diff --git a/jupyter/06_pandas_integration_examples.ipynb b/jupyter/06_pandas_integration_examples.ipynb
new file mode 100644
index 0000000..e8e430f
--- /dev/null
+++ b/jupyter/06_pandas_integration_examples.ipynb
@@ -0,0 +1,310 @@
+{
+ "cells": [
+ {
+ "metadata": {},
+ "cell_type": "markdown",
+ "source": "# __Pandas examples with ChemAxon molecules__",
+ "id": "b70058148a1f011b"
+ },
+ {
+ "metadata": {},
+ "cell_type": "markdown",
+ "source": "You can see simpler examples of using pandas.DataGrame.read_table with ChemAxon molecules in the [Calculators](02_calculators.ipynb) and [Molecular similiarity notebook](03_molecular_similarity.ipynb). But here are some additional examples showing how to work with ChemAxon molecules in pandas DataFrames.",
+ "id": "74aa29c7fecce4b7"
+ },
+ {
+ "metadata": {},
+ "cell_type": "markdown",
+ "source": "By default, molecules are printed in the _cxsmiles_ format. In case of issues with that, it is written in the _cxsmarts_ format. If none of them are possible for some reason, representation falls back to use the original format, which was recognized during the import process.",
+ "id": "b1ec732d397843a3"
+ },
+ {
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-12-01T14:43:22.339727Z",
+ "start_time": "2025-12-01T14:43:21.966248Z"
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "import pandas as pd\n",
+ "from chemaxon import import_mol, open_for_import\n",
+ "\n",
+ "mol = import_mol('CC(=O)NC1=CC=C(O)C=C1')\n",
+ "\n",
+ "mol_lst = []\n",
+ "with open_for_import('/home/lnagy/IdeaProjects/python-api/chemaxon/resources/test.sdf') as mol_importer:\n",
+ " for m in mol_importer:\n",
+ " mol_lst.append(m)\n",
+ "\n",
+ "d = {'molecule': [mol] + mol_lst }\n",
+ "df_mols = pd.DataFrame(data=d)\n",
+ "\n",
+ "df_mols"
+ ],
+ "id": "7f80b7d19aaee0a3",
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ " molecule\n",
+ "0 CC(=O)NC1=CC=C(O)C=C1 |c:9,t:4,6|\n",
+ "1 [Li]C1=C(I)C(Br)=C(F)C2=C1C(Cl)=C(N)C(O)=C2S |..."
+ ],
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " molecule | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " CC(=O)NC1=CC=C(O)C=C1 |c:9,t:4,6| | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " [Li]C1=C(I)C(Br)=C(F)C2=C1C(Cl)=C(N)C(O)=C2S |... | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "execution_count": 2
+ },
+ {
+ "metadata": {},
+ "cell_type": "markdown",
+ "source": "In case of creating HTML output from pandas.DataFrame, you can use the helper function _mol_to_svg_formatter_ to visualize the molecules as SVG images.",
+ "id": "7d771f74cf01d2f6"
+ },
+ {
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-12-01T14:44:23.122745Z",
+ "start_time": "2025-12-01T14:44:22.978179Z"
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "from chemaxon import mol_to_svg_formatter\n",
+ "\n",
+ "df_mols.to_html('web_view.html', escape=False, formatters=dict(molecule=mol_to_svg_formatter))"
+ ],
+ "id": "27bf252df19e4e0f",
+ "outputs": [],
+ "execution_count": 3
+ },
+ {
+ "metadata": {},
+ "cell_type": "markdown",
+ "source": "Since the __Molecule__ objects are being stored in the __DataFrame__, not just their representation, you can easily calculate properties for them and store the results in new columns.",
+ "id": "5cc167e89a64f2e6"
+ },
+ {
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-12-01T14:44:25.428052Z",
+ "start_time": "2025-12-01T14:44:25.414389Z"
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "from chemaxon import logp\n",
+ "\n",
+ "df_mols['LogP'] = df_mols['molecule'].apply(lambda m: logp(m))\n",
+ "df_mols"
+ ],
+ "id": "d4877596d4d17c61",
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ " molecule LogP\n",
+ "0 CC(=O)NC1=CC=C(O)C=C1 |c:9,t:4,6| 0.92\n",
+ "1 [Li]C1=C(I)C(Br)=C(F)C2=C1C(Cl)=C(N)C(O)=C2S |... 4.06"
+ ],
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " molecule | \n",
+ " LogP | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " CC(=O)NC1=CC=C(O)C=C1 |c:9,t:4,6| | \n",
+ " 0.92 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " [Li]C1=C(I)C(Br)=C(F)C2=C1C(Cl)=C(N)C(O)=C2S |... | \n",
+ " 4.06 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "execution_count": 4
+ },
+ {
+ "metadata": {},
+ "cell_type": "markdown",
+ "source": "You can also easily create new molecule columns based on existing columns, that contain molecules in any supported format.",
+ "id": "754df0780b6944f8"
+ },
+ {
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-12-02T12:54:58.077678Z",
+ "start_time": "2025-12-02T12:54:58.057169Z"
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "d = {'SMILES': ['CN1C=NC2=C1C(=O)N(C)C(=O)N2C'], 'name': ['coffein'] }\n",
+ "df = pd.DataFrame(data=d)\n",
+ "\n",
+ "df = pd.concat([df, pd.DataFrame.from_records([{'SMILES' : 'CC[C@H](C)[C@@H]1NC(=O)[C@H](CC2=CC=C(O)C=C2)NC(=O)[C@@H](N)CSSC[C@H](NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC1=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(=O)NCC(N)=O', 'name' : 'oxytocin'}])])\n",
+ "\n",
+ "df['molecule'] = df['SMILES'].apply(lambda s: import_mol(s))\n",
+ "df\n"
+ ],
+ "id": "7cf77defedadb058",
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ " SMILES name \\\n",
+ "0 CN1C=NC2=C1C(=O)N(C)C(=O)N2C coffein \n",
+ "0 CC[C@H](C)[C@@H]1NC(=O)[C@H](CC2=CC=C(O)C=C2)N... oxytocin \n",
+ "\n",
+ " molecule \n",
+ "0 CN1C=NC2=C1C(=O)N(C)C(=O)N2C |c:2,4| \n",
+ "0 CC[C@H](C)[C@@H]1NC(=O)[C@H](CC2=CC=C(O)C=C2)N... "
+ ],
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " SMILES | \n",
+ " name | \n",
+ " molecule | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " CN1C=NC2=C1C(=O)N(C)C(=O)N2C | \n",
+ " coffein | \n",
+ " CN1C=NC2=C1C(=O)N(C)C(=O)N2C |c:2,4| | \n",
+ "
\n",
+ " \n",
+ " | 0 | \n",
+ " CC[C@H](C)[C@@H]1NC(=O)[C@H](CC2=CC=C(O)C=C2)N... | \n",
+ " oxytocin | \n",
+ " CC[C@H](C)[C@@H]1NC(=O)[C@H](CC2=CC=C(O)C=C2)N... | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "execution_count": 6
+ },
+ {
+ "metadata": {},
+ "cell_type": "code",
+ "outputs": [],
+ "execution_count": null,
+ "source": "",
+ "id": "b92a8580d7e03daa"
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}