiKoiiKoiiKoijKMOI534vt7adsXFu0V7wWP2qSjYve2Wjj\nhJkZol3djrM2fvmNj2182dSpot2ch26zcXd3lY3X//h10e7Sn620cXNRrY1T82fZuKniqHiPr7ET\n57EJxzPqhnzRruqTYhunFOTYONAbKNodfWqXjafev+wLj3X5IzfauOjV7TYec+Mi0e6J2x+z8aPv\nvmv8zaG3nrJxf1efeC0iO8bGPc0+G7ccrRXtfK14LTgkyMaRY+NEu6YjeF/GFWNt3FneItp5orw2\n7qpos/EID74v7DrXJt6TctEoG3eUNds4MCxYtAsMRbcOS46wcd3uc6JdTxPOqa+l28aRExJEu4Bg\n3P+u8lYb9/vktYzKi7dx/qq7jD95/4EHcHzR4eK1vq5eG2d9Kc/GlR8Ui3YZK3A/iv91xMYpC0eK\ndtGjcR7tZbhvNZ+Winbe+FB8xhLcm5YTdTZ2r1FwXJiNe5q6cGzLxol2Z14/hPfQ/wkfGSPahadF\n2fjE3zBHxU9Okf83NsTG+94+YOMxeZmiXXMF+tWljz9u/M1b991n46wL5P8OTUNfHewdsHHtLtlv\nR1AcHIlxFDcjVbQ78s5hfHYwxkjSqETRrq8Vfb+5qd3GibkYB4N9g+I9g/04vtip+L8jRohmpulQ\njY17aYyFjYwW7dpPNqBdf7+N4y9IFu2Kd5bYODIU/aLD5xPtxq/C3J5X8GXjT/b+4zc25jnEGDlH\neWNwfI1HqkW7gW6cY0AQ5rwBuu/GGOMJx30b4cHFjRwZK9rVbMO6xvNp7DTcmwhn7ATTHNxZjff0\n07EZY4w3FufRdqaRPk8egzcaY6xyI+Yed83h+dmbgPmg81yraBc9Af3U3/fQGGMOvv5HG4fSOmGM\nMb4G7Bl66hHzsRtjTHcdXoubkWbjYLoWxhgTlYGx3lZVYePBATmuumpwH5KmjrFx7YHTNu7v7BXv\niRqL69RaVG/jvg7Zjs8jfma6jaNz5LzR34d5OdCDtebkM1tFu9jpeF/shCQbeyPiRbv6QvSFcQtu\nN/5k1++xd4rOTxKvdZxpwmt0fNzvjTGm/O0TNs5YhXWoo1L2x0Av7v1AD8ZICPVhY4zpp9dqac2M\nprksNEX2t5pNaDdA4yVlaY5oV70B81/YSKx9IU7/DeKxXYk+1dPYJdr1tffYOGos7lu3M68FRWDP\n5++9jTHGnNz8TxsHOPvtwBBc96LXsG/JvXqSaNfTgmMufh/3dMKN8lmjg/aifB8CguT/raf9Io+5\nEYGYr8Nz5JxatxtjO5L21gk03owxprMCfatsM+5p3Ei5n+b5seEQ1pBxX54m2lVtpH6RgX7hLsgR\nWVh3R068zviTU9ues3FvR494LTAY97DzHK5/4pws0a7xMM4xivah3fQMZ4xcF3kPFExrrjHGNByo\ntHH8ZMxX3dRXQuPlXqSvG2Okbg/6QNRoeW98tR14D/UPtx8lTMO6wHNKcJRcIzqr8FoAzTWtpxpE\nuwRaZ7LGXWP8zfbHfm5jT6R8tjpXhPuTfy3GFc+HxshrcO59rF1jbpdjcdvvPrVxbj76QsnRctFu\nxq0X2jg0AWtSTxv2lDud9SkrHfMtP+vv/sMW0W7UrGwb99JeuPKk3LPFhOP/BkfT/Or0zYFBrOk9\nfZjL82+fIdqdeumgjZc+9phx0cwZRVEURVEURVEURVGUYeS8mTPHXnjbxhNvXS1eqzmx28Z7NuHb\n7BULskU7/gZwWg5+BWh3fun0ePANdtkOfNM2Ll9+3tE/IAPlSFkZvYLsnRt/c4t4z+FnP7Pxgh/d\njGMLkL+g/PODV2x8aQC+t/pg/U7R7rrvrrDxWw++bONFt8wT7R69+VEb3/0ojun0K5tFu9VXykwa\nfxOWGmnjuq1l4rX4Kcgw4F/xuukbSWOMSaRva5sO4Ndwb6LM4oilX4faTuMb3/Bs+Str2yn8whc5\nhjI1SpG50Nspv30vX3cS/5d+zY0cI7/RZkpfO2bjrKsniNfK3iy0cfyF+GWDM0KMMaZxL759j6Rf\nl9rplzljjOlzfiH2JxNum27j6k1nxGv861pvG65ZZ5v8lYx/zY0dj19b3V+2+Vf4ZvrWPsr55Z1/\nRQ5PQZbF7r/tsPHEZfKat57AfR91HX75qt5eItqlLKFzakdf7HB+Xa+i7KDx35hp46NP7xbtwqNw\nT5f+6DIb1+yS4yFt2WgzlMRHYiz2d8lftvnXpcEgjMW2Luc+etAuIha/+jQdrBHtJl2BXwsqPqWM\nEyfb7fQH+JUxe3Y2HRBldHTLPtLTgGNq2Ilfl+pq5JhISsf/4v/LGXLGGBMYjl9mE2cik4szHY0x\nJsyLOTsqBb8QJibLX//dX6/8yWAfZw3JDK2yNcdtHJaBe93bLOfTkNQIaofz6GmQv8L0NOM6J0zH\nHNVZJbMKm4swTjOWog/zHByXL7OQqjdjHuFfp70Jck6v2VJqY181fi2MynGyJk8ga5J/gQpNixTt\n+mhticmjrI9jdaJdC/9dYPxOWgEyUxqOVojXWmgscd9MGC+z3TIvxRgbHMQY6e+Va1dTEa41Zxxx\nhpExxiTNxue3luGYeG6Imyj7XEclfomOGYfryb8uG2NMkBf34dRz2Ef1O796xuXhF0xfC8ZzYJjc\nLnI2ImcTdLXI++iraTdDBWcbNh+Uv3RyRh/T3Sz3ntGTkVXTVYf+HensWToo24EzLtyML08Ernvm\n6vE25nmju0nO6VF5WD852YGzQYwxxpsURjHGqXuNOSuVxzZnShtjTFf1598bN0PMzVj1N8fWIstz\nwiqZ0e4Jw/jLvDjXxvVORmnKYmQt8prZ4WRtt5egT3fQfrOsqEq0G3UBxgFnxR16E5m3yQ3yPobQ\nvjQkGfenz8l2q92BzIAxV+N8z7x1TLRLobVh5CpkRXdR1oYxxvgq2z83DqSMJ2OM6abMqZETjV/h\nOcBXI48vcRYUFZzVFeDsAzw01wZRHJoks+Jqad/WQeMq0sluCafr19eFObmnhfYve2U/ipmI/5Uy\nL9vGPidDgjNR6/diro6fmiba8f6Vs9jaityMGFyjgV7MyUHOPRRjViac+4cATEDRE+V1Dwzj+4N5\nrmjdYdHO14v+fsEd2JdXOevdgu8usTFn3GfUyXFVuQ4qnogxmJeT6fuG/GVOh6bz6KSM1AtunC6a\nldCYS5uHvWfeOKmgCE3G+jmCui2PZWOMaTyF88i7+gIbN5+sF+3iJ8l13EUzZxRFURRFURRFURRF\nUYYR/XJGURRFURRFURRFURRlGNEvZxRFURRFURRFURRFUYaR89acYe3drkf/KV6beBeqJy+6GbVW\nwmJkVfLeZtQJ6aXKxUlpUv/+yPV32zglBlq+C+dIHdmcH6Ld7EFoCOvOoq5M5aYT4j2JI1EnhHXh\nxsiaM1/7Exyj3vnhWhtPypQ6c65MPS4N+sIRQfK7rhUzUJ05Ih06ufBrokQ7V/Ptb4JIA516aa54\nrezN45/7mmO6YiJIf82a0cbdUqsfS44xneT003xI6sGTFmbbuK2EHEBG4f80HpeOUXHjkz63nesQ\nw3VX2AmFK+S7r3Hl9cE+eT9YD163BVrXZHJmMcaYyg1ST+lP2DGspkRq+ruqoEHNuwuuZYmO28Sm\nxzfYeO6dC218+uWDot3k+xbbOMCLseSNk7V4Umei8nrTWWhC59y1wMYdFVLvHTma7psH51S1W+o2\nU+ah5gy7a3z2/C7Rbt7dqNd09k2p12Zam3F/a8hBztUocy2joSByHOYiX4WsG8J1CKp2o5/lXSk1\n+HWbcfzsaMN6ZmOk41rKXOjnux2dfM5CjHvWinMtqBCntlTTUdTkiMzFNQzcLZeUVrr/Ebm49+3F\nsjZNBNWNqt+KvhA+StY6iKc6C5XbSm2cPUPqvNkRwt/wfOCrlzr03Fsm27iO+nSn4zwXT64ZXnIw\n43M3xpiYaVgnmwpxP9uOS/1yNM3PPqqbEUK1MT77nXQpyJhEjj0TcP2P/0vOB7EJWK88VIvCdb/j\nOZmdX1inbowxIVTvqq0U/SBqknQRa3ZqKPmbohf34Y9B6Zo05htYu7tqMb82HZbrWAvdE3Yeqdsp\na1mNWg13lZLX8X/d2kGhVKeC16vBfhxfmFPDhw+9ZmupjUeunCLa1R3C+sTzENd/M8aYyg+LbBxP\njkxpl44R7XqpdlAPuTmGO/Uh0gu+uCbcf0sM6fY7nfmU66Y0UT0at0ZdCNVYaqGaaKFJ0gGJa59U\nvIe6iBkrZeGHPqqVx2Okqwz3M8Kp+8V1pzxUI4bXSGOkm1sLOWOOCJCboBDqI62FOCfX/anjLLle\nhuL8AkKceZwdY2S38gtZ+ai30VEm5252lGL3otjJ8hmineaSvHnoq82H5DySRO6UbcXYe06/dZZo\n10v/NywF15NniuYOWVsln9wyPXQ93T1+0lw8UxS9iZqdOSvGi3ZVH6FWXDi5c3G9IWOMSb8SfbBi\nLZ65EubIZxdvjHQI8ich8bg3MaPlely7H+cxQA6eHsdpNSgCe73+HvT1xiNyPu2mdTed6gT2tMra\nbp20BxbPLftRXyhqnHSXa6U6bWGpuOb1nzl71IXY/0dS/TWeC40xpovmeK49FOzsp4PIDaj1LMZ2\nT4s8J7eWmL9pa8R6V/PuEfEaOzTxueQ4zmnsrnX4n3tsPO1bsi4ru0Ry7ZakedLFq5tq8fF+gvcP\n7ARrjDGhtGcteRk1cdjdyxjp+sZzzdkPTol2CeT411mO4+Y6ScYY09iO69f/FpyjuV6iMcYkzJPO\n1i6aOaMoiqIoiqIoiqIoijKM6JcziqIoiqIoiqIoiqIow8h5ZU1n1kPSMPErM8VrGx/90Mac5rcw\nRabcJlL63hxKB+d0QmOMueeZr9n4syc22fjo/iLRzox40YYnDsKecmQiUqJH3zFVvCU4Ainkdcch\nffiPdKQDSHW7/rf32TgoSKbWb3r4DzYuePheGzc37hHt9pUglW+q9xob15+WtmOCzC9+6f8WTlNO\nXSZlTcEJSK3j9O3MFTJVt3ojziWB7ml0vkxhriHJRQiloKYskRKgVrKR6yF7v3qyrU6ZLS9GaBpS\nDMvfQd/s65cpo2Nvwf1nG8mKj6XsKI2OaYDs+DiV0RhpeTxAOeT9jr3wyNUyJdWfBJMF88i58lom\nkHVf4VOwkM7/jrRobyZr2j46p+AgOQ6qtiCdL2V+to3ZstUYYz57/E0bx4/B2I6djFTzfp+8N746\npCeWvoaUSU4FNMaY1jNIxa7egL6XM06mAm54ElKt/Mno26EhMoWwuQ2fzzaox17aL9rN+n6BGUoC\nPEg/j58tJaDcn7IuQqouW1UbIy1tOT3XtUTn9G3WKXZ0yfsYnon5kaUBnLbKc4MxUirZTTKa8FHS\nfpalEGyVmOikrbIleuR4pBmzZMoYYyrXQ06QSlKtxn2Vol1A8NBZabOOku1xjTGmdhdSc9tOY40L\ncqQ9/XRtA5LwG0l3t2PBvAf315uCNN2kxdmiXTjNjZzqy1K3idf+P+y9ZZhc15U1vJuru6uZmaRW\nq8VoMdmW2bLMTEkcsuPABN+ZJJPYE7An5IDjJKaAGWWQZRLbkiULWkzNzMyt98f35q61z9h6vmdS\n/ejPXr+2XLuqb91zzj7nltfaS+sRWP60/2+7vDgkRN+7lMWow61Un6Pz4lTeYaJAz7t7iRfXOXU3\n/nLUSbY1js7SdXdcx1C0jStbKIuInPgTpEeFt+O+xTvWonH5qEe17+P7516u94LjJMdk+/Wi67SU\ngtHux1xqo/te/epRlcd7HJ+3euq1XKmfbNCTZuIahhzr9BCizYfFQQbBUkYRkZxzsc9Wrsf9GszX\nssnmzTgTJH93hQQSw900fxyb6LbdWDtsud3lSALTV0HqM0AS4drXNa09IgXnGZYyNbx3SuXxgZhr\nMEtDU+bos01/K1HhB1EbotL0eTo4DGsihmptxdMHVF7q8nwvZjvhMadecS1rJWtq/wRdx8ecs06g\nkUq1fOtDG9VroVSPMlKwH5TX6flYlAsJXhadX1muJaItjJPJ4rlmnR7vYZKnpSxAXgLJT9Jma/kO\nW5+zhfeYI2tiC+8usv0+te6wymvpRv0ebYLUxReupS2l56HesDy04jXd4qHoqgD7ZxPY/pllTCIi\nCSWom2xJ7XOkPaNkd91bjXvEsiERkQiSULV8jNoY7si2TtN5vfMQzh+8b/OZVESkk87J3YcxVyZ8\ndrbK47XTvA2yq8hsvY+xBCsqC+uZ5V0iIiMDyOP9fKhd11P334HGlM9hT6rboJ+/WbrW14ia1bSx\nQuXlXQep0KwvLfLiymd164HYKZirnX34/jlJel7w2CWRhD2I9nCWroqIfFiG3wcW3rLQiwcdS/Sg\nEIxjWByeGyIj9BoLotrL70ldnqfyImmMOa9yW7nKKyw8s9zXmDMGg8FgMBgMBoPBYDAYDGcR9uOM\nwWAwGAwGg8FgMBgMBsNZxBllTTPvBTW5xulcfPlP4Zo0PAz6dneddu859BScHyKJihfr0N/76tFV\n+1Qj6IoXf/5clbf7adCvV//gEi9u2QVKpis3Wf8A5Bfn3ASXqQe+9meVd+8Pb/Hi5uO47hcefE3l\nFZAbwdYfQeK065Sm8q35zHle/JvP/MiLv/rY/Sqv7uPtMp5gam3nYe30w+4scUQxczuOZ11c7MWn\nR0EJ7HI+L/tS5NW8hjnT+H6FyuO/xcglSUxIhJ6e7KKUfw3omTUvaepm1XOHvDia6Lk+v5a6hMWC\nAsnuLpXPaepd7lWgjIYT7Y2pdiIiwUQVDzS6q/G3XOec9x6AtCc3GfKi2vf1feFO/fVvgK6YedEE\nlccuVqERoDHGFWiq4dQvgCrOXdfbyZkrOk9TzfPXgBp69E9bvXjFd85Xee//ZIMXT16COcWuYSIi\nE4iSyhTHaIeWHTUKCQZTw+PjtCPH+/dBrnn9Q5dKoFG5ExT/9AK9BtiRpb4CFObCpXp8ePx7yiFh\nCfHpuhdJjg7NO1Efy3dWqLzpVIvTyEXttQfe8OLkWE3VLZwCWn7sJMw5rg0iIh3kZsPywOiZmg4e\nHI6xS5oJenr7QcdpYwWuj11RXHlRRIYe10CCXXRS5mmZ3fHHIJNjRw6mu4toyU4Hyb0m3DhD5UWl\nYmzKn8Vns2uciIgshSwgthCysNRpcPpqOXpIvaWNJFOzPrPAi135yuGXINdJTiaJ8CZ9DexGcOyx\nPV6cu6ZE5TXTXs3XkHt1qcqLm5As4wl27cm9QsuQeHxaduNM4zrJhEYTDZqo6D2OW1jhTRjX8qcg\na2apkYjIIFHF42k/SZiFNTHszKWUuRj7ln24tzwPRETiydmNKfnh8bquF0wGJX10FPX1yJ/fV3ll\nv0Kt9JOrmj9by93q+8dPElP/FiRzLBcTEUldinNP+z7MM1+a3j9ZjpGzFvOgiZyvRLTEsr8R+x1L\nyUREekiycnoMNT11LuRTQ73dzntQx+OonvY1asdFfwZeG+7H3PEX6X2W9zg+24w6UoqwGJzJmYI/\n1K7nWOIcXa8DjarnUZtyUvW+mDgff/vEO5D0zbxAuxiyi1krSV3c8U6g/YXXQbzj/sQOnuxM1jeI\n2L2fLJUMJ+fHW278D5X333d9xosLpmL+8DoXEZlEdajqBUiefOn6O/E8O0qy9Fk3zFV5Ox77wIuL\n5t4sgUQ3nUVYdiSiz2b+LKyj5l2VKm+kF3u6L43Ol47TKlvUxU4g57ly3S4jktpsdHyMcynLaVyp\nHz/D9NO5lvcBEZGEaag36edhbfdWO2uW5JbsqhaVrs9UA22Yb4PU6oGdikT+p0wv0Njyy/e8ODVO\n1/LaNyErZze83Kv03s0yeOWMVar3dHYnzJmJdeBKzXi8X3kYzwZL5mKv6mvVe+nUhRhHrsmP/OUV\nlddDssK15+D3gfp27Sia2Aw5LMsKQzbp59QMcg+rXaclyAzlrjrxf75uzBmDwWAwGAwGg8FgMBgM\nhrMI+3HGYDAYDAaDwWAwGAwGg+Eswn6cMRgMBoPBYDAYDAaDwWA4izhjz5koPyx705YOqtcOPgrd\n1tggNLsT7zhH5bFFbmYC9POujdhLD77uxZffc4EXlz2zR+Wt/D94rW0/tGxRZMP5/H1aU9ZFFl3N\nf0B/jvue+5HKe+v7T3nxmp9/24sbO/6m8m77FbSa79+3Hte2SFuVRpBNeqiAMgAAIABJREFU3Nce\n/6kXBwdrzWDqdK2dDTQaNqAXTmSu1jmyDTXrlEMd69ejf8U4dJNGL8Gvezsc+xh2YUWl0MI3nGpS\neWxtGTsJ+k/WVyYUaouysTE9B/+JqIJ69e8Y0qDGUVy74bjKq3wZGt70JfhboY6ms+ZF9G7xT8Qc\ndm1Vm8mKUlZ84qX+r8H9OoY6tJXepBn5XpxzCfo7uN83aT6sm+s2QKufWqr7XPh8ZC9Z9ibyJs1T\neV2VsI7PmYl1GZ0JXXP5U2XqPR370c+C9drcY0ZEpGgK5s7BLdBtDm/UlpRhbLM5Bu1wTWuryisu\nhp41YiHWZfFdWpPd+rP3ZDxRsBR23z3HtD66rbnTTRcRkcEmraUtewc9kQaGMS+mz9XC1QHSLbPd\n7rBjPX/omb3ySViwfLoXuz1dQqg+DPdgXY70aCtoriPRudBe9zVoXXZYAvV/Ip13iFOHOqmHTcxE\nrG3WtIuIHN2CuT/jGgko+slufHTasHot+xLonNluPH6yrhVdpI1PnU9aa8fmcWwM9zOPbFCrXtGW\nq9wvIiEZVphtTbBwbt5Wrd6TvBDrnHsFufMtf0G+F/upP1GrY18+UKE12v/EyRe0za8/ATpz7jNT\n51gXc8+V7CIJONjqtr9e9wCJn46/PUxzOtiZZ2wF27gZe1/MBG2T2bwLnz/cgfUSkap7R+SsQc+T\nA4/s8OKCi1HXuceCiEjzHoxrD9m3+3N1HxJ/FvT+Q2TR27Rd9w6KvRTnvmNPbPLiottmqbzGLfi+\n8aWY36379H48OubYNwcQOVfgvjS8r61KuQfJUBtbbus+CnE5+V7c1445zZatIiIDZImbOB29QVr3\n6XUQnYPPryN75v65uOcd+/V5KDwR9S9pBj7b7eHVWYH9k3vDnXZucc0rOLOMko1z0nz9neKKMSeC\nQvB5bfu1La3q+TFHAo7aJrIsnlugXmMr8KJVqK9sRy2i1wXXMLeejU3S68f7784zSQqdl/geziX7\n7aTMBeo9+x/FswLvhf94/r9U3jD1Vtn7Is7Wh9/U/SfTqOdHL/W6mTKg+xxFUv+KklXU4ytIpcmy\nr6+S8QL3iBHqgSOi51ZQEPZF7q0iIhJFYx1FPbzcutt5HP0/xoYwbu0f6dozVITP7+7APEiMxjro\nrdTnrm4a69BonD8GW/S1RsTQeaYeNdjn1PQG6ouVvBjjFjXRmeexZLtcvtmLx4b14s5Yrsc+0Jg0\nH5tt+9EW9VpLDfaXGZ/Ds37jVt07KPtiWNk3bcJr0c6eVP38J/cHrd6s+7emTcd43fyz67yYeylG\nZceo94TFoB/ckQ04L108W1uif3gMNfq57Vh/Ny1bpvLi/RjX1i6sN94XREQGqffNIPVuzZqlx631\nI+phtFz+B4w5YzAYDAaDwWAwGAwGg8FwFmE/zhgMBoPBYDAYDAaDwWAwnEWcUdbU2wU6FlvOiWh7\nuscfh+Xq/V++TuVd9SDkQX+9BzKi7Zs2qTyWx/z4G3/04gPlmqr69FWQYHQdBuXq6T/gGj7zXzfq\nz84CdXrfL5714r2/eFPlLf8WrK9/fvO9XnzvL+9UeX/44l+8+NovXOTFrz2mJRGRH4NampW424t3\nO5bbd/8OtnqiHYADgtBY0Ag7HJpaOtlsM80qPFHba2Yuyfditp788LWPVd68cyHRGiN6YEqmpnmP\nkhSuhyj++atgnV7+zjvqPX6yZY7Lg+wl81xtNXzycdBEh7tABQ0i2ZaItnMfHYA8obOjR+UVr4Vd\nG1uR17ysbdLSztM0xUAibiJZ/w1r+m1jP2jp3RW4l67EJJosTqPSsd6GhzWtc2gI3zEuHxTe6Gh9\nn2Pz8Hdb60EH7KkC3fivb2n71ak5oPYxTXdoRH+nvFzICvLSQJkPS9B26OXHyOaWPm/2JVqqNUjW\nfEqm4MwJX9j42hR2U80KT9JrbKQBa6JwMailrsQwqRz0zV0nUaNnOtTfd/6AenSgCmN1oFJTUMtP\nwFb90e99z4uP7UadmjBdSwwH6rBGjnwACVFOurZBjZ0M2jzL2PpqNNV8y5Z9XlxyCnTyfGdtM5jq\n3Fip61pWVoqbHjDEkSVx844a9VrLUcgV0sguvK9CrzGWiISGYy2GpH/6/IuNBR03/QuXqdfK9z/t\nxWx/7I+H1C22RFtkx0/G92DauS9dS1XZarR5O+jb6St1vas/hs9PjMccDQnW83KAqL6RyThHpK/W\n2qWOg1r6EWjw/Bnp1fK0aKLU17+O+Z28VFOTa9aDEp22NB+fHaa/c9cJ1OW082G7Gh6n61lvLeZJ\n8iSSwpEF68iAvtamLVjbBddj/2XbVhGRzpOQqvjI6jY0xqmpr23x4iiygR10JHcsHx4dxNpOnq2l\nM3wOCDSGyOI4MkPP25ad2BvSaK52HW1WeadP49p5HYhz/1gmxrKKgQZ9XjhNMoSefsz1cLJhT1mi\n5xHXxi0/w7lnwoJClReZgXXVW4l9dqRbS76VVTCNTcduLVfqJznMSDf2Rdc6e2xk/MbQhbt2yEVX\nKjaeoP+upTO81xTdghYDde+dVHnDXfieIeH4Wx1lel6wVXLTFuyF4bR2+vLeVu/ha48pJuv1Jj1H\nwuMgY5s4K9+L0+O17ONPdAa+YckSL3algplk5dzwbvmn5jGy77/qU1/734Dl9olTtK29Ol9X4fwR\nW6wlZt0nUSeTp2Lv76rW+2yID/vkCK2diFRt4c3nFJZz730JUm73nnMrDrZMXvidNSovKAh1009S\nxg6nvsTPwr3g+REcrB+/Gw/t8uLYiZjLIRH6jMqy0fRxcLhvOYx9N5K+v4hI2jl4HmBb7SinXQaP\nN59zYzL1vMi+EvMzzI/7OeRIhVIXoF62H8A5o+IDzPX0Ii0dH6Z6VrQIZwv3uSi+FvtEfio+o6JZ\nj2MOraXsqTijxk9LU3ktdEZKnA2JatdB/XlsRf5JMOaMwWAwGAwGg8FgMBgMBsNZhP04YzAYDAaD\nwWAwGAwGg8FwFnFGXk0Q0ZH/+r1n1Gtzi0AT+vYjX/Tittp9Kq/sL3B0WXgxaNkRjnxg/hq8xnTC\nNqfz/xMPvOTFX37oDi8O2QxKWM6kteo9j3/hS1689meQEP3yzp+qvOwaUMBXL0ZL+gfveUTlfe2/\nIXPqbwQF7q4/fFPlbb0f7k+z717sxYt956m8+o2gXWZoVVhgQOzPjBX56qW+anThjyD62UC9lh2E\nkvNISASmzZylpSpvtB8UQ+50Lg4FtZ3kQRGR+Oz6ZLiLHN2o3TvmfW6RF1e8hnnVV64lAznkAKL+\nrvNTJDvYcOf/9KkZKu/YS3AbSSkC3ZDp6SKaPhxo7PkFurezc4eISBLRyDsOgvKn7r+IbP0lJEZL\nqWv/QKem28UkYx2Eh4Me3dm5W+VVrtvvxY//AxLBG85Fl/PJ2dnqPd0DoHm3kWPIzXdcpPOOw/kl\nkRwm2vdoWvaU8zDWQ+34bNehoeUYviNTyN17NPlW3ck90PBPBNWZHbhERHKpmzu7eZyo1zVwGrky\nJTTgfjz4x2dV3pLJcH7pofv+pYv0vc5IwjUF+0ChTRkDVXVsQNPa+zpAOw0iyeuBU1oyFd8I+v+8\n2+BsUfP2CZU3KRNjzE5bCQe0s8pQB74H17XCZVoS03VIy5wCiR6iXrvU1OLr4HDVuBn3Im66pr7W\nbwJNPm0RJGPth7SUJ5H2wq4u7K0+32qVx3ThjibkJaRhPo/2aTpvbw3qZlQGxtpRMEvSPKzhrpMY\nm6BQTbfOXwjpSOWHFV6cVqglZiy3GSKJ04CzZqOytPtCoJFNznbD3QPqtfqNoEunrsz34jBHhpRA\n9P32Q6i9ap6KdpJh+n9wiN6UeG+NJHlZbCHWaEiYT70niqQuPeSY1fShlgJMuxeWED31tD6cvbmN\n9uaESdjvXAefpFnYJ6tegBtG3DQ93kOOI0sgwU6ho47bTvoKzMe6t1Bvsi7Srnb9tP+xzNWdj0XL\nca7sSoIsIiJej8f7v8U+mxyDsWEnGncfCyK5Q14pKPOdTh3jc1gCOYq5EkDlOEl7nOtqN0wuVn5y\nSxnp03vT6XGWNU29CNLxQ+sPqtf6N6M9QFE+9okgp1C1f4x9srcc62D/Dn2OnL5Qn5/+idyrJqt/\nH3oMzxTh9LySvBD7NMsyRURadkAisW0LzkdzJ+s55yMJ3ub3MZfmFuoz5RcvudCLX/1gpxdffs58\nlVf9FiQm/hR89lCHlrtVOlKNQIJrlOvYFhaLusnOX+xsJiISkQxZUuNujPuwU0+5RQFLQ133u0ha\nc5HdWItJc7DGGjbq1hl9FeSQuBznit4W/Z3iMyAhZal8RKKWVkXE47kqOhHtGFjGJKLXJkuJ+RlT\nRCSmcBx6XxBSpuCskjBDPwudegbuq3lrsI4iErRE/9if8ayQeT7u4dE/bVZ5aed+ciuI/Gunqn+f\n+jvW0uETkPEuuhbrIHmGftZgq7KQEMyLgS5dU6M34ztFR2AuXfz1C1XeW7+Co2z9FtSXvnd1a4/l\nqyBZbyFHy+hULbt12xq4MOaMwWAwGAwGg8FgMBgMBsNZhP04YzAYDAaDwWAwGAwGg8FwFmE/zhgM\nBoPBYDAYDAaDwWAwnEWcsefMrl9CH3bh5YvUa6wBjI6HbiwkROuo6tuh01q6+lYvnnH13Sqvrupl\nL654Fj0+YiZqC+aUWGgITz1JGnzShA4M1Kn33PK7B724pWmjF19+6WKVd9HKu7z4hb/iPdcs03nP\n/eRVLz5/zUIvHhvTmv7l30d/m4r3YGubt3K5yhvpPSLjCbYY7Nin7VRZoxlbjLzTY1qHnkj65tiU\nYi+u2f6ByhuhPhq9p6DLa2vUfWHSS6FlTCLbxnIa+zKy/xURmXRiEj77JHrEuBp31j/GJcBSubJR\n2x76J6IPQOc+aLa7GrpUXkUTXksthtXa6VFtU9hxgHTfuq3Qv4zZ34DF+P5fbfzUvDSynEtZoO06\n46bg2hu3Vnhx4kytK+0na+6OWsxN1w6SbQG5t4yPekX84nt/Ve95cwP6N7GdZEye1tEe3QINdUQ1\naXYLtEY5hnTOHdSv49h23dNk/mewTlVfgVZt2ccWjeMBti6NLtAWjuGxuB+HyJ566kxtJ715EzTq\nmQm4b9/5xs0qbyP1Zbp4NnqPtFKvHxFtF1kwG/rgaOof5drFdvejjwRbUeYV6Lk0Rp9x6Blct2tZ\nXt0CHfCWw+hf8dRmrVH+zpVXenEk1aiBRt0foq1Vr+FAIucy6lXSozX9J/4BbXRCKdZbMmncRUTq\n3kWfsW7qE+LWlIgo1Ci/f4oX9/fXqrzWwxW4vjnoJ1W9G/sOWx+L6D4V7fuxL+St1X3EeC/gfjF9\ntbqm91bi3zM/d44Xt+3T/TUiErGeWz6iviiO5Tb3NBkPcO8XtxdHWAzWRBzti24vjkO/RY+0mV+/\nxIuDg7UFKWveq7ZiTg+F6fmTWgoL4KiofC8eG0NeX5/u68Q2ptyzwRere6EcfggW2QlzcW9jnXnB\nds3tNHZpS/JVXucJrNmcNdibO45qTb97lggkeDzCnV4P3COHxzc0Stce3gO6qVdJ1tLpKq/uCM4P\n0Rmf3p9l0U3orcV/t6ccZ5akc3Q94L48nYfQF6SrX/fryc3CWPuzsPd1HdP3fKQXZ9Hkufhb3BNQ\nRCR+Ms5O/VTjB5p1PeWeIeOBsjfQ92H65fq+t32EXh/cZyZ1eZ7K661G/eH9YMmt+tmFe57s2IBn\niI51+jtfeDWsq5/8y+tefDH1aIot0OeWQ0cqvHj1rei9lzhN17LQUNSDwx/hrHLLj3+s8qZOQ1+T\nqxfiDFPTrMe7oBhjfPggroF7eYqIhB0ev3EM86PehDt9mPi5IDQatTE4XPctC+d/01j30toREUlb\nlu/FbNs83KXrKdsm510814vbT1R4sWuFXHccdaOF+nbFTdR1MiiI1jbt4ennTFF5fe3YW5v2U38T\np9/OYBvqUHQ6zlRdrjX3ZG0ZHWj0VeN8yH05RURS5uJZjfuj7f3jhyqP1+mWv2334tkrdC8Z7hPG\n93Dn87ofT20b+vxNycFzzSjV3tr3jqv3ROfi/h54jqzTs5NVHvdjLM7AOm35sFrlFZDNdpQP6yjR\nqeW1m9HDKInGKiJJ709jw2fu42XMGYPBYDAYDAaDwWAwGAyGswj7ccZgMBgMBoPBYDAYDAaD4Szi\njLKmOV9d6sXNH2lbxvfegK1b3UnQthZ+a5XKu/mh+7y4vQXUp70PatvXzMsglUn/FHstEZF5pRM/\n8b+vvgLUxdbaneq1l+9b58W3/PpeL44pblN5X7v+ei9m6nXe3RervKxKXCtbSLbma8u+lBLQ2958\nGpTiG6emqzy2WBwPDHeCtpWxWkskal/DNfvzQaVLnqdtyVo/hlRsqBBUW6YUimj6YUMtbFcnrixW\neSyT+PCRrfi8MdD6k2K0lWr3UXxeRCooYsWXXqnyhoZA+aza+S4+e1DTyFp2QRrQ0Y3rqe/QFMpF\nF4IaynI+l/J3ekhLEgKJ9sO4Vr5HIiJ9g6By5pP9av27p1TegTL8+8Lvwk656sVDKm/Wl2/34t5Q\nUG53/0lL2NjIctmVkDFcc9O38FkzZwrjuYfXe/FlV4A2XP/WSZXH9s5/+gcoxd/6+WdUXtsezEum\nbE+/YobK2/j7jV686l5IxFxacncljb12Zw4MiOEf5tcU49NEl555Ca6/erMex2CSf5Qswrpq3KPl\nnAvmQZ4SHAG6cM9uLflKzQVdly1Y+X4OtWh6/Zt79sgnYRXRsEW0hIopo+4aY6rq4RrsNbFRmgoa\nGoLv8cEHkEAuW63p27mLPn0P+VcxQjXvTDK4TrIkTnSstJly20GSohGHlh0Sif2lJwvj60pFWA7V\ncAz1lCUcYdFaahOZifqaTjTxyCgtF+hqwh7BVOb6t/W8zLoEe3Pjpgov7q3WErPsSzFnI9NxDWyr\nLSJSs+6oF+dppVVAUP0S7m3CHC07YHkQo8mhOpfeDQlL1duQERZftkbldXeDzp4yB3N9oF3LBX2+\nTHoP6nJ4OOph47796j07X4WV5yyijXe2avli/gW47/0k7ah9Q9PB2a752EFIqDqIdi4ikkhyqLAY\n1DLXJjptZb6MF7pJQhWVo89RLM9ieUNIuK67IT68lkLnnk5HVt15BOvZlwRZSnuZlor7SCruU7Jx\n3K/kidq2uacN95llH2l+Xcf6Sa4TEom8+ClpTh7GnuVd1dsrVN5IL8tNUCv6qrRkMekc16Y2sGAp\nkytRTVmC9eIj6+qhTl0v3nphmxfPzM/34lC/rtGnyaY4ldokVLVoqRCfm69aidYGQeHYf/mzREQm\nF+JaYwqwZiMi9Jl/189f8OIw2tNik7R05j/vRSuIJ59+y4tvv+0SlffWOpzNrv4aXlOW6iLS8qGW\nwwYSQUH4W67cl+c03zOWyYqING3GOohIw1k28f+nxDV5tpaYsJyKpUx8eH3hoTfUe2Ij8eyXWYR1\n5cr6o5MhC06aibrtWm7HpVPdbYS8ZmxIP4/0VOBMxBJ3t+1A3Ts4v6VrJXtAkLIUdt+9Th0YrEVd\nObkZ1zHzDm3t3rwd++TIMXzPjzceUHmX/PAyL+6uxP4yfYXe8CfTcxe34uBaEVOs104PtdXImoj1\nl+zUskn0nHqyEbV8aFSPz8T5sLk/tgPPK8lhun3E8x9gLd49/xovZomciK5rnwRjzhgMBoPBYDAY\nDAaDwWAwnEXYjzMGg8FgMBgMBoPBYDAYDGcRZ5Q17fsNaIITr9Ud1G/4L9B12P3k4S8/pvJSYkHf\nY+nDsh/9SOU9dy/kRqu+j8/+7lX/rvL+zx++jIuPxOXfdD6kFK/selG958IvoAv2D677rhd/8/d3\nqbwZE0Ah9aWCUnf0yXdVXtbFoG9zp+fOw5oWGVcI2ltzJ+hhJ5/Yq/Lyb9BSgECDO6K3OvI0RtcR\nXP9QuqaMhieAZsf0O7fbevx0dKce7SHJ02lNww+hsWP5EsslbrnpAvUedovwxaLjdmSkpjKePg06\nWup00IdbDh1VeX3U3T9nHqh8E9M0pa5tF+QENVUYU+40LiLS36mlH4HEnudBXZ+xVkuFIlNA8wuP\nByUz49xClTfQjHXAUqbYEt29fGwM4xYUhHGaerX+uz2nIAscJfro777yFS8eGtH3KDwUn5cwXVN9\nGe00Fz97A2SFUela6pYxBdKo8o1whkuZrjVJsa9CVlD9MhyoTjvUUnbXKNYmbQFBIsknnCUh3ey4\nQd3uNx08qPJmFWJcmYrOtUhEJKQB3yUmE/TtJbfrL3aQOtn3NoK6W9dOtNBE7ZpXlI6xyyDHqM4+\n7X7l96FulDdDFrDizqUq7/jL+I4rpkKa4c4fdgFgl6jgCL2V9VePn1sT73cu1bnwWlz7YDvqQdM2\nLZFgam3ZXtCDewc1HXwaua5spHmw9toVKo/pvbGTsJ7ZNaP5I01p95NbWEgE5lFvV7nKi02FE09/\n424vzr58kso7TG5cs75EDinORO+twdg0kDQq40K9ZnOuKJHxRBrJp4NC9P+nat8Lajrvi8nz9F5T\n/jQkRiyFGh3Ve0FEBGjv1Zt34PMcGv7+J3B+YhcRlrEFO85SLBH80c1f9eJv3Xabyks8gjXcS65x\nx+q0HHLVZ+AmOSkE682VcPioFseShKN7gpaKtn1En69V7/8ywpOw37myZZYLJi/AeouK0vMsJASy\nn/4O7O9tH+v7cnoUY9DfjHXPNVhEJJzcIlm6yrLC4WEtEYuMg2uSkus4a4clZ237MEejsrSkq+H9\nCvwtoucnZmqHwLFB1NcR+ltuPe1g6dY47Iv+XFzXcLd2PT3yCqQQI/RdSi7Q57RlC/CMUn4ctS5x\nRMsduD4Wk/Rt1eI7VV7ZQ3iOSCYJQskK5LW1aan3iWfRvmBsGOul6h3H1ZSk6c9th5vNrEm6pg53\nYj+4dC7chliSKiKychHOZlsehax19XcuVHlxU7WzaSBR+x7OVb4ULQuNyUVNGBvBGI447mGR1OIh\ndgJqStseLRUKI6dPdkLsqdZy6YRJeC08HveybT8+74/PPafec+saSFJTl0Him1ygz799fZC2+KJQ\n35s/2qHyWPbIrrdVL+h2Av5JmKcdh1GHMhZrCWRs8fg9Z4iIhFE94+c0Ee1km5aB6933+EcqL3c2\nnqfScrHehst1ja5/H/t/4gzcm+ZKLaeKzMTzeFcZzpHxs7FHus+iGStwTj78MFqdvPuzV1Te5bdi\nU5ogkKCxLEpEpGI3JHdzb4aM64mfvKDyYkgWx+eylEWOe+4E/dzlwpgzBoPBYDAYDAaDwWAwGAxn\nEfbjjMFgMBgMBoPBYDAYDAbDWYT9OGMwGAwGg8FgMBgMBoPBcBZxxp4zJTfP8uKq57Q+ji2n5l4M\n29eIMK2/XfufV3ixLwaaskMb/qTy5t8Fjfq2n7zsxXOKtD74+fvwWlklNGBPrvsvL37xW79V77nq\nAfTAuHohdIKv/HidyjvRAO3xPWTtzbpmEZGjj6H/xyGyfd15QlvU3j4L3/dLP73Fi/0ZWmvWU697\n1QQcZFfnWoTGTUGPmJ5yaOxcrWH1u7hvcZmwgWVdvIhI81b0VojMhk6QNaIiIn1kycYWhleTZWFE\nkr7W0SHoU6OiYAk+Oqp7bVTvfs+Ls2dDP991XOt+WbfLmu3WXbo3Q2QW8iZS7FrhqR47AcaU86Gv\n7i3XWsgj66DJnnY9LIUPPKPtjmd/fqEX7/0TdLH+IqdHQD3md/MOzO/e49p6PoRseh9+5U1cK9ki\nt/fonhzLp8BePqVonhcPdWxReRFkmRkWA51953FnrQSh58NQG/qdtJRpm9+MHGit2xuhZ3VtyZNT\ntSY/0Kh8HX2P4ou0Fp5t2v2kt750kbYpZJwiO8OMTF1Xoqn3w0A9xkH1gBCR6TfN8WKuAb4T6Jfw\nzHt6fIrIFruJ+mm9u1/b/P7oK+h7wb0EuHeMiMjML2JuDnVDG1725C6Vxz1o1NxyejNEF4zfOHad\ngPXiSK/uj8D2vY3vVeC/k2ZaROSd36FGDdN3Wrh4qsq7+76HvHj2RPQ6e+pvG1TeFauwf0YkYr9q\n3Y2xbjzVrN6T0f/J9aq/Tlswd8RC/96yFRaZCXO1xSePQF8DPsPVbsfQ3E5ahF4gbOsrItJ9EvUm\nV7diCAj6G3lN6J4GOWvR78afRb1aGhw7abJ45R5Dw8O690H5OvSV4H2nYYvu75OyELXzvYcwR+Zd\ngn4HfTV6fK647Vwv7uyFxr1/SM/NtKXon1D9AmzE4xy7+qMvoT9X8RrqodSiLY75jND4Afb9oVbd\nEyEoRK/1QCKG7Lx7q3WfgvQV+V7cU4nxaI/Zp/Lq3sbZ5kw9bLpr8PlJ1Hso+zzdM7DzFM4PqYWw\nWmc79ZFBfS+jYnAOCwrB+4e7dQ8q7jcUR9ax5U7/irhC1P7BFozH5g91fU4hK+kF12A/5l5VIiJB\nYeP7/3EPP4ZeVoVrdC+ZgqV4Buj4GGf0U+8eU3n5y5FX/xH6c7VuLlN5s5qQF0n262Fhum9P/Ezq\n+TSKcwL3mfH5tC1vMN2n9Q+u9+KTDdpe/pq1K734azGXe/H2g0dUXg/1NuJ+fU0bK1Ve2qp8L55A\n64/3KhGRY1uPe/HMayWgCKN+SHHFurdNfwu+x2Ab1Qdn3+belv5szG/1HtHPEwOtWEtZs1bovDCc\nA9rb0YvnhUdgS37Zueeq91y0CL19YjJR3zub9BoLJSv7jhqcw9y6wUedpg+xf8ZN189O/N25j+Rg\nt95L4go+vVdjINBxCOcEPuOLiMSmY43UlOM3gHhnD4mgnkPDXahhk1bqjTx+MuZJxyGcM/iZS0Qk\nlmpdEvUY4j03aZLusXnqhQ+9uIt6Ia6+QJ+n+cy28eGN+JvOd8pMxzU8ej/6FF13u+6N2kf242W7\nsd5K+/JVnnoW1z9ziIgxZwwGg8FgMBgMBoPBYDAYzirsxxmDwWAHGw8AAAAgAElEQVQwGAwGg8Fg\nMBgMhrOIM8qawmNBsyr9ynnqtVkRoGRtvx/2j3nJmlr/0g8gQ5pekO/FS77/A5XHNOB1zW94MVu2\niohM/wJooq334u8++r2nvDg0RFtq9XaBtjrzGzd6cezb76i8F7/7Gy9OLoRUK8yvqYZsofzN++/z\n4prj2sI7NAq0t9AI0Nr//nVtN75wIajDBdqxPCDw54HaV/38YfUa24l2HwYFsj9Oy1HYjjGMKK/R\njoXjEFn1sTRlxKXnku3ZjHmQkDFVOtGxWm4ha8vELKJJDmo6PFNQWyph8dZbrumB1ftBMczIB604\ndWmuymNeIluatu3W8pD4WeNHNxxoIurm6gnqtSCy9h3pw7047VBGR0jGMO1WUDf3P6Ft8JRlKFH0\nXIrj1j2gDn/tnuu8uGIHqPrFq7UNYPYirN/qDzd6cdrsKSqvnujX1W+CGvjBMU1l/vIj3/biKddC\nEld7WMs+Jt2+zIur3obcK9SR76XM03Z3gUb6QswttlwV0ZR1lnSEROlrrK8E7ZTH2D9Ry9Miyeo2\niqQU7fs0xTqcKMK+VNSpQaJHs721iJaDNZCV7w/uuknlsfSPpUZMgRYRaTuAa4pIBN1z8tW6IPro\ntbhXUZf7a7XUo7Ue1zTtcgkoQskS15carV4bJWvQhFnYI93aM3819heW82x6Z7fK+8batV58oArS\nEVcWFkX0/IEWUHjZsnvXTl37I09iPbP1aXSeloQNklwwZjKoveGOVDWSJM08vl1HNbV+oAG1O+sS\n0JzDnPriWmMGGvGTsFf5UvQ48neuehH3zV+o1xhLdnIuRK07+vi7Kq/8JPaKOddDPhIWE6Hyjv0D\nkpuldyzx4lC6N/4CfQ1NJCW+8VZY5446kru+eqyRYbKz9TlSdLYCbScL274mLcUpvB5yHpbSpczR\n9uBsOx1ocK3gmikiMjqM79h9Aq9FZcepvOAIzDOetwOOvG/q3ZBeDvfgPNNdrSVxQVTHG45u8+LG\n97Evpp+neexhPlyfz5FzM8JjMV+6KyCxY4tpEZFOkhLWtSOenO3IcKiOtO/C94jM1rKCwWasB9Es\n/oAgZxXuR8NbJ9VrrV0YhynXQt6XPqbPN0Ek31/zVayDHkcGzrKTEBr7qp16zbKUJvsCSEpDQ1Fr\nIyK0fCc6H7Uz4zDW6aTMTJW3fTPON3NKcJ6blqvPnpsPo/ZMJCnxotsXqTy2mo4jOdaOF7Qs+Pxv\njcPg/T/wXth+oFG9Fp2DNeen9TfYqVsSRNIzQ3Cwro0Mfw7uc2ws6lB/f5XKGxjAGb+VrOenkvR+\nRn6+ek/SAtSv9hO05wY78swgzI8Qsp7PWqnPvKMjyBtoxToa6XPqM9WbiHg6Gzp7/cjQ+Fpps1Tb\nbd2QQXWr6THs674oPVYh4bgfQ034zomztRTal4Dz5kgPWijUl+mauo3O7Ffff5UXt9IzYeYM/dkl\nN+Dgl9cPGWDZrzepvNEBfMfSKXgejpmo2w688beNXnwOScw3v7JT5Z17M/btpXOx7nlfENHPdJ8E\nY84YDAaDwWAwGAwGg8FgMJxF2I8zBoPBYDAYDAaDwWAwGAxnEWeUNb36n696sSuRaOkGBYsp1osm\n6W7MR+pAO4opgevB6dPaJaWtDfTPA9WgorGTj4jI3u9UePG/PQ5Jw46f4Vr7BrWEZqgL1LmWNtCj\norO1JOfxdfd7ce0udHqOcOQHdYdBuXr0rs978ZqfaEr/+u8/68Ur/g2ysGWrZ6u8Ix+i0/c5Eng0\nbqzwYlf60HkEEgmWLvU1dak8dmRJ6QLdq/2gpi/2nASFNJQowkc2aEr9tGvgBBZbgHmRmLwUf7Na\n00xzlqHL9uAg/m5fq5ZpZM5GXmsFnIxiJ2ua2tF3MTfbD4JiVnFCy5WY9h0cjN8zp1w/U+UFh59x\nOf1LaD2OcTrysXYimrKo2E0XEZF5dy9V/654Cq4FWeRG5rp6sJvKEFF701cUqLyL6H627IDDRPZk\nUPnK3tBOCUx/z12INTEwUKPy0ubj+rqOoAbMKdQd2V/81h+9+LpffhPfIStV5cXEQDY12gcaItNt\nRURG+vW9CDQGSXLSV63XGFM+e0+SDMb5CZ1JrtkluNdpi/JUXg+5i/STlIQdZkREGjZVeDGv2SSi\nZJ48oOnCLGsqIcp2WJymtzYcxNqcdj4osSyxEBEZ6cF9jyuGNDYuvUTl1XwIpwymGY85DglFF46D\nvc//Q2g06kFEnN4buklCkDANMseBRk1hrd+N+X6KnA9LHdnBjuOQ9M0l58K9FRWfen295EwzStTp\nRRfqfadyJz6jjtx2Jl6vpWQs1Yolqq8rj5t2D6j2PTW4hswLtQyz9SPUitEBSLqayclCRCTBcbMI\nNOrfRx1NW5qvXovOxNkgZQZq0ZFHNqq8nLWgsB97BA54+TdoB5+wzZgnLIfdskPXx7X3XuTFTC/f\n8xTkCUu/rSXmkRmghsdPRt1jqr2ISG8d6k0i3ds0R1qVRPRwdsfLK0pUeUPkvlb1DPbZvGu0RDUu\nX8ucAolemmcj3bp2c01h6VLbXk2ZZ6kav8d1D6vfhPnScxQypM7ePpUXFw1ZUnsP1n3JWpJfNOr6\n56N9sZdqY1S6lhd1l+PvBpOcOTZV533wMc5b3GogrVDLcJrIwY0dmcZG9Hn/tPPvQKOvBnMzukjL\nKkObsSex9HeoS5/zI9hhivaG3nLt4uUjJ5ijW1BfXafZgWGMf2Q61lhfNeS0BVcsUO/pc+S13t90\nXFLTO/Eddx3GNYw5z1lpcTifTF8JF6uWHfq85Ke1eegtyM0n5um1d/BPOPtk//TKT7zW/y34OWls\nWD/fcS3rOIg9Mq5Ez8fYZNTT3h7cl/gSfZ6Li8PzQ38/9o2Bbv28GOLDmA6Rs0/JZSTTdu45y/pZ\nYhiXpuVKY2P4TtVb8LzIa1lEpJncX3kenXZkeQlTUZNHqQVBcKiel2rej0NpHW7D83JPp65t1WWY\nd3z1Ta1att30Cv4dHYH9hc8SIiJVr6NOxZdiLjhDItPuhBSY5WDs6Fu3d6t6T3IppEejw/hO6cv0\nOZnHmN0t+2v1+XzRFJxFm+n7ZiXqfZEl7HweTp6rB8v9XcGFMWcMBoPBYDAYDAaDwWAwGM4i7McZ\ng8FgMBgMBoPBYDAYDIaziDPqMGbOBC1o6p3XqNf2/Q7uSKNE/3QpifMHQWkOJprtc1/9mspj6cg3\nH/iMF7P7jIhIFNHC1n3vr1689C5IOH793SfVezLXgy5VU9nkxeGh+uszhfye33/Wizf97G2VN/sG\nON0kU6f17kYth+noBaV1oBlx0eXnqjy/QxcONHxp6IDuOj0wNZYdIVxHg7RGyCJYTtB1UNMIYybh\nu1S/i677OSW6W32ID/e+qwJU3f7mN5Hj0LKZRshSJnZPERHZdj/mxfq9e7042Ol6ftUSuC9wV3K3\nK3ttK64vrwBShepXjqo8lnoUTL9eAonBEdABXXeNlAXoPN/yEWiHNW+fUHksTet9ChTPgslaSnHy\nGVDti2+GdKt2/XGVd6AMNO+UWMgAju0AbfzCb2h3gFpyXopMhcQw3K9p2SefgoNU4jzQAdc9sEPl\nffY/cZ8jIjA2DYd1B/X2QcgeK8mla1qJdpdr2g55R7Y21AgIgok6PtSuKZ5dx7CW4meD4lq7tULl\nTTwP9MoxciSp31Su8joPgLIelYvxceWccZNRH9m9qpeo5su/paUUqm6EoSZ312qpi7oeklCyk5uI\nSEwh6kZkIvaQoSH9eUzzH2oHVXXQkQ2xvFJ0uf2XUfsKHMNGhvUYZl8KCcyJxzG/cy7TMqseurfZ\nSZAKhTlOg4+99JIXX//eX7y4JFi7Z8UTPfzYw5DAsAvT5je0c0eSH+NWTE5DfF9FNMX6+HOoDQUX\na8nZQCvGoKcC1N7EGdrFruhGUNK7yjHnUxdqp7RTf4ejSdEcCTgyVkIiGZWkJVSth7F3JZIc25em\n5Qldxz5ZFsJyLRGRrPNxTtj4UzjJXXidlp6yHIAdhvKnoEZXv6bdIzvItaeLHBeLbp2h8lJKITfq\nz8E+cfzPH+u8ORgHlhM0bNZy2rQl+V5ceBOkcF0ntDsX17Xkq1dKINFfj3MJS5dE9NkxfhrGt99x\nYTq1Hvt4dz/2xZYuTWsfOor9dMVFoNm/+cwelZcUgxqVEI06V08uRI7viwx3QqrALh5hjpSYJRdD\n7chLP0/LfRdSPNyh5T+M9GLcF75frgud++9Ag51RxoZ0Te09hXPLiechn8taqu9N9UaMY8GNkJCF\nROvzkp8dlU5gbT/27nsqj+vypHas3yiSQo+O6rmUvizfi5/4K1xnr4zU8qfsDJw7dp3AvLryvMUq\nz1+E8zrvmSHOXOfxiSIZSeaF+hDjSsECiWGSLvGeISISTNLJpFl4Fuhv0fv24CDOjgmJkMkODTU7\neZAC9zTjPOdP0WdZnw9nx8S1+DyWQlW+v029J3sZ6mZUFJ6Bh4d1XTt9GmevnKUY3/4eLQHPXIK9\nta8VtbDjUJPK66vGPE8ixzt2BxYRiXBcEgONLDqrsGuhiEjXMboH7Fx7yr03eC2DHFC3/eMDlZeX\ngnPLxrdxPllzz4Uqr/I5SPVYMjz5gtu9uKnxLfWeug9QK4rPx+8XQTO2q7wTj2L/y6Lzm+soyi5v\nUbuwfybP13Pu4KP4HnFJ2AsOfFyr8riNSO6D+vcVEWPOGAwGg8FgMBgMBoPBYDCcVdiPMwaDwWAw\nGAwGg8FgMBgMZxH244zBYDAYDAaDwWAwGAwGw1nEGXvOFF4PbfjvPvvv6rWGDmjKuXcH65BFRAZb\noOF95LcvevGPnv2xyqt6Bzottjzb9ozuMbGT+sJ88fNrvdhHesybr9L9ETpJk33uD6714pERrXfc\neCt0bU07oUlc8PklKu/n9z7ixXfefIkXv/LKZpX3hV/d5sWNWyu9OL6oTeWVPQvNcvGi2yTQGOmD\nZrHzsNZu9ldDM5t+PnTL3BNGRKSPbHn76qDz7unWmsTTR6A1DCHb6bgp2gpvqJPs2k5hfLJWQ9vb\nU6Xt2XyJ2hLxn3j3/vXq35Hh0Aq+vAH6/uWLFqm8YeoLkL4i34sr3ta9VSKoN1FwOLS+bGH6Sf8O\nJKbdgqYLSvcpImODGN+gENzzeKeXUUIoWRRTj4rBjn6VV3ec+nwEf/rvtz0DGMN80o4uvxm66cbN\nFeo9BddDL3rqSfQDGurVNqhpZHdXQ71uuMeMiEjlC4e8OIx0zVlTdaORkRHMnSMvQ4vqWjDHTNB2\n64FG7T7oTl3bzNJF0Dq3fUza6zw9jh37oLeOyqFePc5YxRTjfeFk29ff1KPyorOhwR/uwpimzIWW\nlvuJ/H//xrofaESvm44Dur7UtGKusjWp+90n5+BvtcRDzxuZo/vjsO1hzxF8tr9Ejxv3Wgk0/NRX\nK3GGtiUfcDT0/0TXCV3z88iCuZO059z7SkTkqZ9hnxylXgyuxW7rfsyXnCvRC2b/E9hXz5mrrUC5\nz0NPOfUtqdR1t5rGcNFN0NbH5Ov+Zd30vtgJuEdc60VEeklb78/D3Gs/0KjyJt6prb8DjY6jmKt1\nVSfVa2yB2b4fOvmwWG073bEfY5e9hrT6Hfo7N+/Eup+8DHn9NbqvyYG3cQYpno2eGiHUDy7GqeuZ\n1M+mgezBq17RvWl8qdQLgfqv5V5dqvLaj2IcWrbiPYnnaCvQfuqj10e2oxGObXBMrp4ngUTiTKy/\nujf1vp00F70tuKeL69Na3465z73TFq7SPXs6j2MN/8fP0P+pNFv3HHj5Q9jq/uLbX/Di3mrco5yr\n9FpkW/rkc/B5Men6nsdloo4PD+N6YmK0dXtEPPIiorHOK9fr/kJDVMd53Py5uueg24cv0OAeKvue\n09cYT3178i5AT4iyl/epvAkLcH7lc0dQiL72Gponu05i3Rem6b5T3Nuvdjf2pJLrMC+Cg3X/j6oX\nce3XX7jCi7/38OMq7ydfvsOLo334jP0HdV+n8KM4e45RT8OSQt2fi+GnzwuJ1H0zdv0Z/VVKVtz5\nqZ/xvwItK1+K7lHE51I+Q0dn6P19eABrpD+0Au8P0t8jJgb9swb6UVtHRnQPoMYT3E8G8yCEriFt\nYa56T1cdxnogDj1ifNG6P2FQEOZHbzueF4d7dF+fjkbq/ZeFdcV9+0R078zW3fhO0bm6j2vHYew5\n6Wsl4GijWuT2NuK+cPseQ1/IgqW65xX3ybn3u7/24p/eo+cc962cNwH72Hfu/rXK+/rVa7y4cQue\npXsq0F+2v16PffYFXGMx9sHBei6ln4d9ls8qbt84PpPz9zvyuK5XXDf4TFD51AGVF5Z45t5Bxpwx\nGAwGg8FgMBgMBoPBYDiLsB9nDAaDwWAwGAwGg8FgMBjOIs4oa3rpu8958c0/vU695k8AjenQY697\ncfsBbX2avgqUoc/lgdJV9fZHKi9rFaxBG7aDjnvjr7+v8vLv+wP+1kHQxY59QPTEqZryV/r5+V7c\ndhIU/IxSLVe67Y6LvTgqE7TxOsdC+IFXQWl9/Ms/9OLv/uMhlfeL277uxf1DkG2sPqYp7q7Fc6CR\nNAfUX9eaPIJkAvza6NCnyz266Pp3nNB2zauXQn4TPx1SJrboFRERommnk11kbCLmQV+Dtl0rfx40\nVh9Zqucma7rh/krQ3n765S978Xd+9zuVd8MSjD9bnadN1davbOXYQ9Q51/Y2PDFSxgudR0CvbCvT\n9P8BshPNugjWf80faes2P62/HpIgZK6YqPIOvQFqfdte2MMnzdMU6+Vk38hWxiydK7xGe+BWrsMY\nNjaBTl7XptdE1Amsv+RZmL9VLx5WeYU3wsI1IhZzub+/QuUNDeD+Jfhx3e56GHVsPAONIbJEd9c9\n0ybZIruhUkuFipZjvMJiQNEc7tbSsC6SGKUthkwsLFrP09BQkjUlQsLSQtZ/Ic76ZZv7WJLHuDKf\nmJ2gCA+1gEJfU6ltJPl/E1SexH1o/lhLM6bmgoIcRPfPLaEs/Qq0lXbvCczbpJn6+7K9ZNbFGCe2\nyRQRad4GuQhLLsITNNU1dgrZnPtQM915u+8VrKt5t0F6dKwO6zcxUVPI23bitfiZqNVpS/JUXg6N\nG6/t7uNaXhlLUslustKOztJ/NyoDazssGjIhtkUWERnIIYmYds0NCDIWgvY8OLVdvcZWoCw1C4/V\n43PsYZxjwmPwWv16LZPi+R2ZhvsU5djajx3CvDiyG5TvRZ/DXuXSt5keP9KLebFpu5Z9LCyGJGTi\nXajL5c9oujXbvpd+AZamfZ16P+G/W/sqbIzZ7llEZHAO9tP0TAkoGt7DPUo/V0+SIZKWxeRBWtW8\nRVvd5tH5IZskYu276lXe8x/gPNJGNtvPvvmmyoslC+aRHtTkYar9bKstIpJKMt5wssod7GtReaER\nWDvD/VgvLV1bVZ4/CfeCZR8sNxQR6aZ5ydKl7nK9HmIKxk+aJiISQbJb3iNFRCJ9qBE9p3BOmHun\ntqcebKN2CO9hrPqG9L44uxRjnEy25139Wt7dN4i6PEqSIpZJJSUtV+85NgIZTcJc7A1fvOgilff1\nX6E1wn/f/Vkv7nHkw4l07q49hPl48KSewzNIhukvwH5e8VSZygt1zqyBRH8D5uOII1OPKcT8iYrL\nR96IKwNGre1uwrNaeJw+s8TFQcbHFt79jfocmVIKie/wMPbg06fxnqEuLUH1p2PcRkexzv1+LUU8\nuQVtOuImoIa4LSG4bYPQGoty9sWYbNTJ9qMY38g03S7BPYsFGtyeQV27iIyNYh0M0Lpi2ZqIyNgI\n9oDf/frfvLi3Sp+DcqhWBtNnfPWyS1Uen4O4PsaX4NxyulTLEoe6MbfCUzH/ehv0HGkm6W4Uyeij\ncrS0k6XF8dPwt1LC9ZrqoOezFnoGSztP70816/WzswtjzhgMBoPBYDAYDAaDwWAwnEXYjzMGg8Fg\nMBgMBoPBYDAYDGcRZ+RHzT8PkoG4ZN0NfmAAlOgZd93kxYeeek7lhVPX+P460HH7mzSd7VcPQb5U\nQF3Tv3PhtSrPnwYa4qRbV3nxm/+Ors3t5Zq2VBwPCdYPb/uKF9+yQsuV4ol+O9oPauXY0JjKq975\nnhcPj4KGd/yNV1Teqnno6j7ti9d48d/v/ZnKmzG1SMYT3SdxP5iaJSLS9CFkB5nn4j4NOw4bTFns\nJvqnKymqPgVZW0k+6JUs2RDRjgQsSTj64jovdunRQ02g18dOAh3OpdQtOh8uY9vehhPWfV/8osob\nobHbRi4Gy6/SdNmgMJIyjYLClnV5scqrefWYjBdS5uF+ud3lmYL/4a82fepnzCyZ58U9JE1r9leq\nPJbgVe9GF/pCh9IfGo25FE3OGNzl/PBD2sEsh5xBPt4OidL5n1nhfLbuqP5P5J2nHbdajkGCVf8O\nqOLstiKi50jqqnwvPvTSfpVXcukUGU8UngNqI9dGEZHjb0PCw05nKSmaUs5Spo4yyINGOrRLQDB1\n2mcHgXC/48QRhG0gLQ3uc92Jf/XiUKdusLyjtx7U39p1B1VedCH+Vn01KPqFc/JVHlNp06Kpe367\nrkMxhaDl128ALbSvUrve+CeOHw0/ZSnW35EndKf+oqswf7pI9sPSLxE9H5lK21elv0c0yV7SJsIF\n7cSG11Tekq+s8GJ2uSvOxLr0F2nXh4SpRAOm+da2T9dqlmZEZWM8Ow9oaVrTJtQR/wTcf3Y2EBGp\nfBXzPHEqSV/9es2zq5PMlYCj/TjozGdyowkOw71hSrWISBC9tuu3kJbkzdfSMHbHa9mBPbdlk3Zn\n4fNEejzG68DfMc9mfu4c9Z5BcrfkuXTR9ctUXg85htW9i1oZM0Gvla4TmLdt5KDVfUTL2NKojsbN\nwDj2ntJuX64EL5BgGeCo47x3miSGDVsqvHjIceFIKsW1d+zF+WW4R0szVk6F5JrXVdwFF6i8ymZI\n/9gYKjIG9d51ZesjqRo7vrl7RFQarp1d99x7zOdrdoJKmKkl2yxXZ9fHjoN6bbvuO4FGBznWzVoz\nU73GUr2yd7C/zKc1JaLXwakmfN6yyVqO8srmD+WTsGjSJPXvRD/2pMhcrKu4HLRN6O/XUr9Bksh0\n0t48+0ZdwH45AdKZwwcrvDgqQp9b3noejpaXzoEUcfKV01Xeut/DlfTq713uxfWHdC3PztD3LJDg\n1gDcLkFEJDSK5NfDkMqMDOozS+cxrB31GU59Pl6O5z1eS0mlWjoy2I8x6GsgR7lEfHZcmp4fYWE4\nYzRVoKZ3hWj5Jz8jNpO7b5izR6QuzffikHDWEervNNyP62Ppr1srXIerQGOI5IEhkfrcd+hveJ7K\npTl89B0tPx8hGeDEc/B8O9ign/uTJuL58d234SzZ70gRr5qFswrLvIKDUR/DffpZtG8MsriqI/hd\nwnXJ+ng/fgeY0o61HezI07a8jT34nBbI5Z56c6PKu+1mSBg7qB0FO6aKiGRdMEHOBGPOGAwGg8Fg\nMBgMBoPBYDCcRdiPMwaDwWAwGAwGg8FgMBgMZxH244zBYDAYDAaDwWAwGAwGw1nEGXvOlG2Gjiza\nsZVKnYp+KlU73vXisFitmWTdeOH16AWy6X5tP/jN/7jVi//tG7/x4ie+/B2Vt/xW6O4HeqGlbe6m\nfjaOXm30v/7uxZ+/A3rMjJWFKu8tuqald8K6crhPf54vGXrFm395pxcf+PV7Ki93LXRpVVvRCyTI\n0Rr6yLZ7PNBfi3sz4tjtpi+HNp570/wPW2jSb7Mudvp0ba/cfRyf4SOrZbbSExHxJeK15l3Q4HOf\nGdZAi4j4J0EL2rgR/Q2ic7QGs78a2s3JWbg+7uMhIhJJOuqUHGivWasuIhI/A3rHYdIU12/Q/QLi\nZ2ort0Ci6xT0/q7lbNwkaC1zJkMLH+rXa7HhHVxv6gqMu2v9FxkOfXA4WS+eHtHa14Fm9AAaICtt\n7q9R/MV56j0bfvSGF8+YCc1l4mTdo6G75pO1/6Gheq30N+JelNy6Gv+9V2vBW2iODVE/pcQY/XlR\nmbrOBRpcR7uO695YqemY3wM0z17bvlPlXeFHDQwOxZxOO1/Xs1FaP6lF6NUzMKDvTU9LhRfHxqJn\nSudR6GVHurQ2PJxq4OkR6ItDovVc8pE+uHQN+pa5dsBspcr9E3ordf+K02zlSBbPscXaIrZ9D1lp\nr5WAgvsZhYfq71vxEvoopc5H7Rlyenixrpu/r2utnDUZ/SzCw/EdJ110jcrr7oYevnkH9O+9A/i7\njXvq1HvYej2GLHZHnF4bvJ6r34I+293H4rh/BenkU6bp3ly8fzZuQR2PdPZBtwdNoBFXhP4bzbvK\n1Wux9F1GqGfO8T/v1h9C7eiKL0LvguFuvV64p81gC8a++Brdyy+LzktvP7/di1dfj/NIZKLuX3Tq\nb+97ceHN6EVR85rugTbchXGNm4I+K9wrQkQkbTFqcQXZbIf6df8BfzZ64gxQHc65vETlVb54SMYL\nvHeFu2fPGoxB5rnoe+D2T2nYijkYQ/U5IlSfF0oXo+9b6Hqscz57iojMyMP9a6xBDQ2jWuGeRbKo\nP99QJ67b3ZtHaV31sN2183ls95y2LP8T/7uISMdh9Pjgdel3rLPZlnw8EJGMMYlM1eMz0o/6mL0H\nc3/bk9tV3vLPo8dSdQvu+4mGBpU3NRc9w7YfhQV89rRslddfibU4TGMSFIR10FKt+9ccrEbtPbYD\n9fbexbepPF8avmNeE/rAdPX1qbzb7oKl8LZX0ZOj6Rndm2xCOmrZKbLPzpqhz+fRebrvWCCRMh/3\nr9+pKbwnxVGPp/AYvWY/rd+JW6Pq3ke9TluIPiFtRyr059G8bfwA1zD58ziX1n28Q71nmM463PPt\n1PN6rHnPZHtrf46+x2P0TNOwEdedfZHucdRbh/kWGo37ovrUiEgt9VZMu0kCjj6yu05bpXv48L7O\nPScnFenzV/n7OCf89o8vePG7W7aovAnFOBt87XI8m3PfLs9ha28AACAASURBVBGRXW/s8+LSalxT\n6lLszaOD+lzro55F+/+CM3RctO6HNL0o34v//j56ZJZU6LXz8Msve3FkOHrhXj5PP+P8+hF83x//\n+ate3H1Kn/eHqEfWJ8GYMwaDwWAwGAwGg8FgMBgMZxH244zBYDAYDAaDwWAwGAwGw1nEGWVNl//k\nLi9u3L9XvXb4cUiA0lbkezFbtoqIRGaBFvarz/7ei7/15A9U3lcvvdeL//gCXhvp1RTrO6/7oRf/\n490HvPiGB2/w4p7adn6L3Hb1f3hx1SlIOw71aFnKjb8BdbirC993eIX+TkxPatkJuUTSvEyVxxTU\n9X+DrOniO1eqvNwF58p4op8kJ3nXaKvgAbJjzL4QFLOqVw+rvOhc0H2DiO5bu19TyVJzQTsNI1q6\nS0tke1W2WGfa7YkybfGcngCqbWwBqIMjPdpGsqMd36nwQlAH97+8T+U1EwX1onvO92K2nhQR6SqH\ntCKULY5XaCnOeKJ9FywRMy+ZqF5rITv02GJInFx7zSD6KTYyHRKCj/+g6cEzrp3txUwLrdms10va\nTMz35LmgAIYSHbXzWIt6zwU/hFVzWhoou9XHn1d5+TNAG2xqQK05uWGDyjs9jDU20AcacePWCpUX\nNxlU2tpXQWVOWZqj8hrex3fM0w6LAUHtetg/J5+jaZMDJD8sq4LNb2mOvkZfOqRCbfsh39n1p/dV\n3tx5+AJNKRjjpHxtVRqTAuvHgQHMM7bPfucNTf29/C6slxGScITHaztDpibz2nZlk2yDyjbdlUd0\nfZkxDdLBqCzM4fBETVUN8WmpQSDB6yr7Ui3ZYfvspp249sg4/X2TFoICfuRloqHHaClPZyf2obAw\n1L/QUE39bykDXZrlStE+3Ms4R7I3RtbDPSRpjUjW93Lb3z/w4sU3L/Ti7X/XNO9iGrfUZaiNg326\nBrBs1E9y18TpGSqv5nVtzxloVK+HLe9gk96f2nZjHSQvxvqLzNLSq7B4fGeWMlV/oPeurGGS/vkg\nFf3oCb2uZlwBufjV/2eNF7Ms7sjvN6v38Byseg4SovBkPefyr8beHxaFc1n9Vr3XdxyG/ezxSszh\nFV9aofK6K3HOip+CdckSXBGRCbdo2ncgERqN9dKyS8v2gkNRb8Ii8H1DfHo+hpJ0NyIJ96z7qKah\ns4164SJISCc51rnl74DSH0afnUR7UFCI/v+iIZH4Hq1vQbYQkarXYhSdw/rrcM5hGayISEwhzj09\n1Ti/sPRQREtSx2iOujbirsQ80AglWYgrK697HfeTpVcpA1oC2nkM8+7Kc2A3n1GYqvIqj2GefPZm\nnEdc6W70REg1/HTejIrC2DdUlqn3XPYdnGnKHoWUwpek63XSBKzF3PMhZXrnh8+oPB4fPgeEJ+o5\nxxKbbroPw04bg75aLYcKJFo+wjk0eb6WiA224jtGkoSt/WCjystYDql7G9mAR6bpuptE54BTG3Gm\nSkrSe5y/6JNlXBVPQ66Zc6U+6HErjsaNFV482qfXwEgmzgF8Vmrbr58fEmdiX0uahzNfx1Et3Ykl\naRA/O/bW6DGLTB9fW/tskqXWk4RKRCRhBuRzNa9DNhvh2ET3UWsRtoB37eoffPppL27rQT1beP4s\nlffy8xu9eGgPxmF2OOrrxGv1c3RfN57vJlyCMS5/86jKY4nprAJIpjodiWFsPObS9CmoAbv3afnw\nv30TWrPm7Szb1vXKl3rmdibGnDEYDAaDwWAwGAwGg8FgOIuwH2cMBoPBYDAYDAaDwWAwGM4izihr\neunbD3vxxDxNwU9dho7n8bmg+PSUazeDbU+ATn/bN2CbcfCPb6i8n7/47178k1t/5cU3XqmpSg/9\n99e9ODYR1MD2hv1e3FenKe1MW3rgnnu8uL+/WuW1HYGkgWl43G1bRCR5FuQcW34BhyZ2uRERWX3f\n17x4QjokNew0JCLS8P5fvHjlffdJoJF5EaiCrkyMO0azJK3o2vkqr24L0aUTQKksWKodYkKI3jdA\nVHH37554E5T1pHTQxUKJ1l/hdOxOiQUtrPoA6NYll2ip1nA7KL5jJHvJydX01lkLIN9h6qArk0qY\ngm76Q234bKaciminqUDjVDWokuE7NdU55zLQEENI7lC9QVNuT+wARbG3HNTNVT+8S+W1VUFKUf0G\nKHud/bq7eC51Q+84grFKnArqY7TjPtPyMSjFkYtBLW3dU6/yQnyve/HxP6GmZFxQpPJ4/o4M0Lg5\nTjI8t2OnQHrjUqjH2yHGR3Iedk8REfGRZGJFKWjZLbs1Xb9qJ+pH0fmQNMRUawpvJMmfOml8ql94\nSuVFE/V3tB+U0bJdoJMXpmknMh9Rk7uJDt7v0KYj6f4mTsO82PXCVpWXkgF5S9pKUEuP1et5UUp/\na5TkRSwVEdH7U6BRsQ61Ky5b3/OuGkgIopNx/1lCJCJy9BXMfXb5cd2pGndiDFzHREZvFd7H0ozp\nS+d6cfXLWiaUTNKqLqLCswuDiMicCyG1ad4MuV2J47BWfMtSLz76GGS8kWtLP/W6Ow9hXg47sgKX\nGh9osJRiYFjX8rRzMQfZQcStK3yvkkiWFeHI7A6/glo843bIfLIitCyOZUkV3Rj7SddjDPzF2kmn\nh+ZMTAlkK6kL9RoICUNt8/lwhkma2anyOk9A9pNEbnauA1UYOa3UvEauN5dq6np3FWRSqXoL/pcR\nRQ5ffseJJpgo72Nj2LcjkvTYhMfje3SWYT6mnaedSrSrGtaiz/m8pk7cz9IZOB+F0dnGdUQbG0bd\njczGd0pf5lwDORfxZ6Q5lPkxcrXz52K+uHKq3lNUr6i+nB7T6yEkYnylFOwMyO6iIiKJ8zFX20je\nXXL1dJXH7mSt5KBVsUOfI5u7sEdtPQxJ3x13XqryUhdg/bBM+sM3H/LisdP6/FB0E+bgpCvhxMbn\nUBGR6GjMi7pj6704LV7PYT6fhMVi/vQ2acfOmnLIg+bcjrNDmHOe2fcIZJSzbpCAIpVc3rpOaGkj\nz/3QT3lGEBFp2MbPYKi7nQNNKo+fE7Km4tn0xMfadc/XgvmdNw/X58/Hmuh37iW7oDXVQtqYlKDX\nWPxkPBcM0/NNeLyWnA114HvweLp5PTWoG9G0nhNLtax9bEzX4UCjcXOFF/NZQkRk79M4i09agb2L\n5aUiIt3NWH99g7je8iY9jrddfLEXs6zJdaiaTXIjlqGu34D5nLJI73c8rm0f4QzN1yOi3Z2f3Ypz\n6ZULF6q8O8+HlJ/HccW1i1Te3tfxrJ+ZCKlaZVmNysstpd9UPkH5a8wZg8FgMBgMBoPBYDAYDIaz\nCPtxxmAwGAwGg8FgMBgMBoPhLMJ+nDEYDAaDwWAwGAwGg8FgOIs4Y8+ZAdJipa3KV6+xPryvA3qu\nvRsOqLz5V8BGq2U7erxkXDhB5QUF4VLuvv8WLz78tLbw3kMas6FH3/LiO390vRdnLtRa1B9cd50X\n51+L/iRfufRbKu93b/7Gi+Pi0I/kkc/qnhzZH1Tgb5G9s9txpKcHGtgV37/Vi0dHtcax5cgJGVeQ\nPm7U0b4GhUG/x9ZoYTEVKi8iBbpqXxp6KQy2aLsxtps8+SKsSrNX6t40+cvQO4Rton0Z0FuvWqLt\n1EaoR0dMOjSZY0P6O0UVQrc72IzrK7hez4uBVuhdB+h7nB7VeuuKnRV4jf57lqM3ZovxQGPqMvSV\ncb/vjgc3evE534RN+4hjaz/5fPS24H4dnU0HVR73fwn3QR8865I5Ki+1FPezZhvZRsZCi8vrWkQk\nYRnWVVst9Ks9J9pV3oaX0KsqPhp697qntL1p6XL0N6h6Ef0a4qbp5gY9ZIeeOB39U7gvgYhI7Uat\nWQ40RnqpT4ozPt1V0BxnroLGNrZA95io+xi67N0v7/HiOZdpi+z+euh+UxZBbx3qj1B5fWQdGZGK\ne819ZsLj9HtqSd/PFtkci4j0DuC+sy17/mJdD4bptaqX0Acgw9Hg95Ie3E9Wp02bqlTeePacmXwH\n1kHFU3q/iybL1GCuB06tmHYLPqNpG6691+mXxlaoo2Rny3b1IiJ9VeijkL0Ga4ItcbnHjIjuXxFb\njF4lx9fr3jS9Axibomm4r4NNuvZ3VuJ7RFKvKbZmFhEJCsYcyb0CNan9gLZVHXN6egUaSbOh+eY9\nTUQkiHrL9FZgDhdep2tgbyPqEVsWR2Vom8xg6nsXHIaauOcRbUc+8QLU+aJSrL/RIYy923uIe53F\nUK0IDtW1bbAL+114OMaOr1tEJHEaeucsnIl9uvyFXSovbVm+Fxdci/4ance1VTXbyxfNlYCCrW6T\nF+reDP2NOGcFBaHvyFCn0zuHbGDZTjo8XvdbGKWeZqMDGA9eRyIi085BLwbuNdJ5ANeQulz3awqP\nwbkpdhJ6onH/HxFRB5Bmsg6PK9JW2tyPhs8L7r7I54CwWFzDqGOdPeCc8wINrpXct1BEpOwV9JOc\ndQMmUHe5PjPEluC+LViCufDmExtV3to1y7z4r89s8OKBen0u767A5/PZLuM87F3N23TfSqFePc30\nvBM/3Wm2FPyOF9a+id5SI6P6bFe2CbU4Nxnfb29Fhco7b80CL+a5WfnCIZWXPW/89sVQOismlOrv\n27QT/Ta43oRE6vNhJNVNXi9ur8GoDOwvbF1deq62xeZ7kbUKtbVlH/r2DTv1IGkOehw1H8XelXWZ\n7g/mi8f5o6cSZzK391Ur9VlMmoM9x93vuI8Jn8nSlxZ8at54IJJ6HwaH6T2k9GI8P3cdRm2KztN7\nUl071k6iH3trXJTuz7V4OsaLe21FpOgeV6O0rlqon9TcIsyLLb/fpN6z9EvLvbjoVpyNY3c6a5bw\n+VDMx5d37lSvtVCvqulT8HcHGvSZbfr5uEd8rsh17uVwp67ZLow5YzAYDAaDwWAwGAwGg8FwFmE/\nzhgMBoPBYDAYDAaDwWAwnEWcUdY0MQP01mBHspExD5KG6k2QJ6z8mra+Pk107uAwfIZryxgaCpra\nSA9oR0kZmiJ2y61Xe3HmpNX0d0AHbDi1Ub2H7e5CwvGVL5+n/at2/uxFLz73vqle3OVYCLMVX2IK\n6FzvfbRP5X10L+RKfh8oo1fcv1bl/fn+Z73456/fJoEG24KHxWn7trBYyBUikkHjbT6kKXcZiaCJ\nsi1s8mxtsd5DVrL5l4BG2OdY7LKNKVuZ5RDttmmLI1VYASpw7Xrc2ziyuhYRiSkEtZspzKODmn7c\nQ/azbPk85lB6i+nz+6rxPUJ8evn4HflJIHGa6NGpCzR9u/s4qPVMo46brO8L29Y2nABdc8sbu1Xe\nqusXe3FjGSROva9oimztG6DjFlwPWvuGHzyNaxvQ1D2WqfjCQINNnaclF6vSQV/m7zTaq8cwjOwI\n4ynuLddU/ZiJkG3UrIMkZ8LtWjo34ZqpMp5gK1NfqqZuMp2d5U8sAxERmX4eaJM9NPb9DZqWHUvj\nz3aOrl14ezk+w9+B9ZI0F/W/Y4+uB2wpfOgUKMvnfWmlStv7V0ghImox3lHh+hp4/UWRBfgsoqqL\niPjScM/adoAuzNapIiIdb0IaNfk8CSiaPkBdGh7WtSJxGijRbIfpUph7ibYcTvbqOZdoG2KWiLC0\nYMShNkcRrThtwhIv7uqELLh6nZYrpS7N9+L+Rty/zj4tYZg8FxTexJmwQ294R0sAt/15G94zB9T/\nvkpt1cxyNP5+vBeJiFQQJb9QL9OAgOVWTR9qm8viO/AHE+eSle9hnRedhfvO+8Hxx/eovMREzIWa\nVzEOEaF6D+Ga0EXrkmWFGTMWqPd0NEBaN9iOdV4w4wqV1xKy2YubDsLa29Vj8/7XUoZaGZ2rqets\n4c2SH7Z1FxHxF47fvpiyBDKN9v16jXHdZHlDzIRElRc/mc4c2yF3cL9HzylQ9VOXkW3wcW0bzBJG\nlv7FzyCZqGOjGxmHddXfjLNNxz79nVi6ExGNOXHakQBG52OfZQvw1m16/vonYV9s3V3rxa5E25X/\nBhpjJM1LXaylNywzOfAM1lXubJ1XvYfaJhTjXi+YWqLyynZgTl+3epl8GnY8A1nDinuwr0WmYC1H\npms5ZD9ZQ/eRbH76wuUqLzwce3NzBsZkbEiPY8ZpjOOO4zhvrVw5W+WxarZhAyQ2ka48ZEDvV4FE\n617sx+59CaXayHLBEEee2/AWrj3vepxzuk9pCRv/m8/Go4NaFsZnquFejMdQO51LHckxr+f88yd6\ncS2dG0VECm/F90ieke/FbYe1bCY6F2PYV4fnh7SFWtrYsK3Ci8NisLZb6QwuIjJIcyzjFgk4WqhG\nFN6iW0GwlDAyEzIkPteKiMy9eIYXR2VhvRTUaHkaS4Z5/9/8t+0qb3AYNSySzo4pJVjnuZn6szsO\nonbGFmMevPjkuypvSQnqQ1kVznbcTkFE5NxpeMZha/j+an32TJiBWh5CUr+Gd0+pvK4GzIVPOqMa\nc8ZgMBgMBoPBYDAYDAaD4SzCfpwxGAwGg8FgMBgMBoPBYDiLOKOsadMh0Ip7B7UMKX8xUZXJ3WZk\nQMsO2vaik3YE0beTpmsZQ1cD6KSt1IWe5RIiIt+97udePG/Cei9maczsQu0Ecs53b/fi/77tO168\nerGmBg60gRI8Ogo66jf+9qjKe/gzX/TiiXec48WJ8zNV3rHXcP96SBpVv1HTm668YImMJ5o/wv3M\nu0JTPIeoY3TiLFz/cIceb4afaHrNH2kKX+oCUE2HezEm4tDwmWrrTwB9jKnJcaValsOdw1OX4u+M\nOe5KoUSxiyMXkj5H9sGOGkzLY6cDEe1uw5S1jjJNOW7ahDlcvFgCiihy6HAphJkXwfms4wio+qmz\ntCNaGMlZUhZBGpXw0lGVFxyB+zzxKsh8XvjF6ypv8fRSL+Z5xM4kF3x9tXoPu/wU3gLqY9lvNI3R\nF0G0wUGMR+lntRSx5nVcO0uX0lfpGrDpF6AyzrmaHOT21Kk85VKhy0NA0NEOCmRciJ7f7GZ0chMo\nzKnpmoZ/eNdJLw4LwVg1HtTykYJDoOsXnQungbZd+jsnleA62o5A+ibHKWexrtfsIjQ7B+tosEPL\n2LJLII06TU4orksDS634s11JROcBzO+IVHT+LypJUnkDjb0yXkhdhNrDlGURkXZyOovJx7Wza5yI\nljtkXkDr92izymPXBqZsJ87OUHnZM1Z5cXPlB14cTg4sIdFaSjZGkqwBcraZOEnLJttJesR09VMV\neh7NuhgU6Fhai3VvaTfCrjJ8x6Lb4aLQW6elryWfC7C1j4OYIlyj6wzFNTauEOuo8QO9d/eStCeF\n5KYxjgQoheZMfDao8keefEvlsWQ4sQSS4YYPcA8HW51aSdKFkAiSC/drCUtoKMYuNBp06+4T2gGP\n98W2nRjj+FlpKi+Jzgt95AwnwXp/Guo4syvFv4IuknVGOg5ZfTXkfnceKO9dJ/X37SO3jTiqha4L\nUxxJJOreRg1m2Y2ISMRMrM2uk5BIRJCco69WU+Ejk7HGal9D4WU6v4h2k/JlYDyT5uh6cPJpyNZS\n5mIehcVr6SBL1XzJmEfVjstPSNQZHxX+ZbDMPcxxE/zoL6hn8+/Cwer437WTa2oO1nPbKdz3yAj9\neewew85LW/+4ReWt/veLvHiI9qTk5PO9uLrlRfWeJx7Av0uycN8PPvmSyiu56WJ8NslV864pVXks\nHUxsxPoLCddrjOVKPMZDrbolw3giIgn7cUSiduVhJzB2D3PlfRHpeF/NOpztshy57xi514XSvta4\npVLlZc+GbK3qw/e8OITOuDGF+nzVtg/PrHwuCY39v+y9Z2CcV5n2f9RG0qiM+qhXS3LvvduJ7bgk\nJoWEFFLom6W9yxJ2Ydl3aQvsssAf2ECAQEIIhPTuFCe247j3JtuyZPVeR9JopFH7f+Dlua774PjD\nMl59uX+fjj1nRk855z7nmbmv+5LrJ5dF8DdSCQZLJjVl2yanPTiIuDFuOecywyS7yrBc6Mbykuzu\nIWWcnJFsZyi+1qdfgYvafMvFsIEcyKbcjbiZt2ax6FfVudtp919EXF6wSs6Dk+9Dpj5rIdZPLpVi\nxuSx9l/A57FMbP1c+Z3C+Tqsk/f/C8qmPP6d50S/mfQ8lboIc7ttT63o57toyVz/H7nbpNvXYNvA\nFfv9Bc2cURRFURRFURRFURRFmUT0yxlFURRFURRFURRFUZRJRL+cURRFURRFURRFURRFmUSuKiS9\n/ePQyvnOSC38ybegaWVrq6wKqbfacey40/7QVtRWYetrY2Q9jLL7ljvt6qcPi36f++QtTjuNtLT9\nZMlV/a60PDv137D2ve1TOKdf/0jqRf/5d19w2j1d0Lm+9a3XRb/Vt6DOzNEf7HTa874ga8ckx0PD\nu/yftjrt79zzfdHvoUcfNNeSxBJoKpt3SP2/d32R02Z712SrpkH969B/ct2BCUvn1/Z+rdNm2+m8\n7bLWTXxqodMOd8EekTX3fZWd/Bbjq4WNWw7VFGF7dGOMiSPrtqa3cL6p1jnx+UaT3tquPxBH9V7Y\nAn6g5n/PMvTI07AkLsrNFK+lkOUx10zprZY1B1ifGR4JzW1Hr6xVEnUW+kzWB2+5S9pBTlCtn4O/\nP+i0+8iK99X/kHNn+9dvwt9x4XrFe2W9ALaq6zkPDXDP2VbRj21gMxZiLNc8L61sF98FreupZ/Da\n6q9uEP24FtK1IDkNY7PtoKzX5F2Cui5lG6c57fZ90lKe61ex3Z8rQtqdPr5rl9P+vBtabtt2umSa\ntKv+C1zjqfpNWZcoezZirysZuvFgl6ytcmAfbH4XTIVm9/IFOTYTYlGPYfrdsDG24wvbN/aRtpdj\ngzHGxKVJG8RQEiCtcMf78t4kzkDNCr5+tjVt5jrEr4aXLnxgvxEf4k3WJtTNiLd05wMDWPPY0rn7\nHOaLXadggGwx2So32iuvXWsd1n62a5+3bY7oxzp5rjNj69Zd6bjXbL+aWCZrMHUcwRjJlq6jIaH1\nHej/o9NljQRXHGL+xV+977TdeTJOBbtxztEerIt23bI4L9bglqPYE6VbtsGJ+agrMTaGzx5sxFrq\nzksU7+HaKmwd29t93HwQXNeP7buNMaaX6k4VU00g30W5HnN9G77Ho/2yXl1Mhry2oSRQj3PntcoY\nWddJ1I+xakIEqOZM1jLE3bExWRNggK5z/k3o131GrkkT9PmBZnxG6iys0zFp8poM95Dl9izMg4t7\nL4l+SQVYMyOpDkzdM7JGTEsv9iaeTlpnS+QepX13rdN252NcZW6UNdsi3bLeRqhJmo66Tk075P69\nZEGh0+46jnFb9tF5ot9AA845kWsNNspaVpnTcG68nyv0Zoh+r/zbK057Wh7W5tP9h5x2uFVfyUPr\nbHEO9mnuHBk32s9jDzLtfjwbVL0kbX6HWjB+GpswL1Msm1/eP7U3YF2cdY+sBRIVd+3uI+/XPcVy\nr91xosZpc83KAcsiO74I4zNxCtUQOi3n2EAl6omkr0YMzVxdKPpVv7XDaQepjqZ3Jd7TW9Eu3pMw\nBbE6SHVIPTPl+OD6mLwvGemT8a+zRu5FnX7WGsG1w8ZpH995RO6VuC7WtSCD6lEeevh98doCqrGa\nRGPdtmgv/xgKNrqTsVccHpK24OP0vu4OxNeUiDDRb+s38dxw8edHnHbJfVifeN0yxpjkBZh/Z3Zg\nH5qTKmsMzV2IWjCnnzzmtMfG5XPgW+/i786vxRwbGZXnPnUu/m7PSX52kTVK4wuv/ryomTOKoiiK\noiiKoiiKoiiTiH45oyiKoiiKoiiKoiiKMolcVdb0u58jre/ez9woXiulFOnpn0Ba3nvfflL0234D\nrO+GW5G6efA/3hX9yrYgTXSkD2lcnG5tjDEp85Au57uE1KI0snXsOtQk3jP7Qdhj7frGo077njul\nze9wH47v91972mkvKikR/Tj9LGcZ8q13f/ct0W/tP+PzA71Iw/vc9+4V/U7/FNaYWd+7yYSafrKO\nzLvJtqQjGdEFpCWODUh5R/4NSP3idD47xXosgBQvafks09TO/BRjK8INW8/OFqQ5FiyRuexTSQrQ\n9j4s89KXydTw4R6kInKK/5AluRgnyQRb6yXNkOmLo4NIPxy4TPZsdNx//ltyrIaSNV9Y57TZHtcY\nmf5/NZpeQ4r0KKVNpqdI29eSO2FX3d+IlE87bfzCs7DSc0XiOi9ZBau6NLKcM8aYGA9S+fpbME9H\nfTLFc7ADVsgxUWT7eknaoGZtwNy88PA+p51/+wzRr+IxyMIyk5FW231OphoeexZpjfc8fLMJNYO9\nGIPuJJnazraNZ1+GbDQ7W8qOlqyHZXEnpeTydTLGmG0LYUX8/CGkYt++Vvq8v/MiJGmLyiE9OnsW\ntsGVzdI2+Tq639k0/07tOi/6hYdh3l+qw/2Os+xNR8cwtlpIetnXKy2xvbMR56PTII9h+Y8xxoz0\nyn+Hklgv5CvpK2XsGSOLT5ZPjFlyubb3kOadNAvxJixK/l5y8XXIFfJpfNi20wn5iD39JFfi68KS\nF2OktIWx418JxTlXMq75hCX/dMeiH8tNsjZPEf3CSArAKeWtu6RNdfpyaSEaalIXIzZ5iqRUtOMk\nJE9sAZ93w0zRb8gn74NDuFzvggMkkaGX3JlS7lD3KmIq730yVmIt7Doq9zdsq84SDl4HjZG22GzJ\nbMdolgCxla87J/ED+/E6m799muhX8yfEMiNVpH8zUSSpHG6XsSJpLiRi4SR9tq3DeRx0nELsGemX\na1L6IkhbsnKwTxto/J3o5yaJiacYEoTYWOxfBiOkvLzmCZLvU0r/1PVSDu4n+X7vWaTxe9fIvVJ+\nKu5B67uINTEkSTfGmKhExGEPSYvGLBtxW7YQai49DlvsgSFpvT79DpIunMF6vfsn8hli1kpcq5bT\nGOu2PIGlo2wp/5NXXxP9Pn8TnmsiyOq7aAHi2S9+/Kx4z5Iy7JPP1UDyunS6jL3HnoREIiEWkovZ\nn5RWw02vY8829zbIuAabpTQ5kmK0h6S1e36xR/Qrc/hmNwAAIABJREFUSMdred++zYSSFHoGG+6T\nUnmWTo7RPpLHnzHGRKdgfQmjvYMtvUymNYrjkK9KSi9ZLsfxsI+eHbmPMfI5IZIsmCOt/b6XJFRc\nIiEsScZ+njsc720JPUvOxoYQ+0etuRiXlWquJU17a532si/IUgZdJyFLKvsIZM2dh+UzyGAT1qGc\nTbiGbfuk1bkrFfe7dBbssz1lcr6w7TjLuy/+Bvv1xCJLJkRS27xc3GMuA2GMMdkLIdVq+9bjTvu+\nr9wi+rFM/cjj2DNPXVEq+rFUsuYS1mp3vRybCYdx7kVSIf7nv/fX/6UoiqIoiqIoiqIoiqL8b6Ff\nziiKoiiKoiiKoiiKokwiV5U1/eNv4SL04ldfEK/d+7NvOu2j3/+l017wWZkyz6lAveeRwjxlqkwl\ni/cgNej4f/7RaR+7LFOd79yMtEF26dn9H2877aWfkMdw8Rk4xky7FZIAO6W4ldK5PvOLLzvt1772\nG9Gv/reoYD1zPlIcG7ukU9WPP/WI075uFqQeh6pkSutnf/VVcy3JuQHHyLIjY4xpeBNpk6mzkdrt\nvyydiNp3Ix3NuwGuOHZqe2QWUv/iCyEfaSFnDGOMybkR95FdQ/ydSP8OWlIFlkklz8GxDjbJFMqe\n46iQnboEKcu2RC6KUhZb3sDxRcTL9MVRkki4yHnCMn0wvgqZthZKOI3VTnPkFMAwSqdvesNyepiD\nNO8AfV5Cqaxe3t+A1OFmui7ZW6Q8IRBE2vf6r29x2id+iFTajBUy3XrPt1/Ca6kYHzE5Mt26aB3G\n2BBVzO/cLx2O3JlItfdeV+i0J0alBKvsdsz71p2IKS2U8m2MMXO3XiG/MIRk0fU4/7YlATqF8Z1b\nIOMjw1KVCJKIJNkODjFI+Z8+Gyn1CWXyft/Abl8UH64jh7VFVTK2JdDc5vTc8tmFot8AySz4WMet\nVPMEcpRrOotU0ILFcvywrGaYxgU7jRhjTJjMLA4p7HTWuU+Ox5TFSO0eIGnPSJ+USCTPIyePLBz7\noCVXmvcxpNyyY0qgWt6PBnKzSCWZCssTImNlXOOUcnaYaHxVuqVkUxrxUCc54FhuE4mllG5NcciV\nIFPXOW08dS7GXt1TZ0W/9j1Yc4rnmpDTR+5D9trgSsI4S1mKezrYLiUxl/8IyU7GKkjcYrNkPGs/\nhHFSsBGy0d5aub9htzPv2sIrHnfhTfPFvwdasa9ykSwgKl5e98EsjK3C7bigA83S5YLX477zGGf2\nnGUpTVw2xnBklNxXldy10FwrRmleZV5XJF/zY+w3vY4xnXW9dCJqfgP7sWyS4A1ZMqmWd7EW9hcj\n/T2hQKbTdxzBvWYpWLcfkoAEy6kjeRHGWHwBYmu/Nc9zt2Lf1Hse981fL/dAPE9T6bPtfsnkLBJB\nc8CWNdnyk1CTWIRz7jsn5ZbhJEO6dBzrdXGmV/SrOoy5NE6bM1tCywTIDen7j3xRvNZ5hGS45Njp\nzsU9/ezX7hLvaXkHx+AimUqsJSfLSsb9Z/ldzROnRb8U2r/2nsE8z94oSy3s/TGcGdMScXyzlsoy\nBuePyGePUDLYQpLKTllCQOzdSZKUNEPeQ3carkvrfszZ8Bj5qBpOn8dOv7YbVVQc7j2Po4RC7Dci\nI629QzjWhZ4K7IVjKLYaY0zDS3CwLLyD5a6WGxzFkQ5aB2Kz5d9luSs7XyXNkteovx7jIOODt4n/\nY3zkttp9SrorRdP+i+Va1WekayU71mWQ7N13WjpjxdK+reltiq+Wi1f9aVy3RX+H5/tpn8Jaakva\nhjrIAW82rmFcjizj4O/F32VJpdtykG3fj/0IlxCwn/vYmW3536122uGWE2dEzFW/ftHMGUVRFEVR\nFEVRFEVRlMlEv5xRFEVRFEVRFEVRFEWZRPTLGUVRFEVRFEVRFEVRlEnkqqKn8HDo9bb802bxWmvl\ne06bdZH9tVIr9uSPX3baXAOhq19awXFNlpJbYIMbeE7WHUlKWeC0j/4KtW5Wfm6t097zk138FrP9\ne3/vtH/0wL86bbb/NcaYe771YafdfAAWXZUtUnc3RLU2FpP++xMPf1n0+/0Xfuy086lWTkZnruhX\n8Shq4iz/0jwTaroOQzsbaWmH0xfi3nUdx3nG50o9pJ9qR3B9loy1siZE69vQ3GaSLpatO42Rtsys\nyy7YRtaRVt0IrlvD9pds22aMMVFJOEc+bk+5tKBj+7vEmbAYHO2XY25sENrKcdJZZlj2lfbxhhIP\n1XPgGizGGHPh8eNOOzYG527XcYknnXvSVJxvn1VPJCIGesr0lbCz7T7RKvrNuwd6z+4KjJ3ICGjX\nI6xaDsv+z1qn3XsRmvkJq4DPqUdg/exJRC2VBMuScmwI2vh6qiswbn3ejE/DojJxGj7DtlGspRoS\nZqsJPVQMpWSRrJHA9p8lmzEPuo/L+BNfjPuYPA81O4KWdS5bc7dQnZ1gp+yXOAPXg61aJ8iKsPGg\nZYFI9u2JuVQvoFHWqgqM4P5kluJad1+WY66HNMX5szHmBi7J9SQ6A3MzPBpjyzM9XfQ7+wysWUNd\n8YLrh8TmSV3yxBiu2UAD6pMkz5O6ca4fw9fZhu07/VRby+WJuVL3P//dD7iHXKPNGGNSqN5Ly07E\n1kLLhr59P/Tk0emYi8mzpf001/nh2h2t78mx412FuHnpsRNO22PVvuq5eO1qeBljTPYG1Lm7+PBh\n8Vr5g4gXfF6+S3Lczvg8NOWNb55z2plrZV2ThlcuOO2hftQxiM2Q4yfvJsz7vmqMn1E/9hyNL10Q\n7ym6C/W0uGZRmGXnzZbZ/jY6D2vdGqjCnONaTkONcs/WX4njG6AaATFeeY24/kTGJzaaUOIuwPE1\n75D1NLzrCp12OFnU+6xxlU61gsaGsS9JLLOt57GP6jqE+NdfLesQsRV9zymqBUV7La6/aIwxw51U\n34bWrqE2WfdmMAn3wEdW2onWusi1ALn2TvJsGYcaqW4G1yuKsWom9VXinl6L+k9JFEsqj8s6cLxX\nLJ2PNTOhVO7n4hsRP1Lmos5O/2V5f3ppH1PfgvuQs1la4nrJvj5Ie0Ley1a8fEa8h+uq8czusfZO\nPK/aaC216zqNUOzl11K6ZE2XJR9b7rQHG7FO9Fo1PnJTZIwNJSkzcA8DVDvSGGlL7/JgnAX7pG16\nfxOOd5zWUnearKcnPptiY6BV/l1PKfYF41SHsL8WYyKhUH4e1xbxTMP77X23uwC1S3rOIaYnlshr\nHGjFnOU1s+ecHQMQiLlWo12rxFd5jdfFbMSSYK98FuJ/91Qi/mQmJYl+2Rvw7Nf6Xq3Tzv/wdNGv\n4XmsZVnrMbc7dss9Q8lyrKd+et679FoF/n9YHmsUPYekV1BNtERZlyhjNa71ko9jHo345efVHsdc\n9LhRezQiQt4frm/T/Drqfra1yHVx0edWmauhmTOKoiiKoiiKoiiKoiiTiH45oyiKoiiKoiiKoiiK\nMomETdh6AkVRFEVRFEVRFEVRFOV/Dc2cURRFURRFURRFURRFmUT0yxlFURRFURRFURRFUZRJRL+c\nURRFURRFURRFURRFmUT0yxlFURRFURRFURRFUZRJRL+cURRFURRFURRFURRFmUT0yxlFURRFURRF\nURRFUZRJRL+cURRFURRFURRFURRFmUT0yxlFURRFURRFURRFUZRJRL+cURRFURRFURRFURRFmUT0\nyxlFURRFURRFURRFUZRJRL+cURRFURRFURRFURRFmUT0yxlFURRFURRFURRFUZRJRL+cURRFURRF\nURRFURRFmUT0yxlFURRFURRFURRFUZRJRL+cURRFURRFURRFURRFmUT0yxlFURRFURRFURRFUZRJ\nRL+cURRFURRFURRFURRFmUQir/bi/v/6jtN2JUWL18KiIpx23g1TnXawf1D0i/GkOO3x8SGnvfvb\nO0S/zKQkp13d1ua0Zy4qFf3yb5zmtHsvtjvtjFmznPbB7z0j3tPc3e20566a7rR7LnSIfgm5Hqcd\n5Ylx2vEFHtHvwO8P4vOum+G0c9fPE/38HS1O+8Ljx532ooduFv2CQRyH17vVhJrzO3/ttONy5bn4\nm/ucdtf+RqcdFhEm+sVkxzvtlHlZTnt0cET0c3linXbvedyfQEOf6BdLnzfUjjGTWJ7qtFt314r3\nlHx0jtMeGxrF+zv9ol90Mo5hZCDotNt31Yl+2Vun4G+9fdlpR3rkWA/y8c1Mx2f3DYt+6UvznHbB\n9NtNKDn62x86be+qAvFa+/56p120bbHTnpgYF/0GuzCvBlv7nbY7M0H+Mbr1dc9UOG1/n5zbqaVp\nTnu4M+C0c7ZgzkbFy2s5SvetYz/uh79Ojo/IWISm8k+uddr1b54Q/fI3YUz4KW701/aKfn76t2cG\n7mFMWpzoF+zFeZStvN+EmpNP/9Rpu5JixGvjwTGnPTEx4bSTytNFv2E6Rt95xI60hTmiX7Af43Oo\nbcBpjwZGRb/EKYjR/gaf045OcTttO250nUJsC3bjeOKLkkS/hMJkp91XjTjM89cYY+Ly8PkTYxi3\n4bTOGGOMKxHXjI/BY1+jbozVshX3mVBy6cDvnHb1i+fEa+5ojHeOFRPjE7JfFuYcx9DGPZdFv/Aw\nTMaiW7DWcLwyxpiYLMTT1gpcl+w5GBMjvUPiPbE5OIZomgfBnoDoFx6J33DCotA++8oZ0S8yAvcq\nPQX3M4FiujHGxGTgb/G4jLRiRfehJqe9+pvfNKHm/DtYF3tPtYnX+Nr0V2LcetcVin4RMYhTE2O4\nxy6PnNt9VV3UD+M7aXqG6Dc+gteik7CO1b2AOJy9aYp4T181Prv/Itr5N08X/cJoLPG84n2UMXLe\nN79xCcc6xyv6jdLayufur/OJfu68RKc99/bPmVCy7/vfctretYXitXNPn8QxDWHspycmin4FN2L/\nymvh6//+uui35t4VTjsyzuW0eb9hjDFVv8UalbIAe6V3nzvgtMuzs8V7zjdhrN/61Zuc9rA1F92Z\nmOcjfsSN1ndlPEhdjHl/8AnsVxd8SO5RU2ZkOu2aP5x22mkr8kQ/HuclC+42oabh0rNOO9LtEq8N\ndWF/x/E/6JPxjOeVobEen5Mm+rUdqnbavD7xemmMMYlFWBdb9tRc8bgnRsbEv5Pn4HrG0Dwatda7\nCJp/3Wdacax0PMZY95/2BP1V3aIfv5a6iGI+zVFjjOk5ib+15MGvmFBSue9xpx2bIfdVfD94v+pd\nIfeynccwD8JprRnustYkeo33ErwHN8YYHz3j8ZzluNtxqEG8J5bWZt85vN9+JsreUOK0m3diTNnH\nMEz7o3EaLxHR8vE7oQj3foj2LxOjch/P8Sa35FYTauov4PmZnw+NMSYuB7FzNID4ExYur43vQqfT\n5n2Hd02h6Nf40kWnnbu93GnzNTPGmLFh3GP+W54pmNu9lfJ5nvfXvD7ZzzsdR/DcG0vxNd7a83Ye\nb3baGUvynbbvkvy7XYcxhkvume+0h63np4bnzzvt5Q/9i7HRzBlFURRFURRFURRFUZRJ5KqZMzlb\nypz2wZ/vFa/lF+JXlMhIfJs2PC6zGHpr8C0S/9qXmy9/Mcq+Ab+2R7+Hb12j09yiH3+Lzt+ghYfj\nV7f8NcXiPQsWrnPalb885LRnPLhU9Kv+HX5piUnH3431xot+C27Erw+jfnwzXfGznaLfyAi+7ctZ\nW0SvyF9R++t7nLZX/jgVGuhLzcaXL4qXMq/HcUXER6Eda32rW4pfPzmbIr5QfrsYlYj7EE6/tmSs\nkd+Qjw/TN8ix+Lt8vzNW5Yv3dB7GN5yRCfg79jfQXcfxyzH/ipe2RGYWdB7E5+XdjIws/pXTGPmN\nefJM3KBeK/NqLCh/HQklGcvwbbw7WQ4S7woc37mfvOW0p39ug+h3/BH8cpczA7/cpc+cKvq1HMQv\naBEx+IUna7q8H/7LNG7XFTrt2AzMF/vXrQRvrtO+WIVsMs4UMcYY/i3yyH++5rQXfGmd6DfYhXtw\n8JF9Tnv551aLfjye+ytxf7uPtYh+aUtzzbUkYwnu48iA/KVuoA7ZPWNDmB/2rxf8i15MKv06Z2Wx\nxWUhLg82I1PKWNd6jDJ2omheDbUP0Fvke1LnZF3xNfuc+NfIARovWdfJGM2xfLAFx8rHZowxQcpW\n47gc4ZK/Mwxcpl8WV5iQUv8qYmj6dDkXa0/gV8G2fYg9xQsKRT++tv0XcazuOJlx0d6FMcG/yHR1\nyeyEwjKMiaL1WEsvvIlYXbJMXvP+C5gHvmFkT7jSZCZAFP0CFRmPXx/nfmSB6Nf2Dn5djqN1ITpV\nfh5niMV4OYNS7h3cBTLDIdS4KDMlfYWMbVH0C33/eVwnzmwxxpju4/JX178Qm21lI9L4TqcMt5o/\nyuyjdMpY4CwBzjQdtOKBvwZjJP9DWMcG6mX2IK9jY5Q9x2u2McZ00a/XYwOIKSM+Obf51+sIN9bw\nnBtkZo/9630o4XFmZ/dFhOP4Zm9GZnXqPJm10nUCv4i+8t9YP+/4pvxV+s3vIdt7ZAxjeM3dy0W/\n0o/j19L6F/Hr6B3fvc1pd5+RmVrjuxBDORMq2Yovz/7bC057dgH2VHlby0S/YN+VM4U4K8oYY6p+\nizU4bTnWvgsvyHHJ2eclvwl95ky0B3v+YZ+MA5x9G+jAa3bGEu/FAxRfI1wy+zJ9EeZYyy5kPGSu\nKhT9OBMnoQTxNUDzL65MZgUGaY50HcE8Sl8m40vzm1VOmzPL7L1ndArOMbEEf0us58aY+ALOWMU8\nj4qXWUj2uhtK+LpwZqgx8n5kLMe1sPcLnEnjb8IaJ89P7lM6DiIGt74jM8g4LqXOx7wfo6wPT7nM\nrBqnLItoeg4cqOoR/SJi8NmjPow9e8/STc8jmesKr/h+Y+ReufMQnk3CXdazWDFlV5WYkONOQ8zh\nNdIYOV9G+3HO7ly5VqctwBrHsSgyVp5z3i1Yr0Zor8j7WmOMCac5zPuHvhrEpa4DjeI92RQTE3Lw\nfcNwv1wXU2bhfAdbB+gVmQ3E2bA1f8IzEmfLGWNM3nY8T4WH4/pFRMmxzmqUK6GZM4qiKIqiKIqi\nKIqiKJOIfjmjKIqiKIqiKIqiKIoyieiXM4qiKIqiKIqiKIqiKJPIVWvOcGXpohmyFsMwOdgc/v7L\nTrtwc7noV/kqNO9rvv5Rp33hyTdEv/NPQPuaORfawKBVtbn+OXxeLmm7zv7iRaedvVk6PMXE4Njb\nu9502lltUrdZ+vEF9B7oUl/551+Ifgmx0JFNu3U2jmH3edGvlGp0VL9d6bTjsq+tlt5mnKp9R6XI\nmgaDLdDYuZLxWoSlDax5GefGrhzhVr0XF+mAW8htacxyiGGnhzGqlcF6zYGLUn+bOB3a0H7Sf3pm\nSqeWrHWoo1P1GOoI2XUzouhYufJ4w15Zmd8ViXMMex8OQ/GFUgfb/Dp0xMVzTUg58Ss4LpRukjVi\nuLI514u4+Ohu0W/Bg9DGh0Xge9m2E9JxhmsFtTSg6vqMBVKrP+rFNet4H7U2WC9qX/PqZ9932p19\n0Civ+Ps1ol8PORhk5eM6dxyVjlvDPdCzzrkFF511yMYYkzwbulDPFGi3L/zyqOg3NiTrtoQarks0\nZjk9cP2NnlM4/+QZsj5XK41B1t8mz5L92M0oJh2afn+d1Nz2UWV9rg8S4/1gTWzfZczNhAJooO2a\nHAGqHxNPWmnbrYnHo5viIzsFGWNMM2nKo2msszuAMdIRKNSkksa4g+pVGGPMrA+jHlmQXAoa3pNa\n+OKtmMMX98IRh10LjTFm2lY4NHHND3ejrCVQf7DWaU8h98Qoil2jfjm23eSsJdwWrDlbuQ9xLcaF\nvzs8Ij8vO5u0+2FSr81c2IE1nOuC5MyUNcGiLMejUMPObLab1kAt1hfWhg91yHoYXFuG65FZl9BU\n/R7rENdqmXL/fNGv8xh08+0HEVP5+GwnC16D2YWP554xsv5aTAZidLBH1gVjt5eUuagtZf9drofB\nNSXqn5f7IK4JN2WJCSlcD4jbxhgzZQvqGfA1912SsSKhGPVEbrgH6xA7FBljTKKb6ntRzZmgVYun\nZRf2D93NiLUTT1EdFxkmTfY8XPPaPajrYNfuWL4StXM8U7Hv2fXoe6LfjBLsPdNK0e/4E4dFv/kf\nhbujrwJ1pzJLrZqQUVnmWtJ9DmtVeLSsETPYiH0COwty3RZjjPGuRr0SrnvHLoHGGDNRifvPTjht\n5CJkjDGpNPbHyS1GOJ2dk05niXRPsq8nN9C9taJf8e2LnLavFmuIvd5xzZjeC/hbtjsO19Tj2h3s\nvmiMdJfKl49qfzPsujpoxR4+3jZyvgp2ydgTV4S6UeyaZNcXGh9FPOR1wq6LxfsjrvHS8MIF/H+8\nfNaJIceeMLofBbdJ9zuuD5R7Ey5m3TNyP+0fQNwsonHpb5K1w9hFKHcLPq/5rUuiX/t72P+Vy21z\nSAgGsPb5Lsq6mkm0F+Uahz5rHvBzXM4qxKyLv90j+hXdiefn2CTMbbsuTN2zuKYJpejnXYY5llJe\nJN7Tdgz3mGsbuRJkjTVPLr+P1t8D8lkjsQz7m6TZWOvHrX18ZBw+v6sCY33Qut92jSsbzZxRFEVR\nFEVRFEVRFEWZRPTLGUVRFEVRFEVRFEVRlEnkqrKm+Cyk/yfdLlOGjvwHZESJqUjH6j4s07yHgpCv\nXN6BlKbIOJlKNvfz8DtlCzVbAhToRFoxp+9lXg+LuOHuQfGe83thxRsdhb/LaZzGGOOmNP7WC8ec\ndnGJTLee/vEtOI9IpM+vfFCmYXPaZUoKzqPzqLxGI2ShNmWRCTlsX8a2fcZISUIrpUB6pkmpEEue\n4klmErDsT/svIdUvdQ5Sv2Jz5N+NJos2tixspZTgeEpfM0ZKH1IXki3esJRIVD9+Cn/Xi/uTWCw/\nr+s47gPbGJfeNkv0O/8npKTHUSofp3UbY0z2FmkhGkpm3gm5REyqlGzUUro0S/0CbQOiX+dRWDuy\nZTmnABsjU+inbkEqJ9sSGiNTRqdQevSxH8BSPmuhlEPmbILkMG8bjtW2VEwhq+YzvzmC/8+Wso/6\ny5D/5OUj5bKrVaZF5myErV5/LdKcS++fJ/r5LsqU91AzSvI+O71yoB7zj1Mlu09Ku2+2hByieOg7\nL1NQo0naM1CDVNUxy3I7ewP8GJvfRkr9CNlWR6fJMccywOa3EOcSp0pbylhKEeZYY1usc6r4+ChJ\nG1tlenQypZMGe5AuHJ4tU+EnRi1dSQjhFPKkIhlT2vcgFTZrE65r3ior5XYn4tzc2yFtsVNfu/Zj\nzta2Yb1acLMct91HMEZYWpY9DRKsnI1S7tt5HJ/N9vJpy/NEv6PVGBMsUyzMkNKHzBTc3wiSJoxa\nVsqJJAsuuBExoOpFmQ7OdsVzbjMhh2VeXUfkmhxGsqwoD+Ypr4PGGJOxFNeq8XVIl1kaZIwxyTQv\n+P5Uk9zJGGMy12Oc8HrHaf3RbmnfW/k49lV1LyGVO3m6vD/uXOzT2immeBfIY2WJYLALeyn7nFjm\n5DuDsVl4x0zRb8jaj4WSkgcwD3rOSXtqlqClkKz1pe++Kvrd/H+3O22OPTu+IfuVZOIzeP/qXV4g\n+nXRvCopwvje9+QBpz2tVL6H7b05PnPcNsaY/e9jrS+5hFi46iNLRb8kkte89W1YgBdnSmtu3ntG\n0np0/pCUDJVMkfc+1HhIMtBfJ8+ZpSV9VVi72XbeGCnf5zg6WO/7wH6Ft0E2akuP2kkazXOx5RTu\nb9H1MqZGkhSueSfJQTOlPM3fhrXaTfuvmqekhTmPM94P23vPPorfIySnHbdsne31OZTE0F6b1zdj\njMm6AWsh7yNdlvx1LIh7E0n9bAkbk07rlS2XZpvsLpIg52zDfrD3gtw38XrFx3D05/tEv95BxLVZ\nSyFDytwg7cq7DmG88Jji5x5j5B64833Ia7I2S79sd57HXEs6SE6bMk+WMqh7Gmt0+SeXOe3+Kikd\n5LVnsBtx2Z0vj91HEsORPpxz5nI5r7I34dkqJh3zpeU9rLm2lphLGfgbEQPajsv9tPt2PFOkZkN3\nGx4lSx7wXjsyDnLDlBJ5f4YGcL7ieXihjKEcH7I/bv4KzZxRFEVRFEVRFEVRFEWZRPTLGUVRFEVR\nFEVRFEVRlEnkqrKmiAikD42NSdlBQyfSkW556ENOe9+/Pyv6zb0DDkichl50442iX08r3Jo4FY9T\nEI0xpnUnXC8yViE1tPlVVLSe+w8fEe8Z7n7HaS/9CORTVU/JNLUz/w1HnCm3Q9pSfv9q0e/Ad59y\n2mW3o9q07Y7Q2YL0zKwypJMWb18m+h343gvmWsKV0m0JC8sLON2w96yUfA01QyIj0tSttES+dy5K\nveyzJBdhJGMYJflECjkC2bKcOnI8KSfpUeoMmVY2SPIsTtXl1FRjZNpbfDbSgEeHpVSrbDvStNn1\nYcBKl3VdQ3cRrn4flyNTA4coHZIlfYklUnKRNgsp860HLzrtcSu98sRjcHSYtgVpv3zuxhjTdRFj\nJGUu7u+Sf7oVf+eETNM9/TBSuy+1QpLkIScMY6R8YjE5G9S+WSn6LfkU5jOnsRcWy9T6QDuuX+s7\nSLlNXSzTNpOuYdqvMTIGDtTIVFCWPCWUQrowYkmA+qoQexNL0G/gsvw8dn7gacqOTMYY030GaZg8\nXzh9e8q2aeI9fK1jcyFZ/CtHtATMiWE69/YD0k0rjSQTwySliMuVY72nAsc6TinMIwNSqpU0Xcoy\nQ8lwJ86j5qw8j5wsjB9eD3znZPxjB6Cuw7jOUUkyhiRMw/0tpOlnxwCOPSzXKfvwZqfdUXlCngiN\nifMXIceaESUlYs/thEzxflq3V2xZIPrxOsPOQFEJ0lkqndJ7RwexlpTeIufskScOmWsJu6DZsXKY\n5hw7pnSfbBX9mt+B5CvQiPs9Ol1KuYZaaE0JRzvGcuNhOeNwK9a/KJI39LbVivfk3oiU+qFOzJ2j\nT0pnnnByxiqcinvQXynjBsuS2GmJY6j9WsKpMXhQAAAgAElEQVQtkL9OjMkY0HkQ6eqlUn3zN8OO\ndCzNM0Y6RA6RK+XqG6V2vPMIjq+FJEkz5sp9Rcp8SG15H/Xa118S/Tb90w1O+8TPsd55yYmNXRWN\nMWaUXAJP0dq87u/Win7X3Ya9Y/2+WqdtyzlYqrHiAayRTa9J55cYOg+O3Qs/vFD0iy+QcuJQwyn+\n48NSipN1Pe5D6y5yvbMc1lguyE6DY5a0p43ut48cd2KtuThEkn1etwvX4ng635fxv+BO7EtH+hED\n4gpkTOV9N8fAjDVS7ub24pjY6bH9fekkY2hue9cUXvHvGGNMjxW/Qglf84FqKU1jB0YuQ8DyEGNk\nrOgnl63UJVIeH0XPKuEuXFt28zJG7utj6VqO07V0JUp5eQK5sI7Qs44nTkq7vblY6+OoXITtMJw8\nF88ZjSQBT18o955ps3HvhymO265xcTnX1u03kaRgvZZUlKWEVZbzGxOdhGOsexFlJuz9YSu5ExZt\ngQS04Y2zol8GSUd9lYhtLtovZS9aLN4TFQWZtTsV67T9nQI7MwcCOJ44j5SnJaWRa2wd9ib8PYkx\nxtQ+867Tjs3BmLOfZz2WC6uNZs4oiqIoiqIoiqIoiqJMIvrljKIoiqIoiqIoiqIoyiSiX84oiqIo\niqIoiqIoiqJMIletObPv359z2qv+5S7x2sy5sLbqbaBaILdKG2LWTLKe+tJr0qawdOtWp51dBH1Z\nY+Xz8qCoeELGNNgotrwFTdn+7zwm3tLRB1s9trqbfu9Not+lF99w2gm50IM17jkt+i35Ct63+1uo\nsTN183TRb9ptqEfDNrLDg7L+gK3DCzWs66x5VtqV5pCNbvIs1MVpffuy6Je+Kt9pt++qddqxeVKn\nG6DaNLFZ0OKlLpKa0eqncE0Lb8Z14zoNF3ZfFO9xu0j7T3Zodq0frmfDdsC25TZbRg/1wnqZLdqN\nkTUh2OrUtmicyJZaxlCSvojsAgOyvsbgMI73/Auo8TLj9rmi33g6ji+BbMWHe6VGdtVXoZm/9Ch0\npUnzM0W/optQh4St6jr273LaE5a+s/xuzFn3sxVOu/RTUuPO94otBvPXyjoAfK94Hh35yV7RLy4a\numIv6ZejLDtrrhGQ+4NbTajpJ417umXB2nMaY9qdBc1uZ4M1zqimg5/qPnimyTorrC8v+BDictM7\ncl5l0NxsPwAbxfmfX0n/LzXuXCeKa23EFclaKFx7hN/D1ojGyPvNOvmgNTYjqf7HOGnN2YLTGGP6\nyMLQLDEhpbUC9yk7Q9oac72E1v24lglWjRi+h53NZHPeKM+DLZ1joqCzt2044/Ogh46Lx7U9/TDW\nJ1u7/q1H/+i018xAbak39hwR/fLyEftfOQSt9a+fe070e+i++5z2oqWI6f4GaQ/eQ7WW0qnu14VX\n5dpUUJRlriXtdH94DBtjTOpSzInINLJNXinnLNtrRnmuXF/JGGNc6aipVbANc9HjkfVPAgHMs9aT\nqMPXdRw2sCWbN4v39HVDn8/1K/LzpG1yfzfW5roLWNOmb5T7lqP//b7TdlPcLCTbc2Nk3ZUhqhPF\n9rPGGJO2VK79oYTnwbgVA7gGSXwJ9l9J06TWn69Z5T7UhJi5Qa41fVTTa7ARY3r9Z9eLfj1nUach\nNQt/N/9mrJcRLlmDpIlqUfQPIf61WpbEeTfjHlS8A9v0I6/IelKrPobYvf+x/U473KoRGPwj6kFE\nROCYTtTIv3vzP2411xKusWbXRfFdRI21CNrLxufK+iK9l1ADj+vjTYzImjOld2Jf3r4XMcCu9+Up\nxzFFJSBOte3FHI0vl/Hf34B9ZPoy7NnsOhdJpfR88SbuY94Nc0Q/rg3oKUUtkPhiee5s2TtQh2Ow\n6z9lrisy14pxWsOzNsq5009zh2tbur2yXkfBrViH/I04j/b35P6D5zPXCorPlbWRGt/BHpOPL2EK\n7tuYVeMoJhW1ZdjGPf+mcvNBBMm+PDpN1k9kW/eZn1/utOtfqhD9fLWIG2kLETPrXzwv+sUVYC9R\nMMOEnAgX9gnhVv25OKovyPUAgz653lX+EvvogX6sDaVUo9UYY4aasCYNNuM6Tdm+QfRrq8BamDEL\n69XICPaXQ0Oy/lN/J2IqP0Mk2/F/FOOs4xxqctnPLnmL1zrtrBIc3+io3DtMfQDrQfN+xFdej4wx\npnM/jvdKtdg0c0ZRFEVRFEVRFEVRFGUS0S9nFEVRFEVRFEVRFEVRJpGrypoyipAm/9I//VK8Nn0+\n0tbY5jcmVaZ0xXqQDuieA+uwiQkpMXn9q/+f084rwXvKPypTRkvvRTra2//6a6c96zZIOEYHpewj\nh9KJYrORAvfCQz8R/Vp6kF4+9SQstZZ95XrRr+040swKFyDNmW3XjDHm0HNHnXZKPNL37M+b/Qlp\nARZqOMU6Jl7KODgtmNPvbEu/HrLbLX8Q1ozh4TKFeaAVqaUdB5G21bRfpiUWbkaKIGfadpCEKNmy\nruO0fpY3TFiWiollGCNs+822esYY43JRaulB2Kiz/MIYY1LJ8q7pZVg5uwulpV3jYaTIzrnNhJSO\nw7iWLiv9dvk/b3fa4+MY+/a9GR5EaumJh5HqPBiU49YTC5vPef8AG/nKX0i5Q3cf5v3pOtzf1dOR\ndphsSaEMSY88s3H9/S1S+uCdCplTbQVkUk3v14p+qaW4p5wiOe1mKa+MTkFcuvwHSOrSFkk7Q07j\nvxZkXYe4aUtTkmZAhtBNFrEp8+QxjvQhhTZAdp+xmTJFmK1f2w/X0t+V80Wk4dPfysqFfHNk1jPy\nszdTvB3FdQ8GpfXiKEnuuk5AmhGdLNeJ4R6kvqbOxXH7LnWKfiyl6DyKz7OvpZ2SGkpyFyJdPSxC\n/r7B9qk953B8o/XSrjilGDHq2GVISJu7Zb91M2FrPP8zsNH1N8n50r4PsScmE7EiZQGu5cFn5Pz9\n8S//0WmzdDN5npQT3dqLFN5L7yL+ffnhh0W/vRVI085ORtp594C0kLTjzV8Yt+W911juG19EqfHZ\nUp7b+i5kHSyX5LXFGGNSyCaV7biHLTvVtPmwru44UYtjWCXtw2NiMP/Cok467aTpiJV2GnX1b9GP\nY/KU62UafnY25G5svXz8STkuFtwHHeBwN+alp0See/XvkbKddT1sRzkt3pi/ljmFkmNvIJbPWSll\nV/7LSHk/+Tr6jbwiZQw5KbhvSbTnYDtqY4zJWQFJbtdFzIMRvxzPLEkYakN8jk+BpKRxn7ShdSVj\nTQ+O4t7sPiol9R/ZgOtcugifV3FAWmS/8fBOp73mVuTM25bYfOwv/hSy/sRYafXdeRj74eJ5JuQE\nyDY+a720sO2vwb6c17iwMLlWx2bQfpFCR9RsuV9iqaw7F/O+/6KMvcMduHd8f8bo+aL2jJRSFM/H\nvtlfC7lEXJG87h3H8L4kKifQV98i+nmX4B4P+6hkQIbcG/PxsQQoY5W1jz+H/XleqQkpvnOYL1HJ\n8pq7Kb4GW0gClCzHWe0fIc9LoX139uYy0a/7JNbWvkpIumz5WJAsqfk6szW627KmbngVUrIeWrez\nl+aLfrx+9F9CvyiPHJeZa3APWV6TskDu63i941IDg11+0c2WhIcafxPipl0yIkjPRlH0DNZ1uFn0\nK7oL++9RKsPAkjtjjCm6FzI+lgh31ZwR/WLTMe+HhzCGWQ4fkyCf73obEROTp2H9HQtKe/m4OKwb\nwRKS30VZMbD+mNMe9eM62BJmtmzPWYHnmKpndol+ZfetMVdDM2cURVEURVEURVEURVEmEf1yRlEU\nRVEURVEURVEUZRK5qqyp9E5UfOe0Q2OMqTmLtLyZhUjZG7TSoKLikQ7JKWw1f5JpSxu+AaeH/g6k\neZ/8r1dEvwtNSL+Oi0HqXMXzSP+csl6mwP37tx9z2vH0njmFhaLfiyRt+fFDf+e0n/7yU6Ifp8GW\nrEaK2cClHtFv5QOQ/5x+CtWmB5pkvw6q2pz/wQXB/8f0XYA0wDNLVqpuegfXuuQjSEXruyjlBIXb\nkX423I973EfuM8YY46tAamPDZVTdn3b9NNHPT+ltw21IPfSuQOqg7S6SPB1pif4mSo+zHAhc5JrR\nUYvx17hTuoGMBzFm2C1gfEhK7thlzHs9UhQDbXJOuCJkZfNQMkrpxxU7ZfX2fJJ3BHuRbjfts8tF\nv+a3Ub28bDvS6ceGpAwwJg0ps53HMd8aO+SYmL0F42VKGAbuIz+EBOZLd3xCvOfgI/uc9qovQbLo\nipNpv20XIAmseBvny45dxhjjSkFMySbJUOOOStGv/K6N6LcJ441dDowxpuAmmRofalhSxOnaxhgT\nTefC/ew5ljrnyi42w10yvZJdjxKKkYJrS3FSKN03MhpyI58PsoWkbDl/jcGci4pC1f6BLunyEeMh\nl7oOpJm2vCf78RQeH8W5py/OEf3YPSCdXLcC7XIu2o5roSTQhPgXbsWoeFoLk+swj9yWixWP2+m5\nOI+pOfJ8z9RDrjSdpKX1++X1O0Wywq23rDRXYtUnVol/e6fCKShrJsZEx+Vjoh+72WQXYv340ec+\nJ/rlzMax73kLn/HG8eOi32e3bHHalc2IXRs/uU70O/YUYoCMZKGBHf/yrHnPkgR284hKkPGH3QC9\ns+Y77fBCKeXpqiN3wpWbnHZEhEz/d7kwXxILsc+IS8A+o+WMlMTE5iLlu7wY62fTzmrRj+Uy3pmQ\nY5WtlPoGloWP+tEOC5NjPZscWXiNrHtOrrPDPYhDRdKs429m0Y3Q2PRdlHGyphXzZeYKrE/Js6WL\n1YFH4E5VtgCSmoQi6YhT/SwcAOOn4LURSwadNAXxOecGXFtfE9akorWbxHvOPvYnp80x4Ik9e0S/\nm8kV6+RerItrH1wr+h35DfayjftqnbbnkpRwVFzAa+vWYfymLpJxqP55uecINfxs0LpHxrZCkihH\nRuL4a1+T8yBrHe6dK5aclqLk3qKhFpLucVpn2ZHUpupFjOkAyTLrOqT0LasB4yIqCfKWMavUAssK\n3TmQQcRlyfszRn8rJRsSCb9f7m/aDmKuF92B69V9TsqMM5dLyVgoSVuGday/WkrEes9CisIyx5Zm\n+bzovQ7767a38GwSny/XT5aAc+wZD0rJYgLJULkcAMe42ueka1JNG67Z/PXYJ7M03hhjwsKxZhbf\njrW0/YiUGEbF4H2dl7CeJ5VJGU7lL7Hepa+CdNpjOXN1kMtgoVTFhoT0OVhrEkvkHpX3WZ0H8GwV\nHJHjm7aHQvbjtuTDSV66vvm4p50tu0U/liyNjkLSPdCOdTo5Y4F4T38VYmAiSXLbKB4aY8zxY4j/\nWbMQu+MsCSg7cnEpjeSZcj3p5Tk3gbEQae0dLv52t9Ne/o9/vWfTzBlFURRFURRFURRFUZRJRL+c\nURRFURRFURRFURRFmUT0yxlFURRFURRFURRFUZRJ5Ko1ZxregVY8/2apyY54BVqqg8/CirG8JE/0\nc2dBY8b2sAW3zhD9fE34PNa32vaaN//7LU6btc1sX8b2VcYY86/fhdbr0J+gUz3f2Cj6fXwDLEP7\nG2EntnKL1LJxbYcYsnb1Li8U/epfwXms+io0xqMBqVEOj7q235F5pkOv13OyVbyWuRw62+YdqEmS\nf+t00a/pXZzLcCfVtrDuz9ggtLRZ6dBK2nUu4guhre8lK7wg1d9Z+jVZ06CzCZrvhDxoA2tfkDUS\nEqemOW22xc5YKW0FuS5FoJXs4DOkJXEraV9TFsP+btSyTvcuzjXXinaaO/mFUuM4QnVmCj6M+9Z1\nWo7v5DmoM9D8KuZbeIyslTP7wdud9rm9zzvt8mWyNkHiFOg4zz6KGPCVXz7otPf/eLd4z6KPwdYz\nJoGOZ/9J0a9lH2polC2HBjZnvYxDZ3/yntPOW0vzdPyi6Dcygno5bLucs1HaEp7+2QGnPWWJCTls\nJ21rWofI9jGRahoE+6T1XztZ1I9TvSDbeTiZaslEe6DpD/bIz+M6M+Hh0GWHhfG4kHWdRkYwZxvf\nxzqROlvWw/G3QWvO5xu07AcDLdAys5Vz90lpLRpoRj+22uRaNMYYY8avnQ2zKw3Xy7am7TqCGk2J\nMxF3bXvN7iM4rxX/gFornUfknI09iLXr5Fuo01Y2VdZHSGjHdQ6PRKwt3XSz0+7plDUaoqPJyt7P\n9UnktQsLx73nWNHZJ+2881w4pkwPagRsWSDXz11nzzrtbfRa/2Wpby+Z+cE1IEIB28z2VrSL19KX\n47XBFpyn2yvXhiGyzO6qwXkNWPWkohJx/4dz8LfaqvYbCa5982uI0TnbYDPK99cYY8ZHEM+SyjHm\nYjOlvt/fAH1+fxVqQqRNl3XoOsiW3bsWNSC6K6RdKtuFpy9EjZLYXFk3w10o50goCXdhPB44LmtH\n3PHNW532+ChqUbzy3ddEv0Q35nMc1bbor5Y1bN59F/uMlT3Yvw5Z8Zlrh3FdhsLbUV8hMlJaITdV\nYV82OoZjvW/tWtGPbYM9dNzVVg3HSKqH4Y7G2LP3mrPmYf3btxd1kabXyJoh3gWyBk2oiU7FNUss\nTxOv1b+CfX4qjbOs9SWiXx/dr+gU3JOoeFkXJnUe1g22rp+YkLUGexuoHuNN2Ffx/qHAmufDHVjD\n40uxhuctWyH6NbyPOheDVMMsKl6uEwmpuD8Nh9912pnzpJ95xhLsA8LDcS1j0+U4G2jCfc2Q0/5v\nxke1LdMWyb3wWAB7ZR/Vs7T3QFwzhu24G164IPp5ZuPgE8jSeqhd2k5zrcbBBjzTcU2lpPJU8Z7V\n21CzNKkE52GPjxE//lb7UTw7+envGGNM8yD2ogGqscNW7cbIOjNjAfwtrqVojDFttDe+FnBtsZo/\nyLgSk4X1b4T2kY3dMl7EPIU5W3QPaiDZVuejo1iTRkbwGcM+uT90xWF8B7qwB4yIxrHWHXhLvCcy\nAXOJ6/lcbJbrGNeNWheJz6s8fFn0S0/EulbVini9NkXWi+G9LOPOlutiXP7V10XNnFEURVEURVEU\nRVEURZlE9MsZRVEURVEURVEURVGUSeSqsqaEEqTlpRRLmUvUnUgZin4X6ZXnT8pUoKwIpGSxJeUP\nPvFz0e9DSxY77SmfgKXfkR/vFf0O/ucupz3j9rlOmy2ch4dkKjynvc1cRilrp2XKX7oX/Ti9bsJK\nkWfJk49ShScsXcGih7Y77V3fhFXi9d94QPRLnCpTI0MNX5uRbpmCO1CNvz3QgzS7vkppm8xSLk7R\n7zkvU0b7BpHWWbQMtn1+K/0zIg7p+jGUyhlXjFSv+mM7xHs8JKPprUa6cMqCbNHv7B8gsyjbAgtg\n2zK65Q2yH6TUuzZK6zZGpvL3kiws1rL366+UqX2hZOq9mBNdx2VaXtoypEPyELTtDFmtMPVBpOLF\nxkr5wPAw0u67GnHfpq2SsrDRAK7n3M/B7LaTpDtFs6XMkaULL/znT5320tlSrlSwFdanr/5ip9Ne\nZlkvzvw80oVbjiAtO9WyYK57GbbQbGN87uFDot+ih2401xJOsx24LO9PVCLSeHvPwo4v1kqHjElH\nvGXb+LFhO+2WUnrJApElFsYYE/TjteEezOeEXMSKuldOi/ewnXRFLWRWvj8Min53fgPSApYRdp+S\nFp/9Q/hbEWS1ydKsP/8bUjiWMg33yjTYKI+0KA4lE5Sae/4lmfbLUgMPnceIT0pZ01dgXgTaSNJF\n52eMXHvSarHu2JbOaz8EDV4bSaMKN+J+pmbI9Fuf74TT5rTs7KXzRb++SlhSunMwFtcuWSv6vf6j\nN532mtsgX+yrkGtJx36SCaXiek2MSBvUlPlXtowPFSyfzr9VWsX7LiAGsq19z3G5t8jdhjjVQ9Ko\nuBw5Z73TYbVa9Squ02i/lMZmrEAs7u/Fenzk15Bblq8rF+9hSUjtM5BWzfz4baJfegHGjH8eJFMj\ngzINO64Ia3AM3Z/wCCltZFlT9W8wllxpsaJfhrVuhJIDz0CqZ68hrMTke7jtoS2i2xDJC2JIBjLU\nJWPZNLK89/fiNe98uf849iek0LMsv/u/MX/nfkqO9Q6SCIaF4cCzUqWNbjRJKkcvIA7Vdco5tuGL\n1ztt3hMco3FkjDE+2q8tnovrF5tjWd5Ok7a/oSbChUeRyDgZ23K34rhadmHPNmXbDaJfPCl9+rsx\ntwOdUj7iLcezxsQErmFEhBy3sWlYo3g/HE1zwl5Lp30Yc25oCPugwUFpD569DHLO9jNYQ4LWOnbx\nrTecdgrJfQMDco/K0saW3ZDRRMTKR7zYTCnLDCWR9LfGrVgeoDmWvgRrX8PLUq6UzntZko+xjMmm\nrwpytp4Tcl+RvhKfN9iIOVb/LMZHxmq5/00pxXNL23H0syVnHOPT5mO/aUta2UJ51z7I92fmyb2x\ndwpJtUjWPjoo14jUaywx9HdijYvNkeOFbdCj52OvMm9IShE76BmAY290kpxjgQE8TyUm4zuGtCIZ\n9xISsOY17f4ZPpv2R9/5z9/Zp+Jw/DT2r6NBeT2vW7XKaf/+PZRJ+MgKKUXs7Meed/4SxCS2aDdG\nlrvIXI7vGyIi5PcNlU/sxj/knzLGaOaMoiiKoiiKoiiKoijKpKJfziiKoiiKoiiKoiiKokwiV5U1\nGUqvrHj0dfFS5nWo4n/iCNLoFq2bJfo98/2XnfbWe9Y67UKrVHgaVapueBWfN/MuWZU8LgdSkqad\nSHGcfc/H8P4z1rFOXea0a5qQQtjSI9PPplyP1Kl9zyFddnq4TOd9/hCkEPfehPTR1jop8RnsQWpX\nVh7SQjsuSIlA/Y5Kp12+2oQcD6WkRluOReyGkhKHlLWYDJmC5TuPtE6uRp0yU97HU6/BtWfkfaQ2\n5uZbaYl0TSMpNTRrLWRwVY8dF2+peA7SlOR4pNvZriGVLTin1EMYL75emb7NjgYtu5B26rZS0oep\nAnx0Jq5LQkmy6Jc0Tab2hZIAyVIyVxeK11jeEUEuEK3CgcWYjNW499HRSJFtOXtQ9GNJH8vUOg9J\nJxmuhj7UgpS/BKp+n7ZEpm6yDKfjN0jzjiapjjHGvPkryBdzUpDi2Nsm77XbDTeD9r37nHbejTL1\nPzIeqaXRabhGU+6aI/oN+Sk9XGZWhoRxknZyerQxxnjKMH74eG1no/EA0n3DyLnFbbmzCBkfxfLE\nPOmk4G/DfGFXhNhs3O+zx6vEe6rbkD6cmQQZxLQcmXJb+0fILJIXIA3WlSBThLNIIthDrhsjvVKG\nmbZcjqe/EGNdS67ify2JiYoS/04jOR3LSQvvkOsip/G3HYD7wsiAlD+xfCz3JqTS+i7KtSaOHHKy\nVyGVdmwM74+Olq4UnacgQeZjjfVKp7NUSqcfprGYWSZlUjc8iLGdWISx3HtMOgRGRSBejfoxRmOy\n5fgd6pCyklBT8lHMfZclg+s9Q+nxtE541xaKfj1ncG7FN2AvwI4pxhgzOoq45V2Jz2DHSWOM6T6N\nz8uYRTKGYxgjE5bjBa/HI+RO2Hxyn+iXQA6J8Z4yekXG9axlkHg178Xxcdw0xnIbofjCaex/fs1c\nM+Ysx7HufvuoeI1jBcdQvkbGSMlhfDE7v8j9wuIvrXHaFx7G/rD3jJyLLNHc8Lnr0O8sZG87/+tt\n8Z4ZJVibf/biq05780NSusOygrg8xMwoK54GSUJ69k+QnM28Ra53Z5/HnipzPfb0L/xAOlrdmLfR\nXEu6aB+asVTG+PBwxIt0csRsOS33LdHJmHNhJMHLm7VV9GtvgOtRjAf3OzFRPmvExuGeTNkMp61A\nAHOxv1nGtspXX7risbo98pwGOmqd9jDJ59jd1hjpHpZSir1OyyHLnYv27gk0hnnOG2OMv0Xun0LJ\nYAM+e6hNSsniqLQEOxKyk6wxUirP653tYli8Za3T9rXi+YkdRI0xpvs04vijL0BO+pn7UXKC3dWM\nMSYmBmt45gKs0/4ueQwsewy0IlbEZkkpUPdhPAeumgXpTsZa+SzWtqvWaactwdjps+TvtgtfqOF7\nEOySe0+WmY/Q2h0VJ/dBAZKQseQ8Pr1Q9ItJxJ5wfByy/Nrdb4h+OSvwrJA8E8fQugfPbQ998nbx\nnkefQlmMVYsgKw6OSvl/pw+f/cD69U47pViOpTTaa3tm4Hl2xHLtjSdJmu8y4lqY5bKYMFV+vo1m\nziiKoiiKoiiKoiiKokwi+uWMoiiKoiiKoiiKoijKJKJfziiKoiiKoiiKoiiKokwiVxXm912C9j9z\nXaF4LS4LWsilN8DSOnN1seh33/XQSb75b9DSjlu209/62q+d9k9e/a7THhuT2sWUFBRl8d69zWm3\nt0NfFuGKEO/53We/hddI7+71SCvkXU9Bo73+HujpDz0rtcxb5sNqdGwQurvFX5QFY176v9Cfrv4I\n6t5kTJPa1rTymeZawvZ84da1CY/C93Npi6Bz7D4p7Zq9a6CP7DzU5LRt69ecA9DbuSIxvGy9XTj9\n27um0Gl3ncLfTVloWanSbThbWeu0m7qlJvP6WajvcLkBmr/W3l7Rb2EJ6tvwdbAtibM3YQw3vQp9\nq10zRDD/g1/6n1C7A3UgApYV3PxPwca6/tljTrv0kwtFv+7TuBY9DagFEpMiz4Mt4dd8ZYPTbt9f\nJ/rtfhX1hVZtwAmnL4K+uuYpWV/pzFnUuVhP94ntk42Rc7N4LsZe8mxprdx+CcfAdTfYHtUYYwo3\nwasuGESNgAs/2y/6dZFd3s0/2m5CTc6mUqc97JP1VNoPwpI6nWqX2LrxgQaM4/AIjNshyzKU67Cw\nLrbtmLSvHLiE+TM6hrohSVRPanpQWmOuuBvxbNfje3Hc+VJHm1CKf3dT3IgvlwV9uqkeQybVKbJr\ngQxR/SeO833nZd2H+OJrUDDo/8H2qZERMp4GyOo9rhC1eA79cLfoN/d+2LmmkTWmv9En+qUuRUzu\nOo7Y2HxS6t/nfApW2iMBXKO4NOj2Bwfl/E2bU4jPPoh7E7RsvwfqcUz5a2GR7es+IfplTEMM8LWR\nVSnVpzPGmNwmnMexStTFmhmQcY0thfwC6BAAACAASURBVGfKshEhoeb3iE1J82RcGWzAfZygsd92\nWq6LCR7UYRlcjdgWHS3XxcAArm/re7VO221ZFlfvx2fERWOc9fhp3MfIbVtDNepeLPwY7k/X0SbR\nj2tyjMWjXkJsrLw/fV1YG+Ip9thzkeMSW+La9Sb+qgZNCKk5iTF904OyLkrvOcQUP9XDsPeyJ9+r\ncNqr5mPfl7VktuhX/zbqzDy2CzXRPr7hetHP46b1lE7dX424PWNeiWEunq512g994W6n3fh6peiX\nsxnrR+cBrBfHT18S/W76KvbGxauwf+l4T1owL/w01sXqJ1F/Jskt9wQ8dq4FE2S9PGzZSXN9Lh5L\niSVyrfF6ESQ6O3c67aYLO0Q/txdzLi1tndMeGmoX/fo7cU3763Dvosjqe9iyW289hrhM4cvkXy/t\n1nmPlTQd6yzHeGOMSVuI+N92nOpTWT+rs31zfJHcLzCR1j4rlIRTnbeRHrm36T2BGJW1meoE7qkV\n/RLKcE8DrYjB8dYeqOol1A0q2oa1NOCT9/Cxx/DM+dE1qBk1cBnXq/y2zeI9UVFU/64VdS8jYqy6\nKm2oM1PxBu5N0Rxpzd3XjzHiozjuOifnlCsV/45Nj79i2xhjmt6iub7IhJyeU7hXY0Ny3xdDxxKg\nuoORlmU7n0taGdVr8jeIfn2tqBkT4cKgHumXe5Dzv3rLaWduwHcM0+66EX2efEW857alWAvzNqPG\nWphVAy0mHWt48xuorTgxKtctrjEU7MV5ZG2QsXygGvvp1DV4Bqt+8X3RL3u9/K7ERjNnFEVRFEVR\nFEVRFEVRJhH9ckZRFEVRFEVRFEVRFGUSuaqsqYdsyOILksRrtc8i9bX1MlLJstdOE/1+9fe/dNos\nIynJl2l+9/zok0779I9geTb7/2wS/S688aTTDnYj/ZHtJZ99Ybd4z02rkd6UuRGpRE0vyZTR9FSc\n40A1pQnGyHTevMVIW6vah7Ts5z/9iOhXlo1z7CE70cEGaRPmXQXZRlKSlDyFApYCJJZKu+fouTjG\niTFcw8F6abnnSkKaWhJJS3rPtYl+2SlIP/TSte453iL6Za5DKvWIH+nsSeWw1uuvlVbnJ8/jWv/H\n44877Se/8w3RzzOTrMMbkbJWZNnCGXIkbTiFdNRpH5K2t/4GpPVnbsQY7joi08avJQu/jJTdUzQ/\njJGWyemrMDbbD0gZg2cq0meHOpCSOdQpU3OLN8D+s+J3kObZ9tR3rUOKdfsRpEt3HCF5zgqZ4hlx\nDmmMFY245puul6mBC+6DTGPnw0hhnWWly46SBCNhOsZ2lJWC31UFmUXb7lqn7RuU577489fAy54Y\nH0WaaJdlD5mxAnFglOSS3aekXSenJheuQXzs7ZAyE5ZPFN+I9PWuS9Iq2bMFKZ+DzZj3MWSdm2ml\nYCbnQS6zisbfqGVTy3a0OTfh75z7gzxWN0k4Yr1InfVd6BT94vIhXYvPR7y2JYbjY9JuOJTw2hBm\n5ciyfNOVhDFYtlGui1FklT7ShzE9YR03S4xeewHysdXTp4t+dX9CWjWvccnpJC0NsyRY3TiPyEQc\nT+c+mXpccPsMHOsI0vvb9kuJRM46jBdOz2erZ2OMWXYbcrGPvYhx0O6Tkq6CXCk1CjVln8Fx1Dwt\nrWnjipDa7pmK9YTnpTHGZMxAynbHedyD5FIpV2rZDblSIqXu27bOJSsQB8fI0jQrAXG08h05f1ki\nvnbuXU77+cd/KPq1koQg9V7sM6KipGQgxYv9UlMH5CGxngzRr7sS5zRKssmyTy0Q/WqewrUtDvH2\nJsuLa3nhxbPitbmfwBrC1vO2bG9qOeIuy1RqXzsg/xjN9U/eiLhry8xaqzBHGl6A3KucxtuRH+4R\n76luRYzf8VNIKb704B2i39s/QHp/Bkl/t/yD3CfznqrzGObitE9JHQRLuBOLEE/nlkpZ6Bv/hT3H\npx+VlrWhwEWyqcGmfvniOMa3Owvxf9QvZZCBAOJWcAAxZ7jb2veRWuFyyx+ctr9Oyt5dKVeWrTe9\nBllJeLiM//VdKAVRVgJZXN1bh0S/4Q6Ms+R5kO8nz5ZSfpY6p87HXv0ySdCMMcZFVuo5G2lfdlDG\naCHNkaq9vx26FLzWG2NM52HslVmOl0ElDYwxJtKNdYhLK3imScvtzNV4X2cF7kfF81JGX54DyTDf\nq6FhxFZbDpO3DXubCRp7tmy8nSSCY+NYt5sr5LMOPz/GROH6j1uSoXF6huUSBBGxUk4V7LTGc4gp\nuhFxc3hQ7r/YZjt1HsZj05vyWVrMZx+eQ+zxyGUxhHx6o6wL0VNd67TTaF6xrX0alQIwxpiWS/Rs\nymVUImROSmouYqL7boyzpl1yT5AyH3OzdSfWvsO/lqURXCR1Zwl8hCX9Gh2SewkbzZxRFEVRFEVR\nFEVRFEWZRPTLGUVRFEVRFEVRFEVRlEnkqrKmyhakVuWMTBGvJU6DhCBvG+QOu771suh33/fvdNpB\nSt8OWum8l36PSsbRiUgD6yIpizHGjPQhlbGjAmlLc7+IKvt3UiqRMcaMU4X32mdRmT8hX7o1ZV2H\ndPC+y6i4XEIp6MYYk7UG18Jfh1SsuxdJ1wNOpQqQW0CwQ0opqp5AimL+tz9sQs1IL6617UTU9BJS\npFniYfsrZGfjnDlldqBapoL2DCD1L5uqt5fetUb0C/iQxttfhWt9bC/SP7PSZWptaRbSyp781r85\n7XPVUr5TzungJEM6+ORB0W/WKkgNYvxIya/bIVP04hKRotfTjWre3nKZdh+ddhX3pr+RqifhJFZw\n01TxWl8lUg+9Kwqdds95KTl7k1KT81KRDu5JlSn49bHv4TPqcW8Ko2V6ZeWv4ZSUvgIOO+27cT9i\nNsaJ9yy+CemKAUpfjs+TssmWd5E2yO4XPW1S+lC8CemzqbOQ1ui7LN17WKLDae1Z02Ua8aGf4Nxv\n+dHNJtQEyEUqltyljJFprSyfsB0WYrNwvzpqMF86LJlJOKXb99Qg9Te1VMrTxsYQl13xV3blGAvK\nFMzOS0j5TCNpJLtCGSOdNwYobXxoRH5ewUrEXk57Tp4v7884uXr4KpFCblfgF6nsy01I8fciTrKz\nlDHGjFN87T6G9bPoLplDHiSnrpxyuEW0N70j+nWTsxbLZM83SkncCLlsLYhBWm1CAdzbOo9JGSbL\nGcf8uB/ZW0tFv97zkC0nz8SFdufI8Vv1BMZifAmkMm5rnJ97DfITdvTLy5ap62kr5LUNNSx9K7hl\n+gf2G2whB65seS5Dg0i9985gtyrpiBZHsvCmVzEXc630//1/wjXMS8Me60QN5KCLpsi92DtnMBc/\ntBGORafePy/6lRXC+aXlLNZCd6aM/wkpuP+cDd6w87joxynphXdA3tVMsdsY89eTM4RkbcL67n9G\npqHv+jHmEl/LgSEpjR0IIFYsIyeQ5JlyfR8n164eknPHWtcv8jjuffG9c5z2cA/m27Q75or3mD+h\nmZWMuZMyR7p+rSF5x+k/YG4feEQ6gbBMNCUeMlFbVsBrMLtSDlgSn5W3LzHXEt472e6RhuQoHSQF\nLly3XnRrPAEHragE7Nltl7HWdzA+g7Q3DgzLZ5L863A93noC+4LrPowFpeeolLAsuv7KWqFha8/P\n8leWxQ13y37e5ZAzNr2JuFF0h3R4bXgOcz0sHJ+dUCL30G6vjF+hhK/52LCU7MTRs1ZsJsYju0wZ\nY4zvHPayrhTct+ZXpRuZKx37lOEW7Kn2VFSIfs+/iT3vP957r9NeugLXL2WBLLHBz0ijAbSrLenr\nxWbE/vV34/mz65BcZ1kWzPMqdY78uyx5b6RnkOhUuScrvFOWXQg1Y2OIh/4mWd5iZABzJLEYzxDe\nlYWiX3wqSUWH8ayXv0HKKluPYi+QPg+fEQxIB152WOvrwLWp/SPuSViEXGdK1mNtjRN7FdlvdBTP\nFP3NmM+FG+Uz68gI9pvBHlyjeJ+UBYdHYf/Fa8PYkHz2jk2RbnM2mjmjKIqiKIqiKIqiKIoyieiX\nM4qiKIqiKIqiKIqiKJPIVWVNH/nh55129cvvitd6yEVjjFK/Fj6wVPQ7TDKBuQ8sdtp2enAXVfN2\nFyIFzlch5QmH9iENKkip3FMakC4Wly8lEjHpkDRwiph3vnTQqPojUkObq5G2uvKrW0W/pl1IIcz7\nED6j+c0q0W/P+yed9iJyqrJdb1rfqTH/W7TvlRKgvNuQzp1O1ci7rdS8fko/rN+H440Il9/v5S9G\nOttgI9LFhtplSiC7InimIuU4/H2knO04ItOo4yhVd/sD1zvtdesL5bFeQvpZ69tIYU1NkOnHLEEI\nNCK9N7lEppuxEwW7s0RacjfbeSOUcMpxdLJM+w2QI84YVaH318jU5OU3I6VwPIhzt5254kiGMPWj\nSNVPS7te9Ju4nyrU7yI3kllIvfadl/M3cw2kf+89hxT+pZZ0J5wkceNUCT/JkmDx3K5/DfMyaYaU\nSHSfQWpl6iKkk0YlSAnkso1SMhBq2DktzHJ66D6JlMq0RZBo2W4gAZJZsDQjvviD0yuTChF/+ttk\nDHCRjHSgCXOWXYSyFkiblWAs0jo51TzQLJ02XJSuPkznnlcs0/VZutVPTmKJAZkKGpeHtaHnLGI0\np38bY0zj61KaGEr6SQYRc1w6afX4cY7zP7PMaUdGy3EWmYF/dzRjbT33yGHRL+86cjiktPEXXnpP\n9KsmCfIwSca85IrX+J5cZy5QWvZUkkx1HpKSqcJbkKp/6kdwmcm0rjlLBGr3Ih6wQ4UxxvSSfFbI\nACakmNZOAw411b+BU1T2Ninl4rWLZdFZM1eKfn4/0u0DgVqnza4WxhiTPgNSVD+5EHbsl85Yc1di\nP8Hnv2Em5suhnSfFe6Zk4rWn90H+umG2lFjEZEFOEEHx1ZaYh6chHvScwLiy0//9FCu6j6BfXLHc\nf7HcIdQc/i0clcoWSUe5zATI4mLIzc12djtIkqDGFyDzztosHQT5Xu0/AmeurCR5vrkkGQ4n+UrL\nTnIWWZIr3lO6DfuwEpJP+S7I9TNIboVFSzC3A41yDffMgLPW23+Ay9uWG+Q5savKAI15lmQaY0zu\ndrlnDTVh5KASFS9jZdcpHEt8Ida4tgtHRD9eF/su4DolW9IwlknFl+De7XpJSsOSCyAJKiBZ3CCV\nKEhbKaWXNTsRD9JpDS/8sJQhhYWRW98g1ozoeLn3rPwN4nw+7dXbLQlzVDJJgHahFETQcqpKIBcu\n7wYTUthtkl2OjDEmnCQnzTvwnMSyRGOMiab9HLtnRWdIefzRHYiBU4txD+YVydISN3/96067ug37\nBZ5HvE8yxpj4VHxGUyXGGMtHjTFmdgHOl92Muw83i351TyNWpC3HvO88Lp+xeGyz0yPvcY0xZqCe\n9vXXQPk73IfxHZ0sJVXspMkSdluO17YP43aC1k97jednqEAXzovl68bIPWqMB9cpOhPXpnC7lIq6\nXJClDvRgzGXmbRH9enux5wq0Yu9ZW7VX9EulOBJow5y1XZj43nG7zXr2Do/GuEuXjyt/fv2v/0tR\nFEVRFEVRFEVRFEX530K/nFEURVEURVEURVEURZlE9MsZRVEURVEURVEURVGUSeSqNWdaT6LmR/GN\nq+WLN5KW9igs/RLzpC45PZ00ortrnXbq4hzRj+sq7H3tqNOemSdFdYuWQHf57h4cX80LsFC73N4u\n3pNN1oRl26H9fOcbT4t+a762CcfdAj195xmpFWMbvMR0aNWrWk6Ifh/76aeddt1rONbwKPmdWPkn\npY491LgLUKfBlSxtBbuoXkTXJdQRGqU6H8YYYy5CMzplK3TxXEPDGGPqD+Na5c6FvtKVLHWdbC2e\nOp9qgJC1KlsoG2PMuusWOG3WJI5Z+v60xRgzbCUoTXmNOfk07smCe1EPya4F0kJ1a3KXQmfKloB/\nPijbgDx0sA57oEHaDyaWsMYd15nrMxljzC3fvsVp7/jmq0577aelZRzXF0qeAd3m/m9/V/Sb/UVY\nTcflo85P+ar7nfbo6AC/xVS++0envWAedOwFW2RNk9ZD0P7P2oQ5W7BWxiG2/eukulW25jl7+ZXt\nB10uqfEOBruu2C9UsP0w1yMwRupTeQx2HZHa5Lgi6Jsvv4PaKt78NNGP50gYxZz4HI/ol5EJDa4n\nGTVUuppht9t+To6lIapzFEM65FG/tNLuO4eaCazNLbh1hujHNTDGRxB7BqqlpSJ/RhrVwGAbcmOM\nSV0k15dQEk01VPoCUtNfvIbsaEkb3j8m52x/Fc6rpw7tnBWFot/uJ6mGyN/BOnZj7RzRz1eKdSgq\nAjHg+O+gpz5SJWuiFZDQOTEDtZzYBtsYqd1Om4MoalvUJlGtqQSql9J0So7fXqrL03MWa3XeNmkr\n3cn1WDaakFN4F+JKhEtuhfqryKadahL0tMo13pOB/Ujtu6gdlDJbrjYuF+Ymj+/eJlkXLCsLa2bm\natQ+4LpOfsvy93uPPea0t67HGCm7Wda5CJAtKtsV91bKuiYVB57HMayluibWWt+2B2t9/s3YEzS9\ndFH0G7P3EiGkneojLJ0nrznb9O78LWolbfvyZtGvfAXmDq/pETGyVlLuNqxX25dhj3H+mVOi37wH\nYbXM9tsnjyJWBw+cE+85Wo06IW29GBNff+BO0Y/3jiO9qJvhSpG1Ifqo1tsNH1/ntF/+2Zui39aP\nY7xw3b0pD8j1uOE13NOiK7tF/030VdJ8s/ZfwV7E2KSpiDGdVXKtHh3EPpDXJLvu3dggYtPp8ziv\n377wgujX3Y/r8cDHtl35s8/KZ40FX1zltId9uD/R4bKOztgoXnN7MJb83bKWTMI07E/6qnG+Iz4Z\nA/K2o6YVW26zRbkxf10TLpRwPUauR2WMMQlUTyWe6t7YNbcSy3C+Q1TXY9yqPZeTgs9wpeMcy9yy\nDhrX4plTRu+hvdZQh9yjdo+hduGOJ3Y77SlZMr4UlyNWn/sNnlkLN8r6Zf5azOexIcQD+9lpqAP/\nHqzD9fPXyWuZPM+qoRRi/FR7ym/VssqmGnh9NP9s6/T4Itzv8y+cdtptPnkuM8sKnXbKbJxX/TPS\nEj1lMfZ6YRGYc+5s7Ftcrgzxnv+fvfcMj6u81r8flZFGZUa9d1mWZcmWi9y7DQabaoNNNyEQCJAC\nKSSHHMhJh4SQQgghgQRCSAKh2QZsjI0LtnHvVbZk9d410qhL74dzZd/32gG/13UY//Vl/T499l4z\n2rP30/bMutfd4y232r1U47TBb6OI89ZjTFR+hD1SdLbt2YDGc3gm9uBcn84YY9w5eF3jXvTvTptt\nfPbKmeZiaOaMoiiKoiiKoiiKoijKKKJfziiKoiiKoiiKoiiKoowiF5U1cWqvp2SbONZxASk66WQN\nXfmBtHl8bSsstSLCYHtV9XqziLt1HqQ9m4/iPViSZIwxxQdhU7byAciQnnzsL1b7a/feIF7z11eR\nxtQ/iPS4MKdMy+6mFOOSN5DGP//7XxVxFfuQGjowgJT0ad9dI+IGB5HuFDcLqYs7fiuv5YybYXEc\nJxUmPiF6ItLS7baZnR7cB1c00jWdSdK+rekUbOjCyZ6PbaaNMaanH/8+uRspo5xqb4wxrhCk4fp/\niFSyEbJa++Pbb4vXZMUjbW3uN5GqW/tRqYhLmQ4L265wvDdbAxtjzOSbYBPdXYV75cqOFnEjlIYu\n0iFtaYneSkpv87FSjVNa2T7ZGGPayW4+dhrkHDc9dYuI62lG+t5YStF0xsp73XYM0pYusqif9I3V\ntrPCvUqZMtdqNzdjzIeESFli2mzIkurdsNKu2S5lM3nX3my1Kw5tsNpHf/m6iCt4CH6QKWSD7YqS\n1p9dnUj1DQ3PpCPy++nDv3zfai99wvdyw1aypmWJkzE2y1nhPiglWr2NSNFkm+L2WimRSFuCFFS2\nro8bnyfiGutxff0DkX7NVtWdZ2UKuSMSced34Npmz5RWlixDCk2HnKpq/VkRx7aCaSQfiJ8u3294\nEPPXQDfadutFTkH1NRnzYdnbelBaznaewXwaPQ1jzD6nnHwPtpzj5iMN2i7RXPJFjBe2FnXnSwlb\ndBj6wZnNSMteux+ypqBAudzHutH/OhsxN0QHSWly7QGkbLMlqp9NlnfgQ6QvFxTgvh26cEHEzRmH\n+xtGaclNu2RKf+zsS+ATSrBspcMm7fGSxCOQrm1/h5SxtfbjPkaMg+Sip1Gmykcl4D3Grb4a5/D+\nhyKOrWTDopCi3x6OVO6ibGkZzcS4cD1PvynlNgWrYTU60IWx48qSffPM+5DcuHJwrKdernfxc3B/\nLryJ+XvCV2aJuAab7a8vmToW16Jxp/w78fNw/ZY/BF1cX7ucGz5c+4nVnpGDNSSyQPqbdp7BHHiB\nbHndIVJS9OK3X7XaLJXZtO3PVrv4XSlrmjYVc7K/E3PhkE3OEUwSjsAwrBcdJ2X/fWcnLMbnVeG9\n506TctKSjZiH2c779UffFHE3P2lf+32LfyDmlbbjDeLYEEllg8KxR+08LiVFQbG4D2zN7R8k957r\ndkGuO4Zs6OfOlDIDZxCub/RkktAO4J5kfOkO8ZrODjy7RKdC/9VUekjEhSZi7u3vx+cNckkZEu/N\nepsx/gJt9vQs24jIxz7ZESaleb3N0vLYl7D0MnK8HDvdtZDH9JK0Km6elCE1fgyp5LZPcC2vWC7n\nlPoGPHd1HMe4DwmS1yWvCNLOfhr36QuwtwsOlnKlqmPYD02n+aCiSY4xdx7W4BGSVdvty/tov+Ym\nWZ7nvNxTxUxDH+P3yFwlx2z1BsgjzRLjc7pon9Fne8ap3oi/zRJQ+7PV4fdw7/iZcPHdsiwBS4IO\nPA8Jd+HNU0VcaCLWNU8FvntInQYZocMh17GgIPy75M+Ye0Mz5L7bnYv7mLoA64m3SsqVGqhvjrsT\nF74rSUrzWJYZHIM5KX5mqojrrMF4iZEKKmOMZs4oiqIoiqIoiqIoiqKMKvrljKIoiqIoiqIoiqIo\nyihyUVkTVwQPdMtq405yj9nx551W2+5e8cC3brLaXI357f+WkpXSekgpjh1HenT//PkijtN2v/PQ\nb612dy/SqqqPS3eIB/8bFe8/+QdSGqd9ea6I6ziLNMmxt8INo2znBhHX8gnSkTJnwenk8LMvijh2\nJHHFw+Vn2Q9Xmf+XcPp52foz4lgaVd92xiNNre2YTNfPv2ea1S75K1LWTlXJlK5Uys/KvwzptH/7\n0/sibmkhUj43bEfqPfefr998s3hNcjLSz0IjkA7p7ygTcU3n4KjBKa3Ff5eSu8zlSK8PTYXkonbD\neRE39l58dnZKcoTLFEqu4O1r2skVYKBNphCyI0TdCcj+5jx6o4jrLCm32uk3oW/GJM4RceGrkMo5\nMIDPW3Ngj4hLnIp7WHcM0ofqD3D92FHHGDkHcNqg3W2i7jycTxq34rzHfnmaiKvfh6ruLI1p8cr+\nm3P5Cqvd24s02Oq9e0VciEueh68Jz4ZM022TE7SRdNDhhnyO+6Yxxmz6B2RjU7MgHwmOlDLNEySd\nKbgcbipVO2SKdXAMUqnZRSgkASnVJWVyTp04F2MnORNp1JH5smI+u0WE0PzSXSor10dTSq8zDGnG\nnkbplOcpx+uC6Br12VKJg6Mv3X0MDEWqeOxcmarKDiqt+zEWG7bLz7G7GJLPfecxXq6fPl3ExU7H\n+w92Q/LEUlVjjDn/J9zTJ9+EJGFMCmSOXpvLz45TkFbMmTjefBZth7E2R07G3x2wyUMmz0KfaCNJ\n9LhkOQe4KaW/m1Lcw9NkunHdJshVc+VS7RMadpXjb2dK+XTSUqyLvBZyHzZGOjDEFeDz11WckHEd\n2NPExCK1e+w1V4m4gACMufYWrIvsAHFhq1yfHv3iF632ki9BF81SRmOMiRuPFP+WEsybzlC5jk26\nDa6I4em4Lo5wOWb7KZU9kWTbI0NShtl1Tjqu+ZKEJZj/mvdWi2Pn/glZ19hbsFbZ3XsKyBG0jJw+\nY3tl/x67DPuZ1vfRb102WVMyOcmsew17VA85EtklhvUVOKfCO3D9D7y8T8TNux5ybpaGvrplu4i7\nkSQ6zmDc31NnykXchIlI4x/qg1zn8lukpJf36195+Trja9jdxeGS6xjLiCo3Qj7nLpDSTge5x3WQ\n1LuuQt7vlUuw3zlxBnvHpZOkA978e3AN6rdBmsludiETpStgYCCeT9radlntpt1yn8yOOzxO0+ZL\n+U7HWYzTAZLqhtn2mp0kkWEXvZB4KVn3Hq03l4ohcuhrpvITxhgTS+s7S7K6K6V0ZLATEhgelwc+\nlvPpxDGZVrujE9KbcTdKV86EfOwX645hLIWE4Pmho0Puh+q3oE88vW6d1e70yvk0K5nWYJrz7BLw\n6CLsZ7h8wmC7XI8dLjxTJ5NEv+It6VwUP19KwXzNMN3H2DlSWtxF5Uz8gz47t2PKMtyHMx9hnmJX\nNmOM8aO3SIjFuGraLSWq4SSv5bWw9iikUFHj5Fjs7SBH4Nk4Zl+fBklKzmUrAm2SQJZWddaUW+3I\nNOkyyQwk4x73e+T9bqWx+GkOeJo5oyiKoiiKoiiKoiiKMorolzOKoiiKoiiKoiiKoiijiH45oyiK\noiiKoiiKoiiKMopctOZMzhroVoOCZC2BzibonicnwUK6qWy/iKt6CzVOtr4GfdjU/BwR98/NO6z2\njhOvWe2eeo+IO7oWdUPWLFpktbMKoY0LtNUCqdqEc33hQ1hX2nW/eUVkUTkGurTIPGkLlzoLmtVd\nP3rGas99/EER190NnWpzMXR3Lftk/YZgqu0Qd4vvvdG4Jknu7ZPFsaa90MKy9i5qkrSXa9iJmgls\n+Xb55dLWc//rB6x2+U58/pWXybomZ87i/WblQrPHNWzstnjpN8LqMSAAtSz8HNIqsaMYusZ+sg6M\nSJK1O5xUa8NL/YzvhzHGVG1AfYjgaGgSBzzSRpyvc7a8zJ+byIkYf/x3jJG1go69jPF39i9bRBzX\nHkqagxoTNadkXPbU26x2Xx80Wnu1MAAAIABJREFU+JELi0Rc2YG3rPaF9zDOPVQ3KC1R1mgY9PZT\nG/0tYV6miBshu/DM26Bf3fjD90TcgntQk6q7EhaAGUtlfzv3HupwtJ+ABj3zZmlTONwnr62vGSTd\nafMhOQ9wfaSWQ1KzzcRS3S1/f9zT7fuPi7iGDuibv/vss1Y7K0fOvfVU7+v2K6+02lPJsjc3V2qP\nuy/gveMXo55WYIjU6fZQTRG+tjl3S6vEzguoS9HdhtoR4XGyXklHMayqB+ha9jVLy8eRwUt3H4fo\nc5z8QFrAc22fxkbosxOSpFfiZRPRp9kOPW6B1JPXbi6x2r01sGceGZa6aX7d1cdnWG1e4wozMsRr\nYmMxH+47BYvMab3SvpfrgAVVYP6LKJB7goZPMHenL8Oc/s0bHxFxX73+eqs9uQhxIwPDIi7AedHt\nyecmmazm63bIumXusbhfiQtQ16TLZq/pJov0ng6Mo94G2R/Z6vbkjr9a7ZjJcp1NyML673CiBo+n\nEhr8k7Y6bzc+hLo1PN56auTeyTsJ79F2gmuYyXpNAaS155oQ9npS4emoe1FJtey6qtpF3Ji7fLwY\nEttfQr3Da38ga6HwGrL+h+ut9lXfXS7izhxCbaNuqstUNCtTxIVn4PMmpqHeSfkFWd8sMRJxTUdx\nLGUJ5tOsG2RtqdqdqP/kKcVcWLRmhojb+tRmqx3gB8vWSbaxfawC+6tFS1F3I6BO1hzpbUK/bK/B\nfZOzi7TDvRT01GNuC01y245iH+jOxbjsqZP9u50suENSsEZm2OqPVR3F+EmIwBzYNyjnvS6qJ5W1\nagrOwY3aNCV7XxWv4T1W6VtYG6Kz5fzPcx3XwKg7KOufDPfjnJqq0S/a6+Q8lEX1E4X9dpOch8Iy\n5B7Yl/TW4R6mrcgTxxxhqKfiF4h9DtfHMUauY6FVqBni2S3nKAftwwtvQS0tb02niKs+8InVTpyC\nOIcDfayrXlqy07AyU8dgjdhJNdqMMWaI9uG9ND4Si2QdOt7nhqXj+ocmuUQc26vX7cCzU9TkRBHX\nZ6v15mtGRtAfQ+LCbAfR5OcQf9szGNdMnHg9Cqr8h804/Zvvfa/NwpvrzHTXoO/HTcG+tK9Tzgd1\nH2FeDwzDHBIQLM/VRe+943l8D7HkoctE3DDZpcdkYk2rPyW/8+BrxHVrmj6WdXRy7pLPU3Y0c0ZR\nFEVRFEVRFEVRFGUU0S9nFEVRFEVRFEVRFEVRRpGL5g2ffR5WcLn3yTRMVyxSfUs2wiY59+oVIm7g\nCqSJzjiC9MKkJVIOU3AWaVyBITitiFxplzfhSsgQ9q8/bLVP7Id0qbK5Wbxm1X1I1f/vwdVWOzZN\nWtkOU6phSh5SXz/875+KuFnfRdpq0SNI0S79SEouOGXrzF6c35U/vEHEtZd+toTBF3TXItWvr1mm\nlfk78P1ccDRkPiwRMUZa9/kH4DVNO2Wq1qw1sAJs3oX00aipMn07n97DlYe0siz/sTiHCpm62XkO\n99UVi7S3RJskRqSD1yKt2BEu7eA53ZDT3mJs9s/9nejD3RW4LvbU9dSrP9tS7fPST6mMbE9sjDGN\nJDmb971rrba3RY6DXpJ4VW2BBCZ9qZSYNNShH/uTLKLsDSmbGejAdZlwL9Kv28kS+qMXtovXzLkW\nKdYsc6neeE7EsWzDNQbjdPJ8aflb+S4kZ7FkWdhwTJ4r3yuWXXVVyH5ut8/zNQEk+wmKktMvyziC\nojBXdl2QVrScis127inRcj5zkizw9mvRL2pb5ft1duPaHCBb57o2pHXPHy+ve9ZYWBPG5Gda7T6P\nvJ78OTild8gmnYnMwb1rL8GYtUv42CLblUn2imNk2njLkUs3p3aegiyu4Ip8cayR7Hw5Tb6tWaZb\nn62BpC0nEWnL9lT90hOYX8fNghyNbW+NMWbLa1irb7ob613bQVzLsDHSfnXnliM41wHMhQG2MRAb\ng2ve34Z5yC47ip+NFOOKDzCev3fLLSIuOw9p39wn2HrcGGNiZklrTF/jbUAaPs8xxsj0eA/JG+wW\n5t3VWKOqaC7K+YKU8lTTsQiSqIbESAvvM+v+YbUDaB8Umow1LTdJrqVsKR9MMgG23jXGmI7zWA9Y\n8sMSEGOM6SOpiyMCa2ZonDxXTzXGAcs07On6pa/A0jrpe9cbX5KfiT5XT9boxhiTMBdSHy/JDpr3\nS8vt+nbMWbf9ZJXV5vXSGGPO/gWSkynfusJqV/3oHREXn465KHYW+noTyf7WvSilxGueuNlqd5ZC\nlt1yQEpfr/7J7VZ7YADn/e5ja0VcOUnfSg5DshcfIWUtJSRpnTQT0pjY6XLsFTinmUtJwiw8T1Ss\nl1JRtrd10/MA71eNMYbUGObYZrxHjEv2x/SpkE8EhGKus8v7+lrwb5cLzx1+fhiXwVFSMtV2Atcz\nNAznHWqTE3lpTx4xDp/J3udYyhqbhPEXliXncpaFhdFcwaUKjDEmeoKUyPiSoCh83mGbRHWgC3tF\nB1lpD/bK8/NQSQKee3ILM0VcfyvmNpZuubLlPB4RDUlNWz2eF3u7sUftOCut1t35uB/9e7DOrpoj\npfLVLTjXcVPxPOs5I+2i029C3xnoxHkP26TJLcex/sVNx7xhlwyV/4tsxX1fBUPsy3tojTTGmP6O\nPnu4McYYh1s+W0UXYI3qaSapbb18Zkq/DvvKE89AguZ0yvdj+3VHmCx38W86L8jrzmt6YhHW47oD\nR0QcyyinXon+4hfgJ+LC4lHepLMFMt6kCbNFXN2JPYgj6/Ccu6REtasW63G8VAwbYzRzRlEURVEU\nRVEURVEUZVTRL2cURVEURVEURVEURVFGkYvKmoIonfn4b3aJYzFUuT80DSl7fn4yJfr951Bdfs5c\nOFQ07ZOOA5MmIGXbHYf0yrYqWSF7hCom52UjpTV7DSqon33+gHhN+UdwvBh7DdLQ7em3TZRCWvzB\nP632rO9eK+KK/4yKzjl3oYq7M0E60+xdhzTYiVPw+fz8ZJpa60FK555lfE5gKNLA6k9XiGPuLKRK\nhpKzjj1d01tHad7kJpBqq8rOuaVcfTsmd6wIy5qNa9rTg9T9rlacX/J0mUrbVonU8I4a3NOBLukk\nEDkGaWqBTvTHzhKZ9tZHDhqD5LwUHC8rlLspPa6nDvfOGS/TatvPoOp7uu2yfF7q9+AaRdvcwxJJ\nItjdiBTNqrVnRRynnmfejrHY3STdJliu0HQA4/TN93eIuFg3rnNEAVJBWYpiT6O+7savWu3L5sNp\n6b+euEfEsawguQjpgIe3vi7ixj+AY2f/gKrp+V+TqYbsaBWwB30iPEumwQ7Z0mx9TeQ43LvWE9I5\no5/Sqrk6/VCvnKfGUGo3p73PWCXHy4G3MP9EhqKvBjvkHJ2fhnl0Bjk5tXiQjpqaI9OhO6hifus5\n9M3wFHm//fyRGuqkNPSIaCmla6nZZ7W5Kr59HmIZSMsp/N0+mytFhG2MXCqGvLK/JC9Gen4QyTrj\nFkk3lVN/xLGuXqQ691RLWVNGJq57dylkDOeqpdzBEYB5qeMk5gDXePSjEx/L+WBvMebTOxYutNp9\nHpm6PNyBfpkwi9wRWmQKfiBJBNKWoh+5yEXFGGPKinHuE7NxP/0C5G9FtTvLrXbBVcbn8HoQPUHK\nlfzJdYXdK1oOS+kVp+/7kc1H0z4pnXGRdCGA1qSWk1IWzP22qxxyKpYfO20uhnxOYbQXE7YjRqak\nJy7ItNp26UOnA+t7+uzFVvvcWinbHiZpnTuP3Iv+KWUpwYk2xw8f4kfXpeqgvJYDJAW+cs0Cqx1i\n26fNqcBivenJD6z2wvsWirjiWlzn0u/8zWpPHJsp4lje3EFp7XEk+1tkkzSwm82YBSgNMDxPjsUz\nb76BY4N4jwV3zRNxHc9hbKbEYw5gSZ0xxuTEYD9sd/ZhvCy3HPeZYf9nBryYYzKuKxTH2s/hurOM\nt+IN+WzgJLl34WJ8rq6SNhH33AuQod06D9ctKk+WUHDROttUCckFS6FjbK6m7NbkLsBY9rfNbTzX\nVb6DeTn9BikfZsfFxADMlRFjpYyXSxd4KvB5exvlHM2uiIny1D83LGuyy8XD0twUJ9d0JjgO95Al\nSnUbS0RcSBr2ROFpkHiFhEunJJYy9dO61v4J5oohm0Mny+jmjENnL/ySlKVwWYSGbZAOZt0h+29f\nG+4BS2TjZ0kHzKp16AcsqfOWyWtplx37mrG3Y0wUvyT3/OE5uCfstNVVLs+xLRh72z7a1zrC5bnz\nNcxdg2fpsHibQ5UH8yjLvLb9ZKPVzpsvnzGjp6A8xcgIOWalSUlg63E8/6QvRvmWwUEpRT//CuaA\nyELsF/ra5fcNXCIjaQHcvgZ75Vj8LHnWv9HMGUVRFEVRFEVRFEVRlFFEv5xRFEVRFEVRFEVRFEUZ\nRfTLGUVRFEVRFEVRFEVRlFHkojVnslcXWW0/P6mP6u2EDVTNB2S/GrVVxF1BWt/wdGi97PU/8m+6\n1Wpf2LbeanP9AWOMCaE6MYNeaJ7DI6AbnvpIpniN14M6JkP9eE2wzWIvYxl0bhfe2Wu1KzYcEnHx\nC1E/YGQIut+OM9KSbcUTsD1k+70Nj/9DxHG9gJnG9wzTZ069IkccazsGbSDrYKNSpbA4NA71VIIi\nodFzxko9eUAAtNNxcUutdvlJWSskKBOa2ZAQqscQDZ08XzNjjGn8uNxqu8dDD2w/h94O6GqbyDYz\nJFne77gZ0KcGuaB1Lf7jPhHHdu4tdL3Sr5HXiK0yfc3Er8PGr2GP1Naf/xus4WLI6jWeav4YY8wA\nWYIf/D1qSF3+oy+LuPKtGMPBcbi2106TNU3Y6pZt409/Ahvdk5XyXJcvRg2DB78O29Lz66R+PIjG\nROYVOG9nnKzzU/EmXpd3PzTBletOizh/tv2lWgz2GjP2vuRrWA9un9vYJppt33vrpZ3hSAxeFzMD\n96DfZp07YQ5qH3Sdx9+dOOOzLd/duWRrT9ei87y0ZWdrUNbT2y3RM1bCRrKzDHN+f+ceETdAevC4\nAoyr9vILIs5bi/HMFqSBIVLLzHpoX+PvRN+sPyxrv2Qux7mzLr63UdZz4DozkWG4zpGTZO2TTf/Y\nabWnZaO21Pi8TBF3+Diuu6cDf8vtxP3MyZF6/O9Q//BWoabEkeJSETd3KbTg57aiTs3Uu+VqVf0O\njqVcC/13fYVcFxMjsQ/Y/Tb02gm2+lS5V8n6C76G67g4XNK6k8cf15wJjZdrSE8TxmYUzb0dxXK8\nRBdib+GhWjKuTGlPzfp3rj/TuBvz6PRvS//U8neOW+3ajzBesm6aIOK6aO5pOYq/w+dmjDEpC1CP\nrLMN82vy5XLvwJauXC8rfkmmiBu21XTwJU0N+EydPdIKOYpsW7mOnOe83HuGki3xpGTUo2nYWibi\nltyBWgy8Tqz/1UYRF1OFcfbHX6FGzOq5WMPP18o6bxHHUQsmYSnue/HOl0XcpNsetNqHXvit1a7e\neF7EXf/wcqvdQvWP2MbYGGMcVL9iqBfH9r6wW8RNuVHWCPM1PVTvprlc1mviuhSibtKSLBHXdgTX\ntO4QrRPxbhF3361XW+2jBzFvziiUcy+/n5mMMcIWu82H5Pw/SPUPExfg/LyNcg3n2lD+QVhPGj+W\nNSG5Plz0LNTQsNdZ7CrFOIicgL7E9f+MMSbwEtYriZuF/WZ3dcdnxnGtz/bTjeLYCG2JuG5N0nI5\n93AtuuEBfMaRkUERV7MJtWq4Jk4k1RirWS/3LKFUHyd9Lu5h4y55b6KnoGgP38OhPnkOvU2oNcJ1\nsHqb5Z4ghP7uUDfub9pKuQ522PZivqb8/YNWOyxbrk8hVJe0k9a4Dtvz/MgQbqSb9mmRubKuE48f\n3qPHZcriq04nrnVb7TGcXzDW6fAsea6hURgHAwN4JhwekPcneQa+5yjbiP1W3ExZE6jwy7dZ7cBA\n3Kvasx+KOK7Fx99zeCvlmODanmmyXI4xRjNnFEVRFEVRFEVRFEVRRhX9ckZRFEVRFEVRFEVRFGUU\nuaisyeFASnTtgYPi2L438e9QSi3ilDpjjDm2HilIY4uQls1SG2OM2fvT31vt2Y/Bbrd0x3oRF5eH\nVN2Q+HKrXbX3Y/zNdcf4JeL8UiaQDMBmBZq8DLlFnIoVYrNWDnIhPa7pINInvRUybWnto3+32jOu\nRmo429oaY0x8pkz18jVOkqbU2izphntwH3oo9XLAI+0w3SmZVpttjt3p0o+vz4NUxLZA9BG7XCQw\nkCRuncfpCNLhyt85YpjISUgt5ZT0ILeUMJz+EyyVc26FrZ1/oLQwr92M9P2eWnz2/gEpdWkgS1eW\nMpWvPyPislfJNHJfwumpkRexCfacRqrh0e1S2jPnNqQKxkYirfbs69IiNYjkNd2UWtpnuy4dpyFX\nOHEGKeCL7kT698SWAvGasl245s/+5l9WuzBDWg2zvfPeJxDHshFjjDn4L/SxtAFIGx2Rsk9EkE1m\nfxtSS0+8KiWLM7+1yFxK+Jo5E6WlK6fGtp6E/XDEeHm/OaU5cgzGX3e9TC1NKMJ81jEe6aN2+RNL\nMzldmKUe9vToYBrPXrLxZLtYY4zpqkK6dUQ2PseAV55DXyvPxUgbD0+Vnz0kASnRgUE413abpHSo\nl9YXqe773HA6amyuPD+2U+Z+FmZLuZ2Xh74aEgw5QWC4lB1c99Ayq137LskFz0jJBdvaJ8/EB678\npBwxadI2foAkAt2duP5FE2WObVg65oq8aKRYhyfJz+5MQR87T5KXSWukHJLln5ffCIlO/YdSwmaX\nGvkavlfn/yTnAf7ZKjwH9y40RUokWg7A5pflDmzFbYwx9dvx2aJIRtRyVFpzs81sw06k0cfPxfzI\ntsPGGBMzDXuawQ7MDQ5bX2J5kacYc0WoTe7bcR5SJp4P3GOkfW/6StgVs7Sg+t1iEWeXn/iSuDjs\nI1ITpWzPPRb9nS3PexqkxCSOpKGbn0KKema83MsOePo/tb3ye9eJuOYD2BPmJkOKEjEJ71eYLvuR\nKwvn6vXivqdMmSPiLhyAPDyN9yJvSllwCO35HBEYRxG2+aqRJNLxlMY/7+uLRFxXpbTK9TWtZAef\nulzKbms3Y8/qcOOz+PlLq3i2t/Vuw3xWWiqlR8lRGM8zlmJ/GJoqZZVsiZsxA1Ko9jbI3sPCpdym\nqxPyMl7TIjKldLDlFK47W7sf3XRCxE1agjEWGIrz4f5ijDHubIzNttPYO3DfNsaYpr2Ye7MnG5/S\ncQ5r8KBNduUfhDWzh2Xaw1LaHT0V4yUuB1K6so9kuQy+N/zc0lEiJT/hmZgf2g6jJMHhrXi+ueK7\ny8Rr2s9AahUcg2e1gCD5/MDPNAkLM6124ydSys9rhotk4z02uTq/v7ccfccuf4qZnGwuJUmLMF+z\n9boxcg3hPWBwjfwsKUsxLo4/Bwl7zqqJIq7rAvaH3XQ9XJny+wZD0mK20p58P55p/kNalYk9YFAQ\n9v9e4xFxQ0Mkf6X73d8p96hdYXie4lIcPKb+9w+jyXsn7iPGGNO05+JlMDRzRlEURVEURVEURVEU\nZRTRL2cURVEURVEURVEURVFGkYvKmlpKkCqZMFVWjJ5C7iyVB5DGtf+1AyIuLQZpXCWHkYp95Y/u\nEHH/+MYfrHb3409b7bgsKfkZmoYUpKEeyCwichDHFc6NMWbe91ZY7eO/3mS1Iwtkiic7t7gykA5X\n/oZMGZ14H1xmqhqRwltVL1PrM2JxTr2USjvlQZmqyp/jUsBOIanX5YljPQ1I8fJQilnKEpnaPjCA\ndEF2lSn9h3Q2SqfK4uWbPrHaLltaf9spyNVqyGEig87PWy3TzyLJDaOnDsdYKmKMMZXNOFfn22et\n9vDwiIhjmU5EGu53iC1d1kNVtodIBpZ+lZTYsOOMr+nlFNl0KR0pfw0pmnlfgWNRrp90U/noR5Av\nZY/He7CMyRjp6OCiqvbOBCnDad6NtLzxKUifPbse5zPlXll1fdd6zA9fWH6Z1Y6aItN+Ob0/NB5/\n99hz0uWnw4vrwumo3qpOEZe0EKma7hSkvxelyVTmMpJjJD58rfE10UVISeVUbmOMiST5ElfCT5wp\n+xnnTQYEkETST6agDvZjzglNRGpt5pQbRVxXF+QyAwOYA/q9SGV35UhJA6cSh5PjTHfVZ7s0DJE0\nKtyWQs7uSnX7IHMc7Jbp0ey40FOLOYBlqMYY44y5dK5b4eRgMGKbU468edhqp8Timh18U8pmxk8b\nY7UrjmMctayVae3jrkJaux9JOWPC5VhMHQt5G8tZ2rox97eclvPpzjOQZSZRqv/SwkIR13oQ/TRh\nUSbOx+aml3EdZJ1RFei/JW9IiWzsBIz1xh2QcEROlm4pVeuxtubMMD6nZT8+lz1lPWIixiK7GPrZ\n5EpBkeROOAtzavNBKaVoO4vr4aC+njRPju2eFow/lgaEx+P+9vfKcd5VhtckX4V1u8HmLkIqLuPt\nRsp2bL5c67sacV1YMtxxTkoG2MWK+1zqNVKWUvkW+lmmzGr/3MTMxlx+ep0cO2VbMOauuR/OkZH5\nct+38ecfWO25N6Kj7V8rx2xKDMZs43a6trY5oOkU5BMLb8T6t+sdyK2nz5cS6PJ/4txHVkPqUfuh\nlKEXfgkOoD09OAe7I9bZFyAL6O7DvmSwW+41+xqwfp7egb2SfQ896+GF5lKSfi32jS3HpJOVfzDm\nGZYOdpXKcZB5Ne5dbzM+V3a+vNZ9LVIW+G/sTkYsM+7vx96il8ohDPWdFa9xRWMsRURhjQsKkvvf\noXE4h/az2L/mTZISQN6bsdtm0z4pnWGZXfIS9NOmQ9L5KnFxtrlUtJ/ANYqeKssdsHSar3NwjNx7\nRmXSuZfSWjpfrkkt5CjIDl5x06SMq/UExiLPV0u+Bjnt+Zdl+QR+Lhi/BtIquwNkoBP/5ntolyaH\n07Mk75sibM5FAdTPQ1OxX+MyGsaY/5hvfE2gk5wKh6TsrO0YJHPhY9CnY2dLSWnxZ8w/JW/KOZpp\n9mB/EvaBdJ/j68GS9bFXY48+6N0rXhMU9OluTR1n5fNi6xGsdywf9tbJ/VIguWl1NGDch5ELtTHS\n/bD0r0cRZ3vWsLsH29HMGUVRFEVRFEVRFEVRlFFEv5xRFEVRFEVRFEVRFEUZRfTLGUVRFEVRFEVR\nFEVRlFHkojVn2CrM21ovjiUvRm2QlCXQdHY3SD3XoBdayMAtqDlz/Nfvi7gbfnqD1a4gW8Ds1VNF\nXPNpaA33Ub2TeffNx7llSQvEzT+AFe/E5XSutvoIbaSZ9JuC762Kz9n0nU/BIrvwG9dY7djpUu8Y\nGAptZV87NN6bntgo4lY8+QVzKWHNYxtZ9Boja3t0nYUVWanN5o01zc5E9Atnkqx9wDa9Xeeh8wsM\nkV2t/SiuNdtTcy2KjJukDXPzAej4HeG4tqVHpbZ+kOz5ztdCvzz3jtkijrX6XFcgOE5anbeWke0o\nWaN5q2X/6S6jfy8yPqWMxsTkb0pv4PQbodduoloHJR9JS9PsfNREYKvX5kOy9kn8LOhHT/4ZNWLG\nXJ8v4rJuhw6Y9bJDfdCEVr4p7byXfQ3a/26y5+TXG2PMmdeh1cy9Fv0gJkvWPpnyDYz7wEBoQs9v\nWSviBn8Pvb+7AFrfxPlS4801YS4FwWTxnXy5tOFsIe1rHNmatp4tF3FcuyV1+lyrzRbPxhhjqHbS\nUA/m4Z4eWQ9jaAhjfXgYWng+n4TZ8lwDnBh/HcWY87kOjDHGJJItYxvpv4Oj5BjzkGWjm+xeRwZl\nLYXG3ZiLnQmYh7gWlDHG9LaQ/eQY41O4FkHFxnPiWO4MaPrZfnzGYmkVz9bDhVQDo/6DUhFXt73c\naoeSPW7RClnLqZ/qXTWTVXWsC7rm8BCpXR+bjXG+8zDqwgQnyHo9LrIkDk3CGOvtlDUfuOYW68Kz\nrpf16tgKs+SNE5/6GmOM8fRKK8tLSfySTPHv9uNYJ7n2S+wsqa33VqC21VAR7qlfoKxhkzgP9791\nH8affcxyTY3oidCu1+7GdbJbX49ZdqXVbi5HnYaoCXIf5ErDv0OS+D3kuXpoXeQaT/b9UuL8TKtd\nTnWFYmz2vVFFsp6YL6ndgnp1WTMyxbH4MtRE8FC9nP4W2a8KxuLenN+MWgKtXbY9ENVf2HMWa+u0\nAdlvI1Ow3zr7Ed6vMBdzob0uxblK9InBV/F+4emyTsGpV2GlHZaFv5P3pcUi7sAv3rXamfMwJxVv\nk3uCODfVUaD6bc4geX4X/nrMaqf8z0rja5oOojZKbJHsP2z33XES+8aky+XE3t2MvV7cdIzTzgs2\ni12yVY8tQlztVlnfJzQZ18bTghoYXKcxKk0Ww/L3x3hprcOewxVrq+tEe8dQGouttr0Y77sHyNo3\nIk/WTWo7QfMV1c4MjpI1Xbp5z+rj8jPpNM/XbS8TxyJpLnKTtXvLQfl56w3mObYO532JMbLGlT/t\n3duo7qAxsq4Lr08eqlfU0y/r2tW1Yf6L2IQ+ERguaxJ1xmBO8VJdyr42Ob+4xmD99NIcyuugMcY0\nbiu32lxfLus2WW/nUjPYg+sUVSDnbk8JrhuvcTETZB1MtrlPozWur1XeR74nGVRfyV5HlJ+lmY5W\nzEsRqbJDn38H9WUv9nyXMAfzf2Awnmf9/GTt0YbDVGcmBfOyvZ5q3TasSSGpGNv2PYF9brejmTOK\noiiKoiiKoiiKoiijiH45oyiKoiiKoiiKoiiKMopcVNZ0lGxrO8iS0xhjvJQK5ghAug6nShtjTEg6\nUgMdbqSi5ZEMyRhjejuRSjbmtulW+/hvtom4jOshpxo/BWlMrlSyzZokLY05/bFhZznOzZYe/MZf\nPrTaV9RNsdoRoTINKvkqpPg3FyPV6dzb0jK08D5YGbdTOubiB2UK6snf4u8u/NE842s4TZlT7IyR\ncpLwcTjmcMsUeE7BqnwDUpW0VTJlfZBswds6kBbsbJLyp4hJuF8V7+IasiQpcYpMbw1JxHvsfAO2\nadkJ0oI1cxxeFzcH6XZWosA0AAAgAElEQVQsDTLGmKwbIdNpJYu4gXaZlpg8G2lvLBHrt8VFT5L2\ngb7ERde/5uNj4hjbsXaQBfOUe6WMq+RVSIUmf3OZ1W48IlOdO8n2Nf8LRVabLbuNkemfs+6DvKaL\nUjyDE+TYYWu+5Pm4/t1N0qZ1/M2TrXb7cchh6s5LWV6SB3NAby/ZOztl/819EOnH7WcxFjkF2Bhj\njr0BWcC4+XcZXzNEacpdFTLdmmVILDVja3NjjIknyVPV3p1WO4zSsI0xxkspo8KC1HNGxAk76BG2\nvMTf7a6X5xqRmonTpvdOmS+9cms+hi12YDjSmdka2BgpawqJwTjv75JpsJwuO+hF+v+Ap13EseTC\n1zRuLcffmSHXO7p8xkN9NWqSTA8+8zrm0ISxmAuD4uV4iSN79b42XAuHK1jEtRxBSn/SFVjvYsli\nleWG/3t+uKdX3brAajcfkKnm2TdhDuiqRbqxXZIzQLbnDZuR2js8Iq0/2bY6hOQTdqnH+AWXNp07\n6Upcp4EOuWdgyYi3AvMZW4kaI9c/Tq/3s/3sxWnZvX24TgEhMl373DrMseNWYiy5srE2126QNqPt\nlALuykGc/TP1tUL+64yHdK3+oLQ3dZDsoH4T7mPcQimnPfcirKZz7sJ+KdD2mUr/Sla1lxmfEk72\npp4zco6KnIJ9Aa/bngttIu7cTlzP+Aiss7d9a5GIa9oPueDKry+32qfflOtxwjhcpxSS0Ly3AzL8\n2FNyrr7n99+12u212A8d+/M+ERcVgbmRZZO9jdL2O+ua8RSHcZ8UJ/d/UUWYh53nMff4B8sU/OJj\n5VZb7tx9A8uQardekMdIJuegNaRuu4yLIhlgVznJ2GzjIDwTfaFmM+59r03KH0dz+yBJLmMLM632\n0JCXX2IaTqKvh6XgHvd0S+l9yz7IuMJJNhpoW+tZShg3G/0qJFZKTz0l6PuttF9iuY0xUqboa1qP\nYw3ivboxxvS14jrxMwfPs8ZIS/DwNByr3SH3qLxX8icJkKdYzgEsHQqORv9mO/SUIrmGD+7HuOK9\nV/kpaUuekk6yUVrjhoal/TRL2WOm4W/1tchn6pg5OMayrap3pV170pJLZ4dujLxm/v5yHmA53aCX\n984yzpAiKCIb47K+UUoHeR3qpGcXu619cCzunYPnvSaM2eoN28VrXGNRAiFlGp7Fa/ZLy22WmA8M\nQaZsl1L1kyRriD57X6t8DoydhtIIbJ3urZVj0d8mc7KjmTOKoiiKoiiKoiiKoiijiH45oyiKoiiK\noiiKoiiKMopcVNbEspyDv98ljoUGI71w0ffXWO2Tz64XcdGFSGkKiUWa3+GnPxRxDR1I+Zl2Ixya\nBoekW0c9OT6lXQ85x+Gnt1jtmLGx4jWf/ANpTJxGPWvOXBG3+u4rrPaRDUjHX/j1JSKO09G2vQRZ\nwfJHltnikDrXdg6px0Pdsjr4sC0NztcMkdTI7ohRT24HnGJod0mpegtSiN4BvF/5v6RUiCtcOx1I\nC+PUQ2OMcZO8itPozm1BCp89BZPTtAsykOIZt0CmW/e3I/2s7gOk0TnDpRSgh9JYQ6mqdstumb7I\n0ryaY5DEBNiqtycslI4sviRjBRyLSv92RByrD0RqbtplkAP1tMuK5wVfg8yp9A1IFjmN3Rhj4ubh\nelbS/Y2YIB0CgqrxOnYjixiH8ed1y/euWIf7WzyAdHqea4wxJohkG/7kDGRPGWXJ3rH1SC/PKZT3\nonoD0mJTroAsseVonYhb9NhV5lLCfdMui3Nlo+p7x2lyHXDLVOf6jzEHOhPRbx22/t1bjmvDac8O\n2z1JuwzzrZ8fjg314tr0NskU3Ob9u6126jI4UXQ1Slc/rpIfkvDZ7n/s0FH/CT5fVIF0nElYmPmp\n58TOa8YY09ch5VC+pLqZUqePy4r+g+TcEk+SSiEdM8ZkzEdqcgA52bUfkbIZXkPclKY70CXXEJar\n8rzGjj8DXbb0fnLGqyMpAfdDY4zZ8/MPrPbEOyFxMvIjmeY9mDe7+/C3IhOkhGOwE+fOrhTucdKJ\nTbgDSYWmT+DrwdfZGGNCyIXQWw13lsxbJoi4rgrI6ThFW7ohyZTtsbdjjub5wBhjpjwwx2o37IYU\noquEnAVtnyMmC+nw7ERj73OlmzAHRrhxrjlflI6Ypa9A/spyyIgceX94bHPq/ZBX7jHSVuSZS8Vg\nx6f3JWOMiS6EZIclF/GzpLNIVymuLUv1Os5LqW3nKfy7rwn9JSZK9u9Icps7sg7X8vorsd90j5d7\n1MqPsb+OKoAcq6pZnkN9O/rbzAJIyQ5sPCriJk7BGtffiHPdd05K4lIb8P5FVE6g7bicnxs7ZEq+\nr6l4C/uMcJv0niWbPFeGJMoxxpJpln0mz5FS2+Yz2BOG01xnl1LwXpklm85UrFXtDdKN0p1FEqUg\nzCEjI3JMZK7GPFK7FQ59/kHykYyfFdglqnGnlEmlLMcazPMmS9+MMSYo8tLJmmJJssMuvcYYM0zz\nUgc5p8VNk5IivhYdJLu1u0Dy+AmKwGcatj3fsKRoeAjzYQQ9I7aelH09f9Ukq123EX0lPVc6eTro\nvbtpfs67d5qI42eizhLs60JTZP8dpHWb13D7c5D9WcrXlP4Nc0nCokxxrO0orlXiZdjDNB6WciVe\nh/o6IRVKmCnfr+kIpKLsIGuXOIeRS2TdDuwPWa7KMnxjjImZgPvVdA6fKSpflsFoJ7fRlr3Yw4y7\nVwo4I/OxF23ej7iM6yaLuJZTcJfjvumtk304ZrJ8nrKjmTOKoiiKoiiKoiiKoiijiH45oyiKoiiK\noiiKoiiKMorolzOKoiiKoiiKoiiKoiijyEVrzmwirfl1P71BHBvwol5C6wXoLgdtdp3bn9lqtefc\nBT110mxZJySF6o7ET0YtmeotpSKOdWnHXjpgtZtIE5s0U2qKL38EtWRYg8m22sYYk0D2q+OLYLPp\nTswScSdff9dqL7gNYvgNv9go4lJjoNHuH8R1SZswVsSNve1SmBMCN2mg2bLWGGOipkCXzbp71lcb\nY0zqSujGWYtrt9yuegt9IYxsLnuqpN5ueBI0iQNk+ZuzAFrp7jJpj8t/N50sTIcHZR2Shm3lVts9\nHvcgaoLUGlaQJTjbo4dkRIi4nkpoJoNi8HnDMqUNoH/Qxa3RPg912zEOguOk3W7iLPSnI0+jD079\n9tUirqsRFrkZK1HDxtsg701XBfSzsVTPx1vdKeI6GvDvxAiMl6q1qE+UcvU48Zok0rA27YTe9Pif\npGVo9jK8Lm4mdMnDtvklchz6dloi2s2ltnoBPVTrpRnt3k5Z96WRNKdLfiJrSPkEsoAMS5f9zEl2\ngSGLMOc07JL68oR5qKfjoboyw7Y6Uf0d+GxBMXjv4BjZf6rJmj2C6pr0Ul2FMNuY4PonzYfRr+w1\nrdhiku0rO89Ly0sem2wj2bS3SsRxPYKgyBCcd76sF+Dnf+l+dwig9w50yb9bV475NbIT85p97PB1\naq7Ca9hW2xhjGg/VIO4I182QWv2GPbhOIRG4Ls278P8Rk+X8F5aGe8o1VvqaZf2V2CTUZWilczh/\nsEzEZYzBWjL2RtRUsNcD8g7iWnS1oW7Q+Q+kZWhMjKzl4WsGqOZTzFRZT6BpD3TjSVdAW2/vjzwu\nuOZFhK3uHa8NnjLcb7bnNMYYQ/UJ+P701qEGQdJSaaXaVfnpNSZaj8v6ReNuRO0NroNQuVbWzUi8\nDHNPdw3u1aBtbA/1ovYcW8Wzbt8YY/ptc6wviZ2HvZ7DVnOg4k3UMTl8GjUR8vbL80u/CmsN26du\nf367iLv84cutds1GsmD2ylpO9bSv9Paj9kZfA/p6s+2+cy2Vkq3nrPaSO+aJOJ67ubbI3FtkzTYX\n1T7h2ly3fXGKiNv1NPbn3ZXYb9UWyzocc4ryzaWELaTt80XCfKx3/TSncv0LY4zJWl1otXtbsCb1\n98v3c5MtPa+fzgRp/xxAte7YnrrlIOpqpl6VK15TvRF1nfzJMjp2eoqI4/WP63JyPRZjjBmheoBs\nE+3KlfWfHGGIG6RxGZoq51C7zb0v4X5v32tzDcER2q/3NMq95yDd375G9NvIQvl+ThoHASHoOxHj\n5frZzvbMVE+K9xj2WiU8Xnjejp9vq2P4DtarxCsxJ3eWyr1NxynUNHFS3b3AsfIecs0yRyiNh0r5\nHHSpSb0Gfbp+R7k4FlGAPTbfgyBbHUOu41LxJtYXV66sJ+WgmiyJtOcNCJb9tPyNk1Y7jmr58ThK\nu1LWg3M4sG9xxmANGuyx1evLQpynVD4fM7yfTl2ONeP8X6U1N/fV4CjsxUaGZA24ttNYn5PlVxbG\nGM2cURRFURRFURRFURRFGVX0yxlFURRFURRFURRFUZRRxG9kZGTk/z9MURRFURRFURRFURRFuRRo\n5oyiKIqiKIqiKIqiKMoool/OKIqiKIqiKIqiKIqijCL65YyiKIqiKIqiKIqiKMoool/OKIqiKIqi\nKIqiKIqijCL65YyiKIqiKIqiKIqiKMoool/OKIqiKIqiKIqiKIqijCL65YyiKIqiKIqiKIqiKMoo\nol/OKIqiKIqiKIqiKIqijCL65YyiKIqiKIqiKIqiKMoool/OKIqiKIqiKIqiKIqijCL65YyiKIqi\nKIqiKIqiKMoool/OKIqiKIqiKIqiKIqijCL65YyiKIqiKIqiKIqiKMoool/OKIqiKIqiKIqiKIqi\njCL65YyiKIqiKIqiKIqiKMoool/OKIqiKIqiKIqiKIqijCL65YyiKIqiKIqiKIqiKMoool/OKIqi\nKIqiKIqiKIqijCKBFzu44/vft9rxC9PFseH+Yavdur/WarsLYkVcWHqE1W7eW221Y6aniLjB7n6r\nHRwdYrVbDtaKuMiJCTj5UIfV7m3xWu2Bjl753l1476hJSVa7r9Ur4oKj8Heb9+FcQ1PdIm6ofwhx\ndH5BToeIG+gdsNrRU/F3w+zv14f3Gzf/LuNrtj/+uNUOCJDfxwW4gqx2D12PiOwoEdfbgGORhfFW\ne2R4RMQNdPZZ7aBIp9Xub5f3xD0O/WRkCH2p+r1zVnt4RL53zm2FVtvb0IW/abvfHcebrHby1TlW\nu+14g4iLKkRf6jiD1wRRPzDGmBbq3wFBAXh9UZKI6yprs9ozH/yu8SXH1z5ntVMXTBLHHA5cy0dX\nfsVq33XrMhEXNyfDaj9484+t9h0LFoi4wWHcj3GFmVY7LCtSxNVuL7PaGVePs9rrn/vQagcGBIjX\nrPnNfVa74dBZq51QNF7Enfwt3mPe/zxqtc9t/7uIG7f4Lqu995dPon38rIhb/f0VVrv1eL3V7jzV\nLOImfWO11Xa7C4yvaWraYrWP/uojcSzrBvy91sPocyMDwyKurQr9LCwcfTXx8mwRx3Nq1IREq33m\n2b0izp0bY7VjpiZb7fBEjPOqzcfFa/qaMB/EzcXaUPbWKRE3QmM4d80Uq91d0yHiXFnRVrv1CD57\nV0mbiMu5uwhxJ+us9jDNocYYU7XjgtVe9vOfG19y4MVfWu3gGDlX+AVifvXz87PaEblyXWw9ibnI\nRXNtT61HxHnOtyKO7tNgV5+ICwjFPB6a4rLavOba5+rExegv/oE41+F+eS0bd1da7b7mHqsdvzBD\nxPnT3OiMDrXaPU1dIs5bhXsfPRlzaOOeKhHH1yV33l3G1xz8y9NW20HroDHGxEzF/mR4ENej/XSj\niGs/gvvo58C9T78xX8T1NnVb7a6KdqsdkhT+me835MX+If0mzA09DfJ68rl3leO9u6jvGGNMIMVx\nP7X3YWci+k8HfV5es40xxo/2ErzHco+NEXHV7xVb7dkPf8/4ku5urEEvf+WH4th7Bw9a7W9ee63V\nDo+T1zz/nmus9k9vw/k99k85bwwOot/6+2Nvs+n7fxVxq3/za6s9PIzxcuqdl6x2ye5S8ZoZD86z\n2ut/9p7VvvyeRSJu5yu7zaex+pdfE//+5Rewd5+egz1QTIzce565gDG37NHlVrvlsNx3F6y422oH\nBoYaX/PeI49Y7VnfvVocGx5G32o6Um61o/ITRFxgcLDVPvKr7VZ7f0mJiLvulkV4D3qeqPiXXLty\nvjjVageFYH1667svW+1rf3Atv8Ts//XHVjt7Ia57bJF83mk7hXEeP3Ws1W7YXyziOs5gf9Jch7Uw\nNlHuxTJWYX7Y/attOIdJ8rktmtb37Cm3GV9yfu8rVrtlX4045qR5btBDzwjRcu5xRGBctdN+3WWb\nU4KiEFe7sYTiokVcQDDWpN4GzMEB9OwYOSFevKb0HdkP/o07ziX+7XCjv4WkYFw5wuVaMtQ3aLW7\nLuAeOiKCRVwz7UsTZqRabWe8nK/4eafgqi9/6rl+Hvi5P3q6fMYJobXB0N6uu7pTxHWewPMUp4AE\nx8u5IyIvzmq3n6DnM9o7XYywTIyDkWG5T+bntnB+drG9d08F5vX4y7KsduNHZSKOn5Xj5qTh7xyQ\nfX1kEOcRXYTxNtQ/KOJ4zzrhmvuNHc2cURRFURRFURRFURRFGUUumjkTNw/fDhn5o5vpKsWvMmFj\n8K2U/Zc/Z3wY3oJ+ueOsF2OMGR7At0gth/GLqJ9D/vJe9T4yK9z0y1pXGX4xylgtf/GuWY9vowPp\nW01vlfy2L3wMvnX1D5Z/l+mlX65Sr8K33s4Y+a0g/8LlKcH1aqmXv3yJazv/M//s/5m0FXlWOyBY\n3vLG3RVWu7kC9y4le4yI66BvfPnX8Po9lSIu7QpcD281vpF0Jspvf0/+87DVjnHj29jqVlynycsn\nitf00K+P+/91wGqPzUkVcVWN+NY2sha/jISkyG++K9ciuyL1mlyr3Vkssym8ffimf6gH34oGnm8R\ncXVl8ldVX5J3FX7l2PzYz8SxwvtmWu2FBej7IUny837y+x1WuyANYzt3hrzX2zfhF8el1yOjpeKd\n0yKOM5t4bJ+sRJ94edcu8Zq13/ym1Z5632yr/bM7firiYlw497BX/oD3+/sGETfzLfSjq39yp9We\n4X5YxN298Eqr/ezGP1lt75wLIu7UX9ZZ7dkP+z5zxtuIPpP3xSJx7NgL+6x2SBDmqUjbL9b+/vhO\nPTAM8+igt1/EXfgQc2V+HObh3Hvk3w0Kx7X21KAPNxw4b7WjJ8lfUIbp1wH+IcKdLn/RG+zEOfGv\nsWlXThBxRyiLKDQMv4rFzk0TcaWvHrXamfRroadCZthMoDFxKbHPp32t+KU8hOY8zioxxpho+sV2\nsAe/qPAvScYYE1WAOB5j9l+Jumnd5TXYlYM1re1wvXhN6zGss3x/K98+I+L4V8/Epci26aYMEGPk\nr6A9tVhbB7oGRFw/Zbn2ZeB6+fnLX7Tsv8b5Gv711d+2z2g+hF/DeB4d8MgxFpyIcRWSjDi+tsYY\nM9iNazBAWaScvWmMvL5Bbpxf3TbMU86EMPGa7krch95a7C2SrpTzurcOx3pqcG27y2QWG3/G5Mvx\n6/+Fvx4VcTn3ILOg4zzWzEGvvN/u8XL+8iVt9Zj/o8LkdXlj7ztWe+ePX7TaLtt8WnsI6933/v4j\nq93TUy7iPHSd0wqRZVLfLsfB4ytvsNp3fgsZm5ve/sRq3/jta8RrkrKvstoLV9H+w5btNut6zN29\njdgPNZ09JuJSojHu396LTMmmTjmmnvzJA1bbEYY1J2WRnJ/3PPELqz3/8R8YX1P4pRlWu/iFj8Wx\nHg/GS2sX+vCSojwR9/sv/9ZqT8pAVt+KOy8Tcbxmbnl6s9WOc8usotJX0N85y2HeTVhbdj21Vbwm\nKQ7X3U3PE8d/94mIO1lFGUu0j+qh7A5jjMlZg/udVI9+Vr1OZgaffQF9uOBq3LvhXvlrfePH2O9n\nTzE+xUvrTkiavJacRc9Zt4NeeX6es5h3XXnIluHnQ2NkVnD8AmQHBYbI58rKDdgDcRZ3QCDa/bZz\nDaD9lTMU9324V56DoZf1NeO+9dTJZ2CGsyo4U8b+t/g5tfWQzGILtZ2vr+kbwPw9ZJvLW0hRMtCO\n5yJ/p21/Qxk3w6SM6L4g50rOlomajOzumg9ktpuT9hacqd12DNfQntmfSFkwpRswXiLccp0Ypjl2\nqAefN35JpohjVci5d05a7fS5Mq79KPbQAU7sD+3fKQwH2fqTDc2cURRFURRFURRFURRFGUX0yxlF\nURRFURRFURRFUZRRRL+cURRFURRFURRFURRFGUUuWnOmbke51XbYXFdc+dDtRuZDJ8+ae2OMaTkA\nvVxwLHRjXeWyRkAoVbuOZu3Z+nMiLnMVXBACgnD67KhU8k+pv42nSulN5K5U0dQk4vLIFYV1fQMe\n6YzhqYRGu78JnzeBNG7GSPenTtIaslbPGGPc42Ulcl/DdRH2PL9THHOF4BzHL4bjDjsoGWNMOOnu\nucp0VYusu9L9Lj5bxnTofr3VUoc5fiWcl1hTmTIIne7IkNRbN24tt9q5edAdJiyQriHDH+Dch0hz\nyxptY4wZGMLnYJco+2eady+cFI79Ddpe1o8aY0xC6qXT1u/7GRwgEvJknQI+j2l3z8L/29yubnj6\nB1Y79RfPWu3XX98i4h59Fa4XLhfGW888WSupKB8OEZ2dR6z2w1+/2WqffO958ZqlP8Zr+vuhzRwY\nlNrj+jbMD1yd/pZFsiiTaxz6S9X2Q1a74cA6EbcwH5+juxN6VmeYrKUSM0M6nPgabz3VA8mSzgJO\nB/TSoVS/KtRWKykwBOOZ3ZVst9tExWIOq3gT9YJiZiSLOP8A3Ad2e+F6B/W7KvglJmlhptVm952k\ny2Wdi+r10Ppy3ZXOSumcVvjQXMT54/PVfWzTHlO9jbLXTljtzJtljYRTf9xvtVOfuMH4FLou7hzb\n3E11UwJJb9x0UFb0jxiHNbON6pMkLpKOW/3tWF9ajiDOXnekh+qzxJLTQ1Ak5vdh25zOBLmgd4+c\nLOcXvm+8LsTNkLW+eK7lmi3eClnTJG0l6ljx+4WlRYg4dhS6FLCGPGFepjjWR9ednadC4uR151pH\nAx14P3sdl+zbyWmwkeZRW00RB9WZqX4ftfLi52ONq3hL1v7i/dIQ1S/yXJB7LIbdMj0lcr3rIKeN\n8npo61NXyhof3VRXqIfq6AXY6j5wvR1f8+xDcECqbJa14rL+9C+rPe3bqDnW2y7n+P+55xmrfc9y\n9Nuib0gHDVcB7m9AAMbVkQuybtlLO1Ez5cirqINy209WWe0qW82Qxp2/sdrhY1BLcf/rB0Tc+gP4\nN9cl+/5vHhBxl395sdVOfB21GIrunyPi6rbi3N/4zhtW+3Vbrbh/fvgLcynh2i9ljbJ234PPftFq\ntxejbx586n0Rt3INasv4BWAefuMvH4o4vm5Ts7Bnz1ktaxwGkXNQ+atwKwwnV8TCVbJwS8se1OSo\negf3eOq3ZN2bkN9hHx5Ja8GWv8vr/sGGPVb7pofgYhVkdwlsx1x56n2M2axC6daUvlK6YvqSEaoL\nE2yrv+mh+oz99IwYYKtV4oh20jHMI3Y3vQGqOcMuTC1nZN/h59Z+2mMO9+P1obYaoMnzM/F+ezEf\nhI6RNU3627AvdVG9MXt9nKo92DuFUt+LmyL3YVwDjd2QQ2zuvvZ9nq8Zonp2nnNyrmSn3u4hrHH2\n2jTdtCeMGI/+7bG5asbMxh6i9TDXwJN7kGBad/n6OqiWUfsxuacMy8B+ImspaqFWb5XzdUQa7msf\n1cPzlss1nNfWyCjU4fMUy2sUR87W7NTlsdUoZZdms9D8B5o5oyiKoiiKoiiKoiiKMorolzOKoiiK\noiiKoiiKoiijyEVlTdmUKm5Pke2idCdOZ4sqTBRxLIFxjUUKeNNOacHcTPKn2OlI94qaJmUHnFpU\n+x6sXkPJRmvIZjPKkic32VieOHRIxPmRJ+yM8bCJbDsq06XG3IoUZWEBfkCmrneTVXfyclhS9jV7\nzf9L2KI0MVKm5vWSbRpbaHLKnjHG1F1AuuCYdKSLTSjKEXFtZegXez+EFSFfW2OMSTiO93BSql/2\nNUi79JyTacrcF9iivctm6Vpaib40gyQcLcekdZ07Ef2isx73auatM0Rc8etIaQ0i6UlwvExxjyH5\nnK/ZeRr2tvW75Vi8tRMpzOUl+OxLf7BKxPn74zqzPe6XHl0t4pxOXOcfrb7dal+9dJaI+wO97trp\n06w236esxcvEa2qObLfap9/Gdb1hlnzvzcdxbNpXvmK19z75axGXvwL22ZxqHpUvZU3DL0GO1k79\nKmf+YhHX4ZIpj76GpRTV7xWLYwmzYRvdVYp73G2ThXC6ZdV+zKPhTqeIGyTZXsJMpI8Odkk7YB5L\nLJFja+T4dCk5YQnL+SPlOJ+Tcg5MHvPpVtCRmTLduvQNpG+zhXLeA3IsBjjQhwe8lB5ts7SOHnvp\nJIY87ms3l4pjiUuQ8l62DunlrlwpYfN34HeRmGm4N2xJbIy8H+nLkXY/2CfXkOZ+3OvOUszBPTWQ\n0Q3Y5vSQNKRitwwipZilUMYY4yJ7dLaGHLLZtDpIGsWynogJ0h6cadoLS1m2WzXGGIc72B7uUxLm\nQSrEMixjjImdhrm84q1TVjvQll7fV4eU+nCyfg3NkOOl9CXIPjPvwP6h7YRckxLnov8E0vXspDkr\nIk/27UCyQA4fh3Pge2+MMQ5Km2dL3YTFmSLOGY+1wRkLeUJvi63PkYSD13e+rsYY438J5WmXF+Ja\nzvreXeLYa994ymq3PoX+6O2TsvKn3vmp1a75GOtO5eGNIo4/B++HH33iSyKupQXSlNQrC6z2Yzf9\nzGr/8NVvitc8fvvTVvtnbzxqtRfny/T+7H9hf13fgHH++8dfFXE3zILd8wdHsQ+b7pCy4Jff2GS1\nL5uI+WVb8QkR98K9WIMfeOlG42vm3Qm5VWGxbQ4kGcdLv4I9+oM/v1PEHXsJUtaPT0P6t7CgQMQd\nKSuz2rz/te8jt6/dZ7WvuHOB1T7zEp4bunrlnBofhbky+RpIKd7+r9dEnIvW6nRaj1f/VF5bhxPj\nr8+D8Txik0OG0+y04/QAACAASURBVBztT7LH0welLDhrxTRzqWApU9tROa8Fx+GYi+Yob6Xc28TN\nw76gaRf2NjEz5N6aLbP9AjAu0y6TsupuuqehJJvtb8PeoddmX15xFGtSZBjW+kGP3Dd1NXy2ZTaT\nNhvzYU8tJFT8XGaMMYGhmMcbD2B+tsvQO4ulPMbXJM8kWU63/Mz+DsjExBpn01r11OFz9tLzrstW\nwqO3AXHcR87uPC/isgqwRzp5SPbpf5M/QZYV6SrBHN3VgXMICpR7RQfJF/tbMZ4vVMk+nETPzs4h\nXIeEy+R6V/o29gvJs3EtQ5KlPK3tUJ25GJo5oyiKoiiKoiiKoiiKMorolzOKoiiKoiiKoiiKoiij\nyMXdmj5EynYspdwbI9PzQ6hStT3VOW0FKvyf+xtSezOukZX///IEKsWvmY9UIHsqGVeBnvDVa6x2\nUBBSpx0uWcU9Ib/Iavs7kOL5QN4tIq6T0ik5bTCiQKYRt5+CzCmIHJn8nfJysssKSwma98sUarvb\nkK/Z8bttVnvCnFxxLD7206tgdxyXVc+zF0C+xO45jSXS8crTI926/s20+dJNpZSkEGPnIx2N0/1b\nbS4SR7cgnXTWWKSMdtr+ZtE1k602pzUG2hzH2ClkmKRw9nT6zCtxzdqP495zFXJjjGk/iTS4DB8X\nxb/nd1+w2o37pSTwd0+/brVvX4D02+YTUqJzZtd2qz3vse9b7X3P/FzEdZ5DCu6XnrjNaidkLRJx\n2ash/etpwXVmpxOHQ8rofvX9V6x2Rhyu351PyrF44Qlc5xVFSMV+6OqrRVzVifes9pFX4GQR55Yp\nhHMfg+ND6Qa4NwwPy/nFU0aSMWne4BP8yWEucqJMWY8gKY7nDPp+zDSZ1hoYhpTeLHJr6rClg7Pc\ngV2YEuZKSdEQSWISp0ImcPKZDVY79/7p4jXBwfi7cdORcuofIOfAirWQ9mRcgfdoOCodZ1jCEUTn\n7bG7+iViTm0/i7kn2iantbs7+JLwDPTp6Iny73aQ/IRlEN1lMmW+/RDmiiGahzJWyxT8oV6k3dfu\nOEv/L9fZ8Cw4vOx9da/VLpiNucvujOEkBwRex9jpxI6fH96j6v1T4lg8yVlYxjtsc7VjKVNAMN6v\n1+aaETNFSpp9TXcN5HPBsdJdZJDcJ6Km4B63HZGpzpFTcSyqAE4Wgz3y/gyS4yM7cPE+6n/Btef9\nQ0gipEYDtj0RO0i1dJI7ps3RKzCUpAB0i3ttMmte37kveOl6GWNMzExIDYZpDrFLmAdsqfG+ZO95\npL8vCc0Ux256+mGr3VwKB8/IDOmItuExrElpsZiDIybIfrvu9e1WexvJbnNTpORiBu1NpszDRuCB\n++EaN9Al7/t/PwNnqCfuhHPTvd+UMpfYOdiHT5yC9+v5r+dE3Bu7P7Hajzx1j9WOiJPzSytJZWY9\nBMuQ7m6bXNMmh/c1F96FbNsdL9fuliPo07yH2/HsNhF32SNXWO0JbXBR2vWidEB68Hk4W/W0YH2x\nu+zMnIZ7x3KO7BVwfuzvkLKmvmaM7WOvQkp95cNLRRxLdzf9GvuRonny/uzehueVK7+4yGrXfiT3\ndoH+WGvYtaykXs5XXXX4d6yPlb8dp+hZwGYMyNIjdmty5UqZS8cZnHskOfa0ksuuMcZETMBcy/v4\n8s1SDsPXpY2eJxwkbWnrkusO4yC5tH0dc5PLz8Wkm/zsF0HOxva+012JPQKvOYM2J6ShnkvnfmeM\nXIcj6TobY0zZ+9iDJBZh32ffj7AcO5S+H+i07VG7S/GZm2kuyr9cPkDx+89dAwlk8yfYS9ilflFF\n2D/4n0bfbK+TUjpzBsfiaW/sPCf7XBg9K/Oz/snXjoi4/Bu47AmuQ0CI3BuzC+anoZkziqIoiqIo\niqIoiqIoo4h+OaMoiqIoiqIoiqIoijKK6JcziqIoiqIoiqIoiqIoo8hFa86EkVVW854qcYz1gCxg\ntuvyWIPfTRaGxe9Iq75VNy7BP4agHUtaIK3Rqj+E/WzjKdQzaN4LW8f0FVKvdu7ND6x2zg2wzo2M\nnCriikdettqsY4yw2bK2Hqd6AX3QwvU1Sku2ELLwrmfryvmy5sN/6s59y9x75lptrtljjDFdVGPD\nNRZ2r6GZ0gq0mTSfsVQDo6Fd1lIYpNotC26ZbbXfe2mriFt+C2qjdJ5GH2F9ZtZ18j72vIlja378\nY6v9yJ3SUnHtU7BUzE3GuRZlS615MtVRSib72LA4WQukoRZ6aNbt122Sumyur+RrfnoHdOi3XbtE\nHAsJRr0OrvVgt+o7fB465dNfutdqT18si6sc3oFaEinFqD3Uc7XU5tZtxvslLkHdILbb7euTNvS/\n2YB6Nj9YdbfV3vbUZhHHttDPvf443q9V1kf4ycN/tNq/XIvaOXUH5Pzy41u+ZbV7+9GPnrz2ehFn\n1636mr5mzBH+pMU1xpiaTeesdqAbNVNq1p8TcWE5qC/C55s2f66I83pwf7hexIDXVmeHbGE9pdBl\nj3sAdqxnn90jXuNMQQ0M1uO7bRry9Ouhz6/bh3sSlS+1zBFj8LphmnvZMtMYY0pfgQY/MBzXKNpW\nv2eg69LpslsOYS7srZFjImk51qvgWdBk8/pkjLSxDqN6MQMeuRYER0lba+v1VIPEGGMicnD95t2H\nGk0Oqt9Tu0XOV65szPeOcK6zJceAXyDur58fxnb+mhUiztOKeTIiFnW/hoeltj48FXUBLvwNtUAC\nwuW97muXr/M1YSlYnwds9vJcF8ZzHpbFYt9jpO14zQew+OTaAsZIvbmoNWCrzzJI1rzRhdDMd5yD\nLj4sVa7NbHHNFuD2uYw/Y/gszNfDw7JeAM9Dpz7CPe3pl9doXBb6d/JVqLNSv6tCxIlaQnLp+tzc\n/jjqriwcK/cLP7n9dqu9/gDqkX3/tSdFXOFS1PnwVmKe/MWv/i7iHvsxardccQJ7x5AUOY8X3HCX\n1a44vM5qp05C3ZE/3/9f4jXXf/86q33zVaj9kjR9koi7btqteI9XUDdu8XdkTZO5HZgDnv7Wn632\nz9fJNeJnf0RdnqQMnMOZzX8WcRnTMs2lZNLXUEfC3yEfS8rfwj7//l+ssdpcU80YY9b/D6411w66\n6sc3ibj2EszFoUlUD6O0VcTl34Xr0VKOtavkn5izeL9rjDFxuRj3U744A3/zjKzNuPY11MuZPx79\n1mGbA4Ooxk7rAaw7Ttu6sPcIxinX24uPkHOFM1bWofIlXOOK98nGyJohg91Ym4f75NzjjMd78HPB\nf8xl9MzE9a7qbc8jHV7MjTMmjsO5JuLvRLtlbTM+95pt2EMFDch73dyJuSJnAea/lsPSIjllKfYE\ng1RDrmKXrBuUNgM12xp3o65keKas92Sfb3xNNNV662uR++0AquHjR3V2emukrXjmrXimaD2B5+VB\n276M70MG7Ws952S90V7aC8TT/XHnYd8TWSDX5raTePYIScJ+KcS27+6pxbnzPnKSrfaok6ziGz4u\nx+tt6yL3zcoduMdZy8aJOGey3MPZ0cwZRVEURVEURVEURVGUUUS/nFEURVEURVEURVEURRlFLipr\nGupHGpfTlkbtrYQ8hqVMwTHSktI9FmlHEQdxzJ5+1k/pU2FpSMsbGZGpZJzCxnapbC9bs0naqY25\nCfKagACkAw4PS+u85MmI4xRtu8VeUCQkFxFjkMboHyitsbpILsCpbXar0oFLnL4d4CQLzQD5fVxb\nBVI52bqz6oiUseVdDytsIYUKkemVE65BOhtbwC2aN1nE9bfhM9fXIYUt/zq83lstJVi1rTjXxXOR\nnhtnS93c/PHHVrt5Mv5uclSUiBsXjz7ddACprscP7hNxTZS+ODYNMqnaJpkGW/7sdqud8ZxMpf28\nxJOV5YS7V4tjXyN51hBd8+h8adF+3x+fsNrn3nvbav/8aZm+7QzCuJqXB6lWlM1G9nBZmdW+owBp\n1NfPuM9qXztjhnjNZQtha38l3Zv9JSUi7huv/MFq3385pEe/2/hXEfeLtyER/Mc3nrfaYxKlxfH9\nP4Yl+LY/bLfa/f3S2o9THC8FLBHxVklr2nZKq86/H9ft9PP7RVzOQkgSnCFkZzgkZZUlf4bF35i7\ncK3Do3JEXMtByD5bS3A9euogRwjNkPambHMfkYq+6cqKFnF1O2Tq7r9pL5Zp3i17aj71XO0WjTx3\nBtL8b5/X2K7T10SSZXKzTQ7TSRKYGLI593PI8/MjKRhLl+yf10EW49lXXma1G04fFHHtJB9mK2S2\nSc8gC1hjjGk5ijR5XqdjU2eJuIAAstwOIgnWgBwrDY2QjgSGwHKzaqO0TQ+m1PrsO3Gva7fIOaC3\n4bMtTn1BI0m1Wc5ijDGxc8genuxUI8dJuVJ3LV7XWIY+ffDAGRE375ppVrv4fVyP/FVSttK0j2zG\nSdLXVYo19wLZmRpjTMpszPNsqx0aJdP1A+LRz1wuSCnqKt4XcbzXm3XfPKvdsK1MxIXQPq2Pxps7\nR84BLIP2NQdehNzye6tWiWPzfwDZT+zmv1jtmn1yPk1bBPlmxWa836/XPS7iWk9CrpCzBnvF6i1S\nQnvs1RetdsMZrJkxubjm+87LPWrRu5DrP/IMXr/qoOxHr74HSdbIIMb2i996VcSxXfTjf4d06fgf\n5VrPEpPEcdgDjdgkHBnLZAkAX3P4md1WO3OxXJ/6W9C36kiambI8V8RNmQbZwMkjmEuef0DajK96\nYJnVZqlfZJ4c299Z8TWrfes8jIOlT2Af5fHIsdjRhLHNJQR2bzgk4m56YLnV3vU69psRHjl2imai\nz7A9Me+fjTEmgvbhs9Zg/n7l52+LuPWPQ/p134vXGl/CJQlY2m6MMZ4z2C9EFWFvZpcr8ZwfWQiJ\nybn3bWtIHJ4l31q73WrHuuU+5WwN9hVLb8Me1T0G17mzREpoUmZi75U+B2Uwmi7INTed5L8e2ru5\ns+VzBh/j59RIl3ym5mfbIJLs2aXiPXWXdo86SFbdvO4YY0zCTDxrsCI3NEtKr5rpearjBNbFgDAp\ndxuhEibcZ8LHyGuYTKVFqt7BnBjNa8uI7Esst2er86qdch2LL0B/bNgNSa5dNlmzEXM2W25PGSvn\nxmGalxOnQGbcdaHVFmfzm7ehmTOKoiiKoiiKoiiKoiijiH45oyiKoiiKoiiKoiiKMopcVNbElbQ5\njcwYY+o/QSXkpLlIqw3PlOlIQ1SdmiujJ/vL74WCoiAVGuoj6ZJDpnSFsuSJUqJC0yBtiRgn3ZW6\nm3Cunb2UbuWWKaPMQBcqLrceldW3OS27JxJpeGlzZSX8/ulIl6vbAwecvmaZch89RUowfE13DdIr\nQ22VquPykTrIaVzxafK6c9oyO0K4cmTcO7/baLXn5CHNNGZuqohzk1MISxDCM5Ae17itXH4Ocvs6\ndBbppA/cKtMzv7ACLiKeHjpvl/zszQfRF9jZKChQDouoMNxvrpSeYpNSREyQabG+ZEYOUn2/t/IB\ncey+h5HOnTy70Gq3V8j0vaBsjIvx19+BAzZZ089ef8Rqb/kx7md7rZQi3vQjOGWcfAZSsuee+IbV\n3rFBpoIePoj7du1j11jt/f8tJQ17f/Jrq/3AnXBN2PTYMyJux2mku977tZVWO3GWrIweFYU09HEZ\n+FtfXf5VEffyzi3mUhJPErSqtXL+6R3AXHnuBaRBJ83PFHEX/g63iPAcyCCiCqQDUvQspHx666ki\nfYKM66uHHIrlpv4VGBOt3VIylZqCvp50GVzQOs5LmVhwDNKtO89iPoyZIiUX5zehX7gpJdae0puw\nGJIuljgNdkt5UcYNUsLjS1iGZHelCCOHvkBK022vlOnBmctl//w3AcFSGhsTDxcTjweuJZFjpGSx\n6ThSbv2D8B7sEtR2WjqnsStWMzlQDQ9KZ67weNyrhsPos95qmV6duowcez6BnC0kSc67wdG4fjwH\n2yVdoSkyRd3XcBq5saXX8z3uLEafrt4ondNY4py5kFw5tkopdMdxuN6lT0VKtF1+10ZxLR5c32qW\n9N4gZWecKs/umAET5DrWRfuACHIBikmaLeLCotAXyjftstrOJJmG74zFnpDXz+4aKRHj/VP6p3f7\n/zOTb0JKObu3GSNdwnb9C9KROddPE3FfoTVgZi6kMoXH5Xi50IB/X5WHOfTEx1LaEkh7273n0F9e\nvgIOPcsmS5l3dBHGGLsw2ee1mDS87vhzr1vtdtv8/Nq3/2a1J6RhzfH0SjlMUh72nn19kB988zty\nnf3/2PvO+KyqrPuT3nuvJIEklARC770LCoiiYhvG3nXsOvZRR9SxDvaxi70gVaVXIXRCJ6T33jv/\nL//3rr3uq3x458kvX/b6tPHZ98kt5+xz7uNae609csB0J9KWDLdidz92Sdn2LZ7dxHHYY5ftYFcw\nDzEeL3oOrlblB9ilTs65gz9iLe3Vm9ek+5fCTTI0GXL7g9+8YcVhI+LomOINqHupiyCfGlPEc6L+\nhJAFe+O8Q4fHUF7tKeS1luMZSydYY4wZOw415dBX+6z4jndvpbyv7+e9niMhZSmNObxXDJuA8zux\nEu9CcaIWGsNrRW0WamFhJUuPVn6IfWWDGNMxIbxfuOU6vAvIWi2dhqJGDaRjvL0TrNjNDe+VhdVb\nKU+us37CbbKpmJ91cxHeEXN+z7HiBOGYZ4wxjWdxzzqasRbW2py+fG2yKUejWrhN2Z2hpEtkzk/Y\nC/jHsqwpKAN1JWQIxnSjrVVFazXmoou4nzmbeM7mrcDzHjIMrRakLO6XpevomIEjsdjINbLF5q4k\n93BleyGDszux+QhX3AYhVfOO57YaTQV4/rI1gBx/xhhTW8bjxA5lzigUCoVCoVAoFAqFQqFQ9CD0\nxxmFQqFQKBQKhUKhUCgUih6E/jijUCgUCoVCoVAoFAqFQtGDOG/PmeAh0GBKyz1jjIkXNnadojeN\nvT+LtPbtFN/hZtMHh42CdtNH9ESozee+GdJatEnY3nqGoy+ItLAzxphzwmJLWk16+LOerngb9MHB\ng3DtUZOSKK9d6IClzXZTE59rqdDE+iVAkxfYj3s+1NssthwNV2HJ2VbLmmNpQSvvoewjYQzbYud9\ngz4fXr1Yb+frCV3dDS//y4qvP8l9YWZfNdGKC3Kh5d76CGwp2zq4B8GMKdAlT5oO3fjKn7dR3mU3\nQOvrFoDzOfzNfsrraBI9lYKRl3HPeMor2gj9o9TVnj2YR3khI7rPMtRF6Ngf+eRO+qxZaJELt+Ia\nnWzW7v5x0LR6eWG+PfTQNZS3YDQsJD/6+AkrPmezqvMLQR8c31j0ccnaClvQa1/nni6Vp9EbY90/\nYeEcE8wWkmsPQOMefhZj7M6PP6K8KXXQjH99Hywzfdewvene7KVWfNU1GB+xNo3yxUPR42PFwYPG\n0ajIhKY1yNZ3JXQMnol3BGqT/b6HZOC4c6JvSN0ZriM1BzCvYueiXhcd4746cRfDrrP+4yYrvv6f\nsG395DG2lZU21vIcfOO4Hpz99JAVR0xHTXG2jU3Z1+ms6FcyeEAE5VXsyrHisDHQqzfaNP1lG5AX\n8/QC40i4CGtlZ5tlqI+4/jypyQ7ntaYhF3PRW/QPsPcgaU5CjWmpRd8av9BkyvOOwneUbMT980/F\n+LZbcDaLnjGdQuMuY2OMqfGFHbCb0E17x/I1nfkEc9ZZ9M6xryWFK7HORs8R+4g27tPiGcJ97hwN\nub8pKuGeV7L/jasv9hyR47jXT8436AMUMgLa+riB3IuiU9iTRogefSVbeM8ge6SdLsF9nyD6InTU\nt9Ixci8l9z7+vbm2OQs79+MbYS0d1J/nmKcn5lXkePRFyF99gvJk3wxpadpSZOtFNMfBjWbkOYia\nFzqc+9qd2f7NHx4TO34o/fuFT9A/a+XzsBUf9Lc5lBf+O9YUHz/0Fwqx9bKLGYrzGLoI+xTZO2K3\n6EFojDH7v0afkOgwrIVRs9hWeuOT71hx6gL0QXn6llcp75nL77XiJtGrb/2hQ5T30V2whb7jAqz7\nb3/xd8rLPfydFScOusI4Gl4huIdOTvxuIPugZf2E85/49/mU5+yMebrsJuw9b1p2E+VVn8IaLO+N\nfz/uVSnrfM567DFffvVLK44I4PXuL7fPs+Ltz6Lvz7D7plHepn+stGJ3F9RKae1tDK8Hcu8p+14a\nY8yeb9CTY/ilGHPttl5El7/8F9NdaMpB7fHry7WnSfShSpqIMS3fK4wxpl3UNk/R3yQlmvfWnu4Y\nI87C0zl9LNcad9E7TNbJujOoXc4pzFE4/Q16y8geK/b3ttYaPJuWMvQWsddd+f7VX/TQK9/CPZPk\nuivX1i7buij7e3UH5D4092fup9Wcj9ruIsatvTdNVSb6ljmPRj30S+J9fv0veB+QvzF4unEvv7hQ\nzM3ANDyHJrHvGzaDewf5JqI3T5XooxPd27beid8E5O8a9t885O8csjZU7CygvOJq7NOon1Qq95MK\nH8f9luxQ5oxCoVAoFAqFQqFQKBQKRQ9Cf5xRKBQKhUKhUCgUCoVCoehBnFfW1Cio1+11TKWVdLGy\nXaD1dHQyBatR2JyV1YGC1DuCqUXlu2AJ63EBqEC1x9lGzCce8iBvQaXyCgX9rHgj23BJi8XTq0E1\njxlkoxmNAd1Y0s79bXbR0u5UUq/9/JhWFTx3HL6vAX83Z/XvlCetqbsDkp6V+dM++mz0VbDlLN2U\nY8U+CWyNlvUrpEySZjqki+3g/AWN68Z5oHi6ubCMYbc4j/6DQHtPHi3sSG20Ms8IpnL+D2ZPHUn/\nls87Im2wFQen8rk2VUD20VaHcerhwdbmgf0wbttqkJc6mSmUTi7d91unuztofu02WvvXz/1oxVe/\nCMqxlNwZY8zbt8ACslPYxD34+TLKe/l2UMU3fQI6r53Cu/Txj6x40WjYsQ6amWbFG55aTse4CZvy\nPlGQFaTdNZ3yTt8AK+0FD0MSt/c/r1CetKsckIz5W1BoqxtCbifpweGBPM4f/PRx050IHQp6brvN\nJlVCyh3sds2+ghrqIWQmYel9KU9aTZdszrHiQJvldksrqM/VDaDnRsSCjtpukxjmHBLnJ+Zb4twR\nlOcjrL43fQi68OyHZlNeyq04rllQhCszmTKasADzuTILkp+ag2x7G3UBywEcibZ61IBOGy1b0mzb\nq5AXkB5GeXIdO/YN5HOJk/i8z53DHG6pguSspdJmbSuUb27+oPdLS9Ow0UyjbYwADb3hLKi4beVN\nlLdlPajN0oZy/AC2K29oAs1b7gN8z7L1Z1cHak9HE76vKY/lyKcPYw5HPTHPOBoVYt8SM5dlYlKC\nEjkedUVafxpjjI+Q9bYKCUL2/hzKC/bF/iT3e6ylUgpljDEFmyCdmTwZNtHn2nHPvGwW412tuNfN\neRh/ngEs03B2xzMOToCU0dWV19WczbB8jhwJmrd/Mu+DpHWxlC2013Fds69DjkSrGKv+USyfi+sL\n2+nwgRirn9/9b8q78KG5VnzJ0sVW/PbNvNbc8cFTVuzkhP3MiPtnUZ603604JfZ9RzHe+sbwc98p\nLLfXCUnvTcJ23hhjIvqgdreJsdjWxutdqD/GyFX/vMyKbwliuZKTE9aWDzZBapP17WeUFzu9+6Rp\nxhhTmw3b5EZbHRjRBzUxJAljsKuLx1lNNtaaeVdPseKT7++gvBe//sGKn3xoiRUf+pklX9OfvMSK\n839EDdy8A9/37TtL6ZgXn4OU6ZWfX7biwu0sqV+zH/++ZiIk/i5e/EoW0B/rhmewsK53YWnLoHbs\nuepOVljxjuW7KG/6fTPwDy4P/zWktbRXNMtcmkuwpktZTvlBboMRNhB774aTWLuOFfA+YPRUzO1g\nYdvcUsFrl3xvlepwKQPe+wa3RfhVyNnnDhtm/gwtovZIqU3plhzKi5yYYMXNZdhruQawZXxXG2q8\ntIgOHMjvyoZV7g5H1R5IkmKmcE119cFer0VcS4t4vsawrE3KsrraeB/pIr5Pyrr8e/G+3LMae6ld\ny/H+PHgmpJ1ekTbpuNjTNAkJd9h4lhxLW/Waw9hHStmz/fuKd2HvGT+D9w5BdRiPpzdDtiX3PcbY\nftvgV1hjjDJnFAqFQqFQKBQKhUKhUCh6FPrjjEKhUCgUCoVCoVAoFApFD+K8siZJRQsfyy4FhatA\nw4y9ALQeSXUyxhhvQcGtOQT3AbsjhHTVKVgLKpB7kCfl1R4F/dGILt2B6aB+SZqSMcac3gInhrNl\nOD6yL8tXTn8EqqGLkKg0CGq4McYED8Lf6hSUYldXdu8JDobzS/6GvVbcYevIXi/oUoaVCQ6BlDJN\nvnsqfdZUArpX/hk8n3OnmW7o5wV6bfIwyIMObudu3iv27LHih5YssuJc2/eNvQtUztoToGGe3Yhn\nFRLDdPh6ISmKmg75U3sty3yiB0NiU5UPquqh/+ymvH6XgRopn2PB9kzKa63AmI6/ADS63BXs5iMd\nOboTjy5huvXIZMy/M2IMh4xi6rSX6HBfXgvq8Mk131JemOgiPiwMVNqsXaco78n34O7QJJxgfONA\nSUwPY8p8QG9waV9aAnq5+8dM8ZTyuJ9fgIPG2NnstFGVC7eU/jdCKjPUi6mLBdf9zYprj4BOeMt7\nL1LeIwtAc35l7VrjaMixXrg1hz6Trkwx4xKsWDrHGGOMbyxo89WiHgZHMQX3XCfmpuxcLyWpxhjj\nLOrlsCvgiPb2aIyr5kJ2YPFtQl3udwno3y4utu92R+1pEBJXJyemZUspgEsUvrvuBNP1q0+A3uwv\n5F3ugbxO1In7bEYZh6JMuCyEjeFx5uIlJJXCnaruGF9HzGSsp/Ejsb5IqYgxxlSehEOOu1gjSzaz\ny8/JgzlWnBiHdS1oKKi5DTnV8hDTIlzefvkNdfvCKyZRXmQuno10pnlrDc+Py8dBxlshJMzxrTx+\nw8ajvpzrxJg/18a03+g53SdNM8YY3ySxvtio4i2luDdtghrv7M5bJic3UPkLd2JcJPRn56CWIuyl\n/FIwbgvXLnXEAQAAIABJREFUsUtUhJBZSvdEv944pnJPIR3TIFxSzgiHp8hTOZQX0BvjouQA1omg\nfkybDx+OsdnWVCvyeD0p3QX5eEsxrq+thdfBurPCRS7FOBTSJSR7xRb6bOBi/LFtz8K5adGL7Dbk\n7g7pSP5W7BEuuYvdmspPoZbdfNWzVvzMbddSnpQheIha+/sprJ9XXsVSqB8++siK9wiH0ro6li9W\nn8V4+fTZ763Y70uWZkgHm7suwblKCY0xxuw+je+bPhCy/CEPXEV5Li7d65xWfRDj9vgBrm19EjHu\npCS3cP0xysv+HcdNePQiK85cxffw9S8fseIKMZcGXshtCZydIflKXIzPfpv2sRWvWvYrHSNdhTw8\nUHt/+Ij3GXf/7XIr3vkz3g0av+C9rHR+GTAA++7M/eycNv9RSL+LhFva0FmDKE9KYx2NwAyM+9Jf\n+Rm6h2DtapB7xRDeHzacxvVKKWevMJYFy702udHWsButfDeQjkon12DshEXwe8bQ3ni3CB+M52n/\nbinjchcuwrGzuMi5uPmIPMyjmqwyyqtrxLNpPYG6W5fH75+uokVEKk9nh8ArDu/sdlfN4rWo+QmX\nDbDiyDHcMqJTyJ+lQ7CzG39f2QFIqCJHYC8l3ZCMYVkSOXWJ7/O3OUFJdy7pCmZ//67Nwt5MtvOg\nPaThtT4kGe8xxRt4rHeJlhEJQ7DX8bbJkTtt+3A7lDmjUCgUCoVCoVAoFAqFQtGD0B9nFAqFQqFQ\nKBQKhUKhUCh6EPrjjEKhUCgUCoVCoVAoFApFD+K8PWdChMVz6SbWVUnduLQTdfNzp7yKHbC3ixG9\naeyaspyv0TvCvy/0XHUnKilP2uA6uUJXK+3ZggdyL5kNK6EjHtkPesD9u7hfirTijZuH5i/lv+dT\n3smv0Mdk4O3oK2Pvo1BWttqKfeKg25d6dmOMcfVhq1xHQ/YJsNu8SbuwxAxcv18f1u/tXo57mBAJ\nW9DmNtbv3bdwvhVLO7iRN46lPHc/6DC72mFfNuJ+WCC21bNtqbQePtcJXd+Qq+6mvIoKWIEe/wQ6\ncdnHxBjWqtafgS6+7ihrDYOGYDzVZkMb7Z/KXoTns0b+b3EgG/NvQBz3uRg7G5arpfuh4UxOZyu4\n4UJLO0BYV+99aTXlSU3rwLunWXHa5aytf+pS9GdZdCXyHrv/LSu+0GZFKHs+/eOHT6zYbgXa8a+v\nrPi9X6DrvmrWnZT3zs3Qckub7nB/1nfe+j4sLzs7oe2tKmGryQUj2Ara4RA1wjeI9dZlJRiD0gLZ\nuxdbmJeIXjWtlbiWiijuqXTwO/SVkM80fdFgyjvzY5YVnyhGb6i4ENghDljAeny/KnyWn/mbFYcO\n4D4hAWKOTJ0Hv8CClayZDx+PuV7yG8Z68Ihoyqs7hXvkJnTe2WL9MMaYkHSb/aQDEToa8889gHXD\n0mbbMwT1pqs369oby1BHfBLwWe6P3EfBwwfXKHuVNBeydWXaRLFeHcAzdDmOWmZfZ2Sft2njUENC\nB/M9TxTWtjmnUV8WjuJmPtJufdhs9DqQa7MxvIZ7hmIOxFzIdr2Fq9HXrvefO5r+n+Ev+rjkfJXF\nn/XD+Kbz7+K+OH6ib02syCvakUt5qVeiv1ndaexpwmxW2iHCbtO/D85B6vbtfYnWrEEN8/HEM80X\nfQGNMaY6TvSjmYgeAZ2t3COm/ixqdMQgzPvifdy7o0v0EvKKxp7A35/7h9n3eo5E7znooVdTxHOn\nJBfrRngielZUHmZb3l6jYSv+0ycbrLi1ne/L1Q8ssOJXXsGew95HQfY6kHuMiydhr/jRRyvpmE3H\nca5/uwD9UoYkci+H73butOJl3z9uxV3tPC5D41FrF57ebsX3LXmJ8t5a87wVF27Afritjffdnp7c\n08vR8IlHr4eOvWy93liN/XL7L9lW/Nshtr6+/vkrrXjjMz9acVsH97xqLkXtlP3cNn6xnfKWjMOe\npqEDdU/2HOs6x82qxvfHWGptxXybfcFoyjv4C9arrDz0qowMZAthN7Fuy34YF8+bT3nNop9KuOgZ\naO+b0VzMveMcifaGP96fG2OMm7CNbsrBOUVn8PhuzEevsg7R6ythOO9ljXi3KF6PMeGXzO8t3sLS\nu7USe4yoFOwPCo9zP8yMabAll1bcDWe590vSlaiNwbFY76oKuBdlWz3WTw+x5oYO59ovbdNrDpWa\nP0N3vy/WHUL977Q9R1nPClZiffGM8qW8c+2Ywx6id5qnrQdlmHhHacxGv6GyoirKi03DvRrSD3tM\naT3v78/9KFsq0INMWrvbezjKeSVf4e29GeX4lv2G4i/ifYvsbyN78LbXcc+iyp3od/VHvYOUOaNQ\nKBQKhUKhUCgUCoVC0YPQH2cUCoVCoVAoFAqFQqFQKHoQ5+WbSnuwgLRw+kxSfaXltp0y1FAKGl3h\nGmHFa7Ou9BHU/YAUUOEDbNIRV29QRn39IVFqrMd3NxQw/SwmGFS3LzdttWIpsTDGmAAhe/E5iPOx\n27SmLgZFuasN9K3CfUxnazgDmlbkNNiqOnswDbZ8G2RTqROMwxEcgWvxstl5bXsfFowpKaDr7/1y\nD+V5uoHOJmnKo6eyVV9bFahbwcNBj6/YzVRiryhQ/VzFODvzGWRIvS4ZQMe0CEvrLmF9ve9TtpaW\ndDT/SFyvXXJXJewbJQ3TPZift0cwvq9wFcaZTwLLTcgefqZxKFyd8TtqmE2yEzcNkoTGbIz9zJc3\nU16ALyiFq/7+hRUPGM3Wf9t+gxym8+V1Vrw/5x3KC/TB93kL2d49l86z4n43TKdjOjpQD+rrj1rx\nvpfXUF52KWidH2zCZ1/e9RDl3fzOo1a84mHIqYbMZ+nOJSNhs/38UzfhfJq4XgUNs9FnHQxZS9xs\n4yzsHCQS0ipe1hhjjOkQNVZ+n6T3GmPM6DtQTCr2gpbt5Mq/yYenQbbn44uxvvkQpB69cuLpGGl5\n2fta1IDsH36nvLCRsBSWcs6ISQmUV58NGqtnFMZV+SaWh/S5AdTVthrQlAfdM5nyCjeyZNWRqBW2\n2Pb1rl3Uv/BJkIlKG2xjjKk6CCq1rBt2aaxPEii38m+FjWdpo1xrgvuCHu0sarWkiRvD1FxXIUXp\ntFtfj8WzL87FtZfW8Do76WpYaftEo0bJum0M2wtXCQlW3TGm4EsqfHcgZzmkBWETeHy7CPq2pHKX\nbGF5d8hQ0K0Lt+dYce/5vHa5B+Kaw4RlaOUBptRLBVX571gzS45jrbJLKXadBL18dCoo1qHDWJ4m\n5Te+4TgHb+8kyutqx56gthg1xdWb6fQtpVgzXaWUxyZr8rHtORyJzk6MrTOf8f6rRciSPt2MtVBa\nvhtjzLN//8CK31zzphWvePh9ylv+8gorvunfkPSGh7MtdqIL7tMPn/zLioMGo86OL+pPx7i5YZ6P\nEc/wYE4O5U0YgHH18m3vWfHjy5+mvL0v/seK0+6ca8WfbVtBeY2N2M+0CdlH1Sm2eHcPwFiM78tz\nxRGQsj37vry0FntFKaO/873bKO+NG5dZ8Q0vwgq8+ghLRI58j3HSaxCuJS6U3zW2Po39jtzz971+\nkhX7bmAZUvw0KV/Cuh09rTflvfQ2ZNt3LMDziVvQj/KOfphpxSEZ2Jt8/vDXlHfJg7DSPvoZ9m+h\n8Szz2b4LNW/gAr5//y1chVy1vZP3LFLK2mc2JLg+sbyHbinHfHYT7RiKd+RRntzX+wrJsF1iWLwa\n49hZnENFBdauNJvM213Ur/qzWFd94vlcPYPx785OzB1v2zjqaPrjvVdHM8smpU21lNUW7uN3p6h0\nruuOhns43oOrc1le5C7WHi8hr40Y14vyKvfhmqXFdWNhHeWd3YP1tN8c1LbOBr43vkI+LMdMQDD2\nnl5evHeXbTUChPV1cznvR5pL/ljqJ1sGGMO27J2NOD+5VzCG92JS0mXb2pmG+vPb2itzRqFQKBQK\nhUKhUCgUCoWiB6E/zigUCoVCoVAoFAqFQqFQ9CDOK2tqE92FyzczrSx6Djom+6eAgiU7YhtjTGMu\nKIn1xaA0RY9PoLzynaBuBQm3pbYa7nAs5VQd3pBTNZWBmiQpdMYY02cIOoIfFp3RLxnNHdSlw0td\nFijWP+1hic+Vi2fgXAeBStVUyPSoJkGLKtuKv1uVx1Qx/0DuYO1o+Innc2AVU39lZ3J5r+Nj2O2k\npQGfya7lB3awQ8JFzy604hPvwEWipYkp9cEZeMZOLviNMHAQ/u6e17bSMeFxuI6Dh0BXHDmdpVVy\nzNUUIw4L4GvyCAXV3FnQDY/sYCeZ9ixQ72beD73SyY/3U55XMLtoOBJJETh36RBmjDENJej6nXwd\nHFScnPi31xtm3G/Fry9/xIobi5hqOHHucCuuF25p933+KeUV5YAi7R8KKrZ/AmiMPj7JdMz+90DF\nHnbzXVbs4fYb5SWEQZrx7g1waJLOY8YYc/wzOE3NeupiK3ZyYnqrdJb54TM4ciy+fx7lNeSwVMPR\nKN2YY8V2Scw5QRkt+Alj0Nsmn+sQXeOlHFS61xljjF+YcEIYhs+abNRSn16gZh/ejr+bGg367E8/\nbKFjpItI7reQp0XNYPr2ic/h8OLjj/lxzibNSJ6F53D4Y0juImaw5OLUO6B5u4v52/uKMMprLuo+\nVwopZbFTVSWtOv9nSKviLupLeZ7hqKfe0XiGdgeH/f+BTKy/cMzqamfaePEpUPdLhNyoXwy+r9gm\nQxoxEutfk3BkaqvnWi1p3pGxoAdH9eJ77uYDaYuU2NUX1lJe0iKsOVKWF5jB9bnhFK+TjkaicNuo\nyGTquHzGBcI1KmAAX3NrFdb4ftdAXmq/h3JcNBXhfjSc5msMHIh7IGVnTifwfLcf4zX35hnYj1TU\nY9xnb2FpyqgH4ITYUi9kUl28xwoI7yc+Q61p9M2hPN841I3GAlxTrc0hpv441pC4u4xDcew9uBzt\nOnWKPpNy9iWTIXt0d2Ma+m2XQRKy8anPrDjFJt9575dfrLjjZkieEsNZKjRzIqw3kudD8nTDVLgd\n3nPtQjombze+e3MW5KR3P3MN5X269AcrvuN5fHbZ2L9Q3hNXX27FKx+FxOnXg7z/u+0KXHvBaYyJ\njOuvo7xDH39oxfFcyhwC6WZ67aOX0GfS8cQ9CPVi63PsMhkRgO+QkldPm7tZZATGxROvfGTFdlnT\nyGTsXby/w5zLq8C+1O7o5S4k8PWifh3IZOe0R/8OWZzce/70PLt4Sel45huQG9Y0sjRDuhWGxEAC\nUm/b201byO88jkTdScxzF2fb//cXe3wXzz92STWGJdyt5aitJ4qKKC+uFfU1Sty/sDEs9/VPQ72W\nY8e7BPtI33iWphVvgLzITaxP3lG896w7i5rsEYK6W3ucnUc9hGtjic31WMJZ3KNzwrUvZihfU/UR\nlv05Gr7Cvagun/cMEcKl2Qgjp+yP2MkvYjr2ba3VmIt26XJ8GmTvbdVYh+ytPypE64/QNHy3lIPW\n17OU3TMMDlIdwklXOkgbY0yAGCPydw7pBGWMMc3CidNZjO+uI7bnHYk56yFaF7SUn1/GZIcyZxQK\nhUKhUCgUCoVCoVAoehD644xCoVAoFAqFQqFQKBQKRQ/ivLKmkl+F+4ftZxxJyZdOFOeCmK4eKChD\nZ3bi+7wOcAf1wHS4QdWeBPUpcfI0yis+stOKK/chDhAOFdlfHaFjQoSEJr8C3z1jEMth6ptBv/r1\n0CErHp3CbjaSy/71cz9a8cBe3LE6WHRKd/UFlc/NhSlb3Q1JFRx26TD6TDowSPpd4VGmEXq5g7Iu\nnY0W/PNayqsVsrGGBtzP3hexO0FDLuhyHkIO1ChkJWHR3Gm+ox7UtOc/BM32UWem4A4aAjpqi+ju\nH9CPaavSIUBKoVL78XPsEhTDdS/CvWjqHVMp7/jnLHNyJMY9dqMV//78f+izHScgRekl5EDDF/Gz\nvmg45EqxKZAA1UUyJXH9k5AvbTsOqmDgz+9S3uLrHrfiradBL6/LAVX12LJ/0TGxczGX9n8EZ4yl\nP/5IeUtfvN2KhwzGff77ouco761XX7Ti1Q/+3YpHPsB1IyEc9aWtA7VrywcsnUuJZVmJoxEuXGFK\n1+fQZ86ewj0nAPPN7hLgHQF6bWcbriUkPZbyijMxHqUDXsgAlh7V5YHmOfUBSCTqc9B1fqBLBh2z\n9bMdVhwqXAvabXIOOW5Pr15lxec6eZ3I24PxE3chePPFNhqwh3ASkO4LzVWVlJd0xUDTXajcCxmh\nlOAaY0z1YUgDomeiDnn6B1FelZCVdDajRnU0MU0+NBD3trUK9bQxu5rzQpEXl4Fx4CMo25EurME6\n+02W+SNse5Wd0y5+AG4iJQVYP1OmplKe3C/ELUS9D6pkCr5Ep3DdM108JsLG9zLdiUYht/KxUdtb\nhCRZOjM02O57hDhHNx/hbhnDck5jcO+rKuDQ5OLDEhspBwvoh1ouZYD+3izTkM4oaUMhN7c7M7YL\nWrZ0Koye6Et5eVshYfSKRq3xi2HHzhYhk5NrZGB/ln7ZpQuOxJGTOVZs36dl5aOuTbwTkq6dy1ii\n6VL7x/+PMnJKIv3785n/tOLlT35nxVJybAxL519d8pgVv7T8QSsOiWZp8pn1P1nx6+sQFxxfRXk3\nLoUL0elPsG7PGzGC8lKuhyNV1QuQ/zzzHuvKAmMgYfPfAwnlPRdcRnkLbN/vaGz4AG5aw8byXjFy\nEp7D3mVYd6oaGihPytiqD0P6cXwPy/sGzUq34onC/WrBnbMpr0K4pck1KfOJ7//wbxpjTMU2HNP/\nduxbnnjzkz89V+l6N/6CoZS3aSVaKoy5bqwVOy3nWi6dyQaI2vvSDW9T3lW29cqRCB4KGXSHbR8g\nXZha3TDfgvrz3DFijSo/infE9HiWGMp9aXQqrqnuJMtm8vZgLlYKyWdqb0iFcr/jdVA6STaXYox5\nh/OzLstFrW4Qe6WGMywFChmJ+3L2IM4ncRBfU24pxmzGUFyTXQLuaXMPdjTapWw+lNeGcx04l8rf\nsQ+KmcPr3b7PMW4HXQI3rJJclgDFZeA5SCn6lgP8TAYnJFhxaz3udYs7zuHcOZZ6S+fLglV4R3Ky\n7YOkbPJgLtxBpaTQGGP6DoGcqli4J/p7eVHe8YPYs/qewLMauJjntl9vHk92KHNGoVAoFAqFQqFQ\nKBQKhaIHoT/OKBQKhUKhUCgUCoVCoVD0IPTHGYVCoVAoFAqFQqFQKBSKHsR5e85IC1cPmx1dTRb0\ncVI7Vbghm/L8oqF7DhNW1adyCylvgLCcipoCbZerK+umpV1n5ARoURuElaOfrUdD5jrYB84dCt3X\nNzt2UJ6vJ85h+kD0LDhTyv1xmrfCVm/SBOjpoqdxL4eGPGgPZc+HXnMGc14xf7+jIfXgTq78e5zU\nVMr+M8nT2S+xuQR54cKuruokP29p0xs7LsGK7RbFR7ZBMzrqypFWfGwvvs9uF5hThjH32ZNPWHFB\nOetMt21HvyDZXySpqA/lleyGJl1a/wUPYB2stHsd2Qe9Ixpyuf9Ar2n8/Y7E/lfQByZiLGtVpXp9\n0D2w+i7ZzZarGROgRc5872UrLj7J4y91OnToKZOh448YzbbGm06gT8y7tyy14guummTFdvvB9jpo\nkbdshGb+u91spd3Rgfk8pR/6BWzPZi3qiQ24Lxe88KwV//7Ki5Q39jFo7fuWbLfiiFjWmZ/d943p\nTnhF4n6k3sJ9Bwo3YE40F2AeyXtmjDGFB6B3lf1o3Iew9jV8MOZwWzP6PmR/u4vypP1nxFj00PBP\nQl1vqeC5OGxa+h8e4+bJtbehATbbSbOmW3HR/p2Ud3YVrj3jbvRL6DVrCOXV5IieVmcx/2QdM8aY\nc8Lm0dhk7f8twkaip0ve9zzH3ALQd6RgBa4pdBT3A2qRWnbRG6RdWD4aY0zgYJx8Uz7GxJbdhylv\nQBxqsrQPlffFrnF2c0WPo5AxOL/4erYhL/4NNXnknROsuPooW3r6JqM2NpfiO6QtqDHcY8wzDLFX\nGOvbC9bAfrbPcONwyLXQ3abjL9sG7bnsg+Dm5055Hc3cI+h/0FTC46JsK8ZtzGzo8+02rs6iH0Pt\nMejzT5Vgzu8+yba8I/r88brTXscW2Q35qKkJ08dbcWsr95eT9UDOMRkbY4xvIp53ZyvWWQ/bvWwq\n6D5b+wNnoe+/9t/P02cvDIV9duhbmGOVtvHdJXo6XPXqHVbc3s69cvJWYs41tODeho/n9fgvg9Ev\n4vb70XPt2JXoR3LvrdzTZdO6TCuWvf8Shs2jvA9vudeKU6PRy+LaNx+hvJUPv2HFUx+/yIoLN7Ld\nbNEv6Mfy3vdr8X2TJlFe5hnYC083jsclS6+24qXXvkSfTT+NfmIFlYj7RHL/lLI61MfgQaibI1JD\nKO+lR9Cv8IbFc6z48xe5753cO6Yex/yV7wnDl4yiY+LTca9/uPdRK1763G383TUYP0PFXNz98mbK\nk30zDn2Waf4MYx5dYMUf3L7MihfNnUR533yBfdbgy+/80+/7v0DW+dZqrj3tNdjD+Ip9hawbxhjT\nKvp/1IoeoNtFX0VjjJk1EvuCs1mYVzGR3FdS9vccuRA9GJuL/3x9airEZ3J9OvMF33+fRNTurav3\nWrG9B4l/f5xTXBLGrKut31hSAuZz9ibMy7BYXrc7G/meORqu4h07KIM3Tzm/nLLi2DG9/vAYY4xJ\nGYc1Tt5rDze+5qazWJO6RC/ToUn8rhE1Cvubiv1Yr/ymib/TmEvHFG/B2nD0COIAW8825zOYY5GB\neKYJ6TZb9mTUkTZhi+0WxOtdmqg3cr9Qsu4M5QWPiDbngzJnFAqFQqFQKBQKhUKhUCh6EPrjjEKh\nUCgUCoVCoVAoFApFD+K8sqa2KlDTmvOZCuqTBPrPoRWQkUywWdh2NIGm3ZAPaYt7FlO/aoVExFPQ\npZ1ctlOeiwdOWVp+1R6HtOXx1z+mY0alwvJT0pZmD2HKvJ+gK7r6g44kaYzGGPPD7t1WHB0Eam+c\nB99OJxdBm/bG320oYRnJn1GjHYUjW0BlHbaQr/nYb6Bf+wk6XrjN4s5NWIHvfxeyiNZ2Pvf+M2FN\neGYD6NdFVUwRHj4+zYqrD+F+eLjiHg4dwPZskn4cMgaWx71T2OY351tIX6pKMOZ+Xr6J8qaMwnHu\ngZAj/P4bW0sPHgxpT5CwZe9qZ+u2qt2CHu5g7m/Q0CgrjhzBVpMFmyE7CA6G3aLH+CjK++ZeSH0m\n3jLRiuPmsCWutx/kgjm/gGZ75PVtlNf/VsjRJA3xXAfuS0k2Sx+ef/9LK/4uE9KW8tJfKa+hAM/t\nmimQNa24/3HKm/0caN5Xj8U1PfTQNZRXX49x7uwGqutdM+dQ3mOf3226EwUrQc+120lLq3evYaA8\n5q5lGcOAG2FrKmUr2Z/wuA0ZiTkSNRjHdLYcobyzO7PFZ6DMRk5IsGInZ7YfDB8NKn/2p5CNBgzk\nuuETBzlBQApqYMTAQZR3YgXmbGsVKKMHPuEx5y5osaFiTvjEsJzK3Y8lMo5Eo5BuRkxOoM+kFCVE\nPMOGvFrKqxf/zj0KiW9kMFtue8XiOspzsMb1jWHLdyn5jK7FZ5JW21bdTMeEi3MvXQ/ab4gfSxH9\nUkCrlvbqNQd5HZM0bY8w2FCGZbDspqMde4mCnzEfomawLNjZ3cV0J6SMt/pQCX3WXo+9hbwuKeUx\nxphzwv5b2sh7R7IcO+kKrDVdQi5RuoOp2B3CtlvKNEamo0a/9vnndEzI367F+QnJgF0OKW1r29vx\nHEt/z6E8ed+li2veDra1jxASBCnNkzbkxvxvarwjcf8rN1jxtP4sMZk/Cv+OFvOq32Re76Rc8Mz3\nm6z4ky/XUd7Snz+z4r6LIF9ZevUDlDckEevnV5sga1o4HtJaH5v0/reDqKHj9kIyGtr3FOXlV6AG\nnC6GJfsvVx6kvJNF2It0PIH1eNQSltL6p4CCH7AWdP+hD1xFeR/MXGK6E2/d/G8rvu7BS+gzb9Ea\nwVesn0GDWNY0JA0yhOpTuP4j3/C6eM0M7CekTfeNs3i/+dmDX1nx+Jsg5ywRdvdFq/j5hCRhjoy4\nGfLc2hNsIVx5DPX6xO+QsPjbJBfuQpYT2w/ryW/rWWKz56+Qgg0W46+xmN/bFt94gekuyJYGLh5c\nu73j8QwbxdrXmMvtDtqEHCpVSGN89nhQnk9v8d4l3rMipyVSnqzjbULm6RmOdbWtliVYUppcItbF\nk9kFlJe3BXMxxFes06JuG2NM+R6s795CsliQmU95caMTrFhKXuzrdsXeYtOdaCnBmHG2vdOmXIra\nVPwL5oGU6xtjTKuQ/VTkQooYNYj3Lc1iLGzai33prBkjKe/7T9Zb8YR+aLsQMwHzqqmE73tzHv4d\nF4I6V2VrlxETjs9O5Yu6aVs/5V5K7nOPruNWC94eGD/ymboF8+8Idot0O5Q5o1AoFAqFQqFQKBQK\nhULRg9AfZxQKhUKhUCgUCoVCoVAoehDnlTUFpof/6WdSsjPqJkgpKvYy9St0KFwgWgTVydWPaWp9\nJsIdSdKDm0qYlicp7/XHQJe64sHHrHiYTa6ULLq6T354hhVXZTEtu7MZdOPiXejO7u3DdKQpaZDk\nRAwG/ayzjbto9x630Ir3voUO6qEj2bmjUbg6mRHG4ciYBSra8ZVMwfJ0B1UrbjwogdKxwRhjMj+H\nlCtjPijay174ivJioiDNkG5LTW3sQtJSgs9cPEGBTJ+HcdBwht0hYoNB2Zb0R9m92xhjPCNAqQ8R\nThv9bBKsT1aBKtfUijH38FNM4T29FrIwr2jQ9wL6hlFeYAbTbB2Jb98HxXp6FkuFfs4ExTXpd1Cv\nK3YwbXKioOYGxqPT+vK/vUd5U64CHddHuIkkz7mI8jY+CSry0HvgOPCfu+Cg1N7J0q8XXoVDwH1z\n5lvxzY9eTnluQkrw17f+YcXpQSyRkI5rd10OZ4s1X26hvMX9Ucu+/8cKK35pJUsEXl8CWdMDy+ca\nRyOyBvwiAAAgAElEQVR4CKQ4brYaKB3wogZiLIWl8bg68QGcAYL6CilUPEspAsX4LNr7uxUnLkqn\nvM6P9ltx5PgEK26TtE6brCnnG9SRsAkYS/VnWL4YJO77vjffxzHj2OFk0HWgsZZsBF3WTvzs6kJH\nf08hnSneyK5x7UKSG/7ADONI+CWAUl13ppI+8xLuZFX7QD+OmsruA7lCIhKfgjVESpeMMeaomMNS\nqiDrtjHGjEwGBfzUbtyLslrQhqW7izHsWlMv3GeGT+Xx0ZSL74gW1H95H4xhp6kasbYWbTtKec3C\nDaOrBfWhsYClX60lTD92NAp+gEQiZDTTraPFuK0+gmupsdXe1gpQziOnYv10dmVXCvn/waqFjM3V\n5v7kKajOoYUYS5JSf9eVV9IxNScxBqXzSOQkHnMuLtjH5K2F1MMrkiWAx1aJuR2AmjLgSt5XSRSv\nhTQj9iKWDXW2ddrTHYabLn/ait//6DH6LOt7SH1chITtuedZ9t4i9gUD4lGX5o3gzdgvf4csOG4o\nJDS3vPEXynP1QF068C/sMVrFHqjBVid/yESeXIPaKllyMXfGaJzrNRdbcdnpPZTn4o6tvXcY5umn\n9/C1X/UvyJfuXXajFW975gPK+/fa9013Ys4C7B8qd7GTa40P5lzvxXDcqTyUR3kf3vkfKx6ckGDF\niSNZ6rJlNfZL39yBtgmXjLY5L4VibZXypd3HEY8exhLznx9+y4qlK8yBnBzKk7JUuUfqe8lAygsU\nshrpqjnn8gmUt2c15rOU/68/zK5+Fyez848jISWeXtG8FykWTjW+wvHUXuMPHkNeUgSkIwOu5tpT\ntR9rq3R8cg/k9xbpDFi+GzXUJVDMjxg+14ptwsXVE3kDx7KDbd5PkFy/+MknVvzY9ddTXod4vh7C\n/amzkGvAvnVoD5KShHfEMJsbnHe4j+lOyGfn5s97VOna6x6C9aS5jN0ypZSpUewt2ipY8nrkNGS9\ndU34bP9udueS80W6qB1/G/t82frBGGPKSnB/pRtvfBLvp+U1xjVB4iTduIxhd0c/IW8eLGqSMcaU\n/oY5W38U+znpZmkMO5P9EZQ5o1AoFAqFQqFQKBQKhULRg9AfZxQKhUKhUCgUCoVCoVAoehD644xC\noVAoFAqFQqFQKBQKRQ/ivD1nOoRVdZfQMhtjTP1xaMoiZ0DbHD2O9eqtjchLnIXeNM0N3JumbBd0\nfq4+wsbaZjlYKzTfzsKu7flbb7Xihla2wEoZAs1plbDMLNyaQ3mxU3Ad3l7Q0636nW3rFl0Bn+SI\nsei3YLetqyjdZMUxQquf+y1r8M9JTfalxuGoF5r0BJv+1lv0UKk/hby6E9xLQd7T1R9utOKb7lpI\neZu+hc32xAXoI7F71X7K8+8PPa+075Wa0e1bN9MxUy+B3nrz9+ihER7AY0RqfbNLodONCmLNn7+w\nDh/eGzauUldpjDGpF2NMV2Wi74N/SijleXajFnTeIthE2y1mH37vNis+/Dbuv7QdNoYtpH97Er2C\npIW6McYc+BH65Q83bLDiC4f/Rnlr9+OZfvf0fVY8IG6TFXvazkH2CVk0Azpzv3jWdz557atWfNMS\nPMOtp7+mvDVPr7Ti06ehVbf35MgXlr2BYnxk/usdyrvrozdNd8Jb9CSR494YY7raUWMb8tF/I2cv\n2+2mLxpsxVnCJtTXk3tjhQ5FjxGfOMyRxiLu7dHSAE3wtlcwt/dno3fJnOGsq426AL1/pNWjby9+\njlKz7S1stQN7sz74+DJo/+X/MgiM4rndJfqCnfwJvTGG/Y01+AdeZQtuR0KuITX7uW9Z0jWwCPcT\ntsZ2u86waNSiWmEb7+TEvX1iRJ8tqZt+5n3uARG3BH2ydpzAWL9hBtaqtfu4BqfFoW9Gen+sC8e3\nsz2stHeVXWuay7lORvQbbsWtlTutOKgf93Mp3Yn+JJGT8XftFswJV6SZ7kTgYPQ0sNdUqS/3jsUY\ntPeJqsxEzak9Dn25my/nuYk9Ta8xM634+PffUZ7UoadeN9SKi15C7Z1/L9vhtpTjGGlTK/dUxhiT\neAF6asi+bHYb1Pg0PK/mIjxjeQ3GGNNcgb8bOAj30r5XLPkVdSRpsHEonrkdNuJ26/Ck0djPNZxG\n/7p7/sJ7loSFGGcn30bvltRb2HY653vUWtmfcNVTKylv4nVY17z8sLZ+tOzvVuzfJ4SOOb3+Ryu+\n/YMXrHjXc+9SXp95sJF1csLauu61Xylvzb59Vrz0VVh4Z4heLMYYU3kE47elFM86wFZ3m5rwDP38\n+hlHwysS47HFtv/avA33PeGSAVYcOiiB8hY/i83z7je2WvHR1bx/l70t5F6x/x3TKS/rfvSwSQpF\nrZw6T/RH28v9cUZchc/c/bEeey/netAu+mZMfmyBFW97bgXlHSvE91/2IHr+yR4uxhjTKwz95eLn\noOdTwkGuvZt/xbgYeq1xKKT1cEM291MJn4T3pBZR41rqeF2ccDn2+CVbsO/Z/f5OyuszDOuGVyz2\nFfYepZ1N6CfV2Yy4Wey9/JL4vcAtEM+qRdS/jnrumzl9NIqZtC+373mP5KMODxP70gqb5Xai6LHj\n4oV9k5yXxhjjl8y1w9Foq8F+Tq4txhhTJSzgo4UNvf3exIv+pV7CtnzFG+soT/aD3ZyF/ZzsgWeM\nMWs2Yl/qL2yxP34NfcbkPTPGmNh09O3xCEEdrspkK/KwMXF/mOdr66lHPerGYF7V296VvUWvmtzM\nHCsOHRtHeY35vA+3Q5kzCoVCoVAoFAqFQqFQKBQ9CP1xRqFQKBQKhUKhUCgUCoWiB3FeWZNfb1Cq\nK/YwfS9mDmQ6ZdthaecVyraM/sGwmis/AwtY32i2IZYWrk5OOK3mSpuVtrCulBbMUsYQ7MvnUHkK\ndOPkwaDTJ8xla7QOYQUamAErzVsWMf/POxS0pYrDuHZnF/6tS1LZW6pw3mHjmN7k4nHex/Bfw1/Y\n7RZvZ4mEbxHub+Q00IDLtrFN4bDJkPZUHwW1rWBbDuUNEFR5KfMZffFwyosaCcvA+hL8LTdfPMdZ\nf51Mx+T9Arr95MWQyO38lm0k0y/Cd5/9AucqLdiMMWbeBNC88/KFPMEmLXAVNpw5pyBrcvWxSXZs\n9HBHYudaSBKCbOPbezus22oFZXfIvAzKC02ENGXqE6Dl7X1pNeWtEXKll1+4w4pDMtiK96YISI/y\n9oPaLaVQy3cw5bsiH/RUKR14666PKO+220A9l/bEf5n5MOUt3wpZkr8/rnfXP1+mPGkxmzEDYzl7\n62nKW/ngM1a88NVXjaORv0JQI4fx/ewU9ae9HhRhSc83xpiudsggpQ1n6l+HUl6VsJhvLgY1NnBg\nBOUFJqM+REUnWPHBf+dYsV8/ptL6xoD23h4EKmj2JwcpT9oU9p23yIobG/m+Sxvw4MGgurbb6LLy\nOfYSEipnF66hPt4s1XMk2kVdj1vIFH85pl3dELv5skwgbCzsMd2EVfM5m3f4vp3HrDitD6jhnz35\nBOV5RqHWFlVDwtHejprnb5MvxsdhHASJddEvhZ91UyHo15KKG5LGFp9F+zG3PcNljWIrZWnVKaVM\nHU38rGuFHDe2t3E4pKS3bAuvi3Xe2DNIanvkLD4RshoVD6/6cAnlBQ/E/W3zKrfihAtGUl7lSaxx\ntSdwDqP/Arp/7fFyOkaus+6BkFL4JrDE8Mz3kHp4RuD57PtgF+VlXI11wmk49ljSstYYY1y9sP7J\nvVPJera1l5IGR6M6F/KJ+It4Lt40B5T3xRMgezwgbOyNMebKGIyDlhbUXTc3vn9FJ/FMB16FWnvp\nwhmUV19x0oq/3ACr11cf+MmKf330aTpmpJCs1NWihtY2sqygREjxu0ZiXs19ZA7lzaibZsV+cZjP\nUUN4jcjbvMOKW8QaISXCxhjj/B3GQcSt/LccgaZC7EPDbPT/C8V68PqN71lxu20/N2swZCa7T2Ee\n3bL0GsrzCce7R2Mp9ocuLlwf5zwE+eAvL0KOkTZISODbuGZJi/TAdNTX+LlsL18tpLFZr2O/FBrM\n68T8uZBx5XyPtaBN2L8bY8zQ+yCVdHFBTZK2vsYYM/dWlm45Em6i9vjY2lHUHMIa1ybe4Zxte+32\nGqytAUJuVHmQ3wOlDFXum+ztGNx8UaOO7MS8TIrCmJJyJzu6hD24bzxbbkup5KliSGXS43ldHJaE\n/Zs8736pXBery7DOulQIWW0c/91S8b49YPafnvr/Ge4BeI4eod70mXyu8lo8gnjuVB/A+JbPdOSA\nFMrLLcC4uP3iuTi+giVfrkLSPTIF39F4CvOt8givuY2iFUd4JH7L8LNZWlfuwT459gJ8d3UWS9bD\npyRYcflWPIOANP4tQ7Z8CQvBGiJbshhjTFAGW3rbocwZhUKhUCgUCoVCoVAoFIoehP44o1AoFAqF\nQqFQKBQKhULRgzivnubUJ+iSHjqY3TWkTMe3j3CUcGeph6uroEEJyndgIMtc2tpAT2psPG7F7n7s\nEJB0JSQrnW2gNfZyB/2vxObCdFZ0TM76ApKN0GimN0m3lAE3gbpppzu2tYG2JB1wAlOY3tQgXDja\nqkDfli4exhhTuBoUzD7McnYIvEU388gxTLmrOwrqtHR6CB7Cz7toNWQIki6WMI4lF1FjIRVrqcEz\njUxjOm32GlA5608izycB48XuhiQppHVZoHanxnJHekmhzBgk5Hf5THmUzi8pw3EdoXa5iejsPvxa\nPKDSzUyFl13jHY3Bg0G3yzvN3calS0/qhZgH0hnIGGM+vv0fVjzxUtDkk68YSHn9b8DcrDyAv1W8\ngR0CHnp3qRW/vgouR/sPoG6cWvsjHfPUP+CA8PHm5Vb829Z9lNdWDSpk8pz5Vrxw9FbKayjF+TVV\n4rm72urGsNtuN3+EgGSWdDXZHNccDR9BjXXx5lrpFgA6spQ61h5hGUOd+HffKaBLb39tE+UNWgCZ\nl4uQILTaO/CfxPcV7ETtlS5erRXspBMYPMKKc0/hHtolDFKC0VLxsxU3F/F9dvXG9TYVgNJavZep\nql5xGNPNwsVAUmeNMSZgINdiR8JHOIuV2WSiQQNBVSXqtU0SIp9B6Ai4ChStY7nXnEexDvkEoXaf\nXcVuVIUH4H4Y4od75COkO7OHsaNVYw7WJ+miVnKI6byho3B+0nmhLJPlKyEZWDOkROnUh+yWEj4R\nY0Q6fQX25Wfm5NK9/++oQax3vRYOoM8Kf8VzkNJB08W6s+iJmH+d7RiDdTnsVlJ5EHWq2gVjOrBf\nOOX5xWNPUpqfY8XnxN8t2s+Sk/AUfMeZgxiPGSFsjSTl3c1ZoHK7ubBTlaw9hWuwN3EP5n1Qa6kY\nw0KKEj4xgfKKfoacoM8I41DMeB4y1FUPPEKfSSnTgOmQ1ydXs2PljhWQ228/jvr3+VZeaxaMxNp/\n6DMcsyKTHf9uXAitwV+XXGjF+z74txWHpfJzry/G/A2IgRPe+Ecvorxtz6GGBvbDfNn2Dp9rYjQk\nNXV9sO/Z8POnlLfkDayLx0+ux9+9hWvFvX950Yq/u/VB42jk7BN1dB/X1Abh3HLjP6+y4rqTvC62\n1WJfevtf/2rFhWvZfS5kKPJeffRjK77v1Rso7/QXkJdd8ASeY0slxn34BF7vXrkX+5vkaOwjZ1w3\nifIOZ+KcZL12c+VXsjghPxx491QrfvPGNygvpQAugYUrMN8qa1keUvktrimFzcj+a3hF4lzLt7FT\nnHSElDLqLtu6WCP2Nl7CUa7PCH7PyN2dY8UV9UIS5897cB8P7Kk8hIuSi5A7FZ/k9S4kSEish2NN\nO7ORx9GJItTQyEDsCbw82ZmroBx1NzEF7yq5tn18qBgHEZMT8AErv4yfTa7qaMi1puQXm0R1coIV\nu4j9jV2O7SKc/ZrO1og8TpR7TF8hNzp0nP/uZePQxkJKzU4V4R56e9gcEsW65h4GeZazrY2IiyfW\n9zbhHtZwpprymsSeLWI89mI1B3j8VJZjX+ElxpzcuxpjTMUu1PyUceZ/QZkzCoVCoVAoFAqFQqFQ\nKBQ9CP1xRqFQKBQKhUKhUCgUCoWiB6E/zigUCoVCoVAoFAqFQqFQ9CDO23Mm8VLosF3cOTX3yyNW\nHDIamvS6nArK64iAvaZHCDSEdXWHKK+5BlpDV6FXc/diW8/afFhYVe2Hdrv/ZbDePTfWJoATdm1h\nI3Gudv143Wloc7NXQcMbMZb7tPgEJlhxQB+cX41NAyvtxaQdsLQPNcaYqOmsp3Q0fn8fdomjbx5P\nn9UexjlLGzr3Mu5LIXvBRPaBZtsrgm2dj72xyYoH3AWLycqzhymvIBOa1ABfjIvju6D1P/TVejrm\naD6OmZGBfho+oueKMWwZKzWoKXP7U16F0MU2noEuMngw95w58in05f2vgI4/aDBbobXZ+l44En2v\nwb302bKbPkuYDMvxQ8u+sWLZw8QYY9YJi+zZd+P7fKPs/Tnwm23pHtiUt9rsG++54zIr/u7+ZVa8\nvxJz/j+3v07HfLlroxVfNwna/EeevY7y4kfACvSxhTda8bM/fER5zc3Qp1eIfgEj72RdfGXlZitu\nb4FGea/NRnbknay1dzQCRI+J8h1sVx81Vdj0Cp1x+ASuP9m/QFMeKnrJBPn4UN7JVUeteOzD86y4\nsYz7uBTswTyY+TCeSVMp7lPJOtYAt7RAL1snLH8jJ3M/BydnXEj4QNGfI6OV8tzcRK+Nw9DFNzXz\nnApLxL3Y/x36FCUPsf3dbuxXUr4d9ytwIPeO8IkVFuMN6LtStbeI8jyFnl72A/IIY+tK2QOpsxk9\nn9IWsT2sf/IqKx4eB0169THooSOHpNMxZiKeTeVpjCm3QK4bUoPeVo/nIS3djTGmQ1iSVh+FbaS9\n/1NXG46T/ZTslqa+CaInXDdYaUvbadkTxhi2p46ckGDFOcuPUJ6bH+5VcILYLyXzXGytPGHFIRlY\nX4p+4z5e/sLGvPoQ7mFuOe6Tk81+1r8A612fDPTAyF13kvJiJ2COSItUaSVqjDGVwga1MB9/16+c\n19mo4egzIy3kqw9yfXGxPX9H4oUrrrbiG/59G31Wm4P6KnsDJl50C+UNXIweAWtGTLLiucOGUV7a\n4iFW7BOFfYXHa9w77Ln/fGnFs4fgmDFz0HdP7nGNMebh616x4svGor9CWBT3RRywCPueda/9asV9\nInkvcvhMjhVn7/jdioN8eb/2+vXoJdMoervcOZ9tyfvGxpruRPIk9NSLGst2u/WFmAdrX1prxSlR\n3BfxaAHWpEtnYS56RXOvh63/Qb+ufuK6vnj6O8pbcDPsqWUvioo96PlUfJzHerDoGxIo1mNZa4wx\nJmM89qJdoqdhSzHvuxtysS/98QXU+Btfu5byMl/D+8q2Y7Dcnj9xNOXtP8o9zRwJ2WPNtw+PW5eC\nOnu6McYYvxR+v2stx7uRh6jB8ruNYSt72Q+zrLKG8mJnoH+Tv9inyDU33IXrqXsQnpXsJxLiz+Oo\nTxfm3N5s7I9abRbv3u6Y6+c60Nc0wIt7ePkJm+rmEqz7HfVs1+6XzPfM0ZDrcFMj779qjuB+hI1G\n/W+3nWNQOvZFzm5YG4IG8H4pVOxvmkvQQ9DZmfdvzh54/jWVGEtDZ6Bfpk8v7sVTugE28s6ueMay\nV5cxxriK3o81xzFGAgdGUF5cIsZ0cxnO1cWTfxuJ7o+6JO3lz27jtT5hFO9Z7VDmjEKhUCgUCoVC\noVAoFApFD0J/nFEoFAqFQqFQKBQKhUKh6EGcV9bkKqhfZz9nWYqk2rsFgLrTWsWSnRYhj5FU4fC+\nCZR3LgBU585OQRlyYZp3QByoVJEpkOh0dYEm31bPlHkXd/wGJe28WyqYQijtTuuFxKcpt5byAtJA\nZfQXtnBuPkxvldT6sk2QXwQMYmqXkytfo6ORNkPYhNqszKRVXImwhg4ZwfbUuatByw4bhWdQd4rt\nqaPnwro6dw0sVI9sP0F5nsJiTNIwl9wPeVrnV3yuFwiKcPAIUMObbJRJaX0tZRW7v9pDeW2Cfpie\nAfrjkU/Y+rWmCWP64Gf4zMVGvUu7gq1LHYmnLn/Uiv/50+f0masrqMo/bwWF+XghW64u+/4JK64+\ngjEcksg2sj8++JYVZ0zFZ742C3hJFXffgud57hxokWOG8ncvuw7Wna+tBJW7oZwlPs8vvtP8EZ5e\nxHaX1z91uRW7ivlXVcXWoieE1ejohyF5am5bR3n3XPa8FX+z5+I/PIf/BrLG2OUeB9+BxCrAX9TK\nKQmUFxqP5yC/r+/VPP72vY/vK9kFiVP0GJa3JM0CtbR8t5AbCvpn+l0X0jGBgUPFvzZYUdlOttCU\nlM/WZtSKtppmyuvqBF22fCvGQvyMZMorEVTVsXdMxN/dwX9X1nlHI0zYBtef5vonJTvu/pC8eEay\nnECeX/lOXK+dmispt97heB65+1ZSXsLQBVZcVvibFUcPg/2vvz/PxeL8FVYckACKtt02PXogpH5V\nRah/kaNTKa+1DpRyX2E3bpfhSPvsgAFYP72FJMwY270daRyOpnys6xHjEuiz6qMYj/krIJcMs0kM\nqw5ADiX3SxEJUymvc7ig63vI9Z+pzlLO6CHo9b29sN75JPEYkbayqb0wNu2WoSFDsKYXCsmTmz/X\nIRdBIY+KAIU+0i6/FnI3eR/aKpkK75PIz9WRWPwE9gvXT7+LPnvzu8eseOlNWNNGp26nvMN5mH99\nY3CP5jwxl/IuHofvf/0RSKjSb+TBeb8Xnlt1A/aYjzz9rhVfaJNM/WPZHVa89V2xVl0zk/IKN2As\n+go5d+ggljV9sQ3Snduum2/F2Tab6gFz0qz418/wd8PjWN67+CZuV+BoRI4BxV/uH4wxxicK4ycp\nHHMnbl5fytu+FHvMzjbUmMzVByhPWu6OvRqyn69fW0V5smWBfFeQ88PDZn295BlIvfO+xb5245sb\nKS99BKRbYWNQU358get6RgfWk3HTsL63lDdQXlg0JBcxZTjvo6f4eU9Y2A2F9P+jYB3kRR4+LI2V\n7xltVXg2e77hvXb6BDxTKaeV747GGOMVAYlR0jWwEU9o76K8MrG2SjlQtWiJ0dXMMqRKIef2DcW6\nfex4DuVJ2/MLp4yy4uPH+J73HY53iyrR+iI0heU1nqJFROVuSE2dbRLtqmysi30nG4ejIRvreOI8\nljfKd6vGPKyfAamhlFd/FjbUbr5YXwrXsB25Vwyeo9z7TL2FL6ypCO94XQfwjH2EFKy1nN/n4xdC\nOihlYj6R/P5tDL7PzV88e9t+pGQz9p5dYpz59mYJn3wfzd+ZY8URsSxHqzokLLgXmf8FZc4oFAqF\nQqFQKBQKhUKhUPQg9McZhUKhUCgUCoVCoVAoFIoexHllTSWbQOOJm88UZhcvUJVkJ+QGQWcyxpiC\nPaCVBfhAvtPRxNRFieD+6KDu4cEdk8+dA52otbVU/HdImSKT2ZHINwqU/vpC0MqqJa3IGLNvB2iI\nvoL6GGzrcO+SjdtWcxDf4d2LaVCyS3XoGFxT7VF2dXL1ZDmUo9F4FjS1kp0sHympBTUtbTyesewq\nbowxvkGgFUrpmr1TtXyuuzfAkau9k509DpahA/+C8aCWNpeCrpmVx+caEYD7W3cUNFvPaH4+sst2\n8VrQxt1cuOO7pFDK64ixuRydOwAXgN5TILOQTiPGGFMjnyuzlv9r/OM7uCFdNmoafbZkyhQrfvDT\nJ63Y1ZW7yx//6mcrHrIENOoV9z1EeVe8/k8r/v2FV62492ymWN89BxKjiQMgmSgWEhpJWzTGmAun\nzLLikn0YHy42Cv7i20Epl5TW4F5plHfgZbhTBQ8DdTYsaTjl+Qv5xJ43Iada/OYblNfnjaWmOyE7\n4XfZKLhp10IqVC264ksqqTHGBAoKu5ynlfvYdUXS3qXEMuuNXynPxQv33jMK91qeX+HOvXRMRShq\nZcTEBCuW7hLG2DvhY87HjhhHecWHIccLGQVpgZ2qGihdAFwxn4MH8TrRYaMqOxKVwq0jcgp33Jcy\ns9yv4ezT+1qWnDUU4D4FpeN5SqmgMcY4O+PfUkrm1pfXGhcXOD8EhuFvOTkJaW3ZGjpGOg44R+Pv\neNvcTbq6QEMPjJTSKJYrSXpwZ4uQBdtkpzGzUEPrc7BfcPVmeY10NusOnOsEbb7ZJhOQTosuYmzV\nHOY9g5TNuvli3Whv53ng5dVLxJAeBQ9m9xT5fYEZYp534t7Ktc8YY8KjIXOsFvsRX5v8KfszyDs6\nxfxobGCJYVAvfF/YOJxr7o/HKC84Dc8neIhwOLRJp5sK/9ipxRF48U5IhZbv+Jk+qyhETbnx7kus\nuDGHn828pZC5LrsecXkmy4LXHYLs5eBrWHdCY7iW1Y3B2N/wDtyF7p4zx4r7XD6Qjrn9ashpX37t\nbiv29x9Eee9//74VX3IXvq/XsAsoL+oLOF0+8Nw7uIYsruM5+36w4kufgYz3xJpvKK+9jlsFOBo1\np7A22CWpOz+G+2OO2DcmdLDkYlAvzLHnl7xpxY8vf4zy6ouwTu7/EGPE7kZ518Jnrfhfn2NcRE2G\nvC9rJ8s0nMQcixHuaKUf8dzxOYS9bVcr9sahflx7fz2EPdKigdj35f1wnPLchWvchNlYJ2KnsZS1\ns4PnuiMROQH3vymf57xc12rEvtnV1hog+3e8cyZPxDrh7s9uV9VZ4r0rGs5p1YfZPStkMPaE5bsx\nn6VDbsVunuchidh/nF6D+7znDEtQl1yC/fC27XhOk2by5v9MJq7JUzg3eYnzNsaYduEI5h2Pz2qz\nqyhPvot1B+Qeq/oA38+mQiH7EQ6+0v3PGGPcRasT+V7k24dbI7QJ52J38d5V8hu7g0oXy97XCqfe\nANg4ljsdpGNqhGOklD/tfGE15aVeiDlSmYna4BvHeyyPEJyDXKftkjvpYtlXjD/53cYY49+b74Ud\nypxRKBQKhUKhUCgUCoVCoehB6I8zCoVCoVAoFAqFQqFQKBQ9CP1xRqFQKBQKhUKhUCgUCoWiByZk\njKgAACAASURBVHHenjNuwgpU9pgxxpiqg8X2dGOMMTbXTNPc1mbFXkJvV2XTX3U2QgMdmAqLsdO/\nrjB/hphx0NZXnoQe0COIv7vqIHRzjWegcXeyWZTFh8DqKiQZ5+CbxFZZ9cI+Ou4i9C3J/SaL8pyE\ndjZwAHTrwUOjKU/2KegO+CVD2+YRztrAcDfoK2U/DKl/NMaYXougy2ssQJ+a/T/sp7zcCujh/b2g\n25f9L4wx5uJJY6y4VVift5ZDg3j9Y5fRMVLLJ/thHP6RtYZu+6Dn9RCW3cOuHEF5tcdxrvL5GMOa\neWnxduwH0SfFppeN68UaUkfimctgLf317xvos31vv23Fnp54no8sWEJ5V14KzfKM/tC8/3KUrSbr\n66GPjp2HPkQeHlGUN7Yvxv78F9DDprUV883dnftGHHjpKyv+cjssTV/4cRnlNdbD6vX4W7utuCTk\nLOXFLcA5xPSfbsV7Xn6L8hIXwz46edY8K7bbdg6++UbTnTi1Av14Bt00ij5rLMS8aq2ENrziIOt+\n/YVNsWz7UXaaeyDFjU7Ad+xE3yQvW4+m9mrM9XBh6ymtLAt+OkHHpN2Fe93VhXso+3gYY0zRL+ip\nIXXnpb5say9rqp/Q4nY0cW2MmgQdv6yvZ787SnlB/cW4G2scipjZ0MJX2PpSRE2BBlquL9nLD1Fe\n+DjcZy9fzNnaAu5B4h+TgL9VutmKg8PGUF5lJaxaG0twL2XvlJYq7jfg3wvrUH0hxlhkyp/fsIp8\nzEV7XzI30Regq1P2n+FnSGNEhHlf8/oZMibGdCfkWiN7NhhjTOFaPAfZn6Axt5bywkahJ0tzBfrW\n1J7ZTHkdTdgHxYppb+/RFzUO9dbVG39LjrNOW7++hMtR2xqF5WhrBfdrqhfn5y5sYOtbeK13Feu7\n7A/k7sbbRfdAjC1pG9/R2EZ5HsG853AkHnz7Fit+5rJb6bMEYbs8/Q5Ym8eO5Z4Q0upd9i3xiuA6\n+cLVj1jxPR/cY8XrH3+J8oqr8Uxnz4B18T+WfW7FXz52Cx3zwVr0N/n3rR9Y8czt+ZS36wTq8Ox8\n9Lo5UfY15V33BLxZLxeW8XvffpPy3ER9+Pol9OyZODSd8hIXc48cR+Pg1/usuLSGewLNuXe2Fbu9\nhz1D4Wru9zL4FtTEga3Y6z1z5bOUd8MdC6w4PAx7++G2noST09DfbtOr2HOdFD1rrr5vPh0TmIKa\neuxN2JnPms/1Omwk6kbBz+KZPrOY8krvxD7GVfS0Wruf992dXai3faKwT2vOr6e88MkJ+Adv5/5r\n1B3DftrZne+lvc/m/6B3/3j6d5d4F/Lrjfcxey87iRrRfyZibC/6LEf0fXMXPUPKtuIdwTeRe3PJ\nvpmhsdiLXOHNvaWO7McaMXEa+vzY90Cx8ahDsleJ7PVnjDGu3ug35CWejew3ZowxAf3YgtvRcBXW\n1/a120X0+fMIQ68Ve5+opmKMuxbRp8bFk8eFrD+yDvvZrLkD++Kaj72DvWPYMKyL0gLcGLZIl31X\n2zv4mop+xW8HMbNge15zjMdscxGuwzMKa0NDHu8JGk6hR5BXJJ5pVR73DgpJYmttO5Q5o1AoFAqF\nQqFQKBQKhULRg9AfZxQKhUKhUCgUCoVCoVAoehDnlTU1nAANx26V5S8ssSr3guZnt5VKuxD0SEnx\nkTaexhhT8CsoYpn/2mLF0YOY2hw7AzKG+uJcK67aC5lV6Eg+JmgAaGXugaBeu3ixhbWnoM75J4Ny\nVG+jHnfUg7ab9y3o9BGTEyhPWme1CIpxs81asrtpaiSbsunO5P3I3g2qn536JSls0hozIZG5kT5C\nvrTuAOQyV86YRHkhI/CMpKRBWnxKWYUxxtRn4zmUZ4GGP+y60ZRX8D1kOS2teFZ22+/qk6CtObk4\niZh/swzsj+cTm4bztlM322qYHu5IxArJXW1tJn026s6HrfiZS2AZeusTTJENFTKkfxGdkOfB9w9A\nJnUwF3MsLoStSm9+9ykr3v3Pj3Gughq45eMv6JjCKtSUJ5ffJ86Bx+XTV8PC+69XwiZ08/p9lBd8\nDOc3Yj5qikeoF+V5+OL+FR7ZZMXRAyZQ3uEPl1vxyNseNI5G30Wgh1fapKHB6ZDWBaaiZuWvZklR\ncRbqSvpfYBneVs6ylbYKyDYSLgdF22653WtBfyuuEJ81l+B+ptw4lI7Z/vxPVjz8HtzDgp/Y4jNq\nNsaCtBqWcidjeG5KuVLYCK7lHYJm6ynkEtLG05j/bZfrSEh5UPBglqhKC/RQYUPsGcLrZ52oeY2h\nGMPNNuvw8p1brThA1KH6vFWUJ9eUmMlYc4t3oBZ6RdrkbM04xisU9b1g/ybKK9uYY8Wx81FDGvOZ\nzusdDfp17XHUVjc/lkTXngT9XVKopd29McZ4hnWvZWjCIsyJir02eZqQMnkI+U7IMH7e3uGQshb8\nCilm7HS2+e1sw9rQWAsatadNOlNfAPvPFjEW5H5E2pQaw/sYea+r9vI8lzLc8DEYmz625yjX+vLd\nkEM6e/B6Vy32XF1tmJft9SxrajyDuZg60TgUfqF4Tk9++wl9VlYAKYqUBvj4JFPexsdhYz39OUhg\nTu/6jPJqG/E8goMhcQgI3EJ5ITGQyhzOhPRmegYsYCelsnRw1T6sn1JOk3gly4mqP8Q1ugeJvawH\n721krc3ZClva6IFcT2979BX8rUhYty+670LKu2P+01b83d55xtE4Kyyy/WwS+M4WyEz6T0H9ObqB\n15r19+Le/PVpSOIXjhxJeYFC8hqcjmv+8jqWfC0We9b0dPzdpGwcU7o+h47pElLP1FshrbJL/Ta9\n9JsVS+l94KGTlDd+PKzU9/+M/fSli6ZS3m+rYQmeMTQFf7eWLdA9AvneOhJtVahxkaJ+GmPM2ZVY\nh5IuRG1ssK3Tzfk4Xzlnz3V0Up6sUd7ReK+sPVVBecGiXp9dg31U/CTIj+3vBR3S3lnMsfDxvMfw\n3Ik1XUpNvWLYDt3ZFXvbSmHv7G6Tw9QLOYy0qW6v4veK8i14T0vl7atDUC9af3jbrqWqAvubwu05\nViyfqTGGO0MIKVf5IZboJ18h9sNi7ynXDGOMcXbD2uUVgPW4/iTuWdapXDpm7MXYG5dsxz3rO7M/\n5bWI3yLOifPuaGb5sIs35mnNXlyHfd8i9zTyXdk/kPczrcW817NDmTMKhUKhUCgUCoVCoVAoFD0I\n/XFGoVAoFAqFQqFQKBQKhaIHcV5ZkxFSj+pMpuBLiqtvb9A42+uYRidRsR0U2cSruBt88mLQ96S7\nUulh/rtSNuWXgL/bJqjmdrp1Ux6oRQFpoIbv+4rlIb3T0DlcduyW7iH2c6gQFDNJfzaGKYVtgion\npTvGsHygO+AmnCiy1rMzT1wk7oeLkJZ4etmuRdAym/JxPw8fY/ecqCA8k0kD4PBUWMidryO8E6w4\nJwvjQlKv5bgyxpiju0ARTuol25mz/EnSz/yFvMUupfMOBC3RU8j22ut5DJfvhGPCySOgzrnYpDjh\nAQGmuzDpUki3QkIm02fNzZgjjcJ5I7x/BuV5e8PpZvVXL1txYD92VBo6C3Px6gvhRFFdvYvyjn8F\nacuuk6DjjhXPcNqdTL+NTMa5f3X3E1bc0cm01S7xTJ1c//w35BLh7PDWy3CseG3dSsprb0femT07\nrTgshemTJdllpjuR8wPovR42B7zq/ah7IcMwvpvO8jkOEzKiKkETDZ/EtNuKHZhX0iVAOswYY0y7\nmNuSkhkyFOfQWMyuD/0XYYyUbsux4vhLB1Beq6h7Lc2gcYaP43OVUsQI8VnWB+zqJOtDrwtBNbc7\nq0hnKEfDJwZSlmrhFGGMMf59QHGtOiBkJVyiiIot0dXK86C9BrVIPqeqXSxZCRkNuULVCdSouizU\nXd8ErqdnP4eDlHRjsa/hkTNBAZdrs91tQtLDA0RNqdjFjjNdkqIupKt2SbT9XjgaUu7rE8+1W9Z8\n6dbo14vv4ZnPILMMG4v9Q97Kw5QXmIb7UXMENcYngZ1Csn+CTDp+KiSBch55x7ArYEM+6kP9GdC8\nQ4azhCXc84+3e35JvL9pE+ufdHC071siJyZYsRxLdrmvfZw4Eh/chvXp0sfYOadkE/YmrSWoPRV9\nee5ECYe60mLIBXsNvYjyZg+B88uqBx6y4iG3sURp/7IdVtwm5OGV9aihn37xDB2z/ukfrHjSwzOs\nOPd7djD7ftd7VnzxqBtwDn36UN7ieVOsuLEVz3P9mt2Ut3o/1swP73jdin2ieYzdd+XFpjsxfiTe\nBzbu4D3q+0/D4dFTOL5KZy1jjJk5DO6t3hGor0XV3Jbg4FPYt8y8EffpoXfZ7WvPG5CUJiWiPvy0\nDRKi+z68i45559Z3rXigOL8+U1MoLykBcpuqcryvhKYnUp6UdgYNgpxKSvyNMaZ/bKwVS4e1TlsN\nla5vcazu+6/hGYlzrd7P721Stt5chrnYcJIdbDqE61SxcMwLHBJJeSVrIQ0Nm4j5a5dU+or62mcB\n9ia1WajBAf15/ytdeeR+yO6sJ+HqK6Sl/uz8VyakoX5RmFd2mbGHkD5X7MIxYaNjKa96H0uDHI32\nWrxD1J3h5xM5EWO6Sciy5F7TGGMipiRYsdzrlG3Lo7xTwsXSWYwRD3dutVAlfn+orMTfLa1FPHQ8\ny5WaxZ5Vupl1NPD+RrYpqT8tWrmE8DuwVyLWfun0W5fFUroOsb+R4yJoKLcAKd6cY84HZc4oFAqF\nQqFQKBQKhUKhUPQg9McZhUKhUCgUCoVCoVAoFIoehP44o1AoFAqFQqFQKBQKhULRgzivGDh0DLRu\nvnGsjZY2x/XZ0Gm12OyhPKOhI0u44s/tXL1jhXWY6NUSkhjCeVHQrzXkQWvd2QadV+lu1r/FzYS4\nUuqh02elUZ7UFzYKW227JlHaFvr0xn0ps2nrfZOh5SZ7WKFxNsaYotXopWLmGoejdLOwQ45k2+7K\navSPaW6D9q53Op9jzSFoND2FVnKga2/KCxuNfhayb0/+L6coT/Z1kf1FBsyGbrC1iq2B0yeix4S0\nrSarcGOMbwruu+w94WqzTpd2y9kbcH4JE/ia2soxvlMGQHPpn8pjs6ut+3okhA3HXNz/6ev0WcrF\ns634qltggenqyn0tNj3+nBUnhGEc+EVwD5K4VOjLm5sxdhqLKykvaQG09rPEvPISGtO7r3mBjvku\nEzacMx+fY8UNBdxXpenfGItJF47Bd9t0ujEjYVdZVw6N8j2z2Ap0aG8808EzoW+/dtK1lPf5tu9M\nd6KlXVguBrO9clBfjCfZ96OplTWyx95C34DAvuhxIu1sjWEryrY6zBe7Xj16Mu6NrK+1J6ClDezH\ndUPW/I4GPCupaTfGmBPbMa8yFqInQMlv2ZTX2Izzk1b2SRexjtg3HvU28zX0BIhI4vMLHsz6Xkci\nT/QNsttmlm3HfHEPgPa8cg/fF9nHxNUH6479PktrZFfRSyvhSu7Z1i501C7uWJ+i56DXQUs599yK\nmIL+Bg2F0G5L+1BjjKk7iXnvL9Y0l//H3nvGx1Ve2/+PVaZoVEa9y5It23Lv3biBAWNTbHoJCSQk\npIcUAslNyE0jlSSQ5IYbSAg9dFNNs41tsMG9F8nqvZfRaDRqvxf3k7PWfgJ+8c/4rzf7+2qbeebo\nlKedYa+9PHI+7SXbyKRi9OXhgWHRLioGc0UH1bDJpBomxhgzYtUSizS8jrP1sDHSlr6tOWg+CXc6\nxjCfb/YqaSXbXY57mDIL9RN4jTTGmOx5mOdZ/84W3l0nZF2sENVT8c/MdOLWD+U+iGsh9LfgmrhW\nhDFyv9O8pRLHnivrPoRaP/7v2vWUmrZVmnPF1/+BGh+bvv198dnOk7Ba/unzf8H5nP5AtOuhWhJx\n8RgTVftfFu2W3H2NEx/9wytOnD1W1qYJrMda5tqMWmzLroC1a+pkWS9l6dc/vgZV7lpZq6T6ddRj\nyac1/O5/fFW0O/FH1IdbeBvWz6xnj4t2NdtQ02vtZ1Y68TUrvinabTsta99EmqozqCmR5ZfvGtfd\njVpCb//xXSfOzJX7r0+qM3b+DzeIf5c+ippz7mTsAQ/9RdbUm/UZ7C0OPoI198KZqLcWapf1Lbm2\nyvbjuNfTb5or2n340j4nvuznNzhxZ7l8h9jx8E4nnrFkkhNnLJb784xFmDd4rX/pN6+LdumJqHky\n+3oTUTqqaL4aL+2Fk4uwbnBtPXtPnjkbc0z9dtSMGtkja9ikLcOelevMcI0eY2SdGLZdTqB3BPv9\nYaADa6krhWpW1sm6e75x/O6HudauzeVLwzl583D/g7Xdop3hmiu0BvM6YIwxMYmyVmGk4T2HNzv+\nE9slTsIzHgrJaz79LGquJefgPg12yr1szlLMg71VGEstlbKOSwa9txZTH4mjPjJg2canLkDNtVga\n5y3WHrVgPcZVfwvWNLYKN8aY+CQ8x8zldN6WHbzY79Azbd0px3buBfI900YzZxRFURRFURRFURRF\nUUYR/XFGURRFURRFURRFURRlFBkzcq5zhxVFURRFURRFURRFUZRPRDNnFEVRFEVRFEVRFEVRRhH9\ncUZRFEVRFEVRFEVRFGUU0R9nFEVRFEVRFEVRFEVRRhH9cUZRFEVRFEVRFEVRFGUU0R9nFEVRFEVR\nFEVRFEVRRhH9cUZRFEVRFEVRFEVRFGUU0R9nFEVRFEVRFEVRFEVRRhH9cUZRFEVRFEVRFEVRFGUU\n0R9nFEVRFEVRFEVRFEVRRhH9cUZRFEVRFEVRFEVRFGUU0R9nFEVRFEVRFEVRFEVRRhH9cUZRFEVR\nFEVRFEVRFGUU0R9nFEVRFEVRFEVRFEVRRhH9cUZRFEVRFEVRFEVRFGUU0R9nFEVRFEVRFEVRFEVR\nRhH9cUZRFEVRFEVRFEVRFGUU0R9nFEVRFEVRFEVRFEVRRpGYs33Y0rLFiaOiYsVn8fElTlz27gtO\nnDIjS7Qre/iAE3sLEp24eMMq0e7Pn7/Xie96+kkn3vOX34p2YzdOdeKGbeVOnDA+xYmP//Og+M7Q\n0BC+P6fAicPtIdEuyh3txDNv+SyO9+ITop1/SroT3/nZ+5z4C2vWiHYD9HfX/OweJw4GK0S7yne3\nOfGMDV82kWbPQ79x4tgEl/gsbV6uEx9/aK8TZ8zKttrlOXGoPejEda+cFu0yVuD+dh5qcuLcSyaK\ndg1b8OzCbX34O4vxd5ImpInv9DZ0O/HI4LATB+t7RLvYJDf+znuVTjz2shLRrmVntRMP9Q46sSvV\nI9qF29BPEkrQzxInyvNr3ILnuuRb3zeR5PTOR5w4LjtRfDbQG3bivibcC29mgmzX0+/EI0O4f4N9\nA6KdNyP+Y9sFG+R9jsvBefDzCHfjfrn8XvGdWB/6H//dGI+cioKN+FuxiXgeCQV+0W4ojDEWagk4\ncX9Hn2g30IN7lE59vnVfnWjnoWufsPhmE2kqDj/lxHzPjDGmp7zDicOduIdDQfl8BmjeSjsv34lj\nfHJsmxGE7fvqnbi3MSCaueLwvbQlGH9josY4cX+7vJ/B6i6cN43LzAV5ol3COIyXkWGcUPfpVtGu\ntxLHGxnAfYkrks87WNHpxLmXTcI5lLfLdlU43qKv320iSdmHjzlx5/EW8VmoDv0255JiJ6556ZRo\nlzw704lTZmCubdsv++NgH+alUAOeW4xPrsfhDvSJxJJUJ2492Ij/Plbey6yVRU4cqMX96jraLNp5\nczCPDNGYTbOedW8NjmGo74StvtNH83XqfIzF3upO0S5xEubXcbNuMJHm+Nt/dWLum8YYM9CFubLj\nMNax6Cj5/7MSpuAca/diPZly/WzRbpjmqYEAjh1q6hXt+F511uF+TLx2hhM3bq0U30kswTl07G1w\n4mzqf8YY09+Kdbv5fZzr2KumiHYNb5Q58ZhoXK8nV64ncdQvOg7g70a55VweQ3uOuTffYSLJrvt+\n5sRDwUHxWc76CU48SHNo4+Yzoh3Pc1FenLsnyyfa8RiLo3vRfbxNtMu6aJwTN9Oz8uRgbUm29sl8\nfkMhxGOs/sbjj+dkd2qcPNdOfBYTj/v/b8cLYl2MckWbT6KX59OvRXY+NcaY429hLNrzD/cnL93D\ntn0Nol3m8rFOPCYaz7TrqJyjeb85PIJxn3+F3B8GqjD+/CXY8/Pzsam3+ta/yKW+aIwxMR7M31XP\nHf/E42WuLnTiPtp/9bfJOXW4H/NLylysJ0N9ckzEJmJvPH7ujZ/4d/+/sPt+vMNlnz9OfMbzCO/9\nu2rknO/14Px4Hx5D522MnE+Tp2MtjfbKuceTgjEc68GYDQfRn3lfbIxcC+u3YU/f3Sfv+eRL8C56\n7LWjTpyTI98L3GnYA/toDfblJ4l23aWYR4YHcH1dh2X/TZyK48+86ism0uz47x85cdLMDPFZ10Fa\nC+PRh6Ni5dwxQuMqoRh7wK4jcmz7Z2EeDNL+oYf2l8YYk1CI+zYYwJw1EsZeMYH2PcbIvtBzCve2\np75btMtZhX3QmTexT0v2y/Uu2EvvNTE4tjvVesehvjpI7x3R1p6N59SVP/mJsdHMGUVRFEVRFEVR\nFEVRlFFEf5xRFEVRFEVRFEVRFEUZRc4qa9r1y9edeMG3V4rPDj/2Dycev3GxE9dsOSDazbvzNny2\n720nbj5+WLS76uvr6F9IVXKnyXRNv3+eE3vXQkLjdiP9Ki4zXnyn4qkjThxN8onEKTL9LG/hEife\n98D/OHHKvBzRzpWAdLuuXqQlP7d7t2iXm4J0rr7vQOay6ofXiXb7NuNezNhgIg6nr9dvLhWfdZ1G\nulcCyWA6rVRQdzrSA+MpHS9tqUxtH+hGiiCnybI8xhiZlh9flOzE3XQ+jdsqxXfSFiIFntNzQ5ZM\ng9NYJ9w404nr35Ypp7nrIIuopD5ip1AG6fhDIZIZtMqU9AxKq400nDbYcbxJfkgZ+XG5kBrZUg8m\nYxHGTqC6Q3w2QGmDhtITvVkyzS8hH/27vwv3wkNjtr9TSgd5/LmTkQ7Iqf7GGBPtRf/wkYyraVe1\naOfJQL/kexQ/Nlm045TRvmY8z4TxMhUy2CBTHiNN60eQrXBaozHG5JFMx+XHfesgaYoxxoyJQd+v\nfhsSBFtykT4b6c2JkzHXJUyU18zPK0DppFH0d4Ys6RunLQ9vxjkMUXq1MVIyEKa5oa9OSuRyLiYJ\nxhh8x04hD5M0o/EdjGeWdhgjpRSRhuUE/dbck7ESc0DVCyec2JaO1L5w0omjKcXdZckT/DTmuN8O\n9sr74snCv1memzwF62LXCTmnN+2odGJOxc2iNF9jjKmhc/WTHKvh3XLRbpjmxrTFJLfLk+m8SSQR\nYOkA/3djjOmtpbE4y0QcTrXnPYcxxkTTPfRPwz30WPuRLpK1Tb1xDv77SXmvO4/h3739GAc+t1xr\neE6ccPV0+j7SwePypazVRTJe/xw8n2NPy71Y9kR8FkVzRcchOb/E0PGSZyLtnNd2Y6SUic/Jbsdp\n7ZEmeQ7mOFsO0/J+jRN7MvDckqbLfsZyJZa8BKvlWuCi9HWeg4cG5ZzHxxsm6aqPJLm1L54U38m5\nFLJv3gOZYdkveR/WeRLSUJdHjjGeh2IT8DwbrTHL1zRM5x3rl9JunyUvjTRN26uc2JbEtLyHz/g5\njrt+umjHUmgeR/Hj5V4g6MHY9mbhXSHaknUlUr+tehqyFRfJVNwZUvrmn4G5gqUpNc+dEO0KrsZ6\nkH851v3eOtnnYuJIOuLC3skuT5C0AH267lXs8WP9cn5hmdP4uSai5FPZgBfveUl8lhiH5zZnHfbk\ntmQ7SCUT8pbjvtRukrLgOCqR4R+PtebEn7aJdp5cPF+Wquatw3g7+LePxHcmb0C/mv2ti5z4zDMf\ninYsRVz0lfOcuLtM7rtZMttOUjxXspTDsJR9mKTd+Rul3K7meepLV5mIk7II77vdJ6T8PJH69wj1\n72irLAHL1Pvb8EzdGXL9HA7T+xRJfD3JnywViorF3MtzbelWWWKjZC3GWLiVJKAuOVdy+Y3ii3Gv\n7X13zuxCJ656D3vP9Mn5ol0U7Sv66JqGrb1sbJw8DxvNnFEURVEURVEURVEURRlF9McZRVEURVEU\nRVEURVGUUUR/nFEURVEURVEURVEURRlFzlpzpiMAjbvXK3VVc26BbXRb23tolyPrUgQCsIlLKIT2\nMzVjhWj3w403OfHX/wJ9qztFas8qPnjNifPmL3Piv9z2HSe+8T5pgZs8G7rptFmokRKok7U2jv7v\ni04896u3O/EtK9aLdl1BaOhe3r/ViQ/8+SHR7p0PpOb7X5x+Yqv494ovrvjYdhGDNI8pc2X9nDMv\nHXPi7IWoQ5K7Vlr/NZKlXHweas7EeKVujvXN8fS8bWvjEZJS95G1WcZSnEPXKal3zFw43omb9+B8\nXMlSH51Oxwg2oQ/nWXbe3WXQdvtJh548Xdpc1h6qdWJ3C579iJSDi9oRkYZrHQQtKzi25IujGhWs\neTZGWqkG66EJZetsY6RO/pOsO40xZihMFt7N0FZyraE4q05NoApjzpeL87ZrlcRR/aNALepS2BbC\nHqrRIfpUk6wFwnU4+lpwrqnTpWW8fW8jTU8lriV/ndUfqb+nUK2H8DipmY8nO8au46izwPUhjJHW\n3K4kjBGue2OMnGPZ6jCVajyxdaUx1vOm+gtdx2StjX7W3FK/Slska1UxZ55GDS62OjXGmJQJqC3D\nVonRln6Xa0JEmqF+6KRT5sv5tHU35oqM8zAPhZplfaq8DdA217+GGgFst2t/j+vtcA0hY+RY91Hd\nqYEkjFH/FFlrI5osarnGSk+lXBfZMpP7zsTPyaIFXFes4knU8HJZVpNcA42tfDsOS413yiw5NiNN\n+x7Yy2evkXUuanagxgGPAxtvNp5XA9VesvtFxnm4B2yXnThB1n/qIstPrv/Ew4At1Y2R83/tzkon\nHr9azi+DvbjXbL3rsuqLcL2vbqqdwzUbjDHGP4Nq2Ai7Y1kTp5T2GBOXmIgSonk+aNV/3cFQHAAA\nIABJREFU4j0Mj1m7zkXMEG5uMtXp6rT6o4/sXHtpHs9cIWvNhWh94dpX/VSjzh7njW+jFgyV3Pq3\nscN1krw0b3ONJ2OMad+Hvp00FXUiEifLOYDX0wGyfeVaEMb8u+1vpEmluo723F1wDSyLud5EK12j\nMca4qC4F7zeTJsq5svs41tnmasxnMT5Zx4Xr2WWQpXWA1tXWQ9LO25eG5+rJxPd942XNniDZYrd/\nhOtIWyqfYy/NAb4CPIPmHbL2XuUzGGNci8e2OB6g+TbS1FMNuI0/3Sg+a91bazc3xhiTcZ4cOzxO\n3/w9apTOmiXfR/rqMNZ3/GyTE8+4aZ5ol5CP+fXU/6Am6MGHUD+mvl3WiGn5x/tOPH8txqxdVyVh\nHGoSDZ1lPg3Qesp7Fj43Y2R9vpb38Xxj42XdIG++3FNHmuOvoy9lJMlxz+/3MXRepe/IGlqZubi2\nYAX6cHuPnKOzJ2AN4boytlV87yDVpqMacLG0r500SY7zMM0B/WHM+ZmL5Bjr2IsxHKB5nedNY+Qe\nK2Oi/IzhWqmBEGri5M6U+wi75q2NZs4oiqIoiqIoiqIoiqKMIvrjjKIoiqIoiqIoiqIoyihyVlnT\n6QaySowrFJ/9cOM1Trx2IdKbfeNk+h6nDmeRRV59x2bRbn850jof+NLDTvytv98p2jXth41YKITU\nr4s+DWmQzzdJfOeJxx5Fu5iVTly+WdqzzbhtgRNXfvSqE2f65TX96L4vOvGXLrzaiacVFIh2669a\n7sQll1/pxDUH3hHtmskqcNw5sAxlmUnly9LSL2cx0go5jZMtTo2RKZ/lj0N2wBIvY4zJmUxyjDay\nqOyx7DUnICUw3IVUy/rXkeLf3ytTMNkyO3UBUsTYDtEYKfXIvxi2fT11VpoypepyurCdVpuSgONz\nKnfIks60sVzkPBNROskGN32BTMsLdyJ9j9NH44ukhalrHFIAB+jecjqlMcYMU2opS1FiLYtxtsnm\ndGNPCqRGA9Zz5zRbXzL6XmPlQdFOpJDS6dmp9SGSerAEKyZepiizdIvPqfWATI32WNaYkWbshslO\nzKmrxhiTQrawvSSvsmUMnL7N1phst2uMHLNsAR9fKOezyhcxJ2SvKMTxSOKUMteSf5HNcQzJXhJT\nZaqun1JD6yw7TCbchb6Utwa22l7reZST5X0+WY/bKcdGqqEiSpBSzW3ra4bT1W05XoBkWJymbI9F\nbyb1WxpvdZYlbg5JhWpfwn3m+XlgSErTpl2NxYalJ5Ovmyna+afjGbK1ZusemarOssexV0OK0FMh\nZVI1ZDHuycW1ByvkmiOeqXTNjQgjJGfpsGyYfYVYGxrfx/oc55fPO5qe6yCNRbZPNcaYU5txzYP0\nHKZb/fvANlj2zliI/h2qhQzCXp82PYC91Jxx2GP1WLJgTgcPktWpLSmNpbkzTqSxyzm17J8Yi/0D\nmHvHLpVW7IWris25IliFeSjdkvawtJWth23pZc7FOL/mHXjWCRPlXMZWxjEk3zZyyJqMxdgH8rzG\ntshN2yvFd4puQAdnyUt3aZtox3Iqlii1WxKfgU6scSynsuUCXhp/XHagdY+UvrbUw5b8XOxRO/dj\nbxY/Sd53Pv/OA7C99c/OFO36aH/I19V5Sj7vhMk4fhZJ9G1ZOks9PSkYp7yfzrtEvmsEqjHXBckW\n2x5jBzdhv1NYhLV1xJLx8r87j+M6wpbEfNyNmLPrXsP8b0szemlfH+nnyHJBWx5+9B2Ut5hzNd4X\n7T3Q+JvmOPEVP4c06vgfd4t2sTF4Bou+tcqJ9/x+u2i35K51Tjzx9vlO3PAe1s/Fqy4W3zn5551O\nnLEA8usdv3pXtMtbC9lo2d9RwqK5Ra53LJuakI1nvfPeN0W78edhHnJRGYO3fiHflT2x6KdSxBUZ\n/GR77hsrJaq8F+U9ZXq6lN4nz8J7IL9bBax37sSSj5f29Fh25PUnyIK8AXJOF0k77feTKBf+bgKV\nUOASB8YYk3cFxvAQyfd92fLa+Z0pWIP+3bFHShvdiXjP8tOaO8ZaJ/j+fRyaOaMoiqIoiqIoiqIo\nijKK6I8ziqIoiqIoiqIoiqIoo8hZZU3f+vtdTnzyjSfFZ3c8fIcTtxyES8GTf3xVtLvyhvOduNFK\nxWZ+/IVPOXFlGVI0y1+U6WwTrkIK2yNf/b0TT8lD+lnWXJlmtPJSyJUSyOlk9X/fIdodfeIJJx63\nYZET/9cT3xft+nuRanr5fKTKVTTL1OiDW5Eq7qaq+3bq+v1Podr4oq/fbSJNJUkBUqdJR5e6XUjj\nnf6FhU5sy1HClFLf04eUykErVb7qCFLdkyg9LhiWEiWuNx4/Hilxmx7d4sSXXitdrMZE4751HEQa\nbEelTIETUivKJSu8ZJFo19dNsr0kuAV0VJSJdpwGF6xBOjintxpjTNb5Mp07knBqYH+7lJL1lOP6\nk0qQ6mynzXnTkKbny0AK4EB/j2g3TOn+8blIOxzsk383xov0vVAHjsESp6Gw7Ot8L3s70ff+LSWR\nUvc5dk+Tqcw1m1Alnv+uO1NK3RJJRsfPzZabjAxaFlwRpv0AzU2W9KaTpBX9jUjldmdJ6QNLudjR\npYcqwxtjTNFyuJux5C7YJp9jaw+enZ9S6mOT8EzsNFPuj6EmHM9XJKv7s7wjeR5SellmYIwxDeRW\nwpLHJMvNxpeHPtz0LhzbxsTK/8/Acq+SVSaisMNE09YK8VlcfqLd3BhjTKBUpjrzveX+2GFJLhLo\n+jltPGWKTFfvPgkJi38O5nhfN+ZxW5bCsszYaJxD2bNHRbvWbqTwFs/AtVd9WCXaFZKc5cBfsW7z\nOmCMTNWPJkcFu597ss6tK0X6MshgOg5IySs7urnduG8DAbmOcX9PJDkGu6wYY4ybUtHrKM297fH3\nRbuoKJLXsmtPGvYPW3ZIF8gFxUiH91BK9aYtu0S7tZ2QDPAzyC6RDj4hkpH0knyRHd+MMaZwHcmu\n2AnQuvaOOkgppq41EYVd5Dr2SGlPjB9jLG0h9oeZKwtFuxDNh+nLIEmKtpxuYuLQD3zkSMUOM8ZI\nSXjqVMzBgwPkkJgn54lOkmInketI64dSOjiGOgVLVOInSAnzfpLNTCnA36o5Ke/RrHkQRrAEy2dJ\nX/tbpNtcpOE50F4b2GVsaBjrc58l9x2m/U6I1s+xV08R7bppLWNH0ITx8h76cyA1S0qCbCjBD+l9\na8U+8R1PGuawziOQYMVbx06Ox/6E1xN7z8ZSsyaS3CVNk2OWpUwD3bhfLO0wxpj0JbL0QiTh9YX3\npMYYM34K/u7OJzAvrbxtuWjXU413q4OP73XiornS1amM3FqjHkNfz54o94ehLqy75f9AO+5H0ZbM\nxTcOc/pLP3jJidd86XzRjqXnpVXYX6UnyrE9ZzqcprIvxFx9/PH9ot0gvXMVXDLDife8c1i0G58p\nrzHShOmdjmWjxshnHDcW96niQ7kPMruxviTNwF7FFSN/cuA9DZdQYFdTY4zJGkf7HdpTtuzFfed1\n2hhj0s7D+s5rM7/LGmNMyxnam9GevN3I3xEGaS/F5+rJlu8a/E7RQm5ufdY7cKKXnPiuNf+GZs4o\niqIoiqIoiqIoiqKMIvrjjKIoiqIoiqIoiqIoyiiiP84oiqIoiqIoiqIoiqKMImetOZOYCJ1lcGq9\n9SnEWaz7vfOxe0WrI//zvBO7UqFZfuMNWUvmc79HzZkpiZc58f2f/ZFo9+BjrzjxL57HZ4FGaHb3\n/Ool/oqZf+cGJ654HXrHZvOMaDfz5lud+CfXIP7ghLSf/vGtNznxjE+j5sx5edLKsf4D1HpJmYo6\nACPDsq7Fozu3mHNJ6mLord0plvUrac8rn8T5RsdbtTioDkmcG1ruCeulnpfrQHhJ65zul3r1UDM0\nwZlLoUe9/CYUiLDtSONI5z0YhDZ34g3SE5DtMPMvmubEZ57bIdoNkIYwbz2O11sndZZJZJ+dQFrs\n2ldPi3Yps6TdcESh52Q/w0FhYYiaIa5kec8HglQrKIhrTMjKFe08+WSDNwZTROdpqX3tJ61+9lLc\n5+Fhqj/QKOvZ8Ln7/IVOHO46KdrFxqOPsSZ42KoJM+5GaHO7yHY0YGmeuc5TgKx9fWOltn7QqikR\naVgX70qRz2cM1TjgGlW2tp6tYLkGS3yUrPfCtqMfnMD95fFrjDHz55Y4cU8Z7s0Dr7/uxAsnThTf\nueKrsJ8copoAuedPFu0a34c+P3NJoROX/nWvaBdL98KVjGvvtp7juKsw33aUwd618W1Zzyw6Ts5f\nkSTGi2OnzM0Rnw0PoX/GUc0Ud7qsp8KW1JnnFTqx36olU/o0xpwvEfelt0zWsKlowvoXX4F7mZ6C\nPpEyT55rN9Vb2FeO+zersFC0207rXy3VSxG1vYwxW4+iVk0eWaon++S182eFF6AmR+exJtFuKDRg\nziVdZE1r1yxiC3e2uA9aa4OwyKUaMb2Vsu4K259yFa5Bay9QWosaI7Nmo1ZBVx2Ot/7GleI7PAeU\nPoM1/MrLZM228qMYL9PWYb5203gzRta6yZiJcR/qltbcfCE8pybPlusg379I45+NtaqvQa41cbm4\nL1xzy1ck53y2RU1fij1cy+4a0Y5tW3uruj72vxtjTLAc9RKGB9A/oqwaNp90bH4AXI/EGGPCnVjD\nw13Yv0RZ9upTl+C5cQ0Xri9mjDGnn0V/yZmPa+88LOsn5q6bYM4lcfRMOg/JecCbg5oOafMxh3Ud\nsSzR6RwDleiPdW+UinZ+2s9lTsP97T4jbcuDAewjx4zBs2uvwjwX7ZavUFxrJX0R7mdSrlw/M2Zg\nnezvw3V0nZZj7Mg/5Dr5LwZKZY2scYvH4VypL9h7hz6qxVM0w0QU3k/3lHd8Yru5qzH3tO2V75WJ\nZF8/+2as9ZbDuEk5gXvGe4exV0wX7TrL0JfeP4W6PNFU22u5tTa31eHcS3KxN462akyGqA7TLQ8+\n6MQ1Zc+LdinZqPV16E+oazpx4zTR7sNH8U6csRT9sihd1heyreYjTeZkzKkdp+UYM9SdYmiPlZkh\nrbRDAfQF3of6rFqQrbsxLweoZmLu3DzRrnYv5mI31a053YCaLvlp0pbbTe8DnZWf3B95bW6j+bGI\nxpQxxtSXYcwlUL2Y5qOyLhjXR8pZVujEHftlDZuk6XKvZ6OZM4qiKIqiKIqiKIqiKKOI/jijKIqi\nKIqiKIqiKIoyipxV1vT0177txIs+s1h81knWncXnQzbkclnWp+OQrsg2cZ/+qfSOcseRfeCZQ048\nYuWz/fxZ2Fo3H4DlsScVconZ31wjvvPCnX91Yk4jvvUv94l2R/75dydu6kRqar6VVjbps8ucONyH\nlNhQj0wBe+85pKl5NiF1qtNKB1//BaRCTlp+i4k0bkqZHQ5bVn1k8Tc8gHuTMltabp9+Cs8kfwXS\nvbxWmhrb+faVQe6QOlHew0FKyS39O6xBh+l5x0TLNMLmPUiBS2a7SSv92JOBvvDmPS848cSZhaJd\n8ixKiSZb2agY+Xcz5yNdlqUUmavk8Vp24bNCmV35H8NSj/ajMqU1eQrSdNsOIk00vkDKXDitOtaH\n1On2MikJSSFr1pERSAvs9PfkSUj57A8ghbCfUq9FjrwxpqcCfT1QjTGWNEGmJLq8SJPsqcc1xVp2\nwLEeXGP3abKTbJd2eYNkrcyW21GWnMGTZsn+IkwcPZOOvTLNke2pM1YhNTJlppQFNGzF83L5P14O\nZIwxR/dhfrxowxInHqCxZ4wxe3cdd+JphTKN/l/YEpbn/wDJ07IplKLdLdPmWU7Wfgz9tr5ZppCn\n9kEC5KN71N/eJ9oND5zBP2hpiC+WabXxhfLfkaT6Bch88jdIGVf1M8ecOGkm0lbjcqQtNMsnhkgW\nXPvyKdEuawHSe1lyZ8vxWl/EOpQ1FnNtQxXWpLKXZH/L9uMYU/Lwd27/1a9Eu29+6lPm47j6Bmkt\nWr2n2onzZuF4GZZ9K0s9WIYZtKRA9jVGmpgEyPsCp2R/zLkUMgSWfyVOkvNU0zsYi156xmmLpFT0\ntce2OTFbrTZ0yHTrQD/GZuVpzHslK2Fb7Z8s19J2suxtJtvzgvHFol0JzW39rRhXLXssu2Yasy4/\n5pSeKnmuIyThYylF52EpS7HHZiThc2WpkTHGpJC8ii2FWz+Q18vp5T2UCj/UJ/dKbtpjZi9D/+hr\nk7av9R1Ye3hPxRaungwppeghe+fW3Tg/ex1LX4Gx5Ke+2Px+tWjH/bRlBz7LsGx+ExJwTR7ay6XM\nk3ughrcw7xYvNBGHx1+UR76W9NVgjvBmy3mU4XOceCveV6peOSTajZA0unUf9pTt++T8KI5dB7m+\nfyrGny/ZkkX3Yb8UnwUJVkeVlG27aVx1lWF+6bbmoUkbsZFs3YV+0d0s5ZUfvYVrnLdiqhPbUvt+\ny0Y4kgibZUtm505HP2O5oT0OvBnxFONZH7hvu2iXORvza+AUxs5jdzwm2l2wAf1gw+0Xfey5xloS\n6FMPbHXiBddAWuVKlDJ0fwHeg6qOo0TGB3+W5zpxPuRxPpoL4/Pk/nzlt7Ceth3CXonfqYwxZlyJ\nXIMiTcMxrDuZE6T0pv4UziuW5qw4Syo6QNL7KA/mkp4G2W9zlhfheEcgpWQZkzHGnKzDOF0yC6U0\nxg/j3ac9YMn/ScrkjcNaX98ipfI9fVgLK5qpPMqZM6LdjLHYGyfSe41tkR1NsneWaNpS+7C1t7XR\nzBlFURRFURRFURRFUZRRRH+cURRFURRFURRFURRFGUXOKmvatGePE193v0x1PvEG0sc+t+pyJ75y\n0SLRbixVLm4/jpShgotninbzs1c78XP/+LUTTy+QKdEtByqd+LEHXnbir//lNidu2CndlRZeMc+J\n/SVISbxhyQXy2CRl2rT3OSceGpLpUq3HUf2d036rKKXdGGNaKMX4prs3OvFP7/iLaHdp9Ln9jayC\nzit9oUy3jqK/nVAMiVNvjUwRzlmM58juQKcfPSDahQfwWTk5e8xNl+mor+1CFfp1S5E6uOcoHJD6\nB6RbB6ecLe2Ew8yC6+aLdrVvQs6x4Cbk4MZYaWUsE+guxblmLJGuWz31SE3zpiPtsuIxmS4b6j93\nTj/RlOob1We5PpCrVWIxUh67TsnK/4kTIDmMiaO0zgTLSasH1+vyoU/0UXV6+5z6O5Ci581MoP8u\n5TCxJCWI9eEcOk9KdwhfHu5lDP0d2x1hoJ9cp+j67MronNqdvgzPd8Ryf+rvlpKfiMOuWxmW61Yv\n+nvbHqSWutaMF+3YmcM/FWmdw4NDot2sVUhvji9COi0f2xhj/OSm09iOVNCLZs924sljZfX8Zkrl\n9+ZhTLTskun1qfPwvYa3MC7zCmS6bNJU/JtdxmwJRwU5yg32Q3bAjjXGGNO0tdKJJ0hF7n9M3Fik\nI9e8KNeaxKkYfzE+zDecrm2MMbWvQr7Ejj9e6zr4uR145CP83bf2i3bnXw3Z2utPvufEK5Zgnc2N\nkhLDbTsPOvGFl+MmPXz33aJd8Q04Rtt+9B3bWYplEdxHhaORdYxheoZFN0r7kJa9deb/L1IWSCer\nqpfwXJOKMa90nZDSZQ85yQzRulixrUy0KyAnCRe5TQwMWfeG3CJY0s3uUewWZowxXQcxXxflQarL\njnfGGNNxACnpLG+IipL7j8QpONe6N7Aec783xpj4AvRNduFr2CyvfbDn3K2L7R+ij9gS+BaS+qQu\noH3PkGzHLiweGn+2hIYP31OLfhCokrKmgo1Iuw934T6zEw/LX4wxJnk65vFO6mPivI0xvdXYl/E+\nzFcoZQVtdF+i+PpcUhacPAf9pZPkcbb7kydTyk8ijSsN+2jbpdNLUhCWDOSslw5SwVrsBRrel06a\nDLtMxtAY8eXLuZcdRav3QZrCz6foGnmfolw0tgfwrGyHzVAbjs1OqGOvkO6nLXsg78g4D+9CO+57\nTbQrzMBc3FuOv2u7HJ1L2Xb9Cey5Jm+Qun52c2OXsf2vHhTt1v74Sid2uXBN+avlHqhzP+Yy3n+c\nlynfK5Pofa+vCXPrvsewlrKsxRhjDldWOvGcXhyvYYuUuWSuwN5xgBwrw4NSDlm+H30nKQ73//R7\nso8u+DzWcHZA5vdIY4xxJcp5PdKk5WC8ebPkviV3DGRysSSp72+V+/wBugfhTsRejzz3/a/g+bM8\nKC1Bzr0sZWprxnx7pBpz/IrZ0v2qox3P2+fG/FWyXDqnvfgk3JJXTqG521qbY2idZHfLSTly78By\nX57nvYly7u0+i6OZMZo5oyiKoiiKoiiKoiiKMqrojzOKoiiKoiiKoiiKoiijiP44oyiKoiiKoiiK\noiiKMoqctebMg2/eT/+Sv+Okkr3rhbNmOfH6X/1ItFs6DjqwrBTUr/jDdVJf/sj3oHN/7ql3nfjW\nH1wt2j3/W2gt73kWtVvuWHezE99++wbxnb8/+KITX7kcur6qRmlJ/JMbb3Ti6GhoYEufe1u0e/Tp\nN534x8/+wonz77lctFs4AG3cRz//sxN/81vXi3Zj560z55Ks5agX01sp9dGtZ6CDTi2Ctp7rsRhj\nzMTPLHfi/h7Y/cUkSB3dRLKwnUra3spXpJXg2vlzPvYYs4tgrXbzT34ivvPpK65w4gQP9I4DlqY9\nkSxYuaZIr6UN72tELSGunzJiadJbPoCu0UMaTLvGjDdBWhlHEq7PYtcc6CHLuCGq4WCiZY0J1nKH\nWqF5tu2Kg2Q3n001o/wlssZEbx20zS0fQBvNltB566S+052Ee9RLtno51B+MMaarAZpO1syH2qS2\nNWUsNKL1tdAE11TLGjbT1mEeYktTcb/Mv9dpiDSdh3FemecXic9ad+Ie5q6Fnr6nXFr/5VwAi1y2\nweWaQsYYk0x1XFr3os5H6bEq0W7CNDzj0qP4zE21MWoaZa2NHJrLE6gmR/nrcpz7p6GWwonjlU68\n7DNLRbtusrBle83GbRWiXdENWDe4D4e7pd1k7Mxz9xzT5kJjHLDqBvEYcyVhjqp4/LBox/aSybNQ\n96H6HVmvY9jqn/+CbR2NkfURJpMtdv6lqM0V55fa6Ik3os5b+xno3zOXFX7s3zTGmOwV6LM5Y68Q\nnwUCqMUWCqHmRUKC1IK37kG9Ov809NFAraxzZs9zkcabhX5W9obst5OoZkKIam3ZNa/qt6N/tlK9\nmOkXy2vmdffMCYzzymY5T936NexdPGQ/60nFuY6JkTXHJt6Ommv176L/2DXH6mowhneexPWyzt4Y\nY7r3Yo7NKET9Gbtu0gCNuW6yVfUWyNo0XTTnmatMRPGNx1rPttXGGBPtxbPiGmtjrHoq/O+h0ODH\nxsYYE8M10o7jXqbMyBTtGrdX4hhUcyB7Nax3m3bKOThpAu4z7724DowxxozQNSaVoAZJ5zE5P7Nl\n7whZ1+86JGtkGZSnMrxbyJoja924z2GtEmOMyb4ANUUGemTdN+5b3VS3h+uJGCPPUdi5W7W2Bqjm\nSdMBrIvp07JEu9aDqKGSPxNzKte98eePE99pOY77G0P9r+Ujad/Oe5oUqjdk1yJKpH7B+4BVq+R+\naZjqejVXYy3NHC/3GB2H5DtPJAlRjUh7jPGa4orHPJK0RdZd6SrHPR/oxRjxZsq5J/5yrGsDATzP\nHQ/vFO14/99Tj/1mYQn69zVfvkt8Z81yvOuk0TjoPiNtzqufP+7E2Rei/85YKefTY9sx1xZfi3Wl\nebucA1o+wprJc/8ld18i2tW8gD6Wf6eJOHE0f3celOvTwADmxGSqfRNrvQf6aL3id6uuOrnGT56L\n8XNyH/b8HZYtdrgGf7egEON0MtWFSbNqhcbQ3Jk8B79XnH7xqGjHNWNO1WM+iLZqsc2ZT3upBvTT\n3KlyX8V1rAbp/GwrbY9lzW6jmTOKoiiKoiiKoiiKoiijiP44oyiKoiiKoiiKoiiKMoqcVdbUVVvp\nxP/83f+Kz66773Ynvvb3P3biK+aeJ9q9cfApHK8KaVwnn5AWzAvuvNSJw/chPS5/hkzpWvcZpNye\nefdVJ/7MFWucOCpW/ub0/ceRtla3HbbSD3z3y6Jd/uWTnfj2NZ924vXz5ol2d/z2s07cVQ8pRZeR\nVmtpYxc48Zw7P+XE1bu2iXZ1x99y4nGzbzCRJkCWXYklaeKzjGVIjz/5KOxZi9aXiHZjxuCesmXl\n2KWrRLuoKKRqdbhhl51SLCUXcflInTu9GWl6WYVIVb3nttvEdw5WfHwKed8bR0Q7tiqdlAt7RLY5\nNMaYwg2Q4zXvwbFrN8kU99oGpNJ2fIR0u/GZMp05Z22xOVd0VyCl1U6tj4pFimxqCVLsQu1SAsRp\n2mzDyTaHxsgUxfZypG72WNZv3UeRSj1Mcg5OY2y2rJXHXgRr8/hk3K+hIWnT7SLLbY8PaYzRLpnm\n3XwcVnw+SseckSNlkyw3YQvgQLWUug0PSPu8SMP2z1WW1M+XhtRdthsuuFimMHeUVjpxXz3GQW+V\nTBnNXFmIdtVI6fW5peSHbRuzk5EOz9aGCV4p2UuYgHbxBZAW5C0tFO1YjjeOxkvHYZlenTIH/bZ2\nE2ym/TOklO7kw5hTevuRzpzsk1avGavleUQStsf1pMp0//YDSHdNnoLrTZppSQIr0O9OvIY1adxi\nmSb/7BPvOPGlqxc5ceJkOY/zHD/+fEgJY+m+xMfLOb3u5BtOzFavHp881/j4SU7c348xf3rnI6Kd\nm1KZ+zsw9wQS5LNmaVRCCs6p6r1toh3LUs4F4Q48x6k3zBafDZCtvTsZfb/joLyWoo2wq+99Cutn\n6bunRDu2zC4nKROPN2OM+fLXfu3En12DPc1FP7rMiTMyLhbfaW3d7sR8TVVlDaLduBmQwXQH8XzG\njJGyjyGStY6hvVSwTlq6skTTk425q+qQnPNTLVvUSOIjGXVfvTw/tsKufwOSu9TFUrLT3wZZb/MO\nnPuw5UPsn4y9yQDNAR3HZOr/IMks2JL6zCNYq7IsSWvtK+gv0T6kv/Naaowx9aVQQsl8AAAgAElE\nQVRYF+LI+jnWsmll6U4V2UDPKiwU7YI0h+bNhSwg2pIU2nunSNNDexCrOxr/VNx3tsHua+wR7YTV\nOVmO9w9IqVB5E/YQM4vxHEo/Khft2mmP+eqreNf4/s3XOHHtjn3iO1Fu7MVYHp9/vpxfPB70QZaA\nDvTLPZY7Ec+Y+0hiidxPB2g9ySjAZ7YlerhZ7gkjSV4ujY9uKU0bIKlH/dvSPps58yLWwhlfQQmK\n+CRpm37ogWed2JWKd46196wX7erexrjnOdibg7nhiZ/8SHxn32m8x9W9BZlo2nw5b2RQuYi3HsA6\nPSE7W7Tjd5UXf42yHEsXSOlrEr2bbXkIesNlVy0U7SbcssScS4ZJCtYVkPvydJK5xtIe3ZYiNtWR\nTN2FuSkpQ9rV97di7o2l97bxE/NEu95mvHf1tOB+Tr4cMrGhsJShcgmKfpImx1n7X17/eD6cMlXO\n0YmTMK4W+6RlO9P2IcZzfCb6WbhVlo8IW/fMRjNnFEVRFEVRFEVRFEVRRhH9cUZRFEVRFEVRFEVR\nFGUUOWuuIqd43nT/d8VnpZs2O3H+RUgZYhcdY4xJSoJ0xD0R6dLf2Pwr0S6lAO4faexecfA10Y7d\nVALkgJC2EGlQaZNkutjMZMgCMsnJ4v7vfEm02/XbrU78p80POnH561tFu45DSBd++7UPnXjpDFml\nO/YmpHNt+QWkS01dUn5QSpWf/7Il8rImrgw/2CtTPOteRbX0QAipup1HZapuSglS+Gpeggypf4VM\n1coqWezE3kQ874JLZb/wepG+37YLaWBpi/B8wgdLxXcmUFXtGfOQ5ui2pAXsDtGxB2nA8ZNSRLtw\nD1LlvJlIyZdPx5hJSyG/+ehtuK5UtUo3jCn+c+fWFJ8HyU5/p3SmcftxbweDkKJ4UuT5sGSnpYJS\naa3jRZFsqu5l9I93D0v5WBn128WTIH2IojTBBXlSXtQfREpxXBr6QDAoU4pj3HimXXWQnMVYFc+T\nxrPbC1IpXdaz6CeJF8t42FHn/44v08MjTeHVkEE0vCOvOXk25j1PGvrj8fvfEe3yr8I8w6mbHYel\n5IuvM2Mlxm+eX15zbDyuOUzpyPWvYfx1dcv0Vj/JlVhWZ7sq8NzjzcFnHqtdgJwokufgPtjucikk\nLWjejZTjwsUyBbWL3UtWmojS8j7WRZflYhJLDgaDvRiLwWopuUgoxlyU0oK+eXSbdFO5cCbSZ9kB\nI332eNGurwGp4nlLMAfHxkJy1tMjXQq6yCEr5zxIoVpPSAeNunYcm2UzLE8yxpi+FnK/o+c+FJZS\nQZcPc1lHPeaUpIlSqtVGTirngqrdlU7s2VcnPstdiWurI8cwb5xMiW7bg+919GKMzFwu9wJHduC5\nsjsEy4uMMeaujRudeJDlRWMw3kIhOc6jozGe2fmrt0k6XoQa8O/ZKzAP2XKOyashNSt7D3NAyTgp\nwUpdhDT/jr3kXlEk5b5tdVKqEUnCNK8nTZbuPSytYJcjlrgaI+UEPP4mTJWOaG1HIWnz+nDPzxyT\nMi6WrZ2shUvPV66DNM0+B5bDDJP8eKBLjp2kOMw3fIx4cqg0xph+L+7LlA1Yg20XnTObIFvm+zVs\njdkQOVsaWbkgIrCUyT7H1t21H/tZuE3uPVPmY1yxC1pxlnRhmlGI53qgFH0/L0XuD3/xyCNOfNXF\nkBIGqc9t/ruUNV33RZRhCHfh/Lx++bwHyMl1aIikWi1yzMZ48UzY1dR2bGMJVUst1lLfWOmcZjvG\nRJLudpx7braUMpY+gTVk8m1wl+P9izFyHjn0wPtOPO0LUrIy86tw8W05gxIZ3eXSUYnvS3cfnoef\nZMDhkHwnWjgX5S3CtDZ3HpfvRLmr0G7eUsz3nWeku+ZFt6x0YpahH9x+XLRbOBGymQu+iHIRlrrS\nnPorHKnSv7fanEtsx6IBWv872vGsXNa7RlY+5tQY2l+y3NAYY5LJrXE8OVT11UjJYjW9a02dgfeG\nHnJyC9XK78Sm0HtRN/ZieWulRO7gPzGGec1lKZUxxrhqcbz+Jlp3psl1h99ROuhdNDwo+3DGLCl/\ns9HMGUVRFEVRFEVRFEVRlFFEf5xRFEVRFEVRFEVRFEUZRfTHGUVRFEVRFEVRFEVRlFHkrDVnnnl1\nmxPfEC+1ilOuudaJd/74j078+00/EO02ffu/nHjaBujnn/rgJdGupxt6+GAD9Pmdlk2hfxr0zH98\n8Hkn/vNbzzhxY9l74jufu/JKJ/7mP2BVOTwsrawSdsKS8vDvcOzJX1kp2sXEQN+78DQ0b6kLc0S7\n03+Flm1sNrR1q++6ULTzJkjbsIhDosWEcVJXGyI7wrFpsFIc6pP6uJ566Nyz16DeQVym1LS218NO\nNJrsF3PGXiHbte924pIvLcd3oqFdvPa3k8R3KjfvcmKuWZFg6a39U9FH+prYaljWr6h4EvVjsi/C\nNdkaz95K6CRX3LzUiQ8+J+3gBwJnt0b7T2Ct9Zgo6TUZInvJAarR4bc0+I1boa8e6oemfJj0+MYY\ns+2NPU5c3gidfXtAajDf/xD1lm5cjmfItYvclhY1KQX1nxpLtzixL0vWmwi2QhPsTUf9lWCT1JVy\njRi2v+06JesBZS6FzpxtQUOlsh3XCTGTTcRha8uhoNQ695yGXjoqGu3GXj9dtBvqx/fq9tY4cVKi\ntJNueAM1WRKm4P7aFsVFM6934q6uQ05cFYImOmzZkbqobg1bndcckPbgaQtQl4LtK09vkVbDBVOo\nXS7qegwF5TwUDGBtCNE5RcXK/8/gnybtoCOJj2pvdB1s+sR2Y6gWD1vbGiPrsLiTcS/H+aVd51AP\n+mP6EszPh3//rmiXtQz9OxSCdW5XI54H27MbY4yb6uUEm7GONb1TIdo1tOGz5XfB3tmuj5A77QIn\n7u5GjYHoaNkvO8oq8Q+ay9o+knVfhkLy2UeajHxo/MdEyzl1mObHnGWFTuyy6jWxtXZMNJ73gW2y\nvs+kIjw73ifw3/m/46E/pS/Fd9xu9OfeXlmLjemtwfhotmrbTSiGVr+3DPNrTrpVi40txjdiz1b6\n8jHRbvqtC5x4cDL66RirToGvUO4RIgmvYwFrfee6XVlrcO2DfXIua9uLcdFDdSm6auXx3juO+XBc\nBp6HbUX+wvtUK6MItYsGaSyHrHoG3A+CZPvqsmqgtZEtb1wn9j2xPtmOa8acrY5a1mzMN7482Nz+\nm4X3q5/c5yIBr7u9FbLfDgaoXsRG1EPqKZX1RVrfx1p4gmr91LTJdi00LiZTDcrtJ2S9rztuusmJ\nuU5UMIzz8Vm2vAc3Yd5jC+HJ62V9nKEQ9VuqUZKxrEC0a9pR6cTlx3F9U6xaLdwFE73YcwXOyHpP\nMYnnrqYe1yd56w+yTt76H8DiunEn1ieuxWWMMRd89yIn5j3vmYf3i3YdgQ+cOD0H63F8sZzL3tqM\nPeo137rUiXmvfvjJXeI7SxbMc+K4XIyJ/OlrRbuWerxnJlC9tIRiaXOeSXXjDm590YlnLpMbzIx5\nmKM23/OCE5/3pRWiXe56WTMl0nhoX5C7qOAT21V/UOnE7fVyH1Q8HvMK10Gz60lxTcIDW7BmlkyU\nf3fRVahTxLWxPBn0bmDV9TtxDOc3herUBKw6htMvQ02uvibMvXUHakS7GFozY7z4PYTrhRljTMcu\n/GbhTsVYHNMua3v21cl3GRvNnFEURVEURVEURVEURRlF9McZRVEURVEURVEURVGUUeSssqbvPf59\nJy57aqf4rKUKaWUz70DaVUyMtFCb/RmkvobJsveaxZeLdt+6DDaDCYVI10ydI+2mGt+GNONPbz7l\nxL++6StOfNEFC8R3HnoeEqU7HrkXxzr2kWiXMQ8pqH+7H+lnrjQpzZh8M1L0OM10/qILRLvCJUh5\ndLshMblpyTLR7osXI5XvvB/NM5GG0+vbLMvQ7gqkeKWTFaErWV4z2zIPD5It5YhMy+Y046RMpO3t\ne/R3ol3+xUhP7e9CKlla3iInPrNF2qinL0Cat6E0zlifTC3t3IN0tGayYZzw6VmiXcz5SPHsPIlU\ntIQSmZbYTba8IbInnbZOWra3fIi/VSiVKP8xrkSk04+Jlr+phlpx/1jKxCmxxhjTXob0Xk7ETimR\n8qe0SozhOkoJvv1CKcf79MqV+M5kpHlnklQhZbq0sRwawv3zZeE+d1c1inacah5PMpKkCVL+FKhC\nqmEsWU3aqaWcat+2H2PATrOMsywgI031c0jjTZwizzGKUslZLtFZL9Mwc5cWOvHRati4bviaTLvN\nno55sOEI5rr4fCkD7OjY68QuF9KCOb3V9Eor7R2UCjzzOMZHnGXdOUAp6S0kW5lx3RzRjmWU8QU4\nv5FhKbljuVd2D+R89buknS2nlE+SWcH/MfG0PrEExBiZptu5n6x3CxJFO2EbTTpKtuI2xpiGrZVO\nzPbU8+68RrTr68X1h7txTq4EzBuJllX1CM3jjVshZTpYLmVNLI/pvudlJ15+i1zHSt/GmtnyIZ71\neEuW10n9JXMp0pdT50tZsG3nG2nSSUJQ8byU7LgpXZoti9m62Rhj+shieOpSyHCr91WJdg1NmEfP\nPIu5be6ls0W7Q6exv7n8WqwvdXsgAx63bIM8hz7q+9SXPiorE+2C/UgHnzYTMt7eRimxGSSZRetJ\npKsXr5Np+Acfwjl1so346qmiXaIlNYgkXUfRl2LjpWSjLwl7M5ZBh6zr/f0jkBD0k1SyrFGuSUsm\n4fkeqsLzLWtoEO1+fcstTuxNwRzK65MtJc5chb2nkPXvl+eQloL5NYHua9NOOf/5aL7h/ULtJikn\nzb10ohOz7DthvHxm7iwpTYw0/e2Q/WSuLhSfsYy7twZzUeXuStGuoYP2AjFYS/NT5Tq7ehbmI5aX\npsRLqdCca0neQjKiV3+OfWlFsyy7UERyN5b51L5zRrRLJek9X5/dL1guM4X25J7UONGO14bgLux/\n7eNlzJey2UhS8mms6Qmvnxafbf7Z6048ZRr6OkvgjTFm88/Rbmw69qWFV8i5p4gki0cfhHRp/2Ep\nv7vueyin8NAPn/7Y8/7KA7eKf3eexpySXAQ5TGOFlBLXvoKxNBzGfW5rk7I8Hvfjb4bEiaUxxhjj\n9UKaPL4Qa2Hz+3ItYXlk0QwTcco2QwqdP1/Kiyo/rHTiIdqbsZTOGGN627Ae7H8cZRJyc+W7Buvx\ndp9GnynOku8NQspEZQ6q38B32CrdGGOmzsEaF27BZwPWns1XgDnVTe/649ZMFO3ad2FPMxDEMwi3\ny7/rJ2vtHip7kjAhWbSzbeRtNHNGURRFURRFURRFURRlFNEfZxRFURRFURRFURRFUUaRs8qarlny\nWSe+mxyPjDHGewLpfM174Fqz9AdfFe2qT8Gx6Fe/e9KJv3+TTMvOXY8UIq4Ub7uuPPnWNice6kcq\nPKckzqS0UmOMue8k0ohf+94DTjxtrZSllD6K1P8pVMV97FWy3cAA0j/X/eIuJ24q3y7a9dYiva1g\nCXLrH3jt16JddLRMUYw0GUuQmtZxVFbVTqCUrlALUrZ9BVL64I5DumawA/czUCMlF0mF9LdqUH3b\nTtev34r0w9Q5SOHr64M0yF8i0/DTcpdSO6T6tZ2Wqbosnyu8aooTN+2Q6YGFlyEN05uJay9eIfvm\nmZTnnLhlB9KHoyxJTAH9rUjTRLINyxzCpM7G/es8hZRMu6G/EGl1A1Q5vPO0dDOYPBfpgIWUWmq7\n/OQvg8wsZQbkhx4PUmfHjJHfCXQhDbG3AWnn4U6ZGshSJk77bbVkeS6S28UapI/y3GCMMaF2pFmm\nz0MfHRmRab891dLdINIUXIX03AF2hjLGtHyAdGSWx/jiZMooyyw2fv0SJx4ekDIQnw/PsWAOUrvb\nmz8Q7drrkMbKzl/X3QFZ6w8+9znxne4g2oWaESdOkWmr9W8hnZvHc+Nmmeadshh9pvsM+mPeMil/\n6mnCOEirRfq/K1m66LjTz10aPqfYxuVJGVwXSSBzSDLgSpDzXw/J8QYoTZndIYwxJmsFUp37mtGH\nu0rfF+366jGW2CHLl4p1rK1Vyi94/grQWCytl65OZ5qwZrBrSdUr0plrfwXkUKkJuC/BR6RTlT8Z\nnx3/GyR1RZfJ1PVqSo2fKBVUEaGVJK8plrMdP4eYOKSf174or7mPnFtSfGhXMDtftOs4iX1M3lis\npSyTNcaYpWvR3ztpj8Vrc3PNNvGdbnKtGaZ5LzdFSlOOk4MNy5rS5krpOBNFkuiO/bL/ZBaQ5GIh\n0vVbtkuJjS2RiSTeHOz7kqy5p5/msq4juJcjltRjMcmVWGbBfd0YY+557DEn7ia577rVq0U7t5dk\nDDfhviQkIK7ZI91sgnWYywZIlmg7R/I+qo/G7LC13nXsI0llPsabnVrPToi8ftRY/dzackSc5BmQ\nMdhSHHbWCZGbSvEF0s3TRzLuZRtlaQOmYy/6sTcT13/hNy4S7dpJYhioxj43iuRKb78v5+FteyDh\neOju7zjxqQrp/HLsTYxFdggLv7NbtPvsT+GkGEP7r47Dch+fdwnuRZDWxRhr3eHxHGn4ve3ESbnX\nXvcTlK3gPdy8qBLRLi4f827aXKxjVc8fF+3YyW7cpVg3XvivD0W73l++4sTX3IiyE73leJ5dZfId\nM6EI81VKymInDodeEe2CJHGN8+MdrseS19S+hPeTCZ+HVG6wT+7/qk9sc+I0uj7/BOk8WWW55kWa\ncavhBtV5RMr2Jl6Me920Hc84PCjnn2xyOHSTxDlzZaFo1/gu9gyfWrXSib15UvJTthMS3ZnXz3Xi\nepIy2rImfzXGNq/TuXPl2szzXtchXG9Hq3R/mnwDymK0kIyU5yRjjAm30nnQO5jtgGe7/Nlo5oyi\nKIqiKIqiKIqiKMoooj/OKIqiKIqiKIqiKIqijCJnlTU988FDTpyYKJ1utv3w5058wc9/5sTHXv+r\naDfpMsihPrwZaX6/fuq7oh2nsj/0W7grzR03TrRrIueIhhZUQm7pRgrSydeeEd+56KdfcuLK97Y6\n8YP3PSvaTRuLFPKcZKR/Pv7NJ0W7EFX0v+yGlU48/sJLRLso134nbq2E9MuXKavHN+xCmpp//VwT\naY79FXItdnoxxpis1bi//R1Ix2raKh07otciZdudBAlBuEemrNfvOOLEvVV4VkXXybLiCQmQinU0\n4j4FWpD+GaS0XWOMScpop3/hd8VYK3UzhlwbukkWV7xRph8H2ikNvxApx5V7XxLtfDlItQzkIbZl\nPrWvIQ0//xsmovjJDamLpUvGmH5Kr3RTRX92mTLGmGFy0kohZ5QOyxHCP42cl87DmLBdsQZDGAeJ\nibh/7MjU2yvlKx3HKU2Ss/qs9O0x0fgweTKcDUyUTAXsrUV6alwWnk3LHplGzFIgdgYK1svURZdf\nSogiTQ25ZfR2S+eXQkpNZlkTn68xxnjJeaSPZBHpMyaIdv39uNfsoheyHGdYNla/DWNi3hxILNiV\nzv537jr83VCrPHYxOaRFezCHpF59o2hXfwpOCOzIYSfUh7uQ8p9BTj/hbjkPBWulY0IkaWcnMcuJ\nhtN22Vmq6umjol3yPEhJ+kmy0jko04jz1yHtOyoKfTPQINPaedwPhdBfumrwPLnfGGPMi7+G68ji\nOZBkXnvBctHO0Nhhp76qBnmul1yP73Udw7zb0yXTfvl47KpV85p0+PClnVuHmIEu9JnkmZniszCt\nhZ1HcK+HLZ2JOxZ9mp3ezuyW0p6ST2NdZzceO7U5SPI0doLKuQAypMRUKf/qKd+B71fh2G/s2yfa\n/eI7tzkxr5HeLCnNa94uJQn/ItQtXS78kyBrGgxiLUhfLh0+uk+TbCDC2xuWtbKMyRjp5BQ/AeM0\ncFLKeKcX4Hyj6Hm4M6Tc/F6Sy8dGY37m1HpjjPGQ1Iqlqy5yDZq0QkrvS3c/6sQNJM+xHaPiPdh7\n5bSQs16ilHW2t2D+m3pxsRPb8uFmy+XuX6TMlW4p51IOY4wxMT70x7a9Uroc5cY+K2MxJAndZ9pF\nu6lfWoh/0HOs2yznldzLsc7ymtR6TDr9CJeoSuwzCtLQ7+/9whfEd1gW19eDe51jSQxT8vF+0Ul7\nmFTLjbL9EJ7/yCD2b5OvlY5trZWQU6XOw96ut1bub3hfH2mnn2gXnhM7LRljzKv/tcmJl996nhO7\n0+W67ctHmYWPfocyEck+uRaw9K3yNeypvvQlWX6Dp9dH/wYnqI3LIVdKniLn/vp3sWcNdz3hxC/d\n97ps147+N7sIDlTzr50v2jWT42LNq5ALZp8v322z5+GBDA1hLuvvkaUjeN06F/AalDjlkx0eWd7n\nS5RzZZD2cL3kEli56YRo58vAXNnbjPUuuk2uNYVz8B5SQy5Z7BhlS6vi6b3txEeQxWX1yuc92Evv\ntpm4jlSPnPNCJCv3kBwyNknOvd1DWO+qz0BC6W6X96jqQ6yzk6XRszFGM2cURVEURVEURVEURVFG\nFf1xRlEURVEURVEURVEUZRTRH2cURVEURVEURVEURVFGkbPWnDnxIOqz/G3z98Vn97+OejS3rVzl\nxN/73edFO5cLmrU7b7rJiWMtDaE3E7q0G66/0ImnXXuzaLftImgKL/3lnU78+prrnDh/payP8+kV\nsKP77x/j/L736NdEuz998WEn5poK/VRjxhhjTpPV6NfOh0V2dLS8prd+udmJ2Y70hi+sE+2G+uTx\nI02CH+c1MiRtCllDGCiHhrK3VdYJ2Pe/sN8dGIL21eeWdUhmfh66X1En5bSsf9I5vMWJWc+cVIz+\nYuvx26sPO3FiDjT4STmy1gbX4Ugogrb3zMvbRLsg1cRJmQedINe1MMaY9gPQDbZUoF32dGm1yXVC\nIg1rxW1b8j6ycuPP3BmyP0aTJSzruCfftka0CwXRV/tacC9jSJ/9f//GMVqqYAGZmAUNP9s5G2NM\np4vqoJDOnPuhMcZ4SYvK9WLGWDVnBnsxdhp3QE/tnyLtB90p0HsOUa2cpHFSWz88fG71vGlLYG08\nZlet+CyankkH1bkY6pXzw0ARzrF4zaVOHArJ+gTd3Yec2OPBM2m3LHHZ+m8TWYFeOAvz6GnLXvmq\nNfA2HgpjPihaeaFoNzyMsVS7B3NI9xlpS8n21CnT8UyGhuQ81N+Ocz3yNGpVsf7ZGGOyxsvnH0lS\nF+EZNm+pFJ8lT4OemS1g8zbKOiEdh/AMpn8ea1pnk7TJdLlwvJERaKrTimaLdv05OF7tu6j71U5W\nmL4cWVskJR5jrKMJc2FNq7QWXfkpPOuDL6B2GtdeMMaYMGnhW1upjkKStAdvakWNjtmfgeXtyJCs\n5xJL88O5IGsNNP99Vn2zdrLbzboA9QSSLMvtoTCeyRDZGXf0yn7bth/jp5tstaNj5JqRsx5rGVt9\nh2g97mvZK77DNWN2l6JuxiyrXt8H27F+Lpwr+yPjSkUdl1Ad5v+0WXKuDNbhnrWR7Xd8mqxtlDxL\navwjCdt017wk7Z9zLsLa07wN+v74Elnzz03X66L6AeUvSvte3o/4qWZI+lR5fVkr0F+4NsaYMZij\nBgelhXpyMebn/iWoN9Hwuqw3MfdK1AHj+k/DNAcbY4w7C2t/57GmT2yXsRS1HLjm4IC1BxoISNvf\nSNNdhjpAcXlyvug+gfESorpCXAPCGGPccZiPBgYwx3ismko8lrh+R8osaSnfQ/vhTqpvU3jRRCfe\n86wciyNUkyqZ6se4kmVdivIdshafcw3pcs8WKMd1RMWg/9j7FN5D+5Kx1/Gmy7HYk3Luauo1f4j6\nRVxLxBhjQnWoI9Rdimc9Jlqu24Eq9Hd3DPZDPC8aY0zNy2RPTfUsn7l3k2i3bCZqqeVSzadAF/pR\nzSty3uCaPZUvoEbKygtlwayHH0XNtvnXoc6MXftq8lfOd+JgG8ZiT6WsVdVTgX8PUq2q3go5B2Sv\nkfN6pOFn0vKhrP8UT2Oznd6RPf1yrc4a53finPmoE8W21cbI+XYkTHNljNznl++rdOKKZqw1XqpZ\nt3DyRP6KeeNd2KqfP2M6HVv2ObZON4UYv3ZNq9adqGOZsbrQiXtOyxpmUVSr5ngt1vDadnm8BSWy\nT9to5oyiKIqiKIqiKIqiKMoooj/OKIqiKIqiKIqiKIqijCJnlTUVXjvViX9zu5Q+xMYirfNr37jG\niTnt3Bhjjr4Ia+2lG5HC/Ifb/iTaXb52Kf7uRqTTv/ODX4p284phC8gyotuvhlToro1SgnX3l29w\n4twlOPbj3/izaHfl9bBafmcTZBp3PvkP0e7CKbANdruR6vu3278j2l3ynbVOfE0+Uu9e/778u0er\nkQ448+qvmkiTOA2p2MlWCi6nk+asQprVgS0yvT7bjzS16jZ8Z8L8ItGurwUpo26yJU6dUijaNe8v\nc2JfHuzzvF60S0iQ6a1RUUhhazgFWdSwLYkhy9ial5GyGFeQJNqxVWYiWeJu+qmUXORT+n6KHymy\ne7YdEe2mjRtrzhUsARJpeMaY5l1I2U6cgNRNt1+m0sZloB/01EEC01lTLtqxhas7FfeIbUGNMcZQ\nCm98FlJBuxvRn23rzpQp1K6CrE4L/KIdp1b2VFA6oMx2FOfHNoyD1rlyP0+bjj47YlnjtpCNZ6ZU\nH0YElhVGuaWkgVN6WeZlnyPLfsJhpMLGxcmx6PHkOnFHM1I84/KtcUVyqk9dAU+/vz77hhPftFza\nK4+/CSm+fj+kjDEx8tgjI3gO6TPQ59gW2hhjettx39uPoF2MT6aM8jOeeiXm4VMvSavqdLJcjTRt\nJDfJv3KK+Kz2VaRbp5H8qf5VadNaeCPSbDvqMY+wjaUxxoQ7MX+xLWq0JaFMmYmU/PwLIH2IL4TU\nr+uUlCsxbCGca9m+xpAcMiMJ91/2SmPeeAWytSWTYFfrSpPPOtuH/tZP1usDPTJVfzAImVBBiYk4\nZ55Hnym4oFh8lrYYz67tI/RNb66USLCkqPZNrGn5OVL+1E9SW5ZMZ6TKeTVdRM8AACAASURBVK+3\nGnNAVCzmwIQCrEHx8bLPHfwzbJijSd733ObNot1Dd93lxO/shCRwxli5bjWQNfTU8fgs3CGlLp4s\nrLOJk3F+PafkmK3fgj44+XwTUVgOmXfZJPEZS9WS52DO7K3uEu2yl2PebPoAa6nPL61P2VY2aSLJ\nry1pRowH0uKYeLJM7oRkNNwnJQ2t+9HHYnwYb4s/vVi0GyQJfB/JsvuqpWWyKx3n3lqF59HTJ9dj\nL9m/J4zDuA/WynvkPse29km0b+kqlf3HlUaSZJIOxuXKtWZ4GGtNXBzGsydN3uswWcKzhKp1j5QZ\nc99q6cb99ZP8pM6SKqxaiveLzGUkGbP2QYULC52Yn4HHkiEFa/B3O2vwd5tP7RPt4vPlPOKc9wfy\nmowlC48k6fMxZ5Yd2i8+W7oWa1Iy7V9evFfuta+85wonZpm3y7IrrmzB3jHlNNa1DV9bK9r1lOH5\n5Dagf8cnoU/Fj08W3+F3mN++/LITr58rZU2f/wKdK0n8A2dkf2t0QRpVR9L7Bd+Vdugtx9Du0MuQ\npHdaEtnzJpGcOMJ26MYYQ+pL4y+R0uWWo9ibZeZizPZ1yP7toTHLc9ZAj/UOQa9krc1Y+3KmypIR\nae0YI2kJiNmmu7qhWXyHbbY7A7iH/mQpz+06ib7EYzF5qpTG85784POQd0dZ5TfGTsS5X3oFbOPr\nDkuJWDh09nImmjmjKIqiKIqiKIqiKIoyiuiPM4qiKIqiKIqiKIqiKKPIWWVNCWmofhwXJ1NfGyvf\ncuLxFyL/v3L7W6LdD34CWdO6efOceNEEWal42s3XOnHZW6iCffG9Pxbtak+iGvevboTz0uf+AFen\nNeXSteQH9/3diZ+/7monnpAl05s4Ne0kVRcfHJSp5iunIyW9/tTbTmw7NDRuRQrbwXLICubeOF+0\nWz/tm+Zcwo4BlU/L9H9PJtLPdr4Bd4I5a6aLds88huscnwlpVG+5TH9NXwQ5gcePnLX2k1Wi3dil\nyG8eM+bju6HLJdPrjzwHN61sckSofeO0aMfppMnkMGE7/XD6MFd/T0uU6bJljehP6y6F1G/ZbNl/\nbPlJJOEq5+EumULIrli+FEhZYmJkiiyn/XqSkS4btuQE4U6k/bI8KC5PysKiSZYT7EBKIZ+rvzhP\nfIcdL2LjIdXqtdOoyVWAUyS5or0xUt4xQJIh23GLK7S3HPp4pwRj/r2PRJqGrZVOHGc7M5xGCm7G\nSvThQJW8N8IVpgZjNipWug6w200/9RlPqkzXP/EaJIx5EyGPKclFX4rLk3IOdhEq3fqsE+culKm/\n7DDEUqb2UinzOfU8pD15VN1/wHKX45ThQXIQSU6RY7b0n3CmGTf7BhNJWMYQapGuK+wsZqiv518l\n3XG6KBW7n9yyvDlyzCakIeWa+2bHUZnCe+xPkOFOuhXPgMfOsWdkinu8B6niuYvgFsPziTHSIaWc\nXAcHBgdFu6l5JAUi6Y7dLn0a5s0QpZCH2+WYtWV/kSZjFkksLceF9iqMRRe5hsQXyzVpeBBzXepM\nXBdLwYwx5uibGGMTF8Btg/ccxkiZlCsZ44XXyLb6PeI7+45gLHEK/PXrpC6THc3mj4eTEUsEjDFm\n1mzszWLI/S/UIPt6N8kwE0huaMuH05cWmHNFbw3mxmCFnCcz12CPwNK07POl20mMC/ecZS52/xPO\nIpTizmnxxkhXRHcy+lUXyb2GLNltxnmFTswuQbFyOhBOX90kgWsLyGczc8XH74HYkdMYY5LJ1bDp\nA8iR3WlyjYhNOLfOabx1CjUGPrEdywNzLpbvEP09uB+9TZgf7THmjsa4GuzD3JS5RL7jlD4MaU7x\nrEJ8h9wTAyE5Z+VcCDlVbALGTsbYFaLdsdInnZhdp4ZCcq7c8xHW9+kkP4zxyvmFYfdE24GqZXeN\n3TxiRLtwvYcr5X4/owPPZvE8rBNXfHe9aMfOtbxnq33llGi3+HpIqf/5AN4Xw9Zas34FSmms+i/8\nrb4W7COOPyolWPFejPNf3vtlJ37u4TdFO+F8Rv330DG5v7xkLfrp1BKcz+mntol2g+QcNq4E96ir\nTs5rpe9gnzftHEjvqw6ij8S55LhPKUq1m/8flqyJ+7ErEfezc3+TbBfE8y7ZgHfO6tfk806fg7Va\nuC3thQui7TLJ5SgmbcSxbZc3HvetB3C8rhNyXuc5MC8Txx6yHPCCXBaC7kNSnJxTfWPlntVGM2cU\nRVEURVEURVEURVFGEf1xRlEURVEURVEURVEUZRTRH2cURVEURVEURVEURVFGkbPWnKn7EDr2w6/8\nr/hsw29+5MRfXANLsFtWrxLtlk6G1p4tsHKmS6usb66/xYlnF0ErPPHiK0W7YapBcOm10HGunIS6\nAs//8zfyQt591wkrd0I32NQltXztb0EXfj7Vlenq2iva3fHIz5344O+fcuI4t1u0C5Ot+IU//bYT\nn3zpGdEudSK0cj5foYk0LtKNF90ga8kEG1EbILMZtQUa98r6BBfOhG1tUyf0o2nLZE2Rutehfy++\nETaQicXSki0UggY80NTgxAMB6C67S6U+Oki1N97ZDpvfzCSpcU+bj1oZbKvdbVk0slbQVwQrwhKr\nvsbge9B4ejPxWShaahe7jsk6EJGELanjsuT5hdrIvpys3e2+xLbLHVXQdAZIu26MMUklsIFtJY3y\niGVZnkS1KaKoDkd8Nv575xnZj6JIL+rNwLNJyJZ1CcaQn9/QENXkSJb1MDorSCefAB12uFvW0fFm\noL4LW7x3npK60pRpUqMdaRKoHgPXGTDGmMZ3oVXupJoi3DeNMWbPX9534mlXwrrTWDWPKt5BzSvW\ntx7fKzXRWX4c/9hBfFbThvHismzZGw/CStAM4e/W7ZIWn6mkee+nWkb9VMfEGGMyS1DDZiAAHXLi\nRKlxDpSiD7e3YD5ITpFjIjHr7Hre/4QsqlnR1yzrI2Stwto1QDVx2vZIG8UMqsMx3I95KDZeriFc\nY4lrYHismhBFG2GvvPuB7U686KuwQJ95ywLxncEgzq/jMLTg9jX1kYbaE4sxNmOerPmwbzesQC/4\nPPYBp144Itq1HcPfSqG5xq5rNCbm3NaccadiHug+LvXqmVQXh2u/DAal/WX9R5jfMhdiLeS6XcYY\nUzQZn3HNiqajsj4e74pSSWffeQZaeJ5DjTGmMB33sJ1qj9gafG8K+kz5GfTH+avknuDgdtS5GEf1\n5Wz79twLULeG1z67PgnXIIs0PA6SZ2SKz/g+F1yOfShbuxpjTHQ0jtG+H3uRKOt6uXaJKwl9Itay\n+W3diTUzeS7mv7R5eJ52Pxrqw1hMpLpG/e2ylgPPL/k0V/S3y/mU9zatu9FHU+bK9a39iKwB8S8C\n5bK2m6jTMMtEnKho1NPy5lj7L5pHe1twP3j+MkbWeWo/jHHVVy/ns4SJuL9cX6txe4Vo1z+AZ5RM\nc0VPC+719Z+/RHwnUIO9VHQLzqe+8nHRLu8i9MdwD+5t9UuybtyaW1c6cQzV6AtYdvBcF4xrotl7\ntgFrXxRJql/7+HnDGGNmf2OZE0fHYC9W8dh7ol17D57V+NWoeVpTLffWfC9uvAvvn1yDyhhjcpej\nRuSZp/E+21SJufGtgwfFdzYsRD2b+3+N97ulJSWiXdo8vGeUPQ7r69W3LBftTlBNm4EhjEuuZWaM\nMf581JcbeyXOu3Wf3Dt0HpBrRqTJHU81Ra36T95s7NnZFpvXAmOMCVINSV4L7ffFWKpHwzX1CtZN\nEu1EvS/6DaD6fYzZhRfIiSme9s285w+cke+VbYcw53PdLZdH1nUaGcQ6EevH3NtWId8hssZjThmk\ne9Rs/d4QdQR1P+eZf0czZxRFURRFURRFURRFUUYR/XFGURRFURRFURRFURRlFDmrrKljH9J9qq0U\n2R3//VsnvvfZ7zpxaqqUNc3pRwrWVQsvc+JXfyulQt8mS7+TzyBFbP/9fxXtmhuRkpRZAKnMwRbI\naXb/7E/iOw8+f48Tj1CW35xLZop2255H2tucKbDE+/3n/ke0+8E/H3RiTzZS9OKrZHrr3G/d6sTf\nWn8T2nmsdrsgJbj2/o9LcPrPaN6OVK1By8Kx6UOkvKZORzrbP/+2Q7SbkIOUXLarS90iU0H9JEMo\ne2KXE7OdozHGxGUj1a27DPIJH1lyJlq2pWyzV2hwvN5umdLbeRwpkANkT8c2mcYYM0yWxIEypPFm\nrioU7RbciDTHI3/7yIlzZuaKdgkTP8FmLgIkT6Y0Ucvu2ZeF9L3hYaT99vU1iHZ9fZVOHJ+DsWOn\neQcbkG6XswbjoL9Tpli3k+2cbyzOwZuJ+5pcLOVK/T2ULk1Wwz2N0uKRU+HdlI4/HJZWiSnjkeZd\nsw3pqWxra4yUi0RHox+4/D2i3VC/vBeRJmkapTxaadnNlGqbloe+b8sY5tyC/rjrf3c6cXS0TMOf\ne+N8J654CSnH9vwTn4w57MQhSs+dNs2JM5cViu/UvVXmxN2UJpp7UbFo17y72nwcngzpEdt5COn1\n8RNw7YFKS3I3E/evZytZFmZKW3L/NCl/iyQ9Fbhe26aVx1JULJ6bf7pM8+b+zWPHXyTHS8076NN9\ndeir/ZZ15ekGjPWFF2Jda9mF+x9rSdNclOrLqfD+/8fee4bHeV3XvxsdGACD3jsIohDsvVeR6lQv\ntizbcpUTW44Tx3H7O4njdDvFsePuyFaxrN6tQlKURFJi7w0geu+9t/vhf/WutY8k3ueJhxdf9u/T\nIefM4C3n7HPemb32KtHXboZka6XLIOny5Wg56drEpV6bLbLn3jhP9WP5waUnz3htV4qWtilfriQs\nO47O1+fSdBKp5KE0r9IWaFlI7g1Iv2ZpZ3iCjlMtr1d77eLPwuo89K1a1S+e9kEhlFYdRLGS74eI\nSGohZE0r6ViXFWrL6PAE3P95ayBJO/D6cdVv7fYlXruTJWiOvJLTy6Pz8Vq4I/MJctarQMIyhknH\nhjgyBTGh+xTmR7QzbrsqIfHl+Zy0XEvvWd7HqfCunDTnFsgfWnbhvvO4nxzV64wvA1IelhnH5Opr\nPkRygUSS3nUda1b9kpZhb8KxJtSnJWcx2bgWrftgf+zes6FqHYcDTXAYxm1cSYp6rf73iBERtN9m\nG2wRvY9km+P0Lfmq3/QExu1wC2LqnJ1XqX4ZW7C3rXsKJQ94rYmbq/d8HSRfTaI9b2yevo/d53C/\npmgfGhanZa1BtIZEUPx2bX5lBrGcY4i7d3DXjUDCssIxRw7T+Aqez1hu4i/X5Q4Kl0Oa8vx3n/fa\na65dqvq9+wpi1ibad0c7e/zhLlyngjvpM57E+xt363IH5xrxTHTjcjyPsaRXROTlf0FphRQ//m7N\nQwdUv61f2ua1eV41PHlO9WP76Ze/g3Nf4MiH27uu7FycIpl1/7B+tgo6jHEbSrJjd9wOVeEYU7fk\ne2037k30keRpESyth9q09CguC5+RkID9b3QGpGBDLVqKOdyE5xiWMkUkaUk4H3s0lcGIKUxQ/Sp2\nY51ISUTc7OzvV/1CajDnkjJIWuWMnznbi+VyWOaMYRiGYRiGYRiGYRjGLGJfzhiGYRiGYRiGYRiG\nYcwil5U1lX5uq9fO6y1Xr/kSkLL31vee8tobv63T9zpOV3jtJZRm29b4iurH6U0//gPSxX71h79X\n/YqjkE505F/Rb2YGqVhR6TplvuYRuEVwxeThMV25fGoa6Y41dUhb/fNf/7nq13J+j9cOiUaa6F3/\npvvt+s4PvfZ3HvmK1+YUSRGRk8cr5UpS+LGFXnugVqd+pa3O8dq9x5HCfMNyLa/qGkD6Z1Ub+vmc\nFDGWqgxTanvs6IfLRca6kGoZ4biQMNnXIL3v0L/DkSS9UKfhd5zAvUtehDT0d57RUrohuv9r1kLC\n4Tpt1OyFhCO1gJyMzmqng2QnvTmQTAzhWNkFRkQkiJwOQrMxvsfG9PHVvYSq8ckrcd+jUvR8YVeO\n/mqkfLpOMpweGETps4N1SGl0XSn43wnFSL3mtH0RkWg/YsXwINKLQ5xjaDmMucTz3r1GPeQmwg5C\n7vGxjCZTK0wCQi+54iQ40qsFn4QMaaQN8y3Yca1hyUjZeqRG1h6qVf0GqpHKmU3ytLpXK1S/0X6M\n94/ee7XX7iMHG9fBJ2Mz5GQ9FUgdHqzW6ajsODNBksr+Cp1KfLYK8ptiuieuo17ZFshIeP6m+nTK\naFi0Tt8PJPHsZnZEOymwOxw7IDWd0K5l7OyXthYDra1Tu3UMXsB18hWS/GmhjnnpIbgfLM1gV6zE\nBXq8dZ8mR5N6pOZWPaRlLuGJSJmPLUIKuX+OTulvonGVtALp6nVP6PTtCZLFzrkNcZelCCIiHfsx\nJgqXSMDpO4vxPTqu40UYyYPyr8WY6zmmpaIcA0dpjvA1ExGJm4frMUEuQuLEvV6SK7STSwevY/Hz\ntOwjk5wyBh7EfInx6WPgv3XuHew5Uh23w72vYJ3ccj1iUkiUnmNVryLNmyW+LJETeX/KeyDxF9N1\nHdD7OZbzsFSm8SUd/2qrkapftgH32l1DwmJxHuzqNN6hU//Z6WiIxkQ0xVk3pvO6w3LrmUzHbYfc\nPzpJyjTeo/csLbsglY9fgFjBUmQRLX/i84udoyXlQ/E6DgeaxpdxT1yHobQd2At0k6yCr5OISP9F\nxEo+5y5nzrL8JqEE61PHBe3aw7Ez+0aMi/AYzPm+au0iNE37XHZUcuWvPnKkYulRQqmO631VOCfe\nwwzXaynFBO1ZedwO1zoOMZFXzgGvl46v8F7tnMP717rHsWcLcdbt1DW4FhkJkJWkrctT/TIPQYLH\nssJQJ0Y1kPtV2WfxPHvyGOLfxzdvVu9Z8adwlhqk56UTz+rxseY6yKQaD5FrqLOW7PkvuAWvuA7X\nJee2MtWPZY+lCTim577xW9Vvy5e2ypUkOhcSrVxHLl53FNc9Zz5iR6hzH1M24X517EfJghBn/MXR\nPJ0YxXxzpbExMZBGj45inAUHk4uT8/yVshx7or4q7HWmnLjBctXeJsTh1lotHQym9TMqC/O3NNx5\nUJjGcbATZ/aSHNWtcz/tCa+W92GZM4ZhGIZhGIZhGIZhGLOIfTljGIZhGIZhGIZhGIYxi9iXM4Zh\nGIZhGIZhGIZhGLPIZWvOVD8Da+mv/6u2tP7bT9zjtZMSoFF79uu/Uf02fX6T1z54ERrlax/U+r2o\nbGj1v3HrrV77nz71I9Xv1tWrvfYvdu3y2v5UHEN1la4DEBsF7TXr0lxrq4//5/1ee/ffPu61x4e1\nddk42TOz3fPkpNaBbv2bz3vtv73zy177W4/+neoX41hUBpqWPbBzjHYs/ZoPQEOYvQXa3sl+rd+O\nI131JNXmYc2giEhkMjSKSk7v2H8Ot6KmRtp6aPaSs9d47dbKt9R74pNWeu3CzdAesw2liEhwBHSN\n7SfQryRLW2OGxOD+95N9ZWis1sir8UP2ofk3lKp+Vc/r2gqBhO3BQ516GqxnDg7Ga2PDWg+dSLVW\nIqkmgltPJIZsnEMiMKZdy222bAzzQfvZfRYab1cDzPVsJscwpsZ6tG5/rAf2mVzDZsqxSx0lvWio\nH/eNa52IiMQWQL88QjVbQiJ0CPQ7WvtAE0f1IkKi9N8eJ6vyzn3Qo6bv0Ja4Rx9HTYiF16GeVM6C\nbNWvjcb+8dpar72ySNtdR9B4ytoGHfT0BLTh9U+fV+/JJb30+BTZQjvWr8F0v8NDMEamhj+8BtWR\nKtRLSI/Xn8f1qfw0L/upPo6IrqGSp8ul/dFwPHXhuilsfZ25MEv1S10D/XF/JeoKvPqIjnmqFgqF\nl+vv3qT6nd2NF+OiEYP9saiPMNGnY/rLz+332jvv2eK1XRvdmHzMnZbXcW+Gm/V6N9qCecXz1K0B\nV3gVxvMAWVx2H9W1IbJv0vE10CQuQw2eIKcGyMwk2Q/T/IhfpC3RB2sQmxKXIL6Odet4lrQQrw3Q\nWlN7pFb1y1+KtZDrcPmysL8Zd+5jBFmi598CbX79c7p+UWw0YnFDF8acq9VfWgCt/tE9iMPvWz+D\n8dveJNW5GKrR+6Ws67UVbCDhWgc9x/X4SV6LOTbF1srbClQ/rrHANZUGnfp8vKFhm1W9eoqEJyLO\n8drcdxo1DLq79dxJiMMcSduS77XjsrTd6mgX9s3jZIucuEzfm7FOzMXpcexZIp25yPuKhHKs52NO\n3T3XkjnQTFItnUinzgXXaeNrw/sCEREf3UeuG+jWz+HY1HMBzwrpi3SdxZZjh3FMftzvsUH83egs\nXa9psAZjJmkJ7slQk679whbwUenYv471DKh+7XuxP+eamAV3zlf9/FlY+wdacE5+x+p7wtnXB5JR\nWu+e/vbT6rWybBxf6mq0+y/odfvRv8Jz1x3/52avfemXx1S/yhbM9Zx2zPPxbm0VnkLPFn/7ke96\n7Qf+/l6v3banVr2n6jeYY1WtqFXCzwEiIsdeRy3TsvJ8r73qozeofqGhGM/1b+CZuu+iPvecrSis\ndvHBvV57+XWLVL+zvz3qtfP/5S4JNP3nqHbTUr3eZZVgHeN4OHBJ1xoUWlKaW3GeRavmqG6TVH+t\n/xL+rls/bCD+SbyHnkOiUhHP+NlTRGSY7Lj584ZqddzoqUG/+CzsNw8e0XvenCTMpbf2oC7f+g0L\nVb+q06g/FBWOvUNahN5jJK/T+3UXy5wxDMMwDMMwDMMwDMOYRezLGcMwDMMwDMMwDMMwjFnksrKm\nn/z2ea/9q6e+q17LKdvptY/+4r+8duG4ToNim6r//uU3vPY3/+y/VL/v/89feu0v/d3XvfbDT2kr\n7TnLIKda+JVrvPajX/m51/7kj/+Pes/+7/3Sa5fdihSk+Ln6WKufRcpZ7lykb/3g8z9T/Rbl53vt\ndZ+B7VrzO1qqNdqJ1Obti5CaNjKoZVdHnkeKVPl1EnAytyOVjO39REQKb0YaNFtgtr1dr/pFJiCl\nL5psYOPmJqt+LBnhFH+WwIiIVD900mvP+Tjs5eoPvYb3T2lLxckCpAIPViIVbdqRuoy14hhSynGP\np0Z0v3GSSLDVcMNr2to8Ohmpc74cpM6GxWh5Uf7VOgU5kPD1c2042TK09TjGYHSOTrlNzIe+Y3iw\n1mu7sqahRlzn6Gycb6hPn2+YD2mEA/VIj2bplyuFYhtolry497rjAOz3klZAEjLRp9Ot2UacU/9d\nWQFbHPvScF1Ge/S5j/XotNhAw+fc+a62V+ZU+bSrkHrP10xEJIbSazm1PdZJYW45h9TfbVuWeW1X\nTtV9Aen2be9CthJK4zsqw7Vbx2eklUEeMjOt72MT2dambcE5nTl2SfVbdysse0+9jHThiSltr9x0\nDlKt0huR2j3qSvNIihNopigVN22rlkg0PA0pCafZxxbq42l4Bv04LiVE69TchFTM+9xlsKd85uHd\nqh/Lv+ZvxzznOcHW1CIim8oR+1lSVP7AFtWv+veHvHbSCqTqD1RqO/S8u3E/+L4nLNEW3mylypaU\n2TeVqH5Vj53y2gUL75ZAE0Z2na79cwilIF98AscRn6DnQcJy7BN6TiIF3pVy9VUitZvnrCsp6iU7\n4JTliHvT4xgjk47F8wTZefexTGW+XnN5LMxJw7p4giSPIiKVlMq/6ZZVXnukUUtx0pMgF2G5tCuB\nad9HluhLJaD0V+C68tosovcfvTWQxrjSy4SFGJ9h0djbuLID3i+EJyEGp67XVqrdNA5CYxFD2ypx\nb9IKtR16Rw3+VhKtmZeeeUM+jMTFOG7eZ4uIdBxBnAwPh/Qr/Wotke05imNl2+WgcH0Pr7SsieVK\n3Y71deYOLcN9D9eeOjIFsXOM9t6J5Vo+MNCA9c6fi3nQ16plgBNkfd5I8j7+u+POfiGCpBX91ZjL\nHW/WqX7xS0lSSTLSfmfMJVC/xAU4VtfmvfYlSLBYvt57pk31C4647CPfHwXbBhem6WerRLIv57XZ\nvX6JMYibYyTzDo3Te8+Nm/DMwNcvrkzHPJbt3Xs3/Iqf/fc/eO3ybD0+on2Y2/PKsb77y/SzDu+H\nWZJe8WstTa6sxj7v6r+B5MmVuk1OYp+XdwfW0qlRvYdOX3vlnjNE9J56uEHH/Fgq48Fr13iP3pcf\neAUytLFJrF2xp7Q07HwTnoV5TSrcrOf8cBOOY6iKZIW0Z+g4rPfT/Iy47zj2HHE+n+qXl4JYXHcJ\nsadnUMfUCTqPtUuxdwrz6zIYSbHY08TnYayzhEvk/c+tLpY5YxiGYRiGYRiGYRiGMYvYlzOGYRiG\nYRiGYRiGYRizyGVz3D6ybp3XdivXf/1rt3ntT3/tdq99/3f/Q/X77arveO3C1XBhun/HRdUvhfJd\nf/WLb3nt3T/RaZ0/anzIaz/wL5/02ptuh4vT8LCWpTSSM8HahUjTDQnR6U27X3vQa/ePIE3t/u98\nRPU7+wSkI5nz4Jqx/6n/Vv2SKb1w3bc/67Xf+ftfqn7rPrVOriRB5Krgut2w01EvyRvCnPRHrvIf\n3ITr2bZPp2uGk/yJ08Y7j2gpF7s8sdSDU+qmh7Wk4eITL3ptlkhcfOyk6rfrFNLQ51bjHixbXab6\njQ6igjdLPXKv0WmD7W/Uem12oug7qd2QktZevvr2HwO7HrlSoRB6LYZStqMT9fFERCBtMDycJDAl\nR1W/4TZU3Y/JwHs6TmmXmnGSGPkLke7Y1oAx4abRhseTq9NppNwGh+nviSNTkR7MDgjTY3r8RmVi\n/EZSer8r35uegNymdT/OI6ZAy01ceUOg4bTlUEcWx2mitS8ixTr3au12wi5F7FblOlTN/zjcJ+qf\nhJtP8mrtHFREcYpdJNjdJ2W1HkvNr0GWlEcOMQ0v6NTwCLqPPXS/Ix2nvJ4TeG3BNUjp7TneqvqN\njSCdu3M/pG8Z12gXgLa9tV67aJUElKlRxKVwx9ktMhVjkOOaO2d9+ZDWXdyH9WrJNu3CEUHyCV8G\nZBu3hGvp0TS54Z3fg3uQlY5UbJYOiOhYO0gOBi37tEtBOsXa3vNYI9QmfQAAIABJREFUI1LX5al+\nLbshiWP3FXfNydiBe8XjLThMx4r0tVouEmjYKaS9qkO9xuMzbyOkIG4aflQa4g+vDbz2iWg55ig5\nHy766DLVr5sch1hKMkxOKImLtEys9yzmThSt50GOFKX7KKQukeQiccMmPUHY7ZLd7Pieiug0bZYK\nzUxrqRbHgEDDkkBeC0REes9gfWapc7hzb+LnYi8yOYZzjMnX8qcpksaGJ9A6dkLLcNhBaoqkHhy3\n3fGRTtLQylcwf1NztFQ1Zg6lyVNM4bksIhIWgtjDMuOgIN2PnavY/ciVbPee1nudQDM9ScfojFuW\nBPJ+ldd7EZGJAb53uE69Fc2qX9xcyBhG+xB/XGfJ4DBcQz/J9zsOknzCkSVyfKh+A3G9ZKe2DGx6\nDbEy4kaMC5YGiTjOUmdxDzoP6f20j8Z+A631YYl6nGVcpdfJQOJfiHmU40iszz4EmUvmZuxnpufr\n8y2ogBTl9O9R7mH+HYtVP5Yy8X1y1+OsLXD8G+7E+N4ej34DF7Q8d+EX4YDU04RniclhR05K0rL8\nzZvxeQv1s23cBVyXg/+K59nyu5eofg2vQHrDMmhXNjMeSo5eWh0ZEHr7sKeMGtHn3FyJ/VhKCo6x\ns1M7IK3fCZn6Uw/BVdnd94VTnMosQQw8/vIp1Y+dlRNJ+v30P+OZ0BeuY9bPX3nFa3eRu9ed116r\n+tV3Ir6wHG/LfL0XiynC+fL44/2giEgiOf6F0FrgroNDdfoZxcUyZwzDMAzDMAzDMAzDMGYR+3LG\nMAzDMAzDMAzDMAxjFrEvZwzDMAzDMAzDMAzDMGaRy9acSSaLwROOBuyz37zTa9e+BI3dj/7iT1W/\njDXQWjZdhH1ZySe1p2JkJOolJC9CfYMXv/oj1c9HNs5fve9fvfbXPo3jGcjsVu8pXwDN+Ogo6hS8\n8tfPqH6f/tH9Xvubt/+N1z7yyCHVb2QcOrzD/wgL72zH8o81se/+w6+89sI/26D69VZou7tAM9oF\nvbXP0WWznjeuhLS4jjUj1/rIW4FaA7FUa0REZGKA6rhEQk946jk9fsq2QgvKlnID1agv4tbkiM5D\nnYZzj0KPmrlI19C4mazwGjtwfvELtL1fdAE05aztZVtZEZHkjah9wPrtVsce0bUVDyRsdz3eP6Ze\n8xfgHox0oF9YjK6jMNQNrfRwK3SrbBsrIhJJdpAjvZhLaYtLVb/eOpw/23knL8P9GO3Sltas0Q6h\nmhxuLYdOskDM2pCPz3PqVwzVw2KPax2EOdpjttaOIdtXrrUh8n778UAz0oDrnrwuR70WkYhxW0RW\nim79nESy1+yisXruN7p20JybUAuGawtwnQ+XgQror0NJ63zqYf3Z67+502t3nkYNn7RN+arfC99H\nzGdN8PIdC/Ufplo/I824RmFx+j5mXosYy1bkU+Na9yva0TugRJKteI9rVUo2q8nLsKbV/v6s6jc+\ngXoRmYnQMo+1a9v0hPmIWVHJiN39kVon37Kv1mvPWUzxeQ5iQ3yRrhs0PY05F5mEOe9q67keRDLZ\nOw/W67kzTdrraNJn9zjxNPsmxJGOY2T5m6htNiOcmhKBhm1BhxybaK5dMEQxInGZruvEJTySV2M+\nc90REV0fKSId1/rwbw+qfqXrUe+s+k3UdeIaeEXdOlbOTHHcQ22bnhq9D4qKxDmlZOPcu5p0PUFm\njP5WwrIM9VrjG5j3EVSvLnGJ7sdjMNBEpuFautr/BKrNE7oa87LLsWrmGmT9Z6m+SYGuOSPTmAdd\nFHvy7tK1CXit4ToobFXNnyUiMt6J65wxF3Perd/TvJ/qudHg82fpdSumGNe86QSONeKwrlXCdYQy\nrkY9kt5zeu8QkaznZqDpJuvv6XF9bWYy8O9Qsjofodp4IiJTtEdteBp1s6adtaF9L67hxTpcm/QE\nXX8uewXm83Az4gPX94lMiVHv4fNIp1pG473aajg2F/fr7V/v89qZzjHkkn3zIO2N40r1XpP3r7l3\nYN137eDd2B5IMtajlszh7+9Sr2WvxB668TXUVPJl+1W/lPW45m0vwb48bo6uYePz8bMW7kd3/QnV\nj+24+VrwvMq8Ttf0GxvTNYreo+MdbdXMczZpXr7XHunUa3jKEpxTxz6sA/48fQ/j8rG2NL+JukGj\nHfrz0tcVypUkmp6xed0REfH7uKYe9mxhofqrhHGysp9HVuXjk3r/nuzH/e+swv250KTj1IYy1AtN\npeeLoUrUdWrp1uvd3ZtQD7Y8B/egpk3v2VbSdxQ8j7iWkYhI+1nU20lfjHsVlahryVTtwTFxHck5\nW/Q4C///2N9Y5oxhGIZhGIZhGIZhGMYsYl/OGIZhGIZhGIZhGIZhzCKXlTXlbF/kteff/kn12peu\nvsVrl2YhzejuB+5U/Y59/2WvHZ2A9J/iT61X/XZ96++8dvlnV3rtr997h+o3NURpRySbmXcv0uyH\nBi+p97x+AmlG7fVIB9/x19epfr/+0s+89r88++9eu+uSTklni1S2tBu4pNOqRlqQdtncg5TEhUE6\n5Tlz8Vq5krB1pwtbII+R/Imts0VEOildk80Yu07rFLF4SmEerkMqaMk6LfliCUcXffYk2dP1XNCp\nta29SC/vGiTZlXbSlpQ8pEBmC1IH6xyb39AQnbb2HolO+vbkEI4pIhGpaLk7S1S/+meQipj157dI\nIJmkdDvXDnN6Emm7sXlktemksLL1ZhTZgrr21JwKyn+rb7hB9eO0P7YMjfBDfjETr9OyeytwT4NJ\nTuWOt5wspDtOklQuYaGWprGVamQy7k1fhZZ98CXjNGe2UBd5v51moInMIivQZJ3WWPs44kwIyXyS\n12v5E8cZH123nBVa3jdAFuQjJNuIX+Rcw2GMC5YRsZW2O1cu/PRNr515PdI1O97RYyQvBVLJQUqR\n3feSlkmt2Ya1prsa985Nlx0l2c9EL44v3K8tQ6Nydbp0IEnbANmQMxWl6VWsPa1v1nrt7J3Fql/r\n7hqvnbgCKbKJ5domufkNWK6GRJLkwpGn5l2Nz2cJTcoqpBQPNGg5BzPSRtLXLH3tesiSOP9arM39\nE3qOpW9DuvUQSZ6Gg/VFmhjEfYvNxN/itH0RkQRHhhpoWEqZulbPMZansUQp2LH5naS5w7KKmsfP\nqH6xZMvcT7Gpc0BLM2oOYlywbGXhFqR187GJiLQcqPfaOYshTXFjKksWWU4wNaht3jnmh1Dquru/\nicvGOcWTBN6VYfYcQzp40QoJKBEp2FOy1EhEJH4xjqmdJMi+PC0BangHr2UuQQxtP6nnS+oi7AvS\ntkIm2n2qVfULj0csYhtcXz7+bt8FLTcJDsZ1Hu2HBGb/Bb1nKc5ErMjNp/nhzLFOslcvuhYywtY3\nalW/rGuwL2O5F8vF/i8RciUJjYXkNX1zgXqNrav7af8w1uXY2pPNduqWfK893uvIACcgk8oexGtp\nS/X6yZ8/RVKrqiOYoxlJWrLHsneWeTbur1X9WN5RMhexp6XRkSHR3jOuDGvpmCMXjyKpLVuiu/LK\nXt6vr5SA0rqfnrP6dAyYQxKOEZLUn35Gb94zUnA9I2jtb3hJ21OH+Wu99sW3Krz24KiWj3EsK8rG\n/E1ZD5nVxUe1FKqQ5OBd9Hy38LMfVf2q90Cy3VeLfpVPnFb9Fj2wzmvP//JWr93vrMcDVYivfE7Z\nuamqXzVJt1K/rG2hA8EUSS6Tk3WsnKT9NstyYvv1swbH2MQajM0mR3rE82ByCvPlho16cPZ10JjZ\ng+eslUWIX23OmPNH4RkzrRSxMsLZU070YMywXfaEsy6mzsNncHkClhWLiEzReRSswZ5oyinJ4JYO\ncbHMGcMwDMMwDMMwDMMwjFnEvpwxDMMwDMMwDMMwDMOYRS4ra6p9Hqnni+5dpl7LSkz8wHZMbJnq\nF5ePqukt5Ep07huPqH67TiK9bQNVU972iY2qX97qHV77/JNPeO3BfqTUHfzBXvUeTsn/2Wuvee05\nW3X15C8/+EOvPTOD1KSYHF29e5Sq8WdsRdpSz1kt8Tn0/DGv/fH//oHX/t0Df6X6rfroKq9dskGn\nvweCyBSkn7ETj4hI9UO47uyiEZ2t09nGybUhpgCpX67zC6de9tf0fuB7RLQDSNslpM2nlyIVOT5B\nSxWiB5Ael07uRVlbdfXy+l2QFuRfC+kRO0mJ6Ar6YZRWG5mq08FZgtX4HNIrUzbkqn65t8yTK8UI\npcDxsYooAyQlXXLTeacp/W6cUqfd65JMlcjZzSsoRH+XGxqN42DHLf7s/gqdppuySssHvM+K0uc0\n3EouTHT92VVGREuUuk8jvTx5qXZVGaGK92HkAhYep10ouk9RqumVuJ2UMtpXqWUhfnJg4DHX/EaN\n6hdN45Odg97nbkOp7nHFkPqxjFBEJIikGqcPIY4uWI25k6gzN+X0OTicNP0PzmPhTu3CxAJBlpDF\nztXuCwNVkLT4ojHvQ52xPlCJtFiWiA04zjTschRohkmuGh6nYxTLXvi6crwTEfGX4vz7yRll2kl9\nDXLkCu/R8LxO82Z5W9YNWEP6KVXa77jJDbeQ1I3iduuberzFleK1vkZIQHpP6vVuuhRzsfc0Ynr2\nTu3yVv0IrTl0rF0HtUNDy2uQdBWtkoATnY81aaRZuzWxRInvwdiQTnVm2Qq/J2vHHNWv7zzucQTJ\nXjYu1enb7NbF62L1Acy38tsXq/fkbEdqd0gE5ljjrirVzxeP+BBDMiuWaYuI+MnJhNf9jhody9PI\njYalCsOOrCnjGn0tAgk7/s04MWqkCfd0giS+vee1XDp9PqJU/Dyck79Yz5fmFxEbxykVnmWOIiKj\n5FQyQc6KLBmNn6+lCiNNuH5xOZCcbUvQ61N4PD5jtA1/J7bEcYqke8jzNDTMcVUh6SpLmQYqdDxV\nF/dGCTgsZep01qdQWjcGaZ0IT9LXpu8s5ktEKs4lMkXvGVgWmL0Je8dhZy8bRvOUHR7npy7w2q6b\nVt8ZjK0oWp+i8/V+miVYvK9KD9KSLpa68HXobdFySPXZJHkNi9ZytOi8eLd7wBiqw/W75jvXq9dY\nYn/8KTwXLb5FxzK+v+vv3+K16189rvqxO+jW76CEwGN/8aDqt6gQ15PvR1Q62klz9NzpJ8lhJjnw\nvvbt/1T9Mgowh6dJKjfn5nLV74W/ft5rX/VFyJouPa7lTwU78ey89B7oP10JmxuvA00K7Z1dB8Xe\nU4glTWewXkeGaflc29uQ2rJMaulV2tlupAXPNXWXsPd2nZJSSJYUUoH5wnvF4kw9x4ba8NmVx7Cn\nKd+mv6MYaUa/oRqM4ZAYfU48r1jyP9Kg9w65i/GMwyUZgiN07I2blyKXwzJnDMMwDMMwDMMwDMMw\nZhH7csYwDMMwDMMwDMMwDGMWsS9nDMMwDMMwDMMwDMMwZpHL1pz55cMvee1/vm27eu1zP77Pa7e/\nCx36mV8/ofr9x8PPeO2vPQArsq63zql+D74FXd6lXc967azla1S/+zbdiuPbg7o1NXt2ee2N39b2\n2+d/gdf2nUcNnBHHympoCBrtykf3eu20Tfmqnz8LGuOXv/2Q187P1jaoSzZDXxccDO3nnHxdD2PS\nqfkRaFpfh149eo6u/TI2QjbRVD+h6kFtLxcSTfUitkCn2+To2lmbW/yppV678tfHVL9o0lVnLYFG\nj/WeIU6Nk9h50IZODUPf72oyZ0gf3XUYuki3fkP6VTiP1l24RoNUK0dEJGUdastwnRmudyKi7a4D\nDVtfuzrn0EhoI7n2y1i3rjnD9WjS1mIMj3YOqX7jNB5jyJrbresxWAd9cOICjP0R0nr6HS082871\nnEGNmJh8PS6jUnC+Peegc3VrHPnnoHZHdA40p12ODSprghOorkDHwXrVL2XFB9fECRSDtTj+mGA9\nvrkOxATV7Ul0LIXDqRbTEI1VtigW0XU02B45Za2ulTRM/YrbYCcaRXVMuBaGiLYpLN2IuiFs/Ski\nMkp63hCy9XTnDo+TYdKuJ6/OVv3qnoe1bBhZnboxdJSsofO1zPmPxkdzcdSJPX6q3cI222z5LiLS\ne5zqQFAdiaAwPSa4PhJbz2deXaT6hdBr430YO2NU/6JvWtfaGKS6EtE0PrjGjIhI295ar83z162P\nw3EpjmpqtL9dq/oV3IUbEurD+cU4a1Nkmq79FWj6zqFGhS9H69VrX4WVadYaxEq+HyIi7WSJ3juI\nMZear+OeLxefH1qEedBzXNsw97RjLs69HkWvhptRY4Jr24jo2ipcyyL3uhLVj+uGcC2LyUE9Z6PI\nZrvtAsYp15gR0XO45zDi7bRT/GW4UWvyA0nfRdS74nosIvqeRjvrCxMWjfvRdxH7j/4zer6E0ecn\nkE23u+4PUC0xrlPAa5BbNyKV9hWd78A62rU5n6Y6CAnLcAw9R/U4SlqNOM77ns4D2m687wzmAN/3\nmEJdm8RdnwNN3e9gPZ93tw7YnYdxzFxbJzJZ11ibzMO14n2kW0smYRFZrB/Bs0tkpo43XD+sk+y8\nuQ7H0KUe9Z5Qjtd0j/mzREQaX0B88WVjjLjrBNdpiyvF56Ws0Ws400Y16vqdsZl9Y4nbPWAUfgT1\n5oZa9JznGLP+y5u99mC93mv30h5zbBDzqPKgfs5Ycic9Wzz8jtfe8fmtqt/xx1A3daARzwIraQ81\n2qL3NqV/gjqn7UdQv3LhPbruKq/9fVRjjffWIiJbPo3PY2vvyha9R638Gf694SbUnIkv03H34m/w\nLFV2lQScoVrck6kxvU8bbMM6lL8G9Xxcy3auCTTWjf1IiE+vn50NuN9zFtMzSbN+Nu9qwjwbHcdY\niopETI4p1DEqtgi1cFPpeAYu6ueYoFDck5Zmev509udhtRiP/mjEnqlJfY3iqK5rcDg+o+IP51W/\nnMWXf9awzBnDMAzDMAzDMAzDMIxZxL6cMQzDMAzDMAzDMAzDmEWCZmZcA0LDMAzDMAzDMAzDMAzj\n/y8sc8YwDMMwDMMwDMMwDGMWsS9nDMMwDMMwDMMwDMMwZhH7csYwDMMwDMMwDMMwDGMWsS9nDMMw\nDMMwDMMwDMMwZhH7csYwDMMwDMMwDMMwDGMWsS9nDMMwDMMwDMMwDMMwZhH7csYwDMMwDMMwDMMw\nDGMWsS9nDMMwDMMwDMMwDMMwZhH7csYwDMMwDMMwDMMwDGMWsS9nDMMwDMMwDMMwDMMwZhH7csYw\nDMMwDMMwDMMwDGMWsS9nDMMwDMMwDMMwDMMwZhH7csYwDMMwDMMwDMMwDGMWsS9nDMMwDMMwDMMw\nDMMwZhH7csYwDMMwDMMwDMMwDGMWsS9nDMMwDMMwDMMwDMMwZhH7csYwDMMwDMMwDMMwDGMWCb3c\ni0d+/QOvPTk4rl6bGpn02kkrs7x25zuNql/CknSv3UWvJa7KUv0Gq7q9dm9Tr9eOy4hT/Sa6R/Ha\nghSv3X+uC581PKLek7OhwGtX773ktQu3zFX9Gt+q9tohwfjeamRiQvULDwnx2v5UP/4/PkIfa9+Y\n125p6PTaBSvzVb/piWmvvezjX5FAU3XkYa9d9+wF9VpEdLjXjsyM8dqTg/qcR1oHvbYvO9Zrx5Wl\nqH595zu8dnAormHs3CTVLyQSQ6/7WIvX9pck42+2Dar3hPrCvHZUBo6h6YUK1S91Uy69B+cXFKq/\ni6x88rTXTluY6bVHWwZUv4ztc7x2Fx1raHSY6jczPeO1l9z9gASSi2/+j9eeHNX3JiwW467rXcyx\n7BtKVL9hup7RmRi3XceaVL/whCj8rWH8rbEuPa8SF2NuDzf1e+3R9qEP7CMiEhKB+x4chnk0NTap\n+klQEJrBaHefalXdZqZwzaNzcE78fhGR8e7hDzyP2DmJ+s/SGCle9wkJNCef+C+v3X+2U73mL8fY\n7znV7rUztheqfl2HcL8m+xGXQ/3hql93W5/XLrltgdfmuSwi4svCdat79rzXzt5R5LWbX69S7xka\nQ2xLyoj32onLM1W/UIovvWfavHZfZbfql7omx2tX7cF8npqeVv2Kt2FMD1b1eO2gEH2/I1Kjvfbi\nO78kgaTm1GNeu3WXvi7JdB5hMTj3tjdrVb/wZJ/X5uvfeaBB9QujNcWXjbUwJlevi+0H6r02r83+\n4iTqoz87dS2Otfso4lpQiI6TObeUee3+SozZqPQY1Y/Xsc79+FsJyzNUv8FLuPehsbhG0bnxqt/0\n+JTXLt3yKQk053f/0mtPDOj9jb8I163x+Ytee7BvSPWLisD9yboB+4nBmh7VL3ExrkHb23Vee7RJ\nz8WsncVee6ge+6Awf6TXdvdYfH/C/Tie1rdqVL+hKnwex83UrfmqH6/b1c+d89rFH1mk+vnSaQ1+\nrdJr91fouV3+wEavnZKyXQJJxYHf4BherlSv5d9RjmOi/aW7l+04izUlPhNjsPZSs+oXRGtKQXm2\n157oHVP9xgbw7+L7lnjttv2Yo+4xRNJc4riRMC9V9bvw08Neu+jji712f42+5i0UbwrvnO+1K353\nUvUruQfHF5mImDRQqz9vehJzu3Rz4OdiW9uLXnu0U8+x4HDsEyboup179LjqV/6xpV57oBrHP9Kk\n93OpG/O89jDt9Tr26fgYGoX9XWcn5s6qv9jstQ/+YK96z7xbF+Lv0jrrL05W/SITscf6w3dfwjks\nnqP6Ce0pU9ZhX3vgF/tUt5X3rMKxUuzNuaVU9WvZjWeclfd/TQLJ4V9+32uPtQ+r1/LuxFwMoX1f\nX6XeA8WXYbw3vIhnlYbzei7OvxWxKIbWjQlnXg03Y1+asiQfxzeA+x4Srh+DJ4fxGZEJ2B+OD/Wp\nfhEx+LsH/gn3cNkX16l+p37yrtcu/9Ryr3385++qfqu+utlrV/7yqNdu7dRrSelW7IEW3PQnEmiO\nPfKfXjvM2VOOtmBMh9DebqJvVPXj57sI2usMOPu+MFr/gyMwLiKSfKrfWBfGU0x+gtfm/TrHCRGR\nqVHsg3qOY3/j7lE73sR6LPSskb6tQPUbp3PkPVYk7TVFRCYo/gfT2Oo91ab6TY3g2WrtV78tLpY5\nYxiGYRiGYRiGYRiGMYtcNnOGv90P8eksAf7GanoSv3DNTOlfOo+/cMJrJ8fil5bIRv0tZNx8fGN6\n6QK++eXMFBGR5h76tfQcjiEqlzJYRqLUe/iX/MkpHCt/GyeifzWprsCvU4tvXqz68S/vrcfxK3be\nwiLVb6gO55hTjkyhvnP62+LeIRzfso9LwGmjbwYL6BtsEZFzD+PXh/k78Y3scKv+tSEqC/eOf4lo\neEX/WhURgW9C067CN49dh3V2Bv8KkLIW7Z6T+IaTM1FERIbacJ3aD+L+FNw2T/WbGMI3kqPt+pdJ\nJn87fums34WMqjm36mvUTr90JlAmCGcFiIhUPEa/St39oX/2f0VQGMb6wIku9VpEKr5lzrwaY7Cv\nQo8zzjZqfavWa/M3uCIi45Txxb+iTzvZLeFx+DWXf1mLTKMMrFH9nlGac+PdmEduVs4M/QofvzAN\nn+18S81ZQ+M9+Az+5l5EZJK+6Y4twq8hA5X6WqZv1t+WBxrORBqf0NcmLB7XM3UD5gRnGImIpG7K\n99r8i0X/BX2/5+7EOG59BRkeERn6Gg7SL935t2IudVIWVvegnkd5CylDhH796HirXvWbpDGTfSOy\nAngsioj0nsCvCgs+tgzvH9Zjk4+poxnHnZSg14n4RTpjK5D0nkNWk7suDlzCeOIxHelkmfA45oxA\nzkIVEZkcwhrMGWTcFtGZGbw2Nz6HrI/M7fpXWZ6L0YX4NWrcWRfb36712hEpiDWcBSciMjONexWV\ng/vLv+SKiGTfhF9zax4/47U5s0NEJGmNvhaBhn9xrX3ktHptlH71TliM+JNbqDPt+Ne66gex1yn8\nhN4zDNRh3zJSj19zC+5dqPrxL78pqxADah7F2pJzs/41PIh+Yqt76qzX5qw6EZHBAdzX9KW4tu17\na1U/nrNxmcjQcjNZW3bhV/jwBMQuN9OvaQ+y8VLuCmzmDGezdA7oPcvEY6e8dvJ8xAP+9VdEJHMN\nMik41pbn6+w0ziht3YWspJYe/ct2+Q7E0KZXsa/IuRH3zY3pdU9iHrQ1Yd948Q/nVL+EGMqwobXP\nzfqIpcxY3scXXKfHzngvxSj6tbptl866Sr/ayegIMP2U6TLl7Bk4U6ylDfG1gNYgEZEBylaLTEF8\n5X2GiEgXZQlmX0trUopeFxufRezMKEIMePf7b3jtspsWqPf4aF1re6PWayct1b/Wn/kxsiZu+N4t\nXnuoRcfAQcqeO/0wsilW37dW96PrV3APYkr1b0+ofokr9XEEkuQViCmjHTr7qellZMMmr0bWWawT\nTycGPzjroOQqPW5jC/C+hucQX8IS9LNfzg7sgUa6MT54Xe139oBBNDfjivG8ON6vs0OC89BvyedX\ne+3DP3xb9UvNxLHO0ONx1jydUVrxE2TF5dyOGJLaq8cvZ5ReCYbpuTXNyaocbsDa5aOYz3tAERH/\nXGSKDVTh+iavyVb9eG7yswZnjYqITNEzHUdvnue8fxYRCaFMnPStWJN6z+oMlszr8RzY8hr2yUMN\n+juKEVo3YufinrrPGhy/RihzKypT7wFDIvXe0cUyZwzDMAzDMAzDMAzDMGYR+3LGMAzDMAzDMAzD\nMAxjFrEvZwzDMAzDMAzDMAzDMGaRy9acqalAnRDXNWPZbaiMPtwIXVVdS7vqt/QWVIMXKiHSsEe7\nXHD14/ho6MjqalpUv0k6jrN1qG+wuhQa76rjteo9RctRRyI2Erq0iV6tIYwthUPDHNLtu/UwRuh8\n83dAr+ZWou6ugdYuZR40q/5irbMcPKWPI9DE0t8LclxsgunfrVThf7hZ67cTqO5HdB65hlCtApcp\nchWKK9euTjVPQxtf9BFoZNnVqeqZs+o9WWtJG056wu6TWkM4SjVx2IlirFPXUmB3kdztul4Qw1pG\nrscy6nxe0a3z5UrRc4zdVJx7SGOV3QfG3fFdgHsVlYY55ss43YM5AAAgAElEQVTW9TpYdxk3D/eN\n68qIiExPQPsaQrUXuJbFYLXW4/M4Gm7EsXKNGRGRlHXQk0eQjrj7tL7X0eR0M0Y6Z64/IyKSshJa\nV9bsRjpV4XvIUSj7Csjs60+gNkBWidYcs+a2+yBib2yZdnrgmiDdVOOk0KmVxC5mY+Q411up9eCF\n26C7Z4cJrtSfmavn7xjVf6o5iThcsDhP9as4grGUUAcdcf8FrfPu7sVYCKP6VOGJWkOetAKa+aAj\n+P+wONcp78rF1AGqGcb1nkRE4shdpe4ZaOGzrtHOgJ1H4T7B49Z1GUsox+exy4/ruMX1oFLIhYkd\nBMMdPf4YOZj5qKZYtBMPeD6z7jpxoR6/XB+InQrz7tDjsvFF1HJIXIDzG23T47LnKDmzbZOA0/Ac\n3ECKv7BSvVb1MGo1cG2xCOcaco2Y0i+iDkR/na7/xNctZTPmSO1jZ1Q/rvfC7nOh5ODj1oMbobWa\ntfnsyCQiUvYJ1HJiF5PpfF3DgO/DRA/uY9Mb1apfdBLp/anmADv3iYgMVug1IJBwbYuV969Xr9U/\nif0Dx4ORPr02FC5HrYyOw6hvkrG+TPVrP4b6MT1Ug2vT13UdnUgf1rjGt1AnhF0RY+do98rEZYhr\nBXdiL3vpwSOqX8xcrOHNe/T9YLjuQX8FYm2ms8/h8+0+gpgUlqDrNzS+hLVk7poP/bP/a9g9svdi\nh3qtu5scd/zo5zqAMv4irnmh9+VjbYhnHYewHvef13O2/Ms7vPbZ/3zNa0/PYF7xs4+IyAA50QnN\nv5pHTql+Pj/iSOOriEM1R+tUv/QMnGPeqnyvffShQ6ofr+/xh7EeF12tHTt7T9PzWYBjakwmxn3f\nBR3XuFZZxz4cX0Ot3s/lFWMe1FzEfFlwna7tc/g/3vLaSUl4Hhnv1HP7+JndXjttBfaA7ILW4riV\nxiVhLazZh/0L33cRkVyqeRQ7B/Ny/t1LVL+jD6OWTNevsAda8/Wdqt9wJ65FWAzVUnT2MlFpunZJ\noInKwuf3X9Rzgmvd8drn1hDsOY21m/cwbh3RnuPox/vNCGffF051Ink95tpY8VQbTkRkgOIe19Rz\nHVqVe2sJ5tu080zC9UZn6Fmo+Q+XVL+U9agVx9eL3TZFRKaceoouljljGIZhGIZhGIZhGIYxi9iX\nM4ZhGIZhGIZhGIZhGLPIZWVN869GOnLzfp1u138RKUMtl5COVZCnU5073kbaYOpGpPvEZegUH5Zq\n5K7N99p9J7VMKookNTUncExvvoT0z5WLdSrfY4+97rXn5+IYept0OtvEu0gFXb8KaXRsly0iEk/H\nPkS2mG7KVngYrLK6LyBVM95NaU2PlytJVCrS1KYcG7bSe5CCN9yCc2GpjIiIj+Qj9S8hLT3eSRHj\n9GtOP3PtmpMorfDDrOFcG3W2aI5IRko12+uKiMQtwmeffQLp6ampWoI1QWllnBY66Uj4UovxeWF+\npBtWv3he9cvdeuXsJsOTkOaXuFjbISolBLX5XoiIjJJtHUuUXHkWE0Gyn3DHqq6HJEaqH10jtrMT\n0SmEqWuQFhrkjLc2svrmlNiYfD1Xes9jXrElcYyTQth9CumT8aWQ6LxPJpWr3xdo5t+J+dZ7Vsc2\nthWMofTKUUfC4i9ByjZft9ZXtVQ0mFIqxycR2+bs0PGxZlel107OxXyeHEDaKo8/EZHgZCwd88me\ns/NtbekaRxJVlh+Ghupxwcen/t+R5vG4TSJLzgtPayvk8kXayjiQZN8KW09O0RbR0p7QYNybziN6\nDYnOwzhmu90oJ52X4y5Lt2oO1ap+hWtgFdnxDu4Bx4DpcX2No9KRitxD8yN3p5ZzJITgXvfXYd0P\nj9XH2nMO95fHaNs+vXdI25zvtXkORGXodG1XhhVo8m7D/mawQUtvWA42SfLcUceWN5zkPNPTJEnK\ncKSiL+Mex9HcTr9K206zBINj5zBJdfsv6FRzXpOG+imGJGlrYLb9jitBDJwac9ZfWlA49iy8f4Xq\n1klygC6yO06/xrFsd+RqgYRT5t30f7Z6jyFJb1Nlq+p38N/exHtozsaXpap+EYlYh4q2IYbWP6f3\nAfHzSc5OdujBwRgrTXsuqPeU3Xyn167Z/6LXznAsrHm98xdjHE04Mt6q84gBcyKxzk4MjKl+wWE4\n3wjaX7lzcfqILi8QaFr2QqIVX66ve0o21qR4kkHGFWupbf2z2nb8PUJjteS1j8oPJNJrLKUWERnp\nRWzK2gnpb2kurntYmN7/9jVCZtGfjL8zM6HnWOIiPCeFx2FfNVSr7Xt53WWpWn5pluqXslpbFL8H\n21GLiCQuyPjAfoGg7SCkb9nb9Po7NoA5MUpy2hEnnvZQHC5dDymwO25X/NlGr135C5IODmjJZ9FG\nyPhYldROz7NaSCzS0Ij73jeMY12xTUur/CSri8vH9e88reWGC27E+1g61/y23rNkboB9dt3LeG7J\nv3656lf7ImRS+fqQAgKvE2F+vef3ZWLPwJLS98l9+3G/mml/49pdx8/HfGbrald61PQ8xlb8UsiL\nfPnYr3cdalbv4dg22oZ1bKxdr0fNF7EezLt9Efp16eei9j21XjsqF+u7Kx9WEtpm/F1Xoj81enlL\ndMucMQzDMAzDMAzDMAzDmEXsyxnDMAzDMAzDMAzDMIxZ5LKypr7TSKGMjtEpOZyWnZ+MdM+Wo1pi\nwmminAblpskPVCAF8OQJpEFVt+oU1MVdcF7yRSAl0R+Fzzt4XKeMXr8MLgUVLUjPXLFIp/ePUWpo\nSBQuTfIc7ZbCTkGnDkDiw5XkRbTDVfYipL2FO5XwXdeoQNNC1aR9hVoWEktVrLmydAhJREREBsgV\nxkfpvWFOOpufqmpHpZCcalSn1E9PIqWLK5OztKrkk5vUe0JDkcLWehIytqSVOsUzLBrHvvi+VV67\n3Umvb29HCmVyHO7d4Ii+H+kb8/FaI1LvErL0tRxu0JX7Awm7mU306+Pr2A9pRfpVSIMeqNKp+pyi\n7iMnENedJZOcZQbJYSfMSQ/mdHiWT7DMLDRWS6s4PbWB3GzcfpGUPjlUg2MYrtNpv+wWNkxpka5b\nU/JyzL9uqiTP41VEpJNckmStBJzW15Dymrhay9M4BVKlXjpySc7DHazCtUnfVqC69ZGUsng+5BO9\nZ7SUK2cN3GPGezC2ItMxf4++pt0mONZ1H8Bxz1uq0/B9EZizLJOKTNOSi5FjeC1xKVKv+xwJB6eQ\n9p3D+RVu1i4kox0fLtX7Y+klKVzKulz1Gksr4pfAPYDdekREwkmilEEyn4hk7f508JcHvHbxSlzb\nuVuKVT/lVNaFY4gpwvxodyRYPpLwxZHUr/Hli6ofuxZkX4e/2/ZurerH7ggZO3A/2FFNRGSYUoxD\nohCr4+dpOYPrXBVoRtpxHK60M4piIs9FN/6kbsj32jO0poXH63UxbTvmJo9NVwodSmtXJMmReV5G\nZWpnDJY1Ja/AWtj4YoXqV/s7pNFXNiAFfP5SPXf66xFT/LTPmxwZV/342DnNu/HlStUv0kllDyQD\ntVjjXDdBPqapsQ+WTYqIrFVuS+QCeU7vZVMXYr/YF0FzyXFxccf7e0RG4t4UXqvlJW01b3vt1jdq\n8VnO2jxJDilDl3Du0UVass174/ZaxNCQg3qdjSvF3jaG7rW7X+vr0nKRQMOyf1fOWF+N9ZrdRpXz\nkIjMjOP+s9yXnfFERJKX4NqzGw27sYhoV7nUDYjzE8OYi13V2pUojPZBMRRfWeIvIlL7O/2+9yj7\n083q30e//4rXTiFJUtVZHctzd0Jq2/4uJG3xZVr61bwb0uf0ez7wEP7X+Isg82k7pKV+LOOKzcGe\nK9ORdQ7VI77y80ioX+89Wabun4cxPH5Sl0+ILcTf6jmD8RJbjPe4zzBlJGdkF1L3HnYdx7hKKkJM\nnnRceNjVlMfYwd9px62EBXiNZT3v/vMLql9S1oc75AYCltm5ksA2cvSdGsR5DmfodZFDYhxJlwZr\n9DNJ0+sYj2EkQ72cFJafQ1rfwTzoHtLvqW7DPm371XBjrDulpffzdkIbNknlN1gKJSLS2IZYMa8c\n42fU2aaw7JhlyyPO5w06LnIuljljGIZhGIZhGIZhGIYxi9iXM4ZhGIZhGIZhGIZhGLOIfTljGIZh\nGIZhGIZhGIYxi1y25kxzK7RT046uNm4aOjLW4nGNGRGR4THUmBghO8jDpxw9dDv0gIvz8732zTvW\nqX5nyaYsKhx/d+l26MZc61nW4K+9GbZkrG8UEUkpQV0KPqeRVq23ZR3jqgzSfzvas653Ub+C7ckG\nnVogIZGXvQ1/NBnXQlPeS3UaRHStkK5DON4kx5qvbTcsAjN2oPaBW4eENbesWx5q0fVY2Io9lup+\nDFZDh+dqN/lvJc3DMXRfrFH9PswaOmmFrk1Tes+1Xrv11DEcT4u+3z3nMDZZ8+1yJW2Y09ajLsiM\nMxe57kXLa6gv5C/VtZLYBq95N+aRWytnii2Uk6HHHXGuS28V7mHVIaqlEoNaCZ/60j+o91y7ZYvX\nLkhN/cC2iMjzj8AusDAdWlyODSIiKZ1UJyoG9RpYUywi0krW3FxPasTRtmZdO1euJGlXofZEn2Ol\nzVZ7bI2aujFP9dv3y31eOywEcaXp8S7VL78QNW2aX8G4SFior3VwGD6DLRCj8zCey0r1MXAdku5B\nxNugEB0ELx2t9dqF82FV6tba4M9o/zXqrCy7danq1/wG5noUacUTFqapfu5YDSR87u1v6zpWSl9d\niTiftjVf9eNaOmyhPkQ1nkREStZgPEZQrbIwR4MfR+O9nay0o8geN3mZjn+s6R/kOiMleu5wbZ/W\nN3H9JwZ0LIydSzbsQ/yaU1eF6pklLsLcbnxB17pJXEY1meZJ4KHz73Gsgv2kKe+jtSr/znLVr/MQ\nrjXXfyq8d6HqF5mEWkLDjYi3xTfcpPo1HNnttbm2UV8dxtJYu17ffAWoFdK5H8cTHKX3FRfrsb5v\n/RPE4arHtaVrVDTG2QyN9VHHWjSS6iOx5X2iMxeHnX1WIInJxbl3n9a1tGoOYqyOTWAvkZera4u0\nHkC/yFTUwmJ7cBGRqpdRyzC9/IPrQ4iIRFA9rrAwjKPeFlg9v/CPL6n38P43OxnvOUnrlohIHdVR\n+Mubb/bawY0hqt+8WzH+Tj5x3Gu7NrJtVAsraSXmW7hTJ6j8U9rON9DMvQfWy93HdY2YoVGMrQSq\nR9bxtq67knMTagJdehQ10so+py3gL/wC9Qrn/SlqEtY+oevAFH5kideeGEKMHqeaf8/89FX1nlu/\ncI3X7qTxU/gxHQ/Sd1AtCnq+GGzVYzg+B/VFao/U4vNK9P6c63g1HMSa5NaKu/avb5ArRfdJxNCY\nfF0X5d3vv+G113/zOq+dVK5rtrXuhq39IN33lX+5XfULDsYaEhZGlvJ9r6h+vK5lb0e9tJAQ7IXf\n+afn1Ht89EzHe+2JPm3nnbKM9t3HYH3t1ippu4B7Ou9j2M8U5ui6U7WPIA4nrcVanb9F1wSLcOq1\nBhqukdN7So9H3h+30d4nYbE+F675yPVLg5w6ciPj2Cek0jPnoeePqX5rP7Laa594GvGsfwR/Z15+\njnpPZiLG4Eg91tz5tyxS/aansMb1UR2rmSldw6ygFMc33ouxMO/+61S//mbU0emlmlbuOugv0/ss\nF8ucMQzDMAzDMAzDMAzDmEXsyxnDMAzDMAzDMAzDMIxZ5LJ6Gk5Byk7XKThsfd3aiNSdoo2OLeNZ\nvPbELqTjX79Up6u3dOPzciit89wZLVlZ/zH427LNb8cxpEJyiryIyOl6pD8mVCLNu6FT27TedR2s\nm1kCk7lV28NGRJDVaxPkAmwJLSIyTdZ+sflIvz11RKdjZi3WKYqBhuVBo46la1Mj5GVpWyG5qH9R\np5hPTiHVjVPl+yr1NRysRvr11BD+7mCH/ruxGZT6SzbKUZRSyJZuIiI9ZAEcTFaJo+36s5OX4t41\n76L740gBGve/g88gK9o4x36w5hmkIycU47WIVG0H7No3BxK2ee+v0Nec7Wj5mCKd42OL66RFSD0f\nrNZSiug5GKvxC9CvbY+ei3wPh2qR5hcehrDywjM/Vu+ZIqu6rG1lXrvx1bOq35+vRNov22LOUMql\nyPulFe/R/Ool9e+EBZCbsLxyoFdfy1FKMc7WLo8Boe5FpMZnbtTW1ywFicrCPGAZk4jI8psQO9ki\n9uyuc6ofy6SELKinxnW65swM7gnbIx6n9NHiZfpisGSxpAySp+RVOrWUJRhhZB8d6sTK8FCMmbQ4\nyKkqX7mg+hVsQizm9YnjgYhImP/K2fcqa8wlOp23402k+g4PIS07eVyP2yGStk6N4FrGzNXp4NNs\nAcznG6GX7vb9+Ls8Z9kqtv0tLcGKJht6tuJOWq4t3qNp7WIJbn+FltFN0NiZmcY8Sl+n18+ZGVyL\n4Tb0GyVpjIhIZIqOX4Gm6inIGBY9oOXTYz0Yt+lkl915QksuOs5hTYrLwLgdcCxDe0+gn78ca8jY\nmJZTJZZhL8Dy3K6zkCvNX6clhm8++a7XLs/B/AsP0XNi+59d5bV5fkT69FzMuAb3q5eklxGO1IXX\npCD6U0M1ej1xU9kDyf4fQgax+NYl6rXFn4CchS1cXXnfFM3N9gPYmx27UKX6bb8P+8PX/wd/N+2o\nljMvvRdzJDoD97D+KdgLb//MZvWenpMYH3d+8ete+/985jOq37oSSHdePXnSa99z1w7Vr/MgJGx5\n83C+7r3IuhoyhZFOxIDap/VawvLZ3O/eIYFmqAkp/+4+beEqyFGO/R6SpORYbSl/8Gf7vXbZduwt\n2g9q69yUVbgebJ2bd6vWTja+ivs1PYn1k+W+N39Gy214L3riIsZPar2W7/zobx/x2vd/7U6vPdys\nJeYsrVj6aUg73vrxXtVvohuxs+Q2lHhIPdGq+lU/jDGT8Vc7JZAEkTya96QiIgvupj3LJI512lkX\nS78Ay+OLP4W0vfeSjpMJc7FGdV6CHChjq7NpI0VtRATue+XTu7x2Yno8v0PS5yNu1O+DxX3h5utV\nv/YajDcudxA7N0n14/ESk4Fn27Stjiw4n2XB2E+3Ouv2GMtLV0rA4bIdrvy8vxJrfmQKZK0hzn5k\nnOTxE1Q2Qe1JRZc94bFelK6lp7yvOlhZ6bVXzMFaxVbXIloyNUHPr+FnfaqfLwfPMeEk1fXP1XLV\nAXq2zduBMdLfUq36jXR8sA146nodA1peo/dd/f7+ljljGIZhGIZhGIZhGIYxi9iXM4ZhGIZhGIZh\nGIZhGLPIZWVNvgikF04M6xSsuFykZ43VIOXMdbPhNO07ojZ47eqqJtUvhNImOfGytFinAnHq/zSl\n1rOUaWxyUr2nawCp0zVU7X7H4sWq3xBV2R54HimN7ufN+yjSZ1Pnoor95KROZ+oNg8sFyw/4uoq8\nP40z0AxUQTLGFflFRLoOIU07IhEpXSlLdT+WyNRTymtjnXacKVyWj39QRlxoiHYTSKSq+93HMH6G\na5HeGr9Up7ZFpSONtfMIxo8vy6/6dZ3C57EblZuixxXl40qQat70aqXqFxVLjkV1OL4pp5p3/l3z\n5UrBzhgSpCWG7AQyRtKA9jdrVb/0q5AC2E4uEInLtTRjhKRv3ceRFqvcU0Qkgv5urh9pxD4/0u59\nPp2CHxyM1PiONqSWztm5TR/DMNIYOfV12rnmrW8gNdBPcjTXNajhMNLVB6jC+6KdunJ7+BWUw7gE\nhepj5Os5M43zZMmPiMgQORBUncZ5ZSbqNMxoStdsOoP5kpWi0zq7zuAeR0YiFkWEkSOCI2loeBuy\nsbKbkEbdvk+n4I5TvL70BuLGuvu0jGTxvYijHSS/m27Sc5bT9VM3YG3oOKBT1xMdaU4giaDU3IFL\n3eq12BLcgx5yzQgJ1/Ev5xbMl6FGxJThJp3Wztd9vJccQ/q0BGh6EuPl/ONIXY+PgwS18F491pvJ\n2S2eZH8zU/qaD9VivPXW4HzLPqNdUAZq8VosxdaRLu2cFZWEOM5OJa7LTx/LN69AaI1NxrXprdAu\nhnFFSE1nCV/tbi2XLL4VB1b3PCR4ruMVu3WNkJvk1JR2QDr7w7e8dsZVSNFv7EI6+V/d+AX1Hpa+\n7D0LeejO2zapfvVPYk8TtxCxcnBQy3G7jmBPMPeurfSKliBExiElXUmnHQe8vpYr59a0/s/gOjXY\noOVUHeRcVXAH3HLO/nC/6tfWh+OLicR82/Gpzarft7/6316b5WOujL723+DEdPVtiHM1jYizvhot\nyRFyhfnVN77htf/xqadUt0sVkKHffg2cgVhOLiISlYb92vFDkKjPy9Wy01GS79U9g/GROF87+qWu\n0fvwQOMjifRYt54TsXMwF9n1NJLk9SIiKbT3YUl8/Ep9Lt1ncR9e/N6LXvuq+7eofh1n8axQ24H4\nEH8c1/Z7jz6q3vN9mosD5DZ0953fVP2uWY717lf/9jT+33kmae7BfZ0k2SjLQUREMm8kJyK6Rmkb\n9P5rypERBZLQaOwXJgb08bELa8/Jy+wpab3jc0wr15LFiQnEw8KlH/Xa1UcfUf2yF2COVLz6hNdm\nd8e0Er2OtV2EnOr5B+Ged/57v1H9Pr4J8bXwdrj4dR7Wz7ZDJOuJzobE6ezjJ1S/5ES8FjsP60ew\ns3eIztbPO4GmlRwx2ZlSRCQyFXvH9M1Yn9w56ycHuyO/huy2cKkej1m5mJvROTj/cUfi3EsS6pVF\nKJ3CsTszQUvC/+bnP/faN++A7JPXUhGRG69HjG4+j2fHLGeu+IsRh6KiEA/7p3WZkuT5OL7RPsSN\nlt1a/hQcoe+ri2XOGIZhGIZhGIZhGIZhzCL25YxhGIZhGIZhGIZhGMYsYl/OGIZhGIZhGIZhGIZh\nzCKXrTkT54e2cnBAa8pYV5xfBN1gf4XW4MeQXWdsEdqLinV9hMFnoDGLoLoP6Vdpa7SIOOj9+85D\nkx7ngxauzrHI3lAGfT9bCUY7tV9yroWtIFv0hkQ5NmGk96976w2vXX7d51W//lzo00eonk3aGq37\ndT8/0CSQtWpwmP4+LmEZ6rpM9OO8+s/ra9h6BHUgEguhvStYpLXIrBtkjd3c+7RmdMzRFL4Ha2dd\na3KuTzBJ98et0xAajTozbDnb+oq2xszaib/FFoYJTu0DtjSNYVvZMK0Z5PPND3CNhOZdOHa2sxUR\niVhL+keq0+Av1XUPuFYJ2xpPkuW5iIifrACjUqHrHnd0xAOkI56741YcTwTqGYyMaP2tz4d5749H\nrZLGo3t1P6ovxPWuxro/3K6c63+whbOIYwWaAZ1rGI0VEZG+c1RDac2H/qn/NVHRiG1c40lEpPMd\n1EjgmFC2oVj1Yyvw0Qncu+ZuHXtTphFnCtYjjnYf0/aap+qhmb3uPuju+15FjB+s1J/NWt+xp45/\n4P+LiPQP4z7sPQ3Ly5V3LFf92IqxsQK63+Wf17VpLv72mNfmWN7bqOtNDFFdj7mrJaBEUz0VNV5E\nZKQZfzdzIaw7XQ011x0Zbcd1ZttqEZGk+fiMjiOoYePq0BuO4B6OkoVk8UZovM/+7JB6Tw7VoKp/\nnerP5Grtto9s3dtOQI+eeUmvERyTmy8hXsUU6M+LTkF8HW4kPX6etiQODr28JvuPJf9OBOmG57Vl\nO9+vGarnU3a3rtvDtTIS5yGuuDWvuNbDSDPm78VfvK36zf0ULGff+NfXP/C4H/zWt9S/F5BFds2z\nsBp2axPkXo1j762h9TxH35+sa7APGh+nOik+bYk+1I0aUmxJPD2mtfrzP3cF/F7/Xy78Cuc7M6Nr\nJSWWYh3quYDzCIvUNr8T3TherifoztmdK1Cb4ts/+YnX/unXvqb65Wwo8NpBwRgHMbTf7Luo6x6c\na8T9yEvBcX/5xhtVv8f27fPaK6j2wtFqXc8gpRP3fkEZjqfyUqPq1/sw4lAvxeq+Q7pukJrD+RJw\n+i6gNoNbt3KQrNlTViIeHviJnjt8/9k6d9mNeu95+g9Yh7Z+muzRf7JH9Zukum8lmXjG+Ycnn8T7\nly1T73nuMOqVDFLNmZ98+8uq351/Crv0v/z4x722++xy/V/j/rftr/XaExf1HON6QUmLEF9dW2fe\nVwWatGWlXrtxz0n1WhjVAAqjJS4qOVr1a3wFNZX88Xitcf87ql/z27Vee9FXcJ1DfXo/NzlJz12r\nMQ/6qrFun3v4WfUetuNOj8fBbt+ha9M8/yJqV5XGYz/j1hvroTptqr6cUzeoqR0xYfFG7OnPPK2v\nZeRJnGOJLisWENjuOipd13XimjlcJyso5MPzPHgeNJ1uVq+lFSDWRSbhfo936X3+ONV97aeakXx/\njjkxkGuxcb92Z48aX451+8IxfMZCpx5SQi49m9IgjojX9uDjw7jfEX76/qNYz0XeV3wQljljGIZh\nGIZhGIZhGIYxi9iXM4ZhGIZhGIZhGIZhGLPIZfU0tc2wkitZXKBe665GClb+tSVem22bRUQmepCC\nFERfBZ0/qC0ps5OQ8pNAFspssywiUnon0vwWfp7Skg/BgjKpTlvn1Z1EynfBCpzHeJeWPrCFaKgP\nqa8sSRIRGSOZC6eANdU8o/r505EeFxRa67VrHz6l+tW2I6WzTDsKB4TpCaRA9p5pU68lLIaN8qmH\nkSJcfptO3x4kO9UxSsOvqdJpai270W9edjb6PXxa9QtPQppjHNk2DlzCuEpenqXeE1+GfjkrYfFZ\nt1+nf3eTPXj8YqR4JjiW0ZxyXPs67LM5nVJEJPtmyOK6SN41WKntK3NunydXiiS6Fq4t7xDJuuLI\nTprHqYjIGI33KLIfH3FlYTT22UY2rlinayYXIF24pQIpwVmlV3vt6Wmdntje/prX7j6LazncrO12\nw2KRAs429D1HdDxIXIHUQ7bva3jxouqXSvIOloWxbayISMY2LaMMNH39mDvBZFkoIjLYhddiU5BO\neuwdLbmYk4YxzemeiTE6BZWlL7FpuDYX91aofrd89eIfC88AACAASURBVHqv3XsW6b4T9Nm9jh1y\nE0moeoZw3Nfdvl71e+UppP5+7mqMi+pX9THEk73ywrsg7Ris0etJBkn4WA6Ud42WfoXHXzlLdLYF\n5bkiIhJTiOvcvrf2Q4/n4AuQZ63/KPRz7loz2IS/xdaxrlUpy3qTkjC39/4WMghOLxYRSajBmtva\ni7jtT9Wp78NkBVqYj/nW/ra2kIxKRdxMXo3YzzFEROTYD/7gtQtuQmwddc79SjNG1uQJS/TaEJmM\n69lL0rW+Ci1HmaRzS1xE+5aTWjoYRTKnObev9dodZ/Q8CCPZ47Zvwga2vwp/17VRDwnBuAgnuSpb\neoqIJCVt8NqRkbT/mtGSgTAf9jRhYRjP4+NacjHejzEYTlL0ok8uVf3a3oEcL1sro/5o5t6DfUrH\nQS3ZGWnCeBrrxL3O/8gC1S98F+3hnsO6ET1HSwwXbsFY/VU87K7n3KU/r+so1hRej+deBdlH3Zta\nYr3lo5BvPvaTl732M29r6c5DP/6O137293u99m33bVf9xjo+eI+6bqO2sh1pYSt7zIFX//EPqp+7\nlwg0LOOd6NexLb4c13CYjrdklSOzq4VcYWQYn/Hoz15S/daV4j6EkJ1tVpKWHRypwj3adDOkeQ+M\n3uC1o8IdWTRJw3htfvLFN1W/333/e167o5lkEKH6kaz9EKTOUSRJmp+jSyNUtiLelH0Bx/rGP7yq\n+rHc6xM/1ZK5P5a+WqwH7niZ6EbMSlyJNWSsT+8PU8iyfbAW++ujL2jb6YJMkm7Fwn58rG+/6nf2\n4ce9Nq/BvKa58v/2d3HNS8swX557YZ/qt5HKZYzS3prl9SIiPorpMbmIKQuu0bUPeo/pZ7P3KNo4\nV/2b97lXBJIr+TK1NLaHnh/jKbaF+3UJioE67CeWbMN58r5eRO/tO4+hBELcAv0Mz5KgkP34IqF7\nEDF+Pd0PEZFwmkv+dJxH+jy91k+T5HjDFzbiHGr1811EHMb31BT2nqPdWgKalL/Qa9fs2uu1x52S\nDCmrsuVyWOaMYRiGYRiGYRiGYRjGLGJfzhiGYRiGYRiGYRiGYcwil5U1RYQhZXuoQUsfUuYjhXdy\nFJX6p0Z0CnPyWqTftb9R67WzEnVqFqfbNe1BxeTFf67TNSMjIe/o6TnotftOI/X4+d06Tbc0C+/p\nPIP0v5xtOi0yKBTfVbW+ipTGiFTtqhJCqewsheo+pSUXE3NQdb59H1J72ZFIRMTvyLACzWAd0j1d\nZx5OkU6KRdpk4ytadhZNVbsn+3FeFS36nK/dipRK/lvPvfWu6neB3AnuWIeUXk5XPLbnjHrPtgeg\n+eo88orXDnGkBT29SH1940HIqe744nW63xnttPIeEU6FcnaIydqQ77XHnIrijc9BflKwUALKaCel\n0bXq9P+oDNy3MKpWPx2rK/rHk3tF91mkJ7puKpxWHElSBVdK0Vx5wGsnzcNcaq3e7bVT8taq9wy1\nID0/Ignp1iwxExGZmfrgSuZJa3QqoI/uFaeWhjlplj0nMO+nqUp6wmLtzDVIjlZSKgEnrQRz3U9p\noSIiU7shc+Lq95kJ+v5EkovZwgW47pw6LKIr6492YPzkFusq9Cwp67sA6cJZmqORYXqOLcxDum92\nHsWvIH0fr7oW8WC4HmtId6+WSfnLkFrM92fcSXE/thvzubQIKdC1R+tUvzkbSNKxWAIKp+aGOXKl\nhpcgU2H3kLEOnfpakos1aYykv37HXYNTbqOzcD/ba3TKbXQ+Xhuh6/wPv/61177z2mvVe7jfJK2/\nkwN6jYjMQEwJpXk14qSkdzYgnTu2COv7SJs+9xFyk+o7B0lvyzm9liRl6HEfcMjch+W0IlruMNJC\njh8b81U/lrVF0PrZ78i7c1fDUYlT7Tl2i4h0nsSca30TYzqKpCn5jozG58MxLbiN3IbGO1S/Swcf\n8tosdc5YpO3MQkMRU/t64MQWEaVjZTSlvHN6urqwIjJcp90xAglLmS4dr1Wvrf8KnOe6TmBs1Tyk\n3U9y74AcufF5yJpCY7RkheNX5mbI4921arwHcZivUScdK7sHiogceAJOarfcheO+4RptGRhPjmCf\n+w+4/Aw16/153FzE02M/x37YleGwY8zEbuxfVt2sXYhSlmtXzkATkUBSOkf60E0ysUGSNbnXsPh+\nuOkc/MFer33NYr0AxC3ENTzyW1z3qSm9X9o6H3KM6rfJLTMYazM744mIrLwPc4n3I6t9eo6NtiOm\npKzDM1Kf45KathrXva8SrzV06Xjlj8L12/uPkI6vf2Cz6qf2NwGG9w61F7RL5+Zv7fDaLHM95zgI\nzvs89gtn38Zz4PXfu0f1G+kj+fUErsVIu15rpkdxT597HNKy/efhbrWxvFy952Pfuc1rc3z/2FIt\nh2GZVMcBSKFOHa1U/YrS8aw8PYFYEZ2lJUODVVjT++laVp3W8uGladrpMtCw21TvWS214ns3QHsQ\nllyLiIzR80rfGaxDU9M6Vs75KD0o0d6R1ycRkeh07Cd4f5hOfV76nZYOssQ+ZaWWATJT/LemsXa5\nrnHN9L1E9jWIPSHh+muUgW7sAZOobMhIu35ua3sb63u+XtJFxDJnDMMwDMMwDMMwDMMwZhX7csYw\nDMMwDMMwDMMwDGMWsS9nDMMwDMMwDMMwDMMwZpHL1pxJi4OOPTw5Sr0WlQmtNFtgBoXqmgPnn4Rt\ndGoO9PTdbVqTXXotdL8JZJkcGhqn+k1NQc872oPP8M+DTu6uTF2nZtezqHfCdrP9F7Vuc4pqpLC1\nX2e9PtakbGjhfQnQHQaFag3seD+ONYFsNieHtaZ/uP7KabJFRCYHoSvuatS1CgZboeHNvwX3wLXC\nO/MH1H+pbYfec/sKred9/c2jXvsXTz7ptQuKtK3n6hLYr//Nr37ltdcshQ3nlvnaao511XwNE8q1\nFp4tDG+8c5PX7nFs2WdIX5hUgLEZ7FhVt/fh/iRQfY7+Vq3zTiq5crWDYvMx5oad+k+TQ9BGjlNd\nGLaDFRGpeQz1OrKuQ90j93wHqjFG2Gpzok/X/0i/CvVOemugi52gcT9Qp20s2eKTybla635b9kG3\nmbsFeu2ZGa1F7aog61OuydGla5AMkd7Tl4Tr4s7FyGRtox5oYsmOvN6x+y64FfOv8gncq/gEXZfi\nyTdR62dBLjTpa+5cqfq17kUNG7Z0jc7TMbVwCyx7IxKh280ju+wRR1u/6A7UtuggS+WYfG0/23nw\ng+0RUxO0peuh3x/22vNWwzry1H5tIx4fjfsTlQ3NdrxTDynK0UAHEp4TutaGSDzptaMycAxhMU4N\nJKpxEnQO+nKuvfB/Pw/3rbcC2u30DQWqX+vbuNdTKRjf3/vCF7x22XJdY22MasFs+zJqonQc0Br3\nhMVYu3pOQYM+NKaveUomYtTxF1HXg++ZiEjpTsT1cD5fp15RnGNxGmjY/nm0VdcqiNr8weOH13QR\nkcpHYPFaQhbSXHdERKTh8B6vHV+OeTDo1GOp2EPxLAJjxp8AzX184gr1np4u1BQJDcdxD3Xo+hWZ\nCzbSv/C7XNslbT+bVoQ6J8O0xkUW6npfISG4r7UvonZE1jXa+pVragSacNp/Fc7Xfyec9no+qu2T\ntEjXjojwI2aFRKOuwKhTv2LBZz7itYeGsD4Ntep9ZNJK1JPiOiGZ2zH/QqN17ZfgnyP+jdPei2Oc\niMhYL8bVBK37eUu1LfK5Zx/22mu/jvjeV60t3rkGBq99e/5jl+pXQrVQUv9C164KBD0nEVf4Oono\nulTJy1AvLXWlHo+H/g1r18FK1P1YXaxrPEbTmr/tO7d47eqnDqt+GVsKvXZ6AWqmXHz1Ua+dv3mb\neg/vT/riz3ntRmetX/0ArNgvvIG6YImL9F6W6zyNdSMuL79F29VzbbL01dhHjPbrGBBbcOVsmBOp\nvsb6dXp9r3sG1yJz+//D3nvGx3Ve574LfQYY9N4rOwmwd1JsEmmqS5YsWS6SE58kduIkJzmJT8rN\nOffcOHHsOInT48RVrlIkWbIkUpRESpRYxN5AggSI3jswwGBQ74f8sp9nvRZ5f794ePFl/T+95Lx7\nZu/91r2xnvXgWWDc2Vdc+SfkEV36FPYYDc8dU/UWPoH1quUo5i+eD0R07pKrrcgL89v3Y7zERusY\nhes/wNrlT8A4jUnWY3aSxqI/F2PnkS8/retNYj/deQTzi7tH6W9HvcI1mMvcnIM3X8a9XLhFIk6s\nH3l2pp0cspyLLZFy5gycc/LF0TiNppwslw/oPKIL4nDveS/O+ZpERFKL0J/KduGZ7uAf/4tX3rNb\n5+LJXI1zCKRjTWp664iqx7nFOO9Pd73OSZqaiH1V03O4Dp7vRUT82egLg7X4Djf3WmKJ3oe7WOSM\nYRiGYRiGYRiGYRjGPGIvZwzDMAzDMAzDMAzDMOaR28qafAUIu2q4rEOdV1Qg1Mq1z2aWPQHZC4cq\npXZrK9Voso7letGx2pKt8fWjXjmN5CwcRjx6VYeZcjhSXQds+Z4/ri23WUaTT6Fk5xobVb3tPoTO\ndTXd2iastBqhaWy5OjWoLUhTl2pL3UgzG0ZoX8W+ReqzwXMIc2U70blpfS1suTgYhERkckyHJbLl\nLofUu7aHXUOw9PvLz3/+Q8+b201EZILC8Dlkre90m6oXoPZheVryQm1Ty/brdRebvPLphgZV7+P3\nw9oyg0L8B+p1yGhcqpYuRJKhq+hnOZu1rWVMAq5xtJkkSY7ldtlj6N8cbudKEWN8+L7wKNo3OkFP\nF9e+D5vVF08iHPWZByArjHNkGvlkQRpD4ZMTQzrkL28LwhDDYYRMspWfiMjIDfRZtuD05WkpRQKF\nnYbayY7TkZsMXaFQRu1iGhF6yR63/FEt5TpLtp6Ld2GcuqGlzyxBSO7bL0CyOeFIEXleScxFWL8r\nnemuxzw43oZ22PDUBq/szgcss8taCs/xqSk9JkbqyV6ZLNvbX9V2k5UVGM8t57DWVObqMO++UbRd\nFP1pYTSk59Qrz0NusnDLpyWScJ+O8WmLcbahbzyEa8wq1XMPS2AS0vB90dF6zus5he/I30jjt7FJ\n1Svcgb402o45PUDrdOoiLRMKNmMOng4hpDhznQ7TZavvwQaMt/Rkxz6T1uANn4QUMTZJ3yPeL7ST\ndXHmJv27LDu9E4TJCjzWCVmf6MdaM9SCOTXLCWFOq0S7hgeoD87pc89fBSnSzAzZjF57T5/TFNqh\nbDVCucdvoq1azxxUxwye11IV7xSc+5f+9BKvfPVZyE3dsc3W0Dynth/TtrfBJpxTAUlcu9/TktLC\nPVrSHEmSihEafuWtq+ozJSWnfUoXSQtERCof2eaVSx7EPXJtfkcGIdH3JWG+6nj9pKrHEpOMtaiX\nWgh5TcNPD6tjskgSMk0SzZIdG1S9+HjM6ZOTmGvr33le1Qu1QY7Wdgj3Jd7ZoySQ9HmsFe2Zl6bl\nqf2dWg4faXK2Yk/zxld0/973h/u98twM+nSMYwu+8F7IefKqIB3kOVBEJEzPFwkJaJ/Sh5aqegOX\nMa6GM8565ao9D3nloQEthcrKgcyp9rWXvHL+3XoMdHW8gmNW0J4oRu9bOk5gHau4ey/+/4KWIk7N\noM90n4EU2H02i4rBXq84wsPSR3Lx/nMd6jPei1z5BsbVut/apupNDKBtRurQv11b+77rV7zyHD13\nffCsHovRJJUtycY5fPNtyEy/+OtPqmP4WTJIz6lDg9qGvGwZZHUJJCW+9Ne6/5Y9CZ/kvK2Y00eb\n9fdt+D2075v/G31n/dPahj21TK9BdxJ3bQjT/kZILcj9SkSk8Tm0zzRZ1Cf79d5z6Bqea8p3Qqrm\nW1ag6sXGklRo8LRXXrQT+2S2PRfR++GRm5DFJVfqvVgPrVejtP/lZ1kRkZRl2D/NTmMeYtmliMhI\nLPZIYZJLF96n5ZWDl7VNuYtFzhiGYRiGYRiGYRiGYcwj9nLGMAzDMAzDMAzDMAxjHrmtrGmgEeE5\nxQXaiab3BKQkOZsh35kKapkLh0RPUXbrxAwdvj1yDSFsKUsQPlT3owuqXlo+ObIMIhyJ3RZOXL+u\njllOjib/51//1SvfvX27qseyJJY/XWvTspk1FcjivmAPwqoO/1hnFBdEwUpRFUJsxx25yc0LCONf\neo9EHM4mHee4BMRROGkftWm4X8sEZunePHI/7lvyAh0itpOkQz1XEBbK2fNFRHaRhGyCQrkzqnD8\neLN2JYqO+/B3iSwZExHpGcFxiecROpa7SzuccMhnQxfO9e7qalVvqA3hhykjCI0s3q1dBSYH9D2L\nJCzP6nczo5PEiyVJifna6YGdnDgEkN12RETisxF6OEhOZWmFOtSZQ0Yf2wQN0MwEwhjL7tGxs0nJ\nGDs9dQjZZTmNiEjZboSXD7YjO33vcX2u7PDS/jOM+0nHvYedZVhiMjmsXVXiM3TYZaRJXYH+M9qg\nXeAWbEZ/YklCrF9P0xw2nxCLz5Kc7O/suMbh4KXr9ql68fFwcAgvwJzfdAzSh8wVOpQ2Ohr3KTSC\n/pies0bVi/GhvXpPwC2hpV2HdMaQ7HHlR+HSwM5IIiKJY7hGllxU7dFyzZGrOtQ0kiSxS8F5PRaD\n5KSWnotznQlpVzB2ROg9Delu5krtJFN2FySC7ASSu0hLYWNiSJ4QC2leKs3HrmNIyUMYY2PtOG93\nDIxcx9qcRnK2/F0Vqt4wh6GTlGm8Xbchz1E5OxDmHXLccSbJOUHugCtF+yuYL4JBPXezvCUpBfd2\nJqzd4tKrIbsLkWtl0T4dwhwbC1lh82FIs113s7IBtP8UhdezU8iF586pYz6gtbWfJMefe/pBVe/v\nfvn/9sr37CVnN78O327/KfrJwl9DPe6LIiJduZBDtr1Gey5HTtVO8r68yCoMpfMNSJRWPqSdIznc\nvJDWIdels/kQZBaz5L6W58iHO96q98rTo1iTipxw9fhUjB+WP135R0hZ2F1URCRnI8ZBbu69Xrmt\n4d9Vvelx3Et/DvpU2RY9p/eXQt4RyMb+vOeyln4NkwtT9gbINNi9UuTOSwxZrpwecOWSGJuXnoUb\naOmGMlXvzCFsuKPJgWdBn5ZISDT2DH2NGEsXvq1lbCzBmCSnysk+SJkWP3mfOmZwEM8AvjxcR7BJ\ny8LayPUuYw3GvCsdZylwKIT0CuEBLWGOoutteBNjseIuR7t0B9vxnT875JULMrSUrOB+jJHCrWVe\nmR1ERUSqf/Vxr9z+sx955aQKPU92v4V7kUVucB2D+j7/6B04ePV3Yq3+9EOQptWerFfHlOXjWXdw\nDGuS+90VPlwH70Wyt2nXuMQsnPsrf/icV37kL35F1eu+hHvBc9lYm34OCjaSzPaxnRJp2IGS1zcR\nkd73sYdjCXdSiW6frLXYLw5cQl8POdey4G64pU1MoH16u99S9ZJTIZ2fncW6OEJOlxlr9d4pPIR5\ng53oBi/pvSe7avL4cNd6fwH2feE+9Itxx1kqfRWt4fTOY7xL74OmnXclLhY5YxiGYRiGYRiGYRiG\nMY/YyxnDMAzDMAzDMAzDMIx55LayppRMhE26YZh9JxGKff0QsoOzREVEpKoa4ZrsiJC+WocgRcfi\nPVHbQYSZ5a7Q9ThMiGUp7HJQkJGhj5lGvR/8OUJ7+3p0tuzWPoRIrV4MicHUjA5vaqF6F78LadWy\nYh3OlrsA4XGJRQiJar6uM5nnZ+vzjTQcfjbmZAgP3kCI3DSFs7X269DfdfsRZsfZroev9qh6cdTG\nk3Tf792nrW+mx9FePh/CyrI24B6OF+sQuDFyh+g4gPDeGCdL96LqMq8c7kXI2Ut/d0DVK89B++zf\ni4zo06M63Cx5AdonOg7yixhHIsbZ6iPNBEnh3KzkvcfQB9lJJj5ZOzOMUmhtcjmuKXePlnsNnEb/\nzF4GOV5frQ4H5JDPVY9DzsJSlFCvlvD1n4fLQCKFE+Zs1CHkwz2YU6J0IngFy0V8+QhdDCzQYbUB\nkgiw/MyXrd0R+k9qCWOk8edhTq19Tks240nak7caYaGuvI9lTdwGw5f1WEyjkNSzP0CG++BNR071\nMLSU0dHoMyUbd3nlm29rB4KirXCf8SXjvBMTdTtmkeTu5rMIOx8e16GgHIZ+4xVIBlKT9JjqGEAf\nTuGw82ntSpGepNs1ksyRE89Yq24bXwokliztyXYkEvGJkDzlrsc4mJ3VcrykJEiHwmHINPo6tctP\nWnaNV+bQ+FAv+kdUjP5bzDjJcFIr8+RWRMejfVPI8cl1EQuQ5InlXmMNes1h8vcj7D7acXxgB4w7\nQfIirGOLdujw/1A/7s3cFCS9E71aelW6c6tXnq5EXxhu0fLLkUaE1+dtxnw71qnvTfHDCN9+86uQ\nCfzwKKRQf/LJJ9QxceQm+RbVc50xjlLYfG4q+l8wrPscO/UsIbncYPd5VY+lKJUfhxSx9cA1VW+o\nTju4RRJ2Ges60qQ+Y2etEIWh9zbp8ykvR9vHkhSF900iIqmLISVkmc+7f/+Oqrf+SUjBRmaxj+ro\nQjlluZYl+nzY9xz/6y95ZZYAimjHyWFyKvTtLlL1EtJwHXFxGJfssiciMkmh/80/uuyVyz+ppd2n\n/0G7A0Wa1lcgpStdqffRp74FR8IluzA+jr6kZUjbH4Wz1VgjxlX2Zv19bS9D9jNB/WL9b9+l6g1e\ngtQ9LgXr4twU1t+zX/mhOmbBZ7EPYleo7HW6fbrIIYZdz1wnTp6/48nVj6W1Itp1cmECJJkDp/Sz\nRnMb9nArtOrxF2b778Ntp+eYdmxLIknIeAfmSddBtfXku1558X/jtBN67Xrhi9/1yvs/hhQJ71y5\nour95gMPeGXeL1yhVBV7/kBLAruOYj5dUo1nhNrvvKnqjd4Y+NByyiLHFbYJ97wqD+us68wVKMKc\nPBXE3HP9de0IVug4GUWasVakGBi9pp8DeQ8x0YM1Mn2F3j/Ep2IfNEkpMpKde9N5/ciH/i7vG0W0\npNvvxxhJX4Pf7T+pnZ3TarD/ZRlgyV49t7UfxryXe1eZVx5x0g5weoEUGs9dYd3X2amRpY0/53ha\nefvnfoucMQzDMAzDMAzDMAzDmEfs5YxhGIZhGIZhGIZhGMY8Yi9nDMMwDMMwDMMwDMMw5pHb5pyJ\nise7m8khbTnLOQPYnC0/XWtap4agnWPbZdZZioh0XIE2knPEBM/p360lreC2mmVeOY7yNTT3ahvV\n3Vughx7owO9ea9catShKbsHaupwUre/k6y2k/DYx0fpd183LsB1bmAJdc2qi1tKnLNY6vEjDeTXC\nju1X9jbo91h/HD6ucwclFUMPmZSHa+58Q9vQjfQi38i7tcgd8fFqbcU7R/2iuw25MjLWQGuYUqnv\ny9Al1OtqhxZyaEznAeB2XFBKuvNJnUumZCF+q/EK+tWqj2k7YO77o6Tz9ucnq3qj1/FZxWqJKFNk\n5Rio0FpFtnzj3E2udRvnWhmewL2c6NF9YrAVeT0qH8IYSyzU1xv7NrS5A2cwfntacR9yHOu8pArM\nD8EWaExdq84osrscpbmC8xyIaE0nW627eXl4PM+SZnzkmp4rCj6ibVEjzcUfnfXKKx5fpT4bvoZc\nCHXvY1yVlGk7Q5nGveEcX4ONWiM7SXl2KpZDd9/r5A6KTTzslUMd0BGzfftEh84dNDMOy9DK/bDY\nrf/ge/ocyKr86AXowSty9TVxvh0ez4VrdL6A0m5omYPd6N8zs1rPG1h05+bU3neRT8Tn2E4X7kf/\naX4O1zt4sUs06O8TZHkeF9B5rJKS0A/GxpCXYeCS/j7/Fmivef5j68u83Tq3lC+D7LcpH0ZO5UZV\nL7EIcwXneOo8oOf+hDysM3nby7xyc7een282YN31X8bayrkcRER8uXcub5DLWJfej3Bep7RV6KuX\nDl5W9XhtLVoFW9O2Rp1PKnsN1qEPvvK2Vy7ZotuEf7d6C/JrLF6C3H1N9TqPRCyNnRe+/Zdeuc/J\nB/eRlcgbd7Iebcf51kREUpcjz0LvRVhV565cqurFUc61llfQ12OdPrziN7fJnSJ1GXK3DDgWqdw2\ns5Q3qPqX16t6bB3rz9I2zsw3vvAdr7yqHO22+n5t4d1BORPZZrv6o5jv3fwDp74M22DOh3HP0zoP\nygTZzXPOgqgovZVPS8M1jo83eeXjf3lY1csvQg6p0o9hrb/6zTOqXvlG3U8jzWKybL/2jzqXDGei\n6jqJ+Wzv5/eoemGaRzlf1ZzjHp2+GnNlLNnIv/klnZNw639Dv42nXGK8L+U8RCIivafQdgV7kLdy\nrFPvgzIpH9xYE/ZB7a/fUPVKHkL+mGAL9mWjN7Wtc962Mq+cswrzxsg1nV9p8eY7t7+p/wb6TDCk\nn9sKdyInWkIm5Wcp13tZ3gfW/+C4V3bzpZVmod9+73/+2Cv/n//xjKrXeAb5QJopV+iujRizEwN6\nffr2t1/zyvfU4LzPU24vEZGHn8R8f+0o2q1k2RJVj9fJik/j+2Ji9HNgD/XtlCrcF9cy/uZxzMlr\nJfL4cjAHhtr1M0Q05cDi/SXbVouI9J/DGpVG60ku3U8RneNw6Apy+nBOUhGRzpuYE5JLkRONx29C\njr6fU7T3TF+G9TMmRj/H5GzCZ9MT+N1J51mZc5BNUjl3S6mqF2zFXiKVcvQNXNB7Nn5e+TAscsYw\nDMMwDMMwDMMwDGMesZczhmEYhmEYhmEYhmEY88htZU0cPrukYJH6rHwrLD4vvwn5ii9LhxYNkozo\n4vdg/9k9PKzqNXYjJHXTIvzW8bo6VW8vheYODSLkim3SWMYkIpJA4a1xFArPoakiIukUrthei2t3\nZTPvkFznt594yCvX12sb3kXLy7yyshNzQmengjqEK9KwjCNQrmVnw7WQdXCYWrZjYe7LxD0MtuEY\n1xrt6GmEfX/0btiM+gscCVA9wjIz8xCm5qe2mh7TMiSZQchjTiaOWbhnsao2O0mW4McR1rhnvQ4/\n9lEY3OJchHumVmnb+Oho9K2+CwgpZKmXiMjwntO7fwAAIABJREFUFR1GHknYUnPICY9LKsO94LDn\nESf0tW8EobVFRQg15DBfEZGie3Ev2MrRDTXMrMFxHFKckYa2jkvzqWNYbsR2e+EBHRaZvaoM30GW\n4O2OTKrhKEJGs1Mhkcjcoq0r+beC9QirTa7R8pq5aS2tiDQrP4lA1CnHsp1lRGzXzFI/EZHG12BV\nu2fFCq/c1q9tD1nqw8LMzAU6FHtmEvXydmNe736nyStH+/VSkU2W993XEM48FdTX1PIm2qcsG797\n6IKWfXxiO2wzOfzYpfYKQovX3I1rd0PXuT/eSaZH9PXOTH64xDBtqb7nLGvg/sj25yIiUVH4jkAA\nsoPZ1bqfBgKYA/vrEGJd/ADW0rikBHXMRD/GdqwP43J44KKqJxRqHuqCvC17u7Z9HTyPeWmkHn0x\nb5deZ9tbME/6cjDf1x7UNqhV/jsrpUigvcrNH2u5UvljdK9J9lJWrtdFttfsuAxL5URH8nrozyCZ\nWHM/9ievPXtE1SsgWfjGT2/yyie+gxD/xeu07feaJzCn+Ckk/fx7V1W9+Di08RO/db9X7nm7SdXz\nF2AuzlmPkO1gj97fZBZD/lt0L/6/45CWZmgheGRhy9XsdVo6HaK1kOWHrkVqRjXatPckJIu8bxQR\n2VEDy96MNTim531tm943ij3m+AvoV8UUPt/9gb6X9V0YOyyj//3f/rqq9+Wv/YZXZilxnCPjTcrF\nGBvtwHcnJug5IHMD1slGstJe9Am9Vxpr1+tupGFJx6LParFG11cgd0gtwl5n4KyW93VexzNEC60h\nn/7b/6HqhUqwJ+w7C4klp1MQEUkg6+rmF7Dnr/okNOv9Z/Q5pCzG3rHzMNaq0geWqXoBuo5rlyDZ\n4L2XiEhiOvpZchb6Y2yiHtssA58Ywf7clYbyHj/ikJzWTfFw4a8OeuUUegZx12mWREbR+hmfrveR\nS3bT3NOMPUv/+3pcrf4MJJuJ3z/nlVNpPe491qqOeeYzmMymaT8z/rOwqjdCNtObPgcJXGySlnVm\nb8e47zmGuaIzrGVSLGlNr4AkLjq+SdVb4L/tY/svTGwS7dEztWw7i+S5LGVi2aiISCbNy/00TsdK\ntO30SAPuIcs0e07oNgnTc0h0PGS8nYfwPLboV9bp60jA+j49iX4W7GtS9aZG0a78vOMvSLllPe63\nQZ+WRPPeboKkUYnOM/BEr36v4GKRM4ZhGIZhGIZhGIZhGPOIvZwxDMMwDMMwDMMwDMOYR24bH1Wx\nFKHr401ahhSfiTCzhWsRghXjhFylU6r19ALKspysQ7+6riL0MrMQYW9FmVo2E/DhdyufRujlaBMk\nHM0Hr+tjSDaUXQ0pxoTjIjFDso3CxQgnDF3UoesL8vHZmYv4rU13Vat6N84ibG3lwzjX2bAOSedQ\n+DvBELkYuFIKDntMybl1FvrZGYRqTZNjjj9XS7Qe+txer8wuCEFHYhOcQHhlJoUsDl7GucY7Tijs\nBpK1FuF1LT/R4fAxAYTlVd2LzOkXXziv6i1eihBUDpWb6NPONMn5uC8csjg3o8O1C/bqcPNIkkvu\nJ25/YakQO0tlOBKJ2lcRKnipBeGVj5buUvVSNmzxykO17+L7Vmj5U9c76N9JlEE9eyNCpSecsNXJ\nQYRCcgjrnKNLaT8M6c44uTo1N2lJ1znKoP/4I+SW8vZNVY/d5SrXIwzWn6tDDTkEs2yFRJzxDoS8\nx6XoEHPOLp+XRmHPL2vJBbfdsiLc6xhybRERmaQw7cOnIVX56Oc+ouqdfwHhviOHL3nl6hWY10PD\nWnYW6iZXJ5LcdR3TYcU/OX5cPgzXrYnnA3azm3JcAqvy0Ac7TuO3shyp1mSvPt9I4sunOXNR1i3r\n5ewow/kM65DoQZImdjYjDN0ND+547dteObEEYbalDyxX9RpP/tQrZyzG3MjOBKOdOqR4lsJvo+Mx\n/qZG9D3PWoSQ/O4jr3plf56e+8sewRrXQeN3OqTlkDdJwpz+Pu5lBUkZRUTGW7VTRKRhp5Cmab1n\n6HkH96rwIwu8shvqnFqKkPVwEFIKX7Lu38s3I3ybHVQuNjWpehsW4Lfe/bejXnnfHyPUfvi6dpgL\nFGOuCNMcEher92LlBTgnDr3O2qYd0YbJFTFQhr1YnyPFib4Lf9tT83xUlKpX/z041OX8jp57flFa\nX4HsfdoZYyWPwV2KpZuuCyTfz9RFmEdYTisiEizHHqbpSINXzq7Uc0DBUuwDRq+jrXlsL/+8dsi6\n9ocveGV2lWQZk4hI2iLIkRMyMU/6HKl882vY66TTPmDh43qPyiTQPmzKkTBnrSxyq0cUdx/JLN5K\nkvOFaDuWNIiIJFNqg4f/rwe9cnS0ftYYuIK5t/1d7B92/OoOVS/UgzUuZysknNyfXT0t73PZpebY\nnx9S9dhhrWRzmVeufV7Lfbf+AfYqvdfwWe9xLftIX4l1sel1jAl22xTRcpNIE03uvgVrtIMNSzpY\nYs77fRGRkasYL+zMefjYKVXv3iI4dbFjT/Gj2inp8ndPe+VNX3zAK7e/i32O6OlK+mhtfv0c9kb/\n6zMfV/VG6Tlhjp6Pmn6i92tXrzV55Xt+f59X7ndkeQn0vDM+1OmV4xyZVPpSx70zwkSRJM1N3cBu\nWuy4zBI0EZEJGjvstNV3Tl9ziNIUsAw1LlFfc0cX+kUKzQHxlDYh5Dy3xSdjDutz5IcMO2QOnkd/\nZCdjEZHBc+gX3NdZ9iwiMnAV60nGstxb1stcq2W4LhY5YxiGYRiGYRiGYRiGMY/YyxnDMAzDMAzD\nMAzDMIx5xF7OGIZhGIZhGIZhGIZhzCO3zTnjy4amNRytNfyco4O14WxvLSKSUwUN79QQNMFZm7XO\nma3SDj1/zCtv2aC19WkroOGKJV1axjLOJaO1Z61noM8Mnoc2mq0lRUQSydYzKg7Xl+TTNm77yM77\nWge0bC2XtCa7rAr6zlnSPA98oPVvPUPIqVH9kEScyX7SoadpHXV0AroA5xDILFiv6iUmor3G8pvw\n3ZPaPvrGj494ZdbcFu3XVuzp7WgvtmjOXQlL2Lk5nX8hkfKDDJOWezCocwfl5eN3Ow5BG77ioRpV\nL6UK2sUY6s9uTpfJSfwWay7ZLlZEa2kjTd8p9C3Wmrvw+QXIYltEZO0a3NuZEPSPY04+qZE+5IsY\na8VnMY5dZ+7WMq88RbbnbN2evszRx5JEe5xs7aOcPAVMoAq5IVY7dqmTP8R1dFDeqtwKnYPE14Vz\nZ8vC0ZvaVpXt/O4EVw/BArNkkdZ/Z9K1RcdjXHWf0+2zpgI6dLbLLlqiv2+iE+Min3LYhPt1HqCR\nEOb2AFmtxlLupqIanU+Jc86wjWdrl86H8dZR5M346D7orTlvl4hIQQ2u/dxLyAOwcFC3N9uFL78b\neno31xnbP0ca1lfHBfR8ylaZs7ew1RbR51u6EnPrRIdeu96thYVr1FXc5/1+PRaV1WQcfmu8DfkH\nZpzcL8k0//UcRY6VnG06X0B/Pc4hsRQa9Og4neOo90wTjrkI7XbGCj0HlJKlOo/7GJ/+vuwteo8Q\naXppTs1eqOeLgnuQ+6WfdPJ5mxaoeh3vI3cB39/K/YtVvcK7MX76zyOfwIPr9TrbMYD5aMsnYKUd\n58OcX7X9cXVMT/tbXnn8NpbHcRlYn3oON3nl186eVfV+7Suf9srBFuTQSHdymA3WYo7i9cTNa3H9\ne+fkTpG6BPlebr6tLbyvUG6Qir3IWzJ0Se9Z+ttxjSueho3zlb8/oeqllGAOTYynvecqPZd1vYFc\nKGVPInFZVAz6+iXnu9OSsPdcfT/2l+Ptej9duA65amITsN4FArq/RUXjXiQXom+/96XXVL0VH4cl\ncQxZ6Pafalf1pml9z8mRiMO56Pr79H4uqQh5nuJTkZej5vMfU/WGupHr48w/vO+VC5c3qXqBcmrH\nZHxfoEjn1+CcM+OdaIfmRoxf1zK6hqzJY2hvXblTzxv5m7B2NfwYedminX1Q29sYO/G075sZ1/kr\neH1Z8WvoI5f/6aSqV8b78EqJKFWfQV+andZ76LZXsQ511KHfbvr9Pareyb/AXFayudwrP7znXlXv\n1L/hni25G3lmhi7rsb3x9/d75frvo0/k7cYe6s3XdS7K6rVoq+f/7IBX/tQv6XPgfJ3+bPTRssd0\nnp+cTuQu4X6UUa1zOJ78x/e88vY/uNsrX/+n06peQh76QVGE21BEZILGX5KTY21iAHvHmASs1+cO\nXFL1ODdsdgbG1ZXGFlVvcSH2d7FxGC8nLl9T9RYWYE05/iLux/IVaEc3nyo/a/DazDlwXHgc9R7V\n59rdg7W5lfaha6p0I+RtRnvzb41c1XvjTno2Lf+QVGAWOWMYhmEYhmEYhmEYhjGP2MsZwzAMwzAM\nwzAMwzCMeeS2sia2mnZtg5vrENrXTqG4G3do6UjzBYQG5aQhvGm4Voef+XIgqbnnia1e2ZVwcPg2\nh1oOXEKoXMix4OQQ1BSy/OXwOhGRnhuQD2QGcD79o/r7mnsRnsRhiEWLdHjrYBPuC4e++ou1fW/V\nch1SHWmSqmCHmbpQ2z6yld0EyR2a3jug6mWvQuhWWhrCF8NhfQ8XPQkr7RvPwz4wIV3bYvupvVmK\n03sZlqY+p+2H6iAviiMr9qJVOvx9iMLHCsneuu89HaYWoDDloavojz9ntVmH7xuuJZu01bq9w4N3\nzr43vQYhkK61Hku3WHrkyqz8FB48TjZ4LDcUEekmacYHx2BTXtNZpuqNV2K8sAyQQwNTS3XbXP4b\n9ImUxeiLbLUoItL/PiQHGRsQ+jh0Rc8bS1ejX463YZzOOZbEbNudWITfio7VUoo7KU0TEVlyD+xd\nef4S0aGXLPN0SSA5JluJp6Xre3j8GkKJ9z2OObXxPW1Byjbm58nat6wCoaT1r17lQ9ScWH0Xworz\n09NVvd/91Ke88vJi9IWzdN4iIp0HIS0ooO+ITtDts2wnfuviGwhjz0rW155ecufkacO1mIeGruhQ\n1YqnsP7NTiH0nMOZRURqX8O4SiQpWYJjf7yuEv2bV+D+y3reTSeJ0onvQjIxRXbqS5aWqWPSVuC3\nYsk2mC1MRURaX8WcXPow7v9Yy5Cql7IA47nicciRu480qXoLN2JODrVgDgnWaYmho2qNOHnbETYf\nbB5Un/WewByYvgJz70iLtn7N3ww5ycB1HNN64qiqN07XmUxr8KYvbFf1WKqdngF5wvg4ZGftda/r\nc6X5mkO7Nz+9WdVja+hv/dGPvPInf+MBVa/naJNXTqQ1o/eYtu8NVGCcZq+HnKObjhcRCeTqsRlJ\nhi9j/K3+9S3qs443sS6O3kDfyt6k16SsWZz7NZJgFWxx7YBp/SS50WiD7re5u9GvxtpIFuzDeKv6\n2Ap1TNoJrHd+kku4VrbBwXqvHJ+EOa717FuqXjztt6bGsWeu2Fyh6rF86WYt2rfmAb2PT12g942R\n5uyrsIm+69d3qM+CzZhn2s5iTZvcqvdbrS/hs9W/AklgIFu3d0wM7u/gWTzHHPiTn6l6S1bhXlU9\nhnE6RHa7vvwkdQzvWQcuYo5e+rC2YT75p1/3ygt/bZ1XvvDHP1X18oYx90ySVXzFU1oHEevH7/ac\nwto6OKYlYkVjWtoaSQZrcV/cdbvtKqShK5/Z4JWHbuj9XMD34fseV65Z89FVXpkt1ZOKtQxnuAm/\nm0PWyH/1O9/EMQmONPktjNlXXvx7r+w+O/Uex7w7PYG2CfU6aRaWoS+2n8G60PZynaq39pcw33fR\nHJqxXstE3bQYkYaf1brfbVKfxabgXvmy0OcKnH1fYgY+q7uBeWXNRm11zt83cAn9Z32VltEPBCEx\nXLkR0ryJbjyzupkR4lPQl1jCzTbfIiL9J7SE8z9xx05DN86P9+Bpq7Tcd/Q6JE/TNN7SanS9eOeZ\n2MUiZwzDMAzDMAzDMAzDMOYRezljGIZhGIZhGIZhGIYxj9xW1tTThPDt1EQtMRmdgAPQ+s3ITh28\nqcODF++lMH4K2w/36JChEZKsTA6Qu1CqDjlLWYTwpLF2hJ+FKMy0uUWHfC9cj9BwDm/NIOmSiEj6\nGoQQstPGxEkdCtjYg1C8e9Ygs37vzT5VLy0d33/+3xEuu3SPDu1yQwDvJE0/vqz+HUPZpOOzEGaV\n7jgQhAYQquXzIawuMbFc1ettQ8bxqkd3euW293XGcc7OH7yONonPxDmMdOlQxjHqc0sfRljn2A0d\nVpy1Buc+eA5hq7m79LmOd6HP+Mip68a3tHtFMmX3z6KQaHZ4Erl9FvBfFO6PPRd1eHk+ZZ7vJunW\nALmCiOiw6okB3H/XrWPjCJwtXj1zxivzOBfRbkDZFDLKbkBtb+lM+OnVsHqYnYZuoe1QvaoXmkR4\n/vi7CFvNXqpDA/uvkcyMHFdcWRBnxm9/DTKNRCcMdoDCnMu0UVxEYMlY1kqdrX+MpA8sLWHZkYhI\ngKQGyV0YL5lO+Ot+CqOcpCz7nYN6jo6LQT+uLkUoP7tSuOewfDNCS2NJSjc9o10adj0BqcGbP8Tc\n4IYvj4URFlxGdiAc9uqSSVIm15uJJReRJpacklz3u6kRzFG83s1N6zPMTkEbsrzv/DtXVD2WPBXl\nkgywTMsdXvspnCiWkANC+Ra009TwhDpm4AzmcZb9jVzX69iCpxFCzg4kQcfpbJCkxSyDTsjRe4dp\nkt7w2pfmjAdX0hFpuo8i/N91ekhdirlkrAPr0MhVfW9Y2pVEMtmpIX2vC/dhTs0ruN8rj49reZ/P\nhzHc2QxnnawCjKPuvovqGHaze/GfDnrlfbmO5IL+/egzcAMJlOixwv/m/tx4WM/RvCax1KP4Eb2/\n6XpbyygjCctKRpv0vJa3A+t951uQOHW9pe958YMYI6XUToe+9Y6qt3EbpEiZa7HHuHFEu0TVkPwh\nRHuM1MWY19IKFqpjYn2YU9jVKS1PL0KD7XBFmZvDnmxqREuTWa4zEyZnxkbt/Nfdie8oLsD5XXlV\n7xOX0njO1wZ6EaFmN/YWviy9L6/9LvYnseSOlB7UYzaaXAP5Hr73p8+pemt/CxKlEO2DijK1nJ0d\nRjtPYsxVfBKSr/p/03unsnshTcksWe2V3/jDP1f1Fj6A6z34v1/1yjUrtZyDHXNPvwbpV8dVvbfb\n8Ds7cAztZdd+aoOqd/mHON9lH5GIkroA9y/szH8rnsS9YJefa9+vVfWCtMdfTE52nUf0HFK8FTJt\nXxauN+RIVsZIEtfwPuYAfp5lpzQRkR374NjGz5Wjzty/6jefwXW8+IJXjneeWW/cwDw+Sf0tIU//\nbtfbmJe6mrGvrdql54qsLUVyJ+F5PdFZgwfPYY2PpjGW7DidTfbjOvk5e6RZS6FL7sMYm6V56vLx\n67peFuZUdh/mfXLzq1omlk+y1M73IQsu2q3dlTI3UtqEC1jHutr1uW5ainMNBnF97nPfbBj3L2Ux\nxkScs5cd4/Vqm/wcFjljGIZhGIZhGIZhGIYxj9jLGcMwDMMwDMMwDMMwjHnEXs4YhmEYhmEYhmEY\nhmHMI7fNOTNLeQZcO6/MGOjeDn7/Xa8cH6PzcKwkjXptE3JlbLx3lao3fAF5XLqHoPWq3rVS1WPN\n+zBZJieVQe9d4eRHGKuHtis+DbkOUpdoazTORzM7Bd1YWqrWwD78+A6vzJrEiT6tgU2m74/ugraX\nczSIiAyepRw5eyXisLUx5/wQEYkh607WZ/IxIiKzZE08Pg79Z+tr2taTtb6TS6HLm53U9qxsvcl2\nnS0Hod9+/dw5dcxdS5G/iHMaxGXo/BWs62SdvZs3g20kA5XQ2Weu0fl2GNbgdx3XFmxTE8gxsWCT\nRJRosqrOWqdF31Oj0JvHUw4Mtk4VETn/EvK/LN8LzfOuKZ1TKXsR+sgf5X/MK7t5PGbGcVzv+8il\nMhNCW7v2cWON6GOtN9HvK1Zr29JZyiVzugFa4bKg1hSznnWiE5+lr9D9XOVwIev2tKW6nj/vztm+\niuicLG6ei45a6MgX3oe+XtDi5F5qw7+3PwW7XNfS1Z+Pa4mjeY9tAEV0zhm2wh4ZR54a11aw/jT0\n0Sl+5L2p2L9Y1Zscwljcuhtz+bRz7QcOn/LKGcvRJq6ed24G81BmOfS8Hdd1nrHaA8jdEmltffYW\nsmZ17BtD3eiDKWTfONLQr+pxfqDek5hHFi8sUfXeOIYcAZnU1/MXa930YyX7vTLnuml9G2PHtRdP\nphwBPW83eWXOPSYi0nsC63bWWsw9bj6gmHiszbzO1v3ogqpXsA73L4rmNV47RETGKdeL3IH8T2nL\n8275WQ9p1DPXoK1ytul5SuUUKUW9mARtEdt3Bm0c6v6BVy5YulvV62iAnW9B5b1eue6tZ72yu44x\nmxdBF5+/Q+dY6zuHHEM8V149dFXV4xwMMZTjo3ynzofB/TtM+Yz6Tut10V+k83pFkrRlmCuCLTqf\nSvsh9P3KJ5Avpv1nOp/Bkb897JUrCtEn7n76LlXv377yvFd+YD3sj0tW6BwQUZT7pOl9zJPZzWSr\nfb/eJyekIwdGw7NYp7szWlQ9zieSXIHxnFig163oTTinq69iLkyMj1f1ytaXeeXcrSgHjuvfbT2C\nexnp+VREJIEsqEca9VxZxOdVin1+73Gdey9nF+qd/cfjXtnNg3bjX5D/MHM19nqcN0lEJJrWHjU3\n0fAr/ZjOw3fyyy955fourEl3P6P7Ut3LaJPrnVj3q+/S+Zp4jOWn4do576WISNPzyBGUXoM+3HO4\nSdUrXKqf4yLJsa9iHFVtX6A+41x+GXTPea8pInLpENpmyXnMV+ff1blpoinfI69Jo/V6D7Ts4495\n5YK78GxReRT5SXguFBFZ+BDW0pkZ7K17avXzyOQkctCk0bNe47/rcy1/FHu5MD2b8J5eROTcKTxX\ncU6+/E26j01P6/1gpOG9Mq/jIiJ5dyO/pdA+Oliv833x8yOvIb4U/X1TQdzfUfqO5Zt0nh22pObn\nDn8B9kTpefo5nfeOKYXIicPPsiIiUXSuPvq+pWE9r8dnYF90tQ7517La9XuEwALMy/wsml6t9xuh\nzlG5HRY5YxiGYRiGYRiGYRiGMY/YyxnDMAzDMAzDMAzDMIx55LayprxyspNs1iGjsckIj9z1AOza\nfvCdA6peClmWzc4inIjlDf/xGUKk/BR62fi6tscq34ew3dytCDGeplCsGL++rPYOhGRmLkeo0tBZ\nHQp/9SbCJNnaNezIPpaNIiy7aCPOYeSGDrOc6EK4HFsDj1zXYZsxSVpmEGlY3hKdqW1N+yg0NP8e\nhMpHRev3djMk2Wl5BWHQw46daukDkDX0fUCh3E7o4PBlyFZiSOZV14FQxu1LdIhnWz/uW0k7QvuK\n79dSis4jCCWOT0co2sAZbT+YuR7hkCFqq2gnvH7kGn43d0eZV04ki20RkfQVWsITSViqMERyPhGR\njBqEifJ9zaFzFRFZ8RGEdrO0LmtBtqrHEhi2lGW7exGRIerHfrrP4RD6+qjT16NuEe549aS2aS0m\n67xtS9EPQmEthymk0H22VGT5i/tvH4U/svW4iCO/0y6UEaHyEYSoBht1KCj3ut53cF4py3X78LzS\n/ibmtoKdWsaQQGGYQ1cQBs32zCIixUUILWbb1fAIygtLtJSurRt9IYm+b/ia7psJ2WiTi8cwl1eT\nFbeIyMOf2OWVj70C+3a/E4ZfsxMhwvWXID3Z+Nktqp4rGYskHCqeWKHngDmSw/b2QRYWHafnU18u\n+mByCUJu2Z5eROSezbAgvXwNv9v9zWOqXjJJy/Iq0J7xJGHLXKtD2lnWWfoEdEPBVr02j9ZhDI9S\nn81w5rv+C1hPxzsQslv5wFJVL0y27oGsNPr/kKonzhiOND1Hm7zyRLe+7+VPVXvlkXqawxwZG8sO\n2o9AquD2vwy2tSfb42BQS2yCZM3dPPaiV+bw8twl69Ux11+EVWuALNZnp/X9u/IGwu1XPwG72HUb\ni1W9E/8Cy/s8klKMObKh9OW4puggbkzKQm1J7O53Ikn/aewX8h2L1HE63ymyXW7t0HMU27QmL0RI\n+jvPvq/qffKzkJm9/cIJr7wmRv/uS29D/rBpLfp+jA/70tN//546JioK92/VZ2HHzPOxiEg8yQJi\n/Bjb7W9oO+9QG8ZfzVNrvPJ7/6p/tzgN53726/isaK3uE+X36b1YpBk4g3as+IROZXD0mzivnZ/f\n6ZVZtisi0nkIspBlT+A7Ynx6fx3ux/yTsZSeIRxr7qHr6CcDp7F37HynySsnZms75LxVWCebDmLN\n/cLnvqrq7a7G/HI3lbtIyiMi0nYG+3PuIwUZWqKavwftGE9yU5a8i4gMXdRyqEjCckiWMYmILPsC\nrK8HyQZ89JqeG575+me88kgLzjUrRUsjWXqTlI57nrNJP6vVvwGbct43+QvRd1Y886Q6ZqAT0qq8\nUuSZiE/RcqXG15HOI47GZceg3teVk8zRT+t+/zl9jzb+Cu7RWCvmrhNffkV/3y5IxvLugMRQSXWX\n6L3nHK0pfTRmw2N67ORugTw7Iw77jpmwlhiy9KhgL/owP4+JiEwNUeoGeoadoLQinJpCRCSzGs9F\n/PwU6zxvsz14AqXBuN6ux+KGdVgzN47hmdPvSEpZ1sppT1geLiISqNBj2MUiZwzDMAzDMAzDMAzD\nMOYRezljGIZhGIZhGIZhGIYxj9xW1jTZjwz8qTU6qzZLgrrIXemJj9+j6r396kmvzOHvX/vhS6re\nbz/xkFeuq4fEITdNh41XUMjQ0FWEvc1OIlwqZZEOxSp7GKGl7LZzvu6mqldATiXsWtI3orNjl2wp\n88rBBoSwcYZtEVEh0IuW45ihFh32llqQKncSDolueUE7M0RTqGTfiTav7IZlJ2QjlIwdAybaHbnS\nVcgd+poQsphVqkOdG2oh21iwCnIMDo1cfL+26Mg+gTD8yX6EwLcf1CG92ZsRkuvLxPclFen7zOH7\nSeQo4YZvs5SJ3VhmnZDjmZAOqYwkHM48TUDeAAAgAElEQVScskDfSx4H7I7kXkfmSmQLj02CXMSf\no0NzZ0lOwN8RbNByh/5RhOzNUZllMvHpekyEWlGPFQLrP65D9YMko2SnhIIqHQrIxiXdhyFnS6vW\nkgt/NsJJqctL9not1+k/r6WOkWb4GsbHkCMTW/YJSFiGLqNNhy7pUOTUZZjfZiiLves0xSGjnO3e\n57g1pdD38Q3teAOSxWifdhZgGQ1LYkYdmeMISWI2fBRhoeOtek7lcNfVGxAy6ro6sfxk2Q6SMzoG\nNl0U4r5om0QUvt7+czr0dY76FocET4f0XBFL0tsJmlOSqnRoLvf95bNlXjkhV8tTk8jFZJxCaeNI\nKhQe0rKhovsgLQuSU9+Mc66py9g9C+fTe6pN1ctchfDl/vMI2XZlLWnkxsUub4mOq89Yo56/Ig3L\nn91Q57afQYKXtRFSaDcsu/Xla165YC/CzSf6tEyq4Tm4qfh8JAOs1RKbrA34LZbi5CxHn+s4pyVt\n5fdh7pwYxfed+VstYal5GFKPk9/HviwvVa+L1fdDZjF4BvNhwd1avjNMcq8QyYwz1+g5NSZBzx2R\nZJTWp5hjzeqz9ptw30mntY/nLhGR/N1wIOE1PNaRdrO0f9seuI2efveKqpeVjHk4NoB1dpakGGUb\nytQxk0PYlx75m7e98oYn9brIfSJA+5kbp/RetjALe4R6cvKp2aWdX9jlqeaz0PFyvxYRyd2iXcoi\nzc2bmEfTLum1u3oj5qmL34XkpKhGu6mwAx7L3aJiXUkp9jsH/wQOXA3d2q2pOBP3cMtTsN9spf1m\nuF/PqT2tGBMVubiO7cv0fb/v05DxNh3G805+tZae8n0fuIyxmL5M36NYkm4d/tJBr7z68TWqHsv2\nIs2K34Qs59Lf6Lmn7zwkHRkrMBb5mUNEZGIIY6z1JfTBip3a/Ynnm9Fucgqd1PNzNjk5xfvRnsnJ\naI/rb/xYHVO4BWM7GMQ59J7U51r2ABzbGn4Md7Dl23WaBQVtPl2p8wf/Ahll1XrMScs/pdvw/Lc+\n8Mp3wjmNnbBYKigikrezzCuzNIzdc0W0nI7lpfwcKSJSsh9rTdNP4VLH6RRERLJoTWl+AfKyxFLs\nGVzJXnQsriOFnhvcZ9skkqYPnMK+ZcJJZxIdj/ZiuWlyud6zdb+HdchfjPMLOXveBMcJy8UiZwzD\nMAzDMAzDMAzDMOYRezljGIZhGIZhGIZhGIYxj9jLGcMwDMMwDMMwDMMwjHnktjlnUpbBYnDcsdJm\ny6l80s5FOa971lZCp8w5Kr7wwL2qXlIp9LMPbEDeGleT3X4I1rHF9y70yqxxm5vVFpLDZD0caoHu\ny7WUZdVcRgF0aK6d66U3oDEuK4ddV16Woz27QTlxKJdDXqXO3+NagEWahp9c8sqJKVpvnbKU2pjs\nF/s6dV6cAsodMki2gr1OPp7aS9A337MTmsxzZ7Ql+tQMtKFVZM9WXgAtrZv7IHdXGY4nO1LWsIqI\nDNZCO8w5PuZmtS4ydxPs3tpeh6Up2/SJ6DwkhaS7d61Km0mnXRVhG+aON6BLTlmSpT6bpLwSrCGP\nS9b9lu3+4nwYvwkBPQ30XsBvsca99HGtm459FfeMbdiHLuP+Ryfo7y59AhrqctK2jjbp/pazCXmD\nwoO4vq43GlS9zE2UD4L6y9B5rR9nTezMJNrNtTOcGb9zeYNERAKUG8Tn2HByX+X+nbpUtzdrgqMp\nbwZbtf7HdyCPQXc95qKCRc54ofGctgrjj3MCNTfpXDzZbG1Jc1v+Jp0nKn0Z5l7OUZJUovNcdB5p\nkg9jPKytQMv3QHseS1ayF757StUrWqK1+5Gk/QByDnAuCxGR6Di0TVwy1pfRm7p/T3RSnhmyP552\n+l/e1jKvPNKIfD6+TK3dniEL+L73oO+vegb6efe7OVdXejWuI0Q22CIis5n47pRF6IvcR0V03ppJ\nsqsNVOo8B2w1yeu+Lyeg6iVk6WuMNBM9OMfCfVXqs9YXKdfAMdzP0kf1HDg9jvnx5vcveOXxSa1r\nT0nCteTvx2+N1ut8POnlyDXQ9BrywiRvQh6D1K2r1DFNF5Az4dS3YPG8+Qt3qXq1/4oxsnwb8nic\nO6xzpnT/FHu9XMpHE+rReXQCJZjLEtKxr+gmi3IRkSBr7T8mESWL7OGHL+icA+Vry7wyn5+bGzBt\nCfZjN7+LvAd7v6gTOvSfRc6782/hntXU6L4z2onrzVqP9engX7/hlTfu020Y7sS9XbIGa6lrpZ2z\nCr9149njcitKn0A/Zftbnp9ERKYnMCc0/wTXVPFpbWd95M8PeeUn/+7BW/7ufxVukxsHdL6bmqex\nj+yto/x6Tl6K6Hisf2wbv2izbh/OK8F5MCtzdR6X5XdhzKXQHLb815F/Jt6nz6G/7sP3kXn9Oj9O\noAx7/iUfJ9vvBJ37aqQB88PQWexpxm7q/H+ZlDsvJRFzzayTg4X3DpEm1Id1I7lYr+8jlIvywsuY\nJ92cOGHay8anom3ajzaqetmUc6fxB3i+8RfoNYRZ/6u/55VHR5F7k9cjEZHh9iavzM+VyT+X7xCf\nce6/lA0651bv+1g/EouwP8+/q0LVK9iFcd/1PvKWuG2WU3Dn8gaJ6BxNvjx9P8dp3zJSizblXHQi\nOq9jIu31eP8rIhIawL4ocw3m8vPOfi6RnsHzN+C5jfOpuueathhjs/cDtMGIY9/up1x3eXuQ/3T8\nVb2/mZvCPJq7G/X6z+q8g7OUl47t2+dm9PPiRN+43A6LnDEMwzAMwzAMwzAMw5hH7OWMYRiGYRiG\nYRiGYRjGPHJbWdPs1MwtP4vPQDjR1CDC591QZ5YyZQQQdsQ2XCIi3WcQMppFIWuu7VXhXoQo1r2A\ncLa8xTgmxpFSdFzEd2fmI5xw0cISVS+OwujY9jBjhZYhjZxEONJAN0KAC1bq0MW0AI5T1xGlQ8Bi\n4m/bDL8wqaW4ZrZZFdFWgByGWbFDh4J2H0dYWAxZTCY50rAdKyBr4FC3bR/VOh8O6eLbwRZqLAsQ\nERltRAgcW5/2X9TSFJb5sL3r5KjumxzWzzKLYKMOGU0k+Unjawi59TvXHh9359rRn4+xk5Chw/2T\nyz5cFtd7ovVD/19EJCYG1xQdra+javtjXjkUghRlYqJF1SvcD4lJqAfhe6X7YZk8M6ND4cdILufL\nwDUFSrTkzJcC+URMPI5JX5Ov6nG4OkurYhN1ePC0I1Xzvtuv2ywuEP+h9SIFW3ymOvK04A3IVjI3\nIjQ2NlGfU++72jL2Pxm8pKVHHSfQXsXrMNf58/XcG0/ykaFzCJ0uqcS97mjSkoHkAoSC9p3BNWU8\nXKPqTcbjmkJtCPdna28RPceyZXvZR5eqerMUWhqk+SCvWN/LQMWdk4rGZ6DPuXb1GStxz9p+hhB3\n11I+fw9CmkebcL0Z1Zmq3uQw5rKJLszd0Y49bIg+CyzAtfMcV3taSwJrduHe9pCsLNoZEywHnaS1\nftixeM/eDsliuA/nPdmvw37zSUKUSP2IZZci+pruBGzrOe78VtFDkDSwtMSVmfhJisUW4aULdTv2\nvIexGE3rYvb6YlUvinThOSS7HRiANa3fX66OYdv4dU9jne15X88TydkY96kU8r2tbKuqN9aC/sgh\n/yw5EBFpfgVrYRLdB9cGdbJXHxdJGt5B/17369vUZxzKHp+GMZuzXe/73vkS5EbrfxmSFVceT+pN\nJXVnK24RkQyS4bKMaPuT+O5xx1a17BOwlGUpC0vvREQ63oMco2g/ZP35YX0OV791xitnLcXe2J2H\nWO6bQVbULCUWEVm8daHcSTjFwNLPrlOftb0CSTzbm3e+oW1+i+7HORakYw5MXaTXhszVuM6Wvzns\nlVc/qKVcgRJ8xwt/9KJXLsnC901O6/mA0xeULMBaMNqh23tqGPNoBp1P3ylt15xejbbL3V3mlef0\ndklJ7Cs/grlrekw/P7lrfySp+945r5zkpk9Yjjlh444yr9z8fK2qFyCJby7V85HkW0QkTBLLso9B\nwtf1TpOql7MVa1JL3XNemfuUa7UeQ3tHXxb2yYE8/Rw42kF7pUeXeGVX5jJNz8SF2yA1bX//nKrX\n+A7W581fRNqPyXG9x0h21pZI489DH5ka0RIglnkV3Q9pbHhIzxf8DMbPlb3H9TMJS8UuH4SsMsp5\nRnaftf6TCeoHLaf0epdXh3PnPe7oQFDVi0vDdzdTeotZZ5CxzHrwItrelbulLUM/6SWr+Oxtpare\n/1cKBYucMQzDMAzDMAzDMAzDmEfs5YxhGIZhGIZhGIZhGMY8clsdRjOFCRWv1OG3sUkI60xbBacH\nN/N1ATmoTJO0Jy5Nh1em5CO8eWoYoVOJxSmq3iSFW6YGEHKWVIYs0GefO6OOWb4XYW8sV3LDdIdv\nIgTfn4zzG2jVThss5eHQp1kn5DlMmfCngygPdmjZzOAxhFkt3vkZiTTZm9F27S9fV5+xww1nEm96\nR4fAL3wQ93C8HSGaLEEQEUnIQegXS4XiUnRYGssBOIyQJWnnvvOBOmb1MwjZrv0+QgLLdlSqeuyC\nM9KANu14r0nVq3oMEqyRGwiB8+XrrN/8fUkV6GdjjvzJX3DnQkaz1kLmEmzVYY6TFFLI7cnhuyIi\no+T2MlOAesN1OmQ0UEouLsUI1wwPa4nSBDmyJNL4nZuDHDIqSk8xM+QeMB3GfOA6ZI20IRyQ3Sbi\n03W4bFQM3i9PhzDGxp0wYret/pOCfQvUv4ev071YKxGHw8rdbO0sy7r2/EWvnLdUS7k6utBXl+7D\nuHTns5RM9MfxZtyP7nM67DY+Fm2URPPtzcsIQS1foiWbGatwTjznd1/VWfZrfwJnBn8cxvlQs5bE\nFBYj7JnHnytrvfYSpKwrPgmnh4Zjer4KVN05R4PxRoy/xDK9PrF7T+Y6jD/XcaHlBcgTCu9DOL4r\nv7v6I7jH5C/HPY9J0N+XRO4YPJYGLyD8ll1gRLRrQQ6FkA/X6rbhMXf5RbRnQZkO857oxfyQthLh\n+AMndH8bvgYHr0RyShhrddaSDD3WIw1LRZPLdH8J3kLaM3Jdz5Usvc3dgrDlgYtaYlhAcuxuCr13\nHSZi12GMTPTjfvI59F86qo7p6kQ7FsRjPnPXo4LdaP+Lfwenn/wNem+XsxGynwZyLxoL6vmF5c0j\nXZhfXElp5ibtXhJJUpOwNl//1ln1mY/67em/wT1b8Sk9sRcXoR9f+Dbmr9L1Zape1znI47f+zi6v\nPHxD94mLL2PuXrwdY5vD30frtFyggxzg2GGn4ikttRm+gbHjz4C84exfvqHqhcgtrGgvzqHnhA79\n7yOZbQZJaK4fuKrqrf38FrmTzJKEzJXxcnqFvM3om+6cWvd99FWWnTU8d1nV6xjEfp7lTwlper7p\nPYZ79eiXHv3Q8z79V++qf5fvwvjzkWwyy5FpsNMgO3F2NWt3Wr5Gdqdy5SEsVwrW03OMkz4iUKhd\nlCLJ6t+Bu1nDT7STGEvxlXNamT6fhguQf+5+cL1X5v25iMhoL56Zxuh5ZKhFP6sld2HM8TNIFrmB\nus6Hvgyc09zcJJV1mo8Z3m/SORTsWKzqXa/HvTj/tZ955erf2qPqjVxG28/NYQ0fbdbrYv8pWk8f\nkIgTpnWcr1FEJH0Freu0xk06e89E7nf0jMzPoiIiXW/ChaswE20V4zjNNjcidcW1VzEPs1Q0t1TL\nF9sbsPcJX8N1FOXqeuxAGSjHfOCm1eBnqyxyR2OJk4hIXxO5HZKrU9dBvUdNqtTOVS4WOWMYhmEY\nhmEYhmEYhjGP2MsZwzAMwzAMwzAMwzCMecRezhiGYRiGYRiGYRiGYcwjt805k1MITatrwcdWZpND\nyBEz3KNzPZTuhtaabZzZTlJE21r2XIC+LDdL60DZ6jU6Hu+Wzr8IvemC1dpqsu8kNGppy6DbnBqY\nUPWK90IvOnAO5zDUrnNtBHy4F2zN7Wpgh8j+rWMAOtDqe5arekXOvYg0nGemYL+2yOacHV1vaWtC\nppu0gVlkRdl1tl3VY/vsjJXIRTRwVttd9zdCQ7rgEdyPGy9AH1zzlNaGs/Y4mjS8be82qnqZiygX\nAmmZ/Qlax1j3Y2jDc6uRH6L7rLaMXvzUKq88ofSYOj9EL1vofVQiStcRXGPyAm2lx/rlkVr0OX+u\nzmfAtp6cO8HVlXK+lq63XvXKWRt13hH+vmATtL5s4c2W5yLajm4kCD2va/mYsQJ9Z7wb80awSetv\n05aircOUwyVlodaVsnUp2zG7uTt8OUlyJ2m/gj6yYK/WJje/DGvajGzontNX6NweKQugzR25jnE0\n4OQ+mKG+X7Efv5XtzFOdr0PzztaqPMYm+7WmmPtP1jr0CzfXxqL7KVdVJ9oxqU2vE+mrkU+l/wTm\nlBifPtfybcibceVZ5JhY+Qk9VzS9SDkTIqzLZutFnj9FROJJp9zwQ+THKbxb53vh9a7xeVhIJvj1\nHFW8AXlMhi4iF4ybe2mK7DrTqzF22Co+xskFwpbgw1fw3RlrdK6qiW7o+5c9BMtfN8dR7ym0Ww7N\nFb5CPQ8NkEaby8X3artetkq/E/mfRsm6fjas8wkMfIBxWkpWrTE+vWXiNb/h28iDVvKoYwFPeUQm\nurGGZG/SGvyONzEWuY2HryIfgbvPyMmEdp0tkF070lAP2jExCXuYpBKtfY/1o2+WfxztPTOh14nu\n95CTg78jUKq/z5+l8zJFkmW/sdEr95zUeTg4V9z4K7xf1f2WrVU3f/FuHOPsZcebkUug62iTV05x\nrG23/95ufDflLuqn/C7lj9eoY4auYxzwXmvwqs5nUPcK5or0JOzXspbnqXoTtNcerMV3DF/SOU1y\nKQcEj4eq3YtUvdN//75XLvrah+df+UUIJKPPDVzSe8WudqxxZZQncGJA52xLp7xRbKF84p/fU/V2\n/S7a+NBfHPTK5c42PI7GX8N3MLaLH0YePtdKm/c7vAZlr9VzKudS4/G86jMbVL0PvnHMK2/bVoZj\nHPtnnl9GemidLddjsYfs5fMekogyMUJ7TyffFVuHXz+AOW5iUu/71n0G43m8H/02d7O2Iea9J+9f\no505j/OvNb+F381agOfAcLbOOdN2AzbbhR/BM+HQ1SZVLy4Vaz3nOzzz1TdVveQMrH9lj1AOx6DO\nj5OxAXlM2t9G30lfocd2/+io3EmGLmEvULhf52QMUq5Qzinq7qN5r5JEeYVGbzr5W8vxGeexnZuZ\nVfVWrdZ5F/8Tzks3W6XX8AWlnDsI/8/vLkR0Pje2VR84o3PlxVIenNh+tD3nzRMRSV2CvtVzFGtk\ntF/vHdxnFBeLnDEMwzAMwzAMwzAMw5hH7OWMYRiGYRiGYRiGYRjGPBI1N8cBP4ZhGIZhGIZhGIZh\nGMb/n1jkjGEYhmEYhmEYhmEYxjxiL2cMwzAMwzAMwzAMwzDmEXs5YxiGYRiGYRiGYRiGMY/YyxnD\nMAzDMAzDMAzDMIx5xF7OGIZhGIZhGIZhGIZhzCP2csYwDMMwDMMwDMMwDGMesZczhmEYhmEYhmEY\nhmEY84i9nDEMwzAMwzAMwzAMw5hH7OWMYRiGYRiGYRiGYRjGPGIvZwzDMAzDMAzDMAzDMOYRezlj\nGIZhGIZhGIZhGIYxj9jLGcMwDMMwDMMwDMMwjHnEXs4YhmEYhmEYhmEYhmHMI/ZyxjAMwzAMwzAM\nwzAMYx6xlzOGYRiGYRiGYRiGYRjziL2cMQzDMAzDMAzDMAzDmEfs5YxhGIZhGIZhGIZhGMY8Yi9n\nDMMwDMMwDMMwDMMw5pHY231448R3vfJo/YD6bGZ8yitPBye9ckJ2ov6BQLxXTqnK9MrjXaOq3sjV\nPq+cVp3rlYMN+ndDrTgue0epV+59p8Urp9bkqGMS0v0oZ+L8Ot+ol1uRuhzfMTk0oT5LKkn1yqM3\n+r3y7OSMqjc3h3LW+iKc6/EWVS/cM+6Vt/3x/7rlOf1Xab3+vFdue+26+mwmiHYs/0S1V46K0e/t\nuo7c9MrpNXleeWokrOoll2V45ZaXar2y2y/4ns7N4Ealr8R3h/vG1TETXUGv7MsPeOXgDd1Hcu4q\n88oj1D5jN4dUvbjUBK88E8J9yFhboOqFe8e8clJZuldOzAmoep10j9Z8+r9LJDnx9T/zyv58/buj\nNwa9ct7ucq88cL5T1SvYU+mVh+txX1LKM1S9vjPtXjnGH+eVeeyIiMgs2m2sbcQrZ67K98qtL1xV\nhxQ9uMgrxyZhbuh8+6aql74Cc0B0HPri1NiUqjcbnsZno+iLPO+I6PnFX5DsleNSElS9qWH0y5rH\nfkMizZnvfA3/iIpSn/lyk7xysAFtmrW+UNXzU78buNjlldOW6Hmv73SbVw6Uo9/GBfQ1j3ei7SYH\ncf18nwZOd6hjcnegn8X6sYy47RgdF+OVM9dgXLlz6gy1YzKd6/D1flWPPxu4gP49E5rW9RZgrVm0\n7WmJJI0Xf4jzu9anPkuuxFgab8d9DTrrZ1yazyv782g8x+g+EZ+CenMzs1655129hqQswfXyuErM\nRxt2HmpQx8QkYWzP0LgqfnCJqhfqxbzbdRDtW/7JalVv8BL6or8gBd89rsfsKM092Zuxhs+EJlW9\nqVH8e9Fdz0ikuXLwX7zybFiv3UlFOH++n32n2lW96TGcI6/xo86+JX055rOx9mGUW0ZUveL9mB+n\nx/Hd8QH0kanQmDomOh7jj8dysGlQ1UtZkOWVE3NwfTd/eF7Vi0vD/FC0b6FXDg+GVL0Rakfum9E+\nva1Mp3mpoOQhiSTnfvR1Ooc59Rmv6SG6zwX3LVD1go24T/EZ2Ctyu4uIdB7A+PEXoj0CFemqXmwi\njuP+MUpzmY/mVhGR0Wv4LHUZ2mmkVs8vabQ/CnViLxxs1HubmHjMu3xNalMqIqMduC++RLR7aEzP\nzxWPLvPKlWs/IZHm5N/9uVeOitV7z9xtmCO632v2ynNTs6oe79tiad8ycKFL1YtPx5yaTPu5vg/a\nVL0kWmt4fYmOx/n53T0gzbFR0ZjL3THB55C6ONsr9xxtVvUS6VkjUJrmlQfO62tKXYI+M1zbi3Nw\n1hPewy2/71clkhz76v/jlcs+tkJ91nsC69VoHebGOLoPIiIFd9MelfbuUyO6P/I666NrmpvV/bv/\nHPYIjcexdvnjMUaLtpWrY2ISac9LY6fjNf28GE39lNfSwn1Vql7P8VavPHgVbROc0Ne07gvbvPLE\nAJ59RhudeZyeo8urn5BIc/IfvuyV+ZlBRGSS9thtP63zyhWfqlH1+Fn49a8e8MrZKSmq3ubf3emV\ne+i5+MqRa6peahL2xqV34Zz8tGc+9Z2T6pgo2l8XFWKM8fomIjJM62TnEObRjU9tUPVm6Jp8Wehz\n/Wf0c9aZ96545a0fxXek0TgXETnwpde88i994xviYpEzhmEYhmEYhmEYhmEY88htI2cG6Y1zUkma\n+iywCm90+Q2n+2Y+cyXeZnceafTK/NdwEZHpEfyFITyAv9DkbClV9UIUxdD3Ht605e7B20/+i6WI\nSPdb+N3MLfjrVnymX9Wb6MJ3D13q8crJC3RkAf+Fhv9C60aRzNG94L8gu3/lzdyg/zIeacIUDZBY\nqP9ik7UW96PzMO5TjF93jSlqH34rGp3g1AviHiSWoo9wdJWISP5uvP2Mo780DdZ2e+X4dN0+CfS2\nMjEP18F/URARiUvCm9GJDvx1KalC1+O/jk4O47zH23VUVwGd69w0/lrDfwEVEfE5f0WJJEX34i+Y\nvc5feDLWIlJlrBXn5L71DlO0QqgDfw3nvx6JiPhyKSrpJt4qJzt/IeRxGpeCNpydQv9IqtT3nP+y\nlLIMb5Iz6C+CIiLT9Jf8nqP4a3XqMh0dEs8RCHTeE07UFf8FKrEQ7T5wRkeEFO7Vf1WNNDmbSrzy\neKfuZ3xeIYpEGqS5SESkP4xzzt5U7JXbD9xQ9bgdePylr8xX9UI078UmYjzHUfRR4T59X2ZpHAxe\nxph15zZuH/7Le1yy/utFLP3lib/PjYDi+SWjGn2GI2/+4zr0cZFkhKJg0lfofjt0FW0VT1FZiWV6\nHIzRuEqjKLGQ0ycmaL3j/lH80GJVj6PGZimKgddm9y/S/JfnqSEc3/mWjrDhv7xnbMR6Ptam5z9u\nq84D+Ctj6WPLVL2JfozNcD+t5yd1VAr/NfhOkFKJtduNMonx41p4Lkly1pqxZvylrZ/mkp+PpkD/\njk/D/UwqSlX1woP4rb7TuB/Fe5d75aFrveoYXpPSl6EvJRXov1IOXMG46n6nCcc4cy+PpSC1cazz\n13+ODEgux70cc/ZfbhRuJOG9SLhHRxRxZGJqNdaNvuN6/YwNoG2GryBSJXW5/ktnQhbaLYbuxdSw\n3veN1tGYi/vwa+d7JyKSWIz9TN8p9KOY6FvfuySaU/zOvk4oqGRmAmupP1/XmzxIf73n9szXfaf3\nGP76X7n2lqf0X4Yjq91njeHraBOeA0fqdFRlsAljkfd2bqRxiPaEIYqwSavW44Ajg6OpD3O0bagn\nqA5Joj0vr5EcgSwi6jkpxofPcneUqWq8L+VoqMw1eg0P0jwUTfU4cktEJLFIt2sk6e2kCLRDt1El\nrMC4mnTGDu9tfTmIisheXyy3gqMFG17RkdrpBehLpWvLvDLvZS//5Jw6pnI7Il98WTiHgo/oiBje\nazccwd4r4bR+buH+l08Rx3X/fFrV47l26BLmajci0OdGsEeY7ptYX05/Sd/PR/70Ea/M8+OrX3pV\n1dv1S3d55SVFeMacndXRbu/+xVteuaIae+Odf7BX1ePoXYbnpS1fuEt91vDdC145azP6D0ekioic\nPYkonXu+sMcrH/mHI6reXb+C7z/1r8e98uqn1ql6pdewb+HIHvd5cf19q+R2WOSMYRiGYRiGYRiG\nYRjGPGIvZwzDMAzDMAzDMAzDMOYRezljGIZhGIZhGIZhGIYxj9w25wzrpGcntaaf3ZbYMSWjRmsh\n2w9Ci8eZuEW05ratH5mfhTTzTp6FqNQAACAASURBVAoblavGXwT9LDuGsAuPiM4twxrC4ctaux2d\nAK2mylnhOIZM5UOzNt4MHZmrUWZtK7tBpCzSWvpERwccaViTnrFKOxG1vgK9HbuzpDqZpTn7fc8J\n6Pyy1+l8OUN1uKcxlI9mzHETaH0JWsYQ5aIouQ9uFW5ODtaX8/2cHNIuEvlbkZ8lZztyFrk6b3b+\nYWeHgJMfYpiuiZ1GJoe0XvZO5kgYvIJcFlnritRn/eSuNNZETiDNWuOYf3eFV84mB6Dek1qDz3C+\nnYFL2iEguQK5mFROpQnMB/k7dd4b1gd3voHcFuNDOkdMNuVF8bN+nDScIiLxqchpMkX66kTHDWOG\n5i/uBz+nR2dtq07iHxFGGpGvJCHDcTCj3FA5W9Fvo51cIdPkftNB9zAuWedZySXXMs7VMuHkZkhb\nirEeJpcAbkc3I332BvRBHuflT2gHH3ZxGWnA2OHfEREZb0W/4OsI9+uxPd6GOWGSch6xS5mIdg4q\n0elZfmFSKc8Y50wREckgVx7OjxbnuEiws0gC92HHlSI6FuOK+0f/aZ2fhXXp+bsxzpNLoa2fqNLn\n2vcBvoPPrqNOj/OAD+dX+QRcOOp/eFHV8wVQL301xi/njBDReYg4L0gMrb8iP++WE2k4X0SGkzuI\nPxsmhw03Z8cU5fFKofk/qVDndmCnB85zxXnZRLSTWi7l2wt24hxc14fWn2HvlJBNjm+OywfnbMve\npNcQhnNDRcdh3ggU6XWRcxuxcxOPURGR4ctYu/L/+wO3/N3/CrxHnXDcezjHnI/ui+sUxzmfOE9I\nn+N2WLIf+wrOj+TL02vI5FV8f6AK42+Wzi/GydU3QPMr55n5ubyI1C8z12ANn53WbmOcsy1MOZ7a\nfqbdOsNTqJeSib4969zLxKI7u0flvd2k4wrGOfA4D9qosy9PXYzxx30/0cnrNDeN2W7wLOa6KScv\nIjvgqeNbcbzrYMkufLz/SnTyP3E7Dl3GOUx0O3mT2PGJ9gFTzt6z5FE47E1S7ks3D+ZIHc3FKyWi\nrPncFvzOTd02nIuOXePaXtauPOW0vlz7BnKyjDXp54dgC+6tn8Z22d6Fql4y5Qhrfx3PoiPX0d8W\n7F6kjuFcRq3H4Z6VnqXbkJ/3snMxzt38QjzWOynXV+G9Oo8fj83Fv4o8Jlf/6ZSql7td52GNNMVr\nkJ8lb0TneGQHJDYbLc/R9QI05hZ9br1Xdvd9GbVYGzLIBZhdSEVEwn0YFzwf8MbFdRPM24U9IfeR\ngQs6J9q9/3O/V37zq4e88rIa/ezC7Vi5Ft8d6tb5cIrvwv7ryg+QzygzT6+fuTtv/4BhkTOGYRiG\nYRiGYRiGYRjziL2cMQzDMAzDMAzDMAzDmEduK2tKLEZoEtuziYgKJ+Lw45bna1W15MUIDZym0LYO\nx/aVrZoL9sGyjC1CRXSYO9s4D1OIoysDYAtRtj+LT3PlTwhRZLu8pBIdFslhbxz6qMK1RYdK95yE\nFGiyX4dVDV2EbVrZCok4QySJKXIscdn6L55kFm0v16l6+XsR4pVRjTBgN/R8hiQXaYsQ9pe2RIe9\nXftnhOqFJj/cRp1DXUVEgjcgCek6h7DignXaZq/vEizWQ2TrGZeq24dDPrm9HcWdjLUgpJKt3V2Z\n1KQjSYgkHL4d5Zwf/wfb/XW8qscYy9vaD0AOk+tIQli61Uphpz5HAsSaQ5bmsSSg87C25WW73cQS\nhIm6sqYYut4AWWsOXdVSxASy+WXrepa9iWhL8NT7MWYTnDHb/JMrXrlqvUQctsh2ZZXFDyC8liUx\n3PYuGSQfcedoljKxtbRrscsyqeAoxmJ0PObXQLkOyeQ5lqWsoW4taWD5DdsQD19xJKX0fZkk+fE5\n0q8xkjpy2/Ucb1X1MldpeW0kaX0JY6Lwfh1GPUnrFVtpD57TEolMkoMOkHV4SpUOpWf74oEL+I4M\n5/oCxbi349QGbFudsbBEHTO9HO2eugRzdUW2lg62voK1gKWmlY6ErfMQxjpbgrMETkTPDyxTznQk\nsv4cZ76JMGyD7Y4xHhMZZDUdcmQH+STV7jrc6JUDjh0wzyvxmei3047sINyH9Y9t1PO3oJ/NTOvw\n7cw1GC8ppVhnXekMj6X6b53Fd9+jw7enqQ8HaMx2vd+k6uVuQn+aonnD57TbNEmGIw2v22HHNjhh\nHPvNzjdveuXcHVoWwPuAcA/GS+4mva9gaRrvHW8c1NIMJiWW7NqvYw1qOdei6gXDOIfcVOzJ8tZU\nqHpzJI/kuXbOkU1Ok0Qn1E5zZrqWSWUtxJhjib4rt2NZyp0gns5rlPZ5IlqeNkESgrSaXFWvn2Sa\nak27qSUxPOfEpmBd5L2riJYs8V6UJTZRzrMG77HY2jvUovf80TSvx/iwbvd36nP1xWFeKrobezuW\nHIuIDF2DXCmpGOu7z5nL3fONJE0/vOSVMzbo9Anpy9BWnCYgd5fee174B1gUL3qixisnpOl+e/mf\nT3rlqv14pomK0dfXQZbe3IbtlyAtLd2szyE+HfNznrJ412OC14zsrZgL45Kd50qao3icuutb0b2Y\n409+7R2vnF+p+/mks2ZEGt7Ptb+mZZBtB/BvlvgGUvU+jdOZ1F+ENKykUD8HtrTj2bSG7hM/E4uI\nrP7CL3vlulee/9DzHr2pZbwtp/C7m7+4zyt/79vfVPWeToTUdhHtkbI26P0IW3AX74NWvuVn+p1H\nmPYIix/FHmnQkWpd/gHW4Mo1T4mLRc4YhmEYhmEYhmEYhmHMI/ZyxjAMwzAMwzAMwzAMYx65rayJ\nQ0GzN+rQZM5Wf7tM7onkWjDegdC+tGodqpVE2Z2vfusMfneZrsdSpp88i8zKWxYjzCg2Wr9zKt6F\nsF2WQRx7+bSqt/OZ7V45WI/QyvEm7XqTTWGxU+ygceLWDhr6/3UmfJn98HqRIm05QslaX9Vypcy1\nCN0apszZZR9bpuo1k1yt+CHc674z+ppZdjZDLl5uaHPuNoSPlW/7iFeem0O9kaHL6piU+xF+NjJ4\nwSuzBEREy41iSOrhhr0xNw4jXC+vUEsLsii8eegaQjJzNmqZwJxrLRZB4m4RGimiXQo4rLbsSa2R\na3sV1+grxJhlqZ+IbsPkBXBkcsONQzSWsmoQfs2uMm7m+lTK1M/jIG+bDi3teq/JK0+P3zosnmVw\nHE4aKEtX9TIpVFNJT5wQ1Ow7nAmfnafyduh+FkXzFrtSsIOLiJaqcJ9jVw4R7UpSuAch0a78jsP1\no2IwdmYmcN/HW3Qf4VDdiYFbu4EMBBGGnkxyOQ7XFhFJIlcTdtpwM+EnU7uyox6Hqov8vKQjkpQ/\nhVDVjjfq1WfsxOcrx7nmOP2KZQI+Cp8fb3PWGnIFSPl/2XvP6Eiv80zwRSFVoRAKOQMFNBqNzjlH\nkk2ymTNpkSKpYGks2zOz0oy99uqMd8frMOuxd2yPLQdJFi1ZsgKTmJuxMzvn3OhuAI2cQ1WhEHt/\n7PH3PO8Vu/ecZeHgz/v8uk3cqvrqu/e+937FJ8zDa6oXPa76RSKgEadU4D7n5a3De8ea1WviXUjM\nU7T9Fk2t72oFZX5yCGvnVLN+vwUVOCOkBDG+bl1kWQDfL5eqn+bIUBONAtr72nfqceS9O41SjiYd\nmTXXsMxajLc/lKf6sUwkiaZq0Xq9h/iDqFMZGRj7eByU6JxCXdfPn/2u1x66StRpR/4aIVp2ehG+\nk3uf81dhHDldgyVOIiJxStBQEr6zmpKet0QnYSUSXK/82fp7hBZCqsf1Id6j6ySPddG2sNdufFPT\n1WMkPeIEs85BvV6WLsJ5871X9nvt1XWoweG1er8bPo815iNphnuGTOZUUrrnHe/q+Zuah+vjteh3\nUgxZ/svzPFCsJRcRJy0n0YjS/lJ6t5bZ8T7UtQc1J92R7LCUq2Q73oOTXEW0NJqlKu75kO9vTi3O\n0KNzIBMbcBIsM2iNFFPiIqdtiohM0Vrk8ljo7FuchMt7oWvdoGSFNI79TvKekv1slISCJb5x50ze\nRjYWnEg1OqbraSAN5x5e270n2lW/BV9Z5bW79mJO8PlXRKS7EWM9/xnIpCqyISEfvqrPtWmU9hu5\nijnR7yRWHj+Ns85Dv/cgrvWwllgnk4StmxLg8p3UveaTeN3CR0ky7NTxFnqGq0/wGIqIpJJVxaUr\n+rvc8e/v9NqdH+H3gXwn/Y9TIvuuUm1z1uKaL+F8cu6nJ7323Pvnq37JyahndfdDotR6ZK/XZjma\niEgNpT92HsD8+1/++quqHyfTcfqia1vR9XGT147VowZw2p+ISOAO1KW3//htrz2/Ut+jqlV673dh\nzBmDwWAwGAwGg8FgMBgMhlmE/ThjMBgMBoPBYDAYDAaDwTCLsB9nDAaDwWAwGAwGg8FgMBhmEbcV\n5vvJUyKHtOEiOhI3Rp4VwdVal8xxY+xB4noCcGQ2RyuPD2h/hAnSvN+zFBrC/DWIbmOdoIj2rIhR\nlO2yZTpWuv8I/FMKNsBnJDus9eOZ2fBcaTu2z2unrtTeEDGKceY40ZHr+vomIjoCMtHIrMCYjPVq\nvXXvwVb8g8SvQ5d6Vb+ULIz3gb/Z47Xr19Wpftn18NHg7+X6XHD0ciTC3jKkIc/QcXwd53GvOUbX\n1d9mFENHnLsAosyRBVpDnp0NXWdq9kteu++o1rfeoDi5eV9d6bWHG/U9Up4f8ySh4ChBX4qOTG5/\nG9+reDu8XziyVkSk8iFcVIR9JRxtZc1dd3jtK6+/57VzFusYPNY2dx+BppOj/rpP6nvJ2nr2mJiY\n1H4Tw6PwkhnZhXZtidZ3JmeivmSTX0DfMf25jCnyPyrcoONSe0jTPhN6Xn8B9KgdFL0rouOMh0ij\nznpyEZFUWou5S+HnkFGqI7LZZ6HtQ3gSZIZ1jWZ98CCtWRWju1v7i/RdwTjOeWKR1+Y9Q0Qk2gf/\nk2mqL6Mpuv4XVYW9doC8BPwFjvdBK+YtR4VPRrUvkZrfOu36c2OIvnvJHdo7giOTR67gu7t+KpUP\nYQ9Jy0Qt7Dmp50RGBtZz4eLtXntg4LDq5/ejVvY1nUb7wk+8ds4c7XHEUbHjtK9efl/XyZZefN+R\nOOp4Y6f2M6jMx/t//C5q+rpGvc8ufhF+AX3HsU4L1+q1yPHoVQ2ScPhD2CfS8vW8TSHdffQ65lL1\nk9qLLTkV+1BaGtbv1JSuvakU2Zu7AHXUjX7tPot7H6qHX8IQ7TXt8UPqNeVr1nrtvmu0lzpeBfFu\n8oEgnwt3b2YPGuUd4XgHcV3iGOKqR7RfQLRN+yglEhyDPe74AXV90uS1A2WoI31OpOlQDPt2dB/e\no36+9gToPAOPhewA5sv6B1eqfsPnMG5P/R588vis5Ua3l94LjxT2lGP/CxF9NuEz+Jwvr1D9ug6g\nXsc7KX7aOccPks8g7+ccSy0iEqX3kKcl4cgkf67Oj6+pv7FfVxn50fC1i+j70XeUPTH1vsgeIOyl\nE3N9dchPin3QBmh8C1aWqpewv016JvbPUINeO4EQakDrbvgn5q/SZ14+J/NzQ6xjRPUronMMP2f5\ni7Uvj+sllEhEmnB9gTJ9z/tb4OtSswPn0Mtv672mjO5nGnlIjTvPLVd+CH+S8nvxDOL6hARrMAbt\n5Ms0Qfeo4Wur1GuafoEaWvkwNp5jf39A9VtYiXv+oz/4uddeWVur+k1OwdepfDle03ZC+7lUNJDf\nGHlDtb6pfUIzS27t8ZoItL6L552Y4wk0PY77xs8DJ185ofrxM3xpCGMw3q/3mi46V/LI5S7Q5/yB\nAXh3xch7aWyAPE7H9RmreEPYa4dC8LZJT9fnoOlpjE9mMaLcx0e1F1F0AHvh2FF8Dz6Pi4j07G/B\nZ9E5N3+DjuZmf5vPgjFnDAaDwWAwGAwGg8FgMBhmEfbjjMFgMBgMBoPBYDAYDAbDLOK2siZmsQ43\nOjG6FIudVU9USSfmlyVFnR+Bsh1yJBLjRE8KBTUVj3H6apPXXr4IdLbmPaBCDkZ1jFstxREqScCy\nW0c83qR4rYELOhpyooqoXsTFciVDLPFhmv3V9zVNbclX1tzyOhKBWBcokIESTWtMIukDS80CTkwh\n05uXPwkK7RDFEoqIDBLljCMR3bjOsUGMd+NLiE5PL8HnlmwJq9cw1TajErTJ0g2a8953vslr+xaA\n/picrCnCzSdf9dp++r5Lv/WA6td5DDTH1CDeI69Bx+OODuo1kkhwXHh6Xob6W9Z8rL/pCYrGdGKi\nfamQQxUvBhU7OnhV9UtJAW2So7BdqmHTz8/gvSmyPJUkZ/OeW6Zew9fX8tpFrz3grNmxCdQNrgfl\nD2uNStubkFNxfXHrUPGdkJ90foBa4UY+BufoCO5EY+gi5AkcwysiMkgRtGUUfT09OaX6cSw9R612\n7daSGI725Rh0l1LPNPobx0C13f3OUa9dmqvvS0U5JBwdb2MMfrxnr+r3wArUijSieDb3aklgNdUN\nliq4dSNYDikKR/m693LCkTgkEiy1TZqj//9GdgNqfmYt5LB+Z832HkMtSyMpmLvG4nHIGCLDiL5m\n2YKIlrANnUFNzgjnfGYfEU1xT8/FNczdqKWqiwshHz7+Mmr16++/r/o9unq1fBbOt7aqf+f8Avei\n5nlIS3uPailFviMZSDSmp0G9TnVqZYgkhiw94lhfES2pnZwkiUSfnt9z737Ma7ee/sBrZ6RqiWrh\nQuxlSZS5HSjCfplVqGnz3I9p3sPn9d5c8SDkBFwDGl85q/rVPrLAa1/bAynAgieWqn7DFzAHw89A\n2thzRI/3jCIJB7Dc5c55jmqCvwhzfWJYy0R7LuAs29aPOrkgS8vxCnOwljgePupEMOfRvO099Nn3\nwueM+8AJROzGu3GOzKjS8pDcJagPw5chm2SppYio715GsdJK7ilaSthPcq9AuZZOhJboupRojA+h\nphZt1ueqzg+xXxduhNQsWKXluYFyfOcgyWqu/+SM6jc6gjXCp4SMoN5rDu2E3ChCcs61C3EGcaPO\nRykmumf/Qbo2fT9zGnQd+TdMO1HQLa+j5ifTmg2U6vdjCwE+k7vn/f4TGONafTT73JgexznF3Y+L\nF2NNsPxs1b/fpPod+WucH3LoudLn14+qqSTtjzZjTkcu6zM4Sxar1oW99sF3IcMpOK73nUmqD5Mk\nR175jQ2qH8vM7qf94qZzXhtpRL90inuu2ab32d5DuA5+bh5zrD1yl+hn50TDR8+BFfmOBIiei99/\nabfXfuqPHlf9+Pluagz3Y/CsliJO0H4VIynUhCO1HWnGPTz5Op7pIiS7euYv/qN6TfsRyH/TVzV5\n7b5OfUbl/WrkImpq/df1c3nppjD6kWQ92a/P01lzcc+2k8T3wF/uUv1qV4bldjDmjMFgMBgMBoPB\nYDAYDAbDLMJ+nDEYDAaDwWAwGAwGg8FgmEXcVtY0SQkOLj0ui9zVr/0Y6RBzXtDU16afkiSEaHnT\nY9pZeawT9LOBCCjuFy5pCdDWlYvRrxt01APUb02dpov9H9//sdf+/ceJfuU4excTnXKcnJQz8m5N\nIeTEgtiNYdVvrAffKUj3q6BCpz+x1GMmkELSFJYCiIjk1IE6OBHFd3njz95R/TiJo4bG8eTRy6rf\n+ocgY4hTelHufE2LbfkFXNrT8kH1Y5rox3/2gXrNqifw3qMdmCMjbTp9gSmyA41NXjuzUtNgfWmY\n/gVzMW8H2y+qfhVrQWe88jqo/EzPFNFpB6Kn4OcGpwVEHWpy3jI4/PcchCyleKNOm+B0m+v/+obX\nrnt+rerX33XEa5dvg+wgGNQ07yW/jnuWRPTy7iY4nienafp23ynQt5mGnjWiZTP5K+Fs3n8Sr4m2\n6TVW9iCuaeQqKK2Hdp5U/Xhe+fy4pv4jHapf3uqZlVLkzMM64usV0RIyTnPou6hlZ1lh3KvkVMzB\nUSfBgWnBLFlMdRJAuskxv2IZUuWOvwo6ea4jNf32937ota83Qvrwlcc1vbWfanllAa5nUX1Y9zsD\nuuvcF8C3Hml25vo8zGmec6V3aqmHSzdPJFypFSNnPsaNpSOZeXNUv/G55PafifG4/lNNwaevKOmF\nqC/9jpz0f/vRj7z2f3nmGa+dIZBicGqfiEhSMt7cR5LPlgsXVD9OewnXotb8/pe/rPr5fPh/PflZ\n2DNdmTEnQNx4A/t26XY9hkpKvUQSjsFLmHPJfvcohHvDKXxuulIotN5rc0LT+KiuU/1dkDhEKTGy\n4129tm90Y1z5HlbvgJRi4Oyn6jUsyQ3NA73eTcRkSQvLA3OKtXSGkwHDa8Ne+9Jrem6WU61guZcr\naXAlGInEwHHs/elO4lZoKc4cI40kAWrVNaW6CvtQuA7ze9/HOoFkzVKKYOSvqL+uXPkQc1qtiULc\n854DOqmF003K1+McOnRSS+qb6RxQQvs72wKIaJnxNNXCUEOh6jd4CfMtbwnuA5/dRESaXsF5bd4W\nSTi4VropTLxfqbNykj6/j/Xjmll2wHVORMTvx/t19uN+Fi7Ve/8mSoDlFCB+Noh36dqWQumRVy5h\njBcVO9J7krWyVCRyRZ8JynbgIDlFsqGgk8w40oTXcaKtmxKYO4PytAjJd1x5Fls+xEOokylO3fXR\nmLKc++pRLdle9jSeBfb8M5J8eB2JiNQUYT/e8ybOtZy0VLi6Qr1m6BTmX+9hSF6KNujzdJye75qO\nNuEz1+oER5ZAsjzr1Gsnb9mvgBKQk510VpYJzQT4ucE9K7L8+Y7H8Nww5TzPH/xHjMnqF5GUVOac\n05peRrolS0rf+tO3Vb9VG5GSyDV16/OIVD3//TfUa+a+sNlrX3hpp9f+/ms7Vb//+J9+zWvnr8Nz\nR98ZLXf76Gf4To/+3oO4HkcurhLWKMGsb0Sfz5fVa8mYC2POGAwGg8FgMBgMBoPBYDDMIuzHGYPB\nYDAYDAaDwWAwGAyGWYT9OGMwGAwGg8FgMBgMBoPBMIu4redMZj28UVxNGfslsKfJ9R+dVv3Cz8Ij\nJkrx2+khrdtn7WbGKHRu9z6wTvXjGNORUehsy/PoWqe13vF//DkitnLmwfegYs4Tqt/xf/lLXB/p\n+93vzp4DY+ThkreyTPUbOgftIkd4Jzla2dHuiMwkUskbxY3l5ai+gnXQXm7asUL1Y81tJvnnPPBt\nHTvN+t5hmiPR9iHVL/wsojfZl6hiC/TW829q34ju3S1em71BWCMvIpJRQlHQyfBKGrymdd7sQTPQ\nAu2jv0D7a0xOYt7mr8AYR9v0d+o/ithbSbAuO4kiW1Mdr5upUY6Exd98jt9L1z54i8RIU957qkn1\nY4+F/BWYLykp+r4Eg/BBaNz7c7xmEe5RpE3HjPL1BckDo3u/jgZm/XjeUmjhL/1Y63Qr74SXx8W9\n8D9auWG+6sfeUIUboDcOFGkvrYGzWuOfaHSRv0ugTH92jL0oDmI+5jja1NEuaFfHSP8ebdbzMY30\nwRwt7XrdcFwr663v2w5N8cXTWvPNNfbbX/2q116xcYHqN0H+TxkV+JyCVeVyKwSysbZLavQ4pqbC\nt2F6Gb5T28fa+6p4vdaHJxKDJ+FzkRLUMYp9h6FTzl2B7zE1pr3TeM/sO4G60dai/RY4bvHMfrzH\nuRu6lq2qx1ps7YPfwsJFqOOBTK2tD4Xwt1Mv/43XnnY8Q9iPJd6DOVpfpve7OOn95xTD26C9X8+3\niSnag6jGu3V8+Bz56mgro4Qgew7WFftxiYgMNSKaOPzAKq/dfUrPs+mJT7z2MPlcdDueIuz1wPV7\nckKfLThONHMSf+s9AO+D6if1GuN9tmtfk9cOlDjxveRHE+vAOGbP1z4kPDej1+DPEp/Q8b85DQXy\nWXB9LtgvTdZJQpEWwlkx1qP9P+QUavlgO77H2KS+vvLF8IjopzjbnIwM1a+/C/V17oMYg8Ezes/I\nz0Gdi42i/l26ijkxv0HHRZeswDX0fYqxTsnWe/3NQawX3qfzlmm/FPbdi97Adw+t1f5yo3m4Z527\nUeMno3qsg2Uz5xskIpJJPmrtb+s1lhFGzWffldSgvjcx2v+SyAfCjSNvP4Exrt8ET5fRdn0Oz6Dv\nzOevKNX/YK32ytv3BnxNVq3G3sX7oIioDO9seiaZLNGeKT763JvTeBF7zIiIjPXjWYhju11/tJjj\n2ZdIVDyK79v+rh7DkrvgNdJ3DPtdsCpH9at/GN4i7MVTu0yvF/7b6ntgSPbdf/il6hcuRG3b/jw8\nSDp3NXlt18MlZyl8ati3K9au710a+bEU5eMse3Cn9qra+DD2D64v6Sn68busDufcQ7885rXrK/RZ\nqeN0u8wkeK4Pn9bnkcu7Ma5Ln1rutYcu9ap+BeSXFiX/nIM/OKD6Ld2B3wfuX3mn13Y9tK7thTdb\n/Vqc+dn/tWB9pXrNhb/5yGunl+LZ5etf0M+s//DXr3jtJ9Zhgyp03m/H13B9u/76Y6+98qHlqh//\nJpBEfkE3nefZzp3wdJz7GfuiMWcMBoPBYDAYDAaDwWAwGGYR9uOMwWAwGAwGg8FgMBgMBsMs4ray\npkApSUJOa+pm1lxQgvN/jejNToLp9Z9A5hSsAfXLl6olF0xJKiRpjBtx2UV0tPBcfO74BUheKuZq\nimfBStC5k5NBt5qc1HGBFfeAqtr0KuQT0w7tzU/3JYcowcEyJ5IyDzRtpvrmr9U0NVfmlGgMUYzk\ntEM5nh7Fv1OzQNNzY6KZ3sdyoDGHfhYqwz3MWA6qeNcZLXfLq0EsZWbdZ8cKuhHjTGFm9BzWFPJJ\n+k4lm8Ne25+vacqh3NVeO5YOSm9Kiqbw9jae8trdezHP6p7bqPq5VOBEwk8yO1eKw7GF+csx9ydj\n+npCi0DXZIps3KGDx5pAQ8xdgveLxzSdsu0QqJeheqyDaCdeHyzTtNWJYcwJjuUr3qRpq0OXQZOc\nJipzdoleY69+F9HmaUQTLWnSscHpuaD3dr4POmH5w/WqH0tvZgIZlXj/X6GOE8WXZYRufG9eLdbY\njd2I1c1fpWUmk6N4/xDVBuNzkgAAIABJREFUqSGfrjepRH1OWonPChRjnhU3axr1//wTSEXTC7Xc\njZGUhHGo2fCI156Y6HN7eq2pKVDABwePqF6BQNhrB4NUQ6o1/ZZrQpmeWp8babQWB050qr+VP4Br\nGryAa4rd0JKz0CLIXCJXIfvYfe6c6sdU2F6KYsx2JBdzSkCJXlgDSdcU1cKxMb1+e3owpqVbsA5Y\nuimiI5i5prBEUUTHl7/3/iGvfe/2NarfJFGROYbYlQ8Hw7p2JBq8rpKcNVG8EtG3kW6MceGSuapf\n89tHvba/BOvlVLOWaa6neE2uvde79bzlONF/3bPHa//N3/2u1+45oiM+C9fgPMHfw6WaT0ZRe2Pt\nmEt8ThERGRvEnl71FGQGORd1fDtHgvsLMB/L75qn+vWe0vtzIpGzGHta9rQ+fA6dwb0tXIj10X9B\n3/PJKOajLx3n0rVPrFL9btI+y/Hl2fO1vCs9D/ditAP3uaAH15runEU4SpqvwefEoWfW43MnWNLq\nSC64dofqUWu6z2tZ8K3OfAFHxhRtmTk5jIhI1y6cv0opPlpExxn76Xu1vX1F9fPReq59YanXHnTm\nLcc1N+6HXKIsXKT6qUhckublr8XzRLRZx7Jn+rGX8n7sPsdwreO1GG3S71eyDnWo9SOcoVMcSVe8\nk+KpqS5nOfHgPUcc6V8C4aPntrQCPb8HSPrHkdTjw1ruxbWRJVjXT7WofitIJnrmdZzPf+ObT6l+\nLI9p+bDRa5eswhiyxFNEZOHDkGmff+cH+MOE3iNGLuMM88nJM167MFufIVlu7gtgHpQ36LHJJ6n3\ninzU5BtH9Xdf9utamphw0Jmj6plF6k8pJFdjydzF18+qfmXzUW+5VlaX6jX2p3/yz177vhWQWYeL\ntNR2weOQrvG5tm8/akN0VM8llk+vegDv/TtP/TfVLyOdpLEkK86ek6f6tbwKC5D5yyHTO0wSNBEd\n317/6yu99kPrtEwq3nf7tWjMGYPBYDAYDAaDwWAwGAyGWYT9OGMwGAwGg8FgMBgMBoPBMIu4raxp\nrBeyn1Jy2xZRzCclP4k6buBMTeYkn5tOIkRqENSiXkq8yKrT1KLBDlDEDlxCesUdi0C/ct3Zp8ZB\nIUzLBBWr9eKbqh/T20q3wxF65Jqm9A9fBF14gOReFQ9oiQR/x6wafI+R6877XaM0gxlgrLEsa7RL\nU6nmfGmZ154kyVOwQlPKh0lmwpTMnNIG1S8lBfd+eho0s+LFS1S/mzfxHkxV7TuKsS9YreVf7NQ/\nQlKA0EJNgYu1gSY6eBmUVteNP2UH6J/JlETUcVBLsPJX4DqYMhof0nTZqah22k8k+Dtxqo+ISLAK\n0hGm37qSC5b2cJJTcoZOnBkexByJ0FyNOPK7gWMdXjslgxLBaL31HNCUzKKNRGkl+vxNh5LOSQnt\nb4OOer1Tyyvvf3ST1x6l++JKB1lGyalara9eVP3yN+hEm0TDX4R55qaC9Z/CeKVRmt2kM69u5oLW\nWbgW9/PqP+uUgJLtumZ77+dIG9MLcW/KN2KdxgZwr8P3aakCSyE63gc1nJMiRETyl4PaPTqKuRCP\ntap+Nyn9aZyStXwpes7FuklKV4Ha4yZQsYQv0Ugm2UHhWj1f+o6hfvkoMSRngb6eODn6s4yhluRJ\nIiJXuzAG3UPY+77+O0+qfrxXs2wouxb7DsuOREQys5GuMTwMucNol66TnPTFsr9RqkkiItcuY0zn\nloKy7Upksyh9jKWmnCYnIpLqJDomHCwZO6qlQilB1PYAyRvazp5S/ThphbGoUlOYz55EDZuiz/3j\n739f9Vu6BOtv22IkWfTuwdpxaxQnzM25B0kU8d69ql+kBfNnzp0Peu3+rsOq3+B5kv3QtbJMSEQk\nbw3Wdj/tBdwWEfGX3Fr2+HkxcqX/ln9jSR9LRnvO6X1xz5uQTnLKSFe3ThqsXEjyMVrbrjw1sxoJ\nPmnZmMPZZAXgyvq7D0L6NdyNdeVP02snlRJieN/+9GUt/1yxBdJXTipsfU9LgcruQEoUS+/d63Ml\njIkGJygOOomJLPfop6Sfku01ql/0BqUdfow9iaXyIiIly/F+LA1z642PklZ692F8kimhr7lFz6Xa\nEshtOJXIlRxzQlDzPsisC6t0MmPfhSZ8j0msxe6Dev+sfgy1nM8LLAEREckMa7l3ItH+PtU454zR\n04G1VEQWFh3vNKp+XNtYEugmp/GcXnAv5nr73ibVb9m37vLaoYXYg8sX3Ou1k5O1XcKVPT/x2uOU\ngtVzXs9Llhk/+iI+59ou/Z2mYrgXnO6YXa/3Dt4Lr70MmVBxWPc79g9IPKr6H1rGlQic+DtI5Wvu\n0DJelqtFSNJXUKLn1dH95732gX/Cc/pDq7RU9He/9ZzX/sWPP/TanDgpIpLdhLPBUAxnnS1LILv9\n+KyWVs2vwFziRMO9Bw+qfj/9iz/y2plzcV469Hf7VL9h+tyVddinqwr0+HQMYK6Xk9x0zw/0++UG\nsS/WrXleXBhzxmAwGAwGg8FgMBgMBoNhFmE/zhgMBoPBYDAYDAaDwWAwzCLsxxmDwWAwGAwGg8Fg\nMBgMhlnEbT1nJkkrF23X+vK+T6F5DNZBY+v6XFRTFGO8B1r2iSEde8Vx0ukUIzZ0Xvt6lJHHwtZk\naELTKRIwZ67WgAWzoU0d6oD+LdXRwnO07+UfHPfalfdp3V3NM9CCD1AsY6BIa6s5fppjO6NOrGqw\ncmYjQ3NIF8/xbyIioxyjTPYO/cd17GrVQ9DYTUTxmtRU7e+TlgbNns8HfWU0elX1m5yEFi+jFO+R\nVQ3t4sA5rXFnvWZ6Acbqx3/0quq3qQFeFCmkG86a7+h5T0IbX7Vpq9eu3KT9IcbG0K/iPvgKjTRp\nTXqmE72WSPiLMbdGHc8Z9ogY68bY5C5xfC56oJk8ewK62E1f3KD6sVfGtY+hUc8K6MjVNFpzUfIz\nuHIIY90zpOf6EvL9yajGuAecCOuhUxj7Nw9DT79j+XLV78ZxeDEM0rzMqNZrapIivCcGUHsmJ3Vc\nO8elzgTYh8r1nkrJQL3g2sR+PiIisSH4YwxeQn1MdaLmuf5k5EJnn75Z35u0NMyTlBT4P/nyocF3\no1pZb7zo64967Xhca+EzMhCLOtABXxM33rRkHcWn0l4w7Ph9sb9ZsBhzq2h9leo3RPdFlklCUbwp\n7LVbfnlB/Y090vKXwXdl6Iquu+zfceES9NTb7l2p+u3/EPdswzyK6T6l9e91z6/32oEANP291+HR\nUzJ3m3qNz4d51Xca9X56XK8Bjswcp3072q29aXIzMXdyCuHd0X9e1/EQeZbxehu55tTTGfRHEBHp\n2I34Xr+zd7OvF0dq5szXNZX9tcbIn6A/ou/NJ6SH30j700/+5L+qfknkBcY+HBxVXVi5Wb2mrxMe\nBL1NiDB345oHz+L7tmd94rWHLurI7Yxy1OKkFOwFoRXaDylQjDGepnHkc5SI9l1JNDi+3O/E9/Yd\nRJ3s2Yt9onSV9uwJdWCe9bWSZ5szhmOd2F84DrjnoI4KH6a1nk7XlFtb7bXz8/UYDl35rtfOzMFr\n2DdHROTGCXxWkCJgOYJdRKTjl/u9Np+Hchuc2G+6PvYJmXK8SqLX9T6eaPD5ON1Zi3xd7FnX9q72\nz6l6HN4jJ8k3o6DCOZeRj9JYF85Eru9d+wc4I2XOw9nxe//0htcen9Tj842vYi/MW4r14sba99LZ\ns+4+jA+fhUV0LHvnB/CmyXV8Frs+wdoOLYXvzRj5+omI3JyYufNNBvk69R/VvlPLv7bOa7MHUOn9\nOja96XXspzU0nhODY6pfnPae3MW4z8Gz+lyRlIQ9jiPLB0o/pf+u53b91he9dmfbW/icpbr+jf0I\ne+uVjxExzV4iIiIld+H5s/Ut9Bs8rffw5p34W349xtf1hKyr1t6miUZuHuZgzlz9zDRCzwYT5G3X\ndkPf98Xz8J2Xr8K5xfWu+vRdes7Ox2e5ceRlVbgf7+496rVDyzDXny67U72G1/NoJ8b+r775TdUv\nlfYrfn66+7++qPrt/j9/7LUv7UPtWfncatWv8R+wtza/CU9L9jMTEcmj89JnwZgzBoPBYDAYDAaD\nwWAwGAyzCPtxxmAwGAwGg8FgMBgMBoNhFnFbWVOAKKMuzTGJIk6ZChRapOl27W+DqjU6Akp03bNL\nVb+xAdDvMmsgk+KYYBGR5jdAEyohainTIkNl89VrpqdBicsqBrX0ys92qX4cQRrIAdWpe5eO+Byn\n+D2OJHblB5EWUP9jJAuYiul7yTHVcockHBxRGn56kfrbUCMouL37QP1NcehnLGWaJmlGz3UdSxYj\n+ljZqjX0F00ZjfRB/pBOEYaZWaDADV36RL2GqdPDF3DPmCYuIlLxIGh/QySN6neiQOu/ssJrj47i\nHkXaNQU1lcaVaaIpQX2PmFoqWin0ucEyn5K7dURyWjbozZ27cA1MsxcRmeineevDevn4pT2q37kb\noE6X5YESXOlExmVG8Ll1JBnLI1rn3vPn1WuKQ1jPDYWQfYTqdd1gOvfGLoxvdm2u6pc1jfcrIfpz\nzylNq60mOZr4ULtYKieiGM8zgrQQ6sqkUwfSiF7JNEx/oabJsrQkQDH0bv3JLkOti49AbupL12V/\nfBz02r6rZ7x2Rgmopfnzw+o1PadA+e6+gAhvNwY1uwH/ZkkXX7eIyMgNWqcnaOyc+PZJitDkmEs3\nXj7FoQInEtd+iDjl9BItpYg2oeZnUYz1uEMvj/ahni5aOsdrt53Skc6b74fMqXI76lXveR3XOXQd\nr0tvANU33gfa/nDxSfWanhNU7wO4X/FufS/3vowan0FSihUP6D08QrHGLIdJD+h5yZHeXEPd+HOW\nIs4EgiSlzArrusLXlUryTVf60H0Q8ztyCd9/alrLB75yF6JWY2P4XuUP6Yj6TIrinZ7GnBm5gfdu\nO/uBeo26Prq8mCNFDNK5iqVHLJkV0fKgG6/ivBWco89i8S7M4fLtkCc0v65rPsuzEg1fMupD3xEt\nxWbZ7PA57Okp2Vr+eW0XviPHnKf49P+7ZNloO0VSh5ZpuUPZSpx7srIW0F/w3k1nf6ZewzG6/jLU\nxsxaLcnJIRl6nGQaRR1aBrBsKaT4I13o13JCS7BGrkDGxfILv1Of3XuWaETprOzW/JsBrKX2DyCZ\nTsvVcrmmn2DvmqZxHO/TtTerAWeVTDoW8PoVEZkgyfOFVpxX955C/R92In+//iyi7FmCy/VQRKTi\nbqyXm9Ms7dTXwM8XWfU0F5x7VLQFe/0YfV/3uW16BmXb2Y6dBGNqHPeCI8aznPNc7ZOwwWA5rTvW\nncex3/Wewtmm25HRZ+7FnGjcgz0zeh3zfuGXHlevGRiATJQj2T/ZeVT127gGz1LTdF5lWZmISJzW\n7ML/gAe8vnNNql/p3TgHsCT9zD8eUv2q79JSsERjms7RyQF9jspdiO/2y//yutcuzdXj+KOdeHa7\n1onx+drdd6t+m5+E3G2Y5LVtLfpZrbcd41VThHNCWh72sfPv633Hn4Y9fO79+E2gaoWWwB/++LTX\n3vocHtz6GvX71WzG+GSShO/yz06rfvf/7n1eu/sAzlgL75qj+iX7b39GNeaMwWAwGAwGg8FgMBgM\nBsMswn6cMRgMBoPBYDAYDAaDwWCYRdxW1sSu/T6HlpdOdKIkkgkkOxTmWCsoldkkUUpx6FL8HqPk\nxO2mpzR8bZXXZrdoTk0Y6dMu7uMjoBGPk3yKkzVERLr3gILURnTFSYeiXEVpE4Xr4fw/0qzTJuIk\n92KaaLIjK8iZpyUdiQbLqPpOaOov0yYLt4IaOXBSp25xKkmEaLLZ5Tr5ZYoSviYj+/D6/U2qX+V6\nfNbcHXC4DwSQKhMo1TTCfrqmwQ7QF+c+uVj1GyGp1ngfJCAFK0tVv6afIkGjcDOobi4VtL8Nn3uT\nqKpuIlDlI1pelUgU3xn22iwBFNH02aw6UHZb3rsst0I+OYcfuHhR/W33ScgfmLb7e1/6kuq35A5Q\nBQ+/Adf1tFSs7QdX6vQZpo1Xbd3ktXsun1L9WCqZl0UpMPP1WmFJYFIS1lXd04tv2U8laCzQUop+\nRw6VaCTTestfoufjFNWwENWE3mNa6sLpbiyddJSDMtKJepZRiFrX/IaWt+SvRg3jmhqjdT58+bp6\nTaCU0nhIhuTW61gr1mlKJqjxPfs0vT5rLmix/N7ZTloA09rzKA0pz0lSmEmU3ANZYUapduCPtkFK\n0rWnyWsHSrVMoIIorsOUoFe5WlNuWbLSew77WvWa+1S/SARrmFPySpfr9ccYPoe0ibrn1+Jz9h9Q\n/Zh6HLkK2n0HUXZFRLqIUr54K2ph4UbnO5FkaJDTDh0pxVjKzP6/Ix67USd5iucxJ5X1H9f1Ybwb\nsrFrnZA4MfVaRCS9CDWnoKLMa0+MaOlWzjxI14aHQZcOlqE2dH2q7zsrHNILIFGKXNfnkchV1Iqp\ntXi/YKWWxHBKYvcAXtNQWKb68Xj5UlB7WZYuItJ7EJKQ2gQnp0WbMecKN2r5VNeHqFlJlDLCEmER\nkXJKCRmOYTwvd+ixTr+KdbXiK1gvnKgjomWiU1M450xMYDw4EVFExE8JKb2HUe+7KKFHREur0gvx\nuVWFel+cpHQbTjGcdnS7Z5oh5866gT0izUncUulw90rCwRJQlsCIiPQewvzJrsdY+dKTVT8+Y+el\nY676ndQyliz66iDFYZmeiEioBs8rfrof31v9O1573JGOD1KCZynVeL+TuiUkj0zy4Xv4q3QNvE4S\n2kAVyTCdZFBOQGI7Clen3XNQpykmEhFKn+Q5LCKSRtYF45QamrZS15SJYZzXUynlbXxAp/tWkYzy\nzJuQLq14Su93/Kx14jrqwaKnuBDptdi6G3W3j1Il73xgrerXQRLkOZS4deGNM6pfUQnGilMBc+dr\n+VP/GdSb6A3sOQ3P6YTSjvdJ0nyPJBydg6j5V//oHfW3TV/e6LUXVODcWPGolueW1uO7FW9CDYy0\natkZjw9L8xrm3KX6Nb0LadcaGvtAAK9Z+aJ+rh4gudsk7bMTjly6d4SSqGkzTc3UUs6j7+DczPLu\nVS/oedFO43OK5P8lW2tUvzg9w4qeCiJizBmDwWAwGAwGg8FgMBgMhlmF/ThjMBgMBoPBYDAYDAaD\nwTCLuK2saSIC+k/X+5pemb8RlKa+/UQ7XKgdu9mpn6VLzT8/q/pVkCQkiahFE7dxG48QhbBwNT4n\nNVWnCtycBr2p9ZdawsHYT/KO8UnQELctXKj6DURAgS724xa6lOfsBtyLFOqXXq2v7wZJhiq+dcvL\n+/8Nvg5XrpRLcoAJSqHKX6XphkMXQO87cgD0rst7tUyKKbRPb4DzdVWppnkztay3DWkgWQVhr81u\n7SIiJVvwt5z5+E7dnzSpfmNEjeweBj1w0WJ9DexK3v0x3uN6p06cqSTaM8tqbk5qyujgedCly8OS\nUEQpjWYyqtdEKlF9WRoTHdP0vdJafP8P3t3rtbMzNO33tx5+2GuvWIt1WfWwTkEbpmSBDV+A9OHs\nL0ELLV2tqebszj8+jjmVXa3rxhSNTTGNO8sgRESmx0CBDpRBpuA6oQdpzbG0aNKpLy61OdHo/BjU\nWp9f07KzSMKTSdKlUUrlEBGtYyB6tJtsx/V7aAS1KbRYcyg5Zax0OyQ7HR+i5rvXyuknV7uwXhYs\n1tTNKwcgQyqvwvxjGZOIrutTJBuN98Z0P5oXLO+bdqnwn0I2VfmfJaEYJNmHm/YVoTXB6UPtO6+q\nfmk5oMVyIgKnDoqIjBGdO5MShQ7/yXdUv6qnsUdNhEiGcwb13pXQZM3DmrvxHqjYvoA+FvB04+/r\nT9XffdFmUJtHO7BHth3TVPqFz0O64y8CBT8pWSeQcPrTTCDSAlrx4Bld84s2gy7NaXgsYxIR6ejH\nGaRhUdhrBx1pT+EqnJfivbg3bnLa9cOvee2K5du8Nks2i9bofYcTBF/6A6QA3X/POtWvkqjnA2cx\nh/MdSSCnNc1Zj3rgykO6djWhPY0aUvmo3ieYyp9o5K28tUTsJkk6IhHco5wMLeMaIinT0atYp/es\n1nKCtHycRw59F9K/tV/T0YyBSkizYzHIhoZ7IDNmGYqISN9JnKMyqPYHyrVsMo2kHn1HIKvIL9fz\njffPXEpPPHNDy0kzKNFkmuoup86JiKRkzlz6nYjICJ3lk5wkIt7Xx+ncmOWsMa6j8S6ssQnnLMBS\nivEoZLx5jsSG133xekgpJmI4I/AzjYhI/+nPrrc5TpLR8DVIWccoUY+faUREUvMw3mzD4KYT5tAZ\nn2WjA+f1eSnDmU+JBK/z8h06UYhTKsNfgOR8uFGnXfWQtUThVshhi+/U54oWeo6rpHPFlbd0wk5q\nMs4tZZQo1PEe1nnRAi2BZ0lrJI79N+O6XhNBkrawlMk9d2cvwNiUL77Ta3de2av6Ra5h7JNpDGNt\neqyz5mpJW6Kx6svYN7r36qTijGLMn7Z+7M9lU3pPyl2CPeXUD4547ZW/tVH169zb5LXZfiNYqmt0\negHmz9gg1ku0A88aRfWr1GtaXvuR1656EGM8eEU/p0fewd5w8lUkj15q18+2X/rDZ7x2125ct/v8\nWfUkEvrCTyLRa/BSj+rHEj75DLmvMWcMBoPBYDAYDAaDwWAwGGYR9uOMwWAwGAwGg8FgMBgMBsMs\nwn6cMRgMBoPBYDAYDAaDwWCYRdzWc8aXCr1e1VML1N/GhqCXylsDrebwxV7Vjz0cMkkrN+VEy6VT\nVB3rEDliT0QkegM68eFL6MfRf6G5+jenHtLm7joFr5uqAq0DrSBvkZoS+DIUbatW/aJvwyOGY4zd\nmN/RTnhFsNdESor2b6h6ZpHMJJR/RaeODO0/Bl0da27d8ek4C50ex4j503R0+m9u3uy1z7fCa2Du\n0rDqx3G57JsRG4ImOr90vb6GS5947da3oN++0ad1q6w1n78Mmvn2PToOOLsCHh0nj+P9Ftbo6NfK\nx+C7MtqD+ZwV1prntvd0hHsikbcYGs7xYR0ryJ4hgQpoNefcMVf1i1E83x2LMOdKlmmtdTp5C3Cs\neDBT64jbr+/E55IuvHo+ae4dbXQZRewGg7i+8XFdNwJFWDsjpMV1Y/BYW88RnLF2HdkXmgddcmZO\nvde+9t4Hqp/rXZJolN+P79y+s1H9bYJq6nQJ7qfrT3BzEteYvxxjl5O/VPVrfOctr80eIFlOPHXl\nwxiTTlojmUrjru9nBa2JjJNYR5OO78P8e7Bv3JzC9xg6q/W3OYtROzPJH2h8SL9fCvkAsE8I12ER\nkRJHo55IsCY91qH9gNgPimOwA8XadyN3GdZz31HU4Ox6vSft+lvUvIITqI3s8yMiUhbDvGJPpRzy\no5qMaX+lPd/Z7bU3f2Or107J0B4Nx76z32vXbEI8bN09ur4MkL9NTgPGs9AZG+XTwH42Af25oWUz\nG4/O+3OyXx+F2LOq+efnvHbNC3qNVdI97dqFtcOeQiIijS8d99rsQdBzSEfOpvhwdsmhmN/UVDo7\njem9OZkihZ/9z4947bEe7Z/Fqbopmdi3x4f0fpJEEeb5K1HLz3/viOpX/yyE8uxv5XN8k9z3TyTG\nevEdI1e1X8cE3afyddjTB07otdNO3gnVdCa80qzHpu0E+rGPC0eti4hMT15Cm/aT7t0UWz1Pn2t5\nb47SGS3m+FeEcrEv9PTg++ZlaS8RPgMFC+DrVD9Zqvr1k3/iWC+8F1z/J3d9JBoclez6bgWrcH5l\nOxqOZxYRCeThPNY72oT/7ngeBQtwD6698qnXdj1neL8aG8T45Fes9trxuPbTKl6L89fUFLwxxvr0\nWuz6CLUibyWuZ6xHe1pF6HWhaTyTuOOTVYU6n5KCawhs0vtJ17HLMlMIkH+YW6Ni5JvH+1PRUh3B\nnENnk6N/CU+W2rvrVb/RcXgFnTkNn5r7fkNHMF9+Dc97W56Clwo/L3adOqVeU3c/suIjjT/12h1d\n+jljzmqcMUrK0Xb3z4wyjIfPl37LfmX34Hx96XvH0M+n10Pdr6+QmcTRH8ADdMlj2gyla1+T156z\nGDV18LT2Mp3zOJ4Dq9fi7Nj+kfbey6bzCdfK6z/TceSVD2GeZBbCx7LxF3u8thu3HqzEfU9Kwj1s\nefuS6sfP/aXkS1SWp2v08e/jvtTfhevZ/5reFydewtws3YHzUo5z7m78Hs4E8oj8Cow5YzAYDAaD\nwWAwGAwGg8Ewi7AfZwwGg8FgMBgMBoPBYDAYZhH/H7Im/HbT9raWbJTcDbkIR8a5MYpRosMPnAD1\naWxCU6wVnZ4i8uK9TrQtsfnmvgDZy9A1UFDHBvVrzu1B7NrqOaAZFS7UtOl330Q84uItoO27UVnT\n06A7jlwE1c2NPWTaWhFFirvxsD6Hoph44P2nHbpheiEkLEzFTglquRKPV4CkTEwDE9FRlF/49mNe\n25emp1oKxbXeJFmTioKO6tjz7ArQTv0FTV772nkdn1dAFN+nvvG/eu3fePpp1W9zEJKLCYpOT0rV\nv1ly3CnTNSci46pfqkNlTyS69oMSzZR0F+n5oGte26kprAVh0Orya9BWEjMRSaX3vzkN6nB/y2nV\nL3cJaLYsSWh5H7Vi8W9paVrfWVBQ04nO2/zxAdWPKYDZc0Av9KXpscm/D9TKWDdo3ix/FBFVN0YG\nMK+Y3ioikurEtycaHBmau0JTzG9SHCFHfOevKVf9Oj9AxHXuItSwjnP7VL+xPtDUeY0dfFXTMItD\nkBEV1UGOwlKmsru1pI3fjxijvxItyvPRR3IJl7qelILXsQTUjf4s2Rr22kOXUXvHKVZbRMddS4JZ\nwKV3Udz4R9fU3wKloHa70b4MjtZmina+I1m81IZ9rXwx4iCX12jZ1ul/BUW2vA5zIlCG62HphIjI\n4q3Yq7PKsJY7D+m6UViMGs9R2qF8fWNTVoFCPjmK784x6SIivcfwnbJpnbe9qT83b62WGSQavD9n\n1WnKMUuFiraFvfZ59iIZAAAgAElEQVTIdR3vnVmJtTM1Blr2RFTvDRcaUfcKulADOI5VRKRzgP72\nHujXXJdSs/Vrskn6PdJI0huKchcRySiDPITjdv157rmF9hdazpk5Okp76ALWWM58fJa7tm86459I\nDBzDmTK9SF9fKsnHWdZZtFXLlq/+DO+R6cd9Pn5Nr+3hUdSY7778steOO2fZ9cuxrli+mNWAOcaS\nRxGRos1YY5f/FTKLugf0ebp3H6SNhfmYe65MiiWMvK+UFug9p+9TrLnMWrzf8Hkt4chZrOdSosEx\n0X0HtVQoPRdjkklS8qgjtWUbhuxa3GtXBs5yI5aSuLHOPpaHVsPaIBpF7U5O1uMYCq36zH6pJfqZ\npOx+nCP57NR7UEvp+PzUfw7z1K1Xg5ch1QuU4PulZuizYrBMRxQnEj1Hce0Tg/qeR5swVlnzcO2D\nWVrezHtU3f2Y+2zNICKyfD7i60M/xrk0f94c1a/hSdQiPtf2kp1D0bpK9ZrhPjxPpOVj7jWe0tKd\nuhR81ic/hARrUVjbYISWY2/tjv+r1x7v12eWETqz5tPZ2j2juvtpolG/CXLlSWcfmxjBv8+fQn28\n65vbVb/zfw/Lg4avIz6895z+HeGHf/G6155Xhv3+7m/vUP3a3ocFwFAxP3NjPvsLdP0fuUJnyoP4\n3ModWo6ddRZz6+o57NNrXlyn+lXRcyCv2UV1eryDc1Cjuj7AWbbbec4fjDi/bTgw5ozBYDAYDAaD\nwWAwGAwGwyzCfpwxGAwGg8FgMBgMBoPBYJhF3FbW1LWrCR1zND0u0jzotZnKPnBOO+FzekUwDPrQ\nlJMcMXIZdNzIVby3m5SUVQXK0HiEqHJh0CKjbYPqNUvvRTJN8z7QjMa6Na3o4We3ee1re0FJDAW1\n23tBGa6Bv1/ITWui92dpVO2L2gE73nd7etPnB2itLsU4LS/gdhYRkQHHfTs3E/T4gmxQyTY8vFL1\nm6SUp7wwZEPT05rif/MmrmM8Dmrj4CW0s4u0k/tAC1IzQkTZrr6g73soA/S2P/7GN7y2m841GgX1\nksc45FB407NB+w4U4XtwOomISN6SmUsXYYrthJNgw5TjJHJ2r7lb0/fYTb+XEswmHXlW/kLQvuMD\nWEvDVzWlv2gVpBWRDqQt1X8BiSYp6bpucMrA5Zff89oskxERufEKEtGYFsq0ShGRPgENMY8kPkMX\nNV126AquL40kAoNnu1W/ENFJZwIsGXCToaJUU5nK6iZlZFRh/cUoccZ1/+ckK173i1fpedFBlOjp\nOK6p9guoUz6froE+Hz4rMwwqskvBHTyP+xsowfzzOwkarW9AwsHpFaNO2lf7B6jLuUsx3kmOMtRN\ni0gkOikdLXuerikjV0C5ZSlnRrWmZRdtxr7W9AvUtd4DmtKfGcD9PHEdn7vjiY36cw+DIs3jPnwO\n897dS7mmxIewticcGQBfe6CQUmqiOvVgegqfm1+CtIZIRMtOM8oxZ7t2N3ltTjYQERm6oNdwopFe\ngO/Sf7xd/Y3TCrkmuHLfnkOQmRRvxf0dcCjwlZQIkV2E/aSrVUspOgZRAyqbMPdL7sU8c9OPOndj\nXvhpjWVV6n0s2oUx9udhj+w7redc5botXpv36Tlf0nWIU4o4QW7ggj4Dums9kUgmmR3LykREcpZR\nug3VBzfxb/UDqHNjJDmff7eWFL30nTe89v/+ta957aiTqDTQjfsSHMDaSeMUxHFdn+J9+NxC2sdc\naSRLlPI3QO4auaaTqlj6NtoOSddov5bUT5FEn+XbkxP6+gZP0pjeKwlHegh1jlNdRUQya/DvQXq+\nCC3UezWnK01RwqG7F3Qdwh6SWY2zPEuERUR8PtyPYBBpQSMjLO/Wyaupqdib09Jw3S2HT+hrpf2Y\npSPlD+q9Oa8QsqbpesiWY106JTBUj2sfbkbNd+XdnKomiyWhGD5DZ/fF+kxe+zxq45V/Pum1s6r0\nvpi7HN+j9R1IUeq+qFPyxmkNp5E1Q/M7WrLNZyyWgs199B5ca/ZC9Zozv/yO137/Q7zfp5f0frdt\n7RKvvX7Hcq99dre2YyjIhGyKU1ejbXpschbgnnFS36G/2KX6LcrDZ0mtJBz5y3D+4vOWiEjZ3dij\nqx/F891wk342qH4a93R8FHvclTf1WeDF34H1xRvfed9rf/Kn76t+a16AxGjoEub33g8g577nhS3q\nNcl0Hub9/GamftbgxKh5tJ+4ycalG2B1MhFHjfeTdFxEpOUwLCjmPYz7MObI2IqLb58oaswZg8Fg\nMBgMBoPBYDAYDIZZhP04YzAYDAaDwWAwGAwGg8Ewi7AfZwwGg8FgMBgMBoPBYDAYZhG39ZwpuROa\nqJaXL6i/BcOI3Ytcgd7MjRNmXTtHZI/1a91070VoSSu3QddWunitfj8f/CKSk6FT7e/+1Gs3vaqv\nlaNKf+vP/9xr/+Lv/y/V7/o+RIOV1kKvner4KETp+2YvhDbQvUcFm6E1LCE9feNLWn+av3pmI0M5\nVtHVZbv//jfwuImIFFKcb/Q6dPG5i7Tu158D3eToKPT4ubk6liweh8Y/QtrLitWbvPZg11n1mhP/\ndMhrF5dDJ1hfW6H6jZFOOyVZfw8GR2M2rIR4c+i89jpgzfJYDzTb4ceWq35tn2D8q7WM9XMjq5Yi\nyx2DjW7ybSiiqOERxyOmdy/Go+op6EVzq7S2vvMkdJw58zCeSU4U3MgN+ImUL4SGd3oa9+v63rfU\na8YpYpHjFYu26HjTaZqXwSrUGtebJlgOzXL3YfJ/2BRW/Ua7oR/NLKUY8Se1H0LLG6QXvlMSjsGz\nqHOTEe27Vb4DsZ7sVzXapbWv7JVVsArr0vXDyKRIP563LWccj4mFeI9MnmeUozs1pTXucfI94mh3\n1yMhJYAthse+/1iH6ld2H747rz/Xq4W1w/1HUUPYb0BEJC3/s720EoHsBtT8dGdvYM+ZSdL3pzjx\nx9MTmN+DUYxneaWOOp1bCv33zpPQ6i883KL69UcwR3Z/BA+bF77xkNfOqtFeDh2fYL/zLUSddL2Q\nchpQAwbIo2kiqudv5co78N6XP/DaI9d0Hcom7T9HDQ836n55y3Tsb6IRoesKLdb7WKgO//b5MHbT\n0/rcUrJwtde+9PO3vfZoq16zE1O4p+cvNHnt5VsWqH5F3bg3k0OfHcXO0dkiIqmZuD6u0S3v6v1z\n0TMveO3ejj1e21+kNfM+H+b06Cj088kpulb2HoJ/QAbN28KVej92941Egvf6CqqfIiJjA9jfuTa6\n8bAcaVt+Lzw/Bi/3qn53UpR9bgG+b2+39jg8eBnx1I8txhzmNT8d1z4oN8kjJUTeE25sbto2nH+j\nLfjcxtPNql9qCuruANWXwiwdmx4uwjm3dX8T+jXo9RCsmrkIZhGRDvK2KL1be09NxVFnuBYp/xQR\nSSbPHN4PMkr1tbOvEL+368fYewHnickGfFYSnb/SsrS3Snf3u167/ROKDXbObFlzsIbbfgkvk9yV\n2vemJx/rNNkPPww+94iIZGVhbvb0ow65ke2+8Vufhz8vgrW4prEe7aM5ch2eSJE4amhhsX724b0/\nSP5Z7/7391S/hXPgYTM5ijGseFj7VPIZeJj25toNqFEXPvqeek16vo5k/jecPXNG/TvWh711uBvn\nozXP6WfWkz875rXrN6JGuWOTGsLaniYPrxX/br3q130Q81JWScLBvp/uOSrWge8Z74GvWvV2fY1t\nh/Cd/XQ/qzdpnxV+Nr3vxW1eO2eu9vJjH72WEzj73PUUItX5+UZEpOaL8AQqDiPq+8hf/LXqV3ov\n6k35GjynnvnbV1W/kcuYP/VfwnMqe3WJiKz4TVxT+weIAJ92nrUPvoXnrLnrXxAXxpwxGAwGg8Fg\nMBgMBoPBYJhF2I8zBoPBYDAYDAaDwWAwGAyziNvKmlICoNGFv6Bz11peBnW65lnQh1pe01FZHO3Y\nc0DTjhjznoNEhGUHSUn6EqemQBeORiFB6D2GaODL7ToWs3cEVKwvPvyw107J1LSy8Lqw1z63C++9\n6rk1ql/bCXyPwUOg74W3ajpm30FcE8eYphF9TURk+ALRZx+WhKNrDyivFffXq7/1nwU1LU50z9EO\nR0rRhb8F50BmklWg36/3yimvXboAcarj4zoyNB4HNS0nDArt9Y8+9NrRZh01V70C0pfQQtBxX/3z\nt1W/RZWQky18FvPKl6opnWkUiZtK8crhRzRXcKgZ4zhN9GOWMYloqmqiwVKDvqN6fufQvWCK+7gT\n3cbRotNE+236YK/qx5HHN97COshfpSmopfMgY0hPB713aAj0TzfeOckHem/JXURxdJjvWRSn2UXj\nVP6Anm9MXS9cjXEfOK/jXDNKQOe+eRPSKI4wFRFJn0E5jIiOOC3e4kTp0XUxrdWXon9DZ4lMx8eQ\nplQ/rrV0BSsgVxoiin5tppY/BYox3hlluE/RTtDmyxt0fmpLE+RqPJf8BZoSzFRx/k6FGytVv579\nqKkHT2BdPfHtR1S/rj2YC5WPINpwypEJjI98tiQkEeA6wpRqEZEsimVkGRdL0UQ0LX3BY9g/Xfp7\nBcl/10RAiS6s0bTfYDvmxNy5oGzHblDc8RJHJkSfNXgOciWWEYpoaYUvFXMxNajX9lA/ZFeZpagV\nvUfaVL+pKsyDEMkmI44M86ZWMM4oMiv1d452gIbPtSM9XdfA5GTM98IN2ONbX9d7Q/lKilNtw2dx\nHLyIiC+F4s2pNgVIenT1pZPqNam0nv2lkB7VPrRZNHBDM3LwPZLTulWvqSl87vXXD97yWoMUg6ti\nR316DvedhoSx+G5JKNJI6sHrTURk8BjONpNUeyoe1HtIWjb2/mGSurEMSURk+W+Drs4x4uNv61qz\ndi6kUTyHB4/jely5AJ+To21470lHOthyBGe5/FzIdYJ+fab86DTinotCmG/rHlyh+p37EOf1pQ8j\nrngioqVf7lks0fCl09nMqYFcb7n+DB7We/zcJzC5JidxD10pYqwdzwOjJNPoeFfHBmeEcX8bd0J6\nVDIX5628Zc59obmfvwJrrPuAlqGytK72RUS5s/xaRCROZ7icMNZbrFufp9u7PvHa2XOwBw070ryp\n8c+2MUgEes+jjrhCRpYVVizD/tR2QMvx2NJijOrf5me0LcJ/+f2/99pfuesur93+5mXVr/JJSPb5\nLBKNYqxz6rU07aM/3em1+Vly6ZIlql+AJM2RPuzvXR9eV/1K83GWDS3A3HGtI3ifbHoT5+7ybfqc\nmDNfX2+iwXIr99xyYyekekVrMI6Nr+1W/fjZo/TL8AeIteu9a+AEamLpPRj78WG9Zjvfxzk3K4D7\nfvZ9/A4RrtXnG5ZtD5X/1GuX3KOf01laNT2NthuRXfMQ5GqDLZi3Pke2GydJH8tNt3zrLtUvxTmH\nuzDmjMFgMBgMBoPBYDAYDAbDLMJ+nDEYDAaDwWAwGAwGg8FgmEXcVtYUaQatPc1JpQiUs+v7rfnH\nTEOcHAaVL+C4vzN1sfsI6EgVGzWVduAGaJhpRO/3peGrcDKCiMiJa9fks9BzRieG+IhOufjeRV57\n+KKmBlauhrwmi5Inhpx+nFzVdxAJKSkOHTxv+cymUuQuhZxlpHlA/W3oDJy5B/pBBW14QlP4+Lux\nm3mkv1H1ywlDSjE8CGrtwEVNnWbqXJyoc2khmmcOPVooqaflNdD+KvLzVbeaB0FlzKnGWA3d0LK6\nFLqGXErryMlZqfqN5eGeMQ021Ulg4fQP0W/xudF7APOn+mktX+k5jL/FOjCGUzFNiQ7NB6Wy/yTo\nmq5s5jpJmTJzQZMPOqkH/Z2gvGfmIe0qNRU0aqbYioiM9oC2m56Dse5y6K3xLsyJ4m1hr83JWSIi\n/jzMxfYPMRddymg6SQkHLlFS2HW9Hkq3OlKjBCNQirrppthkUQpLoBj9XMlF6xugWAtRKrs/1feQ\n5SksXXLplKmcZEJzhiVjLae0dJDp0iy58zmpN2P9oCZnVICWPXi6U/WbphSm9auQYONL0TWgYDXq\nS+8RzPvpKb0HZZTPXLoI1672nbr++YswHzltiFMOREQ6SY7W2YQaXDZP73e5K/Eey2jfiHdqunEm\npSfGW/FZWRW4D/EBLeFjCVsmzZXkdL12eG/m+jc5qtciU+a7DkDe2nHeSebaDlpxxy7chwknnWi4\nkaj7ejtKCErvwHW4kte+Y6gRqUQrT0rSe3w8Bip6ih9nkIpHdQJedgn2od6LtH4dAcAQJWU07Qc9\nfu59kPD5S3Rq0hjNhUCpnj+MaBRzdagV751b1aD6seQ4ie5LUvKt/19e8SZIuvqdc1Xu/GK3e8JQ\nQPJIV4bEUqYyorK7qRlMQ/dTnXT3xdQA74X470EnYa2gHHT/vkOYHwUbKcVKBwNJnOQsLNHMIRmE\niEj6Ccyxnj6czw9cuqT6hYtxz8tykcDXtE+fhZc9Dtl3pPHW6WWTjhQ/0eAxGbmqJTssQ84ow732\nF+l10HHiqNdmS4b0PP3swvM4mdIEb3TrlM4jn+J889R2SmehNTHmyKK5BnaTnUDB2nLVb5xqHc8z\nf6H+TvFezM3hZuyZ40Na9jExQjI0eo7hPVdEJEaSuUQjGMLeN+XI8eLtmN/BOszH3CptBTBKcsHs\neZSE+46WKz26FhKTt48hGWjHcp2gmvoh5nvZfZAznvmrN7x2/no9Ngs3IvEpmyQ0BQX6XhZtRs07\n8FdI6Vpeo8+QmXQW6T8NKV5ooZYncZoxz9mcOi1h5nOurJaEg2W8HR/qepFDZ9SRS1inZffNVf1Y\ntvfJH/7Ma1fMLXX6YZ70kayr5byWQq//5javffAvIaG66w8e8NoTMUe+SGeVUB0+t323rpVKgrUU\nc3jB08+oftc+gZSfv1/hGi3RbyZrl3ANPvftP9Fn6Dt/favcDsacMRgMBoPBYDAYDAaDwWCYRdiP\nMwaDwWAwGAwGg8FgMBgMswj7ccZgMBgMBoPBYDAYDAaDYRZxW88ZjtNjnb2ISDHp7frJPyAtV2tT\nI1ehi032Q6uZ6vgeTI1Be1a8Bpq/0VHtoxC9gei6AdJdjpFHRV2J1l3HxqDvnFeGeLubTlZnehqu\n6cS78EtpWKo1hP5aaAM5uq3sQa27GzwPDWuAooHTcvQ9Yn173VpJODg6MM+JwyxYDx10NWkje5z4\n0/QCaCA5Hrmkaofq19nyntfupwjNWJv2XChYi8+9ybHB5BXizrkWinHLLsG1rn5Ua+ZZ+993AZF5\nNWufUP2yyg/hGm5S5O+09j6YiODfSeShpHS+IjLWp6OrE4nKx+FhMOTEI7K/RoB02OOOHppjiDk6\n3PWTSiLNctkOxPe6ccXB3LDXHunDfebIQtcjJoWiTwfJX+Gm4xnSeh3a3JI7sf5uvKwjajPnwdOm\nn6IcF/6mXkipfuiFr/4UWnI3qrSPvHjKqiXh6D+GNeHq0OPkxzNGOtib0/reFG6Gf0XPfvhD+It0\n9N8ExUmn0Voavqw1/elUs5NJq9/5MeZL6fZa/RqaZ6w9jjvRi6x/HyNvhzTHB2CsG3O1vx17Ronj\nmzTShL9NkU9BsFr78oz367k/U+A4bxGR6QnM/c6PsCZK7tB7CO8B7O9w4pXjql9ZG+ZEajb2p4AT\n88h1s3AbJi6vv0CB42dAY9W1r+kzv8P/+x8w/3jc8uZV6X6Ca/AXYpzmP71U9eo9jjXG/g/56ypU\nv473KNr2cUk42P/qV84j5KfD6yg9S8+z3HyYi0WjOAvEU7TH2nAHzjGF8xd77atv7FL9eH+uVjH0\nNK+u6vde8BTu78gVrMXei+dVP459L1mOaxjp1hHCybR/BitRN9ve0L4PxXdjTsc6sb+PXNZeWuwl\nVPqkJBTs3zc+pL1kSsirjL1BIle0z1jeGpwJB46jPuetdKJZ9+H78/456dSom1MYq5yF8ItITsd9\ndWPjfX72IcTc4/EUESldDX+D5oNNXru2WHvEdA3hnLyCPDCy67XHxyB5YLD/StyJdJ5pBCkmOsnx\nGhwlvxL2O3TjvXOXYe0kkRdbz0HtNZhE/0t6tBUeJ0MxvWc8vhHxzT0dmDMd5+HD0dKrz2JPP7fd\na3ONbt+p11jdlyg+m+qQ8lwUfS7yBW4dNz7J0ef0XOOOY5Lj4ZZIpIZwxii+I6z+lkEeeu20L04O\n67N2aAn2lH/6by977Uhc+4k8e98dXruuDueo/DX6TMUeQMlpGPjiu3B9qdn6eWzoLOpr9Vr0c73Y\njv/4CD43C99valrvnyVb8R5t7+IZ5orjzRV+AGcJ9gpi/yQR7SU4E+DPc91kAyWY0+wJFGnSNbVw\nNfbyBQ/Cv9X1fzr9L/ALCuXBX+uOP3hK9ZuYwHmCfYDad8F/J83xxYrRbwV8fRXbF6h+h//7B167\nvB/PF+7vA1c+hFdNURnFoy/Sz9S8f0apvixdWqf6uR5pLow5YzAYDAaDwWAwGAwGg8Ewi7AfZwwG\ng8FgMBgMBoPBYDAYZhG3lTUx5Z9p9iI6yo3ZP0lOJGWwFhQsJYdZp+ngLTsRvdn5PmiDLrWI46mL\nt4S9dseHoMo1PLeMXyJjL+F79EdA81u5Q9Otr+0FRWr1k6Ard+9uUf06roAKWrkcNFNXIsE0q8Ez\noMoVbtDRW8EqHdGWaHCcOUucRHQkLrc5mlxExE+U+Ny5Ya/duO+nqt8IxZ/mE7UtZ56OjWMa9NA5\nfG4uUcSibZq2WkCxkkypyyjWFP/0DPTLLAFFuPX8W6pfsBTytEAAUoAbJ99V/ZIo6jBnLj639U0d\nyZa3qkxmChGKQI+StENEpISiXjt3N3ltN/o0fxUonxxbl+lIQvIoHp4pxm7c9dQo1lx2PV7DcY0j\nFzV9OyMMCRavl117Tqh+i6pAb2W5WEaNvtYJqkPlFNE75NDBRzubvHbp3dTPkYhl1Wjad6KROQdz\nzqUmB0mextRIllWIaOpz4Sbcp9a3tOyAadq1m/Gd447EkOUy47Qui7bgvceHNa2Y10FmFb4TSwpF\nRAZIajZ8Efc6w4mfZdlGfgXeb+iSHp9Rql8cv5rsfG7+iplbi0MX8J04LltEZJTuX5ykWt379R7C\ntPuOC5AF943oseExvPOriF5Md6SILJm48eZFr83z7epLJ9VrshqwZicGMcd6W/WarVwf9trZdVgf\nsT49Nl17UR9K74QMLurEt+bUY+50fgLpXMCp48GamaVvjzjSEkb5DkiUe4+hVo52aZnASCHGjiN2\nc8rDqt9EBOPf/OF+r+3KjPtIVpOaifNS9DrJxB5brF7D66DtFK61geq4iJbS3diN2OHpcU2v5rOK\nvwAykkCVXrO8njlKO+Ts9Z0kp000uG70H9EygWmS4bJkZyyq5cg9dL6LjaLOZY/qCFs+EyWTjDDF\nkcSFOP6aJIGjJOsMLdHj7qN6EGnGWLvRyqOdmH95eRiPy+3tqh/LnHgMneO0BEqx5npO4v5Fbug1\n63fqTaIx0ojzTe5SJ3qd7mGMZAKF67UMcvAc5i1HkKc6coeJQYwxn+2WNGjp7jRJG0fHMWdYMrZq\nzhz1mhjdt/RC3PeMiizVj+VK8R7U+IwSvcZYlpQVxnPD+KDej+Nk65BJtguTzlx3pfiJRNYc7A2D\nZ7rU3wZOok4Wrsf3aN/ZqPqxPOu+FSu89oenT6t+0V5aBw2oNyd/rmXBC3cs9NpdtAfz0WtiWN+T\nZHpOzWlADUhyzmsrKyCdZ/mwe17jPY7nRLRPS8Cn4jgPx0nycuqlw/r6fJizC++ThOO9P37Ha296\ncaP6W9NbOFuEqjHPXDuTtHSMyfAlyGtZ8ikiUjYPdZDn5kiXrmd9tAcX0/zJW4zX+5zfHt78p4+8\n9rN/CD3tR3/4hurHa/vqD3FGSsnSdX3ONpwJSjfAZoJ/uxARCS1B/eJnb7fmRx0pmAtjzhgMBoPB\nYDAYDAaDwWAwzCLsxxmDwWAwGAwGg8FgMBgMhlnEbWVNMaLS5i3RVMP2d0FHy5oHOlvhGk01ZLp5\npAXv13XMcf7fAAp9tAPUwOFLWp7AvEymhhdQ0kPTz8/p964CNa0yD5QopoKLiNTfDanVWC+ohkz7\nFxGpIzolu+7HHTdvfwmojGX3gP7Y+ksthym6Iywzicwa0M/SHTd4lqDwvXUTYi68Alph2QKk7LSf\n11TixS+s8tqdH0OelulQ1JkiXPs85GWKOujQCANluJ8ssxq+rulhqZmgC+bVYEyL6tapfkN9oKO1\nngbVPH+JnsMDF/AdB4j6yylCIiJ9J+heaDbg50b2HFDUh872qL8p2RXRMJlKKiLSe6jVa/spbaf3\nU51mMBUDRbP9fUiXap/TMsD2D+A833ELKWJWXa56TbwTY3OSkrRW12kn82yaL8dfhqN7Sa5+v3RK\nIWL389ZPrql+Jaswpkx/nHDowUwtnQmoxCuHY84Ssu69oOCGn16k+vUcovGi1+Q5dPCiIOpWRgXo\n0sPntByF6f88LzhhjanxIjrBjKUFIrq+TI/jvXleTY1remvVE3DQZ8mjm6LDGKO0oViLlkByrRDN\nVv/c4Pvi3sv0Ety/2i8u8doTMU2d5tQyJekq0nUyiRImhMoh02VFRHKKcP/Sn8N3H2xETWod0Wkk\nO/8FUsJ714BCPjGpE9YmBiArvE576xynHhSuI9o9yeDcVIIxer9sklZ1f9Kk+k1Pu1kRiQVLAUKL\nitTfeo+iVrLsJ1Ci5QlDF1GLWYIycl3T61lSxIkzPNdFdMJL9cY7vXbPNciQWFIjIjJJc2vJV0G1\nb31dJ9sNDkAKMDmF71SxRCecNPzmGq995R9Re8NP6TrUexxUcz7bJTvpIixBTjRYBsHnQRGRnGWo\nh5w6FW3WsuApSrFKj2FsBk9oaQZL9EdJxuDKh3307/QQUf9zUBvHR/S+E3Okf/+GMSdxselTSCQ+\nOIXzy/OP3636+Uk+0XIIcsOSgN4jxsmugOUhSSl6jrn3NtHgFLjRDr0m+LNZMsbpYyIiOfNx/X1H\nMTfd+ZhFsvFJbrYAACAASURBVB9OZRvo0p+bmY/1XEkyjZIQ5oHPOaPy9+B5wWmEIvqMxFYN3Yf1\nWaxkYxif5UO/5Aw9XzhZLEp74biTIOomRCYSA6c+O2FTRD93NP8Ce4ja3xyU3Y8z4aPOOTKD9vcj\nr6BGbfmtbaofP4PwMw0ne2VWaluJCN0/vm7et0S0tQc/L7pph11NOCOs/G08GLg2GCyJK6Q027Xf\n2qr6uc9FiUZDHZ7Fu3drK4MiknFn0H2LXNc19cifve61OS156YurVT+2MPGlY0868Le7Vb/qMMZr\n55ufeu28TOyXW55dr16zeTXkvzGqKYvv0/uYUH2ZJGnVlFNfjr4NyVMypTlX5mv58MUD+G0j6Me+\nX/mgtnJxU+lcGHPGYDAYDAaDwWAwGAwGg2EWYT/OGAwGg8FgMBgMBoPBYDDMIuzHGYPBYDAYDAaD\nwWAwGAyGWcRtPWc4SsrVoGbNh86K42e79jSpfhyxlUq662QnqnmUIuOEpOajrVpbmZYPDSBHGQer\noX9LC2qfAh95cnCEnavnZb+OCdIypxfpOEPW83JEavE2rbOMtePaOVwtZ7GOmuwjL5BEe5WIiATI\nn2WkRWsD2WMicg3eLSM3tIcDa2TZN6O4Rn+X8/8CrX12BsYqzYliZL1wO8Wg56+AptGNXWPNKGsI\nR9v1HMneFPba6enQKLee/Fj1K196B/oFm7z2cFub6jdMscwcj97D4ya/qilMJFrfwlx3I956DuM6\nIhdxra6XEWubB8/BK8Gd3xyJ2EHeUm07tU8Uaybn//YGrz3aQ3PH0cdydPVW8nmYcjw5Lu2Fn01K\nMmpPqEH7F/B3Ovv2Wa+9+CEdN5tdi3o1cg0+USVbHN+gU9pDKdHgGuNG2E5Q7GXucooYdGKs2Wcm\nm+Jy2d9FRGToAo0x+WH4S/V4T1NNZI8vrtespRcRGSOvAo5i57opIpJRBq+bKYr85Roqor1+Rsl/\nIXtzWPXjeZs9H/fSjVFMydA+A4lE1lzcc9a+i2iPnN5jiIOMd+oI5ooH53nt6TjuS8l2PR+TA3i/\nqz+Gx8TcF5apflNT2MtaP4LXyMBZxMuu/E93qdcsHcOa7dwF7Xex4wPAnjhp5JUT74ncst/IZcyj\n0u06bpZ9xYYaUQ/YO0tExOfm/iYYHJfdd0JHd5bfiajMptegNc8q054dEYrDjFBdKVhbqfrFe8kf\nieLgax/YpPoNtaHetnz6idfOIK+b3HKtmb95E/Pn8i/e89rJQb0GusgXYOEyjIlbA7V/DM5pbeQx\nJqJj5AfPY565Xgq8j9fqafu50bsPHh2F26rV31xPwX+D65/CdY6nnN+Jdr9J83tiiDy3xnTdbX2H\n9kn6qHTy7cpzYlX7juDM0dIM7w6OzRURKSmA98bTG7B+x3u0H0aU5lh4C8Y6zYmVHuGzDdV4jmcX\n+dWzWKIRrMQ+4Ubcsw8Ee1nFnGeDHlrDPrpvwSI9jlE6207GMFcnpvR35vONn6KwbxxGraxfq2vb\n1SPwBKpdGfbavI5ERFp+gXjhknvxHq6fVPdhPF+kkf/JyGXtdRakPTidxnG8Vz/jzCR62jFuZSn6\nvgxeQH1gSkDFA/Wq32gX9pRLr5zx2jmZ+swSrMLz3tb/AG8urrMiIpUP4Uw+cA7rqu9TfXZn3Hgf\nda7u1+Abd9PZjzimvGBlmddueU17fTU8jrPo6b876LXnPLJA9eNzD++F1396RvWrfGTmnjNERKqf\nQvy46z16/O8OeO3ASewv2ZXaK2/Rv4P3WfMr8BjyJd/6bFGwAT47+Y430i/+77e89mqKrz/XinE8\n+or2eRuKYi707ocv0dJqvU+UVOIcWbgRfjtv/M+dqt/qufBAisRQb4dieo3Vr8L1Hd+Pdd6x+7rq\nl0/752fBmDMGg8FgMBgMBoPBYDAYDLMI+3HGYDAYDAaDwWAwGAwGg2EWcVtZU+l2ZJC2OPHUeetA\n44oSDbb8Pk1TY6r9MNEV2z/SUbcDEdDZOB4ryZFF9FwHnS+vENS25AzQv0MrNGW0bRfoRGUbQWka\nPN2t+vmIUhik6NnRbk2VGziD19U8A4oxR6uJiGSTPIRlOP3HdMQxx43PBLo/BTXS53xWgKi7KUSD\nrvui5h9f/iEoYxnloHhOOfTXcpIrpJMEzY1TnRwGLTh3MeQtTDl1Iyqz63A/WS5TuEDT/GKDoLfe\nOPGR154YGVP9uhoRn+2neFN3HHlecCx5hkN77trX5LVLnpSEguV82fVa2pNCUZFTTNN1JCY+inqv\n3rHSa/dduqr68Vxt+G3Q7rsP6zWbuwgUf58P98+XSnIHJy4uoxRzJ86UW2esqxtAa8xZAOncmddO\nqX6LHgHtdMF2SBFGLmtqNNO0k0nycuMtHWtfuF7HqCcaaVmglXc6NMcykn/0Ulx2pFF/F46BZGmm\nz6FEB8OYqwOnUHNyF2tpxsAZ0H2Z4l+4BmMwcFbHyiaTvCVKdNyM0mzVr+8Y6Poctdy9X0c0ThB1\nnWURk6NaMpCSgfo1QTXElcSwfDXR4IjF7j36e5TfB6kMSxfa27UkhGW8WRQn3fyqpkRXPgT509Jv\n3ot+7xxV/fr9kOPdpFpb+SD241j3gHoNS7+KSQra5Y4Nxc0zBb/PkXWW34/Pyiap881pLYnoPoi5\nzRITf7mWiLlR84nG2CCoyfz9RUR6T+MeFG4A1bnl3ZOqH+/dLGt16eCDRKlveOxRrz01peUooQq8\nx/QkKNE8Vi1796jXsEyK1zZLBEREqrtQR0vvwtlu6IqWSPC+UbQV56VguY6cHbyEc1AOxWUPntPn\nqmR/uswUuOa5khCuD6MkKxx35OwF61GXmGYfbdIS8DySXHO9OnNMr+35DWGvnUtx3tEW1Mn2nY38\nEskgWc+cbNwvNwqZpWotjVjzvF+KiPipHo7S/Eh35KmqbtKcDTrxwixvngmMU40JlOhzVcZK3JsU\nOue757kyksByXP2NN/Uez/OCz7wswxcRyQhDqsES1fJ8Otc3afl/w3as33gH5lz2fC3/v/QB1fmd\nOH+l5mnZWSZdwyRJv1Oz9Zris3KsHdeUQ9JxEX3/Eo0130Tk82ivrj0smav5Nch8jv3VPtWvcg1q\nbXgbZCR5i/SZZYr2uB7aT0q2hHU/ko6zDK6c9sVpR7JX//xyr932FiSK7thcPYU9opbW2E0nSvvy\na5Db12zH+YD3VREdE8/j6Z5l4ly/5krCwTX16j/r/W7J/8Pee4bHeV1X2xvAoA8Gg96JTrD3LlKk\nSImkuqlmyZJlybLiHjuJk7jbiXtJ4thxkeMi2VGzJatZjSqkSErsvYMkCBK9A4NBL3x/5POz1j4W\n+V7Xq+GHP/v+dcg5M3jKOfucZ2avve6DFTaXpnCl909+5WmvXZyJtWFS0lTV7wA9exR34v70Dem5\nffMDV3vtxs163/wX4n362faaj6BsRTftf3Ov0jLe7b/AGOxpwTEsnaePNZH2J5Oc8cgcfhh7s9Uf\nXeW1XWlo5yEcU5H+2kRELHPGMAzDMAzDMAzDMAxjQrEvZwzDMAzDMAzDMAzDMCaQS+pp2I0muUyn\nOXIlfE6DanhVp3gGyNmCK+snOQ4xfpIRcVX8GMd5KYFSGbmaeiNJSoocd4jkIFIc2VnElTVlLYSk\nofsEXEFCh9tUv9ggUgobXsL5BufoVKeWtyFHSKBK/SmT01U/lspcDuLJrclN/+/YBdlBHB1j6LRO\nda68GzKnEKVB51DKt4hI90lcq679SNvq79SpxDkkcfAl43qODSD1nl2DRES5eIXPo9+4k0bY9g7S\nDdOoIja7TImInH8KaeMld0Ke1rlbuzX5SU7V+lat1y6+dbrq57o7RBJ2HHPdDKJj8dpQG65z0Elp\njadq/6EGzO3ELD0XuQp9VBQ+260u3kouUcEqvIfT9dJmaolhIjknsNRtdECPy7F+jInYFLQLJulz\n6iGJIacNBmc5abB07/vOIe13zHEWcV1/Ik1/C9Jf3fvTvBXjlp09fE4MHCDZWcYcyEt7z2nZCqfy\nqzHS6aTKkywuMBnxOkwSQzfNvecEYgBLyLKWa5eaWHIWY4mTe04sI40nZ7emjTqdvuA65PGyLM6V\ncLiuJJEkgZ2vnHWsv5kkBHQe+et1/vH5pxF78tZivSq6qUr14xT8xreP0P9rySLL0Vj2OEZOMq58\nluWLKbQu5izXbgZDFLtbt0Eiy9IYEREfSd1ad2Gt5/VcRCSG3KD6zmKM5a7Vn9e+4+KOGpHAR9dD\nuUWKSHIhSabJWbJgrb6PtU9B7s33ftCRzuSQnLrl9Dv0ipZ9XhhFTIxPZ6ko4pLrMsnzl+NruyM7\nyyUnihBJJTNm67jetAmp5skFmJejgzpWjpL8idd6100w7yq9H4skvOfqcxwm+0lGlH0lydkPa4lm\n6CRiWTLJSJppDIuI1D+N95XOwefNv2aW7rcbcyTDh/jMksxuR0oWR5KJWIpdfXWOE+UMyGOKSIbE\nEnIRET9JWnvo/Jo3amkySzVYesIyWBGR7NUlcjlJnYLz6nSc02LKcN26DuO4ohzJNK/rCSSNYmmQ\niIi/DNeG5YLhs3r95D1Xgh97kKRSfF6Ks3fnOML7xlFHYj55DeI8y3gHGnpVP16rWUKVtVLHaHYJ\nDJGTk/t3wwMk1dNmQe+ZXtqT/5XEkJ7bBumc0jK1DDqR4g3HlPotetzGx+K+ldyBffjxh3arfrHk\n9MkuuR37IQmMidfHGjqK61dMzwX8HhGRwjx8Hu/9Xaezokrcq9o3sJ+Ji9F/d/oMOBw1k+tx3jod\nP489ut9rVy6RiNPJjqWOPLfuacjxsskdL1il97LLVyAmdtTAEY4dSUVErtyAc2bXu/ApPRcvjOI4\nhslV7bZ/2eC1Dz+0U72H5ecsN9/7s3dUP3bhauvF/DvXrmP0ynmwUt7z39u99uJPX6n6zf0EXPTO\nPg6nrWHHkdb9DsTFMmcMwzAMwzAMwzAMwzAmEPtyxjAMwzAMwzAMwzAMYwKxL2cMwzAMwzAMwzAM\nwzAmkEvWnBklu0C3Vkn3QehvuVYJ6z5FRMap1kPBzdBZ9hzXdVx8pJkMn4HebLhLa25jEnHI+etg\ntZZF9SbaSBcvIpK5BLVkOvZBzxqcretSDLbDMpst9lKm6NonSVR/oecY1VhxLLJZR8zXL6VCf97l\ntH0VEQlUoI6Ea4nLtTlYu861VUS0djV7CbTr/U6th9BJ6AsDU1D7II20vSIigTJcg0aqK+Eji8DY\ngK4bwTUSknJha+ZzailEU+2DZLL2dTXpRbeQ9SmNnyRHoxwkPTTrkBtf1/UwYpxzjCSqroBjNclj\nK30W6gew1Z2I1pJmzIMWvtmxphvuhj44lrTWiU5NnexFmFct72DOjZH98fiwrvNzjixEMxbiGNia\nVERbgnO9GJ7///sZsBDlGjY9R3Q9qeEuWP1lkEV0yiptq9dJmnaZKRFnsIXrwGjNcRrVoOGaLN3H\n9blw/Re2Anft6jmulNwOXXavo61PIp13+CxqUXAsd/X93fXQrqekY1xwrBHRut84qovS16S19Vy3\nbJzqrGQs1haxbDEZR7HCHRcDTTouRZJxqgvC81JEJETrmn8N2U47dRRyVmPcDZMNZftWXeci5xrU\nYQmQlbFr88tjiW1pe08jHg+26FolPj+OneOff5KOf2y1nkz1FoYcK9BxGm88XoZ7dL8UqkOXtQg1\nipq31qp++Wsr5HLC4zHk1PHiWhK8Zrr1mlKnY23gsTnUrq/1eBmtLzmYbzWPH1T9cqg2Clt98z11\na9SxrW7nIcR4rrMiItJ7CmOB42FXnN7bZS0l6/DnT3htd6wXXIPxPUrxumCN9gVt248xnVcoESWa\n6kV0btdxMp9qInHNLbeOYSzNA65hVn6Lrik3RrUkOI4PNutYk1WM8d22Fesi1ypJLdH30E/7ocE2\n7ENzVul7GDqu6yD8hX6nNg270CdRPa9hZ/wm5iF2c40st06Uu7ZEmgGqxZaxQA8SrnHI1yk6Rq9J\nifk4z5Ew1hDX2niwFdc3Lg0xYHxYn2NvHeZLQj6uE1+bvvM6DsfRNeRrHe3UYEmgOpC+YoxHd50N\nTuW6JnjPqGMj3l+PtZr3Dq7ldn+jXncjCe+1Q2c61Gvjw7hmbAleeIOOFWxDPO0DsLTOXa3rkXXs\nQT2t2j+g7lfWQr1fGCD77EZ6jz+Rni2i9DWPpueJuj+hxkpgeqbqx8+2XIOV75OISBc9K2eV4TPc\n54ULVN+F92R1fzqh+s36yCK5nIRrsD/MdGoI1lFNWa4j1EJ1PkVEQucwL9pCuAe+xw+pftM/jpoz\nx36xy2vHx+sY3U/PbpOWY+/UcQDr3exPLVPv4T3XOaovOu+jS1W/07+DXfjJRrxn3qIpqt/Zl7HX\nLqzEc9b2H7+l+nENm4UP4G/tf3iX6pdZpGu9uVjmjGEYhmEYhmEYhmEYxgRiX84YhmEYhmEYhmEY\nhmFMIFEXOAfHMAzDMAzDMAzDMAzD+P8Vy5wxDMMwDMMwDMMwDMOYQOzLGcMwDMMwDMMwDMMwjAnE\nvpwxDMMwDMMwDMMwDMOYQOzLGcMwDMMwDMMwDMMwjAnEvpwxDMMwDMMwDMMwDMOYQOzLGcMwDMMw\nDMMwDMMwjAnEvpwxDMMwDMMwDMMwDMOYQOzLGcMwDMMwDMMwDMMwjAnEvpwxDMMwDMMwDMMwDMOY\nQOzLGcMwDMMwDMMwDMMwjAnEvpwxDMMwDMMwDMMwDMOYQOzLGcMwDMMwDMMwDMMwjAnEvpwxDMMw\nDMMwDMMwDMOYQOzLGcMwDMMwDMMwDMMwjAnEvpwxDMMwDMMwDMMwDMOYQOzLGcMwDMMwDMMwDMMw\njAnEvpwxDMMwDMMwDMMwDMOYQHyXerF628Ne+8LYBfXahXH8O1iV5bUH2sOq31DHgNceCQ+hX2Ov\n6heYnImDSor12uHaLtUvKjrKa+esKPXao31D1CmK3yIDLTimgWb83axFRapfw8bTdAy4NHmrylW/\nzsNNXjulNM1rR8fpyzk2OOK1Q6c60C9B94uOjfHaVSvuk0jz6uc/77WT/YnqtdRZ2V47dLzda6fN\ny1X9ug+1eu0+usdRzrUOlqd77dMHznntgox01S//hkp89lF8dkKuH58drT+74c0aHHcJrnvWUn0f\n65467rX9VRloF6eqfp37cB99KfFeu/Foo+pXfs1kr91fF/LaobN6bA6Pjnrta7/3PYkkG7/wBa+d\nOUPfm+BUzJ2GF06h3wp9XbrofItunuK1x0fGVb/uY7gfIyHMq9yVJapf8xbc31Hql7+uAu/vG1bv\n4Xkw1NLntVOmZKh+Q+2IG8FpiC9yQcehAfqMKB/Giy85TvULn+322mMDmJcXRvW5D7X0e+0VX/u6\nRJo3vvQlr124tkK91rkX4y42FeNxbHBM9Ws52+a1c0pw78eGdL/gTMztcA3GqjuvLtA1HekcfNfj\njk1LUP8eaEQMiM9ETOlq6Fb9Cq8o8dqjNBaGWvtVv9E+3JOebnx2ICVJ9evvw/Gl5un5zCSXBr32\nzJs+ftF+/y98YMkSr/25T75f/91i/N3SJe/z2r/9+OdUv/w0xK+D5zCP+oeGVL8vPvZvXjsqCuvi\nm1/7L9VvxZfv9tqb/uV3XrtyTZXX3vr0TvWe+3+OGNXdhdcG2vQanlu5yms3ndjktZ/4zrOq34M/\n/ZjXrnlyl9ce7dUxYPJHlnvt5774uNfe8N0PqX7JyVgjEhJyJNKcfOu3+IeeEpJSivWq92wnjqkg\noPoN9+J++RJwf0Zp7RcRifZhjecYFjrTqfrFxGNvkJSfgn7VWJuzlkxS7xkbwroz1IF5Ndqvj2F8\nBPGBY4AbK0fonAbb8HkxiXrfEpyCuNxX34MXnGvJ5z7lqg9LJNn7yL/jeGboMdL4Eq2Fywq9dvVL\nx1W/sXGsAVnpiClx6XqvxKTNxRp86tmj6rUp75/ttXlvE6jEGrfv8T3qPfnpiAcjo7hPeatLVb/Q\nCYyDnjrE2orbZ6h+9c+e9No5V+MzNj+yTfVLisc6M20J5ltSoR7n47S2TL/2byTSnNyCuchjWEQk\nUIHrdv6Px7x2yrRM1Y/3ExfGcE8D07NUv57DuCf+clz3+Ay91vSewZo52EDPKzR3Umfoz46Kwe/d\nvM8YGxxV/Xhf5fNj/sUG4lW/cDXiA59T5jK9t+M5O057Gj5XEb0uzrvnsxJJjr323167+a1z6rWk\nrGSvPUZxKTo+RvXLoz1R99EWrx062q768XWOSUZcSqnS+8jWHfVeO4eeE/jeZC3W17KvAXt8fv4c\nbNLrYv56zJehbuxXw05M5/vbcwR7N1+KjrtJBYj3UfRMmDpZj3N+Pi4o2SCRpqH2Ga/dfbJNvRag\ndZHXkx7a14uIBOg5sPNgs9cOTs9W/aJ9uI9xAewxx4b1fOmn7wuSaA0eaMU94esiItJLe97gVPxd\n55FVOg/R8U1Dv879+jkwZ3mJ1+44iGcpnssiIuPDuC4x9Kx/qX5LP/tFcbHMGcMwDMMwDMMwDMMw\njAnkkpkzoVP4BjBrif52MT6Vfkmlb6I69japfomUCZFNmSqtO86rfuP0a8H4GL415F8bREQ69+Pz\ne2txfIOUHZNapb/N9hfh15D4NPwa0utk5aRSBgL/gjUcGlD9kgvxeYPt+JY/KV//2hAVje++4jPx\nrXyMkzkTdjIwIk0WZVq0HNb35/yrR7z2tCvxK+uA8y1xawO+GQ0m41vwjIX5qh9/e5l/Dt9Ap87W\n35h20bepvZTVMBrGN9r+sjT1nqJ1+Kaas42Gu/Sv/d39uCdFM6bibx7RvyKkzc3DMZymX0fj9a8X\n+5874LVnr5/ptcf69C+TSU5WRyRJLcIvHlmLC9VrZ3930Gtz9o77K29/Pe7HUBfGdOtWPRf5nqbS\nr6Ph8z2qny8Z93rgHF5r24VfKzqO62tevB5ZSPwtdfis/rXBX4LzPfkEzi9riv51tO0Efl2p2DDd\naw/36DHBvzgW345+PSf0LwNDbfpXu0iTu7wYf6tr4KL9OLMkJln/IpCRhfjDvxSde/206te/Gb8k\njozRr7HzClQ/jk2c0dh9EnPezZzMWV2Cv0O/Kmal6Lkz3I370HcacW50XGcsZczDXBzZh0yL0SH9\nC0p6Gc634wzuKZ+fiEhgqv61KZJ882ef9trf/fv/Vq89+IHrvXb0MvwydtO/3qz6NW8567V3nMIv\n/JsOHVL9rvzGr7x21QfmeO1xJ9b0ddV67XPtuC7LFl7ttWc5v6J+at3tXvuL//lRrz0a1pkup17F\nL2nf/vbDXvsnL35X9fP5sNb76Bfgvma9lvS3Ys5VN+LXqde+/qTqd/23P+W1L0fmzPjY+EVfa9lW\n67U5q7ePYqiISAplcI7Sr7FudpovEXO4Y1/Du362iEh8EPsTzr7xU4buaL++P74kjDP+pdf9bI51\nnOHlkkC/cvP5dTuxMnQK4ywxF7/69tboWJ486eJ/670STfu0w4/uVa9NvwPzhTMXMrP18fR1I9YW\n3ID1aeNPXlf9VrwfGXOcBXjBmYsNzyFrpeBm7Kne/hWyVpY/uFy9p5uyls/uRmyo/6POsFlwyzyc\nB+0Dxp34PDCM49v08FavvfbTV6t+fF16KGP22POHVb/MAO0lrpWIwxkj/Iu8iEh/U6/bXUREkifp\nzMkBWodiKCOj/e161S99IdaaaMrA4D2CiM7IHiqjtZrmdufuBn6LxGdhLeXsh+Qifayc1cbPA4Nt\nfapfcO67x72m12vUvwtvxLhteQPjp+h9U1Q/N5M5krBKIiGoM239Fcik6NqDZ5DSD8xS/ViRkUNZ\nt/EUk0RExmncdh3AHjApL0X1m3zfXK/dthPjIHMh9kB9jTqmc4ZSHD3nxgV1Jl3Dy1i3ebxlXaEz\nG3ldaKfnY96Huv3a3saePDhVP89eblrob6fN1OOPzzk2iDmb6Fx3Hmf8vMLPbSIiHQdwPfiZOzpO\n540kZOL+t+2o89q5K0pwbK/p/W/e6jKv3foOzsl9fuI40kzqDM4yExEZ7sVelsfFuLNHTZuFaxZH\n+2F3vz/g7ItcLHPGMAzDMAzDMAzDMAxjArEvZwzDMAzDMAzDMAzDMCYQ+3LGMAzDMAzDMAzDMAxj\nArlkzZmi66CX7W/RurzOI6gZwjVYfG59hDnQd9a/Cr1awdpK1Y8dDFreRqXv4HSteUukKvJdB3AM\nrD12tV1nH4N+NueqEq/t6sK7qZJ2MtW8GOrQ32Ep1xHSWXLFbhGR4GRoBVlLHuXTn5dSpp2MIk36\nbNSc4ervIiJVd8FZgGvfuJp0rjjEdWWObNROBbOuQ02Wwg3Qu3YfaVH9uk6jnkXh1XDDat5U67XZ\nfUdEa9dZw997XjvETLsD5zRMFbLr99epfvmkFUynmhcXHM1z6W3QhrIeOnRUa/DjMi7u7vBe6aNa\nIEf/e5d6bfqDi7x2N9V4ceuuhKnmB58jO2SJiIyQu8qJ51CTqHSFdi1jHbU7pv/ClA/NU/9mZ5F2\nqk3juiaxe9ak1fi71a9op43sXMwdrovC40NEJJUcG7hae7zjyJF6s9ZoR5roWFyngUZd32aIaidx\nvaW4oK7jMthKDlV0MunFOo6kkstV+zaM/fo9zjyYAw3uqFNH6S8kFmlNMddoGmrG8SSVaG1913HM\nkfhE1MbIW6p12WFyxkimGM/1bES0DriPnNOyHZcG14Eskjzx3ee89pXTpqnXuI7VsRce9trla69T\n/XxXozbB59Yv9dr3HtLxdJCcS5774Ute++Z/vF71SwpCQ//hn/6z1/7FR7/ltTd8RheL+OHHf4Rj\nuBnOHT949vuq39Gfv+q1J2VhTP3zrV9X/YrptU/9Ep/3wH/8rer3oT6Mlwe/DLerHqfmw9qZ67z2\n9tpaiTRJOYh7HbSXEBHx0zgLUw0V12mRXRsyZlMtC0dbP9SF+8j1E4Y69Z6B3ey4JhfXYnDfw3Xv\n2MXE7jHcuQAAIABJREFUdbrkPVKwAvuqgQ49xwbZrYv2ZX/l8kZTjGs9JDj1IS5WMyQSdB7GviIr\nR9eoY02/n+oKNDbqcZaXg9jBNT/mzNZ71Bhy4+SaLLPvWaD6cb2IXb/d7rUX3jrfa7/20zfVeyrz\nMHY4pnN9PxGRpDzExiZyF00s0PG5oxfXfOXdy7y26+DV8hpqLATIubNiuXYS7HdqLUUarnHY5+zn\neC1kxzC3RswY7VtSKrHnTV+g6yIKlefhuRScpZ81eH/CxJGrE88pEZEeqtOWQo413U69w4Qc3Fd2\nUkzI03sxfr6Ip/1lrONMw2Od1+COfdpxZqAB/SqXSETJoLUv7OyF++sxHseovmjNo7rGWmIBzj+H\n6onEOS5Wg+QeFhvAvsKtCTY6gP0mx9Bzf6B11qnXlLYA58HPr+6egp8Def1IdfbdI/RvH9UhDdfp\ncT5I9zBzCfZkHNNFRMLn6H0lEnGyFmEvEXbmIru8cm2e9j269hK7/LErketYxGtF5x6M1aKb9D58\nlGoMDZIr21AP5gfXERIR6atDHUyurTXsHEOwHPGBj4H3pCLadZAd5YZadZ0orr8WQ/sArlMjosfm\nu2GZM4ZhGIZhGIZhGIZhGBOIfTljGIZhGIZhGIZhGIYxgVxS1tTfglS0cK1Ob+JUK7apypivUwjb\n9yLdiVP5uk/oND+WRrF972C7ThnKmY9U095cpJIlUKqhaxdXcucM/OMSdsftnWSVNQspSK719QCl\nVQVnIBU0OV+n9LPMic8jtVJbXHK67OWgZStkYmOOhW3DC9Ve25eC9EBOAxPR8o8QpW5OXzNV9Rsn\neUrD8/jsygfnq35BsmhreBbWk4VkZXn0DwfUe3IplTFEKYpjYZ2qe34PxuO02yBxCiTqVMtAFe5D\n458huatt1BKsMkqD4xTZlClaSnFmC9KMF0pkKViHNGNXAlT7KFKsJ91BdtKOzI7TYjlltO75E6pf\noBLpuOkpSDONitFp7Zxqyhb3+SRTO//0MfWe/Otxf9l+MLlKzwm2i23cDGvI8it1ujXLqTjtvq9O\np9Kz3LLxZdyn3KtLVb/WLbVeu1S7PEaEroMYW+NDYxft13wM1zM1oFPb2T6bU0ZTKrWsqW0z5n2M\nH+c/aXqJ6nfsTdz/GEq7zc/HPTl3QEuhShbgMwb7MT9GnFTzVEpJH6B7winGIiJxFF+aduNvJSfq\nVFBOLeXxzDFJRCRnZbFcLti2u3K6/jvv/OZtvFYFMWh/v7Z57DiCczxOEok1//IR1S8qiqyCX0cq\nNqfViog0nN/ntTPmIEZduRSDmKVoIiLRPnzeXcth7Xv6j1tUvyfexL+XVUHqvOhDOi/+tZ9DqtF+\nBOf7yfXrVb+pH4EMJLcY0qWOsrdUv39r09ci0rAkISE7Sb9G6cgsrXbT6zlFursaEj6WI4iIZNK+\nqOuQXl+YhGzMdZaARlOcS8jV8YDX6rTJGHMJCXmqX8NeSGwaN2FtjkvT62J0HM6dLZpTHWtuPr5w\nPVLI+ymdXEQk25EwRpIkSotvrNV7yt5OyATyRnFdRsd03M2/jtYUikshvdzJrj/s9tpX/d0ar91J\n0jYRvSbNuWWuvBsjo3p/1TeIvefUG7CG953XMo0Dv9nptZPjMRZ9zri86ouYV71nMe9PPqMtsoOp\nWN/3vIz91oy5ep29MHz5ZKIiIqNhzCNXxhFP4zO5DHLD+Ew9Z3kt9FNZAncvy4yEcN2HnXII1fuw\n7yjMwJo70kPrXbeWSHSTZLNlH+bBgnsXq34DZN+cQXvKZrLBFtH7lgEaC5lXFKl+HTvwnJU4CdK3\nWGdcZMxzJF4R5PTvD3rtintmq9d6qZxC1cewOx5zbIgHWjBnzzyM8ZhE5yQikn0F1t0A2XS7siY/\nSe/btuK5YNKtkCOPDetj4HtwZhOeC+b+jV7vMudDRhOXhn3KaFg/f8aQBK2CnoPOP6P3xqP0HDNA\nMjD3OaOF5HZVKyXy0NZs3HnW4LnZ30z7OeexOikf0p6LSeVFRAZI8pq9AutE7zktKWL5YdYyjP22\n7dhHpTqW4ydfwP6mbBXi2ek/6hhYfgvOkeVU7ncP/SS95JiSe3WZ6tdBduk9J7AnGHNkTCxflRXy\nV1jmjGEYhmEYhmEYhmEYxgRiX84YhmEYhmEYhmEYhmFMIJfU03RRJXyuxC0iMtKLdL7hbqQGxiTo\nKuK+ZEhlMmYgbSncpJ1uQmeQlp5IqaoZU3XKUM85pDEVzkDqZmws0hj7+2vUe8K9kM1wtXrXfYBT\nQzmNis9PRCSR5FmtJB1wU8ASC5HalT4H1eP/ykWHqm/nFUrECUxBOjKnLLvH1b4D6XLps3JVv55q\nyBVqa1DROqVJp58VzEaqX0wyhtf5F7TLzghJyMao6jengyfGxan38P1iV5Q+x5ViZBD3mJ0ifG5l\nfXKSaWnHZ5SV66rfoVakStb9CamW8+/W4qXkBC3BiCTshtG+W7sIcPX7AZIinnlJy5Wm3YMU630P\nIcU9v0rf61A15iKnZLrpiS/98BWvXZSJMRa3F9chOEd/dko+0mrDlG4dKNVOG/UvIe0+j1JYO3Zp\n94GUyUhpZfnh+d3n5GKUXIGY0lujx05s2uVz3HJhZwIRkf5ajLP0XMSz2BQ9DzilsuMgpJ2J6TrN\nO4lSwIeoen7nPu1Mc7oZ/85MwTgL12COpjmuISOUAp5FqdJurBymtG+e5+xMICKSWIC05fRSpPG6\nKcI9xzBnWRYWcNya+hsvn0PM2hVITW44ra/l2VZIKzZ8H45FPa1HVL/Nv9/mtWvpPYHvPab6Lfin\nO732Dd9+AJ/XpNe4+CDmXGbWaq8dcyfmb/cpLfvYSU4yU1dArhR00oM/M+ter33oCcin2radV/1i\nfZh/LFu74isfV/262/EZ9624xmv/5KX/VP1mfeL9cjlhNyOWy4loJ4ruY7hursQ5fSbim5/cBF1n\nhl5yQsy5suSix9S2E7E9KhpjOIkczJJTtRSzo4Pkbl2QN3SNaSli1kxISrsSkbrvujqxbCOpGLIA\nlmKIiCSQ21UcueslztfrZw85M+ZHWOFUfQJj0N0vBPNxP9iBsGqJluzw+R54er/XnlSm164K2hfU\nPYu1NdZx0xun+Hz4WUg9OPN/4WLt8paQhdjN6e8lN2onqGGSM3a2QDaT6DguniUXnPzrUAogNUmv\nESxlj49FrGg4peOaL0bPj0jDe293H80lFXjMde7VcrK0OZAfsruU627Gcuq+s7iGLJkSESkpxR6z\n7jxiwKubsQecVqg37AG6vnXt2DPnPKdLHnC87t5PMkdHOt7RgLlZfCX2LQef2q/6TVuL8cRjwXWE\nCZ8nyeFMiSgJAZyTz3GTYvehgVas/exsJiIyaQPOo5gk+p379b7v/JO0ntI1K/2APil+Zii/d47X\nbnwDslu/45Z7/ESt164gFzWWqIjovQ47nkbF6pyHzNnkhjmEOJSYrx3WcpaXeO3+RtwnX5KOa5eS\nCUUCXrvTpmar13pO4hqwlDy5WI9vluOxBJsdzEREOsnliv8uf78gItK0E+OkaBXKJvAe0JUvznkQ\nUsK+BnL2nKOlfaGTmKfs9DzUruNGBj3L9FFMYtdQER3LeX8gjkz23FPamdPFMmcMwzAMwzAMwzAM\nwzAmEPtyxjAMwzAMwzAMwzAMYwKxL2cMwzAMwzAMwzAMwzAmkEvWnMlbBW1z+74G9VpKCWpEsMZK\nHKvmaNLfdVXjM2L9WkeXvwjWa+F2aKU7jp1R/dh6reXsJq8dyIUeMz5ea4VZw5pVCO+xtnpt3ZmY\nD90g27NxTRgRbYcbFYfz6+vUdRR83dDdsY44VKdtX1MdG+FIw5a6Cflamzw+gmtz6hh0fSlVF7eJ\nnrIM2vXTO/X9iUmkGiUh6Cuf37xD9Vs5HXrSxk7UHql5Dte2sUtr4XM7oAmubIWOsaNX15dop38v\n96NeSdaVWvBe+xJqEeUV4h6kVOj6J6xl5vMLOda0lXddBu/l/49+0vvHBnQ9g5L3wyq+nrTwudP1\nPLhAtqhcd2XU0XeyXjRzGWmFnTohK26DtWD16/i7bJmcNiNHvaenFmOMbfnOP6trEvlJm7rvBWi8\n3don8VSjKGsJLPaSnPoDReugu2c9a6BCz72GF0/K5SR9PjTMtS/rv5Xsf/d6Nz6n5kwH1QLLXYYx\n3bVX1wnYdQR1B2ZPh073QG2t6je3FHG+h6xAF9y9yGuHndo89QdQG2OwGnrwsrkl+uBpzI2T32LT\nYV0vIFALjXVsKuoPJJfpudhPWt8LIxevYROfpWsrRJLgLIzppAKtGy8ox2vfuusfvPYNS3R9qmU3\nom5N6U6sd8u/+veq34dWXOu1/+NPX/ba3/vUL1S/j33qFq/9s9/d47W/9tQTXvuVr31WvWfxnbi/\nXKfg0K92qX6rvvZRr91egvvOVuYiInf+zT977W3f+G+vnTt3jurXTdr9n7z0E6+95ZuPq34pifj8\n1d/8pkSaOKr7EBd05h7p39nykmt/iYj00t4gfQpi5fiIXuPZMnS4GzErs1JbzkaRW2sf1U1Km4Q1\nty9Uq96TmIV7N9COeRATrbd3Q33a5t47ni5dJyprKeLoCNV8GovVdUfYulj8uEZ9jpV2wKnpEEly\ng9gT5C3R63v4DGLWid3Yv/QN6fVuznxc26JJqLGQ4NRx6TiE+HqmBTF4cp6uxxioxPnW7cU4WLYQ\ne57nX31HvefW26/y2me3ox5Q134d03n9SCqiOl2z9TFwrY1YqvuYuVxbMHMNJbZrrz6ma4G4tWoi\nDdtlDzQ6+2iqX8LziGsFiYh0bKdnFDr/pCI9Zxv3IIZl0x7p9Ha9lx0Yxthn2/IZkzDO5pXq+k+8\nl31xF+JoaEDXr3h240av/YX77/faJVm63ldaNu4x19Epm63HOtuAu/WHGLYsjzj0U3/j6/pa+qmm\nYOpk7LmSS3Sdn/a9uIdN2zEGJ39Ax8nclbjuvJ50HWlR/bgOyUADxs6x47Vee260rv/E8f7Jt9/2\n2i9+403V78kffdtrv/4y7jXX7RMRKdyE+nAp6bg3GYt1ba5xerZtehXXL22Bntu8z70c9NZgDKdO\n0eOxn2q3RFPtJvcZlq87W96HqvUa5NYK/AturcH8pXiOGyKL6xz6joJr5IqING/Bc2/53Rg/gy06\nvqTPpZqJVA82c46+PyNhvFZwLZ4nzj2p6wlyHZzBVhxr5kL9eYnO3tHFMmcMwzAMwzAMwzAMwzAm\nEPtyxjAMwzAMwzAMwzAMYwK5pKxpfATpOUHHUivWT7bTlFLH1sUiIkVLICNqrUbqlz9fyx3Gx8li\nLI2sn51UWrbbCma/uxdcy5lt6t/pk5BO2tOzG581piVY8ZmQTHTsR9p94Rqd9pZCabrn/gA7rGkf\n1raHg2whVkKpvY6llrJoi7C9nYhOz8ybraUubDNYOR2pY4dfOKz69Q0ipauMpFwFeTqdbfPzuMdz\nS0q89t1/c70+KLoGwTOwYZv8wRVeu+Oktos98MRerz06RqljwzoFbunNkAycfPmY165YVan6scyi\nrwPpZyz/ERFJLkXqZXwmDpzlPyI67VQirXCiQ0rK02mrPH7YKj3NtUOnfhmUyjfY2a/6DVA6Pc/t\nQKVjV9yMfrPvwdjntH3XUpZjCqde9xzWNr/JZB07ZQ5SF8tvW6b6dZ7CGOGUy2EaHyIi7e8glTk4\nG7En2rGuDNM4uBzUb0R6fbBAp/SGmnD8OdORTsq21SIiWWQj76ZoMrMm47pxCvx1y65W/aJJXpZW\nUeK1ExIg02j171TvmbQeaaLJyZhX3R17Vb9uSmONobHZdUinoKaQFKB1C9nj0jgQEamrxftm3QK5\nTOcebbV5QYf2iMLnkb1Up5cf/AnkCrfdCktrV/40efVdXrvn4A+8NqdUi4h8+5eQIvnikfr/yc9p\nm+n9JP376h//x2ufO/S0177937+q3rPnhw957aNncc3fOKxjP8uafvLE8147zqe3Dx8hOeOab37J\na3d1aQlH/iLE5zuWQYL1+00/UP1SU/V6Gmk4tg2HdLo/yyxYphOfoeUdgVKM2wsXkMrt2lMHp2H/\nxLaeZ/6sU+XTZqAf2+0274cls3sMHMN4DWL5gIiILwHvS8yhfdQMvbdTss8yxHyO3SIisUlk2TuE\nuNl7Rku6XIvTSFJxOzZM55/R0tgw7VlKaL9Z06ClQj11kKYdq8c6sUiqVL/aNqyfs6ZDFrzv0CnV\nr2wEVrfX0HrF0nB37gy24PqN0NrV0KqvZXZKideOIhlSftHNql9mDs6p5dzrXjshW8uCY2h/zVL2\nydE6DmUu1pbRkSYmHtcjpVxLWXlP03sK1yN7VbHqN0KShGSytR9x5nZONK7bKZLlt/VoOV4lydUK\nV+J+T/Xh2iTn6/WpmJ4pXvryenz2Lm1rf8ti2Px2hbGGT75Ty3dGBzCWlLzLWfcTKCZwqQKOISIi\nbW+dk8sGrV35V5erl/i57cwjWKsyl+px1UXPXTnzsEdtfcex3L5pKj6b9vGuDKed9gXNddiLsOX5\n/i3H1HtWf3qN174hd4PX/pvN71P9Uqcgvq4h6flor34eiUsn+SytK6df1PGqcBH2EmyBfv7106pf\nah6el4q0UjkisMW3a2k92EwyHbJHdy3b23dgvGeQnIfXSxGRVpJ08/NF3lV6/Jx5BNbxaXPxXNO+\nC/E62rEwn/P3N3jt7nN4TmB5m4hI1iKcR/tOxHj3WHndTsrFNcpaqeNQSjHiF9vGKxt7EYlx7OZd\nLHPGMAzDMAzDMAzDMAxjArEvZwzDMAzDMAzDMAzDMCaQS8qaOqk6varMLzo9kh2UcudrCVDLCaTD\nB4qRWtp1UqepFc5DtfpwGOleyUGdNh4djRSxqCgcfn8/Ur/YvUBEpKMW1ZQHWpDSFKzSKXD+QqSL\npZYjxWoopNOROvYhVW7ax67x2j31OmXQX4TPGx/F9UsuSFX9fImXTm96r0z54FyvfeL3+9VrnBKY\nVow0rqJiLTsb60d6Zego0gMTJ+m0zuUF+Fvx6UjhC53U6bmTNiAtMWs+0spqnsF4aTmppQ+zb5/n\ntY/+CWneNa1aEpPyFlJVNx9DyuLktVNVvwJyd2jYgfE44lQK3/EKrtnUQhxrcrE+94ZjSMmcfp1E\nFE5hbnpNy70yl6F6e3Ix0nmPPrpP9ZtxL2QCnKLOLg0iuto/DQ9peKFa9Su4CWnfnMbPsaFp81n1\nHk7bT8hAv6wVep4nkMQwjsbR6KhOSQyW4350UkyZepd2iOFrEXMKcePcW9pVoHDh5a2EH6B069Rp\nOv4EKE22m2Q/rsyu+QReYxeJopunXPTvcso3p2SKiMT5cb/T06/w2p2dkKOkTdKSwGAQ0pTublzb\nsSG9TrBLHcfDC9P1OfWegUNADMms2J1JRCSGUtJDJxCHXGcVV/oRSTb9dqvXXrxOj7PpD8CVKSUb\nsrJ/v1+7DU36I+SfN33rdq9du/sF1a/3NOLmYBtSilMna4nh0gdw3/b+Ag5InFL81VsfUO/58uPf\n89pd33jEa//8ZS0v2vHt33jth15Dv7uX36H65V5NzgldcLloeFPLPuJSMU9z05ACfPQn21W/WZ9F\nDEhI0OtRJIj2QS7hOgq1kFPIMEl/Ow9olzGOy7EBzEV3vfNTXGYJh+uews6QYXIDTJsHiUVyrt4/\nNG7G3id5El4Ln3fmDjsNkvQoKU+vY4E8pGl31SI+uhLV1t14LYXc9dJmaDktp3ZHGnapYZmyiMgg\nyYtaO3Atgo7jXwvJWRZOQ5zbuke7cKxejZgXT2vc3PEK1e9cLfbNKbRXKqjCPcwt1rGfHT4ql+mU\nfiaZJAc91biHdaeeUv2a3sQeoWQDpF9tO+tVv4JrcL4hjsHOnrTlDazj5fMl4ozR80XrJr2PLrgJ\nblp8XHE030REhig+1j8HJ8TKB+apfh274AjE4q1ixymplKQzLBtKyWYZg947tR7BmAkUYC+RNkPv\nKROysV4Vk3Ntcq6WIvaTrK3xNcy3PmdO5a0s8dqJWTS+HZlsbLqew5EkZxWOQfRUlJpHsF+veADP\nCOF6/WzFErZwDeZsouMyy65O7Bq07ceb9TGRmxuXNegkZ8tZt81V78kshbRsdBRSlpm3fkT1GxqC\nBKZ4BtbZ09v/R/XLnIrxu+Wbf/TaGak67rJ7YN5aclMlaZuISLrjwhpp2GEozpHFJeRibLG0ju+b\niI6PvN71kXRfRCRjDmKij1zlLoxqXXreWsRELkfCxxc+q6XEbUfwPQKvE64DaMPL2J8U34ISKKMD\nzpxV0kHEq8RsPTbZ8amXjsm9lqkV7+5U9Rcsc8YwDMMwDMMwDMMwDGMCsS9nDMMwDMMwDMMwDMMw\nJhD7csYwDMMwDMMwDMMwDGMCuWTNGbb9SsrRuqpeqjERmwLtZ+cZXWNilOp3dJ1CrZa4YKLq19cH\n3ZfPB13t8LDWbnedxGdkz4AmNDGxxGsPDGjbuph4WAWzVemQY1HL2rEYHzRzI44uPOcKaE5jYqBD\nC51sU/0G6fqllELnxlZ3IiIhqitwOay0+TzZelJEZPuvURsgKxm6/u7zjhVoEY4/qRD3Z8szu1S/\n2RWoO8DXydUkxpK+sOs4asaMk+1m1S36WFk3OIk0ni6ZhdC/rxpDDaTqjdq6rqETGmvWG0c7Ot15\ni1HLIzgT12igQesnS1dcXCv+Xhkiu2vXMm6MNKnNVI8mp1JbpA6STnmIbN6HOvQ84PpSjbW4N1zv\nQ0QkYW8jvQf3jS2yJ2+41jkTvDY2Bm1rIGO66hXqhEV9zjKMo54zur4Q10Fo2wKtuo+sDUVEkhPQ\nj8dijHOvXY12pBlqw3VnW1ARkXjSimcuhV49JkGH6QDptM+/Xeu16547ofqlU50Krv/Ue7ZT9cub\nX+K129th7ZuYyNp6p+5N85+9dvgcYoU7z3lscj0aPh4Rkba3MRai6DPGnRo2gUS8r4f+btFaXRNn\nJDQolws+hqQCrRt//tu4LuU5iBX3/KO24WS7+rS0JV67etN/qH69vRgvk6djPu/8yVbVzxeDa+an\nsb77Z7DR/foff6re09WMWkEzP4hCEp+/9Wuq37/+7u/wGXfAuzM7qK3g//yTjV77rh/C6jt9pq4X\n489F7P7Zq6hhk5Sk605d7t+OeIy4azzbU3PMT3JqG3Hdj4RM7AX8ZfrasI0mz/s4Zx5wva8oqr3E\nNaOionQ9kNwVJV675rFD+CzHvl2isD/pPYUYEJyi14mhAcRYrkc27MypjHm4jzEx2AN2n9Z1efqd\nuhKRZLAd8yNzbp56relN1JurmocaDj01Ov5V3Yi1Z9v/oM5WVX6+6ndkL2r7jI9jD7fivuWqH9e/\n6juLuhmpNH/jUnW9lP6mXnoN8/fsc3rPUruz1muXXYlaN40bde20pjOoSzb6MPbgwTl6Lh74D8QR\nfxrWn95OXdNkdFzvWSMN1zQUp3ZQF9W+VHWdTuv7yNbGvIc59/RR1e/4adSTmrdqhtd2LbzjUjE3\nU3NRNyQxEWvz2JiOGyKoOTMyjPUpKU3XCYkPYM8VbkJdovh43a+rG7VV/KWIKYU3aJt3tpoO09yO\nTrjkI15E6T6KuNHWpWNFYDruTfM27NMSnXiavQJ7jlNPIJZ1d+hag/tqsM+dUYT7UVKm5yzXLhlo\nwpjOvQbxoO+crs3Vk4+4Ea5D7BqZpsfb+Cj2vG09qJUZ5djQ1zyLmFJ5DZ4luFaOiMj+p7Eez38/\n6kN279e1N2PicE9z9elGBH5W7XOecbhWUkwijsO1lOfvBAbbsbcrmLdC9YuLw7Nay/lN+P8UHR+5\nvlRfPY6JLdr5+woRkTF6lixYgbpCUVF6X9F+AvWpfHFYMwfam1U/rjPjS8LzRWySftbobaN5TzXC\n4p3jc78HcLHMGcMwDMMwDMMwDMMwjAnEvpwxDMMwDMMwDMMwDMOYQC6Z8zZMUophRwI02IwUsRSy\n9RwPO1aqlFqUnAabx9a3tV2eLxmpsIEqpMDx+0VEjjx9AK/9EWlgiXFILSqYrSUveVdBbpJMdq6+\nBJ0ePNqP9M/+ENLoknJ0enDPKaQh+qYhlTljns4x8yXimM49i1Q51/Y10ZGMRRySaow5tmzlFbhW\nnSeQ9pw13Ul/3Yr02il9SD+fVV6i+nH6Yg/JvIY69fgZ7kU66Ai12TI0WKGvZw9ZVPrIfjC8R6f0\nHjsKaR1b6eVU6XMq8UOCNUCpcgXXaolENFnBde4naZ6Tplb/Bh2HVjG8Z3iMBMq1BVv9C+9uG9m2\nS8v72rfDRjNjMe77+d3a1r7qJqR5N53DPVz02StVv7o/4++Wkh1hTIy+LsyFC6PUD2nUsbHaypZt\nbhOSMA4aa7SNeBKl7pfePctr9zfrNNjBP0M2WXQjUktjXjut+sU66eaRJjAF9y4+U1u6DndjjrAU\nIDBZ22tyyjZbabPcUETHuniy8RskSZuISE8Txi1nfI5R6nUgdTa/RToOYh70HEY6c1KRTm8d7kZ6\nc/sujL/C63Rats+PWDxI0q+UCp1q3tgMSci09Rin1S8eU/2KFrgSmcgxYx3+7taHt6nXGruQ0rr+\n09d47YT0i1t7P3jVdV77X3/9GfVa50HEvM9//D+99hc+c7fqx9K3qhtu89rR3/wvHM+sq9V7PnX9\n9V572d+u9Nr3rVuj+uUXI5h97lcYIM9++RnVrzwXKfkxMYhX42N6Lo4M4RqFGjAmQqdfVf1aduO1\ntd/5jkQaP6VvsyW2iEiQ7KBj4vAay7lFtEV2K6Xr8/okIjJG0tHY1Ivb2faQPXzaLKxXnObdfaZR\nvYcVhxeTMoqItO3AesDSWFfmGCJZREwC4vDYgN6Ldcdh3uetgkzAvZaJeY68KoIkFyLedB3S6f9J\nFBv7z2N9Dw3ovcj5V6q99v6z2DvcuGCB6pdCcsZYkhHueUxLu+fegrUwdyX2GEIp+J2Hdcr8cA9X\nCn3mAAAgAElEQVT2QL0nEOMe/O53Vb81KyAL+CzJqLfv0LbfpdmQUMXnIPaEa/T4nURy0KY3ce5s\nLy4ismCDtqOONDFJiP++gJ47bJ8dPoPjzyb7aBGRXjq3gXqSjS7Qcrdy2oum0xxzJbkD9Iwznkv2\nuL2QSWVkaJlGoAz7GJZzxOTquRg6j7HKFsCtW/6s+rEULoH2gPEBvZ7wPqifZGEDdTr25l+v97aR\npO80ziN3vZb4s815H1lkDzbq4+Nnyey52Pdte3GP6jelAPvXQBKuRfIkvf/YvRHSqLw0Ls2Afvlr\n9LF20B6fpea7fvCm6jfrgUVem8sOuLImfn5gacy+Fw6ofks/tBTHsAfH0N+t92tjJN+vWikRh5/V\nfEn6GZllRGlTaX2K0zb046NYa9JmI46GOnScyi260WsHcyAx7O3WEv3MghXUD+Onvx/PAykpM9R7\nTr36vNfuqsEeN61M329/Edbwnd9/CZ+XoNfp7NUlXpvLcsQnallwWxv2LemzsI9Q5Uvkr9dnF8uc\nMQzDMAzDMAzDMAzDmEDsyxnDMAzDMAzDMAzDMIwJ5JKypqzFSA3vOqLTMANTkcbEaXmuk0w8ORi0\nbYN8YnxUVyo+vh/pSV2vIgVu0Uyd/v7aIaSp3bYELhdtIaStplRq2ccQyQVYunTBOYakbKQkpmYX\neu1Qh06xSqHUxeZ3kBKbMVfLcLqOIXUx+wpcy9F+LS3iSv2Xg72P7/banOorIhLnwxAoWYeK9O1b\ntSSGSanC+Z95S8tCknohpQhT+mKoVVf9DlD6YhpJqNhZarBbV1HPrITzUm87UnCnL9Gpmt3koJF7\nJaq/cyqaiE6XZdeVWL++Rj1n8Hmcku4v0ZKL9Kk6vS2iUOq6mzYZn43Uy/Z9qO6ftahI9Rtswbxi\nt47K66aqfvz5uQW4Tw0b9b3mud26G/cjSLGhs1W7t7EkZ2wIafKufJHdGxJzkepfdr1OI249gnjQ\ndQTzbbhHuwXEUMpy50FIKNn9QUQkIePi8pNI4KOxVbfxlHqNPSryliFeRMc6Tmc0BrOW63vMdOzC\nWEguQepmrCO5OPX7/fi7lCrO96q+XR8rp8cn5pGEZVQ7bbDchlOJ+5t0PMhcjHjLMsd+xy2goAhj\nq3ELxpY7hvvr9fsiScmqVV6bpWMiIrcUI2X2K7d/yWtvWLxY9Zv7Dzd47R/9GXKl6ifeUP0m3wmJ\n0Ya3sA6V36ilR7GxuLYvfh5SiHQ/7s2jL2mJxD/c832vvforN3ntsg9qCduO/4SkiCUrrSF9jSvz\nIB9g98TAlDmq39AQ5t+zX/6B1z7e0KD6feZ7H5LLCa//3Y4LnI/WCh7D7KAkIjJKMuFUinutm7Vs\nO4rcn6LJ5SJzSaHq10kOeDHxWJ8SgyRvSNVzbIxkY2efRDx0P5tluP3kHjVIkgMRkWSSJnbsInfM\nK7VUkNPfe89dfA+YXKjnSCQZCSFWJBdrh6wYuqepJLf21epUfX8l9jNZ1djPue6E9R0kqZyHeb7s\nDu00yPLNGJI0DNA+7+x2vS52hiGhYefIh7/0JdXv8W2QUT73KNxNHn1VSwJLi7Hv+easD3vtbdsO\nqX43zIL0Mpnk9lMdeeqJlyEbnb5OIk4LSapcd8IhcuQaH8Sa5K4NPO5YysRSKBGRvDWQ4CXnUkmG\nce28lF0MGXcohBIK6en4/9bWl9V72PWN3V9H+rX7Fe9H0sgNbrRcy7tH++h5hSQlTdu0vJvdv5Jo\nTXJLKET7Lt/v8WPk6OWuvyqG+hAL89ZWqH78fNb0Evab82ZNVv12H4SkPtSP8dG+VT9Lrfk01kne\nb7IbX48jN2E5G+9ZipeXqn68RsTSZydmOdec7jXHgEV3LlT9WrdizRgiOXjVfVpSWPvYYbmctO9E\n/ErM15JUdpg69yw5ql6pr01OKfbp7MQczJqv+nV1bffacXGYi7EJeh8+NsbSLty7uDjMnYbDm4Tx\n0563j9a70YGTqh+PuYob8YzZtlWXe2BXr2R6XmzarWMqS50HeG11jGCbKeaVvYtq1DJnDMMwDMMw\nDMMwDMMwJhD7csYwDMMwDMMwDMMwDGMCsS9nDMMwDMMwDMMwDMMwJpBLW2lTrRZXW88Wn8Fp0Mi6\ntR72Pg2tZk4qPiMpqDVlzVRf5GdPPum180k7KyKybh7EWemk8fZV67oMDNuBsWacLTJFtOaUNW7J\nQX0M9W+jhsv4CHSWXNtGRGSILGtZ1z3m1JzhehCXg1yykx4e1bU98pfh3NrfRp0Ztl8UEek+hXMJ\nVEAbODlR67dZa0oO3nK+Q+s6E8namGtgpM2H9RhrdkVEGnbCTs+XhPdwjRkRkSDVs2GbtI79Taqf\nvxjjcZCsl1Mdq+pYsjFNL4dGtu3wcdWv7gCu3/x7JaLwMTRv1nr1rlrUjym9ATbRrTu0ZjKR9LM9\nB1CfJfg+bYPXuhPnwXUL+BhERLqPQdO/81ncm5zNuObdfbqewczV0HSybbW/WNfviSFtK+uk26uP\nqn7xVEeBbZtTq7T9NNcU4loJA46Vo/8yz8Uzb6CmQfGSEvXa+R21XpvjSuNLut5LAtlmhk9i7LPm\nW0QklubI2U34jHpnLs6ZjZpNj/3sRa+97wzsB48d1df903fd5bVXV8FSMiFLx40LYxfoNdRGSkjX\nNuIdB1Dbgu/P6b21ql9xOWoJcI0nty6Pu15FkqaDO712aqWeO6985fdee8lk6OTzV2tN9olfobbM\n1AdR94HrIbhsOY544//GIxftN/N2WPmGaxAbuIaQiMi5Zqzh0dGYi4/9829Uv2Ay7tX9v4A1d8Wd\n2kK4sxpxafu3fum1K+/RNWfCpN2etxjxqvEVXRti6y+2eO2yX3xAIs1IL7TmKU7M76uDRt2XRBr3\noLa/5NjE+6WUqc4aQmsc134JndJzMY7sNeOoHtZgCHW3corWqve0t0Nrz+/n+m0iIhlzMHfigqhb\n1blHr4vhHsTswhUYt2de0Ovd5Ntneu2kPMRX1zJU1dQrkYjCFszNb+h1cfqdmAehE21eO0j2ySIi\n4TOYIyumonbVG4d1bYeqfNQUjKF6E2ef0P1iE3BMO7fgtWXrsXedfK2ukXX8RcTXwnXYY9S9omP/\nxx7c4LV3v4laB1+/7z7Vr38Ie9kXnkOdmgXl2kZ2uAtrZsZC2BO7FrqpU3ScizRcSyYuQ8+xVHq+\nqKe1cMCpa5J9ZYnX5v0D7xFERNLLsd6F27HXceulJSdj3I4NY8/ecFLbXTMNr6BOir8ce5qEbL3e\ncS2iQXpOcOszxQUwT+NSqIZNT63qx2urqpmSp2sHcY2sSJNIx+DWEOTxNNKNsdnXoC3bEzLxGYFZ\nWN/Pbjuj+l33iau9dhc9i44N6L97gfZEXJMomp4Ddzy6Vb0nJRHjJX0uYmZsQFsrdx/H/jeRbM7P\n/kHHgyh6EEpfgBhS/7Ke28l52NcVLEUtwRGqOyQiUnCTrr8TabiGZcCp36qen6mOUGyyjhf1B1/z\n2j0nsXalzdS1TLn2UlI2zjMmRte66evDvjkuDnt7fhYfatfPGjs2IT6uvme51+4+3KL6+ejYR8OY\nH4U36Xq3rdtQE6ifnhu4fqeIXlvZEr1gva6NynP23bDMGcMwDMMwDMMwDMMwjAnEvpwxDMMwDMMw\nDMMwDMOYQC4pa2p6E3ZtOZQyKKLtdruPIWV0qFWnFtW24bUukjhMEW07fcUMpHnmp3/ca+8ka0MR\nkQ33wBrt8OtIBZ2yEKmgyfk6la+3lm0ekUblpt6xTWisHymTA63aBo/PnaUZXYe1HWfWIqSJxiaj\nH9sd/+/nXd7vyEbGkDJavkHbPp54Cqlf5euQxsW2fSIi68tXeu1Tjx702sU3TVH9ag4g9atyGe7J\nhg/qtPT2QxhbfbVIc++mazjY1q/ew2nZw2S3mz5Tpyknk3ynkdKCQ61awsJpjiwjqX9Fjzm2jD70\nPGQfbH8pIlJQro8jkrD1sM+xQq66G7IBlhUOdei0drYFLLkbKek91e1yMdh+MH2Kllw0Ugrvj555\nxmt/5LrrvHaLY4eeuw+yobeOwZ5zbqmWfZQvw99KIHkbH4+ISKAE15zn9oULevxyqi/LOwJTtPyJ\n040vBxU0x1xL9MobIPkKUSpoQp5Ofxykc8m/AamSdc9ri8C+EOZPegbufe+AHhePPP+61+Z0+NIc\nXNsHr7lGvWfazRg/Z16CxXNmsU6DHaM0apZ9DHdq+Wv7OUgh+gbxWkKsTpflGD1CKfknDupU4oq1\nOiU1knCacXb2deq10XHEh9v//ate+/Wv/Jvq19CJVNiFfqx9x365UfV7dcejXvvvvvZBr+2O76d+\nCkvXxRVXee3/+eGzXrvvMX3Nf/vQl7128y5IVjJSdErxb17H+Mj6py967XkfX6b6xZOkZu4/4Lr8\n4EPawvuj377Haxcug8X45s37Vb/rvnGrXE44rZjtNEVE0mdg7DeTZbsbe1mixLLP7v06dTpjKeSh\nLJkKTNbzJbUMEo6kJEhQwr2Y2319OsU/JgZp1GmzIAv252WrfvWvY45w+j/bfIuI5M6nYz2HY3Wc\nQGUkjGvGe6lhR94d/39J334v9DdgTQ8P6vH91i/f8tosLcgM6P1hXAzWDZZfsxxcRCQ5Hvd31xsH\nL9rPN4TP6yGb3+b92PfN/uRS9Z70t7DGdR/C2Cm9ZZrqx9N+UfQsnEO6lu5sfwrp/jfejJR+11q5\nkSTSeVdA4j4+oiWQ77yw12tXrbxfIk3KFFhIs0WxiEgLydVY+lF8q97LpqTgWrWehvTU3UfWN+Bc\nApVY/0d6tZX24V/9wWvvO4A9YRaNn+IpBeo96fOwR2WZRc8R/WzgI8li+my8p+l1PbfzrkYMiI2F\n5MmVnbVug4Q9i6Tobdu1tH2E1t2KRRJRomg/7cY1LlHgL4Hci2UyIiL1z2IdSl+IZ8QZJFEU0dKU\nbnq+y56rnyuFnmNi/bjmJ36LMbD8wRXqLaMU13iPljlT738vXMDepvME5jZLoUS03PLAk/i75fNL\nVD+2rW5+FeMgMENLCnOW6TIbkSaN1j6fW7aiBfGW1zj3PsbSHOax0PCc3qPG097Wlwx5LT9Xi7jj\nHWN6/4uIw68dPCjMp+692WsPtGAusqxORKR4A+27SQZe94yW8caTZJ/lSvnrtB08y584HrS+45SZ\ncGzKXSxzxjAMwzAMwzAMwzAMYwKxL2cMwzAMwzAMwzAMwzAmkEvm8LPzRvuuevVa9rJJXrv1baTx\nnKjWqTvFWUjJyiW3prQKnfY2PgpZSUwTUsk+fN8Nql8cpTvNvIqkUKvQHujQrg+cEsWpx66EoeMA\n0qoCpUi969itZUj99UjtYtkGV/kWERmj9PeYRPwtTs0X+WsJUaRp7UFqcszzJ9Rr6Tm4J7ueguNO\n1VSdOscV9HMp/ZXdkER0mmcnpR7u3HhA9Zs1DSmCoTZczx6SXNRs16nh1/mQfvjQzyGjuXrWLNUv\n4xjSxQqpsnn88TbV7+Wn4WKw5qr5OIZzevxMXgzZUBOlieYVaUlMbFBXc48kXXtRkT5zWaF+7Qiu\nU99Z3OuEXJ1OnrUIFeB3/3Cz1y69SlcRZzcxP6U41jy9Q/V7ZTtSNO9fv95r+0iml52q3Qc2OqmH\n3rGl6lTzln1IG2RZXsGCItUvKgrzKpoqvw+0aXklV1RnuVfJXTNVv5a3kIJaol+KCHxtWUonItJ9\nCKnP6QuQDuk6SnF1+W5Klz5Wr2N0GcmSwj1I7S6r0uPn+d1IgV81Y4bXLqHYnbdQX/c+ctxJzyUX\nviJ9H9lBi+WBNTu1swo7AoVICpCVn6769ZHzS6wP97twlk4v7zlCc32dRJQdJBl45XdvqdfeOnLE\na6+shQvE0TrtUvC+T2K+1B9/yWt3tWsHknu/cIvXPvsMZIAFq3WK9cAw1ppdP4B7z6IKpNzO+9vl\n6j0pQUhSH/nUt7325HydGv74xu/j75BsOSVTH8PYGOR2Ph/GwU2rlqh+hx7B9Vv99dle+/1ffp/q\nFx/vpKhHGpK6sERHRCQ6DuM2SDHQlXv0ktMPO9+0NGnHopROjOMguUwqS0MRGe5lSRBS24c6MSei\nY5qF4WsdHYu1q3XfadUvbSYkT+20p/GX6TU8gZxHOEaljuhY3s+OVpT+Hp+hHdtiHSlYJBlqwZhz\nnSjnX4N9Qbga96mlXa/vM+/F2l/7I7iM+BP0ev7CHuyPPrgSMu+ia/X6ec9dX/Han7z+eq9dspZc\ngs5rue8orXFvboW8b21Ap/fn07zna85SOREt8WLHvD3P7FP94kk2GrMD60dipr6Hy2+JsAbGIYWe\nB0YdN9PsVSVeu53kO1HO3LlwAfefHZrY/U9EZJT25X31uG6um91oD/pF098qKsM8cuU7bXR8k26D\n7KqvTt9vllTG074xdbqWItY+Dili9iqsfXGOA1XuKsjCWcof7TzjZK2YJJcLlmm0bdHPgf5KPE+x\nLKfjoHaKK78fjmZtu7FmHnhWPz8Ul+AexJIssf2A/jzeO7G7UPGNWPtceTnLPNlZsM9xB2Pp60gI\nUhl+1hMRqbgfkqwiknzu+s121W/GOoyXrFW4RuxoJCIyHNLyzUgTl4rxOOo4RcXTa74A4nqX4/jH\nr218A+v9mqXaufGlV/FMMbUQ+9Jp12g3u42PwLmRYyXLRqcX6T3qO9swd65YgbUgaZLeo3JZEXbQ\nSnCe5xqrse5m07609skjqh+XSoij7xvc+JJSoh1qXSxzxjAMwzAMwzAMwzAMYwKxL2cMwzAMwzAM\nwzAMwzAmkEvKmjhN1+ekV7IMiR0M5q2ZofrV7qz12ulTKE1+lZOWTZXNhVQ+rvtTYh5SblOnIgUw\nGFzotQMBnYrVeBJuEzFxOGVOGRQRSSMpQcNGpAS78oOiDUiJi34eVdyTy3Tab3z2u7sU/FUFbEe2\nEGlmr4c+g1PWRESOPAOZyYKbkH63789aflI1q8Rrx5BMLCFJp57PvA9pa9V/fs5rZy3UsoOG7ZDC\n7T8LicOMSUi7vHrNAvWeRkpzZMmGL0an/bGUKXwWKcw/fuhp1S/NTw4JJGU63qBlbNnHcI7sHpM+\nX5/75ZSnBaZj7gw6kp3wSaRsZ61EOiQ7/oiI9FRD6pE7BWmhe1/QLilz12G8tO+la+GcXhe5VdW1\n42+Nk6XE5z6nXbqOb0K19kxyhalp1hK2yVMwDk5XI9063klbZcctlimyA4KISNx6yDt4Pg+2acet\n8SGdehhpBprw99g9S0QklaryN76D+RHI1f2CMxD32rdhTrT06NR2vierpiNltrdJp+fev3q11w6R\nrLCfpDI1b2sXiTC5OhWmI8Uz1Unp7dgO2VUBpcqfadH3m1NVWR5a2KvTxhMonTsuiDWJ3WdERNLn\n6/sfSRasgxTn/I5a9do9/47x/uBaOBv90/u189AHPwDpw6wyrIXf+sM/qX7JyYhlPL4/cfe3VL87\nl0OyVLYG7ylYinXxxO9eUe+ZfA/Sb6tIytTeq9ejz9wBydNvNz3itf/+xk+qfpyWfJbub1WBjv13\nfP92r91Zj5Tg73z6IdXvK7/+tNcOBLQzSyRgqRC7/oiIJJLsoL8dc8Jdu1nC03scUiaWmYmINO3A\nPK3ZgrnkSjMKZ+NaJZIzTXIR9hYjfTr+j8VSmvs4Ylt8upamJGXjM4quw/k1OA4xvB8ZH4TEJHW6\ndg0Jn8GamUhSKNf1hh0EI01yKSRZGY4LB1+/g2/C2XP+DTq1voH2cIlx2MvuPHVK9bt5IeZS+V1I\nk+9r0HH3y+9/v9dmyWjqi7gf7vgozEScYwnNkXe0uwm7oiRPwv28MKb3qPMr4PIzcB7xviwvV/Ur\nuBFSq5YtWHOCs7TzZPObJEPVlQYiQssmco1aW65eq/8TpPhjdJ7nX9BuKqNh7FnZMef483qfH0jC\nfSggNyRXjvfSCUhWF1fiOuWsLMHxOO6RudcglrMEMmuuPqfB7s537Xf8mUOqX9FsxFSW5fQ36DU8\nOh574FhaIwfq3X6Xz43SX4y5mFKqJRuhUxQbyf2W44aIyIVRXItekiJWLdGOOP21mHO5V5Xg/WN6\nk1r9CsZIKTmAsjyneZOWWLML2EAAsbbuqWOqX8EyxJHkQqwRLW/Vqn5d+7Bn5XtYkK33NqFj2K9l\n0z5+dEDL/C63rInLJLgSLT4XLuOQWKSdhwYacY9ZdrZ5px7fvNcbIVnq2bf0mnSSnsl2HMc9vZZi\n8rIp2qFzlMZSEcnY6l/Rcb3nDK57Ej2zVx/X0ryTjSi1kEeufu7z59U3YP+VmEXfCVzQ0nblAq2/\nDhERy5wxDMMwDMMwDMMwDMOYUOzLGcMwDMMwDMMwDMMwjAnEvpwxDMMwDMMwDMMwDMOYQC4pQPRX\noJZAfLq2brtA2mbW9g626BoOleug9eqrhS1Z17FW1Y9rg8SyXVeKrnUTF8RxJGWjFkN3N7S9WVlX\n6xPhGjY90AbGpun6K3VvkHUl6d8yMnTNh8aXUY+m6Bac3wWnJsdQBzTtQtLypHz9ecmFulZNpEkp\nw310LdHZLnKMrL5yHAvksUFcj1GyHfX5tNYwKQm1QgrI6rz2GV3XJKMUesur8vC34micjTlayz9u\nh/Uca4Cbu7VN4dkfb/TaS5ehBtL7Fmk7SNb7s13z7GJtI54xD/UYhnuga49N0RahNU9B1z7lKoko\nY/245p0HWy7a79SL0MW61u4pNJ+5VktlpbagY5tG/yToiE/8ao/qd+W0aV67g+pU5AbxnmGnDsA4\nxQ2uNfTIxo2qX4g0nc8+/p9ee8yx9us5hDo6ff3aMpMJU+xhy+3QWW2rWnCN1oZHGn85tNijfXp8\ns743OQD9O1t6ioi88XtYNMdRDSR3zs6pgpD1RA30rvOv1h7hDXsRE7imUlsIevWKXF2roKYV8bus\n+OL1Xfxp0PD2HMO9WnfLMtVvJIxrUbO/1mt3hHQtkCmrMJ+7DsDa0NWad+ykWkmrLnp4/0/wOlbd\npGsgLYnGejWzpMRrP/aGttz+9X99wWs//mvUgvnaXf+m+n3x5x/32ukl0MI/9PTXVL/vfxL1Wtp+\nj/v2/nLM+R8/9px6z8eolkpaJerPLNig6+NM+iXqT8TEYFymJukaDUvnIR4M7cT9nFul51R2NuyF\nh1Ixjg7W/KPqF+fXa0uk8VMdl3jHmjZci7gQQ3Vm2MZeRNdSSJ2FWlDn39T1vvwZmAfbt6PGySnS\nsYuIfCIX16bpMMZWwQLEaGXFLSLn/4iYn3cd1WZw9iNjI4gjXUexhkxaN0v1G+yhmEj7ltbtWjOf\nvRzrZF8jxtxIj475/v+LZeh74QTVMJv5vtnqternUM9oyQcWe+0DT+m9yOwNqB1x5klc8w+sWan6\nHatBDYIdD23D+52/mz8N8XDtMF7LSMW+b+tRXb+ibCrub0knxtEpJ76k7cc9KPVjLLJNuohIMq3b\nPJaPbDyq+p1+CJ/PNeDcWhNuHapIk0frbtdBbRWfcQXqrviLcF7RjsXw4Yd2eu1QM8Zj0Sy9v+E6\nLN2HMA+ifPq36qXTUMOC94pcH6fxfJt6z7wPY5xxHaCOo7Wq3wjVYeI6dMnxzvMOxSWuM8M1G0VE\nCpZiLvL55a3Tsbed5nDFQokoA804jyifrqXF9ZG4XinbVouIDJLt+fETtV6b54SISOntWAv9ZGvc\n16yfBbJz8dpwN64513HJX1+p3sNxk23Op/2tfq5s2oP6Kd20Jy+6eYrq10/X5difUBdpzv36eaSG\nLZnJ3ju1IlP1G2i9vHOxt5rqqfj1esd1Njv2YO0Kn9LP/YE8xLqFFbpeEMO1Bv/wzjte+3ybnle3\nLcN+8cN3X+e1s5fheTN0ukO9JzgNY4bXO/e5kveluauxZx5u188TS+5Zgr87HfvQ4WF9rDExfmpT\n/cTrdE2cUE2nXArLnDEMwzAMwzAMwzAMw5hA7MsZwzAMwzAMwzAMwzCMCeSSsqbgZKTPdh3XUor+\nOqTOccoaS5xEtIRnnKQxLKsQ0al9ZbfP89ptlOIuom3n/H6ktg0OIl2v+u1H1HtGQkizTchCKnba\nbJ0KmkF2z5yuXLdHW2rNug/5gHw8bopeFKWmjfYjlSrOkWq17sKxF76LpdZ75fDDkHylZ2npQybZ\nkQ9S+t3h8/qcq0aRzlaYTxbIr76m+k25EWmEI/34vICTih1H1uxdh5DGyhZsGYu0Betn/vYOr91C\nFs+urKmmGZ+3azvSeJes0unHL7+INLq0ZKSdL79eW3g3URrrcBukap37dcpxymWUp4VrcI4V92or\nUE49b3qzxmu7ttBso1i7H/c3N09b+vWeRrrdieeRajntNn39Ms7hmBaTdXXdn2B113BE25L3kQUz\nW9BdMUun1s8oQipy9xGyY75Wp6CylDC6A5/HKbYiIsUbSHJB6a0JOdruvn4jJItTVknEYXtIjh0i\nIuEWpKv6czDHWAolIlLci3Nju+vsgJZLdnQgRs+9Euff6tiRFy0r8do1W0iymYFx8S9PPqne87n3\nvc9rx2cidbPlLZ1unT4P42KA1owOR5rXQnO4MAdpvCy1FNGSSrYU73I+Lz5LS24iyUgIxzCvtFS9\nFhOD8fSNZ5722qGQtpCMjUV6/p3jGMSbntmp+vEakpiIFN4zu95Q/b777M+89k8/8lWvvefnb3vt\nmx1Z5w+fg8zpO9/5hNc+9ouXVL8/bYGcNHcNznfGpEmq39bdsKz90Pfu8tp1L5xQ/Q7TsT7265e9\n9sbD2up7fFzL+SJNuA52rK5cKZbWJ5bMjfTqYxqlf/tLcE9ZJisiUnceMew3f/qT177r+utVvy8+\nhL3LlTOQOr2CYqW7d8pcjljZuZdtW7XsI4bsdlnCMT6uZUg85wK5uMfBqTrNm22dw2f1GswEp2Rd\n9LX3SmExJHfRsfp8C+biuvTRWrXogaWq365fY3zPv3Gu1+52YsrseVh7nnh+k9eetFfbTn8oBXEA\nACAASURBVD+zGfuKW9bC4r6nCeNtw0fXqve0bEbcrCdJ7/rr9LGyLTZLmQaccgJbfwvZFa+5rlyg\nMh/7usobsEZsf1zHoSvu1TLUSNP0GkoKuDbe4Zout/v/4sj2AkHE3rpGnGf/IS3HY5kTryGhai2L\nYPnDhRFIcYa6sH+oulpLWNp3Yb/Dz0JcBkJEpHYr9mlcWuDtk9o6fSHFkWl3Y2xmdWk7ZX7GCc7G\n9ePnDhGRuIzLty4OtsF2+sKoPt+mzbVeO8GP2DoY1rGn6sPzvTbvWfrO6PiSmAXpSHw8xrC/Yqrq\nF3gAkrhj//W61/YtRbxPSNX7q4Y3sefNXIBnkMM/0tJ7lsKyRXbN7/Va39SF8ZtN0vOD9FwmIlJ5\nDcZSfz1iReML1apf/vWODCvCFJIVdI8jFRrqGnjXfice3qf61ZyEVP5IHeYf7ylFRL778MNe+8Y1\na7z2+nnzVD/eH5ZvgNz0wgV8p9B5UO9r2XKcbd5dO/m4VIzH/iaSQ942TfVLItv3c2/u8NrJhQGn\nH/7uCJVh8Ofkq37dR/CcJFfIX2GZM4ZhGIZhGIZhGIZhGBOIfTljGIZhGIZhGIZhGIYxgVxS1jTU\nBQkHp5OLiOSuQnrzCKWmDTuV+mOoojq7BrlpmCV3QKLU34rUf1eewM5GHY1IC2M3obTJWg7TW4+U\n4sF2pN7lzteuJScfRqp41nKk85Yk6MvE6VLhMzjWrMW6Knx0Jr77GhvC8XFFchGRgcbLW32bXTWS\nS4PqtRGSeKRMRsrZqsT5qh+ngu15DWl76z9/reoXFYV0QU6dzputpUKjo7ivsSTzik2GA1JMjE4X\ni4lB+udoP9L1SyfrVMbgU0hvza1A2uqBd46rfte/DynHWzciLS9Kq9NUKnFwHlKJeTyLiITPXST9\nNgLkXFXitUNndZXvxs2QXaWSM8aQU228+/C7uzwdP60lbBVhnGNWFsZLzxHtsJZYgPvDKYXsWnLq\nRe1GkhSH+ztAkpw55GwjIhIgp6mUMpwTp3uKiDz0+xe89m1LUE29s033SyxAinHbNqRZZi0tVP1y\nluo5HGkCUzDH+mhciYgUTEP6/yDJ56Jj9HforT04t6piHP+RGi0pykjhtGrkgGdM1c4Hw+QqVzgD\nsXP3VqT3ssRCRCnpxOfHPS26UVekH6JYl7OqBMf6+72qX2cY8eAsOUE1d+k5dc0ApHXBFKSZJpVq\nSeFA/eWLqf9GcqDCTO2k8MhNm732L9983msf+5WWCqUvQIprDMXWG/9uvep38reIS1/b9mOv/eAt\nut+n1n+Y/i7mxHfu+gj+TrQeR3/YiTTtf73jQa/9lSd/pvot+/yXvXZbG97D40tEZP61uDcP/f3v\nvPbXn9aSuIYzuC6f/dXHvPb2b2s5cuVdkDqmOrLHSOCnvUTbXi2/zJgDOV4vxdvcWTrVmV0mEyjV\nfvGter07+/opr33VFchhLs3REo65ZdA1d5JDTkLSu8usRETG2WXxSri2dB/XEhYfra0szxpxXO58\ntN8ZCEMiPMjukyIy2ILPZ0dD3uuIiHQeItcprQJ8z9SfI7cdZ91mWTSnlw85+6+efpxX47Zar509\nR7vQsbvevR/CvufJR7W0e345HHLYUSienPA6tuvxVkBShcQ9JLV15DAJBRhjT3/9Wa+90pFi56dh\nzSxYhjHxwqObVb8r74ZciePQ/PV6vnXspuN9lxT890raXOw5ek/p/Q07tnbuxH4iLlM7rEWTwxS7\nwBRkaylFXJBkNfwc4lzrsnsgHz/9K6xXmYsxrnodKRTfb5bShRv0Ws/uTyyHnBrS+5GGTnq+2IF9\nS5Qz2Afq8VzTTxL49KX6Wch1qokkLLdMnanjGku86t+CpCslS68hR34JOV0SOVe57mHNW2u99mAj\n5LSTNuj4zC49SSXYrwYL8czQeU47mPlIdsXS16ERfe2S/YF3fU/1Mb2fnjyD3F9pH5Y/Q9ew4PjC\nsTo2qMtgjDuSsUjD7lK+JO1IG0dOyj0n4UiYf4V2uN3+W8TEEXI+LnRkTV+4/36vPXc+9o6hei1j\nW/BPcJCMisI466jGupruxOvBdsT1eHJ5TszSpQza9yKm9FHsSSrTz8pdJDEP0l6dpYwiIkOlWF94\n796xTz8LjQ3oddLFMmcMwzAMwzAMwzAMwzAmEPtyxjAMwzAMwzAMwzAMYwKxL2cMwzAMwzAMwzAM\nwzAmkEvWnGFrwuzF2jaTaxgEy1C7patZ24glByq8duMbr3rtjPlaC+kjTSFr6lIdC2auT9JzCpo3\nrm0TFaV1oH1Up4JtHS9c0BrC8ntQZ6WDLIBZZyciMkSWcYXrYH82Pqo1ZCN9qL/T3wz9eGaR1mPG\nZ7x7LZBIkUF1NWre0LZsFdfi+Flz7Hfqqex6fJfXXvnACq9d/2dt/Xe4EZrRJZ+HTrC/v1b1GyUN\neDxZANe9Av1ozvIS9Z7xUeiIx8gi8J2H31H9Jk9G3RCuhzFzdrnq94tfQbP9D9+4z2snOHaDbPMe\nnw7t4v7/w957hsdZXV3/R2VUR703q9iSLffeGy6YjjHNIUBMQkJJSAgJAUJoISE9EBIgEAgkECD0\napsANjbuvduyJUtW721G0qj/Pzz/515rn4Df63oZvfqyf5+2PWdGdzntntlrr+el3eSI8bJP+5Pi\nN1H/I8O6LiOvxvg7+crBL23H1n9sa58VIS3eaotR82PSatQa2fO37aLdFLKe72ZNMM0Nnd2yBtWE\nmdDW79l6zIlZX2yMMSPHYr6pPV5rvozVVL8hjsZ2qHUPWd8ZkRlFsaxrVPwK5q8JF3/pn/2/5vRH\nGH/xqbJOSiBpz/s8uG69bdI2c8I0XMMzxzFPRYbJeSp7LO7PgS2ot5SdJOdUtqIfPRU66DSqWzAh\nXxaLiJtMdp00lis/kPNLPNVo4jUjZZSse+Miq+DNx3GsCZY9OGvwk3NxHmwTbIwxnR5ZV8KfvLod\nNVM6O0+L1174/t+c+NTGN5x4wCetlV/4PeyUl07A+I1Kk+d7murv/OC2K504bZGs7fPgUty3Q/96\n3onnFsDucvQ3pD3l7679rhNfcdUSJw4Kcot2ty2H7W9rB9a+371xj2j34YOodXPpSqwRra3SZnPP\nk6gXdtmjjyJ+5Xui3T8vlbXE/E1rEdVMsfTqvLcIJwvNLo+06wxPx1wy0Is5xraSTRyB9fQ7KahX\n0mvV6ON6GLkRWLe55lt0gdTt89zGtVVCYuV80FWPe9fnw/pp15KJy0Vfaqsoc+LYAjlv9GdjfuDP\n6LPqWnC9CX8zdgVqFbqiZH0EtvoOS0SdgTqy9TXGmMIsXOcRVPuw7JXDoh2vG2xdfNkFC0S7w/uL\nnTiE9guRZOfaZdUgYRvn/GvweSee3SjadbbiOi+9CvViDq8/ItrFRuJ8N7wJ29dLv7VMtOM6Ic37\nvtyG/VQR6p1Ic2//0E31ISJHyHWx5QD2x4ODWEM2bz4g2s0chWeNSedjTrXrZXpOYg1pacR9SMyS\ne96eVqwhrjiMpfiJqdRGrs0dxahB5ab6clGBskZMP9Un9JZh/c0bL2ve1Z7EubvoOaSnUY5ZrqnX\nVYVnjZBoaw4IkP3On3SW4Tkrbrz1jEPjYMw38Jx15HlpJ73vNNbTlFiMF69PXuf8JtyDzGm4ZnXb\nZL2XULpvPA8FBmKucKfJY+2k68f1vLgWnjHGfH7ihBNf8TXYQE9fJdfZ6o2oCZlEe+aWA3Jf29uM\nc0xZhv1WlDXfB0e4zJBCXbWrWvaXiCyMzc5y3O/GclknagTV4svPwvNFU4v8vBmLMU7zVy534vBw\n6/sGsswODsYx9I2kWoXv7BLv4VpOvD4deFH2udwZuNbu0ZgDvCdlvcPIUVTPk8Z9ysIc0c5zmuaX\nw+gzGRcUiHb8PPtFaOaMoiiKoiiKoiiKoijKMKJfziiKoiiKoiiKoiiKogwjZ5U1ddYgvYvtpowx\nJo2stDs6kMqekC4t/WpPIoWZ7cGScmeJdp52pJDGxCItbGBApiR6vbA943TFpLmQ55SvPyjewymo\nbYeRypw0T9qtxhQgFSuQbKBDYqVl32A/Upa725EuFZUoU/8b9kL2krP4HBzf55tEu6QZ0j7P3xxb\nT9esX6ZSRVAafQClXlatlfKEAbIZfPE3bzuxbYF8qgapsfEvIyV3+w6ZdrvkciTHNuyGTSGnzQe4\nZGotW1onzsU1m5om0/BLNiGteNRo3FNXjJTOzMqHPGSgF9dl+1Ofi3aFC5GOVv2fEvzdb8o+fOB5\npNXJUfDVGftNfKJtycYyotFfh/1js5U2yfK8g0dwHouvmy/aJZDNbyvZ5bEVqDHG1NC1YPkYp0pH\nR0h50UAv+lF6PFIIMyZKSVg3WUlnzYJNX71leZtEFq6cxli3SdpKR1FKIktM6jaWiXbZF40xQ0li\nNlJUQy0r0D6S6oVTn44aKdNaO8qRBl1IaaZ9XimR4PGTFIN2EfHyniRTqngPXffgIJaKyvPoqsM4\nZSvurEul3IbXENEfrc+Lz8U5ptTgPk4rkFLEqLEYz10VmA/Kd8t05oQEKQ/yJ/dc9h0nfmz9evHa\n5XfjHKPS0afzFl4g2s0K/qET/+PWHznxJ59+Ktr97dMXnTg0FLKSj376iGgXF4/zTV2KdeiGO9Hu\nzQt/L95TUotjXfsurdNuKQ/55jcudOJj22FdeeZNaUF67o8gf3r9YUhG3blxot34q6c48S+uhFTr\nzU2PiXaHn4IcI3+28Tsx+ehLvmYpEzBkVx1Okpio2HGiWV/GfifmPUOoZdcZNRJzHcvF+T3GGNNI\n81t/N+aprGVI//ZUf/m83kZSrdS5+aJdVzPmjer1JGGZJLeBnS14re0EPi/Fsktt2FX5ha+xfNEY\nKSv3N92NmIcatleI1zpIUpuzGJKX5IXyPNrpHGv+g73D2NsWina7fgcbebbVnXGr9JauOoX7s/5t\njKuLvr7Yie29iDsHY6SpCOtqNM13xhgTSXLkvR9A1pM/Su4hY8aRbPQzhE1bK2U7kqeyFC/YLdem\nnr6z275+VQYHv/y1wBCMEW8TpEaLl8tdVlcl1oMOspNOnCOvTXgqydM24BnCvicn/gE5Zt4qjPt6\nsrS2yy6wtCcsEets0yE5ZhNIgl2yt8yJg2vkWLT3T85np0upYCdJo5IXoX/bsquEIXzWyPka5qjT\nL8pnsJFrMOd7yiAXyZgmjycuEevYum17nHjRWGmR/do2lDK4IR1jJyRB9tswkqTG5kAq090NucmR\nP20Q77nrH/9w4jEj8J4777pWtOuqxt5mkNYLtlM3xpiEiRhje9fhuoybIvc20fNwLVgaKuzejXz+\nNFOM32kia+iIDNnP+Fgiab8dliqfwXJIerX9bdzHzHgpHcxYhnm5uxvrTnT0eNHO58P4aWrC/QoK\nwvElzpR9iUultNIcP2qevO5ekiIG0xyQtFBKq3qovMCBt7DuT75ssmjHEmm+XrYcreI9zPO5E81/\noZkziqIoiqIoiqIoiqIow4h+OaMoiqIoiqIoiqIoijKMnFXWxC4c6UtlKlDTPqQ+BZODUsj4BtGu\ncQfSKHNWIe2t5qiUjkSmI+2+vhSpoK1HpZNR6XZUvk6IRkoTp9JWHZCpmyLlezmcCCLTZeq7hyqo\ns5Spv1umdMaNR6VwH6XVdnllWm1kJs6pvREOJLZGoJ2qO6fLjFu/MP4SXPeeFpnm6CPnKXa4SVki\nJVrB0bjHYw1S0dpLZUXr8ZQG+OEnSEtfMEbKRXqakZ4aQSngBZT+eOy5PeI9kdE4Pr62nhJZKXzU\nEsiQDq2F+05mgpSHJESh/7SQU8GoyfImxFOaWlQ+PmPvcztEu3ErvyA3zU+0n4KbQ0epTBNvPoIU\nzfjxSGeOGSNTolk2M2MR0ga7W6SzTT+lTnO1+oKVMtWQK7mHUuo/O6IVXL1CvKe1EuOAU4J72q30\nW5Irlb8G+UT6Qtkvuf+yDMB272k/BnnWiCuRosyODMZI54ShIGYszrn9ZKN4zVeLc4kuxL1jyZ0x\nxnSTjMhF4zLYLdOy93+IFNq8LMxZAz3SSSaOZFNB4Ui9DKS00BRLCtBCfS6cHK+6amUKLsvYvKcx\nVyTNl64UJ9ejX2TROA1yy1RQdsrjFOaQanm/w7OGTtb0x7WQ7Jze+y/xWkwOUmsrPoHsIDhSSoDe\n/SdSc9k9y05j/+T+vzpxnBupw4vuv0G0K3p1rRNfddldTvz667914lPvHRPvuWEJHJp+9i+cx81P\nfVe0m5WBMfz6c79x4qPbpPQ1dgLSt885f4YTH3lLprjPuwvOFne9/JwTr7vn56LdkgdvNkNJ82Gk\nStvyoi9zGLLduZKzIX1prNrixBHJMs071I3xnJAAGWlLi3T8S1+AtO/Gw5DY9PViXHU3yTkrPBlz\nL7ukeKrkXozX/sg8pKQHWE4yLENykeNTu7XOxtJawy46nTXSkcNeX/xJQDBJxALlPRx7DfYS7OZZ\na7k1Jc3LonaY8yo/leMlIRPyiYSZkCz2tEs5Kcudcw5gX8Hrqi17YwnMyeeRMp88R86T7GQ6jpwP\nt2yUzkVH3v/Yia+cAwl5wmwpHw4Mw/luex/7rXO+IR2oZl44BPoJwkcSkbhx0smvZgskyiNW4Jx3\nvirdWSadA+lLJ0leeyy3Q5Y8h1CphYZj8lkjKhb3qJ7kz+1NOFaWXxtjTMbF2Hvyuh1juZ+2ncJY\nGjULz1aeIuk020/lBHhP47IcZKOX4TPqP8f5uUdJSWmvJX32J+xuln2VlH82H8Q46CSnstNH5DNT\nLK1/bVTi4K2dcp687pzFTsySOJ4P7BcDAkgeV4/SAOwOaYwxN67AetfYjmNt3S/7R1kd9kCR5DYa\nckA+Vidk4B7kZ9P4s6Td7qwvdhfqbpTzZyvNwxMuNX6HZc1cisQY+SwcPQr7NI/1HOilYxw7GnvH\n5EU5X/p51Z+i9EVrvnRFjMyI+cL3uNzozy7rWINobusoxb4+bnKqaNd+DGOOywlw+QBjjOmuwz3J\nLcB99BTLdTGa9tO8P2cHSGP+29HRRjNnFEVRFEVRFEVRFEVRhhH9ckZRFEVRFEVRFEVRFGUY0S9n\nFEVRFEVRFEVRFEVRhpGz1pwJJR0s158xxphO0oi6ovFaeZ2sw8Gf0VkHLbNtt9jbAe0Y2zjHT0sX\n7dq7oL+btGamEzdsg5XqqPNkfZOWg9AKss1vWIT87KZG6BCDs1DrwK75wFZmEcnQwnU1yFogAUH4\nW6yTixsrNbWN+6Q9sL8pWV/kxK4gqcnsJovErOmoFzNonXMIac97ScN7okoeO9dPmJqL+iDFtdJK\ncFIitH0+0qQ3kE1hVJLU/W/fBw14z7PocyFhsi5FM9mmtZBudcoqqZsO3otjGnFZoRMPWFrAmg2o\nMxBJ1sW503NEu/YTpClcbPxK5AjoUau3SpvoINLax7B1eJSsQVL1AWxwWcscarVLXYa6TGwvP2j5\nXbIGmms0sV42KVnaubYGnHDihHHoHw0Hi0U7rlMw5ntzndhbKTXZ3VS7iHX7QZZtXdbFmBMq12N+\n6fP2inaRI4auVokxxjRswTzV7rH06mQrybZ73jNS+xpD8wfXn+GaBsYYM+UC1EDynMR1s+dUnt9E\nHyZsW/YOsgxNXYb7aNcXySxAvabKJhxD0A45DwVQHa5g6s92LRBDXTAyG2MizbrfneVDZ997/6rV\nTvy9J74lXms5hfs78UpYbrMVpDHGzKT1inXtj6//t2jX2Ylxcfxp2Gwfe+E90Y6tLJ+69wdOfO+P\nn3Dil7bI9wQFYbysvfMaJ17/s6dEu/Wb/ubEI2eiXemeH4t2CeNznDgiDfd6xHlTRbv2StSEK34e\n9tkpedKW9o6LbnTiZz77zPgb1oNzLSNjjAmiNaWVakPZdpjRk2GjGZOMmhd9ffLzAgOhh29u3u7E\nXW2yX/ia8D6ezzqq0J8jrHo4LqoRwHW3mvfLzw6iGlJs9xph1d7jvV5kFNY7ts42xpgIqpnQdhxr\nrl3Dxv63P9lJdZ2WrJHW11w7p7se1zUgSB4P2w33Uv2YyEx5Xfg6t9N82t8l15D0ZbI+4/+SvRz7\n1fojss7F4WdQPyWaap1wLTxjZC2y0sO4H2ztbYwxM/Ox7nb10P58k6yZ1NuP/jKxAPP4obdkDRuu\nz2dWGr8TQn294p0T4rWMJdiPVH+C4y8okPV4AsiiPiSO96uyzgrvCYN9uPfZs2RdtTCy3G49hGcI\nVxvGkd2XKt7EfU0gC+/IETGina8Sz09cZ8YeKUmzUNuiqwrvsWuBVL6Na+aKxbzmPSXrYQTQ84+Z\na/xKCu0beR9vjKxJGDUK9XdyfPI5Y88+nMe3bkFH4+cPY+R+JvdyWKo3HpL9O5BqSPGcfOg51LCp\na5X7qzAX5ngeO6W1suZMXgZql3R2oB/FF8h1LN6qcfK/cD1HY2TdxXCqSZU4V/bz2o/lOfqbaHqG\n6LD2UUmz0Ke9ZInOtVqMMSYgGD05nOzM7ZqOnmLcxwh6tuqq8Yh2MXnY83LJ1tYTqPvT3ynnQK6X\nxn0uxK7XNAH3q8+L+821Rv/n2HG+UVRXJiJZrhPdrVQ7kp6fuixLdLv+jo1mziiKoiiKoiiKoiiK\nogwj+uWMoiiKoiiKoiiKoijKMHJWWROnybOUxxhjkmYj1So0DpKGrjqZjtRNKaMxmUh7GxyUKV0N\nRyG9iZ0IO0g3pa4bY8zkFbCFDqSUQrbxNJb8IqoAKU1sX9XRLOUhYZRKxhIOb6lMxeJ/u7ORisXp\nscZIiUkfpb4GhcrLnjx7hBlKRpOFOVt/G2PM8Y+RhtlLx19xolq0YzlZXgqu9axF0j767Xc2OfHS\nCfi7P3j0UdHuld887MS7i5G6fy7Zc9r3MTcZr3VQOurIr00Q7U6+hJRctvYOjpCpoGHpSLcb7Mff\nstNqA0m+07gDMq4ISwJTfBj9aabxL5y2GmRZhuZeAdtClqiUvXpEtEu/ABboDZshqwi0bKfbSNqS\nNANptS7Lqrl6PWRSLpoDJl4NOYIthXKnIFUwIQF2nYFTZKphby+OobUY6aS27MZD9sychs423cYY\n46UU9xSy467+6JRoF5Yi0zP9TVcnUqwHBuSc2kSp0yxj45R8Y4yJHon5jCUIYZZ9L8vO2GK3fnu5\naMevsS1sL0nLIixrak7/5FTV1BRpGcqpu2xlHz1O2rzHR0Fq1VWN9M+Wk9IOODIOc3RfJ47BFSXH\nNqex+psxGRgTcYlypB/8M+a5UbMxXl65/ZeiXQLZYj+1fr0TX/34H0W7u1fd68QLx0I2c9EjUk51\n87m3OPEfX/+pE0/fjDF/+B/S9vvQXvT9qYvHI75enlPlu1ib0ycgXX3GzfNEuyN/gj14+nJIO6o/\nkpLFY0dLnXj1Y/c58Uvff0i0u/2nXzdDCUt7Ygql1LinFX1/gKRC4TnSmtbrhdS2sxF9tatepjCz\nnS9bbdqyvehsjMXm45CtsJWor1nKIUOiMXd2t2D/lXHuKNGO54qOakjpfJaki/+dMAnzdcwYOWYH\nejF/xVO7fp9ML+c52t9MnQ65KqedG2NM43GkvI9Yjmtx8B0pvZxC1s3BkZA09FlyJe4vcbRHtS1c\ni1/A/mPk9ZOcuL+f5DXWusjyIvdosqg9Jte7ip3YY/TRe1hObowxVc2Qs/Bck71M9okD7+BYU2Lw\nGVmhKaJdgC0v9TPR+Thne73jvUoI7eF4XBojJTyD1DdZ7mSMMdO+Az0Pr//22u8jGUIwrS+9VArA\nluyxDKZ6M+a58Ei5v+nqRrtYmlMic+TzTstuyNrSzsOcymPPGGOSFmKfy9Jpm/jp6V/62lelo4Kk\nzotyxWu8r+BnELakN8aYqbR/jUiHrCw+X35e7lzI9oKCsPcMJ9mNMcbseOQFJ04kmUrWDFyvDU8/\nLd7z25tuwueRxKmjW8rjosagz/ZR6YyuM1IKdOAQ1szCi7HO2s/U3hLMX7wHSpgp75krRu7Dh5Ke\nRrnWeEoxxvh5wJYOdlHZk/AU3Ee2tzbGmB7aY5bTWMxfLZ8ru1txPZr249k0dRG+U7CtqkOoXAPv\nQyPTEkQ7lirXfPrlkrHQBEgv3amYHz1VUnrauBPrdiCdrz1XdNC+eeS0//57mjmjKIqiKIqiKIqi\nKIoyjOiXM4qiKIqiKIqiKIqiKMPIWWVNXbVIJbLlBJyiw6lp4VZqfS+lv7OUqbtTpqsnjUN6at1+\nyDEi42Sami8dKXHpBec5cX8/0qO8XilLcbvx2Wd2rnNiW6YRmYHU/fYSpG/FT5LVttupwjS71HRW\ntct2p/EZsaORMtp2Ul7LPqoynToElfCPvLbfiRNjpDyhh1I0uxuQwpaRK9NaC8cipfnkOkih4uLk\ntVkxCWm820/CFefZu+8W7YIi0PUWL4SL0ob3UUU9KjxcvCeXUndHXgUpE0tWjDFm9Bq4g3z467VO\nnOSVVc9ZxsUpzEkLpMwsjNLZ2HWrr0OmPUedkO4Y/iQsDXKOMOs1ltOxxCTccpvgFPrQVHzef7lN\nkDuCh1LF49JlqmHcFPTvtImznbizE+m8DadkCnlSPtxNyotex98ceYFod+iVZ5y4jdwMYkbLlMTo\nfMhXWJbI98kYWRWeU9cHumS7oSYkGP0+PFSmw/f2YX7k4w1Pl+4s/ZSiGUtyjNYTck6t2o4U+Oh4\nzMtJ82X/5nRkdq3prsV8EGSl7rM7EKfnRhVK6QOnhkeSBLTDSv2NpvsanoL7yK4bxhhTtgVpp71b\nsbYkzpHrRA05mo2/yPiVcx+40Inf+tHD4rXT9ZBSzGrd7cTX/lm2qy2G/POlb89x4p2P/V6085J8\nMyMeff3jB/4p2iXH4NoeexrOL7c9BzlVRESOeM+4LqRbDw5iDvjF6jtEu9XXnevELhfS7oPDpXPR\npDvOd+I7LrnLiZ/8j5RTNT0IB6ldv8I4v/4vUvrVWLXVDCWd1O9DJ8i1hl1YWPbZ45D2GwAAIABJ\nREFU65Xp2yFu3B9224jMlO4sLAtp3ANpLDsyGWNMTwo+P74Q7jGeSqwt9nxd/j7WY3aItPcjbpJP\nuLNwH22pM7v8dbdhX2XLd5oPI5Wf3VRsd0uWd/ub7joce5Tl3pND51v5H0jr8mfkiXYsy+e5zHY7\n9NB+7swbkLONuXmGaBc3EXMyy9kGenEPWw/Xi/fEx2KObyKHplhrvXvtn1uceOWsWfhsSyI79WrK\nkyd7kwpyQjXGmJhIzLU99Zjvg2PluUfly+PwNywZC4mXYzFpHtar1qO4bo2n5HqXOhnyD1s+wXRU\nYo/E7le2C1oz3QduF1kqj4+Jz8N16qe9RdxU6fzSsAnrU28rxnzbQdkv0i+EfIefE3yWbJIlWbzP\ns9Rz/7Uv8idRJMmq22I5ipJ0hEtVtFnPlWF0DyLILSssTK7vJRvedeJkGs+eCnn9mr24Tuk0RzVs\nwdr35A9+IN7DrpI+kjWNXjxatGMpNc9/9p5l8uQCJ27chbk/ZWGOaNdJDl4p5+A1+/PCkiPNUMKy\nVLssQfuxL3bzTFmcI/7N5UPaTny5k193I9aXwhswZ7UWybHNe/sRyzHf9vaSA6g15t1peIZNyMFz\nanOlLPfQ343zZXlWr+VQzU5+vT6srdxPjZESyAjaB7DbnzH/7fRmo5kziqIoiqIoiqIoiqIow4h+\nOaMoiqIoiqIoiqIoijKM6JcziqIoiqIoiqIoiqIow8jZrbRJc+WKlbo3ttjtqIT+KsTS6SZPgP0n\n14Wp21om2rmioO/MmDvdifv6pG46c+JyJ/Z4oPvlGjadlp13kxc1MGKo9kvrCalP7KrB+1gbF2xp\nxULjv9g6PHG6tIWr3wFLrdq6MidOtbSGtg7P34y7EnU+ateXiNcKZ0PT2loEPWFlndQWzqQ6FQGk\nYbY1iGzpt5wszBuP1ol23J/Ysv2im5Y5cXSe1Dn396Ad69r72mUdALZuZatND9UuMcaYBOrDYYlf\nruOs3Yj+010LjXv8LHm/M6cPnSV6VAGuRdP2SvFaczus5RpqUCMmc5LU6QaFQT8bRnU9uirlGOsm\nezu+zqUbPxXtEkjj3Vpz2IkjEqD1TB0zR7ynvgQ1heJGQMPb3CzrSyTNRv2Anhbo9kPipN6ba5ew\n5rR2g7TE4xop/HkZF0sdcZBlK+5v0pZBH12+Xur/fb1Ue4qO1659EBSK82RLXNuWNz6LLDpzEYfE\nyLm8bgP6N9duSaD5rM/S336Zta9dD4NtUUPIApJrY9j/btgGPXh4qqxhFhKE+5O8COOtZa+s9xQ/\nRlrL+pPnbvuHE3/3b/eK1069+ckXvqfqiPz/J+9DHZbb/wRb7GMnykS7pz5CTZZ1P/ubE6fGSsvV\nP6x904kfXwNb7fcv/64TP/y6tOle9zNYiLZ24D7d8ffvinYV61HDbf8zeM9Vt90j2t29Zo0TZyWi\nRsPSsYtEuyd/jZo2rKcPCpL9cuefNztx5mOrjL+JyEIfbjki16eEqZjbQqmuHI83Y4wJJmvf6Bz0\nOV+Lx2qHuZdt3hup9oExxnQ3YSxxrbNWOj6eG42R9Wx4LeVaZMYY46PP5hpr3ZZdqisa45RrmLkt\nG/Fwqn0QmoC4u0V+Htdd8TcxE3DNW/ZIS9MYsruOn4A4wNpuHfg71qRxV2Gv1HLY6hPTMB+yzW+1\ntdaw/ey/XljvxHMKUHsie+oI6z1Yc/eXYj6u3LNHtFu9HGMpMg9zAN8zY4wpegd1FfIvwh48NFK2\nKz+D/VtpHc73vFuXiXZdtbI/+5v6z1GjxLZX9lD9xziq/2jb9/IY4xosZ1u7GO+ZVvHvwR6q49OP\n2hvhI1DLz21ZX3MNODOA97Qcl30pZhLa8X46IkPWCeRnkuhR2APadZ143e2h802aI+cK3xDex8p3\nipw4NEXup9tp792yH2t19pVjRbuYTIyL2r14votOkPd63AWwu25owNrqzpTrfjDtF+o2o4/xeucO\nk+sO3484rslkzZNHP8Xxeag23KSJ0q7ecxp78sTZ2F9xnSVjjCgQxH255aDc26QtGWmGEi8db8b5\n+eK1lkM4lmCac7hGqzGy1lHjAczLUemyfyfTcyWvT/a1SSjAOXvr8fwTlwFr8v7kIvGeiAjstcPC\nUPOpP03ex4rPUaPPRbW2eC02RtbT7evCGOupk32z30e23bRO+KzP66qkulGynKcxRjNnFEVRFEVR\nFEVRFEVRhhX9ckZRFEVRFEVRFEVRFGUYOausiVOT7NT6VrJAiyTL3upPpGwmIAgpmhnnIt0ramS8\nbEfSHk5Ham+XVrxeL2wj+3qRFsQWcTHZMpXPUw3ZR0cVZBC2FXL5nnInTkpBCm/cBGkXzenGXWRp\n13JMyqSSKaWQbRjZStMYmUI9FDTvxvnHkM2jMdK2sPM00jonnDdetGsn++8JX4dVdcnr0pbMRZIJ\nlpnET5ZWgiw9yl6F1Ma2Yvyd6g2yLyXOQEqgi+yQ7TzlyFykmgaSXMK2oGMLYTuFmWHLuyqyorRT\nUMPTpATDn7A1XewkaXPevAv3NykN/dZXI+0WK8j+M+caWJEHumQKYflrR5047QKM2Zp15aJdwkTc\n0yZKXewvJPlZqhxjbG/ncmEOOLNhu2hnyNI0eSEsZQf7pbVf6WfoR67t6HupS2XqZ08r0sbZHnDQ\nsiBt2o8xnCUzOv1Cw+e4hq5gOf320bE0bSXpmtW/o8civTlxOsZE1UenRLv4aZhXOCWz00ptzrka\nY72F5Ic8loMtG10ep3GUyv1fsg9KfQ2n8ZKQIu0Haz+DNIBtJLssO+DMBblOzPK0lkbZLmf80Mma\n9pZgXmooOiReyzgXnWbbr95w4igrdXrlrJlO/NpDbzvx8ivminbh4VhD5n53oRP/+Y7nRbugX/7B\niW96+gF83njYYNce2i3ec/4vvuPENQchn3jlx6+Idi1kR3r73yHjeuMsdrUsNb30kgXite/f+ycn\nfvLRHztxW9t+0S41Re4R/E1oHNZxW1rMMqdBkhCEJsk1pGkv1nJOxWa7WGOM6aW9Bsv74qbLdbHP\ng+vWSvuJ5LmYA3s7ZBp1TzPNbSSlsNPwfbW4j3GTsaeJypVyJd7rcbp6d7P8PE7/ZzlooCVZ7PEO\nnaypn6Un1j1s3ol7E5qMe71793HRjm3o6zeWOXGAlVq/66+wsU5PxRxcdUrKDkJoXh+TAYlOWg7m\nyaqDcg+YswjrVUwlXrMlF21NmLu3H8R5TBwhZVKjLijE8dA87rPuxdiJ2GsHBOP62ZbLDbSHNJca\nv8Pjz5b6hSTg+DtIepS2XFqiB4djT9hFctq0aVNEu+5u3K+AALzHWyFlTbFTsFeJysVcFE52z8n5\n08V7PK2QgLJFb/p0abdefwzPNQmjsWY0Fck13E1/t3479g6+arm3S5yLdYKfrdqPSkvi9POl5Maf\nFJClvOdMi3jNPQLzIe8xaqwyC75puG9caiAoSM67vb1Y78PCcO6Dg3K/OfkbOKZ2KtvgKsG9dsXI\nZ9uObsyviRMxT+7dIJ915qyie0pTnl0mIJDmxsq30D9iJst9fDzZrdd+iufm0KQI0Y6fBYaCYDeu\nR9WHUnqfvCjHifk5+MwbR0W7HpIcjlyNZ436zdJinffiCaMxB/Z0S5kUS9ziCnHdPK04PleEfB6r\nPYlSCcFc0iFeyhpbD6A/xkzAHB0SLedeTyn6dOtRrM29VlmN1HOwR+Vn/eh8WaaD56svQjNnFEVR\nFEVRFEVRFEVRhhH9ckZRFEVRFEVRFEVRFGUYOausKe0cpA26LMcirsDPaZNplpyglVLYOOXWThnq\npQrjJVvecmJ3pkxBaqQ04qRZSGdrK6L0vTFGwJXmY/LhImGnMmeMgwyAHRDqt0k5R8xYpMxH5yCF\nsK9TptS1nUIaXVcVjiEiU6ZfecooBVBmavoFTnm0z3n7c0j9GjkKKbhlm2S6oacLqdP5VI0659JC\n0W73P3Y4cV4h/u6RA8Wi3ZRF45yYrxNXnWcnD2OMqXwHabwueq2+RKZujl6FNLpeShM/8JJ0Psie\nhFTgQBfu96CVNVj2KtIZXdEYB6dekZK77Auk848/CU1ECmHjTunW5B5NaazHURV/wJLsxIxB3y97\nGe5KyUtzRbv2TtzrdJaFuWQano9cOeLGIR2wYRfG6NHj+8R7ClZBQlN2BK+lzM8W7SopnTKGnHcG\nA6SsKSWfXA/oq+YDz+4Q7UYthVOG5xRSJnlsGGNMgiW/8zdeD65Z4hiZ1uoi2UEsyQ7ajsn+zZx4\nFn06eZZ052reB6lZ8gKShg3Ia8j/ZkeINkoD5lRuY2S6tDuLUpYPyBR/dtcYJKla2SuHRbseH8a9\nm9Ky647Iz8uYg/Oo3o30d7uvt+yj911g/MoD98FdyXb+uOfq3zrxLasvcuKZ3/2JaNfWdsCJM05j\nXjttpQc374PD0mMffODE9vkWfu9uJ24o2evEnx6D49Grt/9CvOeqP0JCtea6B5349U//INolZ53j\nxCWbsTYXXHmuaDc4iHWh04M1MyVdtnuUUpnbjqAfpc+TUtq7n4Ur1uf33G/8Tcth9JGkGbazHbZG\nnH7cdkKORXbw6W3Hnqi/W7qpsFyJZU0uSy7oJgcplpu2kaw4xHLODArHscaOxnzYuF9KZ0LjsYZ4\nS5HWHzxWSgDbD2LeiKW5d6BHnpOL9nC+BsxdtutNdIFM5/YnTTQ/jPqatLw49hJkcgn5uL+Zp+Xx\n5MzKcWKeC233uwzqtyGU0h/tkVKh7IuxAS0kadTRV3A8Y6+cJM9jN+7V2NGY4yrKpVS+thXX9tyr\n5jlxUIRcmzf/a5sTL7oO7RrapeQihZy/WKbNMmBjjEmcPrTS+3j6fJbpGWNMGEkJ+6kP+ki6ZIwx\nvd6eL3xPW5Xce3bWoa/6KI6xHP74/oeR9C0gENewrUHO14PCcQdj25a/smzM24D9XMNW+ayRthzP\nU0E0D0WOlFLEjnL0izCSwcRaY7uCZDU5E4xfqST3ydAE6arZRhLN7nrsgZIWSDleeCr2GS6S19QV\nSzfPtuP4vKSZ6MNNB6VjG8+7USQr4eex2PGy1AM7avoa0McK0uTekOWgPTT327JOdv1JISled6PV\nf0kekzQP51T5gZQWdRSTm9LPLzP+ht2Eqz+WY8dHx9xyCM/2cVPltenvQv9upj0hy2mNkc9nvg6s\ncc3WfUyeiWOq3QYJPF+zdMvFiqVMvPfsqJWSqTE3z8fndWI+qNlUKtqxw62X5qgRK+Uz8Jk3IcGK\nn4brYruksovXF6GZM4qiKIqiKIqiKIqiKMOIfjmjKIqiKIqiKIqiKIoyjOiXM4qiKIqiKIqiKIqi\nKMPIWWvOsOayvVTqtDrKYUPMNoqhidLyLGkWNIV1n0PDZVtpd5G2j61ZRT0WY0zKPOhx2Vouimol\ndFS2ifewFpU1dAGWpjh6NGpyeMk2K2O5tJ/r74GerqsRGjXbGovr23hJnx1p1dGxdX3+5uir0DqP\nWy1tBQsm5jhxMNUVys6X94dtmQPJcrF+k7RGm/0d6PfYATgsWdrBlW5HX8hfAY12RxnuXV15o3hP\nxnjo+/upRlHGNFk35PBrdL4roUO3rVlZa8q1ckKt2irTbpztxLuegZZ7zDJZ3Iit+ox0j/3KNO+F\nlWVInNTzcn2ErFU4psYdsjZN3ETUOPHVYbxVfST7X/oUXOeAINzE1BVS09llWXX/L9VHcawTrpdW\nk16yWOynGk11W2Q/Sl1CdnSkx7f16Gyz3e/DuBybKzX9oXTN2CK67O1jot3ob04zQ0lcFnTKzSdl\n/YpkqndTT9rz5HlSl129GWMnJgefZ1v6uag2xbGXUN9n1IVSI1vxLnToPtJOx09Af7Hr1IRT3Sy2\n5rZtKXta6H7RhJAwO0O04/XEcxJ1k8JDZE0Oz3GMscR86OntOhxhyXId8icjl5/nxMf+9aZ47cq5\nqOPCtu9r77pbtEsphPZ64te/6cQZ41aIdqXb3nPiV3661onbWmX9rOBgWKWzjnuQCmiNTJV6764u\n9LHH7rzFiYNCXVY71Pap3oi+t+sNeQzLf4rrwp9x4pMXRbsmqjG2+Tjq7Yy8frJo94c7bzJDiZtq\nBjQfkhr3sBRcT659kDBF1t7ooxppbP3K98AYYwbI/rSLaksZWQLORFDNhc56tIvKo9p2tPYZI/cd\nvmbM66EJcs31ksad7Vn/6/OoDk4f1Q7orJH1SgbI7jQiHcfN+0FjjOltk9fCn9RQDZbw92RthuhI\nnGPlRtQpiI2Uc4OvFtcsltZIrttijDHzr5rlxLwuVhyS1s/7XsG46OnD9eOabSfekDVIcpfATvnz\n17EXYVtuY4yZdTnW040vow4HW3YbY8ysFRhLwVSPhmuiGGNMN9mtcx2xsHS3aHdsJ/YIE1cav8N1\nOvqt2kbN+zE22W7YFSXXhnZaN7i+Q9N+ObaDI3E9oguwR/eUWM84ZehbgS7Me8HRmA/iJ8m6cWzn\nXkt9LmacrGvSvBfHNDgF98SuycHzBt9Hsa4aY2Jprebr0FEhn4XiZwxdTT1+fqpYK8dicBDmBK5f\nWrVe7j1TaD8XS8+BNf+R7XLJnpmf70KtvXEr1Z5rLcJ1yV6JfbLd37gf8HAJDJNjkecArqHatEvW\n+kqgWoBcY6ztqKwnxTW9wtOxv7L7WH/P0Fpp8zyfMF3OKwP07NtZgXY9VFfHGGMMj2daIzur5BrC\n9tK1VOPF3kd2t2Et5HHJNVTL3pBW530e9ItgmityV8vaZN5qzHtcLy3EOgZDlz2Qaol1W/W5uFYq\nf4fSelzu9zvL5di00cwZRVEURVEURVEURVGUYUS/nFEURVEURVEURVEURRlGAgbtPEdFURRFURRF\nURRFURTl/xmaOaMoiqIoiqIoiqIoijKM6JcziqIoiqIoiqIoiqIow4h+OaMoiqIoiqIoiqIoijKM\n6JcziqIoiqIoiqIoiqIow4h+OaMoiqIoiqIoiqIoijKM6JcziqIoiqIoiqIoiqIow4h+OaMoiqIo\niqIoiqIoijKM6JcziqIoiqIoiqIoiqIow4h+OaMoiqIoiqIoiqIoijKM6JcziqIoiqIoiqIoiqIo\nw4h+OaMoiqIoiqIoiqIoijKM6JcziqIoiqIoiqIoiqIow4h+OaMoiqIoiqIoiqIoijKM6JcziqIo\niqIoiqIoiqIow4h+OaMoiqIoiqIoiqIoijKM6JcziqIoiqIoiqIoiqIow4h+OaMoiqIoiqIoiqIo\nijKM6JcziqIoiqIoiqIoiqIow0jw2V4s3vmiE7efahKvdZa1ObErLsyJY8YmiXaxo/Hv40/udOLR\n35ku2g309jtx3ZYzTtzb2i3aZV8+Fv8ICHDCpgM1OLbKNn6L6ahox9+9aYYT124uE+0CgvB5gRSH\npbhFu7K1RU4cEoxLGBodJtolL8qmD0fY19Er2nlLW5x4+jd/ZPzNjYsWOfEf339SvPbOXX9x4ikX\nTHTiUcsuEe0+vu9RJ04dlezEYSmRol3VjnInzruo0Ikzpy4U7bq76534xLOf4D3XTXLiv//gRfGe\nm/96hxP39jY6ceOBatEubQbOY3AQ1/rYk5+KdvVNrU687KFvOXFQUKhod98V33fi79x5hRO3F8kx\nkXflVCdOSlpu/MnB1//sxKkLc8Vrg4OI24txXbrqO0S7ge4+Jw4Iwveydn9MmpXpxFVrT+L/540Q\n7dqONzhxxrn5Tuwpa3Zi94hY8Z7GvVVOHENzQ/X6U/JYewecOHE2jofHkTHGBATjPNqOoE+lLR0p\n2g3SRQoKxZgtf+uYaBeaHOHEU772A+Nv9v4T4yg8Vc4riZMxX5x+da8TZ144WrQLdOGcO+u8TjzY\nNyDa9XXRfR3A+fO9N8aYoHBcj8TRY/B5PHb+KsdO/PQ0J+5p9Tlxd2OnaJc8H32m9Rj6S0CgvJGu\nGIy5pCl4T29nl2g32I/zaNqHvsRrgTHGdDfhOGbe9BPjT/a/+jj+Tp0cY9t2H3Xi6x/DnBIQIJfa\nsDD06WdvecCJpxeOEu3yrp/sxCXP73fiKT+8TrRrbTjoxDUbS504enSCE8cXyHmjs7HOiXnNTTsn\nT7SLTkL/O/7iB068YfM+0e5bf17jxKdfOeDE6efJc/r49/9x4oz4ePyd5GjR7kQRjumbzzxj/M1/\n7rnHiefee4N4bcOD+HsL7l3txH19LaLdmfdw3WPGYl1MnyjXu7fu/K0TF07D9d277bhod96Pz3Pi\n4DD0mV99+wknzk9PF+8Jor4/7/xpTuzOkXNv3KgcJ46OnuDEP7vsWtHu52/+3YlrT210Yk+ZPPcX\n/4q+MCsf8//s2xeJdi1HMS+Pv/Am409qqt5zYl5bjDFirYjKiXPijsp20SwsCXM+z2XeslbRLiQW\n+7uO03htxBVjRbvBfszDdbTHjBmH/hEUEiTe09OGfW53C+a8lNlyzfVWtNJ7cKxtNLcaY0wQ9Z1+\nH9b9hOmy7/R1Yo73nMR+JigyRLQb6MFn+Hs+NcaY+vp1Tnzk8a3itbzV6KsVb2K8xE1LFe0CQ3FN\nPSexB+G1xf539KhEvKdE7ud4jUqZSXPgE585ceZlY/gtpp7ud/YV45249NVDol10If5u8w7sX1NX\nyLm3jcZOYJjLiZNmZoh2Fe/RM0kszi935SzRzluH56TssVcZf1K0+XknDk+WexseBxkrMFfU76wQ\n7dy5GKdd1Rinrhj5bOXOinHibhqz4UnyecTQ3tjXjD1BCD2r+ZrkGs77w6a9uDe8LzbGmK4GvC8y\nA2sXj19jjAl0oV/y5wWFyjkgjPaDYYk4j7aiRtEuZS7mhPQRK42/OX3gZScODJbHWEn9LCgC1yn1\nHLm34OvLe/TqT0pEu55mXKusSzGW7GvYfgLzW+pijBGea/k7BGOM8ZZjrgyNxxzf6+0R7fg+hMaG\nO3HNxtOiXVQ+9lLtNN9Gj0kU7Tqr0G/5OSaW5n9j5BydN+UaY6OZM4qiKIqiKIqiKIqiKMPIWTNn\nWg7jl7WQ+HDxWkQOvrmMGoVfv068Ib8hHhczxYnTluIbr0r6Rd4Y+W1qcAS+Ie5tk5kz9bsqnTh6\nFL7JSpyGb5JP7KgU78m4AJ890INv1zKXy1+kBwcpe2dbmRMHhbtEuyl3LHbio49vQbtI2S6Urlnj\nHvyqkzIvW7QLiZPfCvub22670okHBuS3htMuofsza5wTv3fXb0S7ObcucOK4DPwi0FonMw8KL8Iv\nuvv//lcnTpkgf3WLiMA3rdyXip/Dr7HX/VJ+s9/Tg2+Q+ZvVzgr5S1iFZ48Tj74In5E4t0i0SwnH\nMXibi52YsyyMMeaKc+Y5scuNXyX+8eZ/RLtbR+A8ki7yb+ZM0sws+pfMEqj+GGOJs2BSFsh+xtes\nlX6RSZkv23FfTZyLv9uwtVy0i6RfZms/x6/1MYXIiGk/3SzeE0a/qDQfqnXiEavkr4/8qxX/QhiW\nIH8ZqduGX9c5w6azziPaRedhrqjbUubEbpq7jDGmv0tmEfmbjOXIImgvldem+SjmLf5WvbNWngtn\nIwXT3NRypE604+y/BJofz7x+VLTjLJjWcvyyUb8F9zsiO0a8JywRv0Rwxk78RPlrZiP9UtRD2SwZ\nFxSIdr1ezPODg/iVNjBY/n7QeBB9M2ok7l3zgVrRrq9NznP+ZNSFGNtFr30oXuO54+jjlHXQJX8J\nKlyNjJipeZiHxt96qWj3n/uRxZA7EWPxiRvvFe2+89SdThyagGvxwq/fdOIfv3CXeM8nf/zYiWdf\ngYzStiL5K3xIFMZs7HjKDjkcJ9pteHitEx8uR9/56Y1Xi3YRoZucuLIZY+CaB24V7VJPyl/Q/Y2v\nF2O9dIPMDPtgD9aQLdfi1/pQl1zjl07Ar/rxUzCOmmv2inajJ+Xg79bgF9elN58j2pW+jP3T/Adw\nvy6bheM5UFYm3tNHcRr9qnjmTTnOsyavcOKnv327E195mTyGog9ex3uWIMM5IkXOAQs2ITN24X1Y\n91/54Z9Euxue+q0ZKvopG3TAyhxMmIT7Uf4O7mGGlclVT+taJs1LdtZnH2WgxNIax+uYMcYkTkV2\nCu9f+Rf53na5rw2n7Ozw1CgntvciXZQpmTAFf4evgzHG9Hfh35G0LwmOkBkxIZSRwFnuZW/IvuPO\nk9fC3zQdwToRHGjN+bTnDwzBa8kzc0S7srcxdnKvxL62o1ZmxLQcxP2q34r9A18nm6rPjjjxiCux\nV+FMJmOM6e/EdQ8Oxj3NOD9ftKv5GOtsSCKeEzi7zRhjIjNwTBXvnXDihl0ySyx5IfZw7izcq6Ln\nNol20WPpV3655frKeEhdYWcxxE5MceLuVqyF9jjg57PIbJwH92djjGmlrO2uauyPkuZkiXaNu3Gd\nAilbjePEaTKbrGkf9UV6prOveSTtieq3IwMo0MqKi6CsGs6e4Iw2Y4zx0l6Zn2lSF+WIdrwfHgpa\nKQM9eY7M3ON9IO/nGrbLDKjwdMxhPMe4ouT8k0LZ+Dy31W0oFe3co7DX6G3H+Xsou9HORA9N+OI9\nKitk/uc/8G/OrurzymcBXg8CKfucszKNkXt3vpZ2phT39S9CM2cURVEURVEURVEURVGGEf1yRlEU\nRVEURVEURVEUZRjRL2cURVEURVEURVEURVGGkbPWnAl2Qx8WZlXBbtgErSbXUMmYLCtas2ay9Rjq\nekQVJIh2leuoBg05i4y4TAojPVSnwUvuAVxfIXf1ePGe0Dhoz+p3QRsXbrkw+eqheWOdILspGSPd\noAq/i2roJ57cJdqFx+EcBwegVyx6Zo9oN/rb0rnK37C2sa9PamTdpJdrPIH7s/zBr4l2v1/zKye+\nZNkcJ85eNU60O/nxK05cchha7vip0pXi4L/gxDRqHpx1SipRTT76iKyCvfkdXN+WDuj2J+fkiHaT\nvo178vOrbnTiy6+Q2nquleSOh1a/YssO0S4sFX2/9mNU8J4zWtYs6usYujrwDMXxAAAgAElEQVQX\ngaRX7++WWsheD/5uRAa0nn2WprWdqr7HjIG+vLdTfl7aItTAaD4MfXbmxfJ8uf5OSBj6UVMRrpGt\nx+Tq6lGkKbYrqEck0r0n2b2twU9fhArvbWU41uY90sGL3XtYcxpq1dKKTE8xQ0npK9DFh9O9MsYY\nHzn/xHH9ir3yXBq+pBZMVK681jF5+IzGQ2VOLNyvjDE+ch3wlmJ+SCEdO+uBjZE1i9jZg+sqGGNM\nMFX0jxuf48S2+9/Ic1BrpWTTu/i8EPl53NejR6COTsM2y/UhX14Lf1K2AbVkRq6SrjxJc3HNnr8X\nc+GP/ylreHlaMR/m34x6L1xvxxhjCs/F+sd1mOZPl2vc1kdedeLKJlzb9DhcB5dLrrmrfnuLE3d6\n0KeCQ6W7yfG/oK5aYzu08Bf98uui3cFHP8LfCoK+uq1J1qHLzkW/zLsGznq7fvWsaOfrwb3Om/zf\nbgZflfN/db8T9/TI/viL2TlOHBWF+kABAfL3rH1/+ZsTJ46C0+CfvvmgaLf6R3A/fPtxONPceOu5\nol3Qlejvzc247mv3oRZbW6d0RHvsw+ecuGIXakzY4/zdn/zSiZdcgzpq9j6onVx7qrbAIezdFzeI\ndqPJNar0o81O7PXJmgjVRXBjzJ242viTFlqfOsulSyfXJGSHu6p10hmQ96LNVGfRXhu4VkZ0HvYO\n7DhijBHrVe5q9O9qcv9ghyhjjBmkPa+vEXMt70mNkY5K7MbFa7Exch4Wc7K1fnqptkX8eNSGyLlS\n7uvYdWQo6KrBefJzhzHy+rrJfa52m3RT4TpjZ97DnOOxXLcKbkA9Gpcb51z8d1knKpScSNlxpr2E\na6vI6xKZi/W4txvX1nbODKOaHFF5mKOrPz8s2nFdimyqyxcYJGtfddbhHE89jeeLOKon9z/He/Y6\nF1+FeKrdwq5nxkjHon46Jx6Xxkh3quQFOU5s92+ueRdPtaUCLNdGFzms9dIxJc7A3sHXJOfTxOmY\nN7kuYIB1Tjyukmej1o1d/4mHnJc+LzxN7v+SqfYjO2oGWDWY7Gvhb7jOTNPBGvEa79+5JkvECDlX\nxo3HPrqjAvMyz3PGGFP2b9RySl2OZ7CMi+yahBjbPJ65/9j1i5r34di5dlCi5XQWFI75puZjqj1q\n1TDrJPcwriXjOS2/HwhPx3rK59vfbblJnaF5SZqqGWM0c0ZRFEVRFEVRFEVRFGVY0S9nFEVRFEVR\nFEVRFEVRhpGzypr6KJWoybIRix4PWURXI1L2yvdJu1226WWL3dA4y5qb7ANbjyFliNNWjTEmhuz+\n2LKq7nOy1LXSlopfQGpu3rVIM63fLo+VLdA6KEW27Yi0Fi2uQbrUeWRnmH2FlGA1HccxdRQj9SnY\nJS97C51vunQ19gsvvrTeia+2UnAnfXuNE9cPIDW59Yy0MrvlD9fjtRO4HkeflBKgZEoX3HgEKWt5\nO2WKdUIU7nfHGVzr83++yokPPrpRvGfpdbDzbt4NqceMH90m2rFd+CVLkaZmW5hzv0geC0vUum2y\nX8SNgcRmwm0rnbj8p8+Ids2HcR+NdI/9ypS9hnRX24aYU/ZY9lH7nxLRbuQapPM27sV4bjsh+3c7\nyVSyViC9uXZ7sWjH1pNh2RgH4YlIB27cJyU5CZORguqldEc7tb76c1i05y5b6sSdnfKc+vvQn1n2\nkXv1BNHu5F+R6pt+IaxUbRlO+buQm6R/f6XxNyzTHOiTaY69JItr2AqZzoBPtosYAcll3vmQ6lXt\nkmOxmyQo0SORDh7qlraonirMsZxq6SHZaGi8TMOPysfnJY2BxCYsTM69rkiMsfBwjL/BXJky2lgF\n2+RwktB2W/MVp/LzOM+6eIxoFx4t07n9ycmNkODy3GWMMdmXY7wEk7TnmZsfEu1YstPRjXTcwgx5\n/TgJuKIRssSLrlks2k34zuU4vrdgac3yxboTUk6770XIRKevQV7t7hekrfTieyG9+f0NTzpx6rOf\niXZFVZhTrr/vCidu2i/ngLLT+PekaMiVwlOkfW/OYind8je/vHqNEy+fNUW8ljgXaereSMh5EkZO\nFO0K1kDWNjCANO9mr5SjPP+rN5w4JgJjqegFKRX682vvO/Ff1v7BiW/6GeRAiYVSXlp9CGMnYTzm\n4eajMiX9kt/AmnvTg487cfYKuZ5s+RD9ZFwWrkN5g1wnpuUhDX2AUvmXnD9DtEsrWGyGisgsrEEs\nRzDGmH4f7kf6uZjz2S7VGGOiyCKV18Xm/fL6sT1s5ftFTpw0X9rNshSYJRzZ501zYk91pXhPGK2Z\nvI71WlLpZLLVZbm6LTutP4Axlrkw13wZvHfoasBnNFlS2ujRJDMeafxODO2xbLtd3mf4SB4UYj1D\n8PMKvydqZLxoV/oS9lKZl2HdCLAskEPiIIlh6QzLNE6vPSHekzYNffDz30DON+FSOW8E07NL407q\nC1L1Ybob0FddUZCz2LbxiVOxboy5db4T9/dLKU7NZ1IK5k+4P/a0WOs2jVOWePEzoTHGhCdjH1i5\nFuusbX+csQLW5Gxl3+uR0pY4sq7ma8Z21CxRMcaYdhfWWTdJxfmeGSMlK3wMPkvCxqUGWGopZC3G\nmA76N0tg3JZcnecH8+VD+/+a2s1lTswSHWOMiZ8AuRJbjtv3keV4XIqA9yPGyDHmJbmSLftke3hD\nzwodJDUKS5DvSZyFMdFN/bGTrNeNMab9GO534nysd7wuGCP7zIiVhU5c9voR0a6fykSwjJBLARhj\nTOJMuV7ZaOaMoiiKoiiKoiiKoijKMKJfziiKoiiKoiiKoiiKogwjZ5U1hVJFbJFKZYzxFqPqdNxY\npI6NXJwv2p15E/KEtGVIg+220t64mjfDqUTGyErYiQVIIefP62mTqW1JC5B2WkHpqAkz0kW72Dyk\nNG39FdKLc+bliXYzZyDF0T4PJpIcn+KmpTpxULi87JyuOBTMysc92bZLpo5PvRlpZVwh3BgppeDX\nxpyHVPRRy2SKWHc3UrcKXke6db6Vhh8dDdnJx/f+3InLP0SK2Jx7vynes++3cHj64/u4P4nrZRo+\ns3AsZCQbtu4Xr7HsYG4E7vHCB38i2nk8OKa9v3vdiVf+7m7Rrr9fpkv7k+QFkITYDgEZy3F/PWda\n6P9HiXb8vuSZOU5sux7kLFnkxD09SGXn1FljjAkOxfzgqYMMrr0YbgaBVjpq+RuYD4K4grrlLMLy\nxQ4v3DX6LQeqms/wd8OSkRrus9K8g9z4Wz5KFfZaldZTFueYoYQljCzxMsYYdyLmn8g0pAGXvSHT\nJpNnYz4r+QCyiIxlMt88MBD358x7cHvhlGBjjGnYAQlV7SlyS8git5NgOT+nzkRaZ5e3kmLpmhSf\nhBTrgAB8RmPdJtGupx3zfDutLZwea4wxuRfOdeL6Q5jLkidKSWlfn0wt9icrfvFdJz709GvitdMv\nHXTibz16rROvfegD0e7bT93rxJ/cD3kkS5yMMWb1n+DyFBiIdWPzA78U7ba991snjo3EOJhO6ca2\nU8fEVXAhatiBe5g3Uco0goOR3nvnC7c78b4/yHn36j/c5MRHn4CUtqmlXbRbeMcSJz71Ia5Lf6cc\n2/VbIQvOGQKF07V3XebEyYVS1nTrim878bgRuB63v7BItGs4ccCJPeTqeMefbxTtwuOwR9r9uw+d\nOCRBSjN++Qyub0tpmRPf/8MnnPieO68T7/n3ix878fkzpjrxliPSIfHWqXCFLGdHL2uPdfXv+fOR\nkh6yQ8omF9yHc+zowL6qr0u6/737k0fw2Y8/bvxJPTnXsezIGGOCIzDnsyzFlsqzy2IUuTCFJcuU\n/vSJmMtqUrG3ESn3xpjUsZAIttTANaizGX93oN9yAqnBGHGRrLhptywnkHsFHMF6PJjj+rvk2EkN\nwlodkYl9aFetXBdZNsrXK8WSQg30ys/3Nx7aM6TMyxGv8bNBZxX2m64I6VjEEi0PrSG+WrkWZK/G\nc0Pxi5ivC2+ZKdo17MacWLupzIlP7cV+KdBy0skg95gRI0nCXSolLE2nsK+a+D2saYHB8vN6vVgP\n+DrUbZXS+4bdWHdjCiAR67Ychlg+5m/YVSvQclms/gRy9LQlJIfskzqumg24tunLsZ/hUhfGSEkR\nj9+MJVLe3H4G72sl6VEUXSN3npQNffZPuOTNjcKc6bJcxFj2wu5tNRuk9J7nEXZQ7bDc5fic4ibh\neTHY6uf2GPY3CVPRb23Zfz2VfIgnR1Eup2CMMa40cnIlx6zWo3WiXcZSSGpDQrBG+rqkrJKl0eww\nzBIydrIzRj5TBNOcasvJoseiL/D5sqzfGOnKxM9WaUvl9wP8vi6ar+zvUOyxbqOZM4qiKIqiKIqi\nKIqiKMOIfjmjKIqiKIqiKIqiKIoyjOiXM4qiKIqiKIqiKIqiKMPIWWvOsH1ZR5nUxwWSfor1XMGW\nLi96NOoWsHaO9dnGGNN2DBrMJLKxbNwuLQfLqYZNUARqUUSTlvLoukPiPZGh0L+lUt2MyIwY0a6t\nDH8rLR+WYXvWHRDtZlwArX7tp9BIZl4kLS6ryAoucQ5Zc1qat3BL2+xvVv7uPieuOSmtOzs7y5y4\nvwd6SFs33nIYWsH4K3D8jeW7RLtn73nZia/+zvlO/NH9L4l2i+9e7sQZc1BPJYr0n58+8FfxnqUP\n3eLE/7oL9Wh8Plnn4uifoMH39eI8kqKjRbvPj0OTX7QOx+2KDhPt2K5z1j34uy99X9rjTl8ELfPU\n62Rf+KpwzZ++DlmXgv/ddgK2cDEjU0W70AjUoujxQZPNWm1jjKneu9OJEydAT9nXJXWlnbXQybMe\n03sSn504L0u8J4xsBcv3oqZE6Qk5ztPi0A9qW9HfXEGy9knmaOhefbXQd9pWkzHjUXsjOAJzVMw4\nae3XXoTrZ6T7pV/w0Of/l91kHq5hUiFquqSfK2vJRMRS7Z9BXMPTr8h5b/T1qI+Rsgg1BGo2yhpD\nUaOgl64vxjw88hpY4jZb9ycsDHre/n7oft1uWfultgR1Sbi2jW2XWr0Hnx9B83X6BbJuUvnG3Thu\nstVuLCoS7SLT5Vj3J20NqAE04rJC8ZqnFH1/sB8a8vnXzRXtWuuwji158AYnPvCHN0S77m7Mu1zX\nI9Gql5Yeiz7y/tOY/wb/ibHM850xxkwlK+TF34YlNNt4GmNM7U7U9qnYROvdQqm1fviaB534zqdv\nduI4q8aHy437yzUQcs6V18jbVGaGkv0vwzJ66QOyn109b54T7ytFXavAQLk28LrIVr6tx6XtdIMH\ntUPyV6GAzuM/+6do98jlTzlxzZFtTuwOR22apoNSt3/Pv1CXyNuGPYfrLVnLzudDvYBLHr7UiX+2\n+vei3bT3cF9P1sBO+pG3/iTavfT9Xzkx24Nf+Mgtot3064eu/lM41VNJmi5rorG9bWsR7gfXnzFG\n2lXzHjXE2geU79zoxFwXpmGPnBsHp2Dt4RppXG/Ca+1/uS6MOwPzccI0Oc4bD2IO9dWjdlqi1a79\nFOovNGzDe8IzZF0ergkXkYZj6KiS+/2oEbIuh79JXYD1qW5rmXitpwV1U1IXox1b/hoj9zGhZMXb\nZ9XDaNyF+xVNNtt7Ht0s2nm6sD6n0n6E95EZS+QcWLcJ63EardsBstyE6aW6mOFu7NN8nXJs+xpx\nj9mSeLBPztHpC1Az6/gT2OO7YuUcwM90eZONXwlPxXNMSIwcO9G0x+Dah7wnMEbWOWVbbHtPzvU7\nogvwjFn6hqwrya/xXNHTyvVx5J4yKxFrUh8dQ5dlwczPSJ0V2AsnzJDz0ADVSa35qMyJ866VG0wv\nWbQbutfdTbKWZUCw1Zn8THsJ7d+nyHklPA3zhysSfatuY5lo10/76tB4rF12fVVPBf5WaCzZxrvl\n/U6ajrpvdTvwt9y0B4xIkXMbj5dQN/pBfK6sS1R/7LATcw2b8JRI0S73ItSkKv8ENRz5eccYacfd\n60b/SbTWp/rt6PvZcttsjNHMGUVRFEVRFEVRFEVRlGFFv5xRFEVRFEVRFEVRFEUZRs4qa+L0s9G3\nSps5llJ4yyE74BQmY4zpIvtOVxRSldj+zBiZzsYynwDLijfjIlhvcXpiD1nGLb7vCvGe408htf7d\n12DheqmRnNxa7MRTr0VKf2aZTFvy1SH1idMny9+SaeMFN+Ka1e8qc2JOpTTGmLBEmT7lb1pbkNru\nTksQr535GLZxLYdgO5e7WnqXHj+Ia1196M9OnJKfLNo9+Caspt/50Z1OfPGvbxftStbDarWzEimB\n2ecgnfzfW2Ua9YSTsAk9Zxpsaj87+LJoN/1u2KDWFcPycsczW0S7b9y5yolbDyIFOv8aaasaEoIU\nvfpiXMsbnvqjaPfZ/b8yQwWnzwdYX6l2ltP1uwLSqvL3pcwlZUEO3lNDEqAeKQFiS8TaHSecmMeo\nMdJ2LuMcpApW9EAGYY/foFCkkKZmk112vbQH/OgApIQXL5ntxJ46mVp6dD9sC1nyNHKUTCEMT8Gc\nEhqDOarHIyViAXb+sZ9JIkt026YwNgvSis5WpDx2W/KnwQGkTseOw/izU0a9DbAfPPMq7smuk6dE\nu4x4zEfzbz/HiT1VmA/iRsv0Vp+PbEa34h6Ep0rLSyb7YqTx1mw5KV5jaSNLCz7/uxyzi29Z7MQx\nI5A+2tEgpTNsvZgunaG/Mh/+ElbIhZmyn5XVQz6x6nc/ceLqT6RcacfLmEcu/TVS40PiZTrvx/fB\nQjklA3O3bT1ftR5r1/WPrXHi4hchA3OHyc9e8LOvO3FPD67fOz99U7Q778crnPjIS1g/4yvkWvK1\nlbDIZqvgHe/uFe2SP8OxpuTS3GqkPSxLQjJ/ZPzOioexTnR314jXljwEu/SaH8C2vP7MZ6Kdtwx7\nn6pm7BOuvOUm0a7yCNY772m0+95D14p2378AstkpuZBw/Og+2FtnzJwt3nPkb2858fZ92INc/YvL\nRbtff+MvTnzJdFjE3nrjStFuxPlY/377jd858caH/i7aXf8XyHor9nzixLWH94h2yeOGwAf9/ydu\nLOa/+u2y/yTOwBjpqMIayfbExhjTRhasLJcYef5y0S42Cfs0log1B0iZaOtJSFfdZLfLMil77k/K\nw/2oPoQ9S3eDlIQF0xzfR+dR84m072UZ/Zm30Se6G6REImE25q+mA5gzWaZhjDEhvLbIpcAvdDXi\nPBOmyTm15AXsBbisgXuUlFqFxGFdT54CWfmZVtkfPacgKUucgz6y+fVjol1XD55R6togOZlPkuPx\n46UUMzITEnhex9qoTxhjTFQB1tzQUMia6g4cFe1i8sn6mrYmQZYUp+Tf2504ZTnmjfYiaS+cujDH\nDBW8/7BtiBmWldvy5pTZkIKVvIS1K3WZlHbz82N4EvZ2+avni3YVGyBz4r1oeCokMEFhcixOuwMS\n34Zd2IclzZYS/S6SwHDpg4hkKa9pO4V7n7yQ5Dlbz4h2/LwdNxFlNYTU3vy3DMvf8P6/nyRZxhgT\nRnMgz6O2dDCC5E9cksFlyd0i6D6w3D4yO1a04xIAGfOxj2yvxj7UPtaednwnEBGDexccLO9P6njM\nvZ7mk/QeOQ/19mIssUyv3yoBUrIWz0yjLsRcwf3AGGMGeuTx2mjmjKIoiqIoiqIoiqIoyjCiX84o\niqIoiqIoiqIoiqIMI2eVNdXvRspQWIKUNHSRM0oQuzAdl2l0nmaSK5B7RYJVBfqDhz9w4lkufGcU\nkSVdNxq2Ip20oxafPe3Oq5y47NPPxXu4avM54yD7+OXvXxTtbl91sRMXvYEKztFR8tx7GpFilbIU\nKYQBwTLdrL8XqV4Jk3G+gwNSRnLsCaS4p/7iYuNvYuNmOXHxp2+L10Ysm+PE//w7XJ1WW9e9qBop\nrwfIveKJe6X0aN/zjzlxQhTSxzo6Toh2WUuQOu2pw2cPDuLaXDlnjnjP679934k/3QmXi4e/95Ro\nd/lspDK+vRPXds2KpaJd4xb0JVcc0u1++fWfi3YXTpvmxGGUmtx+8h+iHTtD+ZsMSus887ZMvw1N\nRqphy1HInwKt1Ok+H45vgOSGdjX45uOQpmTS37UdcFh20HwCbiRcQb3TqnDvpnRFPoZn31ov2s0d\njbTkgS78nYpGmRq4dh+qpo/JJAcha4xxpf66fTjWrCUyXTZxspSL+JtIcsQ485ZMYe6bgfmi7Rjd\ngwtldfleStcc6CHXBprnjDGmjdJhG1qRlm27lk2/FvLLtmJ2k8LfMQPyszPHX+DEIbGQSbFczhhj\nDn2Cc5y2EmM+MET2zbptGIssVVj6QyktqKdUYO63CROldskT8uVp1V+VsXn4W9lXyDL7ex9+14lP\nvIm5dvRVF4p2KQtxXQYHcQ9tpwd23Nr6CD7v0R++K9o98eHDThwRgTUp0AVJ0chzpYPcZz/H+jfr\nDvydAWvsPH0XnPYuvxKyt/rDUgrE7k01G5CivOhbC0S70+9g/mouh8SnulnKh1c/9lMzlNQdxdwR\nO0o6+Pzt5vudeNYUjL+AYPl7VsJ0rOufPI89wx+uk45Fq++GiLqM3CZmfF9emz+8C+ekX1zzgBOz\nbPuRa+4W7/nR85AMx1I6fGyStGN56DV89q+vxbW9+ydSjut243yDgyDdPe8ReT9e/cG9TsxuTckZ\nUu4WVyD7tD9hqVBokpSH93VivWs7ivk02JJ/pi3KceJmWj99vmrRrrMRe9smcmjqtVL6e5qwP/SQ\nZIpd8Yylnm2NhATZWwqpnO36FUiyW47TzpduY+xGE0Zyn5A4y21sD8Zw0gLMa74aKTOu/ghSxOxx\nxu9Uvo39YfLibPFa4fcgVandhuPosyTJqdMmOHFLGWReaedIR6U+cr178Yn3nPiSWbJ0w7UPQrb3\n29tuc+KCubjWJf+Q7kC5X8MxsEzFdrHNmo35tqcH815npXTJSpyAubyT9j4HXpJSrTHnYx3qJoen\n7lp5H1lKkym3Pl8ZdqH1FMu5PGNFvhO3k6OhO0+WeKhYj3Ux61LMQxFxcg7p7qTxHIK5p/6gdG1M\nJSk/y3D485pLivktxuWCRCk8FfsIey8bPxZ7xb5uXPPmo1JiHejCc2EADfxBucyKfTO7waUtlTfK\nlscMJbb8UkhC7foKREgs5hy+P9YW1bSTxDeNnNhYCmWMMWHhuF+H/4wxG10I2d+IpVLuG5aF9/T0\n4Jr19n753jAkEs+sjSfkM2vTLjw3cPkI232ZyyvUfYpn5ZRluaLd/6mEgmbOKIqiKIqiKIqiKIqi\nDCP65YyiKIqiKIqiKIqiKMowol/OKIqiKIqiKIqiKIqiDCNnrTmTTFaEPsvSr+kQtLmh4dDHhWVI\nm6r0MdAfl26Etq//U2mlOnUOLKdCqb5NytRC0e70OzucePpPvubEAQE4lZylC8V7KsO2OfG//4ba\nFj++QVpuxxTC1nPkaMSh4VKPXrl5lxOzpsxl6XlZ99tP9TVOvSotjrv7zm6p9VUpev/fTuzOlfaD\nx55Z58Rrbka9m+TZUvf7/euvd+Ltv4CVdvX2A6LdMy+idtCaC5Y5cdkbsr7G4QPoC1f+HnpelwvH\nV3CevPfvPgxrvaxJqHmxeNw20W7hfd9y4oofQGvoaZN9ePJtsEFMTFmMv7ta1qYpfuszHF8s7nFP\no6zVMmHNDDNUdNTA2tLWzPuozkdkNvSyTbulZj48DZaDsWOof1v1pLhd4kT0g/J1R0S7QerTXdXQ\nNicvznHiiHQ5H7ioRkDjIWhzFxTKe/3pYdRvyErAHJKVmCjazR0DXXJoMOaA45WVol3qPuh5C65B\nLQbvGak/rd2KWhnJlxm/E+7GnJq32iVeq96I2i1BpDmu21Im2g2STXHK/Bx6Qf6tuh2wgWQdLMfG\nGFNPtZeaanA9Ft1/A9oUSW092xFGZqCGTcMWaWc7dja05q/9FXPNeYvkWMk8l2omkBR3618+E+0K\nF1DdFLK97e2QYzsiQ9bV8Sellei3IwZlv732Udgzl69DvZf37/6LaLf0/vOdODgYtTI+e17WS/v4\nIN734C/w2fcvlDr0D34GO+X5a+Y5ceaFuF63rnpIvOfgIaxD6y+ChjrSsty+4+8/duL6A9D0p0fK\nOj+xtH620NyzZbe0bh9LdRSS5uMzkvbJGjZNlairEDla6rX9wUN3oFbZ5bOlXj0oEL9bjf3WRU4c\nEiLnn6p1qMdz6fm47j3NPtEugmpNpY5ETaX9T8i163Qd9lXf+w3W3Kd/+i8nPm/KFPGeLY/A2n0G\n1efgujnGGLOVNPR/+eBBJ/7TNx8Q7b52J+rj/Oj5O534thXSmjuQrlF0OGoM3PuArGGz7md/c+LV\nf15m/Ek12a+Gp8qaM2xlzPXXYsbIe9jThnvlzsI60VFbL9r1kWVqSDzWzLiJqaJd2wnUiYkdhxpA\nnhLUn0maJcdOVz3W8OBIHHfyHGnfy5ayyXPwGd4KWfeggyzeYyeiv1VvLBXtQkPwt/j83KNkLRCu\nTTMUuOKwp4krlPVFAqi2RRI9k/RaNWdOvbbJiQuvucSJi177QLTjWnnX3Yo977qXNol2f/rhD514\n9AVU04VqnXHtCWNkrYwAqrEZmREj2tUV4RmC62gmL5T77lMvwSK74jTWnXi3W7TrPINaNd1UEzM0\nMVy06+8curqIXI/L3qP2eDDGPKcwDux6KlyUpIfurztB1uxxhWH/0deLvaddU8lHFu0RyejTDUcx\nF0ZaewV+luym8dayW44BYWlNe5b0GdNFu04P7m8D1XENdMnciEHqLwN9iJv2VYh2di1Jf8P7y6YD\n8hkibgLmOraQjrRs7XmMDfRibuP7YYwxpz847sSeLlzrSZfLNa5kBz1nUq0eVzT6Wd1B+VwdnYdr\n3VGN5ye2XjfGmOBwzIHVn+K5tOKAfIbIPw/PGkefwPcQ5VYdzJxkzLcRORj33lL5rGHXHLLRzBlF\nURRFURRFURRFUZRhRL+cURRFURRFURRFURRFGUYCBgdtcytwfMNzTlLedj8AACAASURBVOyrl+lI\nYYlI6yxaC2vMsasminaczsupl97TMsUnNAmfd/xjpDqlxct0qal3fsOJK3Z95sScUlexTkqmYkci\nna3yKNK0OFXRGGOyZi92Yk8rziksUtp+t5zB5weHISXK5ZapfMGhSJ86/W+kMcZPl5/XUY6UxMlX\n3Wb8jc+H9Nzdv3lSvBY7BWm3CZMg32rcL9PZWMIyduUaJ9784K9Fu8+P494tmzrJifO+IW091/4c\nqaatJEmYVQAZRItX9rmEJKSI7TuG9LNVD64U7bY99pkTj5wJG8WOU9Le71gF0tYueQip3A9c+0fR\n7nu3w6Z9/3qkzhUUyJTjNJJm5Iy/2viTnU/8xonZLtUYY7pI1tRZgfQ9ljgZY0wE2Umzzaht6dZZ\nhc+In4w+EZORI9q1VSJFuo/SGH11JHGaKd9z8lmMg7+8gz6wffdu0e65e+5x4jd2IIUwLU7OB5Oy\nkQbMUoTM6Za18jGkHmZcCqlHVJa0fW3YA6vJcRfcZPzN1l/Bpn3kDVPFayyxGqDU0obPpVQoajSO\nuWQTJCPjr5KpoMXvQEpY34Y5ZtrFsp2LbD45TdRTgvESM9qSAlDKcethSDHKjspU0CfXQcp0w1LI\nBfeWlIh2q0hWEhSMdOGU5VLOwinRnEI+aFl9sxXsvLvuM/7kocsh77DleLycusl6PmKETJ1+8a/o\n+7c/BbnSzkdlav2+UoyxgxT//qk7RDuRrk7DOZjkcSExMsXdS5amrQdxD+OmSRlv1hzYPdcewfjl\n9GdjjOnvxhzQ+DlSsUfdKPs57zg8ZKUZEitT0kv+DWnjskceMf6mowOSmH2/+4d4LXMVUpgjUzHn\nnHnnsGhXXwwJy6ajGG8Pv/VP0a54w5tOzPa9D7/9smh3/EPIpPh6JE/EXqXsw+3iPSd34TzGr4DM\n4tA6eawTzhvvxGzz29sm5SE9zUgvH+jGuj/mO4vlsT6xwYkLv4vXiv8lj6/gOsjM4+PnGX/C62J4\nukxXT5wGeUzdNsyhYUlSxtu0E3sdN6Xnu2Lkfu7oh5D1TroCc2ifV1pp99K/eWkNpv1hUJiUJpT/\nB/P4mDUYL5XvWtbA52I/07wfMpeEaXJPGZGCa+Epw7qy/2VpwTyRzuME9e0JX5djtp2skYdij3rk\ng79+6Ws8Drwk3/FVSWtjno/G3wpNct3RfaIdP3sc3Ya9fHunlKl/7Y83O/HAAMZE42HMw8mT5Pxf\nsxPX0BWFudedbZUTeGqnE2csxT3lvmiMMQmz0Yf5nrYWSSkF24qnzMeeqL9HztG97ZAXjZp1nfEn\nVWVvO3H99vIvbRcSj3UoflyK9SoGDEv5W49IiWEc7YF5/LFc3xhjKj/CuOL70dOK6xU7Vr6nh65R\nZCZkjj1tXaJdF9mUu0dgr93TLufTyEx6jUpdCFmUkWOsvwPnlEJ24MYY00X7a3/fQ2OMKdmDNci2\nDx+gNb67CecSN0lKO3nvGZ+Fvl9b2iDapRXgPrrz0C4oTEr+2WK+l65vfxeOJ3m+3PN76bmaJWRh\nSVL+yvfRR3H8VLkP6mlFv2g/gfG3c89x0e7c67He8fWzJXeRWegXeZOvMTaaOaMoiqIoiqIoiqIo\nijKM6JcziqIoiqIoiqIoiqIow8hZyz53UUpOw5Fa8dqYb0xzYk7lPvmudOVJyECqUvT/1957xllZ\nXt3D19QzvffOMPQ29N4FQUBEBHuwR41RjNHEFo0xJrFrNBaisQYLNhBQqkrvvcN0ps+cqedMn/+H\n9/3fa6/7Ed7393jmN1/2+rTx7PvMXa5rX9d93Gst0Rqfe4jb3gbMQctt5hC0J8VNYPVytxtt8xHC\nUalwDdo/8yq4daqH6C1N6oP2K6do5TbGmJTRaOGNjBltxSWnNlFexTa0bFfmo82+/w3cCuobgNY0\nH+EcEJzILe7HPz9kxdmLjcfx+q1CdT7JRtH6CfSCxlzQznLPnKc86eDx1XJQy2585ErKG3jvWCuW\n7bR5y7nFesZSuDaUbERbtvM8zqHP/IF0jKTLzJ6C43e/+hPlSfXssWPQYvbF9/sob2hGBv7uCYyF\nV4QDhzHGvHvXY1bc1oE20aF330Z5HR3czuhJeDvQAmlXl5ftmpJ+YldG9xLuNiFpaNeU1AJjjIke\nzm4J/xf563bRvwMFbaPiR9CBsm7BPCjezBTDBuGY9euZM6148Xhudw8MxXi75epZOF7QtowxprIO\n/5Zq7zGiPdEYYzKuH2TFTeSyxb9PRw/7+Wv3FHxFq7zdhSkgDu2W1cK5ptfNoymvzY3zl1TE4vVn\nKa9D1OUgB/6uI4rpLZIGE5yEVksvH3zQIWiNxhiTvwpuBwEB+O4H//lPynvut2iB77gwg9a4W0Rr\nciTGVXASj3WprC8ps7k2B7zM64eYroK/cAXbfJQdzCTNKe8UamhaMzvyzRaOO1ufx/oy6HKmBXfC\niMcM6wGKV8JAdoTIXbcZf2s6nLByVm6z4tff+ZqOmZUNqql0R0gdyY46h97+0IpjRsMtxd5q/sOP\ncPSaPAHfHRSaSXnPL/l5mtncmWPp3z9JiuzPHvHL0NEBKpidditp0nX5lSJmV5xPt+H+vr0Rbf03\nT55Dea+sAi3r2ptQz8oK1lPe2k+wlg1IBW32xSdBk7rjxrl0TKA/6n/dKexHUhO4XX/u5Xdb8Y+H\nl1txgM294l93gc5+/f1wvSndeZzyZH0o3orPWp3sVOWuFeOETYB+McIH4Br9w5iGVLRG0M8FdTOi\nbxzlOQU9qOE01sKCEhuVQjjkSCq627YmhQjaqWy7P7IKjiPJUXwjEoXzUsUu7HF9w9ilJiQJx/k4\nuPVfwtsb1C3fIKyFvSf2orza47jG7FuxzriK+Zqk81VXQFIG0mZx7XY7MabDeuLeFm/KoTzpcpWz\nFvUwcqCNBi7oUDGhcP3JiOdxERUFqm3uIcyX8F7YYx1+aQ0dk7ZA0CGFQ1P1MX7XiBuJfUZTBdZz\nnyB+Jav4AfuqoQ+C+lCy4SvKk+443n7YK0rqrzHGBNhkIjyJmhN47wqI55rSLPZcbYKWYqcAScqO\n3OcGJvD3OSKwh5GuQfb7LK8/VMhbuIQUQIOtpkt6nHzHdB7hd2BJB685jmsP681U+Trh0iZlMOoO\n8vdJqlZjEeaf/fzqBLXb8NbQIyBXIZvkQbOgvEYNxd4z7xum9kTE49lFCnpQWD+mxxdtwPunXFvb\nO5iOFxaHeVqQh2ecHId7XfD1STpGugk6GzCuhv2a9xmSEu+IxLjyDeLam/MV1jj5jjn71+zu29GC\nvbKkLkm5CGOM8Urne2uHds4oFAqFQqFQKBQKhUKhUHQj9McZhUKhUCgUCoVCoVAoFIpuhP44o1Ao\nFAqFQqFQKBQKhULRjbio5kzS9J5WXH6khD6TfLsMYZcbO4rthX0c+BNStyDiJ7YzPLcOmjFt7ciL\nGsYaKT5x0KLwcuC3Jck3bWhiznNkP/AG8/eBw9lreh/K6+wEbzN/N7ikkl/8/yZaYU4Z+G+hK5iT\nnXx5bytOmJxhxRX7WM9l5NJJpiux5BVooxRtZO2XKKFZ8ditL1txZjzzdC+/EucYFghe3rkvWGNo\nyNIJVlxzDHzm0pIqyosoxvd3NOF5T3kSGhU/PMn6FX2uARc5MgNjc+MRtkGdOhBaNdKSrcCmRTR1\nAQibPSdBOyd/77eUd+nd4BS2C2vRc5tYw6FN2N8NWeRZu8mESRlW3GjjLoYIXqPUlSnfkk95UcJu\nU2p3SH0FY9hiN2owNJocMTxn84XOU+I4cOarDqFWSP6lMcZE9wTn1EfY/Eb4MN87diS0LaQNnuQK\nG2NMbDm4pH6h0Bxot2l8NFVA60bamLornJTX7ASnNoHdAT2C9CthdSv/ljHGBEbjOUb3h75IXRHb\na1bvw78jxPOxW7qGCp2onpeBC3/ua56zCcNxr5MHT7XiglWfWnFTEd/3k8U4h/GXQK/j6/++THk5\nu2A7mi2svnvsZ22flLmoxdKGU+pGGGNMUDK4x3JtyVjE+lQlm8BlTvSw2+SNz1wt/sU6Oo4wcPrz\nvoLGVb1tDZHrxohLoIcUM4T1WSZlYw3x8cH4/vDe5yhvxu1TRR60i9Iug4ZNzGcb6ZiUFMw5yfU/\nvvxTzhPP5uQ7sOLdeITXklaxbn+7HnbKGVcNoLyl7zxgxYUbocNh14bod7zQdCW8vFBXPn7kM/ps\n8SPzrXjP+zutePqfLqc897p1VnzkI+jCvLzyKcrz9kate+sN6EXcdgt/3zahszMkHXp7L6yC1fAH\nv/07HXOsEPfp9pE47852HpsbtmOdnD4CunHP3nUX5Y3rjTEX0QdjxMeH63/5TmijSK5+6lX9Kc8v\nmC1EPYmI3tjbVewros8SL8EeobEQ86+hkDUc6isx9qV+z5C5rH1SJ+yLXQVYg22yDGbryj04h0jU\ng0ffeMOKr53DmkRXD8R9jhuDPXThKrbS7mhvFf+ALkNTNa8l3lIPaB1qYex43p/Hj8cYqzqMdTs8\ni3UzvP0v+qrwi5E0Dc+qvpi1OKTt+9n3US+khogxxsRMxLXUC/2K3W9vo7ySGnw2LBPrbGhf/r6z\ne6A9WCv0VOT+X74HGWNMuJizwcFZVuyK2Ux5MYOwXzon7M3tlsQ1R7BOHH8f+82oEfxeVH9O2DCL\nvY99/1V3FvvweLuL9S9Eq7Dzdvixrp2cIyGZuM9SO8YYY5qqoE3jFPox9mddKDTv9h/EHkGuQcYY\nM2Ea9hzFq4WtdhRqkp9NqyoqG/e2pRbvkrGjUiivbCv21zFCQ6j2JL9nuITGUcIUjDf5vmCMMXVn\n8AzjxX7aeZy1r+S7QFegQ6wb7iLetwSmQEtG3htXC19LodA+y06EXpBdiyhE6J3JeS71zIwxZvdB\n1MGx47DXa3ehHu49xZqLNY3Y80/ujzUp92Pet3iLd6bAVOwvW2376TChceiotf0mIOAvdCWL1+Cc\n/GxW2vKd5OegnTMKhUKhUCgUCoVCoVAoFN0I/XFGoVAoFAqFQqFQKBQKhaIbcdFeRW/RRh03KJE+\nKxYWWJJS1FLL7ZXS7nT/y2gvdPixNV/GRLRzS1u9IJvttKsGlKD2FrTvVQtbz5Y2pjQc2oJW4cHj\n0KKdMYUNOhsa0CoXNwit2GdP/mguhPRYtNX6BPLt9Bcteznvwy7bbhMWPybNdCVKtuO6+l1xHX1W\ncR7WnTOGoI138Ut/oby8XSutmChk55gW4ipFu+/673db8ZxrJ1OepCQEJKG1rbMT98beovj9q7Ad\nzS3/2IqfW/Ue5e176V0r/vstr1vxjMFsU9siWoGbm9HSe/Irbnsb+wdYn/r5oU356L9WU97Au7lV\n2ZOwWyJKVAuLP2l5GTeRbeidokVWWmm7i5myIi2d972yFX+nge2po4S1qPy7gfGhIg6mY2R7tLQs\nlLExxviHYu6U70b7aOUupgSmzEMLvrSq62zj70scifnc3o7229o8pgxJylNXwFWCc6zYzrSNANH+\nKduAnQfYHjJ6FNpuZbt+rO15+wuaV/7noDL1uX4o5TVXo5W4ugQt+RnzUQ9a3dyCmdEMKs6p/+y3\n4hPn+fkM64t2dckAShCUWWOM6RDPK3UGzu/MB1sor/4s6k2YaL3Pt9Er7VQ9T+L8d2iPPrifaVdy\njkQEgQZy9Qt3UN4wbzyb4GDY25YVsrWypDCu/zda48fNHEZ59aJdffmLT1jx+D5Y7255cCEdI8e6\nrIU5O9iiVrZ9Rwob2UX92ELSLageucUYs3Yb9upcUN3aGtGWvPb57yhPUky6AsWHt1vx3cv+TJ/5\n+2Nd7zexXPx3tgL94CdQDf523T1WXPoRU2P/9M69VrxoLKw8M+cwpXmh2KvED0WrfFsb7u20GybQ\nMesfxBqXvzvPitNHcj2QNqivLV1qxeMf/RXl1VdjTNflCmvu7OGUd7oYFuuDB8y04hOvb6K8Rhf+\n7qx/zDaexPn1mItx4/l6ywStV7bJ29fSyAxQJnbvQB0ZmcBrV+w4UILKhcXxnqNcAyZeivu0bR1q\n41cfvGjF7mJeSzMuHWfFkl4flMLr06k3UJ8zf4X6bKchNRSAuuMXinkUEM3UtNrToGrFCDqH8wRT\nKSQN2jAzyiM4+Qb2in3vHkWfuUX7f4SgfwUl87uBXF+q92Adsr8PDM3IsOKYSdh7S4qEMUw7CeuF\n+yspTmlX9qNjml2YLyEhwlY7IYLyCtYetWKH2CNV7mBqnrsecydlBmhSklpljDFNJRhPARHhIo2v\nvfTHPPyDX39+MeJGY2DYpRsiBoKuVZ8D+k7VXs5rLsVeJHke1sXCFWzV3NyKZ+XrA+vwXon8ntqY\ni3mQNBv3T9pTxwxnilhkIuZVczPWMflsjTEmKht/S9qIN+bwO5FDUHnKtuRZsZ12GjEAY7tS3L/Q\nLKZ0ddj2tp6GtJqPHs1UrhZBxZd77IReLEvQfBzPxy8MdJ6mMq57ocJ2vGQbaqp8psYYM1HsCaW0\nxK4DeLfddPgwHRPkwL7lspljrLgql59jSBDeNYKERETdiUrKixgCHmAfB87P/q4h6VkRQzHu7RRI\nO23KDu2cUSgUCoVCoVAoFAqFQqHoRuiPMwqFQqFQKBQKhUKhUCgU3YiL9vA3CoeduLFMvanPR+uW\nqwgtt2U/5FFeaw0oBKMehKOEu5ypFIVfoj0pVrQaFm9gBWbZYp01Yx7OZzxa5SZEsgK4hGDNmJCQ\nLPqsKh/uGlveBm2m3KbMHC7a1bP6oJUveXYvyjsnlOVbRWtl1rVMrzE2tX9PI34MKARHP/2QPosZ\ngdbpnhlo7/vj/Ospb1AanklBJdq9skWLqDHGmO8R/voNtHIff5OdQrwF7SB8EFriSo6DZtV/Mbsl\nDBU0sZpTaCP87pEXKG/0/aBQPfvA3VZ83+zFlHdNwHgr/vPVD1rxxH7cquqqwNiKzQBNIOtmpoec\n+giUhNH3cAv4L4WkBthdedrdGFvRwn3LbVMD9xMq4j6CVijbKY0xpj4Xc9vXG89p1OKRnHcG9SFA\nqK6HJmJM2R0+Gp1oXQyKwHhrbeVW0LpcPN/Qnmh99LfNbbdwb0qcgOfmrubWxZq8PCuW1KqWGqZh\n1hxCG2vPEcbjkPStHou4Dnh54bx8fUGfa2vcSnmBiaCNyfMvEW4ExhjT40bMH0ccnkN4Sgblnc87\nYMX1eRjrLZGC6rKCaUNDH7jMirN/B0pDj3xuU67YCuclRwTaW338+f8L1AonFNML7b5BGdwOXncM\n46JVtJ2H9uG2/vjhvU1XQbqHBdjoudIhK01QXo+8vJbyRj/yGyv288PzdISGUl78mBlWPFbMy+2C\nLmGMMRPngwrQIw7zOVbU9x5j59MxdXV47qHZg8Qn7EIXko5nIN3S6k7xHHPW4LOpv0fPfFBoBuW5\n/NDS7xeC+3fNi+xw1+TmFn9PQzrbOUu4JfrtB+HUcv19cFQqPXiQ8nLXwkWiXzLu9TV3XUZ5LfWg\nao95FM9+y1OvUt7C539nxX+7HmvSfdOwt7BTL5/9531W7O2HdmtJYzXGmF7zcE7xo0AjDwhgKsCJ\nNaBkJc3EHunJq26jvL9+87kVV1ejRvW5axzlhYaye5MnETX05x0IjTEmRjjaSBqDdPUzxphN72HP\ncclN2Du0NzElpE3QXqrK8X1jRl34+sZORo2X59qc7qK8hiqsi5KO6h/F613E4J93WGsN4muX1xs1\nDM/XN5Bb6+V+urUBe/XqvUynSpzBNFRPI2IgauWZt/bSZ5lL4AYYLmgQtGYYY4ISsAcJEw6tQ3pG\nUp5zH2jge1dgzz/pnimUJ12P5Lzq7MD6FBZnd3zFmtTejvXTeYrnYnMp9mYZV8N9xmlzdPHPw3OU\nEg/nPj5EeT2vx1qfvxKftVSxc23GNexq6EnUnMbaLPekxhjj7YtaK91sAuOZUlRzHN8h3V6jxzK9\nxl2KsT8oGrSwkiIeEz3mY0/oG4SxH5qJMeEqZapNQATmoqSFucv4nVWuH1LqIXIo11M5x2pP4vzc\nNgdHuZeTe/U2G92uajf2WOldUFrlu1lHCz9HVyHe9SUN3y+cx21iLKhYrXUYg80VXPdanPisxxW4\nGLvjlXQdO3cIzyenFHN50gB2hfzn8uVWXDMdFGw79X6weLdtEucXnMl7T+d+SF/0v3WuFZcePkB5\nbuEgK6/XP4Ip0Xa6tx3aOaNQKBQKhUKhUCgUCoVC0Y3QH2cUCoVCoVAoFAqFQqFQKLoRF6U1+Qaj\nDay1sZk+O736uBXHp6Fdp6asjvJi+6ANs3ANWoAjBsRSXsJMtNlKl6PgFFZkl62cbjfcTrxEq3l1\nGbeLldagNXD0PLhcNDQwDaB4PRyoOoQa+qhx3C7VINrRcs+gRSq4B7dBZd2EdkzncbTonVnOLdTp\ns9CCn8AdcR5BwWq0kceNY6n9F+79txVfe9kUK77vuZsozxEFWsSpN+EYEJTCbfi7t4P+kFoFtfrU\nK/pSXsUutKzXCaXz8m1o7ZM0CGOMyb57iRW31MFBa/PRo5R3aCna3ganI+9vX/yN8gIDeyD+Nxye\nBt58NeX5+KBt8s5LrrTif3zxR8oLsDkTeRKyZVu6EhljTLJoPa89g7bJ6t3cmuysRltmeG/MWXub\nt7dwtogR8zckLZzypOOTbLWvOgEqYmACjw9HGP594h3QwGLGcNtqYBxaJpuq0BpYd9qmtC7mXFMN\nKDl2JXxJZZK0lM42zvO3uVl4GhE94CiSv4bbt4PF/XQewmd2uqRfqFC/L0d7dOwUditpc6HFuv/1\nV1hxS0s15UnaSlQGal35CVA4hj94JR1TsHnXzx5vd18ITEX9jkpD63VDLTucSOelwEgRxzM1L1g4\ndMg5EZXFFNX2dj7Ok3AVYR4NGMXPZtsPaClPHoFamz5jNOX9997HrXjJG6C2yJpkjDHv3w2ay4gZ\noEjEhfNcDIjBuPX3xVhPniRahWv30DGF38EBwzcEa3PGdHYDKtyyA98haGV2ek1kxM/T7X76F1Np\nz5WhxX/BI6AMeXszNUO6iJkuWBePfYbxPfgGpqEufecBK75v7kNW/O/N31CeQ9BOzn0Cl7+Ta49T\n3ooduIe/uwPt0R0dF3beuPMFuChV7AU9UNLIjTHm8B7MJVnN9p47R3l3iXNNmwrO5qdLH6O80deB\nIlf0LcbFFFvbuNOJGrDsN8us+OYXb6C8l2/CvXz400+NJyHHiL0FXzq2SSqonXo/4Upcr6T21Bxk\nKop/NO5fygi0wjts1CNJd4jNBh2osRxzx+5aIum5PWaBWlW9ax/lhQ8Rji47hNufF3PjO4SjSfJU\nPLeiDexEGSecQquPgiJgd3p0XEQqwBNoOAPKZtJcrqmFKyF50FSJ5z3g3qmUV1+IeXVmPY7JvoVr\nb5Sgfne+C0rCvmU7KC82CjU2bkqGFafNA1XGTsd2VWLMNBbhu0+vZbehyjrM4agcUHvOrjtFeUHC\nsa5RUEqSbTSzip0YC9LIKekyvpeScmG60CRWOoQZY0ydcGiqP4k9XPToZMqrEi5hPoJSH5PNa01Q\nMuZzzEh8R2RpAuVF98a7VVOjcCsNB72roYalMzo7QSNyV2JehqYxdbq+ENcUnII9UHBsPOWd34w9\ngZdoh0hbyJwkWXsqduL9KLQXuzUFJvGe2tOIEnTQ+nO8V0yYhvd0H39Q/Zoqeb8VOxL7+YIvsBbK\n93xjjDnyIepb2uWYV3KPbgy7+7bW4j5FBuOdKySc9+7ZGQ9bsUPQOWNs1PEVO3da8e19IZXi3FNC\nealX4XlV5eA9N2MUu/SW5+Ods9yJeRmSyns2u0OtHdo5o1AoFAqFQqFQKBQKhULRjdAfZxQKhUKh\nUCgUCoVCoVAouhH644xCoVAoFAqFQqFQKBQKRTfiopozzU7wxtttdl6pQ8Gnjx0j7KQ7WcNBWvpJ\njQrJQzPGmJCsyJ/Ns9vqRY0CHy5v7W4rPrsL/Oo+U9jezncX+NoR/cHZPfbeF5S39wD4npcsmWTF\nVdvZ0vN4Ef694CloOZTvKKA8ef+8ffA7WPb9kyhPche7ApKf+fw9b9Nnf1r+qBUfeAE+2LEtbPPl\nCMR9OymsyAIrmFt6RlibrfwrLDnHzRpGeSu+2GTFQ4Qd98IX/2LFPz35HB2Tt+07K04aie+7YeEM\nyosSVnafPL/Sinff+BfKu/52WIt+8u0PVnyvjW8dnIix2SdZcmSZ5x09nPmznkRLPXiW0SPYfrDq\nILiRzVUYc3b7wfBGzOHSH3KtOGIQc2Trz2A8SitPyfc2hq0mYwcK+3EhmxESxnOx7CR0L5zl4FB3\n/JBPeXFTM6y4QVgIO6JYhyhM2GwXb0AN+J9cWZxU9R5o8fhFsN6O5Op3BerOCy5xFnOYK7aDnxrW\nF5pA1YdKKa9sH+ZfWAI0WHrdwFohUtOmzQ19iB7D2VLe5cT3NTfj3oSkog5XHGcrbalxIvWBkmcy\nxz0wHBzwwh1brLjJZqkYLqywXWUYC3a7weLv8qw4ZS745IUbeZ0IyQRPO5blzX4xUuZjTAcnsSba\nGGEhWnsUGhMn8tZRnuTTNzRg3WlrYz2RmkZwuSOEPWzul9soL/Mc5kjmAKzHG/78pRX7+fjQMa4W\naBJlz4KVdvEe1qaRVqAR2agVwcnMoa4Telfnha374FtGUV7Bs2useNtrP1ixs3E15S169hrTlZjw\nCNbu/DWs7bHutY1W/Mx70P3Z/yqvnz/ug4bHWKFvMOuv91Neyd14Pu7z0DEICWWe/L9uf8KK5/wK\nmhrSOrb/9YvomNDeWEultfe8p6+gvEsGQLNt7W5cx4CxPGd/eA+22BMWQ69D1lBjjNn3PNbjax+D\nJlXJZta6ueNf95iugvMgamOITfMvWHL8xb5U1lY7EsdAVyAsk7UeyraiLsWNFtp9vA0g+PrinNpc\nqLPRw3gNb2+B/oCsARFDWUMjSOhNRPRFPbDb7dYLjQ8/P5xD+DDt4gAAIABJREFUwiR+hjVS48Px\n87psxhhTexY6IUldoFWSugCahHLfbIyh+9v7NmhDSY05Y3iORAgtisIvWO9FjgX56MY+MIXSGoW2\nX5DQLDr9Bt47pM23McZ4Cb0+H2Fv7m3TBBou9MO2/hdaN1Nu43cD+VzLN+dZscOmjRcQi+st/g61\nNziex3BdQbnpKkhdotpy1gaM7oXx3laPdceunxUm7MI7mrD2d9g0BNvduC9S7yRzItc8lwu1KCl1\nvhWXl2M9Do8eTMeUHMPaKte4yoP8Hij17/yFbqOcb8YYEzvm5ydM6Y+59O+wPqhLck8urceNMSws\n1gVorb2w9XXNMej2yPrqKubnGNUL2jKd7dAEDYpnvZe4ZIzP+jzMZzmejTGmVbz/+IlxFiTeaezW\n1/X7UW/jB+P9tY9NI6z/COg3Sb2wxMtYx7DoS9SRhFk4pqmJtWkq92MPHS6eqfMEzz373tEO7ZxR\nKBQKhUKhUCgUCoVCoehG6I8zCoVCoVAoFAqFQqFQKBTdiIvSmmqOog2nrZ6ttCMGo+2qRbRB+YUw\nzUW230naQVAGt0Q3V6OVsaEQVKj46dyGKe2u1x6AVd0Y0VJcvZ/bjOKHgm7iCEO7VP8lCyivqRwt\nXEe/gd11Qkwk5cl261YXztvLj9vGnUdw/zLmDbVit5Nb/so2or2tJzt6egQfvw560aMfLaXPIiLQ\nct7jSrTtNeRwy2ja4LlWfOXf0Vbt7c0tYgmi1TlHWKamXsLtn6N34ZonPop2w5NrlovzYau5d576\nzIpnD8O5Ro1lOlFADJ7x0B4YP9P+fB/lvXc3LEQXz0I7aZubW4SPvAI6hqsZ8yA4mCk7Z39Au34K\nO8b9Ysg2Zd9gtpyNGYbrr9gDakyLrT04JAPjuOYQno20YzbGmLjJGVZcK2zO7fAWVnon/73Bivvc\nCitQHx+mIZ38DLaC5bWwpM+Yyi2EksoUMwLXl/8p02sSx8MS0dsXLYkhGdziWHMY15t1EyhxhatP\nUl7cuC70lzTGlKxD/ep541D6rCEP1yytVu3Unl7XwpK6YjuolK3NNZQna29oOp59ezu3qqb0XIjv\naEV7atEJjGdXUS0dkzgFA/zoq2jLDrXZrUcNw9gKFjSp+OF9Ka+jA2tIwVq0wcaMZGpe+iJh9b0F\nNINg2/MOjOk6W/vak6Dv2OdOUxn+HTkMlITy3dwS3SsT19Xejnlaupdb8K9YOtuKZQ248blrKc9L\ntM27KzF2YseBfrH1zS10zAlBz21ZhZqXERdHee3C7lnO2Uv/zOvnimdgMz3ntulWXHeO17vkKLQy\n+wqqVf9JXE/PbwRFJ+7aWcbTaG3CfFn1Nd+bK66eYsU7X8dn8/7xMOVl1cOOe9WjoJBtvO5eyrvz\nJVCKOsX9fO5upklJ+kPq+PE4phPHNDZyzaoT4zEsAuM+OJjpSusOvovvKMZzlHXcGGM2HcbeZ/yV\nI604sfc0ysvzRS3e8gbsQ7ee4DE8+idQ2G9dNtF4Er6COhLSgykczVWocy5BUYkYwOM7PA1zpGQn\nztW+l5VWrw0FGDs+gbyNjs3EJq6+Bs8qaQDmhMvF9r2trXgeLW6sA/4RvH5KWkBdLupBUwXXoRhB\nsa4rw5oTEMm0AlcxKHaps1BbG4orKU9SV7sCATH4/tozXC98AnB/S7fkWbHditZb0LJqXXj2dkpR\nfBaef7igigYE8z6yPQbrbqWgEqcICpZvEI+Rsu04vwZBNV22fj3lTSrGvR6Vhb3P7g92Ul7PAdiP\n9LoD48oRxGP45L9Bw4ybDFq+83Qx5Um7Zk9DUsmjs5mO5zxSKj6D7MDRd5hCmyj2sj6BmNttjS2U\nl7slx4ojQ1DzwrOY7iuJa6XNeA+SVKiC3V/REdFivynHWGsDn0MzvfeCetRYk0N5dM/FWEyYzO+2\nLTVSBgN5cr9hjDFtgsrTY4jxOCQdL91m953zIfbvjXlCsqQnvyP7+GA+J8wEBejUG/y8JU06VNTv\nljoep75iLMQIWYfCfFE3nU10TExvzO12IVdg3ys6xe8Fbhf+bv1pfgcO6wfqvbsEdbOoegflxY7C\n3k6et1vs6Y0xpugb7G8yBpn/Ae2cUSgUCoVCoVAoFAqFQqHoRuiPMwqFQqFQKBQKhUKhUCgU3YiL\n0prix6Ol7tR7++kzl2jnjhmeKGJuDQyMQguR/6Vo/ZJUKGOMqc9BC2DlTrRbVxdzq37/G0BJuP9O\nUHJkq3DRmtN0TJ/L0X4dFIQW1pM/vMt5d+P7glaiNTdSuP8YY0xbE8696gDaBu2q2g2n0J55+GW0\nHfZYPJDyQvtwO66nMWsoKEWV+7i9vtrxXyuWyuQp89gRImcnWv9ChZvWT8+vobxJD12CY/70tRW3\nuLhFbPLjcIxpaUbb3jcfwXkiJZrdbJ5ZCeelnAM47zyb89fbL8KFa+mzN1nx6dXcvjhxIZwoek4H\nbau25gDljXjoaitOO4429sbGU5S3dwOcO7KvNh6FbN+uO8Ftjs4DaBmNE05TRz7hOds3HOMuZhxa\n72IHcfv72U+3W7F0HwhK4JboWkFXCOmFtkZJUXG52IUp+86xVrzpebT6hmXxHHCJ65VtzeFDuJ3X\neTbPihOngmpTfaSM8pLHoj2//Dja9h0x7HogHai6Aj2uhTOAnx9fc4tw2vINRbt0ex2fU/Fq1LfY\nSXjeVYeYztnrEsyxgoNo6a08+DnlpY+HK0xTE9q3ZUuvzYSPqExxozGWwnuzE0pgNGpFbR6eSXs0\nt3g2lqI9NW7MhZ1Q6s5gnUhfgJbbWht1pr2l656jXBerD7OTVrBwjOkUdLTkacxzPPQN2oN33vua\nFc+98xLKayzAfUmajHb6wy9vpjy3dF4Scyw+DVSKmU/w/J0uxvq2F/B9vW9iul3hV6BmDFkKRzD7\n+J04AT3Wa95BHQ8P4jmWWw66b1oMxsuwseMpr8JGBfM0Hr/+BSu+7/fsDNWYI2grwlnr/jnXU16/\nFIz9YAfW/9++/WvKc57EOJGuMpv2sUvUf54FbWrp3Lus+IGHb7BiO4VlwI2Y552dGAfH3uf17qm3\nPrbif6952orLt7DL5F9ehbvSsr98asVPTGZXxP9sxphZOGaMFb+x8XvKy937mekqhAlaStU+pnAY\nsSdMm4e1L/ezg5QW0xPjNm0ixndDzRnK8/EFxUjuX1P6jaU8WUMTUy634jM7P8Dx1Uw5jhwkaCCi\n2PqF8p6yYi/mhFy7AhOYdhSTAJr2iW9BFXfl8d7YV1C3qo/huyP6sMWdq7zedCUK12Av1WqjY/uL\n60ybhWflPFtIeUXf4toq6kBjG3kpcz/k/unkGVBopbyAMcYkzcG+qFXQLJL6okb7+rLjiu8k0DY2\nbMa4v2/uXMoLEDSYiCGgdjT+aJOPEK49ZYLCHNaba0D4IOyL5H0ITuXzc8R1Hd3XX7jo1J3l9Vi+\nF1YLilPqJF4Xt30JJ6zRl+K95exOpgolJWHdWLYK9Sb7nC0vEvvS0ECcX8YM3vNKSDpj8UZ8X3Mp\n71mkW5pfEOZfzVmuQ5JeGZ0NSk57M8snSMpT9QHs5TramL4n3RO7ArXHIWUQnMI0dSkzUiXe0wNt\n7wY1RdgzSFpW9Gj+fUBSQp3HsT/8H3TB9XgOfX8DamxwL+xBNq/ZTcdMvQzv86e2opYPWcASG5LW\nmzoOFCx77ZW0PTnW7e5ZNcexvwkULm+ttt884qZlmItBO2cUCoVCoVAoFAqFQqFQKLoR+uOMQqFQ\nKBQKhUKhUCgUCkU3Qn+cUSgUCoVCoVAoFAqFQqHoRlxUc8ZbWEMnCntdY4yJGgAuZPFGWPVVHWTd\ng4SxsMcs+Bo8tGYbr9TXD6fS4wb4SsXbLLzbm8DTK/wW3xc7FjoFIZls6+V251lx0QFw4Tta2KK2\nqQKcwvD+4BMmDZhEed7e4KK19fvJiuuF/a8xzAMNSgb3s/ZEOeXZuW2eRksrtAXsGhuBseBKNhaD\np9ucyBbKUX3Brf/q4U+s+LqX/0B5fn649xHB0BT5/LEvKS8+HFzG48LS9bFPoQPkcuXRMc8sBrf+\naAH4t88t53N46DZYDi5d9IwVj+jZk/KkLexv06EV8d1L6yhPaiak94D+UEo2c/Cn3c12w55EWBb0\nd6TFvTHGpAnL8dqTeG6x0WwZ1yy0CqTNe/mmPMqTvFJvB2pAWDRrJXn7QZdJaj7VF5aL/86ETIfg\nas76MyzUfX2Zs9oq5n2jsEENSuI8v2BwUyv2CM58P9amaagCnzwgCs+z/qzNLi+LdY48jZJNqJUR\nA5jH7yfujdTgsVvdynohXUIbbfe6sRF/S9pANtvsnytzoXuR2v8KK64vhmZU3OhUOkaOQfszlujs\nRO2Rz9TPj+9z9UHU8qBkPGM731r+LedJnEPlFtYfiBopdMIuTC//X6FsG2pP5hy2Bj7x7lorDu8H\nXryrkGvD0EXQThskrDGDklgjIGHwCCs+9i40t0Y8tJjyTrwH7S9pvf7pfdAwaWljHZ6hU2Hn2nca\n1uliYfdujDGjH/i9Fe964Xkr9g7gcdnretyLrdug6zT5Fr5Hg4R1ZUC80ECwDaMyYV9rrjIex1ub\noFXw0W+W0mdDpqKm9kyALsKoe/halj++woqzMzKs2Ns7kPKi+wsu+xDUZakxY4wxqXOgK/SE0HI6\n9RF0UrLv5/3IP26434o3Cxvse206F5P645q2PgcNvKmPsyX6zn+stuIH38N3H32ftaqWbUJ92PfK\nW1b82s23U95ld7GOkichefyOGL7nXt7y/z0iDrdZaXt54TO3GxppfoGszyHtpaUOmtxfGsO1ra0N\ntVbuteyaMyWboamQPBMFy8fBcyx+DMZRndDwkuugMcbU1UHTqkNoS6VfNYDypDZbfDb00PLXbac8\neb2GJRs8grA+uGeN+awz6TyGPc2R0xi3SZdmUV7KnN5W3D8TOkCuMl5n5R7YZy/0QaSFsDGs3RIl\ndDXb2zHmCg+zvtL+D6F70W8a5vKWr1kPY/oSzGHfYPzd+EGsbyk1xyqOoG4GxrPGUGAi/t3rFqwt\n9mu311hPQu6dvGz25Y0l2MMFp2CNa8jjZx3gh3tRexTPXb4vGGNMQSHG7ehemC9/f+89ynvidtSi\nl4Rm5aVncI8WLuH6VC60fURpMH5RbGsvdad8g3CfG2zjN348dAHdQrvJ/g7sI6zgIwbi/dp5iHXt\nIsS7d1cgRFhN2zX1YoZCM6c+GvW29gS/LyZMwTuEn9BPDE7l5yj1eLz9cf1N5azvEyvs4WUtl2PJ\nrlHaJDSCUhKxF7Pr3SaLunGhczPGmIbTeL/39sU5tDawdlC80P2s2CV082xzoiFXjJNx//Pva+eM\nQqFQKBQKhUKhUCgUCkU3Qn+cUSgUCoVCoVAoFAqFQqHoRvz/pjVFDUigz6Qlc6CgGkQP5ra8lka0\n5cWMQZuutKYzhu3BnMKKKmYoW2+VbcuzYi9vtAm1N6F1s3ATt2XL1teAOLT/tTW2UJ7zGP6upBWU\nnNhCeQHRaIusETQS+zV5++G3L/m3qg6zzW/qZT/fVuUpfLwF5z+jltvr1x6AbfRflt1nxQ4Ht/4e\nW/aNFZc40d5VX3uC8oJD0QLeexRacGfOGUF5L9z8nBXf9mfYmLpcaO998ean6ZhHP/m3FedsQ0v1\nyqdWUl6AP9roPt4GitLah/n7goT1aVA82u38fLiVeOClaAX+ccVOKw7d8DXlle0AtSKT3Wh/Mc5/\nByu41Hl96TNJY3CIsZk4i2lca/8JmtmEy0D9aszjMVEj5kGyaB0u2MH2vZkTYRMqqX4mDr2zHR3c\n8tfRgTnS3o62QT8/pmCFDcYNdDq3WXFdAVO6Gopw7rItufE8X5PzIOZczFjUoYj+bBnaXM2tjJ5G\nxhxYzjpz2fYxdiRqnbSilPaLxhhTX4D5d2IFaAx7zp6lvCUPYxzHDsZY6BjIdS8gAH+3oQHjrOQ7\nfF/mDWxH6i+oVaGZqJWVe9j+OHYsbKcjBdWs/Mgxyut1xUwrPvEhbL+jR/C1lx8C7aDnEowRaX9p\njDG+gdyi7kn0XQDql8vF9qvf/oj29ft/BWvow59wrRizdLIVFwlr9PM/8ff5+6I+9xZ0zZpitsRt\nqsS4Lf4ez23IbFCEZX0yxpg48WwKvwGt7Kedhylvxeorrfj6JbOsuOEM03gDA/F9ix7HPVr199WU\nN2UxKAfuErR5r3pqFeXNuGe66UpsePRJKx5z3Wj6rEjcwwRhV//5k2xPfe1TC604Lg3PVNJ8jDHm\nLx+ACvzpdsR9Fs2hvJ3PvG/Fva4Hf+SV1biHz89gOsedr95kxYsOgKYRNzqN8mYFYW3+/IGXrPjH\np3lshgSgfX/LM/i7o+9jOtWJr2HRvPMwxs9t//oj5eVv/sl0FUJ7opW9qZLpmrItvWwHnqevjQJ0\n4mOMu+AeWIfCs2IoLygBLfTVgr7vKmbqSPRQ0BWKt4NeFC6sd+30ctniLqkPIYm8PrW60KofKPay\nLfa9p6DVSUq9ndbSLihP1Tmws06Y2IPymm1UAE9D0rISJ7O9srtQ3I/eWGtqjvA+OnMR6qO3N8bw\nuU+2UV5pDe51oNgrJsRHUV5Omdgz+GKNrCpGjW+xUVP6XdLPir//BPvucdn9KW/P53utWFJ2wlN5\nHyQpIT0XYB8qrZaNYVmHjnZQgX3slOiQrpNQaCgQ9zWWKYHePngXiuoJGlJ9DtO9BoxEbfMWNJ+m\nMp7bAfVir9eMsX//DTdQXrF4VxkkaKczx4DW1NHOk0LSAI2gRgbYbMglxdotJAPschnl27FnaXPh\nuyV92xhjOlrx3DrFOXn5cg9FZztTvT0NVxEoaJ2dNqq8kL5oq8c+MqQXzx3nUcwd+Z5eviWf8iQ1\nMSYZe+OWFrZiDwzE+C7LA7XRywffHRPK97NTUOIzb8T+lemuxtSeBV1V7kfILtsYEzEMdLJgUVPt\ntffUu5AJiB2K30MCbZR1O2XVDu2cUSgUCoVCoVAoFAqFQqHoRuiPMwqFQqFQKBQKhUKhUCgU3YiL\n0prOf4/W6bZGpif4R6HlR7ZkdrZyy9XZjfiOrJlwhIgeyu3q0nkpeSZanWTbkjHGnNwq6B0paJNv\nyEP7Wtol3PYr29HqTqGF6fLF91LemtVvWrFsVbIr67cJ5xPZOhVga1UNEIrqNaLNK8jW8mf4Ej2O\nu2+CK86XX/9Iny3bBErQsc8/tOIT779IeQPvQNv3DKE6bVdlLzmEds0+V86z4punXkt5kjrkEm48\n1Qdxfo9+8jYdU7AfLdZvPwvniKc+f5ny3G5QA/L3c6u8REQwnkPNWeE+Y8uLHQ4azG0zQMcqz+d7\nmTFl2gX/1i9F5BDQCmWbpDHG+AqKiVQo949kdfmpV0MS/PyWPCuubmBl9EhxX6LF2G93s9tLW5to\nNw5By1/+CTyb0Hie5zV5+LsO4ZrU5uL6EpqANkZJZZJt2MYYk7cR7erpk9AOXbGN6TW+YWgPrhVO\nQyFZ3I4Z2ZfpfJ5GZydaXsPT2QGpYC3aIR2iZp15ey/lxc/AdRZXw20qzuZoIN2RyvejbsYN4/pY\ncRrUmYR+oOL0uXWyuRB634IWVH9/PHs7vai9GdcbHAL65rkdBylPtgiH9QVVQdZ1Y4yJFpS0wjVo\nw4+x0Z9km7GnkSeoku4Snjvj+mCNa22uMxeCIwTt65HZmNvnz7I7wqli0FSSii68Lp4QjncD/UHD\nce5B+3v0YKYmy/FRVoB1cc5NUynPLdqc5fMc/sCtlFe4bwPO56sjVny2lK9pyH78e/NB5C39z18o\n7+WbH7fix1dcZzyNUX+ABdSeZ7+gz1KmYY75h6OO5lewK0XFTlDFqg+CrmSnlP41Effq1uk3W/Hv\nb2IbKklBvkU4l3y+E1S/0tNb6ZjoONR1/3GgGeet3EN567//wIqzEjAWpv7pasPAnsbhQFv2/XNu\noawXvwXNOPUS0ATKT/Hc3r4SdW3QfONRVIi1UFLjjTHGJ+jna77dnSO0Bxwm64XTSo3NVVPSCZor\nxbpoc+vwFnMzSLiTyOPt1AdJTW6uwnc35DJ9MXE8HBOrT2Of4x/Ga335oeNWHCZopw02uq9D7ONl\nPWjo4DyvLt6jnl+N9anFxbTbtPmgcdcLuq+3je4hqUyuKtSYQfexFUrzC6DZJQ4BXSlqCNfH8Dzs\nBaKzMQ+kO+2eH4/SMcPHgNY0/XKskXm7mK7aNxu0sdDeWO/y1p6ivKSxqOXSoak2n9fFuPGgMBJ1\nyUZL8Q3i9dmTkO8Cdsci6dIjHRwj+vN+q3wb5rN/NM61ZG8e5cm9+9RZI604pAc79ZYI58GIRaBl\nBgmXn6qdvFdsEnteeV/bGpi+Ip1H29yoASmXsj1kwTeoydJJWFKRjbFR7MVjS7A5JbfYHIw9Dbm3\nCOnB+2M5nhyx2L/b3eJq87FOSufj+NFce729hTuXc784Cf6z4eFwkguNw9rqKgNttOe1g+mY+nOo\nFeVinbbTWqMGYf8qKWQRWeyK5euLMVwtJATsjq/SyTogQTiP2mr+/9d7v3bOKBQKhUKhUCgUCoVC\noVB0I/THGYVCoVAoFAqFQqFQKBSKboT+OKNQKBQKhUKhUCgUCoVC0Y24qOZMvdCSCU5lGyhXAXjo\nlZXICx/A1n/Dfg3bzL1vwNJu4nDmnoUJ3qW08C7bmkd5iZHg7MVNBh9T8rny1jBvU2pqHCkosOK/\n3Hkn5e3+Bpy3QWOgHZB0CfPHpeZHwR5837C7mNsqeW6ps8EVLlp3nPLsOg2ehrRKljaCxhjz9+vu\nsOKFN8+w4lo36+wEhOO+J14CPv7hf26nvERhz7r+8det+N8b3qG87x8HX33dJ+DQ9xJc+K8W30bH\nhAWC4zmmN8ZPaytfU+7nsIJNvRx85bnPPkN5JXng8TvCcH3DJg+gvH/ehXO99UnorOR8znzjkHjw\nEMfc97DxJEIEZ9cvlLn10kI0YRx0Kc68s5PyGmrBcU0YBb2TzBSe29ISvmrPeZyDjc/b0ACdqJpy\n3PPAaJxrUz1rNJxfBW75gN9eir8ZyLzN6jOC05nL/GqJQbeCb1wrbO0D0/iaYkdDq8Rdjnrg3M+W\nlFJDJOH6C/7Z/zVq8lA77Po5IT3B73UeBGc+86Zsytv/GuropGtRX0+vZVv7PV9A62H8rdCSkZxv\nY4wJScVzLdwNu3TfYPCBA2ND6JiitdBCaK3BeAnJ4jGSMRN/t7kZ97rZxpsuWofnnTZH6LbUs/5A\neDjGfuplqAH5X3NNzVgwyHQVwoR9b9EmtkMfuAR2rjkfgQ9tt2l97Y5/WvENf1xgxeMeYt2q+A+g\n3/HW09A0ueOPiynv8j/B1j7nA/zdjOtwH2zyA6ZUaCf0XwSrybef+oTyHnr/91bc2oT6l7tlLeWF\nZuDZd3RAX+PeZ5dQ3uH3oaF07zuPi0+YhO3w6zo7dGN4HjgbWaNo3Fjo7uRsgMbQdfNYjydE6HlU\n7YJ2gauQ9Yb634rnk/ZffF/aFf0or98W6D/FTsH+Ztmdj+HcJvDY9guG9tkXT31jxUPS0ylPWmTP\nehp7Hx8f1sAr3LfJikvXf2/FL61+j/IemAcNmnkjRuC8M9mCetSMIaarkDgdezOpW2WMMYVfox4m\nXoq8WpuWTOJkaEQExkI7wsv3wlankYOwT6k9U0mfBSVCZ8AlrFmldqFdb8I3SNRaoVMQ3iua8tzV\n4tzF9UrNC2OMCRSaZYXfYj8cN4Ht1d2NWO+iBghdu10FlEe6iyOMxxGcCQ2upL48fqQlutR/Sp3B\nGhOVR7G3cERDD6O1kdeQzFlYXyq3YY8utbWMMSasP84j97/Qxqoow35k/BUj6ZjSHbhvgcFCq6qS\nx0hWgtBfW4N9VOal/F4kdf46hL5l9EDWxzm7HPuvcFGTMubz3Mv5DO84ib+53HgScv41O9l6vU08\nA58AvHa6SvieZwldGFcN9NYG2myN25ow3qXGjrcf9xv0XIK9U2sdzslVjHnZ2cZ1I2FqhhU792Ef\nFj0mmfLKhG5jqNAurG3i/ZXUfvQR8zxmuE2P8YTQaemDsVe1v5jypJaW4a2hR9DehHfpxnzWnmoX\nzzF8APSCpO25McbUCq3AJKEhW7CG9cjixmONikuFxmFNzS7Kq6nBuHU48HfDe+E+Ndts7ZsqUDd6\nL8K7hrOQ94rO46ipsUOxTvj4sIZswXrYvseNQR2tC2Db78w5E6y47BDmpfMAv2uQRTr/dGCM0c4Z\nhUKhUCgUCoVCoVAoFIpuhf44o1AoFAqFQqFQKBQKhULRjbgorSnzerTEOWxtZflfHENeP7QCnVzD\nLUOJ6aA5ZYzKsOLirZwX0Q95jcVodZO2gsYYM+DeS6y4bDfaVhty0EaVOb8/HeO9Enn+vrjk8CBu\nWxqwGD1iBavQCtpSxS2oZefRxhSfiLbT3I8OU17y5WhRrD2H9jh/272U9qRdgXPCyvSxV5nK9cx9\nb1lxn0thVxo99AfK+9uNz1qxuwWtbY+8/RvKqxHUkiFL0PJZuHUH5U1+FG1m98x90opvfOkmK87/\nPVNihg/B/XzjizVWvH7BIcr713q0dp/9AbbOkTFMnUlIn2XFZ35CK/+Wdfsp7w8f/tWKOzrQTrm2\neB3lzb3hMtNVqDqEZxhjs6GXtLg2t6AuzWQ6nrTrLPoWtJSGM3xfQkSLsbQJlVagxhiz5k+wYR8+\nEy3G9afxfaG9mc7R3Iyxc+o9tM/3uIZblKW1tmz5lm3N9rwiQTcMCeS8lr5oaW1rwDkkXWqzld7F\ntoqeRqWwbeyxiFuOi9aj5iRMBXWwpZZbhKPj8HzyN4AO1Hs2UyRkK7q0WvXyYlpcSy1aV+vPoLYF\npQt6WjnTPiIGorVUtjOnjZpBeTmbMU9lW3FQLFMpYsaAdia/zy+UKZ/ePvj/Cec+RIts9ChuOW5v\n5TZ/T+JfS9+z4gWXT6LPQhPR7hqYjDbWzWvZ1vjKG6dM8ZIbAAAa0ElEQVRbce1JtLx/9PevKO/O\n12G73Pg9KGcHVnCNGv9btATLdSc8ES38BT+wBXP+6eKfjecMH055H97/rhX/+q2nrLjO/wfKOyso\nWDnlaBUe3Mp1I6kPWvIbqkEL2/nKj5R3w7PXmK5E9TnMnYkPTqfPjr0Pa21JBTn34xnKO34EFrnj\nl6A3Oao300fqyjG3W9vQ9p5no8Yuff81Ky44gLlzx1ug5D525e10TP1/Mc+fWfGEFed+vY/yLp2F\nWrfxiWVW/OUubiF/9G+gEwf3QK15ctHdlHf1OFzvqIdhFX7yi68pz16zPYmKXaClNFfwPi1yKOyP\nG/JAfY6wUULcVaA4SM/olhree4akRog8hOFZTMORaHFiD+MSMgGVlUwXkLVb2oPXnOO1OX0eaNpN\nFajJ9n2yfwTuuZ+ggvoGMlXQR9AR5P7A2/+irwYeh9z/151mCpCvsEivOYK6Ej2Ma77cC4T2wDFh\nUUxTj4jD+uIftttcCGWb8qzYkYD1auQ1kCiosz2fLLGPcR4ps+JJGVxTy4TkQcYU7NMC45g+nPcZ\n3rNiRmCNTJnRh/LqT2HdTpyGvUP5HqbdhvayWSN7EJ2CymrfK0YPw7lLSl/yqDGUJykn4cmwGy/d\nzNcRMRB2xa3C4jos02Z/7Cfsjw/i/UyOldYGpr3VHuX3Duu7gnjuhAoaevVurJ/+sfxeKSlPUn7D\n/nejxb6+XdAU7eO8WOz5ugLtgpYVN5GpsdIy28sbRbBc1GFjjEmbi/Epa3TKLB63klKbs1WsG15M\ncY7Pxnt2rRPU3xZJVTvPNVXed3djnhW32WiO8nq9vLC/zF/HtUHS0BwhqPk+AfzOkL8JchLRQ7AG\n+QTaqF8nfn6c/V9o54xCoVAoFAqFQqFQKBQKRTdCf5xRKBQKhUKhUCgUCoVCoehGXLR3sVg4ckQM\n5naxRqFC74gBTWfwddy+5xR0jKAkOKjEDWbqUUMFWp9k61TKbFYvb3GhjdBdCqX508ehkh6ex22R\nskFKOhZU1ddznlBPDhftf81l3C7b/wq0Lp5dDcpU+qRMypOtc83V+I4wWxusbMvrCgyfAXeHkCRu\na3zstbus2O3GPfz4QXbsmDoQrZwz//qoFR/99D+Ul7sPLbl9Z+MZ2x2pAgLgFjS+L1p1t/0Nrdxz\nfjeLjqkSzjrPrvijFe97aQvlyXMaduP9VtzczKra7/z6Xite/Dxcq0YJpxxjjHnpZrSKD0pDu/q8\nP86hvMSefL6eRMwwtNTlf2Vz+xJtv1HZaKMLTmTHoop9aL/zC0CLZuRQbvM+vArtn3K+BDbw90kX\ntBUfbbDiwcIl5Hwpz8UG4QLWKuh2/hu4FTRyEOpNzCDMq+pT+ZQXnIS21cThaJ1tsSm3y9Z6RxT+\nVmMRt0LGT+A2Tk9Duhn5+kbQZz3nwglGOpDlfMGuWxJpoiW6rZGpPA5BHSoRbcE+gdyC6uOAK0nx\nKTyToZMzcK4B3NJbl4M6XHcKz7gskqkz/qKlvqMF7aOSMmWMMdVCyT5rMRyenIe2UV7hN6CH+ATg\nvKv3sqNBdH+m9HkS86aMFudw4SU09VKsEzPDmUr24Ztwils4B9Qo6UZojDGv3wWXO+leNP7eyZSX\n2AO15+N74K7UbyjmvGwFN4YpvhMemWfFdYXsKtA/eaIVe3ujjsv11xhjGprQYiwpw9E9+1LesieW\nW/EtwvFh4JVM81v/V7hBLXlzvvE0UgeDWtvcXEaf/bAF53j9LLj59BTOPsYY869XV1ix9wfYaXh7\nM1Xo6peftuLb7wE145N3v6e8fjfNtuIAUafa2rBXuWYhU7DyjmA+1xfjOt7/5DvKmzwA9I7EeLSJ\n33vrlZQn505nO1ro545gm55dZ0DxGuRGXZbt/sYYU7lD1JvZxqOQFHE7rUlSA6Trkb/N7dBVChq9\ntz9qSsJAduKpOId2ei9v7BWjM9g96+zK9VacJ/ZDre2gNGT0ZmpyxU9i/zoYcyJupI26I1rypWNU\nYyGvY7ImByaCKlO84RzlJV+K8dwiHPSCkkMpL2oQ1w5PQ1KZXOd5X57Q5+dpY85jvE+jcxa0CLeb\n17vGUsy/0DTc6/oCdvHKvBH16MzboAhGXDXMiks2r6BjJAVZPntZa40xpvcV2E9LR0w7pSZ9Eeas\ndOUs/IKdGdMXIy8gDPPPqx/TQ1ylfG89CV/x3tbZxrSm0h9A/5SulN7evK9I7IXaVl+PfW7WQnbJ\nKz8GOqikG9odezrDQWELTkeer1i3g1N5L9LRhnnqK5yRpIuwMcbUHpPuoPiOsCyuf+VbMbcTZ2Av\nW2+jxEmXVElZjBb0TGMuvufwBNKuwHrtrmA6u/Mw5lyTWP9D+7CrXIeQ6ggTtbdsex7lBafhmXS2\n41k1lfE4bUjGHJYOePJ3BFm7jTEmOBLvA+WHQQ+MHcT7kdJajKWqYxin7gJ2EqsT7xBNEVhr7DQp\nX7G+SHpfkO19zL5ft0M7ZxQKhUKhUCgUCoVCoVAouhH644xCoVAoFAqFQqFQKBQKRTdCf5xRKBQK\nhUKhUCgUCoVCoehGXJS8Jm0Uz29iK7PwDHDjE4XuQc0p5m1GZYMXGxANDYSmRuaLNp4HvytuCOy2\nDr64lvL63ApNG2lNNfupxVZ8+l3WPWgSdltzbhOcxtOsQdKQCzvu0Czw5PIPMmc1uArXHpMGfmFg\nAtvg1Qt776Qp4PYe/yfrKEQKjrFhmrNH0GfeIiuWujLGGOOIBM+xtuykFd+17GnKO/X1KivO3Qm7\nV+dJ1hQpF7a8R94C533hkksor/LsESuODMa4iBOaOGc+YWvycMEtPfAynvGqvXsp76HrYAX6pwUL\nrPjeZfdR3vynr7Dizk7oYfS/dS7ltTcJrvjV4ApHJ42ivPz9sILLGn2j8SQaCqBBkr6A9ZpyP8W9\nLN8KnnObzaovfSF4yVL3qD6Hua9x4eDPBieBx23nYEpL9atuwPM9vAlc4SSbhkatC1zNPkng3SfP\nZC0HhwNz4vw22AYnj2fdA2c+dLEahVWpr82CuVXwQqUtdFgv5rM32+xTPY24YbCzPfXeRvosSehr\nSU50hxh/xhgTNgC2o7XCWjS0H/N+yzbnWXFIptC6Cbxw2R96B6wt/UPBsW1zMz+2SliCZ92CmtzZ\n2Ul5TVVCB0LoACRPZOt0Y3BceztqUsKUHpRVcxI8b1n/pcW2McYUrIVGQMyNbHf9SyHrQVhvvueV\nx6GJU7FN2PzWs65YWgzGnbfQOgt2sB7G1bdBS2bNx8Jqmm+zaWvDfc6ejnm+/H1omvTZz/oVzkbM\ng167MY/ahLWkMcb8+wnojy26DvM8eRrP2aBE1IoTb66z4nd+8yLl3f38EisOiUsVn/BFpcWwPoan\nsftvsK1uaeVrXvgA1oCT72B9SZ3F1/zYst9Y8R9veN6Kf33pTMprb0ddSZ4ILYtpu89T3sdLX0Fe\nFNbClXtfxd985U46ps9iCLl89sDLVvzUZ3+mvPBwzNOWFuxNbp/GmjOLjkG/KTYRdcNuuT2+D/Zp\nLS7U3uUvrqS8U+dxjeN+/5jxJOrPYu1KmcM2rdLe1UdoZrXY5mKL0HpoJnvqHZQXEAMNoFqh6eKI\nYHv19Nm4zwHx2NtU74GWU4RNw6UhD89DamNU72MtrdhRmC9SX8Out+CIw9+tP4V7FD02hfLKhW13\nhNB/qtzD47KtFutn0kNXGE8jWmjqhWQ20WehSXiHqNqHe5h6GT/vcx9CEyhIaIDY70361AlW7OOD\nZ+qfxbW8oSoPsQv3+swajO/WGh5LjecwD2pEfZ2+lPe/peJ9KkpY9FZs4f159UFcrxx/4YNjKe/8\natTvHtdgDZFW6cYYU7wWGlK9xhqPQlpNB6WyvoZ/mNhLCC3OukrWzgmLgR6I3AO2tjopL3Ew9ilt\nbXjn8PNjvRe3Ow/fF4m/Ky2tg5JYX6m9GWuBPNcjH+6jPFcznn2GF55h7lF+t3W34jt8hf5WQDy/\nLzbkY+yQVp9Nv6ejlf/tacj6WLqe3/sThGaOnFd1x/k9MEBYz3eI+1t7mDWVzvyI2ik152zbSNpH\nRg+A7mfxjkPIKWMNPP8oPAc/8T7g5cU6R3Is1In32eR5XF8qdmBuuoTGV8I01prN+xjvY601qGUO\nm8W6ty/XJTu0c0ahUCgUCoVCoVAoFAqFohuhP84oFAqFQqFQKBQKhUKhUHQjvDrtfegCx9cts+KC\njWfpMy/Roh4ahfYs+9fFjEEbZZhoG3QeZ+vK1nq0TUrL5OzfsV1x9RmcR6igVsm2+6JvT9ExcZNg\nj/vNc7Bqjg7ldrbhC4ZasW8gWp+q97O1aPQotIdL2++6s0yT8hX20bnr0b41+Hamw0i7st7jlhhP\n4+jqt6w4ULTZGmNMZCZoFt8++r4VN7UyjaFfOp5j7AS0ldltxEq3o/Vr2O8vt2JfX77XhdtA7Yof\niVbx/DUHrdjPRk2JG4vn6OuL63jjztcpr6wG7YGXDAZ9YvzDl1Fe5RG09MqWUbsNoJ9oyfz8SVC6\nSp3cavnQ+3+w4pgYz1IpinK+tGK7baaEvA679V+VaJENyUDrdENeDeXFjcXzlS2eh95iS+ekIZgH\nkkIl6SbtbqYLyFbIUGGx11LNNqhNZcJKcARaRuN6j6Y8txvWdyVb0drrE8Stiy1OtBeGiLZxO11H\n1pSUTG739wRqa9GG2dLC9aJkG2iFXt6or50dthItaqx8xsnjh1FaYzWoR/6hqNF2y9B2QWMJjEOe\npNJJy1pjiKFEbbZuW2upIwrHyaXBERFAebJ1V9aUmqMXPtfE6WgnDYjlFmEj7llC0jzjSdTUoH3+\np6c/ps+yb8f4DIvH+bW38/j29UXbd9kx1Dy7zW9sJtaK53/1oBUH+nNtTI3GXJr6KCyi5Tpbf4bp\ni6cP51nxwMloJy/dz5SGsY9cd4HrYJvWPy0GZeXGK2dYcaKt7TcmDdd0auU3Vmy3II3OAj0rImKo\n8TTunYFzlDbTxhiTMRQ1sLkM17x62x7KmyHWly93oj522PZBf/3iJSt+685nrPi215lq21iFOZva\n6yorbm9H/So4+hUdIykxO1aBAmofIwMnok27Qliifn/wIOUtuQOUrjdfw7rz4moe65IKXHp6ixXb\nbX6HPLDQisPD2S79l+LIqjesuMNGx4vKhgVtmbCz9fbj/yeZMCnDimvPoK09PIspr/WiHvo4UHdl\nW7wxxgQmYK8j62TFbjzb5nKuB8mXYQ9UKahMydPY9rUuH/WwXVAuqmw0JL8w1BFJoZI2tPbzC0oB\nFUhacRvD1ztk0W+Np3HoS+zh6o4w9SEwFfdT1pIG2z4odgDu4emPfrLiSJsVcfwgzFlXPWgmRav5\nvaE2H/MqPB37grQrQCuX48UYY1xCnkHSh6VlsDG87wgV333yjd2U1/+3oO+cfRdz29vBe7tQQa9N\nGIN5XnOuiPIiemIP7ek96qkt71lxYx7vjeUckZS7uFGplFd1GHvUxBGoFZK6ZIwxnZ34vtBQWNn7\n+TGNvvjcaiv2FdTG4AiMo6qco3RMRDru0Ym3QD2vcfLeJiQAe5gYQRf0te095X5GWmTH2K69vRlj\nolnQeMIymW4n94MpPT2/Ry0ugDxD3ufH6LOwvqiJoT1wr+3UweJ1eE/vbJV7O95vny/F/BkwE/Nq\n37e8Jg2ZKubcMUEpjcb+Mmo4z3P5ntRcgftptyL3Envo8H64Pil/YIwx4X3wWeGXWOPsVNHqvajf\n0aPxmaSvG8N7/J+TwdDOGYVCoVAoFAqFQqFQKBSKboT+OKNQKBQKhUKhUCgUCoVC0Y24KK1p1+v/\nsOLY8dyCVXsCrYeSvhM7nFt8Tr+JNmCfYLR7OWK4TT5jPhTuy/aAAlR7jNvag4XryN61aH0aeVk2\nkry43VrSVE7+BOrDsOvY+aVCtL7KtlBJzTKGFdCLv0P7ll1Vu1O08kWOQMuVbzC3G1duR2ulp90M\njDHmzVtuseIb//k4fXb4rf9asXSLCYhiZWk/P7Rlbn7qcyvOHM1uKn3mo81OUt/sCtmf3f+kFQ8c\nh78r6W0DlyyWh5jlS9EOPuV2tGQ2FnDL47I30Zb32AdoGw8J60d598y6yfwcFo4ZQ//uORNtoo5o\n3JeoTHbu+OIh0ABvW7bMeBJ7/wPHE7tDTKig6dQKal3DOaYxSHV4eR0B0fysi9fDJcUnAC1/IZlM\nO5BteZJOVSf+rp+NpiEdXSRlyj4nSjbiHOQ48g3j7wvtiXMKSUZbdtVBdrkIFH+3bDOoUDHjuK5J\n949hNyw1nsbWZ56y4jCbu1JQMqguFaImOGKZihjWC9cclYUx2NLM7eCuErRY+4XgvoXG9aS889vR\nSp04Bq3EhRtRuxMns3J9ewtoFvJe26lVra2gAuSvhPta1kJuqc77Ds4okqolKXbGGFPwDdpJ4yei\n/dhOp5KtxIPm3208iYOfwjln7ZfsvNczHhSCOX/D+Hnl5j9S3lRxnw8ewRoy7ZbJlOcUlFpJF0y/\ngukhOcvhJBGUhnFUewjrp5et9Th5LuquQ9DW/AO5NfzoK+ut+EQR2uSvepZbcevyMQ6kU2HyVKYM\nuatRo4pWgUpgb43+/ke4JD3xxRfG02gW8+Why2+gz5758k0rLtyz2YrffY7P466/4R7sWoax0HMQ\nj9umYozPUQ/fY8VHP/2I8tqEc9DxI6hTvTOxB7E7f/W/G1S62Hi4RH123wOUl94De5Dh99xhxb6+\nTAnc9dILVtzvVlC/7FvFimOgYWaNu9qKOzqYXrTyQew5Fr78svEkzu760IrlGmSMMQVfoVaE94e7\njd1Vs7kaTjwRfZHn5c3/77L2rGinF/ujsh/zKC9MtMa7Bc1Frp/2Fnfp/hTeD+fgKuK9jVzDpbNP\n2gLe20h3Qn+xZtqpzjWnMAfkWt1qG2OS7tpjyLXG0ygpAr2xcj+v3dJBK3okqNRFX56kvMTZoOiH\nCBqRnXrkPAhKn3Qx9I/id5JAse7WHEcdlRSlatu5drZjjriLQCGLmcj7jBYx5uS4KNvA7jhRo3G9\njfnCIWZyBuX5iNop30OaKpmaIadw1kiueb8UhWdWiPNh6khdLvZVkjouHceMMcZVjHsmaa5yr2mM\nMaViziVOFfThJqbNyD1mUCLWRen6GJwabi4EKVsh54oxxgQn4fvkmA1OsTlVRWBcdbThnVBKZxjD\n1yhrT0s9u5dJuk3/mbdf8Nz/tzi+Xry72H4dkPVDXqfzKMuUuMV6lzAlw4rLt7EbmaSmS0cmO5W/\nbAPWwuAsjB/57OxyFP6RoJ1VCldEKelgjDFVO/FZxrWgyLU2cA2U9GEpuxBio2NLWpuMi75h2mRg\nEmrqiFt/b+zQzhmFQqFQKBQKhUKhUCgUim6E/jijUCgUCoVCoVAoFAqFQtGN0B9nFAqFQqFQKBQK\nhUKhUCi6Eb4X+zB6JCxsK3exJVv5WfDves6CHkFzDXMIk+fjs2PLYUEaauO0Fm44gmOmQUfBzgf0\nE/o2EwTH+PRKWH5lTGZNheAUcMySToAf5ohgjmmPa8A3K/oOujcFK9gasu9vYAUamZ1gxW02vmPB\nJqGbcRicVd9g5hraufaeRnsHuHgFOzfSZ231OOe4jHFWvPd51kwJGwAe9Lxnn7DiP1zO/OMJu8AN\nrHNjLFz90iOUVyJsqBdcMcuKc77bYMVeXvzb4cJnb7Pipkbwhje+9QPlXTsDug2BwRlWLPUvjDHm\nnlsWWHHceGgEdDJ1kSwRc96DzlH6Y/Mpb9hk1lbwJCRP3m4xXpeLeynnh7QsNIZ55F4+uLeST26M\nMWnzwV/P/xLzKrJ/POVVH4Eehn84+J0OMS+lrZwxxoT3Bh/fywccWzvHXfKIJfeztYGt26X2VUMO\neM0N5/hZu4rA/fcX5xcQw/co0G7J7GEEJODvpU0dc8G8OmF7bNfnkpzy2iLMt8qdXKOTZoKD7y4H\nB7g+fy/l1R4X9zD3RysOFdo2UmPm/wE4wdJi8PTHmyir742zrTj9cliYVhw7TnmS798sONV+DuYH\nxwhrQqlTJC1MjTEmdgxz/D2J1Etg6xy/kW04L3sGeiK11VjTbnvtZspb/Th0sQamo/aEpPB6d/57\n6NGU10JzwK5v5ha6DN/9CK2gpe9Cw6zyDN/z9a+i1vZLgbZB1u3DKW/kH6FZlnQA46Ojg9f6mF7Q\nwYnrgzVu4xNvU97kx6FPEjEY87TmCOvLBfjxOulp+PhgLj76IeuzHF8ObZmeV06w4mtvZG2jQ+9B\nr2n20+D//+ee5ygvPAg1Z5Ab8zRt9iDKk7awO24HD90Ri+PTr+pPx6x/eq0VZ2VB12nyH2ZQXkAw\n5mltLWpAznK2LX13FTSGHp8j9NYiAigvSOifnNoI7ZysKVdRnr/vRbeZvwj1Yu2z1/KoEdi/Smto\nu+aM1BdsqobuQcm6c5Qn7YpbalEP/aNs90VYaXe2Y57WnYbWUtxYrk+tNfg+WQPcNuvrmiPQdoib\nDM0tez2QuogVwmbbvp9ud0OTQ+qStTi53kf0jjVdiZIfsI4lTmEdw3Niz9Uu7NIzruO5k/sRxr7U\n52pu5D1D2jyM6eqD2MNE9I+jvGYxFpqrcT9iR+L5dgzkPVHxarw3pFyBv1MqNDOMMcYnBLWtqQz6\ncnZb3ugBGVYcnoU1zhHMNu85X+204oY81FSpJWYMWz57GjVSh9RmJ22EZExDPs5PWksbw3qKUoNE\nWksbw3O4ZDN0euInpFOeW2iDOMXc8Rf3pdZmG98sdHrixgtdO9tclPsP+Y5gn4tSW6bqAO5RSA/W\ndpPWzwFi727fn0tb8q6A1GCJn5pBn8l9ltTIkVqhxhgTlAo9GqlBGdaP64irFOtp5Q7Mg4yrbeti\n/5+38G5z4f21atd5OiZJaFC11uIdorGQ94oJM/GuUbY1z4rt74GRg1Af/IXmmF0XV+5Rz6+Exm1I\nFj9vqR/2c9DOGYVCoVAoFAqFQqFQKBSKboT+OKNQKBQKhUKhUCgUCoVC0Y24qJW2QqFQKBQKhUKh\nUCgUCoWia6GdMwqFQqFQKBQKhUKhUCgU3Qj9cUahUCgUCoVCoVAoFAqFohuhP84oFAqFQqFQKBQK\nhUKhUHQj9McZhUKhUCgUCoVCoVAoFIpuhP44o1AoFAqFQqFQKBQKhULRjdAfZxQKhUKhUCgUCoVC\noVAouhH/B6tQBmtmm2EuAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + } + ] +} \ No newline at end of file